]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: x86: allow setting identity map addr with no vcpus only
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
c207aee4 36#include <linux/frame.h>
5fdbf976 37#include "kvm_cache_regs.h"
35920a35 38#include "x86.h"
e495606d 39
28b835d6 40#include <asm/cpu.h>
6aa8b732 41#include <asm/io.h>
3b3be0d1 42#include <asm/desc.h>
13673a90 43#include <asm/vmx.h>
6210e37b 44#include <asm/virtext.h>
a0861c02 45#include <asm/mce.h>
952f07ec 46#include <asm/fpu/internal.h>
d7cd9796 47#include <asm/perf_event.h>
81908bf4 48#include <asm/debugreg.h>
8f536b76 49#include <asm/kexec.h>
dab2087d 50#include <asm/apic.h>
efc64404 51#include <asm/irq_remapping.h>
d6e41f11 52#include <asm/mmu_context.h>
6aa8b732 53
229456fc 54#include "trace.h"
25462f7f 55#include "pmu.h"
229456fc 56
4ecac3fd 57#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
58#define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 60
6aa8b732
AK
61MODULE_AUTHOR("Qumranet");
62MODULE_LICENSE("GPL");
63
e9bda3b3
JT
64static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67};
68MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
476bc001 70static bool __read_mostly enable_vpid = 1;
736caefe 71module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 72
476bc001 73static bool __read_mostly flexpriority_enabled = 1;
736caefe 74module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 75
476bc001 76static bool __read_mostly enable_ept = 1;
736caefe 77module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 78
476bc001 79static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
80module_param_named(unrestricted_guest,
81 enable_unrestricted_guest, bool, S_IRUGO);
82
83c3a331
XH
83static bool __read_mostly enable_ept_ad_bits = 1;
84module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
a27685c3 86static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 87module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 88
476bc001 89static bool __read_mostly fasteoi = 1;
58fbbf26
KT
90module_param(fasteoi, bool, S_IRUGO);
91
5a71785d 92static bool __read_mostly enable_apicv = 1;
01e439be 93module_param(enable_apicv, bool, S_IRUGO);
83d4c286 94
abc4fc58
AG
95static bool __read_mostly enable_shadow_vmcs = 1;
96module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
97/*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
476bc001 102static bool __read_mostly nested = 0;
801d3424
NHE
103module_param(nested, bool, S_IRUGO);
104
20300099
WL
105static u64 __read_mostly host_xss;
106
843e4330
KH
107static bool __read_mostly enable_pml = 1;
108module_param_named(pml, enable_pml, bool, S_IRUGO);
109
64903d61
HZ
110#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
111
64672c95
YJ
112/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
113static int __read_mostly cpu_preemption_timer_multi;
114static bool __read_mostly enable_preemption_timer = 1;
115#ifdef CONFIG_X86_64
116module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117#endif
118
5037878e
GN
119#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
121#define KVM_VM_CR0_ALWAYS_ON \
122 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
123#define KVM_CR4_GUEST_OWNED_BITS \
124 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
fd8cb433 125 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
4c38609a 126
cdc0e244
AK
127#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
78ac8b47
AK
130#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
f4124500
JK
132#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
16c2aec6
JD
134/*
135 * Hyper-V requires all of these, so mark them as supported even though
136 * they are just treated the same as all-context.
137 */
138#define VMX_VPID_EXTENT_SUPPORTED_MASK \
139 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
140 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
141 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
4b8d54f9
ZE
144/*
145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146 * ple_gap: upper bound on the amount of time between two successive
147 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 148 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
149 * ple_window: upper bound on the amount of time a guest is allowed to execute
150 * in a PAUSE loop. Tests indicate that most spinlocks are held for
151 * less than 2^12 cycles
152 * Time is measured based on a counter that runs at the same rate as the TSC,
153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
154 */
b4a2d31d
RK
155#define KVM_VMX_DEFAULT_PLE_GAP 128
156#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
157#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
158#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
160 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
4b8d54f9
ZE
162static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163module_param(ple_gap, int, S_IRUGO);
164
165static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166module_param(ple_window, int, S_IRUGO);
167
b4a2d31d
RK
168/* Default doubles per-vcpu window every exit. */
169static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170module_param(ple_window_grow, int, S_IRUGO);
171
172/* Default resets per-vcpu window every exit to ple_window. */
173static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174module_param(ple_window_shrink, int, S_IRUGO);
175
176/* Default is to compute the maximum so we can never overflow. */
177static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179module_param(ple_window_max, int, S_IRUGO);
180
83287ea4
AK
181extern const ulong vmx_return;
182
8bf00a52 183#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 184#define VMCS02_POOL_SIZE 1
61d2ef2c 185
a2fa3e9f
GH
186struct vmcs {
187 u32 revision_id;
188 u32 abort;
189 char data[0];
190};
191
d462b819
NHE
192/*
193 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195 * loaded on this CPU (so we can clear them if the CPU goes down).
196 */
197struct loaded_vmcs {
198 struct vmcs *vmcs;
355f4fb1 199 struct vmcs *shadow_vmcs;
d462b819 200 int cpu;
4c4a6f79
PB
201 bool launched;
202 bool nmi_known_unmasked;
44889942
LP
203 unsigned long vmcs_host_cr3; /* May not match real cr3 */
204 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d462b819
NHE
205 struct list_head loaded_vmcss_on_cpu_link;
206};
207
26bb0981
AK
208struct shared_msr_entry {
209 unsigned index;
210 u64 data;
d5696725 211 u64 mask;
26bb0981
AK
212};
213
a9d30f33
NHE
214/*
215 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
216 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
217 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
218 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
219 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
220 * More than one of these structures may exist, if L1 runs multiple L2 guests.
221 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
222 * underlying hardware which will be used to run L2.
223 * This structure is packed to ensure that its layout is identical across
224 * machines (necessary for live migration).
225 * If there are changes in this struct, VMCS12_REVISION must be changed.
226 */
22bd0358 227typedef u64 natural_width;
a9d30f33
NHE
228struct __packed vmcs12 {
229 /* According to the Intel spec, a VMCS region must start with the
230 * following two fields. Then follow implementation-specific data.
231 */
232 u32 revision_id;
233 u32 abort;
22bd0358 234
27d6c865
NHE
235 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
236 u32 padding[7]; /* room for future expansion */
237
22bd0358
NHE
238 u64 io_bitmap_a;
239 u64 io_bitmap_b;
240 u64 msr_bitmap;
241 u64 vm_exit_msr_store_addr;
242 u64 vm_exit_msr_load_addr;
243 u64 vm_entry_msr_load_addr;
244 u64 tsc_offset;
245 u64 virtual_apic_page_addr;
246 u64 apic_access_addr;
705699a1 247 u64 posted_intr_desc_addr;
27c42a1b 248 u64 vm_function_control;
22bd0358 249 u64 ept_pointer;
608406e2
WV
250 u64 eoi_exit_bitmap0;
251 u64 eoi_exit_bitmap1;
252 u64 eoi_exit_bitmap2;
253 u64 eoi_exit_bitmap3;
41ab9372 254 u64 eptp_list_address;
81dc01f7 255 u64 xss_exit_bitmap;
22bd0358
NHE
256 u64 guest_physical_address;
257 u64 vmcs_link_pointer;
c5f983f6 258 u64 pml_address;
22bd0358
NHE
259 u64 guest_ia32_debugctl;
260 u64 guest_ia32_pat;
261 u64 guest_ia32_efer;
262 u64 guest_ia32_perf_global_ctrl;
263 u64 guest_pdptr0;
264 u64 guest_pdptr1;
265 u64 guest_pdptr2;
266 u64 guest_pdptr3;
36be0b9d 267 u64 guest_bndcfgs;
22bd0358
NHE
268 u64 host_ia32_pat;
269 u64 host_ia32_efer;
270 u64 host_ia32_perf_global_ctrl;
271 u64 padding64[8]; /* room for future expansion */
272 /*
273 * To allow migration of L1 (complete with its L2 guests) between
274 * machines of different natural widths (32 or 64 bit), we cannot have
275 * unsigned long fields with no explict size. We use u64 (aliased
276 * natural_width) instead. Luckily, x86 is little-endian.
