]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/namespace.c
mnt: Fail collect_mounts when applied to unmounted mounts
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
87b95ce0
AV
193static void drop_mountpoint(struct fs_pin *p)
194{
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199}
200
b105e270 201static struct mount *alloc_vfsmnt(const char *name)
1da177e4 202{
c63181e6
AV
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
73cd49ec
MS
205 int err;
206
c63181e6 207 err = mnt_alloc_id(mnt);
88b38782
LZ
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
fcc139ae 212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 213 if (!mnt->mnt_devname)
88b38782 214 goto out_free_id;
73cd49ec
MS
215 }
216
b3e19d92 217#ifdef CONFIG_SMP
c63181e6
AV
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
b3e19d92
NP
220 goto out_free_devname;
221
c63181e6 222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 223#else
c63181e6
AV
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
b3e19d92
NP
226#endif
227
38129a13 228 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
237#ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 239#endif
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73 244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73 290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73 304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73 312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
1e75529e 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e 394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e 413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e 420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e 423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e 429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440int mnt_want_write_file(struct file *file)
441{
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449}
96029c4e 450EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
8366025e 452/**
eb04c282 453 * __mnt_drop_write - give up write access to a mount
8366025e
DH
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
eb04c282 458 * __mnt_want_write() call above.
8366025e 459 */
eb04c282 460void __mnt_drop_write(struct vfsmount *mnt)
8366025e 461{
d3ef3d73 462 preempt_disable();
83adc753 463 mnt_dec_writers(real_mount(mnt));
d3ef3d73 464 preempt_enable();
8366025e 465}
eb04c282
JK
466
467/**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475void mnt_drop_write(struct vfsmount *mnt)
476{
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479}
8366025e
DH
480EXPORT_SYMBOL_GPL(mnt_drop_write);
481
eb04c282
JK
482void __mnt_drop_write_file(struct file *file)
483{
484 __mnt_drop_write(file->f_path.mnt);
485}
486
2a79f17e
AV
487void mnt_drop_write_file(struct file *file)
488{
489 mnt_drop_write(file->f_path.mnt);
490}
491EXPORT_SYMBOL(mnt_drop_write_file);
492
83adc753 493static int mnt_make_readonly(struct mount *mnt)
8366025e 494{
3d733633
DH
495 int ret = 0;
496
719ea2fb 497 lock_mount_hash();
83adc753 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 499 /*
d3ef3d73 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
3d733633 502 */
d3ef3d73 503 smp_mb();
504
3d733633 505 /*
d3ef3d73 506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
3d733633 520 */
c6653a83 521 if (mnt_get_writers(mnt) > 0)
d3ef3d73 522 ret = -EBUSY;
523 else
83adc753 524 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
83adc753 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 531 unlock_mount_hash();
3d733633 532 return ret;
8366025e 533}
8366025e 534
83adc753 535static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 536{
719ea2fb 537 lock_mount_hash();
83adc753 538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 539 unlock_mount_hash();
2e4b7fcd
DH
540}
541
4ed5e82f
MS
542int sb_prepare_remount_readonly(struct super_block *sb)
543{
544 struct mount *mnt;
545 int err = 0;
546
8e8b8796
MS
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
719ea2fb 551 lock_mount_hash();
4ed5e82f
MS
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
8e8b8796
MS
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
4ed5e82f
MS
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
719ea2fb 573 unlock_mount_hash();
4ed5e82f
MS
574
575 return err;
576}
577
b105e270 578static void free_vfsmnt(struct mount *mnt)
1da177e4 579{
fcc139ae 580 kfree_const(mnt->mnt_devname);
d3ef3d73 581#ifdef CONFIG_SMP
68e8a9fe 582 free_percpu(mnt->mnt_pcp);
d3ef3d73 583#endif
b105e270 584 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
585}
586
8ffcb32e
DH
587static void delayed_free_vfsmnt(struct rcu_head *head)
588{
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590}
591
48a066e7
AV
592/* call under rcu_read_lock */
593bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594{
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return false;
598 if (bastard == NULL)
599 return true;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return true;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return false;
607 }
608 rcu_read_unlock();
609 mntput(bastard);
610 rcu_read_lock();
611 return false;
612}
613
1da177e4 614/*
474279dc 615 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 616 * call under rcu_read_lock()
1da177e4 617 */
474279dc 618struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 619{
38129a13 620 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
621 struct mount *p;
622
38129a13 623 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625 return p;
626 return NULL;
627}
628
629/*
630 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 631 * mount_lock must be held.
474279dc
AV
632 */
633struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
634{
411a938b
EB
635 struct mount *p, *res = NULL;
636 p = __lookup_mnt(mnt, dentry);
38129a13
AV
637 if (!p)
638 goto out;
411a938b
EB
639 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
640 res = p;
38129a13 641 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
642 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
643 break;
411a938b
EB
644 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
645 res = p;
1d6a32ac 646 }
38129a13 647out:
1d6a32ac 648 return res;
1da177e4
LT
649}
650
a05964f3 651/*
f015f126
DH
652 * lookup_mnt - Return the first child mount mounted at path
653 *
654 * "First" means first mounted chronologically. If you create the
655 * following mounts:
656 *
657 * mount /dev/sda1 /mnt
658 * mount /dev/sda2 /mnt
659 * mount /dev/sda3 /mnt
660 *
661 * Then lookup_mnt() on the base /mnt dentry in the root mount will
662 * return successively the root dentry and vfsmount of /dev/sda1, then
663 * /dev/sda2, then /dev/sda3, then NULL.
664 *
665 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 666 */
1c755af4 667struct vfsmount *lookup_mnt(struct path *path)
a05964f3 668{
c7105365 669 struct mount *child_mnt;
48a066e7
AV
670 struct vfsmount *m;
671 unsigned seq;
99b7db7b 672
48a066e7
AV
673 rcu_read_lock();
674 do {
675 seq = read_seqbegin(&mount_lock);
676 child_mnt = __lookup_mnt(path->mnt, path->dentry);
677 m = child_mnt ? &child_mnt->mnt : NULL;
678 } while (!legitimize_mnt(m, seq));
679 rcu_read_unlock();
680 return m;
a05964f3
RP
681}
682
7af1364f
EB
683/*
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
686 *
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
691 * is a mountpoint.
692 *
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
696 * parent mount.
697 */
698bool __is_local_mountpoint(struct dentry *dentry)
699{
700 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 struct mount *mnt;
702 bool is_covered = false;
703
704 if (!d_mountpoint(dentry))
705 goto out;
706
707 down_read(&namespace_sem);
708 list_for_each_entry(mnt, &ns->list, mnt_list) {
709 is_covered = (mnt->mnt_mountpoint == dentry);
710 if (is_covered)
711 break;
712 }
713 up_read(&namespace_sem);
714out:
715 return is_covered;
716}
717
e2dfa935 718static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 719{
0818bf27 720 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
721 struct mountpoint *mp;
722
0818bf27 723 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
724 if (mp->m_dentry == dentry) {
725 /* might be worth a WARN_ON() */
726 if (d_unlinked(dentry))
727 return ERR_PTR(-ENOENT);
728 mp->m_count++;
729 return mp;
730 }
731 }
e2dfa935
EB
732 return NULL;
733}
734
735static struct mountpoint *new_mountpoint(struct dentry *dentry)
736{
737 struct hlist_head *chain = mp_hash(dentry);
738 struct mountpoint *mp;
739 int ret;
84d17192
AV
740
741 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
742 if (!mp)
743 return ERR_PTR(-ENOMEM);
744
eed81007
MS
745 ret = d_set_mounted(dentry);
746 if (ret) {
84d17192 747 kfree(mp);
eed81007 748 return ERR_PTR(ret);
84d17192 749 }
eed81007 750
84d17192
AV
751 mp->m_dentry = dentry;
752 mp->m_count = 1;
0818bf27 753 hlist_add_head(&mp->m_hash, chain);
0a5eb7c8 754 INIT_HLIST_HEAD(&mp->m_list);
84d17192
AV
755 return mp;
756}
757
758static void put_mountpoint(struct mountpoint *mp)
759{
760 if (!--mp->m_count) {
761 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 762 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
763 spin_lock(&dentry->d_lock);
764 dentry->d_flags &= ~DCACHE_MOUNTED;
765 spin_unlock(&dentry->d_lock);
0818bf27 766 hlist_del(&mp->m_hash);
84d17192
AV
767 kfree(mp);
768 }
769}
770
143c8c91 771static inline int check_mnt(struct mount *mnt)
1da177e4 772{
6b3286ed 773 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
774}
775
99b7db7b
NP
776/*
777 * vfsmount lock must be held for write
778 */
6b3286ed 779static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
780{
781 if (ns) {
782 ns->event = ++event;
783 wake_up_interruptible(&ns->poll);
784 }
785}
786
99b7db7b
NP
787/*
788 * vfsmount lock must be held for write
789 */
6b3286ed 790static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
791{
792 if (ns && ns->event != event) {
793 ns->event = event;
794 wake_up_interruptible(&ns->poll);
795 }
796}
797
99b7db7b
NP
798/*
799 * vfsmount lock must be held for write
800 */
419148da
AV
801static void detach_mnt(struct mount *mnt, struct path *old_path)
802{
a73324da 803 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
804 old_path->mnt = &mnt->mnt_parent->mnt;
805 mnt->mnt_parent = mnt;
a73324da 806 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 807 list_del_init(&mnt->mnt_child);
38129a13 808 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 809 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
810 put_mountpoint(mnt->mnt_mp);
811 mnt->mnt_mp = NULL;
1da177e4
LT
812}
813
99b7db7b
NP
814/*
815 * vfsmount lock must be held for write
816 */
84d17192
AV
817void mnt_set_mountpoint(struct mount *mnt,
818 struct mountpoint *mp,
44d964d6 819 struct mount *child_mnt)
b90fa9ae 820{
84d17192 821 mp->m_count++;
