]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/vmx.c
x86/speculation, KVM: Implement support for VIRT_SPEC_CTRL/LS_CFG
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
c207aee4 36#include <linux/frame.h>
bcaf287c 37#include <linux/nospec.h>
5fdbf976 38#include "kvm_cache_regs.h"
35920a35 39#include "x86.h"
e495606d 40
28b835d6 41#include <asm/cpu.h>
6aa8b732 42#include <asm/io.h>
3b3be0d1 43#include <asm/desc.h>
13673a90 44#include <asm/vmx.h>
6210e37b 45#include <asm/virtext.h>
a0861c02 46#include <asm/mce.h>
952f07ec 47#include <asm/fpu/internal.h>
d7cd9796 48#include <asm/perf_event.h>
81908bf4 49#include <asm/debugreg.h>
8f536b76 50#include <asm/kexec.h>
dab2087d 51#include <asm/apic.h>
efc64404 52#include <asm/irq_remapping.h>
d6e41f11 53#include <asm/mmu_context.h>
f471d71b 54#include <asm/microcode.h>
d7a6a163 55#include <asm/spec-ctrl.h>
6aa8b732 56
229456fc 57#include "trace.h"
25462f7f 58#include "pmu.h"
229456fc 59
4ecac3fd 60#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
61#define __ex_clear(x, reg) \
62 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 63
6aa8b732
AK
64MODULE_AUTHOR("Qumranet");
65MODULE_LICENSE("GPL");
66
e9bda3b3
JT
67static const struct x86_cpu_id vmx_cpu_id[] = {
68 X86_FEATURE_MATCH(X86_FEATURE_VMX),
69 {}
70};
71MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
72
476bc001 73static bool __read_mostly enable_vpid = 1;
736caefe 74module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 75
d02fcf50
PB
76static bool __read_mostly enable_vnmi = 1;
77module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
78
476bc001 79static bool __read_mostly flexpriority_enabled = 1;
736caefe 80module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 81
476bc001 82static bool __read_mostly enable_ept = 1;
736caefe 83module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 84
476bc001 85static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
86module_param_named(unrestricted_guest,
87 enable_unrestricted_guest, bool, S_IRUGO);
88
83c3a331
XH
89static bool __read_mostly enable_ept_ad_bits = 1;
90module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
91
a27685c3 92static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 93module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 94
476bc001 95static bool __read_mostly fasteoi = 1;
58fbbf26
KT
96module_param(fasteoi, bool, S_IRUGO);
97
5a71785d 98static bool __read_mostly enable_apicv = 1;
01e439be 99module_param(enable_apicv, bool, S_IRUGO);
83d4c286 100
abc4fc58
AG
101static bool __read_mostly enable_shadow_vmcs = 1;
102module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
103/*
104 * If nested=1, nested virtualization is supported, i.e., guests may use
105 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
106 * use VMX instructions.
107 */
476bc001 108static bool __read_mostly nested = 0;
801d3424
NHE
109module_param(nested, bool, S_IRUGO);
110
20300099
WL
111static u64 __read_mostly host_xss;
112
843e4330
KH
113static bool __read_mostly enable_pml = 1;
114module_param_named(pml, enable_pml, bool, S_IRUGO);
115
4b0be90f
PB
116#define MSR_TYPE_R 1
117#define MSR_TYPE_W 2
118#define MSR_TYPE_RW 3
119
120#define MSR_BITMAP_MODE_X2APIC 1
121#define MSR_BITMAP_MODE_X2APIC_APICV 2
122#define MSR_BITMAP_MODE_LM 4
123
64903d61
HZ
124#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
125
64672c95
YJ
126/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
127static int __read_mostly cpu_preemption_timer_multi;
128static bool __read_mostly enable_preemption_timer = 1;
129#ifdef CONFIG_X86_64
130module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131#endif
132
5037878e
GN
133#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
134#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
135#define KVM_VM_CR0_ALWAYS_ON \
136 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
137#define KVM_CR4_GUEST_OWNED_BITS \
138 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
fd8cb433 139 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
4c38609a 140
cdc0e244
AK
141#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143
78ac8b47
AK
144#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145
f4124500
JK
146#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
147
16c2aec6
JD
148/*
149 * Hyper-V requires all of these, so mark them as supported even though
150 * they are just treated the same as all-context.
151 */
152#define VMX_VPID_EXTENT_SUPPORTED_MASK \
153 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
154 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
155 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
156 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
157
4b8d54f9
ZE
158/*
159 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
160 * ple_gap: upper bound on the amount of time between two successive
161 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 162 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
163 * ple_window: upper bound on the amount of time a guest is allowed to execute
164 * in a PAUSE loop. Tests indicate that most spinlocks are held for
165 * less than 2^12 cycles
166 * Time is measured based on a counter that runs at the same rate as the TSC,
167 * refer SDM volume 3b section 21.6.13 & 22.1.3.
168 */
b4a2d31d
RK
169#define KVM_VMX_DEFAULT_PLE_GAP 128
170#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
171#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
172#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
173#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
174 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
175
4b8d54f9
ZE
176static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
177module_param(ple_gap, int, S_IRUGO);
178
179static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
180module_param(ple_window, int, S_IRUGO);
181
b4a2d31d
RK
182/* Default doubles per-vcpu window every exit. */
183static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
184module_param(ple_window_grow, int, S_IRUGO);
185
186/* Default resets per-vcpu window every exit to ple_window. */
187static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
188module_param(ple_window_shrink, int, S_IRUGO);
189
190/* Default is to compute the maximum so we can never overflow. */
191static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
192static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
193module_param(ple_window_max, int, S_IRUGO);
194
83287ea4
AK
195extern const ulong vmx_return;
196
8bf00a52 197#define NR_AUTOLOAD_MSRS 8
61d2ef2c 198
a2fa3e9f
GH
199struct vmcs {
200 u32 revision_id;
201 u32 abort;
202 char data[0];
203};
204
d462b819
NHE
205/*
206 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
207 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
208 * loaded on this CPU (so we can clear them if the CPU goes down).
209 */
210struct loaded_vmcs {
211 struct vmcs *vmcs;
355f4fb1 212 struct vmcs *shadow_vmcs;
d462b819 213 int cpu;
4c4a6f79
PB
214 bool launched;
215 bool nmi_known_unmasked;
44889942
LP
216 unsigned long vmcs_host_cr3; /* May not match real cr3 */
217 unsigned long vmcs_host_cr4; /* May not match real cr4 */
8a1b4392
PB
218 /* Support for vnmi-less CPUs */
219 int soft_vnmi_blocked;
220 ktime_t entry_time;
221 s64 vnmi_blocked_time;
4b0be90f 222 unsigned long *msr_bitmap;
d462b819
NHE
223 struct list_head loaded_vmcss_on_cpu_link;
224};
225
26bb0981
AK
226struct shared_msr_entry {
227 unsigned index;
228 u64 data;
d5696725 229 u64 mask;
26bb0981
AK
230};
231
a9d30f33
NHE
232/*
233 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
234 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
235 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
236 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
237 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
238 * More than one of these structures may exist, if L1 runs multiple L2 guests.
8819227c 239 * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
a9d30f33
NHE
240 * underlying hardware which will be used to run L2.
241 * This structure is packed to ensure that its layout is identical across
242 * machines (necessary for live migration).
243 * If there are changes in this struct, VMCS12_REVISION must be changed.
244 */
22bd0358 245typedef u64 natural_width;
a9d30f33
NHE
246struct __packed vmcs12 {
247 /* According to the Intel spec, a VMCS region must start with the
248 * following two fields. Then follow implementation-specific data.
249 */
250 u32 revision_id;
251 u32 abort;
22bd0358 252
27d6c865
NHE
253 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
254 u32 padding[7]; /* room for future expansion */
255
22bd0358
NHE
256 u64 io_bitmap_a;
257 u64 io_bitmap_b;
258 u64 msr_bitmap;
259 u64 vm_exit_msr_store_addr;
260 u64 vm_exit_msr_load_addr;
261 u64 vm_entry_msr_load_addr;
262 u64 tsc_offset;
263 u64 virtual_apic_page_addr;
264 u64 apic_access_addr;
705699a1 265 u64 posted_intr_desc_addr;
27c42a1b 266 u64 vm_function_control;
22bd0358 267 u64 ept_pointer;
608406e2
WV
268 u64 eoi_exit_bitmap0;
269 u64 eoi_exit_bitmap1;
270 u64 eoi_exit_bitmap2;
271 u64 eoi_exit_bitmap3;
41ab9372 272 u64 eptp_list_address;
81dc01f7 273 u64 xss_exit_bitmap;
22bd0358
NHE
274 u64 guest_physical_address;
275 u64 vmcs_link_pointer;
c5f983f6 276 u64 pml_address;
22bd0358
NHE
277 u64 guest_ia32_debugctl;
278 u64 guest_ia32_pat;
279 u64 guest_ia32_efer;
280 u64 guest_ia32_perf_global_ctrl;
281 u64 guest_pdptr0;
282 u64 guest_pdptr1;
283 u64 guest_pdptr2;
284 u64 guest_pdptr3;
36be0b9d 285 u64 guest_bndcfgs;
22bd0358
NHE
286 u64 host_ia32_pat;
287 u64 host_ia32_efer;
288 u64 host_ia32_perf_global_ctrl;
289 u64 padding64[8]; /* room for future expansion */
290 /*
291 * To allow migration of L1 (complete with its L2 guests) between
292 * machines of different natural widths (32 or 64 bit), we cannot have
293 * unsigned long fields with no explict size. We use u64 (aliased
294 * natural_width) instead. Luckily, x86 is little-endian.
295 */
296 natural_width cr0_guest_host_mask;
297 natural_width cr4_guest_host_mask;
298 natural_width cr0_read_shadow;
299 natural_width cr4_read_shadow;
300 natural_width cr3_target_value0;
301 natural_width cr3_target_value1;
302 natural_width cr3_target_value2;
303 natural_width cr3_target_value3;
304 natural_width exit_qualification;
305 natural_width guest_linear_address;
306 natural_width guest_cr0;
307 natural_width guest_cr3;
308 natural_width guest_cr4;
309 natural_width guest_es_base;
310 natural_width guest_cs_base;
311 natural_width guest_ss_base;
312 natural_width guest_ds_base;
313 natural_width guest_fs_base;
314 natural_width guest_gs_base;
315 natural_width guest_ldtr_base;
316 natural_width guest_tr_base;
317 natural_width guest_gdtr_base;
318 natural_width guest_idtr_base;
319 natural_width guest_dr7;
320 natural_width guest_rsp;
321 natural_width guest_rip;
322 natural_width guest_rflags;
323 natural_width guest_pending_dbg_exceptions;
324 natural_width guest_sysenter_esp;
325 natural_width guest_sysenter_eip;
326 natural_width host_cr0;
327 natural_width host_cr3;
328 natural_width host_cr4;
329 natural_width host_fs_base;
330 natural_width host_gs_base;
331 natural_width host_tr_base;
332 natural_width host_gdtr_base;
333 natural_width host_idtr_base;
334 natural_width host_ia32_sysenter_esp;
335 natural_width host_ia32_sysenter_eip;
336 natural_width host_rsp;
337 natural_width host_rip;
338 natural_width paddingl[8]; /* room for future expansion */
339 u32 pin_based_vm_exec_control;
340 u32 cpu_based_vm_exec_control;
341 u32 exception_bitmap;
342 u32 page_fault_error_code_mask;
343 u32 page_fault_error_code_match;
344 u32 cr3_target_count;
345 u32 vm_exit_controls;
346 u32 vm_exit_msr_store_count;
347 u32 vm_exit_msr_load_count;
348 u32 vm_entry_controls;
349 u32 vm_entry_msr_load_count;
350 u32 vm_entry_intr_info_field;
351 u32 vm_entry_exception_error_code;
352 u32 vm_entry_instruction_len;
353 u32 tpr_threshold;
354 u32 secondary_vm_exec_control;
355 u32 vm_instruction_error;
356 u32 vm_exit_reason;
357 u32 vm_exit_intr_info;
358 u32 vm_exit_intr_error_code;
359 u32 idt_vectoring_info_field;
360 u32 idt_vectoring_error_code;
361 u32 vm_exit_instruction_len;
362 u32 vmx_instruction_info;
363 u32 guest_es_limit;
364 u32 guest_cs_limit;
365 u32 guest_ss_limit;
366 u32 guest_ds_limit;
367 u32 guest_fs_limit;
368 u32 guest_gs_limit;
369 u32 guest_ldtr_limit;
370 u32 guest_tr_limit;
371 u32 guest_gdtr_limit;
372 u32 guest_idtr_limit;
373 u32 guest_es_ar_bytes;
374 u32 guest_cs_ar_bytes;
375 u32 guest_ss_ar_bytes;
376 u32 guest_ds_ar_bytes;
377 u32 guest_fs_ar_bytes;
378 u32 guest_gs_ar_bytes;
379 u32 guest_ldtr_ar_bytes;
380 u32 guest_tr_ar_bytes;
381 u32 guest_interruptibility_info;
382 u32 guest_activity_state;
383 u32 guest_sysenter_cs;
384 u32 host_ia32_sysenter_cs;
0238ea91
JK
385 u32 vmx_preemption_timer_value;
386 u32 padding32[7]; /* room for future expansion */
22bd0358 387 u16 virtual_processor_id;
705699a1 388 u16 posted_intr_nv;
22bd0358
NHE
389 u16 guest_es_selector;
390 u16 guest_cs_selector;
391 u16 guest_ss_selector;
392 u16 guest_ds_selector;
393 u16 guest_fs_selector;
394 u16 guest_gs_selector;
395 u16 guest_ldtr_selector;
396 u16 guest_tr_selector;
608406e2 397 u16 guest_intr_status;
c5f983f6 398 u16 guest_pml_index;
22bd0358
NHE
399 u16 host_es_selector;
400 u16 host_cs_selector;
401 u16 host_ss_selector;
402 u16 host_ds_selector;
403 u16 host_fs_selector;
404 u16 host_gs_selector;
405 u16 host_tr_selector;
a9d30f33
NHE
406};
407
408/*
409 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
410 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
411 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
412 */
413#define VMCS12_REVISION 0x11e57ed0
414
415/*
416 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
417 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
418 * current implementation, 4K are reserved to avoid future complications.
419 */
420#define VMCS12_SIZE 0x1000
421
ec378aee
NHE
422/*
423 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
424 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
425 */
426struct nested_vmx {
427 /* Has the level1 guest done vmxon? */
428 bool vmxon;
3573e22c 429 gpa_t vmxon_ptr;
c5f983f6 430 bool pml_full;
a9d30f33
NHE
431
432 /* The guest-physical address of the current VMCS L1 keeps for L2 */
433 gpa_t current_vmptr;
4f2777bc
DM
434 /*
435 * Cache of the guest's VMCS, existing outside of guest memory.
436 * Loaded from guest memory during VMPTRLD. Flushed to guest
8ca44e88 437 * memory during VMCLEAR and VMPTRLD.
4f2777bc
DM
438 */
439 struct vmcs12 *cached_vmcs12;
012f83cb
AG
440 /*
441 * Indicates if the shadow vmcs must be updated with the
442 * data hold by vmcs12
443 */
444 bool sync_shadow_vmcs;
ff2f6fe9 445
dccbfcf5 446 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
447 /* L2 must run next, and mustn't decide to exit to L1. */
448 bool nested_run_pending;
8819227c
JM
449
450 struct loaded_vmcs vmcs02;
451
fe3ef05c 452 /*
8819227c
JM
453 * Guest pages referred to in the vmcs02 with host-physical
454 * pointers, so we must keep them pinned while L2 runs.
fe3ef05c
NHE
455 */
456 struct page *apic_access_page;
a7c0b07d 457 struct page *virtual_apic_page;
705699a1
WV
458 struct page *pi_desc_page;
459 struct pi_desc *pi_desc;
460 bool pi_pending;
461 u16 posted_intr_nv;
f4124500
JK
462
463 struct hrtimer preemption_timer;
464 bool preemption_timer_expired;
2996fca0
JK
465
466 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
467 u64 vmcs01_debugctl;
b9c237bb 468
5c614b35
WL
469 u16 vpid02;
470 u16 last_vpid;
471
0115f9cb
DM
472 /*
473 * We only store the "true" versions of the VMX capability MSRs. We
474 * generate the "non-true" versions by setting the must-be-1 bits
475 * according to the SDM.
476 */
b9c237bb
WV
477 u32 nested_vmx_procbased_ctls_low;
478 u32 nested_vmx_procbased_ctls_high;
b9c237bb
WV
479 u32 nested_vmx_secondary_ctls_low;
480 u32 nested_vmx_secondary_ctls_high;
481 u32 nested_vmx_pinbased_ctls_low;
482 u32 nested_vmx_pinbased_ctls_high;
483 u32 nested_vmx_exit_ctls_low;
484 u32 nested_vmx_exit_ctls_high;
b9c237bb
WV
485 u32 nested_vmx_entry_ctls_low;
486 u32 nested_vmx_entry_ctls_high;
b9c237bb
WV
487 u32 nested_vmx_misc_low;
488 u32 nested_vmx_misc_high;
489 u32 nested_vmx_ept_caps;
99b83ac8 490 u32 nested_vmx_vpid_caps;
62cc6b9d
DM
491 u64 nested_vmx_basic;
492 u64 nested_vmx_cr0_fixed0;
493 u64 nested_vmx_cr0_fixed1;
494 u64 nested_vmx_cr4_fixed0;
495 u64 nested_vmx_cr4_fixed1;
496 u64 nested_vmx_vmcs_enum;
27c42a1b 497 u64 nested_vmx_vmfunc_controls;
72e9cbdb
LP
498
499 /* SMM related state */
500 struct {
501 /* in VMX operation on SMM entry? */
502 bool vmxon;
503 /* in guest mode on SMM entry? */
504 bool guest_mode;
505 } smm;
ec378aee
NHE
506};
507
01e439be 508#define POSTED_INTR_ON 0
ebbfc765
FW
509#define POSTED_INTR_SN 1
510
01e439be
YZ
511/* Posted-Interrupt Descriptor */
512struct pi_desc {
513 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
514 union {
515 struct {
516 /* bit 256 - Outstanding Notification */
517 u16 on : 1,
518 /* bit 257 - Suppress Notification */
519 sn : 1,
520 /* bit 271:258 - Reserved */
521 rsvd_1 : 14;
522 /* bit 279:272 - Notification Vector */
523 u8 nv;
524 /* bit 287:280 - Reserved */
525 u8 rsvd_2;
526 /* bit 319:288 - Notification Destination */
527 u32 ndst;
528 };
529 u64 control;
530 };
531 u32 rsvd[6];
01e439be
YZ
532} __aligned(64);
533
a20ed54d
YZ
534static bool pi_test_and_set_on(struct pi_desc *pi_desc)
535{
536 return test_and_set_bit(POSTED_INTR_ON,
537 (unsigned long *)&pi_desc->control);
538}
539
540static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
541{
542 return test_and_clear_bit(POSTED_INTR_ON,
543 (unsigned long *)&pi_desc->control);
544}
545
546static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
547{
548 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
549}
550
ebbfc765
FW
551static inline void pi_clear_sn(struct pi_desc *pi_desc)
552{
553 return clear_bit(POSTED_INTR_SN,
554 (unsigned long *)&pi_desc->control);
555}
556
557static inline void pi_set_sn(struct pi_desc *pi_desc)
558{
559 return set_bit(POSTED_INTR_SN,
560 (unsigned long *)&pi_desc->control);
561}
562
ad361091
PB
563static inline void pi_clear_on(struct pi_desc *pi_desc)
564{
565 clear_bit(POSTED_INTR_ON,
566 (unsigned long *)&pi_desc->control);
567}
568
ebbfc765
FW
569static inline int pi_test_on(struct pi_desc *pi_desc)
570{
571 return test_bit(POSTED_INTR_ON,
572 (unsigned long *)&pi_desc->control);
573}
574
575static inline int pi_test_sn(struct pi_desc *pi_desc)
576{
577 return test_bit(POSTED_INTR_SN,
578 (unsigned long *)&pi_desc->control);
579}
580
a2fa3e9f 581struct vcpu_vmx {
fb3f0f51 582 struct kvm_vcpu vcpu;
313dbd49 583 unsigned long host_rsp;
29bd8a78 584 u8 fail;
4b0be90f 585 u8 msr_bitmap_mode;
51aa01d1 586 u32 exit_intr_info;
1155f76a 587 u32 idt_vectoring_info;
6de12732 588 ulong rflags;
26bb0981 589 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
590 int nmsrs;
591 int save_nmsrs;
a547c6db 592 unsigned long host_idt_base;
a2fa3e9f 593#ifdef CONFIG_X86_64
44ea2b17
AK
594 u64 msr_host_kernel_gs_base;
595 u64 msr_guest_kernel_gs_base;
a2fa3e9f 596#endif
33241bfe 597
a6005a79 598 u64 arch_capabilities;
74469996 599 u64 spec_ctrl;
a6005a79 600
2961e876
GN
601 u32 vm_entry_controls_shadow;
602 u32 vm_exit_controls_shadow;
80154d77
PB
603 u32 secondary_exec_control;
604
d462b819
NHE
605 /*
606 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
607 * non-nested (L1) guest, it always points to vmcs01. For a nested
608 * guest (L2), it points to a different VMCS.
609 */
610 struct loaded_vmcs vmcs01;
611 struct loaded_vmcs *loaded_vmcs;
612 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
613 struct msr_autoload {
614 unsigned nr;
615 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
616 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
617 } msr_autoload;
a2fa3e9f
GH
618 struct {
619 int loaded;
620 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
621#ifdef CONFIG_X86_64
622 u16 ds_sel, es_sel;
623#endif
152d3f2f
LV
624 int gs_ldt_reload_needed;
625 int fs_reload_needed;
da8999d3 626 u64 msr_host_bndcfgs;
d77c26fc 627 } host_state;
9c8cba37 628 struct {
7ffd92c5 629 int vm86_active;
78ac8b47 630 ulong save_rflags;
f5f7b2fe
AK
631 struct kvm_segment segs[8];
632 } rmode;
633 struct {
634 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
635 struct kvm_save_segment {
636 u16 selector;
637 unsigned long base;
638 u32 limit;
639 u32 ar;
f5f7b2fe 640 } seg[8];
2fb92db1 641 } segment_cache;
2384d2b3 642 int vpid;
04fa4d32 643 bool emulation_required;
3b86cd99 644
a0861c02 645 u32 exit_reason;
4e47c7a6 646
01e439be
YZ
647 /* Posted interrupt descriptor */
648 struct pi_desc pi_desc;
649
ec378aee
NHE
650 /* Support for a guest hypervisor (nested VMX) */
651 struct nested_vmx nested;
a7653ecd
RK
652
653 /* Dynamic PLE window. */
654 int ple_window;
655 bool ple_window_dirty;
843e4330
KH
656
657 /* Support for PML */
658#define PML_ENTITY_NUM 512
659 struct page *pml_pg;
2680d6da 660
64672c95
YJ
661 /* apic deadline value in host tsc */
662 u64 hv_deadline_tsc;
663
2680d6da 664 u64 current_tsc_ratio;
1be0e61c 665
1be0e61c 666 u32 host_pkru;
3b84080b 667
37e4c997
HZ
668 /*
669 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
670 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
671 * in msr_ia32_feature_control_valid_bits.
672 */
3b84080b 673 u64 msr_ia32_feature_control;
37e4c997 674 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
675};
676
2fb92db1
AK
677enum segment_cache_field {
678 SEG_FIELD_SEL = 0,
679 SEG_FIELD_BASE = 1,
680 SEG_FIELD_LIMIT = 2,
681 SEG_FIELD_AR = 3,
682
683 SEG_FIELD_NR = 4
684};
685
a2fa3e9f
GH
686static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
687{
fb3f0f51 688 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
689}
690
efc64404
FW
691static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
692{
693 return &(to_vmx(vcpu)->pi_desc);
694}
695
22bd0358
NHE
696#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
697#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
698#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
699 [number##_HIGH] = VMCS12_OFFSET(name)+4
700
4607c2d7 701
fe2b201b 702static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
703 /*
704 * We do NOT shadow fields that are modified when L0
705 * traps and emulates any vmx instruction (e.g. VMPTRLD,
706 * VMXON...) executed by L1.
707 * For example, VM_INSTRUCTION_ERROR is read
708 * by L1 if a vmx instruction fails (part of the error path).
709 * Note the code assumes this logic. If for some reason
710 * we start shadowing these fields then we need to
711 * force a shadow sync when L0 emulates vmx instructions
712 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
713 * by nested_vmx_failValid)
714 */
715 VM_EXIT_REASON,
716 VM_EXIT_INTR_INFO,
717 VM_EXIT_INSTRUCTION_LEN,
718 IDT_VECTORING_INFO_FIELD,
719 IDT_VECTORING_ERROR_CODE,
720 VM_EXIT_INTR_ERROR_CODE,
721 EXIT_QUALIFICATION,
722 GUEST_LINEAR_ADDRESS,
723 GUEST_PHYSICAL_ADDRESS
724};
fe2b201b 725static int max_shadow_read_only_fields =
4607c2d7
AG
726 ARRAY_SIZE(shadow_read_only_fields);
727
fe2b201b 728static unsigned long shadow_read_write_fields[] = {
a7c0b07d 729 TPR_THRESHOLD,
4607c2d7
AG
730 GUEST_RIP,
731 GUEST_RSP,
732 GUEST_CR0,
733 GUEST_CR3,
734 GUEST_CR4,
735 GUEST_INTERRUPTIBILITY_INFO,
736 GUEST_RFLAGS,
737 GUEST_CS_SELECTOR,
738 GUEST_CS_AR_BYTES,
739 GUEST_CS_LIMIT,
740 GUEST_CS_BASE,
741 GUEST_ES_BASE,
36be0b9d 742 GUEST_BNDCFGS,
4607c2d7
AG
743 CR0_GUEST_HOST_MASK,
744 CR0_READ_SHADOW,
745 CR4_READ_SHADOW,
746 TSC_OFFSET,
747 EXCEPTION_BITMAP,
748 CPU_BASED_VM_EXEC_CONTROL,
749 VM_ENTRY_EXCEPTION_ERROR_CODE,
750 VM_ENTRY_INTR_INFO_FIELD,
751 VM_ENTRY_INSTRUCTION_LEN,
752 VM_ENTRY_EXCEPTION_ERROR_CODE,
753 HOST_FS_BASE,
754 HOST_GS_BASE,
755 HOST_FS_SELECTOR,
756 HOST_GS_SELECTOR
757};
fe2b201b 758static int max_shadow_read_write_fields =
4607c2d7
AG
759 ARRAY_SIZE(shadow_read_write_fields);
760
772e0318 761static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 762 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 763 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
764 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
765 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
766 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
767 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
768 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
769 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
770 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
771 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 772 FIELD(GUEST_INTR_STATUS, guest_intr_status),
c5f983f6 773 FIELD(GUEST_PML_INDEX, guest_pml_index),
22bd0358
NHE
774 FIELD(HOST_ES_SELECTOR, host_es_selector),
775 FIELD(HOST_CS_SELECTOR, host_cs_selector),
776 FIELD(HOST_SS_SELECTOR, host_ss_selector),
777 FIELD(HOST_DS_SELECTOR, host_ds_selector),
778 FIELD(HOST_FS_SELECTOR, host_fs_selector),
779 FIELD(HOST_GS_SELECTOR, host_gs_selector),
780 FIELD(HOST_TR_SELECTOR, host_tr_selector),
781 FIELD64(IO_BITMAP_A, io_bitmap_a),
782 FIELD64(IO_BITMAP_B, io_bitmap_b),
783 FIELD64(MSR_BITMAP, msr_bitmap),
784 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
785 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
786 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
787 FIELD64(TSC_OFFSET, tsc_offset),
788 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
789 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 790 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
27c42a1b 791 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
22bd0358 792 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
793 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
794 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
795 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
796 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
41ab9372 797 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
81dc01f7 798 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
799 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
800 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
c5f983f6 801 FIELD64(PML_ADDRESS, pml_address),
22bd0358
NHE
802 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
803 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
804 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
805 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
806 FIELD64(GUEST_PDPTR0, guest_pdptr0),
807 FIELD64(GUEST_PDPTR1, guest_pdptr1),
808 FIELD64(GUEST_PDPTR2, guest_pdptr2),
809 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 810 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
811 FIELD64(HOST_IA32_PAT, host_ia32_pat),
812 FIELD64(HOST_IA32_EFER, host_ia32_efer),
813 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
814 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
815 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
816 FIELD(EXCEPTION_BITMAP, exception_bitmap),
817 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
818 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
819 FIELD(CR3_TARGET_COUNT, cr3_target_count),
820 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
821 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
822 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
823 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
824 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
825 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
826 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
827 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
828 FIELD(TPR_THRESHOLD, tpr_threshold),
829 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
830 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
831 FIELD(VM_EXIT_REASON, vm_exit_reason),
832 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
833 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
834 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
835 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
836 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
837 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
838 FIELD(GUEST_ES_LIMIT, guest_es_limit),
839 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
840 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
841 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
842 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
843 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
844 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
845 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
846 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
847 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
848 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
849 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
850 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
851 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
852 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
853 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
854 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
855 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
856 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
857 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
858 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
859 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 860 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
861 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
862 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
863 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
864 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
865 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
866 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
867 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
868 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
869 FIELD(EXIT_QUALIFICATION, exit_qualification),
870 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
871 FIELD(GUEST_CR0, guest_cr0),
872 FIELD(GUEST_CR3, guest_cr3),
873 FIELD(GUEST_CR4, guest_cr4),
874 FIELD(GUEST_ES_BASE, guest_es_base),
875 FIELD(GUEST_CS_BASE, guest_cs_base),
876 FIELD(GUEST_SS_BASE, guest_ss_base),
877 FIELD(GUEST_DS_BASE, guest_ds_base),
878 FIELD(GUEST_FS_BASE, guest_fs_base),
879 FIELD(GUEST_GS_BASE, guest_gs_base),
880 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
881 FIELD(GUEST_TR_BASE, guest_tr_base),
882 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
883 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
884 FIELD(GUEST_DR7, guest_dr7),
885 FIELD(GUEST_RSP, guest_rsp),
886 FIELD(GUEST_RIP, guest_rip),
887 FIELD(GUEST_RFLAGS, guest_rflags),
888 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
889 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
890 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
891 FIELD(HOST_CR0, host_cr0),
892 FIELD(HOST_CR3, host_cr3),
893 FIELD(HOST_CR4, host_cr4),
894 FIELD(HOST_FS_BASE, host_fs_base),
895 FIELD(HOST_GS_BASE, host_gs_base),
896 FIELD(HOST_TR_BASE, host_tr_base),
897 FIELD(HOST_GDTR_BASE, host_gdtr_base),
898 FIELD(HOST_IDTR_BASE, host_idtr_base),
899 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
900 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
901 FIELD(HOST_RSP, host_rsp),
902 FIELD(HOST_RIP, host_rip),
903};
22bd0358
NHE
904
905static inline short vmcs_field_to_offset(unsigned long field)
906{
bcaf287c
DW
907 const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
908 unsigned short offset;
a2ae9df7 909
bcaf287c
DW
910 BUILD_BUG_ON(size > SHRT_MAX);
911 if (field >= size)
75f139aa
AH
912 return -ENOENT;
913
bcaf287c
DW
914 field = array_index_nospec(field, size);
915 offset = vmcs_field_to_offset_table[field];
916 if (offset == 0)
a2ae9df7 917 return -ENOENT;
bcaf287c 918 return offset;
22bd0358
NHE
919}
920
a9d30f33
NHE
921static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
922{
4f2777bc 923 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
924}
925
995f00a6 926static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
bfd0a56b 927static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
995f00a6 928static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
f53cd63c 929static bool vmx_xsaves_supported(void);
b246dd5d
OW
930static void vmx_set_segment(struct kvm_vcpu *vcpu,
931 struct kvm_segment *var, int seg);
932static void vmx_get_segment(struct kvm_vcpu *vcpu,
933 struct kvm_segment *var, int seg);
d99e4152
GN
934static bool guest_state_valid(struct kvm_vcpu *vcpu);
935static u32 vmx_segment_access_rights(struct kvm_segment *var);
16f5b903 936static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
b96fb439
PB
937static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
938static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
939static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
940 u16 error_code);
4b0be90f 941static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
33241bfe
AR
942static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
943 u32 msr, int type);
75880a01 944
6aa8b732
AK
945static DEFINE_PER_CPU(struct vmcs *, vmxarea);
946static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
947/*
948 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
949 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
950 */
951static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
6aa8b732 952
bf9f6ac8
FW
953/*
954 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
955 * can find which vCPU should be waken up.
956 */
957static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
958static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
959
23611332
RK
960enum {
961 VMX_IO_BITMAP_A,
962 VMX_IO_BITMAP_B,
23611332
RK
963 VMX_VMREAD_BITMAP,
964 VMX_VMWRITE_BITMAP,
965 VMX_BITMAP_NR
966};
967
968static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
969
970#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
971#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
23611332
RK
972#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
973#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 974
110312c8 975static bool cpu_has_load_ia32_efer;
8bf00a52 976static bool cpu_has_load_perf_global_ctrl;
110312c8 977
2384d2b3
SY
978static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
979static DEFINE_SPINLOCK(vmx_vpid_lock);
980
1c3d14fe 981static struct vmcs_config {
6aa8b732
AK
982 int size;
983 int order;
9ac7e3e8 984 u32 basic_cap;
6aa8b732 985 u32 revision_id;
1c3d14fe
YS
986 u32 pin_based_exec_ctrl;
987 u32 cpu_based_exec_ctrl;
f78e0e2e 988 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
989 u32 vmexit_ctrl;
990 u32 vmentry_ctrl;
991} vmcs_config;
6aa8b732 992
efff9e53 993static struct vmx_capability {
d56f546d
SY
994 u32 ept;
995 u32 vpid;
996} vmx_capability;
997
6aa8b732
AK
998#define VMX_SEGMENT_FIELD(seg) \
999 [VCPU_SREG_##seg] = { \
1000 .selector = GUEST_##seg##_SELECTOR, \
1001 .base = GUEST_##seg##_BASE, \
1002 .limit = GUEST_##seg##_LIMIT, \
1003 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1004 }
1005
772e0318 1006static const struct kvm_vmx_segment_field {
6aa8b732
AK
1007 unsigned selector;
1008 unsigned base;
1009 unsigned limit;
1010 unsigned ar_bytes;
1011} kvm_vmx_segment_fields[] = {
1012 VMX_SEGMENT_FIELD(CS),
1013 VMX_SEGMENT_FIELD(DS),
1014 VMX_SEGMENT_FIELD(ES),
1015 VMX_SEGMENT_FIELD(FS),
1016 VMX_SEGMENT_FIELD(GS),
1017 VMX_SEGMENT_FIELD(SS),
1018 VMX_SEGMENT_FIELD(TR),
1019 VMX_SEGMENT_FIELD(LDTR),
1020};
1021
26bb0981
AK
1022static u64 host_efer;
1023
6de4f3ad
AK
1024static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1025
4d56c8a7 1026/*
8c06585d 1027 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1028 * away by decrementing the array size.
1029 */
6aa8b732 1030static const u32 vmx_msr_index[] = {
05b3e0c2 1031#ifdef CONFIG_X86_64
44ea2b17 1032 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1033#endif
8c06585d 1034 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1035};
6aa8b732 1036
5bb16016 1037static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1038{
1039 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1040 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1041 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1042}
1043
6f05485d
JK
1044static inline bool is_debug(u32 intr_info)
1045{
1046 return is_exception_n(intr_info, DB_VECTOR);
1047}
1048
1049static inline bool is_breakpoint(u32 intr_info)
1050{
1051 return is_exception_n(intr_info, BP_VECTOR);
1052}
1053
5bb16016
JK
1054static inline bool is_page_fault(u32 intr_info)
1055{
1056 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1057}
1058
31299944 1059static inline bool is_no_device(u32 intr_info)
2ab455cc 1060{
5bb16016 1061 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1062}
1063
31299944 1064static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1065{
5bb16016 1066 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1067}
1068
31299944 1069static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1070{
1071 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1072 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1073}
1074
31299944 1075static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1076{
1077 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1078 INTR_INFO_VALID_MASK)) ==
1079 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1080}
1081
3252850d
LT
1082/* Undocumented: icebp/int1 */
1083static inline bool is_icebp(u32 intr_info)
1084{
1085 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1086 == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
1087}
1088
31299944 1089static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1090{
04547156 1091 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1092}
1093
31299944 1094static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1095{
04547156 1096 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1097}
1098
35754c98 1099static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1100{
35754c98 1101 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1102}
1103
31299944 1104static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1105{
04547156
SY
1106 return vmcs_config.cpu_based_exec_ctrl &
1107 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1108}
1109
774ead3a 1110static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1111{
04547156
SY
1112 return vmcs_config.cpu_based_2nd_exec_ctrl &
1113 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1114}
1115
8d14695f
YZ
1116static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1117{
1118 return vmcs_config.cpu_based_2nd_exec_ctrl &
1119 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1120}
1121
83d4c286
YZ
1122static inline bool cpu_has_vmx_apic_register_virt(void)
1123{
1124 return vmcs_config.cpu_based_2nd_exec_ctrl &
1125 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1126}
1127
c7c9c56c
YZ
1128static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1129{
1130 return vmcs_config.cpu_based_2nd_exec_ctrl &
1131 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1132}
1133
64672c95
YJ
1134/*
1135 * Comment's format: document - errata name - stepping - processor name.
1136 * Refer from
1137 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1138 */
1139static u32 vmx_preemption_cpu_tfms[] = {
1140/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
11410x000206E6,
1142/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1143/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1144/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11450x00020652,
1146/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11470x00020655,
1148/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1149/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1150/*
1151 * 320767.pdf - AAP86 - B1 -
1152 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1153 */
11540x000106E5,
1155/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11560x000106A0,
1157/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11580x000106A1,
1159/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11600x000106A4,
1161 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1162 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1163 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11640x000106A5,
1165};
1166
1167static inline bool cpu_has_broken_vmx_preemption_timer(void)
1168{
1169 u32 eax = cpuid_eax(0x00000001), i;
1170
1171 /* Clear the reserved bits */
1172 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1173 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1174 if (eax == vmx_preemption_cpu_tfms[i])
1175 return true;
1176
1177 return false;
1178}
1179
1180static inline bool cpu_has_vmx_preemption_timer(void)
1181{
64672c95
YJ
1182 return vmcs_config.pin_based_exec_ctrl &
1183 PIN_BASED_VMX_PREEMPTION_TIMER;
1184}
1185
01e439be
YZ
1186static inline bool cpu_has_vmx_posted_intr(void)
1187{
d6a858d1
PB
1188 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1189 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1190}
1191
1192static inline bool cpu_has_vmx_apicv(void)
1193{
1194 return cpu_has_vmx_apic_register_virt() &&
1195 cpu_has_vmx_virtual_intr_delivery() &&
1196 cpu_has_vmx_posted_intr();
1197}
1198
04547156
SY
1199static inline bool cpu_has_vmx_flexpriority(void)
1200{
1201 return cpu_has_vmx_tpr_shadow() &&
1202 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1203}
1204
e799794e
MT
1205static inline bool cpu_has_vmx_ept_execute_only(void)
1206{
31299944 1207 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1208}
1209
e799794e
MT
1210static inline bool cpu_has_vmx_ept_2m_page(void)
1211{
31299944 1212 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1213}
1214
878403b7
SY
1215static inline bool cpu_has_vmx_ept_1g_page(void)
1216{
31299944 1217 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1218}
1219
4bc9b982
SY
1220static inline bool cpu_has_vmx_ept_4levels(void)
1221{
1222 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1223}
1224
42aa53b4
DH
1225static inline bool cpu_has_vmx_ept_mt_wb(void)
1226{
1227 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1228}
1229
855feb67
YZ
1230static inline bool cpu_has_vmx_ept_5levels(void)
1231{
1232 return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1233}
1234
83c3a331
XH
1235static inline bool cpu_has_vmx_ept_ad_bits(void)
1236{
1237 return vmx_capability.ept & VMX_EPT_AD_BIT;
1238}
1239
31299944 1240static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1241{
31299944 1242 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1243}
1244
31299944 1245static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1246{
31299944 1247 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1248}
1249
518c8aee
GJ
1250static inline bool cpu_has_vmx_invvpid_single(void)
1251{
1252 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1253}
1254
b9d762fa
GJ
1255static inline bool cpu_has_vmx_invvpid_global(void)
1256{
1257 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1258}
1259
08d839c4
WL
1260static inline bool cpu_has_vmx_invvpid(void)
1261{
1262 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1263}
1264
31299944 1265static inline bool cpu_has_vmx_ept(void)
d56f546d 1266{
04547156
SY
1267 return vmcs_config.cpu_based_2nd_exec_ctrl &
1268 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1269}
1270
31299944 1271static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1272{
1273 return vmcs_config.cpu_based_2nd_exec_ctrl &
1274 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1275}
1276
31299944 1277static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1278{
1279 return vmcs_config.cpu_based_2nd_exec_ctrl &
1280 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1281}
1282
9ac7e3e8
JD
1283static inline bool cpu_has_vmx_basic_inout(void)
1284{
1285 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1286}
1287
35754c98 1288static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1289{
35754c98 1290 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1291}
1292
31299944 1293static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1294{
04547156
SY
1295 return vmcs_config.cpu_based_2nd_exec_ctrl &
1296 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1297}
1298
31299944 1299static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1300{
1301 return vmcs_config.cpu_based_2nd_exec_ctrl &
1302 SECONDARY_EXEC_RDTSCP;
1303}
1304
ad756a16
MJ
1305static inline bool cpu_has_vmx_invpcid(void)
1306{
1307 return vmcs_config.cpu_based_2nd_exec_ctrl &
1308 SECONDARY_EXEC_ENABLE_INVPCID;
1309}
1310
8a1b4392
PB
1311static inline bool cpu_has_virtual_nmis(void)
1312{
1313 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1314}
1315
f5f48ee1
SY
1316static inline bool cpu_has_vmx_wbinvd_exit(void)
1317{
1318 return vmcs_config.cpu_based_2nd_exec_ctrl &
1319 SECONDARY_EXEC_WBINVD_EXITING;
1320}
1321
abc4fc58
AG
1322static inline bool cpu_has_vmx_shadow_vmcs(void)
1323{
1324 u64 vmx_msr;
1325 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1326 /* check if the cpu supports writing r/o exit information fields */
1327 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1328 return false;
1329
1330 return vmcs_config.cpu_based_2nd_exec_ctrl &
1331 SECONDARY_EXEC_SHADOW_VMCS;
1332}
1333
843e4330
KH
1334static inline bool cpu_has_vmx_pml(void)
1335{
1336 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1337}
1338
64903d61
HZ
1339static inline bool cpu_has_vmx_tsc_scaling(void)
1340{
1341 return vmcs_config.cpu_based_2nd_exec_ctrl &
1342 SECONDARY_EXEC_TSC_SCALING;
1343}
1344
2a499e49
BD
1345static inline bool cpu_has_vmx_vmfunc(void)
1346{
1347 return vmcs_config.cpu_based_2nd_exec_ctrl &
1348 SECONDARY_EXEC_ENABLE_VMFUNC;
1349}
1350
04547156
SY
1351static inline bool report_flexpriority(void)
1352{
1353 return flexpriority_enabled;
1354}
1355
c7c2c709
JM
1356static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1357{
1358 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1359}
1360
fe3ef05c
NHE
1361static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1362{
1363 return vmcs12->cpu_based_vm_exec_control & bit;
1364}
1365
1366static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1367{
1368 return (vmcs12->cpu_based_vm_exec_control &
1369 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1370 (vmcs12->secondary_vm_exec_control & bit);
1371}
1372
f4124500
JK
1373static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1374{
1375 return vmcs12->pin_based_vm_exec_control &
1376 PIN_BASED_VMX_PREEMPTION_TIMER;
1377}
1378
155a97a3
NHE
1379static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1380{
1381 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1382}
1383
81dc01f7
WL
1384static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1385{
3db13480 1386 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
81dc01f7
WL
1387}
1388
c5f983f6
BD
1389static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1390{
1391 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1392}
1393
f2b93280
WV
1394static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1395{
1396 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1397}
1398
5c614b35
WL
1399static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1400{
1401 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1402}
1403
82f0dd4b
WV
1404static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1405{
1406 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1407}
1408
608406e2
WV
1409static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1410{
1411 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1412}
1413
705699a1
WV
1414static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1415{
1416 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1417}
1418
27c42a1b
BD
1419static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1420{
1421 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1422}
1423
41ab9372
BD
1424static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1425{
1426 return nested_cpu_has_vmfunc(vmcs12) &&
1427 (vmcs12->vm_function_control &
1428 VMX_VMFUNC_EPTP_SWITCHING);
1429}
1430
ef85b673 1431static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1432{
1433 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1434 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1435}
1436
533558bc
JK
1437static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1438 u32 exit_intr_info,
1439 unsigned long exit_qualification);
7c177938
NHE
1440static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1441 struct vmcs12 *vmcs12,
1442 u32 reason, unsigned long qualification);
1443
8b9cf98c 1444static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1445{
1446 int i;
1447
a2fa3e9f 1448 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1449 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1450 return i;
1451 return -1;
1452}
1453
2384d2b3
SY
1454static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1455{
1456 struct {
1457 u64 vpid : 16;
1458 u64 rsvd : 48;
1459 u64 gva;
1460 } operand = { vpid, 0, gva };
1461
4ecac3fd 1462 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1463 /* CF==1 or ZF==1 --> rc = -1 */
1464 "; ja 1f ; ud2 ; 1:"
1465 : : "a"(&operand), "c"(ext) : "cc", "memory");
1466}
1467
1439442c
SY
1468static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1469{
1470 struct {
1471 u64 eptp, gpa;
1472 } operand = {eptp, gpa};
1473
4ecac3fd 1474 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1475 /* CF==1 or ZF==1 --> rc = -1 */
1476 "; ja 1f ; ud2 ; 1:\n"
1477 : : "a" (&operand), "c" (ext) : "cc", "memory");
1478}
1479
26bb0981 1480static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1481{
1482 int i;
1483
8b9cf98c 1484 i = __find_msr_index(vmx, msr);
a75beee6 1485 if (i >= 0)
a2fa3e9f 1486 return &vmx->guest_msrs[i];
8b6d44c7 1487 return NULL;
7725f0ba
AK
1488}
1489
6aa8b732
AK
1490static void vmcs_clear(struct vmcs *vmcs)
1491{
1492 u64 phys_addr = __pa(vmcs);
1493 u8 error;
1494
4ecac3fd 1495 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1496 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1497 : "cc", "memory");
1498 if (error)
1499 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1500 vmcs, phys_addr);
1501}
1502
d462b819
NHE
1503static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1504{
1505 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1506 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1507 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1508 loaded_vmcs->cpu = -1;
1509 loaded_vmcs->launched = 0;
1510}
1511
7725b894
DX
1512static void vmcs_load(struct vmcs *vmcs)
1513{
1514 u64 phys_addr = __pa(vmcs);
1515 u8 error;
1516
1517 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1518 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1519 : "cc", "memory");
1520 if (error)
2844d849 1521 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1522 vmcs, phys_addr);
1523}
1524
2965faa5 1525#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1526/*
1527 * This bitmap is used to indicate whether the vmclear
1528 * operation is enabled on all cpus. All disabled by
1529 * default.