277 */
278 natural_width cr0_guest_host_mask;
279 natural_width cr4_guest_host_mask;
280 natural_width cr0_read_shadow;
281 natural_width cr4_read_shadow;
282 natural_width cr3_target_value0;
283 natural_width cr3_target_value1;
284 natural_width cr3_target_value2;
285 natural_width cr3_target_value3;
286 natural_width exit_qualification;
287 natural_width guest_linear_address;
288 natural_width guest_cr0;
289 natural_width guest_cr3;
290 natural_width guest_cr4;
291 natural_width guest_es_base;
292 natural_width guest_cs_base;
293 natural_width guest_ss_base;
294 natural_width guest_ds_base;
295 natural_width guest_fs_base;
296 natural_width guest_gs_base;
297 natural_width guest_ldtr_base;
298 natural_width guest_tr_base;
299 natural_width guest_gdtr_base;
300 natural_width guest_idtr_base;
301 natural_width guest_dr7;
302 natural_width guest_rsp;
303 natural_width guest_rip;
304 natural_width guest_rflags;
305 natural_width guest_pending_dbg_exceptions;
306 natural_width guest_sysenter_esp;
307 natural_width guest_sysenter_eip;
308 natural_width host_cr0;
309 natural_width host_cr3;
310 natural_width host_cr4;
311 natural_width host_fs_base;
312 natural_width host_gs_base;
313 natural_width host_tr_base;
314 natural_width host_gdtr_base;
315 natural_width host_idtr_base;
316 natural_width host_ia32_sysenter_esp;
317 natural_width host_ia32_sysenter_eip;
318 natural_width host_rsp;
319 natural_width host_rip;
320 natural_width paddingl[8]; /* room for future expansion */
321 u32 pin_based_vm_exec_control;
322 u32 cpu_based_vm_exec_control;
323 u32 exception_bitmap;
324 u32 page_fault_error_code_mask;
325 u32 page_fault_error_code_match;
326 u32 cr3_target_count;
327 u32 vm_exit_controls;
328 u32 vm_exit_msr_store_count;
329 u32 vm_exit_msr_load_count;
330 u32 vm_entry_controls;
331 u32 vm_entry_msr_load_count;
332 u32 vm_entry_intr_info_field;
333 u32 vm_entry_exception_error_code;
334 u32 vm_entry_instruction_len;
335 u32 tpr_threshold;
336 u32 secondary_vm_exec_control;
337 u32 vm_instruction_error;
338 u32 vm_exit_reason;
339 u32 vm_exit_intr_info;
340 u32 vm_exit_intr_error_code;
341 u32 idt_vectoring_info_field;
342 u32 idt_vectoring_error_code;
343 u32 vm_exit_instruction_len;
344 u32 vmx_instruction_info;
345 u32 guest_es_limit;
346 u32 guest_cs_limit;
347 u32 guest_ss_limit;
348 u32 guest_ds_limit;
349 u32 guest_fs_limit;
350 u32 guest_gs_limit;
351 u32 guest_ldtr_limit;
352 u32 guest_tr_limit;
353 u32 guest_gdtr_limit;
354 u32 guest_idtr_limit;
355 u32 guest_es_ar_bytes;
356 u32 guest_cs_ar_bytes;
357 u32 guest_ss_ar_bytes;
358 u32 guest_ds_ar_bytes;
359 u32 guest_fs_ar_bytes;
360 u32 guest_gs_ar_bytes;
361 u32 guest_ldtr_ar_bytes;
362 u32 guest_tr_ar_bytes;
363 u32 guest_interruptibility_info;
364 u32 guest_activity_state;
365 u32 guest_sysenter_cs;
366 u32 host_ia32_sysenter_cs;
0238ea91
JK
367 u32 vmx_preemption_timer_value;
368 u32 padding32[7]; /* room for future expansion */
22bd0358 369 u16 virtual_processor_id;
705699a1 370 u16 posted_intr_nv;
22bd0358
NHE
371 u16 guest_es_selector;
372 u16 guest_cs_selector;
373 u16 guest_ss_selector;
374 u16 guest_ds_selector;
375 u16 guest_fs_selector;
376 u16 guest_gs_selector;
377 u16 guest_ldtr_selector;
378 u16 guest_tr_selector;
608406e2 379 u16 guest_intr_status;
c5f983f6 380 u16 guest_pml_index;
22bd0358
NHE
381 u16 host_es_selector;
382 u16 host_cs_selector;
383 u16 host_ss_selector;
384 u16 host_ds_selector;
385 u16 host_fs_selector;
386 u16 host_gs_selector;
387 u16 host_tr_selector;
a9d30f33
NHE
388};
389
390/*
391 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
392 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
393 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
394 */
395#define VMCS12_REVISION 0x11e57ed0
396
397/*
398 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
399 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
400 * current implementation, 4K are reserved to avoid future complications.
401 */
402#define VMCS12_SIZE 0x1000
403
ff2f6fe9
NHE
404/* Used to remember the last vmcs02 used for some recently used vmcs12s */
405struct vmcs02_list {
406 struct list_head list;
407 gpa_t vmptr;
408 struct loaded_vmcs vmcs02;
409};
410
ec378aee
NHE
411/*
412 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
413 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
414 */
415struct nested_vmx {
416 /* Has the level1 guest done vmxon? */
417 bool vmxon;
3573e22c 418 gpa_t vmxon_ptr;
c5f983f6 419 bool pml_full;
a9d30f33
NHE
420
421 /* The guest-physical address of the current VMCS L1 keeps for L2 */
422 gpa_t current_vmptr;
4f2777bc
DM
423 /*
424 * Cache of the guest's VMCS, existing outside of guest memory.
425 * Loaded from guest memory during VMPTRLD. Flushed to guest
8ca44e88 426 * memory during VMCLEAR and VMPTRLD.
4f2777bc
DM
427 */
428 struct vmcs12 *cached_vmcs12;
012f83cb
AG
429 /*
430 * Indicates if the shadow vmcs must be updated with the
431 * data hold by vmcs12
432 */
433 bool sync_shadow_vmcs;
ff2f6fe9
NHE
434
435 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
436 struct list_head vmcs02_pool;
437 int vmcs02_num;
dccbfcf5 438 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
439 /* L2 must run next, and mustn't decide to exit to L1. */
440 bool nested_run_pending;
fe3ef05c
NHE
441 /*
442 * Guest pages referred to in vmcs02 with host-physical pointers, so
443 * we must keep them pinned while L2 runs.
444 */
445 struct page *apic_access_page;
a7c0b07d 446 struct page *virtual_apic_page;
705699a1
WV
447 struct page *pi_desc_page;
448 struct pi_desc *pi_desc;
449 bool pi_pending;
450 u16 posted_intr_nv;
f4124500 451
d048c098
RK
452 unsigned long *msr_bitmap;
453
f4124500
JK
454 struct hrtimer preemption_timer;
455 bool preemption_timer_expired;
2996fca0
JK
456
457 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
458 u64 vmcs01_debugctl;
b9c237bb 459
5c614b35
WL
460 u16 vpid02;
461 u16 last_vpid;
462
0115f9cb
DM
463 /*
464 * We only store the "true" versions of the VMX capability MSRs. We
465 * generate the "non-true" versions by setting the must-be-1 bits
466 * according to the SDM.
467 */
b9c237bb
WV
468 u32 nested_vmx_procbased_ctls_low;
469 u32 nested_vmx_procbased_ctls_high;
b9c237bb
WV
470 u32 nested_vmx_secondary_ctls_low;
471 u32 nested_vmx_secondary_ctls_high;
472 u32 nested_vmx_pinbased_ctls_low;
473 u32 nested_vmx_pinbased_ctls_high;
474 u32 nested_vmx_exit_ctls_low;
475 u32 nested_vmx_exit_ctls_high;
b9c237bb
WV
476 u32 nested_vmx_entry_ctls_low;
477 u32 nested_vmx_entry_ctls_high;
b9c237bb
WV
478 u32 nested_vmx_misc_low;
479 u32 nested_vmx_misc_high;
480 u32 nested_vmx_ept_caps;
99b83ac8 481 u32 nested_vmx_vpid_caps;
62cc6b9d
DM
482 u64 nested_vmx_basic;
483 u64 nested_vmx_cr0_fixed0;
484 u64 nested_vmx_cr0_fixed1;
485 u64 nested_vmx_cr4_fixed0;
486 u64 nested_vmx_cr4_fixed1;
487 u64 nested_vmx_vmcs_enum;
27c42a1b 488 u64 nested_vmx_vmfunc_controls;
ec378aee
NHE
489};
490
01e439be 491#define POSTED_INTR_ON 0
ebbfc765
FW
492#define POSTED_INTR_SN 1
493
01e439be
YZ
494/* Posted-Interrupt Descriptor */
495struct pi_desc {
496 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
497 union {
498 struct {
499 /* bit 256 - Outstanding Notification */
500 u16 on : 1,
501 /* bit 257 - Suppress Notification */
502 sn : 1,
503 /* bit 271:258 - Reserved */
504 rsvd_1 : 14;
505 /* bit 279:272 - Notification Vector */
506 u8 nv;
507 /* bit 287:280 - Reserved */
508 u8 rsvd_2;
509 /* bit 319:288 - Notification Destination */
510 u32 ndst;
511 };
512 u64 control;
513 };
514 u32 rsvd[6];
01e439be
YZ
515} __aligned(64);
516
a20ed54d
YZ
517static bool pi_test_and_set_on(struct pi_desc *pi_desc)
518{
519 return test_and_set_bit(POSTED_INTR_ON,
520 (unsigned long *)&pi_desc->control);
521}
522
523static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
524{
525 return test_and_clear_bit(POSTED_INTR_ON,
526 (unsigned long *)&pi_desc->control);
527}
528
529static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
530{
531 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
532}
533
ebbfc765
FW
534static inline void pi_clear_sn(struct pi_desc *pi_desc)
535{
536 return clear_bit(POSTED_INTR_SN,
537 (unsigned long *)&pi_desc->control);
538}
539
540static inline void pi_set_sn(struct pi_desc *pi_desc)
541{
542 return set_bit(POSTED_INTR_SN,
543 (unsigned long *)&pi_desc->control);
544}
545
ad361091
PB
546static inline void pi_clear_on(struct pi_desc *pi_desc)
547{
548 clear_bit(POSTED_INTR_ON,
549 (unsigned long *)&pi_desc->control);
550}
551
ebbfc765
FW
552static inline int pi_test_on(struct pi_desc *pi_desc)
553{
554 return test_bit(POSTED_INTR_ON,
555 (unsigned long *)&pi_desc->control);
556}
557
558static inline int pi_test_sn(struct pi_desc *pi_desc)
559{
560 return test_bit(POSTED_INTR_SN,
561 (unsigned long *)&pi_desc->control);
562}
563
a2fa3e9f 564struct vcpu_vmx {
fb3f0f51 565 struct kvm_vcpu vcpu;
313dbd49 566 unsigned long host_rsp;
29bd8a78 567 u8 fail;
51aa01d1 568 u32 exit_intr_info;
1155f76a 569 u32 idt_vectoring_info;
6de12732 570 ulong rflags;
26bb0981 571 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
572 int nmsrs;
573 int save_nmsrs;
a547c6db 574 unsigned long host_idt_base;
a2fa3e9f 575#ifdef CONFIG_X86_64
44ea2b17
AK
576 u64 msr_host_kernel_gs_base;
577 u64 msr_guest_kernel_gs_base;
a2fa3e9f 578#endif
2961e876
GN
579 u32 vm_entry_controls_shadow;
580 u32 vm_exit_controls_shadow;
80154d77
PB
581 u32 secondary_exec_control;
582
d462b819
NHE
583 /*
584 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
585 * non-nested (L1) guest, it always points to vmcs01. For a nested
586 * guest (L2), it points to a different VMCS.
