]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/tcp_input.c
net: Do delayed neigh confirmation.
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
5ffc02a1 71#include <net/dst.h>
1da177e4
LT
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
1a2449a8 76#include <net/netdma.h>
1da177e4 77
ab32ea5d
BH
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 83EXPORT_SYMBOL(sysctl_tcp_reordering);
255cac91 84int sysctl_tcp_ecn __read_mostly = 2;
4bc2f18b 85EXPORT_SYMBOL(sysctl_tcp_ecn);
ab32ea5d
BH
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 88int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 90
ab32ea5d
BH
91int sysctl_tcp_stdurg __read_mostly;
92int sysctl_tcp_rfc1337 __read_mostly;
93int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 94int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 95int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 96int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 97
7e380175
AP
98int sysctl_tcp_thin_dupack __read_mostly;
99
ab32ea5d
BH
100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101int sysctl_tcp_abc __read_mostly;
eed530b6 102int sysctl_tcp_early_retrans __read_mostly = 2;
1da177e4 103
1da177e4
LT
104#define FLAG_DATA 0x01 /* Incoming frame contained data. */
105#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109#define FLAG_DATA_SACKED 0x20 /* New SACK. */
110#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 111#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 112#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 113#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 114#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
009a2e3e 115#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
cadbd031 116#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
1da177e4
LT
117
118#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
121#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 122#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 123
1da177e4 124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 126
e905a9ed 127/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 128 * real world.
e905a9ed 129 */
056834d9 130static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 131{
463c84b9 132 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 133 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 134 unsigned int len;
1da177e4 135
e905a9ed 136 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
137
138 /* skb->len may jitter because of SACKs, even if peer
139 * sends good full-sized frames.
140 */
056834d9 141 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
142 if (len >= icsk->icsk_ack.rcv_mss) {
143 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
144 } else {
145 /* Otherwise, we make more careful check taking into account,
146 * that SACKs block is variable.
147 *
148 * "len" is invariant segment length, including TCP header.
149 */
9c70220b 150 len += skb->data - skb_transport_header(skb);
bee7ca9e 151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
152 /* If PSH is not set, packet should be
153 * full sized, provided peer TCP is not badly broken.
154 * This observation (if it is correct 8)) allows
155 * to handle super-low mtu links fairly.
156 */
157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
159 /* Subtract also invariant (if peer is RFC compliant),
160 * tcp header plus fixed timestamp option length.
161 * Resulting "len" is MSS free of SACK jitter.
162 */
463c84b9
ACM
163 len -= tcp_sk(sk)->tcp_header_len;
164 icsk->icsk_ack.last_seg_size = len;
1da177e4 165 if (len == lss) {
463c84b9 166 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
167 return;
168 }
169 }
1ef9696c
AK
170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
173 }
174}
175
463c84b9 176static void tcp_incr_quickack(struct sock *sk)
1da177e4 177{
463c84b9 178 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 180
056834d9
IJ
181 if (quickacks == 0)
182 quickacks = 2;
463c84b9
ACM
183 if (quickacks > icsk->icsk_ack.quick)
184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
185}
186
1b9f4092 187static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 188{
463c84b9
ACM
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 tcp_incr_quickack(sk);
191 icsk->icsk_ack.pingpong = 0;
192 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
193}
194
195/* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
a2a385d6 199static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 200{
463c84b9 201 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 202
463c84b9 203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
204}
205
bdf1ee5d
IJ
206static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
207{
056834d9 208 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210}
211
cf533ea5 212static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
213{
214 if (tcp_hdr(skb)->cwr)
215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216}
217
218static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
219{
220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221}
222
7a269ffa 223static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 224{
7a269ffa
ED
225 if (!(tp->ecn_flags & TCP_ECN_OK))
226 return;
227
b82d1bb4 228 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 229 case INET_ECN_NOT_ECT:
bdf1ee5d 230 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
231 * and we already seen ECT on a previous segment,
232 * it is probably a retransmit.
233 */
234 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 235 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
236 break;
237 case INET_ECN_CE:
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 /* fallinto */
240 default:
241 tp->ecn_flags |= TCP_ECN_SEEN;
bdf1ee5d
IJ
242 }
243}
244
cf533ea5 245static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 246{
056834d9 247 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
248 tp->ecn_flags &= ~TCP_ECN_OK;
249}
250
cf533ea5 251static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 252{
056834d9 253 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
254 tp->ecn_flags &= ~TCP_ECN_OK;
255}
256
a2a385d6 257static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 258{
056834d9 259 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
260 return true;
261 return false;
bdf1ee5d
IJ
262}
263
1da177e4
LT
264/* Buffer size and advertised window tuning.
265 *
266 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
267 */
268
269static void tcp_fixup_sndbuf(struct sock *sk)
270{
87fb4b7b 271 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
1da177e4 272
06a59ecb
ED
273 sndmem *= TCP_INIT_CWND;
274 if (sk->sk_sndbuf < sndmem)
275 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
276}
277
278/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
279 *
280 * All tcp_full_space() is split to two parts: "network" buffer, allocated
281 * forward and advertised in receiver window (tp->rcv_wnd) and
282 * "application buffer", required to isolate scheduling/application
283 * latencies from network.
284 * window_clamp is maximal advertised window. It can be less than
285 * tcp_full_space(), in this case tcp_full_space() - window_clamp
286 * is reserved for "application" buffer. The less window_clamp is
287 * the smoother our behaviour from viewpoint of network, but the lower
288 * throughput and the higher sensitivity of the connection to losses. 8)
289 *
290 * rcv_ssthresh is more strict window_clamp used at "slow start"
291 * phase to predict further behaviour of this connection.
292 * It is used for two goals:
293 * - to enforce header prediction at sender, even when application
294 * requires some significant "application buffer". It is check #1.
295 * - to prevent pruning of receive queue because of misprediction
296 * of receiver window. Check #2.
297 *
298 * The scheme does not work when sender sends good segments opening
caa20d9a 299 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
300 * in common situations. Otherwise, we have to rely on queue collapsing.
301 */
302
303/* Slow part of check#2. */
9e412ba7 304static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 305{
9e412ba7 306 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 307 /* Optimize this! */
dfd4f0ae
ED
308 int truesize = tcp_win_from_space(skb->truesize) >> 1;
309 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
310
311 while (tp->rcv_ssthresh <= window) {
312 if (truesize <= skb->len)
463c84b9 313 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
314
315 truesize >>= 1;
316 window >>= 1;
317 }
318 return 0;
319}
320
cf533ea5 321static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 322{
9e412ba7
IJ
323 struct tcp_sock *tp = tcp_sk(sk);
324
1da177e4
LT
325 /* Check #1 */
326 if (tp->rcv_ssthresh < tp->window_clamp &&
327 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 328 !sk_under_memory_pressure(sk)) {
1da177e4
LT
329 int incr;
330
331 /* Check #2. Increase window, if skb with such overhead
332 * will fit to rcvbuf in future.