1530 */
1531static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1532
1533static inline void crash_enable_local_vmclear(int cpu)
1534{
1535 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1536}
1537
1538static inline void crash_disable_local_vmclear(int cpu)
1539{
1540 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1541}
1542
1543static inline int crash_local_vmclear_enabled(int cpu)
1544{
1545 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1546}
1547
1548static void crash_vmclear_local_loaded_vmcss(void)
1549{
1550 int cpu = raw_smp_processor_id();
1551 struct loaded_vmcs *v;
1552
1553 if (!crash_local_vmclear_enabled(cpu))
1554 return;
1555
1556 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1557 loaded_vmcss_on_cpu_link)
1558 vmcs_clear(v->vmcs);
1559}
1560#else
1561static inline void crash_enable_local_vmclear(int cpu) { }
1562static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1563#endif /* CONFIG_KEXEC_CORE */
8f536b76 1564
d462b819 1565static void __loaded_vmcs_clear(void *arg)
6aa8b732 1566{
d462b819 1567 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1568 int cpu = raw_smp_processor_id();
6aa8b732 1569
d462b819
NHE
1570 if (loaded_vmcs->cpu != cpu)
1571 return; /* vcpu migration can race with cpu offline */
1572 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1573 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1574 crash_disable_local_vmclear(cpu);
d462b819 1575 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1576
1577 /*
1578 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1579 * is before setting loaded_vmcs->vcpu to -1 which is done in
1580 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1581 * then adds the vmcs into percpu list before it is deleted.
1582 */
1583 smp_wmb();
1584
d462b819 1585 loaded_vmcs_init(loaded_vmcs);
8f536b76 1586 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1587}
1588
d462b819 1589static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1590{
e6c7d321
XG
1591 int cpu = loaded_vmcs->cpu;
1592
1593 if (cpu != -1)
1594 smp_call_function_single(cpu,
1595 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1596}
1597
dd5f5341 1598static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1599{
dd5f5341 1600 if (vpid == 0)
2384d2b3
SY
1601 return;
1602
518c8aee 1603 if (cpu_has_vmx_invvpid_single())
dd5f5341 1604 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1605}
1606
b9d762fa
GJ
1607static inline void vpid_sync_vcpu_global(void)
1608{
1609 if (cpu_has_vmx_invvpid_global())
1610 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1611}
1612
dd5f5341 1613static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1614{
1615 if (cpu_has_vmx_invvpid_single())
dd5f5341 1616 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1617 else
1618 vpid_sync_vcpu_global();
1619}
1620
1439442c
SY
1621static inline void ept_sync_global(void)
1622{
f5f51586 1623 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1439442c
SY
1624}
1625
1626static inline void ept_sync_context(u64 eptp)
1627{
0e1252dc
DH
1628 if (cpu_has_vmx_invept_context())
1629 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1630 else
1631 ept_sync_global();
1439442c
SY
1632}
1633
8a86aea9
PB
1634static __always_inline void vmcs_check16(unsigned long field)
1635{
1636 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1637 "16-bit accessor invalid for 64-bit field");
1638 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1639 "16-bit accessor invalid for 64-bit high field");
1640 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1641 "16-bit accessor invalid for 32-bit high field");
1642 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1643 "16-bit accessor invalid for natural width field");
1644}
1645
1646static __always_inline void vmcs_check32(unsigned long field)
1647{
1648 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1649 "32-bit accessor invalid for 16-bit field");
1650 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1651 "32-bit accessor invalid for natural width field");
1652}
1653
1654static __always_inline void vmcs_check64(unsigned long field)
1655{
1656 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1657 "64-bit accessor invalid for 16-bit field");
1658 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1659 "64-bit accessor invalid for 64-bit high field");
1660 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1661 "64-bit accessor invalid for 32-bit field");
1662 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1663 "64-bit accessor invalid for natural width field");
1664}
1665
1666static __always_inline void vmcs_checkl(unsigned long field)
1667{
1668 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1669 "Natural width accessor invalid for 16-bit field");
1670 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1671 "Natural width accessor invalid for 64-bit field");
1672 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1673 "Natural width accessor invalid for 64-bit high field");
1674 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1675 "Natural width accessor invalid for 32-bit field");
1676}
1677
1678static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1679{
5e520e62 1680 unsigned long value;
6aa8b732 1681
5e520e62
AK
1682 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1683 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1684 return value;
1685}
1686
96304217 1687static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1688{
8a86aea9
PB
1689 vmcs_check16(field);
1690 return __vmcs_readl(field);
6aa8b732
AK
1691}
1692
96304217 1693static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1694{
8a86aea9
PB
1695 vmcs_check32(field);
1696 return __vmcs_readl(field);
6aa8b732
AK
1697}
1698
96304217 1699static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1700{
8a86aea9 1701 vmcs_check64(field);
05b3e0c2 1702#ifdef CONFIG_X86_64
8a86aea9 1703 return __vmcs_readl(field);
6aa8b732 1704#else
8a86aea9 1705 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1706#endif
1707}
1708
8a86aea9
PB
1709static __always_inline unsigned long vmcs_readl(unsigned long field)
1710{
1711 vmcs_checkl(field);
1712 return __vmcs_readl(field);
1713}
1714
e52de1b8
AK
1715static noinline void vmwrite_error(unsigned long field, unsigned long value)
1716{
1717 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1718 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1719 dump_stack();
1720}
1721
8a86aea9 1722static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1723{
1724 u8 error;
1725
4ecac3fd 1726 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1727 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1728 if (unlikely(error))
1729 vmwrite_error(field, value);
6aa8b732
AK
1730}
1731
8a86aea9 1732static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1733{
8a86aea9
PB
1734 vmcs_check16(field);
1735 __vmcs_writel(field, value);
6aa8b732
AK
1736}
1737
8a86aea9 1738static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1739{
8a86aea9
PB
1740 vmcs_check32(field);
1741 __vmcs_writel(field, value);
6aa8b732
AK
1742}
1743
8a86aea9 1744static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1745{
8a86aea9
PB
1746 vmcs_check64(field);
1747 __vmcs_writel(field, value);
7682f2d0 1748#ifndef CONFIG_X86_64
6aa8b732 1749 asm volatile ("");
8a86aea9 1750 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1751#endif
1752}
1753
8a86aea9 1754static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1755{
8a86aea9
PB
1756 vmcs_checkl(field);
1757 __vmcs_writel(field, value);
2ab455cc
AL
1758}
1759
8a86aea9 1760static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1761{
8a86aea9
PB
1762 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1763 "vmcs_clear_bits does not support 64-bit fields");
1764 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1765}
1766
8a86aea9 1767static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1768{
8a86aea9
PB
1769 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1770 "vmcs_set_bits does not support 64-bit fields");
1771 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1772}
1773
8391ce44
PB
1774static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1775{
1776 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1777}
1778
2961e876
GN
1779static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1780{
1781 vmcs_write32(VM_ENTRY_CONTROLS, val);
1782 vmx->vm_entry_controls_shadow = val;
1783}
1784
1785static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1786{
1787 if (vmx->vm_entry_controls_shadow != val)
1788 vm_entry_controls_init(vmx, val);
1789}
1790
1791static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1792{
1793 return vmx->vm_entry_controls_shadow;
1794}
1795
1796
1797static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1798{
1799 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1800}
1801
1802static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1803{
1804 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1805}
1806
8391ce44
PB
1807static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1808{
1809 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1810}
1811
2961e876
GN
1812static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1813{
1814 vmcs_write32(VM_EXIT_CONTROLS, val);
1815 vmx->vm_exit_controls_shadow = val;
1816}
1817
1818static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1819{
1820 if (vmx->vm_exit_controls_shadow != val)
1821 vm_exit_controls_init(vmx, val);
1822}
1823
1824static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1825{
1826 return vmx->vm_exit_controls_shadow;
1827}
1828
1829
1830static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1831{
1832 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1833}
1834
1835static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1836{
1837 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1838}
1839
2fb92db1
AK
1840static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1841{
1842 vmx->segment_cache.bitmask = 0;
1843}
1844
1845static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1846 unsigned field)
1847{
1848 bool ret;
1849 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1850
1851 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1852 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1853 vmx->segment_cache.bitmask = 0;
1854 }
1855 ret = vmx->segment_cache.bitmask & mask;
1856 vmx->segment_cache.bitmask |= mask;
1857 return ret;
1858}
1859
1860static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1861{
1862 u16 *p = &vmx->segment_cache.seg[seg].selector;
1863
1864 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1865 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1866 return *p;
1867}
1868
1869static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1870{
1871 ulong *p = &vmx->segment_cache.seg[seg].base;
1872
1873 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1874 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1875 return *p;
1876}
1877
1878static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1879{
1880 u32 *p = &vmx->segment_cache.seg[seg].limit;
1881
1882 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1883 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1884 return *p;
1885}
1886
1887static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1888{
1889 u32 *p = &vmx->segment_cache.seg[seg].ar;
1890
1891 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1892 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1893 return *p;
1894}
1895
abd3f2d6
AK
1896static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1897{
1898 u32 eb;
1899
bd89525a 1900 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 1901 (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1902 if ((vcpu->guest_debug &
1903 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1904 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1905 eb |= 1u << BP_VECTOR;
7ffd92c5 1906 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1907 eb = ~0;
089d034e 1908 if (enable_ept)
1439442c 1909 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
1910
1911 /* When we are running a nested L2 guest and L1 specified for it a
1912 * certain exception bitmap, we must trap the same exceptions and pass
1913 * them to L1. When running L2, we will only handle the exceptions
1914 * specified above if L1 did not want them.
1915 */
1916 if (is_guest_mode(vcpu))
1917 eb |= get_vmcs12(vcpu)->exception_bitmap;
1918
abd3f2d6
AK
1919 vmcs_write32(EXCEPTION_BITMAP, eb);
1920}
1921
74469996
KA
1922/*
1923 * Check if MSR is intercepted for currently loaded MSR bitmap.
1924 */
1925static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
1926{
1927 unsigned long *msr_bitmap;
1928 int f = sizeof(unsigned long);
1929
1930 if (!cpu_has_vmx_msr_bitmap())
1931 return true;
1932
1933 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
1934
1935 if (msr <= 0x1fff) {
1936 return !!test_bit(msr, msr_bitmap + 0x800 / f);
1937 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1938 msr &= 0x1fff;
1939 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
1940 }
1941
1942 return true;
1943}
1944
33241bfe
AR
1945/*
1946 * Check if MSR is intercepted for L01 MSR bitmap.
1947 */
1948static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
1949{
1950 unsigned long *msr_bitmap;
1951 int f = sizeof(unsigned long);
1952
1953 if (!cpu_has_vmx_msr_bitmap())
1954 return true;
1955
1956 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
1957
1958 if (msr <= 0x1fff) {
1959 return !!test_bit(msr, msr_bitmap + 0x800 / f);
1960 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1961 msr &= 0x1fff;
1962 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
1963 }
1964
1965 return true;
1966}
1967
2961e876
GN
1968static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1969 unsigned long entry, unsigned long exit)
8bf00a52 1970{
2961e876
GN
1971 vm_entry_controls_clearbit(vmx, entry);
1972 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1973}
1974
61d2ef2c
AK
1975static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1976{
1977 unsigned i;
1978 struct msr_autoload *m = &vmx->msr_autoload;
1979
8bf00a52
GN
1980 switch (msr) {
1981 case MSR_EFER:
1982 if (cpu_has_load_ia32_efer) {
2961e876
GN
1983 clear_atomic_switch_msr_special(vmx,
1984 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1985 VM_EXIT_LOAD_IA32_EFER);
1986 return;
1987 }
1988 break;
1989 case MSR_CORE_PERF_GLOBAL_CTRL:
1990 if (cpu_has_load_perf_global_ctrl) {
2961e876 1991 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1992 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1993 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1994 return;
1995 }
1996 break;
110312c8
AK
1997 }
1998
61d2ef2c
AK
1999 for (i = 0; i < m->nr; ++i)
2000 if (m->guest[i].index == msr)
2001 break;
2002
2003 if (i == m->nr)
2004 return;
2005 --m->nr;
2006 m->guest[i] = m->guest[m->nr];
2007 m->host[i] = m->host[m->nr];
2008 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2009 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2010}
2011
2961e876
GN
2012static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
2013 unsigned long entry, unsigned long exit,
2014 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
2015 u64 guest_val, u64 host_val)
8bf00a52
GN
2016{
2017 vmcs_write64(guest_val_vmcs, guest_val);
2018 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
2019 vm_entry_controls_setbit(vmx, entry);
2020 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
2021}
2022
61d2ef2c
AK
2023static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
2024 u64 guest_val, u64 host_val)
2025{
2026 unsigned i;
2027 struct msr_autoload *m = &vmx->msr_autoload;
2028
8bf00a52
GN
2029 switch (msr) {
2030 case MSR_EFER:
2031 if (cpu_has_load_ia32_efer) {
2961e876
GN
2032 add_atomic_switch_msr_special(vmx,
2033 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
2034 VM_EXIT_LOAD_IA32_EFER,
2035 GUEST_IA32_EFER,
2036 HOST_IA32_EFER,
2037 guest_val, host_val);
2038 return;
2039 }
2040 break;
2041 case MSR_CORE_PERF_GLOBAL_CTRL:
2042 if (cpu_has_load_perf_global_ctrl) {
2961e876 2043 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
2044 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2045 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
2046 GUEST_IA32_PERF_GLOBAL_CTRL,
2047 HOST_IA32_PERF_GLOBAL_CTRL,
2048 guest_val, host_val);
2049 return;
2050 }
2051 break;
7099e2e1
RK
2052 case MSR_IA32_PEBS_ENABLE:
2053 /* PEBS needs a quiescent period after being disabled (to write
2054 * a record). Disabling PEBS through VMX MSR swapping doesn't
2055 * provide that period, so a CPU could write host's record into
2056 * guest's memory.
2057 */
2058 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
2059 }
2060
61d2ef2c
AK
2061 for (i = 0; i < m->nr; ++i)
2062 if (m->guest[i].index == msr)
2063 break;
2064
e7fc6f93 2065 if (i == NR_AUTOLOAD_MSRS) {
60266204 2066 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
2067 "Can't add msr %x\n", msr);
2068 return;
2069 } else if (i == m->nr) {
61d2ef2c
AK
2070 ++m->nr;
2071 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2072 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2073 }
2074
2075 m->guest[i].index = msr;
2076 m->guest[i].value = guest_val;
2077 m->host[i].index = msr;
2078 m->host[i].value = host_val;
2079}
2080
92c0d900 2081static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2082{
844a5fe2
PB
2083 u64 guest_efer = vmx->vcpu.arch.efer;
2084 u64 ignore_bits = 0;
2085
2086 if (!enable_ept) {
2087 /*
2088 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2089 * host CPUID is more efficient than testing guest CPUID
2090 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2091 */
2092 if (boot_cpu_has(X86_FEATURE_SMEP))
2093 guest_efer |= EFER_NX;
2094 else if (!(guest_efer & EFER_NX))
2095 ignore_bits |= EFER_NX;
2096 }
3a34a881 2097
51c6cf66 2098 /*
844a5fe2 2099 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2100 */
844a5fe2 2101 ignore_bits |= EFER_SCE;
51c6cf66
AK
2102#ifdef CONFIG_X86_64
2103 ignore_bits |= EFER_LMA | EFER_LME;
2104 /* SCE is meaningful only in long mode on Intel */
2105 if (guest_efer & EFER_LMA)
2106 ignore_bits &= ~(u64)EFER_SCE;
2107#endif
84ad33ef
AK
2108
2109 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2110
2111 /*
2112 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2113 * On CPUs that support "load IA32_EFER", always switch EFER
2114 * atomically, since it's faster than switching it manually.
2115 */
2116 if (cpu_has_load_ia32_efer ||
2117 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2118 if (!(guest_efer & EFER_LMA))
2119 guest_efer &= ~EFER_LME;
54b98bff
AL
2120 if (guest_efer != host_efer)
2121 add_atomic_switch_msr(vmx, MSR_EFER,
2122 guest_efer, host_efer);
84ad33ef 2123 return false;
844a5fe2
PB
2124 } else {
2125 guest_efer &= ~ignore_bits;
2126 guest_efer |= host_efer & ignore_bits;
2127
2128 vmx->guest_msrs[efer_offset].data = guest_efer;
2129 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2130
844a5fe2
PB
2131 return true;
2132 }
51c6cf66
AK
2133}
2134
e28baead
AL
2135#ifdef CONFIG_X86_32
2136/*
2137 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2138 * VMCS rather than the segment table. KVM uses this helper to figure
2139 * out the current bases to poke them into the VMCS before entry.
2140 */
2d49ec72
GN
2141static unsigned long segment_base(u16 selector)
2142{
8c2e41f7 2143 struct desc_struct *table;
2d49ec72
GN
2144 unsigned long v;
2145
8c2e41f7 2146 if (!(selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2147 return 0;
2148
45fc8757 2149 table = get_current_gdt_ro();
2d49ec72 2150
8c2e41f7 2151 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2d49ec72
GN
2152 u16 ldt_selector = kvm_read_ldt();
2153
8c2e41f7 2154 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2155 return 0;
2156
8c2e41f7 2157 table = (struct desc_struct *)segment_base(ldt_selector);
2d49ec72 2158 }
8c2e41f7 2159 v = get_desc_base(&table[selector >> 3]);
2d49ec72
GN
2160 return v;
2161}
e28baead 2162#endif
2d49ec72 2163
04d2cc77 2164static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2165{
04d2cc77 2166 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2167 int i;
04d2cc77 2168
a2fa3e9f 2169 if (vmx->host_state.loaded)
33ed6329
AK
2170 return;
2171
a2fa3e9f 2172 vmx->host_state.loaded = 1;
33ed6329
AK
2173 /*
2174 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2175 * allow segment selectors with cpl > 0 or ti == 1.
2176 */
d6e88aec 2177 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2178 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2179 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2180 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2181 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2182 vmx->host_state.fs_reload_needed = 0;
2183 } else {
33ed6329 2184 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2185 vmx->host_state.fs_reload_needed = 1;
33ed6329 2186 }
9581d442 2187 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2188 if (!(vmx->host_state.gs_sel & 7))
2189 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2190 else {
2191 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2192 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2193 }
2194
b2da15ac
AK
2195#ifdef CONFIG_X86_64
2196 savesegment(ds, vmx->host_state.ds_sel);
2197 savesegment(es, vmx->host_state.es_sel);
2198#endif
2199
33ed6329
AK
2200#ifdef CONFIG_X86_64
2201 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2202 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2203#else
a2fa3e9f
GH
2204 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2205 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2206#endif
707c0874
AK
2207
2208#ifdef CONFIG_X86_64
c8770e7b
AK
2209 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2210 if (is_long_mode(&vmx->vcpu))
44ea2b17 2211 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2212#endif
da8999d3
LJ
2213 if (boot_cpu_has(X86_FEATURE_MPX))
2214 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2215 for (i = 0; i < vmx->save_nmsrs; ++i)
2216 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2217 vmx->guest_msrs[i].data,
2218 vmx->guest_msrs[i].mask);
33ed6329
AK
2219}
2220
a9b21b62 2221static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2222{
a2fa3e9f 2223 if (!vmx->host_state.loaded)
33ed6329
AK
2224 return;
2225
e1beb1d3 2226 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2227 vmx->host_state.loaded = 0;
c8770e7b
AK
2228#ifdef CONFIG_X86_64
2229 if (is_long_mode(&vmx->vcpu))
2230 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2231#endif
152d3f2f 2232 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2233 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2234#ifdef CONFIG_X86_64
9581d442 2235 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2236#else
2237 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2238#endif
33ed6329 2239 }
0a77fe4c
AK
2240 if (vmx->host_state.fs_reload_needed)
2241 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2242#ifdef CONFIG_X86_64
2243 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2244 loadsegment(ds, vmx->host_state.ds_sel);
2245 loadsegment(es, vmx->host_state.es_sel);
2246 }
b2da15ac 2247#endif
b7ffc44d 2248 invalidate_tss_limit();
44ea2b17 2249#ifdef CONFIG_X86_64
c8770e7b 2250 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2251#endif
da8999d3
LJ
2252 if (vmx->host_state.msr_host_bndcfgs)
2253 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
45fc8757 2254 load_fixmap_gdt(raw_smp_processor_id());
33ed6329
AK
2255}
2256
a9b21b62
AK
2257static void vmx_load_host_state(struct vcpu_vmx *vmx)
2258{
2259 preempt_disable();
2260 __vmx_load_host_state(vmx);
2261 preempt_enable();
2262}
2263
28b835d6
FW
2264static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2265{
2266 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2267 struct pi_desc old, new;
2268 unsigned int dest;
2269
31afb2ea
PB
2270 /*
2271 * In case of hot-plug or hot-unplug, we may have to undo
2272 * vmx_vcpu_pi_put even if there is no assigned device. And we
2273 * always keep PI.NDST up to date for simplicity: it makes the
2274 * code easier, and CPU migration is not a fast path.
2275 */
2276 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
28b835d6
FW
2277 return;
2278
31afb2ea
PB
2279 /*
2280 * First handle the simple case where no cmpxchg is necessary; just
2281 * allow posting non-urgent interrupts.
2282 *
2283 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2284 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2285 * expects the VCPU to be on the blocked_vcpu_list that matches
2286 * PI.NDST.
2287 */
2288 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2289 vcpu->cpu == cpu) {
2290 pi_clear_sn(pi_desc);
28b835d6 2291 return;
31afb2ea 2292 }
28b835d6 2293
31afb2ea 2294 /* The full case. */
28b835d6
FW
2295 do {
2296 old.control = new.control = pi_desc->control;
2297
31afb2ea 2298 dest = cpu_physical_id(cpu);
28b835d6 2299
31afb2ea
PB
2300 if (x2apic_enabled())
2301 new.ndst = dest;
2302 else
2303 new.ndst = (dest << 8) & 0xFF00;
28b835d6 2304
28b835d6 2305 new.sn = 0;
c0a1666b
PB
2306 } while (cmpxchg64(&pi_desc->control, old.control,
2307 new.control) != old.control);
28b835d6 2308}
1be0e61c 2309
c95ba92a
PF
2310static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2311{
2312 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2313 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2314}
2315
6aa8b732
AK
2316/*
2317 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2318 * vcpu mutex is already taken.
2319 */
15ad7146 2320static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2321{
a2fa3e9f 2322 struct vcpu_vmx *vmx = to_vmx(vcpu);
b80c76ec 2323 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2324
b80c76ec 2325 if (!already_loaded) {
fe0e80be 2326 loaded_vmcs_clear(vmx->loaded_vmcs);
92fe13be 2327 local_irq_disable();
8f536b76 2328 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2329
2330 /*
2331 * Read loaded_vmcs->cpu should be before fetching
2332 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2333 * See the comments in __loaded_vmcs_clear().
2334 */
2335 smp_rmb();
2336
d462b819
NHE
2337 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2338 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2339 crash_enable_local_vmclear(cpu);
92fe13be 2340 local_irq_enable();
b80c76ec
JM
2341 }
2342
2343 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2344 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2345 vmcs_load(vmx->loaded_vmcs->vmcs);
33241bfe 2346 indirect_branch_prediction_barrier();
b80c76ec
JM
2347 }
2348
2349 if (!already_loaded) {
59c58ceb 2350 void *gdt = get_current_gdt_ro();
b80c76ec
JM
2351 unsigned long sysenter_esp;
2352
2353 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2354
6aa8b732
AK
2355 /*
2356 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2357 * processors. See 22.2.4.
6aa8b732 2358 */
e0c23063 2359 vmcs_writel(HOST_TR_BASE,
72f5e08d 2360 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
59c58ceb 2361 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
6aa8b732 2362
b7ffc44d
AL
2363 /*
2364 * VM exits change the host TR limit to 0x67 after a VM
2365 * exit. This is okay, since 0x67 covers everything except
2366 * the IO bitmap and have have code to handle the IO bitmap
2367 * being lost after a VM exit.
2368 */
2369 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2370
6aa8b732
AK
2371 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2372 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2373
d462b819 2374 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2375 }
28b835d6 2376
2680d6da
OH
2377 /* Setup TSC multiplier */
2378 if (kvm_has_tsc_control &&
c95ba92a
PF
2379 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2380 decache_tsc_multiplier(vmx);
2680d6da 2381
28b835d6 2382 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2383 vmx->host_pkru = read_pkru();
28b835d6
FW
2384}
2385
2386static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2387{
2388 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2389
2390 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2391 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2392 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2393 return;
2394
2395 /* Set SN when the vCPU is preempted */
2396 if (vcpu->preempted)
2397 pi_set_sn(pi_desc);
6aa8b732
AK
2398}
2399
2400static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2401{
28b835d6
FW
2402 vmx_vcpu_pi_put(vcpu);
2403
a9b21b62 2404 __vmx_load_host_state(to_vmx(vcpu));
6aa8b732
AK
2405}
2406
f244deed
WL
2407static bool emulation_required(struct kvm_vcpu *vcpu)
2408{
2409 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2410}
2411
edcafe3c
AK
2412static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2413
fe3ef05c
NHE
2414/*
2415 * Return the cr0 value that a nested guest would read. This is a combination
2416 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2417 * its hypervisor (cr0_read_shadow).
2418 */
2419static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2420{
2421 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2422 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2423}
2424static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2425{
2426 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2427 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2428}
2429
6aa8b732
AK
2430static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2431{
78ac8b47 2432 unsigned long rflags, save_rflags;
345dcaa8 2433
6de12732
AK
2434 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2435 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2436 rflags = vmcs_readl(GUEST_RFLAGS);
2437 if (to_vmx(vcpu)->rmode.vm86_active) {
2438 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2439 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2440 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2441 }
2442 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2443 }
6de12732 2444 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2445}
2446
2447static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2448{
f244deed
WL
2449 unsigned long old_rflags = vmx_get_rflags(vcpu);
2450
6de12732
AK
2451 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2452 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2453 if (to_vmx(vcpu)->rmode.vm86_active) {
2454 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2455 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2456 }
6aa8b732 2457 vmcs_writel(GUEST_RFLAGS, rflags);
f244deed
WL
2458
2459 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2460 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
6aa8b732
AK
2461}
2462
37ccdcbe 2463static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2464{
2465 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2466 int ret = 0;
2467
2468 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2469 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2470 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2471 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2472
37ccdcbe 2473 return ret;
2809f5d2
GC
2474}
2475
2476static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2477{
2478 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2479 u32 interruptibility = interruptibility_old;
2480
2481 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2482
48005f64 2483 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2484 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2485 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2486 interruptibility |= GUEST_INTR_STATE_STI;
2487
2488 if ((interruptibility != interruptibility_old))
2489 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2490}
2491
6aa8b732
AK
2492static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2493{
2494 unsigned long rip;
6aa8b732 2495
5fdbf976 2496 rip = kvm_rip_read(vcpu);
6aa8b732 2497 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2498 kvm_rip_write(vcpu, rip);
6aa8b732 2499
2809f5d2
GC
2500 /* skipping an emulated instruction also counts */
2501 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2502}
2503
b96fb439
PB
2504static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2505 unsigned long exit_qual)
2506{
2507 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2508 unsigned int nr = vcpu->arch.exception.nr;
2509 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2510
2511 if (vcpu->arch.exception.has_error_code) {
2512 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2513 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2514 }
2515
2516 if (kvm_exception_is_soft(nr))
2517 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2518 else
2519 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2520
2521 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2522 vmx_get_nmi_mask(vcpu))
2523 intr_info |= INTR_INFO_UNBLOCK_NMI;
2524
2525 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2526}
2527
0b6ac343
NHE
2528/*
2529 * KVM wants to inject page-faults which it got to the guest. This function
2530 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2531 */
bfcf83b1 2532static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
0b6ac343
NHE
2533{
2534 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
adfe20fb 2535 unsigned int nr = vcpu->arch.exception.nr;
0b6ac343 2536
b96fb439
PB
2537 if (nr == PF_VECTOR) {
2538 if (vcpu->arch.exception.nested_apf) {
bfcf83b1 2539 *exit_qual = vcpu->arch.apf.nested_apf_token;
b96fb439
PB
2540 return 1;
2541 }
2542 /*
2543 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2544 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2545 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2546 * can be written only when inject_pending_event runs. This should be
2547 * conditional on a new capability---if the capability is disabled,
2548 * kvm_multiple_exception would write the ancillary information to
2549 * CR2 or DR6, for backwards ABI-compatibility.
2550 */
2551 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2552 vcpu->arch.exception.error_code)) {
bfcf83b1 2553 *exit_qual = vcpu->arch.cr2;
b96fb439
PB
2554 return 1;
2555 }
2556 } else {
b96fb439 2557 if (vmcs12->exception_bitmap & (1u << nr)) {
bfcf83b1
WL
2558 if (nr == DB_VECTOR)
2559 *exit_qual = vcpu->arch.dr6;
2560 else
2561 *exit_qual = 0;
b96fb439
PB
2562 return 1;
2563 }
adfe20fb
WL
2564 }
2565
b96fb439 2566 return 0;
0b6ac343
NHE
2567}
2568
cfcd20e5 2569static void vmx_queue_exception(struct kvm_vcpu *vcpu)
298101da 2570{
77ab6db0 2571 struct vcpu_vmx *vmx = to_vmx(vcpu);
cfcd20e5
WL
2572 unsigned nr = vcpu->arch.exception.nr;
2573 bool has_error_code = vcpu->arch.exception.has_error_code;
cfcd20e5 2574 u32 error_code = vcpu->arch.exception.error_code;
8ab2d2e2 2575 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2576
8ab2d2e2 2577 if (has_error_code) {
77ab6db0 2578 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2579 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2580 }
77ab6db0 2581
7ffd92c5 2582 if (vmx->rmode.vm86_active) {
71f9833b
SH
2583 int inc_eip = 0;
2584 if (kvm_exception_is_soft(nr))
2585 inc_eip = vcpu->arch.event_exit_inst_len;
2586 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2587 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2588 return;
2589 }
2590
66fd3f7f
GN
2591 if (kvm_exception_is_soft(nr)) {
2592 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2593 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2594 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2595 } else
2596 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2597
2598 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2599}
2600
4e47c7a6
SY
2601static bool vmx_rdtscp_supported(void)
2602{
2603 return cpu_has_vmx_rdtscp();
2604}
2605
ad756a16
MJ
2606static bool vmx_invpcid_supported(void)
2607{
2608 return cpu_has_vmx_invpcid() && enable_ept;
2609}
2610
a75beee6
ED
2611/*
2612 * Swap MSR entry in host/guest MSR entry array.
2613 */
8b9cf98c 2614static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2615{
26bb0981 2616 struct shared_msr_entry tmp;
a2fa3e9f
GH
2617
2618 tmp = vmx->guest_msrs[to];
2619 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2620 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2621}
2622
e38aea3e
AK
2623/*
2624 * Set up the vmcs to automatically save and restore system
2625 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2626 * mode, as fiddling with msrs is very expensive.
2627 */
8b9cf98c 2628static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2629{
26bb0981 2630 int save_nmsrs, index;
e38aea3e 2631
a75beee6
ED
2632 save_nmsrs = 0;
2633#ifdef CONFIG_X86_64
8b9cf98c 2634 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2635 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2636 if (index >= 0)
8b9cf98c
RR
2637 move_msr_up(vmx, index, save_nmsrs++);
2638 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2639 if (index >= 0)
8b9cf98c
RR
2640 move_msr_up(vmx, index, save_nmsrs++);
2641 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2642 if (index >= 0)
8b9cf98c 2643 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2644 index = __find_msr_index(vmx, MSR_TSC_AUX);
d6321d49 2645 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
4e47c7a6 2646 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2647 /*
8c06585d 2648 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2649 * if efer.sce is enabled.
2650 */
8c06585d 2651 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2652 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2653 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2654 }
2655#endif
92c0d900
AK
2656 index = __find_msr_index(vmx, MSR_EFER);
2657 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2658 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2659
26bb0981 2660 vmx->save_nmsrs = save_nmsrs;
5897297b 2661
8d14695f 2662 if (cpu_has_vmx_msr_bitmap())
4b0be90f 2663 vmx_update_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2664}
2665
6aa8b732
AK
2666/*
2667 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2668 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2669 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2670 */
be7b263e 2671static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2672{
2673 u64 host_tsc, tsc_offset;
2674
4ea1636b 2675 host_tsc = rdtsc();
6aa8b732 2676 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2677 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2678}
2679
2680/*
99e3e30a 2681 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2682 */
99e3e30a 2683static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2684{
27fc51b2 2685 if (is_guest_mode(vcpu)) {
7991825b 2686 /*
27fc51b2
NHE
2687 * We're here if L1 chose not to trap WRMSR to TSC. According
2688 * to the spec, this should set L1's TSC; The offset that L1
2689 * set for L2 remains unchanged, and still needs to be added
2690 * to the newly set TSC to get L2's TSC.
7991825b 2691 */
27fc51b2 2692 struct vmcs12 *vmcs12;
27fc51b2
NHE
2693 /* recalculate vmcs02.TSC_OFFSET: */
2694 vmcs12 = get_vmcs12(vcpu);
2695 vmcs_write64(TSC_OFFSET, offset +
2696 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2697 vmcs12->tsc_offset : 0));
2698 } else {
489223ed
YY
2699 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2700 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2701 vmcs_write64(TSC_OFFSET, offset);
2702 }
6aa8b732
AK
2703}
2704
801d3424
NHE
2705/*
2706 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2707 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2708 * all guests if the "nested" module option is off, and can also be disabled
2709 * for a single guest by disabling its VMX cpuid bit.
2710 */
2711static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2712{
d6321d49 2713 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
801d3424
NHE
2714}
2715
b87a51ae
NHE
2716/*
2717 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2718 * returned for the various VMX controls MSRs when nested VMX is enabled.
2719 * The same values should also be used to verify that vmcs12 control fields are
2720 * valid during nested entry from L1 to L2.
2721 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2722 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2723 * bit in the high half is on if the corresponding bit in the control field
2724 * may be on. See also vmx_control_verify().
b87a51ae 2725 */
b9c237bb 2726static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2727{
2728 /*
2729 * Note that as a general rule, the high half of the MSRs (bits in
2730 * the control fields which may be 1) should be initialized by the
2731 * intersection of the underlying hardware's MSR (i.e., features which
2732 * can be supported) and the list of features we want to expose -
2733 * because they are known to be properly supported in our code.
2734 * Also, usually, the low half of the MSRs (bits which must be 1) can
2735 * be set to 0, meaning that L1 may turn off any of these bits. The
2736 * reason is that if one of these bits is necessary, it will appear
2737 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2738 * fields of vmcs01 and vmcs02, will turn these bits off - and
7313c698 2739 * nested_vmx_exit_reflected() will not pass related exits to L1.
b87a51ae
NHE
2740 * These rules have exceptions below.
2741 */
2742
2743 /* pin-based controls */
eabeaacc 2744 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2745 vmx->nested.nested_vmx_pinbased_ctls_low,
2746 vmx->nested.nested_vmx_pinbased_ctls_high);
2747 vmx->nested.nested_vmx_pinbased_ctls_low |=
2748 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2749 vmx->nested.nested_vmx_pinbased_ctls_high &=
2750 PIN_BASED_EXT_INTR_MASK |
2751 PIN_BASED_NMI_EXITING |
2752 PIN_BASED_VIRTUAL_NMIS;
2753 vmx->nested.nested_vmx_pinbased_ctls_high |=
2754 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2755 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2756 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2757 vmx->nested.nested_vmx_pinbased_ctls_high |=
2758 PIN_BASED_POSTED_INTR;
b87a51ae 2759
3dbcd8da 2760 /* exit controls */
c0dfee58 2761 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2762 vmx->nested.nested_vmx_exit_ctls_low,
2763 vmx->nested.nested_vmx_exit_ctls_high);
2764 vmx->nested.nested_vmx_exit_ctls_low =
2765 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2766
b9c237bb 2767 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2768#ifdef CONFIG_X86_64
c0dfee58 2769 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2770#endif
f4124500 2771 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2772 vmx->nested.nested_vmx_exit_ctls_high |=
2773 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2774 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2775 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2776
a87036ad 2777 if (kvm_mpx_supported())
b9c237bb 2778 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2779
2996fca0 2780 /* We support free control of debug control saving. */
0115f9cb 2781 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2782
b87a51ae
NHE
2783 /* entry controls */
2784 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2785 vmx->nested.nested_vmx_entry_ctls_low,
2786 vmx->nested.nested_vmx_entry_ctls_high);
2787 vmx->nested.nested_vmx_entry_ctls_low =
2788 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2789 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2790#ifdef CONFIG_X86_64
2791 VM_ENTRY_IA32E_MODE |
2792#endif
2793 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2794 vmx->nested.nested_vmx_entry_ctls_high |=
2795 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2796 if (kvm_mpx_supported())
b9c237bb 2797 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2798
2996fca0 2799 /* We support free control of debug control loading. */
0115f9cb 2800 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 2801
b87a51ae
NHE
2802 /* cpu-based controls */
2803 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2804 vmx->nested.nested_vmx_procbased_ctls_low,
2805 vmx->nested.nested_vmx_procbased_ctls_high);
2806 vmx->nested.nested_vmx_procbased_ctls_low =
2807 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2808 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2809 CPU_BASED_VIRTUAL_INTR_PENDING |
2810 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2811 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2812 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2813 CPU_BASED_CR3_STORE_EXITING |
2814#ifdef CONFIG_X86_64
2815 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2816#endif
2817 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2818 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2819 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2820 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2821 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2822 /*
2823 * We can allow some features even when not supported by the
2824 * hardware. For example, L1 can specify an MSR bitmap - and we
2825 * can use it to avoid exits to L1 - even when L0 runs L2
2826 * without MSR bitmaps.
2827 */
b9c237bb
WV
2828 vmx->nested.nested_vmx_procbased_ctls_high |=
2829 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2830 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2831
3dcdf3ec 2832 /* We support free control of CR3 access interception. */
0115f9cb 2833 vmx->nested.nested_vmx_procbased_ctls_low &=
3dcdf3ec
JK
2834 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2835
80154d77
PB
2836 /*
2837 * secondary cpu-based controls. Do not include those that
2838 * depend on CPUID bits, they are added later by vmx_cpuid_update.
2839 */
b87a51ae 2840 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2841 vmx->nested.nested_vmx_secondary_ctls_low,
2842 vmx->nested.nested_vmx_secondary_ctls_high);
2843 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2844 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2845 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1b07304c 2846 SECONDARY_EXEC_DESC |
f2b93280 2847 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 2848 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2849 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3db13480 2850 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2 2851
afa61f75
NHE
2852 if (enable_ept) {
2853 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2854 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2855 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2856 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
7db74265 2857 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
02120c45
BD
2858 if (cpu_has_vmx_ept_execute_only())
2859 vmx->nested.nested_vmx_ept_caps |=
2860 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2861 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817 2862 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7db74265
PB
2863 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2864 VMX_EPT_1GB_PAGE_BIT;
03efce6f
BD
2865 if (enable_ept_ad_bits) {
2866 vmx->nested.nested_vmx_secondary_ctls_high |=
2867 SECONDARY_EXEC_ENABLE_PML;
7461fbc4 2868 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
03efce6f 2869 }
1c13bffd 2870 }
afa61f75 2871
27c42a1b
BD
2872 if (cpu_has_vmx_vmfunc()) {
2873 vmx->nested.nested_vmx_secondary_ctls_high |=
2874 SECONDARY_EXEC_ENABLE_VMFUNC;
41ab9372
BD
2875 /*
2876 * Advertise EPTP switching unconditionally
2877 * since we emulate it
2878 */
575b3a2c
WL
2879 if (enable_ept)
2880 vmx->nested.nested_vmx_vmfunc_controls =
2881 VMX_VMFUNC_EPTP_SWITCHING;
27c42a1b
BD
2882 }
2883
ef697a71
PB
2884 /*
2885 * Old versions of KVM use the single-context version without
2886 * checking for support, so declare that it is supported even
2887 * though it is treated as global context. The alternative is
2888 * not failing the single-context invvpid, and it is worse.
2889 */
63cb6d5f
WL
2890 if (enable_vpid) {
2891 vmx->nested.nested_vmx_secondary_ctls_high |=
2892 SECONDARY_EXEC_ENABLE_VPID;
089d7b6e 2893 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 2894 VMX_VPID_EXTENT_SUPPORTED_MASK;
1c13bffd 2895 }
99b83ac8 2896
0790ec17
RK
2897 if (enable_unrestricted_guest)
2898 vmx->nested.nested_vmx_secondary_ctls_high |=
2899 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2900
c18911a2 2901 /* miscellaneous data */
b9c237bb
WV
2902 rdmsr(MSR_IA32_VMX_MISC,
2903 vmx->nested.nested_vmx_misc_low,
2904 vmx->nested.nested_vmx_misc_high);
2905 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2906 vmx->nested.nested_vmx_misc_low |=
2907 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2908 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2909 vmx->nested.nested_vmx_misc_high = 0;
62cc6b9d
DM
2910
2911 /*
2912 * This MSR reports some information about VMX support. We
2913 * should return information about the VMX we emulate for the
2914 * guest, and the VMCS structure we give it - not about the
2915 * VMX support of the underlying hardware.
2916 */
2917 vmx->nested.nested_vmx_basic =
2918 VMCS12_REVISION |
2919 VMX_BASIC_TRUE_CTLS |
2920 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2921 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2922
2923 if (cpu_has_vmx_basic_inout())
2924 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2925
2926 /*
8322ebbb 2927 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
2928 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2929 * We picked the standard core2 setting.
2930 */
2931#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2932#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2933 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
62cc6b9d 2934 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
2935
2936 /* These MSRs specify bits which the guest must keep fixed off. */
2937 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2938 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
62cc6b9d
DM
2939
2940 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2941 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
b87a51ae
NHE
2942}
2943
3899152c
DM
2944/*
2945 * if fixed0[i] == 1: val[i] must be 1
2946 * if fixed1[i] == 0: val[i] must be 0
2947 */
2948static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2949{
2950 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
2951}
2952
2953static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2954{
3899152c 2955 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
2956}
2957
2958static inline u64 vmx_control_msr(u32 low, u32 high)
2959{
2960 return low | ((u64)high << 32);
2961}
2962
62cc6b9d
DM
2963static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2964{
2965 superset &= mask;
2966 subset &= mask;
2967
2968 return (superset | subset) == superset;
2969}
2970
2971static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2972{
2973 const u64 feature_and_reserved =
2974 /* feature (except bit 48; see below) */
2975 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2976 /* reserved */
2977 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2978 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2979
2980 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2981 return -EINVAL;
2982
2983 /*
2984 * KVM does not emulate a version of VMX that constrains physical
2985 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2986 */
2987 if (data & BIT_ULL(48))
2988 return -EINVAL;
2989
2990 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2991 vmx_basic_vmcs_revision_id(data))
2992 return -EINVAL;
2993
2994 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2995 return -EINVAL;
2996
2997 vmx->nested.nested_vmx_basic = data;
2998 return 0;
2999}
3000
3001static int
3002vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3003{
3004 u64 supported;
3005 u32 *lowp, *highp;
3006
3007 switch (msr_index) {
3008 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3009 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
3010 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
3011 break;
3012 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3013 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
3014 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
3015 break;
3016 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3017 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
3018 highp = &vmx->nested.nested_vmx_exit_ctls_high;
3019 break;
3020 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3021 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
3022 highp = &vmx->nested.nested_vmx_entry_ctls_high;
3023 break;
3024 case MSR_IA32_VMX_PROCBASED_CTLS2:
3025 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
3026 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
3027 break;
3028 default:
3029 BUG();
3030 }
3031
3032 supported = vmx_control_msr(*lowp, *highp);
3033
3034 /* Check must-be-1 bits are still 1. */
3035 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3036 return -EINVAL;
3037
3038 /* Check must-be-0 bits are still 0. */
3039 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3040 return -EINVAL;
3041
3042 *lowp = data;
3043 *highp = data >> 32;
3044 return 0;
3045}
3046
3047static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3048{
3049 const u64 feature_and_reserved_bits =
3050 /* feature */
3051 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3052 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3053 /* reserved */
3054 GENMASK_ULL(13, 9) | BIT_ULL(31);
3055 u64 vmx_misc;
3056
3057 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3058 vmx->nested.nested_vmx_misc_high);
3059
3060 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3061 return -EINVAL;
3062
3063 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3064 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3065 vmx_misc_preemption_timer_rate(data) !=
3066 vmx_misc_preemption_timer_rate(vmx_misc))
3067 return -EINVAL;
3068
3069 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3070 return -EINVAL;
3071
3072 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3073 return -EINVAL;
3074
3075 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3076 return -EINVAL;
3077
3078 vmx->nested.nested_vmx_misc_low = data;
3079 vmx->nested.nested_vmx_misc_high = data >> 32;
3080 return 0;
3081}
3082
3083static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3084{
3085 u64 vmx_ept_vpid_cap;
3086
3087 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3088 vmx->nested.nested_vmx_vpid_caps);
3089
3090 /* Every bit is either reserved or a feature bit. */
3091 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3092 return -EINVAL;
3093
3094 vmx->nested.nested_vmx_ept_caps = data;
3095 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3096 return 0;
3097}
3098
3099static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3100{
3101 u64 *msr;
3102
3103 switch (msr_index) {
3104 case MSR_IA32_VMX_CR0_FIXED0:
3105 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3106 break;
3107 case MSR_IA32_VMX_CR4_FIXED0:
3108 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3109 break;
3110 default:
3111 BUG();
3112 }
3113
3114 /*
3115 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3116 * must be 1 in the restored value.
3117 */
3118 if (!is_bitwise_subset(data, *msr, -1ULL))
3119 return -EINVAL;
3120
3121 *msr = data;
3122 return 0;
3123}
3124
3125/*
3126 * Called when userspace is restoring VMX MSRs.
3127 *
3128 * Returns 0 on success, non-0 otherwise.
3129 */
3130static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3131{
b9c237bb
WV
3132 struct vcpu_vmx *vmx = to_vmx(vcpu);
3133
b87a51ae 3134 switch (msr_index) {
b87a51ae 3135 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3136 return vmx_restore_vmx_basic(vmx, data);
3137 case MSR_IA32_VMX_PINBASED_CTLS:
3138 case MSR_IA32_VMX_PROCBASED_CTLS:
3139 case MSR_IA32_VMX_EXIT_CTLS:
3140 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3141 /*
62cc6b9d
DM
3142 * The "non-true" VMX capability MSRs are generated from the
3143 * "true" MSRs, so we do not support restoring them directly.