587 */
588 struct loaded_vmcs vmcs01;
589 struct loaded_vmcs *loaded_vmcs;
590 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
591 struct msr_autoload {
592 unsigned nr;
593 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
594 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
595 } msr_autoload;
a2fa3e9f
GH
596 struct {
597 int loaded;
598 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
599#ifdef CONFIG_X86_64
600 u16 ds_sel, es_sel;
601#endif
152d3f2f
LV
602 int gs_ldt_reload_needed;
603 int fs_reload_needed;
da8999d3 604 u64 msr_host_bndcfgs;
d77c26fc 605 } host_state;
9c8cba37 606 struct {
7ffd92c5 607 int vm86_active;
78ac8b47 608 ulong save_rflags;
f5f7b2fe
AK
609 struct kvm_segment segs[8];
610 } rmode;
611 struct {
612 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
613 struct kvm_save_segment {
614 u16 selector;
615 unsigned long base;
616 u32 limit;
617 u32 ar;
f5f7b2fe 618 } seg[8];
2fb92db1 619 } segment_cache;
2384d2b3 620 int vpid;
04fa4d32 621 bool emulation_required;
3b86cd99 622
a0861c02 623 u32 exit_reason;
4e47c7a6 624
01e439be
YZ
625 /* Posted interrupt descriptor */
626 struct pi_desc pi_desc;
627
ec378aee
NHE
628 /* Support for a guest hypervisor (nested VMX) */
629 struct nested_vmx nested;
a7653ecd
RK
630
631 /* Dynamic PLE window. */
632 int ple_window;
633 bool ple_window_dirty;
843e4330
KH
634
635 /* Support for PML */
636#define PML_ENTITY_NUM 512
637 struct page *pml_pg;
2680d6da 638
64672c95
YJ
639 /* apic deadline value in host tsc */
640 u64 hv_deadline_tsc;
641
2680d6da 642 u64 current_tsc_ratio;
1be0e61c 643
1be0e61c 644 u32 host_pkru;
3b84080b 645
37e4c997
HZ
646 /*
647 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
648 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
649 * in msr_ia32_feature_control_valid_bits.
650 */
3b84080b 651 u64 msr_ia32_feature_control;
37e4c997 652 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
653};
654
2fb92db1
AK
655enum segment_cache_field {
656 SEG_FIELD_SEL = 0,
657 SEG_FIELD_BASE = 1,
658 SEG_FIELD_LIMIT = 2,
659 SEG_FIELD_AR = 3,
660
661 SEG_FIELD_NR = 4
662};
663
a2fa3e9f
GH
664static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
665{
fb3f0f51 666 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
667}
668
efc64404
FW
669static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
670{
671 return &(to_vmx(vcpu)->pi_desc);
672}
673
22bd0358
NHE
674#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
675#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
676#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
677 [number##_HIGH] = VMCS12_OFFSET(name)+4
678
4607c2d7 679
fe2b201b 680static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
681 /*
682 * We do NOT shadow fields that are modified when L0
683 * traps and emulates any vmx instruction (e.g. VMPTRLD,
684 * VMXON...) executed by L1.
685 * For example, VM_INSTRUCTION_ERROR is read
686 * by L1 if a vmx instruction fails (part of the error path).
687 * Note the code assumes this logic. If for some reason
688 * we start shadowing these fields then we need to
689 * force a shadow sync when L0 emulates vmx instructions
690 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
691 * by nested_vmx_failValid)
692 */
693 VM_EXIT_REASON,
694 VM_EXIT_INTR_INFO,
695 VM_EXIT_INSTRUCTION_LEN,
696 IDT_VECTORING_INFO_FIELD,
697 IDT_VECTORING_ERROR_CODE,
698 VM_EXIT_INTR_ERROR_CODE,
699 EXIT_QUALIFICATION,
700 GUEST_LINEAR_ADDRESS,
701 GUEST_PHYSICAL_ADDRESS
702};
fe2b201b 703static int max_shadow_read_only_fields =
4607c2d7
AG
704 ARRAY_SIZE(shadow_read_only_fields);
705
fe2b201b 706static unsigned long shadow_read_write_fields[] = {
a7c0b07d 707 TPR_THRESHOLD,
4607c2d7
AG
708 GUEST_RIP,
709 GUEST_RSP,
710 GUEST_CR0,
711 GUEST_CR3,
712 GUEST_CR4,
713 GUEST_INTERRUPTIBILITY_INFO,
714 GUEST_RFLAGS,
715 GUEST_CS_SELECTOR,
716 GUEST_CS_AR_BYTES,
717 GUEST_CS_LIMIT,
718 GUEST_CS_BASE,
719 GUEST_ES_BASE,
36be0b9d 720 GUEST_BNDCFGS,
4607c2d7
AG
721 CR0_GUEST_HOST_MASK,
722 CR0_READ_SHADOW,
723 CR4_READ_SHADOW,
724 TSC_OFFSET,
725 EXCEPTION_BITMAP,
726 CPU_BASED_VM_EXEC_CONTROL,
727 VM_ENTRY_EXCEPTION_ERROR_CODE,
728 VM_ENTRY_INTR_INFO_FIELD,
729 VM_ENTRY_INSTRUCTION_LEN,
730 VM_ENTRY_EXCEPTION_ERROR_CODE,
731 HOST_FS_BASE,
732 HOST_GS_BASE,
733 HOST_FS_SELECTOR,
734 HOST_GS_SELECTOR
735};
fe2b201b 736static int max_shadow_read_write_fields =
4607c2d7
AG
737 ARRAY_SIZE(shadow_read_write_fields);
738
772e0318 739static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 740 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 741 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
742 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
743 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
744 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
745 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
746 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
747 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
748 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
749 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 750 FIELD(GUEST_INTR_STATUS, guest_intr_status),
c5f983f6 751 FIELD(GUEST_PML_INDEX, guest_pml_index),
22bd0358
NHE
752 FIELD(HOST_ES_SELECTOR, host_es_selector),
753 FIELD(HOST_CS_SELECTOR, host_cs_selector),
754 FIELD(HOST_SS_SELECTOR, host_ss_selector),
755 FIELD(HOST_DS_SELECTOR, host_ds_selector),
756 FIELD(HOST_FS_SELECTOR, host_fs_selector),
757 FIELD(HOST_GS_SELECTOR, host_gs_selector),
758 FIELD(HOST_TR_SELECTOR, host_tr_selector),
759 FIELD64(IO_BITMAP_A, io_bitmap_a),
760 FIELD64(IO_BITMAP_B, io_bitmap_b),
761 FIELD64(MSR_BITMAP, msr_bitmap),
762 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765 FIELD64(TSC_OFFSET, tsc_offset),
766 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 768 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
27c42a1b 769 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
22bd0358 770 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
771 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
772 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
773 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
774 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
41ab9372 775 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
81dc01f7 776 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
777 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
778 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
c5f983f6 779 FIELD64(PML_ADDRESS, pml_address),
22bd0358
NHE
780 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
781 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
782 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
783 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
784 FIELD64(GUEST_PDPTR0, guest_pdptr0),
785 FIELD64(GUEST_PDPTR1, guest_pdptr1),
786 FIELD64(GUEST_PDPTR2, guest_pdptr2),
787 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 788 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
789 FIELD64(HOST_IA32_PAT, host_ia32_pat),
790 FIELD64(HOST_IA32_EFER, host_ia32_efer),
791 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
792 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
793 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
794 FIELD(EXCEPTION_BITMAP, exception_bitmap),
795 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
796 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
797 FIELD(CR3_TARGET_COUNT, cr3_target_count),
798 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
799 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
800 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
801 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
802 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
803 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
804 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
805 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
806 FIELD(TPR_THRESHOLD, tpr_threshold),
807 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
808 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
809 FIELD(VM_EXIT_REASON, vm_exit_reason),
810 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
811 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
812 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
813 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
814 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
815 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
816 FIELD(GUEST_ES_LIMIT, guest_es_limit),
817 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
818 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
819 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
820 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
821 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
822 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
823 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
824 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
825 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
826 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
827 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
828 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
829 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
830 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
831 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
832 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
833 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
834 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
835 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
836 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
837 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 838 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
839 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
840 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
841 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
842 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
843 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
844 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
845 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
846 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
847 FIELD(EXIT_QUALIFICATION, exit_qualification),
848 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
849 FIELD(GUEST_CR0, guest_cr0),
850 FIELD(GUEST_CR3, guest_cr3),
851 FIELD(GUEST_CR4, guest_cr4),
852 FIELD(GUEST_ES_BASE, guest_es_base),
853 FIELD(GUEST_CS_BASE, guest_cs_base),
854 FIELD(GUEST_SS_BASE, guest_ss_base),
855 FIELD(GUEST_DS_BASE, guest_ds_base),
856 FIELD(GUEST_FS_BASE, guest_fs_base),
857 FIELD(GUEST_GS_BASE, guest_gs_base),
858 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
859 FIELD(GUEST_TR_BASE, guest_tr_base),
860 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
861 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
862 FIELD(GUEST_DR7, guest_dr7),
863 FIELD(GUEST_RSP, guest_rsp),
864 FIELD(GUEST_RIP, guest_rip),
865 FIELD(GUEST_RFLAGS, guest_rflags),
866 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
867 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
868 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
869 FIELD(HOST_CR0, host_cr0),
870 FIELD(HOST_CR3, host_cr3),
871 FIELD(HOST_CR4, host_cr4),
872 FIELD(HOST_FS_BASE, host_fs_base),
873 FIELD(HOST_GS_BASE, host_gs_base),
874 FIELD(HOST_TR_BASE, host_tr_base),
875 FIELD(HOST_GDTR_BASE, host_gdtr_base),
876 FIELD(HOST_IDTR_BASE, host_idtr_base),
877 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
878 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
879 FIELD(HOST_RSP, host_rsp),
880 FIELD(HOST_RIP, host_rip),
881};
22bd0358
NHE
882
883static inline short vmcs_field_to_offset(unsigned long field)
884{
a2ae9df7
PB
885 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
886
887 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
888 vmcs_field_to_offset_table[field] == 0)
889 return -ENOENT;
890
22bd0358
NHE
891 return vmcs_field_to_offset_table[field];
892}
893
a9d30f33
NHE
894static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
895{
4f2777bc 896 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
897}
898
995f00a6 899static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
bfd0a56b 900static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
995f00a6 901static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
f53cd63c 902static bool vmx_xsaves_supported(void);
b246dd5d
OW
903static void vmx_set_segment(struct kvm_vcpu *vcpu,
904 struct kvm_segment *var, int seg);
905static void vmx_get_segment(struct kvm_vcpu *vcpu,
906 struct kvm_segment *var, int seg);
d99e4152
GN
907static bool guest_state_valid(struct kvm_vcpu *vcpu);
908static u32 vmx_segment_access_rights(struct kvm_segment *var);
16f5b903 909static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
b96fb439
PB
910static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
911static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
912static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
913 u16 error_code);
75880a01 914
6aa8b732
AK
915static DEFINE_PER_CPU(struct vmcs *, vmxarea);
916static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
917/*
918 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
919 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
920 */
921static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
6aa8b732 922
bf9f6ac8
FW
923/*
924 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
925 * can find which vCPU should be waken up.