3a2393d7 822 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 823 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 824 child_mnt->mnt_parent = mnt;
84d17192 825 child_mnt->mnt_mp = mp;
0a5eb7c8 826 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
827}
828
99b7db7b
NP
829/*
830 * vfsmount lock must be held for write
831 */
84d17192
AV
832static void attach_mnt(struct mount *mnt,
833 struct mount *parent,
834 struct mountpoint *mp)
1da177e4 835{
84d17192 836 mnt_set_mountpoint(parent, mp, mnt);
38129a13 837 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 838 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
839}
840
12a5b529
AV
841static void attach_shadowed(struct mount *mnt,
842 struct mount *parent,
843 struct mount *shadows)
844{
845 if (shadows) {
f6f99332 846 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
847 list_add(&mnt->mnt_child, &shadows->mnt_child);
848 } else {
849 hlist_add_head_rcu(&mnt->mnt_hash,
850 m_hash(&parent->mnt, mnt->mnt_mountpoint));
851 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
852 }
853}
854
b90fa9ae 855/*
99b7db7b 856 * vfsmount lock must be held for write
b90fa9ae 857 */
1d6a32ac 858static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 859{
0714a533 860 struct mount *parent = mnt->mnt_parent;
83adc753 861 struct mount *m;
b90fa9ae 862 LIST_HEAD(head);
143c8c91 863 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 864
0714a533 865 BUG_ON(parent == mnt);
b90fa9ae 866
1a4eeaf2 867 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 868 list_for_each_entry(m, &head, mnt_list)
143c8c91 869 m->mnt_ns = n;
f03c6599 870
b90fa9ae
RP
871 list_splice(&head, n->list.prev);
872
12a5b529 873 attach_shadowed(mnt, parent, shadows);
6b3286ed 874 touch_mnt_namespace(n);
1da177e4
LT
875}
876
909b0a88 877static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 878{
6b41d536
AV
879 struct list_head *next = p->mnt_mounts.next;
880 if (next == &p->mnt_mounts) {
1da177e4 881 while (1) {
909b0a88 882 if (p == root)
1da177e4 883 return NULL;
6b41d536
AV
884 next = p->mnt_child.next;
885 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 886 break;
0714a533 887 p = p->mnt_parent;
1da177e4
LT
888 }
889 }
6b41d536 890 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
891}
892
315fc83e 893static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 894{
6b41d536
AV
895 struct list_head *prev = p->mnt_mounts.prev;
896 while (prev != &p->mnt_mounts) {
897 p = list_entry(prev, struct mount, mnt_child);
898 prev = p->mnt_mounts.prev;
9676f0c6
RP
899 }
900 return p;
901}
902
9d412a43
AV
903struct vfsmount *
904vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
905{
b105e270 906 struct mount *mnt;
9d412a43
AV
907 struct dentry *root;
908
909 if (!type)
910 return ERR_PTR(-ENODEV);
911
912 mnt = alloc_vfsmnt(name);
913 if (!mnt)
914 return ERR_PTR(-ENOMEM);
915
916 if (flags & MS_KERNMOUNT)
b105e270 917 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
918
919 root = mount_fs(type, flags, name, data);
920 if (IS_ERR(root)) {
8ffcb32e 921 mnt_free_id(mnt);
9d412a43
AV
922 free_vfsmnt(mnt);
923 return ERR_CAST(root);
924 }
925
b105e270
AV
926 mnt->mnt.mnt_root = root;
927 mnt->mnt.mnt_sb = root->d_sb;
a73324da 928 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 929 mnt->mnt_parent = mnt;
719ea2fb 930 lock_mount_hash();
39f7c4db 931 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 932 unlock_mount_hash();
b105e270 933 return &mnt->mnt;
9d412a43
AV
934}
935EXPORT_SYMBOL_GPL(vfs_kern_mount);
936
87129cc0 937static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 938 int flag)
1da177e4 939{
87129cc0 940 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
941 struct mount *mnt;
942 int err;
1da177e4 943
be34d1a3
DH
944 mnt = alloc_vfsmnt(old->mnt_devname);
945 if (!mnt)
946 return ERR_PTR(-ENOMEM);
719f5d7f 947
7a472ef4 948 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
949 mnt->mnt_group_id = 0; /* not a peer of original */
950 else
951 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 952
be34d1a3
DH
953 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
954 err = mnt_alloc_group_id(mnt);
955 if (err)
956 goto out_free;
1da177e4 957 }
be34d1a3 958
f2ebb3a9 959 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 960 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
961 if (flag & CL_UNPRIVILEGED) {
962 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
963
964 if (mnt->mnt.mnt_flags & MNT_READONLY)
965 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
966
967 if (mnt->mnt.mnt_flags & MNT_NODEV)
968 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
969
970 if (mnt->mnt.mnt_flags & MNT_NOSUID)
971 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
972
973 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
974 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
975 }
132c94e3 976
5ff9d8a6 977 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
978 if ((flag & CL_UNPRIVILEGED) &&
979 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
980 mnt->mnt.mnt_flags |= MNT_LOCKED;
981
be34d1a3
DH
982 atomic_inc(&sb->s_active);
983 mnt->mnt.mnt_sb = sb;
984 mnt->mnt.mnt_root = dget(root);
985 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
986 mnt->mnt_parent = mnt;
719ea2fb 987 lock_mount_hash();
be34d1a3 988 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 989 unlock_mount_hash();
be34d1a3 990
7a472ef4
EB
991 if ((flag & CL_SLAVE) ||
992 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
993 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
994 mnt->mnt_master = old;
995 CLEAR_MNT_SHARED(mnt);
996 } else if (!(flag & CL_PRIVATE)) {
997 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
998 list_add(&mnt->mnt_share, &old->mnt_share);
999 if (IS_MNT_SLAVE(old))
1000 list_add(&mnt->mnt_slave, &old->mnt_slave);
1001 mnt->mnt_master = old->mnt_master;
1002 }
1003 if (flag & CL_MAKE_SHARED)
1004 set_mnt_shared(mnt);
1005
1006 /* stick the duplicate mount on the same expiry list
1007 * as the original if that was on one */
1008 if (flag & CL_EXPIRE) {
1009 if (!list_empty(&old->mnt_expire))
1010 list_add(&mnt->mnt_expire, &old->mnt_expire);
1011 }
1012
cb338d06 1013 return mnt;
719f5d7f
MS
1014
1015 out_free:
8ffcb32e 1016 mnt_free_id(mnt);
719f5d7f 1017 free_vfsmnt(mnt);
be34d1a3 1018 return ERR_PTR(err);
1da177e4
LT
1019}
1020
9ea459e1
AV
1021static void cleanup_mnt(struct mount *mnt)
1022{
1023 /*
1024 * This probably indicates that somebody messed
1025 * up a mnt_want/drop_write() pair. If this
1026 * happens, the filesystem was probably unable
1027 * to make r/w->r/o transitions.
1028 */
1029 /*
1030 * The locking used to deal with mnt_count decrement provides barriers,
1031 * so mnt_get_writers() below is safe.
1032 */
1033 WARN_ON(mnt_get_writers(mnt));
1034 if (unlikely(mnt->mnt_pins.first))
1035 mnt_pin_kill(mnt);
1036 fsnotify_vfsmount_delete(&mnt->mnt);
1037 dput(mnt->mnt.mnt_root);
1038 deactivate_super(mnt->mnt.mnt_sb);
1039 mnt_free_id(mnt);
1040 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1041}
1042
1043static void __cleanup_mnt(struct rcu_head *head)
1044{
1045 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1046}
1047
1048static LLIST_HEAD(delayed_mntput_list);
1049static void delayed_mntput(struct work_struct *unused)
1050{
1051 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1052 struct llist_node *next;
1053
1054 for (; node; node = next) {
1055 next = llist_next(node);
1056 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1057 }
1058}
1059static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1060
900148dc 1061static void mntput_no_expire(struct mount *mnt)
b3e19d92 1062{
48a066e7
AV
1063 rcu_read_lock();
1064 mnt_add_count(mnt, -1);
1065 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1066 rcu_read_unlock();
f03c6599 1067 return;
b3e19d92 1068 }
719ea2fb 1069 lock_mount_hash();
b3e19d92 1070 if (mnt_get_count(mnt)) {
48a066e7 1071 rcu_read_unlock();
719ea2fb 1072 unlock_mount_hash();
99b7db7b
NP
1073 return;
1074 }
48a066e7
AV
1075 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1076 rcu_read_unlock();
1077 unlock_mount_hash();
1078 return;
1079 }
1080 mnt->mnt.mnt_flags |= MNT_DOOMED;
1081 rcu_read_unlock();
962830df 1082
39f7c4db 1083 list_del(&mnt->mnt_instance);
719ea2fb 1084 unlock_mount_hash();
649a795a 1085
9ea459e1
AV
1086 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1087 struct task_struct *task = current;
1088 if (likely(!(task->flags & PF_KTHREAD))) {
1089 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1090 if (!task_work_add(task, &mnt->mnt_rcu, true))
1091 return;
1092 }
1093 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1094 schedule_delayed_work(&delayed_mntput_work, 1);
1095 return;
1096 }
1097 cleanup_mnt(mnt);
b3e19d92 1098}
b3e19d92
NP
1099
1100void mntput(struct vfsmount *mnt)
1101{
1102 if (mnt) {
863d684f 1103 struct mount *m = real_mount(mnt);
b3e19d92 1104 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1105 if (unlikely(m->mnt_expiry_mark))
1106 m->mnt_expiry_mark = 0;
1107 mntput_no_expire(m);
b3e19d92
NP
1108 }
1109}
1110EXPORT_SYMBOL(mntput);
1111
1112struct vfsmount *mntget(struct vfsmount *mnt)
1113{
1114 if (mnt)
83adc753 1115 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1116 return mnt;
1117}
1118EXPORT_SYMBOL(mntget);
1119
3064c356 1120struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1121{
3064c356
AV
1122 struct mount *p;
1123 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1124 if (IS_ERR(p))
1125 return ERR_CAST(p);
1126 p->mnt.mnt_flags |= MNT_INTERNAL;
1127 return &p->mnt;
7b7b1ace 1128}
1da177e4 1129
b3b304a2
MS
1130static inline void mangle(struct seq_file *m, const char *s)
1131{
1132 seq_escape(m, s, " \t\n\\");
1133}
1134
1135/*
1136 * Simple .show_options callback for filesystems which don't want to
1137 * implement more complex mount option showing.
1138 *
1139 * See also save_mount_options().
1140 */
34c80b1d 1141int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1142{
2a32cebd
AV
1143 const char *options;
1144
1145 rcu_read_lock();
34c80b1d 1146 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1147
1148 if (options != NULL && options[0]) {
1149 seq_putc(m, ',');
1150 mangle(m, options);
1151 }
2a32cebd 1152 rcu_read_unlock();
b3b304a2
MS
1153
1154 return 0;
1155}
1156EXPORT_SYMBOL(generic_show_options);
1157
1158/*
1159 * If filesystem uses generic_show_options(), this function should be
1160 * called from the fill_super() callback.
1161 *
1162 * The .remount_fs callback usually needs to be handled in a special
1163 * way, to make sure, that previous options are not overwritten if the
1164 * remount fails.
1165 *
1166 * Also note, that if the filesystem's .remount_fs function doesn't
1167 * reset all options to their default value, but changes only newly
1168 * given options, then the displayed options will not reflect reality
1169 * any more.