3144 *
3145 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3146 * should restore the "true" MSRs with the must-be-1 bits
3147 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3148 * DEFAULT SETTINGS".
b87a51ae 3149 */
62cc6b9d
DM
3150 return -EINVAL;
3151 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3152 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3153 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3154 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3155 case MSR_IA32_VMX_PROCBASED_CTLS2:
3156 return vmx_restore_control_msr(vmx, msr_index, data);
3157 case MSR_IA32_VMX_MISC:
3158 return vmx_restore_vmx_misc(vmx, data);
3159 case MSR_IA32_VMX_CR0_FIXED0:
3160 case MSR_IA32_VMX_CR4_FIXED0:
3161 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3162 case MSR_IA32_VMX_CR0_FIXED1:
3163 case MSR_IA32_VMX_CR4_FIXED1:
3164 /*
3165 * These MSRs are generated based on the vCPU's CPUID, so we
3166 * do not support restoring them directly.
3167 */
3168 return -EINVAL;
3169 case MSR_IA32_VMX_EPT_VPID_CAP:
3170 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3171 case MSR_IA32_VMX_VMCS_ENUM:
3172 vmx->nested.nested_vmx_vmcs_enum = data;
3173 return 0;
3174 default:
b87a51ae 3175 /*
62cc6b9d 3176 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3177 */
62cc6b9d
DM
3178 return -EINVAL;
3179 }
3180}
3181
3182/* Returns 0 on success, non-0 otherwise. */
3183static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3184{
3185 struct vcpu_vmx *vmx = to_vmx(vcpu);
3186
3187 switch (msr_index) {
3188 case MSR_IA32_VMX_BASIC:
3189 *pdata = vmx->nested.nested_vmx_basic;
b87a51ae
NHE
3190 break;
3191 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3192 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
3193 *pdata = vmx_control_msr(
3194 vmx->nested.nested_vmx_pinbased_ctls_low,
3195 vmx->nested.nested_vmx_pinbased_ctls_high);
0115f9cb
DM
3196 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3197 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3198 break;
3199 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3200 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
3201 *pdata = vmx_control_msr(
3202 vmx->nested.nested_vmx_procbased_ctls_low,
3203 vmx->nested.nested_vmx_procbased_ctls_high);
0115f9cb
DM
3204 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3205 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3206 break;
3207 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3208 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
3209 *pdata = vmx_control_msr(
3210 vmx->nested.nested_vmx_exit_ctls_low,
3211 vmx->nested.nested_vmx_exit_ctls_high);
0115f9cb
DM
3212 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3213 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3214 break;
3215 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3216 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
3217 *pdata = vmx_control_msr(
3218 vmx->nested.nested_vmx_entry_ctls_low,
3219 vmx->nested.nested_vmx_entry_ctls_high);
0115f9cb
DM
3220 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3221 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3222 break;
3223 case MSR_IA32_VMX_MISC:
b9c237bb
WV
3224 *pdata = vmx_control_msr(
3225 vmx->nested.nested_vmx_misc_low,
3226 vmx->nested.nested_vmx_misc_high);
b87a51ae 3227 break;
b87a51ae 3228 case MSR_IA32_VMX_CR0_FIXED0:
62cc6b9d 3229 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
b87a51ae
NHE
3230 break;
3231 case MSR_IA32_VMX_CR0_FIXED1:
62cc6b9d 3232 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
b87a51ae
NHE
3233 break;
3234 case MSR_IA32_VMX_CR4_FIXED0:
62cc6b9d 3235 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
b87a51ae
NHE
3236 break;
3237 case MSR_IA32_VMX_CR4_FIXED1:
62cc6b9d 3238 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
b87a51ae
NHE
3239 break;
3240 case MSR_IA32_VMX_VMCS_ENUM:
62cc6b9d 3241 *pdata = vmx->nested.nested_vmx_vmcs_enum;
b87a51ae
NHE
3242 break;
3243 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
3244 *pdata = vmx_control_msr(
3245 vmx->nested.nested_vmx_secondary_ctls_low,
3246 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
3247 break;
3248 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
3249 *pdata = vmx->nested.nested_vmx_ept_caps |
3250 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae 3251 break;
27c42a1b
BD
3252 case MSR_IA32_VMX_VMFUNC:
3253 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3254 break;
b87a51ae 3255 default:
b87a51ae 3256 return 1;
b3897a49
NHE
3257 }
3258
b87a51ae
NHE
3259 return 0;
3260}
3261
37e4c997
HZ
3262static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3263 uint64_t val)
3264{
3265 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3266
3267 return !(val & ~valid_bits);
3268}
3269
6aa8b732
AK
3270/*
3271 * Reads an msr value (of 'msr_index') into 'pdata'.
3272 * Returns 0 on success, non-0 otherwise.
3273 * Assumes vcpu_load() was already called.
3274 */
609e36d3 3275static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3276{
26bb0981 3277 struct shared_msr_entry *msr;
6aa8b732 3278
609e36d3 3279 switch (msr_info->index) {
05b3e0c2 3280#ifdef CONFIG_X86_64
6aa8b732 3281 case MSR_FS_BASE:
609e36d3 3282 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3283 break;
3284 case MSR_GS_BASE:
609e36d3 3285 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3286 break;
44ea2b17
AK
3287 case MSR_KERNEL_GS_BASE:
3288 vmx_load_host_state(to_vmx(vcpu));
609e36d3 3289 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3290 break;
26bb0981 3291#endif
6aa8b732 3292 case MSR_EFER:
609e36d3 3293 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3294 case MSR_IA32_TSC:
be7b263e 3295 msr_info->data = guest_read_tsc(vcpu);
6aa8b732 3296 break;
74469996
KA
3297 case MSR_IA32_SPEC_CTRL:
3298 if (!msr_info->host_initiated &&
5856293c 3299 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
74469996
KA
3300 return 1;
3301
3302 msr_info->data = to_vmx(vcpu)->spec_ctrl;
3303 break;
a6005a79
KA
3304 case MSR_IA32_ARCH_CAPABILITIES:
3305 if (!msr_info->host_initiated &&
3306 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3307 return 1;
3308 msr_info->data = to_vmx(vcpu)->arch_capabilities;
3309 break;
6aa8b732 3310 case MSR_IA32_SYSENTER_CS:
609e36d3 3311 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3312 break;
3313 case MSR_IA32_SYSENTER_EIP:
609e36d3 3314 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3315 break;
3316 case MSR_IA32_SYSENTER_ESP:
609e36d3 3317 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3318 break;
0dd376e7 3319 case MSR_IA32_BNDCFGS:
691bd434 3320 if (!kvm_mpx_supported() ||
d6321d49
RK
3321 (!msr_info->host_initiated &&
3322 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3323 return 1;
609e36d3 3324 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3325 break;
c45dcc71
AR
3326 case MSR_IA32_MCG_EXT_CTL:
3327 if (!msr_info->host_initiated &&
3328 !(to_vmx(vcpu)->msr_ia32_feature_control &
3329 FEATURE_CONTROL_LMCE))
cae50139 3330 return 1;
c45dcc71
AR
3331 msr_info->data = vcpu->arch.mcg_ext_ctl;
3332 break;
cae50139 3333 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3334 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3335 break;
3336 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3337 if (!nested_vmx_allowed(vcpu))
3338 return 1;
609e36d3 3339 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3340 case MSR_IA32_XSS:
3341 if (!vmx_xsaves_supported())
3342 return 1;
609e36d3 3343 msr_info->data = vcpu->arch.ia32_xss;
20300099 3344 break;
4e47c7a6 3345 case MSR_TSC_AUX:
d6321d49
RK
3346 if (!msr_info->host_initiated &&
3347 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3348 return 1;
3349 /* Otherwise falls through */
6aa8b732 3350 default:
609e36d3 3351 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3352 if (msr) {
609e36d3 3353 msr_info->data = msr->data;
3bab1f5d 3354 break;
6aa8b732 3355 }
609e36d3 3356 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3357 }
3358
6aa8b732
AK
3359 return 0;
3360}
3361
cae50139
JK
3362static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3363
6aa8b732
AK
3364/*
3365 * Writes msr value into into the appropriate "register".
3366 * Returns 0 on success, non-0 otherwise.
3367 * Assumes vcpu_load() was already called.
3368 */
8fe8ab46 3369static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3370{
a2fa3e9f 3371 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3372 struct shared_msr_entry *msr;
2cc51560 3373 int ret = 0;
8fe8ab46
WA
3374 u32 msr_index = msr_info->index;
3375 u64 data = msr_info->data;
2cc51560 3376
6aa8b732 3377 switch (msr_index) {
3bab1f5d 3378 case MSR_EFER:
8fe8ab46 3379 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3380 break;
16175a79 3381#ifdef CONFIG_X86_64
6aa8b732 3382 case MSR_FS_BASE:
2fb92db1 3383 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3384 vmcs_writel(GUEST_FS_BASE, data);
3385 break;
3386 case MSR_GS_BASE:
2fb92db1 3387 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3388 vmcs_writel(GUEST_GS_BASE, data);
3389 break;
44ea2b17
AK
3390 case MSR_KERNEL_GS_BASE:
3391 vmx_load_host_state(vmx);
3392 vmx->msr_guest_kernel_gs_base = data;
3393 break;
6aa8b732
AK
3394#endif
3395 case MSR_IA32_SYSENTER_CS:
3396 vmcs_write32(GUEST_SYSENTER_CS, data);
3397 break;
3398 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3399 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3400 break;
3401 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3402 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3403 break;
0dd376e7 3404 case MSR_IA32_BNDCFGS:
691bd434 3405 if (!kvm_mpx_supported() ||
d6321d49
RK
3406 (!msr_info->host_initiated &&
3407 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3408 return 1;
fd8cb433 3409 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
4531662d 3410 (data & MSR_IA32_BNDCFGS_RSVD))
93c4adc7 3411 return 1;
0dd376e7
LJ
3412 vmcs_write64(GUEST_BNDCFGS, data);
3413 break;
af24a4e4 3414 case MSR_IA32_TSC:
8fe8ab46 3415 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3416 break;
74469996
KA
3417 case MSR_IA32_SPEC_CTRL:
3418 if (!msr_info->host_initiated &&
5856293c 3419 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
74469996
KA
3420 return 1;
3421
3422 /* The STIBP bit doesn't fault even if it's not advertised */
8fe36c9d 3423 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
74469996
KA
3424 return 1;
3425
3426 vmx->spec_ctrl = data;
3427
3428 if (!data)
3429 break;
3430
3431 /*
3432 * For non-nested:
3433 * When it's written (to non-zero) for the first time, pass
3434 * it through.
3435 *
3436 * For nested:
3437 * The handling of the MSR bitmap for L2 guests is done in
3438 * nested_vmx_merge_msr_bitmap. We should not touch the
3439 * vmcs02.msr_bitmap here since it gets completely overwritten
3440 * in the merging. We update the vmcs01 here for L1 as well
3441 * since it will end up touching the MSR anyway now.
3442 */
3443 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
3444 MSR_IA32_SPEC_CTRL,
3445 MSR_TYPE_RW);
3446 break;
33241bfe
AR
3447 case MSR_IA32_PRED_CMD:
3448 if (!msr_info->host_initiated &&
33241bfe
AR
3449 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3450 return 1;
3451
3452 if (data & ~PRED_CMD_IBPB)
3453 return 1;
3454
3455 if (!data)
3456 break;
3457
3458 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3459
3460 /*
3461 * For non-nested:
3462 * When it's written (to non-zero) for the first time, pass
3463 * it through.
3464 *
3465 * For nested:
3466 * The handling of the MSR bitmap for L2 guests is done in
3467 * nested_vmx_merge_msr_bitmap. We should not touch the
3468 * vmcs02.msr_bitmap here since it gets completely overwritten
3469 * in the merging.
3470 */
3471 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
3472 MSR_TYPE_W);
3473 break;
a6005a79
KA
3474 case MSR_IA32_ARCH_CAPABILITIES:
3475 if (!msr_info->host_initiated)
3476 return 1;
3477 vmx->arch_capabilities = data;
3478 break;
468d472f
SY
3479 case MSR_IA32_CR_PAT:
3480 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3481 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3482 return 1;
468d472f
SY
3483 vmcs_write64(GUEST_IA32_PAT, data);
3484 vcpu->arch.pat = data;
3485 break;
3486 }
8fe8ab46 3487 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3488 break;
ba904635
WA
3489 case MSR_IA32_TSC_ADJUST:
3490 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3491 break;
c45dcc71
AR
3492 case MSR_IA32_MCG_EXT_CTL:
3493 if ((!msr_info->host_initiated &&
3494 !(to_vmx(vcpu)->msr_ia32_feature_control &
3495 FEATURE_CONTROL_LMCE)) ||
3496 (data & ~MCG_EXT_CTL_LMCE_EN))
3497 return 1;
3498 vcpu->arch.mcg_ext_ctl = data;
3499 break;
cae50139 3500 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3501 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3502 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3503 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3504 return 1;
3b84080b 3505 vmx->msr_ia32_feature_control = data;
cae50139
JK
3506 if (msr_info->host_initiated && data == 0)
3507 vmx_leave_nested(vcpu);
3508 break;
3509 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3510 if (!msr_info->host_initiated)
3511 return 1; /* they are read-only */
3512 if (!nested_vmx_allowed(vcpu))
3513 return 1;
3514 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3515 case MSR_IA32_XSS:
3516 if (!vmx_xsaves_supported())
3517 return 1;
3518 /*
3519 * The only supported bit as of Skylake is bit 8, but
3520 * it is not supported on KVM.
3521 */
3522 if (data != 0)
3523 return 1;
3524 vcpu->arch.ia32_xss = data;
3525 if (vcpu->arch.ia32_xss != host_xss)
3526 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3527 vcpu->arch.ia32_xss, host_xss);
3528 else
3529 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3530 break;
4e47c7a6 3531 case MSR_TSC_AUX:
d6321d49
RK
3532 if (!msr_info->host_initiated &&
3533 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3534 return 1;
3535 /* Check reserved bit, higher 32 bits should be zero */
3536 if ((data >> 32) != 0)
3537 return 1;
3538 /* Otherwise falls through */
6aa8b732 3539 default:
8b9cf98c 3540 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3541 if (msr) {
8b3c3104 3542 u64 old_msr_data = msr->data;
3bab1f5d 3543 msr->data = data;
2225fd56
AK
3544 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3545 preempt_disable();
8b3c3104
AH
3546 ret = kvm_set_shared_msr(msr->index, msr->data,
3547 msr->mask);
2225fd56 3548 preempt_enable();
8b3c3104
AH
3549 if (ret)
3550 msr->data = old_msr_data;
2225fd56 3551 }
3bab1f5d 3552 break;
6aa8b732 3553 }
8fe8ab46 3554 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3555 }
3556
2cc51560 3557 return ret;
6aa8b732
AK
3558}
3559
5fdbf976 3560static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3561{
5fdbf976
MT
3562 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3563 switch (reg) {
3564 case VCPU_REGS_RSP:
3565 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3566 break;
3567 case VCPU_REGS_RIP:
3568 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3569 break;
6de4f3ad
AK
3570 case VCPU_EXREG_PDPTR:
3571 if (enable_ept)
3572 ept_save_pdptrs(vcpu);
3573 break;
5fdbf976
MT
3574 default:
3575 break;
3576 }
6aa8b732
AK
3577}
3578
6aa8b732
AK
3579static __init int cpu_has_kvm_support(void)
3580{
6210e37b 3581 return cpu_has_vmx();
6aa8b732
AK
3582}
3583
3584static __init int vmx_disabled_by_bios(void)
3585{
3586 u64 msr;
3587
3588 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3589 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3590 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3591 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3592 && tboot_enabled())
3593 return 1;
23f3e991 3594 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3595 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3596 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3597 && !tboot_enabled()) {
3598 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3599 "activate TXT before enabling KVM\n");
cafd6659 3600 return 1;
f9335afe 3601 }
23f3e991
JC
3602 /* launched w/o TXT and VMX disabled */
3603 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3604 && !tboot_enabled())
3605 return 1;
cafd6659
SW
3606 }
3607
3608 return 0;
6aa8b732
AK
3609}
3610
7725b894
DX
3611static void kvm_cpu_vmxon(u64 addr)
3612{
fe0e80be 3613 cr4_set_bits(X86_CR4_VMXE);
1c5ac21a
AS
3614 intel_pt_handle_vmx(1);
3615
7725b894
DX
3616 asm volatile (ASM_VMX_VMXON_RAX
3617 : : "a"(&addr), "m"(addr)
3618 : "memory", "cc");
3619}
3620
13a34e06 3621static int hardware_enable(void)
6aa8b732
AK
3622{
3623 int cpu = raw_smp_processor_id();
3624 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3625 u64 old, test_bits;
6aa8b732 3626
1e02ce4c 3627 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3628 return -EBUSY;
3629
d462b819 3630 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3631 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3632 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3633
3634 /*
3635 * Now we can enable the vmclear operation in kdump
3636 * since the loaded_vmcss_on_cpu list on this cpu
3637 * has been initialized.
3638 *
3639 * Though the cpu is not in VMX operation now, there
3640 * is no problem to enable the vmclear operation
3641 * for the loaded_vmcss_on_cpu list is empty!
3642 */
3643 crash_enable_local_vmclear(cpu);
3644
6aa8b732 3645 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3646
3647 test_bits = FEATURE_CONTROL_LOCKED;
3648 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3649 if (tboot_enabled())
3650 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3651
3652 if ((old & test_bits) != test_bits) {
6aa8b732 3653 /* enable and lock */
cafd6659
SW
3654 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3655 }
fe0e80be 3656 kvm_cpu_vmxon(phys_addr);
fdf288bf
DH
3657 if (enable_ept)
3658 ept_sync_global();
10474ae8
AG
3659
3660 return 0;
6aa8b732
AK
3661}
3662
d462b819 3663static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3664{
3665 int cpu = raw_smp_processor_id();
d462b819 3666 struct loaded_vmcs *v, *n;
543e4243 3667
d462b819
NHE
3668 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3669 loaded_vmcss_on_cpu_link)
3670 __loaded_vmcs_clear(v);
543e4243
AK
3671}
3672
710ff4a8
EH
3673
3674/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3675 * tricks.
3676 */
3677static void kvm_cpu_vmxoff(void)
6aa8b732 3678{
4ecac3fd 3679 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3680
3681 intel_pt_handle_vmx(0);
fe0e80be 3682 cr4_clear_bits(X86_CR4_VMXE);
6aa8b732
AK
3683}
3684
13a34e06 3685static void hardware_disable(void)
710ff4a8 3686{
fe0e80be
DH
3687 vmclear_local_loaded_vmcss();
3688 kvm_cpu_vmxoff();
710ff4a8
EH
3689}
3690
1c3d14fe 3691static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3692 u32 msr, u32 *result)
1c3d14fe
YS
3693{
3694 u32 vmx_msr_low, vmx_msr_high;
3695 u32 ctl = ctl_min | ctl_opt;
3696
3697 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3698
3699 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3700 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3701
3702 /* Ensure minimum (required) set of control bits are supported. */
3703 if (ctl_min & ~ctl)
002c7f7c 3704 return -EIO;
1c3d14fe
YS
3705
3706 *result = ctl;
3707 return 0;
3708}
3709
110312c8
AK
3710static __init bool allow_1_setting(u32 msr, u32 ctl)
3711{
3712 u32 vmx_msr_low, vmx_msr_high;
3713
3714 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3715 return vmx_msr_high & ctl;
3716}
3717
002c7f7c 3718static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3719{
3720 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3721 u32 min, opt, min2, opt2;
1c3d14fe
YS
3722 u32 _pin_based_exec_control = 0;
3723 u32 _cpu_based_exec_control = 0;
f78e0e2e 3724 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3725 u32 _vmexit_control = 0;
3726 u32 _vmentry_control = 0;
3727
10166744 3728 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3729#ifdef CONFIG_X86_64
3730 CPU_BASED_CR8_LOAD_EXITING |
3731 CPU_BASED_CR8_STORE_EXITING |
3732#endif
d56f546d
SY
3733 CPU_BASED_CR3_LOAD_EXITING |
3734 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3735 CPU_BASED_USE_IO_BITMAPS |
3736 CPU_BASED_MOV_DR_EXITING |
a7052897 3737 CPU_BASED_USE_TSC_OFFSETING |
fee84b07
AK
3738 CPU_BASED_INVLPG_EXITING |
3739 CPU_BASED_RDPMC_EXITING;
443381a8 3740
668fffa3
MT
3741 if (!kvm_mwait_in_guest())
3742 min |= CPU_BASED_MWAIT_EXITING |
3743 CPU_BASED_MONITOR_EXITING;
3744
f78e0e2e 3745 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3746 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3747 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3748 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3749 &_cpu_based_exec_control) < 0)
002c7f7c 3750 return -EIO;
6e5d865c
YS
3751#ifdef CONFIG_X86_64
3752 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3753 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3754 ~CPU_BASED_CR8_STORE_EXITING;
3755#endif
f78e0e2e 3756 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3757 min2 = 0;
3758 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3759 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3760 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3761 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3762 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3763 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3764 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3765 SECONDARY_EXEC_RDTSCP |
83d4c286 3766 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3767 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3768 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3769 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3770 SECONDARY_EXEC_XSAVES |
736fdf72
DH
3771 SECONDARY_EXEC_RDSEED_EXITING |
3772 SECONDARY_EXEC_RDRAND_EXITING |
8b3e34e4 3773 SECONDARY_EXEC_ENABLE_PML |
2a499e49
BD
3774 SECONDARY_EXEC_TSC_SCALING |
3775 SECONDARY_EXEC_ENABLE_VMFUNC;
d56f546d
SY
3776 if (adjust_vmx_controls(min2, opt2,
3777 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3778 &_cpu_based_2nd_exec_control) < 0)
3779 return -EIO;
3780 }
3781#ifndef CONFIG_X86_64
3782 if (!(_cpu_based_2nd_exec_control &
3783 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3784 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3785#endif
83d4c286
YZ
3786
3787 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3788 _cpu_based_2nd_exec_control &= ~(
8d14695f 3789 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3790 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3791 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3792
61f1dd90
WL
3793 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
3794 &vmx_capability.ept, &vmx_capability.vpid);
3795
d56f546d 3796 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3797 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3798 enabled */
5fff7d27
GN
3799 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3800 CPU_BASED_CR3_STORE_EXITING |
3801 CPU_BASED_INVLPG_EXITING);
61f1dd90
WL
3802 } else if (vmx_capability.ept) {
3803 vmx_capability.ept = 0;
3804 pr_warn_once("EPT CAP should not exist if not support "
3805 "1-setting enable EPT VM-execution control\n");
3806 }
3807 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
3808 vmx_capability.vpid) {
3809 vmx_capability.vpid = 0;
3810 pr_warn_once("VPID CAP should not exist if not support "
3811 "1-setting enable VPID VM-execution control\n");
d56f546d 3812 }
1c3d14fe 3813
91fa0f8e 3814 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3815#ifdef CONFIG_X86_64
3816 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3817#endif
a547c6db 3818 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3819 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3820 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3821 &_vmexit_control) < 0)
002c7f7c 3822 return -EIO;
1c3d14fe 3823
8a1b4392
PB
3824 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3825 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3826 PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3827 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3828 &_pin_based_exec_control) < 0)
3829 return -EIO;
3830
1c17c3e6
PB
3831 if (cpu_has_broken_vmx_preemption_timer())
3832 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3833 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3834 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3835 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3836
c845f9c6 3837 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3838 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3839 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3840 &_vmentry_control) < 0)
002c7f7c 3841 return -EIO;
6aa8b732 3842
c68876fd 3843 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3844
3845 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3846 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3847 return -EIO;
1c3d14fe
YS
3848
3849#ifdef CONFIG_X86_64
3850 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3851 if (vmx_msr_high & (1u<<16))
002c7f7c 3852 return -EIO;
1c3d14fe
YS
3853#endif
3854
3855 /* Require Write-Back (WB) memory type for VMCS accesses. */
3856 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3857 return -EIO;
1c3d14fe 3858
002c7f7c 3859 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3860 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3861 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3862 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3863
002c7f7c
YS
3864 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3865 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3866 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3867 vmcs_conf->vmexit_ctrl = _vmexit_control;
3868 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3869
110312c8
AK
3870 cpu_has_load_ia32_efer =
3871 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3872 VM_ENTRY_LOAD_IA32_EFER)
3873 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3874 VM_EXIT_LOAD_IA32_EFER);
3875
8bf00a52
GN
3876 cpu_has_load_perf_global_ctrl =
3877 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3878 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3879 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3880 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3881
3882 /*
3883 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3884 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3885 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3886 *
3887 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3888 *
3889 * AAK155 (model 26)
3890 * AAP115 (model 30)
3891 * AAT100 (model 37)
3892 * BC86,AAY89,BD102 (model 44)
3893 * BA97 (model 46)
3894 *
3895 */
3896 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3897 switch (boot_cpu_data.x86_model) {
3898 case 26:
3899 case 30:
3900 case 37:
3901 case 44:
3902 case 46:
3903 cpu_has_load_perf_global_ctrl = false;
3904 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3905 "does not work properly. Using workaround\n");
3906 break;
3907 default:
3908 break;
3909 }
3910 }
3911
782511b0 3912 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3913 rdmsrl(MSR_IA32_XSS, host_xss);
3914
1c3d14fe 3915 return 0;
c68876fd 3916}
6aa8b732
AK
3917
3918static struct vmcs *alloc_vmcs_cpu(int cpu)
3919{
3920 int node = cpu_to_node(cpu);
3921 struct page *pages;
3922 struct vmcs *vmcs;
3923
96db800f 3924 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3925 if (!pages)
3926 return NULL;
3927 vmcs = page_address(pages);
1c3d14fe
YS
3928 memset(vmcs, 0, vmcs_config.size);
3929 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3930 return vmcs;
3931}
3932
6aa8b732
AK
3933static void free_vmcs(struct vmcs *vmcs)
3934{
1c3d14fe 3935 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3936}
3937
d462b819
NHE
3938/*
3939 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3940 */
3941static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3942{
3943 if (!loaded_vmcs->vmcs)
3944 return;
3945 loaded_vmcs_clear(loaded_vmcs);
3946 free_vmcs(loaded_vmcs->vmcs);
3947 loaded_vmcs->vmcs = NULL;
4b0be90f
PB
3948 if (loaded_vmcs->msr_bitmap)
3949 free_page((unsigned long)loaded_vmcs->msr_bitmap);
355f4fb1 3950 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
3951}
3952
b6d7026d
PB
3953static struct vmcs *alloc_vmcs(void)
3954{
3955 return alloc_vmcs_cpu(raw_smp_processor_id());
3956}
3957
3958static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3959{
3960 loaded_vmcs->vmcs = alloc_vmcs();
3961 if (!loaded_vmcs->vmcs)
3962 return -ENOMEM;
3963
3964 loaded_vmcs->shadow_vmcs = NULL;
3965 loaded_vmcs_init(loaded_vmcs);
4b0be90f
PB
3966
3967 if (cpu_has_vmx_msr_bitmap()) {
3968 loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
3969 if (!loaded_vmcs->msr_bitmap)
3970 goto out_vmcs;
3971 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
3972 }
b6d7026d 3973 return 0;
4b0be90f
PB
3974
3975out_vmcs:
3976 free_loaded_vmcs(loaded_vmcs);
3977 return -ENOMEM;
b6d7026d
PB
3978}
3979
39959588 3980static void free_kvm_area(void)
6aa8b732
AK
3981{
3982 int cpu;
3983
3230bb47 3984 for_each_possible_cpu(cpu) {
6aa8b732 3985 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3986 per_cpu(vmxarea, cpu) = NULL;
3987 }
6aa8b732
AK
3988}
3989
85fd514e
JM
3990enum vmcs_field_type {
3991 VMCS_FIELD_TYPE_U16 = 0,
3992 VMCS_FIELD_TYPE_U64 = 1,
3993 VMCS_FIELD_TYPE_U32 = 2,
3994 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3995};
3996
3997static inline int vmcs_field_type(unsigned long field)
3998{
3999 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
4000 return VMCS_FIELD_TYPE_U32;
4001 return (field >> 13) & 0x3 ;
4002}
4003
4004static inline int vmcs_field_readonly(unsigned long field)
4005{
4006 return (((field >> 10) & 0x3) == 1);
4007}
4008
fe2b201b
BD
4009static void init_vmcs_shadow_fields(void)
4010{
4011 int i, j;
4012
4013 /* No checks for read only fields yet */
4014
4015 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
4016 switch (shadow_read_write_fields[i]) {
4017 case GUEST_BNDCFGS:
a87036ad 4018 if (!kvm_mpx_supported())
fe2b201b
BD
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024
4025 if (j < i)
4026 shadow_read_write_fields[j] =
4027 shadow_read_write_fields[i];
4028 j++;
4029 }
4030 max_shadow_read_write_fields = j;
4031
4032 /* shadowed fields guest access without vmexit */
4033 for (i = 0; i < max_shadow_read_write_fields; i++) {
85fd514e
JM
4034 unsigned long field = shadow_read_write_fields[i];
4035
4036 clear_bit(field, vmx_vmwrite_bitmap);
4037 clear_bit(field, vmx_vmread_bitmap);
4038 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
4039 clear_bit(field + 1, vmx_vmwrite_bitmap);
4040 clear_bit(field + 1, vmx_vmread_bitmap);
4041 }
4042 }
4043 for (i = 0; i < max_shadow_read_only_fields; i++) {
4044 unsigned long field = shadow_read_only_fields[i];
4045
4046 clear_bit(field, vmx_vmread_bitmap);
4047 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
4048 clear_bit(field + 1, vmx_vmread_bitmap);
fe2b201b 4049 }
fe2b201b
BD
4050}
4051
6aa8b732
AK
4052static __init int alloc_kvm_area(void)
4053{
4054 int cpu;
4055
3230bb47 4056 for_each_possible_cpu(cpu) {
6aa8b732
AK
4057 struct vmcs *vmcs;
4058
4059 vmcs = alloc_vmcs_cpu(cpu);
4060 if (!vmcs) {
4061 free_kvm_area();
4062 return -ENOMEM;
4063 }
4064
4065 per_cpu(vmxarea, cpu) = vmcs;
4066 }
4067 return 0;
4068}
4069
91b0aa2c 4070static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 4071 struct kvm_segment *save)
6aa8b732 4072{
d99e4152
GN
4073 if (!emulate_invalid_guest_state) {
4074 /*
4075 * CS and SS RPL should be equal during guest entry according
4076 * to VMX spec, but in reality it is not always so. Since vcpu
4077 * is in the middle of the transition from real mode to
4078 * protected mode it is safe to assume that RPL 0 is a good
4079 * default value.
4080 */
4081 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
4082 save->selector &= ~SEGMENT_RPL_MASK;
4083 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 4084 save->s = 1;
6aa8b732 4085 }
d99e4152 4086 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
4087}
4088
4089static void enter_pmode(struct kvm_vcpu *vcpu)
4090{
4091 unsigned long flags;
a89a8fb9 4092 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 4093
d99e4152
GN
4094 /*
4095 * Update real mode segment cache. It may be not up-to-date if sement
4096 * register was written while vcpu was in a guest mode.
4097 */
4098 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4099 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4100 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4101 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4102 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4103 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4104
7ffd92c5 4105 vmx->rmode.vm86_active = 0;
6aa8b732 4106
2fb92db1
AK
4107 vmx_segment_cache_clear(vmx);
4108
f5f7b2fe 4109 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
4110
4111 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
4112 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
4113 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
4114 vmcs_writel(GUEST_RFLAGS, flags);
4115
66aee91a
RR
4116 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
4117 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
4118
4119 update_exception_bitmap(vcpu);
4120
91b0aa2c
GN
4121 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4122 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4123 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4124 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4125 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4126 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
4127}
4128
f5f7b2fe 4129static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 4130{
772e0318 4131 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
4132 struct kvm_segment var = *save;
4133
4134 var.dpl = 0x3;
4135 if (seg == VCPU_SREG_CS)
4136 var.type = 0x3;
4137
4138 if (!emulate_invalid_guest_state) {
4139 var.selector = var.base >> 4;
4140 var.base = var.base & 0xffff0;
4141 var.limit = 0xffff;
4142 var.g = 0;
4143 var.db = 0;
4144 var.present = 1;
4145 var.s = 1;
4146 var.l = 0;
4147 var.unusable = 0;
4148 var.type = 0x3;
4149 var.avl = 0;
4150 if (save->base & 0xf)
4151 printk_once(KERN_WARNING "kvm: segment base is not "
4152 "paragraph aligned when entering "
4153 "protected mode (seg=%d)", seg);
4154 }
6aa8b732 4155
d99e4152 4156 vmcs_write16(sf->selector, var.selector);
96794e4e 4157 vmcs_writel(sf->base, var.base);
d99e4152
GN
4158 vmcs_write32(sf->limit, var.limit);
4159 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
4160}
4161
4162static void enter_rmode(struct kvm_vcpu *vcpu)
4163{
4164 unsigned long flags;
a89a8fb9 4165 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 4166
f5f7b2fe
AK
4167 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4168 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4169 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4170 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4171 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
4172 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4173 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 4174
7ffd92c5 4175 vmx->rmode.vm86_active = 1;
6aa8b732 4176
776e58ea
GN
4177 /*
4178 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 4179 * vcpu. Warn the user that an update is overdue.
776e58ea 4180 */
4918c6ca 4181 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
4182 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4183 "called before entering vcpu\n");
776e58ea 4184
2fb92db1
AK
4185 vmx_segment_cache_clear(vmx);
4186
4918c6ca 4187 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 4188 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
4189 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4190
4191 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 4192 vmx->rmode.save_rflags = flags;
6aa8b732 4193
053de044 4194 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
4195
4196 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 4197 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
4198 update_exception_bitmap(vcpu);
4199
d99e4152
GN
4200 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4201 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4202 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4203 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4204 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4205 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 4206
8668a3c4 4207 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
4208}
4209
401d10de
AS
4210static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4211{
4212 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
4213 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4214
4215 if (!msr)
4216 return;
401d10de 4217
44ea2b17
AK
4218 /*
4219 * Force kernel_gs_base reloading before EFER changes, as control
4220 * of this msr depends on is_long_mode().
4221 */
4222 vmx_load_host_state(to_vmx(vcpu));
f6801dff 4223 vcpu->arch.efer = efer;
401d10de 4224 if (efer & EFER_LMA) {
2961e876 4225 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4226 msr->data = efer;
4227 } else {
2961e876 4228 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4229
4230 msr->data = efer & ~EFER_LME;
4231 }
4232 setup_msrs(vmx);
4233}
4234
05b3e0c2 4235#ifdef CONFIG_X86_64
6aa8b732
AK
4236
4237static void enter_lmode(struct kvm_vcpu *vcpu)
4238{
4239 u32 guest_tr_ar;
4240
2fb92db1
AK
4241 vmx_segment_cache_clear(to_vmx(vcpu));
4242
6aa8b732 4243 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 4244 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
4245 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4246 __func__);
6aa8b732 4247 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
4248 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4249 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4250 }
da38f438 4251 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4252}
4253
4254static void exit_lmode(struct kvm_vcpu *vcpu)
4255{
2961e876 4256 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4257 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4258}
4259
4260#endif
4261
dd5f5341 4262static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 4263{
dd180b3e
XG
4264 if (enable_ept) {
4265 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4266 return;
995f00a6 4267 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
f0b98c02
JM
4268 } else {
4269 vpid_sync_context(vpid);
dd180b3e 4270 }
2384d2b3
SY
4271}
4272
dd5f5341
WL
4273static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4274{
4275 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4276}
4277
fb6c8198
JM
4278static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4279{
4280 if (enable_ept)
4281 vmx_flush_tlb(vcpu);
4282}
4283
e8467fda
AK
4284static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4285{
4286 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4287
4288 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4289 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4290}
4291
aff48baa
AK
4292static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4293{
4294 if (enable_ept && is_paging(vcpu))
4295 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4296 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4297}
4298
25c4c276 4299static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4300{
fc78f519
AK
4301 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4302
4303 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4304 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4305}
4306
1439442c
SY
4307static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4308{
d0d538b9
GN
4309 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4310
6de4f3ad
AK
4311 if (!test_bit(VCPU_EXREG_PDPTR,
4312 (unsigned long *)&vcpu->arch.regs_dirty))
4313 return;
4314
1439442c 4315 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4316 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4317 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4318 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4319 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4320 }
4321}
4322
8f5d549f
AK
4323static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4324{
d0d538b9
GN
4325 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4326
8f5d549f 4327 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4328 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4329 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4330 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4331 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4332 }
6de4f3ad
AK
4333
4334 __set_bit(VCPU_EXREG_PDPTR,
4335 (unsigned long *)&vcpu->arch.regs_avail);
4336 __set_bit(VCPU_EXREG_PDPTR,
4337 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4338}
4339
3899152c
DM
4340static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4341{
4342 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4343 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4344 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4345
4346 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4347 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4348 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4349 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4350
4351 return fixed_bits_valid(val, fixed0, fixed1);
4352}
4353
4354static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4355{
4356 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4357 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4358
4359 return fixed_bits_valid(val, fixed0, fixed1);
4360}
4361
4362static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4363{
4364 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4365 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4366
4367 return fixed_bits_valid(val, fixed0, fixed1);
4368}
4369
4370/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4371#define nested_guest_cr4_valid nested_cr4_valid
4372#define nested_host_cr4_valid nested_cr4_valid
4373
5e1746d6 4374static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4375
4376static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4377 unsigned long cr0,
4378 struct kvm_vcpu *vcpu)
4379{
5233dd51
MT
4380 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4381 vmx_decache_cr3(vcpu);
1439442c
SY
4382 if (!(cr0 & X86_CR0_PG)) {
4383 /* From paging/starting to nonpaging */
4384 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4385 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4386 (CPU_BASED_CR3_LOAD_EXITING |
4387 CPU_BASED_CR3_STORE_EXITING));
4388 vcpu->arch.cr0 = cr0;
fc78f519 4389 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4390 } else if (!is_paging(vcpu)) {
4391 /* From nonpaging to paging */
4392 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4393 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4394 ~(CPU_BASED_CR3_LOAD_EXITING |
4395 CPU_BASED_CR3_STORE_EXITING));
4396 vcpu->arch.cr0 = cr0;
fc78f519 4397 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4398 }
95eb84a7
SY
4399
4400 if (!(cr0 & X86_CR0_WP))
4401 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4402}
4403
6aa8b732
AK
4404static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4405{
7ffd92c5 4406 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4407 unsigned long hw_cr0;
4408
5037878e 4409 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4410 if (enable_unrestricted_guest)
5037878e 4411 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4412 else {
5037878e 4413 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4414
218e763f
GN
4415 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4416 enter_pmode(vcpu);
6aa8b732 4417
218e763f
GN
4418 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4419 enter_rmode(vcpu);
4420 }
6aa8b732 4421
05b3e0c2 4422#ifdef CONFIG_X86_64
f6801dff 4423 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4424 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4425 enter_lmode(vcpu);
707d92fa 4426 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4427 exit_lmode(vcpu);
4428 }
4429#endif
4430
089d034e 4431 if (enable_ept)
1439442c
SY
4432 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4433
6aa8b732 4434 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4435 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4436 vcpu->arch.cr0 = cr0;
14168786
GN
4437
4438 /* depends on vcpu->arch.cr0 to be set to a new value */
4439 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4440}
4441
855feb67
YZ
4442static int get_ept_level(struct kvm_vcpu *vcpu)
4443{
4444 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4445 return 5;
4446 return 4;
4447}
4448
995f00a6 4449static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
1439442c 4450{
855feb67
YZ
4451 u64 eptp = VMX_EPTP_MT_WB;
4452
4453 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
1439442c 4454
995f00a6
PF
4455 if (enable_ept_ad_bits &&
4456 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
bb97a016 4457 eptp |= VMX_EPTP_AD_ENABLE_BIT;
1439442c
SY
4458 eptp |= (root_hpa & PAGE_MASK);
4459
4460 return eptp;
4461}
4462
6aa8b732
AK
4463static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4464{
1439442c
SY
4465 unsigned long guest_cr3;
4466 u64 eptp;
4467
4468 guest_cr3 = cr3;
089d034e 4469 if (enable_ept) {
995f00a6 4470 eptp = construct_eptp(vcpu, cr3);
1439442c 4471 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
4472 if (is_paging(vcpu) || is_guest_mode(vcpu))
4473 guest_cr3 = kvm_read_cr3(vcpu);
4474 else
4475 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 4476 ept_load_pdptrs(vcpu);
1439442c
SY
4477 }
4478
2384d2b3 4479 vmx_flush_tlb(vcpu);
1439442c 4480 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4481}
4482
5e1746d6 4483static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4484{
085e68ee
BS
4485 /*
4486 * Pass through host's Machine Check Enable value to hw_cr4, which
4487 * is in force while we are in guest mode. Do not let guests control
4488 * this bit, even if host CR4.MCE == 0.
4489 */
4490 unsigned long hw_cr4 =
4491 (cr4_read_shadow() & X86_CR4_MCE) |
4492 (cr4 & ~X86_CR4_MCE) |
4493 (to_vmx(vcpu)->rmode.vm86_active ?
4494 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4495
5e1746d6
NHE
4496 if (cr4 & X86_CR4_VMXE) {
4497 /*
4498 * To use VMXON (and later other VMX instructions), a guest
4499 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4500 * So basically the check on whether to allow nested VMX
4501 * is here.
4502 */
4503 if (!nested_vmx_allowed(vcpu))
4504 return 1;
1a0d74e6 4505 }
3899152c
DM
4506
4507 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4508 return 1;
4509
ad312c7c 4510 vcpu->arch.cr4 = cr4;
bc23008b
AK
4511 if (enable_ept) {
4512 if (!is_paging(vcpu)) {
4513 hw_cr4 &= ~X86_CR4_PAE;
4514 hw_cr4 |= X86_CR4_PSE;
4515 } else if (!(cr4 & X86_CR4_PAE)) {
4516 hw_cr4 &= ~X86_CR4_PAE;
4517 }
4518 }
1439442c 4519
656ec4a4
RK
4520 if (!enable_unrestricted_guest && !is_paging(vcpu))
4521 /*
ddba2628
HH
4522 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4523 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4524 * to be manually disabled when guest switches to non-paging
4525 * mode.
4526 *
4527 * If !enable_unrestricted_guest, the CPU is always running
4528 * with CR0.PG=1 and CR4 needs to be modified.
4529 * If enable_unrestricted_guest, the CPU automatically
4530 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4531 */
ddba2628 4532 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4533
1439442c
SY
4534 vmcs_writel(CR4_READ_SHADOW, cr4);
4535 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4536 return 0;
6aa8b732
AK
4537}
4538
6aa8b732
AK
4539static void vmx_get_segment(struct kvm_vcpu *vcpu,
4540 struct kvm_segment *var, int seg)
4541{
a9179499 4542 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4543 u32 ar;
4544
c6ad1153 4545 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4546 *var = vmx->rmode.segs[seg];
a9179499 4547 if (seg == VCPU_SREG_TR
2fb92db1 4548 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4549 return;
1390a28b
AK
4550 var->base = vmx_read_guest_seg_base(vmx, seg);
4551 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4552 return;
a9179499 4553 }
2fb92db1
AK
4554 var->base = vmx_read_guest_seg_base(vmx, seg);
4555 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4556 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4557 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4558 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4559 var->type = ar & 15;
4560 var->s = (ar >> 4) & 1;
4561 var->dpl = (ar >> 5) & 3;
03617c18
GN
4562 /*
4563 * Some userspaces do not preserve unusable property. Since usable
4564 * segment has to be present according to VMX spec we can use present
4565 * property to amend userspace bug by making unusable segment always
4566 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4567 * segment as unusable.
4568 */
4569 var->present = !var->unusable;
6aa8b732
AK
4570 var->avl = (ar >> 12) & 1;
4571 var->l = (ar >> 13) & 1;
4572 var->db = (ar >> 14) & 1;
4573 var->g = (ar >> 15) & 1;
6aa8b732
AK
4574}
4575
a9179499
AK
4576static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4577{
a9179499
AK
4578 struct kvm_segment s;
4579
4580 if (to_vmx(vcpu)->rmode.vm86_active) {
4581 vmx_get_segment(vcpu, &s, seg);
4582 return s.base;
4583 }
2fb92db1 4584 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4585}
4586
b09408d0 4587static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4588{
b09408d0
MT
4589 struct vcpu_vmx *vmx = to_vmx(vcpu);
4590
ae9fedc7 4591 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4592 return 0;
ae9fedc7
PB
4593 else {
4594 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4595 return VMX_AR_DPL(ar);
69c73028 4596 }
69c73028
AK
4597}
4598
653e3108 4599static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4600{
6aa8b732
AK
4601 u32 ar;
4602
f0495f9b 4603 if (var->unusable || !var->present)
6aa8b732
AK
4604 ar = 1 << 16;
4605 else {
4606 ar = var->type & 15;
4607 ar |= (var->s & 1) << 4;
4608 ar |= (var->dpl & 3) << 5;
4609 ar |= (var->present & 1) << 7;
4610 ar |= (var->avl & 1) << 12;
4611 ar |= (var->l & 1) << 13;
4612 ar |= (var->db & 1) << 14;
4613 ar |= (var->g & 1) << 15;
4614 }
653e3108
AK
4615
4616 return ar;
4617}
4618
4619static void vmx_set_segment(struct kvm_vcpu *vcpu,
4620 struct kvm_segment *var, int seg)
4621{
7ffd92c5 4622 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4623 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4624
2fb92db1
AK
4625 vmx_segment_cache_clear(vmx);
4626
1ecd50a9
GN
4627 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4628 vmx->rmode.segs[seg] = *var;
4629 if (seg == VCPU_SREG_TR)
4630 vmcs_write16(sf->selector, var->selector);
4631 else if (var->s)
4632 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4633 goto out;
653e3108 4634 }
1ecd50a9 4635
653e3108
AK
4636 vmcs_writel(sf->base, var->base);
4637 vmcs_write32(sf->limit, var->limit);
4638 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4639
4640 /*
4641 * Fix the "Accessed" bit in AR field of segment registers for older
4642 * qemu binaries.
4643 * IA32 arch specifies that at the time of processor reset the
4644 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4645 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4646 * state vmexit when "unrestricted guest" mode is turned on.
4647 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4648 * tree. Newer qemu binaries with that qemu fix would not need this
4649 * kvm hack.