926 */
927static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
928static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
929
23611332
RK
930enum {
931 VMX_IO_BITMAP_A,
932 VMX_IO_BITMAP_B,
933 VMX_MSR_BITMAP_LEGACY,
934 VMX_MSR_BITMAP_LONGMODE,
935 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
936 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
937 VMX_MSR_BITMAP_LEGACY_X2APIC,
938 VMX_MSR_BITMAP_LONGMODE_X2APIC,
939 VMX_VMREAD_BITMAP,
940 VMX_VMWRITE_BITMAP,
941 VMX_BITMAP_NR
942};
943
944static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
945
946#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
947#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
948#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
949#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
950#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
951#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
952#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
953#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
954#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
955#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 956
110312c8 957static bool cpu_has_load_ia32_efer;
8bf00a52 958static bool cpu_has_load_perf_global_ctrl;
110312c8 959
2384d2b3
SY
960static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
961static DEFINE_SPINLOCK(vmx_vpid_lock);
962
1c3d14fe 963static struct vmcs_config {
6aa8b732
AK
964 int size;
965 int order;
9ac7e3e8 966 u32 basic_cap;
6aa8b732 967 u32 revision_id;
1c3d14fe
YS
968 u32 pin_based_exec_ctrl;
969 u32 cpu_based_exec_ctrl;
f78e0e2e 970 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
971 u32 vmexit_ctrl;
972 u32 vmentry_ctrl;
973} vmcs_config;
6aa8b732 974
efff9e53 975static struct vmx_capability {
d56f546d
SY
976 u32 ept;
977 u32 vpid;
978} vmx_capability;
979
6aa8b732
AK
980#define VMX_SEGMENT_FIELD(seg) \
981 [VCPU_SREG_##seg] = { \
982 .selector = GUEST_##seg##_SELECTOR, \
983 .base = GUEST_##seg##_BASE, \
984 .limit = GUEST_##seg##_LIMIT, \
985 .ar_bytes = GUEST_##seg##_AR_BYTES, \
986 }
987
772e0318 988static const struct kvm_vmx_segment_field {
6aa8b732
AK
989 unsigned selector;
990 unsigned base;
991 unsigned limit;
992 unsigned ar_bytes;
993} kvm_vmx_segment_fields[] = {
994 VMX_SEGMENT_FIELD(CS),
995 VMX_SEGMENT_FIELD(DS),
996 VMX_SEGMENT_FIELD(ES),
997 VMX_SEGMENT_FIELD(FS),
998 VMX_SEGMENT_FIELD(GS),
999 VMX_SEGMENT_FIELD(SS),
1000 VMX_SEGMENT_FIELD(TR),
1001 VMX_SEGMENT_FIELD(LDTR),
1002};
1003
26bb0981
AK
1004static u64 host_efer;
1005
6de4f3ad
AK
1006static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1007
4d56c8a7 1008/*
8c06585d 1009 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1010 * away by decrementing the array size.
1011 */
6aa8b732 1012static const u32 vmx_msr_index[] = {
05b3e0c2 1013#ifdef CONFIG_X86_64
44ea2b17 1014 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1015#endif
8c06585d 1016 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1017};
6aa8b732 1018
5bb16016 1019static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1020{
1021 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1022 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1023 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1024}
1025
6f05485d
JK
1026static inline bool is_debug(u32 intr_info)
1027{
1028 return is_exception_n(intr_info, DB_VECTOR);
1029}
1030
1031static inline bool is_breakpoint(u32 intr_info)
1032{
1033 return is_exception_n(intr_info, BP_VECTOR);
1034}
1035
5bb16016
JK
1036static inline bool is_page_fault(u32 intr_info)
1037{
1038 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1039}
1040
31299944 1041static inline bool is_no_device(u32 intr_info)
2ab455cc 1042{
5bb16016 1043 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1044}
1045
31299944 1046static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1047{
5bb16016 1048 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1049}
1050
31299944 1051static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1052{
1053 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1054 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1055}
1056
31299944 1057static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1058{
1059 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1060 INTR_INFO_VALID_MASK)) ==
1061 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1062}
1063
31299944 1064static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1065{
04547156 1066 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1067}
1068
31299944 1069static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1070{
04547156 1071 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1072}
1073
35754c98 1074static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1075{
35754c98 1076 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1077}
1078
31299944 1079static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1080{
04547156
SY
1081 return vmcs_config.cpu_based_exec_ctrl &
1082 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1083}
1084
774ead3a 1085static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1086{
04547156
SY
1087 return vmcs_config.cpu_based_2nd_exec_ctrl &
1088 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1089}
1090
8d14695f
YZ
1091static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1092{
1093 return vmcs_config.cpu_based_2nd_exec_ctrl &
1094 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1095}
1096
83d4c286
YZ
1097static inline bool cpu_has_vmx_apic_register_virt(void)
1098{
1099 return vmcs_config.cpu_based_2nd_exec_ctrl &
1100 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1101}
1102
c7c9c56c
YZ
1103static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1104{
1105 return vmcs_config.cpu_based_2nd_exec_ctrl &
1106 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1107}
1108
64672c95
YJ
1109/*
1110 * Comment's format: document - errata name - stepping - processor name.
1111 * Refer from
1112 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1113 */
1114static u32 vmx_preemption_cpu_tfms[] = {
1115/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
11160x000206E6,
1117/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1118/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1119/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11200x00020652,
1121/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11220x00020655,
1123/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1124/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1125/*
1126 * 320767.pdf - AAP86 - B1 -
1127 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1128 */
11290x000106E5,
1130/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11310x000106A0,
1132/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11330x000106A1,
1134/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11350x000106A4,
1136 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1137 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1138 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11390x000106A5,
1140};
1141
1142static inline bool cpu_has_broken_vmx_preemption_timer(void)
1143{
1144 u32 eax = cpuid_eax(0x00000001), i;
1145
1146 /* Clear the reserved bits */
1147 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1148 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1149 if (eax == vmx_preemption_cpu_tfms[i])
1150 return true;
1151
1152 return false;
1153}
1154
1155static inline bool cpu_has_vmx_preemption_timer(void)
1156{
64672c95
YJ
1157 return vmcs_config.pin_based_exec_ctrl &
1158 PIN_BASED_VMX_PREEMPTION_TIMER;
1159}
1160
01e439be
YZ
1161static inline bool cpu_has_vmx_posted_intr(void)
1162{
d6a858d1
PB
1163 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1164 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1165}
1166
1167static inline bool cpu_has_vmx_apicv(void)
1168{
1169 return cpu_has_vmx_apic_register_virt() &&
1170 cpu_has_vmx_virtual_intr_delivery() &&
1171 cpu_has_vmx_posted_intr();
1172}
1173
04547156
SY
1174static inline bool cpu_has_vmx_flexpriority(void)
1175{
1176 return cpu_has_vmx_tpr_shadow() &&
1177 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1178}
1179
e799794e
MT
1180static inline bool cpu_has_vmx_ept_execute_only(void)
1181{
31299944 1182 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1183}
1184
e799794e
MT
1185static inline bool cpu_has_vmx_ept_2m_page(void)
1186{
31299944 1187 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1188}
1189
878403b7
SY
1190static inline bool cpu_has_vmx_ept_1g_page(void)
1191{
31299944 1192 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1193}
1194
4bc9b982
SY
1195static inline bool cpu_has_vmx_ept_4levels(void)
1196{
1197 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1198}
1199
42aa53b4
DH
1200static inline bool cpu_has_vmx_ept_mt_wb(void)
1201{
1202 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1203}
1204
855feb67
YZ
1205static inline bool cpu_has_vmx_ept_5levels(void)
1206{
1207 return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1208}
1209
83c3a331
XH
1210static inline bool cpu_has_vmx_ept_ad_bits(void)
1211{
1212 return vmx_capability.ept & VMX_EPT_AD_BIT;
1213}
1214
31299944 1215static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1216{
31299944 1217 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1218}
1219
31299944 1220static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1221{
31299944 1222 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1223}
1224
518c8aee
GJ
1225static inline bool cpu_has_vmx_invvpid_single(void)
1226{
1227 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1228}
1229
b9d762fa
GJ
1230static inline bool cpu_has_vmx_invvpid_global(void)
1231{
1232 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1233}
1234
08d839c4
WL
1235static inline bool cpu_has_vmx_invvpid(void)
