]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: lapic: do not scan IRR when delivering an interrupt
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
5fdbf976 36#include "kvm_cache_regs.h"
35920a35 37#include "x86.h"
e495606d 38
28b835d6 39#include <asm/cpu.h>
6aa8b732 40#include <asm/io.h>
3b3be0d1 41#include <asm/desc.h>
13673a90 42#include <asm/vmx.h>
6210e37b 43#include <asm/virtext.h>
a0861c02 44#include <asm/mce.h>
952f07ec 45#include <asm/fpu/internal.h>
d7cd9796 46#include <asm/perf_event.h>
81908bf4 47#include <asm/debugreg.h>
8f536b76 48#include <asm/kexec.h>
dab2087d 49#include <asm/apic.h>
efc64404 50#include <asm/irq_remapping.h>
6aa8b732 51
229456fc 52#include "trace.h"
25462f7f 53#include "pmu.h"
229456fc 54
4ecac3fd 55#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
56#define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 58
6aa8b732
AK
59MODULE_AUTHOR("Qumranet");
60MODULE_LICENSE("GPL");
61
e9bda3b3
JT
62static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65};
66MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
476bc001 68static bool __read_mostly enable_vpid = 1;
736caefe 69module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 70
476bc001 71static bool __read_mostly flexpriority_enabled = 1;
736caefe 72module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 73
476bc001 74static bool __read_mostly enable_ept = 1;
736caefe 75module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 76
476bc001 77static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
78module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
83c3a331
XH
81static bool __read_mostly enable_ept_ad_bits = 1;
82module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
a27685c3 84static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 85module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 86
476bc001 87static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
88module_param(vmm_exclusive, bool, S_IRUGO);
89
476bc001 90static bool __read_mostly fasteoi = 1;
58fbbf26
KT
91module_param(fasteoi, bool, S_IRUGO);
92
5a71785d 93static bool __read_mostly enable_apicv = 1;
01e439be 94module_param(enable_apicv, bool, S_IRUGO);
83d4c286 95
abc4fc58
AG
96static bool __read_mostly enable_shadow_vmcs = 1;
97module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
98/*
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
102 */
476bc001 103static bool __read_mostly nested = 0;
801d3424
NHE
104module_param(nested, bool, S_IRUGO);
105
20300099
WL
106static u64 __read_mostly host_xss;
107
843e4330
KH
108static bool __read_mostly enable_pml = 1;
109module_param_named(pml, enable_pml, bool, S_IRUGO);
110
64903d61
HZ
111#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112
64672c95
YJ
113/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
114static int __read_mostly cpu_preemption_timer_multi;
115static bool __read_mostly enable_preemption_timer = 1;
116#ifdef CONFIG_X86_64
117module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
118#endif
119
5037878e
GN
120#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
121#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
122#define KVM_VM_CR0_ALWAYS_ON \
123 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
124#define KVM_CR4_GUEST_OWNED_BITS \
125 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 126 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 127
cdc0e244
AK
128#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
129#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
130
78ac8b47
AK
131#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
132
f4124500
JK
133#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
134
16c2aec6
JD
135/*
136 * Hyper-V requires all of these, so mark them as supported even though
137 * they are just treated the same as all-context.
138 */
139#define VMX_VPID_EXTENT_SUPPORTED_MASK \
140 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
141 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
143 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
144
4b8d54f9
ZE
145/*
146 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
147 * ple_gap: upper bound on the amount of time between two successive
148 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 149 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
150 * ple_window: upper bound on the amount of time a guest is allowed to execute
151 * in a PAUSE loop. Tests indicate that most spinlocks are held for
152 * less than 2^12 cycles
153 * Time is measured based on a counter that runs at the same rate as the TSC,
154 * refer SDM volume 3b section 21.6.13 & 22.1.3.
155 */
b4a2d31d
RK
156#define KVM_VMX_DEFAULT_PLE_GAP 128
157#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
158#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
159#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
160#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
161 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
162
4b8d54f9
ZE
163static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
164module_param(ple_gap, int, S_IRUGO);
165
166static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167module_param(ple_window, int, S_IRUGO);
168
b4a2d31d
RK
169/* Default doubles per-vcpu window every exit. */
170static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
171module_param(ple_window_grow, int, S_IRUGO);
172
173/* Default resets per-vcpu window every exit to ple_window. */
174static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
175module_param(ple_window_shrink, int, S_IRUGO);
176
177/* Default is to compute the maximum so we can never overflow. */
178static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
180module_param(ple_window_max, int, S_IRUGO);
181
83287ea4
AK
182extern const ulong vmx_return;
183
8bf00a52 184#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 185#define VMCS02_POOL_SIZE 1
61d2ef2c 186
a2fa3e9f
GH
187struct vmcs {
188 u32 revision_id;
189 u32 abort;
190 char data[0];
191};
192
d462b819
NHE
193/*
194 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
195 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
196 * loaded on this CPU (so we can clear them if the CPU goes down).
197 */
198struct loaded_vmcs {
199 struct vmcs *vmcs;
355f4fb1 200 struct vmcs *shadow_vmcs;
d462b819
NHE
201 int cpu;
202 int launched;
203 struct list_head loaded_vmcss_on_cpu_link;
204};
205
26bb0981
AK
206struct shared_msr_entry {
207 unsigned index;
208 u64 data;
d5696725 209 u64 mask;
26bb0981
AK
210};
211
a9d30f33
NHE
212/*
213 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
214 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
215 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
216 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
217 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
218 * More than one of these structures may exist, if L1 runs multiple L2 guests.
219 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
220 * underlying hardware which will be used to run L2.
221 * This structure is packed to ensure that its layout is identical across
222 * machines (necessary for live migration).
223 * If there are changes in this struct, VMCS12_REVISION must be changed.
224 */
22bd0358 225typedef u64 natural_width;
a9d30f33
NHE
226struct __packed vmcs12 {
227 /* According to the Intel spec, a VMCS region must start with the
228 * following two fields. Then follow implementation-specific data.
229 */
230 u32 revision_id;
231 u32 abort;
22bd0358 232
27d6c865
NHE
233 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
234 u32 padding[7]; /* room for future expansion */
235
22bd0358
NHE
236 u64 io_bitmap_a;
237 u64 io_bitmap_b;
238 u64 msr_bitmap;
239 u64 vm_exit_msr_store_addr;
240 u64 vm_exit_msr_load_addr;
241 u64 vm_entry_msr_load_addr;
242 u64 tsc_offset;
243 u64 virtual_apic_page_addr;
244 u64 apic_access_addr;
705699a1 245 u64 posted_intr_desc_addr;
22bd0358 246 u64 ept_pointer;
608406e2
WV
247 u64 eoi_exit_bitmap0;
248 u64 eoi_exit_bitmap1;
249 u64 eoi_exit_bitmap2;
250 u64 eoi_exit_bitmap3;
81dc01f7 251 u64 xss_exit_bitmap;
22bd0358
NHE
252 u64 guest_physical_address;
253 u64 vmcs_link_pointer;
254 u64 guest_ia32_debugctl;
255 u64 guest_ia32_pat;
256 u64 guest_ia32_efer;
257 u64 guest_ia32_perf_global_ctrl;
258 u64 guest_pdptr0;
259 u64 guest_pdptr1;
260 u64 guest_pdptr2;
261 u64 guest_pdptr3;
36be0b9d 262 u64 guest_bndcfgs;
22bd0358
NHE
263 u64 host_ia32_pat;
264 u64 host_ia32_efer;
265 u64 host_ia32_perf_global_ctrl;
266 u64 padding64[8]; /* room for future expansion */
267 /*
268 * To allow migration of L1 (complete with its L2 guests) between
269 * machines of different natural widths (32 or 64 bit), we cannot have
270 * unsigned long fields with no explict size. We use u64 (aliased
271 * natural_width) instead. Luckily, x86 is little-endian.
272 */
273 natural_width cr0_guest_host_mask;
274 natural_width cr4_guest_host_mask;
275 natural_width cr0_read_shadow;
276 natural_width cr4_read_shadow;
277 natural_width cr3_target_value0;
278 natural_width cr3_target_value1;
279 natural_width cr3_target_value2;
280 natural_width cr3_target_value3;
281 natural_width exit_qualification;
282 natural_width guest_linear_address;
283 natural_width guest_cr0;
284 natural_width guest_cr3;
285 natural_width guest_cr4;
286 natural_width guest_es_base;
287 natural_width guest_cs_base;
288 natural_width guest_ss_base;
289 natural_width guest_ds_base;
290 natural_width guest_fs_base;
291 natural_width guest_gs_base;
292 natural_width guest_ldtr_base;
293 natural_width guest_tr_base;
294 natural_width guest_gdtr_base;
295 natural_width guest_idtr_base;
296 natural_width guest_dr7;
297 natural_width guest_rsp;
298 natural_width guest_rip;
299 natural_width guest_rflags;
300 natural_width guest_pending_dbg_exceptions;
301 natural_width guest_sysenter_esp;
302 natural_width guest_sysenter_eip;
303 natural_width host_cr0;
304 natural_width host_cr3;
305 natural_width host_cr4;
306 natural_width host_fs_base;
307 natural_width host_gs_base;
308 natural_width host_tr_base;
309 natural_width host_gdtr_base;
310 natural_width host_idtr_base;
311 natural_width host_ia32_sysenter_esp;
312 natural_width host_ia32_sysenter_eip;
313 natural_width host_rsp;
314 natural_width host_rip;
315 natural_width paddingl[8]; /* room for future expansion */
316 u32 pin_based_vm_exec_control;
317 u32 cpu_based_vm_exec_control;
318 u32 exception_bitmap;
319 u32 page_fault_error_code_mask;
320 u32 page_fault_error_code_match;
321 u32 cr3_target_count;
322 u32 vm_exit_controls;
323 u32 vm_exit_msr_store_count;
324 u32 vm_exit_msr_load_count;
325 u32 vm_entry_controls;
326 u32 vm_entry_msr_load_count;
327 u32 vm_entry_intr_info_field;
328 u32 vm_entry_exception_error_code;
329 u32 vm_entry_instruction_len;
330 u32 tpr_threshold;
331 u32 secondary_vm_exec_control;
332 u32 vm_instruction_error;
333 u32 vm_exit_reason;
334 u32 vm_exit_intr_info;
335 u32 vm_exit_intr_error_code;
336 u32 idt_vectoring_info_field;
337 u32 idt_vectoring_error_code;
338 u32 vm_exit_instruction_len;
339 u32 vmx_instruction_info;
340 u32 guest_es_limit;
341 u32 guest_cs_limit;
342 u32 guest_ss_limit;
343 u32 guest_ds_limit;
344 u32 guest_fs_limit;
345 u32 guest_gs_limit;
346 u32 guest_ldtr_limit;
347 u32 guest_tr_limit;
348 u32 guest_gdtr_limit;
349 u32 guest_idtr_limit;
350 u32 guest_es_ar_bytes;
351 u32 guest_cs_ar_bytes;
352 u32 guest_ss_ar_bytes;
353 u32 guest_ds_ar_bytes;
354 u32 guest_fs_ar_bytes;
355 u32 guest_gs_ar_bytes;
356 u32 guest_ldtr_ar_bytes;
357 u32 guest_tr_ar_bytes;
358 u32 guest_interruptibility_info;
359 u32 guest_activity_state;
360 u32 guest_sysenter_cs;
361 u32 host_ia32_sysenter_cs;
0238ea91
JK
362 u32 vmx_preemption_timer_value;
363 u32 padding32[7]; /* room for future expansion */
22bd0358 364 u16 virtual_processor_id;
705699a1 365 u16 posted_intr_nv;
22bd0358
NHE
366 u16 guest_es_selector;
367 u16 guest_cs_selector;
368 u16 guest_ss_selector;
369 u16 guest_ds_selector;
370 u16 guest_fs_selector;
371 u16 guest_gs_selector;
372 u16 guest_ldtr_selector;
373 u16 guest_tr_selector;
608406e2 374 u16 guest_intr_status;
22bd0358
NHE
375 u16 host_es_selector;
376 u16 host_cs_selector;
377 u16 host_ss_selector;
378 u16 host_ds_selector;
379 u16 host_fs_selector;
380 u16 host_gs_selector;
381 u16 host_tr_selector;
a9d30f33
NHE
382};
383
384/*
385 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
386 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
387 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
388 */
389#define VMCS12_REVISION 0x11e57ed0
390
391/*
392 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
393 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
394 * current implementation, 4K are reserved to avoid future complications.
395 */
396#define VMCS12_SIZE 0x1000
397
ff2f6fe9
NHE
398/* Used to remember the last vmcs02 used for some recently used vmcs12s */
399struct vmcs02_list {
400 struct list_head list;
401 gpa_t vmptr;
402 struct loaded_vmcs vmcs02;
403};
404
ec378aee
NHE
405/*
406 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
407 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
408 */
409struct nested_vmx {
410 /* Has the level1 guest done vmxon? */
411 bool vmxon;
3573e22c 412 gpa_t vmxon_ptr;
a9d30f33
NHE
413
414 /* The guest-physical address of the current VMCS L1 keeps for L2 */
415 gpa_t current_vmptr;
416 /* The host-usable pointer to the above */
417 struct page *current_vmcs12_page;
418 struct vmcs12 *current_vmcs12;
4f2777bc
DM
419 /*
420 * Cache of the guest's VMCS, existing outside of guest memory.
421 * Loaded from guest memory during VMPTRLD. Flushed to guest
422 * memory during VMXOFF, VMCLEAR, VMPTRLD.
423 */
424 struct vmcs12 *cached_vmcs12;
012f83cb
AG
425 /*
426 * Indicates if the shadow vmcs must be updated with the
427 * data hold by vmcs12
428 */
429 bool sync_shadow_vmcs;
ff2f6fe9
NHE
430
431 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
432 struct list_head vmcs02_pool;
433 int vmcs02_num;
dccbfcf5 434 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
435 /* L2 must run next, and mustn't decide to exit to L1. */
436 bool nested_run_pending;
fe3ef05c
NHE
437 /*
438 * Guest pages referred to in vmcs02 with host-physical pointers, so
439 * we must keep them pinned while L2 runs.
440 */
441 struct page *apic_access_page;
a7c0b07d 442 struct page *virtual_apic_page;
705699a1
WV
443 struct page *pi_desc_page;
444 struct pi_desc *pi_desc;
445 bool pi_pending;
446 u16 posted_intr_nv;
f4124500 447
d048c098
RK
448 unsigned long *msr_bitmap;
449
f4124500
JK
450 struct hrtimer preemption_timer;
451 bool preemption_timer_expired;
2996fca0
JK
452
453 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
454 u64 vmcs01_debugctl;
b9c237bb 455
5c614b35
WL
456 u16 vpid02;
457 u16 last_vpid;
458
0115f9cb
DM
459 /*
460 * We only store the "true" versions of the VMX capability MSRs. We
461 * generate the "non-true" versions by setting the must-be-1 bits
462 * according to the SDM.
463 */
b9c237bb
WV
464 u32 nested_vmx_procbased_ctls_low;
465 u32 nested_vmx_procbased_ctls_high;
b9c237bb
WV
466 u32 nested_vmx_secondary_ctls_low;
467 u32 nested_vmx_secondary_ctls_high;
468 u32 nested_vmx_pinbased_ctls_low;
469 u32 nested_vmx_pinbased_ctls_high;
470 u32 nested_vmx_exit_ctls_low;
471 u32 nested_vmx_exit_ctls_high;
b9c237bb
WV
472 u32 nested_vmx_entry_ctls_low;
473 u32 nested_vmx_entry_ctls_high;
b9c237bb
WV
474 u32 nested_vmx_misc_low;
475 u32 nested_vmx_misc_high;
476 u32 nested_vmx_ept_caps;
99b83ac8 477 u32 nested_vmx_vpid_caps;
62cc6b9d
DM
478 u64 nested_vmx_basic;
479 u64 nested_vmx_cr0_fixed0;
480 u64 nested_vmx_cr0_fixed1;
481 u64 nested_vmx_cr4_fixed0;
482 u64 nested_vmx_cr4_fixed1;
483 u64 nested_vmx_vmcs_enum;
ec378aee
NHE
484};
485
01e439be 486#define POSTED_INTR_ON 0
ebbfc765
FW
487#define POSTED_INTR_SN 1
488
01e439be
YZ
489/* Posted-Interrupt Descriptor */
490struct pi_desc {
491 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
492 union {
493 struct {
494 /* bit 256 - Outstanding Notification */
495 u16 on : 1,
496 /* bit 257 - Suppress Notification */
497 sn : 1,
498 /* bit 271:258 - Reserved */
499 rsvd_1 : 14;
500 /* bit 279:272 - Notification Vector */
501 u8 nv;
502 /* bit 287:280 - Reserved */
503 u8 rsvd_2;
504 /* bit 319:288 - Notification Destination */
505 u32 ndst;
506 };
507 u64 control;
508 };
509 u32 rsvd[6];
01e439be
YZ
510} __aligned(64);
511
a20ed54d
YZ
512static bool pi_test_and_set_on(struct pi_desc *pi_desc)
513{
514 return test_and_set_bit(POSTED_INTR_ON,
515 (unsigned long *)&pi_desc->control);
516}
517
518static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
519{
520 return test_and_clear_bit(POSTED_INTR_ON,
521 (unsigned long *)&pi_desc->control);
522}
523
524static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
525{
526 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
527}
528
ebbfc765
FW
529static inline void pi_clear_sn(struct pi_desc *pi_desc)
530{
531 return clear_bit(POSTED_INTR_SN,
532 (unsigned long *)&pi_desc->control);
533}
534
535static inline void pi_set_sn(struct pi_desc *pi_desc)
536{
537 return set_bit(POSTED_INTR_SN,
538 (unsigned long *)&pi_desc->control);
539}
540
ad361091
PB
541static inline void pi_clear_on(struct pi_desc *pi_desc)
542{
543 clear_bit(POSTED_INTR_ON,
544 (unsigned long *)&pi_desc->control);
545}
546
ebbfc765
FW
547static inline int pi_test_on(struct pi_desc *pi_desc)
548{
549 return test_bit(POSTED_INTR_ON,
550 (unsigned long *)&pi_desc->control);
551}
552
553static inline int pi_test_sn(struct pi_desc *pi_desc)
554{
555 return test_bit(POSTED_INTR_SN,
556 (unsigned long *)&pi_desc->control);
557}
558
a2fa3e9f 559struct vcpu_vmx {
fb3f0f51 560 struct kvm_vcpu vcpu;
313dbd49 561 unsigned long host_rsp;
29bd8a78 562 u8 fail;
9d58b931 563 bool nmi_known_unmasked;
51aa01d1 564 u32 exit_intr_info;
1155f76a 565 u32 idt_vectoring_info;
6de12732 566 ulong rflags;
26bb0981 567 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
568 int nmsrs;
569 int save_nmsrs;
a547c6db 570 unsigned long host_idt_base;
a2fa3e9f 571#ifdef CONFIG_X86_64
44ea2b17
AK
572 u64 msr_host_kernel_gs_base;
573 u64 msr_guest_kernel_gs_base;
a2fa3e9f 574#endif
2961e876
GN
575 u32 vm_entry_controls_shadow;
576 u32 vm_exit_controls_shadow;
d462b819
NHE
577 /*
578 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
579 * non-nested (L1) guest, it always points to vmcs01. For a nested
580 * guest (L2), it points to a different VMCS.
581 */
582 struct loaded_vmcs vmcs01;
583 struct loaded_vmcs *loaded_vmcs;
584 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
585 struct msr_autoload {
586 unsigned nr;
587 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
588 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
589 } msr_autoload;
a2fa3e9f
GH
590 struct {
591 int loaded;
592 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
593#ifdef CONFIG_X86_64
594 u16 ds_sel, es_sel;
595#endif
152d3f2f
LV
596 int gs_ldt_reload_needed;
597 int fs_reload_needed;
da8999d3 598 u64 msr_host_bndcfgs;
d974baa3 599 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 600 } host_state;
9c8cba37 601 struct {
7ffd92c5 602 int vm86_active;
78ac8b47 603 ulong save_rflags;
f5f7b2fe
AK
604 struct kvm_segment segs[8];
605 } rmode;
606 struct {
607 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
608 struct kvm_save_segment {
609 u16 selector;
610 unsigned long base;
611 u32 limit;
612 u32 ar;
f5f7b2fe 613 } seg[8];
2fb92db1 614 } segment_cache;
2384d2b3 615 int vpid;
04fa4d32 616 bool emulation_required;
3b86cd99
JK
617
618 /* Support for vnmi-less CPUs */
619 int soft_vnmi_blocked;
620 ktime_t entry_time;
621 s64 vnmi_blocked_time;
a0861c02 622 u32 exit_reason;
4e47c7a6 623
01e439be
YZ
624 /* Posted interrupt descriptor */
625 struct pi_desc pi_desc;
626
ec378aee
NHE
627 /* Support for a guest hypervisor (nested VMX) */
628 struct nested_vmx nested;
a7653ecd
RK
629
630 /* Dynamic PLE window. */
631 int ple_window;
632 bool ple_window_dirty;
843e4330
KH
633
634 /* Support for PML */
635#define PML_ENTITY_NUM 512
636 struct page *pml_pg;
2680d6da 637
64672c95
YJ
638 /* apic deadline value in host tsc */
639 u64 hv_deadline_tsc;
640
2680d6da 641 u64 current_tsc_ratio;
1be0e61c
XG
642
643 bool guest_pkru_valid;
644 u32 guest_pkru;
645 u32 host_pkru;
3b84080b 646
37e4c997
HZ
647 /*
648 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
649 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
650 * in msr_ia32_feature_control_valid_bits.
651 */
3b84080b 652 u64 msr_ia32_feature_control;
37e4c997 653 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
654};
655
2fb92db1
AK
656enum segment_cache_field {
657 SEG_FIELD_SEL = 0,
658 SEG_FIELD_BASE = 1,
659 SEG_FIELD_LIMIT = 2,
660 SEG_FIELD_AR = 3,
661
662 SEG_FIELD_NR = 4
663};
664
a2fa3e9f
GH
665static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
666{
fb3f0f51 667 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
668}
669
efc64404
FW
670static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
671{
672 return &(to_vmx(vcpu)->pi_desc);
673}
674
22bd0358
NHE
675#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
676#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
677#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
678 [number##_HIGH] = VMCS12_OFFSET(name)+4
679
4607c2d7 680
fe2b201b 681static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
682 /*
683 * We do NOT shadow fields that are modified when L0
684 * traps and emulates any vmx instruction (e.g. VMPTRLD,
685 * VMXON...) executed by L1.
686 * For example, VM_INSTRUCTION_ERROR is read
687 * by L1 if a vmx instruction fails (part of the error path).
688 * Note the code assumes this logic. If for some reason
689 * we start shadowing these fields then we need to
690 * force a shadow sync when L0 emulates vmx instructions
691 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
692 * by nested_vmx_failValid)
693 */
694 VM_EXIT_REASON,
695 VM_EXIT_INTR_INFO,
696 VM_EXIT_INSTRUCTION_LEN,
697 IDT_VECTORING_INFO_FIELD,
698 IDT_VECTORING_ERROR_CODE,
699 VM_EXIT_INTR_ERROR_CODE,
700 EXIT_QUALIFICATION,
701 GUEST_LINEAR_ADDRESS,
702 GUEST_PHYSICAL_ADDRESS
703};
fe2b201b 704static int max_shadow_read_only_fields =
4607c2d7
AG
705 ARRAY_SIZE(shadow_read_only_fields);
706
fe2b201b 707static unsigned long shadow_read_write_fields[] = {
a7c0b07d 708 TPR_THRESHOLD,
4607c2d7
AG
709 GUEST_RIP,
710 GUEST_RSP,
711 GUEST_CR0,
712 GUEST_CR3,
713 GUEST_CR4,
714 GUEST_INTERRUPTIBILITY_INFO,
715 GUEST_RFLAGS,
716 GUEST_CS_SELECTOR,
717 GUEST_CS_AR_BYTES,
718 GUEST_CS_LIMIT,
719 GUEST_CS_BASE,
720 GUEST_ES_BASE,
36be0b9d 721 GUEST_BNDCFGS,
4607c2d7
AG
722 CR0_GUEST_HOST_MASK,
723 CR0_READ_SHADOW,
724 CR4_READ_SHADOW,
725 TSC_OFFSET,
726 EXCEPTION_BITMAP,
727 CPU_BASED_VM_EXEC_CONTROL,
728 VM_ENTRY_EXCEPTION_ERROR_CODE,
729 VM_ENTRY_INTR_INFO_FIELD,
730 VM_ENTRY_INSTRUCTION_LEN,
731 VM_ENTRY_EXCEPTION_ERROR_CODE,
732 HOST_FS_BASE,
733 HOST_GS_BASE,
734 HOST_FS_SELECTOR,
735 HOST_GS_SELECTOR
736};
fe2b201b 737static int max_shadow_read_write_fields =
4607c2d7
AG
738 ARRAY_SIZE(shadow_read_write_fields);
739
772e0318 740static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 741 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 742 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
743 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
744 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
745 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
746 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
747 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
748 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
749 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
750 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 751 FIELD(GUEST_INTR_STATUS, guest_intr_status),
22bd0358
NHE
752 FIELD(HOST_ES_SELECTOR, host_es_selector),
753 FIELD(HOST_CS_SELECTOR, host_cs_selector),
754 FIELD(HOST_SS_SELECTOR, host_ss_selector),
755 FIELD(HOST_DS_SELECTOR, host_ds_selector),
756 FIELD(HOST_FS_SELECTOR, host_fs_selector),
757 FIELD(HOST_GS_SELECTOR, host_gs_selector),
758 FIELD(HOST_TR_SELECTOR, host_tr_selector),
759 FIELD64(IO_BITMAP_A, io_bitmap_a),
760 FIELD64(IO_BITMAP_B, io_bitmap_b),
761 FIELD64(MSR_BITMAP, msr_bitmap),
762 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765 FIELD64(TSC_OFFSET, tsc_offset),
766 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 768 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
22bd0358 769 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
770 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
771 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
772 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
773 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
81dc01f7 774 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
775 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
776 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
777 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
778 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
779 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
780 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
781 FIELD64(GUEST_PDPTR0, guest_pdptr0),
782 FIELD64(GUEST_PDPTR1, guest_pdptr1),
783 FIELD64(GUEST_PDPTR2, guest_pdptr2),
784 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 785 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
786 FIELD64(HOST_IA32_PAT, host_ia32_pat),
787 FIELD64(HOST_IA32_EFER, host_ia32_efer),
788 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
789 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
790 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
791 FIELD(EXCEPTION_BITMAP, exception_bitmap),
792 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
793 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
794 FIELD(CR3_TARGET_COUNT, cr3_target_count),
795 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
796 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
797 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
798 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
799 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
800 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
801 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
802 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
803 FIELD(TPR_THRESHOLD, tpr_threshold),
804 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
805 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
806 FIELD(VM_EXIT_REASON, vm_exit_reason),
807 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
808 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
809 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
810 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
811 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
812 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
813 FIELD(GUEST_ES_LIMIT, guest_es_limit),
814 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
815 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
816 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
817 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
818 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
819 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
820 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
821 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
822 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
823 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
824 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
825 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
826 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
827 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
828 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
829 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
830 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
831 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
832 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
833 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
834 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 835 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
836 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
837 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
838 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
839 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
840 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
841 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
842 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
843 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
844 FIELD(EXIT_QUALIFICATION, exit_qualification),
845 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
846 FIELD(GUEST_CR0, guest_cr0),
847 FIELD(GUEST_CR3, guest_cr3),
848 FIELD(GUEST_CR4, guest_cr4),
849 FIELD(GUEST_ES_BASE, guest_es_base),
850 FIELD(GUEST_CS_BASE, guest_cs_base),
851 FIELD(GUEST_SS_BASE, guest_ss_base),
852 FIELD(GUEST_DS_BASE, guest_ds_base),
853 FIELD(GUEST_FS_BASE, guest_fs_base),
854 FIELD(GUEST_GS_BASE, guest_gs_base),
855 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
856 FIELD(GUEST_TR_BASE, guest_tr_base),
857 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
858 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
859 FIELD(GUEST_DR7, guest_dr7),
860 FIELD(GUEST_RSP, guest_rsp),
861 FIELD(GUEST_RIP, guest_rip),
862 FIELD(GUEST_RFLAGS, guest_rflags),
863 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
864 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
865 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
866 FIELD(HOST_CR0, host_cr0),
867 FIELD(HOST_CR3, host_cr3),
868 FIELD(HOST_CR4, host_cr4),
869 FIELD(HOST_FS_BASE, host_fs_base),
870 FIELD(HOST_GS_BASE, host_gs_base),
871 FIELD(HOST_TR_BASE, host_tr_base),
872 FIELD(HOST_GDTR_BASE, host_gdtr_base),
873 FIELD(HOST_IDTR_BASE, host_idtr_base),
874 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
875 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
876 FIELD(HOST_RSP, host_rsp),
877 FIELD(HOST_RIP, host_rip),
878};
22bd0358
NHE
879
880static inline short vmcs_field_to_offset(unsigned long field)
881{
a2ae9df7
PB
882 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
883
884 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
885 vmcs_field_to_offset_table[field] == 0)
886 return -ENOENT;
887
22bd0358
NHE
888 return vmcs_field_to_offset_table[field];
889}
890
a9d30f33
NHE
891static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
892{
4f2777bc 893 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
894}
895
896static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
897{
54bf36aa 898 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
32cad84f 899 if (is_error_page(page))
a9d30f33 900 return NULL;
32cad84f 901
a9d30f33
NHE
902 return page;
903}
904
905static void nested_release_page(struct page *page)
906{
907 kvm_release_page_dirty(page);
908}
909
910static void nested_release_page_clean(struct page *page)
911{
912 kvm_release_page_clean(page);
913}
914
bfd0a56b 915static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 916static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
917static void kvm_cpu_vmxon(u64 addr);
918static void kvm_cpu_vmxoff(void);
f53cd63c 919static bool vmx_xsaves_supported(void);
776e58ea 920static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
921static void vmx_set_segment(struct kvm_vcpu *vcpu,
922 struct kvm_segment *var, int seg);
923static void vmx_get_segment(struct kvm_vcpu *vcpu,
924 struct kvm_segment *var, int seg);
d99e4152
GN
925static bool guest_state_valid(struct kvm_vcpu *vcpu);
926static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 927static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 928static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 929static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 930
6aa8b732
AK
931static DEFINE_PER_CPU(struct vmcs *, vmxarea);
932static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
933/*
934 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
935 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
936 */
937static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 938static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 939
bf9f6ac8
FW
940/*
941 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
942 * can find which vCPU should be waken up.
943 */
944static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
945static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
946
23611332
RK
947enum {
948 VMX_IO_BITMAP_A,
949 VMX_IO_BITMAP_B,
950 VMX_MSR_BITMAP_LEGACY,
951 VMX_MSR_BITMAP_LONGMODE,
952 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
953 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
954 VMX_MSR_BITMAP_LEGACY_X2APIC,
955 VMX_MSR_BITMAP_LONGMODE_X2APIC,
956 VMX_VMREAD_BITMAP,
957 VMX_VMWRITE_BITMAP,
958 VMX_BITMAP_NR
959};
960
961static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
962
963#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
964#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
965#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
966#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
967#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
968#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
969#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
970#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
971#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
972#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 973
110312c8 974static bool cpu_has_load_ia32_efer;
8bf00a52 975static bool cpu_has_load_perf_global_ctrl;
110312c8 976
2384d2b3
SY
977static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
978static DEFINE_SPINLOCK(vmx_vpid_lock);
979
1c3d14fe 980static struct vmcs_config {
6aa8b732
AK
981 int size;
982 int order;
9ac7e3e8 983 u32 basic_cap;
6aa8b732 984 u32 revision_id;
1c3d14fe
YS
985 u32 pin_based_exec_ctrl;
986 u32 cpu_based_exec_ctrl;
f78e0e2e 987 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
988 u32 vmexit_ctrl;
989 u32 vmentry_ctrl;
990} vmcs_config;
6aa8b732 991
efff9e53 992static struct vmx_capability {
d56f546d
SY
993 u32 ept;
994 u32 vpid;
995} vmx_capability;
996
6aa8b732
AK
997#define VMX_SEGMENT_FIELD(seg) \
998 [VCPU_SREG_##seg] = { \
999 .selector = GUEST_##seg##_SELECTOR, \
1000 .base = GUEST_##seg##_BASE, \
1001 .limit = GUEST_##seg##_LIMIT, \
1002 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1003 }
1004
772e0318 1005static const struct kvm_vmx_segment_field {
6aa8b732
AK
1006 unsigned selector;
1007 unsigned base;
1008 unsigned limit;
1009 unsigned ar_bytes;
1010} kvm_vmx_segment_fields[] = {
1011 VMX_SEGMENT_FIELD(CS),
1012 VMX_SEGMENT_FIELD(DS),
1013 VMX_SEGMENT_FIELD(ES),
1014 VMX_SEGMENT_FIELD(FS),
1015 VMX_SEGMENT_FIELD(GS),
1016 VMX_SEGMENT_FIELD(SS),
1017 VMX_SEGMENT_FIELD(TR),
1018 VMX_SEGMENT_FIELD(LDTR),
1019};
1020
26bb0981
AK
1021static u64 host_efer;
1022
6de4f3ad
AK
1023static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1024
4d56c8a7 1025/*
8c06585d 1026 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1027 * away by decrementing the array size.
1028 */
6aa8b732 1029static const u32 vmx_msr_index[] = {
05b3e0c2 1030#ifdef CONFIG_X86_64
44ea2b17 1031 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1032#endif
8c06585d 1033 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1034};
6aa8b732 1035
5bb16016 1036static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1037{
1038 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1039 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1040 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1041}
1042
6f05485d
JK
1043static inline bool is_debug(u32 intr_info)
1044{
1045 return is_exception_n(intr_info, DB_VECTOR);
1046}
1047
1048static inline bool is_breakpoint(u32 intr_info)
1049{
1050 return is_exception_n(intr_info, BP_VECTOR);
1051}
1052
5bb16016
JK
1053static inline bool is_page_fault(u32 intr_info)
1054{
1055 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1056}
1057
31299944 1058static inline bool is_no_device(u32 intr_info)
2ab455cc 1059{
5bb16016 1060 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1061}
1062
31299944 1063static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1064{
5bb16016 1065 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1066}
1067
31299944 1068static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1069{
1070 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1071 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1072}
1073
31299944 1074static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1075{
1076 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1077 INTR_INFO_VALID_MASK)) ==
1078 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1079}
1080
31299944 1081static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1082{
04547156 1083 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1084}
1085
31299944 1086static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1087{
04547156 1088 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1089}
1090
35754c98 1091static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1092{
35754c98 1093 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1094}
1095
31299944 1096static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1097{
04547156
SY
1098 return vmcs_config.cpu_based_exec_ctrl &
1099 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1100}
1101
774ead3a 1102static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1103{
04547156
SY
1104 return vmcs_config.cpu_based_2nd_exec_ctrl &
1105 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1106}
1107
8d14695f
YZ
1108static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1109{
1110 return vmcs_config.cpu_based_2nd_exec_ctrl &
1111 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1112}
1113
83d4c286
YZ
1114static inline bool cpu_has_vmx_apic_register_virt(void)
1115{
1116 return vmcs_config.cpu_based_2nd_exec_ctrl &
1117 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1118}
1119
c7c9c56c
YZ
1120static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1121{
1122 return vmcs_config.cpu_based_2nd_exec_ctrl &
1123 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1124}
1125
64672c95
YJ
1126/*
1127 * Comment's format: document - errata name - stepping - processor name.
1128 * Refer from
1129 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1130 */
1131static u32 vmx_preemption_cpu_tfms[] = {
1132/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
11330x000206E6,
1134/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1135/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1136/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11370x00020652,
1138/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11390x00020655,
1140/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1141/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1142/*
1143 * 320767.pdf - AAP86 - B1 -
1144 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1145 */
11460x000106E5,
1147/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11480x000106A0,
1149/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11500x000106A1,
1151/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11520x000106A4,
1153 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1154 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1155 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11560x000106A5,
1157};
1158
1159static inline bool cpu_has_broken_vmx_preemption_timer(void)
1160{
1161 u32 eax = cpuid_eax(0x00000001), i;
1162
1163 /* Clear the reserved bits */
1164 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1165 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1166 if (eax == vmx_preemption_cpu_tfms[i])
1167 return true;
1168
1169 return false;
1170}
1171
1172static inline bool cpu_has_vmx_preemption_timer(void)
1173{
64672c95
YJ
1174 return vmcs_config.pin_based_exec_ctrl &
1175 PIN_BASED_VMX_PREEMPTION_TIMER;
1176}
1177
01e439be
YZ
1178static inline bool cpu_has_vmx_posted_intr(void)
1179{
d6a858d1
PB
1180 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1181 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1182}
1183
1184static inline bool cpu_has_vmx_apicv(void)
1185{
1186 return cpu_has_vmx_apic_register_virt() &&
1187 cpu_has_vmx_virtual_intr_delivery() &&
1188 cpu_has_vmx_posted_intr();
1189}
1190
04547156
SY
1191static inline bool cpu_has_vmx_flexpriority(void)
1192{
1193 return cpu_has_vmx_tpr_shadow() &&
1194 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1195}
1196
e799794e
MT
1197static inline bool cpu_has_vmx_ept_execute_only(void)
1198{
31299944 1199 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1200}
1201
e799794e
MT
1202static inline bool cpu_has_vmx_ept_2m_page(void)
1203{
31299944 1204 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1205}
1206
878403b7
SY
1207static inline bool cpu_has_vmx_ept_1g_page(void)
1208{
31299944 1209 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1210}
1211
4bc9b982
SY
1212static inline bool cpu_has_vmx_ept_4levels(void)
1213{
1214 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1215}
1216
83c3a331
XH
1217static inline bool cpu_has_vmx_ept_ad_bits(void)
1218{
1219 return vmx_capability.ept & VMX_EPT_AD_BIT;
1220}
1221
31299944 1222static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1223{
31299944 1224 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1225}
1226
31299944 1227static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1228{
31299944 1229 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1230}
1231
518c8aee
GJ
1232static inline bool cpu_has_vmx_invvpid_single(void)
1233{
1234 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1235}
1236
b9d762fa
GJ
1237static inline bool cpu_has_vmx_invvpid_global(void)
1238{
1239 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1240}
1241
31299944 1242static inline bool cpu_has_vmx_ept(void)
d56f546d 1243{
04547156
SY
1244 return vmcs_config.cpu_based_2nd_exec_ctrl &
1245 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1246}
1247
31299944 1248static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1249{
1250 return vmcs_config.cpu_based_2nd_exec_ctrl &
1251 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1252}
1253
31299944 1254static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1255{
1256 return vmcs_config.cpu_based_2nd_exec_ctrl &
1257 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1258}
1259
9ac7e3e8
JD
1260static inline bool cpu_has_vmx_basic_inout(void)
1261{
1262 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1263}
1264
35754c98 1265static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1266{
35754c98 1267 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1268}
1269
31299944 1270static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1271{
04547156
SY
1272 return vmcs_config.cpu_based_2nd_exec_ctrl &
1273 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1274}
1275
31299944 1276static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1277{
1278 return vmcs_config.cpu_based_2nd_exec_ctrl &
1279 SECONDARY_EXEC_RDTSCP;
1280}
1281
ad756a16
MJ
1282static inline bool cpu_has_vmx_invpcid(void)
1283{
1284 return vmcs_config.cpu_based_2nd_exec_ctrl &
1285 SECONDARY_EXEC_ENABLE_INVPCID;
1286}
1287
31299944 1288static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1289{
1290 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1291}
1292
f5f48ee1
SY
1293static inline bool cpu_has_vmx_wbinvd_exit(void)
1294{
1295 return vmcs_config.cpu_based_2nd_exec_ctrl &
1296 SECONDARY_EXEC_WBINVD_EXITING;
1297}
1298
abc4fc58
AG
1299static inline bool cpu_has_vmx_shadow_vmcs(void)
1300{
1301 u64 vmx_msr;
1302 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1303 /* check if the cpu supports writing r/o exit information fields */
1304 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1305 return false;
1306
1307 return vmcs_config.cpu_based_2nd_exec_ctrl &
1308 SECONDARY_EXEC_SHADOW_VMCS;
1309}
1310
843e4330
KH
1311static inline bool cpu_has_vmx_pml(void)
1312{
1313 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1314}
1315
64903d61
HZ
1316static inline bool cpu_has_vmx_tsc_scaling(void)
1317{
1318 return vmcs_config.cpu_based_2nd_exec_ctrl &
1319 SECONDARY_EXEC_TSC_SCALING;
1320}
1321
04547156
SY
1322static inline bool report_flexpriority(void)
1323{
1324 return flexpriority_enabled;
1325}
1326
fe3ef05c
NHE
1327static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1328{
1329 return vmcs12->cpu_based_vm_exec_control & bit;
1330}
1331
1332static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1333{
1334 return (vmcs12->cpu_based_vm_exec_control &
1335 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1336 (vmcs12->secondary_vm_exec_control & bit);
1337}
1338
f5c4368f 1339static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1340{
1341 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1342}
1343
f4124500
JK
1344static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1345{
1346 return vmcs12->pin_based_vm_exec_control &
1347 PIN_BASED_VMX_PREEMPTION_TIMER;
1348}
1349
155a97a3
NHE
1350static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1351{
1352 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1353}
1354
81dc01f7
WL
1355static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1356{
1357 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1358 vmx_xsaves_supported();
1359}
1360
f2b93280
WV
1361static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1362{
1363 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1364}
1365
5c614b35
WL
1366static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1367{
1368 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1369}
1370
82f0dd4b
WV
1371static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1372{
1373 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1374}
1375
608406e2
WV
1376static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1377{
1378 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1379}
1380
705699a1
WV
1381static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1382{
1383 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1384}
1385
ef85b673 1386static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1387{
1388 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1389 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1390}
1391
533558bc
JK
1392static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1393 u32 exit_intr_info,
1394 unsigned long exit_qualification);
7c177938
NHE
1395static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1396 struct vmcs12 *vmcs12,
1397 u32 reason, unsigned long qualification);
1398
8b9cf98c 1399static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1400{
1401 int i;
1402
a2fa3e9f 1403 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1404 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1405 return i;
1406 return -1;
1407}
1408
2384d2b3
SY
1409static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1410{
1411 struct {
1412 u64 vpid : 16;
1413 u64 rsvd : 48;
1414 u64 gva;
1415 } operand = { vpid, 0, gva };
1416
4ecac3fd 1417 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1418 /* CF==1 or ZF==1 --> rc = -1 */
1419 "; ja 1f ; ud2 ; 1:"
1420 : : "a"(&operand), "c"(ext) : "cc", "memory");
1421}
1422
1439442c
SY
1423static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1424{
1425 struct {
1426 u64 eptp, gpa;
1427 } operand = {eptp, gpa};
1428
4ecac3fd 1429 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1430 /* CF==1 or ZF==1 --> rc = -1 */
1431 "; ja 1f ; ud2 ; 1:\n"
1432 : : "a" (&operand), "c" (ext) : "cc", "memory");
1433}
1434
26bb0981 1435static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1436{
1437 int i;
1438
8b9cf98c 1439 i = __find_msr_index(vmx, msr);
a75beee6 1440 if (i >= 0)
a2fa3e9f 1441 return &vmx->guest_msrs[i];
8b6d44c7 1442 return NULL;
7725f0ba
AK
1443}
1444
6aa8b732
AK
1445static void vmcs_clear(struct vmcs *vmcs)
1446{
1447 u64 phys_addr = __pa(vmcs);
1448 u8 error;
1449
4ecac3fd 1450 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1451 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1452 : "cc", "memory");
1453 if (error)
1454 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1455 vmcs, phys_addr);
1456}
1457
d462b819
NHE
1458static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1459{
1460 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1461 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1462 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1463 loaded_vmcs->cpu = -1;
1464 loaded_vmcs->launched = 0;
1465}
1466
7725b894
DX
1467static void vmcs_load(struct vmcs *vmcs)
1468{
1469 u64 phys_addr = __pa(vmcs);
1470 u8 error;
1471
1472 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1473 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1474 : "cc", "memory");
1475 if (error)
2844d849 1476 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1477 vmcs, phys_addr);
1478}
1479
2965faa5 1480#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1481/*
1482 * This bitmap is used to indicate whether the vmclear
1483 * operation is enabled on all cpus. All disabled by
1484 * default.