4650 */
4651 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4652 var->type |= 0x1; /* Accessed */
3a624e29 4653
f924d66d 4654 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4655
4656out:
98eb2f8b 4657 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4658}
4659
6aa8b732
AK
4660static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4661{
2fb92db1 4662 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4663
4664 *db = (ar >> 14) & 1;
4665 *l = (ar >> 13) & 1;
4666}
4667
89a27f4d 4668static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4669{
89a27f4d
GN
4670 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4671 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4672}
4673
89a27f4d 4674static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4675{
89a27f4d
GN
4676 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4677 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4678}
4679
89a27f4d 4680static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4681{
89a27f4d
GN
4682 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4683 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4684}
4685
89a27f4d 4686static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4687{
89a27f4d
GN
4688 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4689 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4690}
4691
648dfaa7
MG
4692static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4693{
4694 struct kvm_segment var;
4695 u32 ar;
4696
4697 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4698 var.dpl = 0x3;
0647f4aa
GN
4699 if (seg == VCPU_SREG_CS)
4700 var.type = 0x3;
648dfaa7
MG
4701 ar = vmx_segment_access_rights(&var);
4702
4703 if (var.base != (var.selector << 4))
4704 return false;
89efbed0 4705 if (var.limit != 0xffff)
648dfaa7 4706 return false;
07f42f5f 4707 if (ar != 0xf3)
648dfaa7
MG
4708 return false;
4709
4710 return true;
4711}
4712
4713static bool code_segment_valid(struct kvm_vcpu *vcpu)
4714{
4715 struct kvm_segment cs;
4716 unsigned int cs_rpl;
4717
4718 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4719 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4720
1872a3f4
AK
4721 if (cs.unusable)
4722 return false;
4d283ec9 4723 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4724 return false;
4725 if (!cs.s)
4726 return false;
4d283ec9 4727 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4728 if (cs.dpl > cs_rpl)
4729 return false;
1872a3f4 4730 } else {
648dfaa7
MG
4731 if (cs.dpl != cs_rpl)
4732 return false;
4733 }
4734 if (!cs.present)
4735 return false;
4736
4737 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4738 return true;
4739}
4740
4741static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4742{
4743 struct kvm_segment ss;
4744 unsigned int ss_rpl;
4745
4746 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4747 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4748
1872a3f4
AK
4749 if (ss.unusable)
4750 return true;
4751 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4752 return false;
4753 if (!ss.s)
4754 return false;
4755 if (ss.dpl != ss_rpl) /* DPL != RPL */
4756 return false;
4757 if (!ss.present)
4758 return false;
4759
4760 return true;
4761}
4762
4763static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4764{
4765 struct kvm_segment var;
4766 unsigned int rpl;
4767
4768 vmx_get_segment(vcpu, &var, seg);
b32a9918 4769 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4770
1872a3f4
AK
4771 if (var.unusable)
4772 return true;
648dfaa7
MG
4773 if (!var.s)
4774 return false;
4775 if (!var.present)
4776 return false;
4d283ec9 4777 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4778 if (var.dpl < rpl) /* DPL < RPL */
4779 return false;
4780 }
4781
4782 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4783 * rights flags
4784 */
4785 return true;
4786}
4787
4788static bool tr_valid(struct kvm_vcpu *vcpu)
4789{
4790 struct kvm_segment tr;
4791
4792 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4793
1872a3f4
AK
4794 if (tr.unusable)
4795 return false;
b32a9918 4796 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4797 return false;
1872a3f4 4798 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4799 return false;
4800 if (!tr.present)
4801 return false;
4802
4803 return true;
4804}
4805
4806static bool ldtr_valid(struct kvm_vcpu *vcpu)
4807{
4808 struct kvm_segment ldtr;
4809
4810 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4811
1872a3f4
AK
4812 if (ldtr.unusable)
4813 return true;
b32a9918 4814 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4815 return false;
4816 if (ldtr.type != 2)
4817 return false;
4818 if (!ldtr.present)
4819 return false;
4820
4821 return true;
4822}
4823
4824static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4825{
4826 struct kvm_segment cs, ss;
4827
4828 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4829 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4830
b32a9918
NA
4831 return ((cs.selector & SEGMENT_RPL_MASK) ==
4832 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4833}
4834
4835/*
4836 * Check if guest state is valid. Returns true if valid, false if
4837 * not.
4838 * We assume that registers are always usable
4839 */
4840static bool guest_state_valid(struct kvm_vcpu *vcpu)
4841{
c5e97c80
GN
4842 if (enable_unrestricted_guest)
4843 return true;
4844
648dfaa7 4845 /* real mode guest state checks */
f13882d8 4846 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4847 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4848 return false;
4849 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4850 return false;
4851 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4852 return false;
4853 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4854 return false;
4855 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4856 return false;
4857 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4858 return false;
4859 } else {
4860 /* protected mode guest state checks */
4861 if (!cs_ss_rpl_check(vcpu))
4862 return false;
4863 if (!code_segment_valid(vcpu))
4864 return false;
4865 if (!stack_segment_valid(vcpu))
4866 return false;
4867 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4868 return false;
4869 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4870 return false;
4871 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4872 return false;
4873 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4874 return false;
4875 if (!tr_valid(vcpu))
4876 return false;
4877 if (!ldtr_valid(vcpu))
4878 return false;
4879 }
4880 /* TODO:
4881 * - Add checks on RIP
4882 * - Add checks on RFLAGS
4883 */
4884
4885 return true;
4886}
4887
5fa99cbe
JM
4888static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4889{
4890 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4891}
4892
d77c26fc 4893static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4894{
40dcaa9f 4895 gfn_t fn;
195aefde 4896 u16 data = 0;
1f755a82 4897 int idx, r;
6aa8b732 4898
40dcaa9f 4899 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4900 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4901 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4902 if (r < 0)
10589a46 4903 goto out;
195aefde 4904 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4905 r = kvm_write_guest_page(kvm, fn++, &data,
4906 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4907 if (r < 0)
10589a46 4908 goto out;
195aefde
IE
4909 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4910 if (r < 0)
10589a46 4911 goto out;
195aefde
IE
4912 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4913 if (r < 0)
10589a46 4914 goto out;
195aefde 4915 data = ~0;
10589a46
MT
4916 r = kvm_write_guest_page(kvm, fn, &data,
4917 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4918 sizeof(u8));
10589a46 4919out:
40dcaa9f 4920 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4921 return r;
6aa8b732
AK
4922}
4923
b7ebfb05
SY
4924static int init_rmode_identity_map(struct kvm *kvm)
4925{
f51770ed 4926 int i, idx, r = 0;
ba049e93 4927 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4928 u32 tmp;
4929
a255d479
TC
4930 /* Protect kvm->arch.ept_identity_pagetable_done. */
4931 mutex_lock(&kvm->slots_lock);
4932
f51770ed 4933 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4934 goto out2;
a255d479 4935
d8a6e365
DH
4936 if (!kvm->arch.ept_identity_map_addr)
4937 kvm->arch.ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
b927a3ce 4938 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479 4939
d8a6e365
DH
4940 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4941 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
f51770ed 4942 if (r < 0)
a255d479
TC
4943 goto out2;
4944
40dcaa9f 4945 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4946 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4947 if (r < 0)
4948 goto out;
4949 /* Set up identity-mapping pagetable for EPT in real mode */
4950 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4951 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4952 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4953 r = kvm_write_guest_page(kvm, identity_map_pfn,
4954 &tmp, i * sizeof(tmp), sizeof(tmp));
4955 if (r < 0)
4956 goto out;
4957 }
4958 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4959
b7ebfb05 4960out:
40dcaa9f 4961 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4962
4963out2:
4964 mutex_unlock(&kvm->slots_lock);
f51770ed 4965 return r;
b7ebfb05
SY
4966}
4967
6aa8b732
AK
4968static void seg_setup(int seg)
4969{
772e0318 4970 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4971 unsigned int ar;
6aa8b732
AK
4972
4973 vmcs_write16(sf->selector, 0);
4974 vmcs_writel(sf->base, 0);
4975 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4976 ar = 0x93;
4977 if (seg == VCPU_SREG_CS)
4978 ar |= 0x08; /* code segment */
3a624e29
NK
4979
4980 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4981}
4982
f78e0e2e
SY
4983static int alloc_apic_access_page(struct kvm *kvm)
4984{
4484141a 4985 struct page *page;
f78e0e2e
SY
4986 int r = 0;
4987
79fac95e 4988 mutex_lock(&kvm->slots_lock);
c24ae0dc 4989 if (kvm->arch.apic_access_page_done)
f78e0e2e 4990 goto out;
1d8007bd
PB
4991 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4992 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4993 if (r)
4994 goto out;
72dc67a6 4995
73a6d941 4996 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4997 if (is_error_page(page)) {
4998 r = -EFAULT;
4999 goto out;
5000 }
5001
c24ae0dc
TC
5002 /*
5003 * Do not pin the page in memory, so that memory hot-unplug
5004 * is able to migrate it.
5005 */
5006 put_page(page);
5007 kvm->arch.apic_access_page_done = true;
f78e0e2e 5008out:
79fac95e 5009 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
5010 return r;
5011}
5012
991e7a0e 5013static int allocate_vpid(void)
2384d2b3
SY
5014{
5015 int vpid;
5016
919818ab 5017 if (!enable_vpid)
991e7a0e 5018 return 0;
2384d2b3
SY
5019 spin_lock(&vmx_vpid_lock);
5020 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 5021 if (vpid < VMX_NR_VPIDS)
2384d2b3 5022 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
5023 else
5024 vpid = 0;
2384d2b3 5025 spin_unlock(&vmx_vpid_lock);
991e7a0e 5026 return vpid;
2384d2b3
SY
5027}
5028
991e7a0e 5029static void free_vpid(int vpid)
cdbecfc3 5030{
991e7a0e 5031 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
5032 return;
5033 spin_lock(&vmx_vpid_lock);
991e7a0e 5034 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
5035 spin_unlock(&vmx_vpid_lock);
5036}
5037
4b0be90f
PB
5038static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
5039 u32 msr, int type)
25c5f225 5040{
3e7c73e9 5041 int f = sizeof(unsigned long);
25c5f225
SY
5042
5043 if (!cpu_has_vmx_msr_bitmap())
5044 return;
5045
5046 /*
5047 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5048 * have the write-low and read-high bitmap offsets the wrong way round.
5049 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5050 */
25c5f225 5051 if (msr <= 0x1fff) {
8d14695f
YZ
5052 if (type & MSR_TYPE_R)
5053 /* read-low */
5054 __clear_bit(msr, msr_bitmap + 0x000 / f);
5055
5056 if (type & MSR_TYPE_W)
5057 /* write-low */
5058 __clear_bit(msr, msr_bitmap + 0x800 / f);
5059
25c5f225
SY
5060 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5061 msr &= 0x1fff;
8d14695f
YZ
5062 if (type & MSR_TYPE_R)
5063 /* read-high */
5064 __clear_bit(msr, msr_bitmap + 0x400 / f);
5065
5066 if (type & MSR_TYPE_W)
5067 /* write-high */
5068 __clear_bit(msr, msr_bitmap + 0xc00 / f);
5069
5070 }
5071}
5072
4b0be90f
PB
5073static void __always_inline vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
5074 u32 msr, int type)
5075{
5076 int f = sizeof(unsigned long);
5077
5078 if (!cpu_has_vmx_msr_bitmap())
5079 return;
5080
5081 /*
5082 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5083 * have the write-low and read-high bitmap offsets the wrong way round.
5084 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5085 */
5086 if (msr <= 0x1fff) {
5087 if (type & MSR_TYPE_R)
5088 /* read-low */
5089 __set_bit(msr, msr_bitmap + 0x000 / f);
5090
5091 if (type & MSR_TYPE_W)
5092 /* write-low */
5093 __set_bit(msr, msr_bitmap + 0x800 / f);
5094
5095 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5096 msr &= 0x1fff;
5097 if (type & MSR_TYPE_R)
5098 /* read-high */
5099 __set_bit(msr, msr_bitmap + 0x400 / f);
5100
5101 if (type & MSR_TYPE_W)
5102 /* write-high */
5103 __set_bit(msr, msr_bitmap + 0xc00 / f);
5104
5105 }
5106}
5107
5108static void __always_inline vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
5109 u32 msr, int type, bool value)
5110{
5111 if (value)
5112 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
5113 else
5114 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
5115}
5116
f2b93280
WV
5117/*
5118 * If a msr is allowed by L0, we should check whether it is allowed by L1.
5119 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
5120 */
5121static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
5122 unsigned long *msr_bitmap_nested,
5123 u32 msr, int type)
5124{
5125 int f = sizeof(unsigned long);
5126
5127 if (!cpu_has_vmx_msr_bitmap()) {
5128 WARN_ON(1);
5129 return;
5130 }
5131
5132 /*
5133 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5134 * have the write-low and read-high bitmap offsets the wrong way round.
5135 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5136 */
5137 if (msr <= 0x1fff) {
5138 if (type & MSR_TYPE_R &&
5139 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
5140 /* read-low */
5141 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
5142
5143 if (type & MSR_TYPE_W &&
5144 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
5145 /* write-low */
5146 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
5147
5148 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5149 msr &= 0x1fff;
5150 if (type & MSR_TYPE_R &&
5151 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
5152 /* read-high */
5153 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
5154
5155 if (type & MSR_TYPE_W &&
5156 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
5157 /* write-high */
5158 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
5159
5160 }
5161}
5162
4b0be90f 5163static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
5897297b 5164{
4b0be90f
PB
5165 u8 mode = 0;
5166
5167 if (cpu_has_secondary_exec_ctrls() &&
5168 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
5169 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
5170 mode |= MSR_BITMAP_MODE_X2APIC;
5171 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
5172 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
5173 }
5174
5175 if (is_long_mode(vcpu))
5176 mode |= MSR_BITMAP_MODE_LM;
5177
5178 return mode;
8d14695f
YZ
5179}
5180
4b0be90f
PB
5181#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
5182
5183static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
5184 u8 mode)
8d14695f 5185{
4b0be90f
PB
5186 int msr;
5187
5188 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
5189 unsigned word = msr / BITS_PER_LONG;
5190 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
5191 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
5192 }
5193
5194 if (mode & MSR_BITMAP_MODE_X2APIC) {
5195 /*
5196 * TPR reads and writes can be virtualized even if virtual interrupt
5197 * delivery is not in use.
5198 */
5199 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
5200 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
5201 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
5202 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
5203 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
5204 }
f6e90f9e 5205 }
5897297b
AK
5206}
5207
4b0be90f
PB
5208static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
5209{
5210 struct vcpu_vmx *vmx = to_vmx(vcpu);
5211 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
5212 u8 mode = vmx_msr_bitmap_mode(vcpu);
5213 u8 changed = mode ^ vmx->msr_bitmap_mode;
5214
5215 if (!changed)
5216 return;
5217
5218 vmx_set_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW,
5219 !(mode & MSR_BITMAP_MODE_LM));
5220
5221 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
5222 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
5223
5224 vmx->msr_bitmap_mode = mode;
5225}
5226
b2a05fef 5227static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
d50ab6c1 5228{
d62caabb 5229 return enable_apicv;
d50ab6c1
PB
5230}
5231
c9f04407
DM
5232static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5233{
5234 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5235 gfn_t gfn;
5236
5237 /*
5238 * Don't need to mark the APIC access page dirty; it is never
5239 * written to by the CPU during APIC virtualization.
5240 */
5241
5242 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5243 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5244 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5245 }
5246
5247 if (nested_cpu_has_posted_intr(vmcs12)) {
5248 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5249 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5250 }
5251}
5252
5253
6342c50a 5254static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
5255{
5256 struct vcpu_vmx *vmx = to_vmx(vcpu);
5257 int max_irr;
5258 void *vapic_page;
5259 u16 status;
5260
c9f04407
DM
5261 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5262 return;
705699a1 5263
c9f04407
DM
5264 vmx->nested.pi_pending = false;
5265 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5266 return;
705699a1 5267
c9f04407
DM
5268 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5269 if (max_irr != 256) {
705699a1 5270 vapic_page = kmap(vmx->nested.virtual_apic_page);
705699a1
WV
5271 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5272 kunmap(vmx->nested.virtual_apic_page);
5273
5274 status = vmcs_read16(GUEST_INTR_STATUS);
5275 if ((u8)max_irr > ((u8)status & 0xff)) {
5276 status &= ~0xff;
5277 status |= (u8)max_irr;
5278 vmcs_write16(GUEST_INTR_STATUS, status);
5279 }
5280 }
c9f04407
DM
5281
5282 nested_mark_vmcs12_pages_dirty(vcpu);
705699a1
WV
5283}
5284
06a5524f
WV
5285static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5286 bool nested)
21bc8dc5
RK
5287{
5288#ifdef CONFIG_SMP
06a5524f
WV
5289 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5290
21bc8dc5 5291 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6 5292 /*
5753743f
HZ
5293 * The vector of interrupt to be delivered to vcpu had
5294 * been set in PIR before this function.
5295 *
5296 * Following cases will be reached in this block, and
5297 * we always send a notification event in all cases as
5298 * explained below.
5299 *
5300 * Case 1: vcpu keeps in non-root mode. Sending a
5301 * notification event posts the interrupt to vcpu.
5302 *
5303 * Case 2: vcpu exits to root mode and is still
5304 * runnable. PIR will be synced to vIRR before the
5305 * next vcpu entry. Sending a notification event in
5306 * this case has no effect, as vcpu is not in root
5307 * mode.
28b835d6 5308 *
5753743f
HZ
5309 * Case 3: vcpu exits to root mode and is blocked.
5310 * vcpu_block() has already synced PIR to vIRR and
5311 * never blocks vcpu if vIRR is not cleared. Therefore,
5312 * a blocked vcpu here does not wait for any requested
5313 * interrupts in PIR, and sending a notification event
5314 * which has no effect is safe here.
28b835d6 5315 */
28b835d6 5316
06a5524f 5317 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
21bc8dc5
RK
5318 return true;
5319 }
5320#endif
5321 return false;
5322}
5323
705699a1
WV
5324static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5325 int vector)
5326{
5327 struct vcpu_vmx *vmx = to_vmx(vcpu);
5328
5329 if (is_guest_mode(vcpu) &&
5330 vector == vmx->nested.posted_intr_nv) {
705699a1
WV
5331 /*
5332 * If a posted intr is not recognized by hardware,
5333 * we will accomplish it in the next vmentry.
5334 */
5335 vmx->nested.pi_pending = true;
5336 kvm_make_request(KVM_REQ_EVENT, vcpu);
7b616667
LA
5337 /* the PIR and ON have been set by L1. */
5338 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
5339 kvm_vcpu_kick(vcpu);
705699a1
WV
5340 return 0;
5341 }
5342 return -1;
5343}
a20ed54d
YZ
5344/*
5345 * Send interrupt to vcpu via posted interrupt way.
5346 * 1. If target vcpu is running(non-root mode), send posted interrupt
5347 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5348 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5349 * interrupt from PIR in next vmentry.
5350 */
5351static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5352{
5353 struct vcpu_vmx *vmx = to_vmx(vcpu);
5354 int r;
5355
705699a1
WV
5356 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5357 if (!r)
5358 return;
5359
a20ed54d
YZ
5360 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5361 return;
5362
b95234c8
PB
5363 /* If a previous notification has sent the IPI, nothing to do. */
5364 if (pi_test_and_set_on(&vmx->pi_desc))
5365 return;
5366
06a5524f 5367 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
a20ed54d
YZ
5368 kvm_vcpu_kick(vcpu);
5369}
5370
a3a8ff8e
NHE
5371/*
5372 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5373 * will not change in the lifetime of the guest.
5374 * Note that host-state that does change is set elsewhere. E.g., host-state
5375 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5376 */
a547c6db 5377static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5378{
5379 u32 low32, high32;
5380 unsigned long tmpl;
5381 struct desc_ptr dt;
d6e41f11 5382 unsigned long cr0, cr3, cr4;
a3a8ff8e 5383
04ac88ab
AL
5384 cr0 = read_cr0();
5385 WARN_ON(cr0 & X86_CR0_TS);
5386 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
d6e41f11
AL
5387
5388 /*
5389 * Save the most likely value for this task's CR3 in the VMCS.
5390 * We can't use __get_current_cr3_fast() because we're not atomic.
5391 */
6c690ee1 5392 cr3 = __read_cr3();
d6e41f11 5393 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
44889942 5394 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
a3a8ff8e 5395
d974baa3 5396 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5397 cr4 = cr4_read_shadow();
d974baa3 5398 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
44889942 5399 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3 5400
a3a8ff8e 5401 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5402#ifdef CONFIG_X86_64
5403 /*
5404 * Load null selectors, so we can avoid reloading them in
5405 * __vmx_load_host_state(), in case userspace uses the null selectors
5406 * too (the expected case).
5407 */
5408 vmcs_write16(HOST_DS_SELECTOR, 0);
5409 vmcs_write16(HOST_ES_SELECTOR, 0);
5410#else
a3a8ff8e
NHE
5411 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5412 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5413#endif
a3a8ff8e
NHE
5414 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5415 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5416
87930019 5417 store_idt(&dt);
a3a8ff8e 5418 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5419 vmx->host_idt_base = dt.address;
a3a8ff8e 5420
83287ea4 5421 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5422
5423 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5424 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5425 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5426 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5427
5428 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5429 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5430 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5431 }
5432}
5433
bf8179a0
NHE
5434static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5435{
5436 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5437 if (enable_ept)
5438 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5439 if (is_guest_mode(&vmx->vcpu))
5440 vmx->vcpu.arch.cr4_guest_owned_bits &=
5441 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5442 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5443}
5444
01e439be
YZ
5445static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5446{
5447 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5448
d62caabb 5449 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5450 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
d02fcf50
PB
5451
5452 if (!enable_vnmi)
5453 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
5454
64672c95
YJ
5455 /* Enable the preemption timer dynamically */
5456 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5457 return pin_based_exec_ctrl;
5458}
5459
d62caabb
AS
5460static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5461{
5462 struct vcpu_vmx *vmx = to_vmx(vcpu);
5463
5464 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5465 if (cpu_has_secondary_exec_ctrls()) {
5466 if (kvm_vcpu_apicv_active(vcpu))
5467 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5468 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5469 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5470 else
5471 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5472 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5473 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5474 }
5475
5476 if (cpu_has_vmx_msr_bitmap())
4b0be90f 5477 vmx_update_msr_bitmap(vcpu);
d62caabb
AS
5478}
5479
bf8179a0
NHE
5480static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5481{
5482 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5483
5484 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5485 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5486
35754c98 5487 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5488 exec_control &= ~CPU_BASED_TPR_SHADOW;
5489#ifdef CONFIG_X86_64
5490 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5491 CPU_BASED_CR8_LOAD_EXITING;
5492#endif
5493 }
5494 if (!enable_ept)
5495 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5496 CPU_BASED_CR3_LOAD_EXITING |
5497 CPU_BASED_INVLPG_EXITING;
5498 return exec_control;
5499}
5500
45ec368c 5501static bool vmx_rdrand_supported(void)
bf8179a0 5502{
45ec368c 5503 return vmcs_config.cpu_based_2nd_exec_ctrl &
736fdf72 5504 SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5505}
5506
75f4fc8d
JM
5507static bool vmx_rdseed_supported(void)
5508{
5509 return vmcs_config.cpu_based_2nd_exec_ctrl &
736fdf72 5510 SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5511}
5512
80154d77 5513static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
bf8179a0 5514{
80154d77
PB
5515 struct kvm_vcpu *vcpu = &vmx->vcpu;
5516
bf8179a0 5517 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
80154d77 5518 if (!cpu_need_virtualize_apic_accesses(vcpu))
bf8179a0
NHE
5519 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5520 if (vmx->vpid == 0)
5521 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5522 if (!enable_ept) {
5523 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5524 enable_unrestricted_guest = 0;
ad756a16
MJ
5525 /* Enable INVPCID for non-ept guests may cause performance regression. */
5526 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5527 }
5528 if (!enable_unrestricted_guest)
5529 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5530 if (!ple_gap)
5531 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
80154d77 5532 if (!kvm_vcpu_apicv_active(vcpu))
c7c9c56c
YZ
5533 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5534 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5535 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5536 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5537 (handle_vmptrld).
5538 We can NOT enable shadow_vmcs here because we don't have yet
5539 a current VMCS12
5540 */
5541 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5542
5543 if (!enable_pml)
5544 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5545
3db13480
PB
5546 if (vmx_xsaves_supported()) {
5547 /* Exposing XSAVES only when XSAVE is exposed */
5548 bool xsaves_enabled =
5549 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5550 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5551
5552 if (!xsaves_enabled)
5553 exec_control &= ~SECONDARY_EXEC_XSAVES;
5554
5555 if (nested) {
5556 if (xsaves_enabled)
5557 vmx->nested.nested_vmx_secondary_ctls_high |=
5558 SECONDARY_EXEC_XSAVES;
5559 else
5560 vmx->nested.nested_vmx_secondary_ctls_high &=
5561 ~SECONDARY_EXEC_XSAVES;
5562 }
5563 }
5564
80154d77
PB
5565 if (vmx_rdtscp_supported()) {
5566 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5567 if (!rdtscp_enabled)
5568 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5569
5570 if (nested) {
5571 if (rdtscp_enabled)
5572 vmx->nested.nested_vmx_secondary_ctls_high |=
5573 SECONDARY_EXEC_RDTSCP;
5574 else
5575 vmx->nested.nested_vmx_secondary_ctls_high &=
5576 ~SECONDARY_EXEC_RDTSCP;
5577 }
5578 }
5579
5580 if (vmx_invpcid_supported()) {
5581 /* Exposing INVPCID only when PCID is exposed */
5582 bool invpcid_enabled =
5583 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5584 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5585
5586 if (!invpcid_enabled) {
5587 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5588 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5589 }
5590
5591 if (nested) {
5592 if (invpcid_enabled)
5593 vmx->nested.nested_vmx_secondary_ctls_high |=
5594 SECONDARY_EXEC_ENABLE_INVPCID;
5595 else
5596 vmx->nested.nested_vmx_secondary_ctls_high &=
5597 ~SECONDARY_EXEC_ENABLE_INVPCID;
5598 }
5599 }
5600
45ec368c
JM
5601 if (vmx_rdrand_supported()) {
5602 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5603 if (rdrand_enabled)
736fdf72 5604 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5605
5606 if (nested) {
5607 if (rdrand_enabled)
5608 vmx->nested.nested_vmx_secondary_ctls_high |=
736fdf72 5609 SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5610 else
5611 vmx->nested.nested_vmx_secondary_ctls_high &=
736fdf72 5612 ~SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5613 }
5614 }
5615
75f4fc8d
JM
5616 if (vmx_rdseed_supported()) {
5617 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5618 if (rdseed_enabled)
736fdf72 5619 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5620
5621 if (nested) {
5622 if (rdseed_enabled)
5623 vmx->nested.nested_vmx_secondary_ctls_high |=
736fdf72 5624 SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5625 else
5626 vmx->nested.nested_vmx_secondary_ctls_high &=
736fdf72 5627 ~SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5628 }
5629 }
5630
80154d77 5631 vmx->secondary_exec_control = exec_control;
bf8179a0
NHE
5632}
5633
ce88decf
XG
5634static void ept_set_mmio_spte_mask(void)
5635{
5636 /*
5637 * EPT Misconfigurations can be generated if the value of bits 2:0
5638 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5639 */
dcdca5fe
PF
5640 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5641 VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5642}
5643
f53cd63c 5644#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5645/*
5646 * Sets up the vmcs for emulated real mode.
5647 */
12d79917 5648static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5649{
2e4ce7f5 5650#ifdef CONFIG_X86_64
6aa8b732 5651 unsigned long a;
2e4ce7f5 5652#endif
6aa8b732 5653 int i;
6aa8b732 5654
6aa8b732 5655 /* I/O */
3e7c73e9
AK
5656 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5657 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5658
4607c2d7
AG
5659 if (enable_shadow_vmcs) {
5660 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5661 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5662 }
25c5f225 5663 if (cpu_has_vmx_msr_bitmap())
4b0be90f 5664 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
25c5f225 5665
6aa8b732
AK
5666 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5667
6aa8b732 5668 /* Control */
01e439be 5669 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5670 vmx->hv_deadline_tsc = -1;
6e5d865c 5671
bf8179a0 5672 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5673
dfa169bb 5674 if (cpu_has_secondary_exec_ctrls()) {
80154d77 5675 vmx_compute_secondary_exec_control(vmx);
bf8179a0 5676 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
80154d77 5677 vmx->secondary_exec_control);
dfa169bb 5678 }
f78e0e2e 5679
d62caabb 5680 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5681 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5682 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5683 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5684 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5685
5686 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5687
0bcf261c 5688 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5689 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5690 }
5691
4b8d54f9
ZE
5692 if (ple_gap) {
5693 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5694 vmx->ple_window = ple_window;
5695 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5696 }
5697
c3707958
XG
5698 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5699 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5700 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5701
9581d442
AK
5702 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5703 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5704 vmx_set_constant_host_state(vmx);
05b3e0c2 5705#ifdef CONFIG_X86_64
6aa8b732
AK
5706 rdmsrl(MSR_FS_BASE, a);
5707 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5708 rdmsrl(MSR_GS_BASE, a);
5709 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5710#else
5711 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5712 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5713#endif
5714
2a499e49
BD
5715 if (cpu_has_vmx_vmfunc())
5716 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5717
2cc51560
ED
5718 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5719 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5720 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5721 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5722 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5723
74545705
RK
5724 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5725 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5726
03916db9 5727 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5728 u32 index = vmx_msr_index[i];
5729 u32 data_low, data_high;
a2fa3e9f 5730 int j = vmx->nmsrs;
6aa8b732
AK
5731
5732 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5733 continue;
432bd6cb
AK
5734 if (wrmsr_safe(index, data_low, data_high) < 0)
5735 continue;
26bb0981
AK
5736 vmx->guest_msrs[j].index = i;
5737 vmx->guest_msrs[j].data = 0;
d5696725 5738 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5739 ++vmx->nmsrs;
6aa8b732 5740 }
6aa8b732 5741
a6005a79
KA
5742 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
5743 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, vmx->arch_capabilities);
2961e876
GN
5744
5745 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5746
5747 /* 22.2.1, 20.8.1 */
2961e876 5748 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5749
bd7e5b08
PB
5750 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5751 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5752
bf8179a0 5753 set_cr4_guest_host_mask(vmx);
e00c8cf2 5754
f53cd63c
WL
5755 if (vmx_xsaves_supported())
5756 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5757
4e59516a
PF
5758 if (enable_pml) {
5759 ASSERT(vmx->pml_pg);
5760 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5761 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5762 }
e00c8cf2
AK
5763}
5764
d28bc9dd 5765static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5766{
5767 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5768 struct msr_data apic_base_msr;
d28bc9dd 5769 u64 cr0;
e00c8cf2 5770
7ffd92c5 5771 vmx->rmode.vm86_active = 0;
74469996 5772 vmx->spec_ctrl = 0;
e00c8cf2 5773
ad312c7c 5774 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5775 kvm_set_cr8(vcpu, 0);
5776
5777 if (!init_event) {
5778 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5779 MSR_IA32_APICBASE_ENABLE;
5780 if (kvm_vcpu_is_reset_bsp(vcpu))
5781 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5782 apic_base_msr.host_initiated = true;
5783 kvm_set_apic_base(vcpu, &apic_base_msr);
5784 }
e00c8cf2 5785
2fb92db1
AK
5786 vmx_segment_cache_clear(vmx);
5787
5706be0d 5788 seg_setup(VCPU_SREG_CS);
66450a21 5789 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5790 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5791
5792 seg_setup(VCPU_SREG_DS);
5793 seg_setup(VCPU_SREG_ES);
5794 seg_setup(VCPU_SREG_FS);
5795 seg_setup(VCPU_SREG_GS);
5796 seg_setup(VCPU_SREG_SS);
5797
5798 vmcs_write16(GUEST_TR_SELECTOR, 0);
5799 vmcs_writel(GUEST_TR_BASE, 0);
5800 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5801 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5802
5803 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5804 vmcs_writel(GUEST_LDTR_BASE, 0);
5805 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5806 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5807
d28bc9dd
NA
5808 if (!init_event) {
5809 vmcs_write32(GUEST_SYSENTER_CS, 0);
5810 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5811 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5812 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5813 }
e00c8cf2 5814
c37c2873 5815 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
66450a21 5816 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5817
e00c8cf2
AK
5818 vmcs_writel(GUEST_GDTR_BASE, 0);
5819 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5820
5821 vmcs_writel(GUEST_IDTR_BASE, 0);
5822 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5823
443381a8 5824 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5825 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5826 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
a554d207
WL
5827 if (kvm_mpx_supported())
5828 vmcs_write64(GUEST_BNDCFGS, 0);
e00c8cf2 5829
e00c8cf2
AK
5830 setup_msrs(vmx);
5831
6aa8b732
AK
5832 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5833
d28bc9dd 5834 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5835 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5836 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5837 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5838 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5839 vmcs_write32(TPR_THRESHOLD, 0);
5840 }
5841
a73896cb 5842 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5843
2384d2b3
SY
5844 if (vmx->vpid != 0)
5845 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5846
d28bc9dd 5847 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5848 vmx->vcpu.arch.cr0 = cr0;
f2463247 5849 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5850 vmx_set_cr4(vcpu, 0);
5690891b 5851 vmx_set_efer(vcpu, 0);
bd7e5b08 5852
d28bc9dd 5853 update_exception_bitmap(vcpu);
6aa8b732 5854
dd5f5341 5855 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5856}
5857
b6f1250e
NHE
5858/*
5859 * In nested virtualization, check if L1 asked to exit on external interrupts.
5860 * For most existing hypervisors, this will always return true.
5861 */
5862static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5863{
5864 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5865 PIN_BASED_EXT_INTR_MASK;
5866}
5867
77b0f5d6
BD
5868/*
5869 * In nested virtualization, check if L1 has set
5870 * VM_EXIT_ACK_INTR_ON_EXIT
5871 */
5872static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5873{
5874 return get_vmcs12(vcpu)->vm_exit_controls &
5875 VM_EXIT_ACK_INTR_ON_EXIT;
5876}
5877
ea8ceb83
JK
5878static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5879{
5880 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5881 PIN_BASED_NMI_EXITING;
5882}
5883
c9a7953f 5884static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 5885{
47c0152e
PB
5886 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5887 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
5888}
5889
c9a7953f 5890static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 5891{
d02fcf50 5892 if (!enable_vnmi ||
8a1b4392 5893 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
c9a7953f
JK
5894 enable_irq_window(vcpu);
5895 return;
5896 }
3b86cd99 5897
47c0152e
PB
5898 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5899 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
5900}
5901
66fd3f7f 5902static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5903{
9c8cba37 5904 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5905 uint32_t intr;
5906 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5907
229456fc 5908 trace_kvm_inj_virq(irq);
2714d1d3 5909
fa89a817 5910 ++vcpu->stat.irq_injections;
7ffd92c5 5911 if (vmx->rmode.vm86_active) {
71f9833b
SH
5912 int inc_eip = 0;
5913 if (vcpu->arch.interrupt.soft)
5914 inc_eip = vcpu->arch.event_exit_inst_len;
5915 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5916 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5917 return;
5918 }
66fd3f7f
GN
5919 intr = irq | INTR_INFO_VALID_MASK;
5920 if (vcpu->arch.interrupt.soft) {
5921 intr |= INTR_TYPE_SOFT_INTR;
5922 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5923 vmx->vcpu.arch.event_exit_inst_len);
5924 } else
5925 intr |= INTR_TYPE_EXT_INTR;
5926 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5927}
5928
f08864b4
SY
5929static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5930{
66a5a347
JK
5931 struct vcpu_vmx *vmx = to_vmx(vcpu);
5932
d02fcf50 5933 if (!enable_vnmi) {
8a1b4392
PB
5934 /*
5935 * Tracking the NMI-blocked state in software is built upon
5936 * finding the next open IRQ window. This, in turn, depends on
5937 * well-behaving guests: They have to keep IRQs disabled at
5938 * least as long as the NMI handler runs. Otherwise we may
5939 * cause NMI nesting, maybe breaking the guest. But as this is
5940 * highly unlikely, we can live with the residual risk.
5941 */
5942 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
5943 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5944 }
5945
4c4a6f79
PB
5946 ++vcpu->stat.nmi_injections;
5947 vmx->loaded_vmcs->nmi_known_unmasked = false;
3b86cd99 5948
7ffd92c5 5949 if (vmx->rmode.vm86_active) {
71f9833b 5950 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5951 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5952 return;
5953 }
c5a6d5f7 5954
f08864b4
SY
5955 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5956 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5957}
5958
3cfc3092
JK
5959static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5960{
4c4a6f79
PB
5961 struct vcpu_vmx *vmx = to_vmx(vcpu);
5962 bool masked;
5963
d02fcf50 5964 if (!enable_vnmi)
8a1b4392 5965 return vmx->loaded_vmcs->soft_vnmi_blocked;
4c4a6f79 5966 if (vmx->loaded_vmcs->nmi_known_unmasked)
9d58b931 5967 return false;
4c4a6f79
PB
5968 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5969 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5970 return masked;
3cfc3092
JK
5971}
5972
5973static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5974{
5975 struct vcpu_vmx *vmx = to_vmx(vcpu);
5976
d02fcf50 5977 if (!enable_vnmi) {
8a1b4392
PB
5978 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5979 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5980 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5981 }
5982 } else {
5983 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5984 if (masked)
5985 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5986 GUEST_INTR_STATE_NMI);
5987 else
5988 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5989 GUEST_INTR_STATE_NMI);
5990 }
3cfc3092
JK
5991}
5992
2505dc9f
JK
5993static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5994{
b6b8a145
JK
5995 if (to_vmx(vcpu)->nested.nested_run_pending)
5996 return 0;
ea8ceb83 5997
d02fcf50 5998 if (!enable_vnmi &&
8a1b4392
PB
5999 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
6000 return 0;
6001
2505dc9f
JK
6002 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6003 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
6004 | GUEST_INTR_STATE_NMI));
6005}
6006
78646121
GN
6007static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
6008{
b6b8a145
JK
6009 return (!to_vmx(vcpu)->nested.nested_run_pending &&
6010 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
6011 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6012 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
6013}
6014
cbc94022
IE
6015static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
6016{
6017 int ret;
cbc94022 6018
1d8007bd
PB
6019 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
6020 PAGE_SIZE * 3);
cbc94022
IE
6021 if (ret)
6022 return ret;
bfc6d222 6023 kvm->arch.tss_addr = addr;
1f755a82 6024 return init_rmode_tss(kvm);
cbc94022
IE
6025}
6026
0ca1b4f4 6027static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 6028{
77ab6db0 6029 switch (vec) {
77ab6db0 6030 case BP_VECTOR:
c573cd22
JK
6031 /*
6032 * Update instruction length as we may reinject the exception
6033 * from user space while in guest debugging mode.
6034 */
6035 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
6036 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 6037 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
6038 return false;
6039 /* fall through */
6040 case DB_VECTOR:
6041 if (vcpu->guest_debug &
6042 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6043 return false;
d0bfb940
JK
6044 /* fall through */
6045 case DE_VECTOR:
77ab6db0
JK
6046 case OF_VECTOR:
6047 case BR_VECTOR:
6048 case UD_VECTOR:
6049 case DF_VECTOR:
6050 case SS_VECTOR:
6051 case GP_VECTOR:
6052 case MF_VECTOR:
0ca1b4f4
GN
6053 return true;
6054 break;
77ab6db0 6055 }
0ca1b4f4
GN
6056 return false;
6057}
6058
6059static int handle_rmode_exception(struct kvm_vcpu *vcpu,
6060 int vec, u32 err_code)
6061{
6062 /*
6063 * Instruction with address size override prefix opcode 0x67
6064 * Cause the #SS fault with 0 error code in VM86 mode.
6065 */
6066 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
6067 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
6068 if (vcpu->arch.halt_request) {
6069 vcpu->arch.halt_request = 0;
5cb56059 6070 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
6071 }
6072 return 1;
6073 }
6074 return 0;
6075 }
6076
6077 /*
6078 * Forward all other exceptions that are valid in real mode.
6079 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
6080 * the required debugging infrastructure rework.
6081 */
6082 kvm_queue_exception(vcpu, vec);
6083 return 1;
6aa8b732
AK
6084}
6085
a0861c02
AK
6086/*
6087 * Trigger machine check on the host. We assume all the MSRs are already set up
6088 * by the CPU and that we still run on the same CPU as the MCE occurred on.
6089 * We pass a fake environment to the machine check handler because we want
6090 * the guest to be always treated like user space, no matter what context
6091 * it used internally.
6092 */
6093static void kvm_machine_check(void)
6094{
6095#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
6096 struct pt_regs regs = {
6097 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
6098 .flags = X86_EFLAGS_IF,
6099 };
6100
6101 do_machine_check(&regs, 0);
6102#endif
6103}
6104
851ba692 6105static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
6106{
6107 /* already handled by vcpu_run */
6108 return 1;
6109}
6110
851ba692 6111static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 6112{
1155f76a 6113 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 6114 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 6115 u32 intr_info, ex_no, error_code;
42dbaa5a 6116 unsigned long cr2, rip, dr6;
6aa8b732
AK
6117 u32 vect_info;
6118 enum emulation_result er;
6119
1155f76a 6120 vect_info = vmx->idt_vectoring_info;
88786475 6121 intr_info = vmx->exit_intr_info;
6aa8b732 6122
a0861c02 6123 if (is_machine_check(intr_info))
851ba692 6124 return handle_machine_check(vcpu);
a0861c02 6125
ef85b673 6126 if (is_nmi(intr_info))
1b6269db 6127 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 6128
7aa81cc0 6129 if (is_invalid_opcode(intr_info)) {
51d8b661 6130 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
61cb57c9
LA
6131 if (er == EMULATE_USER_EXIT)
6132 return 0;
7aa81cc0 6133 if (er != EMULATE_DONE)
7ee5d940 6134 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
6135 return 1;
6136 }
6137
6aa8b732 6138 error_code = 0;
2e11384c 6139 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 6140 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
6141
6142 /*
6143 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
6144 * MMIO, it is better to report an internal error.
6145 * See the comments in vmx_handle_exit.
6146 */
6147 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
6148 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
6149 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6150 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 6151 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
6152 vcpu->run->internal.data[0] = vect_info;
6153 vcpu->run->internal.data[1] = intr_info;
80f0e95d 6154 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
6155 return 0;
6156 }
6157
6aa8b732
AK
6158 if (is_page_fault(intr_info)) {
6159 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1261bfa3
WL
6160 /* EPT won't cause page fault directly */
6161 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
d0006530 6162 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
6aa8b732
AK
6163 }
6164
d0bfb940 6165 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
6166
6167 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
6168 return handle_rmode_exception(vcpu, ex_no, error_code);
6169
42dbaa5a 6170 switch (ex_no) {
54a20552
EN
6171 case AC_VECTOR:
6172 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
6173 return 1;
42dbaa5a
JK
6174 case DB_VECTOR:
6175 dr6 = vmcs_readl(EXIT_QUALIFICATION);
6176 if (!(vcpu->guest_debug &
6177 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 6178 vcpu->arch.dr6 &= ~15;
6f43ed01 6179 vcpu->arch.dr6 |= dr6 | DR6_RTM;
3252850d 6180 if (is_icebp(intr_info))
fd2a445a
HD
6181 skip_emulated_instruction(vcpu);
6182
42dbaa5a
JK
6183 kvm_queue_exception(vcpu, DB_VECTOR);
6184 return 1;
6185 }
6186 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
6187 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
6188 /* fall through */
6189 case BP_VECTOR:
c573cd22
JK
6190 /*
6191 * Update instruction length as we may reinject #BP from
6192 * user space while in guest debugging mode. Reading it for
6193 * #DB as well causes no harm, it is not used in that case.
6194 */
6195 vmx->vcpu.arch.event_exit_inst_len =
6196 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 6197 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 6198 rip = kvm_rip_read(vcpu);
d0bfb940
JK
6199 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
6200 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
6201 break;
6202 default:
d0bfb940
JK
6203 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
6204 kvm_run->ex.exception = ex_no;
6205 kvm_run->ex.error_code = error_code;
42dbaa5a 6206 break;
6aa8b732 6207 }
6aa8b732
AK
6208 return 0;
6209}
6210
851ba692 6211static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 6212{
1165f5fe 6213 ++vcpu->stat.irq_exits;
6aa8b732
AK
6214 return 1;
6215}
6216
851ba692 6217static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 6218{
851ba692 6219 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
bbeac283 6220 vcpu->mmio_needed = 0;
988ad74f
AK
6221 return 0;
6222}
6aa8b732 6223
851ba692 6224static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 6225{
bfdaab09 6226 unsigned long exit_qualification;
6affcbed 6227 int size, in, string, ret;
039576c0 6228 unsigned port;
6aa8b732 6229
bfdaab09 6230 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 6231 string = (exit_qualification & 16) != 0;
cf8f70bf 6232 in = (exit_qualification & 8) != 0;
e70669ab 6233
cf8f70bf 6234 ++vcpu->stat.io_exits;
e70669ab 6235
cf8f70bf 6236 if (string || in)
51d8b661 6237 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 6238
cf8f70bf
GN
6239 port = exit_qualification >> 16;
6240 size = (exit_qualification & 7) + 1;
cf8f70bf 6241
6affcbed
KH
6242 ret = kvm_skip_emulated_instruction(vcpu);
6243
6244 /*
6245 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6246 * KVM_EXIT_DEBUG here.
6247 */
6248 return kvm_fast_pio_out(vcpu, size, port) && ret;
6aa8b732
AK
6249}
6250
102d8325
IM
6251static void
6252vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6253{
6254 /*
6255 * Patch in the VMCALL instruction:
6256 */
6257 hypercall[0] = 0x0f;
6258 hypercall[1] = 0x01;
6259 hypercall[2] = 0xc1;
102d8325
IM
6260}
6261
0fa06071 6262/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
6263static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6264{
eeadf9e7 6265 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6266 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6267 unsigned long orig_val = val;
6268
eeadf9e7
NHE
6269 /*
6270 * We get here when L2 changed cr0 in a way that did not change
6271 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
6272 * but did change L0 shadowed bits. So we first calculate the
6273 * effective cr0 value that L1 would like to write into the
6274 * hardware. It consists of the L2-owned bits from the new
6275 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 6276 */
1a0d74e6
JK
6277 val = (val & ~vmcs12->cr0_guest_host_mask) |
6278 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6279
3899152c 6280 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 6281 return 1;
1a0d74e6
JK
6282
6283 if (kvm_set_cr0(vcpu, val))
6284 return 1;
6285 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 6286 return 0;
1a0d74e6
JK
6287 } else {
6288 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 6289 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 6290 return 1;
3899152c 6291
eeadf9e7 6292 return kvm_set_cr0(vcpu, val);
1a0d74e6 6293 }
eeadf9e7
NHE
6294}
6295
6296static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6297{
6298 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6299 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6300 unsigned long orig_val = val;
6301
6302 /* analogously to handle_set_cr0 */
6303 val = (val & ~vmcs12->cr4_guest_host_mask) |
6304 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6305 if (kvm_set_cr4(vcpu, val))
eeadf9e7 6306 return 1;
1a0d74e6 6307 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
6308 return 0;
6309 } else
6310 return kvm_set_cr4(vcpu, val);
6311}
6312
851ba692 6313static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 6314{
229456fc 6315 unsigned long exit_qualification, val;
6aa8b732
AK
6316 int cr;
6317 int reg;
49a9b07e 6318 int err;
6affcbed 6319 int ret;
6aa8b732 6320
bfdaab09 6321 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
6322 cr = exit_qualification & 15;
6323 reg = (exit_qualification >> 8) & 15;
6324 switch ((exit_qualification >> 4) & 3) {
6325 case 0: /* mov to cr */
1e32c079 6326 val = kvm_register_readl(vcpu, reg);
229456fc 6327 trace_kvm_cr_write(cr, val);
6aa8b732
AK
6328 switch (cr) {
6329 case 0:
eeadf9e7 6330 err = handle_set_cr0(vcpu, val);
6affcbed 6331 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6332 case 3:
2390218b 6333 err = kvm_set_cr3(vcpu, val);
6affcbed 6334 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6335 case 4:
eeadf9e7 6336 err = handle_set_cr4(vcpu, val);
6affcbed 6337 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
6338 case 8: {
6339 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 6340 u8 cr8 = (u8)val;
eea1cff9 6341 err = kvm_set_cr8(vcpu, cr8);
6affcbed 6342 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 6343 if (lapic_in_kernel(vcpu))
6affcbed 6344 return ret;
0a5fff19 6345 if (cr8_prev <= cr8)
6affcbed
KH
6346 return ret;
6347 /*
6348 * TODO: we might be squashing a
6349 * KVM_GUESTDBG_SINGLESTEP-triggered
6350 * KVM_EXIT_DEBUG here.