333 */
334 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 335 incr = 2 * tp->advmss;
1da177e4 336 else
9e412ba7 337 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
338
339 if (incr) {
4d846f02 340 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
341 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
342 tp->window_clamp);
463c84b9 343 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
344 }
345 }
346}
347
348/* 3. Tuning rcvbuf, when connection enters established state. */
349
350static void tcp_fixup_rcvbuf(struct sock *sk)
351{
e9266a02
ED
352 u32 mss = tcp_sk(sk)->advmss;
353 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
354 int rcvmem;
1da177e4 355
e9266a02
ED
356 /* Limit to 10 segments if mss <= 1460,
357 * or 14600/mss segments, with a minimum of two segments.
1da177e4 358 */
e9266a02
ED
359 if (mss > 1460)
360 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
361
362 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
363 while (tcp_win_from_space(rcvmem) < mss)
1da177e4 364 rcvmem += 128;
e9266a02
ED
365
366 rcvmem *= icwnd;
367
368 if (sk->sk_rcvbuf < rcvmem)
369 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
370}
371
caa20d9a 372/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
373 * established state.
374 */
375static void tcp_init_buffer_space(struct sock *sk)
376{
377 struct tcp_sock *tp = tcp_sk(sk);
378 int maxwin;
379
380 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
381 tcp_fixup_rcvbuf(sk);
382 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
383 tcp_fixup_sndbuf(sk);
384
385 tp->rcvq_space.space = tp->rcv_wnd;
386
387 maxwin = tcp_full_space(sk);
388
389 if (tp->window_clamp >= maxwin) {
390 tp->window_clamp = maxwin;
391
392 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
393 tp->window_clamp = max(maxwin -
394 (maxwin >> sysctl_tcp_app_win),
395 4 * tp->advmss);
396 }
397
398 /* Force reservation of one segment. */
399 if (sysctl_tcp_app_win &&
400 tp->window_clamp > 2 * tp->advmss &&
401 tp->window_clamp + tp->advmss > maxwin)
402 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
403
404 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
405 tp->snd_cwnd_stamp = tcp_time_stamp;
406}
407
1da177e4 408/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 409static void tcp_clamp_window(struct sock *sk)
1da177e4 410{
9e412ba7 411 struct tcp_sock *tp = tcp_sk(sk);
6687e988 412 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 413
6687e988 414 icsk->icsk_ack.quick = 0;
1da177e4 415
326f36e9
JH
416 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
417 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
418 !sk_under_memory_pressure(sk) &&
419 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
420 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
421 sysctl_tcp_rmem[2]);
1da177e4 422 }
326f36e9 423 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 424 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
425}
426
40efc6fa
SH
427/* Initialize RCV_MSS value.
428 * RCV_MSS is an our guess about MSS used by the peer.
429 * We haven't any direct information about the MSS.
430 * It's better to underestimate the RCV_MSS rather than overestimate.
431 * Overestimations make us ACKing less frequently than needed.
432 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
433 */
434void tcp_initialize_rcv_mss(struct sock *sk)
435{
cf533ea5 436 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
437 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
438
056834d9 439 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 440 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
441 hint = max(hint, TCP_MIN_MSS);
442
443 inet_csk(sk)->icsk_ack.rcv_mss = hint;
444}
4bc2f18b 445EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 446
1da177e4
LT
447/* Receiver "autotuning" code.
448 *
449 * The algorithm for RTT estimation w/o timestamps is based on
450 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 451 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
452 *
453 * More detail on this code can be found at
631dd1a8 454 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
455 * though this reference is out of date. A new paper
456 * is pending.
457 */
458static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
459{
460 u32 new_sample = tp->rcv_rtt_est.rtt;
461 long m = sample;
462
463 if (m == 0)
464 m = 1;
465
466 if (new_sample != 0) {
467 /* If we sample in larger samples in the non-timestamp
468 * case, we could grossly overestimate the RTT especially
469 * with chatty applications or bulk transfer apps which
470 * are stalled on filesystem I/O.
471 *
472 * Also, since we are only going for a minimum in the
31f34269 473 * non-timestamp case, we do not smooth things out
caa20d9a 474 * else with timestamps disabled convergence takes too
1da177e4
LT
475 * long.
476 */
477 if (!win_dep) {
478 m -= (new_sample >> 3);
479 new_sample += m;
18a223e0
NC
480 } else {
481 m <<= 3;
482 if (m < new_sample)
483 new_sample = m;
484 }
1da177e4 485 } else {
caa20d9a 486 /* No previous measure. */
1da177e4
LT
487 new_sample = m << 3;
488 }
489
490 if (tp->rcv_rtt_est.rtt != new_sample)
491 tp->rcv_rtt_est.rtt = new_sample;
492}
493
494static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
495{
496 if (tp->rcv_rtt_est.time == 0)
497 goto new_measure;
498 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
499 return;
651913ce 500 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
501
502new_measure:
503 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
504 tp->rcv_rtt_est.time = tcp_time_stamp;
505}
506
056834d9
IJ
507static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
508 const struct sk_buff *skb)
1da177e4 509{
463c84b9 510 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
511 if (tp->rx_opt.rcv_tsecr &&
512 (TCP_SKB_CB(skb)->end_seq -
463c84b9 513 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
514 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
515}
516
517/*
518 * This function should be called every time data is copied to user space.
519 * It calculates the appropriate TCP receive buffer space.
520 */
521void tcp_rcv_space_adjust(struct sock *sk)
522{
523 struct tcp_sock *tp = tcp_sk(sk);
524 int time;
525 int space;
e905a9ed 526
1da177e4
LT
527 if (tp->rcvq_space.time == 0)
528 goto new_measure;
e905a9ed 529
1da177e4 530 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 531 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 532 return;
e905a9ed 533
1da177e4
LT
534 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
535
536 space = max(tp->rcvq_space.space, space);
537
538 if (tp->rcvq_space.space != space) {
539 int rcvmem;
540
541 tp->rcvq_space.space = space;
542
6fcf9412
JH
543 if (sysctl_tcp_moderate_rcvbuf &&
544 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
545 int new_clamp = space;
546
547 /* Receive space grows, normalize in order to
548 * take into account packet headers and sk_buff
549 * structure overhead.