1485 */
1486static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1487
1488static inline void crash_enable_local_vmclear(int cpu)
1489{
1490 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1491}
1492
1493static inline void crash_disable_local_vmclear(int cpu)
1494{
1495 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1496}
1497
1498static inline int crash_local_vmclear_enabled(int cpu)
1499{
1500 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1501}
1502
1503static void crash_vmclear_local_loaded_vmcss(void)
1504{
1505 int cpu = raw_smp_processor_id();
1506 struct loaded_vmcs *v;
1507
1508 if (!crash_local_vmclear_enabled(cpu))
1509 return;
1510
1511 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1512 loaded_vmcss_on_cpu_link)
1513 vmcs_clear(v->vmcs);
1514}
1515#else
1516static inline void crash_enable_local_vmclear(int cpu) { }
1517static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1518#endif /* CONFIG_KEXEC_CORE */
8f536b76 1519
d462b819 1520static void __loaded_vmcs_clear(void *arg)
6aa8b732 1521{
d462b819 1522 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1523 int cpu = raw_smp_processor_id();
6aa8b732 1524
d462b819
NHE
1525 if (loaded_vmcs->cpu != cpu)
1526 return; /* vcpu migration can race with cpu offline */
1527 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1528 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1529 crash_disable_local_vmclear(cpu);
d462b819 1530 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1531
1532 /*
1533 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1534 * is before setting loaded_vmcs->vcpu to -1 which is done in
1535 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1536 * then adds the vmcs into percpu list before it is deleted.
1537 */
1538 smp_wmb();
1539
d462b819 1540 loaded_vmcs_init(loaded_vmcs);
8f536b76 1541 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1542}
1543
d462b819 1544static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1545{
e6c7d321
XG
1546 int cpu = loaded_vmcs->cpu;
1547
1548 if (cpu != -1)
1549 smp_call_function_single(cpu,
1550 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1551}
1552
dd5f5341 1553static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1554{
dd5f5341 1555 if (vpid == 0)
2384d2b3
SY
1556 return;
1557
518c8aee 1558 if (cpu_has_vmx_invvpid_single())
dd5f5341 1559 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1560}
1561
b9d762fa
GJ
1562static inline void vpid_sync_vcpu_global(void)
1563{
1564 if (cpu_has_vmx_invvpid_global())
1565 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1566}
1567
dd5f5341 1568static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1569{
1570 if (cpu_has_vmx_invvpid_single())
dd5f5341 1571 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1572 else
1573 vpid_sync_vcpu_global();
1574}
1575
1439442c
SY
1576static inline void ept_sync_global(void)
1577{
1578 if (cpu_has_vmx_invept_global())
1579 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1580}
1581
1582static inline void ept_sync_context(u64 eptp)
1583{
089d034e 1584 if (enable_ept) {
1439442c
SY
1585 if (cpu_has_vmx_invept_context())
1586 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1587 else
1588 ept_sync_global();
1589 }
1590}
1591
8a86aea9
PB
1592static __always_inline void vmcs_check16(unsigned long field)
1593{
1594 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1595 "16-bit accessor invalid for 64-bit field");
1596 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1597 "16-bit accessor invalid for 64-bit high field");
1598 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1599 "16-bit accessor invalid for 32-bit high field");
1600 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1601 "16-bit accessor invalid for natural width field");
1602}
1603
1604static __always_inline void vmcs_check32(unsigned long field)
1605{
1606 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1607 "32-bit accessor invalid for 16-bit field");
1608 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1609 "32-bit accessor invalid for natural width field");
1610}
1611
1612static __always_inline void vmcs_check64(unsigned long field)
1613{
1614 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1615 "64-bit accessor invalid for 16-bit field");
1616 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1617 "64-bit accessor invalid for 64-bit high field");
1618 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1619 "64-bit accessor invalid for 32-bit field");
1620 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1621 "64-bit accessor invalid for natural width field");
1622}
1623
1624static __always_inline void vmcs_checkl(unsigned long field)
1625{
1626 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1627 "Natural width accessor invalid for 16-bit field");
1628 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1629 "Natural width accessor invalid for 64-bit field");
1630 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1631 "Natural width accessor invalid for 64-bit high field");
1632 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1633 "Natural width accessor invalid for 32-bit field");
1634}
1635
1636static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1637{
5e520e62 1638 unsigned long value;
6aa8b732 1639
5e520e62
AK
1640 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1641 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1642 return value;
1643}
1644
96304217 1645static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1646{
8a86aea9
PB
1647 vmcs_check16(field);
1648 return __vmcs_readl(field);
6aa8b732
AK
1649}
1650
96304217 1651static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1652{
8a86aea9
PB
1653 vmcs_check32(field);
1654 return __vmcs_readl(field);
6aa8b732
AK
1655}
1656
96304217 1657static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1658{
8a86aea9 1659 vmcs_check64(field);
05b3e0c2 1660#ifdef CONFIG_X86_64
8a86aea9 1661 return __vmcs_readl(field);
6aa8b732 1662#else
8a86aea9 1663 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1664#endif
1665}
1666
8a86aea9
PB
1667static __always_inline unsigned long vmcs_readl(unsigned long field)
1668{
1669 vmcs_checkl(field);
1670 return __vmcs_readl(field);
1671}
1672
e52de1b8
AK
1673static noinline void vmwrite_error(unsigned long field, unsigned long value)
1674{
1675 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1676 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1677 dump_stack();
1678}
1679
8a86aea9 1680static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1681{
1682 u8 error;
1683
4ecac3fd 1684 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1685 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1686 if (unlikely(error))
1687 vmwrite_error(field, value);
6aa8b732
AK
1688}
1689
8a86aea9 1690static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1691{
8a86aea9
PB
1692 vmcs_check16(field);
1693 __vmcs_writel(field, value);
6aa8b732
AK
1694}
1695
8a86aea9 1696static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1697{
8a86aea9
PB
1698 vmcs_check32(field);
1699 __vmcs_writel(field, value);
6aa8b732
AK
1700}
1701
8a86aea9 1702static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1703{
8a86aea9
PB
1704 vmcs_check64(field);
1705 __vmcs_writel(field, value);
7682f2d0 1706#ifndef CONFIG_X86_64
6aa8b732 1707 asm volatile ("");
8a86aea9 1708 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1709#endif
1710}
1711
8a86aea9 1712static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1713{
8a86aea9
PB
1714 vmcs_checkl(field);
1715 __vmcs_writel(field, value);
2ab455cc
AL
1716}
1717
8a86aea9 1718static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1719{
8a86aea9
PB
1720 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1721 "vmcs_clear_bits does not support 64-bit fields");
1722 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1723}
1724
8a86aea9 1725static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1726{
8a86aea9
PB
1727 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1728 "vmcs_set_bits does not support 64-bit fields");
1729 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1730}
1731
8391ce44
PB
1732static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1733{
1734 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1735}
1736
2961e876
GN
1737static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1738{
1739 vmcs_write32(VM_ENTRY_CONTROLS, val);
1740 vmx->vm_entry_controls_shadow = val;
1741}
1742
1743static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1744{
1745 if (vmx->vm_entry_controls_shadow != val)
1746 vm_entry_controls_init(vmx, val);
1747}
1748
1749static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1750{
1751 return vmx->vm_entry_controls_shadow;
1752}
1753
1754
1755static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1756{
1757 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1758}
1759
1760static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1761{
1762 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1763}
1764
8391ce44
PB
1765static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1766{
1767 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1768}
1769
2961e876
GN
1770static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1771{
1772 vmcs_write32(VM_EXIT_CONTROLS, val);
1773 vmx->vm_exit_controls_shadow = val;
1774}
1775
1776static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1777{
1778 if (vmx->vm_exit_controls_shadow != val)
1779 vm_exit_controls_init(vmx, val);
1780}
1781
1782static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1783{
1784 return vmx->vm_exit_controls_shadow;
1785}
1786
1787
1788static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1789{
1790 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1791}
1792
1793static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1794{
1795 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1796}
1797
2fb92db1
AK
1798static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1799{
1800 vmx->segment_cache.bitmask = 0;
1801}
1802
1803static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1804 unsigned field)
1805{
1806 bool ret;
1807 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1808
1809 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1810 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1811 vmx->segment_cache.bitmask = 0;
1812 }
1813 ret = vmx->segment_cache.bitmask & mask;
1814 vmx->segment_cache.bitmask |= mask;
1815 return ret;
1816}
1817
1818static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1819{
1820 u16 *p = &vmx->segment_cache.seg[seg].selector;
1821
1822 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1823 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1824 return *p;
1825}
1826
1827static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1828{
1829 ulong *p = &vmx->segment_cache.seg[seg].base;
1830
1831 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1832 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1833 return *p;
1834}
1835
1836static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1837{
1838 u32 *p = &vmx->segment_cache.seg[seg].limit;
1839
1840 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1841 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1842 return *p;
1843}
1844
1845static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1846{
1847 u32 *p = &vmx->segment_cache.seg[seg].ar;
1848
1849 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1850 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1851 return *p;
1852}
1853
abd3f2d6
AK
1854static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1855{
1856 u32 eb;
1857
fd7373cc 1858 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
54a20552 1859 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1860 if ((vcpu->guest_debug &
1861 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1862 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1863 eb |= 1u << BP_VECTOR;
7ffd92c5 1864 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1865 eb = ~0;
089d034e 1866 if (enable_ept)
1439442c 1867 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1868 if (vcpu->fpu_active)
1869 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1870
1871 /* When we are running a nested L2 guest and L1 specified for it a
1872 * certain exception bitmap, we must trap the same exceptions and pass
1873 * them to L1. When running L2, we will only handle the exceptions
1874 * specified above if L1 did not want them.
1875 */
1876 if (is_guest_mode(vcpu))
1877 eb |= get_vmcs12(vcpu)->exception_bitmap;
1878
abd3f2d6
AK
1879 vmcs_write32(EXCEPTION_BITMAP, eb);
1880}
1881
2961e876
GN
1882static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1883 unsigned long entry, unsigned long exit)
8bf00a52 1884{
2961e876
GN
1885 vm_entry_controls_clearbit(vmx, entry);
1886 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1887}
1888
61d2ef2c
AK
1889static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1890{
1891 unsigned i;
1892 struct msr_autoload *m = &vmx->msr_autoload;
1893
8bf00a52
GN
1894 switch (msr) {
1895 case MSR_EFER:
1896 if (cpu_has_load_ia32_efer) {
2961e876
GN
1897 clear_atomic_switch_msr_special(vmx,
1898 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1899 VM_EXIT_LOAD_IA32_EFER);
1900 return;
1901 }
1902 break;
1903 case MSR_CORE_PERF_GLOBAL_CTRL:
1904 if (cpu_has_load_perf_global_ctrl) {
2961e876 1905 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1906 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1907 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1908 return;
1909 }
1910 break;
110312c8
AK
1911 }
1912
61d2ef2c
AK
1913 for (i = 0; i < m->nr; ++i)
1914 if (m->guest[i].index == msr)
1915 break;
1916
1917 if (i == m->nr)
1918 return;
1919 --m->nr;
1920 m->guest[i] = m->guest[m->nr];
1921 m->host[i] = m->host[m->nr];
1922 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1923 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1924}
1925
2961e876
GN
1926static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1927 unsigned long entry, unsigned long exit,
1928 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1929 u64 guest_val, u64 host_val)
8bf00a52
GN
1930{
1931 vmcs_write64(guest_val_vmcs, guest_val);
1932 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1933 vm_entry_controls_setbit(vmx, entry);
1934 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1935}
1936
61d2ef2c
AK
1937static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1938 u64 guest_val, u64 host_val)
1939{
1940 unsigned i;
1941 struct msr_autoload *m = &vmx->msr_autoload;
1942
8bf00a52
GN
1943 switch (msr) {
1944 case MSR_EFER:
1945 if (cpu_has_load_ia32_efer) {
2961e876
GN
1946 add_atomic_switch_msr_special(vmx,
1947 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1948 VM_EXIT_LOAD_IA32_EFER,
1949 GUEST_IA32_EFER,
1950 HOST_IA32_EFER,
1951 guest_val, host_val);
1952 return;
1953 }
1954 break;
1955 case MSR_CORE_PERF_GLOBAL_CTRL:
1956 if (cpu_has_load_perf_global_ctrl) {
2961e876 1957 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1958 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1959 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1960 GUEST_IA32_PERF_GLOBAL_CTRL,
1961 HOST_IA32_PERF_GLOBAL_CTRL,
1962 guest_val, host_val);
1963 return;
1964 }
1965 break;
7099e2e1
RK
1966 case MSR_IA32_PEBS_ENABLE:
1967 /* PEBS needs a quiescent period after being disabled (to write
1968 * a record). Disabling PEBS through VMX MSR swapping doesn't
1969 * provide that period, so a CPU could write host's record into
1970 * guest's memory.
1971 */
1972 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1973 }
1974
61d2ef2c
AK
1975 for (i = 0; i < m->nr; ++i)
1976 if (m->guest[i].index == msr)
1977 break;
1978
e7fc6f93 1979 if (i == NR_AUTOLOAD_MSRS) {
60266204 1980 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1981 "Can't add msr %x\n", msr);
1982 return;
1983 } else if (i == m->nr) {
61d2ef2c
AK
1984 ++m->nr;
1985 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1986 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1987 }
1988
1989 m->guest[i].index = msr;
1990 m->guest[i].value = guest_val;
1991 m->host[i].index = msr;
1992 m->host[i].value = host_val;
1993}
1994
33ed6329
AK
1995static void reload_tss(void)
1996{
33ed6329
AK
1997 /*
1998 * VT restores TR but not its size. Useless.
1999 */
89cbc767 2000 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
a5f61300 2001 struct desc_struct *descs;
33ed6329 2002
d359192f 2003 descs = (void *)gdt->address;
33ed6329
AK
2004 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
2005 load_TR_desc();
33ed6329
AK
2006}
2007
92c0d900 2008static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2009{
844a5fe2
PB
2010 u64 guest_efer = vmx->vcpu.arch.efer;
2011 u64 ignore_bits = 0;
2012
2013 if (!enable_ept) {
2014 /*
2015 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2016 * host CPUID is more efficient than testing guest CPUID
2017 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2018 */
2019 if (boot_cpu_has(X86_FEATURE_SMEP))
2020 guest_efer |= EFER_NX;
2021 else if (!(guest_efer & EFER_NX))
2022 ignore_bits |= EFER_NX;
2023 }
3a34a881 2024
51c6cf66 2025 /*
844a5fe2 2026 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2027 */
844a5fe2 2028 ignore_bits |= EFER_SCE;
51c6cf66
AK
2029#ifdef CONFIG_X86_64
2030 ignore_bits |= EFER_LMA | EFER_LME;
2031 /* SCE is meaningful only in long mode on Intel */
2032 if (guest_efer & EFER_LMA)
2033 ignore_bits &= ~(u64)EFER_SCE;
2034#endif
84ad33ef
AK
2035
2036 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2037
2038 /*
2039 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2040 * On CPUs that support "load IA32_EFER", always switch EFER
2041 * atomically, since it's faster than switching it manually.
2042 */
2043 if (cpu_has_load_ia32_efer ||
2044 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2045 if (!(guest_efer & EFER_LMA))
2046 guest_efer &= ~EFER_LME;
54b98bff
AL
2047 if (guest_efer != host_efer)
2048 add_atomic_switch_msr(vmx, MSR_EFER,
2049 guest_efer, host_efer);
84ad33ef 2050 return false;
844a5fe2
PB
2051 } else {
2052 guest_efer &= ~ignore_bits;
2053 guest_efer |= host_efer & ignore_bits;
2054
2055 vmx->guest_msrs[efer_offset].data = guest_efer;
2056 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2057
844a5fe2
PB
2058 return true;
2059 }
51c6cf66
AK
2060}
2061
2d49ec72
GN
2062static unsigned long segment_base(u16 selector)
2063{
89cbc767 2064 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2d49ec72
GN
2065 struct desc_struct *d;
2066 unsigned long table_base;
2067 unsigned long v;
2068
2069 if (!(selector & ~3))
2070 return 0;
2071
d359192f 2072 table_base = gdt->address;
2d49ec72
GN
2073
2074 if (selector & 4) { /* from ldt */
2075 u16 ldt_selector = kvm_read_ldt();
2076
2077 if (!(ldt_selector & ~3))
2078 return 0;
2079
2080 table_base = segment_base(ldt_selector);
2081 }
2082 d = (struct desc_struct *)(table_base + (selector & ~7));
2083 v = get_desc_base(d);
2084#ifdef CONFIG_X86_64
2085 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
2086 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
2087#endif
2088 return v;
2089}
2090
2091static inline unsigned long kvm_read_tr_base(void)
2092{
2093 u16 tr;
2094 asm("str %0" : "=g"(tr));
2095 return segment_base(tr);
2096}
2097
04d2cc77 2098static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2099{
04d2cc77 2100 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2101 int i;
04d2cc77 2102
a2fa3e9f 2103 if (vmx->host_state.loaded)
33ed6329
AK
2104 return;
2105
a2fa3e9f 2106 vmx->host_state.loaded = 1;
33ed6329
AK
2107 /*
2108 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2109 * allow segment selectors with cpl > 0 or ti == 1.
2110 */
d6e88aec 2111 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2112 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2113 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2114 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2115 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2116 vmx->host_state.fs_reload_needed = 0;
2117 } else {
33ed6329 2118 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2119 vmx->host_state.fs_reload_needed = 1;
33ed6329 2120 }
9581d442 2121 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2122 if (!(vmx->host_state.gs_sel & 7))
2123 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2124 else {
2125 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2126 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2127 }
2128
b2da15ac
AK
2129#ifdef CONFIG_X86_64
2130 savesegment(ds, vmx->host_state.ds_sel);
2131 savesegment(es, vmx->host_state.es_sel);
2132#endif
2133
33ed6329
AK
2134#ifdef CONFIG_X86_64
2135 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2136 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2137#else
a2fa3e9f
GH
2138 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2139 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2140#endif
707c0874
AK
2141
2142#ifdef CONFIG_X86_64
c8770e7b
AK
2143 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2144 if (is_long_mode(&vmx->vcpu))
44ea2b17 2145 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2146#endif
da8999d3
LJ
2147 if (boot_cpu_has(X86_FEATURE_MPX))
2148 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2149 for (i = 0; i < vmx->save_nmsrs; ++i)
2150 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2151 vmx->guest_msrs[i].data,
2152 vmx->guest_msrs[i].mask);
33ed6329
AK
2153}
2154
a9b21b62 2155static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2156{
a2fa3e9f 2157 if (!vmx->host_state.loaded)
33ed6329
AK
2158 return;
2159
e1beb1d3 2160 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2161 vmx->host_state.loaded = 0;
c8770e7b
AK
2162#ifdef CONFIG_X86_64
2163 if (is_long_mode(&vmx->vcpu))
2164 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2165#endif
152d3f2f 2166 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2167 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2168#ifdef CONFIG_X86_64
9581d442 2169 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2170#else
2171 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2172#endif
33ed6329 2173 }
0a77fe4c
AK
2174 if (vmx->host_state.fs_reload_needed)
2175 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2176#ifdef CONFIG_X86_64
2177 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2178 loadsegment(ds, vmx->host_state.ds_sel);
2179 loadsegment(es, vmx->host_state.es_sel);
2180 }
b2da15ac 2181#endif
152d3f2f 2182 reload_tss();
44ea2b17 2183#ifdef CONFIG_X86_64
c8770e7b 2184 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2185#endif
da8999d3
LJ
2186 if (vmx->host_state.msr_host_bndcfgs)
2187 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
89cbc767 2188 load_gdt(this_cpu_ptr(&host_gdt));
33ed6329
AK
2189}
2190
a9b21b62
AK
2191static void vmx_load_host_state(struct vcpu_vmx *vmx)
2192{
2193 preempt_disable();
2194 __vmx_load_host_state(vmx);
2195 preempt_enable();
2196}
2197
28b835d6
FW
2198static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2199{
2200 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2201 struct pi_desc old, new;
2202 unsigned int dest;
2203
2204 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2205 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2206 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2207 return;
2208
2209 do {
2210 old.control = new.control = pi_desc->control;
2211
2212 /*
2213 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2214 * are two possible cases:
2215 * 1. After running 'pre_block', context switch
2216 * happened. For this case, 'sn' was set in
2217 * vmx_vcpu_put(), so we need to clear it here.
2218 * 2. After running 'pre_block', we were blocked,
2219 * and woken up by some other guy. For this case,
2220 * we don't need to do anything, 'pi_post_block'
2221 * will do everything for us. However, we cannot
2222 * check whether it is case #1 or case #2 here
2223 * (maybe, not needed), so we also clear sn here,
2224 * I think it is not a big deal.
2225 */
2226 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2227 if (vcpu->cpu != cpu) {
2228 dest = cpu_physical_id(cpu);
2229
2230 if (x2apic_enabled())
2231 new.ndst = dest;
2232 else
2233 new.ndst = (dest << 8) & 0xFF00;
2234 }
2235
2236 /* set 'NV' to 'notification vector' */
2237 new.nv = POSTED_INTR_VECTOR;
2238 }
2239
2240 /* Allow posting non-urgent interrupts */
2241 new.sn = 0;
2242 } while (cmpxchg(&pi_desc->control, old.control,
2243 new.control) != old.control);
2244}
1be0e61c 2245
c95ba92a
PF
2246static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2247{
2248 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2249 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2250}
2251
6aa8b732
AK
2252/*
2253 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2254 * vcpu mutex is already taken.
2255 */
15ad7146 2256static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2257{
a2fa3e9f 2258 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 2259 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
b80c76ec 2260 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2261
4610c9cc
DX
2262 if (!vmm_exclusive)
2263 kvm_cpu_vmxon(phys_addr);
b80c76ec 2264 else if (!already_loaded)
d462b819 2265 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 2266
b80c76ec 2267 if (!already_loaded) {
92fe13be 2268 local_irq_disable();
8f536b76 2269 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2270
2271 /*
2272 * Read loaded_vmcs->cpu should be before fetching
2273 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2274 * See the comments in __loaded_vmcs_clear().
2275 */
2276 smp_rmb();
2277
d462b819
NHE
2278 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2279 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2280 crash_enable_local_vmclear(cpu);
92fe13be 2281 local_irq_enable();
b80c76ec
JM
2282 }
2283
2284 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2285 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2286 vmcs_load(vmx->loaded_vmcs->vmcs);
2287 }
2288
2289 if (!already_loaded) {
2290 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2291 unsigned long sysenter_esp;
2292
2293 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2294
6aa8b732
AK
2295 /*
2296 * Linux uses per-cpu TSS and GDT, so set these when switching
2297 * processors.
2298 */
d6e88aec 2299 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 2300 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
2301
2302 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2303 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2304
d462b819 2305 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2306 }
28b835d6 2307
2680d6da
OH
2308 /* Setup TSC multiplier */
2309 if (kvm_has_tsc_control &&
c95ba92a
PF
2310 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2311 decache_tsc_multiplier(vmx);
2680d6da 2312
28b835d6 2313 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2314 vmx->host_pkru = read_pkru();
28b835d6
FW
2315}
2316
2317static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2318{
2319 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2320
2321 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2322 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2323 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2324 return;
2325
2326 /* Set SN when the vCPU is preempted */
2327 if (vcpu->preempted)
2328 pi_set_sn(pi_desc);
6aa8b732
AK
2329}
2330
2331static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2332{
28b835d6
FW
2333 vmx_vcpu_pi_put(vcpu);
2334
a9b21b62 2335 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 2336 if (!vmm_exclusive) {
d462b819
NHE
2337 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2338 vcpu->cpu = -1;
4610c9cc
DX
2339 kvm_cpu_vmxoff();
2340 }
6aa8b732
AK
2341}
2342
5fd86fcf
AK
2343static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2344{
81231c69
AK
2345 ulong cr0;
2346
5fd86fcf
AK
2347 if (vcpu->fpu_active)
2348 return;
2349 vcpu->fpu_active = 1;
81231c69
AK
2350 cr0 = vmcs_readl(GUEST_CR0);
2351 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2352 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2353 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 2354 update_exception_bitmap(vcpu);
edcafe3c 2355 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
2356 if (is_guest_mode(vcpu))
2357 vcpu->arch.cr0_guest_owned_bits &=
2358 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 2359 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
2360}
2361
edcafe3c
AK
2362static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2363
fe3ef05c
NHE
2364/*
2365 * Return the cr0 value that a nested guest would read. This is a combination
2366 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2367 * its hypervisor (cr0_read_shadow).
2368 */
2369static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2370{
2371 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2372 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2373}
2374static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2375{
2376 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2377 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2378}
2379
5fd86fcf
AK
2380static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2381{
36cf24e0
NHE
2382 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2383 * set this *before* calling this function.
2384 */
edcafe3c 2385 vmx_decache_cr0_guest_bits(vcpu);
81231c69 2386 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 2387 update_exception_bitmap(vcpu);
edcafe3c
AK
2388 vcpu->arch.cr0_guest_owned_bits = 0;
2389 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
2390 if (is_guest_mode(vcpu)) {
2391 /*
2392 * L1's specified read shadow might not contain the TS bit,
2393 * so now that we turned on shadowing of this bit, we need to
2394 * set this bit of the shadow. Like in nested_vmx_run we need
2395 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2396 * up-to-date here because we just decached cr0.TS (and we'll
2397 * only update vmcs12->guest_cr0 on nested exit).
2398 */
2399 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2400 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2401 (vcpu->arch.cr0 & X86_CR0_TS);
2402 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2403 } else
2404 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
2405}
2406
6aa8b732
AK
2407static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2408{
78ac8b47 2409 unsigned long rflags, save_rflags;
345dcaa8 2410
6de12732
AK
2411 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2412 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2413 rflags = vmcs_readl(GUEST_RFLAGS);
2414 if (to_vmx(vcpu)->rmode.vm86_active) {
2415 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2416 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2417 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2418 }
2419 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2420 }
6de12732 2421 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2422}
2423
2424static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2425{
6de12732
AK
2426 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2427 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2428 if (to_vmx(vcpu)->rmode.vm86_active) {
2429 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2430 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2431 }
6aa8b732
AK
2432 vmcs_writel(GUEST_RFLAGS, rflags);
2433}
2434
be94f6b7
HH
2435static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2436{
2437 return to_vmx(vcpu)->guest_pkru;
2438}
2439
37ccdcbe 2440static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2441{
2442 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2443 int ret = 0;
2444
2445 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2446 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2447 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2448 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2449
37ccdcbe 2450 return ret;
2809f5d2
GC
2451}
2452
2453static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2454{
2455 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2456 u32 interruptibility = interruptibility_old;
2457
2458 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2459
48005f64 2460 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2461 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2462 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2463 interruptibility |= GUEST_INTR_STATE_STI;
2464
2465 if ((interruptibility != interruptibility_old))
2466 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2467}
2468
6aa8b732
AK
2469static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2470{
2471 unsigned long rip;
6aa8b732 2472
5fdbf976 2473 rip = kvm_rip_read(vcpu);
6aa8b732 2474 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2475 kvm_rip_write(vcpu, rip);
6aa8b732 2476
2809f5d2
GC
2477 /* skipping an emulated instruction also counts */
2478 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2479}
2480
0b6ac343
NHE
2481/*
2482 * KVM wants to inject page-faults which it got to the guest. This function
2483 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2484 */
e011c663 2485static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2486{
2487 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2488
e011c663 2489 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2490 return 0;
2491
533558bc
JK
2492 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2493 vmcs_read32(VM_EXIT_INTR_INFO),
2494 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2495 return 1;
2496}
2497
298101da 2498static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2499 bool has_error_code, u32 error_code,
2500 bool reinject)
298101da 2501{
77ab6db0 2502 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2503 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2504
e011c663
GN
2505 if (!reinject && is_guest_mode(vcpu) &&
2506 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2507 return;
2508
8ab2d2e2 2509 if (has_error_code) {
77ab6db0 2510 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2511 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2512 }
77ab6db0 2513
7ffd92c5 2514 if (vmx->rmode.vm86_active) {
71f9833b
SH
2515 int inc_eip = 0;
2516 if (kvm_exception_is_soft(nr))
2517 inc_eip = vcpu->arch.event_exit_inst_len;
2518 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2519 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2520 return;
2521 }
2522
66fd3f7f
GN
2523 if (kvm_exception_is_soft(nr)) {
2524 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2525 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2526 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2527 } else
2528 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2529
2530 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2531}
2532
4e47c7a6
SY
2533static bool vmx_rdtscp_supported(void)
2534{
2535 return cpu_has_vmx_rdtscp();
2536}
2537
ad756a16
MJ
2538static bool vmx_invpcid_supported(void)
2539{
2540 return cpu_has_vmx_invpcid() && enable_ept;
2541}
2542
a75beee6
ED
2543/*
2544 * Swap MSR entry in host/guest MSR entry array.
2545 */
8b9cf98c 2546static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2547{
26bb0981 2548 struct shared_msr_entry tmp;
a2fa3e9f
GH
2549
2550 tmp = vmx->guest_msrs[to];
2551 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2552 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2553}
2554
8d14695f
YZ
2555static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2556{
2557 unsigned long *msr_bitmap;
2558
670125bd 2559 if (is_guest_mode(vcpu))
d048c098 2560 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
3ce424e4
RK
2561 else if (cpu_has_secondary_exec_ctrls() &&
2562 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2563 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
f6e90f9e
WL
2564 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2565 if (is_long_mode(vcpu))
c63e4563 2566 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
f6e90f9e 2567 else
c63e4563 2568 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
f6e90f9e
WL
2569 } else {
2570 if (is_long_mode(vcpu))
c63e4563 2571 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
f6e90f9e 2572 else
c63e4563 2573 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
f6e90f9e 2574 }
8d14695f
YZ
2575 } else {
2576 if (is_long_mode(vcpu))
2577 msr_bitmap = vmx_msr_bitmap_longmode;
2578 else
2579 msr_bitmap = vmx_msr_bitmap_legacy;
2580 }
2581
2582 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2583}
2584
e38aea3e
AK
2585/*
2586 * Set up the vmcs to automatically save and restore system
2587 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2588 * mode, as fiddling with msrs is very expensive.
2589 */
8b9cf98c 2590static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2591{
26bb0981 2592 int save_nmsrs, index;
e38aea3e 2593
a75beee6
ED
2594 save_nmsrs = 0;
2595#ifdef CONFIG_X86_64
8b9cf98c 2596 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2597 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2598 if (index >= 0)
8b9cf98c
RR
2599 move_msr_up(vmx, index, save_nmsrs++);
2600 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2601 if (index >= 0)
8b9cf98c
RR
2602 move_msr_up(vmx, index, save_nmsrs++);
2603 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2604 if (index >= 0)
8b9cf98c 2605 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2606 index = __find_msr_index(vmx, MSR_TSC_AUX);
1cea0ce6 2607 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
4e47c7a6 2608 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2609 /*
8c06585d 2610 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2611 * if efer.sce is enabled.
2612 */
8c06585d 2613 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2614 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2615 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2616 }
2617#endif
92c0d900
AK
2618 index = __find_msr_index(vmx, MSR_EFER);
2619 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2620 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2621
26bb0981 2622 vmx->save_nmsrs = save_nmsrs;
5897297b 2623
8d14695f
YZ
2624 if (cpu_has_vmx_msr_bitmap())
2625 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2626}
2627
6aa8b732
AK
2628/*
2629 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2630 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2631 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2632 */
be7b263e 2633static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2634{
2635 u64 host_tsc, tsc_offset;
2636
4ea1636b 2637 host_tsc = rdtsc();
6aa8b732 2638 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2639 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2640}
2641
2642/*
99e3e30a 2643 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2644 */
99e3e30a 2645static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2646{
27fc51b2 2647 if (is_guest_mode(vcpu)) {
7991825b 2648 /*
27fc51b2
NHE
2649 * We're here if L1 chose not to trap WRMSR to TSC. According
2650 * to the spec, this should set L1's TSC; The offset that L1
2651 * set for L2 remains unchanged, and still needs to be added
2652 * to the newly set TSC to get L2's TSC.
7991825b 2653 */
27fc51b2 2654 struct vmcs12 *vmcs12;
27fc51b2
NHE
2655 /* recalculate vmcs02.TSC_OFFSET: */
2656 vmcs12 = get_vmcs12(vcpu);
2657 vmcs_write64(TSC_OFFSET, offset +
2658 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2659 vmcs12->tsc_offset : 0));
2660 } else {
489223ed
YY
2661 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2662 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2663 vmcs_write64(TSC_OFFSET, offset);
2664 }
6aa8b732
AK
2665}
2666
801d3424
NHE
2667static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2668{
2669 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2670 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2671}
2672
2673/*
2674 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2675 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2676 * all guests if the "nested" module option is off, and can also be disabled
2677 * for a single guest by disabling its VMX cpuid bit.
2678 */
2679static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2680{
2681 return nested && guest_cpuid_has_vmx(vcpu);
2682}
2683
b87a51ae
NHE
2684/*
2685 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2686 * returned for the various VMX controls MSRs when nested VMX is enabled.
2687 * The same values should also be used to verify that vmcs12 control fields are
2688 * valid during nested entry from L1 to L2.
2689 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2690 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2691 * bit in the high half is on if the corresponding bit in the control field
2692 * may be on. See also vmx_control_verify().
b87a51ae 2693 */
b9c237bb 2694static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2695{
2696 /*
2697 * Note that as a general rule, the high half of the MSRs (bits in
2698 * the control fields which may be 1) should be initialized by the
2699 * intersection of the underlying hardware's MSR (i.e., features which
2700 * can be supported) and the list of features we want to expose -
2701 * because they are known to be properly supported in our code.
2702 * Also, usually, the low half of the MSRs (bits which must be 1) can
2703 * be set to 0, meaning that L1 may turn off any of these bits. The
2704 * reason is that if one of these bits is necessary, it will appear
2705 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2706 * fields of vmcs01 and vmcs02, will turn these bits off - and
2707 * nested_vmx_exit_handled() will not pass related exits to L1.
2708 * These rules have exceptions below.
2709 */
2710
2711 /* pin-based controls */
eabeaacc 2712 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2713 vmx->nested.nested_vmx_pinbased_ctls_low,
2714 vmx->nested.nested_vmx_pinbased_ctls_high);
2715 vmx->nested.nested_vmx_pinbased_ctls_low |=
2716 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2717 vmx->nested.nested_vmx_pinbased_ctls_high &=
2718 PIN_BASED_EXT_INTR_MASK |
2719 PIN_BASED_NMI_EXITING |
2720 PIN_BASED_VIRTUAL_NMIS;
2721 vmx->nested.nested_vmx_pinbased_ctls_high |=
2722 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2723 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2724 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2725 vmx->nested.nested_vmx_pinbased_ctls_high |=
2726 PIN_BASED_POSTED_INTR;
b87a51ae 2727
3dbcd8da 2728 /* exit controls */
c0dfee58 2729 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2730 vmx->nested.nested_vmx_exit_ctls_low,
2731 vmx->nested.nested_vmx_exit_ctls_high);
2732 vmx->nested.nested_vmx_exit_ctls_low =
2733 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2734
b9c237bb 2735 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2736#ifdef CONFIG_X86_64
c0dfee58 2737 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2738#endif
f4124500 2739 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2740 vmx->nested.nested_vmx_exit_ctls_high |=
2741 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2742 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2743 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2744
a87036ad 2745 if (kvm_mpx_supported())
b9c237bb 2746 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2747
2996fca0 2748 /* We support free control of debug control saving. */
0115f9cb 2749 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2750
b87a51ae
NHE
2751 /* entry controls */
2752 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2753 vmx->nested.nested_vmx_entry_ctls_low,
2754 vmx->nested.nested_vmx_entry_ctls_high);
2755 vmx->nested.nested_vmx_entry_ctls_low =
2756 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2757 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2758#ifdef CONFIG_X86_64
2759 VM_ENTRY_IA32E_MODE |
2760#endif
2761 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2762 vmx->nested.nested_vmx_entry_ctls_high |=
2763 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2764 if (kvm_mpx_supported())
b9c237bb 2765 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2766
2996fca0 2767 /* We support free control of debug control loading. */
0115f9cb 2768 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 2769
b87a51ae
NHE
2770 /* cpu-based controls */
2771 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2772 vmx->nested.nested_vmx_procbased_ctls_low,
2773 vmx->nested.nested_vmx_procbased_ctls_high);
2774 vmx->nested.nested_vmx_procbased_ctls_low =
2775 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2776 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2777 CPU_BASED_VIRTUAL_INTR_PENDING |
2778 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2779 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2780 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2781 CPU_BASED_CR3_STORE_EXITING |
2782#ifdef CONFIG_X86_64
2783 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2784#endif
2785 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2786 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2787 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2788 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2789 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2790 /*
2791 * We can allow some features even when not supported by the
2792 * hardware. For example, L1 can specify an MSR bitmap - and we
2793 * can use it to avoid exits to L1 - even when L0 runs L2
2794 * without MSR bitmaps.
2795 */
b9c237bb
WV
2796 vmx->nested.nested_vmx_procbased_ctls_high |=
2797 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2798 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2799
3dcdf3ec 2800 /* We support free control of CR3 access interception. */
0115f9cb 2801 vmx->nested.nested_vmx_procbased_ctls_low &=
3dcdf3ec
JK
2802 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2803
b87a51ae
NHE
2804 /* secondary cpu-based controls */
2805 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2806 vmx->nested.nested_vmx_secondary_ctls_low,
2807 vmx->nested.nested_vmx_secondary_ctls_high);
2808 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2809 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2810 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2811 SECONDARY_EXEC_RDTSCP |
1b07304c 2812 SECONDARY_EXEC_DESC |
f2b93280 2813 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5c614b35 2814 SECONDARY_EXEC_ENABLE_VPID |
82f0dd4b 2815 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2816 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7 2817 SECONDARY_EXEC_WBINVD_EXITING |
dfa169bb 2818 SECONDARY_EXEC_XSAVES;
c18911a2 2819
afa61f75
NHE
2820 if (enable_ept) {
2821 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2822 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2823 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2824 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
d3134dbf
JK
2825 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2826 VMX_EPT_INVEPT_BIT;
02120c45
BD
2827 if (cpu_has_vmx_ept_execute_only())
2828 vmx->nested.nested_vmx_ept_caps |=
2829 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2830 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817
BD
2831 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2832 VMX_EPT_EXTENT_CONTEXT_BIT;
afa61f75 2833 } else
b9c237bb 2834 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2835
ef697a71
PB
2836 /*
2837 * Old versions of KVM use the single-context version without
2838 * checking for support, so declare that it is supported even
2839 * though it is treated as global context. The alternative is
2840 * not failing the single-context invvpid, and it is worse.
2841 */
089d7b6e
WL
2842 if (enable_vpid)
2843 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 2844 VMX_VPID_EXTENT_SUPPORTED_MASK;
089d7b6e
WL
2845 else
2846 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2847
0790ec17
RK
2848 if (enable_unrestricted_guest)
2849 vmx->nested.nested_vmx_secondary_ctls_high |=
2850 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2851
c18911a2 2852 /* miscellaneous data */
b9c237bb
WV
2853 rdmsr(MSR_IA32_VMX_MISC,
2854 vmx->nested.nested_vmx_misc_low,
2855 vmx->nested.nested_vmx_misc_high);
2856 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2857 vmx->nested.nested_vmx_misc_low |=
2858 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2859 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2860 vmx->nested.nested_vmx_misc_high = 0;
62cc6b9d
DM
2861
2862 /*
2863 * This MSR reports some information about VMX support. We
2864 * should return information about the VMX we emulate for the
2865 * guest, and the VMCS structure we give it - not about the
2866 * VMX support of the underlying hardware.
2867 */
2868 vmx->nested.nested_vmx_basic =
2869 VMCS12_REVISION |
2870 VMX_BASIC_TRUE_CTLS |
2871 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2872 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2873
2874 if (cpu_has_vmx_basic_inout())
2875 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2876
2877 /*
8322ebbb 2878 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
2879 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2880 * We picked the standard core2 setting.