6351 */
851ba692 6352 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
6353 return 0;
6354 }
4b8073e4 6355 }
6aa8b732 6356 break;
25c4c276 6357 case 2: /* clts */
bd7e5b08
PB
6358 WARN_ONCE(1, "Guest should always own CR0.TS");
6359 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 6360 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 6361 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6362 case 1: /*mov from cr*/
6363 switch (cr) {
6364 case 3:
9f8fe504
AK
6365 val = kvm_read_cr3(vcpu);
6366 kvm_register_write(vcpu, reg, val);
6367 trace_kvm_cr_read(cr, val);
6affcbed 6368 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 6369 case 8:
229456fc
MT
6370 val = kvm_get_cr8(vcpu);
6371 kvm_register_write(vcpu, reg, val);
6372 trace_kvm_cr_read(cr, val);
6affcbed 6373 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6374 }
6375 break;
6376 case 3: /* lmsw */
a1f83a74 6377 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 6378 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 6379 kvm_lmsw(vcpu, val);
6aa8b732 6380
6affcbed 6381 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6382 default:
6383 break;
6384 }
851ba692 6385 vcpu->run->exit_reason = 0;
a737f256 6386 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
6387 (int)(exit_qualification >> 4) & 3, cr);
6388 return 0;
6389}
6390
851ba692 6391static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 6392{
bfdaab09 6393 unsigned long exit_qualification;
16f8a6f9
NA
6394 int dr, dr7, reg;
6395
6396 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6397 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6398
6399 /* First, if DR does not exist, trigger UD */
6400 if (!kvm_require_dr(vcpu, dr))
6401 return 1;
6aa8b732 6402
f2483415 6403 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
6404 if (!kvm_require_cpl(vcpu, 0))
6405 return 1;
16f8a6f9
NA
6406 dr7 = vmcs_readl(GUEST_DR7);
6407 if (dr7 & DR7_GD) {
42dbaa5a
JK
6408 /*
6409 * As the vm-exit takes precedence over the debug trap, we
6410 * need to emulate the latter, either for the host or the
6411 * guest debugging itself.
6412 */
6413 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 6414 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 6415 vcpu->run->debug.arch.dr7 = dr7;
82b32774 6416 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
6417 vcpu->run->debug.arch.exception = DB_VECTOR;
6418 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
6419 return 0;
6420 } else {
7305eb5d 6421 vcpu->arch.dr6 &= ~15;
6f43ed01 6422 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
6423 kvm_queue_exception(vcpu, DB_VECTOR);
6424 return 1;
6425 }
6426 }
6427
81908bf4 6428 if (vcpu->guest_debug == 0) {
8f22372f
PB
6429 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6430 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6431
6432 /*
6433 * No more DR vmexits; force a reload of the debug registers
6434 * and reenter on this instruction. The next vmexit will
6435 * retrieve the full state of the debug registers.
6436 */
6437 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6438 return 1;
6439 }
6440
42dbaa5a
JK
6441 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6442 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 6443 unsigned long val;
4c4d563b
JK
6444
6445 if (kvm_get_dr(vcpu, dr, &val))
6446 return 1;
6447 kvm_register_write(vcpu, reg, val);
020df079 6448 } else
5777392e 6449 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
6450 return 1;
6451
6affcbed 6452 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6453}
6454
73aaf249
JK
6455static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6456{
6457 return vcpu->arch.dr6;
6458}
6459
6460static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6461{
6462}
6463
81908bf4
PB
6464static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6465{
81908bf4
PB
6466 get_debugreg(vcpu->arch.db[0], 0);
6467 get_debugreg(vcpu->arch.db[1], 1);
6468 get_debugreg(vcpu->arch.db[2], 2);
6469 get_debugreg(vcpu->arch.db[3], 3);
6470 get_debugreg(vcpu->arch.dr6, 6);
6471 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6472
6473 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 6474 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6475}
6476
020df079
GN
6477static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6478{
6479 vmcs_writel(GUEST_DR7, val);
6480}
6481
851ba692 6482static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 6483{
6a908b62 6484 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
6485}
6486
851ba692 6487static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 6488{
ad312c7c 6489 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 6490 struct msr_data msr_info;
6aa8b732 6491
609e36d3
PB
6492 msr_info.index = ecx;
6493 msr_info.host_initiated = false;
6494 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 6495 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 6496 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6497 return 1;
6498 }
6499
609e36d3 6500 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6501
6aa8b732 6502 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6503 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6504 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6505 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6506}
6507
851ba692 6508static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6509{
8fe8ab46 6510 struct msr_data msr;
ad312c7c
ZX
6511 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6512 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6513 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6514
8fe8ab46
WA
6515 msr.data = data;
6516 msr.index = ecx;
6517 msr.host_initiated = false;
854e8bb1 6518 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6519 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6520 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6521 return 1;
6522 }
6523
59200273 6524 trace_kvm_msr_write(ecx, data);
6affcbed 6525 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6526}
6527
851ba692 6528static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6529{
eb90f341 6530 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6531 return 1;
6532}
6533
851ba692 6534static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6535{
47c0152e
PB
6536 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6537 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6538
3842d135
AK
6539 kvm_make_request(KVM_REQ_EVENT, vcpu);
6540
a26bf12a 6541 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6542 return 1;
6543}
6544
851ba692 6545static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6546{
d3bef15f 6547 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6548}
6549
851ba692 6550static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6551{
0d9c055e 6552 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6553}
6554
ec25d5e6
GN
6555static int handle_invd(struct kvm_vcpu *vcpu)
6556{
51d8b661 6557 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6558}
6559
851ba692 6560static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6561{
f9c617f6 6562 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6563
6564 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6565 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6566}
6567
fee84b07
AK
6568static int handle_rdpmc(struct kvm_vcpu *vcpu)
6569{
6570 int err;
6571
6572 err = kvm_rdpmc(vcpu);
6affcbed 6573 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6574}
6575
851ba692 6576static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6577{
6affcbed 6578 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6579}
6580
2acf923e
DC
6581static int handle_xsetbv(struct kvm_vcpu *vcpu)
6582{
6583 u64 new_bv = kvm_read_edx_eax(vcpu);
6584 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6585
6586 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6587 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6588 return 1;
6589}
6590
f53cd63c
WL
6591static int handle_xsaves(struct kvm_vcpu *vcpu)
6592{
6affcbed 6593 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6594 WARN(1, "this should never happen\n");
6595 return 1;
6596}
6597
6598static int handle_xrstors(struct kvm_vcpu *vcpu)
6599{
6affcbed 6600 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6601 WARN(1, "this should never happen\n");
6602 return 1;
6603}
6604
851ba692 6605static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6606{
58fbbf26
KT
6607 if (likely(fasteoi)) {
6608 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6609 int access_type, offset;
6610
6611 access_type = exit_qualification & APIC_ACCESS_TYPE;
6612 offset = exit_qualification & APIC_ACCESS_OFFSET;
6613 /*
6614 * Sane guest uses MOV to write EOI, with written value
6615 * not cared. So make a short-circuit here by avoiding
6616 * heavy instruction emulation.
6617 */
6618 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6619 (offset == APIC_EOI)) {
6620 kvm_lapic_set_eoi(vcpu);
6affcbed 6621 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6622 }
6623 }
51d8b661 6624 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6625}
6626
c7c9c56c
YZ
6627static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6628{
6629 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6630 int vector = exit_qualification & 0xff;
6631
6632 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6633 kvm_apic_set_eoi_accelerated(vcpu, vector);
6634 return 1;
6635}
6636
83d4c286
YZ
6637static int handle_apic_write(struct kvm_vcpu *vcpu)
6638{
6639 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6640 u32 offset = exit_qualification & 0xfff;
6641
6642 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6643 kvm_apic_write_nodecode(vcpu, offset);
6644 return 1;
6645}
6646
851ba692 6647static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6648{
60637aac 6649 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6650 unsigned long exit_qualification;
e269fb21
JK
6651 bool has_error_code = false;
6652 u32 error_code = 0;
37817f29 6653 u16 tss_selector;
7f3d35fd 6654 int reason, type, idt_v, idt_index;
64a7ec06
GN
6655
6656 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6657 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6658 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6659
6660 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6661
6662 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6663 if (reason == TASK_SWITCH_GATE && idt_v) {
6664 switch (type) {
6665 case INTR_TYPE_NMI_INTR:
6666 vcpu->arch.nmi_injected = false;
654f06fc 6667 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6668 break;
6669 case INTR_TYPE_EXT_INTR:
66fd3f7f 6670 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6671 kvm_clear_interrupt_queue(vcpu);
6672 break;
6673 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6674 if (vmx->idt_vectoring_info &
6675 VECTORING_INFO_DELIVER_CODE_MASK) {
6676 has_error_code = true;
6677 error_code =
6678 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6679 }
6680 /* fall through */
64a7ec06
GN
6681 case INTR_TYPE_SOFT_EXCEPTION:
6682 kvm_clear_exception_queue(vcpu);
6683 break;
6684 default:
6685 break;
6686 }
60637aac 6687 }
37817f29
IE
6688 tss_selector = exit_qualification;
6689
64a7ec06
GN
6690 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6691 type != INTR_TYPE_EXT_INTR &&
6692 type != INTR_TYPE_NMI_INTR))
6693 skip_emulated_instruction(vcpu);
6694
7f3d35fd
KW
6695 if (kvm_task_switch(vcpu, tss_selector,
6696 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6697 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6698 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6699 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6700 vcpu->run->internal.ndata = 0;
42dbaa5a 6701 return 0;
acb54517 6702 }
42dbaa5a 6703
42dbaa5a
JK
6704 /*
6705 * TODO: What about debug traps on tss switch?
6706 * Are we supposed to inject them and update dr6?
6707 */
6708
6709 return 1;
37817f29
IE
6710}
6711
851ba692 6712static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6713{
f9c617f6 6714 unsigned long exit_qualification;
1439442c 6715 gpa_t gpa;
eebed243 6716 u64 error_code;
1439442c 6717
f9c617f6 6718 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6719
0be9c7a8
GN
6720 /*
6721 * EPT violation happened while executing iret from NMI,
6722 * "blocked by NMI" bit has to be set before next VM entry.
6723 * There are errata that may cause this bit to not be set:
6724 * AAK134, BY25.
6725 */
bcd1c294 6726 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
d02fcf50 6727 enable_vnmi &&
bcd1c294 6728 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6729 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6730
1439442c 6731 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6732 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6733
27959a44 6734 /* Is it a read fault? */
ab22a473 6735 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
6736 ? PFERR_USER_MASK : 0;
6737 /* Is it a write fault? */
ab22a473 6738 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
6739 ? PFERR_WRITE_MASK : 0;
6740 /* Is it a fetch fault? */
ab22a473 6741 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
6742 ? PFERR_FETCH_MASK : 0;
6743 /* ept page table entry is present? */
6744 error_code |= (exit_qualification &
6745 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6746 EPT_VIOLATION_EXECUTABLE))
6747 ? PFERR_PRESENT_MASK : 0;
4f5982a5 6748
eebed243
PB
6749 error_code |= (exit_qualification & 0x100) != 0 ?
6750 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
25d92081 6751
25d92081 6752 vcpu->arch.exit_qualification = exit_qualification;
4f5982a5 6753 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6754}
6755
851ba692 6756static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6757{
f735d4af 6758 int ret;
68f89400
MT
6759 gpa_t gpa;
6760
9034e6e8
PB
6761 /*
6762 * A nested guest cannot optimize MMIO vmexits, because we have an
6763 * nGPA here instead of the required GPA.
6764 */
68f89400 6765 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
9034e6e8
PB
6766 if (!is_guest_mode(vcpu) &&
6767 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 6768 trace_kvm_fast_mmio(gpa);
6affcbed 6769 return kvm_skip_emulated_instruction(vcpu);
68c3b4d1 6770 }
68f89400 6771
e08d26f0
PB
6772 ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6773 if (ret >= 0)
6774 return ret;
ce88decf
XG
6775
6776 /* It is the real ept misconfig */
f735d4af 6777 WARN_ON(1);
68f89400 6778
851ba692
AK
6779 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6780 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6781
6782 return 0;
6783}
6784
851ba692 6785static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 6786{
d02fcf50 6787 WARN_ON_ONCE(!enable_vnmi);
47c0152e
PB
6788 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6789 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 6790 ++vcpu->stat.nmi_window_exits;
3842d135 6791 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6792
6793 return 1;
6794}
6795
80ced186 6796static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6797{
8b3079a5
AK
6798 struct vcpu_vmx *vmx = to_vmx(vcpu);
6799 enum emulation_result err = EMULATE_DONE;
80ced186 6800 int ret = 1;
49e9d557
AK
6801 u32 cpu_exec_ctrl;
6802 bool intr_window_requested;
b8405c18 6803 unsigned count = 130;
49e9d557
AK
6804
6805 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6806 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6807
98eb2f8b 6808 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6809 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6810 return handle_interrupt_window(&vmx->vcpu);
6811
72875d8a 6812 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
de87dcdd
AK
6813 return 1;
6814
9b8ae637 6815 err = emulate_instruction(vcpu, 0);
ea953ef0 6816
ac0a48c3 6817 if (err == EMULATE_USER_EXIT) {
94452b9e 6818 ++vcpu->stat.mmio_exits;
80ced186
MG
6819 ret = 0;
6820 goto out;
6821 }
1d5a4d9b 6822
de5f70e0
AK
6823 if (err != EMULATE_DONE) {
6824 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6825 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6826 vcpu->run->internal.ndata = 0;
6d77dbfc 6827 return 0;
de5f70e0 6828 }
ea953ef0 6829
8d76c49e
GN
6830 if (vcpu->arch.halt_request) {
6831 vcpu->arch.halt_request = 0;
5cb56059 6832 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6833 goto out;
6834 }
6835
ea953ef0 6836 if (signal_pending(current))
80ced186 6837 goto out;
ea953ef0
MG
6838 if (need_resched())
6839 schedule();
6840 }
6841
80ced186
MG
6842out:
6843 return ret;
ea953ef0
MG
6844}
6845
b4a2d31d
RK
6846static int __grow_ple_window(int val)
6847{
6848 if (ple_window_grow < 1)
6849 return ple_window;
6850
6851 val = min(val, ple_window_actual_max);
6852
6853 if (ple_window_grow < ple_window)
6854 val *= ple_window_grow;
6855 else
6856 val += ple_window_grow;
6857
6858 return val;
6859}
6860
6861static int __shrink_ple_window(int val, int modifier, int minimum)
6862{
6863 if (modifier < 1)
6864 return ple_window;
6865
6866 if (modifier < ple_window)
6867 val /= modifier;
6868 else
6869 val -= modifier;
6870
6871 return max(val, minimum);
6872}
6873
6874static void grow_ple_window(struct kvm_vcpu *vcpu)
6875{
6876 struct vcpu_vmx *vmx = to_vmx(vcpu);
6877 int old = vmx->ple_window;
6878
6879 vmx->ple_window = __grow_ple_window(old);
6880
6881 if (vmx->ple_window != old)
6882 vmx->ple_window_dirty = true;
7b46268d
RK
6883
6884 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6885}
6886
6887static void shrink_ple_window(struct kvm_vcpu *vcpu)
6888{
6889 struct vcpu_vmx *vmx = to_vmx(vcpu);
6890 int old = vmx->ple_window;
6891
6892 vmx->ple_window = __shrink_ple_window(old,
6893 ple_window_shrink, ple_window);
6894
6895 if (vmx->ple_window != old)
6896 vmx->ple_window_dirty = true;
7b46268d
RK
6897
6898 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6899}
6900
6901/*
6902 * ple_window_actual_max is computed to be one grow_ple_window() below
6903 * ple_window_max. (See __grow_ple_window for the reason.)
6904 * This prevents overflows, because ple_window_max is int.
6905 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6906 * this process.
6907 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6908 */
6909static void update_ple_window_actual_max(void)
6910{
6911 ple_window_actual_max =
6912 __shrink_ple_window(max(ple_window_max, ple_window),
6913 ple_window_grow, INT_MIN);
6914}
6915
bf9f6ac8
FW
6916/*
6917 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6918 */
6919static void wakeup_handler(void)
6920{
6921 struct kvm_vcpu *vcpu;
6922 int cpu = smp_processor_id();
6923
6924 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6925 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6926 blocked_vcpu_list) {
6927 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6928
6929 if (pi_test_on(pi_desc) == 1)
6930 kvm_vcpu_kick(vcpu);
6931 }
6932 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6933}
6934
f160c7b7
JS
6935void vmx_enable_tdp(void)
6936{
6937 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6938 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6939 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6940 0ull, VMX_EPT_EXECUTABLE_MASK,
6941 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
d0ec49d4 6942 VMX_EPT_RWX_MASK, 0ull);
f160c7b7
JS
6943
6944 ept_set_mmio_spte_mask();
6945 kvm_enable_tdp();
6946}
6947
f2c7648d
TC
6948static __init int hardware_setup(void)
6949{
4b0be90f 6950 int r = -ENOMEM, i;
34a1cd60
TC
6951
6952 rdmsrl_safe(MSR_EFER, &host_efer);
6953
6954 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6955 kvm_define_shared_msr(i, vmx_msr_index[i]);
6956
23611332
RK
6957 for (i = 0; i < VMX_BITMAP_NR; i++) {
6958 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6959 if (!vmx_bitmap[i])
6960 goto out;
6961 }
34a1cd60 6962
34a1cd60
TC
6963 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6964 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6965
34a1cd60 6966 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
34a1cd60
TC
6967
6968 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6969
34a1cd60
TC
6970 if (setup_vmcs_config(&vmcs_config) < 0) {
6971 r = -EIO;
23611332 6972 goto out;
baa03522 6973 }
f2c7648d
TC
6974
6975 if (boot_cpu_has(X86_FEATURE_NX))
6976 kvm_enable_efer_bits(EFER_NX);
6977
08d839c4
WL
6978 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6979 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
f2c7648d 6980 enable_vpid = 0;
08d839c4 6981
f2c7648d
TC
6982 if (!cpu_has_vmx_shadow_vmcs())
6983 enable_shadow_vmcs = 0;
6984 if (enable_shadow_vmcs)
6985 init_vmcs_shadow_fields();
6986
6987 if (!cpu_has_vmx_ept() ||
42aa53b4 6988 !cpu_has_vmx_ept_4levels() ||
f5f51586 6989 !cpu_has_vmx_ept_mt_wb() ||
8ad8182e 6990 !cpu_has_vmx_invept_global())
f2c7648d 6991 enable_ept = 0;
f2c7648d 6992
fce6ac4c 6993 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
f2c7648d
TC
6994 enable_ept_ad_bits = 0;
6995
8ad8182e 6996 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
f2c7648d
TC
6997 enable_unrestricted_guest = 0;
6998
ad15a296 6999 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
7000 flexpriority_enabled = 0;
7001
d02fcf50
PB
7002 if (!cpu_has_virtual_nmis())
7003 enable_vnmi = 0;
7004
ad15a296
PB
7005 /*
7006 * set_apic_access_page_addr() is used to reload apic access
7007 * page upon invalidation. No need to do anything if not
7008 * using the APIC_ACCESS_ADDR VMCS field.
7009 */
7010 if (!flexpriority_enabled)
f2c7648d 7011 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
7012
7013 if (!cpu_has_vmx_tpr_shadow())
7014 kvm_x86_ops->update_cr8_intercept = NULL;
7015
7016 if (enable_ept && !cpu_has_vmx_ept_2m_page())
7017 kvm_disable_largepages();
7018
0f107682 7019 if (!cpu_has_vmx_ple()) {
f2c7648d 7020 ple_gap = 0;
0f107682
WL
7021 ple_window = 0;
7022 ple_window_grow = 0;
7023 ple_window_max = 0;
7024 ple_window_shrink = 0;
7025 }
f2c7648d 7026
76dfafd5 7027 if (!cpu_has_vmx_apicv()) {
f2c7648d 7028 enable_apicv = 0;
76dfafd5
PB
7029 kvm_x86_ops->sync_pir_to_irr = NULL;
7030 }
f2c7648d 7031
64903d61
HZ
7032 if (cpu_has_vmx_tsc_scaling()) {
7033 kvm_has_tsc_control = true;
7034 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7035 kvm_tsc_scaling_ratio_frac_bits = 48;
7036 }
7037
04bb92e4
WL
7038 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7039
f160c7b7
JS
7040 if (enable_ept)
7041 vmx_enable_tdp();
7042 else
baa03522
TC
7043 kvm_disable_tdp();
7044
7045 update_ple_window_actual_max();
7046
843e4330
KH
7047 /*
7048 * Only enable PML when hardware supports PML feature, and both EPT
7049 * and EPT A/D bit features are enabled -- PML depends on them to work.
7050 */
7051 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7052 enable_pml = 0;
7053
7054 if (!enable_pml) {
7055 kvm_x86_ops->slot_enable_log_dirty = NULL;
7056 kvm_x86_ops->slot_disable_log_dirty = NULL;
7057 kvm_x86_ops->flush_log_dirty = NULL;
7058 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7059 }
7060
64672c95
YJ
7061 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7062 u64 vmx_msr;
7063
7064 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7065 cpu_preemption_timer_multi =
7066 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7067 } else {
7068 kvm_x86_ops->set_hv_timer = NULL;
7069 kvm_x86_ops->cancel_hv_timer = NULL;
7070 }
7071
bf9f6ac8
FW
7072 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7073
c45dcc71
AR
7074 kvm_mce_cap_supported |= MCG_LMCE_P;
7075
f2c7648d 7076 return alloc_kvm_area();
34a1cd60 7077
34a1cd60 7078out:
23611332
RK
7079 for (i = 0; i < VMX_BITMAP_NR; i++)
7080 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
7081
7082 return r;
f2c7648d
TC
7083}
7084
7085static __exit void hardware_unsetup(void)
7086{
23611332
RK
7087 int i;
7088
7089 for (i = 0; i < VMX_BITMAP_NR; i++)
7090 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 7091
f2c7648d
TC
7092 free_kvm_area();
7093}
7094
4b8d54f9
ZE
7095/*
7096 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
7097 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
7098 */
9fb41ba8 7099static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 7100{
b4a2d31d
RK
7101 if (ple_gap)
7102 grow_ple_window(vcpu);
7103
de63ad4c
LM
7104 /*
7105 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
7106 * VM-execution control is ignored if CPL > 0. OTOH, KVM
7107 * never set PAUSE_EXITING and just set PLE if supported,
7108 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
7109 */
7110 kvm_vcpu_on_spin(vcpu, true);
6affcbed 7111 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
7112}
7113
87c00572 7114static int handle_nop(struct kvm_vcpu *vcpu)
59708670 7115{
6affcbed 7116 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
7117}
7118
87c00572
GS
7119static int handle_mwait(struct kvm_vcpu *vcpu)
7120{
7121 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
7122 return handle_nop(vcpu);
7123}
7124
45ec368c
JM
7125static int handle_invalid_op(struct kvm_vcpu *vcpu)
7126{
7127 kvm_queue_exception(vcpu, UD_VECTOR);
7128 return 1;
7129}
7130
5f3d45e7
MD
7131static int handle_monitor_trap(struct kvm_vcpu *vcpu)
7132{
7133 return 1;
7134}
7135
87c00572
GS
7136static int handle_monitor(struct kvm_vcpu *vcpu)
7137{
7138 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
7139 return handle_nop(vcpu);
7140}
7141
0658fbaa
ACL
7142/*
7143 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7144 * set the success or error code of an emulated VMX instruction, as specified
7145 * by Vol 2B, VMX Instruction Reference, "Conventions".
7146 */
7147static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7148{
7149 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7150 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7151 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7152}
7153
7154static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7155{
7156 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7157 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7158 X86_EFLAGS_SF | X86_EFLAGS_OF))
7159 | X86_EFLAGS_CF);
7160}
7161
145c28dd 7162static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
7163 u32 vm_instruction_error)
7164{
7165 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7166 /*
7167 * failValid writes the error number to the current VMCS, which
7168 * can't be done there isn't a current VMCS.
7169 */
7170 nested_vmx_failInvalid(vcpu);
7171 return;
7172 }
7173 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7174 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7175 X86_EFLAGS_SF | X86_EFLAGS_OF))
7176 | X86_EFLAGS_ZF);
7177 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7178 /*
7179 * We don't need to force a shadow sync because
7180 * VM_INSTRUCTION_ERROR is not shadowed
7181 */
7182}
145c28dd 7183
ff651cb6
WV
7184static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7185{
7186 /* TODO: not to reset guest simply here. */
7187 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 7188 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
7189}
7190
f4124500
JK
7191static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7192{
7193 struct vcpu_vmx *vmx =
7194 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7195
7196 vmx->nested.preemption_timer_expired = true;
7197 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7198 kvm_vcpu_kick(&vmx->vcpu);
7199
7200 return HRTIMER_NORESTART;
7201}
7202
19677e32
BD
7203/*
7204 * Decode the memory-address operand of a vmx instruction, as recorded on an
7205 * exit caused by such an instruction (run by a guest hypervisor).
7206 * On success, returns 0. When the operand is invalid, returns 1 and throws
7207 * #UD or #GP.
7208 */
7209static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7210 unsigned long exit_qualification,
f9eb4af6 7211 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 7212{
f9eb4af6
EK
7213 gva_t off;
7214 bool exn;
7215 struct kvm_segment s;
7216
19677e32
BD
7217 /*
7218 * According to Vol. 3B, "Information for VM Exits Due to Instruction
7219 * Execution", on an exit, vmx_instruction_info holds most of the
7220 * addressing components of the operand. Only the displacement part
7221 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7222 * For how an actual address is calculated from all these components,
7223 * refer to Vol. 1, "Operand Addressing".
7224 */
7225 int scaling = vmx_instruction_info & 3;
7226 int addr_size = (vmx_instruction_info >> 7) & 7;
7227 bool is_reg = vmx_instruction_info & (1u << 10);
7228 int seg_reg = (vmx_instruction_info >> 15) & 7;
7229 int index_reg = (vmx_instruction_info >> 18) & 0xf;
7230 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7231 int base_reg = (vmx_instruction_info >> 23) & 0xf;
7232 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
7233
7234 if (is_reg) {
7235 kvm_queue_exception(vcpu, UD_VECTOR);
7236 return 1;
7237 }
7238
7239 /* Addr = segment_base + offset */
7240 /* offset = base + [index * scale] + displacement */
f9eb4af6 7241 off = exit_qualification; /* holds the displacement */
19677e32 7242 if (base_is_valid)
f9eb4af6 7243 off += kvm_register_read(vcpu, base_reg);
19677e32 7244 if (index_is_valid)
f9eb4af6
EK
7245 off += kvm_register_read(vcpu, index_reg)<<scaling;
7246 vmx_get_segment(vcpu, &s, seg_reg);
7247 *ret = s.base + off;
19677e32
BD
7248
7249 if (addr_size == 1) /* 32 bit */
7250 *ret &= 0xffffffff;
7251
f9eb4af6
EK
7252 /* Checks for #GP/#SS exceptions. */
7253 exn = false;
ff30ef40
QC
7254 if (is_long_mode(vcpu)) {
7255 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7256 * non-canonical form. This is the only check on the memory
7257 * destination for long mode!
7258 */
fd8cb433 7259 exn = is_noncanonical_address(*ret, vcpu);
ff30ef40 7260 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
7261 /* Protected mode: apply checks for segment validity in the
7262 * following order:
7263 * - segment type check (#GP(0) may be thrown)
7264 * - usability check (#GP(0)/#SS(0))
7265 * - limit check (#GP(0)/#SS(0))
7266 */
7267 if (wr)
7268 /* #GP(0) if the destination operand is located in a
7269 * read-only data segment or any code segment.
7270 */
7271 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7272 else
7273 /* #GP(0) if the source operand is located in an
7274 * execute-only code segment
7275 */
7276 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
7277 if (exn) {
7278 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7279 return 1;
7280 }
f9eb4af6
EK
7281 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7282 */
7283 exn = (s.unusable != 0);
7284 /* Protected mode: #GP(0)/#SS(0) if the memory
7285 * operand is outside the segment limit.
7286 */
7287 exn = exn || (off + sizeof(u64) > s.limit);
7288 }
7289 if (exn) {
7290 kvm_queue_exception_e(vcpu,
7291 seg_reg == VCPU_SREG_SS ?
7292 SS_VECTOR : GP_VECTOR,
7293 0);
7294 return 1;
7295 }
7296
19677e32
BD
7297 return 0;
7298}
7299
cbf71279 7300static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
3573e22c
BD
7301{
7302 gva_t gva;
3573e22c 7303 struct x86_exception e;
3573e22c
BD
7304
7305 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7306 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
7307 return 1;
7308
cbf71279
RK
7309 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7310 sizeof(*vmpointer), &e)) {
3573e22c
BD
7311 kvm_inject_page_fault(vcpu, &e);
7312 return 1;
7313 }
7314
3573e22c
BD
7315 return 0;
7316}
7317
e29acc55
JM
7318static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7319{
7320 struct vcpu_vmx *vmx = to_vmx(vcpu);
7321 struct vmcs *shadow_vmcs;
b6d7026d 7322 int r;
e29acc55 7323
b6d7026d
PB
7324 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
7325 if (r < 0)
8819227c 7326 goto out_vmcs02;
8819227c 7327
e29acc55
JM
7328 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7329 if (!vmx->nested.cached_vmcs12)
7330 goto out_cached_vmcs12;
7331
7332 if (enable_shadow_vmcs) {
7333 shadow_vmcs = alloc_vmcs();
7334 if (!shadow_vmcs)
7335 goto out_shadow_vmcs;
7336 /* mark vmcs as shadow */
7337 shadow_vmcs->revision_id |= (1u << 31);
7338 /* init shadow vmcs */
7339 vmcs_clear(shadow_vmcs);
7340 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7341 }
7342
e29acc55
JM
7343 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7344 HRTIMER_MODE_REL_PINNED);
7345 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7346
7347 vmx->nested.vmxon = true;
7348 return 0;
7349
7350out_shadow_vmcs:
7351 kfree(vmx->nested.cached_vmcs12);
7352
7353out_cached_vmcs12:
8819227c
JM
7354 free_loaded_vmcs(&vmx->nested.vmcs02);
7355
7356out_vmcs02:
e29acc55
JM
7357 return -ENOMEM;
7358}
7359
ec378aee
NHE
7360/*
7361 * Emulate the VMXON instruction.
7362 * Currently, we just remember that VMX is active, and do not save or even
7363 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7364 * do not currently need to store anything in that guest-allocated memory
7365 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7366 * argument is different from the VMXON pointer (which the spec says they do).
7367 */
7368static int handle_vmon(struct kvm_vcpu *vcpu)
7369{
e29acc55 7370 int ret;
cbf71279
RK
7371 gpa_t vmptr;
7372 struct page *page;
ec378aee 7373 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
7374 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7375 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee 7376
70f3aac9
JM
7377 /*
7378 * The Intel VMX Instruction Reference lists a bunch of bits that are
7379 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7380 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7381 * Otherwise, we should fail with #UD. But most faulting conditions
7382 * have already been checked by hardware, prior to the VM-exit for
7383 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7384 * that bit set to 1 in non-root mode.
ec378aee 7385 */
70f3aac9 7386 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
ec378aee
NHE
7387 kvm_queue_exception(vcpu, UD_VECTOR);
7388 return 1;
7389 }
7390
145c28dd
AG
7391 if (vmx->nested.vmxon) {
7392 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7393 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7394 }
b3897a49 7395
3b84080b 7396 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7397 != VMXON_NEEDED_FEATURES) {
7398 kvm_inject_gp(vcpu, 0);
7399 return 1;
7400 }
7401
cbf71279 7402 if (nested_vmx_get_vmptr(vcpu, &vmptr))
21e7fbe7 7403 return 1;
cbf71279
RK
7404
7405 /*
7406 * SDM 3: 24.11.5
7407 * The first 4 bytes of VMXON region contain the supported
7408 * VMCS revision identifier
7409 *
7410 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7411 * which replaces physical address width with 32
7412 */
7413 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7414 nested_vmx_failInvalid(vcpu);
7415 return kvm_skip_emulated_instruction(vcpu);
7416 }
7417
5e2f30b7
DH
7418 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7419 if (is_error_page(page)) {
cbf71279
RK
7420 nested_vmx_failInvalid(vcpu);
7421 return kvm_skip_emulated_instruction(vcpu);
7422 }
7423 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7424 kunmap(page);
53a70daf 7425 kvm_release_page_clean(page);
cbf71279
RK
7426 nested_vmx_failInvalid(vcpu);
7427 return kvm_skip_emulated_instruction(vcpu);
7428 }
7429 kunmap(page);
53a70daf 7430 kvm_release_page_clean(page);
cbf71279
RK
7431
7432 vmx->nested.vmxon_ptr = vmptr;
e29acc55
JM
7433 ret = enter_vmx_operation(vcpu);
7434 if (ret)
7435 return ret;
ec378aee 7436
a25eb114 7437 nested_vmx_succeed(vcpu);
6affcbed 7438 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7439}
7440
7441/*
7442 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7443 * for running VMX instructions (except VMXON, whose prerequisites are
7444 * slightly different). It also specifies what exception to inject otherwise.
70f3aac9
JM
7445 * Note that many of these exceptions have priority over VM exits, so they
7446 * don't have to be checked again here.
ec378aee
NHE
7447 */
7448static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7449{
70f3aac9 7450 if (!to_vmx(vcpu)->nested.vmxon) {
ec378aee
NHE
7451 kvm_queue_exception(vcpu, UD_VECTOR);
7452 return 0;
7453 }
ec378aee
NHE
7454 return 1;
7455}
7456
8ca44e88
DM
7457static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7458{
7459 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7460 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7461}
7462
e7953d7f
AG
7463static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7464{
9a2a05b9
PB
7465 if (vmx->nested.current_vmptr == -1ull)
7466 return;
7467
012f83cb 7468 if (enable_shadow_vmcs) {
9a2a05b9
PB
7469 /* copy to memory all shadowed fields in case
7470 they were modified */
7471 copy_shadow_to_vmcs12(vmx);
7472 vmx->nested.sync_shadow_vmcs = false;
8ca44e88 7473 vmx_disable_shadow_vmcs(vmx);
012f83cb 7474 }
705699a1 7475 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7476
7477 /* Flush VMCS12 to guest memory */
9f744c59
PB
7478 kvm_vcpu_write_guest_page(&vmx->vcpu,
7479 vmx->nested.current_vmptr >> PAGE_SHIFT,
7480 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4f2777bc 7481
9a2a05b9 7482 vmx->nested.current_vmptr = -1ull;
e7953d7f
AG
7483}
7484
ec378aee
NHE
7485/*
7486 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7487 * just stops using VMX.
7488 */
7489static void free_nested(struct vcpu_vmx *vmx)
7490{
b7455825 7491 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
ec378aee 7492 return;
9a2a05b9 7493
ec378aee 7494 vmx->nested.vmxon = false;
b7455825 7495 vmx->nested.smm.vmxon = false;
5c614b35 7496 free_vpid(vmx->nested.vpid02);
8ca44e88
DM
7497 vmx->nested.posted_intr_nv = -1;
7498 vmx->nested.current_vmptr = -1ull;
355f4fb1 7499 if (enable_shadow_vmcs) {
8ca44e88 7500 vmx_disable_shadow_vmcs(vmx);
355f4fb1
JM
7501 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7502 free_vmcs(vmx->vmcs01.shadow_vmcs);
7503 vmx->vmcs01.shadow_vmcs = NULL;
7504 }
4f2777bc 7505 kfree(vmx->nested.cached_vmcs12);
8819227c 7506 /* Unpin physical memory we referred to in the vmcs02 */
fe3ef05c 7507 if (vmx->nested.apic_access_page) {
53a70daf 7508 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 7509 vmx->nested.apic_access_page = NULL;
fe3ef05c 7510 }
a7c0b07d 7511 if (vmx->nested.virtual_apic_page) {
53a70daf 7512 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 7513 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7514 }
705699a1
WV
7515 if (vmx->nested.pi_desc_page) {
7516 kunmap(vmx->nested.pi_desc_page);
53a70daf 7517 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
7518 vmx->nested.pi_desc_page = NULL;
7519 vmx->nested.pi_desc = NULL;
7520 }
ff2f6fe9 7521
8819227c 7522 free_loaded_vmcs(&vmx->nested.vmcs02);
ec378aee
NHE
7523}
7524
7525/* Emulate the VMXOFF instruction */
7526static int handle_vmoff(struct kvm_vcpu *vcpu)
7527{
7528 if (!nested_vmx_check_permission(vcpu))
7529 return 1;
7530 free_nested(to_vmx(vcpu));
a25eb114 7531 nested_vmx_succeed(vcpu);
6affcbed 7532 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7533}
7534
27d6c865
NHE
7535/* Emulate the VMCLEAR instruction */
7536static int handle_vmclear(struct kvm_vcpu *vcpu)
7537{
7538 struct vcpu_vmx *vmx = to_vmx(vcpu);
587d7e72 7539 u32 zero = 0;
27d6c865 7540 gpa_t vmptr;
27d6c865
NHE
7541
7542 if (!nested_vmx_check_permission(vcpu))
7543 return 1;
7544
cbf71279 7545 if (nested_vmx_get_vmptr(vcpu, &vmptr))
27d6c865 7546 return 1;
27d6c865 7547
cbf71279
RK
7548 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7549 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7550 return kvm_skip_emulated_instruction(vcpu);
7551 }
7552
7553 if (vmptr == vmx->nested.vmxon_ptr) {
7554 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7555 return kvm_skip_emulated_instruction(vcpu);
7556 }
7557
9a2a05b9 7558 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7559 nested_release_vmcs12(vmx);
27d6c865 7560
587d7e72
JM
7561 kvm_vcpu_write_guest(vcpu,
7562 vmptr + offsetof(struct vmcs12, launch_state),
7563 &zero, sizeof(zero));
27d6c865 7564
27d6c865 7565 nested_vmx_succeed(vcpu);
6affcbed 7566 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7567}
7568
cd232ad0
NHE
7569static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7570
7571/* Emulate the VMLAUNCH instruction */
7572static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7573{
7574 return nested_vmx_run(vcpu, true);
7575}
7576
7577/* Emulate the VMRESUME instruction */
7578static int handle_vmresume(struct kvm_vcpu *vcpu)
7579{
7580
7581 return nested_vmx_run(vcpu, false);
7582}
7583
49f705c5
NHE
7584/*
7585 * Read a vmcs12 field. Since these can have varying lengths and we return
7586 * one type, we chose the biggest type (u64) and zero-extend the return value
7587 * to that size. Note that the caller, handle_vmread, might need to use only
7588 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7589 * 64-bit fields are to be returned).
7590 */
a2ae9df7
PB
7591static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7592 unsigned long field, u64 *ret)
49f705c5
NHE
7593{
7594 short offset = vmcs_field_to_offset(field);
7595 char *p;
7596
7597 if (offset < 0)
a2ae9df7 7598 return offset;
49f705c5
NHE
7599
7600 p = ((char *)(get_vmcs12(vcpu))) + offset;
7601
7602 switch (vmcs_field_type(field)) {
7603 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7604 *ret = *((natural_width *)p);
a2ae9df7 7605 return 0;
49f705c5
NHE
7606 case VMCS_FIELD_TYPE_U16:
7607 *ret = *((u16 *)p);
a2ae9df7 7608 return 0;
49f705c5
NHE
7609 case VMCS_FIELD_TYPE_U32:
7610 *ret = *((u32 *)p);
a2ae9df7 7611 return 0;
49f705c5
NHE
7612 case VMCS_FIELD_TYPE_U64:
7613 *ret = *((u64 *)p);
a2ae9df7 7614 return 0;
49f705c5 7615 default:
a2ae9df7
PB
7616 WARN_ON(1);
7617 return -ENOENT;
49f705c5
NHE
7618 }
7619}
7620
20b97fea 7621
a2ae9df7
PB
7622static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7623 unsigned long field, u64 field_value){
20b97fea
AG
7624 short offset = vmcs_field_to_offset(field);
7625 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7626 if (offset < 0)
a2ae9df7 7627 return offset;
20b97fea
AG
7628
7629 switch (vmcs_field_type(field)) {
7630 case VMCS_FIELD_TYPE_U16:
7631 *(u16 *)p = field_value;
a2ae9df7 7632 return 0;
20b97fea
AG
7633 case VMCS_FIELD_TYPE_U32:
7634 *(u32 *)p = field_value;
a2ae9df7 7635 return 0;
20b97fea
AG
7636 case VMCS_FIELD_TYPE_U64:
7637 *(u64 *)p = field_value;
a2ae9df7 7638 return 0;
20b97fea
AG
7639 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7640 *(natural_width *)p = field_value;
a2ae9df7 7641 return 0;
20b97fea 7642 default:
a2ae9df7
PB
7643 WARN_ON(1);
7644 return -ENOENT;
20b97fea
AG
7645 }
7646
7647}
7648
16f5b903
AG
7649static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7650{
7651 int i;
7652 unsigned long field;
7653 u64 field_value;
355f4fb1 7654 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c2bae893
MK
7655 const unsigned long *fields = shadow_read_write_fields;
7656 const int num_fields = max_shadow_read_write_fields;
16f5b903 7657
282da870
JK
7658 preempt_disable();
7659
16f5b903
AG
7660 vmcs_load(shadow_vmcs);
7661
7662 for (i = 0; i < num_fields; i++) {
7663 field = fields[i];
7664 switch (vmcs_field_type(field)) {
7665 case VMCS_FIELD_TYPE_U16:
7666 field_value = vmcs_read16(field);
7667 break;
7668 case VMCS_FIELD_TYPE_U32:
7669 field_value = vmcs_read32(field);
7670 break;
7671 case VMCS_FIELD_TYPE_U64:
7672 field_value = vmcs_read64(field);
7673 break;
7674 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7675 field_value = vmcs_readl(field);
7676 break;
a2ae9df7
PB
7677 default:
7678 WARN_ON(1);
7679 continue;
16f5b903
AG
7680 }
7681 vmcs12_write_any(&vmx->vcpu, field, field_value);
7682 }
7683
7684 vmcs_clear(shadow_vmcs);
7685 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7686
7687 preempt_enable();
16f5b903
AG
7688}
7689
c3114420
AG
7690static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7691{
c2bae893
MK
7692 const unsigned long *fields[] = {
7693 shadow_read_write_fields,
7694 shadow_read_only_fields
c3114420 7695 };
c2bae893 7696 const int max_fields[] = {
c3114420
AG
7697 max_shadow_read_write_fields,
7698 max_shadow_read_only_fields
7699 };
7700 int i, q;
7701 unsigned long field;
7702 u64 field_value = 0;
355f4fb1 7703 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7704
7705 vmcs_load(shadow_vmcs);
7706
c2bae893 7707 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7708 for (i = 0; i < max_fields[q]; i++) {
7709 field = fields[q][i];
7710 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7711
7712 switch (vmcs_field_type(field)) {
7713 case VMCS_FIELD_TYPE_U16:
7714 vmcs_write16(field, (u16)field_value);
7715 break;
7716 case VMCS_FIELD_TYPE_U32:
7717 vmcs_write32(field, (u32)field_value);
7718 break;
7719 case VMCS_FIELD_TYPE_U64:
7720 vmcs_write64(field, (u64)field_value);
7721 break;
7722 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7723 vmcs_writel(field, (long)field_value);
7724 break;
a2ae9df7
PB
7725 default:
7726 WARN_ON(1);
7727 break;
c3114420
AG
7728 }
7729 }
7730 }
7731
7732 vmcs_clear(shadow_vmcs);
7733 vmcs_load(vmx->loaded_vmcs->vmcs);
7734}
7735
49f705c5
NHE
7736/*
7737 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7738 * used before) all generate the same failure when it is missing.
7739 */
7740static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7741{
7742 struct vcpu_vmx *vmx = to_vmx(vcpu);
7743 if (vmx->nested.current_vmptr == -1ull) {
7744 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7745 return 0;
7746 }
7747 return 1;
7748}
7749
7750static int handle_vmread(struct kvm_vcpu *vcpu)
7751{
7752 unsigned long field;
7753 u64 field_value;
7754 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7755 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7756 gva_t gva = 0;
7757
eb277562 7758 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7759 return 1;
7760
6affcbed
KH
7761 if (!nested_vmx_check_vmcs12(vcpu))
7762 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7763
7764 /* Decode instruction info and find the field to read */
27e6fb5d 7765 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7766 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7767 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 7768 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7769 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7770 }
7771 /*
7772 * Now copy part of this value to register or memory, as requested.
7773 * Note that the number of bits actually copied is 32 or 64 depending
7774 * on the guest's mode (32 or 64 bit), not on the given field's length.
7775 */
7776 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7777 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7778 field_value);
7779 } else {
7780 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7781 vmx_instruction_info, true, &gva))
49f705c5 7782 return 1;
70f3aac9 7783 /* _system ok, as hardware has verified cpl=0 */
49f705c5
NHE
7784 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7785 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7786 }
7787
7788 nested_vmx_succeed(vcpu);
6affcbed 7789 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7790}
7791
7792
7793static int handle_vmwrite(struct kvm_vcpu *vcpu)
7794{
7795 unsigned long field;
7796 gva_t gva;
7797 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7798 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7799 /* The value to write might be 32 or 64 bits, depending on L1's long
7800 * mode, and eventually we need to write that into a field of several
7801 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7802 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7803 * bits into the vmcs12 field.