550 */
551 space /= tp->advmss;
552 if (!space)
553 space = 1;
87fb4b7b 554 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
1da177e4
LT
555 while (tcp_win_from_space(rcvmem) < tp->advmss)
556 rcvmem += 128;
557 space *= rcvmem;
558 space = min(space, sysctl_tcp_rmem[2]);
559 if (space > sk->sk_rcvbuf) {
560 sk->sk_rcvbuf = space;
561
562 /* Make the window clamp follow along. */
563 tp->window_clamp = new_clamp;
564 }
565 }
566 }
e905a9ed 567
1da177e4
LT
568new_measure:
569 tp->rcvq_space.seq = tp->copied_seq;
570 tp->rcvq_space.time = tcp_time_stamp;
571}
572
573/* There is something which you must keep in mind when you analyze the
574 * behavior of the tp->ato delayed ack timeout interval. When a
575 * connection starts up, we want to ack as quickly as possible. The
576 * problem is that "good" TCP's do slow start at the beginning of data
577 * transmission. The means that until we send the first few ACK's the
578 * sender will sit on his end and only queue most of his data, because
579 * he can only send snd_cwnd unacked packets at any given time. For
580 * each ACK we send, he increments snd_cwnd and transmits more of his
581 * queue. -DaveM
582 */
9e412ba7 583static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 584{
9e412ba7 585 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 586 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
587 u32 now;
588
463c84b9 589 inet_csk_schedule_ack(sk);
1da177e4 590
463c84b9 591 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
592
593 tcp_rcv_rtt_measure(tp);
e905a9ed 594
1da177e4
LT
595 now = tcp_time_stamp;
596
463c84b9 597 if (!icsk->icsk_ack.ato) {
1da177e4
LT
598 /* The _first_ data packet received, initialize
599 * delayed ACK engine.
600 */
463c84b9
ACM
601 tcp_incr_quickack(sk);
602 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 603 } else {
463c84b9 604 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 605
056834d9 606 if (m <= TCP_ATO_MIN / 2) {
1da177e4 607 /* The fastest case is the first. */
463c84b9
ACM
608 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
609 } else if (m < icsk->icsk_ack.ato) {
610 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
611 if (icsk->icsk_ack.ato > icsk->icsk_rto)
612 icsk->icsk_ack.ato = icsk->icsk_rto;
613 } else if (m > icsk->icsk_rto) {
caa20d9a 614 /* Too long gap. Apparently sender failed to
1da177e4
LT
615 * restart window, so that we send ACKs quickly.
616 */
463c84b9 617 tcp_incr_quickack(sk);
3ab224be 618 sk_mem_reclaim(sk);
1da177e4
LT
619 }
620 }
463c84b9 621 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
622
623 TCP_ECN_check_ce(tp, skb);
624
625 if (skb->len >= 128)
9e412ba7 626 tcp_grow_window(sk, skb);
1da177e4
LT
627}
628
1da177e4
LT
629/* Called to compute a smoothed rtt estimate. The data fed to this
630 * routine either comes from timestamps, or from segments that were
631 * known _not_ to have been retransmitted [see Karn/Partridge
632 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
633 * piece by Van Jacobson.
634 * NOTE: the next three routines used to be one big routine.
635 * To save cycles in the RFC 1323 implementation it was better to break
636 * it up into three procedures. -- erics
637 */
2d2abbab 638static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 639{
6687e988 640 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
641 long m = mrtt; /* RTT */
642
1da177e4
LT
643 /* The following amusing code comes from Jacobson's
644 * article in SIGCOMM '88. Note that rtt and mdev
645 * are scaled versions of rtt and mean deviation.
e905a9ed 646 * This is designed to be as fast as possible
1da177e4
LT
647 * m stands for "measurement".
648 *
649 * On a 1990 paper the rto value is changed to:
650 * RTO = rtt + 4 * mdev
651 *
652 * Funny. This algorithm seems to be very broken.
653 * These formulae increase RTO, when it should be decreased, increase
31f34269 654 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
655 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
656 * does not matter how to _calculate_ it. Seems, it was trap
657 * that VJ failed to avoid. 8)
658 */
2de979bd 659 if (m == 0)
1da177e4
LT
660 m = 1;
661 if (tp->srtt != 0) {
662 m -= (tp->srtt >> 3); /* m is now error in rtt est */
663 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
664 if (m < 0) {
665 m = -m; /* m is now abs(error) */
666 m -= (tp->mdev >> 2); /* similar update on mdev */
667 /* This is similar to one of Eifel findings.
668 * Eifel blocks mdev updates when rtt decreases.
669 * This solution is a bit different: we use finer gain
670 * for mdev in this case (alpha*beta).
671 * Like Eifel it also prevents growth of rto,
672 * but also it limits too fast rto decreases,
673 * happening in pure Eifel.
674 */
675 if (m > 0)
676 m >>= 3;
677 } else {
678 m -= (tp->mdev >> 2); /* similar update on mdev */
679 }
680 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
681 if (tp->mdev > tp->mdev_max) {
682 tp->mdev_max = tp->mdev;
683 if (tp->mdev_max > tp->rttvar)
684 tp->rttvar = tp->mdev_max;
685 }
686 if (after(tp->snd_una, tp->rtt_seq)) {
687 if (tp->mdev_max < tp->rttvar)
056834d9 688 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 689 tp->rtt_seq = tp->snd_nxt;
05bb1fad 690 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
691 }
692 } else {
693 /* no previous measure. */
056834d9
IJ
694 tp->srtt = m << 3; /* take the measured time to be rtt */
695 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 696 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
697 tp->rtt_seq = tp->snd_nxt;
698 }
1da177e4
LT
699}
700
701/* Calculate rto without backoff. This is the second half of Van Jacobson's
702 * routine referred to above.
703 */
463c84b9 704static inline void tcp_set_rto(struct sock *sk)
1da177e4 705{
463c84b9 706 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
707 /* Old crap is replaced with new one. 8)
708 *
709 * More seriously:
710 * 1. If rtt variance happened to be less 50msec, it is hallucination.
711 * It cannot be less due to utterly erratic ACK generation made
712 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
713 * to do with delayed acks, because at cwnd>2 true delack timeout
714 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 715 * ACKs in some circumstances.
1da177e4 716 */
f1ecd5d9 717 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
718
719 /* 2. Fixups made earlier cannot be right.
720 * If we do not estimate RTO correctly without them,
721 * all the algo is pure shit and should be replaced
caa20d9a 722 * with correct one. It is exactly, which we pretend to do.
1da177e4 723 */
1da177e4 724
ee6aac59
IJ
725 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
726 * guarantees that rto is higher.
727 */
f1ecd5d9 728 tcp_bound_rto(sk);
1da177e4
LT
729}
730
731/* Save metrics learned by this TCP session.
732 This function is called only, when TCP finishes successfully
733 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
734 */
735void tcp_update_metrics(struct sock *sk)
736{
737 struct tcp_sock *tp = tcp_sk(sk);
738 struct dst_entry *dst = __sk_dst_get(sk);
739
740 if (sysctl_tcp_nometrics_save)
741 return;
742
056834d9 743 if (dst && (dst->flags & DST_HOST)) {
6687e988 744 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 745 int m;
c1e20f7c 746 unsigned long rtt;
1da177e4 747
5110effe
DM
748 dst_confirm(dst);
749
6687e988 750 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
751 /* This session failed to estimate rtt. Why?
752 * Probably, no packets returned in time.