1236{
1237 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1238}
1239
31299944 1240static inline bool cpu_has_vmx_ept(void)
d56f546d 1241{
04547156
SY
1242 return vmcs_config.cpu_based_2nd_exec_ctrl &
1243 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1244}
1245
31299944 1246static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1247{
1248 return vmcs_config.cpu_based_2nd_exec_ctrl &
1249 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1250}
1251
31299944 1252static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1253{
1254 return vmcs_config.cpu_based_2nd_exec_ctrl &
1255 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1256}
1257
9ac7e3e8
JD
1258static inline bool cpu_has_vmx_basic_inout(void)
1259{
1260 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1261}
1262
35754c98 1263static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1264{
35754c98 1265 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1266}
1267
31299944 1268static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1269{
04547156
SY
1270 return vmcs_config.cpu_based_2nd_exec_ctrl &
1271 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1272}
1273
31299944 1274static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1275{
1276 return vmcs_config.cpu_based_2nd_exec_ctrl &
1277 SECONDARY_EXEC_RDTSCP;
1278}
1279
ad756a16
MJ
1280static inline bool cpu_has_vmx_invpcid(void)
1281{
1282 return vmcs_config.cpu_based_2nd_exec_ctrl &
1283 SECONDARY_EXEC_ENABLE_INVPCID;
1284}
1285
f5f48ee1
SY
1286static inline bool cpu_has_vmx_wbinvd_exit(void)
1287{
1288 return vmcs_config.cpu_based_2nd_exec_ctrl &
1289 SECONDARY_EXEC_WBINVD_EXITING;
1290}
1291
abc4fc58
AG
1292static inline bool cpu_has_vmx_shadow_vmcs(void)
1293{
1294 u64 vmx_msr;
1295 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1296 /* check if the cpu supports writing r/o exit information fields */
1297 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1298 return false;
1299
1300 return vmcs_config.cpu_based_2nd_exec_ctrl &
1301 SECONDARY_EXEC_SHADOW_VMCS;
1302}
1303
843e4330
KH
1304static inline bool cpu_has_vmx_pml(void)
1305{
1306 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1307}
1308
64903d61
HZ
1309static inline bool cpu_has_vmx_tsc_scaling(void)
1310{
1311 return vmcs_config.cpu_based_2nd_exec_ctrl &
1312 SECONDARY_EXEC_TSC_SCALING;
1313}
1314
2a499e49
BD
1315static inline bool cpu_has_vmx_vmfunc(void)
1316{
1317 return vmcs_config.cpu_based_2nd_exec_ctrl &
1318 SECONDARY_EXEC_ENABLE_VMFUNC;
1319}
1320
04547156
SY
1321static inline bool report_flexpriority(void)
1322{
1323 return flexpriority_enabled;
1324}
1325
c7c2c709
JM
1326static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1327{
1328 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1329}
1330
fe3ef05c
NHE
1331static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1332{
1333 return vmcs12->cpu_based_vm_exec_control & bit;
1334}
1335
1336static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1337{
1338 return (vmcs12->cpu_based_vm_exec_control &
1339 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1340 (vmcs12->secondary_vm_exec_control & bit);
1341}
1342
f5c4368f 1343static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1344{
1345 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1346}
1347
f4124500
JK
1348static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1349{
1350 return vmcs12->pin_based_vm_exec_control &
1351 PIN_BASED_VMX_PREEMPTION_TIMER;
1352}
1353
155a97a3
NHE
1354static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1355{
1356 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1357}
1358
81dc01f7
WL
1359static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1360{
3db13480 1361 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
81dc01f7
WL
1362}
1363
c5f983f6
BD
1364static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1365{
1366 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1367}
1368
f2b93280
WV
1369static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1370{
1371 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1372}
1373
5c614b35
WL
1374static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1375{
1376 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1377}
1378
82f0dd4b
WV
1379static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1380{
1381 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1382}
1383
608406e2
WV
1384static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1385{
1386 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1387}
1388
705699a1
WV
1389static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1390{
1391 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1392}
1393
27c42a1b
BD
1394static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1395{
1396 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1397}
1398
41ab9372
BD
1399static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1400{
1401 return nested_cpu_has_vmfunc(vmcs12) &&
1402 (vmcs12->vm_function_control &
1403 VMX_VMFUNC_EPTP_SWITCHING);
1404}
1405
ef85b673 1406static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1407{
1408 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1409 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1410}
1411
533558bc
JK
1412static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1413 u32 exit_intr_info,
1414 unsigned long exit_qualification);
7c177938
NHE
1415static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1416 struct vmcs12 *vmcs12,
1417 u32 reason, unsigned long qualification);
1418
8b9cf98c 1419static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1420{
1421 int i;
1422
a2fa3e9f 1423 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1424 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1425 return i;
1426 return -1;
1427}
1428
2384d2b3
SY
1429static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1430{
1431 struct {
1432 u64 vpid : 16;
1433 u64 rsvd : 48;
1434 u64 gva;
1435 } operand = { vpid, 0, gva };
1436
4ecac3fd 1437 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1438 /* CF==1 or ZF==1 --> rc = -1 */
1439 "; ja 1f ; ud2 ; 1:"
1440 : : "a"(&operand), "c"(ext) : "cc", "memory");
1441}
1442
1439442c
SY
1443static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1444{
1445 struct {
1446 u64 eptp, gpa;
1447 } operand = {eptp, gpa};
1448
4ecac3fd 1449 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1450 /* CF==1 or ZF==1 --> rc = -1 */
1451 "; ja 1f ; ud2 ; 1:\n"
1452 : : "a" (&operand), "c" (ext) : "cc", "memory");
1453}
1454
26bb0981 1455static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1456{
1457 int i;
1458
8b9cf98c 1459 i = __find_msr_index(vmx, msr);
a75beee6 1460 if (i >= 0)
a2fa3e9f 1461 return &vmx->guest_msrs[i];
8b6d44c7 1462 return NULL;
7725f0ba
AK
1463}
1464
6aa8b732
AK
1465static void vmcs_clear(struct vmcs *vmcs)
1466{
1467 u64 phys_addr = __pa(vmcs);
1468 u8 error;
1469
4ecac3fd 1470 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1471 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1472 : "cc", "memory");
1473 if (error)
1474 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1475 vmcs, phys_addr);
1476}
1477
d462b819
NHE
1478static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1479{
1480 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1481 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1482 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1483 loaded_vmcs->cpu = -1;
1484 loaded_vmcs->launched = 0;
1485}
1486
7725b894
DX
1487static void vmcs_load(struct vmcs *vmcs)
1488{
1489 u64 phys_addr = __pa(vmcs);
1490 u8 error;
1491
1492 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1493 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1494 : "cc", "memory");
1495 if (error)
2844d849 1496 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1497 vmcs, phys_addr);
1498}
1499
2965faa5 1500#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1501/*
1502 * This bitmap is used to indicate whether the vmclear
1503 * operation is enabled on all cpus. All disabled by
1504 * default.
1505 */
1506static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1507
1508static inline void crash_enable_local_vmclear(int cpu)
1509{
1510 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1511}
1512
1513static inline void crash_disable_local_vmclear(int cpu)
1514{
1515 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1516}
1517
1518static inline int crash_local_vmclear_enabled(int cpu)
1519{
1520 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1521}
1522
1523static void crash_vmclear_local_loaded_vmcss(void)
1524{
1525 int cpu = raw_smp_processor_id();
1526 struct loaded_vmcs *v;
1527
1528 if (!crash_local_vmclear_enabled(cpu))
1529 return;
1530
1531 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1532 loaded_vmcss_on_cpu_link)
1533 vmcs_clear(v->vmcs);
1534}
1535#else
1536static inline void crash_enable_local_vmclear(int cpu) { }
1537static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1538#endif /* CONFIG_KEXEC_CORE */
8f536b76 1539
d462b819 1540static void __loaded_vmcs_clear(void *arg)
6aa8b732 1541{
d462b819 1542 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1543 int cpu = raw_smp_processor_id();
6aa8b732 1544
d462b819
NHE
1545 if (loaded_vmcs->cpu != cpu)
1546 return; /* vcpu migration can race with cpu offline */
1547 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1548 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1549 crash_disable_local_vmclear(cpu);
d462b819 1550 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1551
1552 /*
1553 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1554 * is before setting loaded_vmcs->vcpu to -1 which is done in
1555 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1556 * then adds the vmcs into percpu list before it is deleted.