7804 */
7805 u64 field_value = 0;
7806 struct x86_exception e;
7807
eb277562 7808 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7809 return 1;
7810
6affcbed
KH
7811 if (!nested_vmx_check_vmcs12(vcpu))
7812 return kvm_skip_emulated_instruction(vcpu);
eb277562 7813
49f705c5 7814 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7815 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7816 (((vmx_instruction_info) >> 3) & 0xf));
7817 else {
7818 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7819 vmx_instruction_info, false, &gva))
49f705c5
NHE
7820 return 1;
7821 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7822 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7823 kvm_inject_page_fault(vcpu, &e);
7824 return 1;
7825 }
7826 }
7827
7828
27e6fb5d 7829 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7830 if (vmcs_field_readonly(field)) {
7831 nested_vmx_failValid(vcpu,
7832 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 7833 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7834 }
7835
a2ae9df7 7836 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 7837 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7838 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7839 }
7840
7841 nested_vmx_succeed(vcpu);
6affcbed 7842 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7843}
7844
a8bc284e
JM
7845static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7846{
7847 vmx->nested.current_vmptr = vmptr;
7848 if (enable_shadow_vmcs) {
7849 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7850 SECONDARY_EXEC_SHADOW_VMCS);
7851 vmcs_write64(VMCS_LINK_POINTER,
7852 __pa(vmx->vmcs01.shadow_vmcs));
7853 vmx->nested.sync_shadow_vmcs = true;
7854 }
7855}
7856
63846663
NHE
7857/* Emulate the VMPTRLD instruction */
7858static int handle_vmptrld(struct kvm_vcpu *vcpu)
7859{
7860 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7861 gpa_t vmptr;
63846663
NHE
7862
7863 if (!nested_vmx_check_permission(vcpu))
7864 return 1;
7865
cbf71279 7866 if (nested_vmx_get_vmptr(vcpu, &vmptr))
63846663 7867 return 1;
63846663 7868
cbf71279
RK
7869 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7870 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7871 return kvm_skip_emulated_instruction(vcpu);
7872 }
7873
7874 if (vmptr == vmx->nested.vmxon_ptr) {
7875 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7876 return kvm_skip_emulated_instruction(vcpu);
7877 }
7878
63846663
NHE
7879 if (vmx->nested.current_vmptr != vmptr) {
7880 struct vmcs12 *new_vmcs12;
7881 struct page *page;
5e2f30b7
DH
7882 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7883 if (is_error_page(page)) {
63846663 7884 nested_vmx_failInvalid(vcpu);
6affcbed 7885 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7886 }
7887 new_vmcs12 = kmap(page);
7888 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7889 kunmap(page);
53a70daf 7890 kvm_release_page_clean(page);
63846663
NHE
7891 nested_vmx_failValid(vcpu,
7892 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 7893 return kvm_skip_emulated_instruction(vcpu);
63846663 7894 }
63846663 7895
9a2a05b9 7896 nested_release_vmcs12(vmx);
4f2777bc
DM
7897 /*
7898 * Load VMCS12 from guest memory since it is not already
7899 * cached.
7900 */
9f744c59
PB
7901 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7902 kunmap(page);
53a70daf 7903 kvm_release_page_clean(page);
9f744c59 7904
a8bc284e 7905 set_current_vmptr(vmx, vmptr);
63846663
NHE
7906 }
7907
7908 nested_vmx_succeed(vcpu);
6affcbed 7909 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7910}
7911
6a4d7550
NHE
7912/* Emulate the VMPTRST instruction */
7913static int handle_vmptrst(struct kvm_vcpu *vcpu)
7914{
7915 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7916 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7917 gva_t vmcs_gva;
7918 struct x86_exception e;
7919
7920 if (!nested_vmx_check_permission(vcpu))
7921 return 1;
7922
7923 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7924 vmx_instruction_info, true, &vmcs_gva))
6a4d7550 7925 return 1;
70f3aac9 7926 /* ok to use *_system, as hardware has verified cpl=0 */
6a4d7550
NHE
7927 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7928 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7929 sizeof(u64), &e)) {
7930 kvm_inject_page_fault(vcpu, &e);
7931 return 1;
7932 }
7933 nested_vmx_succeed(vcpu);
6affcbed 7934 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
7935}
7936
bfd0a56b
NHE
7937/* Emulate the INVEPT instruction */
7938static int handle_invept(struct kvm_vcpu *vcpu)
7939{
b9c237bb 7940 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7941 u32 vmx_instruction_info, types;
7942 unsigned long type;
7943 gva_t gva;
7944 struct x86_exception e;
7945 struct {
7946 u64 eptp, gpa;
7947 } operand;
bfd0a56b 7948
b9c237bb
WV
7949 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7950 SECONDARY_EXEC_ENABLE_EPT) ||
7951 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7952 kvm_queue_exception(vcpu, UD_VECTOR);
7953 return 1;
7954 }
7955
7956 if (!nested_vmx_check_permission(vcpu))
7957 return 1;
7958
bfd0a56b 7959 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7960 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7961
b9c237bb 7962 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 7963
85c856b3 7964 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
7965 nested_vmx_failValid(vcpu,
7966 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7967 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7968 }
7969
7970 /* According to the Intel VMX instruction reference, the memory
7971 * operand is read even if it isn't needed (e.g., for type==global)
7972 */
7973 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7974 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7975 return 1;
7976 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7977 sizeof(operand), &e)) {
7978 kvm_inject_page_fault(vcpu, &e);
7979 return 1;
7980 }
7981
7982 switch (type) {
bfd0a56b 7983 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7984 /*
7985 * TODO: track mappings and invalidate
7986 * single context requests appropriately
7987 */
7988 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7989 kvm_mmu_sync_roots(vcpu);
77c3913b 7990 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7991 nested_vmx_succeed(vcpu);
7992 break;
7993 default:
7994 BUG_ON(1);
7995 break;
7996 }
7997
6affcbed 7998 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7999}
8000
a642fc30
PM
8001static int handle_invvpid(struct kvm_vcpu *vcpu)
8002{
99b83ac8
WL
8003 struct vcpu_vmx *vmx = to_vmx(vcpu);
8004 u32 vmx_instruction_info;
8005 unsigned long type, types;
8006 gva_t gva;
8007 struct x86_exception e;
40352605
JM
8008 struct {
8009 u64 vpid;
8010 u64 gla;
8011 } operand;
99b83ac8
WL
8012
8013 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
8014 SECONDARY_EXEC_ENABLE_VPID) ||
8015 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
8016 kvm_queue_exception(vcpu, UD_VECTOR);
8017 return 1;
8018 }
8019
8020 if (!nested_vmx_check_permission(vcpu))
8021 return 1;
8022
8023 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8024 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
8025
bcdde302
JD
8026 types = (vmx->nested.nested_vmx_vpid_caps &
8027 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 8028
85c856b3 8029 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
8030 nested_vmx_failValid(vcpu,
8031 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 8032 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
8033 }
8034
8035 /* according to the intel vmx instruction reference, the memory
8036 * operand is read even if it isn't needed (e.g., for type==global)
8037 */
8038 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
8039 vmx_instruction_info, false, &gva))
8040 return 1;
40352605
JM
8041 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
8042 sizeof(operand), &e)) {
99b83ac8
WL
8043 kvm_inject_page_fault(vcpu, &e);
8044 return 1;
8045 }
40352605
JM
8046 if (operand.vpid >> 16) {
8047 nested_vmx_failValid(vcpu,
8048 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8049 return kvm_skip_emulated_instruction(vcpu);
8050 }
99b83ac8
WL
8051
8052 switch (type) {
bcdde302 8053 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
fd8cb433 8054 if (is_noncanonical_address(operand.gla, vcpu)) {
40352605
JM
8055 nested_vmx_failValid(vcpu,
8056 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8057 return kvm_skip_emulated_instruction(vcpu);
8058 }
8059 /* fall through */
ef697a71 8060 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302 8061 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
40352605 8062 if (!operand.vpid) {
bcdde302
JD
8063 nested_vmx_failValid(vcpu,
8064 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 8065 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
8066 }
8067 break;
99b83ac8 8068 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
8069 break;
8070 default:
bcdde302 8071 WARN_ON_ONCE(1);
6affcbed 8072 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
8073 }
8074
bcdde302
JD
8075 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
8076 nested_vmx_succeed(vcpu);
8077
6affcbed 8078 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
8079}
8080
843e4330
KH
8081static int handle_pml_full(struct kvm_vcpu *vcpu)
8082{
8083 unsigned long exit_qualification;
8084
8085 trace_kvm_pml_full(vcpu->vcpu_id);
8086
8087 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8088
8089 /*
8090 * PML buffer FULL happened while executing iret from NMI,
8091 * "blocked by NMI" bit has to be set before next VM entry.
8092 */
8093 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
d02fcf50 8094 enable_vnmi &&
843e4330
KH
8095 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
8096 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8097 GUEST_INTR_STATE_NMI);
8098
8099 /*
8100 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
8101 * here.., and there's no userspace involvement needed for PML.
8102 */
8103 return 1;
8104}
8105
64672c95
YJ
8106static int handle_preemption_timer(struct kvm_vcpu *vcpu)
8107{
8108 kvm_lapic_expired_hv_timer(vcpu);
8109 return 1;
8110}
8111
41ab9372
BD
8112static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8113{
8114 struct vcpu_vmx *vmx = to_vmx(vcpu);
41ab9372
BD
8115 int maxphyaddr = cpuid_maxphyaddr(vcpu);
8116
8117 /* Check for memory type validity */
bb97a016
DH
8118 switch (address & VMX_EPTP_MT_MASK) {
8119 case VMX_EPTP_MT_UC:
41ab9372
BD
8120 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8121 return false;
8122 break;
bb97a016 8123 case VMX_EPTP_MT_WB:
41ab9372
BD
8124 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8125 return false;
8126 break;
8127 default:
8128 return false;
8129 }
8130
bb97a016
DH
8131 /* only 4 levels page-walk length are valid */
8132 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
41ab9372
BD
8133 return false;
8134
8135 /* Reserved bits should not be set */
8136 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8137 return false;
8138
8139 /* AD, if set, should be supported */
bb97a016 8140 if (address & VMX_EPTP_AD_ENABLE_BIT) {
41ab9372
BD
8141 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8142 return false;
8143 }
8144
8145 return true;
8146}
8147
8148static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8149 struct vmcs12 *vmcs12)
8150{
8151 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8152 u64 address;
8153 bool accessed_dirty;
8154 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8155
8156 if (!nested_cpu_has_eptp_switching(vmcs12) ||
8157 !nested_cpu_has_ept(vmcs12))
8158 return 1;
8159
8160 if (index >= VMFUNC_EPTP_ENTRIES)
8161 return 1;
8162
8163
8164 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8165 &address, index * 8, 8))
8166 return 1;
8167
bb97a016 8168 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
41ab9372
BD
8169
8170 /*
8171 * If the (L2) guest does a vmfunc to the currently
8172 * active ept pointer, we don't have to do anything else
8173 */
8174 if (vmcs12->ept_pointer != address) {
8175 if (!valid_ept_address(vcpu, address))
8176 return 1;
8177
8178 kvm_mmu_unload(vcpu);
8179 mmu->ept_ad = accessed_dirty;
8180 mmu->base_role.ad_disabled = !accessed_dirty;
8181 vmcs12->ept_pointer = address;
8182 /*
8183 * TODO: Check what's the correct approach in case
8184 * mmu reload fails. Currently, we just let the next
8185 * reload potentially fail
8186 */
8187 kvm_mmu_reload(vcpu);
8188 }
8189
8190 return 0;
8191}
8192
2a499e49
BD
8193static int handle_vmfunc(struct kvm_vcpu *vcpu)
8194{
27c42a1b
BD
8195 struct vcpu_vmx *vmx = to_vmx(vcpu);
8196 struct vmcs12 *vmcs12;
8197 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8198
8199 /*
8200 * VMFUNC is only supported for nested guests, but we always enable the
8201 * secondary control for simplicity; for non-nested mode, fake that we
8202 * didn't by injecting #UD.
8203 */
8204 if (!is_guest_mode(vcpu)) {
8205 kvm_queue_exception(vcpu, UD_VECTOR);
8206 return 1;
8207 }
8208
8209 vmcs12 = get_vmcs12(vcpu);
8210 if ((vmcs12->vm_function_control & (1 << function)) == 0)
8211 goto fail;
41ab9372
BD
8212
8213 switch (function) {
8214 case 0:
8215 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8216 goto fail;
8217 break;
8218 default:
8219 goto fail;
8220 }
8221 return kvm_skip_emulated_instruction(vcpu);
27c42a1b
BD
8222
8223fail:
8224 nested_vmx_vmexit(vcpu, vmx->exit_reason,
8225 vmcs_read32(VM_EXIT_INTR_INFO),
8226 vmcs_readl(EXIT_QUALIFICATION));
2a499e49
BD
8227 return 1;
8228}
8229
6aa8b732
AK
8230/*
8231 * The exit handlers return 1 if the exit was handled fully and guest execution
8232 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8233 * to be done to userspace and return 0.
8234 */
772e0318 8235static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
8236 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8237 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 8238 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 8239 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 8240 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
8241 [EXIT_REASON_CR_ACCESS] = handle_cr,
8242 [EXIT_REASON_DR_ACCESS] = handle_dr,
8243 [EXIT_REASON_CPUID] = handle_cpuid,
8244 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8245 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8246 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8247 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 8248 [EXIT_REASON_INVD] = handle_invd,
a7052897 8249 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 8250 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 8251 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 8252 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 8253 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 8254 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 8255 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 8256 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 8257 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 8258 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
8259 [EXIT_REASON_VMOFF] = handle_vmoff,
8260 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
8261 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8262 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 8263 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 8264 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 8265 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 8266 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 8267 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 8268 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
8269 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8270 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 8271 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 8272 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 8273 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 8274 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 8275 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 8276 [EXIT_REASON_INVVPID] = handle_invvpid,
45ec368c 8277 [EXIT_REASON_RDRAND] = handle_invalid_op,
75f4fc8d 8278 [EXIT_REASON_RDSEED] = handle_invalid_op,
f53cd63c
WL
8279 [EXIT_REASON_XSAVES] = handle_xsaves,
8280 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 8281 [EXIT_REASON_PML_FULL] = handle_pml_full,
2a499e49 8282 [EXIT_REASON_VMFUNC] = handle_vmfunc,
64672c95 8283 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
8284};
8285
8286static const int kvm_vmx_max_exit_handlers =
50a3485c 8287 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 8288
908a7bdd
JK
8289static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8290 struct vmcs12 *vmcs12)
8291{
8292 unsigned long exit_qualification;
8293 gpa_t bitmap, last_bitmap;
8294 unsigned int port;
8295 int size;
8296 u8 b;
8297
908a7bdd 8298 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 8299 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
8300
8301 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8302
8303 port = exit_qualification >> 16;
8304 size = (exit_qualification & 7) + 1;
8305
8306 last_bitmap = (gpa_t)-1;
8307 b = -1;
8308
8309 while (size > 0) {
8310 if (port < 0x8000)
8311 bitmap = vmcs12->io_bitmap_a;
8312 else if (port < 0x10000)
8313 bitmap = vmcs12->io_bitmap_b;
8314 else
1d804d07 8315 return true;
908a7bdd
JK
8316 bitmap += (port & 0x7fff) / 8;
8317
8318 if (last_bitmap != bitmap)
54bf36aa 8319 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 8320 return true;
908a7bdd 8321 if (b & (1 << (port & 7)))
1d804d07 8322 return true;
908a7bdd
JK
8323
8324 port++;
8325 size--;
8326 last_bitmap = bitmap;
8327 }
8328
1d804d07 8329 return false;
908a7bdd
JK
8330}
8331
644d711a
NHE
8332/*
8333 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8334 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8335 * disinterest in the current event (read or write a specific MSR) by using an
8336 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8337 */
8338static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8339 struct vmcs12 *vmcs12, u32 exit_reason)
8340{
8341 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8342 gpa_t bitmap;
8343
cbd29cb6 8344 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 8345 return true;
644d711a
NHE
8346
8347 /*
8348 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8349 * for the four combinations of read/write and low/high MSR numbers.
8350 * First we need to figure out which of the four to use:
8351 */
8352 bitmap = vmcs12->msr_bitmap;
8353 if (exit_reason == EXIT_REASON_MSR_WRITE)
8354 bitmap += 2048;
8355 if (msr_index >= 0xc0000000) {
8356 msr_index -= 0xc0000000;
8357 bitmap += 1024;
8358 }
8359
8360 /* Then read the msr_index'th bit from this bitmap: */
8361 if (msr_index < 1024*8) {
8362 unsigned char b;
54bf36aa 8363 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 8364 return true;
644d711a
NHE
8365 return 1 & (b >> (msr_index & 7));
8366 } else
1d804d07 8367 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
8368}
8369
8370/*
8371 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8372 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8373 * intercept (via guest_host_mask etc.) the current event.
8374 */
8375static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8376 struct vmcs12 *vmcs12)
8377{
8378 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8379 int cr = exit_qualification & 15;
e1d39b17
JS
8380 int reg;
8381 unsigned long val;
644d711a
NHE
8382
8383 switch ((exit_qualification >> 4) & 3) {
8384 case 0: /* mov to cr */
e1d39b17
JS
8385 reg = (exit_qualification >> 8) & 15;
8386 val = kvm_register_readl(vcpu, reg);
644d711a
NHE
8387 switch (cr) {
8388 case 0:
8389 if (vmcs12->cr0_guest_host_mask &
8390 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8391 return true;
644d711a
NHE
8392 break;
8393 case 3:
8394 if ((vmcs12->cr3_target_count >= 1 &&
8395 vmcs12->cr3_target_value0 == val) ||
8396 (vmcs12->cr3_target_count >= 2 &&
8397 vmcs12->cr3_target_value1 == val) ||
8398 (vmcs12->cr3_target_count >= 3 &&
8399 vmcs12->cr3_target_value2 == val) ||
8400 (vmcs12->cr3_target_count >= 4 &&
8401 vmcs12->cr3_target_value3 == val))
1d804d07 8402 return false;
644d711a 8403 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 8404 return true;
644d711a
NHE
8405 break;
8406 case 4:
8407 if (vmcs12->cr4_guest_host_mask &
8408 (vmcs12->cr4_read_shadow ^ val))
1d804d07 8409 return true;
644d711a
NHE
8410 break;
8411 case 8:
8412 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 8413 return true;
644d711a
NHE
8414 break;
8415 }
8416 break;
8417 case 2: /* clts */
8418 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8419 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 8420 return true;
644d711a
NHE
8421 break;
8422 case 1: /* mov from cr */
8423 switch (cr) {
8424 case 3:
8425 if (vmcs12->cpu_based_vm_exec_control &
8426 CPU_BASED_CR3_STORE_EXITING)
1d804d07 8427 return true;
644d711a
NHE
8428 break;
8429 case 8:
8430 if (vmcs12->cpu_based_vm_exec_control &
8431 CPU_BASED_CR8_STORE_EXITING)
1d804d07 8432 return true;
644d711a
NHE
8433 break;
8434 }
8435 break;
8436 case 3: /* lmsw */
8437 /*
8438 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8439 * cr0. Other attempted changes are ignored, with no exit.
8440 */
e1d39b17 8441 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
644d711a
NHE
8442 if (vmcs12->cr0_guest_host_mask & 0xe &
8443 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8444 return true;
644d711a
NHE
8445 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8446 !(vmcs12->cr0_read_shadow & 0x1) &&
8447 (val & 0x1))
1d804d07 8448 return true;
644d711a
NHE
8449 break;
8450 }
1d804d07 8451 return false;
644d711a
NHE
8452}
8453
8454/*
8455 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8456 * should handle it ourselves in L0 (and then continue L2). Only call this
8457 * when in is_guest_mode (L2).
8458 */
7313c698 8459static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
644d711a 8460{
644d711a
NHE
8461 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8462 struct vcpu_vmx *vmx = to_vmx(vcpu);
8463 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8464
4f350c6d
JM
8465 if (vmx->nested.nested_run_pending)
8466 return false;
8467
8468 if (unlikely(vmx->fail)) {
8469 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8470 vmcs_read32(VM_INSTRUCTION_ERROR));
8471 return true;
8472 }
542060ea 8473
c9f04407
DM
8474 /*
8475 * The host physical addresses of some pages of guest memory
8819227c
JM
8476 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
8477 * Page). The CPU may write to these pages via their host
8478 * physical address while L2 is running, bypassing any
8479 * address-translation-based dirty tracking (e.g. EPT write
8480 * protection).
c9f04407
DM
8481 *
8482 * Mark them dirty on every exit from L2 to prevent them from
8483 * getting out of sync with dirty tracking.
8484 */
8485 nested_mark_vmcs12_pages_dirty(vcpu);
8486
4f350c6d
JM
8487 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8488 vmcs_readl(EXIT_QUALIFICATION),
8489 vmx->idt_vectoring_info,
8490 intr_info,
8491 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8492 KVM_ISA_VMX);
644d711a
NHE
8493
8494 switch (exit_reason) {
8495 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8496 if (is_nmi(intr_info))
1d804d07 8497 return false;
644d711a 8498 else if (is_page_fault(intr_info))
52a5c155 8499 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
e504c909 8500 else if (is_no_device(intr_info) &&
ccf9844e 8501 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8502 return false;
6f05485d
JK
8503 else if (is_debug(intr_info) &&
8504 vcpu->guest_debug &
8505 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8506 return false;
8507 else if (is_breakpoint(intr_info) &&
8508 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8509 return false;
644d711a
NHE
8510 return vmcs12->exception_bitmap &
8511 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8512 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8513 return false;
644d711a 8514 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8515 return true;
644d711a 8516 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8517 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8518 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8519 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8520 case EXIT_REASON_TASK_SWITCH:
1d804d07 8521 return true;
644d711a 8522 case EXIT_REASON_CPUID:
1d804d07 8523 return true;
644d711a
NHE
8524 case EXIT_REASON_HLT:
8525 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8526 case EXIT_REASON_INVD:
1d804d07 8527 return true;
644d711a
NHE
8528 case EXIT_REASON_INVLPG:
8529 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8530 case EXIT_REASON_RDPMC:
8531 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
a5f46457 8532 case EXIT_REASON_RDRAND:
736fdf72 8533 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
a5f46457 8534 case EXIT_REASON_RDSEED:
736fdf72 8535 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
b3a2a907 8536 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8537 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8538 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8539 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8540 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8541 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8542 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8543 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8544 /*
8545 * VMX instructions trap unconditionally. This allows L1 to
8546 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8547 */
1d804d07 8548 return true;
644d711a
NHE
8549 case EXIT_REASON_CR_ACCESS:
8550 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8551 case EXIT_REASON_DR_ACCESS:
8552 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8553 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8554 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8555 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8556 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8557 case EXIT_REASON_MSR_READ:
8558 case EXIT_REASON_MSR_WRITE:
8559 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8560 case EXIT_REASON_INVALID_STATE:
1d804d07 8561 return true;
644d711a
NHE
8562 case EXIT_REASON_MWAIT_INSTRUCTION:
8563 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8564 case EXIT_REASON_MONITOR_TRAP_FLAG:
8565 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8566 case EXIT_REASON_MONITOR_INSTRUCTION:
8567 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8568 case EXIT_REASON_PAUSE_INSTRUCTION:
8569 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8570 nested_cpu_has2(vmcs12,
8571 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8572 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8573 return false;
644d711a 8574 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8575 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8576 case EXIT_REASON_APIC_ACCESS:
8577 return nested_cpu_has2(vmcs12,
8578 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8579 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8580 case EXIT_REASON_EOI_INDUCED:
8581 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8582 return true;
644d711a 8583 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8584 /*
8585 * L0 always deals with the EPT violation. If nested EPT is
8586 * used, and the nested mmu code discovers that the address is
8587 * missing in the guest EPT table (EPT12), the EPT violation
8588 * will be injected with nested_ept_inject_page_fault()
8589 */
1d804d07 8590 return false;
644d711a 8591 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8592 /*
8593 * L2 never uses directly L1's EPT, but rather L0's own EPT
8594 * table (shadow on EPT) or a merged EPT table that L0 built
8595 * (EPT on EPT). So any problems with the structure of the
8596 * table is L0's fault.
8597 */
1d804d07 8598 return false;
90a2db6d
PB
8599 case EXIT_REASON_INVPCID:
8600 return
8601 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8602 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
644d711a
NHE
8603 case EXIT_REASON_WBINVD:
8604 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8605 case EXIT_REASON_XSETBV:
1d804d07 8606 return true;
81dc01f7
WL
8607 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8608 /*
8609 * This should never happen, since it is not possible to
8610 * set XSS to a non-zero value---neither in L1 nor in L2.
8611 * If if it were, XSS would have to be checked against
8612 * the XSS exit bitmap in vmcs12.
8613 */
8614 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8615 case EXIT_REASON_PREEMPTION_TIMER:
8616 return false;
ab007cc9 8617 case EXIT_REASON_PML_FULL:
03efce6f 8618 /* We emulate PML support to L1. */
ab007cc9 8619 return false;
2a499e49
BD
8620 case EXIT_REASON_VMFUNC:
8621 /* VM functions are emulated through L2->L0 vmexits. */
8622 return false;
644d711a 8623 default:
1d804d07 8624 return true;
644d711a
NHE
8625 }
8626}
8627
7313c698
PB
8628static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8629{
8630 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8631
8632 /*
8633 * At this point, the exit interruption info in exit_intr_info
8634 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8635 * we need to query the in-kernel LAPIC.
8636 */
8637 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8638 if ((exit_intr_info &
8639 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8640 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8641 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8642 vmcs12->vm_exit_intr_error_code =
8643 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8644 }
8645
8646 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8647 vmcs_readl(EXIT_QUALIFICATION));
8648 return 1;
8649}
8650
586f9607
AK
8651static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8652{
8653 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8654 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8655}
8656
a3eaa864 8657static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8658{
a3eaa864
KH
8659 if (vmx->pml_pg) {
8660 __free_page(vmx->pml_pg);
8661 vmx->pml_pg = NULL;
8662 }
843e4330
KH
8663}
8664
54bf36aa 8665static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8666{
54bf36aa 8667 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8668 u64 *pml_buf;
8669 u16 pml_idx;
8670
8671 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8672
8673 /* Do nothing if PML buffer is empty */
8674 if (pml_idx == (PML_ENTITY_NUM - 1))
8675 return;
8676
8677 /* PML index always points to next available PML buffer entity */
8678 if (pml_idx >= PML_ENTITY_NUM)
8679 pml_idx = 0;
8680 else
8681 pml_idx++;
8682
8683 pml_buf = page_address(vmx->pml_pg);
8684 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8685 u64 gpa;
8686
8687 gpa = pml_buf[pml_idx];
8688 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8689 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8690 }
8691
8692 /* reset PML index */
8693 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8694}
8695
8696/*
8697 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8698 * Called before reporting dirty_bitmap to userspace.
8699 */
8700static void kvm_flush_pml_buffers(struct kvm *kvm)
8701{
8702 int i;
8703 struct kvm_vcpu *vcpu;
8704 /*
8705 * We only need to kick vcpu out of guest mode here, as PML buffer
8706 * is flushed at beginning of all VMEXITs, and it's obvious that only
8707 * vcpus running in guest are possible to have unflushed GPAs in PML
8708 * buffer.
8709 */
8710 kvm_for_each_vcpu(i, vcpu, kvm)
8711 kvm_vcpu_kick(vcpu);
8712}
8713
4eb64dce
PB
8714static void vmx_dump_sel(char *name, uint32_t sel)
8715{
8716 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
96794e4e 8717 name, vmcs_read16(sel),
4eb64dce
PB
8718 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8719 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8720 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8721}
8722
8723static void vmx_dump_dtsel(char *name, uint32_t limit)
8724{
8725 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8726 name, vmcs_read32(limit),
8727 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8728}
8729
8730static void dump_vmcs(void)
8731{
8732 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8733 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8734 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8735 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8736 u32 secondary_exec_control = 0;
8737 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8738 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8739 int i, n;
8740
8741 if (cpu_has_secondary_exec_ctrls())
8742 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8743
8744 pr_err("*** Guest State ***\n");
8745 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8746 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8747 vmcs_readl(CR0_GUEST_HOST_MASK));
8748 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8749 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8750 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8751 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8752 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8753 {
845c5b40
PB
8754 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8755 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8756 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8757 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8758 }
8759 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8760 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8761 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8762 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8763 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8764 vmcs_readl(GUEST_SYSENTER_ESP),
8765 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8766 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8767 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8768 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8769 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8770 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8771 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8772 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8773 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8774 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8775 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8776 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8777 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8778 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8779 efer, vmcs_read64(GUEST_IA32_PAT));
8780 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8781 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8782 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8783 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8784 pr_err("PerfGlobCtl = 0x%016llx\n",
8785 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8786 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8787 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8788 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8789 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8790 vmcs_read32(GUEST_ACTIVITY_STATE));
8791 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8792 pr_err("InterruptStatus = %04x\n",
8793 vmcs_read16(GUEST_INTR_STATUS));
8794
8795 pr_err("*** Host State ***\n");
8796 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8797 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8798 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8799 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8800 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8801 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8802 vmcs_read16(HOST_TR_SELECTOR));
8803 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8804 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8805 vmcs_readl(HOST_TR_BASE));
8806 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8807 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8808 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8809 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8810 vmcs_readl(HOST_CR4));
8811 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8812 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8813 vmcs_read32(HOST_IA32_SYSENTER_CS),
8814 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8815 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8816 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8817 vmcs_read64(HOST_IA32_EFER),
8818 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8819 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8820 pr_err("PerfGlobCtl = 0x%016llx\n",
8821 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8822
8823 pr_err("*** Control State ***\n");
8824 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8825 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8826 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8827 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8828 vmcs_read32(EXCEPTION_BITMAP),
8829 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8830 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8831 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8832 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8833 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8834 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8835 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8836 vmcs_read32(VM_EXIT_INTR_INFO),
8837 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8838 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8839 pr_err(" reason=%08x qualification=%016lx\n",
8840 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8841 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8842 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8843 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8844 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8845 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8846 pr_err("TSC Multiplier = 0x%016llx\n",
8847 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8848 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8849 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8850 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8851 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8852 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8853 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8854 n = vmcs_read32(CR3_TARGET_COUNT);
8855 for (i = 0; i + 1 < n; i += 4)
8856 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8857 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8858 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8859 if (i < n)
8860 pr_err("CR3 target%u=%016lx\n",
8861 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8862 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8863 pr_err("PLE Gap=%08x Window=%08x\n",
8864 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8865 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8866 pr_err("Virtual processor ID = 0x%04x\n",
8867 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8868}
8869
6aa8b732
AK
8870/*
8871 * The guest has exited. See if we can fix it or if we need userspace
8872 * assistance.
8873 */
851ba692 8874static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8875{
29bd8a78 8876 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8877 u32 exit_reason = vmx->exit_reason;
1155f76a 8878 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8879
8b89fe1f
PB
8880 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8881
843e4330
KH
8882 /*
8883 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8884 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8885 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8886 * mode as if vcpus is in root mode, the PML buffer must has been
8887 * flushed already.
8888 */
8889 if (enable_pml)
54bf36aa 8890 vmx_flush_pml_buffer(vcpu);
843e4330 8891
80ced186 8892 /* If guest state is invalid, start emulating */
14168786 8893 if (vmx->emulation_required)
80ced186 8894 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8895
7313c698
PB
8896 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8897 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
644d711a 8898
5120702e 8899 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8900 dump_vmcs();
5120702e
MG
8901 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8902 vcpu->run->fail_entry.hardware_entry_failure_reason
8903 = exit_reason;
8904 return 0;
8905 }
8906
29bd8a78 8907 if (unlikely(vmx->fail)) {
851ba692
AK
8908 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8909 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8910 = vmcs_read32(VM_INSTRUCTION_ERROR);
8911 return 0;
8912 }
6aa8b732 8913
b9bf6882
XG
8914 /*
8915 * Note:
8916 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8917 * delivery event since it indicates guest is accessing MMIO.
8918 * The vm-exit can be triggered again after return to guest that
8919 * will cause infinite loop.
8920 */
d77c26fc 8921 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8922 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8923 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8924 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8925 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8926 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8927 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
70bcd708 8928 vcpu->run->internal.ndata = 3;
b9bf6882
XG
8929 vcpu->run->internal.data[0] = vectoring_info;
8930 vcpu->run->internal.data[1] = exit_reason;
70bcd708
PB
8931 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8932 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8933 vcpu->run->internal.ndata++;
8934 vcpu->run->internal.data[3] =
8935 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8936 }
b9bf6882
XG
8937 return 0;
8938 }
3b86cd99 8939
d02fcf50 8940 if (unlikely(!enable_vnmi &&
8a1b4392
PB
8941 vmx->loaded_vmcs->soft_vnmi_blocked)) {
8942 if (vmx_interrupt_allowed(vcpu)) {
8943 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
8944 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
8945 vcpu->arch.nmi_pending) {
8946 /*
8947 * This CPU don't support us in finding the end of an
8948 * NMI-blocked window if the guest runs with IRQs
8949 * disabled. So we pull the trigger after 1 s of
8950 * futile waiting, but inform the user about this.
8951 */
8952 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8953 "state on VCPU %d after 1 s timeout\n",
8954 __func__, vcpu->vcpu_id);
8955 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
8956 }
8957 }
8958
6aa8b732
AK
8959 if (exit_reason < kvm_vmx_max_exit_handlers
8960 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8961 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8962 else {
6c6c5e03
RK
8963 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8964 exit_reason);
2bc19dc3
MT
8965 kvm_queue_exception(vcpu, UD_VECTOR);
8966 return 1;
6aa8b732 8967 }
6aa8b732
AK
8968}
8969
95ba8273 8970static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8971{
a7c0b07d
WL
8972 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8973
8974 if (is_guest_mode(vcpu) &&
8975 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8976 return;
8977
95ba8273 8978 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8979 vmcs_write32(TPR_THRESHOLD, 0);
8980 return;
8981 }
8982
95ba8273 8983 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8984}
8985
8d14695f
YZ
8986static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8987{
8988 u32 sec_exec_control;
8989
dccbfcf5
RK
8990 /* Postpone execution until vmcs01 is the current VMCS. */
8991 if (is_guest_mode(vcpu)) {
8992 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8993 return;
8994 }
8995
f6e90f9e 8996 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8997 return;
8998
35754c98 8999 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
9000 return;
9001
9002 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9003
9004 if (set) {
9005 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9006 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
9007 } else {
9008 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
9009 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
fb6c8198 9010 vmx_flush_tlb_ept_only(vcpu);
8d14695f
YZ
9011 }
9012 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
9013
4b0be90f 9014 vmx_update_msr_bitmap(vcpu);
8d14695f
YZ
9015}
9016
38b99173
TC
9017static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
9018{
9019 struct vcpu_vmx *vmx = to_vmx(vcpu);
9020
9021 /*
9022 * Currently we do not handle the nested case where L2 has an
9023 * APIC access page of its own; that page is still pinned.
9024 * Hence, we skip the case where the VCPU is in guest mode _and_
9025 * L1 prepared an APIC access page for L2.
9026 *
9027 * For the case where L1 and L2 share the same APIC access page
9028 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
9029 * in the vmcs12), this function will only update either the vmcs01
9030 * or the vmcs02. If the former, the vmcs02 will be updated by
9031 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
9032 * the next L2->L1 exit.
9033 */
9034 if (!is_guest_mode(vcpu) ||
4f2777bc 9035 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
fb6c8198 9036 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
38b99173 9037 vmcs_write64(APIC_ACCESS_ADDR, hpa);
fb6c8198
JM
9038 vmx_flush_tlb_ept_only(vcpu);
9039 }
38b99173
TC
9040}
9041
67c9dddc 9042static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
9043{
9044 u16 status;
9045 u8 old;
9046
67c9dddc
PB
9047 if (max_isr == -1)
9048 max_isr = 0;
c7c9c56c
YZ
9049
9050 status = vmcs_read16(GUEST_INTR_STATUS);
9051 old = status >> 8;
67c9dddc 9052 if (max_isr != old) {
c7c9c56c 9053 status &= 0xff;
67c9dddc 9054 status |= max_isr << 8;
c7c9c56c
YZ
9055 vmcs_write16(GUEST_INTR_STATUS, status);
9056 }
9057}
9058
9059static void vmx_set_rvi(int vector)
9060{
9061 u16 status;
9062 u8 old;
9063
4114c27d
WW
9064 if (vector == -1)
9065 vector = 0;
9066
c7c9c56c
YZ
9067 status = vmcs_read16(GUEST_INTR_STATUS);
9068 old = (u8)status & 0xff;
9069 if ((u8)vector != old) {
9070 status &= ~0xff;
9071 status |= (u8)vector;
9072 vmcs_write16(GUEST_INTR_STATUS, status);
9073 }
9074}
9075
9076static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
9077{
4114c27d
WW
9078 if (!is_guest_mode(vcpu)) {
9079 vmx_set_rvi(max_irr);
9080 return;
9081 }
9082
c7c9c56c
YZ
9083 if (max_irr == -1)
9084 return;
9085
963fee16 9086 /*
4114c27d
WW
9087 * In guest mode. If a vmexit is needed, vmx_check_nested_events
9088 * handles it.
963fee16 9089 */
4114c27d 9090 if (nested_exit_on_intr(vcpu))
963fee16
WL
9091 return;
9092
963fee16 9093 /*
4114c27d 9094 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
9095 * is run without virtual interrupt delivery.
9096 */
9097 if (!kvm_event_needs_reinjection(vcpu) &&
9098 vmx_interrupt_allowed(vcpu)) {
9099 kvm_queue_interrupt(vcpu, max_irr, false);
9100 vmx_inject_irq(vcpu);
9101 }
c7c9c56c
YZ
9102}
9103
76dfafd5 9104static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
9105{
9106 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 9107 int max_irr;
810e6def 9108
76dfafd5
PB
9109 WARN_ON(!vcpu->arch.apicv_active);
9110 if (pi_test_on(&vmx->pi_desc)) {
9111 pi_clear_on(&vmx->pi_desc);
9112 /*
9113 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
9114 * But on x86 this is just a compiler barrier anyway.
9115 */
9116 smp_mb__after_atomic();
9117 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
9118 } else {
9119 max_irr = kvm_lapic_find_highest_irr(vcpu);
9120 }
9121 vmx_hwapic_irr_update(vcpu, max_irr);
9122 return max_irr;
810e6def
PB
9123}
9124
6308630b 9125static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 9126{
d62caabb 9127 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
9128 return;
9129
c7c9c56c
YZ
9130 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9131 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9132 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9133 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9134}
9135
967235d3
PB
9136static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9137{
9138 struct vcpu_vmx *vmx = to_vmx(vcpu);
9139
9140 pi_clear_on(&vmx->pi_desc);
9141 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9142}
9143
51aa01d1 9144static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 9145{
48ae0fb4
JM
9146 u32 exit_intr_info = 0;
9147 u16 basic_exit_reason = (u16)vmx->exit_reason;
00eba012 9148
48ae0fb4
JM
9149 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9150 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
00eba012
AK
9151 return;
9152
48ae0fb4
JM
9153 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9154 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9155 vmx->exit_intr_info = exit_intr_info;
a0861c02 9156
1261bfa3
WL
9157 /* if exit due to PF check for async PF */
9158 if (is_page_fault(exit_intr_info))
9159 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9160
a0861c02 9161 /* Handle machine checks before interrupts are enabled */
48ae0fb4
JM
9162 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9163 is_machine_check(exit_intr_info))
a0861c02
AK
9164 kvm_machine_check();
9165
20f65983 9166 /* We need to handle NMIs before interrupts are enabled */
ef85b673 9167 if (is_nmi(exit_intr_info)) {
ff9d07a0 9168 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 9169 asm("int $2");
ff9d07a0
ZY
9170 kvm_after_handle_nmi(&vmx->vcpu);
9171 }
51aa01d1 9172}
20f65983 9173
a547c6db
YZ
9174static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9175{
9176 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9177
a547c6db
YZ
9178 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9179 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9180 unsigned int vector;
9181 unsigned long entry;
9182 gate_desc *desc;
9183 struct vcpu_vmx *vmx = to_vmx(vcpu);
9184#ifdef CONFIG_X86_64
9185 unsigned long tmp;
9186#endif
9187
9188 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9189 desc = (gate_desc *)vmx->host_idt_base + vector;
64b163fa 9190 entry = gate_offset(desc);
a547c6db
YZ
9191 asm volatile(
9192#ifdef CONFIG_X86_64
9193 "mov %%" _ASM_SP ", %[sp]\n\t"
9194 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9195 "push $%c[ss]\n\t"
9196 "push %[sp]\n\t"
9197#endif
9198 "pushf\n\t"
a547c6db 9199 __ASM_SIZE(push) " $%c[cs]\n\t"
405b60d2 9200 CALL_NOSPEC
a547c6db
YZ
9201 :
9202#ifdef CONFIG_X86_64
3f62de5f 9203 [sp]"=&r"(tmp),
a547c6db 9204#endif
f5caf621 9205 ASM_CALL_CONSTRAINT
a547c6db 9206 :
405b60d2 9207 THUNK_TARGET(entry),
a547c6db
YZ
9208 [ss]"i"(__KERNEL_DS),
9209 [cs]"i"(__KERNEL_CS)
9210 );
f2485b3e 9211 }
a547c6db 9212}
c207aee4 9213STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
a547c6db 9214
6d396b55
PB
9215static bool vmx_has_high_real_mode_segbase(void)
9216{
9217 return enable_unrestricted_guest || emulate_invalid_guest_state;
9218}
9219
da8999d3
LJ
9220static bool vmx_mpx_supported(void)
9221{
9222 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9223 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9224}
9225
55412b2e
WL
9226static bool vmx_xsaves_supported(void)
9227{
9228 return vmcs_config.cpu_based_2nd_exec_ctrl &
9229 SECONDARY_EXEC_XSAVES;
9230}
9231
51aa01d1
AK
9232static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9233{
c5ca8e57 9234 u32 exit_intr_info;
51aa01d1
AK
9235 bool unblock_nmi;
9236 u8 vector;
9237 bool idtv_info_valid;
9238
9239 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 9240
d02fcf50 9241 if (enable_vnmi) {
8a1b4392
PB
9242 if (vmx->loaded_vmcs->nmi_known_unmasked)
9243 return;
9244 /*
9245 * Can't use vmx->exit_intr_info since we're not sure what
9246 * the exit reason is.
9247 */
9248 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9249 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9250 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9251 /*
9252 * SDM 3: 27.7.1.2 (September 2008)
9253 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9254 * a guest IRET fault.
9255 * SDM 3: 23.2.2 (September 2008)
9256 * Bit 12 is undefined in any of the following cases:
9257 * If the VM exit sets the valid bit in the IDT-vectoring
9258 * information field.
9259 * If the VM exit is due to a double fault.
9260 */
9261 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9262 vector != DF_VECTOR && !idtv_info_valid)
9263 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9264 GUEST_INTR_STATE_NMI);
9265 else
9266 vmx->loaded_vmcs->nmi_known_unmasked =
9267 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9268 & GUEST_INTR_STATE_NMI);
9269 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
9270 vmx->loaded_vmcs->vnmi_blocked_time +=
9271 ktime_to_ns(ktime_sub(ktime_get(),
9272 vmx->loaded_vmcs->entry_time));
51aa01d1
AK
9273}
9274
3ab66e8a 9275static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
9276 u32 idt_vectoring_info,
9277 int instr_len_field,
9278 int error_code_field)
51aa01d1 9279{
51aa01d1
AK
9280 u8 vector;
9281 int type;
9282 bool idtv_info_valid;
9283
9284 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 9285
3ab66e8a
JK
9286 vcpu->arch.nmi_injected = false;
9287 kvm_clear_exception_queue(vcpu);
9288 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
9289
9290 if (!idtv_info_valid)
9291 return;
9292
3ab66e8a 9293 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 9294
668f612f
AK
9295 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9296 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 9297
64a7ec06 9298 switch (type) {
37b96e98 9299 case INTR_TYPE_NMI_INTR:
3ab66e8a 9300 vcpu->arch.nmi_injected = true;
668f612f 9301 /*
7b4a25cb 9302 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
9303 * Clear bit "block by NMI" before VM entry if a NMI
9304 * delivery faulted.