1170 */
1171void save_mount_options(struct super_block *sb, char *options)
1172{
2a32cebd
AV
1173 BUG_ON(sb->s_options);
1174 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1175}
1176EXPORT_SYMBOL(save_mount_options);
1177
2a32cebd
AV
1178void replace_mount_options(struct super_block *sb, char *options)
1179{
1180 char *old = sb->s_options;
1181 rcu_assign_pointer(sb->s_options, options);
1182 if (old) {
1183 synchronize_rcu();
1184 kfree(old);
1185 }
1186}
1187EXPORT_SYMBOL(replace_mount_options);
1188
a1a2c409 1189#ifdef CONFIG_PROC_FS
0226f492 1190/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1191static void *m_start(struct seq_file *m, loff_t *pos)
1192{
6ce6e24e 1193 struct proc_mounts *p = proc_mounts(m);
1da177e4 1194
390c6843 1195 down_read(&namespace_sem);
c7999c36
AV
1196 if (p->cached_event == p->ns->event) {
1197 void *v = p->cached_mount;
1198 if (*pos == p->cached_index)
1199 return v;
1200 if (*pos == p->cached_index + 1) {
1201 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1202 return p->cached_mount = v;
1203 }
1204 }
1205
1206 p->cached_event = p->ns->event;
1207 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1208 p->cached_index = *pos;
1209 return p->cached_mount;
1da177e4
LT
1210}
1211
1212static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1213{
6ce6e24e 1214 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1215
c7999c36
AV
1216 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1217 p->cached_index = *pos;
1218 return p->cached_mount;
1da177e4
LT
1219}
1220
1221static void m_stop(struct seq_file *m, void *v)
1222{
390c6843 1223 up_read(&namespace_sem);
1da177e4
LT
1224}
1225
0226f492 1226static int m_show(struct seq_file *m, void *v)
2d4d4864 1227{
6ce6e24e 1228 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1229 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1230 return p->show(m, &r->mnt);
1da177e4
LT
1231}
1232
a1a2c409 1233const struct seq_operations mounts_op = {
1da177e4
LT
1234 .start = m_start,
1235 .next = m_next,
1236 .stop = m_stop,
0226f492 1237 .show = m_show,
b4629fe2 1238};
a1a2c409 1239#endif /* CONFIG_PROC_FS */
b4629fe2 1240
1da177e4
LT
1241/**
1242 * may_umount_tree - check if a mount tree is busy
1243 * @mnt: root of mount tree
1244 *
1245 * This is called to check if a tree of mounts has any
1246 * open files, pwds, chroots or sub mounts that are
1247 * busy.
1248 */
909b0a88 1249int may_umount_tree(struct vfsmount *m)
1da177e4 1250{
909b0a88 1251 struct mount *mnt = real_mount(m);
36341f64
RP
1252 int actual_refs = 0;
1253 int minimum_refs = 0;
315fc83e 1254 struct mount *p;
909b0a88 1255 BUG_ON(!m);
1da177e4 1256
b3e19d92 1257 /* write lock needed for mnt_get_count */
719ea2fb 1258 lock_mount_hash();
909b0a88 1259 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1260 actual_refs += mnt_get_count(p);
1da177e4 1261 minimum_refs += 2;
1da177e4 1262 }
719ea2fb 1263 unlock_mount_hash();
1da177e4
LT
1264
1265 if (actual_refs > minimum_refs)
e3474a8e 1266 return 0;
1da177e4 1267
e3474a8e 1268 return 1;
1da177e4
LT
1269}
1270
1271EXPORT_SYMBOL(may_umount_tree);
1272
1273/**
1274 * may_umount - check if a mount point is busy
1275 * @mnt: root of mount
1276 *
1277 * This is called to check if a mount point has any
1278 * open files, pwds, chroots or sub mounts. If the
1279 * mount has sub mounts this will return busy
1280 * regardless of whether the sub mounts are busy.
1281 *
1282 * Doesn't take quota and stuff into account. IOW, in some cases it will
1283 * give false negatives. The main reason why it's here is that we need
1284 * a non-destructive way to look for easily umountable filesystems.
1285 */
1286int may_umount(struct vfsmount *mnt)
1287{
e3474a8e 1288 int ret = 1;
8ad08d8a 1289 down_read(&namespace_sem);
719ea2fb 1290 lock_mount_hash();
1ab59738 1291 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1292 ret = 0;
719ea2fb 1293 unlock_mount_hash();
8ad08d8a 1294 up_read(&namespace_sem);
a05964f3 1295 return ret;
1da177e4
LT
1296}
1297
1298EXPORT_SYMBOL(may_umount);
1299
38129a13 1300static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1301
97216be0 1302static void namespace_unlock(void)
70fbcdf4 1303{
a3b3c562 1304 struct hlist_head head;
97216be0 1305
a3b3c562 1306 hlist_move_list(&unmounted, &head);
97216be0 1307
97216be0
AV
1308 up_write(&namespace_sem);
1309
a3b3c562
EB
1310 if (likely(hlist_empty(&head)))
1311 return;
1312
48a066e7
AV
1313 synchronize_rcu();
1314
87b95ce0 1315 group_pin_kill(&head);
70fbcdf4
RP
1316}
1317
97216be0 1318static inline void namespace_lock(void)
e3197d83 1319{
97216be0 1320 down_write(&namespace_sem);
e3197d83
AV
1321}
1322
e819f152
EB
1323enum umount_tree_flags {
1324 UMOUNT_SYNC = 1,
1325 UMOUNT_PROPAGATE = 2,
1326};
99b7db7b 1327/*
48a066e7 1328 * mount_lock must be held
99b7db7b
NP
1329 * namespace_sem must be held for write
1330 */
e819f152 1331static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1332{
c003b26f 1333 LIST_HEAD(tmp_list);
315fc83e 1334 struct mount *p;
1da177e4 1335
5d88457e
EB
1336 if (how & UMOUNT_PROPAGATE)
1337 propagate_mount_unlock(mnt);
1338
c003b26f 1339 /* Gather the mounts to umount */
590ce4bc
EB
1340 for (p = mnt; p; p = next_mnt(p, mnt)) {
1341 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1342 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1343 }
1da177e4 1344
411a938b 1345 /* Hide the mounts from mnt_mounts */
c003b26f 1346 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1347 list_del_init(&p->mnt_child);
c003b26f 1348 }
88b368f2 1349
c003b26f 1350 /* Add propogated mounts to the tmp_list */
e819f152 1351 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1352 propagate_umount(&tmp_list);
a05964f3 1353
c003b26f
EB
1354 while (!list_empty(&tmp_list)) {
1355 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1356 list_del_init(&p->mnt_expire);
1a4eeaf2 1357 list_del_init(&p->mnt_list);
143c8c91
AV
1358 __touch_mnt_namespace(p->mnt_ns);
1359 p->mnt_ns = NULL;
e819f152 1360 if (how & UMOUNT_SYNC)
48a066e7 1361 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0
AV
1362
1363 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, &unmounted);
676da58d 1364 if (mnt_has_parent(p)) {
0a5eb7c8 1365 hlist_del_init(&p->mnt_mp_list);
84d17192 1366 put_mountpoint(p->mnt_mp);
81b6b061 1367 mnt_add_count(p->mnt_parent, -1);
87b95ce0
AV
1368 /* old mountpoint will be dropped when we can do that */
1369 p->mnt_ex_mountpoint = p->mnt_mountpoint;
aba809cf
AV
1370 p->mnt_mountpoint = p->mnt.mnt_root;
1371 p->mnt_parent = p;
84d17192 1372 p->mnt_mp = NULL;
411a938b 1373 hlist_del_init_rcu(&p->mnt_hash);
7c4b93d8 1374 }
0f0afb1d 1375 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1376 }
1377}
1378
b54b9be7 1379static void shrink_submounts(struct mount *mnt);
c35038be 1380
1ab59738 1381static int do_umount(struct mount *mnt, int flags)
1da177e4 1382{
1ab59738 1383 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1384 int retval;
1385
1ab59738 1386 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1387 if (retval)
1388 return retval;
1389
1390 /*
1391 * Allow userspace to request a mountpoint be expired rather than
1392 * unmounting unconditionally. Unmount only happens if:
1393 * (1) the mark is already set (the mark is cleared by mntput())
1394 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1395 */
1396 if (flags & MNT_EXPIRE) {
1ab59738 1397 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1398 flags & (MNT_FORCE | MNT_DETACH))
1399 return -EINVAL;
1400
b3e19d92
NP
1401 /*
1402 * probably don't strictly need the lock here if we examined
1403 * all race cases, but it's a slowpath.
1404 */
719ea2fb 1405 lock_mount_hash();
83adc753 1406 if (mnt_get_count(mnt) != 2) {
719ea2fb 1407 unlock_mount_hash();
1da177e4 1408 return -EBUSY;
b3e19d92 1409 }
719ea2fb 1410 unlock_mount_hash();
1da177e4 1411
863d684f 1412 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1413 return -EAGAIN;
1414 }
1415
1416 /*
1417 * If we may have to abort operations to get out of this
1418 * mount, and they will themselves hold resources we must
1419 * allow the fs to do things. In the Unix tradition of
1420 * 'Gee thats tricky lets do it in userspace' the umount_begin
1421 * might fail to complete on the first run through as other tasks
1422 * must return, and the like. Thats for the mount program to worry
1423 * about for the moment.
1424 */
1425
42faad99 1426 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1427 sb->s_op->umount_begin(sb);
42faad99 1428 }
1da177e4
LT
1429
1430 /*
1431 * No sense to grab the lock for this test, but test itself looks
1432 * somewhat bogus. Suggestions for better replacement?
1433 * Ho-hum... In principle, we might treat that as umount + switch
1434 * to rootfs. GC would eventually take care of the old vfsmount.
1435 * Actually it makes sense, especially if rootfs would contain a
1436 * /reboot - static binary that would close all descriptors and
1437 * call reboot(9). Then init(8) could umount root and exec /reboot.
1438 */
1ab59738 1439 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1440 /*
1441 * Special case for "unmounting" root ...
1442 * we just try to remount it readonly.
1443 */
a1480dcc
AL
1444 if (!capable(CAP_SYS_ADMIN))
1445 return -EPERM;
1da177e4 1446 down_write(&sb->s_umount);
4aa98cf7 1447 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1448 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1449 up_write(&sb->s_umount);
1450 return retval;
1451 }
1452
97216be0 1453 namespace_lock();
719ea2fb 1454 lock_mount_hash();
5addc5dd 1455 event++;
1da177e4 1456
48a066e7 1457 if (flags & MNT_DETACH) {
1a4eeaf2 1458 if (!list_empty(&mnt->mnt_list))
e819f152 1459 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1460 retval = 0;
48a066e7
AV
1461 } else {
1462 shrink_submounts(mnt);
1463 retval = -EBUSY;
1464 if (!propagate_mount_busy(mnt, 2)) {
1465 if (!list_empty(&mnt->mnt_list))
e819f152 1466 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1467 retval = 0;
1468 }
1da177e4 1469 }
719ea2fb 1470 unlock_mount_hash();
e3197d83 1471 namespace_unlock();
1da177e4
LT
1472 return retval;
1473}
1474
80b5dce8
EB
1475/*
1476 * __detach_mounts - lazily unmount all mounts on the specified dentry
1477 *
1478 * During unlink, rmdir, and d_drop it is possible to loose the path
1479 * to an existing mountpoint, and wind up leaking the mount.
1480 * detach_mounts allows lazily unmounting those mounts instead of
1481 * leaking them.
1482 *
1483 * The caller may hold dentry->d_inode->i_mutex.
1484 */
1485void __detach_mounts(struct dentry *dentry)
1486{
1487 struct mountpoint *mp;
1488 struct mount *mnt;
1489
1490 namespace_lock();
1491 mp = lookup_mountpoint(dentry);
1492 if (!mp)
1493 goto out_unlock;
1494
1495 lock_mount_hash();
1496 while (!hlist_empty(&mp->m_list)) {
1497 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
8318e667 1498 umount_tree(mnt, 0);
80b5dce8
EB
1499 }
1500 unlock_mount_hash();
1501 put_mountpoint(mp);
1502out_unlock:
1503 namespace_unlock();
1504}
1505
9b40bc90
AV
1506/*
1507 * Is the caller allowed to modify his namespace?