1557 */
1558 smp_wmb();
1559
d462b819 1560 loaded_vmcs_init(loaded_vmcs);
8f536b76 1561 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1562}
1563
d462b819 1564static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1565{
e6c7d321
XG
1566 int cpu = loaded_vmcs->cpu;
1567
1568 if (cpu != -1)
1569 smp_call_function_single(cpu,
1570 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1571}
1572
dd5f5341 1573static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1574{
dd5f5341 1575 if (vpid == 0)
2384d2b3
SY
1576 return;
1577
518c8aee 1578 if (cpu_has_vmx_invvpid_single())
dd5f5341 1579 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1580}
1581
b9d762fa
GJ
1582static inline void vpid_sync_vcpu_global(void)
1583{
1584 if (cpu_has_vmx_invvpid_global())
1585 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1586}
1587
dd5f5341 1588static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1589{
1590 if (cpu_has_vmx_invvpid_single())
dd5f5341 1591 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1592 else
1593 vpid_sync_vcpu_global();
1594}
1595
1439442c
SY
1596static inline void ept_sync_global(void)
1597{
f5f51586 1598 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1439442c
SY
1599}
1600
1601static inline void ept_sync_context(u64 eptp)
1602{
0e1252dc
DH
1603 if (cpu_has_vmx_invept_context())
1604 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1605 else
1606 ept_sync_global();
1439442c
SY
1607}
1608
8a86aea9
PB
1609static __always_inline void vmcs_check16(unsigned long field)
1610{
1611 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1612 "16-bit accessor invalid for 64-bit field");
1613 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1614 "16-bit accessor invalid for 64-bit high field");
1615 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1616 "16-bit accessor invalid for 32-bit high field");
1617 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1618 "16-bit accessor invalid for natural width field");
1619}
1620
1621static __always_inline void vmcs_check32(unsigned long field)
1622{
1623 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1624 "32-bit accessor invalid for 16-bit field");
1625 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1626 "32-bit accessor invalid for natural width field");
1627}
1628
1629static __always_inline void vmcs_check64(unsigned long field)
1630{
1631 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1632 "64-bit accessor invalid for 16-bit field");
1633 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1634 "64-bit accessor invalid for 64-bit high field");
1635 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1636 "64-bit accessor invalid for 32-bit field");
1637 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1638 "64-bit accessor invalid for natural width field");
1639}
1640
1641static __always_inline void vmcs_checkl(unsigned long field)
1642{
1643 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1644 "Natural width accessor invalid for 16-bit field");
1645 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1646 "Natural width accessor invalid for 64-bit field");
1647 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1648 "Natural width accessor invalid for 64-bit high field");
1649 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1650 "Natural width accessor invalid for 32-bit field");
1651}
1652
1653static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1654{
5e520e62 1655 unsigned long value;
6aa8b732 1656
5e520e62
AK
1657 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1658 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1659 return value;
1660}
1661
96304217 1662static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1663{
8a86aea9
PB
1664 vmcs_check16(field);
1665 return __vmcs_readl(field);
6aa8b732
AK
1666}
1667
96304217 1668static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1669{
8a86aea9
PB
1670 vmcs_check32(field);
1671 return __vmcs_readl(field);
6aa8b732
AK
1672}
1673
96304217 1674static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1675{
8a86aea9 1676 vmcs_check64(field);
05b3e0c2 1677#ifdef CONFIG_X86_64
8a86aea9 1678 return __vmcs_readl(field);
6aa8b732 1679#else
8a86aea9 1680 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1681#endif
1682}
1683
8a86aea9
PB
1684static __always_inline unsigned long vmcs_readl(unsigned long field)
1685{
1686 vmcs_checkl(field);
1687 return __vmcs_readl(field);
1688}
1689
e52de1b8
AK
1690static noinline void vmwrite_error(unsigned long field, unsigned long value)
1691{
1692 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1693 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1694 dump_stack();
1695}
1696
8a86aea9 1697static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1698{
1699 u8 error;
1700
4ecac3fd 1701 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1702 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1703 if (unlikely(error))
1704 vmwrite_error(field, value);
6aa8b732
AK
1705}
1706
8a86aea9 1707static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1708{
8a86aea9
PB
1709 vmcs_check16(field);
1710 __vmcs_writel(field, value);
6aa8b732
AK
1711}
1712
8a86aea9 1713static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1714{
8a86aea9
PB
1715 vmcs_check32(field);
1716 __vmcs_writel(field, value);
6aa8b732
AK
1717}
1718
8a86aea9 1719static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1720{
8a86aea9
PB
1721 vmcs_check64(field);
1722 __vmcs_writel(field, value);
7682f2d0 1723#ifndef CONFIG_X86_64
6aa8b732 1724 asm volatile ("");
8a86aea9 1725 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1726#endif
1727}
1728
8a86aea9 1729static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1730{
8a86aea9
PB
1731 vmcs_checkl(field);
1732 __vmcs_writel(field, value);
2ab455cc
AL
1733}
1734
8a86aea9 1735static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1736{
8a86aea9
PB
1737 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1738 "vmcs_clear_bits does not support 64-bit fields");
1739 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1740}
1741
8a86aea9 1742static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1743{
8a86aea9
PB
1744 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1745 "vmcs_set_bits does not support 64-bit fields");
1746 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1747}
1748
8391ce44
PB
1749static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1750{
1751 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1752}
1753
2961e876
GN
1754static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1755{
1756 vmcs_write32(VM_ENTRY_CONTROLS, val);
1757 vmx->vm_entry_controls_shadow = val;
1758}
1759
1760static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1761{
1762 if (vmx->vm_entry_controls_shadow != val)
1763 vm_entry_controls_init(vmx, val);
1764}
1765
1766static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1767{
1768 return vmx->vm_entry_controls_shadow;
1769}
1770
1771
1772static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1773{
1774 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1775}
1776
1777static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1778{
1779 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1780}
1781
8391ce44
PB
1782static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1783{
1784 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1785}
1786
2961e876
GN
1787static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1788{
1789 vmcs_write32(VM_EXIT_CONTROLS, val);
1790 vmx->vm_exit_controls_shadow = val;
1791}
1792
1793static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1794{
1795 if (vmx->vm_exit_controls_shadow != val)
1796 vm_exit_controls_init(vmx, val);
1797}
1798
1799static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1800{
1801 return vmx->vm_exit_controls_shadow;
1802}
1803
1804
1805static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1806{
1807 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1808}
1809
1810static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1811{
1812 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1813}
1814
2fb92db1
AK
1815static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1816{
1817 vmx->segment_cache.bitmask = 0;
1818}
1819
1820static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1821 unsigned field)
1822{
1823 bool ret;
1824 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1825
1826 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1827 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1828 vmx->segment_cache.bitmask = 0;
1829 }
1830 ret = vmx->segment_cache.bitmask & mask;
1831 vmx->segment_cache.bitmask |= mask;
1832 return ret;
1833}
1834
1835static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1836{
1837 u16 *p = &vmx->segment_cache.seg[seg].selector;
1838
1839 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1840 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1841 return *p;
1842}
1843
1844static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1845{
1846 ulong *p = &vmx->segment_cache.seg[seg].base;
1847
1848 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1849 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1850 return *p;
1851}
1852
1853static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1854{
1855 u32 *p = &vmx->segment_cache.seg[seg].limit;
1856
1857 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1858 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1859 return *p;
1860}
1861
1862static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1863{
1864 u32 *p = &vmx->segment_cache.seg[seg].ar;
1865
1866 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1867 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1868 return *p;
1869}
1870
abd3f2d6
AK
1871static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1872{
1873 u32 eb;
1874
fd7373cc 1875 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 1876 (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1877 if ((vcpu->guest_debug &
1878 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1879 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1880 eb |= 1u << BP_VECTOR;
7ffd92c5 1881 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1882 eb = ~0;
089d034e 1883 if (enable_ept)
1439442c 1884 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
1885
1886 /* When we are running a nested L2 guest and L1 specified for it a
1887 * certain exception bitmap, we must trap the same exceptions and pass
1888 * them to L1. When running L2, we will only handle the exceptions
1889 * specified above if L1 did not want them.
1890 */
1891 if (is_guest_mode(vcpu))
1892 eb |= get_vmcs12(vcpu)->exception_bitmap;
1893
abd3f2d6
AK
1894 vmcs_write32(EXCEPTION_BITMAP, eb);
1895}
1896
2961e876
GN
1897static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1898 unsigned long entry, unsigned long exit)
8bf00a52 1899{
2961e876
GN
1900 vm_entry_controls_clearbit(vmx, entry);
1901 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1902}
1903
61d2ef2c
AK
1904static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1905{
1906 unsigned i;
1907 struct msr_autoload *m = &vmx->msr_autoload;
1908
8bf00a52
GN
1909 switch (msr) {
1910 case MSR_EFER:
1911 if (cpu_has_load_ia32_efer) {
2961e876
GN
1912 clear_atomic_switch_msr_special(vmx,
1913 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1914 VM_EXIT_LOAD_IA32_EFER);
1915 return;
1916 }
1917 break;
1918 case MSR_CORE_PERF_GLOBAL_CTRL:
1919 if (cpu_has_load_perf_global_ctrl) {
2961e876 1920 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1921 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1922 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1923 return;
1924 }
1925 break;
110312c8
AK
1926 }
1927
61d2ef2c
AK
1928 for (i = 0; i < m->nr; ++i)
1929 if (m->guest[i].index == msr)
1930 break;
1931
1932 if (i == m->nr)
1933 return;
1934 --m->nr;
1935 m->guest[i] = m->guest[m->nr];
1936 m->host[i] = m->host[m->nr];
1937 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1938 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1939}
1940
2961e876
GN
1941static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1942 unsigned long entry, unsigned long exit,
1943 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1944 u64 guest_val, u64 host_val)
8bf00a52
GN
1945{
1946 vmcs_write64(guest_val_vmcs, guest_val);
1947 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1948 vm_entry_controls_setbit(vmx, entry);
1949 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1950}
1951
61d2ef2c
AK
1952static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1953 u64 guest_val, u64 host_val)
1954{
1955 unsigned i;
1956 struct msr_autoload *m = &vmx->msr_autoload;
1957
8bf00a52
GN
1958 switch (msr) {
1959 case MSR_EFER:
1960 if (cpu_has_load_ia32_efer) {
2961e876
GN
1961 add_atomic_switch_msr_special(vmx,
1962 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1963 VM_EXIT_LOAD_IA32_EFER,
1964 GUEST_IA32_EFER,
1965 HOST_IA32_EFER,
1966 guest_val, host_val);
1967 return;
1968 }
1969 break;
1970 case MSR_CORE_PERF_GLOBAL_CTRL:
1971 if (cpu_has_load_perf_global_ctrl) {
2961e876 1972 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1973 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1974 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1975 GUEST_IA32_PERF_GLOBAL_CTRL,
1976 HOST_IA32_PERF_GLOBAL_CTRL,
1977 guest_val, host_val);
1978 return;
1979 }
1980 break;
7099e2e1
RK
1981 case MSR_IA32_PEBS_ENABLE:
1982 /* PEBS needs a quiescent period after being disabled (to write
1983 * a record). Disabling PEBS through VMX MSR swapping doesn't
1984 * provide that period, so a CPU could write host's record into
1985 * guest's memory.