668f612f 9305 */
3ab66e8a 9306 vmx_set_nmi_mask(vcpu, false);
37b96e98 9307 break;
37b96e98 9308 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 9309 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
9310 /* fall through */
9311 case INTR_TYPE_HARD_EXCEPTION:
35920a35 9312 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 9313 u32 err = vmcs_read32(error_code_field);
851eb667 9314 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 9315 } else
851eb667 9316 kvm_requeue_exception(vcpu, vector);
37b96e98 9317 break;
66fd3f7f 9318 case INTR_TYPE_SOFT_INTR:
3ab66e8a 9319 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 9320 /* fall through */
37b96e98 9321 case INTR_TYPE_EXT_INTR:
3ab66e8a 9322 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
9323 break;
9324 default:
9325 break;
f7d9238f 9326 }
cf393f75
AK
9327}
9328
83422e17
AK
9329static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9330{
3ab66e8a 9331 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
9332 VM_EXIT_INSTRUCTION_LEN,
9333 IDT_VECTORING_ERROR_CODE);
9334}
9335
b463a6f7
AK
9336static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9337{
3ab66e8a 9338 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
9339 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9340 VM_ENTRY_INSTRUCTION_LEN,
9341 VM_ENTRY_EXCEPTION_ERROR_CODE);
9342
9343 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9344}
9345
d7cd9796
GN
9346static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9347{
9348 int i, nr_msrs;
9349 struct perf_guest_switch_msr *msrs;
9350
9351 msrs = perf_guest_get_msrs(&nr_msrs);
9352
9353 if (!msrs)
9354 return;
9355
9356 for (i = 0; i < nr_msrs; i++)
9357 if (msrs[i].host == msrs[i].guest)
9358 clear_atomic_switch_msr(vmx, msrs[i].msr);
9359 else
9360 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9361 msrs[i].host);
9362}
9363
33365e7a 9364static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
9365{
9366 struct vcpu_vmx *vmx = to_vmx(vcpu);
9367 u64 tscl;
9368 u32 delta_tsc;
9369
9370 if (vmx->hv_deadline_tsc == -1)
9371 return;
9372
9373 tscl = rdtsc();
9374 if (vmx->hv_deadline_tsc > tscl)
9375 /* sure to be 32 bit only because checked on set_hv_timer */
9376 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9377 cpu_preemption_timer_multi);
9378 else
9379 delta_tsc = 0;
9380
9381 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9382}
9383
a3b5ba49 9384static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 9385{
a2fa3e9f 9386 struct vcpu_vmx *vmx = to_vmx(vcpu);
d6e41f11 9387 unsigned long debugctlmsr, cr3, cr4;
104f226b 9388
8a1b4392 9389 /* Record the guest's net vcpu time for enforced NMI injections. */
d02fcf50 9390 if (unlikely(!enable_vnmi &&
8a1b4392
PB
9391 vmx->loaded_vmcs->soft_vnmi_blocked))
9392 vmx->loaded_vmcs->entry_time = ktime_get();
9393
104f226b
AK
9394 /* Don't enter VMX if guest state is invalid, let the exit handler
9395 start emulation until we arrive back to a valid state */
14168786 9396 if (vmx->emulation_required)
104f226b
AK
9397 return;
9398
a7653ecd
RK
9399 if (vmx->ple_window_dirty) {
9400 vmx->ple_window_dirty = false;
9401 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9402 }
9403
012f83cb
AG
9404 if (vmx->nested.sync_shadow_vmcs) {
9405 copy_vmcs12_to_shadow(vmx);
9406 vmx->nested.sync_shadow_vmcs = false;
9407 }
9408
104f226b
AK
9409 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9410 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9411 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9412 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9413
d6e41f11 9414 cr3 = __get_current_cr3_fast();
44889942 9415 if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
d6e41f11 9416 vmcs_writel(HOST_CR3, cr3);
44889942 9417 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
d6e41f11
AL
9418 }
9419
1e02ce4c 9420 cr4 = cr4_read_shadow();
44889942 9421 if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
d974baa3 9422 vmcs_writel(HOST_CR4, cr4);
44889942 9423 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3
AL
9424 }
9425
104f226b
AK
9426 /* When single-stepping over STI and MOV SS, we must clear the
9427 * corresponding interruptibility bits in the guest state. Otherwise
9428 * vmentry fails as it then expects bit 14 (BS) in pending debug
9429 * exceptions being set, but that's not correct for the guest debugging
9430 * case. */
9431 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9432 vmx_set_interrupt_shadow(vcpu, 0);
9433
b9dd21e1
PB
9434 if (static_cpu_has(X86_FEATURE_PKU) &&
9435 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9436 vcpu->arch.pkru != vmx->host_pkru)
9437 __write_pkru(vcpu->arch.pkru);
1be0e61c 9438
d7cd9796 9439 atomic_switch_perf_msrs(vmx);
2a7921b7 9440 debugctlmsr = get_debugctlmsr();
d7cd9796 9441
64672c95
YJ
9442 vmx_arm_hv_timer(vcpu);
9443
74469996
KA
9444 /*
9445 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
9446 * it's non-zero. Since vmentry is serialising on affected CPUs, there
9447 * is no need to worry about the conditional branch over the wrmsr
9448 * being speculatively taken.
9449 */
692b5d07 9450 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
74469996 9451
d462b819 9452 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 9453 asm(
6aa8b732 9454 /* Store host registers */
b188c81f
AK
9455 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9456 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9457 "push %%" _ASM_CX " \n\t"
9458 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 9459 "je 1f \n\t"
b188c81f 9460 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 9461 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 9462 "1: \n\t"
d3edefc0 9463 /* Reload cr2 if changed */
b188c81f
AK
9464 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9465 "mov %%cr2, %%" _ASM_DX " \n\t"
9466 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 9467 "je 2f \n\t"
b188c81f 9468 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 9469 "2: \n\t"
6aa8b732 9470 /* Check if vmlaunch of vmresume is needed */
e08aa78a 9471 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 9472 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
9473 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9474 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9475 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9476 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9477 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9478 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 9479#ifdef CONFIG_X86_64
e08aa78a
AK
9480 "mov %c[r8](%0), %%r8 \n\t"
9481 "mov %c[r9](%0), %%r9 \n\t"
9482 "mov %c[r10](%0), %%r10 \n\t"
9483 "mov %c[r11](%0), %%r11 \n\t"
9484 "mov %c[r12](%0), %%r12 \n\t"
9485 "mov %c[r13](%0), %%r13 \n\t"
9486 "mov %c[r14](%0), %%r14 \n\t"
9487 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 9488#endif
b188c81f 9489 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 9490
6aa8b732 9491 /* Enter guest mode */
83287ea4 9492 "jne 1f \n\t"
4ecac3fd 9493 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
9494 "jmp 2f \n\t"
9495 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9496 "2: "
6aa8b732 9497 /* Save guest registers, load host registers, keep flags */
b188c81f 9498 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 9499 "pop %0 \n\t"
0cb5b306 9500 "setbe %c[fail](%0)\n\t"
b188c81f
AK
9501 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9502 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9503 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9504 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9505 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9506 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9507 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 9508#ifdef CONFIG_X86_64
e08aa78a
AK
9509 "mov %%r8, %c[r8](%0) \n\t"
9510 "mov %%r9, %c[r9](%0) \n\t"
9511 "mov %%r10, %c[r10](%0) \n\t"
9512 "mov %%r11, %c[r11](%0) \n\t"
9513 "mov %%r12, %c[r12](%0) \n\t"
9514 "mov %%r13, %c[r13](%0) \n\t"
9515 "mov %%r14, %c[r14](%0) \n\t"
9516 "mov %%r15, %c[r15](%0) \n\t"
0cb5b306
JM
9517 "xor %%r8d, %%r8d \n\t"
9518 "xor %%r9d, %%r9d \n\t"
9519 "xor %%r10d, %%r10d \n\t"
9520 "xor %%r11d, %%r11d \n\t"
9521 "xor %%r12d, %%r12d \n\t"
9522 "xor %%r13d, %%r13d \n\t"
9523 "xor %%r14d, %%r14d \n\t"
9524 "xor %%r15d, %%r15d \n\t"
6aa8b732 9525#endif
b188c81f
AK
9526 "mov %%cr2, %%" _ASM_AX " \n\t"
9527 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 9528
0cb5b306
JM
9529 "xor %%eax, %%eax \n\t"
9530 "xor %%ebx, %%ebx \n\t"
9531 "xor %%esi, %%esi \n\t"
9532 "xor %%edi, %%edi \n\t"
b188c81f 9533 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
83287ea4
AK
9534 ".pushsection .rodata \n\t"
9535 ".global vmx_return \n\t"
9536 "vmx_return: " _ASM_PTR " 2b \n\t"
9537 ".popsection"
e08aa78a 9538 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 9539 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 9540 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 9541 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
9542 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9543 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9544 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9545 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9546 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9547 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9548 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 9549#ifdef CONFIG_X86_64
ad312c7c
ZX
9550 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9551 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9552 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9553 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9554 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9555 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9556 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9557 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9558#endif
40712fae
AK
9559 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9560 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9561 : "cc", "memory"
9562#ifdef CONFIG_X86_64
b188c81f 9563 , "rax", "rbx", "rdi", "rsi"
c2036300 9564 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
9565#else
9566 , "eax", "ebx", "edi", "esi"
c2036300
LV
9567#endif
9568 );
6aa8b732 9569
74469996
KA
9570 /*
9571 * We do not use IBRS in the kernel. If this vCPU has used the
9572 * SPEC_CTRL MSR it may have left it on; save the value and
9573 * turn it off. This is much more efficient than blindly adding
9574 * it to the atomic save/restore list. Especially as the former
9575 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
9576 *
9577 * For non-nested case:
9578 * If the L01 MSR bitmap does not intercept the MSR, then we need to
9579 * save it.
9580 *
9581 * For nested case:
9582 * If the L02 MSR bitmap does not intercept the MSR, then we need to
9583 * save it.
9584 */
481ab71e 9585 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
f471d71b 9586 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
74469996 9587
692b5d07 9588 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
74469996 9589
117cc7a9
DW
9590 /* Eliminate branch target predictions from guest mode */
9591 vmexit_fill_RSB();
9592
2a7921b7
GN
9593 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9594 if (debugctlmsr)
9595 update_debugctlmsr(debugctlmsr);
9596
aa67f609
AK
9597#ifndef CONFIG_X86_64
9598 /*
9599 * The sysexit path does not restore ds/es, so we must set them to
9600 * a reasonable value ourselves.
9601 *
9602 * We can't defer this to vmx_load_host_state() since that function
9603 * may be executed in interrupt context, which saves and restore segments
9604 * around it, nullifying its effect.
9605 */
9606 loadsegment(ds, __USER_DS);
9607 loadsegment(es, __USER_DS);
9608#endif
9609
6de4f3ad 9610 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9611 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9612 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9613 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9614 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9615 vcpu->arch.regs_dirty = 0;
9616
1be0e61c
XG
9617 /*
9618 * eager fpu is enabled if PKEY is supported and CR4 is switched
9619 * back on host, so it is safe to read guest PKRU from current
9620 * XSAVE.
9621 */
b9dd21e1
PB
9622 if (static_cpu_has(X86_FEATURE_PKU) &&
9623 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9624 vcpu->arch.pkru = __read_pkru();
9625 if (vcpu->arch.pkru != vmx->host_pkru)
1be0e61c 9626 __write_pkru(vmx->host_pkru);
1be0e61c
XG
9627 }
9628
e0b890d3
GN
9629 /*
9630 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9631 * we did not inject a still-pending event to L1 now because of
9632 * nested_run_pending, we need to re-enable this bit.
9633 */
9634 if (vmx->nested.nested_run_pending)
9635 kvm_make_request(KVM_REQ_EVENT, vcpu);
9636
9637 vmx->nested.nested_run_pending = 0;
b060ca3b
JM
9638 vmx->idt_vectoring_info = 0;
9639
9640 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9641 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9642 return;
9643
9644 vmx->loaded_vmcs->launched = 1;
9645 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
e0b890d3 9646
51aa01d1
AK
9647 vmx_complete_atomic_exit(vmx);
9648 vmx_recover_nmi_blocking(vmx);
cf393f75 9649 vmx_complete_interrupts(vmx);
6aa8b732 9650}
c207aee4 9651STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
6aa8b732 9652
1279a6b1 9653static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
4fa7734c
PB
9654{
9655 struct vcpu_vmx *vmx = to_vmx(vcpu);
9656 int cpu;
9657
1279a6b1 9658 if (vmx->loaded_vmcs == vmcs)
4fa7734c
PB
9659 return;
9660
9661 cpu = get_cpu();
1279a6b1 9662 vmx->loaded_vmcs = vmcs;
4fa7734c
PB
9663 vmx_vcpu_put(vcpu);
9664 vmx_vcpu_load(vcpu, cpu);
4fa7734c
PB
9665 put_cpu();
9666}
9667
2f1fe811
JM
9668/*
9669 * Ensure that the current vmcs of the logical processor is the
9670 * vmcs01 of the vcpu before calling free_nested().
9671 */
9672static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9673{
9674 struct vcpu_vmx *vmx = to_vmx(vcpu);
9675 int r;
9676
9677 r = vcpu_load(vcpu);
9678 BUG_ON(r);
1279a6b1 9679 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2f1fe811
JM
9680 free_nested(vmx);
9681 vcpu_put(vcpu);
9682}
9683
6aa8b732
AK
9684static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9685{
fb3f0f51
RR
9686 struct vcpu_vmx *vmx = to_vmx(vcpu);
9687
843e4330 9688 if (enable_pml)
a3eaa864 9689 vmx_destroy_pml_buffer(vmx);
991e7a0e 9690 free_vpid(vmx->vpid);
4fa7734c 9691 leave_guest_mode(vcpu);
2f1fe811 9692 vmx_free_vcpu_nested(vcpu);
4fa7734c 9693 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9694 kfree(vmx->guest_msrs);
9695 kvm_vcpu_uninit(vcpu);
a4770347 9696 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9697}
9698
fb3f0f51 9699static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9700{
fb3f0f51 9701 int err;
c16f862d 9702 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4b0be90f 9703 unsigned long *msr_bitmap;
15ad7146 9704 int cpu;
6aa8b732 9705
a2fa3e9f 9706 if (!vmx)
fb3f0f51
RR
9707 return ERR_PTR(-ENOMEM);
9708
991e7a0e 9709 vmx->vpid = allocate_vpid();
2384d2b3 9710
fb3f0f51
RR
9711 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9712 if (err)
9713 goto free_vcpu;
965b58a5 9714
4e59516a
PF
9715 err = -ENOMEM;
9716
9717 /*
9718 * If PML is turned on, failure on enabling PML just results in failure
9719 * of creating the vcpu, therefore we can simplify PML logic (by
9720 * avoiding dealing with cases, such as enabling PML partially on vcpus
9721 * for the guest, etc.
9722 */
9723 if (enable_pml) {
9724 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9725 if (!vmx->pml_pg)
9726 goto uninit_vcpu;
9727 }
9728
a2fa3e9f 9729 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9730 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9731 > PAGE_SIZE);
0123be42 9732
4e59516a
PF
9733 if (!vmx->guest_msrs)
9734 goto free_pml;
965b58a5 9735
b6d7026d
PB
9736 err = alloc_loaded_vmcs(&vmx->vmcs01);
9737 if (err < 0)
fb3f0f51 9738 goto free_msrs;
a2fa3e9f 9739
4b0be90f
PB
9740 msr_bitmap = vmx->vmcs01.msr_bitmap;
9741 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
9742 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
9743 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
9744 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
9745 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
9746 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
9747 vmx->msr_bitmap_mode = 0;
9748
b6d7026d 9749 vmx->loaded_vmcs = &vmx->vmcs01;
15ad7146
AK
9750 cpu = get_cpu();
9751 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9752 vmx->vcpu.cpu = cpu;
12d79917 9753 vmx_vcpu_setup(vmx);
fb3f0f51 9754 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9755 put_cpu();
35754c98 9756 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9757 err = alloc_apic_access_page(kvm);
9758 if (err)
5e4a0b3c 9759 goto free_vmcs;
a63cb560 9760 }
fb3f0f51 9761
b927a3ce 9762 if (enable_ept) {
f51770ed
TC
9763 err = init_rmode_identity_map(kvm);
9764 if (err)
93ea5388 9765 goto free_vmcs;
b927a3ce 9766 }
b7ebfb05 9767
5c614b35 9768 if (nested) {
b9c237bb 9769 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9770 vmx->nested.vpid02 = allocate_vpid();
9771 }
b9c237bb 9772
705699a1 9773 vmx->nested.posted_intr_nv = -1;
a9d30f33 9774 vmx->nested.current_vmptr = -1ull;
a9d30f33 9775
37e4c997
HZ
9776 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9777
31afb2ea
PB
9778 /*
9779 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9780 * or POSTED_INTR_WAKEUP_VECTOR.
9781 */
9782 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
9783 vmx->pi_desc.sn = 1;
9784
fb3f0f51
RR
9785 return &vmx->vcpu;
9786
9787free_vmcs:
5c614b35 9788 free_vpid(vmx->nested.vpid02);
5f3fbc34 9789 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9790free_msrs:
fb3f0f51 9791 kfree(vmx->guest_msrs);
4e59516a
PF
9792free_pml:
9793 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9794uninit_vcpu:
9795 kvm_vcpu_uninit(&vmx->vcpu);
9796free_vcpu:
991e7a0e 9797 free_vpid(vmx->vpid);
a4770347 9798 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9799 return ERR_PTR(err);
6aa8b732
AK
9800}
9801
002c7f7c
YS
9802static void __init vmx_check_processor_compat(void *rtn)
9803{
9804 struct vmcs_config vmcs_conf;
9805
9806 *(int *)rtn = 0;
9807 if (setup_vmcs_config(&vmcs_conf) < 0)
9808 *(int *)rtn = -EIO;
9809 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9810 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9811 smp_processor_id());
9812 *(int *)rtn = -EIO;
9813 }
9814}
9815
4b12f0de 9816static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9817{
b18d5431
XG
9818 u8 cache;
9819 u64 ipat = 0;
4b12f0de 9820
522c68c4 9821 /* For VT-d and EPT combination
606decd6 9822 * 1. MMIO: always map as UC
522c68c4
SY
9823 * 2. EPT with VT-d:
9824 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9825 * result, try to trust guest.
522c68c4
SY
9826 * b. VT-d with snooping control feature: snooping control feature of
9827 * VT-d engine can guarantee the cache correctness. Just set it
9828 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9829 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9830 * consistent with host MTRR
9831 */
606decd6
PB
9832 if (is_mmio) {
9833 cache = MTRR_TYPE_UNCACHABLE;
9834 goto exit;
9835 }
9836
9837 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9838 ipat = VMX_EPT_IPAT_BIT;
9839 cache = MTRR_TYPE_WRBACK;
9840 goto exit;
9841 }
9842
9843 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9844 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9845 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9846 cache = MTRR_TYPE_WRBACK;
9847 else
9848 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9849 goto exit;
9850 }
9851
ff53604b 9852 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9853
9854exit:
9855 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9856}
9857
17cc3935 9858static int vmx_get_lpage_level(void)
344f414f 9859{
878403b7
SY
9860 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9861 return PT_DIRECTORY_LEVEL;
9862 else
9863 /* For shadow and EPT supported 1GB page */
9864 return PT_PDPE_LEVEL;
344f414f
JR
9865}
9866
feda805f
XG
9867static void vmcs_set_secondary_exec_control(u32 new_ctl)
9868{
9869 /*
9870 * These bits in the secondary execution controls field
9871 * are dynamic, the others are mostly based on the hypervisor
9872 * architecture and the guest's CPUID. Do not touch the
9873 * dynamic bits.
9874 */
9875 u32 mask =
9876 SECONDARY_EXEC_SHADOW_VMCS |
9877 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9878 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9879
9880 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9881
9882 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9883 (new_ctl & ~mask) | (cur_ctl & mask));
9884}
9885
8322ebbb
DM
9886/*
9887 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9888 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9889 */
9890static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9891{
9892 struct vcpu_vmx *vmx = to_vmx(vcpu);
9893 struct kvm_cpuid_entry2 *entry;
9894
9895 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9896 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9897
9898#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9899 if (entry && (entry->_reg & (_cpuid_mask))) \
9900 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9901} while (0)
9902
9903 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9904 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9905 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9906 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9907 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9908 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9909 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9910 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9911 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9912 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9913 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9914 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9915 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9916 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9917 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9918
9919 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9920 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9921 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9922 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9923 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
c4ad77e0 9924 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
8322ebbb
DM
9925
9926#undef cr4_fixed1_update
9927}
9928
0e851880
SY
9929static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9930{
4e47c7a6 9931 struct vcpu_vmx *vmx = to_vmx(vcpu);
4e47c7a6 9932
80154d77
PB
9933 if (cpu_has_secondary_exec_ctrls()) {
9934 vmx_compute_secondary_exec_control(vmx);
9935 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
ad756a16 9936 }
8b3e34e4 9937
37e4c997
HZ
9938 if (nested_vmx_allowed(vcpu))
9939 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9940 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9941 else
9942 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9943 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
9944
9945 if (nested_vmx_allowed(vcpu))
9946 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
9947}
9948
d4330ef2
JR
9949static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9950{
7b8050f5
NHE
9951 if (func == 1 && nested)
9952 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9953}
9954
25d92081
YZ
9955static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9956 struct x86_exception *fault)
9957{
533558bc 9958 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
c5f983f6 9959 struct vcpu_vmx *vmx = to_vmx(vcpu);
533558bc 9960 u32 exit_reason;
c5f983f6 9961 unsigned long exit_qualification = vcpu->arch.exit_qualification;
25d92081 9962
c5f983f6
BD
9963 if (vmx->nested.pml_full) {
9964 exit_reason = EXIT_REASON_PML_FULL;
9965 vmx->nested.pml_full = false;
9966 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9967 } else if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9968 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9969 else
533558bc 9970 exit_reason = EXIT_REASON_EPT_VIOLATION;
c5f983f6
BD
9971
9972 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
25d92081
YZ
9973 vmcs12->guest_physical_address = fault->address;
9974}
9975
995f00a6
PF
9976static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9977{
bb97a016 9978 return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
995f00a6
PF
9979}
9980
155a97a3
NHE
9981/* Callbacks for nested_ept_init_mmu_context: */
9982
9983static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9984{
9985 /* return the page table to be shadowed - in our case, EPT12 */
9986 return get_vmcs12(vcpu)->ept_pointer;
9987}
9988
ae1e2d10 9989static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9990{
ad896af0 9991 WARN_ON(mmu_is_nested(vcpu));
a057e0e2 9992 if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
ae1e2d10
PB
9993 return 1;
9994
9995 kvm_mmu_unload(vcpu);
ad896af0 9996 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb 9997 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
ae1e2d10 9998 VMX_EPT_EXECUTE_ONLY_BIT,
a057e0e2 9999 nested_ept_ad_enabled(vcpu));
155a97a3
NHE
10000 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
10001 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
10002 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
10003
10004 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
ae1e2d10 10005 return 0;
155a97a3
NHE
10006}
10007
10008static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
10009{
10010 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
10011}
10012
19d5f10b
EK
10013static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
10014 u16 error_code)
10015{
10016 bool inequality, bit;
10017
10018 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
10019 inequality =
10020 (error_code & vmcs12->page_fault_error_code_mask) !=
10021 vmcs12->page_fault_error_code_match;
10022 return inequality ^ bit;
10023}
10024
feaf0c7d
GN
10025static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
10026 struct x86_exception *fault)
10027{
10028 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10029
10030 WARN_ON(!is_guest_mode(vcpu));
10031
305d0ab4
WL
10032 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
10033 !to_vmx(vcpu)->nested.nested_run_pending) {
b96fb439
PB
10034 vmcs12->vm_exit_intr_error_code = fault->error_code;
10035 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10036 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
10037 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
10038 fault->address);
7313c698 10039 } else {
feaf0c7d 10040 kvm_inject_page_fault(vcpu, fault);
7313c698 10041 }
feaf0c7d
GN
10042}
10043
6beb7bd5
JM
10044static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10045 struct vmcs12 *vmcs12);
10046
10047static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
10048 struct vmcs12 *vmcs12)
10049{
10050 struct vcpu_vmx *vmx = to_vmx(vcpu);
5e2f30b7 10051 struct page *page;
6beb7bd5 10052 u64 hpa;
a2bcba50
WL
10053
10054 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
10055 /*
10056 * Translate L1 physical address to host physical
10057 * address for vmcs02. Keep the page pinned, so this
10058 * physical address remains valid. We keep a reference
10059 * to it so we can release it later.
10060 */
5e2f30b7 10061 if (vmx->nested.apic_access_page) { /* shouldn't happen */
53a70daf 10062 kvm_release_page_dirty(vmx->nested.apic_access_page);
5e2f30b7
DH
10063 vmx->nested.apic_access_page = NULL;
10064 }
10065 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
10066 /*
10067 * If translation failed, no matter: This feature asks
10068 * to exit when accessing the given address, and if it
10069 * can never be accessed, this feature won't do
10070 * anything anyway.
10071 */
5e2f30b7
DH
10072 if (!is_error_page(page)) {
10073 vmx->nested.apic_access_page = page;
6beb7bd5
JM
10074 hpa = page_to_phys(vmx->nested.apic_access_page);
10075 vmcs_write64(APIC_ACCESS_ADDR, hpa);
10076 } else {
10077 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
10078 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
10079 }
10080 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
10081 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
10082 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
10083 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
10084 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 10085 }
a7c0b07d
WL
10086
10087 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5e2f30b7 10088 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
53a70daf 10089 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
5e2f30b7
DH
10090 vmx->nested.virtual_apic_page = NULL;
10091 }
10092 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
a7c0b07d
WL
10093
10094 /*
6beb7bd5
JM
10095 * If translation failed, VM entry will fail because
10096 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
10097 * Failing the vm entry is _not_ what the processor
10098 * does but it's basically the only possibility we
10099 * have. We could still enter the guest if CR8 load
10100 * exits are enabled, CR8 store exits are enabled, and
10101 * virtualize APIC access is disabled; in this case
10102 * the processor would never use the TPR shadow and we
10103 * could simply clear the bit from the execution
10104 * control. But such a configuration is useless, so
10105 * let's keep the code simple.
a7c0b07d 10106 */
5e2f30b7
DH
10107 if (!is_error_page(page)) {
10108 vmx->nested.virtual_apic_page = page;
6beb7bd5
JM
10109 hpa = page_to_phys(vmx->nested.virtual_apic_page);
10110 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
10111 }
a7c0b07d
WL
10112 }
10113
705699a1 10114 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
10115 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
10116 kunmap(vmx->nested.pi_desc_page);
53a70daf 10117 kvm_release_page_dirty(vmx->nested.pi_desc_page);
5e2f30b7 10118 vmx->nested.pi_desc_page = NULL;
705699a1 10119 }
5e2f30b7
DH
10120 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
10121 if (is_error_page(page))
6beb7bd5 10122 return;
5e2f30b7
DH
10123 vmx->nested.pi_desc_page = page;
10124 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
705699a1
WV
10125 vmx->nested.pi_desc =
10126 (struct pi_desc *)((void *)vmx->nested.pi_desc +
10127 (unsigned long)(vmcs12->posted_intr_desc_addr &
10128 (PAGE_SIZE - 1)));
6beb7bd5
JM
10129 vmcs_write64(POSTED_INTR_DESC_ADDR,
10130 page_to_phys(vmx->nested.pi_desc_page) +
10131 (unsigned long)(vmcs12->posted_intr_desc_addr &
10132 (PAGE_SIZE - 1)));
705699a1 10133 }
6beb7bd5
JM
10134 if (cpu_has_vmx_msr_bitmap() &&
10135 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
10136 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
cf40088f
KA
10137 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
10138 CPU_BASED_USE_MSR_BITMAPS);
6beb7bd5
JM
10139 else
10140 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
10141 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
10142}
10143
f4124500
JK
10144static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
10145{
10146 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
10147 struct vcpu_vmx *vmx = to_vmx(vcpu);
10148
10149 if (vcpu->arch.virtual_tsc_khz == 0)
10150 return;
10151
10152 /* Make sure short timeouts reliably trigger an immediate vmexit.
10153 * hrtimer_start does not guarantee this. */
10154 if (preemption_timeout <= 1) {
10155 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
10156 return;
10157 }
10158
10159 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10160 preemption_timeout *= 1000000;
10161 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
10162 hrtimer_start(&vmx->nested.preemption_timer,
10163 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
10164}
10165
56a20510
JM
10166static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
10167 struct vmcs12 *vmcs12)
10168{
10169 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
10170 return 0;
10171
10172 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
10173 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
10174 return -EINVAL;
10175
10176 return 0;
10177}
10178
3af18d9c
WV
10179static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
10180 struct vmcs12 *vmcs12)
10181{
3af18d9c
WV
10182 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10183 return 0;
10184
5fa99cbe 10185 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
3af18d9c
WV
10186 return -EINVAL;
10187
10188 return 0;
10189}
10190
712b12d7
JM
10191static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10192 struct vmcs12 *vmcs12)
10193{
10194 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10195 return 0;
10196
10197 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10198 return -EINVAL;
10199
10200 return 0;
10201}
10202
3af18d9c
WV
10203/*
10204 * Merge L0's and L1's MSR bitmap, return false to indicate that
10205 * we do not use the hardware.
10206 */
10207static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10208 struct vmcs12 *vmcs12)
10209{
82f0dd4b 10210 int msr;
f2b93280 10211 struct page *page;
d048c098 10212 unsigned long *msr_bitmap_l1;
4b0be90f 10213 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
33241bfe 10214 /*
74469996 10215 * pred_cmd & spec_ctrl are trying to verify two things:
33241bfe
AR
10216 *
10217 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
10218 * ensures that we do not accidentally generate an L02 MSR bitmap
10219 * from the L12 MSR bitmap that is too permissive.
10220 * 2. That L1 or L2s have actually used the MSR. This avoids
10221 * unnecessarily merging of the bitmap if the MSR is unused. This
10222 * works properly because we only update the L01 MSR bitmap lazily.
10223 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
10224 * updated to reflect this when L1 (or its L2s) actually write to
10225 * the MSR.
10226 */
cb9138cc
KA
10227 bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
10228 bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
f2b93280 10229
33241bfe 10230 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
74469996 10231 !pred_cmd && !spec_ctrl)
f2b93280
WV
10232 return false;
10233
5e2f30b7
DH
10234 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10235 if (is_error_page(page))
f2b93280 10236 return false;
d048c098 10237 msr_bitmap_l1 = (unsigned long *)kmap(page);
f2b93280 10238
d048c098
RK
10239 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10240
f2b93280 10241 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
10242 if (nested_cpu_has_apic_reg_virt(vmcs12))
10243 for (msr = 0x800; msr <= 0x8ff; msr++)
10244 nested_vmx_disable_intercept_for_msr(
d048c098 10245 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 10246 msr, MSR_TYPE_R);
d048c098
RK
10247
10248 nested_vmx_disable_intercept_for_msr(
10249 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
10250 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10251 MSR_TYPE_R | MSR_TYPE_W);
d048c098 10252
608406e2 10253 if (nested_cpu_has_vid(vmcs12)) {
608406e2 10254 nested_vmx_disable_intercept_for_msr(
d048c098 10255 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10256 APIC_BASE_MSR + (APIC_EOI >> 4),
10257 MSR_TYPE_W);
10258 nested_vmx_disable_intercept_for_msr(
d048c098 10259 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10260 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10261 MSR_TYPE_W);
10262 }
82f0dd4b 10263 }
33241bfe 10264
74469996
KA
10265 if (spec_ctrl)
10266 nested_vmx_disable_intercept_for_msr(
10267 msr_bitmap_l1, msr_bitmap_l0,
10268 MSR_IA32_SPEC_CTRL,
10269 MSR_TYPE_R | MSR_TYPE_W);
10270
33241bfe
AR
10271 if (pred_cmd)
10272 nested_vmx_disable_intercept_for_msr(
10273 msr_bitmap_l1, msr_bitmap_l0,
10274 MSR_IA32_PRED_CMD,
10275 MSR_TYPE_W);
10276
f2b93280 10277 kunmap(page);
53a70daf 10278 kvm_release_page_clean(page);
f2b93280
WV
10279
10280 return true;
10281}
10282
10283static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10284 struct vmcs12 *vmcs12)
10285{
82f0dd4b 10286 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 10287 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
10288 !nested_cpu_has_vid(vmcs12) &&
10289 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
10290 return 0;
10291
10292 /*
10293 * If virtualize x2apic mode is enabled,
10294 * virtualize apic access must be disabled.
10295 */
82f0dd4b
WV
10296 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10297 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
10298 return -EINVAL;
10299
608406e2
WV
10300 /*
10301 * If virtual interrupt delivery is enabled,
10302 * we must exit on external interrupts.
10303 */
10304 if (nested_cpu_has_vid(vmcs12) &&
10305 !nested_exit_on_intr(vcpu))
10306 return -EINVAL;
10307
705699a1
WV
10308 /*
10309 * bits 15:8 should be zero in posted_intr_nv,
10310 * the descriptor address has been already checked
10311 * in nested_get_vmcs12_pages.
10312 */
10313 if (nested_cpu_has_posted_intr(vmcs12) &&
10314 (!nested_cpu_has_vid(vmcs12) ||
10315 !nested_exit_intr_ack_set(vcpu) ||
10316 vmcs12->posted_intr_nv & 0xff00))
10317 return -EINVAL;
10318
f2b93280
WV
10319 /* tpr shadow is needed by all apicv features. */
10320 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10321 return -EINVAL;
10322
10323 return 0;
3af18d9c
WV
10324}
10325
e9ac033e
EK
10326static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10327 unsigned long count_field,
92d71bc6 10328 unsigned long addr_field)
ff651cb6 10329{
92d71bc6 10330 int maxphyaddr;
e9ac033e
EK
10331 u64 count, addr;
10332
10333 if (vmcs12_read_any(vcpu, count_field, &count) ||
10334 vmcs12_read_any(vcpu, addr_field, &addr)) {
10335 WARN_ON(1);
10336 return -EINVAL;
10337 }
10338 if (count == 0)
10339 return 0;
92d71bc6 10340 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
10341 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10342 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 10343 pr_debug_ratelimited(
e9ac033e
EK
10344 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10345 addr_field, maxphyaddr, count, addr);
10346 return -EINVAL;
10347 }
10348 return 0;
10349}
10350
10351static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10352 struct vmcs12 *vmcs12)
10353{
e9ac033e
EK
10354 if (vmcs12->vm_exit_msr_load_count == 0 &&
10355 vmcs12->vm_exit_msr_store_count == 0 &&
10356 vmcs12->vm_entry_msr_load_count == 0)
10357 return 0; /* Fast path */
e9ac033e 10358 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 10359 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 10360 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 10361 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 10362 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 10363 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
10364 return -EINVAL;
10365 return 0;
10366}
10367
c5f983f6
BD
10368static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10369 struct vmcs12 *vmcs12)
10370{
10371 u64 address = vmcs12->pml_address;
10372 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10373
10374 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10375 if (!nested_cpu_has_ept(vmcs12) ||
10376 !IS_ALIGNED(address, 4096) ||
10377 address >> maxphyaddr)
10378 return -EINVAL;
10379 }
10380
10381 return 0;
10382}
10383
e9ac033e
EK
10384static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10385 struct vmx_msr_entry *e)
10386{
10387 /* x2APIC MSR accesses are not allowed */
8a9781f7 10388 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
10389 return -EINVAL;
10390 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10391 e->index == MSR_IA32_UCODE_REV)
10392 return -EINVAL;
10393 if (e->reserved != 0)
ff651cb6
WV
10394 return -EINVAL;
10395 return 0;
10396}
10397
e9ac033e
EK
10398static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10399 struct vmx_msr_entry *e)
ff651cb6
WV
10400{
10401 if (e->index == MSR_FS_BASE ||
10402 e->index == MSR_GS_BASE ||
e9ac033e
EK
10403 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10404 nested_vmx_msr_check_common(vcpu, e))
10405 return -EINVAL;
10406 return 0;
10407}
10408
10409static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10410 struct vmx_msr_entry *e)
10411{
10412 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10413 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
10414 return -EINVAL;
10415 return 0;
10416}
10417
10418/*
10419 * Load guest's/host's msr at nested entry/exit.
10420 * return 0 for success, entry index for failure.
10421 */
10422static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10423{
10424 u32 i;
10425 struct vmx_msr_entry e;
10426 struct msr_data msr;
10427
10428 msr.host_initiated = false;
10429 for (i = 0; i < count; i++) {
54bf36aa
PB
10430 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10431 &e, sizeof(e))) {
bbe41b95 10432 pr_debug_ratelimited(
e9ac033e
EK
10433 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10434 __func__, i, gpa + i * sizeof(e));
ff651cb6 10435 goto fail;
e9ac033e
EK
10436 }
10437 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 10438 pr_debug_ratelimited(
e9ac033e
EK
10439 "%s check failed (%u, 0x%x, 0x%x)\n",
10440 __func__, i, e.index, e.reserved);
10441 goto fail;
10442 }
ff651cb6
WV
10443 msr.index = e.index;
10444 msr.data = e.value;
e9ac033e 10445 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 10446 pr_debug_ratelimited(
e9ac033e
EK
10447 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10448 __func__, i, e.index, e.value);
ff651cb6 10449 goto fail;
e9ac033e 10450 }
ff651cb6
WV
10451 }
10452 return 0;
10453fail:
10454 return i + 1;
10455}
10456
10457static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10458{
10459 u32 i;
10460 struct vmx_msr_entry e;
10461
10462 for (i = 0; i < count; i++) {
609e36d3 10463 struct msr_data msr_info;
54bf36aa
PB
10464 if (kvm_vcpu_read_guest(vcpu,
10465 gpa + i * sizeof(e),
10466 &e, 2 * sizeof(u32))) {
bbe41b95 10467 pr_debug_ratelimited(
e9ac033e
EK
10468 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10469 __func__, i, gpa + i * sizeof(e));
ff651cb6 10470 return -EINVAL;
e9ac033e
EK
10471 }
10472 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 10473 pr_debug_ratelimited(
e9ac033e
EK
10474 "%s check failed (%u, 0x%x, 0x%x)\n",
10475 __func__, i, e.index, e.reserved);
ff651cb6 10476 return -EINVAL;
e9ac033e 10477 }
609e36d3
PB
10478 msr_info.host_initiated = false;
10479 msr_info.index = e.index;
10480 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 10481 pr_debug_ratelimited(
e9ac033e
EK
10482 "%s cannot read MSR (%u, 0x%x)\n",
10483 __func__, i, e.index);
10484 return -EINVAL;
10485 }
54bf36aa
PB
10486 if (kvm_vcpu_write_guest(vcpu,
10487 gpa + i * sizeof(e) +
10488 offsetof(struct vmx_msr_entry, value),
10489 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 10490 pr_debug_ratelimited(
e9ac033e 10491 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 10492 __func__, i, e.index, msr_info.data);
e9ac033e
EK
10493 return -EINVAL;
10494 }
ff651cb6
WV
10495 }
10496 return 0;
10497}
10498
1dc35dac
LP
10499static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10500{
10501 unsigned long invalid_mask;
10502
10503 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10504 return (val & invalid_mask) == 0;
10505}
10506
9ed38ffa
LP
10507/*
10508 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10509 * emulating VM entry into a guest with EPT enabled.
10510 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10511 * is assigned to entry_failure_code on failure.
10512 */
10513static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 10514 u32 *entry_failure_code)
9ed38ffa 10515{
9ed38ffa 10516 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 10517 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
10518 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10519 return 1;
10520 }
10521
10522 /*
10523 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10524 * must not be dereferenced.
10525 */
10526 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10527 !nested_ept) {
10528 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10529 *entry_failure_code = ENTRY_FAIL_PDPTE;
10530 return 1;
10531 }
10532 }
10533
10534 vcpu->arch.cr3 = cr3;
10535 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10536 }
10537
10538 kvm_mmu_reset_context(vcpu);
10539 return 0;
10540}
10541
fe3ef05c
NHE
10542/*
10543 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10544 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 10545 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
10546 * guest in a way that will both be appropriate to L1's requests, and our
10547 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10548 * function also has additional necessary side-effects, like setting various
10549 * vcpu->arch fields.
ee146c1c
LP
10550 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10551 * is assigned to entry_failure_code on failure.
fe3ef05c 10552 */
ee146c1c 10553static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
ca0bde28 10554 bool from_vmentry, u32 *entry_failure_code)
fe3ef05c
NHE
10555{
10556 struct vcpu_vmx *vmx = to_vmx(vcpu);
03efce6f 10557 u32 exec_control, vmcs12_exec_ctrl;
fe3ef05c
NHE
10558
10559 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10560 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10561 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10562 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10563 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10564 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10565 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10566 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10567 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10568 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10569 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10570 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10571 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10572 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10573 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10574 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10575 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10576 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10577 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10578 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10579 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10580 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10581 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10582 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10583 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10584 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10585 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10586 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10587 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10588 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10589 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10590 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10591 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10592 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10593 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10594 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10595
cf8b84f4
JM
10596 if (from_vmentry &&
10597 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
10598 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10599 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10600 } else {
10601 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10602 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10603 }
cf8b84f4
JM
10604 if (from_vmentry) {
10605 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10606 vmcs12->vm_entry_intr_info_field);
10607 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10608 vmcs12->vm_entry_exception_error_code);
10609 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10610 vmcs12->vm_entry_instruction_len);
10611 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10612 vmcs12->guest_interruptibility_info);
2d6144e3
WL
10613 vmx->loaded_vmcs->nmi_known_unmasked =
10614 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
cf8b84f4
JM
10615 } else {
10616 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10617 }
fe3ef05c 10618 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 10619 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
10620 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10621 vmcs12->guest_pending_dbg_exceptions);
10622 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10623 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10624
81dc01f7
WL
10625 if (nested_cpu_has_xsaves(vmcs12))
10626 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
10627 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10628
f4124500 10629 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
10630
10631 /* Preemption timer setting is only taken from vmcs01. */
705699a1 10632 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
10633 exec_control |= vmcs_config.pin_based_exec_ctrl;
10634 if (vmx->hv_deadline_tsc == -1)
10635 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 10636
9314006d 10637 /* Posted interrupts setting is only taken from vmcs12. */
705699a1 10638 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
10639 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10640 vmx->nested.pi_pending = false;
06a5524f 10641 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
6beb7bd5 10642 } else {
705699a1 10643 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 10644 }
705699a1 10645
f4124500 10646 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 10647
f4124500
JK
10648 vmx->nested.preemption_timer_expired = false;
10649 if (nested_cpu_has_preemption_timer(vmcs12))
10650 vmx_start_preemption_timer(vcpu);
0238ea91 10651
fe3ef05c
NHE
10652 /*
10653 * Whether page-faults are trapped is determined by a combination of
10654 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10655 * If enable_ept, L0 doesn't care about page faults and we should
10656 * set all of these to L1's desires. However, if !enable_ept, L0 does
10657 * care about (at least some) page faults, and because it is not easy
10658 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10659 * to exit on each and every L2 page fault. This is done by setting
10660 * MASK=MATCH=0 and (see below) EB.PF=1.
10661 * Note that below we don't need special code to set EB.PF beyond the
10662 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10663 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10664 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
fe3ef05c
NHE
10665 */
10666 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10667 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10668 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10669 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10670
10671 if (cpu_has_secondary_exec_ctrls()) {
80154d77 10672 exec_control = vmx->secondary_exec_control;
e2821620 10673
fe3ef05c 10674 /* Take the following fields only from vmcs12 */
696dfd95 10675 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
90a2db6d 10676 SECONDARY_EXEC_ENABLE_INVPCID |
b3a2a907 10677 SECONDARY_EXEC_RDTSCP |
3db13480 10678 SECONDARY_EXEC_XSAVES |
696dfd95 10679 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
27c42a1b
BD
10680 SECONDARY_EXEC_APIC_REGISTER_VIRT |
10681 SECONDARY_EXEC_ENABLE_VMFUNC);
fe3ef05c 10682 if (nested_cpu_has(vmcs12,
03efce6f
BD
10683 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10684 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10685 ~SECONDARY_EXEC_ENABLE_PML;
10686 exec_control |= vmcs12_exec_ctrl;
10687 }
fe3ef05c 10688
27c42a1b
BD
10689 /* All VMFUNCs are currently emulated through L0 vmexits. */
10690 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10691 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10692
608406e2
WV
10693 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10694 vmcs_write64(EOI_EXIT_BITMAP0,
10695 vmcs12->eoi_exit_bitmap0);
10696 vmcs_write64(EOI_EXIT_BITMAP1,
10697 vmcs12->eoi_exit_bitmap1);
10698 vmcs_write64(EOI_EXIT_BITMAP2,
10699 vmcs12->eoi_exit_bitmap2);
10700 vmcs_write64(EOI_EXIT_BITMAP3,
10701 vmcs12->eoi_exit_bitmap3);
10702 vmcs_write16(GUEST_INTR_STATUS,
10703 vmcs12->guest_intr_status);
10704 }
10705
6beb7bd5
JM
10706 /*
10707 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10708 * nested_get_vmcs12_pages will either fix it up or
10709 * remove the VM execution control.
10710 */
10711 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10712 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10713
fe3ef05c
NHE
10714 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10715 }
10716
10717
10718 /*
10719 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10720 * Some constant fields are set here by vmx_set_constant_host_state().
10721 * Other fields are different per CPU, and will be set later when
10722 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10723 */
a547c6db 10724 vmx_set_constant_host_state(vmx);
fe3ef05c 10725
83bafef1
JM
10726 /*
10727 * Set the MSR load/store lists to match L0's settings.
10728 */
10729 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10730 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10731 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10732 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10733 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10734
fe3ef05c
NHE
10735 /*
10736 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10737 * entry, but only if the current (host) sp changed from the value
10738 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10739 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10740 * here we just force the write to happen on entry.
10741 */
10742 vmx->host_rsp = 0;
10743
10744 exec_control = vmx_exec_control(vmx); /* L0's desires */
10745 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10746 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10747 exec_control &= ~CPU_BASED_TPR_SHADOW;
10748 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 10749
6beb7bd5
JM
10750 /*
10751 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10752 * nested_get_vmcs12_pages can't fix it up, the illegal value
10753 * will result in a VM entry failure.
10754 */
a7c0b07d 10755 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 10756 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d 10757 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
51aa68e7
JM
10758 } else {
10759#ifdef CONFIG_X86_64
10760 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
10761 CPU_BASED_CR8_STORE_EXITING;
10762#endif
a7c0b07d
WL
10763 }
10764
fe3ef05c 10765 /*
3af18d9c 10766 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10767 * Rather, exit every time.
10768 */
fe3ef05c
NHE
10769 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10770 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10771
10772 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10773
10774 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10775 * bitwise-or of what L1 wants to trap for L2, and what we want to
10776 * trap. Note that CR0.TS also needs updating - we do this later.
10777 */
10778 update_exception_bitmap(vcpu);
10779 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10780 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10781
8049d651
NHE
10782 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10783 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10784 * bits are further modified by vmx_set_efer() below.
10785 */
f4124500 10786 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10787
10788 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10789 * emulated by vmx_set_efer(), below.
10790 */
2961e876 10791 vm_entry_controls_init(vmx,
8049d651
NHE
10792 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10793 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10794 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10795
cf8b84f4
JM
10796 if (from_vmentry &&
10797 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 10798 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 10799 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 10800 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10801 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 10802 }
fe3ef05c
NHE
10803
10804 set_cr4_guest_host_mask(vmx);
10805
cf8b84f4
JM
10806 if (from_vmentry &&
10807 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
36be0b9d
PB
10808 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10809
27fc51b2
NHE
10810 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10811 vmcs_write64(TSC_OFFSET,
ea26e4ec 10812 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
27fc51b2 10813 else
ea26e4ec 10814 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
c95ba92a
PF
10815 if (kvm_has_tsc_control)
10816 decache_tsc_multiplier(vmx);
fe3ef05c 10817
4b0be90f
PB
10818 if (cpu_has_vmx_msr_bitmap())
10819 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
10820
fe3ef05c
NHE
10821 if (enable_vpid) {
10822 /*
5c614b35
WL
10823 * There is no direct mapping between vpid02 and vpid12, the
10824 * vpid02 is per-vCPU for L0 and reused while the value of
10825 * vpid12 is changed w/ one invvpid during nested vmentry.
10826 * The vpid12 is allocated by L1 for L2, so it will not
10827 * influence global bitmap(for vpid01 and vpid02 allocation)
10828 * even if spawn a lot of nested vCPUs.
fe3ef05c 10829 */
5c614b35
WL
10830 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10831 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10832 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10833 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10834 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10835 }
10836 } else {
10837 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10838 vmx_flush_tlb(vcpu);
10839 }
10840
fe3ef05c
NHE
10841 }
10842
1fb883bb
LP
10843 if (enable_pml) {
10844 /*
10845 * Conceptually we want to copy the PML address and index from
10846 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10847 * since we always flush the log on each vmexit, this happens
10848 * to be equivalent to simply resetting the fields in vmcs02.