753 * Reset our results.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT)))
defb3519 756 dst_metric_set(dst, RTAX_RTT, 0);
1da177e4
LT
757 return;
758 }
759
c1e20f7c
SH
760 rtt = dst_metric_rtt(dst, RTAX_RTT);
761 m = rtt - tp->srtt;
1da177e4
LT
762
763 /* If newly calculated rtt larger than stored one,
764 * store new one. Otherwise, use EWMA. Remember,
765 * rtt overestimation is always better than underestimation.
766 */
767 if (!(dst_metric_locked(dst, RTAX_RTT))) {
768 if (m <= 0)
c1e20f7c 769 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
1da177e4 770 else
c1e20f7c 771 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
1da177e4
LT
772 }
773
774 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
c1e20f7c 775 unsigned long var;
1da177e4
LT
776 if (m < 0)
777 m = -m;
778
779 /* Scale deviation to rttvar fixed point */
780 m >>= 1;
781 if (m < tp->mdev)
782 m = tp->mdev;
783
c1e20f7c
SH
784 var = dst_metric_rtt(dst, RTAX_RTTVAR);
785 if (m >= var)
786 var = m;
1da177e4 787 else
c1e20f7c
SH
788 var -= (var - m) >> 2;
789
790 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
1da177e4
LT
791 }
792
0b6a05c1 793 if (tcp_in_initial_slowstart(tp)) {
1da177e4
LT
794 /* Slow start still did not finish. */
795 if (dst_metric(dst, RTAX_SSTHRESH) &&
796 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
797 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
defb3519 798 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
1da177e4
LT
799 if (!dst_metric_locked(dst, RTAX_CWND) &&
800 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
defb3519 801 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
1da177e4 802 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 803 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
804 /* Cong. avoidance phase, cwnd is reliable. */
805 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
defb3519
DM
806 dst_metric_set(dst, RTAX_SSTHRESH,
807 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
1da177e4 808 if (!dst_metric_locked(dst, RTAX_CWND))
defb3519
DM
809 dst_metric_set(dst, RTAX_CWND,
810 (dst_metric(dst, RTAX_CWND) +
811 tp->snd_cwnd) >> 1);
1da177e4
LT
812 } else {
813 /* Else slow start did not finish, cwnd is non-sense,
814 ssthresh may be also invalid.
815 */
816 if (!dst_metric_locked(dst, RTAX_CWND))
defb3519
DM
817 dst_metric_set(dst, RTAX_CWND,
818 (dst_metric(dst, RTAX_CWND) +
819 tp->snd_ssthresh) >> 1);
5ffc02a1 820 if (dst_metric(dst, RTAX_SSTHRESH) &&
1da177e4 821 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
5ffc02a1 822 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
defb3519 823 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
1da177e4
LT
824 }
825
826 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
5ffc02a1 827 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
1da177e4 828 tp->reordering != sysctl_tcp_reordering)
defb3519 829 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
1da177e4
LT
830 }
831 }
832}
833
cf533ea5 834__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
835{
836 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
837
22b71c8f 838 if (!cwnd)
442b9635 839 cwnd = TCP_INIT_CWND;
1da177e4
LT
840 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
841}
842
40efc6fa 843/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 844void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
845{
846 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 847 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
848
849 tp->prior_ssthresh = 0;
850 tp->bytes_acked = 0;
e01f9d77 851 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 852 tp->undo_marker = 0;
3cfe3baa
IJ
853 if (set_ssthresh)
854 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
855 tp->snd_cwnd = min(tp->snd_cwnd,
856 tcp_packets_in_flight(tp) + 1U);
857 tp->snd_cwnd_cnt = 0;
858 tp->high_seq = tp->snd_nxt;
859 tp->snd_cwnd_stamp = tcp_time_stamp;
860 TCP_ECN_queue_cwr(tp);
861
862 tcp_set_ca_state(sk, TCP_CA_CWR);
863 }
864}
865
e60402d0
IJ
866/*
867 * Packet counting of FACK is based on in-order assumptions, therefore TCP
868 * disables it when reordering is detected
869 */
870static void tcp_disable_fack(struct tcp_sock *tp)
871{
85cc391c
IJ
872 /* RFC3517 uses different metric in lost marker => reset on change */
873 if (tcp_is_fack(tp))
874 tp->lost_skb_hint = NULL;
ab56222a 875 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
876}
877
564262c1 878/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
879static void tcp_dsack_seen(struct tcp_sock *tp)
880{
ab56222a 881 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
882}
883
1da177e4
LT
884/* Initialize metrics on socket. */
885
886static void tcp_init_metrics(struct sock *sk)
887{
888 struct tcp_sock *tp = tcp_sk(sk);
889 struct dst_entry *dst = __sk_dst_get(sk);
890
891 if (dst == NULL)
892 goto reset;
893
894 dst_confirm(dst);
895
896 if (dst_metric_locked(dst, RTAX_CWND))
897 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
898 if (dst_metric(dst, RTAX_SSTHRESH)) {
899 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
900 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
901 tp->snd_ssthresh = tp->snd_cwnd_clamp;
9ad7c049
JC
902 } else {
903 /* ssthresh may have been reduced unnecessarily during.
904 * 3WHS. Restore it back to its initial default.
905 */
906 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1da177e4
LT
907 }
908 if (dst_metric(dst, RTAX_REORDERING) &&
909 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 910 tcp_disable_fack(tp);
eed530b6 911 tcp_disable_early_retrans(tp);
1da177e4
LT
912 tp->reordering = dst_metric(dst, RTAX_REORDERING);
913 }
914
9ad7c049 915 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
1da177e4
LT
916 goto reset;
917
918 /* Initial rtt is determined from SYN,SYN-ACK.
919 * The segment is small and rtt may appear much
920 * less than real one. Use per-dst memory
921 * to make it more realistic.
922 *
923 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 924 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
925 * packets force peer to delay ACKs and calculation is correct too.
926 * The algorithm is adaptive and, provided we follow specs, it
927 * NEVER underestimate RTT. BUT! If peer tries to make some clever
928 * tricks sort of "quick acks" for time long enough to decrease RTT
929 * to low value, and then abruptly stops to do it and starts to delay
930 * ACKs, wait for troubles.
931 */
c1e20f7c
SH
932 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
933 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
1da177e4
LT
934 tp->rtt_seq = tp->snd_nxt;
935 }
c1e20f7c
SH
936 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
937 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
488faa2a 938 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4 939 }
463c84b9 940 tcp_set_rto(sk);
1da177e4 941reset:
9ad7c049 942 if (tp->srtt == 0) {
fd4f2cea 943 /* RFC6298: 5.7 We've failed to get a valid RTT sample from
9ad7c049
JC
944 * 3WHS. This is most likely due to retransmission,
945 * including spurious one. Reset the RTO back to 3secs
946 * from the more aggressive 1sec to avoid more spurious
947 * retransmission.
d9f4fbaf 948 */
9ad7c049
JC
949 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
950 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
1da177e4 951 }
9ad7c049 952 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
fd4f2cea 953 * retransmitted. In light of RFC6298 more aggressive 1sec
9ad7c049
JC
954 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
955 * retransmission has occurred.