2881 */
2882#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2883#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2884 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
62cc6b9d 2885 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
2886
2887 /* These MSRs specify bits which the guest must keep fixed off. */
2888 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2889 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
62cc6b9d
DM
2890
2891 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2892 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
b87a51ae
NHE
2893}
2894
3899152c
DM
2895/*
2896 * if fixed0[i] == 1: val[i] must be 1
2897 * if fixed1[i] == 0: val[i] must be 0
2898 */
2899static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2900{
2901 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
2902}
2903
2904static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2905{
3899152c 2906 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
2907}
2908
2909static inline u64 vmx_control_msr(u32 low, u32 high)
2910{
2911 return low | ((u64)high << 32);
2912}
2913
62cc6b9d
DM
2914static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2915{
2916 superset &= mask;
2917 subset &= mask;
2918
2919 return (superset | subset) == superset;
2920}
2921
2922static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2923{
2924 const u64 feature_and_reserved =
2925 /* feature (except bit 48; see below) */
2926 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2927 /* reserved */
2928 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2929 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2930
2931 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2932 return -EINVAL;
2933
2934 /*
2935 * KVM does not emulate a version of VMX that constrains physical
2936 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2937 */
2938 if (data & BIT_ULL(48))
2939 return -EINVAL;
2940
2941 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2942 vmx_basic_vmcs_revision_id(data))
2943 return -EINVAL;
2944
2945 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2946 return -EINVAL;
2947
2948 vmx->nested.nested_vmx_basic = data;
2949 return 0;
2950}
2951
2952static int
2953vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2954{
2955 u64 supported;
2956 u32 *lowp, *highp;
2957
2958 switch (msr_index) {
2959 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2960 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2961 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2962 break;
2963 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2964 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2965 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2966 break;
2967 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2968 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2969 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2970 break;
2971 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2972 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2973 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2974 break;
2975 case MSR_IA32_VMX_PROCBASED_CTLS2:
2976 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2977 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2978 break;
2979 default:
2980 BUG();
2981 }
2982
2983 supported = vmx_control_msr(*lowp, *highp);
2984
2985 /* Check must-be-1 bits are still 1. */
2986 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2987 return -EINVAL;
2988
2989 /* Check must-be-0 bits are still 0. */
2990 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2991 return -EINVAL;
2992
2993 *lowp = data;
2994 *highp = data >> 32;
2995 return 0;
2996}
2997
2998static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2999{
3000 const u64 feature_and_reserved_bits =
3001 /* feature */
3002 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3003 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3004 /* reserved */
3005 GENMASK_ULL(13, 9) | BIT_ULL(31);
3006 u64 vmx_misc;
3007
3008 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3009 vmx->nested.nested_vmx_misc_high);
3010
3011 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3012 return -EINVAL;
3013
3014 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3015 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3016 vmx_misc_preemption_timer_rate(data) !=
3017 vmx_misc_preemption_timer_rate(vmx_misc))
3018 return -EINVAL;
3019
3020 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3021 return -EINVAL;
3022
3023 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3024 return -EINVAL;
3025
3026 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3027 return -EINVAL;
3028
3029 vmx->nested.nested_vmx_misc_low = data;
3030 vmx->nested.nested_vmx_misc_high = data >> 32;
3031 return 0;
3032}
3033
3034static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3035{
3036 u64 vmx_ept_vpid_cap;
3037
3038 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3039 vmx->nested.nested_vmx_vpid_caps);
3040
3041 /* Every bit is either reserved or a feature bit. */
3042 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3043 return -EINVAL;
3044
3045 vmx->nested.nested_vmx_ept_caps = data;
3046 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3047 return 0;
3048}
3049
3050static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3051{
3052 u64 *msr;
3053
3054 switch (msr_index) {
3055 case MSR_IA32_VMX_CR0_FIXED0:
3056 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3057 break;
3058 case MSR_IA32_VMX_CR4_FIXED0:
3059 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3060 break;
3061 default:
3062 BUG();
3063 }
3064
3065 /*
3066 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3067 * must be 1 in the restored value.
3068 */
3069 if (!is_bitwise_subset(data, *msr, -1ULL))
3070 return -EINVAL;
3071
3072 *msr = data;
3073 return 0;
3074}
3075
3076/*
3077 * Called when userspace is restoring VMX MSRs.
3078 *
3079 * Returns 0 on success, non-0 otherwise.
3080 */
3081static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3082{
b9c237bb
WV
3083 struct vcpu_vmx *vmx = to_vmx(vcpu);
3084
b87a51ae 3085 switch (msr_index) {
b87a51ae 3086 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3087 return vmx_restore_vmx_basic(vmx, data);
3088 case MSR_IA32_VMX_PINBASED_CTLS:
3089 case MSR_IA32_VMX_PROCBASED_CTLS:
3090 case MSR_IA32_VMX_EXIT_CTLS:
3091 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3092 /*
62cc6b9d
DM
3093 * The "non-true" VMX capability MSRs are generated from the
3094 * "true" MSRs, so we do not support restoring them directly.
3095 *
3096 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3097 * should restore the "true" MSRs with the must-be-1 bits
3098 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3099 * DEFAULT SETTINGS".
b87a51ae 3100 */
62cc6b9d
DM
3101 return -EINVAL;
3102 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3103 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3104 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3105 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3106 case MSR_IA32_VMX_PROCBASED_CTLS2:
3107 return vmx_restore_control_msr(vmx, msr_index, data);
3108 case MSR_IA32_VMX_MISC:
3109 return vmx_restore_vmx_misc(vmx, data);
3110 case MSR_IA32_VMX_CR0_FIXED0:
3111 case MSR_IA32_VMX_CR4_FIXED0:
3112 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3113 case MSR_IA32_VMX_CR0_FIXED1:
3114 case MSR_IA32_VMX_CR4_FIXED1:
3115 /*
3116 * These MSRs are generated based on the vCPU's CPUID, so we
3117 * do not support restoring them directly.
3118 */
3119 return -EINVAL;
3120 case MSR_IA32_VMX_EPT_VPID_CAP:
3121 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3122 case MSR_IA32_VMX_VMCS_ENUM:
3123 vmx->nested.nested_vmx_vmcs_enum = data;
3124 return 0;
3125 default:
b87a51ae 3126 /*
62cc6b9d 3127 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3128 */
62cc6b9d
DM
3129 return -EINVAL;
3130 }
3131}
3132
3133/* Returns 0 on success, non-0 otherwise. */
3134static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3135{
3136 struct vcpu_vmx *vmx = to_vmx(vcpu);
3137
3138 switch (msr_index) {
3139 case MSR_IA32_VMX_BASIC:
3140 *pdata = vmx->nested.nested_vmx_basic;
b87a51ae
NHE
3141 break;
3142 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3143 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
3144 *pdata = vmx_control_msr(
3145 vmx->nested.nested_vmx_pinbased_ctls_low,
3146 vmx->nested.nested_vmx_pinbased_ctls_high);
0115f9cb
DM
3147 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3148 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3149 break;
3150 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3151 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
3152 *pdata = vmx_control_msr(
3153 vmx->nested.nested_vmx_procbased_ctls_low,
3154 vmx->nested.nested_vmx_procbased_ctls_high);
0115f9cb
DM
3155 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3156 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3157 break;
3158 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3159 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
3160 *pdata = vmx_control_msr(
3161 vmx->nested.nested_vmx_exit_ctls_low,
3162 vmx->nested.nested_vmx_exit_ctls_high);
0115f9cb
DM
3163 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3164 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3165 break;
3166 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3167 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
3168 *pdata = vmx_control_msr(
3169 vmx->nested.nested_vmx_entry_ctls_low,
3170 vmx->nested.nested_vmx_entry_ctls_high);
0115f9cb
DM
3171 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3172 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3173 break;
3174 case MSR_IA32_VMX_MISC:
b9c237bb
WV
3175 *pdata = vmx_control_msr(
3176 vmx->nested.nested_vmx_misc_low,
3177 vmx->nested.nested_vmx_misc_high);
b87a51ae 3178 break;
b87a51ae 3179 case MSR_IA32_VMX_CR0_FIXED0:
62cc6b9d 3180 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
b87a51ae
NHE
3181 break;
3182 case MSR_IA32_VMX_CR0_FIXED1:
62cc6b9d 3183 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
b87a51ae
NHE
3184 break;
3185 case MSR_IA32_VMX_CR4_FIXED0:
62cc6b9d 3186 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
b87a51ae
NHE
3187 break;
3188 case MSR_IA32_VMX_CR4_FIXED1:
62cc6b9d 3189 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
b87a51ae
NHE
3190 break;
3191 case MSR_IA32_VMX_VMCS_ENUM:
62cc6b9d 3192 *pdata = vmx->nested.nested_vmx_vmcs_enum;
b87a51ae
NHE
3193 break;
3194 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
3195 *pdata = vmx_control_msr(
3196 vmx->nested.nested_vmx_secondary_ctls_low,
3197 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
3198 break;
3199 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
3200 *pdata = vmx->nested.nested_vmx_ept_caps |
3201 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae
NHE
3202 break;
3203 default:
b87a51ae 3204 return 1;
b3897a49
NHE
3205 }
3206
b87a51ae
NHE
3207 return 0;
3208}
3209
37e4c997
HZ
3210static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3211 uint64_t val)
3212{
3213 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3214
3215 return !(val & ~valid_bits);
3216}
3217
6aa8b732
AK
3218/*
3219 * Reads an msr value (of 'msr_index') into 'pdata'.
3220 * Returns 0 on success, non-0 otherwise.
3221 * Assumes vcpu_load() was already called.
3222 */
609e36d3 3223static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3224{
26bb0981 3225 struct shared_msr_entry *msr;
6aa8b732 3226
609e36d3 3227 switch (msr_info->index) {
05b3e0c2 3228#ifdef CONFIG_X86_64
6aa8b732 3229 case MSR_FS_BASE:
609e36d3 3230 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3231 break;
3232 case MSR_GS_BASE:
609e36d3 3233 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3234 break;
44ea2b17
AK
3235 case MSR_KERNEL_GS_BASE:
3236 vmx_load_host_state(to_vmx(vcpu));
609e36d3 3237 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3238 break;
26bb0981 3239#endif
6aa8b732 3240 case MSR_EFER:
609e36d3 3241 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3242 case MSR_IA32_TSC:
be7b263e 3243 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
3244 break;
3245 case MSR_IA32_SYSENTER_CS:
609e36d3 3246 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3247 break;
3248 case MSR_IA32_SYSENTER_EIP:
609e36d3 3249 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3250 break;
3251 case MSR_IA32_SYSENTER_ESP:
609e36d3 3252 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3253 break;
0dd376e7 3254 case MSR_IA32_BNDCFGS:
a87036ad 3255 if (!kvm_mpx_supported())
93c4adc7 3256 return 1;
609e36d3 3257 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3258 break;
c45dcc71
AR
3259 case MSR_IA32_MCG_EXT_CTL:
3260 if (!msr_info->host_initiated &&
3261 !(to_vmx(vcpu)->msr_ia32_feature_control &
3262 FEATURE_CONTROL_LMCE))
cae50139 3263 return 1;
c45dcc71
AR
3264 msr_info->data = vcpu->arch.mcg_ext_ctl;
3265 break;
cae50139 3266 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3267 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3268 break;
3269 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3270 if (!nested_vmx_allowed(vcpu))
3271 return 1;
609e36d3 3272 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3273 case MSR_IA32_XSS:
3274 if (!vmx_xsaves_supported())
3275 return 1;
609e36d3 3276 msr_info->data = vcpu->arch.ia32_xss;
20300099 3277 break;
4e47c7a6 3278 case MSR_TSC_AUX:
81b1b9ca 3279 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3280 return 1;
3281 /* Otherwise falls through */
6aa8b732 3282 default:
609e36d3 3283 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3284 if (msr) {
609e36d3 3285 msr_info->data = msr->data;
3bab1f5d 3286 break;
6aa8b732 3287 }
609e36d3 3288 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3289 }
3290
6aa8b732
AK
3291 return 0;
3292}
3293
cae50139
JK
3294static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3295
6aa8b732
AK
3296/*
3297 * Writes msr value into into the appropriate "register".
3298 * Returns 0 on success, non-0 otherwise.
3299 * Assumes vcpu_load() was already called.
3300 */
8fe8ab46 3301static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3302{
a2fa3e9f 3303 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3304 struct shared_msr_entry *msr;
2cc51560 3305 int ret = 0;
8fe8ab46
WA
3306 u32 msr_index = msr_info->index;
3307 u64 data = msr_info->data;
2cc51560 3308
6aa8b732 3309 switch (msr_index) {
3bab1f5d 3310 case MSR_EFER:
8fe8ab46 3311 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3312 break;
16175a79 3313#ifdef CONFIG_X86_64
6aa8b732 3314 case MSR_FS_BASE:
2fb92db1 3315 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3316 vmcs_writel(GUEST_FS_BASE, data);
3317 break;
3318 case MSR_GS_BASE:
2fb92db1 3319 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3320 vmcs_writel(GUEST_GS_BASE, data);
3321 break;
44ea2b17
AK
3322 case MSR_KERNEL_GS_BASE:
3323 vmx_load_host_state(vmx);
3324 vmx->msr_guest_kernel_gs_base = data;
3325 break;
6aa8b732
AK
3326#endif
3327 case MSR_IA32_SYSENTER_CS:
3328 vmcs_write32(GUEST_SYSENTER_CS, data);
3329 break;
3330 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3331 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3332 break;
3333 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3334 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3335 break;
0dd376e7 3336 case MSR_IA32_BNDCFGS:
a87036ad 3337 if (!kvm_mpx_supported())
93c4adc7 3338 return 1;
0dd376e7
LJ
3339 vmcs_write64(GUEST_BNDCFGS, data);
3340 break;
af24a4e4 3341 case MSR_IA32_TSC:
8fe8ab46 3342 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3343 break;
468d472f
SY
3344 case MSR_IA32_CR_PAT:
3345 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3346 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3347 return 1;
468d472f
SY
3348 vmcs_write64(GUEST_IA32_PAT, data);
3349 vcpu->arch.pat = data;
3350 break;
3351 }
8fe8ab46 3352 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3353 break;
ba904635
WA
3354 case MSR_IA32_TSC_ADJUST:
3355 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3356 break;
c45dcc71
AR
3357 case MSR_IA32_MCG_EXT_CTL:
3358 if ((!msr_info->host_initiated &&
3359 !(to_vmx(vcpu)->msr_ia32_feature_control &
3360 FEATURE_CONTROL_LMCE)) ||
3361 (data & ~MCG_EXT_CTL_LMCE_EN))
3362 return 1;
3363 vcpu->arch.mcg_ext_ctl = data;
3364 break;
cae50139 3365 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3366 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3367 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3368 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3369 return 1;
3b84080b 3370 vmx->msr_ia32_feature_control = data;
cae50139
JK
3371 if (msr_info->host_initiated && data == 0)
3372 vmx_leave_nested(vcpu);
3373 break;
3374 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3375 if (!msr_info->host_initiated)
3376 return 1; /* they are read-only */
3377 if (!nested_vmx_allowed(vcpu))
3378 return 1;
3379 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3380 case MSR_IA32_XSS:
3381 if (!vmx_xsaves_supported())
3382 return 1;
3383 /*
3384 * The only supported bit as of Skylake is bit 8, but
3385 * it is not supported on KVM.
3386 */
3387 if (data != 0)
3388 return 1;
3389 vcpu->arch.ia32_xss = data;
3390 if (vcpu->arch.ia32_xss != host_xss)
3391 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3392 vcpu->arch.ia32_xss, host_xss);
3393 else
3394 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3395 break;
4e47c7a6 3396 case MSR_TSC_AUX:
81b1b9ca 3397 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3398 return 1;
3399 /* Check reserved bit, higher 32 bits should be zero */
3400 if ((data >> 32) != 0)
3401 return 1;
3402 /* Otherwise falls through */
6aa8b732 3403 default:
8b9cf98c 3404 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3405 if (msr) {
8b3c3104 3406 u64 old_msr_data = msr->data;
3bab1f5d 3407 msr->data = data;
2225fd56
AK
3408 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3409 preempt_disable();
8b3c3104
AH
3410 ret = kvm_set_shared_msr(msr->index, msr->data,
3411 msr->mask);
2225fd56 3412 preempt_enable();
8b3c3104
AH
3413 if (ret)
3414 msr->data = old_msr_data;
2225fd56 3415 }
3bab1f5d 3416 break;
6aa8b732 3417 }
8fe8ab46 3418 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3419 }
3420
2cc51560 3421 return ret;
6aa8b732
AK
3422}
3423
5fdbf976 3424static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3425{
5fdbf976
MT
3426 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3427 switch (reg) {
3428 case VCPU_REGS_RSP:
3429 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3430 break;
3431 case VCPU_REGS_RIP:
3432 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3433 break;
6de4f3ad
AK
3434 case VCPU_EXREG_PDPTR:
3435 if (enable_ept)
3436 ept_save_pdptrs(vcpu);
3437 break;
5fdbf976
MT
3438 default:
3439 break;
3440 }
6aa8b732
AK
3441}
3442
6aa8b732
AK
3443static __init int cpu_has_kvm_support(void)
3444{
6210e37b 3445 return cpu_has_vmx();
6aa8b732
AK
3446}
3447
3448static __init int vmx_disabled_by_bios(void)
3449{
3450 u64 msr;
3451
3452 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3453 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3454 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3455 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3456 && tboot_enabled())
3457 return 1;
23f3e991 3458 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3459 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3460 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3461 && !tboot_enabled()) {
3462 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3463 "activate TXT before enabling KVM\n");
cafd6659 3464 return 1;
f9335afe 3465 }
23f3e991
JC
3466 /* launched w/o TXT and VMX disabled */
3467 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3468 && !tboot_enabled())
3469 return 1;
cafd6659
SW
3470 }
3471
3472 return 0;
6aa8b732
AK
3473}
3474
7725b894
DX
3475static void kvm_cpu_vmxon(u64 addr)
3476{
1c5ac21a
AS
3477 intel_pt_handle_vmx(1);
3478
7725b894
DX
3479 asm volatile (ASM_VMX_VMXON_RAX
3480 : : "a"(&addr), "m"(addr)
3481 : "memory", "cc");
3482}
3483
13a34e06 3484static int hardware_enable(void)
6aa8b732
AK
3485{
3486 int cpu = raw_smp_processor_id();
3487 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3488 u64 old, test_bits;
6aa8b732 3489
1e02ce4c 3490 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3491 return -EBUSY;
3492
d462b819 3493 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3494 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3495 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3496
3497 /*
3498 * Now we can enable the vmclear operation in kdump
3499 * since the loaded_vmcss_on_cpu list on this cpu
3500 * has been initialized.
3501 *
3502 * Though the cpu is not in VMX operation now, there
3503 * is no problem to enable the vmclear operation
3504 * for the loaded_vmcss_on_cpu list is empty!
3505 */
3506 crash_enable_local_vmclear(cpu);
3507
6aa8b732 3508 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3509
3510 test_bits = FEATURE_CONTROL_LOCKED;
3511 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3512 if (tboot_enabled())
3513 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3514
3515 if ((old & test_bits) != test_bits) {
6aa8b732 3516 /* enable and lock */
cafd6659
SW
3517 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3518 }
375074cc 3519 cr4_set_bits(X86_CR4_VMXE);
10474ae8 3520
4610c9cc
DX
3521 if (vmm_exclusive) {
3522 kvm_cpu_vmxon(phys_addr);
3523 ept_sync_global();
3524 }
10474ae8 3525
89cbc767 3526 native_store_gdt(this_cpu_ptr(&host_gdt));
3444d7da 3527
10474ae8 3528 return 0;
6aa8b732
AK
3529}
3530
d462b819 3531static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3532{
3533 int cpu = raw_smp_processor_id();
d462b819 3534 struct loaded_vmcs *v, *n;
543e4243 3535
d462b819
NHE
3536 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3537 loaded_vmcss_on_cpu_link)
3538 __loaded_vmcs_clear(v);
543e4243
AK
3539}
3540
710ff4a8
EH
3541
3542/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3543 * tricks.
3544 */
3545static void kvm_cpu_vmxoff(void)
6aa8b732 3546{
4ecac3fd 3547 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3548
3549 intel_pt_handle_vmx(0);
6aa8b732
AK
3550}
3551
13a34e06 3552static void hardware_disable(void)
710ff4a8 3553{
4610c9cc 3554 if (vmm_exclusive) {
d462b819 3555 vmclear_local_loaded_vmcss();
4610c9cc
DX
3556 kvm_cpu_vmxoff();
3557 }
375074cc 3558 cr4_clear_bits(X86_CR4_VMXE);
710ff4a8
EH
3559}
3560
1c3d14fe 3561static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3562 u32 msr, u32 *result)
1c3d14fe
YS
3563{
3564 u32 vmx_msr_low, vmx_msr_high;
3565 u32 ctl = ctl_min | ctl_opt;
3566
3567 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3568
3569 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3570 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3571
3572 /* Ensure minimum (required) set of control bits are supported. */
3573 if (ctl_min & ~ctl)
002c7f7c 3574 return -EIO;
1c3d14fe
YS
3575
3576 *result = ctl;
3577 return 0;
3578}
3579
110312c8
AK
3580static __init bool allow_1_setting(u32 msr, u32 ctl)
3581{
3582 u32 vmx_msr_low, vmx_msr_high;
3583
3584 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3585 return vmx_msr_high & ctl;
3586}
3587
002c7f7c 3588static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3589{
3590 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3591 u32 min, opt, min2, opt2;
1c3d14fe
YS
3592 u32 _pin_based_exec_control = 0;
3593 u32 _cpu_based_exec_control = 0;
f78e0e2e 3594 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3595 u32 _vmexit_control = 0;
3596 u32 _vmentry_control = 0;
3597
10166744 3598 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3599#ifdef CONFIG_X86_64
3600 CPU_BASED_CR8_LOAD_EXITING |
3601 CPU_BASED_CR8_STORE_EXITING |
3602#endif
d56f546d
SY
3603 CPU_BASED_CR3_LOAD_EXITING |
3604 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3605 CPU_BASED_USE_IO_BITMAPS |
3606 CPU_BASED_MOV_DR_EXITING |
a7052897 3607 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
3608 CPU_BASED_MWAIT_EXITING |
3609 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
3610 CPU_BASED_INVLPG_EXITING |
3611 CPU_BASED_RDPMC_EXITING;
443381a8 3612
f78e0e2e 3613 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3614 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3615 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3616 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3617 &_cpu_based_exec_control) < 0)
002c7f7c 3618 return -EIO;
6e5d865c
YS
3619#ifdef CONFIG_X86_64
3620 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3621 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3622 ~CPU_BASED_CR8_STORE_EXITING;
3623#endif
f78e0e2e 3624 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3625 min2 = 0;
3626 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3627 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3628 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3629 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3630 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3631 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3632 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3633 SECONDARY_EXEC_RDTSCP |
83d4c286 3634 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3635 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3636 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3637 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3638 SECONDARY_EXEC_XSAVES |
8b3e34e4 3639 SECONDARY_EXEC_ENABLE_PML |
64903d61 3640 SECONDARY_EXEC_TSC_SCALING;
d56f546d
SY
3641 if (adjust_vmx_controls(min2, opt2,
3642 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3643 &_cpu_based_2nd_exec_control) < 0)
3644 return -EIO;
3645 }
3646#ifndef CONFIG_X86_64
3647 if (!(_cpu_based_2nd_exec_control &
3648 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3649 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3650#endif
83d4c286
YZ
3651
3652 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3653 _cpu_based_2nd_exec_control &= ~(
8d14695f 3654 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3655 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3656 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3657
d56f546d 3658 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3659 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3660 enabled */
5fff7d27
GN
3661 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3662 CPU_BASED_CR3_STORE_EXITING |
3663 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3664 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3665 vmx_capability.ept, vmx_capability.vpid);
3666 }
1c3d14fe 3667
91fa0f8e 3668 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3669#ifdef CONFIG_X86_64
3670 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3671#endif
a547c6db 3672 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3673 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3674 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3675 &_vmexit_control) < 0)
002c7f7c 3676 return -EIO;
1c3d14fe 3677
01e439be 3678 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
64672c95
YJ
3679 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3680 PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3681 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3682 &_pin_based_exec_control) < 0)
3683 return -EIO;
3684
1c17c3e6
PB
3685 if (cpu_has_broken_vmx_preemption_timer())
3686 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3687 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3688 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3689 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3690
c845f9c6 3691 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3692 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3693 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3694 &_vmentry_control) < 0)
002c7f7c 3695 return -EIO;
6aa8b732 3696
c68876fd 3697 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3698
3699 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3700 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3701 return -EIO;
1c3d14fe
YS
3702
3703#ifdef CONFIG_X86_64
3704 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3705 if (vmx_msr_high & (1u<<16))
002c7f7c 3706 return -EIO;
1c3d14fe
YS
3707#endif
3708
3709 /* Require Write-Back (WB) memory type for VMCS accesses. */
3710 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3711 return -EIO;
1c3d14fe 3712
002c7f7c 3713 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3714 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3715 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3716 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3717
002c7f7c
YS
3718 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3719 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3720 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3721 vmcs_conf->vmexit_ctrl = _vmexit_control;
3722 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3723
110312c8
AK
3724 cpu_has_load_ia32_efer =
3725 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3726 VM_ENTRY_LOAD_IA32_EFER)
3727 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3728 VM_EXIT_LOAD_IA32_EFER);
3729
8bf00a52
GN
3730 cpu_has_load_perf_global_ctrl =
3731 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3732 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3733 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3734 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3735
3736 /*
3737 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3738 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3739 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3740 *
3741 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3742 *
3743 * AAK155 (model 26)
3744 * AAP115 (model 30)
3745 * AAT100 (model 37)
3746 * BC86,AAY89,BD102 (model 44)
3747 * BA97 (model 46)
3748 *
3749 */
3750 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3751 switch (boot_cpu_data.x86_model) {
3752 case 26:
3753 case 30:
3754 case 37:
3755 case 44:
3756 case 46:
3757 cpu_has_load_perf_global_ctrl = false;
3758 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3759 "does not work properly. Using workaround\n");
3760 break;
3761 default:
3762 break;
3763 }
3764 }
3765
782511b0 3766 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3767 rdmsrl(MSR_IA32_XSS, host_xss);
3768
1c3d14fe 3769 return 0;
c68876fd 3770}
6aa8b732
AK
3771
3772static struct vmcs *alloc_vmcs_cpu(int cpu)
3773{
3774 int node = cpu_to_node(cpu);
3775 struct page *pages;
3776 struct vmcs *vmcs;
3777
96db800f 3778 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3779 if (!pages)
3780 return NULL;
3781 vmcs = page_address(pages);
1c3d14fe
YS
3782 memset(vmcs, 0, vmcs_config.size);
3783 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3784 return vmcs;
3785}
3786
3787static struct vmcs *alloc_vmcs(void)
3788{
d3b2c338 3789 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3790}
3791
3792static void free_vmcs(struct vmcs *vmcs)
3793{
1c3d14fe 3794 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3795}
3796
d462b819
NHE
3797/*
3798 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3799 */
3800static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3801{
3802 if (!loaded_vmcs->vmcs)
3803 return;
3804 loaded_vmcs_clear(loaded_vmcs);
3805 free_vmcs(loaded_vmcs->vmcs);
3806 loaded_vmcs->vmcs = NULL;
355f4fb1 3807 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
3808}
3809
39959588 3810static void free_kvm_area(void)
6aa8b732
AK
3811{
3812 int cpu;
3813
3230bb47 3814 for_each_possible_cpu(cpu) {
6aa8b732 3815 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3816 per_cpu(vmxarea, cpu) = NULL;
3817 }
6aa8b732
AK
3818}
3819
fe2b201b
BD
3820static void init_vmcs_shadow_fields(void)
3821{
3822 int i, j;
3823
3824 /* No checks for read only fields yet */
3825
3826 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3827 switch (shadow_read_write_fields[i]) {
3828 case GUEST_BNDCFGS:
a87036ad 3829 if (!kvm_mpx_supported())
fe2b201b
BD
3830 continue;
3831 break;
3832 default:
3833 break;
3834 }
3835
3836 if (j < i)
3837 shadow_read_write_fields[j] =
3838 shadow_read_write_fields[i];
3839 j++;
3840 }
3841 max_shadow_read_write_fields = j;
3842
3843 /* shadowed fields guest access without vmexit */
3844 for (i = 0; i < max_shadow_read_write_fields; i++) {
3845 clear_bit(shadow_read_write_fields[i],
3846 vmx_vmwrite_bitmap);
3847 clear_bit(shadow_read_write_fields[i],
3848 vmx_vmread_bitmap);
3849 }
3850 for (i = 0; i < max_shadow_read_only_fields; i++)
3851 clear_bit(shadow_read_only_fields[i],
3852 vmx_vmread_bitmap);
3853}
3854
6aa8b732
AK
3855static __init int alloc_kvm_area(void)
3856{
3857 int cpu;
3858
3230bb47 3859 for_each_possible_cpu(cpu) {
6aa8b732
AK
3860 struct vmcs *vmcs;
3861
3862 vmcs = alloc_vmcs_cpu(cpu);
3863 if (!vmcs) {
3864 free_kvm_area();
3865 return -ENOMEM;
3866 }
3867
3868 per_cpu(vmxarea, cpu) = vmcs;
3869 }
3870 return 0;
3871}
3872
14168786
GN
3873static bool emulation_required(struct kvm_vcpu *vcpu)
3874{
3875 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3876}
3877
91b0aa2c 3878static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3879 struct kvm_segment *save)
6aa8b732 3880{
d99e4152
GN
3881 if (!emulate_invalid_guest_state) {
3882 /*
3883 * CS and SS RPL should be equal during guest entry according
3884 * to VMX spec, but in reality it is not always so. Since vcpu
3885 * is in the middle of the transition from real mode to
3886 * protected mode it is safe to assume that RPL 0 is a good
3887 * default value.
3888 */
3889 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3890 save->selector &= ~SEGMENT_RPL_MASK;
3891 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3892 save->s = 1;
6aa8b732 3893 }
d99e4152 3894 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3895}
3896
3897static void enter_pmode(struct kvm_vcpu *vcpu)
3898{
3899 unsigned long flags;
a89a8fb9 3900 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3901
d99e4152
GN
3902 /*
3903 * Update real mode segment cache. It may be not up-to-date if sement
3904 * register was written while vcpu was in a guest mode.
3905 */
3906 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3907 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3908 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3909 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3910 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3911 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3912
7ffd92c5 3913 vmx->rmode.vm86_active = 0;
6aa8b732 3914
2fb92db1
AK
3915 vmx_segment_cache_clear(vmx);
3916
f5f7b2fe 3917 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3918
3919 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3920 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3921 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3922 vmcs_writel(GUEST_RFLAGS, flags);
3923
66aee91a
RR
3924 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3925 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3926
3927 update_exception_bitmap(vcpu);
3928
91b0aa2c
GN
3929 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3930 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3931 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3932 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3933 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3934 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3935}
3936
f5f7b2fe 3937static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3938{
772e0318 3939 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3940 struct kvm_segment var = *save;
3941
3942 var.dpl = 0x3;
3943 if (seg == VCPU_SREG_CS)
3944 var.type = 0x3;
3945
3946 if (!emulate_invalid_guest_state) {
3947 var.selector = var.base >> 4;
3948 var.base = var.base & 0xffff0;
3949 var.limit = 0xffff;
3950 var.g = 0;
3951 var.db = 0;
3952 var.present = 1;
3953 var.s = 1;
3954 var.l = 0;
3955 var.unusable = 0;
3956 var.type = 0x3;
3957 var.avl = 0;
3958 if (save->base & 0xf)
3959 printk_once(KERN_WARNING "kvm: segment base is not "
3960 "paragraph aligned when entering "
3961 "protected mode (seg=%d)", seg);
3962 }
6aa8b732 3963
d99e4152
GN
3964 vmcs_write16(sf->selector, var.selector);
3965 vmcs_write32(sf->base, var.base);
3966 vmcs_write32(sf->limit, var.limit);
3967 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3968}
3969
3970static void enter_rmode(struct kvm_vcpu *vcpu)
3971{
3972 unsigned long flags;
a89a8fb9 3973 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3974
f5f7b2fe
AK
3975 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3976 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3977 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3978 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3979 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3980 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3981 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3982
7ffd92c5 3983 vmx->rmode.vm86_active = 1;
6aa8b732 3984
776e58ea
GN
3985 /*
3986 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3987 * vcpu. Warn the user that an update is overdue.
776e58ea 3988 */
4918c6ca 3989 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3990 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3991 "called before entering vcpu\n");
776e58ea 3992
2fb92db1
AK
3993 vmx_segment_cache_clear(vmx);
3994
4918c6ca 3995 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3996 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3997 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3998
3999 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 4000 vmx->rmode.save_rflags = flags;
6aa8b732 4001
053de044 4002 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
4003
4004 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 4005 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
4006 update_exception_bitmap(vcpu);
4007
d99e4152
GN
4008 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4009 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4010 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4011 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4012 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4013 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 4014
8668a3c4 4015 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
4016}
4017
401d10de
AS
4018static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4019{
4020 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
4021 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4022
4023 if (!msr)
4024 return;
401d10de 4025
44ea2b17
AK
4026 /*
4027 * Force kernel_gs_base reloading before EFER changes, as control
4028 * of this msr depends on is_long_mode().
4029 */
4030 vmx_load_host_state(to_vmx(vcpu));
f6801dff 4031 vcpu->arch.efer = efer;
401d10de 4032 if (efer & EFER_LMA) {
2961e876 4033 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4034 msr->data = efer;
4035 } else {
2961e876 4036 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4037
4038 msr->data = efer & ~EFER_LME;
4039 }
4040 setup_msrs(vmx);
4041}
4042
05b3e0c2 4043#ifdef CONFIG_X86_64
6aa8b732
AK
4044
4045static void enter_lmode(struct kvm_vcpu *vcpu)
4046{
4047 u32 guest_tr_ar;
4048
2fb92db1
AK
4049 vmx_segment_cache_clear(to_vmx(vcpu));
4050
6aa8b732 4051 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 4052 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
4053 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4054 __func__);
6aa8b732 4055 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
4056 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4057 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4058 }
da38f438 4059 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4060}
4061
4062static void exit_lmode(struct kvm_vcpu *vcpu)
4063{
2961e876 4064 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4065 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4066}
4067
4068#endif
4069
dd5f5341 4070static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 4071{
dd5f5341 4072 vpid_sync_context(vpid);
dd180b3e
XG
4073 if (enable_ept) {
4074 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4075 return;
4e1096d2 4076 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 4077 }
2384d2b3
SY
4078}
4079
dd5f5341
WL
4080static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4081{
4082 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4083}
4084
e8467fda
AK
4085static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4086{
4087 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4088
4089 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4090 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4091}
4092
aff48baa
AK
4093static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4094{
4095 if (enable_ept && is_paging(vcpu))
4096 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4097 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4098}
4099
25c4c276 4100static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4101{
fc78f519
AK
4102 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4103
4104 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4105 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4106}
4107
1439442c
SY
4108static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4109{
d0d538b9
GN
4110 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4111
6de4f3ad
AK
4112 if (!test_bit(VCPU_EXREG_PDPTR,
4113 (unsigned long *)&vcpu->arch.regs_dirty))
4114 return;
4115
1439442c 4116 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4117 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4118 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4119 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4120 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4121 }
4122}
4123
8f5d549f
AK
4124static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4125{
d0d538b9
GN
4126 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4127
8f5d549f 4128 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4129 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4130 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4131 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4132 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4133 }
6de4f3ad
AK
4134
4135 __set_bit(VCPU_EXREG_PDPTR,
4136 (unsigned long *)&vcpu->arch.regs_avail);
4137 __set_bit(VCPU_EXREG_PDPTR,
4138 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4139}
4140
3899152c
DM
4141static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4142{
4143 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4144 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4145 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4146
4147 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4148 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4149 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4150 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4151
4152 return fixed_bits_valid(val, fixed0, fixed1);
4153}
4154
4155static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4156{
4157 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4158 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4159
4160 return fixed_bits_valid(val, fixed0, fixed1);
4161}
4162
4163static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4164{
4165 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4166 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4167
4168 return fixed_bits_valid(val, fixed0, fixed1);
4169}
4170
4171/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4172#define nested_guest_cr4_valid nested_cr4_valid
4173#define nested_host_cr4_valid nested_cr4_valid
4174
5e1746d6 4175static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4176
4177static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4178 unsigned long cr0,
4179 struct kvm_vcpu *vcpu)
4180{
5233dd51
MT
4181 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4182 vmx_decache_cr3(vcpu);
1439442c
SY
4183 if (!(cr0 & X86_CR0_PG)) {
4184 /* From paging/starting to nonpaging */
4185 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4186 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4187 (CPU_BASED_CR3_LOAD_EXITING |
4188 CPU_BASED_CR3_STORE_EXITING));
4189 vcpu->arch.cr0 = cr0;
fc78f519 4190 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4191 } else if (!is_paging(vcpu)) {
4192 /* From nonpaging to paging */
4193 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4194 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4195 ~(CPU_BASED_CR3_LOAD_EXITING |
4196 CPU_BASED_CR3_STORE_EXITING));
4197 vcpu->arch.cr0 = cr0;
fc78f519 4198 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4199 }
95eb84a7
SY
4200
4201 if (!(cr0 & X86_CR0_WP))
4202 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4203}
4204
6aa8b732
AK
4205static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4206{
7ffd92c5 4207 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4208 unsigned long hw_cr0;
4209
5037878e 4210 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4211 if (enable_unrestricted_guest)
5037878e 4212 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4213 else {
5037878e 4214 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4215
218e763f
GN
4216 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4217 enter_pmode(vcpu);
6aa8b732 4218
218e763f
GN
4219 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4220 enter_rmode(vcpu);
4221 }
6aa8b732 4222
05b3e0c2 4223#ifdef CONFIG_X86_64
f6801dff 4224 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4225 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4226 enter_lmode(vcpu);
707d92fa 4227 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4228 exit_lmode(vcpu);
4229 }
4230#endif
4231
089d034e 4232 if (enable_ept)
1439442c
SY
4233 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4234
02daab21 4235 if (!vcpu->fpu_active)
81231c69 4236 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 4237
6aa8b732 4238 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4239 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4240 vcpu->arch.cr0 = cr0;
14168786
GN
4241
4242 /* depends on vcpu->arch.cr0 to be set to a new value */
4243 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4244}
4245
1439442c
SY
4246static u64 construct_eptp(unsigned long root_hpa)
4247{
4248 u64 eptp;
4249
4250 /* TODO write the value reading from MSR */
4251 eptp = VMX_EPT_DEFAULT_MT |
4252 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
4253 if (enable_ept_ad_bits)
4254 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
4255 eptp |= (root_hpa & PAGE_MASK);
4256
4257 return eptp;
4258}
4259
6aa8b732
AK
4260static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4261{
1439442c
SY
4262 unsigned long guest_cr3;
4263 u64 eptp;
4264
4265 guest_cr3 = cr3;
089d034e 4266 if (enable_ept) {
1439442c
SY
4267 eptp = construct_eptp(cr3);
4268 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
4269 if (is_paging(vcpu) || is_guest_mode(vcpu))
4270 guest_cr3 = kvm_read_cr3(vcpu);
4271 else
4272 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 4273 ept_load_pdptrs(vcpu);
1439442c
SY
4274 }
4275
2384d2b3 4276 vmx_flush_tlb(vcpu);
1439442c 4277 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4278}
4279
5e1746d6 4280static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4281{
085e68ee
BS
4282 /*
4283 * Pass through host's Machine Check Enable value to hw_cr4, which
4284 * is in force while we are in guest mode. Do not let guests control
4285 * this bit, even if host CR4.MCE == 0.
4286 */
4287 unsigned long hw_cr4 =
4288 (cr4_read_shadow() & X86_CR4_MCE) |
4289 (cr4 & ~X86_CR4_MCE) |
4290 (to_vmx(vcpu)->rmode.vm86_active ?
4291 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4292
5e1746d6
NHE
4293 if (cr4 & X86_CR4_VMXE) {
4294 /*
4295 * To use VMXON (and later other VMX instructions), a guest
4296 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4297 * So basically the check on whether to allow nested VMX
4298 * is here.
4299 */
4300 if (!nested_vmx_allowed(vcpu))
4301 return 1;
1a0d74e6 4302 }
3899152c
DM
4303
4304 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4305 return 1;
4306
ad312c7c 4307 vcpu->arch.cr4 = cr4;
bc23008b
AK
4308 if (enable_ept) {
4309 if (!is_paging(vcpu)) {
4310 hw_cr4 &= ~X86_CR4_PAE;
4311 hw_cr4 |= X86_CR4_PSE;
4312 } else if (!(cr4 & X86_CR4_PAE)) {
4313 hw_cr4 &= ~X86_CR4_PAE;
4314 }
4315 }
1439442c 4316
656ec4a4
RK
4317 if (!enable_unrestricted_guest && !is_paging(vcpu))
4318 /*
ddba2628
HH
4319 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4320 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4321 * to be manually disabled when guest switches to non-paging
4322 * mode.
4323 *
4324 * If !enable_unrestricted_guest, the CPU is always running
4325 * with CR0.PG=1 and CR4 needs to be modified.
4326 * If enable_unrestricted_guest, the CPU automatically
4327 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4328 */
ddba2628 4329 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4330
1439442c
SY
4331 vmcs_writel(CR4_READ_SHADOW, cr4);
4332 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4333 return 0;
6aa8b732
AK
4334}
4335
6aa8b732
AK
4336static void vmx_get_segment(struct kvm_vcpu *vcpu,
4337 struct kvm_segment *var, int seg)
4338{
a9179499 4339 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4340 u32 ar;
4341
c6ad1153 4342 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4343 *var = vmx->rmode.segs[seg];
a9179499 4344 if (seg == VCPU_SREG_TR
2fb92db1 4345 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4346 return;
1390a28b
AK
4347 var->base = vmx_read_guest_seg_base(vmx, seg);
4348 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4349 return;
a9179499 4350 }
2fb92db1
AK
4351 var->base = vmx_read_guest_seg_base(vmx, seg);
4352 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4353 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4354 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4355 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4356 var->type = ar & 15;
4357 var->s = (ar >> 4) & 1;
4358 var->dpl = (ar >> 5) & 3;
03617c18
GN
4359 /*
4360 * Some userspaces do not preserve unusable property. Since usable
4361 * segment has to be present according to VMX spec we can use present
4362 * property to amend userspace bug by making unusable segment always
4363 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4364 * segment as unusable.
4365 */
4366 var->present = !var->unusable;
6aa8b732
AK
4367 var->avl = (ar >> 12) & 1;
4368 var->l = (ar >> 13) & 1;
4369 var->db = (ar >> 14) & 1;
4370 var->g = (ar >> 15) & 1;
6aa8b732
AK
4371}
4372
a9179499
AK
4373static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4374{
a9179499
AK
4375 struct kvm_segment s;
4376
4377 if (to_vmx(vcpu)->rmode.vm86_active) {
4378 vmx_get_segment(vcpu, &s, seg);
4379 return s.base;
4380 }
2fb92db1 4381 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4382}
4383
b09408d0 4384static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4385{
b09408d0
MT
4386 struct vcpu_vmx *vmx = to_vmx(vcpu);
4387
ae9fedc7 4388 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4389 return 0;
ae9fedc7
PB
4390 else {
4391 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4392 return VMX_AR_DPL(ar);
69c73028 4393 }
69c73028
AK
4394}
4395
653e3108 4396static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4397{
6aa8b732
AK
4398 u32 ar;
4399
f0495f9b 4400 if (var->unusable || !var->present)
6aa8b732
AK
4401 ar = 1 << 16;
4402 else {
4403 ar = var->type & 15;
4404 ar |= (var->s & 1) << 4;
4405 ar |= (var->dpl & 3) << 5;
4406 ar |= (var->present & 1) << 7;
4407 ar |= (var->avl & 1) << 12;
4408 ar |= (var->l & 1) << 13;
4409 ar |= (var->db & 1) << 14;
4410 ar |= (var->g & 1) << 15;
4411 }
653e3108
AK
4412
4413 return ar;
4414}
4415
4416static void vmx_set_segment(struct kvm_vcpu *vcpu,
4417 struct kvm_segment *var, int seg)
4418{
7ffd92c5 4419 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4420 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4421
2fb92db1
AK
4422 vmx_segment_cache_clear(vmx);
4423
1ecd50a9
GN
4424 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4425 vmx->rmode.segs[seg] = *var;
4426 if (seg == VCPU_SREG_TR)
4427 vmcs_write16(sf->selector, var->selector);
4428 else if (var->s)
4429 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4430 goto out;
653e3108 4431 }
1ecd50a9 4432
653e3108
AK
4433 vmcs_writel(sf->base, var->base);
4434 vmcs_write32(sf->limit, var->limit);
4435 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4436
4437 /*
4438 * Fix the "Accessed" bit in AR field of segment registers for older
4439 * qemu binaries.