1508 */
1509static inline bool may_mount(void)
1510{
1511 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1512}
1513
1da177e4
LT
1514/*
1515 * Now umount can handle mount points as well as block devices.
1516 * This is important for filesystems which use unnamed block devices.
1517 *
1518 * We now support a flag for forced unmount like the other 'big iron'
1519 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1520 */
1521
bdc480e3 1522SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1523{
2d8f3038 1524 struct path path;
900148dc 1525 struct mount *mnt;
1da177e4 1526 int retval;
db1f05bb 1527 int lookup_flags = 0;
1da177e4 1528
db1f05bb
MS
1529 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1530 return -EINVAL;
1531
9b40bc90
AV
1532 if (!may_mount())
1533 return -EPERM;
1534
db1f05bb
MS
1535 if (!(flags & UMOUNT_NOFOLLOW))
1536 lookup_flags |= LOOKUP_FOLLOW;
1537
197df04c 1538 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1539 if (retval)
1540 goto out;
900148dc 1541 mnt = real_mount(path.mnt);
1da177e4 1542 retval = -EINVAL;
2d8f3038 1543 if (path.dentry != path.mnt->mnt_root)
1da177e4 1544 goto dput_and_out;
143c8c91 1545 if (!check_mnt(mnt))
1da177e4 1546 goto dput_and_out;
5ff9d8a6
EB
1547 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1548 goto dput_and_out;
b2f5d4dc
EB
1549 retval = -EPERM;
1550 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1551 goto dput_and_out;
1da177e4 1552
900148dc 1553 retval = do_umount(mnt, flags);
1da177e4 1554dput_and_out:
429731b1 1555 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1556 dput(path.dentry);
900148dc 1557 mntput_no_expire(mnt);
1da177e4
LT
1558out:
1559 return retval;
1560}
1561
1562#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1563
1564/*
b58fed8b 1565 * The 2.0 compatible umount. No flags.
1da177e4 1566 */
bdc480e3 1567SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1568{
b58fed8b 1569 return sys_umount(name, 0);
1da177e4
LT
1570}
1571
1572#endif
1573
4ce5d2b1 1574static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1575{
4ce5d2b1 1576 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1577 return dentry->d_op == &ns_dentry_operations &&
1578 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1579}
1580
58be2825
AV
1581struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1582{
1583 return container_of(ns, struct mnt_namespace, ns);
1584}
1585
4ce5d2b1
EB
1586static bool mnt_ns_loop(struct dentry *dentry)
1587{
1588 /* Could bind mounting the mount namespace inode cause a
1589 * mount namespace loop?
1590 */
1591 struct mnt_namespace *mnt_ns;
1592 if (!is_mnt_ns_file(dentry))
1593 return false;
1594
f77c8014 1595 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1596 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1597}
1598
87129cc0 1599struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1600 int flag)
1da177e4 1601{
84d17192 1602 struct mount *res, *p, *q, *r, *parent;
1da177e4 1603
4ce5d2b1
EB
1604 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1605 return ERR_PTR(-EINVAL);
1606
1607 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1608 return ERR_PTR(-EINVAL);
9676f0c6 1609
36341f64 1610 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1611 if (IS_ERR(q))
1612 return q;
1613
a73324da 1614 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1615
1616 p = mnt;
6b41d536 1617 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1618 struct mount *s;
7ec02ef1 1619 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1620 continue;
1621
909b0a88 1622 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1623 struct mount *t = NULL;
4ce5d2b1
EB
1624 if (!(flag & CL_COPY_UNBINDABLE) &&
1625 IS_MNT_UNBINDABLE(s)) {
1626 s = skip_mnt_tree(s);
1627 continue;
1628 }
1629 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1630 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1631 s = skip_mnt_tree(s);
1632 continue;
1633 }
0714a533
AV
1634 while (p != s->mnt_parent) {
1635 p = p->mnt_parent;
1636 q = q->mnt_parent;
1da177e4 1637 }
87129cc0 1638 p = s;
84d17192 1639 parent = q;
87129cc0 1640 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1641 if (IS_ERR(q))
1642 goto out;
719ea2fb 1643 lock_mount_hash();
1a4eeaf2 1644 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1645 mnt_set_mountpoint(parent, p->mnt_mp, q);
1646 if (!list_empty(&parent->mnt_mounts)) {
1647 t = list_last_entry(&parent->mnt_mounts,
1648 struct mount, mnt_child);
1649 if (t->mnt_mp != p->mnt_mp)
1650 t = NULL;
1651 }
1652 attach_shadowed(q, parent, t);
719ea2fb 1653 unlock_mount_hash();
1da177e4
LT
1654 }
1655 }
1656 return res;
be34d1a3 1657out:
1da177e4 1658 if (res) {
719ea2fb 1659 lock_mount_hash();
e819f152 1660 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1661 unlock_mount_hash();
1da177e4 1662 }
be34d1a3 1663 return q;
1da177e4
LT
1664}
1665
be34d1a3
DH
1666/* Caller should check returned pointer for errors */
1667
589ff870 1668struct vfsmount *collect_mounts(struct path *path)
8aec0809 1669{
cb338d06 1670 struct mount *tree;
97216be0 1671 namespace_lock();
cd4a4017
EB
1672 if (!check_mnt(real_mount(path->mnt)))
1673 tree = ERR_PTR(-EINVAL);
1674 else
1675 tree = copy_tree(real_mount(path->mnt), path->dentry,
1676 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1677 namespace_unlock();
be34d1a3 1678 if (IS_ERR(tree))
52e220d3 1679 return ERR_CAST(tree);
be34d1a3 1680 return &tree->mnt;
8aec0809
AV
1681}
1682
1683void drop_collected_mounts(struct vfsmount *mnt)
1684{
97216be0 1685 namespace_lock();
719ea2fb 1686 lock_mount_hash();
e819f152 1687 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1688 unlock_mount_hash();
3ab6abee 1689 namespace_unlock();
8aec0809
AV
1690}
1691
c771d683
MS
1692/**
1693 * clone_private_mount - create a private clone of a path
1694 *
1695 * This creates a new vfsmount, which will be the clone of @path. The new will
1696 * not be attached anywhere in the namespace and will be private (i.e. changes
1697 * to the originating mount won't be propagated into this).
1698 *
1699 * Release with mntput().
1700 */
1701struct vfsmount *clone_private_mount(struct path *path)
1702{
1703 struct mount *old_mnt = real_mount(path->mnt);
1704 struct mount *new_mnt;
1705
1706 if (IS_MNT_UNBINDABLE(old_mnt))
1707 return ERR_PTR(-EINVAL);
1708
1709 down_read(&namespace_sem);
1710 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1711 up_read(&namespace_sem);
1712 if (IS_ERR(new_mnt))
1713 return ERR_CAST(new_mnt);
1714
1715 return &new_mnt->mnt;
1716}
1717EXPORT_SYMBOL_GPL(clone_private_mount);
1718
1f707137
AV
1719int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1720 struct vfsmount *root)
1721{
1a4eeaf2 1722 struct mount *mnt;
1f707137
AV
1723 int res = f(root, arg);
1724 if (res)
1725 return res;
1a4eeaf2
AV
1726 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1727 res = f(&mnt->mnt, arg);
1f707137
AV
1728 if (res)
1729 return res;
1730 }
1731 return 0;
1732}
1733
4b8b21f4 1734static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1735{
315fc83e 1736 struct mount *p;
719f5d7f 1737
909b0a88 1738 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1739 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1740 mnt_release_group_id(p);
719f5d7f
MS
1741 }
1742}
1743
4b8b21f4 1744static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1745{
315fc83e 1746 struct mount *p;
719f5d7f 1747
909b0a88 1748 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1749 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1750 int err = mnt_alloc_group_id(p);
719f5d7f 1751 if (err) {
4b8b21f4 1752 cleanup_group_ids(mnt, p);
719f5d7f
MS
1753 return err;
1754 }
1755 }
1756 }
1757
1758 return 0;
1759}
1760
b90fa9ae
RP
1761/*
1762 * @source_mnt : mount tree to be attached
21444403
RP
1763 * @nd : place the mount tree @source_mnt is attached
1764 * @parent_nd : if non-null, detach the source_mnt from its parent and
1765 * store the parent mount and mountpoint dentry.
1766 * (done when source_mnt is moved)
b90fa9ae
RP
1767 *
1768 * NOTE: in the table below explains the semantics when a source mount
1769 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1770 * ---------------------------------------------------------------------------
1771 * | BIND MOUNT OPERATION |
1772 * |**************************************************************************
1773 * | source-->| shared | private | slave | unbindable |
1774 * | dest | | | | |
1775 * | | | | | | |
1776 * | v | | | | |
1777 * |**************************************************************************
1778 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1779 * | | | | | |
1780 * |non-shared| shared (+) | private | slave (*) | invalid |
1781 * ***************************************************************************
b90fa9ae
RP
1782 * A bind operation clones the source mount and mounts the clone on the
1783 * destination mount.
1784 *
1785 * (++) the cloned mount is propagated to all the mounts in the propagation
1786 * tree of the destination mount and the cloned mount is added to
1787 * the peer group of the source mount.
1788 * (+) the cloned mount is created under the destination mount and is marked
1789 * as shared. The cloned mount is added to the peer group of the source
1790 * mount.
5afe0022
RP
1791 * (+++) the mount is propagated to all the mounts in the propagation tree
1792 * of the destination mount and the cloned mount is made slave
1793 * of the same master as that of the source mount. The cloned mount
1794 * is marked as 'shared and slave'.
1795 * (*) the cloned mount is made a slave of the same master as that of the
1796 * source mount.
1797 *
9676f0c6
RP
1798 * ---------------------------------------------------------------------------
1799 * | MOVE MOUNT OPERATION |
1800 * |**************************************************************************
1801 * | source-->| shared | private | slave | unbindable |
1802 * | dest | | | | |
1803 * | | | | | | |
1804 * | v | | | | |
1805 * |**************************************************************************
1806 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1807 * | | | | | |
1808 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1809 * ***************************************************************************
5afe0022
RP
1810 *
1811 * (+) the mount is moved to the destination. And is then propagated to
1812 * all the mounts in the propagation tree of the destination mount.
21444403 1813 * (+*) the mount is moved to the destination.
5afe0022
RP
1814 * (+++) the mount is moved to the destination and is then propagated to
1815 * all the mounts belonging to the destination mount's propagation tree.
1816 * the mount is marked as 'shared and slave'.
1817 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1818 *
1819 * if the source mount is a tree, the operations explained above is
1820 * applied to each mount in the tree.
1821 * Must be called without spinlocks held, since this function can sleep
1822 * in allocations.