956 */
957 if (tp->total_retrans > 1)
958 tp->snd_cwnd = 1;
959 else
960 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
d9f4fbaf 961 tp->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
962}
963
6687e988
ACM
964static void tcp_update_reordering(struct sock *sk, const int metric,
965 const int ts)
1da177e4 966{
6687e988 967 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 968 if (metric > tp->reordering) {
40b215e5
PE
969 int mib_idx;
970
1da177e4
LT
971 tp->reordering = min(TCP_MAX_REORDERING, metric);
972
973 /* This exciting event is worth to be remembered. 8) */
974 if (ts)
40b215e5 975 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 976 else if (tcp_is_reno(tp))
40b215e5 977 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 978 else if (tcp_is_fack(tp))
40b215e5 979 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 980 else
40b215e5
PE
981 mib_idx = LINUX_MIB_TCPSACKREORDER;
982
de0744af 983 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 984#if FASTRETRANS_DEBUG > 1
91df42be
JP
985 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
986 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
987 tp->reordering,
988 tp->fackets_out,
989 tp->sacked_out,
990 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 991#endif
e60402d0 992 tcp_disable_fack(tp);
1da177e4 993 }
eed530b6
YC
994
995 if (metric > 0)
996 tcp_disable_early_retrans(tp);
1da177e4
LT
997}
998
006f582c 999/* This must be called before lost_out is incremented */
c8c213f2
IJ
1000static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1001{
006f582c 1002 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
1003 before(TCP_SKB_CB(skb)->seq,
1004 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
1005 tp->retransmit_skb_hint = skb;
1006
1007 if (!tp->lost_out ||
1008 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1009 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
1010}
1011
41ea36e3
IJ
1012static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1013{
1014 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1015 tcp_verify_retransmit_hint(tp, skb);
1016
1017 tp->lost_out += tcp_skb_pcount(skb);
1018 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1019 }
1020}
1021
e1aa680f
IJ
1022static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1023 struct sk_buff *skb)
006f582c
IJ
1024{
1025 tcp_verify_retransmit_hint(tp, skb);
1026
1027 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1028 tp->lost_out += tcp_skb_pcount(skb);
1029 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1030 }
1031}
1032
1da177e4
LT
1033/* This procedure tags the retransmission queue when SACKs arrive.
1034 *
1035 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1036 * Packets in queue with these bits set are counted in variables
1037 * sacked_out, retrans_out and lost_out, correspondingly.
1038 *
1039 * Valid combinations are:
1040 * Tag InFlight Description
1041 * 0 1 - orig segment is in flight.
1042 * S 0 - nothing flies, orig reached receiver.
1043 * L 0 - nothing flies, orig lost by net.
1044 * R 2 - both orig and retransmit are in flight.
1045 * L|R 1 - orig is lost, retransmit is in flight.
1046 * S|R 1 - orig reached receiver, retrans is still in flight.
1047 * (L|S|R is logically valid, it could occur when L|R is sacked,
1048 * but it is equivalent to plain S and code short-curcuits it to S.
1049 * L|S is logically invalid, it would mean -1 packet in flight 8))
1050 *
1051 * These 6 states form finite state machine, controlled by the following events:
1052 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1053 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 1054 * 3. Loss detection event of two flavors:
1da177e4
LT
1055 * A. Scoreboard estimator decided the packet is lost.
1056 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
1057 * A''. Its FACK modification, head until snd.fack is lost.
1058 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
1059 * segment was retransmitted.
1060 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1061 *
1062 * It is pleasant to note, that state diagram turns out to be commutative,
1063 * so that we are allowed not to be bothered by order of our actions,
1064 * when multiple events arrive simultaneously. (see the function below).
1065 *
1066 * Reordering detection.
1067 * --------------------
1068 * Reordering metric is maximal distance, which a packet can be displaced
1069 * in packet stream. With SACKs we can estimate it:
1070 *
1071 * 1. SACK fills old hole and the corresponding segment was not
1072 * ever retransmitted -> reordering. Alas, we cannot use it
1073 * when segment was retransmitted.
1074 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1075 * for retransmitted and already SACKed segment -> reordering..
1076 * Both of these heuristics are not used in Loss state, when we cannot
1077 * account for retransmits accurately.
5b3c9882
IJ
1078 *
1079 * SACK block validation.
1080 * ----------------------
1081 *
1082 * SACK block range validation checks that the received SACK block fits to
1083 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1084 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1085 * it means that the receiver is rather inconsistent with itself reporting
1086 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1087 * perfectly valid, however, in light of RFC2018 which explicitly states
1088 * that "SACK block MUST reflect the newest segment. Even if the newest
1089 * segment is going to be discarded ...", not that it looks very clever
1090 * in case of head skb. Due to potentional receiver driven attacks, we
1091 * choose to avoid immediate execution of a walk in write queue due to
1092 * reneging and defer head skb's loss recovery to standard loss recovery
1093 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1094 *
1095 * Implements also blockage to start_seq wrap-around. Problem lies in the
1096 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1097 * there's no guarantee that it will be before snd_nxt (n). The problem
1098 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1099 * wrap (s_w):
1100 *
1101 * <- outs wnd -> <- wrapzone ->
1102 * u e n u_w e_w s n_w
1103 * | | | | | | |
1104 * |<------------+------+----- TCP seqno space --------------+---------->|
1105 * ...-- <2^31 ->| |<--------...
1106 * ...---- >2^31 ------>| |<--------...
1107 *
1108 * Current code wouldn't be vulnerable but it's better still to discard such
1109 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1110 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1111 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1112 * equal to the ideal case (infinite seqno space without wrap caused issues).
1113 *
1114 * With D-SACK the lower bound is extended to cover sequence space below
1115 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1116 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1117 * for the normal SACK blocks, explained above). But there all simplicity
1118 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1119 * fully below undo_marker they do not affect behavior in anyway and can
1120 * therefore be safely ignored. In rare cases (which are more or less
1121 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1122 * fragmentation and packet reordering past skb's retransmission. To consider
1123 * them correctly, the acceptable range must be extended even more though
1124 * the exact amount is rather hard to quantify. However, tp->max_window can
1125 * be used as an exaggerated estimate.
1da177e4 1126 */
a2a385d6
ED
1127static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1128 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1129{
1130 /* Too far in future, or reversed (interpretation is ambiguous) */
1131 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1132 return false;
5b3c9882
IJ
1133
1134 /* Nasty start_seq wrap-around check (see comments above) */
1135 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1136 return false;
5b3c9882 1137
564262c1 1138 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1139 * start_seq == snd_una is non-sensical (see comments above)
1140 */
1141 if (after(start_seq, tp->snd_una))
a2a385d6 1142 return true;
5b3c9882
IJ
1143
1144 if (!is_dsack || !tp->undo_marker)
a2a385d6 1145 return false;
5b3c9882
IJ
1146
1147 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1148 if (after(end_seq, tp->snd_una))
a2a385d6 1149 return false;
5b3c9882
IJ
1150
1151 if (!before(start_seq, tp->undo_marker))
a2a385d6 1152 return true;
5b3c9882
IJ
1153
1154 /* Too old */
1155 if (!after(end_seq, tp->undo_marker))
a2a385d6 1156 return false;
5b3c9882
IJ
1157
1158 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1159 * start_seq < undo_marker and end_seq >= undo_marker.