4440 * IA32 arch specifies that at the time of processor reset the
4441 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4442 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4443 * state vmexit when "unrestricted guest" mode is turned on.
4444 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4445 * tree. Newer qemu binaries with that qemu fix would not need this
4446 * kvm hack.
4447 */
4448 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4449 var->type |= 0x1; /* Accessed */
3a624e29 4450
f924d66d 4451 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4452
4453out:
98eb2f8b 4454 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4455}
4456
6aa8b732
AK
4457static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4458{
2fb92db1 4459 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4460
4461 *db = (ar >> 14) & 1;
4462 *l = (ar >> 13) & 1;
4463}
4464
89a27f4d 4465static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4466{
89a27f4d
GN
4467 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4468 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4469}
4470
89a27f4d 4471static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4472{
89a27f4d
GN
4473 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4474 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4475}
4476
89a27f4d 4477static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4478{
89a27f4d
GN
4479 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4480 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4481}
4482
89a27f4d 4483static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4484{
89a27f4d
GN
4485 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4486 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4487}
4488
648dfaa7
MG
4489static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4490{
4491 struct kvm_segment var;
4492 u32 ar;
4493
4494 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4495 var.dpl = 0x3;
0647f4aa
GN
4496 if (seg == VCPU_SREG_CS)
4497 var.type = 0x3;
648dfaa7
MG
4498 ar = vmx_segment_access_rights(&var);
4499
4500 if (var.base != (var.selector << 4))
4501 return false;
89efbed0 4502 if (var.limit != 0xffff)
648dfaa7 4503 return false;
07f42f5f 4504 if (ar != 0xf3)
648dfaa7
MG
4505 return false;
4506
4507 return true;
4508}
4509
4510static bool code_segment_valid(struct kvm_vcpu *vcpu)
4511{
4512 struct kvm_segment cs;
4513 unsigned int cs_rpl;
4514
4515 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4516 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4517
1872a3f4
AK
4518 if (cs.unusable)
4519 return false;
4d283ec9 4520 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4521 return false;
4522 if (!cs.s)
4523 return false;
4d283ec9 4524 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4525 if (cs.dpl > cs_rpl)
4526 return false;
1872a3f4 4527 } else {
648dfaa7
MG
4528 if (cs.dpl != cs_rpl)
4529 return false;
4530 }
4531 if (!cs.present)
4532 return false;
4533
4534 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4535 return true;
4536}
4537
4538static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4539{
4540 struct kvm_segment ss;
4541 unsigned int ss_rpl;
4542
4543 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4544 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4545
1872a3f4
AK
4546 if (ss.unusable)
4547 return true;
4548 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4549 return false;
4550 if (!ss.s)
4551 return false;
4552 if (ss.dpl != ss_rpl) /* DPL != RPL */
4553 return false;
4554 if (!ss.present)
4555 return false;
4556
4557 return true;
4558}
4559
4560static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4561{
4562 struct kvm_segment var;
4563 unsigned int rpl;
4564
4565 vmx_get_segment(vcpu, &var, seg);
b32a9918 4566 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4567
1872a3f4
AK
4568 if (var.unusable)
4569 return true;
648dfaa7
MG
4570 if (!var.s)
4571 return false;
4572 if (!var.present)
4573 return false;
4d283ec9 4574 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4575 if (var.dpl < rpl) /* DPL < RPL */
4576 return false;
4577 }
4578
4579 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4580 * rights flags
4581 */
4582 return true;
4583}
4584
4585static bool tr_valid(struct kvm_vcpu *vcpu)
4586{
4587 struct kvm_segment tr;
4588
4589 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4590
1872a3f4
AK
4591 if (tr.unusable)
4592 return false;
b32a9918 4593 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4594 return false;
1872a3f4 4595 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4596 return false;
4597 if (!tr.present)
4598 return false;
4599
4600 return true;
4601}
4602
4603static bool ldtr_valid(struct kvm_vcpu *vcpu)
4604{
4605 struct kvm_segment ldtr;
4606
4607 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4608
1872a3f4
AK
4609 if (ldtr.unusable)
4610 return true;
b32a9918 4611 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4612 return false;
4613 if (ldtr.type != 2)
4614 return false;
4615 if (!ldtr.present)
4616 return false;
4617
4618 return true;
4619}
4620
4621static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4622{
4623 struct kvm_segment cs, ss;
4624
4625 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4626 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4627
b32a9918
NA
4628 return ((cs.selector & SEGMENT_RPL_MASK) ==
4629 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4630}
4631
4632/*
4633 * Check if guest state is valid. Returns true if valid, false if
4634 * not.
4635 * We assume that registers are always usable
4636 */
4637static bool guest_state_valid(struct kvm_vcpu *vcpu)
4638{
c5e97c80
GN
4639 if (enable_unrestricted_guest)
4640 return true;
4641
648dfaa7 4642 /* real mode guest state checks */
f13882d8 4643 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4644 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4645 return false;
4646 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4647 return false;
4648 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4649 return false;
4650 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4651 return false;
4652 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4653 return false;
4654 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4655 return false;
4656 } else {
4657 /* protected mode guest state checks */
4658 if (!cs_ss_rpl_check(vcpu))
4659 return false;
4660 if (!code_segment_valid(vcpu))
4661 return false;
4662 if (!stack_segment_valid(vcpu))
4663 return false;
4664 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4665 return false;
4666 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4667 return false;
4668 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4669 return false;
4670 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4671 return false;
4672 if (!tr_valid(vcpu))
4673 return false;
4674 if (!ldtr_valid(vcpu))
4675 return false;
4676 }
4677 /* TODO:
4678 * - Add checks on RIP
4679 * - Add checks on RFLAGS
4680 */
4681
4682 return true;
4683}
4684
d77c26fc 4685static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4686{
40dcaa9f 4687 gfn_t fn;
195aefde 4688 u16 data = 0;
1f755a82 4689 int idx, r;
6aa8b732 4690
40dcaa9f 4691 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4692 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4693 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4694 if (r < 0)
10589a46 4695 goto out;
195aefde 4696 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4697 r = kvm_write_guest_page(kvm, fn++, &data,
4698 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4699 if (r < 0)
10589a46 4700 goto out;
195aefde
IE
4701 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4702 if (r < 0)
10589a46 4703 goto out;
195aefde
IE
4704 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4705 if (r < 0)
10589a46 4706 goto out;
195aefde 4707 data = ~0;
10589a46
MT
4708 r = kvm_write_guest_page(kvm, fn, &data,
4709 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4710 sizeof(u8));
10589a46 4711out:
40dcaa9f 4712 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4713 return r;
6aa8b732
AK
4714}
4715
b7ebfb05
SY
4716static int init_rmode_identity_map(struct kvm *kvm)
4717{
f51770ed 4718 int i, idx, r = 0;
ba049e93 4719 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4720 u32 tmp;
4721
089d034e 4722 if (!enable_ept)
f51770ed 4723 return 0;
a255d479
TC
4724
4725 /* Protect kvm->arch.ept_identity_pagetable_done. */
4726 mutex_lock(&kvm->slots_lock);
4727
f51770ed 4728 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4729 goto out2;
a255d479 4730
b927a3ce 4731 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4732
4733 r = alloc_identity_pagetable(kvm);
f51770ed 4734 if (r < 0)
a255d479
TC
4735 goto out2;
4736
40dcaa9f 4737 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4738 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4739 if (r < 0)
4740 goto out;
4741 /* Set up identity-mapping pagetable for EPT in real mode */
4742 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4743 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4744 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4745 r = kvm_write_guest_page(kvm, identity_map_pfn,
4746 &tmp, i * sizeof(tmp), sizeof(tmp));
4747 if (r < 0)
4748 goto out;
4749 }
4750 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4751
b7ebfb05 4752out:
40dcaa9f 4753 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4754
4755out2:
4756 mutex_unlock(&kvm->slots_lock);
f51770ed 4757 return r;
b7ebfb05
SY
4758}
4759
6aa8b732
AK
4760static void seg_setup(int seg)
4761{
772e0318 4762 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4763 unsigned int ar;
6aa8b732
AK
4764
4765 vmcs_write16(sf->selector, 0);
4766 vmcs_writel(sf->base, 0);
4767 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4768 ar = 0x93;
4769 if (seg == VCPU_SREG_CS)
4770 ar |= 0x08; /* code segment */
3a624e29
NK
4771
4772 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4773}
4774
f78e0e2e
SY
4775static int alloc_apic_access_page(struct kvm *kvm)
4776{
4484141a 4777 struct page *page;
f78e0e2e
SY
4778 int r = 0;
4779
79fac95e 4780 mutex_lock(&kvm->slots_lock);
c24ae0dc 4781 if (kvm->arch.apic_access_page_done)
f78e0e2e 4782 goto out;
1d8007bd
PB
4783 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4784 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4785 if (r)
4786 goto out;
72dc67a6 4787
73a6d941 4788 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4789 if (is_error_page(page)) {
4790 r = -EFAULT;
4791 goto out;
4792 }
4793
c24ae0dc
TC
4794 /*
4795 * Do not pin the page in memory, so that memory hot-unplug
4796 * is able to migrate it.
4797 */
4798 put_page(page);
4799 kvm->arch.apic_access_page_done = true;
f78e0e2e 4800out:
79fac95e 4801 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4802 return r;
4803}
4804
b7ebfb05
SY
4805static int alloc_identity_pagetable(struct kvm *kvm)
4806{
a255d479
TC
4807 /* Called with kvm->slots_lock held. */
4808
b7ebfb05
SY
4809 int r = 0;
4810
a255d479
TC
4811 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4812
1d8007bd
PB
4813 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4814 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4815
b7ebfb05
SY
4816 return r;
4817}
4818
991e7a0e 4819static int allocate_vpid(void)
2384d2b3
SY
4820{
4821 int vpid;
4822
919818ab 4823 if (!enable_vpid)
991e7a0e 4824 return 0;
2384d2b3
SY
4825 spin_lock(&vmx_vpid_lock);
4826 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4827 if (vpid < VMX_NR_VPIDS)
2384d2b3 4828 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4829 else
4830 vpid = 0;
2384d2b3 4831 spin_unlock(&vmx_vpid_lock);
991e7a0e 4832 return vpid;
2384d2b3
SY
4833}
4834
991e7a0e 4835static void free_vpid(int vpid)
cdbecfc3 4836{
991e7a0e 4837 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4838 return;
4839 spin_lock(&vmx_vpid_lock);
991e7a0e 4840 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4841 spin_unlock(&vmx_vpid_lock);
4842}
4843
8d14695f
YZ
4844#define MSR_TYPE_R 1
4845#define MSR_TYPE_W 2
4846static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4847 u32 msr, int type)
25c5f225 4848{
3e7c73e9 4849 int f = sizeof(unsigned long);
25c5f225
SY
4850
4851 if (!cpu_has_vmx_msr_bitmap())
4852 return;
4853
4854 /*
4855 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4856 * have the write-low and read-high bitmap offsets the wrong way round.
4857 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4858 */
25c5f225 4859 if (msr <= 0x1fff) {
8d14695f
YZ
4860 if (type & MSR_TYPE_R)
4861 /* read-low */
4862 __clear_bit(msr, msr_bitmap + 0x000 / f);
4863
4864 if (type & MSR_TYPE_W)
4865 /* write-low */
4866 __clear_bit(msr, msr_bitmap + 0x800 / f);
4867
25c5f225
SY
4868 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4869 msr &= 0x1fff;
8d14695f
YZ
4870 if (type & MSR_TYPE_R)
4871 /* read-high */
4872 __clear_bit(msr, msr_bitmap + 0x400 / f);
4873
4874 if (type & MSR_TYPE_W)
4875 /* write-high */
4876 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4877
4878 }
4879}
4880
f2b93280
WV
4881/*
4882 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4883 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4884 */
4885static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4886 unsigned long *msr_bitmap_nested,
4887 u32 msr, int type)
4888{
4889 int f = sizeof(unsigned long);
4890
4891 if (!cpu_has_vmx_msr_bitmap()) {
4892 WARN_ON(1);
4893 return;
4894 }
4895
4896 /*
4897 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4898 * have the write-low and read-high bitmap offsets the wrong way round.
4899 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4900 */
4901 if (msr <= 0x1fff) {
4902 if (type & MSR_TYPE_R &&
4903 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4904 /* read-low */
4905 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4906
4907 if (type & MSR_TYPE_W &&
4908 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4909 /* write-low */
4910 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4911
4912 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4913 msr &= 0x1fff;
4914 if (type & MSR_TYPE_R &&
4915 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4916 /* read-high */
4917 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4918
4919 if (type & MSR_TYPE_W &&
4920 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4921 /* write-high */
4922 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4923
4924 }
4925}
4926
5897297b
AK
4927static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4928{
4929 if (!longmode_only)
8d14695f
YZ
4930 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4931 msr, MSR_TYPE_R | MSR_TYPE_W);
4932 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4933 msr, MSR_TYPE_R | MSR_TYPE_W);
4934}
4935
2e69f865 4936static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
8d14695f 4937{
f6e90f9e 4938 if (apicv_active) {
c63e4563 4939 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
2e69f865 4940 msr, type);
c63e4563 4941 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
2e69f865 4942 msr, type);
f6e90f9e 4943 } else {
f6e90f9e 4944 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
2e69f865 4945 msr, type);
f6e90f9e 4946 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
2e69f865 4947 msr, type);
f6e90f9e 4948 }
5897297b
AK
4949}
4950
d62caabb 4951static bool vmx_get_enable_apicv(void)
d50ab6c1 4952{
d62caabb 4953 return enable_apicv;
d50ab6c1
PB
4954}
4955
705699a1
WV
4956static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4957{
4958 struct vcpu_vmx *vmx = to_vmx(vcpu);
4959 int max_irr;
4960 void *vapic_page;
4961 u16 status;
4962
4963 if (vmx->nested.pi_desc &&
4964 vmx->nested.pi_pending) {
4965 vmx->nested.pi_pending = false;
4966 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4967 return 0;
4968
4969 max_irr = find_last_bit(
4970 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4971
4972 if (max_irr == 256)
4973 return 0;
4974
4975 vapic_page = kmap(vmx->nested.virtual_apic_page);
4976 if (!vapic_page) {
4977 WARN_ON(1);
4978 return -ENOMEM;
4979 }
4980 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4981 kunmap(vmx->nested.virtual_apic_page);
4982
4983 status = vmcs_read16(GUEST_INTR_STATUS);
4984 if ((u8)max_irr > ((u8)status & 0xff)) {
4985 status &= ~0xff;
4986 status |= (u8)max_irr;
4987 vmcs_write16(GUEST_INTR_STATUS, status);
4988 }
4989 }
4990 return 0;
4991}
4992
21bc8dc5
RK
4993static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4994{
4995#ifdef CONFIG_SMP
4996 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6
FW
4997 struct vcpu_vmx *vmx = to_vmx(vcpu);
4998
4999 /*
5000 * Currently, we don't support urgent interrupt,
5001 * all interrupts are recognized as non-urgent
5002 * interrupt, so we cannot post interrupts when
5003 * 'SN' is set.
5004 *
5005 * If the vcpu is in guest mode, it means it is
5006 * running instead of being scheduled out and
5007 * waiting in the run queue, and that's the only
5008 * case when 'SN' is set currently, warning if
5009 * 'SN' is set.
5010 */
5011 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
5012
21bc8dc5
RK
5013 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
5014 POSTED_INTR_VECTOR);
5015 return true;
5016 }
5017#endif
5018 return false;
5019}
5020
705699a1
WV
5021static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5022 int vector)
5023{
5024 struct vcpu_vmx *vmx = to_vmx(vcpu);
5025
5026 if (is_guest_mode(vcpu) &&
5027 vector == vmx->nested.posted_intr_nv) {
5028 /* the PIR and ON have been set by L1. */
21bc8dc5 5029 kvm_vcpu_trigger_posted_interrupt(vcpu);
705699a1
WV
5030 /*
5031 * If a posted intr is not recognized by hardware,
5032 * we will accomplish it in the next vmentry.
5033 */
5034 vmx->nested.pi_pending = true;
5035 kvm_make_request(KVM_REQ_EVENT, vcpu);
5036 return 0;
5037 }
5038 return -1;
5039}
a20ed54d
YZ
5040/*
5041 * Send interrupt to vcpu via posted interrupt way.
5042 * 1. If target vcpu is running(non-root mode), send posted interrupt
5043 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5044 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5045 * interrupt from PIR in next vmentry.
5046 */
5047static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5048{
5049 struct vcpu_vmx *vmx = to_vmx(vcpu);
5050 int r;
5051
705699a1
WV
5052 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5053 if (!r)
5054 return;
5055
a20ed54d
YZ
5056 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5057 return;
5058
5059 r = pi_test_and_set_on(&vmx->pi_desc);
5060 kvm_make_request(KVM_REQ_EVENT, vcpu);
21bc8dc5 5061 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
a20ed54d
YZ
5062 kvm_vcpu_kick(vcpu);
5063}
5064
5065static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
5066{
5067 struct vcpu_vmx *vmx = to_vmx(vcpu);
5068
ad361091 5069 if (!pi_test_on(&vmx->pi_desc))
a20ed54d
YZ
5070 return;
5071
ad361091
PB
5072 pi_clear_on(&vmx->pi_desc);
5073 /*
5074 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
5075 * But on x86 this is just a compiler barrier anyway.
5076 */
5077 smp_mb__after_atomic();
a20ed54d
YZ
5078 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
5079}
5080
a3a8ff8e
NHE
5081/*
5082 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5083 * will not change in the lifetime of the guest.
5084 * Note that host-state that does change is set elsewhere. E.g., host-state
5085 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5086 */
a547c6db 5087static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5088{
5089 u32 low32, high32;
5090 unsigned long tmpl;
5091 struct desc_ptr dt;
04ac88ab 5092 unsigned long cr0, cr4;
a3a8ff8e 5093
04ac88ab
AL
5094 cr0 = read_cr0();
5095 WARN_ON(cr0 & X86_CR0_TS);
5096 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
a3a8ff8e
NHE
5097 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
5098
d974baa3 5099 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5100 cr4 = cr4_read_shadow();
d974baa3
AL
5101 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5102 vmx->host_state.vmcs_host_cr4 = cr4;
5103
a3a8ff8e 5104 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5105#ifdef CONFIG_X86_64
5106 /*
5107 * Load null selectors, so we can avoid reloading them in
5108 * __vmx_load_host_state(), in case userspace uses the null selectors
5109 * too (the expected case).
5110 */
5111 vmcs_write16(HOST_DS_SELECTOR, 0);
5112 vmcs_write16(HOST_ES_SELECTOR, 0);
5113#else
a3a8ff8e
NHE
5114 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5115 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5116#endif
a3a8ff8e
NHE
5117 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5118 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5119
5120 native_store_idt(&dt);
5121 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5122 vmx->host_idt_base = dt.address;
a3a8ff8e 5123
83287ea4 5124 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5125
5126 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5127 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5128 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5129 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5130
5131 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5132 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5133 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5134 }
5135}
5136
bf8179a0
NHE
5137static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5138{
5139 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5140 if (enable_ept)
5141 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5142 if (is_guest_mode(&vmx->vcpu))
5143 vmx->vcpu.arch.cr4_guest_owned_bits &=
5144 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5145 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5146}
5147
01e439be
YZ
5148static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5149{
5150 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5151
d62caabb 5152 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5153 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
64672c95
YJ
5154 /* Enable the preemption timer dynamically */
5155 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5156 return pin_based_exec_ctrl;
5157}
5158
d62caabb
AS
5159static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5160{
5161 struct vcpu_vmx *vmx = to_vmx(vcpu);
5162
5163 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5164 if (cpu_has_secondary_exec_ctrls()) {
5165 if (kvm_vcpu_apicv_active(vcpu))
5166 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5167 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5168 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5169 else
5170 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5171 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5172 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5173 }
5174
5175 if (cpu_has_vmx_msr_bitmap())
5176 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
5177}
5178
bf8179a0
NHE
5179static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5180{
5181 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5182
5183 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5184 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5185
35754c98 5186 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5187 exec_control &= ~CPU_BASED_TPR_SHADOW;
5188#ifdef CONFIG_X86_64
5189 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5190 CPU_BASED_CR8_LOAD_EXITING;
5191#endif
5192 }
5193 if (!enable_ept)
5194 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5195 CPU_BASED_CR3_LOAD_EXITING |
5196 CPU_BASED_INVLPG_EXITING;
5197 return exec_control;
5198}
5199
5200static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5201{
5202 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
35754c98 5203 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
bf8179a0
NHE
5204 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5205 if (vmx->vpid == 0)
5206 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5207 if (!enable_ept) {
5208 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5209 enable_unrestricted_guest = 0;
ad756a16
MJ
5210 /* Enable INVPCID for non-ept guests may cause performance regression. */
5211 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5212 }
5213 if (!enable_unrestricted_guest)
5214 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5215 if (!ple_gap)
5216 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
d62caabb 5217 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
c7c9c56c
YZ
5218 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5219 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5220 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5221 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5222 (handle_vmptrld).
5223 We can NOT enable shadow_vmcs here because we don't have yet
5224 a current VMCS12
5225 */
5226 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5227
5228 if (!enable_pml)
5229 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5230
bf8179a0
NHE
5231 return exec_control;
5232}
5233
ce88decf
XG
5234static void ept_set_mmio_spte_mask(void)
5235{
5236 /*
5237 * EPT Misconfigurations can be generated if the value of bits 2:0
5238 * of an EPT paging-structure entry is 110b (write/execute).
37f0e8fe 5239 * Also, special bit (62) is set to quickly identify mmio spte.
ce88decf 5240 */
37f0e8fe
JS
5241 kvm_mmu_set_mmio_spte_mask(SPTE_SPECIAL_MASK |
5242 VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5243}
5244
f53cd63c 5245#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5246/*
5247 * Sets up the vmcs for emulated real mode.
5248 */
8b9cf98c 5249static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5250{
2e4ce7f5 5251#ifdef CONFIG_X86_64
6aa8b732 5252 unsigned long a;
2e4ce7f5 5253#endif
6aa8b732 5254 int i;
6aa8b732 5255
6aa8b732 5256 /* I/O */
3e7c73e9
AK
5257 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5258 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5259
4607c2d7
AG
5260 if (enable_shadow_vmcs) {
5261 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5262 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5263 }
25c5f225 5264 if (cpu_has_vmx_msr_bitmap())
5897297b 5265 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 5266
6aa8b732
AK
5267 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5268
6aa8b732 5269 /* Control */
01e439be 5270 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5271 vmx->hv_deadline_tsc = -1;
6e5d865c 5272
bf8179a0 5273 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5274
dfa169bb 5275 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
5276 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5277 vmx_secondary_exec_control(vmx));
dfa169bb 5278 }
f78e0e2e 5279
d62caabb 5280 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5281 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5282 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5283 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5284 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5285
5286 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5287
0bcf261c 5288 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5289 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5290 }
5291
4b8d54f9
ZE
5292 if (ple_gap) {
5293 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5294 vmx->ple_window = ple_window;
5295 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5296 }
5297
c3707958
XG
5298 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5299 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5300 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5301
9581d442
AK
5302 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5303 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5304 vmx_set_constant_host_state(vmx);
05b3e0c2 5305#ifdef CONFIG_X86_64
6aa8b732
AK
5306 rdmsrl(MSR_FS_BASE, a);
5307 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5308 rdmsrl(MSR_GS_BASE, a);
5309 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5310#else
5311 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5312 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5313#endif
5314
2cc51560
ED
5315 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5316 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5317 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5318 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5319 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5320
74545705
RK
5321 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5322 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5323
03916db9 5324 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5325 u32 index = vmx_msr_index[i];
5326 u32 data_low, data_high;
a2fa3e9f 5327 int j = vmx->nmsrs;
6aa8b732
AK
5328
5329 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5330 continue;
432bd6cb
AK
5331 if (wrmsr_safe(index, data_low, data_high) < 0)
5332 continue;
26bb0981
AK
5333 vmx->guest_msrs[j].index = i;
5334 vmx->guest_msrs[j].data = 0;
d5696725 5335 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5336 ++vmx->nmsrs;
6aa8b732 5337 }
6aa8b732 5338
2961e876
GN
5339
5340 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5341
5342 /* 22.2.1, 20.8.1 */
2961e876 5343 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5344
e00c8cf2 5345 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 5346 set_cr4_guest_host_mask(vmx);
e00c8cf2 5347
f53cd63c
WL
5348 if (vmx_xsaves_supported())
5349 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5350
4e59516a
PF
5351 if (enable_pml) {
5352 ASSERT(vmx->pml_pg);
5353 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5354 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5355 }
5356
e00c8cf2
AK
5357 return 0;
5358}
5359
d28bc9dd 5360static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5361{
5362 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5363 struct msr_data apic_base_msr;
d28bc9dd 5364 u64 cr0;
e00c8cf2 5365
7ffd92c5 5366 vmx->rmode.vm86_active = 0;
e00c8cf2 5367
3b86cd99
JK
5368 vmx->soft_vnmi_blocked = 0;
5369
ad312c7c 5370 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5371 kvm_set_cr8(vcpu, 0);
5372
5373 if (!init_event) {
5374 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5375 MSR_IA32_APICBASE_ENABLE;
5376 if (kvm_vcpu_is_reset_bsp(vcpu))
5377 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5378 apic_base_msr.host_initiated = true;
5379 kvm_set_apic_base(vcpu, &apic_base_msr);
5380 }
e00c8cf2 5381
2fb92db1
AK
5382 vmx_segment_cache_clear(vmx);
5383
5706be0d 5384 seg_setup(VCPU_SREG_CS);
66450a21 5385 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5386 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5387
5388 seg_setup(VCPU_SREG_DS);
5389 seg_setup(VCPU_SREG_ES);
5390 seg_setup(VCPU_SREG_FS);
5391 seg_setup(VCPU_SREG_GS);
5392 seg_setup(VCPU_SREG_SS);
5393
5394 vmcs_write16(GUEST_TR_SELECTOR, 0);
5395 vmcs_writel(GUEST_TR_BASE, 0);
5396 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5397 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5398
5399 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5400 vmcs_writel(GUEST_LDTR_BASE, 0);
5401 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5402 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5403
d28bc9dd
NA
5404 if (!init_event) {
5405 vmcs_write32(GUEST_SYSENTER_CS, 0);
5406 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5407 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5408 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5409 }
e00c8cf2
AK
5410
5411 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5412 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5413
e00c8cf2
AK
5414 vmcs_writel(GUEST_GDTR_BASE, 0);
5415 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5416
5417 vmcs_writel(GUEST_IDTR_BASE, 0);
5418 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5419
443381a8 5420 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5421 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5422 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5423
e00c8cf2
AK
5424 setup_msrs(vmx);
5425
6aa8b732
AK
5426 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5427
d28bc9dd 5428 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5429 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5430 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5431 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5432 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5433 vmcs_write32(TPR_THRESHOLD, 0);
5434 }
5435
a73896cb 5436 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5437
d62caabb 5438 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5439 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5440
2384d2b3
SY
5441 if (vmx->vpid != 0)
5442 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5443
d28bc9dd 5444 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5445 vmx->vcpu.arch.cr0 = cr0;
f2463247 5446 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5447 vmx_set_cr4(vcpu, 0);
5690891b 5448 vmx_set_efer(vcpu, 0);
d28bc9dd
NA
5449 vmx_fpu_activate(vcpu);
5450 update_exception_bitmap(vcpu);
6aa8b732 5451
dd5f5341 5452 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5453}
5454
b6f1250e
NHE
5455/*
5456 * In nested virtualization, check if L1 asked to exit on external interrupts.
5457 * For most existing hypervisors, this will always return true.
5458 */
5459static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5460{
5461 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5462 PIN_BASED_EXT_INTR_MASK;
5463}
5464
77b0f5d6
BD
5465/*
5466 * In nested virtualization, check if L1 has set
5467 * VM_EXIT_ACK_INTR_ON_EXIT
5468 */
5469static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5470{
5471 return get_vmcs12(vcpu)->vm_exit_controls &
5472 VM_EXIT_ACK_INTR_ON_EXIT;
5473}
5474
ea8ceb83
JK
5475static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5476{
5477 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5478 PIN_BASED_NMI_EXITING;
5479}
5480
c9a7953f 5481static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
5482{
5483 u32 cpu_based_vm_exec_control;
730dca42 5484
3b86cd99
JK
5485 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5486 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5487 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5488}
5489
c9a7953f 5490static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
5491{
5492 u32 cpu_based_vm_exec_control;
5493
c9a7953f
JK
5494 if (!cpu_has_virtual_nmis() ||
5495 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5496 enable_irq_window(vcpu);
5497 return;
5498 }
3b86cd99
JK
5499
5500 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5501 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5502 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5503}
5504
66fd3f7f 5505static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5506{
9c8cba37 5507 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5508 uint32_t intr;
5509 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5510
229456fc 5511 trace_kvm_inj_virq(irq);
2714d1d3 5512
fa89a817 5513 ++vcpu->stat.irq_injections;
7ffd92c5 5514 if (vmx->rmode.vm86_active) {
71f9833b
SH
5515 int inc_eip = 0;
5516 if (vcpu->arch.interrupt.soft)
5517 inc_eip = vcpu->arch.event_exit_inst_len;
5518 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5519 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5520 return;
5521 }
66fd3f7f
GN
5522 intr = irq | INTR_INFO_VALID_MASK;
5523 if (vcpu->arch.interrupt.soft) {
5524 intr |= INTR_TYPE_SOFT_INTR;
5525 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5526 vmx->vcpu.arch.event_exit_inst_len);
5527 } else
5528 intr |= INTR_TYPE_EXT_INTR;
5529 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5530}
5531
f08864b4
SY
5532static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5533{
66a5a347
JK
5534 struct vcpu_vmx *vmx = to_vmx(vcpu);
5535
c5a6d5f7
WL
5536 if (!is_guest_mode(vcpu)) {
5537 if (!cpu_has_virtual_nmis()) {
5538 /*
5539 * Tracking the NMI-blocked state in software is built upon
5540 * finding the next open IRQ window. This, in turn, depends on
5541 * well-behaving guests: They have to keep IRQs disabled at
5542 * least as long as the NMI handler runs. Otherwise we may
5543 * cause NMI nesting, maybe breaking the guest. But as this is
5544 * highly unlikely, we can live with the residual risk.
5545 */
5546 vmx->soft_vnmi_blocked = 1;
5547 vmx->vnmi_blocked_time = 0;
5548 }
0b6ac343 5549
c5a6d5f7
WL
5550 ++vcpu->stat.nmi_injections;
5551 vmx->nmi_known_unmasked = false;
3b86cd99
JK
5552 }
5553
7ffd92c5 5554 if (vmx->rmode.vm86_active) {
71f9833b 5555 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5556 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5557 return;
5558 }
c5a6d5f7 5559
f08864b4
SY
5560 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5561 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5562}
5563
3cfc3092
JK
5564static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5565{
5566 if (!cpu_has_virtual_nmis())
5567 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
5568 if (to_vmx(vcpu)->nmi_known_unmasked)
5569 return false;
c332c83a 5570 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
5571}
5572
5573static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5574{
5575 struct vcpu_vmx *vmx = to_vmx(vcpu);
5576
5577 if (!cpu_has_virtual_nmis()) {
5578 if (vmx->soft_vnmi_blocked != masked) {
5579 vmx->soft_vnmi_blocked = masked;
5580 vmx->vnmi_blocked_time = 0;
5581 }
5582 } else {
9d58b931 5583 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
5584 if (masked)
5585 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5586 GUEST_INTR_STATE_NMI);
5587 else
5588 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5589 GUEST_INTR_STATE_NMI);
5590 }
5591}
5592
2505dc9f
JK
5593static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5594{
b6b8a145
JK
5595 if (to_vmx(vcpu)->nested.nested_run_pending)
5596 return 0;
ea8ceb83 5597
2505dc9f
JK
5598 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5599 return 0;
5600
5601 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5602 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5603 | GUEST_INTR_STATE_NMI));
5604}
5605
78646121
GN
5606static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5607{
b6b8a145
JK
5608 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5609 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5610 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5611 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5612}
5613
cbc94022
IE
5614static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5615{
5616 int ret;
cbc94022 5617
1d8007bd
PB
5618 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5619 PAGE_SIZE * 3);
cbc94022
IE
5620 if (ret)
5621 return ret;
bfc6d222 5622 kvm->arch.tss_addr = addr;
1f755a82 5623 return init_rmode_tss(kvm);
cbc94022
IE
5624}
5625
0ca1b4f4 5626static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5627{
77ab6db0 5628 switch (vec) {
77ab6db0 5629 case BP_VECTOR:
c573cd22
JK
5630 /*
5631 * Update instruction length as we may reinject the exception
5632 * from user space while in guest debugging mode.
5633 */
5634 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5635 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5636 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5637 return false;
5638 /* fall through */
5639 case DB_VECTOR:
5640 if (vcpu->guest_debug &
5641 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5642 return false;
d0bfb940
JK
5643 /* fall through */
5644 case DE_VECTOR:
77ab6db0
JK
5645 case OF_VECTOR:
5646 case BR_VECTOR:
5647 case UD_VECTOR:
5648 case DF_VECTOR:
5649 case SS_VECTOR:
5650 case GP_VECTOR:
5651 case MF_VECTOR:
0ca1b4f4
GN
5652 return true;
5653 break;
77ab6db0 5654 }
0ca1b4f4
GN
5655 return false;
5656}
5657
5658static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5659 int vec, u32 err_code)
5660{
5661 /*
5662 * Instruction with address size override prefix opcode 0x67
5663 * Cause the #SS fault with 0 error code in VM86 mode.
5664 */
5665 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5666 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5667 if (vcpu->arch.halt_request) {
5668 vcpu->arch.halt_request = 0;
5cb56059 5669 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5670 }
5671 return 1;
5672 }
5673 return 0;
5674 }
5675
5676 /*
5677 * Forward all other exceptions that are valid in real mode.
5678 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5679 * the required debugging infrastructure rework.
5680 */
5681 kvm_queue_exception(vcpu, vec);
5682 return 1;
6aa8b732
AK
5683}
5684
a0861c02
AK
5685/*
5686 * Trigger machine check on the host. We assume all the MSRs are already set up
5687 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5688 * We pass a fake environment to the machine check handler because we want
5689 * the guest to be always treated like user space, no matter what context
5690 * it used internally.
5691 */
5692static void kvm_machine_check(void)
5693{
5694#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5695 struct pt_regs regs = {
5696 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5697 .flags = X86_EFLAGS_IF,
5698 };
5699
5700 do_machine_check(&regs, 0);
5701#endif
5702}
5703
851ba692 5704static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5705{
5706 /* already handled by vcpu_run */
5707 return 1;
5708}
5709
851ba692 5710static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5711{
1155f76a 5712 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5713 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5714 u32 intr_info, ex_no, error_code;
42dbaa5a 5715 unsigned long cr2, rip, dr6;
6aa8b732
AK
5716 u32 vect_info;
5717 enum emulation_result er;
5718
1155f76a 5719 vect_info = vmx->idt_vectoring_info;
88786475 5720 intr_info = vmx->exit_intr_info;
6aa8b732 5721
a0861c02 5722 if (is_machine_check(intr_info))
851ba692 5723 return handle_machine_check(vcpu);
a0861c02 5724
ef85b673 5725 if (is_nmi(intr_info))
1b6269db 5726 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
5727
5728 if (is_no_device(intr_info)) {
5fd86fcf 5729 vmx_fpu_activate(vcpu);
2ab455cc
AL
5730 return 1;
5731 }
5732
7aa81cc0 5733 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5734 if (is_guest_mode(vcpu)) {
5735 kvm_queue_exception(vcpu, UD_VECTOR);
5736 return 1;
5737 }
51d8b661 5738 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5739 if (er != EMULATE_DONE)
7ee5d940 5740 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5741 return 1;
5742 }
5743
6aa8b732 5744 error_code = 0;
2e11384c 5745 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5746 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5747
5748 /*
5749 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5750 * MMIO, it is better to report an internal error.
5751 * See the comments in vmx_handle_exit.
5752 */
5753 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5754 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5755 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5756 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5757 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5758 vcpu->run->internal.data[0] = vect_info;
5759 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5760 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5761 return 0;
5762 }
5763
6aa8b732 5764 if (is_page_fault(intr_info)) {
1439442c 5765 /* EPT won't cause page fault directly */
cf3ace79 5766 BUG_ON(enable_ept);
6aa8b732 5767 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
5768 trace_kvm_page_fault(cr2, error_code);
5769
3298b75c 5770 if (kvm_event_needs_reinjection(vcpu))
577bdc49 5771 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 5772 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
5773 }
5774
d0bfb940 5775 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5776
5777 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5778 return handle_rmode_exception(vcpu, ex_no, error_code);
5779
42dbaa5a 5780 switch (ex_no) {
54a20552
EN
5781 case AC_VECTOR:
5782 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5783 return 1;
42dbaa5a
JK
5784 case DB_VECTOR:
5785 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5786 if (!(vcpu->guest_debug &
5787 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5788 vcpu->arch.dr6 &= ~15;
6f43ed01 5789 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5790 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5791 skip_emulated_instruction(vcpu);
5792
42dbaa5a
JK
5793 kvm_queue_exception(vcpu, DB_VECTOR);
5794 return 1;
5795 }
5796 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5797 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5798 /* fall through */
5799 case BP_VECTOR:
c573cd22
JK
5800 /*
5801 * Update instruction length as we may reinject #BP from
5802 * user space while in guest debugging mode. Reading it for
5803 * #DB as well causes no harm, it is not used in that case.
5804 */
5805 vmx->vcpu.arch.event_exit_inst_len =
5806 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5807 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5808 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5809 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5810 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5811 break;
5812 default:
d0bfb940
JK
5813 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5814 kvm_run->ex.exception = ex_no;
5815 kvm_run->ex.error_code = error_code;
42dbaa5a 5816 break;
6aa8b732 5817 }
6aa8b732
AK
5818 return 0;
5819}
5820
851ba692 5821static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5822{
1165f5fe 5823 ++vcpu->stat.irq_exits;
6aa8b732
AK
5824 return 1;
5825}
5826
851ba692 5827static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5828{
851ba692 5829 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
5830 return 0;
5831}
6aa8b732 5832
851ba692 5833static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5834{
bfdaab09 5835 unsigned long exit_qualification;
6affcbed 5836 int size, in, string, ret;
039576c0 5837 unsigned port;
6aa8b732 5838
bfdaab09 5839 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5840 string = (exit_qualification & 16) != 0;
cf8f70bf 5841 in = (exit_qualification & 8) != 0;
e70669ab 5842
cf8f70bf 5843 ++vcpu->stat.io_exits;
e70669ab 5844
cf8f70bf 5845 if (string || in)
51d8b661 5846 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5847
cf8f70bf
GN
5848 port = exit_qualification >> 16;
5849 size = (exit_qualification & 7) + 1;
cf8f70bf 5850
6affcbed
KH
5851 ret = kvm_skip_emulated_instruction(vcpu);
5852
5853 /*
5854 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5855 * KVM_EXIT_DEBUG here.
5856 */
5857 return kvm_fast_pio_out(vcpu, size, port) && ret;
6aa8b732
AK
5858}
5859
102d8325
IM
5860static void
5861vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5862{
5863 /*
5864 * Patch in the VMCALL instruction:
5865 */
5866 hypercall[0] = 0x0f;
5867 hypercall[1] = 0x01;
5868 hypercall[2] = 0xc1;
102d8325
IM
5869}
5870
0fa06071 5871/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5872static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5873{
eeadf9e7 5874 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5875 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5876 unsigned long orig_val = val;
5877
eeadf9e7
NHE
5878 /*
5879 * We get here when L2 changed cr0 in a way that did not change
5880 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5881 * but did change L0 shadowed bits. So we first calculate the
5882 * effective cr0 value that L1 would like to write into the
5883 * hardware. It consists of the L2-owned bits from the new
5884 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5885 */
1a0d74e6
JK
5886 val = (val & ~vmcs12->cr0_guest_host_mask) |
5887 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5888
3899152c 5889 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 5890 return 1;
1a0d74e6
JK
5891
5892 if (kvm_set_cr0(vcpu, val))
5893 return 1;
5894 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5895 return 0;
1a0d74e6
JK
5896 } else {
5897 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 5898 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 5899 return 1;
3899152c 5900
eeadf9e7 5901 return kvm_set_cr0(vcpu, val);
1a0d74e6 5902 }
eeadf9e7
NHE
5903}
5904
5905static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5906{
5907 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5908 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5909 unsigned long orig_val = val;
5910
5911 /* analogously to handle_set_cr0 */
5912 val = (val & ~vmcs12->cr4_guest_host_mask) |
5913 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5914 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5915 return 1;
1a0d74e6 5916 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5917 return 0;
5918 } else
5919 return kvm_set_cr4(vcpu, val);
5920}
5921
6a6256f9 5922/* called to set cr0 as appropriate for clts instruction exit. */
eeadf9e7
NHE
5923static void handle_clts(struct kvm_vcpu *vcpu)
5924{
5925 if (is_guest_mode(vcpu)) {
5926 /*
5927 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5928 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5929 * just pretend it's off (also in arch.cr0 for fpu_activate).
5930 */
5931 vmcs_writel(CR0_READ_SHADOW,
5932 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5933 vcpu->arch.cr0 &= ~X86_CR0_TS;
5934 } else
5935 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5936}
5937
851ba692 5938static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5939{
229456fc 5940 unsigned long exit_qualification, val;
6aa8b732
AK
5941 int cr;
5942 int reg;
49a9b07e 5943 int err;
6affcbed 5944 int ret;
6aa8b732 5945
bfdaab09 5946 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5947 cr = exit_qualification & 15;
5948 reg = (exit_qualification >> 8) & 15;
5949 switch ((exit_qualification >> 4) & 3) {
5950 case 0: /* mov to cr */
1e32c079 5951 val = kvm_register_readl(vcpu, reg);
229456fc 5952 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5953 switch (cr) {
5954 case 0:
eeadf9e7 5955 err = handle_set_cr0(vcpu, val);
6affcbed 5956 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 5957 case 3:
2390218b 5958 err = kvm_set_cr3(vcpu, val);
6affcbed 5959 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 5960 case 4:
eeadf9e7 5961 err = handle_set_cr4(vcpu, val);
6affcbed 5962 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
5963 case 8: {
5964 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5965 u8 cr8 = (u8)val;
eea1cff9 5966 err = kvm_set_cr8(vcpu, cr8);
6affcbed 5967 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 5968 if (lapic_in_kernel(vcpu))
6affcbed 5969 return ret;
0a5fff19 5970 if (cr8_prev <= cr8)
6affcbed
KH
5971 return ret;
5972 /*
5973 * TODO: we might be squashing a
5974 * KVM_GUESTDBG_SINGLESTEP-triggered
5975 * KVM_EXIT_DEBUG here.