1823 */
0fb54e50 1824static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1825 struct mount *dest_mnt,
1826 struct mountpoint *dest_mp,
1827 struct path *parent_path)
b90fa9ae 1828{
38129a13 1829 HLIST_HEAD(tree_list);
315fc83e 1830 struct mount *child, *p;
38129a13 1831 struct hlist_node *n;
719f5d7f 1832 int err;
b90fa9ae 1833
fc7be130 1834 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1835 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1836 if (err)
1837 goto out;
0b1b901b 1838 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1839 lock_mount_hash();
0b1b901b
AV
1840 if (err)
1841 goto out_cleanup_ids;
909b0a88 1842 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1843 set_mnt_shared(p);
0b1b901b
AV
1844 } else {
1845 lock_mount_hash();
b90fa9ae 1846 }
1a390689 1847 if (parent_path) {
0fb54e50 1848 detach_mnt(source_mnt, parent_path);
84d17192 1849 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1850 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1851 } else {
84d17192 1852 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1853 commit_tree(source_mnt, NULL);
21444403 1854 }
b90fa9ae 1855
38129a13 1856 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1857 struct mount *q;
38129a13 1858 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1859 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1860 child->mnt_mountpoint);
1861 commit_tree(child, q);
b90fa9ae 1862 }
719ea2fb 1863 unlock_mount_hash();
99b7db7b 1864
b90fa9ae 1865 return 0;
719f5d7f
MS
1866
1867 out_cleanup_ids:
f2ebb3a9
AV
1868 while (!hlist_empty(&tree_list)) {
1869 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
e819f152 1870 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
1871 }
1872 unlock_mount_hash();
0b1b901b 1873 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1874 out:
1875 return err;
b90fa9ae
RP
1876}
1877
84d17192 1878static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1879{
1880 struct vfsmount *mnt;
84d17192 1881 struct dentry *dentry = path->dentry;
b12cea91 1882retry:
84d17192
AV
1883 mutex_lock(&dentry->d_inode->i_mutex);
1884 if (unlikely(cant_mount(dentry))) {
1885 mutex_unlock(&dentry->d_inode->i_mutex);
1886 return ERR_PTR(-ENOENT);
b12cea91 1887 }
97216be0 1888 namespace_lock();
b12cea91 1889 mnt = lookup_mnt(path);
84d17192 1890 if (likely(!mnt)) {
e2dfa935
EB
1891 struct mountpoint *mp = lookup_mountpoint(dentry);
1892 if (!mp)
1893 mp = new_mountpoint(dentry);
84d17192 1894 if (IS_ERR(mp)) {
97216be0 1895 namespace_unlock();
84d17192
AV
1896 mutex_unlock(&dentry->d_inode->i_mutex);
1897 return mp;
1898 }
1899 return mp;
1900 }
97216be0 1901 namespace_unlock();
b12cea91
AV
1902 mutex_unlock(&path->dentry->d_inode->i_mutex);
1903 path_put(path);
1904 path->mnt = mnt;
84d17192 1905 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1906 goto retry;
1907}
1908
84d17192 1909static void unlock_mount(struct mountpoint *where)
b12cea91 1910{
84d17192
AV
1911 struct dentry *dentry = where->m_dentry;
1912 put_mountpoint(where);
328e6d90 1913 namespace_unlock();
84d17192 1914 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1915}
1916
84d17192 1917static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1918{
95bc5f25 1919 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1920 return -EINVAL;
1921
e36cb0b8
DH
1922 if (d_is_dir(mp->m_dentry) !=
1923 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
1924 return -ENOTDIR;
1925
84d17192 1926 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1927}
1928
7a2e8a8f
VA
1929/*
1930 * Sanity check the flags to change_mnt_propagation.
1931 */
1932
1933static int flags_to_propagation_type(int flags)
1934{
7c6e984d 1935 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1936
1937 /* Fail if any non-propagation flags are set */
1938 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1939 return 0;
1940 /* Only one propagation flag should be set */
1941 if (!is_power_of_2(type))
1942 return 0;
1943 return type;
1944}
1945
07b20889
RP
1946/*
1947 * recursively change the type of the mountpoint.
1948 */
0a0d8a46 1949static int do_change_type(struct path *path, int flag)
07b20889 1950{
315fc83e 1951 struct mount *m;
4b8b21f4 1952 struct mount *mnt = real_mount(path->mnt);
07b20889 1953 int recurse = flag & MS_REC;
7a2e8a8f 1954 int type;
719f5d7f 1955 int err = 0;
07b20889 1956
2d92ab3c 1957 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1958 return -EINVAL;
1959
7a2e8a8f
VA
1960 type = flags_to_propagation_type(flag);
1961 if (!type)
1962 return -EINVAL;
1963
97216be0 1964 namespace_lock();
719f5d7f
MS
1965 if (type == MS_SHARED) {
1966 err = invent_group_ids(mnt, recurse);
1967 if (err)
1968 goto out_unlock;
1969 }
1970
719ea2fb 1971 lock_mount_hash();
909b0a88 1972 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1973 change_mnt_propagation(m, type);
719ea2fb 1974 unlock_mount_hash();
719f5d7f
MS
1975
1976 out_unlock:
97216be0 1977 namespace_unlock();
719f5d7f 1978 return err;
07b20889
RP
1979}
1980
5ff9d8a6
EB
1981static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1982{
1983 struct mount *child;
1984 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1985 if (!is_subdir(child->mnt_mountpoint, dentry))
1986 continue;
1987
1988 if (child->mnt.mnt_flags & MNT_LOCKED)
1989 return true;
1990 }
1991 return false;
1992}
1993
1da177e4
LT
1994/*
1995 * do loopback mount.
1996 */
808d4e3c 1997static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1998 int recurse)
1da177e4 1999{
2d92ab3c 2000 struct path old_path;
84d17192
AV
2001 struct mount *mnt = NULL, *old, *parent;
2002 struct mountpoint *mp;
57eccb83 2003 int err;
1da177e4
LT
2004 if (!old_name || !*old_name)
2005 return -EINVAL;
815d405c 2006 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2007 if (err)
2008 return err;
2009
8823c079 2010 err = -EINVAL;
4ce5d2b1 2011 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
2012 goto out;
2013
84d17192
AV
2014 mp = lock_mount(path);
2015 err = PTR_ERR(mp);
2016 if (IS_ERR(mp))
b12cea91
AV
2017 goto out;
2018
87129cc0 2019 old = real_mount(old_path.mnt);
84d17192 2020 parent = real_mount(path->mnt);
87129cc0 2021
1da177e4 2022 err = -EINVAL;
fc7be130 2023 if (IS_MNT_UNBINDABLE(old))
b12cea91 2024 goto out2;
9676f0c6 2025
e149ed2b
AV
2026 if (!check_mnt(parent))
2027 goto out2;
2028
2029 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2030 goto out2;
1da177e4 2031
5ff9d8a6
EB
2032 if (!recurse && has_locked_children(old, old_path.dentry))
2033 goto out2;
2034
ccd48bc7 2035 if (recurse)
4ce5d2b1 2036 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2037 else
87129cc0 2038 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2039
be34d1a3
DH
2040 if (IS_ERR(mnt)) {
2041 err = PTR_ERR(mnt);
e9c5d8a5 2042 goto out2;
be34d1a3 2043 }
ccd48bc7 2044
5ff9d8a6
EB
2045 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2046
84d17192 2047 err = graft_tree(mnt, parent, mp);
ccd48bc7 2048 if (err) {
719ea2fb 2049 lock_mount_hash();
e819f152 2050 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2051 unlock_mount_hash();
5b83d2c5 2052 }
b12cea91 2053out2:
84d17192 2054 unlock_mount(mp);
ccd48bc7 2055out:
2d92ab3c 2056 path_put(&old_path);
1da177e4
LT
2057 return err;
2058}
2059
2e4b7fcd
DH
2060static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2061{
2062 int error = 0;
2063 int readonly_request = 0;
2064
2065 if (ms_flags & MS_RDONLY)
2066 readonly_request = 1;
2067 if (readonly_request == __mnt_is_readonly(mnt))
2068 return 0;
2069
2070 if (readonly_request)
83adc753 2071 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2072 else
83adc753 2073 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2074 return error;
2075}
2076
1da177e4
LT
2077/*
2078 * change filesystem flags. dir should be a physical root of filesystem.
2079 * If you've mounted a non-root directory somewhere and want to do remount
2080 * on it - tough luck.
2081 */
0a0d8a46 2082static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2083 void *data)
2084{
2085 int err;
2d92ab3c 2086 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2087 struct mount *mnt = real_mount(path->mnt);
1da177e4 2088
143c8c91 2089 if (!check_mnt(mnt))
1da177e4
LT
2090 return -EINVAL;
2091
2d92ab3c 2092 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2093 return -EINVAL;
2094
07b64558
EB
2095 /* Don't allow changing of locked mnt flags.
2096 *
2097 * No locks need to be held here while testing the various
2098 * MNT_LOCK flags because those flags can never be cleared
2099 * once they are set.
2100 */
2101 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2102 !(mnt_flags & MNT_READONLY)) {
2103 return -EPERM;
2104 }
9566d674
EB
2105 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2106 !(mnt_flags & MNT_NODEV)) {
3e186641
EB
2107 /* Was the nodev implicitly added in mount? */
2108 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2109 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2110 mnt_flags |= MNT_NODEV;
2111 } else {
2112 return -EPERM;
2113 }
9566d674
EB
2114 }
2115 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2116 !(mnt_flags & MNT_NOSUID)) {
2117 return -EPERM;
2118 }
2119 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2120 !(mnt_flags & MNT_NOEXEC)) {
2121 return -EPERM;
2122 }
2123 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2124 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2125 return -EPERM;
2126 }
2127
ff36fe2c
EP
2128 err = security_sb_remount(sb, data);
2129 if (err)
2130 return err;
2131
1da177e4 2132 down_write(&sb->s_umount);
2e4b7fcd 2133 if (flags & MS_BIND)
2d92ab3c 2134 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2135 else if (!capable(CAP_SYS_ADMIN))
2136 err = -EPERM;
4aa98cf7 2137 else
2e4b7fcd 2138 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2139 if (!err) {
719ea2fb 2140 lock_mount_hash();
a6138db8 2141 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2142 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2143 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2144 unlock_mount_hash();
0e55a7cc 2145 }
6339dab8 2146 up_write(&sb->s_umount);
1da177e4
LT
2147 return err;
2148}
2149
cbbe362c 2150static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2151{
315fc83e 2152 struct mount *p;
909b0a88 2153 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2154 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2155 return 1;
2156 }
2157 return 0;
2158}
2159
808d4e3c 2160static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2161{
2d92ab3c 2162 struct path old_path, parent_path;
676da58d 2163 struct mount *p;
0fb54e50 2164 struct mount *old;
84d17192 2165 struct mountpoint *mp;
57eccb83 2166 int err;
1da177e4
LT
2167 if (!old_name || !*old_name)
2168 return -EINVAL;
2d92ab3c 2169 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2170 if (err)
2171 return err;
2172
84d17192
AV
2173 mp = lock_mount(path);
2174 err = PTR_ERR(mp);
2175 if (IS_ERR(mp))
cc53ce53
DH
2176 goto out;
2177
143c8c91 2178 old = real_mount(old_path.mnt);
fc7be130 2179 p = real_mount(path->mnt);
143c8c91 2180
1da177e4 2181 err = -EINVAL;
fc7be130 2182 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2183 goto out1;
2184
5ff9d8a6
EB
2185 if (old->mnt.mnt_flags & MNT_LOCKED)
2186 goto out1;
2187
1da177e4 2188 err = -EINVAL;
2d92ab3c 2189 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2190 goto out1;
1da177e4 2191
676da58d 2192 if (!mnt_has_parent(old))
21444403 2193 goto out1;
1da177e4 2194
e36cb0b8
DH
2195 if (d_is_dir(path->dentry) !=
2196 d_is_dir(old_path.dentry))
21444403
RP
2197 goto out1;
2198 /*
2199 * Don't move a mount residing in a shared parent.