1160 */
1161 return !before(start_seq, end_seq - tp->max_window);
1162}
1163
1c1e87ed 1164/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 1165 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 1166 * for reordering! Ugly, but should help.
f785a8e2
IJ
1167 *
1168 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1169 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1170 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1171 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1172 */
407ef1de 1173static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1174{
9f58f3b7 1175 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1176 struct tcp_sock *tp = tcp_sk(sk);
1177 struct sk_buff *skb;
f785a8e2 1178 int cnt = 0;
df2e014b 1179 u32 new_low_seq = tp->snd_nxt;
6859d494 1180 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1181
1182 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1183 !after(received_upto, tp->lost_retrans_low) ||
1184 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1185 return;
1c1e87ed
IJ
1186
1187 tcp_for_write_queue(skb, sk) {
1188 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1189
1190 if (skb == tcp_send_head(sk))
1191 break;
f785a8e2 1192 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1193 break;
1194 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1195 continue;
1196
f785a8e2
IJ
1197 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1198 continue;
1199
d0af4160
IJ
1200 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1201 * constraint here (see above) but figuring out that at
1202 * least tp->reordering SACK blocks reside between ack_seq
1203 * and received_upto is not easy task to do cheaply with
1204 * the available datastructures.
1205 *
1206 * Whether FACK should check here for tp->reordering segs
1207 * in-between one could argue for either way (it would be
1208 * rather simple to implement as we could count fack_count
1209 * during the walk and do tp->fackets_out - fack_count).
1210 */
1211 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1212 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1213 tp->retrans_out -= tcp_skb_pcount(skb);
1214
006f582c 1215 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1217 } else {
df2e014b 1218 if (before(ack_seq, new_low_seq))
b08d6cb2 1219 new_low_seq = ack_seq;
f785a8e2 1220 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1221 }
1222 }
b08d6cb2
IJ
1223
1224 if (tp->retrans_out)
1225 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1226}
5b3c9882 1227
a2a385d6
ED
1228static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1229 struct tcp_sack_block_wire *sp, int num_sacks,
1230 u32 prior_snd_una)
d06e021d 1231{
1ed83465 1232 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1233 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1234 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1235 bool dup_sack = false;
d06e021d
DM
1236
1237 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1238 dup_sack = true;
e60402d0 1239 tcp_dsack_seen(tp);
de0744af 1240 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1241 } else if (num_sacks > 1) {
d3e2ce3b
HH
1242 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1243 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1244
1245 if (!after(end_seq_0, end_seq_1) &&
1246 !before(start_seq_0, start_seq_1)) {
a2a385d6 1247 dup_sack = true;
e60402d0 1248 tcp_dsack_seen(tp);
de0744af
PE
1249 NET_INC_STATS_BH(sock_net(sk),
1250 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1251 }
1252 }
1253
1254 /* D-SACK for already forgotten data... Do dumb counting. */
c24f691b 1255 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
d06e021d
DM
1256 !after(end_seq_0, prior_snd_una) &&
1257 after(end_seq_0, tp->undo_marker))
1258 tp->undo_retrans--;
1259
1260 return dup_sack;
1261}
1262
a1197f5a
IJ
1263struct tcp_sacktag_state {
1264 int reord;
1265 int fack_count;
1266 int flag;
1267};
1268
d1935942
IJ
1269/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1270 * the incoming SACK may not exactly match but we can find smaller MSS
1271 * aligned portion of it that matches. Therefore we might need to fragment
1272 * which may fail and creates some hassle (caller must handle error case
1273 * returns).
832d11c5
IJ
1274 *
1275 * FIXME: this could be merged to shift decision code
d1935942 1276 */
0f79efdc 1277static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1278 u32 start_seq, u32 end_seq)
d1935942 1279{
a2a385d6
ED
1280 int err;
1281 bool in_sack;
d1935942 1282 unsigned int pkt_len;
adb92db8 1283 unsigned int mss;
d1935942
IJ
1284
1285 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1286 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1287
1288 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1289 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1290 mss = tcp_skb_mss(skb);
d1935942
IJ
1291 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1292
adb92db8 1293 if (!in_sack) {
d1935942 1294 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1295 if (pkt_len < mss)
1296 pkt_len = mss;
1297 } else {
d1935942 1298 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1299 if (pkt_len < mss)
1300 return -EINVAL;
1301 }
1302
1303 /* Round if necessary so that SACKs cover only full MSSes
1304 * and/or the remaining small portion (if present)
1305 */
1306 if (pkt_len > mss) {
1307 unsigned int new_len = (pkt_len / mss) * mss;
1308 if (!in_sack && new_len < pkt_len) {
1309 new_len += mss;
1310 if (new_len > skb->len)
1311 return 0;
1312 }
1313 pkt_len = new_len;
1314 }
1315 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1316 if (err < 0)
1317 return err;
1318 }
1319
1320 return in_sack;
1321}
1322
cc9a672e
NC
1323/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1324static u8 tcp_sacktag_one(struct sock *sk,
1325 struct tcp_sacktag_state *state, u8 sacked,
1326 u32 start_seq, u32 end_seq,
a2a385d6 1327 bool dup_sack, int pcount)
9e10c47c 1328{
6859d494 1329 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1330 int fack_count = state->fack_count;
9e10c47c
IJ
1331
1332 /* Account D-SACK for retransmitted packet. */
1333 if (dup_sack && (sacked & TCPCB_RETRANS)) {
c24f691b 1334 if (tp->undo_marker && tp->undo_retrans &&
cc9a672e 1335 after(end_seq, tp->undo_marker))
9e10c47c 1336 tp->undo_retrans--;
ede9f3b1 1337 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1338 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1339 }
1340
1341 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1342 if (!after(end_seq, tp->snd_una))
a1197f5a 1343 return sacked;
9e10c47c
IJ
1344
1345 if (!(sacked & TCPCB_SACKED_ACKED)) {
1346 if (sacked & TCPCB_SACKED_RETRANS) {
1347 /* If the segment is not tagged as lost,
1348 * we do not clear RETRANS, believing
1349 * that retransmission is still in flight.
1350 */
1351 if (sacked & TCPCB_LOST) {
a1197f5a 1352 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1353 tp->lost_out -= pcount;
1354 tp->retrans_out -= pcount;
9e10c47c
IJ
1355 }
1356 } else {
1357 if (!(sacked & TCPCB_RETRANS)) {
1358 /* New sack for not retransmitted frame,
1359 * which was in hole. It is reordering.