5976 */
851ba692 5977 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5978 return 0;
5979 }
4b8073e4 5980 }
6aa8b732 5981 break;
25c4c276 5982 case 2: /* clts */
eeadf9e7 5983 handle_clts(vcpu);
4d4ec087 5984 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6b52d186 5985 vmx_fpu_activate(vcpu);
6affcbed 5986 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5987 case 1: /*mov from cr*/
5988 switch (cr) {
5989 case 3:
9f8fe504
AK
5990 val = kvm_read_cr3(vcpu);
5991 kvm_register_write(vcpu, reg, val);
5992 trace_kvm_cr_read(cr, val);
6affcbed 5993 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 5994 case 8:
229456fc
MT
5995 val = kvm_get_cr8(vcpu);
5996 kvm_register_write(vcpu, reg, val);
5997 trace_kvm_cr_read(cr, val);
6affcbed 5998 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5999 }
6000 break;
6001 case 3: /* lmsw */
a1f83a74 6002 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 6003 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 6004 kvm_lmsw(vcpu, val);
6aa8b732 6005
6affcbed 6006 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6007 default:
6008 break;
6009 }
851ba692 6010 vcpu->run->exit_reason = 0;
a737f256 6011 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
6012 (int)(exit_qualification >> 4) & 3, cr);
6013 return 0;
6014}
6015
851ba692 6016static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 6017{
bfdaab09 6018 unsigned long exit_qualification;
16f8a6f9
NA
6019 int dr, dr7, reg;
6020
6021 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6022 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6023
6024 /* First, if DR does not exist, trigger UD */
6025 if (!kvm_require_dr(vcpu, dr))
6026 return 1;
6aa8b732 6027
f2483415 6028 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
6029 if (!kvm_require_cpl(vcpu, 0))
6030 return 1;
16f8a6f9
NA
6031 dr7 = vmcs_readl(GUEST_DR7);
6032 if (dr7 & DR7_GD) {
42dbaa5a
JK
6033 /*
6034 * As the vm-exit takes precedence over the debug trap, we
6035 * need to emulate the latter, either for the host or the
6036 * guest debugging itself.
6037 */
6038 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 6039 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 6040 vcpu->run->debug.arch.dr7 = dr7;
82b32774 6041 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
6042 vcpu->run->debug.arch.exception = DB_VECTOR;
6043 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
6044 return 0;
6045 } else {
7305eb5d 6046 vcpu->arch.dr6 &= ~15;
6f43ed01 6047 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
6048 kvm_queue_exception(vcpu, DB_VECTOR);
6049 return 1;
6050 }
6051 }
6052
81908bf4 6053 if (vcpu->guest_debug == 0) {
8f22372f
PB
6054 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6055 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6056
6057 /*
6058 * No more DR vmexits; force a reload of the debug registers
6059 * and reenter on this instruction. The next vmexit will
6060 * retrieve the full state of the debug registers.
6061 */
6062 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6063 return 1;
6064 }
6065
42dbaa5a
JK
6066 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6067 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 6068 unsigned long val;
4c4d563b
JK
6069
6070 if (kvm_get_dr(vcpu, dr, &val))
6071 return 1;
6072 kvm_register_write(vcpu, reg, val);
020df079 6073 } else
5777392e 6074 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
6075 return 1;
6076
6affcbed 6077 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6078}
6079
73aaf249
JK
6080static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6081{
6082 return vcpu->arch.dr6;
6083}
6084
6085static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6086{
6087}
6088
81908bf4
PB
6089static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6090{
81908bf4
PB
6091 get_debugreg(vcpu->arch.db[0], 0);
6092 get_debugreg(vcpu->arch.db[1], 1);
6093 get_debugreg(vcpu->arch.db[2], 2);
6094 get_debugreg(vcpu->arch.db[3], 3);
6095 get_debugreg(vcpu->arch.dr6, 6);
6096 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6097
6098 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 6099 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6100}
6101
020df079
GN
6102static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6103{
6104 vmcs_writel(GUEST_DR7, val);
6105}
6106
851ba692 6107static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 6108{
6a908b62 6109 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
6110}
6111
851ba692 6112static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 6113{
ad312c7c 6114 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 6115 struct msr_data msr_info;
6aa8b732 6116
609e36d3
PB
6117 msr_info.index = ecx;
6118 msr_info.host_initiated = false;
6119 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 6120 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 6121 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6122 return 1;
6123 }
6124
609e36d3 6125 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6126
6aa8b732 6127 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6128 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6129 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6130 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6131}
6132
851ba692 6133static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6134{
8fe8ab46 6135 struct msr_data msr;
ad312c7c
ZX
6136 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6137 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6138 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6139
8fe8ab46
WA
6140 msr.data = data;
6141 msr.index = ecx;
6142 msr.host_initiated = false;
854e8bb1 6143 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6144 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6145 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6146 return 1;
6147 }
6148
59200273 6149 trace_kvm_msr_write(ecx, data);
6affcbed 6150 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6151}
6152
851ba692 6153static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6154{
eb90f341 6155 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6156 return 1;
6157}
6158
851ba692 6159static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6160{
85f455f7
ED
6161 u32 cpu_based_vm_exec_control;
6162
6163 /* clear pending irq */
6164 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6165 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6166 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 6167
3842d135
AK
6168 kvm_make_request(KVM_REQ_EVENT, vcpu);
6169
a26bf12a 6170 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6171 return 1;
6172}
6173
851ba692 6174static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6175{
d3bef15f 6176 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6177}
6178
851ba692 6179static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6180{
0d9c055e 6181 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6182}
6183
ec25d5e6
GN
6184static int handle_invd(struct kvm_vcpu *vcpu)
6185{
51d8b661 6186 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6187}
6188
851ba692 6189static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6190{
f9c617f6 6191 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6192
6193 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6194 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6195}
6196
fee84b07
AK
6197static int handle_rdpmc(struct kvm_vcpu *vcpu)
6198{
6199 int err;
6200
6201 err = kvm_rdpmc(vcpu);
6affcbed 6202 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6203}
6204
851ba692 6205static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6206{
6affcbed 6207 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6208}
6209
2acf923e
DC
6210static int handle_xsetbv(struct kvm_vcpu *vcpu)
6211{
6212 u64 new_bv = kvm_read_edx_eax(vcpu);
6213 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6214
6215 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6216 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6217 return 1;
6218}
6219
f53cd63c
WL
6220static int handle_xsaves(struct kvm_vcpu *vcpu)
6221{
6affcbed 6222 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6223 WARN(1, "this should never happen\n");
6224 return 1;
6225}
6226
6227static int handle_xrstors(struct kvm_vcpu *vcpu)
6228{
6affcbed 6229 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6230 WARN(1, "this should never happen\n");
6231 return 1;
6232}
6233
851ba692 6234static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6235{
58fbbf26
KT
6236 if (likely(fasteoi)) {
6237 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6238 int access_type, offset;
6239
6240 access_type = exit_qualification & APIC_ACCESS_TYPE;
6241 offset = exit_qualification & APIC_ACCESS_OFFSET;
6242 /*
6243 * Sane guest uses MOV to write EOI, with written value
6244 * not cared. So make a short-circuit here by avoiding
6245 * heavy instruction emulation.
6246 */
6247 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6248 (offset == APIC_EOI)) {
6249 kvm_lapic_set_eoi(vcpu);
6affcbed 6250 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6251 }
6252 }
51d8b661 6253 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6254}
6255
c7c9c56c
YZ
6256static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6257{
6258 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6259 int vector = exit_qualification & 0xff;
6260
6261 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6262 kvm_apic_set_eoi_accelerated(vcpu, vector);
6263 return 1;
6264}
6265
83d4c286
YZ
6266static int handle_apic_write(struct kvm_vcpu *vcpu)
6267{
6268 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6269 u32 offset = exit_qualification & 0xfff;
6270
6271 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6272 kvm_apic_write_nodecode(vcpu, offset);
6273 return 1;
6274}
6275
851ba692 6276static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6277{
60637aac 6278 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6279 unsigned long exit_qualification;
e269fb21
JK
6280 bool has_error_code = false;
6281 u32 error_code = 0;
37817f29 6282 u16 tss_selector;
7f3d35fd 6283 int reason, type, idt_v, idt_index;
64a7ec06
GN
6284
6285 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6286 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6287 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6288
6289 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6290
6291 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6292 if (reason == TASK_SWITCH_GATE && idt_v) {
6293 switch (type) {
6294 case INTR_TYPE_NMI_INTR:
6295 vcpu->arch.nmi_injected = false;
654f06fc 6296 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6297 break;
6298 case INTR_TYPE_EXT_INTR:
66fd3f7f 6299 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6300 kvm_clear_interrupt_queue(vcpu);
6301 break;
6302 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6303 if (vmx->idt_vectoring_info &
6304 VECTORING_INFO_DELIVER_CODE_MASK) {
6305 has_error_code = true;
6306 error_code =
6307 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6308 }
6309 /* fall through */
64a7ec06
GN
6310 case INTR_TYPE_SOFT_EXCEPTION:
6311 kvm_clear_exception_queue(vcpu);
6312 break;
6313 default:
6314 break;
6315 }
60637aac 6316 }
37817f29
IE
6317 tss_selector = exit_qualification;
6318
64a7ec06
GN
6319 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6320 type != INTR_TYPE_EXT_INTR &&
6321 type != INTR_TYPE_NMI_INTR))
6322 skip_emulated_instruction(vcpu);
6323
7f3d35fd
KW
6324 if (kvm_task_switch(vcpu, tss_selector,
6325 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6326 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6327 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6328 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6329 vcpu->run->internal.ndata = 0;
42dbaa5a 6330 return 0;
acb54517 6331 }
42dbaa5a 6332
42dbaa5a
JK
6333 /*
6334 * TODO: What about debug traps on tss switch?
6335 * Are we supposed to inject them and update dr6?
6336 */
6337
6338 return 1;
37817f29
IE
6339}
6340
851ba692 6341static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6342{
f9c617f6 6343 unsigned long exit_qualification;
1439442c 6344 gpa_t gpa;
4f5982a5 6345 u32 error_code;
1439442c 6346 int gla_validity;
1439442c 6347
f9c617f6 6348 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6349
1439442c 6350 gla_validity = (exit_qualification >> 7) & 0x3;
72e0ae58 6351 if (gla_validity == 0x2) {
1439442c
SY
6352 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
6353 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
6354 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 6355 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
6356 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
6357 (long unsigned int)exit_qualification);
851ba692
AK
6358 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6359 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 6360 return 0;
1439442c
SY
6361 }
6362
0be9c7a8
GN
6363 /*
6364 * EPT violation happened while executing iret from NMI,
6365 * "blocked by NMI" bit has to be set before next VM entry.
6366 * There are errata that may cause this bit to not be set:
6367 * AAK134, BY25.
6368 */
bcd1c294
GN
6369 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6370 cpu_has_virtual_nmis() &&
6371 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6372 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6373
1439442c 6374 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6375 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6376
27959a44
JS
6377 /* Is it a read fault? */
6378 error_code = (exit_qualification & EPT_VIOLATION_READ)
6379 ? PFERR_USER_MASK : 0;
6380 /* Is it a write fault? */
6381 error_code |= (exit_qualification & EPT_VIOLATION_WRITE)
6382 ? PFERR_WRITE_MASK : 0;
6383 /* Is it a fetch fault? */
6384 error_code |= (exit_qualification & EPT_VIOLATION_INSTR)
6385 ? PFERR_FETCH_MASK : 0;
6386 /* ept page table entry is present? */
6387 error_code |= (exit_qualification &
6388 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6389 EPT_VIOLATION_EXECUTABLE))
6390 ? PFERR_PRESENT_MASK : 0;
4f5982a5 6391
25d92081
YZ
6392 vcpu->arch.exit_qualification = exit_qualification;
6393
4f5982a5 6394 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6395}
6396
851ba692 6397static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6398{
f735d4af 6399 int ret;
68f89400
MT
6400 gpa_t gpa;
6401
6402 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
e32edf4f 6403 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 6404 trace_kvm_fast_mmio(gpa);
6affcbed 6405 return kvm_skip_emulated_instruction(vcpu);
68c3b4d1 6406 }
68f89400 6407
450869d6 6408 ret = handle_mmio_page_fault(vcpu, gpa, true);
b37fbea6 6409 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
6410 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6411 EMULATE_DONE;
f8f55942
XG
6412
6413 if (unlikely(ret == RET_MMIO_PF_INVALID))
6414 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6415
b37fbea6 6416 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
6417 return 1;
6418
6419 /* It is the real ept misconfig */
f735d4af 6420 WARN_ON(1);
68f89400 6421
851ba692
AK
6422 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6423 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6424
6425 return 0;
6426}
6427
851ba692 6428static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
6429{
6430 u32 cpu_based_vm_exec_control;
6431
6432 /* clear pending NMI */
6433 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6434 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6435 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6436 ++vcpu->stat.nmi_window_exits;
3842d135 6437 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6438
6439 return 1;
6440}
6441
80ced186 6442static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6443{
8b3079a5
AK
6444 struct vcpu_vmx *vmx = to_vmx(vcpu);
6445 enum emulation_result err = EMULATE_DONE;
80ced186 6446 int ret = 1;
49e9d557
AK
6447 u32 cpu_exec_ctrl;
6448 bool intr_window_requested;
b8405c18 6449 unsigned count = 130;
49e9d557
AK
6450
6451 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6452 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6453
98eb2f8b 6454 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6455 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6456 return handle_interrupt_window(&vmx->vcpu);
6457
de87dcdd
AK
6458 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6459 return 1;
6460
991eebf9 6461 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6462
ac0a48c3 6463 if (err == EMULATE_USER_EXIT) {
94452b9e 6464 ++vcpu->stat.mmio_exits;
80ced186
MG
6465 ret = 0;
6466 goto out;
6467 }
1d5a4d9b 6468
de5f70e0
AK
6469 if (err != EMULATE_DONE) {
6470 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6471 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6472 vcpu->run->internal.ndata = 0;
6d77dbfc 6473 return 0;
de5f70e0 6474 }
ea953ef0 6475
8d76c49e
GN
6476 if (vcpu->arch.halt_request) {
6477 vcpu->arch.halt_request = 0;
5cb56059 6478 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6479 goto out;
6480 }
6481
ea953ef0 6482 if (signal_pending(current))
80ced186 6483 goto out;
ea953ef0
MG
6484 if (need_resched())
6485 schedule();
6486 }
6487
80ced186
MG
6488out:
6489 return ret;
ea953ef0
MG
6490}
6491
b4a2d31d
RK
6492static int __grow_ple_window(int val)
6493{
6494 if (ple_window_grow < 1)
6495 return ple_window;
6496
6497 val = min(val, ple_window_actual_max);
6498
6499 if (ple_window_grow < ple_window)
6500 val *= ple_window_grow;
6501 else
6502 val += ple_window_grow;
6503
6504 return val;
6505}
6506
6507static int __shrink_ple_window(int val, int modifier, int minimum)
6508{
6509 if (modifier < 1)
6510 return ple_window;
6511
6512 if (modifier < ple_window)
6513 val /= modifier;
6514 else
6515 val -= modifier;
6516
6517 return max(val, minimum);
6518}
6519
6520static void grow_ple_window(struct kvm_vcpu *vcpu)
6521{
6522 struct vcpu_vmx *vmx = to_vmx(vcpu);
6523 int old = vmx->ple_window;
6524
6525 vmx->ple_window = __grow_ple_window(old);
6526
6527 if (vmx->ple_window != old)
6528 vmx->ple_window_dirty = true;
7b46268d
RK
6529
6530 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6531}
6532
6533static void shrink_ple_window(struct kvm_vcpu *vcpu)
6534{
6535 struct vcpu_vmx *vmx = to_vmx(vcpu);
6536 int old = vmx->ple_window;
6537
6538 vmx->ple_window = __shrink_ple_window(old,
6539 ple_window_shrink, ple_window);
6540
6541 if (vmx->ple_window != old)
6542 vmx->ple_window_dirty = true;
7b46268d
RK
6543
6544 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6545}
6546
6547/*
6548 * ple_window_actual_max is computed to be one grow_ple_window() below
6549 * ple_window_max. (See __grow_ple_window for the reason.)
6550 * This prevents overflows, because ple_window_max is int.
6551 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6552 * this process.
6553 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6554 */
6555static void update_ple_window_actual_max(void)
6556{
6557 ple_window_actual_max =
6558 __shrink_ple_window(max(ple_window_max, ple_window),
6559 ple_window_grow, INT_MIN);
6560}
6561
bf9f6ac8
FW
6562/*
6563 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6564 */
6565static void wakeup_handler(void)
6566{
6567 struct kvm_vcpu *vcpu;
6568 int cpu = smp_processor_id();
6569
6570 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6571 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6572 blocked_vcpu_list) {
6573 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6574
6575 if (pi_test_on(pi_desc) == 1)
6576 kvm_vcpu_kick(vcpu);
6577 }
6578 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6579}
6580
f160c7b7
JS
6581void vmx_enable_tdp(void)
6582{
6583 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6584 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6585 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6586 0ull, VMX_EPT_EXECUTABLE_MASK,
6587 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6588 enable_ept_ad_bits ? 0ull : SPTE_SPECIAL_MASK | VMX_EPT_RWX_MASK);
6589
6590 ept_set_mmio_spte_mask();
6591 kvm_enable_tdp();
6592}
6593
f2c7648d
TC
6594static __init int hardware_setup(void)
6595{
34a1cd60
TC
6596 int r = -ENOMEM, i, msr;
6597
6598 rdmsrl_safe(MSR_EFER, &host_efer);
6599
6600 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6601 kvm_define_shared_msr(i, vmx_msr_index[i]);
6602
23611332
RK
6603 for (i = 0; i < VMX_BITMAP_NR; i++) {
6604 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6605 if (!vmx_bitmap[i])
6606 goto out;
6607 }
34a1cd60
TC
6608
6609 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
34a1cd60
TC
6610 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6611 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6612
6613 /*
6614 * Allow direct access to the PC debug port (it is often used for I/O
6615 * delays, but the vmexits simply slow things down).
6616 */
6617 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6618 clear_bit(0x80, vmx_io_bitmap_a);
6619
6620 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6621
6622 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6623 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6624
34a1cd60
TC
6625 if (setup_vmcs_config(&vmcs_config) < 0) {
6626 r = -EIO;
23611332 6627 goto out;
baa03522 6628 }
f2c7648d
TC
6629
6630 if (boot_cpu_has(X86_FEATURE_NX))
6631 kvm_enable_efer_bits(EFER_NX);
6632
6633 if (!cpu_has_vmx_vpid())
6634 enable_vpid = 0;
6635 if (!cpu_has_vmx_shadow_vmcs())
6636 enable_shadow_vmcs = 0;
6637 if (enable_shadow_vmcs)
6638 init_vmcs_shadow_fields();
6639
6640 if (!cpu_has_vmx_ept() ||
6641 !cpu_has_vmx_ept_4levels()) {
6642 enable_ept = 0;
6643 enable_unrestricted_guest = 0;
6644 enable_ept_ad_bits = 0;
6645 }
6646
6647 if (!cpu_has_vmx_ept_ad_bits())
6648 enable_ept_ad_bits = 0;
6649
6650 if (!cpu_has_vmx_unrestricted_guest())
6651 enable_unrestricted_guest = 0;
6652
ad15a296 6653 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6654 flexpriority_enabled = 0;
6655
ad15a296
PB
6656 /*
6657 * set_apic_access_page_addr() is used to reload apic access
6658 * page upon invalidation. No need to do anything if not
6659 * using the APIC_ACCESS_ADDR VMCS field.
6660 */
6661 if (!flexpriority_enabled)
f2c7648d 6662 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6663
6664 if (!cpu_has_vmx_tpr_shadow())
6665 kvm_x86_ops->update_cr8_intercept = NULL;
6666
6667 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6668 kvm_disable_largepages();
6669
6670 if (!cpu_has_vmx_ple())
6671 ple_gap = 0;
6672
6673 if (!cpu_has_vmx_apicv())
6674 enable_apicv = 0;
6675
64903d61
HZ
6676 if (cpu_has_vmx_tsc_scaling()) {
6677 kvm_has_tsc_control = true;
6678 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6679 kvm_tsc_scaling_ratio_frac_bits = 48;
6680 }
6681
baa03522
TC
6682 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6683 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6684 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6685 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6686 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6687 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6688 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6689
c63e4563 6690 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
baa03522 6691 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6692 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
baa03522 6693 vmx_msr_bitmap_longmode, PAGE_SIZE);
c63e4563 6694 memcpy(vmx_msr_bitmap_legacy_x2apic,
f6e90f9e 6695 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6696 memcpy(vmx_msr_bitmap_longmode_x2apic,
f6e90f9e 6697 vmx_msr_bitmap_longmode, PAGE_SIZE);
baa03522 6698
04bb92e4
WL
6699 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6700
40d8338d
RK
6701 for (msr = 0x800; msr <= 0x8ff; msr++) {
6702 if (msr == 0x839 /* TMCCT */)
6703 continue;
2e69f865 6704 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
40d8338d 6705 }
3ce424e4 6706
f6e90f9e 6707 /*
2e69f865
RK
6708 * TPR reads and writes can be virtualized even if virtual interrupt
6709 * delivery is not in use.
f6e90f9e 6710 */
2e69f865
RK
6711 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6712 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
3ce424e4 6713
3ce424e4 6714 /* EOI */
2e69f865 6715 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
3ce424e4 6716 /* SELF-IPI */
2e69f865 6717 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
baa03522 6718
f160c7b7
JS
6719 if (enable_ept)
6720 vmx_enable_tdp();
6721 else
baa03522
TC
6722 kvm_disable_tdp();
6723
6724 update_ple_window_actual_max();
6725
843e4330
KH
6726 /*
6727 * Only enable PML when hardware supports PML feature, and both EPT
6728 * and EPT A/D bit features are enabled -- PML depends on them to work.
6729 */
6730 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6731 enable_pml = 0;
6732
6733 if (!enable_pml) {
6734 kvm_x86_ops->slot_enable_log_dirty = NULL;
6735 kvm_x86_ops->slot_disable_log_dirty = NULL;
6736 kvm_x86_ops->flush_log_dirty = NULL;
6737 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6738 }
6739
64672c95
YJ
6740 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6741 u64 vmx_msr;
6742
6743 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6744 cpu_preemption_timer_multi =
6745 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6746 } else {
6747 kvm_x86_ops->set_hv_timer = NULL;
6748 kvm_x86_ops->cancel_hv_timer = NULL;
6749 }
6750
bf9f6ac8
FW
6751 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6752
c45dcc71
AR
6753 kvm_mce_cap_supported |= MCG_LMCE_P;
6754
f2c7648d 6755 return alloc_kvm_area();
34a1cd60 6756
34a1cd60 6757out:
23611332
RK
6758 for (i = 0; i < VMX_BITMAP_NR; i++)
6759 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
6760
6761 return r;
f2c7648d
TC
6762}
6763
6764static __exit void hardware_unsetup(void)
6765{
23611332
RK
6766 int i;
6767
6768 for (i = 0; i < VMX_BITMAP_NR; i++)
6769 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 6770
f2c7648d
TC
6771 free_kvm_area();
6772}
6773
4b8d54f9
ZE
6774/*
6775 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6776 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6777 */
9fb41ba8 6778static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6779{
b4a2d31d
RK
6780 if (ple_gap)
6781 grow_ple_window(vcpu);
6782
4b8d54f9 6783 kvm_vcpu_on_spin(vcpu);
6affcbed 6784 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
6785}
6786
87c00572 6787static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6788{
6affcbed 6789 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
6790}
6791
87c00572
GS
6792static int handle_mwait(struct kvm_vcpu *vcpu)
6793{
6794 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6795 return handle_nop(vcpu);
6796}
6797
5f3d45e7
MD
6798static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6799{
6800 return 1;
6801}
6802
87c00572
GS
6803static int handle_monitor(struct kvm_vcpu *vcpu)
6804{
6805 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6806 return handle_nop(vcpu);
6807}
6808
ff2f6fe9
NHE
6809/*
6810 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6811 * We could reuse a single VMCS for all the L2 guests, but we also want the
6812 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6813 * allows keeping them loaded on the processor, and in the future will allow
6814 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6815 * every entry if they never change.
6816 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6817 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6818 *
6819 * The following functions allocate and free a vmcs02 in this pool.
6820 */
6821
6822/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6823static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6824{
6825 struct vmcs02_list *item;
6826 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6827 if (item->vmptr == vmx->nested.current_vmptr) {
6828 list_move(&item->list, &vmx->nested.vmcs02_pool);
6829 return &item->vmcs02;
6830 }
6831
6832 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6833 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6834 item = list_last_entry(&vmx->nested.vmcs02_pool,
6835 struct vmcs02_list, list);
ff2f6fe9
NHE
6836 item->vmptr = vmx->nested.current_vmptr;
6837 list_move(&item->list, &vmx->nested.vmcs02_pool);
6838 return &item->vmcs02;
6839 }
6840
6841 /* Create a new VMCS */
0fa24ce3 6842 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6843 if (!item)
6844 return NULL;
6845 item->vmcs02.vmcs = alloc_vmcs();
355f4fb1 6846 item->vmcs02.shadow_vmcs = NULL;
ff2f6fe9
NHE
6847 if (!item->vmcs02.vmcs) {
6848 kfree(item);
6849 return NULL;
6850 }
6851 loaded_vmcs_init(&item->vmcs02);
6852 item->vmptr = vmx->nested.current_vmptr;
6853 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6854 vmx->nested.vmcs02_num++;
6855 return &item->vmcs02;
6856}
6857
6858/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6859static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6860{
6861 struct vmcs02_list *item;
6862 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6863 if (item->vmptr == vmptr) {
6864 free_loaded_vmcs(&item->vmcs02);
6865 list_del(&item->list);
6866 kfree(item);
6867 vmx->nested.vmcs02_num--;
6868 return;
6869 }
6870}
6871
6872/*
6873 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6874 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6875 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6876 */
6877static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6878{
6879 struct vmcs02_list *item, *n;
4fa7734c
PB
6880
6881 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6882 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6883 /*
6884 * Something will leak if the above WARN triggers. Better than
6885 * a use-after-free.
6886 */
6887 if (vmx->loaded_vmcs == &item->vmcs02)
6888 continue;
6889
6890 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6891 list_del(&item->list);
6892 kfree(item);
4fa7734c 6893 vmx->nested.vmcs02_num--;
ff2f6fe9 6894 }
ff2f6fe9
NHE
6895}
6896
0658fbaa
ACL
6897/*
6898 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6899 * set the success or error code of an emulated VMX instruction, as specified
6900 * by Vol 2B, VMX Instruction Reference, "Conventions".
6901 */
6902static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6903{
6904 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6905 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6906 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6907}
6908
6909static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6910{
6911 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6912 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6913 X86_EFLAGS_SF | X86_EFLAGS_OF))
6914 | X86_EFLAGS_CF);
6915}
6916
145c28dd 6917static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6918 u32 vm_instruction_error)
6919{
6920 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6921 /*
6922 * failValid writes the error number to the current VMCS, which
6923 * can't be done there isn't a current VMCS.
6924 */
6925 nested_vmx_failInvalid(vcpu);
6926 return;
6927 }
6928 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6929 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6930 X86_EFLAGS_SF | X86_EFLAGS_OF))
6931 | X86_EFLAGS_ZF);
6932 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6933 /*
6934 * We don't need to force a shadow sync because
6935 * VM_INSTRUCTION_ERROR is not shadowed
6936 */
6937}
145c28dd 6938
ff651cb6
WV
6939static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6940{
6941 /* TODO: not to reset guest simply here. */
6942 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 6943 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
6944}
6945
f4124500
JK
6946static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6947{
6948 struct vcpu_vmx *vmx =
6949 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6950
6951 vmx->nested.preemption_timer_expired = true;
6952 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6953 kvm_vcpu_kick(&vmx->vcpu);
6954
6955 return HRTIMER_NORESTART;
6956}
6957
19677e32
BD
6958/*
6959 * Decode the memory-address operand of a vmx instruction, as recorded on an
6960 * exit caused by such an instruction (run by a guest hypervisor).
6961 * On success, returns 0. When the operand is invalid, returns 1 and throws
6962 * #UD or #GP.
6963 */
6964static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6965 unsigned long exit_qualification,
f9eb4af6 6966 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 6967{
f9eb4af6
EK
6968 gva_t off;
6969 bool exn;
6970 struct kvm_segment s;
6971
19677e32
BD
6972 /*
6973 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6974 * Execution", on an exit, vmx_instruction_info holds most of the
6975 * addressing components of the operand. Only the displacement part
6976 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6977 * For how an actual address is calculated from all these components,
6978 * refer to Vol. 1, "Operand Addressing".
6979 */
6980 int scaling = vmx_instruction_info & 3;
6981 int addr_size = (vmx_instruction_info >> 7) & 7;
6982 bool is_reg = vmx_instruction_info & (1u << 10);
6983 int seg_reg = (vmx_instruction_info >> 15) & 7;
6984 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6985 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6986 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6987 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6988
6989 if (is_reg) {
6990 kvm_queue_exception(vcpu, UD_VECTOR);
6991 return 1;
6992 }
6993
6994 /* Addr = segment_base + offset */
6995 /* offset = base + [index * scale] + displacement */
f9eb4af6 6996 off = exit_qualification; /* holds the displacement */
19677e32 6997 if (base_is_valid)
f9eb4af6 6998 off += kvm_register_read(vcpu, base_reg);
19677e32 6999 if (index_is_valid)
f9eb4af6
EK
7000 off += kvm_register_read(vcpu, index_reg)<<scaling;
7001 vmx_get_segment(vcpu, &s, seg_reg);
7002 *ret = s.base + off;
19677e32
BD
7003
7004 if (addr_size == 1) /* 32 bit */
7005 *ret &= 0xffffffff;
7006
f9eb4af6
EK
7007 /* Checks for #GP/#SS exceptions. */
7008 exn = false;
ff30ef40
QC
7009 if (is_long_mode(vcpu)) {
7010 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7011 * non-canonical form. This is the only check on the memory
7012 * destination for long mode!
7013 */
7014 exn = is_noncanonical_address(*ret);
7015 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
7016 /* Protected mode: apply checks for segment validity in the
7017 * following order:
7018 * - segment type check (#GP(0) may be thrown)
7019 * - usability check (#GP(0)/#SS(0))
7020 * - limit check (#GP(0)/#SS(0))
7021 */
7022 if (wr)
7023 /* #GP(0) if the destination operand is located in a
7024 * read-only data segment or any code segment.
7025 */
7026 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7027 else
7028 /* #GP(0) if the source operand is located in an
7029 * execute-only code segment
7030 */
7031 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
7032 if (exn) {
7033 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7034 return 1;
7035 }
f9eb4af6
EK
7036 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7037 */
7038 exn = (s.unusable != 0);
7039 /* Protected mode: #GP(0)/#SS(0) if the memory
7040 * operand is outside the segment limit.
7041 */
7042 exn = exn || (off + sizeof(u64) > s.limit);
7043 }
7044 if (exn) {
7045 kvm_queue_exception_e(vcpu,
7046 seg_reg == VCPU_SREG_SS ?
7047 SS_VECTOR : GP_VECTOR,
7048 0);
7049 return 1;
7050 }
7051
19677e32
BD
7052 return 0;
7053}
7054
3573e22c
BD
7055/*
7056 * This function performs the various checks including
7057 * - if it's 4KB aligned
7058 * - No bits beyond the physical address width are set
7059 * - Returns 0 on success or else 1
4291b588 7060 * (Intel SDM Section 30.3)
3573e22c 7061 */
4291b588
BD
7062static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
7063 gpa_t *vmpointer)
3573e22c
BD
7064{
7065 gva_t gva;
7066 gpa_t vmptr;
7067 struct x86_exception e;
7068 struct page *page;
7069 struct vcpu_vmx *vmx = to_vmx(vcpu);
7070 int maxphyaddr = cpuid_maxphyaddr(vcpu);
7071
7072 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7073 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
7074 return 1;
7075
7076 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
7077 sizeof(vmptr), &e)) {
7078 kvm_inject_page_fault(vcpu, &e);
7079 return 1;
7080 }
7081
7082 switch (exit_reason) {
7083 case EXIT_REASON_VMON:
7084 /*
7085 * SDM 3: 24.11.5
7086 * The first 4 bytes of VMXON region contain the supported
7087 * VMCS revision identifier
7088 *
7089 * Note - IA32_VMX_BASIC[48] will never be 1
7090 * for the nested case;
7091 * which replaces physical address width with 32
7092 *
7093 */
bc39c4db 7094 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
3573e22c 7095 nested_vmx_failInvalid(vcpu);
6affcbed 7096 return kvm_skip_emulated_instruction(vcpu);
3573e22c
BD
7097 }
7098
7099 page = nested_get_page(vcpu, vmptr);
7100 if (page == NULL ||
7101 *(u32 *)kmap(page) != VMCS12_REVISION) {
7102 nested_vmx_failInvalid(vcpu);
7103 kunmap(page);
6affcbed 7104 return kvm_skip_emulated_instruction(vcpu);
3573e22c
BD
7105 }
7106 kunmap(page);
7107 vmx->nested.vmxon_ptr = vmptr;
7108 break;
4291b588 7109 case EXIT_REASON_VMCLEAR:
bc39c4db 7110 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
7111 nested_vmx_failValid(vcpu,
7112 VMXERR_VMCLEAR_INVALID_ADDRESS);
6affcbed 7113 return kvm_skip_emulated_instruction(vcpu);
4291b588
BD
7114 }
7115
7116 if (vmptr == vmx->nested.vmxon_ptr) {
7117 nested_vmx_failValid(vcpu,
7118 VMXERR_VMCLEAR_VMXON_POINTER);
6affcbed 7119 return kvm_skip_emulated_instruction(vcpu);
4291b588
BD
7120 }
7121 break;
7122 case EXIT_REASON_VMPTRLD:
bc39c4db 7123 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
7124 nested_vmx_failValid(vcpu,
7125 VMXERR_VMPTRLD_INVALID_ADDRESS);
6affcbed 7126 return kvm_skip_emulated_instruction(vcpu);
4291b588 7127 }
3573e22c 7128
4291b588
BD
7129 if (vmptr == vmx->nested.vmxon_ptr) {
7130 nested_vmx_failValid(vcpu,
37b9a671 7131 VMXERR_VMPTRLD_VMXON_POINTER);
6affcbed 7132 return kvm_skip_emulated_instruction(vcpu);
4291b588
BD
7133 }
7134 break;
3573e22c
BD
7135 default:
7136 return 1; /* shouldn't happen */
7137 }
7138
4291b588
BD
7139 if (vmpointer)
7140 *vmpointer = vmptr;
3573e22c
BD
7141 return 0;
7142}
7143
ec378aee
NHE
7144/*
7145 * Emulate the VMXON instruction.
7146 * Currently, we just remember that VMX is active, and do not save or even
7147 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7148 * do not currently need to store anything in that guest-allocated memory
7149 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7150 * argument is different from the VMXON pointer (which the spec says they do).
7151 */
7152static int handle_vmon(struct kvm_vcpu *vcpu)
7153{
7154 struct kvm_segment cs;
7155 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 7156 struct vmcs *shadow_vmcs;
b3897a49
NHE
7157 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7158 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
7159
7160 /* The Intel VMX Instruction Reference lists a bunch of bits that
7161 * are prerequisite to running VMXON, most notably cr4.VMXE must be
7162 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
7163 * Otherwise, we should fail with #UD. We test these now:
7164 */
7165 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
7166 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
7167 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
7168 kvm_queue_exception(vcpu, UD_VECTOR);
7169 return 1;
7170 }
7171
7172 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7173 if (is_long_mode(vcpu) && !cs.l) {
7174 kvm_queue_exception(vcpu, UD_VECTOR);
7175 return 1;
7176 }
7177
7178 if (vmx_get_cpl(vcpu)) {
7179 kvm_inject_gp(vcpu, 0);
7180 return 1;
7181 }
3573e22c 7182
4291b588 7183 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
3573e22c
BD
7184 return 1;
7185
145c28dd
AG
7186 if (vmx->nested.vmxon) {
7187 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7188 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7189 }
b3897a49 7190
3b84080b 7191 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7192 != VMXON_NEEDED_FEATURES) {
7193 kvm_inject_gp(vcpu, 0);
7194 return 1;
7195 }
7196
d048c098
RK
7197 if (cpu_has_vmx_msr_bitmap()) {
7198 vmx->nested.msr_bitmap =
7199 (unsigned long *)__get_free_page(GFP_KERNEL);
7200 if (!vmx->nested.msr_bitmap)
7201 goto out_msr_bitmap;
7202 }
7203
4f2777bc
DM
7204 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7205 if (!vmx->nested.cached_vmcs12)
d048c098 7206 goto out_cached_vmcs12;
4f2777bc 7207
8de48833
AG
7208 if (enable_shadow_vmcs) {
7209 shadow_vmcs = alloc_vmcs();
d048c098
RK
7210 if (!shadow_vmcs)
7211 goto out_shadow_vmcs;
8de48833
AG
7212 /* mark vmcs as shadow */
7213 shadow_vmcs->revision_id |= (1u << 31);
7214 /* init shadow vmcs */
7215 vmcs_clear(shadow_vmcs);
355f4fb1 7216 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
8de48833 7217 }
ec378aee 7218
ff2f6fe9
NHE
7219 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7220 vmx->nested.vmcs02_num = 0;
7221
f4124500 7222 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
f15a75ee 7223 HRTIMER_MODE_REL_PINNED);
f4124500
JK
7224 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7225
ec378aee
NHE
7226 vmx->nested.vmxon = true;
7227
a25eb114 7228 nested_vmx_succeed(vcpu);
6affcbed 7229 return kvm_skip_emulated_instruction(vcpu);
d048c098
RK
7230
7231out_shadow_vmcs:
7232 kfree(vmx->nested.cached_vmcs12);
7233
7234out_cached_vmcs12:
7235 free_page((unsigned long)vmx->nested.msr_bitmap);
7236
7237out_msr_bitmap:
7238 return -ENOMEM;
ec378aee
NHE
7239}
7240
7241/*
7242 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7243 * for running VMX instructions (except VMXON, whose prerequisites are
7244 * slightly different). It also specifies what exception to inject otherwise.
7245 */
7246static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7247{
7248 struct kvm_segment cs;
7249 struct vcpu_vmx *vmx = to_vmx(vcpu);
7250
7251 if (!vmx->nested.vmxon) {
7252 kvm_queue_exception(vcpu, UD_VECTOR);
7253 return 0;
7254 }
7255
7256 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7257 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
7258 (is_long_mode(vcpu) && !cs.l)) {
7259 kvm_queue_exception(vcpu, UD_VECTOR);
7260 return 0;
7261 }
7262
7263 if (vmx_get_cpl(vcpu)) {
7264 kvm_inject_gp(vcpu, 0);
7265 return 0;
7266 }
7267
7268 return 1;
7269}
7270
e7953d7f
AG
7271static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7272{
9a2a05b9
PB
7273 if (vmx->nested.current_vmptr == -1ull)
7274 return;
7275
7276 /* current_vmptr and current_vmcs12 are always set/reset together */
7277 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7278 return;
7279
012f83cb 7280 if (enable_shadow_vmcs) {
9a2a05b9
PB
7281 /* copy to memory all shadowed fields in case
7282 they were modified */
7283 copy_shadow_to_vmcs12(vmx);
7284 vmx->nested.sync_shadow_vmcs = false;
7ec36296
XG
7285 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7286 SECONDARY_EXEC_SHADOW_VMCS);
9a2a05b9 7287 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 7288 }
705699a1 7289 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7290
7291 /* Flush VMCS12 to guest memory */
7292 memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7293 VMCS12_SIZE);
7294
e7953d7f
AG
7295 kunmap(vmx->nested.current_vmcs12_page);
7296 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
7297 vmx->nested.current_vmptr = -1ull;
7298 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
7299}
7300
ec378aee
NHE
7301/*
7302 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7303 * just stops using VMX.
7304 */
7305static void free_nested(struct vcpu_vmx *vmx)
7306{
7307 if (!vmx->nested.vmxon)
7308 return;
9a2a05b9 7309
ec378aee 7310 vmx->nested.vmxon = false;
5c614b35 7311 free_vpid(vmx->nested.vpid02);
9a2a05b9 7312 nested_release_vmcs12(vmx);
d048c098
RK
7313 if (vmx->nested.msr_bitmap) {
7314 free_page((unsigned long)vmx->nested.msr_bitmap);
7315 vmx->nested.msr_bitmap = NULL;
7316 }
355f4fb1
JM
7317 if (enable_shadow_vmcs) {
7318 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7319 free_vmcs(vmx->vmcs01.shadow_vmcs);
7320 vmx->vmcs01.shadow_vmcs = NULL;
7321 }
4f2777bc 7322 kfree(vmx->nested.cached_vmcs12);
fe3ef05c
NHE
7323 /* Unpin physical memory we referred to in current vmcs02 */
7324 if (vmx->nested.apic_access_page) {
7325 nested_release_page(vmx->nested.apic_access_page);
48d89b92 7326 vmx->nested.apic_access_page = NULL;
fe3ef05c 7327 }
a7c0b07d
WL
7328 if (vmx->nested.virtual_apic_page) {
7329 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 7330 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7331 }
705699a1
WV
7332 if (vmx->nested.pi_desc_page) {
7333 kunmap(vmx->nested.pi_desc_page);
7334 nested_release_page(vmx->nested.pi_desc_page);
7335 vmx->nested.pi_desc_page = NULL;
7336 vmx->nested.pi_desc = NULL;
7337 }
ff2f6fe9
NHE
7338
7339 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
7340}
7341
7342/* Emulate the VMXOFF instruction */
7343static int handle_vmoff(struct kvm_vcpu *vcpu)
7344{
7345 if (!nested_vmx_check_permission(vcpu))
7346 return 1;
7347 free_nested(to_vmx(vcpu));
a25eb114 7348 nested_vmx_succeed(vcpu);
6affcbed 7349 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7350}
7351
27d6c865
NHE
7352/* Emulate the VMCLEAR instruction */
7353static int handle_vmclear(struct kvm_vcpu *vcpu)
7354{
7355 struct vcpu_vmx *vmx = to_vmx(vcpu);
27d6c865
NHE
7356 gpa_t vmptr;
7357 struct vmcs12 *vmcs12;
7358 struct page *page;
27d6c865
NHE
7359
7360 if (!nested_vmx_check_permission(vcpu))
7361 return 1;
7362
4291b588 7363 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
27d6c865 7364 return 1;
27d6c865 7365
9a2a05b9 7366 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7367 nested_release_vmcs12(vmx);
27d6c865
NHE
7368
7369 page = nested_get_page(vcpu, vmptr);
7370 if (page == NULL) {
7371 /*
7372 * For accurate processor emulation, VMCLEAR beyond available
7373 * physical memory should do nothing at all. However, it is
7374 * possible that a nested vmx bug, not a guest hypervisor bug,
7375 * resulted in this case, so let's shut down before doing any
7376 * more damage:
7377 */
7378 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7379 return 1;
7380 }
7381 vmcs12 = kmap(page);
7382 vmcs12->launch_state = 0;
7383 kunmap(page);
7384 nested_release_page(page);
7385
7386 nested_free_vmcs02(vmx, vmptr);
7387
27d6c865 7388 nested_vmx_succeed(vcpu);
6affcbed 7389 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7390}
7391
cd232ad0
NHE
7392static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7393
7394/* Emulate the VMLAUNCH instruction */
7395static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7396{
7397 return nested_vmx_run(vcpu, true);
7398}
7399
7400/* Emulate the VMRESUME instruction */
7401static int handle_vmresume(struct kvm_vcpu *vcpu)
7402{
7403
7404 return nested_vmx_run(vcpu, false);
7405}
7406
49f705c5
NHE
7407enum vmcs_field_type {
7408 VMCS_FIELD_TYPE_U16 = 0,
7409 VMCS_FIELD_TYPE_U64 = 1,
7410 VMCS_FIELD_TYPE_U32 = 2,
7411 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7412};
7413
7414static inline int vmcs_field_type(unsigned long field)
7415{
7416 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7417 return VMCS_FIELD_TYPE_U32;
7418 return (field >> 13) & 0x3 ;
7419}
7420
7421static inline int vmcs_field_readonly(unsigned long field)
7422{
7423 return (((field >> 10) & 0x3) == 1);
7424}
7425
7426/*
7427 * Read a vmcs12 field. Since these can have varying lengths and we return
7428 * one type, we chose the biggest type (u64) and zero-extend the return value
7429 * to that size. Note that the caller, handle_vmread, might need to use only
7430 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7431 * 64-bit fields are to be returned).