2200 */
fc7be130 2201 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2202 goto out1;
9676f0c6
RP
2203 /*
2204 * Don't move a mount tree containing unbindable mounts to a destination
2205 * mount which is shared.
2206 */
fc7be130 2207 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2208 goto out1;
1da177e4 2209 err = -ELOOP;
fc7be130 2210 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2211 if (p == old)
21444403 2212 goto out1;
1da177e4 2213
84d17192 2214 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2215 if (err)
21444403 2216 goto out1;
1da177e4
LT
2217
2218 /* if the mount is moved, it should no longer be expire
2219 * automatically */
6776db3d 2220 list_del_init(&old->mnt_expire);
1da177e4 2221out1:
84d17192 2222 unlock_mount(mp);
1da177e4 2223out:
1da177e4 2224 if (!err)
1a390689 2225 path_put(&parent_path);
2d92ab3c 2226 path_put(&old_path);
1da177e4
LT
2227 return err;
2228}
2229
9d412a43
AV
2230static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2231{
2232 int err;
2233 const char *subtype = strchr(fstype, '.');
2234 if (subtype) {
2235 subtype++;
2236 err = -EINVAL;
2237 if (!subtype[0])
2238 goto err;
2239 } else
2240 subtype = "";
2241
2242 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2243 err = -ENOMEM;
2244 if (!mnt->mnt_sb->s_subtype)
2245 goto err;
2246 return mnt;
2247
2248 err:
2249 mntput(mnt);
2250 return ERR_PTR(err);
2251}
2252
9d412a43
AV
2253/*
2254 * add a mount into a namespace's mount tree
2255 */
95bc5f25 2256static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2257{
84d17192
AV
2258 struct mountpoint *mp;
2259 struct mount *parent;
9d412a43
AV
2260 int err;
2261
f2ebb3a9 2262 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2263
84d17192
AV
2264 mp = lock_mount(path);
2265 if (IS_ERR(mp))
2266 return PTR_ERR(mp);
9d412a43 2267
84d17192 2268 parent = real_mount(path->mnt);
9d412a43 2269 err = -EINVAL;
84d17192 2270 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2271 /* that's acceptable only for automounts done in private ns */
2272 if (!(mnt_flags & MNT_SHRINKABLE))
2273 goto unlock;
2274 /* ... and for those we'd better have mountpoint still alive */
84d17192 2275 if (!parent->mnt_ns)
156cacb1
AV
2276 goto unlock;
2277 }
9d412a43
AV
2278
2279 /* Refuse the same filesystem on the same mount point */
2280 err = -EBUSY;
95bc5f25 2281 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2282 path->mnt->mnt_root == path->dentry)
2283 goto unlock;
2284
2285 err = -EINVAL;
e36cb0b8 2286 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2287 goto unlock;
2288
95bc5f25 2289 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2290 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2291
2292unlock:
84d17192 2293 unlock_mount(mp);
9d412a43
AV
2294 return err;
2295}
b1e75df4 2296
1da177e4
LT
2297/*
2298 * create a new mount for userspace and request it to be added into the
2299 * namespace's tree
2300 */
0c55cfc4 2301static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2302 int mnt_flags, const char *name, void *data)
1da177e4 2303{
0c55cfc4 2304 struct file_system_type *type;
9b40bc90 2305 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2306 struct vfsmount *mnt;
15f9a3f3 2307 int err;
1da177e4 2308
0c55cfc4 2309 if (!fstype)
1da177e4
LT
2310 return -EINVAL;
2311
0c55cfc4
EB
2312 type = get_fs_type(fstype);
2313 if (!type)
2314 return -ENODEV;
2315
2316 if (user_ns != &init_user_ns) {
2317 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2318 put_filesystem(type);
2319 return -EPERM;
2320 }
2321 /* Only in special cases allow devices from mounts
2322 * created outside the initial user namespace.
2323 */
2324 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2325 flags |= MS_NODEV;
9566d674 2326 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4
EB
2327 }
2328 }
2329
2330 mnt = vfs_kern_mount(type, flags, name, data);
2331 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2332 !mnt->mnt_sb->s_subtype)
2333 mnt = fs_set_subtype(mnt, fstype);
2334
2335 put_filesystem(type);
1da177e4
LT
2336 if (IS_ERR(mnt))
2337 return PTR_ERR(mnt);
2338
95bc5f25 2339 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2340 if (err)
2341 mntput(mnt);
2342 return err;
1da177e4
LT
2343}
2344
19a167af
AV
2345int finish_automount(struct vfsmount *m, struct path *path)
2346{
6776db3d 2347 struct mount *mnt = real_mount(m);
19a167af
AV
2348 int err;
2349 /* The new mount record should have at least 2 refs to prevent it being
2350 * expired before we get a chance to add it
2351 */
6776db3d 2352 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2353
2354 if (m->mnt_sb == path->mnt->mnt_sb &&
2355 m->mnt_root == path->dentry) {
b1e75df4
AV
2356 err = -ELOOP;
2357 goto fail;
19a167af
AV
2358 }
2359
95bc5f25 2360 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2361 if (!err)
2362 return 0;
2363fail:
2364 /* remove m from any expiration list it may be on */
6776db3d 2365 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2366 namespace_lock();
6776db3d 2367 list_del_init(&mnt->mnt_expire);
97216be0 2368 namespace_unlock();
19a167af 2369 }
b1e75df4
AV
2370 mntput(m);
2371 mntput(m);
19a167af
AV
2372 return err;
2373}
2374
ea5b778a
DH
2375/**
2376 * mnt_set_expiry - Put a mount on an expiration list
2377 * @mnt: The mount to list.
2378 * @expiry_list: The list to add the mount to.
2379 */
2380void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2381{
97216be0 2382 namespace_lock();
ea5b778a 2383
6776db3d 2384 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2385
97216be0 2386 namespace_unlock();
ea5b778a
DH
2387}
2388EXPORT_SYMBOL(mnt_set_expiry);
2389
1da177e4
LT
2390/*
2391 * process a list of expirable mountpoints with the intent of discarding any
2392 * mountpoints that aren't in use and haven't been touched since last we came
2393 * here
2394 */
2395void mark_mounts_for_expiry(struct list_head *mounts)
2396{
761d5c38 2397 struct mount *mnt, *next;
1da177e4
LT
2398 LIST_HEAD(graveyard);
2399
2400 if (list_empty(mounts))
2401 return;
2402
97216be0 2403 namespace_lock();
719ea2fb 2404 lock_mount_hash();
1da177e4
LT
2405
2406 /* extract from the expiration list every vfsmount that matches the
2407 * following criteria:
2408 * - only referenced by its parent vfsmount
2409 * - still marked for expiry (marked on the last call here; marks are
2410 * cleared by mntput())
2411 */
6776db3d 2412 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2413 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2414 propagate_mount_busy(mnt, 1))
1da177e4 2415 continue;
6776db3d 2416 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2417 }
bcc5c7d2 2418 while (!list_empty(&graveyard)) {
6776db3d 2419 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2420 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2421 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2422 }
719ea2fb 2423 unlock_mount_hash();
3ab6abee 2424 namespace_unlock();
5528f911
TM
2425}
2426
2427EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2428
2429/*
2430 * Ripoff of 'select_parent()'
2431 *
2432 * search the list of submounts for a given mountpoint, and move any
2433 * shrinkable submounts to the 'graveyard' list.
2434 */
692afc31 2435static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2436{
692afc31 2437 struct mount *this_parent = parent;
5528f911
TM
2438 struct list_head *next;
2439 int found = 0;
2440
2441repeat:
6b41d536 2442 next = this_parent->mnt_mounts.next;
5528f911 2443resume:
6b41d536 2444 while (next != &this_parent->mnt_mounts) {
5528f911 2445 struct list_head *tmp = next;
6b41d536 2446 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2447
2448 next = tmp->next;
692afc31 2449 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2450 continue;
5528f911
TM
2451 /*
2452 * Descend a level if the d_mounts list is non-empty.
2453 */
6b41d536 2454 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2455 this_parent = mnt;
2456 goto repeat;
2457 }
1da177e4 2458
1ab59738 2459 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2460 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2461 found++;
2462 }
1da177e4 2463 }
5528f911
TM
2464 /*
2465 * All done at this level ... ascend and resume the search
2466 */
2467 if (this_parent != parent) {
6b41d536 2468 next = this_parent->mnt_child.next;
0714a533 2469 this_parent = this_parent->mnt_parent;
5528f911
TM
2470 goto resume;
2471 }
2472 return found;
2473}
2474
2475/*
2476 * process a list of expirable mountpoints with the intent of discarding any
2477 * submounts of a specific parent mountpoint
99b7db7b 2478 *
48a066e7 2479 * mount_lock must be held for write
5528f911 2480 */
b54b9be7 2481static void shrink_submounts(struct mount *mnt)
5528f911
TM
2482{
2483 LIST_HEAD(graveyard);
761d5c38 2484 struct mount *m;
5528f911 2485
5528f911 2486 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2487 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2488 while (!list_empty(&graveyard)) {
761d5c38 2489 m = list_first_entry(&graveyard, struct mount,
6776db3d 2490 mnt_expire);
143c8c91 2491 touch_mnt_namespace(m->mnt_ns);
e819f152 2492 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2493 }
2494 }
1da177e4
LT
2495}
2496
1da177e4
LT
2497/*
2498 * Some copy_from_user() implementations do not return the exact number of
2499 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2500 * Note that this function differs from copy_from_user() in that it will oops
2501 * on bad values of `to', rather than returning a short copy.
2502 */
b58fed8b
RP
2503static long exact_copy_from_user(void *to, const void __user * from,
2504 unsigned long n)
1da177e4
LT
2505{
2506 char *t = to;
2507 const char __user *f = from;
2508 char c;
2509
2510 if (!access_ok(VERIFY_READ, from, n))
2511 return n;
2512
2513 while (n) {
2514 if (__get_user(c, f)) {
2515 memset(t, 0, n);
2516 break;
2517 }
2518 *t++ = c;
2519 f++;
2520 n--;
2521 }
2522 return n;
2523}
2524
b58fed8b 2525int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2526{
2527 int i;
2528 unsigned long page;
2529 unsigned long size;
b58fed8b 2530
1da177e4
LT
2531 *where = 0;
2532 if (!data)
2533 return 0;
2534
2535 if (!(page = __get_free_page(GFP_KERNEL)))
2536 return -ENOMEM;
2537
2538 /* We only care that *some* data at the address the user
2539 * gave us is valid. Just in case, we'll zero
2540 * the remainder of the page.
2541 */
2542 /* copy_from_user cannot cross TASK_SIZE ! */
2543 size = TASK_SIZE - (unsigned long)data;
2544 if (size > PAGE_SIZE)
2545 size = PAGE_SIZE;
2546
2547 i = size - exact_copy_from_user((void *)page, data, size);
2548 if (!i) {
b58fed8b 2549 free_page(page);
1da177e4
LT
2550 return -EFAULT;
2551 }
2552 if (i != PAGE_SIZE)
2553 memset((char *)page + i, 0, PAGE_SIZE - i);
2554 *where = page;
2555 return 0;
2556}
2557
b8850d1f 2558char *copy_mount_string(const void __user *data)
eca6f534 2559{
b8850d1f 2560 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2561}
2562
1da177e4
LT
2563/*
2564 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2565 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2566 *
2567 * data is a (void *) that can point to any structure up to
2568 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2569 * information (or be NULL).