1360 */
cc9a672e 1361 if (before(start_seq,
9e10c47c 1362 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1363 state->reord = min(fack_count,
1364 state->reord);
9e10c47c
IJ
1365
1366 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
cc9a672e 1367 if (!after(end_seq, tp->frto_highmark))
a1197f5a 1368 state->flag |= FLAG_ONLY_ORIG_SACKED;
9e10c47c
IJ
1369 }
1370
1371 if (sacked & TCPCB_LOST) {
a1197f5a 1372 sacked &= ~TCPCB_LOST;
f58b22fd 1373 tp->lost_out -= pcount;
9e10c47c
IJ
1374 }
1375 }
1376
a1197f5a
IJ
1377 sacked |= TCPCB_SACKED_ACKED;
1378 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1379 tp->sacked_out += pcount;
9e10c47c 1380
f58b22fd 1381 fack_count += pcount;
9e10c47c
IJ
1382
1383 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1384 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1385 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1386 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1387
1388 if (fack_count > tp->fackets_out)
1389 tp->fackets_out = fack_count;
9e10c47c
IJ
1390 }
1391
1392 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1393 * frames and clear it. undo_retrans is decreased above, L|R frames
1394 * are accounted above as well.
1395 */
a1197f5a
IJ
1396 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1397 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1398 tp->retrans_out -= pcount;
9e10c47c
IJ
1399 }
1400
a1197f5a 1401 return sacked;
9e10c47c
IJ
1402}
1403
daef52ba
NC
1404/* Shift newly-SACKed bytes from this skb to the immediately previous
1405 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1406 */
a2a385d6
ED
1407static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1408 struct tcp_sacktag_state *state,
1409 unsigned int pcount, int shifted, int mss,
1410 bool dup_sack)
832d11c5
IJ
1411{
1412 struct tcp_sock *tp = tcp_sk(sk);
50133161 1413 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1414 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1415 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1416
1417 BUG_ON(!pcount);
1418
4c90d3b3
NC
1419 /* Adjust counters and hints for the newly sacked sequence
1420 * range but discard the return value since prev is already
1421 * marked. We must tag the range first because the seq
1422 * advancement below implicitly advances
1423 * tcp_highest_sack_seq() when skb is highest_sack.
1424 */
1425 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1426 start_seq, end_seq, dup_sack, pcount);
1427
1428 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1429 tp->lost_cnt_hint += pcount;
1430
832d11c5
IJ
1431 TCP_SKB_CB(prev)->end_seq += shifted;
1432 TCP_SKB_CB(skb)->seq += shifted;
1433
1434 skb_shinfo(prev)->gso_segs += pcount;
1435 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1436 skb_shinfo(skb)->gso_segs -= pcount;
1437
1438 /* When we're adding to gso_segs == 1, gso_size will be zero,
1439 * in theory this shouldn't be necessary but as long as DSACK
1440 * code can come after this skb later on it's better to keep
1441 * setting gso_size to something.
1442 */
1443 if (!skb_shinfo(prev)->gso_size) {
1444 skb_shinfo(prev)->gso_size = mss;
1445 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1446 }
1447
1448 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1449 if (skb_shinfo(skb)->gso_segs <= 1) {
1450 skb_shinfo(skb)->gso_size = 0;
1451 skb_shinfo(skb)->gso_type = 0;
1452 }
1453
832d11c5
IJ
1454 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1455 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1456
832d11c5
IJ
1457 if (skb->len > 0) {
1458 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1459 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1460 return false;
832d11c5
IJ
1461 }
1462
1463 /* Whole SKB was eaten :-) */
1464
92ee76b6
IJ
1465 if (skb == tp->retransmit_skb_hint)
1466 tp->retransmit_skb_hint = prev;
1467 if (skb == tp->scoreboard_skb_hint)
1468 tp->scoreboard_skb_hint = prev;
1469 if (skb == tp->lost_skb_hint) {
1470 tp->lost_skb_hint = prev;
1471 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1472 }
1473
4de075e0 1474 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
832d11c5
IJ
1475 if (skb == tcp_highest_sack(sk))
1476 tcp_advance_highest_sack(sk, skb);
1477
1478 tcp_unlink_write_queue(skb, sk);
1479 sk_wmem_free_skb(sk, skb);
1480
111cc8b9
IJ
1481 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1482
a2a385d6 1483 return true;
832d11c5
IJ
1484}
1485
1486/* I wish gso_size would have a bit more sane initialization than
1487 * something-or-zero which complicates things
1488 */
cf533ea5 1489static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1490{
775ffabf 1491 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1492}
1493
1494/* Shifting pages past head area doesn't work */
cf533ea5 1495static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1496{
1497 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1498}
1499
1500/* Try collapsing SACK blocks spanning across multiple skbs to a single
1501 * skb.
1502 */
1503static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1504 struct tcp_sacktag_state *state,
832d11c5 1505 u32 start_seq, u32 end_seq,
a2a385d6 1506 bool dup_sack)
832d11c5
IJ
1507{
1508 struct tcp_sock *tp = tcp_sk(sk);
1509 struct sk_buff *prev;
1510 int mss;
1511 int pcount = 0;
1512 int len;
1513 int in_sack;
1514
1515 if (!sk_can_gso(sk))
1516 goto fallback;
1517
1518 /* Normally R but no L won't result in plain S */
1519 if (!dup_sack &&
9969ca5f 1520 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1521 goto fallback;
1522 if (!skb_can_shift(skb))
1523 goto fallback;
1524 /* This frame is about to be dropped (was ACKed). */
1525 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1526 goto fallback;
1527
1528 /* Can only happen with delayed DSACK + discard craziness */
1529 if (unlikely(skb == tcp_write_queue_head(sk)))
1530 goto fallback;
1531 prev = tcp_write_queue_prev(sk, skb);
1532
1533 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1534 goto fallback;
1535
1536 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1537 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1538
1539 if (in_sack) {
1540 len = skb->len;
1541 pcount = tcp_skb_pcount(skb);
775ffabf 1542 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1543
1544 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1545 * drop this restriction as unnecessary
1546 */
775ffabf 1547 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1548 goto fallback;
1549 } else {
1550 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1551 goto noop;
1552 /* CHECKME: This is non-MSS split case only?, this will
1553 * cause skipped skbs due to advancing loop btw, original
1554 * has that feature too
1555 */
1556 if (tcp_skb_pcount(skb) <= 1)
1557 goto noop;
1558
1559 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1560 if (!in_sack) {
1561 /* TODO: head merge to next could be attempted here
1562 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1563 * though it might not be worth of the additional hassle
1564 *
1565 * ...we can probably just fallback to what was done
1566 * previously. We could try merging non-SACKed ones
1567 * as well but it probably isn't going to buy off
1568 * because later SACKs might again split them, and
1569 * it would make skb timestamp tracking considerably
1570 * harder problem.