7432 */
a2ae9df7
PB
7433static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7434 unsigned long field, u64 *ret)
49f705c5
NHE
7435{
7436 short offset = vmcs_field_to_offset(field);
7437 char *p;
7438
7439 if (offset < 0)
a2ae9df7 7440 return offset;
49f705c5
NHE
7441
7442 p = ((char *)(get_vmcs12(vcpu))) + offset;
7443
7444 switch (vmcs_field_type(field)) {
7445 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7446 *ret = *((natural_width *)p);
a2ae9df7 7447 return 0;
49f705c5
NHE
7448 case VMCS_FIELD_TYPE_U16:
7449 *ret = *((u16 *)p);
a2ae9df7 7450 return 0;
49f705c5
NHE
7451 case VMCS_FIELD_TYPE_U32:
7452 *ret = *((u32 *)p);
a2ae9df7 7453 return 0;
49f705c5
NHE
7454 case VMCS_FIELD_TYPE_U64:
7455 *ret = *((u64 *)p);
a2ae9df7 7456 return 0;
49f705c5 7457 default:
a2ae9df7
PB
7458 WARN_ON(1);
7459 return -ENOENT;
49f705c5
NHE
7460 }
7461}
7462
20b97fea 7463
a2ae9df7
PB
7464static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7465 unsigned long field, u64 field_value){
20b97fea
AG
7466 short offset = vmcs_field_to_offset(field);
7467 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7468 if (offset < 0)
a2ae9df7 7469 return offset;
20b97fea
AG
7470
7471 switch (vmcs_field_type(field)) {
7472 case VMCS_FIELD_TYPE_U16:
7473 *(u16 *)p = field_value;
a2ae9df7 7474 return 0;
20b97fea
AG
7475 case VMCS_FIELD_TYPE_U32:
7476 *(u32 *)p = field_value;
a2ae9df7 7477 return 0;
20b97fea
AG
7478 case VMCS_FIELD_TYPE_U64:
7479 *(u64 *)p = field_value;
a2ae9df7 7480 return 0;
20b97fea
AG
7481 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7482 *(natural_width *)p = field_value;
a2ae9df7 7483 return 0;
20b97fea 7484 default:
a2ae9df7
PB
7485 WARN_ON(1);
7486 return -ENOENT;
20b97fea
AG
7487 }
7488
7489}
7490
16f5b903
AG
7491static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7492{
7493 int i;
7494 unsigned long field;
7495 u64 field_value;
355f4fb1 7496 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c2bae893
MK
7497 const unsigned long *fields = shadow_read_write_fields;
7498 const int num_fields = max_shadow_read_write_fields;
16f5b903 7499
282da870
JK
7500 preempt_disable();
7501
16f5b903
AG
7502 vmcs_load(shadow_vmcs);
7503
7504 for (i = 0; i < num_fields; i++) {
7505 field = fields[i];
7506 switch (vmcs_field_type(field)) {
7507 case VMCS_FIELD_TYPE_U16:
7508 field_value = vmcs_read16(field);
7509 break;
7510 case VMCS_FIELD_TYPE_U32:
7511 field_value = vmcs_read32(field);
7512 break;
7513 case VMCS_FIELD_TYPE_U64:
7514 field_value = vmcs_read64(field);
7515 break;
7516 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7517 field_value = vmcs_readl(field);
7518 break;
a2ae9df7
PB
7519 default:
7520 WARN_ON(1);
7521 continue;
16f5b903
AG
7522 }
7523 vmcs12_write_any(&vmx->vcpu, field, field_value);
7524 }
7525
7526 vmcs_clear(shadow_vmcs);
7527 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7528
7529 preempt_enable();
16f5b903
AG
7530}
7531
c3114420
AG
7532static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7533{
c2bae893
MK
7534 const unsigned long *fields[] = {
7535 shadow_read_write_fields,
7536 shadow_read_only_fields
c3114420 7537 };
c2bae893 7538 const int max_fields[] = {
c3114420
AG
7539 max_shadow_read_write_fields,
7540 max_shadow_read_only_fields
7541 };
7542 int i, q;
7543 unsigned long field;
7544 u64 field_value = 0;
355f4fb1 7545 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7546
7547 vmcs_load(shadow_vmcs);
7548
c2bae893 7549 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7550 for (i = 0; i < max_fields[q]; i++) {
7551 field = fields[q][i];
7552 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7553
7554 switch (vmcs_field_type(field)) {
7555 case VMCS_FIELD_TYPE_U16:
7556 vmcs_write16(field, (u16)field_value);
7557 break;
7558 case VMCS_FIELD_TYPE_U32:
7559 vmcs_write32(field, (u32)field_value);
7560 break;
7561 case VMCS_FIELD_TYPE_U64:
7562 vmcs_write64(field, (u64)field_value);
7563 break;
7564 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7565 vmcs_writel(field, (long)field_value);
7566 break;
a2ae9df7
PB
7567 default:
7568 WARN_ON(1);
7569 break;
c3114420
AG
7570 }
7571 }
7572 }
7573
7574 vmcs_clear(shadow_vmcs);
7575 vmcs_load(vmx->loaded_vmcs->vmcs);
7576}
7577
49f705c5
NHE
7578/*
7579 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7580 * used before) all generate the same failure when it is missing.
7581 */
7582static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7583{
7584 struct vcpu_vmx *vmx = to_vmx(vcpu);
7585 if (vmx->nested.current_vmptr == -1ull) {
7586 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7587 return 0;
7588 }
7589 return 1;
7590}
7591
7592static int handle_vmread(struct kvm_vcpu *vcpu)
7593{
7594 unsigned long field;
7595 u64 field_value;
7596 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7597 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7598 gva_t gva = 0;
7599
eb277562 7600 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7601 return 1;
7602
6affcbed
KH
7603 if (!nested_vmx_check_vmcs12(vcpu))
7604 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7605
7606 /* Decode instruction info and find the field to read */
27e6fb5d 7607 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7608 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7609 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 7610 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7611 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7612 }
7613 /*
7614 * Now copy part of this value to register or memory, as requested.
7615 * Note that the number of bits actually copied is 32 or 64 depending
7616 * on the guest's mode (32 or 64 bit), not on the given field's length.
7617 */
7618 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7619 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7620 field_value);
7621 } else {
7622 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7623 vmx_instruction_info, true, &gva))
49f705c5
NHE
7624 return 1;
7625 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7626 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7627 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7628 }
7629
7630 nested_vmx_succeed(vcpu);
6affcbed 7631 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7632}
7633
7634
7635static int handle_vmwrite(struct kvm_vcpu *vcpu)
7636{
7637 unsigned long field;
7638 gva_t gva;
7639 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7640 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7641 /* The value to write might be 32 or 64 bits, depending on L1's long
7642 * mode, and eventually we need to write that into a field of several
7643 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7644 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7645 * bits into the vmcs12 field.
7646 */
7647 u64 field_value = 0;
7648 struct x86_exception e;
7649
eb277562 7650 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7651 return 1;
7652
6affcbed
KH
7653 if (!nested_vmx_check_vmcs12(vcpu))
7654 return kvm_skip_emulated_instruction(vcpu);
eb277562 7655
49f705c5 7656 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7657 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7658 (((vmx_instruction_info) >> 3) & 0xf));
7659 else {
7660 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7661 vmx_instruction_info, false, &gva))
49f705c5
NHE
7662 return 1;
7663 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7664 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7665 kvm_inject_page_fault(vcpu, &e);
7666 return 1;
7667 }
7668 }
7669
7670
27e6fb5d 7671 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7672 if (vmcs_field_readonly(field)) {
7673 nested_vmx_failValid(vcpu,
7674 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 7675 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7676 }
7677
a2ae9df7 7678 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 7679 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7680 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7681 }
7682
7683 nested_vmx_succeed(vcpu);
6affcbed 7684 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7685}
7686
63846663
NHE
7687/* Emulate the VMPTRLD instruction */
7688static int handle_vmptrld(struct kvm_vcpu *vcpu)
7689{
7690 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7691 gpa_t vmptr;
63846663
NHE
7692
7693 if (!nested_vmx_check_permission(vcpu))
7694 return 1;
7695
4291b588 7696 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
63846663 7697 return 1;
63846663
NHE
7698
7699 if (vmx->nested.current_vmptr != vmptr) {
7700 struct vmcs12 *new_vmcs12;
7701 struct page *page;
7702 page = nested_get_page(vcpu, vmptr);
7703 if (page == NULL) {
7704 nested_vmx_failInvalid(vcpu);
6affcbed 7705 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7706 }
7707 new_vmcs12 = kmap(page);
7708 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7709 kunmap(page);
7710 nested_release_page_clean(page);
7711 nested_vmx_failValid(vcpu,
7712 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 7713 return kvm_skip_emulated_instruction(vcpu);
63846663 7714 }
63846663 7715
9a2a05b9 7716 nested_release_vmcs12(vmx);
63846663
NHE
7717 vmx->nested.current_vmptr = vmptr;
7718 vmx->nested.current_vmcs12 = new_vmcs12;
7719 vmx->nested.current_vmcs12_page = page;
4f2777bc
DM
7720 /*
7721 * Load VMCS12 from guest memory since it is not already
7722 * cached.
7723 */
7724 memcpy(vmx->nested.cached_vmcs12,
7725 vmx->nested.current_vmcs12, VMCS12_SIZE);
7726
012f83cb 7727 if (enable_shadow_vmcs) {
7ec36296
XG
7728 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7729 SECONDARY_EXEC_SHADOW_VMCS);
8a1b9dd0 7730 vmcs_write64(VMCS_LINK_POINTER,
355f4fb1 7731 __pa(vmx->vmcs01.shadow_vmcs));
012f83cb
AG
7732 vmx->nested.sync_shadow_vmcs = true;
7733 }
63846663
NHE
7734 }
7735
7736 nested_vmx_succeed(vcpu);
6affcbed 7737 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7738}
7739
6a4d7550
NHE
7740/* Emulate the VMPTRST instruction */
7741static int handle_vmptrst(struct kvm_vcpu *vcpu)
7742{
7743 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7744 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7745 gva_t vmcs_gva;
7746 struct x86_exception e;
7747
7748 if (!nested_vmx_check_permission(vcpu))
7749 return 1;
7750
7751 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7752 vmx_instruction_info, true, &vmcs_gva))
6a4d7550
NHE
7753 return 1;
7754 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7755 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7756 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7757 sizeof(u64), &e)) {
7758 kvm_inject_page_fault(vcpu, &e);
7759 return 1;
7760 }
7761 nested_vmx_succeed(vcpu);
6affcbed 7762 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
7763}
7764
bfd0a56b
NHE
7765/* Emulate the INVEPT instruction */
7766static int handle_invept(struct kvm_vcpu *vcpu)
7767{
b9c237bb 7768 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7769 u32 vmx_instruction_info, types;
7770 unsigned long type;
7771 gva_t gva;
7772 struct x86_exception e;
7773 struct {
7774 u64 eptp, gpa;
7775 } operand;
bfd0a56b 7776
b9c237bb
WV
7777 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7778 SECONDARY_EXEC_ENABLE_EPT) ||
7779 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7780 kvm_queue_exception(vcpu, UD_VECTOR);
7781 return 1;
7782 }
7783
7784 if (!nested_vmx_check_permission(vcpu))
7785 return 1;
7786
7787 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7788 kvm_queue_exception(vcpu, UD_VECTOR);
7789 return 1;
7790 }
7791
7792 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7793 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7794
b9c237bb 7795 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 7796
85c856b3 7797 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
7798 nested_vmx_failValid(vcpu,
7799 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7800 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7801 }
7802
7803 /* According to the Intel VMX instruction reference, the memory
7804 * operand is read even if it isn't needed (e.g., for type==global)
7805 */
7806 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7807 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7808 return 1;
7809 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7810 sizeof(operand), &e)) {
7811 kvm_inject_page_fault(vcpu, &e);
7812 return 1;
7813 }
7814
7815 switch (type) {
bfd0a56b 7816 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7817 /*
7818 * TODO: track mappings and invalidate
7819 * single context requests appropriately
7820 */
7821 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7822 kvm_mmu_sync_roots(vcpu);
77c3913b 7823 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7824 nested_vmx_succeed(vcpu);
7825 break;
7826 default:
7827 BUG_ON(1);
7828 break;
7829 }
7830
6affcbed 7831 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7832}
7833
a642fc30
PM
7834static int handle_invvpid(struct kvm_vcpu *vcpu)
7835{
99b83ac8
WL
7836 struct vcpu_vmx *vmx = to_vmx(vcpu);
7837 u32 vmx_instruction_info;
7838 unsigned long type, types;
7839 gva_t gva;
7840 struct x86_exception e;
7841 int vpid;
7842
7843 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7844 SECONDARY_EXEC_ENABLE_VPID) ||
7845 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7846 kvm_queue_exception(vcpu, UD_VECTOR);
7847 return 1;
7848 }
7849
7850 if (!nested_vmx_check_permission(vcpu))
7851 return 1;
7852
7853 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7854 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7855
bcdde302
JD
7856 types = (vmx->nested.nested_vmx_vpid_caps &
7857 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 7858
85c856b3 7859 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
7860 nested_vmx_failValid(vcpu,
7861 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7862 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7863 }
7864
7865 /* according to the intel vmx instruction reference, the memory
7866 * operand is read even if it isn't needed (e.g., for type==global)
7867 */
7868 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7869 vmx_instruction_info, false, &gva))
7870 return 1;
7871 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7872 sizeof(u32), &e)) {
7873 kvm_inject_page_fault(vcpu, &e);
7874 return 1;
7875 }
7876
7877 switch (type) {
bcdde302 7878 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
ef697a71 7879 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302
JD
7880 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7881 if (!vpid) {
7882 nested_vmx_failValid(vcpu,
7883 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7884 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
7885 }
7886 break;
99b83ac8 7887 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
7888 break;
7889 default:
bcdde302 7890 WARN_ON_ONCE(1);
6affcbed 7891 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7892 }
7893
bcdde302
JD
7894 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7895 nested_vmx_succeed(vcpu);
7896
6affcbed 7897 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
7898}
7899
843e4330
KH
7900static int handle_pml_full(struct kvm_vcpu *vcpu)
7901{
7902 unsigned long exit_qualification;
7903
7904 trace_kvm_pml_full(vcpu->vcpu_id);
7905
7906 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7907
7908 /*
7909 * PML buffer FULL happened while executing iret from NMI,
7910 * "blocked by NMI" bit has to be set before next VM entry.
7911 */
7912 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7913 cpu_has_virtual_nmis() &&
7914 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7915 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7916 GUEST_INTR_STATE_NMI);
7917
7918 /*
7919 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7920 * here.., and there's no userspace involvement needed for PML.
7921 */
7922 return 1;
7923}
7924
64672c95
YJ
7925static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7926{
7927 kvm_lapic_expired_hv_timer(vcpu);
7928 return 1;
7929}
7930
6aa8b732
AK
7931/*
7932 * The exit handlers return 1 if the exit was handled fully and guest execution
7933 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7934 * to be done to userspace and return 0.
7935 */
772e0318 7936static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
7937 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7938 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 7939 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 7940 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 7941 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
7942 [EXIT_REASON_CR_ACCESS] = handle_cr,
7943 [EXIT_REASON_DR_ACCESS] = handle_dr,
7944 [EXIT_REASON_CPUID] = handle_cpuid,
7945 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7946 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7947 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7948 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 7949 [EXIT_REASON_INVD] = handle_invd,
a7052897 7950 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 7951 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 7952 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 7953 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 7954 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 7955 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 7956 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 7957 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 7958 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 7959 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
7960 [EXIT_REASON_VMOFF] = handle_vmoff,
7961 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
7962 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7963 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 7964 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 7965 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 7966 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 7967 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 7968 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 7969 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
7970 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7971 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 7972 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 7973 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 7974 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 7975 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 7976 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 7977 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
7978 [EXIT_REASON_XSAVES] = handle_xsaves,
7979 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 7980 [EXIT_REASON_PML_FULL] = handle_pml_full,
64672c95 7981 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
7982};
7983
7984static const int kvm_vmx_max_exit_handlers =
50a3485c 7985 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 7986
908a7bdd
JK
7987static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7988 struct vmcs12 *vmcs12)
7989{
7990 unsigned long exit_qualification;
7991 gpa_t bitmap, last_bitmap;
7992 unsigned int port;
7993 int size;
7994 u8 b;
7995
908a7bdd 7996 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 7997 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
7998
7999 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8000
8001 port = exit_qualification >> 16;
8002 size = (exit_qualification & 7) + 1;
8003
8004 last_bitmap = (gpa_t)-1;
8005 b = -1;
8006
8007 while (size > 0) {
8008 if (port < 0x8000)
8009 bitmap = vmcs12->io_bitmap_a;
8010 else if (port < 0x10000)
8011 bitmap = vmcs12->io_bitmap_b;
8012 else
1d804d07 8013 return true;
908a7bdd
JK
8014 bitmap += (port & 0x7fff) / 8;
8015
8016 if (last_bitmap != bitmap)
54bf36aa 8017 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 8018 return true;
908a7bdd 8019 if (b & (1 << (port & 7)))
1d804d07 8020 return true;
908a7bdd
JK
8021
8022 port++;
8023 size--;
8024 last_bitmap = bitmap;
8025 }
8026
1d804d07 8027 return false;
908a7bdd
JK
8028}
8029
644d711a
NHE
8030/*
8031 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8032 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8033 * disinterest in the current event (read or write a specific MSR) by using an
8034 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8035 */
8036static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8037 struct vmcs12 *vmcs12, u32 exit_reason)
8038{
8039 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8040 gpa_t bitmap;
8041
cbd29cb6 8042 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 8043 return true;
644d711a
NHE
8044
8045 /*
8046 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8047 * for the four combinations of read/write and low/high MSR numbers.
8048 * First we need to figure out which of the four to use:
8049 */
8050 bitmap = vmcs12->msr_bitmap;
8051 if (exit_reason == EXIT_REASON_MSR_WRITE)
8052 bitmap += 2048;
8053 if (msr_index >= 0xc0000000) {
8054 msr_index -= 0xc0000000;
8055 bitmap += 1024;
8056 }
8057
8058 /* Then read the msr_index'th bit from this bitmap: */
8059 if (msr_index < 1024*8) {
8060 unsigned char b;
54bf36aa 8061 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 8062 return true;
644d711a
NHE
8063 return 1 & (b >> (msr_index & 7));
8064 } else
1d804d07 8065 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
8066}
8067
8068/*
8069 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8070 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8071 * intercept (via guest_host_mask etc.) the current event.
8072 */
8073static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8074 struct vmcs12 *vmcs12)
8075{
8076 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8077 int cr = exit_qualification & 15;
8078 int reg = (exit_qualification >> 8) & 15;
1e32c079 8079 unsigned long val = kvm_register_readl(vcpu, reg);
644d711a
NHE
8080
8081 switch ((exit_qualification >> 4) & 3) {
8082 case 0: /* mov to cr */
8083 switch (cr) {
8084 case 0:
8085 if (vmcs12->cr0_guest_host_mask &
8086 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8087 return true;
644d711a
NHE
8088 break;
8089 case 3:
8090 if ((vmcs12->cr3_target_count >= 1 &&
8091 vmcs12->cr3_target_value0 == val) ||
8092 (vmcs12->cr3_target_count >= 2 &&
8093 vmcs12->cr3_target_value1 == val) ||
8094 (vmcs12->cr3_target_count >= 3 &&
8095 vmcs12->cr3_target_value2 == val) ||
8096 (vmcs12->cr3_target_count >= 4 &&
8097 vmcs12->cr3_target_value3 == val))
1d804d07 8098 return false;
644d711a 8099 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 8100 return true;
644d711a
NHE
8101 break;
8102 case 4:
8103 if (vmcs12->cr4_guest_host_mask &
8104 (vmcs12->cr4_read_shadow ^ val))
1d804d07 8105 return true;
644d711a
NHE
8106 break;
8107 case 8:
8108 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 8109 return true;
644d711a
NHE
8110 break;
8111 }
8112 break;
8113 case 2: /* clts */
8114 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8115 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 8116 return true;
644d711a
NHE
8117 break;
8118 case 1: /* mov from cr */
8119 switch (cr) {
8120 case 3:
8121 if (vmcs12->cpu_based_vm_exec_control &
8122 CPU_BASED_CR3_STORE_EXITING)
1d804d07 8123 return true;
644d711a
NHE
8124 break;
8125 case 8:
8126 if (vmcs12->cpu_based_vm_exec_control &
8127 CPU_BASED_CR8_STORE_EXITING)
1d804d07 8128 return true;
644d711a
NHE
8129 break;
8130 }
8131 break;
8132 case 3: /* lmsw */
8133 /*
8134 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8135 * cr0. Other attempted changes are ignored, with no exit.
8136 */
8137 if (vmcs12->cr0_guest_host_mask & 0xe &
8138 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8139 return true;
644d711a
NHE
8140 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8141 !(vmcs12->cr0_read_shadow & 0x1) &&
8142 (val & 0x1))
1d804d07 8143 return true;
644d711a
NHE
8144 break;
8145 }
1d804d07 8146 return false;
644d711a
NHE
8147}
8148
8149/*
8150 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8151 * should handle it ourselves in L0 (and then continue L2). Only call this
8152 * when in is_guest_mode (L2).
8153 */
8154static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
8155{
644d711a
NHE
8156 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8157 struct vcpu_vmx *vmx = to_vmx(vcpu);
8158 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 8159 u32 exit_reason = vmx->exit_reason;
644d711a 8160
542060ea
JK
8161 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8162 vmcs_readl(EXIT_QUALIFICATION),
8163 vmx->idt_vectoring_info,
8164 intr_info,
8165 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8166 KVM_ISA_VMX);
8167
644d711a 8168 if (vmx->nested.nested_run_pending)
1d804d07 8169 return false;
644d711a
NHE
8170
8171 if (unlikely(vmx->fail)) {
bd80158a
JK
8172 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8173 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 8174 return true;
644d711a
NHE
8175 }
8176
8177 switch (exit_reason) {
8178 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8179 if (is_nmi(intr_info))
1d804d07 8180 return false;
644d711a
NHE
8181 else if (is_page_fault(intr_info))
8182 return enable_ept;
e504c909 8183 else if (is_no_device(intr_info) &&
ccf9844e 8184 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8185 return false;
6f05485d
JK
8186 else if (is_debug(intr_info) &&
8187 vcpu->guest_debug &
8188 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8189 return false;
8190 else if (is_breakpoint(intr_info) &&
8191 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8192 return false;
644d711a
NHE
8193 return vmcs12->exception_bitmap &
8194 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8195 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8196 return false;
644d711a 8197 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8198 return true;
644d711a 8199 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8200 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8201 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8202 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8203 case EXIT_REASON_TASK_SWITCH:
1d804d07 8204 return true;
644d711a 8205 case EXIT_REASON_CPUID:
bc613494 8206 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
1d804d07
JP
8207 return false;
8208 return true;
644d711a
NHE
8209 case EXIT_REASON_HLT:
8210 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8211 case EXIT_REASON_INVD:
1d804d07 8212 return true;
644d711a
NHE
8213 case EXIT_REASON_INVLPG:
8214 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8215 case EXIT_REASON_RDPMC:
8216 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
b3a2a907 8217 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8218 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8219 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8220 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8221 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8222 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8223 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8224 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8225 /*
8226 * VMX instructions trap unconditionally. This allows L1 to
8227 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8228 */
1d804d07 8229 return true;
644d711a
NHE
8230 case EXIT_REASON_CR_ACCESS:
8231 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8232 case EXIT_REASON_DR_ACCESS:
8233 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8234 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8235 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8236 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8237 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8238 case EXIT_REASON_MSR_READ:
8239 case EXIT_REASON_MSR_WRITE:
8240 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8241 case EXIT_REASON_INVALID_STATE:
1d804d07 8242 return true;
644d711a
NHE
8243 case EXIT_REASON_MWAIT_INSTRUCTION:
8244 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8245 case EXIT_REASON_MONITOR_TRAP_FLAG:
8246 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8247 case EXIT_REASON_MONITOR_INSTRUCTION:
8248 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8249 case EXIT_REASON_PAUSE_INSTRUCTION:
8250 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8251 nested_cpu_has2(vmcs12,
8252 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8253 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8254 return false;
644d711a 8255 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8256 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8257 case EXIT_REASON_APIC_ACCESS:
8258 return nested_cpu_has2(vmcs12,
8259 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8260 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8261 case EXIT_REASON_EOI_INDUCED:
8262 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8263 return true;
644d711a 8264 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8265 /*
8266 * L0 always deals with the EPT violation. If nested EPT is
8267 * used, and the nested mmu code discovers that the address is
8268 * missing in the guest EPT table (EPT12), the EPT violation
8269 * will be injected with nested_ept_inject_page_fault()
8270 */
1d804d07 8271 return false;
644d711a 8272 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8273 /*
8274 * L2 never uses directly L1's EPT, but rather L0's own EPT
8275 * table (shadow on EPT) or a merged EPT table that L0 built
8276 * (EPT on EPT). So any problems with the structure of the
8277 * table is L0's fault.
8278 */
1d804d07 8279 return false;
644d711a
NHE
8280 case EXIT_REASON_WBINVD:
8281 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8282 case EXIT_REASON_XSETBV:
1d804d07 8283 return true;
81dc01f7
WL
8284 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8285 /*
8286 * This should never happen, since it is not possible to
8287 * set XSS to a non-zero value---neither in L1 nor in L2.
8288 * If if it were, XSS would have to be checked against
8289 * the XSS exit bitmap in vmcs12.
8290 */
8291 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8292 case EXIT_REASON_PREEMPTION_TIMER:
8293 return false;
644d711a 8294 default:
1d804d07 8295 return true;
644d711a
NHE
8296 }
8297}
8298
586f9607
AK
8299static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8300{
8301 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8302 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8303}
8304
a3eaa864 8305static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8306{
a3eaa864
KH
8307 if (vmx->pml_pg) {
8308 __free_page(vmx->pml_pg);
8309 vmx->pml_pg = NULL;
8310 }
843e4330
KH
8311}
8312
54bf36aa 8313static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8314{
54bf36aa 8315 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8316 u64 *pml_buf;
8317 u16 pml_idx;
8318
8319 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8320
8321 /* Do nothing if PML buffer is empty */
8322 if (pml_idx == (PML_ENTITY_NUM - 1))
8323 return;
8324
8325 /* PML index always points to next available PML buffer entity */
8326 if (pml_idx >= PML_ENTITY_NUM)
8327 pml_idx = 0;
8328 else
8329 pml_idx++;
8330
8331 pml_buf = page_address(vmx->pml_pg);
8332 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8333 u64 gpa;
8334
8335 gpa = pml_buf[pml_idx];
8336 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8337 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8338 }
8339
8340 /* reset PML index */
8341 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8342}
8343
8344/*
8345 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8346 * Called before reporting dirty_bitmap to userspace.
8347 */
8348static void kvm_flush_pml_buffers(struct kvm *kvm)
8349{
8350 int i;
8351 struct kvm_vcpu *vcpu;
8352 /*
8353 * We only need to kick vcpu out of guest mode here, as PML buffer
8354 * is flushed at beginning of all VMEXITs, and it's obvious that only
8355 * vcpus running in guest are possible to have unflushed GPAs in PML
8356 * buffer.
8357 */
8358 kvm_for_each_vcpu(i, vcpu, kvm)
8359 kvm_vcpu_kick(vcpu);
8360}
8361
4eb64dce
PB
8362static void vmx_dump_sel(char *name, uint32_t sel)
8363{
8364 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8365 name, vmcs_read32(sel),
8366 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8367 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8368 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8369}
8370
8371static void vmx_dump_dtsel(char *name, uint32_t limit)
8372{
8373 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8374 name, vmcs_read32(limit),
8375 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8376}
8377
8378static void dump_vmcs(void)
8379{
8380 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8381 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8382 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8383 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8384 u32 secondary_exec_control = 0;
8385 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8386 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8387 int i, n;
8388
8389 if (cpu_has_secondary_exec_ctrls())
8390 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8391
8392 pr_err("*** Guest State ***\n");
8393 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8394 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8395 vmcs_readl(CR0_GUEST_HOST_MASK));
8396 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8397 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8398 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8399 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8400 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8401 {
845c5b40
PB
8402 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8403 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8404 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8405 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8406 }
8407 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8408 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8409 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8410 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8411 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8412 vmcs_readl(GUEST_SYSENTER_ESP),
8413 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8414 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8415 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8416 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8417 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8418 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8419 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8420 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8421 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8422 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8423 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8424 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8425 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8426 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8427 efer, vmcs_read64(GUEST_IA32_PAT));
8428 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8429 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8430 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8431 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8432 pr_err("PerfGlobCtl = 0x%016llx\n",
8433 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8434 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8435 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8436 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8437 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8438 vmcs_read32(GUEST_ACTIVITY_STATE));
8439 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8440 pr_err("InterruptStatus = %04x\n",
8441 vmcs_read16(GUEST_INTR_STATUS));
8442
8443 pr_err("*** Host State ***\n");
8444 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8445 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8446 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8447 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8448 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8449 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8450 vmcs_read16(HOST_TR_SELECTOR));
8451 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8452 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8453 vmcs_readl(HOST_TR_BASE));
8454 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8455 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8456 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8457 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8458 vmcs_readl(HOST_CR4));
8459 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8460 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8461 vmcs_read32(HOST_IA32_SYSENTER_CS),
8462 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8463 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8464 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8465 vmcs_read64(HOST_IA32_EFER),
8466 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8467 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8468 pr_err("PerfGlobCtl = 0x%016llx\n",
8469 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8470
8471 pr_err("*** Control State ***\n");
8472 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8473 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8474 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8475 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8476 vmcs_read32(EXCEPTION_BITMAP),
8477 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8478 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8479 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8480 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8481 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8482 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8483 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8484 vmcs_read32(VM_EXIT_INTR_INFO),
8485 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8486 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8487 pr_err(" reason=%08x qualification=%016lx\n",
8488 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8489 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8490 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8491 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8492 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8493 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8494 pr_err("TSC Multiplier = 0x%016llx\n",
8495 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8496 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8497 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8498 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8499 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8500 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8501 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8502 n = vmcs_read32(CR3_TARGET_COUNT);
8503 for (i = 0; i + 1 < n; i += 4)
8504 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8505 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8506 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8507 if (i < n)
8508 pr_err("CR3 target%u=%016lx\n",
8509 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8510 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8511 pr_err("PLE Gap=%08x Window=%08x\n",
8512 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8513 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8514 pr_err("Virtual processor ID = 0x%04x\n",
8515 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8516}
8517
6aa8b732
AK
8518/*
8519 * The guest has exited. See if we can fix it or if we need userspace
8520 * assistance.
8521 */
851ba692 8522static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8523{
29bd8a78 8524 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8525 u32 exit_reason = vmx->exit_reason;
1155f76a 8526 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8527
8b89fe1f
PB
8528 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8529
843e4330
KH
8530 /*
8531 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8532 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8533 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8534 * mode as if vcpus is in root mode, the PML buffer must has been
8535 * flushed already.
8536 */
8537 if (enable_pml)
54bf36aa 8538 vmx_flush_pml_buffer(vcpu);
843e4330 8539
80ced186 8540 /* If guest state is invalid, start emulating */
14168786 8541 if (vmx->emulation_required)
80ced186 8542 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8543
644d711a 8544 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
8545 nested_vmx_vmexit(vcpu, exit_reason,
8546 vmcs_read32(VM_EXIT_INTR_INFO),
8547 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
8548 return 1;
8549 }
8550
5120702e 8551 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8552 dump_vmcs();
5120702e
MG
8553 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8554 vcpu->run->fail_entry.hardware_entry_failure_reason
8555 = exit_reason;
8556 return 0;
8557 }
8558
29bd8a78 8559 if (unlikely(vmx->fail)) {
851ba692
AK
8560 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8561 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8562 = vmcs_read32(VM_INSTRUCTION_ERROR);
8563 return 0;
8564 }
6aa8b732 8565
b9bf6882
XG
8566 /*
8567 * Note:
8568 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8569 * delivery event since it indicates guest is accessing MMIO.
8570 * The vm-exit can be triggered again after return to guest that
8571 * will cause infinite loop.
8572 */
d77c26fc 8573 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8574 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8575 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8576 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8577 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8578 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8579 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8580 vcpu->run->internal.ndata = 2;
8581 vcpu->run->internal.data[0] = vectoring_info;
8582 vcpu->run->internal.data[1] = exit_reason;
8583 return 0;
8584 }
3b86cd99 8585
644d711a
NHE
8586 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8587 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
f5c4368f 8588 get_vmcs12(vcpu))))) {
c4282df9 8589 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 8590 vmx->soft_vnmi_blocked = 0;
3b86cd99 8591 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 8592 vcpu->arch.nmi_pending) {
3b86cd99
JK
8593 /*
8594 * This CPU don't support us in finding the end of an
8595 * NMI-blocked window if the guest runs with IRQs
8596 * disabled. So we pull the trigger after 1 s of
8597 * futile waiting, but inform the user about this.
8598 */
8599 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8600 "state on VCPU %d after 1 s timeout\n",
8601 __func__, vcpu->vcpu_id);
8602 vmx->soft_vnmi_blocked = 0;
3b86cd99 8603 }
3b86cd99
JK
8604 }
8605
6aa8b732
AK
8606 if (exit_reason < kvm_vmx_max_exit_handlers
8607 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8608 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8609 else {
2bc19dc3
MT
8610 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8611 kvm_queue_exception(vcpu, UD_VECTOR);
8612 return 1;
6aa8b732 8613 }
6aa8b732
AK
8614}
8615
95ba8273 8616static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8617{
a7c0b07d
WL
8618 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8619
8620 if (is_guest_mode(vcpu) &&
8621 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8622 return;
8623
95ba8273 8624 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8625 vmcs_write32(TPR_THRESHOLD, 0);
8626 return;
8627 }
8628
95ba8273 8629 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8630}
8631
8d14695f
YZ
8632static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8633{
8634 u32 sec_exec_control;
8635
dccbfcf5
RK
8636 /* Postpone execution until vmcs01 is the current VMCS. */
8637 if (is_guest_mode(vcpu)) {
8638 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8639 return;
8640 }
8641
f6e90f9e 8642 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8643 return;
8644
35754c98 8645 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8646 return;
8647
8648 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8649
8650 if (set) {
8651 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8652 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8653 } else {
8654 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8655 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8656 }
8657 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8658
8659 vmx_set_msr_bitmap(vcpu);
8660}
8661
38b99173
TC
8662static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8663{
8664 struct vcpu_vmx *vmx = to_vmx(vcpu);
8665
8666 /*
8667 * Currently we do not handle the nested case where L2 has an
8668 * APIC access page of its own; that page is still pinned.
8669 * Hence, we skip the case where the VCPU is in guest mode _and_
8670 * L1 prepared an APIC access page for L2.
8671 *
8672 * For the case where L1 and L2 share the same APIC access page
8673 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8674 * in the vmcs12), this function will only update either the vmcs01
8675 * or the vmcs02. If the former, the vmcs02 will be updated by
8676 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8677 * the next L2->L1 exit.
8678 */
8679 if (!is_guest_mode(vcpu) ||
4f2777bc 8680 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
38b99173
TC
8681 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8682 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8683}
8684
67c9dddc 8685static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8686{
8687 u16 status;
8688 u8 old;
8689
67c9dddc
PB
8690 if (max_isr == -1)
8691 max_isr = 0;
c7c9c56c
YZ
8692
8693 status = vmcs_read16(GUEST_INTR_STATUS);
8694 old = status >> 8;
67c9dddc 8695 if (max_isr != old) {
c7c9c56c 8696 status &= 0xff;
67c9dddc 8697 status |= max_isr << 8;
c7c9c56c
YZ
8698 vmcs_write16(GUEST_INTR_STATUS, status);
8699 }
8700}
8701
8702static void vmx_set_rvi(int vector)
8703{
8704 u16 status;
8705 u8 old;
8706
4114c27d
WW
8707 if (vector == -1)
8708 vector = 0;
8709
c7c9c56c
YZ
8710 status = vmcs_read16(GUEST_INTR_STATUS);
8711 old = (u8)status & 0xff;
8712 if ((u8)vector != old) {
8713 status &= ~0xff;
8714 status |= (u8)vector;
8715 vmcs_write16(GUEST_INTR_STATUS, status);
8716 }
8717}
8718
8719static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8720{
4114c27d
WW
8721 if (!is_guest_mode(vcpu)) {
8722 vmx_set_rvi(max_irr);
8723 return;
8724 }
8725
c7c9c56c
YZ
8726 if (max_irr == -1)
8727 return;
8728
963fee16 8729 /*
4114c27d
WW
8730 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8731 * handles it.
963fee16 8732 */
4114c27d 8733 if (nested_exit_on_intr(vcpu))
963fee16
WL
8734 return;
8735
963fee16 8736 /*
4114c27d 8737 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8738 * is run without virtual interrupt delivery.
8739 */
8740 if (!kvm_event_needs_reinjection(vcpu) &&
8741 vmx_interrupt_allowed(vcpu)) {
8742 kvm_queue_interrupt(vcpu, max_irr, false);
8743 vmx_inject_irq(vcpu);
8744 }
c7c9c56c
YZ
8745}
8746
6308630b 8747static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8748{
d62caabb 8749 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8750 return;
8751
c7c9c56c
YZ
8752 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8753 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8754 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8755 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8756}
8757
51aa01d1 8758static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8759{
00eba012
AK
8760 u32 exit_intr_info;
8761
8762 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8763 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8764 return;
8765
c5ca8e57 8766 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 8767 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
8768
8769 /* Handle machine checks before interrupts are enabled */
00eba012 8770 if (is_machine_check(exit_intr_info))
a0861c02
AK
8771 kvm_machine_check();
8772
20f65983 8773 /* We need to handle NMIs before interrupts are enabled */
ef85b673 8774 if (is_nmi(exit_intr_info)) {
ff9d07a0 8775 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 8776 asm("int $2");
ff9d07a0
ZY
8777 kvm_after_handle_nmi(&vmx->vcpu);
8778 }
51aa01d1 8779}
20f65983 8780
a547c6db
YZ
8781static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8782{
8783 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3f62de5f 8784 register void *__sp asm(_ASM_SP);
a547c6db 8785
a547c6db
YZ
8786 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8787 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8788 unsigned int vector;
8789 unsigned long entry;
8790 gate_desc *desc;
8791 struct vcpu_vmx *vmx = to_vmx(vcpu);
8792#ifdef CONFIG_X86_64
8793 unsigned long tmp;
8794#endif
8795
8796 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8797 desc = (gate_desc *)vmx->host_idt_base + vector;
8798 entry = gate_offset(*desc);
8799 asm volatile(
8800#ifdef CONFIG_X86_64
8801 "mov %%" _ASM_SP ", %[sp]\n\t"
8802 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8803 "push $%c[ss]\n\t"
8804 "push %[sp]\n\t"
8805#endif
8806 "pushf\n\t"
a547c6db
YZ
8807 __ASM_SIZE(push) " $%c[cs]\n\t"
8808 "call *%[entry]\n\t"
8809 :
8810#ifdef CONFIG_X86_64
3f62de5f 8811 [sp]"=&r"(tmp),
a547c6db 8812#endif
3f62de5f 8813 "+r"(__sp)
a547c6db
YZ
8814 :
8815 [entry]"r"(entry),
8816 [ss]"i"(__KERNEL_DS),
8817 [cs]"i"(__KERNEL_CS)
8818 );
f2485b3e 8819 }
a547c6db
YZ
8820}
8821
6d396b55
PB
8822static bool vmx_has_high_real_mode_segbase(void)
8823{
8824 return enable_unrestricted_guest || emulate_invalid_guest_state;
8825}
8826
da8999d3
LJ
8827static bool vmx_mpx_supported(void)
8828{
8829 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8830 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8831}
8832
55412b2e
WL
8833static bool vmx_xsaves_supported(void)
8834{
8835 return vmcs_config.cpu_based_2nd_exec_ctrl &
8836 SECONDARY_EXEC_XSAVES;
8837}
8838
51aa01d1
AK
8839static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8840{
c5ca8e57 8841 u32 exit_intr_info;
51aa01d1
AK
8842 bool unblock_nmi;
8843 u8 vector;
8844 bool idtv_info_valid;
8845
8846 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8847
cf393f75 8848 if (cpu_has_virtual_nmis()) {
9d58b931
AK
8849 if (vmx->nmi_known_unmasked)
8850 return;
c5ca8e57
AK
8851 /*
8852 * Can't use vmx->exit_intr_info since we're not sure what
8853 * the exit reason is.
8854 */
8855 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
8856 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8857 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8858 /*
7b4a25cb 8859 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
8860 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8861 * a guest IRET fault.