2570 *
2571 * Pre-0.97 versions of mount() didn't have a flags word.
2572 * When the flags word was introduced its top half was required
2573 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2574 * Therefore, if this magic number is present, it carries no information
2575 * and must be discarded.
2576 */
5e6123f3 2577long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2578 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2579{
2d92ab3c 2580 struct path path;
1da177e4
LT
2581 int retval = 0;
2582 int mnt_flags = 0;
2583
2584 /* Discard magic */
2585 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2586 flags &= ~MS_MGC_MSK;
2587
2588 /* Basic sanity checks */
1da177e4
LT
2589 if (data_page)
2590 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2591
a27ab9f2 2592 /* ... and get the mountpoint */
5e6123f3 2593 retval = user_path(dir_name, &path);
a27ab9f2
TH
2594 if (retval)
2595 return retval;
2596
2597 retval = security_sb_mount(dev_name, &path,
2598 type_page, flags, data_page);
0d5cadb8
AV
2599 if (!retval && !may_mount())
2600 retval = -EPERM;
a27ab9f2
TH
2601 if (retval)
2602 goto dput_out;
2603
613cbe3d
AK
2604 /* Default to relatime unless overriden */
2605 if (!(flags & MS_NOATIME))
2606 mnt_flags |= MNT_RELATIME;
0a1c01c9 2607
1da177e4
LT
2608 /* Separate the per-mountpoint flags */
2609 if (flags & MS_NOSUID)
2610 mnt_flags |= MNT_NOSUID;
2611 if (flags & MS_NODEV)
2612 mnt_flags |= MNT_NODEV;
2613 if (flags & MS_NOEXEC)
2614 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2615 if (flags & MS_NOATIME)
2616 mnt_flags |= MNT_NOATIME;
2617 if (flags & MS_NODIRATIME)
2618 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2619 if (flags & MS_STRICTATIME)
2620 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2621 if (flags & MS_RDONLY)
2622 mnt_flags |= MNT_READONLY;
fc33a7bb 2623
ffbc6f0e
EB
2624 /* The default atime for remount is preservation */
2625 if ((flags & MS_REMOUNT) &&
2626 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2627 MS_STRICTATIME)) == 0)) {
2628 mnt_flags &= ~MNT_ATIME_MASK;
2629 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2630 }
2631
7a4dec53 2632 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2633 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2634 MS_STRICTATIME);
1da177e4 2635
1da177e4 2636 if (flags & MS_REMOUNT)
2d92ab3c 2637 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2638 data_page);
2639 else if (flags & MS_BIND)
2d92ab3c 2640 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2641 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2642 retval = do_change_type(&path, flags);
1da177e4 2643 else if (flags & MS_MOVE)
2d92ab3c 2644 retval = do_move_mount(&path, dev_name);
1da177e4 2645 else
2d92ab3c 2646 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2647 dev_name, data_page);
2648dput_out:
2d92ab3c 2649 path_put(&path);
1da177e4
LT
2650 return retval;
2651}
2652
771b1371
EB
2653static void free_mnt_ns(struct mnt_namespace *ns)
2654{
6344c433 2655 ns_free_inum(&ns->ns);
771b1371
EB
2656 put_user_ns(ns->user_ns);
2657 kfree(ns);
2658}
2659
8823c079
EB
2660/*
2661 * Assign a sequence number so we can detect when we attempt to bind
2662 * mount a reference to an older mount namespace into the current
2663 * mount namespace, preventing reference counting loops. A 64bit
2664 * number incrementing at 10Ghz will take 12,427 years to wrap which
2665 * is effectively never, so we can ignore the possibility.
2666 */
2667static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2668
771b1371 2669static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2670{
2671 struct mnt_namespace *new_ns;
98f842e6 2672 int ret;
cf8d2c11
TM
2673
2674 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2675 if (!new_ns)
2676 return ERR_PTR(-ENOMEM);
6344c433 2677 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2678 if (ret) {
2679 kfree(new_ns);
2680 return ERR_PTR(ret);
2681 }
33c42940 2682 new_ns->ns.ops = &mntns_operations;
8823c079 2683 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2684 atomic_set(&new_ns->count, 1);
2685 new_ns->root = NULL;
2686 INIT_LIST_HEAD(&new_ns->list);
2687 init_waitqueue_head(&new_ns->poll);
2688 new_ns->event = 0;
771b1371 2689 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2690 return new_ns;
2691}
2692
9559f689
AV
2693struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2694 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2695{
6b3286ed 2696 struct mnt_namespace *new_ns;
7f2da1e7 2697 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2698 struct mount *p, *q;
9559f689 2699 struct mount *old;
cb338d06 2700 struct mount *new;
7a472ef4 2701 int copy_flags;
1da177e4 2702
9559f689
AV
2703 BUG_ON(!ns);
2704
2705 if (likely(!(flags & CLONE_NEWNS))) {
2706 get_mnt_ns(ns);
2707 return ns;
2708 }
2709
2710 old = ns->root;
2711
771b1371 2712 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2713 if (IS_ERR(new_ns))
2714 return new_ns;
1da177e4 2715
97216be0 2716 namespace_lock();
1da177e4 2717 /* First pass: copy the tree topology */
4ce5d2b1 2718 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2719 if (user_ns != ns->user_ns)
132c94e3 2720 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2721 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2722 if (IS_ERR(new)) {
328e6d90 2723 namespace_unlock();
771b1371 2724 free_mnt_ns(new_ns);
be34d1a3 2725 return ERR_CAST(new);
1da177e4 2726 }
be08d6d2 2727 new_ns->root = new;
1a4eeaf2 2728 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2729
2730 /*
2731 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2732 * as belonging to new namespace. We have already acquired a private
2733 * fs_struct, so tsk->fs->lock is not needed.
2734 */
909b0a88 2735 p = old;
cb338d06 2736 q = new;
1da177e4 2737 while (p) {
143c8c91 2738 q->mnt_ns = new_ns;
9559f689
AV
2739 if (new_fs) {
2740 if (&p->mnt == new_fs->root.mnt) {
2741 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2742 rootmnt = &p->mnt;
1da177e4 2743 }
9559f689
AV
2744 if (&p->mnt == new_fs->pwd.mnt) {
2745 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2746 pwdmnt = &p->mnt;
1da177e4 2747 }
1da177e4 2748 }
909b0a88
AV
2749 p = next_mnt(p, old);
2750 q = next_mnt(q, new);
4ce5d2b1
EB
2751 if (!q)
2752 break;
2753 while (p->mnt.mnt_root != q->mnt.mnt_root)
2754 p = next_mnt(p, old);
1da177e4 2755 }
328e6d90 2756 namespace_unlock();
1da177e4 2757
1da177e4 2758 if (rootmnt)
f03c6599 2759 mntput(rootmnt);
1da177e4 2760 if (pwdmnt)
f03c6599 2761 mntput(pwdmnt);
1da177e4 2762
741a2951 2763 return new_ns;
1da177e4
LT
2764}
2765
cf8d2c11
TM
2766/**
2767 * create_mnt_ns - creates a private namespace and adds a root filesystem
2768 * @mnt: pointer to the new root filesystem mountpoint
2769 */
1a4eeaf2 2770static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2771{
771b1371 2772 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2773 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2774 struct mount *mnt = real_mount(m);
2775 mnt->mnt_ns = new_ns;
be08d6d2 2776 new_ns->root = mnt;
b1983cd8 2777 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2778 } else {
1a4eeaf2 2779 mntput(m);
cf8d2c11
TM
2780 }
2781 return new_ns;
2782}
cf8d2c11 2783
ea441d11
AV
2784struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2785{
2786 struct mnt_namespace *ns;
d31da0f0 2787 struct super_block *s;
ea441d11
AV
2788 struct path path;
2789 int err;
2790
2791 ns = create_mnt_ns(mnt);
2792 if (IS_ERR(ns))
2793 return ERR_CAST(ns);
2794
2795 err = vfs_path_lookup(mnt->mnt_root, mnt,
2796 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2797
2798 put_mnt_ns(ns);
2799
2800 if (err)
2801 return ERR_PTR(err);
2802
2803 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2804 s = path.mnt->mnt_sb;
2805 atomic_inc(&s->s_active);
ea441d11
AV
2806 mntput(path.mnt);
2807 /* lock the sucker */
d31da0f0 2808 down_write(&s->s_umount);
ea441d11
AV
2809 /* ... and return the root of (sub)tree on it */
2810 return path.dentry;
2811}
2812EXPORT_SYMBOL(mount_subtree);
2813
bdc480e3
HC
2814SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2815 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2816{
eca6f534
VN
2817 int ret;
2818 char *kernel_type;
eca6f534 2819 char *kernel_dev;
1da177e4 2820 unsigned long data_page;
1da177e4 2821
b8850d1f
TG
2822 kernel_type = copy_mount_string(type);
2823 ret = PTR_ERR(kernel_type);
2824 if (IS_ERR(kernel_type))
eca6f534 2825 goto out_type;
1da177e4 2826
b8850d1f
TG
2827 kernel_dev = copy_mount_string(dev_name);
2828 ret = PTR_ERR(kernel_dev);
2829 if (IS_ERR(kernel_dev))
eca6f534 2830 goto out_dev;
1da177e4 2831
eca6f534
VN
2832 ret = copy_mount_options(data, &data_page);
2833 if (ret < 0)
2834 goto out_data;
1da177e4 2835
5e6123f3 2836 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
eca6f534 2837 (void *) data_page);
1da177e4 2838
eca6f534
VN
2839 free_page(data_page);
2840out_data:
2841 kfree(kernel_dev);
2842out_dev:
eca6f534
VN
2843 kfree(kernel_type);
2844out_type:
2845 return ret;
1da177e4
LT
2846}
2847
afac7cba
AV
2848/*
2849 * Return true if path is reachable from root
2850 *
48a066e7 2851 * namespace_sem or mount_lock is held
afac7cba 2852 */
643822b4 2853bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2854 const struct path *root)
2855{
643822b4 2856 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2857 dentry = mnt->mnt_mountpoint;
0714a533 2858 mnt = mnt->mnt_parent;
afac7cba 2859 }
643822b4 2860 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2861}
2862
2863int path_is_under(struct path *path1, struct path *path2)
2864{
2865 int res;
48a066e7 2866 read_seqlock_excl(&mount_lock);
643822b4 2867 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2868 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2869 return res;
2870}
2871EXPORT_SYMBOL(path_is_under);
2872
1da177e4
LT
2873/*
2874 * pivot_root Semantics:
2875 * Moves the root file system of the current process to the directory put_old,
2876 * makes new_root as the new root file system of the current process, and sets
2877 * root/cwd of all processes which had them on the current root to new_root.