1571 */
1572 goto fallback;
1573 }
1574
1575 len = end_seq - TCP_SKB_CB(skb)->seq;
1576 BUG_ON(len < 0);
1577 BUG_ON(len > skb->len);
1578
1579 /* MSS boundaries should be honoured or else pcount will
1580 * severely break even though it makes things bit trickier.
1581 * Optimize common case to avoid most of the divides
1582 */
1583 mss = tcp_skb_mss(skb);
1584
1585 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1586 * drop this restriction as unnecessary
1587 */
775ffabf 1588 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1589 goto fallback;
1590
1591 if (len == mss) {
1592 pcount = 1;
1593 } else if (len < mss) {
1594 goto noop;
1595 } else {
1596 pcount = len / mss;
1597 len = pcount * mss;
1598 }
1599 }
1600
4648dc97
NC
1601 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1602 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1603 goto fallback;
1604
832d11c5
IJ
1605 if (!skb_shift(prev, skb, len))
1606 goto fallback;
9ec06ff5 1607 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1608 goto out;
1609
1610 /* Hole filled allows collapsing with the next as well, this is very
1611 * useful when hole on every nth skb pattern happens
1612 */
1613 if (prev == tcp_write_queue_tail(sk))
1614 goto out;
1615 skb = tcp_write_queue_next(sk, prev);
1616
f0bc52f3
IJ
1617 if (!skb_can_shift(skb) ||
1618 (skb == tcp_send_head(sk)) ||
1619 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1620 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1621 goto out;
1622
1623 len = skb->len;
1624 if (skb_shift(prev, skb, len)) {
1625 pcount += tcp_skb_pcount(skb);
9ec06ff5 1626 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1627 }
1628
1629out:
a1197f5a 1630 state->fack_count += pcount;
832d11c5
IJ
1631 return prev;
1632
1633noop:
1634 return skb;
1635
1636fallback:
111cc8b9 1637 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1638 return NULL;
1639}
1640
68f8353b
IJ
1641static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1642 struct tcp_sack_block *next_dup,
a1197f5a 1643 struct tcp_sacktag_state *state,
68f8353b 1644 u32 start_seq, u32 end_seq,
a2a385d6 1645 bool dup_sack_in)
68f8353b 1646{
832d11c5
IJ
1647 struct tcp_sock *tp = tcp_sk(sk);
1648 struct sk_buff *tmp;
1649
68f8353b
IJ
1650 tcp_for_write_queue_from(skb, sk) {
1651 int in_sack = 0;
a2a385d6 1652 bool dup_sack = dup_sack_in;
68f8353b
IJ
1653
1654 if (skb == tcp_send_head(sk))
1655 break;
1656
1657 /* queue is in-order => we can short-circuit the walk early */
1658 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1659 break;
1660
1661 if ((next_dup != NULL) &&
1662 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1663 in_sack = tcp_match_skb_to_sack(sk, skb,
1664 next_dup->start_seq,
1665 next_dup->end_seq);
1666 if (in_sack > 0)
a2a385d6 1667 dup_sack = true;
68f8353b
IJ
1668 }
1669
832d11c5
IJ
1670 /* skb reference here is a bit tricky to get right, since
1671 * shifting can eat and free both this skb and the next,
1672 * so not even _safe variant of the loop is enough.
1673 */
1674 if (in_sack <= 0) {
a1197f5a
IJ
1675 tmp = tcp_shift_skb_data(sk, skb, state,
1676 start_seq, end_seq, dup_sack);
832d11c5
IJ
1677 if (tmp != NULL) {
1678 if (tmp != skb) {
1679 skb = tmp;
1680 continue;
1681 }
1682
1683 in_sack = 0;
1684 } else {
1685 in_sack = tcp_match_skb_to_sack(sk, skb,
1686 start_seq,
1687 end_seq);
1688 }
1689 }
1690
68f8353b
IJ
1691 if (unlikely(in_sack < 0))
1692 break;
1693
832d11c5 1694 if (in_sack) {
cc9a672e
NC
1695 TCP_SKB_CB(skb)->sacked =
1696 tcp_sacktag_one(sk,
1697 state,
1698 TCP_SKB_CB(skb)->sacked,
1699 TCP_SKB_CB(skb)->seq,
1700 TCP_SKB_CB(skb)->end_seq,
1701 dup_sack,
1702 tcp_skb_pcount(skb));
68f8353b 1703
832d11c5
IJ
1704 if (!before(TCP_SKB_CB(skb)->seq,
1705 tcp_highest_sack_seq(tp)))
1706 tcp_advance_highest_sack(sk, skb);
1707 }
1708
a1197f5a 1709 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1710 }
1711 return skb;
1712}
1713
1714/* Avoid all extra work that is being done by sacktag while walking in
1715 * a normal way
1716 */
1717static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1718 struct tcp_sacktag_state *state,
1719 u32 skip_to_seq)
68f8353b
IJ
1720{
1721 tcp_for_write_queue_from(skb, sk) {
1722 if (skb == tcp_send_head(sk))
1723 break;
1724
e8bae275 1725 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1726 break;
d152a7d8 1727
a1197f5a 1728 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1729 }
1730 return skb;
1731}
1732
1733static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1734 struct sock *sk,
1735 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1736 struct tcp_sacktag_state *state,
1737 u32 skip_to_seq)
68f8353b
IJ
1738{
1739 if (next_dup == NULL)
1740 return skb;
1741
1742 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1743 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1744 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1745 next_dup->start_seq, next_dup->end_seq,
1746 1);
68f8353b
IJ
1747 }
1748
1749 return skb;
1750}
1751
cf533ea5 1752static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1753{
1754 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1755}
1756
1da177e4 1757static int
cf533ea5 1758tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
056834d9 1759 u32 prior_snd_una)
1da177e4 1760{
6687e988 1761 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1762 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1763 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1764 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1765 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1766 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1767 struct tcp_sack_block *cache;
a1197f5a 1768 struct tcp_sacktag_state state;
68f8353b 1769 struct sk_buff *skb;
4389dded 1770 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1771 int used_sacks;
a2a385d6 1772 bool found_dup_sack = false;
68f8353b 1773 int i, j;
fda03fbb 1774 int first_sack_index;
1da177e4 1775
a1197f5a
IJ
1776 state.flag = 0;
1777 state.reord = tp->packets_out;
1778
d738cd8f 1779 if (!tp->sacked_out) {
de83c058
IJ
1780 if (WARN_ON(tp->fackets_out))
1781 tp->fackets_out = 0;
6859d494 1782 tcp_highest_sack_reset(sk);
d738cd8f 1783 }
1da177e4 1784
1ed83465 1785 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1786 num_sacks, prior_snd_una);
1787 if (found_dup_sack)
a1197f5a 1788 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1789
1790 /* Eliminate too old ACKs, but take into
1791 * account more or less fresh ones, they can
1792 * contain valid SACK info.
1793 */
1794 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1795 return 0;
1796