7b4a25cb
GN
8862 * SDM 3: 23.2.2 (September 2008)
8863 * Bit 12 is undefined in any of the following cases:
8864 * If the VM exit sets the valid bit in the IDT-vectoring
8865 * information field.
8866 * If the VM exit is due to a double fault.
cf393f75 8867 */
7b4a25cb
GN
8868 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8869 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
8870 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8871 GUEST_INTR_STATE_NMI);
9d58b931
AK
8872 else
8873 vmx->nmi_known_unmasked =
8874 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8875 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
8876 } else if (unlikely(vmx->soft_vnmi_blocked))
8877 vmx->vnmi_blocked_time +=
8878 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
8879}
8880
3ab66e8a 8881static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
8882 u32 idt_vectoring_info,
8883 int instr_len_field,
8884 int error_code_field)
51aa01d1 8885{
51aa01d1
AK
8886 u8 vector;
8887 int type;
8888 bool idtv_info_valid;
8889
8890 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 8891
3ab66e8a
JK
8892 vcpu->arch.nmi_injected = false;
8893 kvm_clear_exception_queue(vcpu);
8894 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
8895
8896 if (!idtv_info_valid)
8897 return;
8898
3ab66e8a 8899 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 8900
668f612f
AK
8901 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8902 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 8903
64a7ec06 8904 switch (type) {
37b96e98 8905 case INTR_TYPE_NMI_INTR:
3ab66e8a 8906 vcpu->arch.nmi_injected = true;
668f612f 8907 /*
7b4a25cb 8908 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
8909 * Clear bit "block by NMI" before VM entry if a NMI
8910 * delivery faulted.
668f612f 8911 */
3ab66e8a 8912 vmx_set_nmi_mask(vcpu, false);
37b96e98 8913 break;
37b96e98 8914 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 8915 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
8916 /* fall through */
8917 case INTR_TYPE_HARD_EXCEPTION:
35920a35 8918 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 8919 u32 err = vmcs_read32(error_code_field);
851eb667 8920 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 8921 } else
851eb667 8922 kvm_requeue_exception(vcpu, vector);
37b96e98 8923 break;
66fd3f7f 8924 case INTR_TYPE_SOFT_INTR:
3ab66e8a 8925 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 8926 /* fall through */
37b96e98 8927 case INTR_TYPE_EXT_INTR:
3ab66e8a 8928 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
8929 break;
8930 default:
8931 break;
f7d9238f 8932 }
cf393f75
AK
8933}
8934
83422e17
AK
8935static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8936{
3ab66e8a 8937 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
8938 VM_EXIT_INSTRUCTION_LEN,
8939 IDT_VECTORING_ERROR_CODE);
8940}
8941
b463a6f7
AK
8942static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8943{
3ab66e8a 8944 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
8945 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8946 VM_ENTRY_INSTRUCTION_LEN,
8947 VM_ENTRY_EXCEPTION_ERROR_CODE);
8948
8949 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8950}
8951
d7cd9796
GN
8952static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8953{
8954 int i, nr_msrs;
8955 struct perf_guest_switch_msr *msrs;
8956
8957 msrs = perf_guest_get_msrs(&nr_msrs);
8958
8959 if (!msrs)
8960 return;
8961
8962 for (i = 0; i < nr_msrs; i++)
8963 if (msrs[i].host == msrs[i].guest)
8964 clear_atomic_switch_msr(vmx, msrs[i].msr);
8965 else
8966 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8967 msrs[i].host);
8968}
8969
33365e7a 8970static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
8971{
8972 struct vcpu_vmx *vmx = to_vmx(vcpu);
8973 u64 tscl;
8974 u32 delta_tsc;
8975
8976 if (vmx->hv_deadline_tsc == -1)
8977 return;
8978
8979 tscl = rdtsc();
8980 if (vmx->hv_deadline_tsc > tscl)
8981 /* sure to be 32 bit only because checked on set_hv_timer */
8982 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8983 cpu_preemption_timer_multi);
8984 else
8985 delta_tsc = 0;
8986
8987 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8988}
8989
a3b5ba49 8990static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 8991{
a2fa3e9f 8992 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 8993 unsigned long debugctlmsr, cr4;
104f226b
AK
8994
8995 /* Record the guest's net vcpu time for enforced NMI injections. */
8996 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8997 vmx->entry_time = ktime_get();
8998
8999 /* Don't enter VMX if guest state is invalid, let the exit handler
9000 start emulation until we arrive back to a valid state */
14168786 9001 if (vmx->emulation_required)
104f226b
AK
9002 return;
9003
a7653ecd
RK
9004 if (vmx->ple_window_dirty) {
9005 vmx->ple_window_dirty = false;
9006 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9007 }
9008
012f83cb
AG
9009 if (vmx->nested.sync_shadow_vmcs) {
9010 copy_vmcs12_to_shadow(vmx);
9011 vmx->nested.sync_shadow_vmcs = false;
9012 }
9013
104f226b
AK
9014 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9015 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9016 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9017 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9018
1e02ce4c 9019 cr4 = cr4_read_shadow();
d974baa3
AL
9020 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
9021 vmcs_writel(HOST_CR4, cr4);
9022 vmx->host_state.vmcs_host_cr4 = cr4;
9023 }
9024
104f226b
AK
9025 /* When single-stepping over STI and MOV SS, we must clear the
9026 * corresponding interruptibility bits in the guest state. Otherwise
9027 * vmentry fails as it then expects bit 14 (BS) in pending debug
9028 * exceptions being set, but that's not correct for the guest debugging
9029 * case. */
9030 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9031 vmx_set_interrupt_shadow(vcpu, 0);
9032
1be0e61c
XG
9033 if (vmx->guest_pkru_valid)
9034 __write_pkru(vmx->guest_pkru);
9035
d7cd9796 9036 atomic_switch_perf_msrs(vmx);
2a7921b7 9037 debugctlmsr = get_debugctlmsr();
d7cd9796 9038
64672c95
YJ
9039 vmx_arm_hv_timer(vcpu);
9040
d462b819 9041 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 9042 asm(
6aa8b732 9043 /* Store host registers */
b188c81f
AK
9044 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9045 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9046 "push %%" _ASM_CX " \n\t"
9047 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 9048 "je 1f \n\t"
b188c81f 9049 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 9050 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 9051 "1: \n\t"
d3edefc0 9052 /* Reload cr2 if changed */
b188c81f
AK
9053 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9054 "mov %%cr2, %%" _ASM_DX " \n\t"
9055 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 9056 "je 2f \n\t"
b188c81f 9057 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 9058 "2: \n\t"
6aa8b732 9059 /* Check if vmlaunch of vmresume is needed */
e08aa78a 9060 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 9061 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
9062 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9063 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9064 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9065 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9066 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9067 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 9068#ifdef CONFIG_X86_64
e08aa78a
AK
9069 "mov %c[r8](%0), %%r8 \n\t"
9070 "mov %c[r9](%0), %%r9 \n\t"
9071 "mov %c[r10](%0), %%r10 \n\t"
9072 "mov %c[r11](%0), %%r11 \n\t"
9073 "mov %c[r12](%0), %%r12 \n\t"
9074 "mov %c[r13](%0), %%r13 \n\t"
9075 "mov %c[r14](%0), %%r14 \n\t"
9076 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 9077#endif
b188c81f 9078 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 9079
6aa8b732 9080 /* Enter guest mode */
83287ea4 9081 "jne 1f \n\t"
4ecac3fd 9082 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
9083 "jmp 2f \n\t"
9084 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9085 "2: "
6aa8b732 9086 /* Save guest registers, load host registers, keep flags */
b188c81f 9087 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 9088 "pop %0 \n\t"
b188c81f
AK
9089 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9090 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9091 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9092 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9093 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9094 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9095 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 9096#ifdef CONFIG_X86_64
e08aa78a
AK
9097 "mov %%r8, %c[r8](%0) \n\t"
9098 "mov %%r9, %c[r9](%0) \n\t"
9099 "mov %%r10, %c[r10](%0) \n\t"
9100 "mov %%r11, %c[r11](%0) \n\t"
9101 "mov %%r12, %c[r12](%0) \n\t"
9102 "mov %%r13, %c[r13](%0) \n\t"
9103 "mov %%r14, %c[r14](%0) \n\t"
9104 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 9105#endif
b188c81f
AK
9106 "mov %%cr2, %%" _ASM_AX " \n\t"
9107 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 9108
b188c81f 9109 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 9110 "setbe %c[fail](%0) \n\t"
83287ea4
AK
9111 ".pushsection .rodata \n\t"
9112 ".global vmx_return \n\t"
9113 "vmx_return: " _ASM_PTR " 2b \n\t"
9114 ".popsection"
e08aa78a 9115 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 9116 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 9117 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 9118 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
9119 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9120 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9121 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9122 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9123 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9124 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9125 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 9126#ifdef CONFIG_X86_64
ad312c7c
ZX
9127 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9128 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9129 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9130 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9131 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9132 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9133 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9134 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9135#endif
40712fae
AK
9136 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9137 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9138 : "cc", "memory"
9139#ifdef CONFIG_X86_64
b188c81f 9140 , "rax", "rbx", "rdi", "rsi"
c2036300 9141 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
9142#else
9143 , "eax", "ebx", "edi", "esi"
c2036300
LV
9144#endif
9145 );
6aa8b732 9146
2a7921b7
GN
9147 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9148 if (debugctlmsr)
9149 update_debugctlmsr(debugctlmsr);
9150
aa67f609
AK
9151#ifndef CONFIG_X86_64
9152 /*
9153 * The sysexit path does not restore ds/es, so we must set them to
9154 * a reasonable value ourselves.
9155 *
9156 * We can't defer this to vmx_load_host_state() since that function
9157 * may be executed in interrupt context, which saves and restore segments
9158 * around it, nullifying its effect.
9159 */
9160 loadsegment(ds, __USER_DS);
9161 loadsegment(es, __USER_DS);
9162#endif
9163
6de4f3ad 9164 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9165 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9166 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9167 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9168 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9169 vcpu->arch.regs_dirty = 0;
9170
1155f76a
AK
9171 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9172
d462b819 9173 vmx->loaded_vmcs->launched = 1;
1b6269db 9174
51aa01d1 9175 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
51aa01d1 9176
1be0e61c
XG
9177 /*
9178 * eager fpu is enabled if PKEY is supported and CR4 is switched
9179 * back on host, so it is safe to read guest PKRU from current
9180 * XSAVE.
9181 */
9182 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9183 vmx->guest_pkru = __read_pkru();
9184 if (vmx->guest_pkru != vmx->host_pkru) {
9185 vmx->guest_pkru_valid = true;
9186 __write_pkru(vmx->host_pkru);
9187 } else
9188 vmx->guest_pkru_valid = false;
9189 }
9190
e0b890d3
GN
9191 /*
9192 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9193 * we did not inject a still-pending event to L1 now because of
9194 * nested_run_pending, we need to re-enable this bit.
9195 */
9196 if (vmx->nested.nested_run_pending)
9197 kvm_make_request(KVM_REQ_EVENT, vcpu);
9198
9199 vmx->nested.nested_run_pending = 0;
9200
51aa01d1
AK
9201 vmx_complete_atomic_exit(vmx);
9202 vmx_recover_nmi_blocking(vmx);
cf393f75 9203 vmx_complete_interrupts(vmx);
6aa8b732
AK
9204}
9205
4fa7734c
PB
9206static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
9207{
9208 struct vcpu_vmx *vmx = to_vmx(vcpu);
9209 int cpu;
9210
9211 if (vmx->loaded_vmcs == &vmx->vmcs01)
9212 return;
9213
9214 cpu = get_cpu();
9215 vmx->loaded_vmcs = &vmx->vmcs01;
9216 vmx_vcpu_put(vcpu);
9217 vmx_vcpu_load(vcpu, cpu);
9218 vcpu->cpu = cpu;
9219 put_cpu();
9220}
9221
2f1fe811
JM
9222/*
9223 * Ensure that the current vmcs of the logical processor is the
9224 * vmcs01 of the vcpu before calling free_nested().
9225 */
9226static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9227{
9228 struct vcpu_vmx *vmx = to_vmx(vcpu);
9229 int r;
9230
9231 r = vcpu_load(vcpu);
9232 BUG_ON(r);
9233 vmx_load_vmcs01(vcpu);
9234 free_nested(vmx);
9235 vcpu_put(vcpu);
9236}
9237
6aa8b732
AK
9238static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9239{
fb3f0f51
RR
9240 struct vcpu_vmx *vmx = to_vmx(vcpu);
9241
843e4330 9242 if (enable_pml)
a3eaa864 9243 vmx_destroy_pml_buffer(vmx);
991e7a0e 9244 free_vpid(vmx->vpid);
4fa7734c 9245 leave_guest_mode(vcpu);
2f1fe811 9246 vmx_free_vcpu_nested(vcpu);
4fa7734c 9247 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9248 kfree(vmx->guest_msrs);
9249 kvm_vcpu_uninit(vcpu);
a4770347 9250 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9251}
9252
fb3f0f51 9253static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9254{
fb3f0f51 9255 int err;
c16f862d 9256 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 9257 int cpu;
6aa8b732 9258
a2fa3e9f 9259 if (!vmx)
fb3f0f51
RR
9260 return ERR_PTR(-ENOMEM);
9261
991e7a0e 9262 vmx->vpid = allocate_vpid();
2384d2b3 9263
fb3f0f51
RR
9264 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9265 if (err)
9266 goto free_vcpu;
965b58a5 9267
4e59516a
PF
9268 err = -ENOMEM;
9269
9270 /*
9271 * If PML is turned on, failure on enabling PML just results in failure
9272 * of creating the vcpu, therefore we can simplify PML logic (by
9273 * avoiding dealing with cases, such as enabling PML partially on vcpus
9274 * for the guest, etc.
9275 */
9276 if (enable_pml) {
9277 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9278 if (!vmx->pml_pg)
9279 goto uninit_vcpu;
9280 }
9281
a2fa3e9f 9282 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9283 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9284 > PAGE_SIZE);
0123be42 9285
4e59516a
PF
9286 if (!vmx->guest_msrs)
9287 goto free_pml;
965b58a5 9288
d462b819
NHE
9289 vmx->loaded_vmcs = &vmx->vmcs01;
9290 vmx->loaded_vmcs->vmcs = alloc_vmcs();
355f4fb1 9291 vmx->loaded_vmcs->shadow_vmcs = NULL;
d462b819 9292 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 9293 goto free_msrs;
d462b819
NHE
9294 if (!vmm_exclusive)
9295 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
9296 loaded_vmcs_init(vmx->loaded_vmcs);
9297 if (!vmm_exclusive)
9298 kvm_cpu_vmxoff();
a2fa3e9f 9299
15ad7146
AK
9300 cpu = get_cpu();
9301 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9302 vmx->vcpu.cpu = cpu;
8b9cf98c 9303 err = vmx_vcpu_setup(vmx);
fb3f0f51 9304 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9305 put_cpu();
fb3f0f51
RR
9306 if (err)
9307 goto free_vmcs;
35754c98 9308 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9309 err = alloc_apic_access_page(kvm);
9310 if (err)
5e4a0b3c 9311 goto free_vmcs;
a63cb560 9312 }
fb3f0f51 9313
b927a3ce
SY
9314 if (enable_ept) {
9315 if (!kvm->arch.ept_identity_map_addr)
9316 kvm->arch.ept_identity_map_addr =
9317 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
9318 err = init_rmode_identity_map(kvm);
9319 if (err)
93ea5388 9320 goto free_vmcs;
b927a3ce 9321 }
b7ebfb05 9322
5c614b35 9323 if (nested) {
b9c237bb 9324 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9325 vmx->nested.vpid02 = allocate_vpid();
9326 }
b9c237bb 9327
705699a1 9328 vmx->nested.posted_intr_nv = -1;
a9d30f33
NHE
9329 vmx->nested.current_vmptr = -1ull;
9330 vmx->nested.current_vmcs12 = NULL;
9331
37e4c997
HZ
9332 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9333
fb3f0f51
RR
9334 return &vmx->vcpu;
9335
9336free_vmcs:
5c614b35 9337 free_vpid(vmx->nested.vpid02);
5f3fbc34 9338 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9339free_msrs:
fb3f0f51 9340 kfree(vmx->guest_msrs);
4e59516a
PF
9341free_pml:
9342 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9343uninit_vcpu:
9344 kvm_vcpu_uninit(&vmx->vcpu);
9345free_vcpu:
991e7a0e 9346 free_vpid(vmx->vpid);
a4770347 9347 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9348 return ERR_PTR(err);
6aa8b732
AK
9349}
9350
002c7f7c
YS
9351static void __init vmx_check_processor_compat(void *rtn)
9352{
9353 struct vmcs_config vmcs_conf;
9354
9355 *(int *)rtn = 0;
9356 if (setup_vmcs_config(&vmcs_conf) < 0)
9357 *(int *)rtn = -EIO;
9358 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9359 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9360 smp_processor_id());
9361 *(int *)rtn = -EIO;
9362 }
9363}
9364
67253af5
SY
9365static int get_ept_level(void)
9366{
9367 return VMX_EPT_DEFAULT_GAW + 1;
9368}
9369
4b12f0de 9370static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9371{
b18d5431
XG
9372 u8 cache;
9373 u64 ipat = 0;
4b12f0de 9374
522c68c4 9375 /* For VT-d and EPT combination
606decd6 9376 * 1. MMIO: always map as UC
522c68c4
SY
9377 * 2. EPT with VT-d:
9378 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9379 * result, try to trust guest.
522c68c4
SY
9380 * b. VT-d with snooping control feature: snooping control feature of
9381 * VT-d engine can guarantee the cache correctness. Just set it
9382 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9383 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9384 * consistent with host MTRR
9385 */
606decd6
PB
9386 if (is_mmio) {
9387 cache = MTRR_TYPE_UNCACHABLE;
9388 goto exit;
9389 }
9390
9391 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9392 ipat = VMX_EPT_IPAT_BIT;
9393 cache = MTRR_TYPE_WRBACK;
9394 goto exit;
9395 }
9396
9397 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9398 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9399 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9400 cache = MTRR_TYPE_WRBACK;
9401 else
9402 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9403 goto exit;
9404 }
9405
ff53604b 9406 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9407
9408exit:
9409 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9410}
9411
17cc3935 9412static int vmx_get_lpage_level(void)
344f414f 9413{
878403b7
SY
9414 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9415 return PT_DIRECTORY_LEVEL;
9416 else
9417 /* For shadow and EPT supported 1GB page */
9418 return PT_PDPE_LEVEL;
344f414f
JR
9419}
9420
feda805f
XG
9421static void vmcs_set_secondary_exec_control(u32 new_ctl)
9422{
9423 /*
9424 * These bits in the secondary execution controls field
9425 * are dynamic, the others are mostly based on the hypervisor
9426 * architecture and the guest's CPUID. Do not touch the
9427 * dynamic bits.
9428 */
9429 u32 mask =
9430 SECONDARY_EXEC_SHADOW_VMCS |
9431 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9432 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9433
9434 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9435
9436 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9437 (new_ctl & ~mask) | (cur_ctl & mask));
9438}
9439
8322ebbb
DM
9440/*
9441 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9442 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9443 */
9444static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9445{
9446 struct vcpu_vmx *vmx = to_vmx(vcpu);
9447 struct kvm_cpuid_entry2 *entry;
9448
9449 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9450 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9451
9452#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9453 if (entry && (entry->_reg & (_cpuid_mask))) \
9454 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9455} while (0)
9456
9457 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9458 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9459 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9460 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9461 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9462 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9463 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9464 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9465 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9466 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9467 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9468 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9469 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9470 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9471 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9472
9473 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9474 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9475 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9476 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9477 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9478 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9479 cr4_fixed1_update(bit(11), ecx, bit(2));
9480
9481#undef cr4_fixed1_update
9482}
9483
0e851880
SY
9484static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9485{
4e47c7a6
SY
9486 struct kvm_cpuid_entry2 *best;
9487 struct vcpu_vmx *vmx = to_vmx(vcpu);
feda805f 9488 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
4e47c7a6 9489
4e47c7a6 9490 if (vmx_rdtscp_supported()) {
1cea0ce6
XG
9491 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9492 if (!rdtscp_enabled)
feda805f 9493 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
f36201e5 9494
8b97265a 9495 if (nested) {
1cea0ce6 9496 if (rdtscp_enabled)
8b97265a
PB
9497 vmx->nested.nested_vmx_secondary_ctls_high |=
9498 SECONDARY_EXEC_RDTSCP;
9499 else
9500 vmx->nested.nested_vmx_secondary_ctls_high &=
9501 ~SECONDARY_EXEC_RDTSCP;
9502 }
4e47c7a6 9503 }
ad756a16 9504
ad756a16
MJ
9505 /* Exposing INVPCID only when PCID is exposed */
9506 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9507 if (vmx_invpcid_supported() &&
29541bb8
XG
9508 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9509 !guest_cpuid_has_pcid(vcpu))) {
feda805f 9510 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
29541bb8 9511
ad756a16 9512 if (best)
4f977045 9513 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 9514 }
8b3e34e4 9515
45bdbcfd
HH
9516 if (cpu_has_secondary_exec_ctrls())
9517 vmcs_set_secondary_exec_control(secondary_exec_ctl);
feda805f 9518
37e4c997
HZ
9519 if (nested_vmx_allowed(vcpu))
9520 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9521 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9522 else
9523 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9524 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
9525
9526 if (nested_vmx_allowed(vcpu))
9527 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
9528}
9529
d4330ef2
JR
9530static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9531{
7b8050f5
NHE
9532 if (func == 1 && nested)
9533 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9534}
9535
25d92081
YZ
9536static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9537 struct x86_exception *fault)
9538{
533558bc
JK
9539 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9540 u32 exit_reason;
25d92081
YZ
9541
9542 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9543 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9544 else
533558bc
JK
9545 exit_reason = EXIT_REASON_EPT_VIOLATION;
9546 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
9547 vmcs12->guest_physical_address = fault->address;
9548}
9549
155a97a3
NHE
9550/* Callbacks for nested_ept_init_mmu_context: */
9551
9552static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9553{
9554 /* return the page table to be shadowed - in our case, EPT12 */
9555 return get_vmcs12(vcpu)->ept_pointer;
9556}
9557
8a3c1a33 9558static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9559{
ad896af0
PB
9560 WARN_ON(mmu_is_nested(vcpu));
9561 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb
WV
9562 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9563 VMX_EPT_EXECUTE_ONLY_BIT);
155a97a3
NHE
9564 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9565 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9566 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9567
9568 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
155a97a3
NHE
9569}
9570
9571static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9572{
9573 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9574}
9575
19d5f10b
EK
9576static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9577 u16 error_code)
9578{
9579 bool inequality, bit;
9580
9581 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9582 inequality =
9583 (error_code & vmcs12->page_fault_error_code_mask) !=
9584 vmcs12->page_fault_error_code_match;
9585 return inequality ^ bit;
9586}
9587
feaf0c7d
GN
9588static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9589 struct x86_exception *fault)
9590{
9591 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9592
9593 WARN_ON(!is_guest_mode(vcpu));
9594
19d5f10b 9595 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
533558bc
JK
9596 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9597 vmcs_read32(VM_EXIT_INTR_INFO),
9598 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
9599 else
9600 kvm_inject_page_fault(vcpu, fault);
9601}
9602
a2bcba50
WL
9603static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9604 struct vmcs12 *vmcs12)
9605{
9606 struct vcpu_vmx *vmx = to_vmx(vcpu);
9090422f 9607 int maxphyaddr = cpuid_maxphyaddr(vcpu);
a2bcba50
WL
9608
9609 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9090422f
EK
9610 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9611 vmcs12->apic_access_addr >> maxphyaddr)
a2bcba50
WL
9612 return false;
9613
9614 /*
9615 * Translate L1 physical address to host physical
9616 * address for vmcs02. Keep the page pinned, so this
9617 * physical address remains valid. We keep a reference
9618 * to it so we can release it later.
9619 */
9620 if (vmx->nested.apic_access_page) /* shouldn't happen */
9621 nested_release_page(vmx->nested.apic_access_page);
9622 vmx->nested.apic_access_page =
9623 nested_get_page(vcpu, vmcs12->apic_access_addr);
9624 }
a7c0b07d
WL
9625
9626 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9090422f
EK
9627 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9628 vmcs12->virtual_apic_page_addr >> maxphyaddr)
a7c0b07d
WL
9629 return false;
9630
9631 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9632 nested_release_page(vmx->nested.virtual_apic_page);
9633 vmx->nested.virtual_apic_page =
9634 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9635
9636 /*
9637 * Failing the vm entry is _not_ what the processor does
9638 * but it's basically the only possibility we have.
9639 * We could still enter the guest if CR8 load exits are
9640 * enabled, CR8 store exits are enabled, and virtualize APIC
9641 * access is disabled; in this case the processor would never
9642 * use the TPR shadow and we could simply clear the bit from
9643 * the execution control. But such a configuration is useless,
9644 * so let's keep the code simple.
9645 */
9646 if (!vmx->nested.virtual_apic_page)
9647 return false;
9648 }
9649
705699a1 9650 if (nested_cpu_has_posted_intr(vmcs12)) {
9090422f
EK
9651 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9652 vmcs12->posted_intr_desc_addr >> maxphyaddr)
705699a1
WV
9653 return false;
9654
9655 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9656 kunmap(vmx->nested.pi_desc_page);
9657 nested_release_page(vmx->nested.pi_desc_page);
9658 }
9659 vmx->nested.pi_desc_page =
9660 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9661 if (!vmx->nested.pi_desc_page)
9662 return false;
9663
9664 vmx->nested.pi_desc =
9665 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9666 if (!vmx->nested.pi_desc) {
9667 nested_release_page_clean(vmx->nested.pi_desc_page);
9668 return false;
9669 }
9670 vmx->nested.pi_desc =
9671 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9672 (unsigned long)(vmcs12->posted_intr_desc_addr &
9673 (PAGE_SIZE - 1)));
9674 }
9675
a2bcba50
WL
9676 return true;
9677}
9678
f4124500
JK
9679static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9680{
9681 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9682 struct vcpu_vmx *vmx = to_vmx(vcpu);
9683
9684 if (vcpu->arch.virtual_tsc_khz == 0)
9685 return;
9686
9687 /* Make sure short timeouts reliably trigger an immediate vmexit.
9688 * hrtimer_start does not guarantee this. */
9689 if (preemption_timeout <= 1) {
9690 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9691 return;
9692 }
9693
9694 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9695 preemption_timeout *= 1000000;
9696 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9697 hrtimer_start(&vmx->nested.preemption_timer,
9698 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9699}
9700
3af18d9c
WV
9701static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9702 struct vmcs12 *vmcs12)
9703{
9704 int maxphyaddr;
9705 u64 addr;
9706
9707 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9708 return 0;
9709
9710 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9711 WARN_ON(1);
9712 return -EINVAL;
9713 }
9714 maxphyaddr = cpuid_maxphyaddr(vcpu);
9715
9716 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9717 ((addr + PAGE_SIZE) >> maxphyaddr))
9718 return -EINVAL;
9719
9720 return 0;
9721}
9722
9723/*
9724 * Merge L0's and L1's MSR bitmap, return false to indicate that
9725 * we do not use the hardware.
9726 */
9727static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9728 struct vmcs12 *vmcs12)
9729{
82f0dd4b 9730 int msr;
f2b93280 9731 struct page *page;
d048c098
RK
9732 unsigned long *msr_bitmap_l1;
9733 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
f2b93280 9734
d048c098 9735 /* This shortcut is ok because we support only x2APIC MSRs so far. */
f2b93280
WV
9736 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9737 return false;
9738
9739 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9740 if (!page) {
9741 WARN_ON(1);
9742 return false;
9743 }
d048c098
RK
9744 msr_bitmap_l1 = (unsigned long *)kmap(page);
9745 if (!msr_bitmap_l1) {
f2b93280
WV
9746 nested_release_page_clean(page);
9747 WARN_ON(1);
9748 return false;
9749 }
9750
d048c098
RK
9751 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9752
f2b93280 9753 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
9754 if (nested_cpu_has_apic_reg_virt(vmcs12))
9755 for (msr = 0x800; msr <= 0x8ff; msr++)
9756 nested_vmx_disable_intercept_for_msr(
d048c098 9757 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 9758 msr, MSR_TYPE_R);
d048c098
RK
9759
9760 nested_vmx_disable_intercept_for_msr(
9761 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
9762 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9763 MSR_TYPE_R | MSR_TYPE_W);
d048c098 9764
608406e2 9765 if (nested_cpu_has_vid(vmcs12)) {
608406e2 9766 nested_vmx_disable_intercept_for_msr(
d048c098 9767 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9768 APIC_BASE_MSR + (APIC_EOI >> 4),
9769 MSR_TYPE_W);
9770 nested_vmx_disable_intercept_for_msr(
d048c098 9771 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9772 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9773 MSR_TYPE_W);
9774 }
82f0dd4b 9775 }
f2b93280
WV
9776 kunmap(page);
9777 nested_release_page_clean(page);
9778
9779 return true;
9780}
9781
9782static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9783 struct vmcs12 *vmcs12)
9784{
82f0dd4b 9785 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 9786 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
9787 !nested_cpu_has_vid(vmcs12) &&
9788 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
9789 return 0;
9790
9791 /*
9792 * If virtualize x2apic mode is enabled,
9793 * virtualize apic access must be disabled.
9794 */
82f0dd4b
WV
9795 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9796 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
9797 return -EINVAL;
9798
608406e2
WV
9799 /*
9800 * If virtual interrupt delivery is enabled,
9801 * we must exit on external interrupts.
9802 */
9803 if (nested_cpu_has_vid(vmcs12) &&
9804 !nested_exit_on_intr(vcpu))
9805 return -EINVAL;
9806
705699a1
WV
9807 /*
9808 * bits 15:8 should be zero in posted_intr_nv,
9809 * the descriptor address has been already checked
9810 * in nested_get_vmcs12_pages.
9811 */
9812 if (nested_cpu_has_posted_intr(vmcs12) &&
9813 (!nested_cpu_has_vid(vmcs12) ||
9814 !nested_exit_intr_ack_set(vcpu) ||
9815 vmcs12->posted_intr_nv & 0xff00))
9816 return -EINVAL;
9817
f2b93280
WV
9818 /* tpr shadow is needed by all apicv features. */
9819 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9820 return -EINVAL;
9821
9822 return 0;
3af18d9c
WV
9823}
9824
e9ac033e
EK
9825static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9826 unsigned long count_field,
92d71bc6 9827 unsigned long addr_field)
ff651cb6 9828{
92d71bc6 9829 int maxphyaddr;
e9ac033e
EK
9830 u64 count, addr;
9831
9832 if (vmcs12_read_any(vcpu, count_field, &count) ||
9833 vmcs12_read_any(vcpu, addr_field, &addr)) {
9834 WARN_ON(1);
9835 return -EINVAL;
9836 }
9837 if (count == 0)
9838 return 0;
92d71bc6 9839 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
9840 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9841 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 9842 pr_debug_ratelimited(
e9ac033e
EK
9843 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9844 addr_field, maxphyaddr, count, addr);
9845 return -EINVAL;
9846 }
9847 return 0;
9848}
9849
9850static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9851 struct vmcs12 *vmcs12)
9852{
e9ac033e
EK
9853 if (vmcs12->vm_exit_msr_load_count == 0 &&
9854 vmcs12->vm_exit_msr_store_count == 0 &&
9855 vmcs12->vm_entry_msr_load_count == 0)
9856 return 0; /* Fast path */
e9ac033e 9857 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 9858 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 9859 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 9860 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 9861 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 9862 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
9863 return -EINVAL;
9864 return 0;
9865}
9866
9867static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9868 struct vmx_msr_entry *e)
9869{
9870 /* x2APIC MSR accesses are not allowed */
8a9781f7 9871 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
9872 return -EINVAL;
9873 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9874 e->index == MSR_IA32_UCODE_REV)
9875 return -EINVAL;
9876 if (e->reserved != 0)
ff651cb6
WV
9877 return -EINVAL;
9878 return 0;
9879}
9880
e9ac033e
EK
9881static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9882 struct vmx_msr_entry *e)
ff651cb6
WV
9883{
9884 if (e->index == MSR_FS_BASE ||
9885 e->index == MSR_GS_BASE ||
e9ac033e
EK
9886 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9887 nested_vmx_msr_check_common(vcpu, e))
9888 return -EINVAL;
9889 return 0;
9890}
9891
9892static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9893 struct vmx_msr_entry *e)
9894{
9895 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9896 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
9897 return -EINVAL;
9898 return 0;
9899}
9900
9901/*
9902 * Load guest's/host's msr at nested entry/exit.
9903 * return 0 for success, entry index for failure.
9904 */
9905static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9906{
9907 u32 i;
9908 struct vmx_msr_entry e;
9909 struct msr_data msr;
9910
9911 msr.host_initiated = false;
9912 for (i = 0; i < count; i++) {
54bf36aa
PB
9913 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9914 &e, sizeof(e))) {
bbe41b95 9915 pr_debug_ratelimited(
e9ac033e
EK
9916 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9917 __func__, i, gpa + i * sizeof(e));
ff651cb6 9918 goto fail;
e9ac033e
EK
9919 }
9920 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 9921 pr_debug_ratelimited(
e9ac033e
EK
9922 "%s check failed (%u, 0x%x, 0x%x)\n",
9923 __func__, i, e.index, e.reserved);
9924 goto fail;
9925 }
ff651cb6
WV
9926 msr.index = e.index;
9927 msr.data = e.value;
e9ac033e 9928 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 9929 pr_debug_ratelimited(
e9ac033e
EK
9930 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9931 __func__, i, e.index, e.value);
ff651cb6 9932 goto fail;
e9ac033e 9933 }
ff651cb6
WV
9934 }
9935 return 0;
9936fail:
9937 return i + 1;
9938}
9939
9940static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9941{
9942 u32 i;
9943 struct vmx_msr_entry e;
9944
9945 for (i = 0; i < count; i++) {
609e36d3 9946 struct msr_data msr_info;
54bf36aa
PB
9947 if (kvm_vcpu_read_guest(vcpu,
9948 gpa + i * sizeof(e),
9949 &e, 2 * sizeof(u32))) {
bbe41b95 9950 pr_debug_ratelimited(
e9ac033e
EK
9951 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9952 __func__, i, gpa + i * sizeof(e));
ff651cb6 9953 return -EINVAL;
e9ac033e
EK
9954 }
9955 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 9956 pr_debug_ratelimited(
e9ac033e
EK
9957 "%s check failed (%u, 0x%x, 0x%x)\n",
9958 __func__, i, e.index, e.reserved);
ff651cb6 9959 return -EINVAL;
e9ac033e 9960 }
609e36d3
PB
9961 msr_info.host_initiated = false;
9962 msr_info.index = e.index;
9963 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 9964 pr_debug_ratelimited(
e9ac033e
EK
9965 "%s cannot read MSR (%u, 0x%x)\n",
9966 __func__, i, e.index);
9967 return -EINVAL;
9968 }
54bf36aa
PB
9969 if (kvm_vcpu_write_guest(vcpu,
9970 gpa + i * sizeof(e) +
9971 offsetof(struct vmx_msr_entry, value),
9972 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 9973 pr_debug_ratelimited(
e9ac033e 9974 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 9975 __func__, i, e.index, msr_info.data);
e9ac033e
EK
9976 return -EINVAL;
9977 }
ff651cb6
WV
9978 }
9979 return 0;
9980}
9981
1dc35dac
LP
9982static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
9983{
9984 unsigned long invalid_mask;
9985
9986 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
9987 return (val & invalid_mask) == 0;
9988}
9989
9ed38ffa
LP
9990/*
9991 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
9992 * emulating VM entry into a guest with EPT enabled.
9993 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9994 * is assigned to entry_failure_code on failure.
9995 */
9996static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
9997 unsigned long *entry_failure_code)
9998{
9ed38ffa 9999 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 10000 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
10001 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10002 return 1;
10003 }
10004
10005 /*
10006 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10007 * must not be dereferenced.
10008 */
10009 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10010 !nested_ept) {
10011 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10012 *entry_failure_code = ENTRY_FAIL_PDPTE;
10013 return 1;
10014 }
10015 }
10016
10017 vcpu->arch.cr3 = cr3;
10018 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10019 }
10020
10021 kvm_mmu_reset_context(vcpu);
10022 return 0;
10023}
10024
fe3ef05c
NHE
10025/*
10026 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10027 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 10028 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
10029 * guest in a way that will both be appropriate to L1's requests, and our
10030 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10031 * function also has additional necessary side-effects, like setting various
10032 * vcpu->arch fields.
ee146c1c
LP
10033 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10034 * is assigned to entry_failure_code on failure.
fe3ef05c 10035 */
ee146c1c
LP
10036static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10037 unsigned long *entry_failure_code)
fe3ef05c
NHE
10038{
10039 struct vcpu_vmx *vmx = to_vmx(vcpu);
10040 u32 exec_control;
7ca29de2 10041 bool nested_ept_enabled = false;
fe3ef05c
NHE
10042
10043 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10044 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10045 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10046 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10047 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10048 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10049 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10050 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10051 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10052 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10053 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10054 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10055 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10056 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10057 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10058 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10059 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10060 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10061 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10062 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10063 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10064 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10065 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10066 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10067 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10068 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10069 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10070 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10071 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10072 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10073 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10074 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10075 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10076 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10077 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10078 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10079
2996fca0
JK
10080 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
10081 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10082 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10083 } else {
10084 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10085 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10086 }
fe3ef05c
NHE
10087 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10088 vmcs12->vm_entry_intr_info_field);
10089 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10090 vmcs12->vm_entry_exception_error_code);
10091 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10092 vmcs12->vm_entry_instruction_len);
10093 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10094 vmcs12->guest_interruptibility_info);
fe3ef05c 10095 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 10096 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
10097 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10098 vmcs12->guest_pending_dbg_exceptions);
10099 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10100 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10101
81dc01f7
WL
10102 if (nested_cpu_has_xsaves(vmcs12))
10103 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
10104 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10105
f4124500 10106 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
10107
10108 /* Preemption timer setting is only taken from vmcs01. */
705699a1 10109 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
10110 exec_control |= vmcs_config.pin_based_exec_ctrl;
10111 if (vmx->hv_deadline_tsc == -1)
10112 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 10113
9314006d 10114 /* Posted interrupts setting is only taken from vmcs12. */
705699a1
WV
10115 if (nested_cpu_has_posted_intr(vmcs12)) {
10116 /*
10117 * Note that we use L0's vector here and in
10118 * vmx_deliver_nested_posted_interrupt.
10119 */
10120 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10121 vmx->nested.pi_pending = false;
0bcf261c 10122 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
705699a1
WV
10123 vmcs_write64(POSTED_INTR_DESC_ADDR,
10124 page_to_phys(vmx->nested.pi_desc_page) +
10125 (unsigned long)(vmcs12->posted_intr_desc_addr &
10126 (PAGE_SIZE - 1)));
10127 } else
10128 exec_control &= ~PIN_BASED_POSTED_INTR;
10129
f4124500 10130 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 10131
f4124500
JK
10132 vmx->nested.preemption_timer_expired = false;
10133 if (nested_cpu_has_preemption_timer(vmcs12))
10134 vmx_start_preemption_timer(vcpu);
0238ea91 10135
fe3ef05c
NHE
10136 /*
10137 * Whether page-faults are trapped is determined by a combination of
10138 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10139 * If enable_ept, L0 doesn't care about page faults and we should
10140 * set all of these to L1's desires. However, if !enable_ept, L0 does
10141 * care about (at least some) page faults, and because it is not easy
10142 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10143 * to exit on each and every L2 page fault. This is done by setting
10144 * MASK=MATCH=0 and (see below) EB.PF=1.
10145 * Note that below we don't need special code to set EB.PF beyond the
10146 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10147 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10148 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10149 *
10150 * A problem with this approach (when !enable_ept) is that L1 may be
10151 * injected with more page faults than it asked for. This could have
10152 * caused problems, but in practice existing hypervisors don't care.
10153 * To fix this, we will need to emulate the PFEC checking (on the L1
10154 * page tables), using walk_addr(), when injecting PFs to L1.
10155 */
10156 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10157 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10158 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10159 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10160
10161 if (cpu_has_secondary_exec_ctrls()) {
f4124500 10162 exec_control = vmx_secondary_exec_control(vmx);
e2821620 10163
fe3ef05c 10164 /* Take the following fields only from vmcs12 */
696dfd95 10165 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 10166 SECONDARY_EXEC_RDTSCP |
696dfd95 10167 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
dfa169bb 10168 SECONDARY_EXEC_APIC_REGISTER_VIRT);
fe3ef05c
NHE
10169 if (nested_cpu_has(vmcs12,
10170 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
10171 exec_control |= vmcs12->secondary_vm_exec_control;
10172
10173 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
fe3ef05c
NHE
10174 /*
10175 * If translation failed, no matter: This feature asks
10176 * to exit when accessing the given address, and if it
10177 * can never be accessed, this feature won't do
10178 * anything anyway.
10179 */
10180 if (!vmx->nested.apic_access_page)
10181 exec_control &=
10182 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
10183 else
10184 vmcs_write64(APIC_ACCESS_ADDR,
10185 page_to_phys(vmx->nested.apic_access_page));
f2b93280 10186 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
35754c98 10187 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
ca3f257a
JK
10188 exec_control |=
10189 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
38b99173 10190 kvm_vcpu_reload_apic_access_page(vcpu);
fe3ef05c
NHE
10191 }
10192
608406e2
WV
10193 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10194 vmcs_write64(EOI_EXIT_BITMAP0,
10195 vmcs12->eoi_exit_bitmap0);
10196 vmcs_write64(EOI_EXIT_BITMAP1,
10197 vmcs12->eoi_exit_bitmap1);
10198 vmcs_write64(EOI_EXIT_BITMAP2,
10199 vmcs12->eoi_exit_bitmap2);
10200 vmcs_write64(EOI_EXIT_BITMAP3,
10201 vmcs12->eoi_exit_bitmap3);
10202 vmcs_write16(GUEST_INTR_STATUS,
10203 vmcs12->guest_intr_status);
10204 }
10205
7ca29de2 10206 nested_ept_enabled = (exec_control & SECONDARY_EXEC_ENABLE_EPT) != 0;
fe3ef05c
NHE
10207 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10208 }
10209
10210
10211 /*
10212 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10213 * Some constant fields are set here by vmx_set_constant_host_state().
10214 * Other fields are different per CPU, and will be set later when
10215 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10216 */
a547c6db 10217 vmx_set_constant_host_state(vmx);
fe3ef05c 10218
83bafef1
JM
10219 /*
10220 * Set the MSR load/store lists to match L0's settings.
10221 */
10222 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10223 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10224 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10225 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10226 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10227
fe3ef05c
NHE
10228 /*
10229 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10230 * entry, but only if the current (host) sp changed from the value
10231 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10232 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10233 * here we just force the write to happen on entry.