2878 *
2879 * Restrictions:
2880 * The new_root and put_old must be directories, and must not be on the
2881 * same file system as the current process root. The put_old must be
2882 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2883 * pointed to by put_old must yield the same directory as new_root. No other
2884 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2885 *
4a0d11fa
NB
2886 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2887 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2888 * in this situation.
2889 *
1da177e4
LT
2890 * Notes:
2891 * - we don't move root/cwd if they are not at the root (reason: if something
2892 * cared enough to change them, it's probably wrong to force them elsewhere)
2893 * - it's okay to pick a root that isn't the root of a file system, e.g.
2894 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2895 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2896 * first.
2897 */
3480b257
HC
2898SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2899 const char __user *, put_old)
1da177e4 2900{
2d8f3038 2901 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2902 struct mount *new_mnt, *root_mnt, *old_mnt;
2903 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2904 int error;
2905
9b40bc90 2906 if (!may_mount())
1da177e4
LT
2907 return -EPERM;
2908
2d8f3038 2909 error = user_path_dir(new_root, &new);
1da177e4
LT
2910 if (error)
2911 goto out0;
1da177e4 2912
2d8f3038 2913 error = user_path_dir(put_old, &old);
1da177e4
LT
2914 if (error)
2915 goto out1;
2916
2d8f3038 2917 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2918 if (error)
2919 goto out2;
1da177e4 2920
f7ad3c6b 2921 get_fs_root(current->fs, &root);
84d17192
AV
2922 old_mp = lock_mount(&old);
2923 error = PTR_ERR(old_mp);
2924 if (IS_ERR(old_mp))
b12cea91
AV
2925 goto out3;
2926
1da177e4 2927 error = -EINVAL;
419148da
AV
2928 new_mnt = real_mount(new.mnt);
2929 root_mnt = real_mount(root.mnt);
84d17192
AV
2930 old_mnt = real_mount(old.mnt);
2931 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2932 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2933 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2934 goto out4;
143c8c91 2935 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2936 goto out4;
5ff9d8a6
EB
2937 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2938 goto out4;
1da177e4 2939 error = -ENOENT;
f3da392e 2940 if (d_unlinked(new.dentry))
b12cea91 2941 goto out4;
1da177e4 2942 error = -EBUSY;
84d17192 2943 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2944 goto out4; /* loop, on the same file system */
1da177e4 2945 error = -EINVAL;
8c3ee42e 2946 if (root.mnt->mnt_root != root.dentry)
b12cea91 2947 goto out4; /* not a mountpoint */
676da58d 2948 if (!mnt_has_parent(root_mnt))
b12cea91 2949 goto out4; /* not attached */
84d17192 2950 root_mp = root_mnt->mnt_mp;
2d8f3038 2951 if (new.mnt->mnt_root != new.dentry)
b12cea91 2952 goto out4; /* not a mountpoint */
676da58d 2953 if (!mnt_has_parent(new_mnt))
b12cea91 2954 goto out4; /* not attached */
4ac91378 2955 /* make sure we can reach put_old from new_root */
84d17192 2956 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2957 goto out4;
0d082601
EB
2958 /* make certain new is below the root */
2959 if (!is_path_reachable(new_mnt, new.dentry, &root))
2960 goto out4;
84d17192 2961 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2962 lock_mount_hash();
419148da
AV
2963 detach_mnt(new_mnt, &parent_path);
2964 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2965 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2966 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2967 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2968 }
4ac91378 2969 /* mount old root on put_old */
84d17192 2970 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2971 /* mount new_root on / */
84d17192 2972 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2973 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
2974 /* A moved mount should not expire automatically */
2975 list_del_init(&new_mnt->mnt_expire);
719ea2fb 2976 unlock_mount_hash();
2d8f3038 2977 chroot_fs_refs(&root, &new);
84d17192 2978 put_mountpoint(root_mp);
1da177e4 2979 error = 0;
b12cea91 2980out4:
84d17192 2981 unlock_mount(old_mp);
b12cea91
AV
2982 if (!error) {
2983 path_put(&root_parent);
2984 path_put(&parent_path);
2985 }
2986out3:
8c3ee42e 2987 path_put(&root);
b12cea91 2988out2:
2d8f3038 2989 path_put(&old);
1da177e4 2990out1:
2d8f3038 2991 path_put(&new);
1da177e4 2992out0:
1da177e4 2993 return error;
1da177e4
LT
2994}
2995
2996static void __init init_mount_tree(void)
2997{
2998 struct vfsmount *mnt;
6b3286ed 2999 struct mnt_namespace *ns;
ac748a09 3000 struct path root;
0c55cfc4 3001 struct file_system_type *type;
1da177e4 3002
0c55cfc4
EB
3003 type = get_fs_type("rootfs");
3004 if (!type)
3005 panic("Can't find rootfs type");
3006 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3007 put_filesystem(type);
1da177e4
LT
3008 if (IS_ERR(mnt))
3009 panic("Can't create rootfs");
b3e19d92 3010
3b22edc5
TM
3011 ns = create_mnt_ns(mnt);
3012 if (IS_ERR(ns))
1da177e4 3013 panic("Can't allocate initial namespace");
6b3286ed
KK
3014
3015 init_task.nsproxy->mnt_ns = ns;
3016 get_mnt_ns(ns);
3017
be08d6d2
AV
3018 root.mnt = mnt;
3019 root.dentry = mnt->mnt_root;
da362b09 3020 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3021
3022 set_fs_pwd(current->fs, &root);
3023 set_fs_root(current->fs, &root);
1da177e4
LT
3024}
3025
74bf17cf 3026void __init mnt_init(void)
1da177e4 3027{
13f14b4d 3028 unsigned u;
15a67dd8 3029 int err;
1da177e4 3030
7d6fec45 3031 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3032 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3033
0818bf27 3034 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3035 sizeof(struct hlist_head),
0818bf27
AV
3036 mhash_entries, 19,
3037 0,
3038 &m_hash_shift, &m_hash_mask, 0, 0);
3039 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3040 sizeof(struct hlist_head),
3041 mphash_entries, 19,
3042 0,
3043 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3044
84d17192 3045 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3046 panic("Failed to allocate mount hash table\n");
3047
0818bf27 3048 for (u = 0; u <= m_hash_mask; u++)
38129a13 3049 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3050 for (u = 0; u <= mp_hash_mask; u++)
3051 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3052
4b93dc9b
TH
3053 kernfs_init();
3054
15a67dd8
RD
3055 err = sysfs_init();
3056 if (err)
3057 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3058 __func__, err);
00d26666
GKH
3059 fs_kobj = kobject_create_and_add("fs", NULL);
3060 if (!fs_kobj)
8e24eea7 3061 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3062 init_rootfs();
3063 init_mount_tree();
3064}
3065
616511d0 3066void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3067{
d498b25a 3068 if (!atomic_dec_and_test(&ns->count))
616511d0 3069 return;
7b00ed6f 3070 drop_collected_mounts(&ns->root->mnt);
771b1371 3071 free_mnt_ns(ns);
1da177e4 3072}
9d412a43
AV
3073
3074struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3075{
423e0ab0
TC
3076 struct vfsmount *mnt;
3077 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3078 if (!IS_ERR(mnt)) {
3079 /*
3080 * it is a longterm mount, don't release mnt until
3081 * we unmount before file sys is unregistered
3082 */
f7a99c5b 3083 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3084 }
3085 return mnt;
9d412a43
AV
3086}
3087EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3088
3089void kern_unmount(struct vfsmount *mnt)
3090{
3091 /* release long term mount so mount point can be released */
3092 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3093 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3094 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3095 mntput(mnt);
3096 }
3097}
3098EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3099
3100bool our_mnt(struct vfsmount *mnt)
3101{
143c8c91 3102 return check_mnt(real_mount(mnt));
02125a82 3103}
8823c079 3104
3151527e
EB
3105bool current_chrooted(void)
3106{
3107 /* Does the current process have a non-standard root */
3108 struct path ns_root;
3109 struct path fs_root;
3110 bool chrooted;
3111
3112 /* Find the namespace root */
3113 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3114 ns_root.dentry = ns_root.mnt->mnt_root;
3115 path_get(&ns_root);
3116 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3117 ;
3118
3119 get_fs_root(current->fs, &fs_root);
3120
3121 chrooted = !path_equal(&fs_root, &ns_root);
3122
3123 path_put(&fs_root);
3124 path_put(&ns_root);
3125
3126 return chrooted;
3127}
3128
e51db735 3129bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
3130{
3131 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3132 struct mount *mnt;
e51db735 3133 bool visible = false;
87a8ebd6 3134
e51db735
EB
3135 if (unlikely(!ns))
3136 return false;
3137
44bb4385 3138 down_read(&namespace_sem);
87a8ebd6 3139 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
3140 struct mount *child;
3141 if (mnt->mnt.mnt_sb->s_type != type)
3142 continue;
3143
3144 /* This mount is not fully visible if there are any child mounts
3145 * that cover anything except for empty directories.
3146 */
3147 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3148 struct inode *inode = child->mnt_mountpoint->d_inode;
3149 if (!S_ISDIR(inode->i_mode))
3150 goto next;
41301ae7 3151 if (inode->i_nlink > 2)
e51db735 3152 goto next;
87a8ebd6 3153 }
e51db735
EB
3154 visible = true;
3155 goto found;
3156 next: ;
87a8ebd6 3157 }
e51db735 3158found:
44bb4385 3159 up_read(&namespace_sem);
e51db735 3160 return visible;
87a8ebd6
EB
3161}
3162
64964528 3163static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3164{
58be2825 3165 struct ns_common *ns = NULL;
8823c079
EB
3166 struct nsproxy *nsproxy;
3167
728dba3a
EB
3168 task_lock(task);
3169 nsproxy = task->nsproxy;
8823c079 3170 if (nsproxy) {
58be2825
AV
3171 ns = &nsproxy->mnt_ns->ns;
3172 get_mnt_ns(to_mnt_ns(ns));
8823c079 3173 }
728dba3a 3174 task_unlock(task);
8823c079
EB
3175
3176 return ns;
3177}
3178
64964528 3179static void mntns_put(struct ns_common *ns)
8823c079 3180{
58be2825 3181 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3182}
3183
64964528 3184static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3185{
3186 struct fs_struct *fs = current->fs;
58be2825 3187 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3188 struct path root;
3189
0c55cfc4 3190 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3191 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3192 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3193 return -EPERM;
8823c079
EB
3194
3195 if (fs->users != 1)
3196 return -EINVAL;
3197
3198 get_mnt_ns(mnt_ns);
3199 put_mnt_ns(nsproxy->mnt_ns);
3200 nsproxy->mnt_ns = mnt_ns;
3201
3202 /* Find the root */
3203 root.mnt = &mnt_ns->root->mnt;
3204 root.dentry = mnt_ns->root->mnt.mnt_root;
3205 path_get(&root);
3206 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3207 ;
3208
3209 /* Update the pwd and root */
3210 set_fs_pwd(fs, &root);
3211 set_fs_root(fs, &root);
3212
3213 path_put(&root);
3214 return 0;
3215}
3216
3217const struct proc_ns_operations mntns_operations = {
3218 .name = "mnt",
3219 .type = CLONE_NEWNS,
3220 .get = mntns_get,
3221 .put = mntns_put,
3222 .install = mntns_install,
3223};