1986 */
1987 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1988 }
1989
61d2ef2c
AK
1990 for (i = 0; i < m->nr; ++i)
1991 if (m->guest[i].index == msr)
1992 break;
1993
e7fc6f93 1994 if (i == NR_AUTOLOAD_MSRS) {
60266204 1995 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1996 "Can't add msr %x\n", msr);
1997 return;
1998 } else if (i == m->nr) {
61d2ef2c
AK
1999 ++m->nr;
2000 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2001 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2002 }
2003
2004 m->guest[i].index = msr;
2005 m->guest[i].value = guest_val;
2006 m->host[i].index = msr;
2007 m->host[i].value = host_val;
2008}
2009
92c0d900 2010static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2011{
844a5fe2
PB
2012 u64 guest_efer = vmx->vcpu.arch.efer;
2013 u64 ignore_bits = 0;
2014
2015 if (!enable_ept) {
2016 /*
2017 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2018 * host CPUID is more efficient than testing guest CPUID
2019 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2020 */
2021 if (boot_cpu_has(X86_FEATURE_SMEP))
2022 guest_efer |= EFER_NX;
2023 else if (!(guest_efer & EFER_NX))
2024 ignore_bits |= EFER_NX;
2025 }
3a34a881 2026
51c6cf66 2027 /*
844a5fe2 2028 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2029 */
844a5fe2 2030 ignore_bits |= EFER_SCE;
51c6cf66
AK
2031#ifdef CONFIG_X86_64
2032 ignore_bits |= EFER_LMA | EFER_LME;
2033 /* SCE is meaningful only in long mode on Intel */
2034 if (guest_efer & EFER_LMA)
2035 ignore_bits &= ~(u64)EFER_SCE;
2036#endif
84ad33ef
AK
2037
2038 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2039
2040 /*
2041 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2042 * On CPUs that support "load IA32_EFER", always switch EFER
2043 * atomically, since it's faster than switching it manually.
2044 */
2045 if (cpu_has_load_ia32_efer ||
2046 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2047 if (!(guest_efer & EFER_LMA))
2048 guest_efer &= ~EFER_LME;
54b98bff
AL
2049 if (guest_efer != host_efer)
2050 add_atomic_switch_msr(vmx, MSR_EFER,
2051 guest_efer, host_efer);
84ad33ef 2052 return false;
844a5fe2
PB
2053 } else {
2054 guest_efer &= ~ignore_bits;
2055 guest_efer |= host_efer & ignore_bits;
2056
2057 vmx->guest_msrs[efer_offset].data = guest_efer;
2058 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2059
844a5fe2
PB
2060 return true;
2061 }
51c6cf66
AK
2062}
2063
e28baead
AL
2064#ifdef CONFIG_X86_32
2065/*
2066 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2067 * VMCS rather than the segment table. KVM uses this helper to figure
2068 * out the current bases to poke them into the VMCS before entry.
2069 */
2d49ec72
GN
2070static unsigned long segment_base(u16 selector)
2071{
8c2e41f7 2072 struct desc_struct *table;
2d49ec72
GN
2073 unsigned long v;
2074
8c2e41f7 2075 if (!(selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2076 return 0;
2077
45fc8757 2078 table = get_current_gdt_ro();
2d49ec72 2079
8c2e41f7 2080 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2d49ec72
GN
2081 u16 ldt_selector = kvm_read_ldt();
2082
8c2e41f7 2083 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2084 return 0;
2085
8c2e41f7 2086 table = (struct desc_struct *)segment_base(ldt_selector);
2d49ec72 2087 }
8c2e41f7 2088 v = get_desc_base(&table[selector >> 3]);
2d49ec72
GN
2089 return v;
2090}
e28baead 2091#endif
2d49ec72 2092
04d2cc77 2093static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2094{
04d2cc77 2095 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2096 int i;
04d2cc77 2097
a2fa3e9f 2098 if (vmx->host_state.loaded)
33ed6329
AK
2099 return;
2100
a2fa3e9f 2101 vmx->host_state.loaded = 1;
33ed6329
AK
2102 /*
2103 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2104 * allow segment selectors with cpl > 0 or ti == 1.
2105 */
d6e88aec 2106 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2107 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2108 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2109 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2110 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2111 vmx->host_state.fs_reload_needed = 0;
2112 } else {
33ed6329 2113 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2114 vmx->host_state.fs_reload_needed = 1;
33ed6329 2115 }
9581d442 2116 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2117 if (!(vmx->host_state.gs_sel & 7))
2118 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2119 else {
2120 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2121 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2122 }
2123
b2da15ac
AK
2124#ifdef CONFIG_X86_64
2125 savesegment(ds, vmx->host_state.ds_sel);
2126 savesegment(es, vmx->host_state.es_sel);
2127#endif
2128
33ed6329
AK
2129#ifdef CONFIG_X86_64
2130 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2131 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2132#else
a2fa3e9f
GH
2133 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2134 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2135#endif
707c0874
AK
2136
2137#ifdef CONFIG_X86_64
c8770e7b
AK
2138 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2139 if (is_long_mode(&vmx->vcpu))
44ea2b17 2140 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2141#endif
da8999d3
LJ
2142 if (boot_cpu_has(X86_FEATURE_MPX))
2143 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2144 for (i = 0; i < vmx->save_nmsrs; ++i)
2145 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2146 vmx->guest_msrs[i].data,
2147 vmx->guest_msrs[i].mask);
33ed6329
AK
2148}
2149
a9b21b62 2150static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2151{
a2fa3e9f 2152 if (!vmx->host_state.loaded)
33ed6329
AK
2153 return;
2154
e1beb1d3 2155 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2156 vmx->host_state.loaded = 0;
c8770e7b
AK
2157#ifdef CONFIG_X86_64
2158 if (is_long_mode(&vmx->vcpu))
2159 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2160#endif
152d3f2f 2161 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2162 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2163#ifdef CONFIG_X86_64
9581d442 2164 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2165#else
2166 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2167#endif
33ed6329 2168 }
0a77fe4c
AK
2169 if (vmx->host_state.fs_reload_needed)
2170 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2171#ifdef CONFIG_X86_64
2172 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2173 loadsegment(ds, vmx->host_state.ds_sel);
2174 loadsegment(es, vmx->host_state.es_sel);
2175 }
b2da15ac 2176#endif
b7ffc44d 2177 invalidate_tss_limit();
44ea2b17 2178#ifdef CONFIG_X86_64
c8770e7b 2179 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2180#endif
da8999d3
LJ
2181 if (vmx->host_state.msr_host_bndcfgs)
2182 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
45fc8757 2183 load_fixmap_gdt(raw_smp_processor_id());
33ed6329
AK
2184}
2185
a9b21b62
AK
2186static void vmx_load_host_state(struct vcpu_vmx *vmx)
2187{
2188 preempt_disable();
2189 __vmx_load_host_state(vmx);
2190 preempt_enable();
2191}
2192
28b835d6
FW
2193static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2194{
2195 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2196 struct pi_desc old, new;
2197 unsigned int dest;
2198
31afb2ea
PB
2199 /*
2200 * In case of hot-plug or hot-unplug, we may have to undo
2201 * vmx_vcpu_pi_put even if there is no assigned device. And we
2202 * always keep PI.NDST up to date for simplicity: it makes the
2203 * code easier, and CPU migration is not a fast path.
2204 */
2205 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
28b835d6
FW
2206 return;
2207
31afb2ea
PB
2208 /*
2209 * First handle the simple case where no cmpxchg is necessary; just
2210 * allow posting non-urgent interrupts.
2211 *
2212 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2213 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2214 * expects the VCPU to be on the blocked_vcpu_list that matches
2215 * PI.NDST.
2216 */
2217 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2218 vcpu->cpu == cpu) {
2219 pi_clear_sn(pi_desc);
28b835d6 2220 return;
31afb2ea 2221 }
28b835d6 2222
31afb2ea 2223 /* The full case. */
28b835d6
FW
2224 do {
2225 old.control = new.control = pi_desc->control;
2226
31afb2ea 2227 dest = cpu_physical_id(cpu);
28b835d6 2228
31afb2ea
PB
2229 if (x2apic_enabled())
2230 new.ndst = dest;
2231 else
2232 new.ndst = (dest << 8) & 0xFF00;
28b835d6 2233
28b835d6 2234 new.sn = 0;
c0a1666b
PB
2235 } while (cmpxchg64(&pi_desc->control, old.control,
2236 new.control) != old.control);
28b835d6 2237}
1be0e61c 2238
c95ba92a
PF
2239static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2240{
2241 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2242 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2243}
2244
6aa8b732
AK
2245/*
2246 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2247 * vcpu mutex is already taken.
2248 */
15ad7146 2249static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2250{
a2fa3e9f 2251 struct vcpu_vmx *vmx = to_vmx(vcpu);
b80c76ec 2252 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2253
b80c76ec 2254 if (!already_loaded) {
fe0e80be 2255 loaded_vmcs_clear(vmx->loaded_vmcs);
92fe13be 2256 local_irq_disable();
8f536b76 2257 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2258
2259 /*
2260 * Read loaded_vmcs->cpu should be before fetching
2261 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2262 * See the comments in __loaded_vmcs_clear().
2263 */
2264 smp_rmb();
2265
d462b819
NHE
2266 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2267 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2268 crash_enable_local_vmclear(cpu);
92fe13be 2269 local_irq_enable();
b80c76ec
JM
2270 }
2271
2272 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2273 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2274 vmcs_load(vmx->loaded_vmcs->vmcs);
2275 }
2276
2277 if (!already_loaded) {
59c58ceb 2278 void *gdt = get_current_gdt_ro();
b80c76ec
JM
2279 unsigned long sysenter_esp;
2280
2281 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2282
6aa8b732
AK
2283 /*
2284 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2285 * processors. See 22.2.4.
6aa8b732 2286 */
e0c23063
AL
2287 vmcs_writel(HOST_TR_BASE,
2288 (unsigned long)this_cpu_ptr(&cpu_tss));
59c58ceb 2289 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
6aa8b732 2290
b7ffc44d
AL
2291 /*
2292 * VM exits change the host TR limit to 0x67 after a VM
2293 * exit. This is okay, since 0x67 covers everything except
2294 * the IO bitmap and have have code to handle the IO bitmap
2295 * being lost after a VM exit.