10234 */
10235 vmx->host_rsp = 0;
10236
10237 exec_control = vmx_exec_control(vmx); /* L0's desires */
10238 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10239 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10240 exec_control &= ~CPU_BASED_TPR_SHADOW;
10241 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d
WL
10242
10243 if (exec_control & CPU_BASED_TPR_SHADOW) {
10244 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
10245 page_to_phys(vmx->nested.virtual_apic_page));
10246 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10247 }
10248
3af18d9c 10249 if (cpu_has_vmx_msr_bitmap() &&
d048c098
RK
10250 exec_control & CPU_BASED_USE_MSR_BITMAPS &&
10251 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
10252 ; /* MSR_BITMAP will be set by following vmx_set_efer. */
10253 else
3af18d9c
WV
10254 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
10255
fe3ef05c 10256 /*
3af18d9c 10257 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10258 * Rather, exit every time.
10259 */
fe3ef05c
NHE
10260 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10261 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10262
10263 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10264
10265 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10266 * bitwise-or of what L1 wants to trap for L2, and what we want to
10267 * trap. Note that CR0.TS also needs updating - we do this later.
10268 */
10269 update_exception_bitmap(vcpu);
10270 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10271 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10272
8049d651
NHE
10273 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10274 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10275 * bits are further modified by vmx_set_efer() below.
10276 */
f4124500 10277 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10278
10279 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10280 * emulated by vmx_set_efer(), below.
10281 */
2961e876 10282 vm_entry_controls_init(vmx,
8049d651
NHE
10283 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10284 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10285 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10286
44811c02 10287 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10288 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02
JK
10289 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10290 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
fe3ef05c
NHE
10291 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10292
10293
10294 set_cr4_guest_host_mask(vmx);
10295
36be0b9d
PB
10296 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10297 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10298
27fc51b2
NHE
10299 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10300 vmcs_write64(TSC_OFFSET,
ea26e4ec 10301 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
27fc51b2 10302 else
ea26e4ec 10303 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
c95ba92a
PF
10304 if (kvm_has_tsc_control)
10305 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
10306
10307 if (enable_vpid) {
10308 /*
5c614b35
WL
10309 * There is no direct mapping between vpid02 and vpid12, the
10310 * vpid02 is per-vCPU for L0 and reused while the value of
10311 * vpid12 is changed w/ one invvpid during nested vmentry.
10312 * The vpid12 is allocated by L1 for L2, so it will not
10313 * influence global bitmap(for vpid01 and vpid02 allocation)
10314 * even if spawn a lot of nested vCPUs.
fe3ef05c 10315 */
5c614b35
WL
10316 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10317 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10318 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10319 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10320 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10321 }
10322 } else {
10323 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10324 vmx_flush_tlb(vcpu);
10325 }
10326
fe3ef05c
NHE
10327 }
10328
155a97a3
NHE
10329 if (nested_cpu_has_ept(vmcs12)) {
10330 kvm_mmu_unload(vcpu);
10331 nested_ept_init_mmu_context(vcpu);
10332 }
10333
fe3ef05c
NHE
10334 /*
10335 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
10336 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
10337 * The CR0_READ_SHADOW is what L2 should have expected to read given
10338 * the specifications by L1; It's not enough to take
10339 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10340 * have more bits than L1 expected.
10341 */
10342 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10343 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10344
10345 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10346 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10347
5a6a9748
DM
10348 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
10349 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10350 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10351 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10352 else
10353 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10354 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10355 vmx_set_efer(vcpu, vcpu->arch.efer);
10356
9ed38ffa
LP
10357 /* Shadow page tables on either EPT or shadow page tables. */
10358 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_ept_enabled,
10359 entry_failure_code))
10360 return 1;
7ca29de2 10361
fe3ef05c
NHE
10362 kvm_mmu_reset_context(vcpu);
10363
feaf0c7d
GN
10364 if (!enable_ept)
10365 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10366
3633cfc3
NHE
10367 /*
10368 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10369 */
10370 if (enable_ept) {
10371 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10372 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10373 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10374 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10375 }
10376
fe3ef05c
NHE
10377 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10378 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 10379 return 0;
fe3ef05c
NHE
10380}
10381
cd232ad0
NHE
10382/*
10383 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10384 * for running an L2 nested guest.
10385 */
10386static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10387{
10388 struct vmcs12 *vmcs12;
10389 struct vcpu_vmx *vmx = to_vmx(vcpu);
10390 int cpu;
10391 struct loaded_vmcs *vmcs02;
384bb783 10392 bool ia32e;
ff651cb6 10393 u32 msr_entry_idx;
ee146c1c 10394 unsigned long exit_qualification;
cd232ad0 10395
eb277562 10396 if (!nested_vmx_check_permission(vcpu))
cd232ad0
NHE
10397 return 1;
10398
eb277562
KH
10399 if (!nested_vmx_check_vmcs12(vcpu))
10400 goto out;
10401
cd232ad0
NHE
10402 vmcs12 = get_vmcs12(vcpu);
10403
012f83cb
AG
10404 if (enable_shadow_vmcs)
10405 copy_shadow_to_vmcs12(vmx);
10406
7c177938
NHE
10407 /*
10408 * The nested entry process starts with enforcing various prerequisites
10409 * on vmcs12 as required by the Intel SDM, and act appropriately when
10410 * they fail: As the SDM explains, some conditions should cause the
10411 * instruction to fail, while others will cause the instruction to seem
10412 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10413 * To speed up the normal (success) code path, we should avoid checking
10414 * for misconfigurations which will anyway be caught by the processor
10415 * when using the merged vmcs02.
10416 */
10417 if (vmcs12->launch_state == launch) {
10418 nested_vmx_failValid(vcpu,
10419 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10420 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
eb277562 10421 goto out;
7c177938
NHE
10422 }
10423
6dfacadd
JK
10424 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10425 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
26539bd0 10426 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
eb277562 10427 goto out;
26539bd0
PB
10428 }
10429
3af18d9c 10430 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
7c177938 10431 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
eb277562 10432 goto out;
7c177938
NHE
10433 }
10434
3af18d9c 10435 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
7c177938 10436 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
eb277562 10437 goto out;
7c177938
NHE
10438 }
10439
f2b93280
WV
10440 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
10441 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
eb277562 10442 goto out;
f2b93280
WV
10443 }
10444
e9ac033e
EK
10445 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
10446 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
eb277562 10447 goto out;
e9ac033e
EK
10448 }
10449
7c177938 10450 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
0115f9cb 10451 vmx->nested.nested_vmx_procbased_ctls_low,
b9c237bb 10452 vmx->nested.nested_vmx_procbased_ctls_high) ||
7c177938 10453 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
b9c237bb
WV
10454 vmx->nested.nested_vmx_secondary_ctls_low,
10455 vmx->nested.nested_vmx_secondary_ctls_high) ||
7c177938 10456 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10457 vmx->nested.nested_vmx_pinbased_ctls_low,
10458 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10459 !vmx_control_verify(vmcs12->vm_exit_controls,
0115f9cb 10460 vmx->nested.nested_vmx_exit_ctls_low,
b9c237bb 10461 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10462 !vmx_control_verify(vmcs12->vm_entry_controls,
0115f9cb 10463 vmx->nested.nested_vmx_entry_ctls_low,
b9c237bb 10464 vmx->nested.nested_vmx_entry_ctls_high))
7c177938
NHE
10465 {
10466 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
eb277562 10467 goto out;
7c177938
NHE
10468 }
10469
3899152c 10470 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac
LP
10471 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10472 !nested_cr3_valid(vcpu, vmcs12->host_cr3)) {
7c177938
NHE
10473 nested_vmx_failValid(vcpu,
10474 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
eb277562 10475 goto out;
7c177938
NHE
10476 }
10477
3899152c
DM
10478 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10479 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)) {
7c177938
NHE
10480 nested_vmx_entry_failure(vcpu, vmcs12,
10481 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
b428018a 10482 return 1;
7c177938
NHE
10483 }
10484 if (vmcs12->vmcs_link_pointer != -1ull) {
10485 nested_vmx_entry_failure(vcpu, vmcs12,
10486 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
b428018a 10487 return 1;
7c177938
NHE
10488 }
10489
384bb783 10490 /*
cb0c8cda 10491 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10492 * are performed on the field for the IA32_EFER MSR:
10493 * - Bits reserved in the IA32_EFER MSR must be 0.
10494 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10495 * the IA-32e mode guest VM-exit control. It must also be identical
10496 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10497 * CR0.PG) is 1.
10498 */
10499 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10500 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10501 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10502 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10503 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10504 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10505 nested_vmx_entry_failure(vcpu, vmcs12,
10506 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
b428018a 10507 return 1;
384bb783
JK
10508 }
10509 }
10510
10511 /*
10512 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10513 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10514 * the values of the LMA and LME bits in the field must each be that of
10515 * the host address-space size VM-exit control.
10516 */
10517 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10518 ia32e = (vmcs12->vm_exit_controls &
10519 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10520 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10521 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10522 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10523 nested_vmx_entry_failure(vcpu, vmcs12,
10524 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
b428018a 10525 return 1;
384bb783
JK
10526 }
10527 }
10528
7c177938
NHE
10529 /*
10530 * We're finally done with prerequisite checking, and can start with
10531 * the nested entry.
10532 */
10533
cd232ad0
NHE
10534 vmcs02 = nested_get_current_vmcs02(vmx);
10535 if (!vmcs02)
10536 return -ENOMEM;
10537
6affcbed
KH
10538 /*
10539 * After this point, the trap flag no longer triggers a singlestep trap
10540 * on the vm entry instructions. Don't call
10541 * kvm_skip_emulated_instruction.
10542 */
eb277562 10543 skip_emulated_instruction(vcpu);
cd232ad0
NHE
10544 enter_guest_mode(vcpu);
10545
2996fca0
JK
10546 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10547 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10548
cd232ad0
NHE
10549 cpu = get_cpu();
10550 vmx->loaded_vmcs = vmcs02;
10551 vmx_vcpu_put(vcpu);
10552 vmx_vcpu_load(vcpu, cpu);
10553 vcpu->cpu = cpu;
10554 put_cpu();
10555
36c3cc42
JK
10556 vmx_segment_cache_clear(vmx);
10557
ee146c1c
LP
10558 if (prepare_vmcs02(vcpu, vmcs12, &exit_qualification)) {
10559 leave_guest_mode(vcpu);
10560 vmx_load_vmcs01(vcpu);
10561 nested_vmx_entry_failure(vcpu, vmcs12,
10562 EXIT_REASON_INVALID_STATE, exit_qualification);
10563 return 1;
10564 }
cd232ad0 10565
ff651cb6
WV
10566 msr_entry_idx = nested_vmx_load_msr(vcpu,
10567 vmcs12->vm_entry_msr_load_addr,
10568 vmcs12->vm_entry_msr_load_count);
10569 if (msr_entry_idx) {
10570 leave_guest_mode(vcpu);
10571 vmx_load_vmcs01(vcpu);
10572 nested_vmx_entry_failure(vcpu, vmcs12,
10573 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10574 return 1;
10575 }
10576
10577 vmcs12->launch_state = 1;
10578
6dfacadd 10579 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10580 return kvm_vcpu_halt(vcpu);
6dfacadd 10581
7af40ad3
JK
10582 vmx->nested.nested_run_pending = 1;
10583
cd232ad0
NHE
10584 /*
10585 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10586 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10587 * returned as far as L1 is concerned. It will only return (and set
10588 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10589 */
10590 return 1;
eb277562
KH
10591
10592out:
6affcbed 10593 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
10594}
10595
4704d0be
NHE
10596/*
10597 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10598 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10599 * This function returns the new value we should put in vmcs12.guest_cr0.
10600 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10601 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10602 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10603 * didn't trap the bit, because if L1 did, so would L0).
10604 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10605 * been modified by L2, and L1 knows it. So just leave the old value of
10606 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10607 * isn't relevant, because if L0 traps this bit it can set it to anything.
10608 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10609 * changed these bits, and therefore they need to be updated, but L0
10610 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10611 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10612 */
10613static inline unsigned long
10614vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10615{
10616 return
10617 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10618 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10619 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10620 vcpu->arch.cr0_guest_owned_bits));
10621}
10622
10623static inline unsigned long
10624vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10625{
10626 return
10627 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10628 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10629 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10630 vcpu->arch.cr4_guest_owned_bits));
10631}
10632
5f3d5799
JK
10633static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10634 struct vmcs12 *vmcs12)
10635{
10636 u32 idt_vectoring;
10637 unsigned int nr;
10638
851eb667 10639 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
10640 nr = vcpu->arch.exception.nr;
10641 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10642
10643 if (kvm_exception_is_soft(nr)) {
10644 vmcs12->vm_exit_instruction_len =
10645 vcpu->arch.event_exit_inst_len;
10646 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10647 } else
10648 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10649
10650 if (vcpu->arch.exception.has_error_code) {
10651 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10652 vmcs12->idt_vectoring_error_code =
10653 vcpu->arch.exception.error_code;
10654 }
10655
10656 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10657 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10658 vmcs12->idt_vectoring_info_field =
10659 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10660 } else if (vcpu->arch.interrupt.pending) {
10661 nr = vcpu->arch.interrupt.nr;
10662 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10663
10664 if (vcpu->arch.interrupt.soft) {
10665 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10666 vmcs12->vm_entry_instruction_len =
10667 vcpu->arch.event_exit_inst_len;
10668 } else
10669 idt_vectoring |= INTR_TYPE_EXT_INTR;
10670
10671 vmcs12->idt_vectoring_info_field = idt_vectoring;
10672 }
10673}
10674
b6b8a145
JK
10675static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10676{
10677 struct vcpu_vmx *vmx = to_vmx(vcpu);
10678
f4124500
JK
10679 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10680 vmx->nested.preemption_timer_expired) {
10681 if (vmx->nested.nested_run_pending)
10682 return -EBUSY;
10683 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10684 return 0;
10685 }
10686
b6b8a145 10687 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
220c5672
JK
10688 if (vmx->nested.nested_run_pending ||
10689 vcpu->arch.interrupt.pending)
b6b8a145
JK
10690 return -EBUSY;
10691 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10692 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10693 INTR_INFO_VALID_MASK, 0);
10694 /*
10695 * The NMI-triggered VM exit counts as injection:
10696 * clear this one and block further NMIs.
10697 */
10698 vcpu->arch.nmi_pending = 0;
10699 vmx_set_nmi_mask(vcpu, true);
10700 return 0;
10701 }
10702
10703 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10704 nested_exit_on_intr(vcpu)) {
10705 if (vmx->nested.nested_run_pending)
10706 return -EBUSY;
10707 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 10708 return 0;
b6b8a145
JK
10709 }
10710
705699a1 10711 return vmx_complete_nested_posted_interrupt(vcpu);
b6b8a145
JK
10712}
10713
f4124500
JK
10714static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10715{
10716 ktime_t remaining =
10717 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10718 u64 value;
10719
10720 if (ktime_to_ns(remaining) <= 0)
10721 return 0;
10722
10723 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10724 do_div(value, 1000000);
10725 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10726}
10727
4704d0be
NHE
10728/*
10729 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10730 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10731 * and this function updates it to reflect the changes to the guest state while
10732 * L2 was running (and perhaps made some exits which were handled directly by L0
10733 * without going back to L1), and to reflect the exit reason.
10734 * Note that we do not have to copy here all VMCS fields, just those that
10735 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10736 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10737 * which already writes to vmcs12 directly.
10738 */
533558bc
JK
10739static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10740 u32 exit_reason, u32 exit_intr_info,
10741 unsigned long exit_qualification)
4704d0be
NHE
10742{
10743 /* update guest state fields: */
10744 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10745 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10746
4704d0be
NHE
10747 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10748 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10749 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10750
10751 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10752 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10753 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10754 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10755 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10756 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10757 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10758 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10759 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10760 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10761 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10762 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10763 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10764 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10765 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10766 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10767 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10768 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10769 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10770 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10771 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10772 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10773 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10774 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10775 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10776 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10777 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10778 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10779 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10780 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10781 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10782 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10783 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10784 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10785 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10786 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10787
4704d0be
NHE
10788 vmcs12->guest_interruptibility_info =
10789 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10790 vmcs12->guest_pending_dbg_exceptions =
10791 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
10792 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10793 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10794 else
10795 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 10796
f4124500
JK
10797 if (nested_cpu_has_preemption_timer(vmcs12)) {
10798 if (vmcs12->vm_exit_controls &
10799 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10800 vmcs12->vmx_preemption_timer_value =
10801 vmx_get_preemption_timer_value(vcpu);
10802 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10803 }
7854cbca 10804
3633cfc3
NHE
10805 /*
10806 * In some cases (usually, nested EPT), L2 is allowed to change its
10807 * own CR3 without exiting. If it has changed it, we must keep it.
10808 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10809 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10810 *
10811 * Additionally, restore L2's PDPTR to vmcs12.
10812 */
10813 if (enable_ept) {
f3531054 10814 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
10815 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10816 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10817 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10818 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10819 }
10820
119a9c01
JD
10821 if (nested_cpu_has_ept(vmcs12))
10822 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10823
608406e2
WV
10824 if (nested_cpu_has_vid(vmcs12))
10825 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10826
c18911a2
JK
10827 vmcs12->vm_entry_controls =
10828 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 10829 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 10830
2996fca0
JK
10831 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10832 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10833 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10834 }
10835
4704d0be
NHE
10836 /* TODO: These cannot have changed unless we have MSR bitmaps and
10837 * the relevant bit asks not to trap the change */
b8c07d55 10838 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 10839 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
10840 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10841 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
10842 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10843 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10844 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 10845 if (kvm_mpx_supported())
36be0b9d 10846 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
81dc01f7
WL
10847 if (nested_cpu_has_xsaves(vmcs12))
10848 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
4704d0be
NHE
10849
10850 /* update exit information fields: */
10851
533558bc
JK
10852 vmcs12->vm_exit_reason = exit_reason;
10853 vmcs12->exit_qualification = exit_qualification;
4704d0be 10854
533558bc 10855 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
10856 if ((vmcs12->vm_exit_intr_info &
10857 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10858 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10859 vmcs12->vm_exit_intr_error_code =
10860 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 10861 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
10862 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10863 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10864
5f3d5799
JK
10865 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10866 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10867 * instead of reading the real value. */
4704d0be 10868 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
10869
10870 /*
10871 * Transfer the event that L0 or L1 may wanted to inject into
10872 * L2 to IDT_VECTORING_INFO_FIELD.
10873 */
10874 vmcs12_save_pending_event(vcpu, vmcs12);
10875 }
10876
10877 /*
10878 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10879 * preserved above and would only end up incorrectly in L1.
10880 */
10881 vcpu->arch.nmi_injected = false;
10882 kvm_clear_exception_queue(vcpu);
10883 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
10884}
10885
10886/*
10887 * A part of what we need to when the nested L2 guest exits and we want to
10888 * run its L1 parent, is to reset L1's guest state to the host state specified
10889 * in vmcs12.
10890 * This function is to be called not only on normal nested exit, but also on
10891 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10892 * Failures During or After Loading Guest State").
10893 * This function should be called when the active VMCS is L1's (vmcs01).
10894 */
733568f9
JK
10895static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10896 struct vmcs12 *vmcs12)
4704d0be 10897{
21feb4eb 10898 struct kvm_segment seg;
1dc35dac 10899 unsigned long entry_failure_code;
21feb4eb 10900
4704d0be
NHE
10901 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10902 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 10903 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
10904 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10905 else
10906 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10907 vmx_set_efer(vcpu, vcpu->arch.efer);
10908
10909 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10910 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 10911 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
10912 /*
10913 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10914 * actually changed, because it depends on the current state of
10915 * fpu_active (which may have changed).
10916 * Note that vmx_set_cr0 refers to efer set above.
10917 */
9e3e4dbf 10918 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be
NHE
10919 /*
10920 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10921 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10922 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10923 */
10924 update_exception_bitmap(vcpu);
10925 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10926 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10927
10928 /*
10929 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10930 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10931 */
10932 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10933 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10934
29bf08f1 10935 nested_ept_uninit_mmu_context(vcpu);
155a97a3 10936
1dc35dac
LP
10937 /*
10938 * Only PDPTE load can fail as the value of cr3 was checked on entry and
10939 * couldn't have changed.
10940 */
10941 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
10942 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4704d0be 10943
feaf0c7d
GN
10944 if (!enable_ept)
10945 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10946
4704d0be
NHE
10947 if (enable_vpid) {
10948 /*
10949 * Trivially support vpid by letting L2s share their parent
10950 * L1's vpid. TODO: move to a more elaborate solution, giving
10951 * each L2 its own vpid and exposing the vpid feature to L1.
10952 */
10953 vmx_flush_tlb(vcpu);
10954 }
10955
10956
10957 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10958 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10959 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10960 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10961 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 10962
36be0b9d
PB
10963 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10964 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10965 vmcs_write64(GUEST_BNDCFGS, 0);
10966
44811c02 10967 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 10968 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
10969 vcpu->arch.pat = vmcs12->host_ia32_pat;
10970 }
4704d0be
NHE
10971 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10972 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10973 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 10974
21feb4eb
ACL
10975 /* Set L1 segment info according to Intel SDM
10976 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10977 seg = (struct kvm_segment) {
10978 .base = 0,
10979 .limit = 0xFFFFFFFF,
10980 .selector = vmcs12->host_cs_selector,
10981 .type = 11,
10982 .present = 1,
10983 .s = 1,
10984 .g = 1
10985 };
10986 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10987 seg.l = 1;
10988 else
10989 seg.db = 1;
10990 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10991 seg = (struct kvm_segment) {
10992 .base = 0,
10993 .limit = 0xFFFFFFFF,
10994 .type = 3,
10995 .present = 1,
10996 .s = 1,
10997 .db = 1,
10998 .g = 1
10999 };
11000 seg.selector = vmcs12->host_ds_selector;
11001 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11002 seg.selector = vmcs12->host_es_selector;
11003 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11004 seg.selector = vmcs12->host_ss_selector;
11005 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11006 seg.selector = vmcs12->host_fs_selector;
11007 seg.base = vmcs12->host_fs_base;
11008 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11009 seg.selector = vmcs12->host_gs_selector;
11010 seg.base = vmcs12->host_gs_base;
11011 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11012 seg = (struct kvm_segment) {
205befd9 11013 .base = vmcs12->host_tr_base,
21feb4eb
ACL
11014 .limit = 0x67,
11015 .selector = vmcs12->host_tr_selector,
11016 .type = 11,
11017 .present = 1
11018 };
11019 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11020
503cd0c5
JK
11021 kvm_set_dr(vcpu, 7, 0x400);
11022 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 11023
3af18d9c
WV
11024 if (cpu_has_vmx_msr_bitmap())
11025 vmx_set_msr_bitmap(vcpu);
11026
ff651cb6
WV
11027 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11028 vmcs12->vm_exit_msr_load_count))
11029 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
11030}
11031
11032/*
11033 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11034 * and modify vmcs12 to make it see what it would expect to see there if
11035 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11036 */
533558bc
JK
11037static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11038 u32 exit_intr_info,
11039 unsigned long exit_qualification)
4704d0be
NHE
11040{
11041 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be 11042 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
cf3215d9 11043 u32 vm_inst_error = 0;
4704d0be 11044
5f3d5799
JK
11045 /* trying to cancel vmlaunch/vmresume is a bug */
11046 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11047
4704d0be 11048 leave_guest_mode(vcpu);
533558bc
JK
11049 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11050 exit_qualification);
4704d0be 11051
ff651cb6
WV
11052 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11053 vmcs12->vm_exit_msr_store_count))
11054 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11055
cf3215d9
JM
11056 if (unlikely(vmx->fail))
11057 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
11058
f3380ca5
WL
11059 vmx_load_vmcs01(vcpu);
11060
77b0f5d6
BD
11061 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
11062 && nested_exit_intr_ack_set(vcpu)) {
11063 int irq = kvm_cpu_get_interrupt(vcpu);
11064 WARN_ON(irq < 0);
11065 vmcs12->vm_exit_intr_info = irq |
11066 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11067 }
11068
542060ea
JK
11069 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11070 vmcs12->exit_qualification,
11071 vmcs12->idt_vectoring_info_field,
11072 vmcs12->vm_exit_intr_info,
11073 vmcs12->vm_exit_intr_error_code,
11074 KVM_ISA_VMX);
4704d0be 11075
8391ce44
PB
11076 vm_entry_controls_reset_shadow(vmx);
11077 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
11078 vmx_segment_cache_clear(vmx);
11079
4704d0be
NHE
11080 /* if no vmcs02 cache requested, remove the one we used */
11081 if (VMCS02_POOL_SIZE == 0)
11082 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11083
11084 load_vmcs12_host_state(vcpu, vmcs12);
11085
9314006d 11086 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
11087 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11088 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 11089 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
11090 if (vmx->hv_deadline_tsc == -1)
11091 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11092 PIN_BASED_VMX_PREEMPTION_TIMER);
11093 else
11094 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11095 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
11096 if (kvm_has_tsc_control)
11097 decache_tsc_multiplier(vmx);
4704d0be 11098
dccbfcf5
RK
11099 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11100 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11101 vmx_set_virtual_x2apic_mode(vcpu,
11102 vcpu->arch.apic_base & X2APIC_ENABLE);
11103 }
4704d0be
NHE
11104
11105 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11106 vmx->host_rsp = 0;
11107
11108 /* Unpin physical memory we referred to in vmcs02 */
11109 if (vmx->nested.apic_access_page) {
11110 nested_release_page(vmx->nested.apic_access_page);
48d89b92 11111 vmx->nested.apic_access_page = NULL;
4704d0be 11112 }
a7c0b07d
WL
11113 if (vmx->nested.virtual_apic_page) {
11114 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 11115 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 11116 }
705699a1
WV
11117 if (vmx->nested.pi_desc_page) {
11118 kunmap(vmx->nested.pi_desc_page);
11119 nested_release_page(vmx->nested.pi_desc_page);
11120 vmx->nested.pi_desc_page = NULL;
11121 vmx->nested.pi_desc = NULL;
11122 }
4704d0be 11123
38b99173
TC
11124 /*
11125 * We are now running in L2, mmu_notifier will force to reload the
11126 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11127 */
c83b6d15 11128 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 11129
4704d0be
NHE
11130 /*
11131 * Exiting from L2 to L1, we're now back to L1 which thinks it just
11132 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11133 * success or failure flag accordingly.
11134 */
11135 if (unlikely(vmx->fail)) {
11136 vmx->fail = 0;
cf3215d9 11137 nested_vmx_failValid(vcpu, vm_inst_error);
4704d0be
NHE
11138 } else
11139 nested_vmx_succeed(vcpu);
012f83cb
AG
11140 if (enable_shadow_vmcs)
11141 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
11142
11143 /* in case we halted in L2 */
11144 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
11145}
11146
42124925
JK
11147/*
11148 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11149 */
11150static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11151{
11152 if (is_guest_mode(vcpu))
533558bc 11153 nested_vmx_vmexit(vcpu, -1, 0, 0);
42124925
JK
11154 free_nested(to_vmx(vcpu));
11155}
11156
7c177938
NHE
11157/*
11158 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11159 * 23.7 "VM-entry failures during or after loading guest state" (this also
11160 * lists the acceptable exit-reason and exit-qualification parameters).
11161 * It should only be called before L2 actually succeeded to run, and when
11162 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11163 */
11164static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11165 struct vmcs12 *vmcs12,
11166 u32 reason, unsigned long qualification)
11167{
11168 load_vmcs12_host_state(vcpu, vmcs12);
11169 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11170 vmcs12->exit_qualification = qualification;
11171 nested_vmx_succeed(vcpu);
012f83cb
AG
11172 if (enable_shadow_vmcs)
11173 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
11174}
11175
8a76d7f2
JR
11176static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11177 struct x86_instruction_info *info,
11178 enum x86_intercept_stage stage)
11179{
11180 return X86EMUL_CONTINUE;
11181}
11182
64672c95
YJ
11183#ifdef CONFIG_X86_64
11184/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11185static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11186 u64 divisor, u64 *result)
11187{
11188 u64 low = a << shift, high = a >> (64 - shift);
11189
11190 /* To avoid the overflow on divq */
11191 if (high >= divisor)
11192 return 1;
11193
11194 /* Low hold the result, high hold rem which is discarded */
11195 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11196 "rm" (divisor), "0" (low), "1" (high));
11197 *result = low;
11198
11199 return 0;
11200}
11201
11202static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11203{
11204 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
11205 u64 tscl = rdtsc();
11206 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11207 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
11208
11209 /* Convert to host delta tsc if tsc scaling is enabled */
11210 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11211 u64_shl_div_u64(delta_tsc,
11212 kvm_tsc_scaling_ratio_frac_bits,
11213 vcpu->arch.tsc_scaling_ratio,
11214 &delta_tsc))
11215 return -ERANGE;
11216
11217 /*
11218 * If the delta tsc can't fit in the 32 bit after the multi shift,
11219 * we can't use the preemption timer.
11220 * It's possible that it fits on later vmentries, but checking
11221 * on every vmentry is costly so we just use an hrtimer.
11222 */
11223 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11224 return -ERANGE;
11225
11226 vmx->hv_deadline_tsc = tscl + delta_tsc;
11227 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11228 PIN_BASED_VMX_PREEMPTION_TIMER);
11229 return 0;
11230}
11231
11232static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11233{
11234 struct vcpu_vmx *vmx = to_vmx(vcpu);
11235 vmx->hv_deadline_tsc = -1;
11236 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11237 PIN_BASED_VMX_PREEMPTION_TIMER);
11238}
11239#endif
11240
48d89b92 11241static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 11242{
b4a2d31d
RK
11243 if (ple_gap)
11244 shrink_ple_window(vcpu);
ae97a3b8
RK
11245}
11246
843e4330
KH
11247static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11248 struct kvm_memory_slot *slot)
11249{
11250 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11251 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11252}
11253
11254static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11255 struct kvm_memory_slot *slot)
11256{
11257 kvm_mmu_slot_set_dirty(kvm, slot);
11258}
11259
11260static void vmx_flush_log_dirty(struct kvm *kvm)
11261{
11262 kvm_flush_pml_buffers(kvm);
11263}
11264
11265static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11266 struct kvm_memory_slot *memslot,
11267 gfn_t offset, unsigned long mask)
11268{
11269 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11270}
11271
bf9f6ac8
FW
11272/*
11273 * This routine does the following things for vCPU which is going
11274 * to be blocked if VT-d PI is enabled.
11275 * - Store the vCPU to the wakeup list, so when interrupts happen
11276 * we can find the right vCPU to wake up.
11277 * - Change the Posted-interrupt descriptor as below:
11278 * 'NDST' <-- vcpu->pre_pcpu
11279 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11280 * - If 'ON' is set during this process, which means at least one
11281 * interrupt is posted for this vCPU, we cannot block it, in
11282 * this case, return 1, otherwise, return 0.
11283 *
11284 */
bc22512b 11285static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11286{
11287 unsigned long flags;
11288 unsigned int dest;
11289 struct pi_desc old, new;
11290 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11291
11292 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11293 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11294 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11295 return 0;
11296
11297 vcpu->pre_pcpu = vcpu->cpu;
11298 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11299 vcpu->pre_pcpu), flags);
11300 list_add_tail(&vcpu->blocked_vcpu_list,
11301 &per_cpu(blocked_vcpu_on_cpu,
11302 vcpu->pre_pcpu));
11303 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11304 vcpu->pre_pcpu), flags);
11305
11306 do {
11307 old.control = new.control = pi_desc->control;
11308
11309 /*
11310 * We should not block the vCPU if
11311 * an interrupt is posted for it.
11312 */
11313 if (pi_test_on(pi_desc) == 1) {
11314 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11315 vcpu->pre_pcpu), flags);
11316 list_del(&vcpu->blocked_vcpu_list);
11317 spin_unlock_irqrestore(
11318 &per_cpu(blocked_vcpu_on_cpu_lock,
11319 vcpu->pre_pcpu), flags);
11320 vcpu->pre_pcpu = -1;
11321
11322 return 1;
11323 }
11324
11325 WARN((pi_desc->sn == 1),
11326 "Warning: SN field of posted-interrupts "
11327 "is set before blocking\n");
11328
11329 /*
11330 * Since vCPU can be preempted during this process,
11331 * vcpu->cpu could be different with pre_pcpu, we
11332 * need to set pre_pcpu as the destination of wakeup
11333 * notification event, then we can find the right vCPU
11334 * to wakeup in wakeup handler if interrupts happen
11335 * when the vCPU is in blocked state.
11336 */
11337 dest = cpu_physical_id(vcpu->pre_pcpu);
11338
11339 if (x2apic_enabled())
11340 new.ndst = dest;
11341 else
11342 new.ndst = (dest << 8) & 0xFF00;
11343
11344 /* set 'NV' to 'wakeup vector' */
11345 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11346 } while (cmpxchg(&pi_desc->control, old.control,
11347 new.control) != old.control);
11348
11349 return 0;
11350}
11351
bc22512b
YJ
11352static int vmx_pre_block(struct kvm_vcpu *vcpu)
11353{
11354 if (pi_pre_block(vcpu))
11355 return 1;
11356
64672c95
YJ
11357 if (kvm_lapic_hv_timer_in_use(vcpu))
11358 kvm_lapic_switch_to_sw_timer(vcpu);
11359
bc22512b
YJ
11360 return 0;
11361}
11362
11363static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11364{
11365 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11366 struct pi_desc old, new;
11367 unsigned int dest;
11368 unsigned long flags;
11369
11370 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11371 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11372 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11373 return;
11374
11375 do {
11376 old.control = new.control = pi_desc->control;
11377
11378 dest = cpu_physical_id(vcpu->cpu);
11379
11380 if (x2apic_enabled())
11381 new.ndst = dest;
11382 else
11383 new.ndst = (dest << 8) & 0xFF00;
11384
11385 /* Allow posting non-urgent interrupts */
11386 new.sn = 0;
11387
11388 /* set 'NV' to 'notification vector' */
11389 new.nv = POSTED_INTR_VECTOR;
11390 } while (cmpxchg(&pi_desc->control, old.control,
11391 new.control) != old.control);
11392
11393 if(vcpu->pre_pcpu != -1) {
11394 spin_lock_irqsave(
11395 &per_cpu(blocked_vcpu_on_cpu_lock,
11396 vcpu->pre_pcpu), flags);
11397 list_del(&vcpu->blocked_vcpu_list);
11398 spin_unlock_irqrestore(
11399 &per_cpu(blocked_vcpu_on_cpu_lock,
11400 vcpu->pre_pcpu), flags);
11401 vcpu->pre_pcpu = -1;
11402 }
11403}
11404
bc22512b
YJ
11405static void vmx_post_block(struct kvm_vcpu *vcpu)
11406{
64672c95
YJ
11407 if (kvm_x86_ops->set_hv_timer)
11408 kvm_lapic_switch_to_hv_timer(vcpu);
11409
bc22512b
YJ
11410 pi_post_block(vcpu);
11411}
11412
efc64404
FW
11413/*
11414 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11415 *
11416 * @kvm: kvm
11417 * @host_irq: host irq of the interrupt
11418 * @guest_irq: gsi of the interrupt
11419 * @set: set or unset PI
11420 * returns 0 on success, < 0 on failure
11421 */
11422static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11423 uint32_t guest_irq, bool set)
11424{
11425 struct kvm_kernel_irq_routing_entry *e;
11426 struct kvm_irq_routing_table *irq_rt;
11427 struct kvm_lapic_irq irq;
11428 struct kvm_vcpu *vcpu;
11429 struct vcpu_data vcpu_info;
11430 int idx, ret = -EINVAL;
11431
11432 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
11433 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11434 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
11435 return 0;
11436
11437 idx = srcu_read_lock(&kvm->irq_srcu);
11438 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11439 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11440
11441 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11442 if (e->type != KVM_IRQ_ROUTING_MSI)
11443 continue;
11444 /*
11445 * VT-d PI cannot support posting multicast/broadcast
11446 * interrupts to a vCPU, we still use interrupt remapping
11447 * for these kind of interrupts.
11448 *
11449 * For lowest-priority interrupts, we only support
11450 * those with single CPU as the destination, e.g. user
11451 * configures the interrupts via /proc/irq or uses
11452 * irqbalance to make the interrupts single-CPU.
11453 *
11454 * We will support full lowest-priority interrupt later.
11455 */
11456
37131313 11457 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
11458 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11459 /*
11460 * Make sure the IRTE is in remapped mode if
11461 * we don't handle it in posted mode.
11462 */
11463 ret = irq_set_vcpu_affinity(host_irq, NULL);
11464 if (ret < 0) {
11465 printk(KERN_INFO
11466 "failed to back to remapped mode, irq: %u\n",
11467 host_irq);
11468 goto out;
11469 }
11470
efc64404 11471 continue;
23a1c257 11472 }
efc64404
FW
11473
11474 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11475 vcpu_info.vector = irq.vector;
11476
b6ce9780 11477 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
11478 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11479
11480 if (set)
11481 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11482 else {
11483 /* suppress notification event before unposting */
11484 pi_set_sn(vcpu_to_pi_desc(vcpu));
11485 ret = irq_set_vcpu_affinity(host_irq, NULL);
11486 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11487 }
11488
11489 if (ret < 0) {
11490 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11491 __func__);
11492 goto out;
11493 }
11494 }
11495
11496 ret = 0;
11497out:
11498 srcu_read_unlock(&kvm->irq_srcu, idx);
11499 return ret;
11500}
11501
c45dcc71
AR
11502static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11503{
11504 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11505 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11506 FEATURE_CONTROL_LMCE;
11507 else
11508 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11509 ~FEATURE_CONTROL_LMCE;
11510}
11511
404f6aac 11512static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
11513 .cpu_has_kvm_support = cpu_has_kvm_support,
11514 .disabled_by_bios = vmx_disabled_by_bios,
11515 .hardware_setup = hardware_setup,
11516 .hardware_unsetup = hardware_unsetup,
002c7f7c 11517 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
11518 .hardware_enable = hardware_enable,
11519 .hardware_disable = hardware_disable,
04547156 11520 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 11521 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
11522
11523 .vcpu_create = vmx_create_vcpu,
11524 .vcpu_free = vmx_free_vcpu,
04d2cc77 11525 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 11526
04d2cc77 11527 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
11528 .vcpu_load = vmx_vcpu_load,
11529 .vcpu_put = vmx_vcpu_put,
11530
a96036b8 11531 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
11532 .get_msr = vmx_get_msr,
11533 .set_msr = vmx_set_msr,
11534 .get_segment_base = vmx_get_segment_base,
11535 .get_segment = vmx_get_segment,
11536 .set_segment = vmx_set_segment,
2e4d2653 11537 .get_cpl = vmx_get_cpl,
6aa8b732 11538 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 11539 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 11540 .decache_cr3 = vmx_decache_cr3,
25c4c276 11541 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 11542 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
11543 .set_cr3 = vmx_set_cr3,
11544 .set_cr4 = vmx_set_cr4,
6aa8b732 11545 .set_efer = vmx_set_efer,
6aa8b732
AK
11546 .get_idt = vmx_get_idt,
11547 .set_idt = vmx_set_idt,
11548 .get_gdt = vmx_get_gdt,
11549 .set_gdt = vmx_set_gdt,
73aaf249
JK
11550 .get_dr6 = vmx_get_dr6,
11551 .set_dr6 = vmx_set_dr6,
020df079 11552 .set_dr7 = vmx_set_dr7,
81908bf4 11553 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 11554 .cache_reg = vmx_cache_reg,
6aa8b732
AK
11555 .get_rflags = vmx_get_rflags,
11556 .set_rflags = vmx_set_rflags,
be94f6b7
HH
11557
11558 .get_pkru = vmx_get_pkru,
11559
0fdd74f7 11560 .fpu_activate = vmx_fpu_activate,
02daab21 11561 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
11562
11563 .tlb_flush = vmx_flush_tlb,
6aa8b732 11564
6aa8b732 11565 .run = vmx_vcpu_run,
6062d012 11566 .handle_exit = vmx_handle_exit,
6aa8b732 11567 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
11568 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11569 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 11570 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 11571 .set_irq = vmx_inject_irq,
95ba8273 11572 .set_nmi = vmx_inject_nmi,
298101da 11573 .queue_exception = vmx_queue_exception,
b463a6f7 11574 .cancel_injection = vmx_cancel_injection,
78646121 11575 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 11576 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
11577 .get_nmi_mask = vmx_get_nmi_mask,
11578 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
11579 .enable_nmi_window = enable_nmi_window,
11580 .enable_irq_window = enable_irq_window,
11581 .update_cr8_intercept = update_cr8_intercept,
8d14695f 11582 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 11583 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
11584 .get_enable_apicv = vmx_get_enable_apicv,
11585 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c
YZ
11586 .load_eoi_exitmap = vmx_load_eoi_exitmap,
11587 .hwapic_irr_update = vmx_hwapic_irr_update,
11588 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
11589 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11590 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 11591
cbc94022 11592 .set_tss_addr = vmx_set_tss_addr,
67253af5 11593 .get_tdp_level = get_ept_level,
4b12f0de 11594 .get_mt_mask = vmx_get_mt_mask,
229456fc 11595
586f9607 11596 .get_exit_info = vmx_get_exit_info,
586f9607 11597
17cc3935 11598 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
11599
11600 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
11601
11602 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 11603 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
11604
11605 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
11606
11607 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
11608
11609 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
11610
11611 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
11612
11613 .check_intercept = vmx_check_intercept,
a547c6db 11614 .handle_external_intr = vmx_handle_external_intr,
da8999d3 11615 .mpx_supported = vmx_mpx_supported,
55412b2e 11616 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
11617
11618 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
11619
11620 .sched_in = vmx_sched_in,
843e4330
KH
11621
11622 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11623 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11624 .flush_log_dirty = vmx_flush_log_dirty,
11625 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
25462f7f 11626
bf9f6ac8
FW
11627 .pre_block = vmx_pre_block,
11628 .post_block = vmx_post_block,
11629
25462f7f 11630 .pmu_ops = &intel_pmu_ops,
efc64404
FW
11631
11632 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
11633
11634#ifdef CONFIG_X86_64
11635 .set_hv_timer = vmx_set_hv_timer,
11636 .cancel_hv_timer = vmx_cancel_hv_timer,
11637#endif
c45dcc71
AR
11638
11639 .setup_mce = vmx_setup_mce,
6aa8b732
AK
11640};
11641
11642static int __init vmx_init(void)
11643{
34a1cd60
TC
11644 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11645 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 11646 if (r)
34a1cd60 11647 return r;
25c5f225 11648
2965faa5 11649#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
11650 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11651 crash_vmclear_local_loaded_vmcss);
11652#endif
11653
fdef3ad1 11654 return 0;
6aa8b732
AK
11655}
11656
11657static void __exit vmx_exit(void)
11658{
2965faa5 11659#ifdef CONFIG_KEXEC_CORE
3b63a43f 11660 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
11661 synchronize_rcu();
11662#endif
11663
cb498ea2 11664 kvm_exit();
6aa8b732
AK
11665}
11666
11667module_init(vmx_init)
11668module_exit(vmx_exit)