10849 */
10850 ASSERT(vmx->pml_pg);
10851 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10852 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10853 }
10854
155a97a3 10855 if (nested_cpu_has_ept(vmcs12)) {
ae1e2d10
PB
10856 if (nested_ept_init_mmu_context(vcpu)) {
10857 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10858 return 1;
10859 }
fb6c8198
JM
10860 } else if (nested_cpu_has2(vmcs12,
10861 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10862 vmx_flush_tlb_ept_only(vcpu);
155a97a3
NHE
10863 }
10864
fe3ef05c 10865 /*
bd7e5b08
PB
10866 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10867 * bits which we consider mandatory enabled.
fe3ef05c
NHE
10868 * The CR0_READ_SHADOW is what L2 should have expected to read given
10869 * the specifications by L1; It's not enough to take
10870 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10871 * have more bits than L1 expected.
10872 */
10873 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10874 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10875
10876 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10877 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10878
cf8b84f4
JM
10879 if (from_vmentry &&
10880 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
10881 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10882 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10883 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10884 else
10885 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10886 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10887 vmx_set_efer(vcpu, vcpu->arch.efer);
10888
9ed38ffa 10889 /* Shadow page tables on either EPT or shadow page tables. */
7ad658b6 10890 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
9ed38ffa
LP
10891 entry_failure_code))
10892 return 1;
7ca29de2 10893
feaf0c7d
GN
10894 if (!enable_ept)
10895 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10896
3633cfc3
NHE
10897 /*
10898 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10899 */
10900 if (enable_ept) {
10901 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10902 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10903 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10904 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10905 }
10906
fe3ef05c
NHE
10907 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10908 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 10909 return 0;
fe3ef05c
NHE
10910}
10911
ca0bde28 10912static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 10913{
cd232ad0 10914 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 10915
6dfacadd 10916 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
10917 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10918 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 10919
56a20510
JM
10920 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10921 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10922
ca0bde28
JM
10923 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10924 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10925
712b12d7
JM
10926 if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
10927 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10928
ca0bde28
JM
10929 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10930 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 10931
ca0bde28
JM
10932 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10933 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 10934
c5f983f6
BD
10935 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10936 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10937
7c177938 10938 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
0115f9cb 10939 vmx->nested.nested_vmx_procbased_ctls_low,
b9c237bb 10940 vmx->nested.nested_vmx_procbased_ctls_high) ||
2e5b0bd9
JM
10941 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10942 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10943 vmx->nested.nested_vmx_secondary_ctls_low,
10944 vmx->nested.nested_vmx_secondary_ctls_high)) ||
7c177938 10945 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10946 vmx->nested.nested_vmx_pinbased_ctls_low,
10947 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10948 !vmx_control_verify(vmcs12->vm_exit_controls,
0115f9cb 10949 vmx->nested.nested_vmx_exit_ctls_low,
b9c237bb 10950 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10951 !vmx_control_verify(vmcs12->vm_entry_controls,
0115f9cb 10952 vmx->nested.nested_vmx_entry_ctls_low,
b9c237bb 10953 vmx->nested.nested_vmx_entry_ctls_high))
ca0bde28 10954 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10955
41ab9372
BD
10956 if (nested_cpu_has_vmfunc(vmcs12)) {
10957 if (vmcs12->vm_function_control &
10958 ~vmx->nested.nested_vmx_vmfunc_controls)
10959 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10960
10961 if (nested_cpu_has_eptp_switching(vmcs12)) {
10962 if (!nested_cpu_has_ept(vmcs12) ||
10963 !page_address_valid(vcpu, vmcs12->eptp_list_address))
10964 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10965 }
10966 }
27c42a1b 10967
c7c2c709
JM
10968 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10969 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10970
3899152c 10971 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 10972 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
10973 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10974 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10975
10976 return 0;
10977}
10978
10979static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10980 u32 *exit_qual)
10981{
10982 bool ia32e;
10983
10984 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 10985
3899152c 10986 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 10987 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 10988 return 1;
ca0bde28
JM
10989
10990 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10991 vmcs12->vmcs_link_pointer != -1ull) {
10992 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 10993 return 1;
7c177938
NHE
10994 }
10995
384bb783 10996 /*
cb0c8cda 10997 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10998 * are performed on the field for the IA32_EFER MSR:
10999 * - Bits reserved in the IA32_EFER MSR must be 0.
11000 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
11001 * the IA-32e mode guest VM-exit control. It must also be identical
11002 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
11003 * CR0.PG) is 1.
11004 */
ca0bde28
JM
11005 if (to_vmx(vcpu)->nested.nested_run_pending &&
11006 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
11007 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
11008 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
11009 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
11010 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 11011 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 11012 return 1;
384bb783
JK
11013 }
11014
11015 /*
11016 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
11017 * IA32_EFER MSR must be 0 in the field for that register. In addition,
11018 * the values of the LMA and LME bits in the field must each be that of
11019 * the host address-space size VM-exit control.
11020 */
11021 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
11022 ia32e = (vmcs12->vm_exit_controls &
11023 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
11024 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
11025 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 11026 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 11027 return 1;
ca0bde28
JM
11028 }
11029
f1b026a3
WL
11030 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
11031 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
11032 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
11033 return 1;
11034
ca0bde28
JM
11035 return 0;
11036}
11037
858e25c0
JM
11038static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
11039{
11040 struct vcpu_vmx *vmx = to_vmx(vcpu);
11041 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
858e25c0
JM
11042 u32 msr_entry_idx;
11043 u32 exit_qual;
11044
858e25c0
JM
11045 enter_guest_mode(vcpu);
11046
11047 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
11048 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11049
8819227c 11050 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
858e25c0
JM
11051 vmx_segment_cache_clear(vmx);
11052
11053 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
11054 leave_guest_mode(vcpu);
1279a6b1 11055 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
11056 nested_vmx_entry_failure(vcpu, vmcs12,
11057 EXIT_REASON_INVALID_STATE, exit_qual);
11058 return 1;
11059 }
11060
11061 nested_get_vmcs12_pages(vcpu, vmcs12);
11062
11063 msr_entry_idx = nested_vmx_load_msr(vcpu,
11064 vmcs12->vm_entry_msr_load_addr,
11065 vmcs12->vm_entry_msr_load_count);
11066 if (msr_entry_idx) {
11067 leave_guest_mode(vcpu);
1279a6b1 11068 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
11069 nested_vmx_entry_failure(vcpu, vmcs12,
11070 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
11071 return 1;
11072 }
11073
858e25c0
JM
11074 /*
11075 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
11076 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
11077 * returned as far as L1 is concerned. It will only return (and set
11078 * the success flag) when L2 exits (see nested_vmx_vmexit()).
11079 */
11080 return 0;
11081}
11082
ca0bde28
JM
11083/*
11084 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
11085 * for running an L2 nested guest.
11086 */
11087static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
11088{
11089 struct vmcs12 *vmcs12;
11090 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3f1dfb6 11091 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
ca0bde28
JM
11092 u32 exit_qual;
11093 int ret;
11094
11095 if (!nested_vmx_check_permission(vcpu))
11096 return 1;
11097
11098 if (!nested_vmx_check_vmcs12(vcpu))
11099 goto out;
11100
11101 vmcs12 = get_vmcs12(vcpu);
11102
11103 if (enable_shadow_vmcs)
11104 copy_shadow_to_vmcs12(vmx);
11105
11106 /*
11107 * The nested entry process starts with enforcing various prerequisites
11108 * on vmcs12 as required by the Intel SDM, and act appropriately when
11109 * they fail: As the SDM explains, some conditions should cause the
11110 * instruction to fail, while others will cause the instruction to seem
11111 * to succeed, but return an EXIT_REASON_INVALID_STATE.
11112 * To speed up the normal (success) code path, we should avoid checking
11113 * for misconfigurations which will anyway be caught by the processor
11114 * when using the merged vmcs02.
11115 */
b3f1dfb6
JM
11116 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
11117 nested_vmx_failValid(vcpu,
11118 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
11119 goto out;
11120 }
11121
ca0bde28
JM
11122 if (vmcs12->launch_state == launch) {
11123 nested_vmx_failValid(vcpu,
11124 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
11125 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
11126 goto out;
11127 }
11128
11129 ret = check_vmentry_prereqs(vcpu, vmcs12);
11130 if (ret) {
11131 nested_vmx_failValid(vcpu, ret);
11132 goto out;
11133 }
11134
11135 /*
11136 * After this point, the trap flag no longer triggers a singlestep trap
11137 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
11138 * This is not 100% correct; for performance reasons, we delegate most
11139 * of the checks on host state to the processor. If those fail,
11140 * the singlestep trap is missed.
11141 */
11142 skip_emulated_instruction(vcpu);
11143
11144 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
11145 if (ret) {
11146 nested_vmx_entry_failure(vcpu, vmcs12,
11147 EXIT_REASON_INVALID_STATE, exit_qual);
11148 return 1;
384bb783
JK
11149 }
11150
7c177938
NHE
11151 /*
11152 * We're finally done with prerequisite checking, and can start with
11153 * the nested entry.
11154 */
11155
858e25c0
JM
11156 ret = enter_vmx_non_root_mode(vcpu, true);
11157 if (ret)
11158 return ret;
ff651cb6 11159
6dfacadd 11160 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 11161 return kvm_vcpu_halt(vcpu);
6dfacadd 11162
7af40ad3
JK
11163 vmx->nested.nested_run_pending = 1;
11164
cd232ad0 11165 return 1;
eb277562
KH
11166
11167out:
6affcbed 11168 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
11169}
11170
4704d0be
NHE
11171/*
11172 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
11173 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
11174 * This function returns the new value we should put in vmcs12.guest_cr0.
11175 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
11176 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
11177 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
11178 * didn't trap the bit, because if L1 did, so would L0).
11179 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
11180 * been modified by L2, and L1 knows it. So just leave the old value of
11181 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
11182 * isn't relevant, because if L0 traps this bit it can set it to anything.
11183 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
11184 * changed these bits, and therefore they need to be updated, but L0
11185 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
11186 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
11187 */
11188static inline unsigned long
11189vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11190{
11191 return
11192 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
11193 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
11194 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
11195 vcpu->arch.cr0_guest_owned_bits));
11196}
11197
11198static inline unsigned long
11199vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11200{
11201 return
11202 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
11203 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
11204 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
11205 vcpu->arch.cr4_guest_owned_bits));
11206}
11207
5f3d5799
JK
11208static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
11209 struct vmcs12 *vmcs12)
11210{
11211 u32 idt_vectoring;
11212 unsigned int nr;
11213
664f8e26 11214 if (vcpu->arch.exception.injected) {
5f3d5799
JK
11215 nr = vcpu->arch.exception.nr;
11216 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11217
11218 if (kvm_exception_is_soft(nr)) {
11219 vmcs12->vm_exit_instruction_len =
11220 vcpu->arch.event_exit_inst_len;
11221 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11222 } else
11223 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11224
11225 if (vcpu->arch.exception.has_error_code) {
11226 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11227 vmcs12->idt_vectoring_error_code =
11228 vcpu->arch.exception.error_code;
11229 }
11230
11231 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 11232 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
11233 vmcs12->idt_vectoring_info_field =
11234 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
11235 } else if (vcpu->arch.interrupt.pending) {
11236 nr = vcpu->arch.interrupt.nr;
11237 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11238
11239 if (vcpu->arch.interrupt.soft) {
11240 idt_vectoring |= INTR_TYPE_SOFT_INTR;
11241 vmcs12->vm_entry_instruction_len =
11242 vcpu->arch.event_exit_inst_len;
11243 } else
11244 idt_vectoring |= INTR_TYPE_EXT_INTR;
11245
11246 vmcs12->idt_vectoring_info_field = idt_vectoring;
11247 }
11248}
11249
b6b8a145
JK
11250static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11251{
11252 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfcf83b1 11253 unsigned long exit_qual;
917dc606
LA
11254 bool block_nested_events =
11255 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
acc9ab60 11256
bfcf83b1
WL
11257 if (vcpu->arch.exception.pending &&
11258 nested_vmx_check_exception(vcpu, &exit_qual)) {
917dc606 11259 if (block_nested_events)
bfcf83b1
WL
11260 return -EBUSY;
11261 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
bfcf83b1
WL
11262 return 0;
11263 }
11264
f4124500
JK
11265 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11266 vmx->nested.preemption_timer_expired) {
917dc606 11267 if (block_nested_events)
f4124500
JK
11268 return -EBUSY;
11269 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11270 return 0;
11271 }
11272
b6b8a145 11273 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
917dc606 11274 if (block_nested_events)
b6b8a145
JK
11275 return -EBUSY;
11276 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11277 NMI_VECTOR | INTR_TYPE_NMI_INTR |
11278 INTR_INFO_VALID_MASK, 0);
11279 /*
11280 * The NMI-triggered VM exit counts as injection:
11281 * clear this one and block further NMIs.
11282 */
11283 vcpu->arch.nmi_pending = 0;
11284 vmx_set_nmi_mask(vcpu, true);
11285 return 0;
11286 }
11287
11288 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11289 nested_exit_on_intr(vcpu)) {
917dc606 11290 if (block_nested_events)
b6b8a145
JK
11291 return -EBUSY;
11292 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 11293 return 0;
b6b8a145
JK
11294 }
11295
6342c50a
DH
11296 vmx_complete_nested_posted_interrupt(vcpu);
11297 return 0;
b6b8a145
JK
11298}
11299
f4124500
JK
11300static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11301{
11302 ktime_t remaining =
11303 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11304 u64 value;
11305
11306 if (ktime_to_ns(remaining) <= 0)
11307 return 0;
11308
11309 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11310 do_div(value, 1000000);
11311 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11312}
11313
4704d0be 11314/*
cf8b84f4
JM
11315 * Update the guest state fields of vmcs12 to reflect changes that
11316 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11317 * VM-entry controls is also updated, since this is really a guest
11318 * state bit.)
4704d0be 11319 */
cf8b84f4 11320static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 11321{
4704d0be
NHE
11322 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11323 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11324
4704d0be
NHE
11325 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11326 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11327 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11328
11329 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11330 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11331 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11332 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11333 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11334 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11335 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11336 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11337 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11338 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11339 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11340 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11341 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11342 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11343 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11344 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11345 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11346 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11347 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11348 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11349 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11350 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11351 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11352 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11353 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11354 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11355 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11356 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11357 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11358 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11359 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11360 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11361 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11362 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11363 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11364 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11365
4704d0be
NHE
11366 vmcs12->guest_interruptibility_info =
11367 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11368 vmcs12->guest_pending_dbg_exceptions =
11369 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
11370 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11371 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11372 else
11373 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 11374
f4124500
JK
11375 if (nested_cpu_has_preemption_timer(vmcs12)) {
11376 if (vmcs12->vm_exit_controls &
11377 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11378 vmcs12->vmx_preemption_timer_value =
11379 vmx_get_preemption_timer_value(vcpu);
11380 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11381 }
7854cbca 11382
3633cfc3
NHE
11383 /*
11384 * In some cases (usually, nested EPT), L2 is allowed to change its
11385 * own CR3 without exiting. If it has changed it, we must keep it.
11386 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11387 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11388 *
11389 * Additionally, restore L2's PDPTR to vmcs12.
11390 */
11391 if (enable_ept) {
f3531054 11392 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
11393 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11394 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11395 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11396 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11397 }
11398
d281e13b 11399 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
119a9c01 11400
608406e2
WV
11401 if (nested_cpu_has_vid(vmcs12))
11402 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11403
c18911a2
JK
11404 vmcs12->vm_entry_controls =
11405 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 11406 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 11407
2996fca0
JK
11408 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11409 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11410 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11411 }
11412
4704d0be
NHE
11413 /* TODO: These cannot have changed unless we have MSR bitmaps and
11414 * the relevant bit asks not to trap the change */
b8c07d55 11415 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 11416 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
11417 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11418 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
11419 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11420 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11421 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 11422 if (kvm_mpx_supported())
36be0b9d 11423 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
cf8b84f4
JM
11424}
11425
11426/*
11427 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11428 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11429 * and this function updates it to reflect the changes to the guest state while
11430 * L2 was running (and perhaps made some exits which were handled directly by L0
11431 * without going back to L1), and to reflect the exit reason.
11432 * Note that we do not have to copy here all VMCS fields, just those that
11433 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11434 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11435 * which already writes to vmcs12 directly.
11436 */
11437static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11438 u32 exit_reason, u32 exit_intr_info,
11439 unsigned long exit_qualification)
11440{
11441 /* update guest state fields: */
11442 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
11443
11444 /* update exit information fields: */
11445
533558bc
JK
11446 vmcs12->vm_exit_reason = exit_reason;
11447 vmcs12->exit_qualification = exit_qualification;
533558bc 11448 vmcs12->vm_exit_intr_info = exit_intr_info;
7313c698 11449
5f3d5799 11450 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
11451 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11452 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11453
5f3d5799 11454 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7cdc2d62
JM
11455 vmcs12->launch_state = 1;
11456
5f3d5799
JK
11457 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11458 * instead of reading the real value. */
4704d0be 11459 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
11460
11461 /*
11462 * Transfer the event that L0 or L1 may wanted to inject into
11463 * L2 to IDT_VECTORING_INFO_FIELD.
11464 */
11465 vmcs12_save_pending_event(vcpu, vmcs12);
11466 }
11467
11468 /*
11469 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11470 * preserved above and would only end up incorrectly in L1.
11471 */
11472 vcpu->arch.nmi_injected = false;
11473 kvm_clear_exception_queue(vcpu);
11474 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
11475}
11476
5af41573
WL
11477static void load_vmcs12_mmu_host_state(struct kvm_vcpu *vcpu,
11478 struct vmcs12 *vmcs12)
11479{
11480 u32 entry_failure_code;
11481
11482 nested_ept_uninit_mmu_context(vcpu);
11483
11484 /*
11485 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11486 * couldn't have changed.
11487 */
11488 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11489 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
11490
11491 if (!enable_ept)
11492 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11493}
11494
4704d0be
NHE
11495/*
11496 * A part of what we need to when the nested L2 guest exits and we want to
11497 * run its L1 parent, is to reset L1's guest state to the host state specified
11498 * in vmcs12.
11499 * This function is to be called not only on normal nested exit, but also on
11500 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11501 * Failures During or After Loading Guest State").
11502 * This function should be called when the active VMCS is L1's (vmcs01).
11503 */
733568f9
JK
11504static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11505 struct vmcs12 *vmcs12)
4704d0be 11506{
21feb4eb
ACL
11507 struct kvm_segment seg;
11508
4704d0be
NHE
11509 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11510 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 11511 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
11512 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11513 else
11514 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11515 vmx_set_efer(vcpu, vcpu->arch.efer);
11516
11517 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11518 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 11519 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
11520 /*
11521 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
11522 * actually changed, because vmx_set_cr0 refers to efer set above.
11523 *
11524 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11525 * (KVM doesn't change it);
4704d0be 11526 */
bd7e5b08 11527 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 11528 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 11529
bd7e5b08 11530 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be 11531 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8eb3f87d 11532 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4704d0be 11533
5af41573 11534 load_vmcs12_mmu_host_state(vcpu, vmcs12);
feaf0c7d 11535
4704d0be
NHE
11536 if (enable_vpid) {
11537 /*
11538 * Trivially support vpid by letting L2s share their parent
11539 * L1's vpid. TODO: move to a more elaborate solution, giving
11540 * each L2 its own vpid and exposing the vpid feature to L1.
11541 */
11542 vmx_flush_tlb(vcpu);
11543 }
06a5524f
WV
11544 /* Restore posted intr vector. */
11545 if (nested_cpu_has_posted_intr(vmcs12))
11546 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4704d0be
NHE
11547
11548 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11549 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11550 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11551 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11552 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
21f2d551
LP
11553 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
11554 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4704d0be 11555
36be0b9d
PB
11556 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11557 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11558 vmcs_write64(GUEST_BNDCFGS, 0);
11559
44811c02 11560 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 11561 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
11562 vcpu->arch.pat = vmcs12->host_ia32_pat;
11563 }
4704d0be
NHE
11564 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11565 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11566 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 11567
21feb4eb
ACL
11568 /* Set L1 segment info according to Intel SDM
11569 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11570 seg = (struct kvm_segment) {
11571 .base = 0,
11572 .limit = 0xFFFFFFFF,
11573 .selector = vmcs12->host_cs_selector,
11574 .type = 11,
11575 .present = 1,
11576 .s = 1,
11577 .g = 1
11578 };
11579 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11580 seg.l = 1;
11581 else
11582 seg.db = 1;
11583 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11584 seg = (struct kvm_segment) {
11585 .base = 0,
11586 .limit = 0xFFFFFFFF,
11587 .type = 3,
11588 .present = 1,
11589 .s = 1,
11590 .db = 1,
11591 .g = 1
11592 };
11593 seg.selector = vmcs12->host_ds_selector;
11594 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11595 seg.selector = vmcs12->host_es_selector;
11596 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11597 seg.selector = vmcs12->host_ss_selector;
11598 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11599 seg.selector = vmcs12->host_fs_selector;
11600 seg.base = vmcs12->host_fs_base;
11601 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11602 seg.selector = vmcs12->host_gs_selector;
11603 seg.base = vmcs12->host_gs_base;
11604 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11605 seg = (struct kvm_segment) {
205befd9 11606 .base = vmcs12->host_tr_base,
21feb4eb
ACL
11607 .limit = 0x67,
11608 .selector = vmcs12->host_tr_selector,
11609 .type = 11,
11610 .present = 1
11611 };
11612 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11613
503cd0c5
JK
11614 kvm_set_dr(vcpu, 7, 0x400);
11615 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 11616
3af18d9c 11617 if (cpu_has_vmx_msr_bitmap())
4b0be90f 11618 vmx_update_msr_bitmap(vcpu);
3af18d9c 11619
ff651cb6
WV
11620 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11621 vmcs12->vm_exit_msr_load_count))
11622 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
11623}
11624
11625/*
11626 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11627 * and modify vmcs12 to make it see what it would expect to see there if
11628 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11629 */
533558bc
JK
11630static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11631 u32 exit_intr_info,
11632 unsigned long exit_qualification)
4704d0be
NHE
11633{
11634 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
11635 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11636
5f3d5799
JK
11637 /* trying to cancel vmlaunch/vmresume is a bug */
11638 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11639
4f350c6d
JM
11640 /*
11641 * The only expected VM-instruction error is "VM entry with
11642 * invalid control field(s)." Anything else indicates a
11643 * problem with L0.
11644 */
11645 WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
11646 VMXERR_ENTRY_INVALID_CONTROL_FIELD));
11647
4704d0be 11648 leave_guest_mode(vcpu);
4704d0be 11649
4f350c6d 11650 if (likely(!vmx->fail)) {
72e9cbdb
LP
11651 if (exit_reason == -1)
11652 sync_vmcs12(vcpu, vmcs12);
11653 else
11654 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11655 exit_qualification);
ff651cb6 11656
4f350c6d
JM
11657 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11658 vmcs12->vm_exit_msr_store_count))
11659 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11660 }
cf3215d9 11661
1279a6b1 11662 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
8391ce44
PB
11663 vm_entry_controls_reset_shadow(vmx);
11664 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
11665 vmx_segment_cache_clear(vmx);
11666
9314006d 11667 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
11668 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11669 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 11670 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
11671 if (vmx->hv_deadline_tsc == -1)
11672 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11673 PIN_BASED_VMX_PREEMPTION_TIMER);
11674 else
11675 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11676 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
11677 if (kvm_has_tsc_control)
11678 decache_tsc_multiplier(vmx);
4704d0be 11679
dccbfcf5
RK
11680 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11681 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11682 vmx_set_virtual_x2apic_mode(vcpu,
11683 vcpu->arch.apic_base & X2APIC_ENABLE);
fb6c8198
JM
11684 } else if (!nested_cpu_has_ept(vmcs12) &&
11685 nested_cpu_has2(vmcs12,
11686 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11687 vmx_flush_tlb_ept_only(vcpu);
dccbfcf5 11688 }
4704d0be
NHE
11689
11690 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11691 vmx->host_rsp = 0;
11692
11693 /* Unpin physical memory we referred to in vmcs02 */
11694 if (vmx->nested.apic_access_page) {
53a70daf 11695 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 11696 vmx->nested.apic_access_page = NULL;
4704d0be 11697 }
a7c0b07d 11698 if (vmx->nested.virtual_apic_page) {
53a70daf 11699 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 11700 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 11701 }
705699a1
WV
11702 if (vmx->nested.pi_desc_page) {
11703 kunmap(vmx->nested.pi_desc_page);
53a70daf 11704 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
11705 vmx->nested.pi_desc_page = NULL;
11706 vmx->nested.pi_desc = NULL;
11707 }
4704d0be 11708
38b99173
TC
11709 /*
11710 * We are now running in L2, mmu_notifier will force to reload the
11711 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11712 */
c83b6d15 11713 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 11714
72e9cbdb 11715 if (enable_shadow_vmcs && exit_reason != -1)
012f83cb 11716 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
11717
11718 /* in case we halted in L2 */
11719 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4f350c6d
JM
11720
11721 if (likely(!vmx->fail)) {
11722 /*
11723 * TODO: SDM says that with acknowledge interrupt on
11724 * exit, bit 31 of the VM-exit interrupt information
11725 * (valid interrupt) is always set to 1 on
11726 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
11727 * need kvm_cpu_has_interrupt(). See the commit
11728 * message for details.
11729 */
11730 if (nested_exit_intr_ack_set(vcpu) &&
11731 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11732 kvm_cpu_has_interrupt(vcpu)) {
11733 int irq = kvm_cpu_get_interrupt(vcpu);
11734 WARN_ON(irq < 0);
11735 vmcs12->vm_exit_intr_info = irq |
11736 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11737 }
11738
72e9cbdb
LP
11739 if (exit_reason != -1)
11740 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11741 vmcs12->exit_qualification,
11742 vmcs12->idt_vectoring_info_field,
11743 vmcs12->vm_exit_intr_info,
11744 vmcs12->vm_exit_intr_error_code,
11745 KVM_ISA_VMX);
4f350c6d
JM
11746
11747 load_vmcs12_host_state(vcpu, vmcs12);
11748
11749 return;
11750 }
11751
11752 /*
11753 * After an early L2 VM-entry failure, we're now back
11754 * in L1 which thinks it just finished a VMLAUNCH or
11755 * VMRESUME instruction, so we need to set the failure
11756 * flag and the VM-instruction error field of the VMCS
11757 * accordingly.
11758 */
11759 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5af41573
WL
11760
11761 load_vmcs12_mmu_host_state(vcpu, vmcs12);
11762
4f350c6d
JM
11763 /*
11764 * The emulated instruction was already skipped in
11765 * nested_vmx_run, but the updated RIP was never
11766 * written back to the vmcs01.
11767 */
11768 skip_emulated_instruction(vcpu);
11769 vmx->fail = 0;
4704d0be
NHE
11770}
11771
42124925
JK
11772/*
11773 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11774 */
11775static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11776{
2f707d97
WL
11777 if (is_guest_mode(vcpu)) {
11778 to_vmx(vcpu)->nested.nested_run_pending = 0;
533558bc 11779 nested_vmx_vmexit(vcpu, -1, 0, 0);
2f707d97 11780 }
42124925
JK
11781 free_nested(to_vmx(vcpu));
11782}
11783
7c177938
NHE
11784/*
11785 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11786 * 23.7 "VM-entry failures during or after loading guest state" (this also
11787 * lists the acceptable exit-reason and exit-qualification parameters).
11788 * It should only be called before L2 actually succeeded to run, and when
11789 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11790 */
11791static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11792 struct vmcs12 *vmcs12,
11793 u32 reason, unsigned long qualification)
11794{
11795 load_vmcs12_host_state(vcpu, vmcs12);
11796 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11797 vmcs12->exit_qualification = qualification;
11798 nested_vmx_succeed(vcpu);
012f83cb
AG
11799 if (enable_shadow_vmcs)
11800 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
11801}
11802
8a76d7f2
JR
11803static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11804 struct x86_instruction_info *info,
11805 enum x86_intercept_stage stage)
11806{
11807 return X86EMUL_CONTINUE;
11808}
11809
64672c95
YJ
11810#ifdef CONFIG_X86_64
11811/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11812static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11813 u64 divisor, u64 *result)
11814{
11815 u64 low = a << shift, high = a >> (64 - shift);
11816
11817 /* To avoid the overflow on divq */
11818 if (high >= divisor)
11819 return 1;
11820
11821 /* Low hold the result, high hold rem which is discarded */
11822 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11823 "rm" (divisor), "0" (low), "1" (high));
11824 *result = low;
11825
11826 return 0;
11827}
11828
11829static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11830{
11831 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
11832 u64 tscl = rdtsc();
11833 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11834 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
11835
11836 /* Convert to host delta tsc if tsc scaling is enabled */
11837 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11838 u64_shl_div_u64(delta_tsc,
11839 kvm_tsc_scaling_ratio_frac_bits,
11840 vcpu->arch.tsc_scaling_ratio,
11841 &delta_tsc))
11842 return -ERANGE;
11843
11844 /*
11845 * If the delta tsc can't fit in the 32 bit after the multi shift,
11846 * we can't use the preemption timer.
11847 * It's possible that it fits on later vmentries, but checking
11848 * on every vmentry is costly so we just use an hrtimer.
11849 */
11850 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11851 return -ERANGE;
11852
11853 vmx->hv_deadline_tsc = tscl + delta_tsc;
11854 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11855 PIN_BASED_VMX_PREEMPTION_TIMER);
c8533544
WL
11856
11857 return delta_tsc == 0;
64672c95
YJ
11858}
11859
11860static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11861{
11862 struct vcpu_vmx *vmx = to_vmx(vcpu);
11863 vmx->hv_deadline_tsc = -1;
11864 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11865 PIN_BASED_VMX_PREEMPTION_TIMER);
11866}
11867#endif
11868
48d89b92 11869static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 11870{
b4a2d31d
RK
11871 if (ple_gap)
11872 shrink_ple_window(vcpu);
ae97a3b8
RK
11873}
11874
843e4330
KH
11875static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11876 struct kvm_memory_slot *slot)
11877{
11878 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11879 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11880}
11881
11882static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11883 struct kvm_memory_slot *slot)
11884{
11885 kvm_mmu_slot_set_dirty(kvm, slot);
11886}
11887
11888static void vmx_flush_log_dirty(struct kvm *kvm)
11889{
11890 kvm_flush_pml_buffers(kvm);
11891}
11892
c5f983f6
BD
11893static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11894{
11895 struct vmcs12 *vmcs12;
11896 struct vcpu_vmx *vmx = to_vmx(vcpu);
11897 gpa_t gpa;
11898 struct page *page = NULL;
11899 u64 *pml_address;
11900
11901 if (is_guest_mode(vcpu)) {
11902 WARN_ON_ONCE(vmx->nested.pml_full);
11903
11904 /*
11905 * Check if PML is enabled for the nested guest.
11906 * Whether eptp bit 6 is set is already checked
11907 * as part of A/D emulation.
11908 */
11909 vmcs12 = get_vmcs12(vcpu);
11910 if (!nested_cpu_has_pml(vmcs12))
11911 return 0;
11912
4769886b 11913 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
c5f983f6
BD
11914 vmx->nested.pml_full = true;
11915 return 1;
11916 }
11917
11918 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11919
5e2f30b7
DH
11920 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11921 if (is_error_page(page))
c5f983f6
BD
11922 return 0;
11923
11924 pml_address = kmap(page);
11925 pml_address[vmcs12->guest_pml_index--] = gpa;
11926 kunmap(page);
53a70daf 11927 kvm_release_page_clean(page);
c5f983f6
BD
11928 }
11929
11930 return 0;
11931}
11932
843e4330
KH
11933static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11934 struct kvm_memory_slot *memslot,
11935 gfn_t offset, unsigned long mask)
11936{
11937 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11938}
11939
cd39e117
PB
11940static void __pi_post_block(struct kvm_vcpu *vcpu)
11941{
11942 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11943 struct pi_desc old, new;
11944 unsigned int dest;
cd39e117
PB
11945
11946 do {
11947 old.control = new.control = pi_desc->control;
8b306e2f
PB
11948 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
11949 "Wakeup handler not enabled while the VCPU is blocked\n");
cd39e117
PB
11950
11951 dest = cpu_physical_id(vcpu->cpu);
11952
11953 if (x2apic_enabled())
11954 new.ndst = dest;
11955 else
11956 new.ndst = (dest << 8) & 0xFF00;
11957
cd39e117
PB
11958 /* set 'NV' to 'notification vector' */
11959 new.nv = POSTED_INTR_VECTOR;
c0a1666b
PB
11960 } while (cmpxchg64(&pi_desc->control, old.control,
11961 new.control) != old.control);
cd39e117 11962
8b306e2f
PB
11963 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
11964 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117 11965 list_del(&vcpu->blocked_vcpu_list);
8b306e2f 11966 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117
PB
11967 vcpu->pre_pcpu = -1;
11968 }
11969}
11970
bf9f6ac8
FW
11971/*
11972 * This routine does the following things for vCPU which is going
11973 * to be blocked if VT-d PI is enabled.
11974 * - Store the vCPU to the wakeup list, so when interrupts happen
11975 * we can find the right vCPU to wake up.
11976 * - Change the Posted-interrupt descriptor as below:
11977 * 'NDST' <-- vcpu->pre_pcpu
11978 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11979 * - If 'ON' is set during this process, which means at least one
11980 * interrupt is posted for this vCPU, we cannot block it, in
11981 * this case, return 1, otherwise, return 0.
11982 *
11983 */
bc22512b 11984static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8 11985{
bf9f6ac8
FW
11986 unsigned int dest;
11987 struct pi_desc old, new;
11988 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11989
11990 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11991 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11992 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11993 return 0;
11994
8b306e2f
PB
11995 WARN_ON(irqs_disabled());
11996 local_irq_disable();
11997 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
11998 vcpu->pre_pcpu = vcpu->cpu;
11999 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12000 list_add_tail(&vcpu->blocked_vcpu_list,
12001 &per_cpu(blocked_vcpu_on_cpu,
12002 vcpu->pre_pcpu));
12003 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12004 }
bf9f6ac8
FW
12005
12006 do {
12007 old.control = new.control = pi_desc->control;
12008
bf9f6ac8
FW
12009 WARN((pi_desc->sn == 1),
12010 "Warning: SN field of posted-interrupts "
12011 "is set before blocking\n");
12012
12013 /*
12014 * Since vCPU can be preempted during this process,
12015 * vcpu->cpu could be different with pre_pcpu, we
12016 * need to set pre_pcpu as the destination of wakeup
12017 * notification event, then we can find the right vCPU
12018 * to wakeup in wakeup handler if interrupts happen
12019 * when the vCPU is in blocked state.
12020 */
12021 dest = cpu_physical_id(vcpu->pre_pcpu);
12022
12023 if (x2apic_enabled())
12024 new.ndst = dest;
12025 else
12026 new.ndst = (dest << 8) & 0xFF00;
12027
12028 /* set 'NV' to 'wakeup vector' */
12029 new.nv = POSTED_INTR_WAKEUP_VECTOR;
c0a1666b
PB
12030 } while (cmpxchg64(&pi_desc->control, old.control,
12031 new.control) != old.control);
bf9f6ac8 12032
8b306e2f
PB
12033 /* We should not block the vCPU if an interrupt is posted for it. */
12034 if (pi_test_on(pi_desc) == 1)
12035 __pi_post_block(vcpu);
12036
12037 local_irq_enable();
12038 return (vcpu->pre_pcpu == -1);
bf9f6ac8
FW
12039}
12040
bc22512b
YJ
12041static int vmx_pre_block(struct kvm_vcpu *vcpu)
12042{
12043 if (pi_pre_block(vcpu))
12044 return 1;
12045
64672c95
YJ
12046 if (kvm_lapic_hv_timer_in_use(vcpu))
12047 kvm_lapic_switch_to_sw_timer(vcpu);
12048
bc22512b
YJ
12049 return 0;
12050}
12051
12052static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8 12053{
8b306e2f 12054 if (vcpu->pre_pcpu == -1)
bf9f6ac8
FW
12055 return;
12056
8b306e2f
PB
12057 WARN_ON(irqs_disabled());
12058 local_irq_disable();
cd39e117 12059 __pi_post_block(vcpu);
8b306e2f 12060 local_irq_enable();
bf9f6ac8
FW
12061}
12062
bc22512b
YJ
12063static void vmx_post_block(struct kvm_vcpu *vcpu)
12064{
64672c95
YJ
12065 if (kvm_x86_ops->set_hv_timer)
12066 kvm_lapic_switch_to_hv_timer(vcpu);
12067
bc22512b
YJ
12068 pi_post_block(vcpu);
12069}
12070
efc64404
FW
12071/*
12072 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
12073 *
12074 * @kvm: kvm
12075 * @host_irq: host irq of the interrupt
12076 * @guest_irq: gsi of the interrupt
12077 * @set: set or unset PI
12078 * returns 0 on success, < 0 on failure
12079 */
12080static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
12081 uint32_t guest_irq, bool set)
12082{
12083 struct kvm_kernel_irq_routing_entry *e;
12084 struct kvm_irq_routing_table *irq_rt;
12085 struct kvm_lapic_irq irq;
12086 struct kvm_vcpu *vcpu;
12087 struct vcpu_data vcpu_info;
3a8b0677 12088 int idx, ret = 0;
efc64404
FW
12089
12090 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
12091 !irq_remapping_cap(IRQ_POSTING_CAP) ||
12092 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
12093 return 0;
12094
12095 idx = srcu_read_lock(&kvm->irq_srcu);
12096 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
3a8b0677
JS
12097 if (guest_irq >= irq_rt->nr_rt_entries ||
12098 hlist_empty(&irq_rt->map[guest_irq])) {
12099 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
12100 guest_irq, irq_rt->nr_rt_entries);
12101 goto out;
12102 }
efc64404
FW
12103
12104 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
12105 if (e->type != KVM_IRQ_ROUTING_MSI)
12106 continue;
12107 /*
12108 * VT-d PI cannot support posting multicast/broadcast
12109 * interrupts to a vCPU, we still use interrupt remapping
12110 * for these kind of interrupts.
12111 *
12112 * For lowest-priority interrupts, we only support
12113 * those with single CPU as the destination, e.g. user
12114 * configures the interrupts via /proc/irq or uses
12115 * irqbalance to make the interrupts single-CPU.
12116 *
12117 * We will support full lowest-priority interrupt later.
12118 */
12119
37131313 12120 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
12121 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
12122 /*
12123 * Make sure the IRTE is in remapped mode if
12124 * we don't handle it in posted mode.
12125 */
12126 ret = irq_set_vcpu_affinity(host_irq, NULL);
12127 if (ret < 0) {
12128 printk(KERN_INFO
12129 "failed to back to remapped mode, irq: %u\n",
12130 host_irq);
12131 goto out;
12132 }
12133
efc64404 12134 continue;
23a1c257 12135 }
efc64404
FW
12136
12137 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
12138 vcpu_info.vector = irq.vector;
12139
b6ce9780 12140 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
12141 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
12142
12143 if (set)
12144 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
dc91f2eb 12145 else
efc64404 12146 ret = irq_set_vcpu_affinity(host_irq, NULL);
efc64404
FW
12147
12148 if (ret < 0) {
12149 printk(KERN_INFO "%s: failed to update PI IRTE\n",
12150 __func__);
12151 goto out;
12152 }
12153 }
12154
12155 ret = 0;
12156out:
12157 srcu_read_unlock(&kvm->irq_srcu, idx);
12158 return ret;
12159}
12160
c45dcc71
AR
12161static void vmx_setup_mce(struct kvm_vcpu *vcpu)
12162{
12163 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
12164 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
12165 FEATURE_CONTROL_LMCE;
12166 else
12167 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
12168 ~FEATURE_CONTROL_LMCE;
12169}
12170
72d7b374
LP
12171static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
12172{
72e9cbdb
LP
12173 /* we need a nested vmexit to enter SMM, postpone if run is pending */
12174 if (to_vmx(vcpu)->nested.nested_run_pending)
12175 return 0;
72d7b374
LP
12176 return 1;
12177}
12178
0234bf88
LP
12179static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
12180{
72e9cbdb
LP
12181 struct vcpu_vmx *vmx = to_vmx(vcpu);
12182
12183 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
12184 if (vmx->nested.smm.guest_mode)
12185 nested_vmx_vmexit(vcpu, -1, 0, 0);
12186
12187 vmx->nested.smm.vmxon = vmx->nested.vmxon;
12188 vmx->nested.vmxon = false;
0234bf88
LP
12189 return 0;
12190}
12191
12192static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
12193{
72e9cbdb
LP
12194 struct vcpu_vmx *vmx = to_vmx(vcpu);
12195 int ret;
12196
12197 if (vmx->nested.smm.vmxon) {
12198 vmx->nested.vmxon = true;
12199 vmx->nested.smm.vmxon = false;
12200 }
12201
12202 if (vmx->nested.smm.guest_mode) {
12203 vcpu->arch.hflags &= ~HF_SMM_MASK;
12204 ret = enter_vmx_non_root_mode(vcpu, false);
12205 vcpu->arch.hflags |= HF_SMM_MASK;
12206 if (ret)
12207 return ret;
12208
12209 vmx->nested.smm.guest_mode = false;
12210 }
0234bf88
LP
12211 return 0;
12212}
12213
cc3d967f
LP
12214static int enable_smi_window(struct kvm_vcpu *vcpu)
12215{
12216 return 0;
12217}
12218
404f6aac 12219static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
12220 .cpu_has_kvm_support = cpu_has_kvm_support,
12221 .disabled_by_bios = vmx_disabled_by_bios,
12222 .hardware_setup = hardware_setup,
12223 .hardware_unsetup = hardware_unsetup,
002c7f7c 12224 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
12225 .hardware_enable = hardware_enable,
12226 .hardware_disable = hardware_disable,
04547156 12227 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 12228 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
12229
12230 .vcpu_create = vmx_create_vcpu,
12231 .vcpu_free = vmx_free_vcpu,
04d2cc77 12232 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 12233
04d2cc77 12234 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
12235 .vcpu_load = vmx_vcpu_load,
12236 .vcpu_put = vmx_vcpu_put,
12237
a96036b8 12238 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
12239 .get_msr = vmx_get_msr,
12240 .set_msr = vmx_set_msr,
12241 .get_segment_base = vmx_get_segment_base,
12242 .get_segment = vmx_get_segment,
12243 .set_segment = vmx_set_segment,
2e4d2653 12244 .get_cpl = vmx_get_cpl,
6aa8b732 12245 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 12246 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 12247 .decache_cr3 = vmx_decache_cr3,
25c4c276 12248 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 12249 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
12250 .set_cr3 = vmx_set_cr3,
12251 .set_cr4 = vmx_set_cr4,
6aa8b732 12252 .set_efer = vmx_set_efer,
6aa8b732
AK
12253 .get_idt = vmx_get_idt,
12254 .set_idt = vmx_set_idt,
12255 .get_gdt = vmx_get_gdt,
12256 .set_gdt = vmx_set_gdt,
73aaf249
JK
12257 .get_dr6 = vmx_get_dr6,
12258 .set_dr6 = vmx_set_dr6,
020df079 12259 .set_dr7 = vmx_set_dr7,
81908bf4 12260 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 12261 .cache_reg = vmx_cache_reg,
6aa8b732
AK
12262 .get_rflags = vmx_get_rflags,
12263 .set_rflags = vmx_set_rflags,
be94f6b7 12264
6aa8b732 12265 .tlb_flush = vmx_flush_tlb,
6aa8b732 12266
6aa8b732 12267 .run = vmx_vcpu_run,
6062d012 12268 .handle_exit = vmx_handle_exit,
6aa8b732 12269 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
12270 .set_interrupt_shadow = vmx_set_interrupt_shadow,
12271 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 12272 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 12273 .set_irq = vmx_inject_irq,
95ba8273 12274 .set_nmi = vmx_inject_nmi,
298101da 12275 .queue_exception = vmx_queue_exception,
b463a6f7 12276 .cancel_injection = vmx_cancel_injection,
78646121 12277 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 12278 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
12279 .get_nmi_mask = vmx_get_nmi_mask,
12280 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
12281 .enable_nmi_window = enable_nmi_window,
12282 .enable_irq_window = enable_irq_window,
12283 .update_cr8_intercept = update_cr8_intercept,
8d14695f 12284 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 12285 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
12286 .get_enable_apicv = vmx_get_enable_apicv,
12287 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 12288 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 12289 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
12290 .hwapic_irr_update = vmx_hwapic_irr_update,
12291 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
12292 .sync_pir_to_irr = vmx_sync_pir_to_irr,
12293 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 12294
cbc94022 12295 .set_tss_addr = vmx_set_tss_addr,
67253af5 12296 .get_tdp_level = get_ept_level,
4b12f0de 12297 .get_mt_mask = vmx_get_mt_mask,
229456fc 12298
586f9607 12299 .get_exit_info = vmx_get_exit_info,
586f9607 12300
17cc3935 12301 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
12302
12303 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
12304
12305 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 12306 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
12307
12308 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
12309
12310 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
12311
12312 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
12313
12314 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
12315
12316 .check_intercept = vmx_check_intercept,
a547c6db 12317 .handle_external_intr = vmx_handle_external_intr,
da8999d3 12318 .mpx_supported = vmx_mpx_supported,
55412b2e 12319 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
12320
12321 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
12322
12323 .sched_in = vmx_sched_in,
843e4330
KH
12324
12325 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12326 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12327 .flush_log_dirty = vmx_flush_log_dirty,
12328 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
c5f983f6 12329 .write_log_dirty = vmx_write_pml_buffer,
25462f7f 12330
bf9f6ac8
FW
12331 .pre_block = vmx_pre_block,
12332 .post_block = vmx_post_block,
12333
25462f7f 12334 .pmu_ops = &intel_pmu_ops,
efc64404
FW
12335
12336 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
12337
12338#ifdef CONFIG_X86_64
12339 .set_hv_timer = vmx_set_hv_timer,
12340 .cancel_hv_timer = vmx_cancel_hv_timer,
12341#endif
c45dcc71
AR
12342
12343 .setup_mce = vmx_setup_mce,
0234bf88 12344
72d7b374 12345 .smi_allowed = vmx_smi_allowed,
0234bf88
LP
12346 .pre_enter_smm = vmx_pre_enter_smm,
12347 .pre_leave_smm = vmx_pre_leave_smm,
cc3d967f 12348 .enable_smi_window = enable_smi_window,
6aa8b732
AK
12349};
12350
12351static int __init vmx_init(void)
12352{
34a1cd60
TC
12353 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12354 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 12355 if (r)
34a1cd60 12356 return r;
25c5f225 12357
2965faa5 12358#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
12359 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12360 crash_vmclear_local_loaded_vmcss);
12361#endif
12362
fdef3ad1 12363 return 0;
6aa8b732
AK
12364}
12365
12366static void __exit vmx_exit(void)
12367{
2965faa5 12368#ifdef CONFIG_KEXEC_CORE
3b63a43f 12369 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
12370 synchronize_rcu();
12371#endif
12372
cb498ea2 12373 kvm_exit();
6aa8b732
AK
12374}
12375
12376module_init(vmx_init)
12377module_exit(vmx_exit)