2296 */
2297 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2298
6aa8b732
AK
2299 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2300 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2301
d462b819 2302 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2303 }
28b835d6 2304
2680d6da
OH
2305 /* Setup TSC multiplier */
2306 if (kvm_has_tsc_control &&
c95ba92a
PF
2307 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2308 decache_tsc_multiplier(vmx);
2680d6da 2309
28b835d6 2310 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2311 vmx->host_pkru = read_pkru();
28b835d6
FW
2312}
2313
2314static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2315{
2316 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2317
2318 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2319 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2320 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2321 return;
2322
2323 /* Set SN when the vCPU is preempted */
2324 if (vcpu->preempted)
2325 pi_set_sn(pi_desc);
6aa8b732
AK
2326}
2327
2328static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2329{
28b835d6
FW
2330 vmx_vcpu_pi_put(vcpu);
2331
a9b21b62 2332 __vmx_load_host_state(to_vmx(vcpu));
6aa8b732
AK
2333}
2334
f244deed
WL
2335static bool emulation_required(struct kvm_vcpu *vcpu)
2336{
2337 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2338}
2339
edcafe3c
AK
2340static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2341
fe3ef05c
NHE
2342/*
2343 * Return the cr0 value that a nested guest would read. This is a combination
2344 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2345 * its hypervisor (cr0_read_shadow).
2346 */
2347static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2348{
2349 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2350 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2351}
2352static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2353{
2354 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2355 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2356}
2357
6aa8b732
AK
2358static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2359{
78ac8b47 2360 unsigned long rflags, save_rflags;
345dcaa8 2361
6de12732
AK
2362 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2363 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2364 rflags = vmcs_readl(GUEST_RFLAGS);
2365 if (to_vmx(vcpu)->rmode.vm86_active) {
2366 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2367 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2368 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2369 }
2370 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2371 }
6de12732 2372 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2373}
2374
2375static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2376{
f244deed
WL
2377 unsigned long old_rflags = vmx_get_rflags(vcpu);
2378
6de12732
AK
2379 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2380 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2381 if (to_vmx(vcpu)->rmode.vm86_active) {
2382 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2383 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2384 }
6aa8b732 2385 vmcs_writel(GUEST_RFLAGS, rflags);
f244deed
WL
2386
2387 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2388 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
6aa8b732
AK
2389}
2390
37ccdcbe 2391static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2392{
2393 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2394 int ret = 0;
2395
2396 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2397 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2398 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2399 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2400
37ccdcbe 2401 return ret;
2809f5d2
GC
2402}
2403
2404static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2405{
2406 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2407 u32 interruptibility = interruptibility_old;
2408
2409 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2410
48005f64 2411 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2412 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2413 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2414 interruptibility |= GUEST_INTR_STATE_STI;
2415
2416 if ((interruptibility != interruptibility_old))
2417 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2418}
2419
6aa8b732
AK
2420static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2421{
2422 unsigned long rip;
6aa8b732 2423
5fdbf976 2424 rip = kvm_rip_read(vcpu);
6aa8b732 2425 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2426 kvm_rip_write(vcpu, rip);
6aa8b732 2427
2809f5d2
GC
2428 /* skipping an emulated instruction also counts */
2429 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2430}
2431
b96fb439
PB
2432static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2433 unsigned long exit_qual)
2434{
2435 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2436 unsigned int nr = vcpu->arch.exception.nr;
2437 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2438
2439 if (vcpu->arch.exception.has_error_code) {
2440 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2441 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2442 }
2443
2444 if (kvm_exception_is_soft(nr))
2445 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2446 else
2447 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2448
2449 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2450 vmx_get_nmi_mask(vcpu))
2451 intr_info |= INTR_INFO_UNBLOCK_NMI;
2452
2453 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2454}
2455
0b6ac343
NHE
2456/*
2457 * KVM wants to inject page-faults which it got to the guest. This function
2458 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2459 */
bfcf83b1 2460static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
0b6ac343
NHE
2461{
2462 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
adfe20fb 2463 unsigned int nr = vcpu->arch.exception.nr;
0b6ac343 2464
b96fb439
PB
2465 if (nr == PF_VECTOR) {
2466 if (vcpu->arch.exception.nested_apf) {
bfcf83b1 2467 *exit_qual = vcpu->arch.apf.nested_apf_token;
b96fb439
PB
2468 return 1;
2469 }
2470 /*
2471 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2472 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2473 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2474 * can be written only when inject_pending_event runs. This should be
2475 * conditional on a new capability---if the capability is disabled,
2476 * kvm_multiple_exception would write the ancillary information to
2477 * CR2 or DR6, for backwards ABI-compatibility.
2478 */
2479 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2480 vcpu->arch.exception.error_code)) {
bfcf83b1 2481 *exit_qual = vcpu->arch.cr2;
b96fb439
PB
2482 return 1;
2483 }
2484 } else {
b96fb439 2485 if (vmcs12->exception_bitmap & (1u << nr)) {
bfcf83b1
WL
2486 if (nr == DB_VECTOR)
2487 *exit_qual = vcpu->arch.dr6;
2488 else
2489 *exit_qual = 0;
b96fb439
PB
2490 return 1;
2491 }
adfe20fb
WL
2492 }
2493
b96fb439 2494 return 0;
0b6ac343
NHE
2495}
2496
cfcd20e5 2497static void vmx_queue_exception(struct kvm_vcpu *vcpu)
298101da 2498{
77ab6db0 2499 struct vcpu_vmx *vmx = to_vmx(vcpu);
cfcd20e5
WL
2500 unsigned nr = vcpu->arch.exception.nr;
2501 bool has_error_code = vcpu->arch.exception.has_error_code;
cfcd20e5 2502 u32 error_code = vcpu->arch.exception.error_code;
8ab2d2e2 2503 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2504
8ab2d2e2 2505 if (has_error_code) {
77ab6db0 2506 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2507 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2508 }
77ab6db0 2509
7ffd92c5 2510 if (vmx->rmode.vm86_active) {
71f9833b
SH
2511 int inc_eip = 0;
2512 if (kvm_exception_is_soft(nr))
2513 inc_eip = vcpu->arch.event_exit_inst_len;
2514 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2515 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2516 return;
2517 }
2518
66fd3f7f
GN
2519 if (kvm_exception_is_soft(nr)) {
2520 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2521 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2522 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2523 } else
2524 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2525
2526 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2527}
2528
4e47c7a6
SY
2529static bool vmx_rdtscp_supported(void)
2530{
2531 return cpu_has_vmx_rdtscp();
2532}
2533
ad756a16
MJ
2534static bool vmx_invpcid_supported(void)
2535{
2536 return cpu_has_vmx_invpcid() && enable_ept;
2537}
2538
a75beee6
ED
2539/*
2540 * Swap MSR entry in host/guest MSR entry array.
2541 */
8b9cf98c 2542static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2543{
26bb0981 2544 struct shared_msr_entry tmp;
a2fa3e9f
GH
2545
2546 tmp = vmx->guest_msrs[to];
2547 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2548 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2549}
2550
8d14695f
YZ
2551static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2552{
2553 unsigned long *msr_bitmap;
2554
670125bd 2555 if (is_guest_mode(vcpu))
d048c098 2556 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
3ce424e4
RK
2557 else if (cpu_has_secondary_exec_ctrls() &&
2558 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2559 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
f6e90f9e
WL
2560 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2561 if (is_long_mode(vcpu))
c63e4563 2562 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
f6e90f9e 2563 else
c63e4563 2564 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
f6e90f9e
WL
2565 } else {
2566 if (is_long_mode(vcpu))
c63e4563 2567 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
f6e90f9e 2568 else
c63e4563 2569 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
f6e90f9e 2570 }
8d14695f
YZ
2571 } else {
2572 if (is_long_mode(vcpu))
2573 msr_bitmap = vmx_msr_bitmap_longmode;
2574 else
2575 msr_bitmap = vmx_msr_bitmap_legacy;
2576 }
2577
2578 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2579}
2580
e38aea3e
AK
2581/*
2582 * Set up the vmcs to automatically save and restore system
2583 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2584 * mode, as fiddling with msrs is very expensive.
2585 */
8b9cf98c 2586static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2587{
26bb0981 2588 int save_nmsrs, index;
e38aea3e 2589
a75beee6
ED
2590 save_nmsrs = 0;
2591#ifdef CONFIG_X86_64
8b9cf98c 2592 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2593 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2594 if (index >= 0)
8b9cf98c
RR
2595 move_msr_up(vmx, index, save_nmsrs++);
2596 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2597 if (index >= 0)
8b9cf98c
RR
2598 move_msr_up(vmx, index, save_nmsrs++);
2599 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2600 if (index >= 0)
8b9cf98c 2601 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2602 index = __find_msr_index(vmx, MSR_TSC_AUX);
d6321d49 2603 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
4e47c7a6 2604 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2605 /*
8c06585d 2606 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2607 * if efer.sce is enabled.
2608 */
8c06585d 2609 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2610 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2611 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2612 }
2613#endif
92c0d900
AK
2614 index = __find_msr_index(vmx, MSR_EFER);
2615 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2616 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2617
26bb0981 2618 vmx->save_nmsrs = save_nmsrs;
5897297b 2619
8d14695f
YZ
2620 if (cpu_has_vmx_msr_bitmap())
2621 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2622}
2623
6aa8b732
AK
2624/*
2625 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2626 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2627 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2628 */
be7b263e 2629static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2630{
2631 u64 host_tsc, tsc_offset;
2632
4ea1636b 2633 host_tsc = rdtsc();
6aa8b732 2634 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2635 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2636}
2637
2638/*
99e3e30a 2639 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2640 */
99e3e30a 2641static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2642{
27fc51b2 2643 if (is_guest_mode(vcpu)) {
7991825b 2644 /*
27fc51b2
NHE
2645 * We're here if L1 chose not to trap WRMSR to TSC. According
2646 * to the spec, this should set L1's TSC; The offset that L1
2647 * set for L2 remains unchanged, and still needs to be added
2648 * to the newly set TSC to get L2's TSC.
7991825b 2649 */
27fc51b2 2650 struct vmcs12 *vmcs12;
27fc51b2
NHE
2651 /* recalculate vmcs02.TSC_OFFSET: */
2652 vmcs12 = get_vmcs12(vcpu);
2653 vmcs_write64(TSC_OFFSET, offset +
2654 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2655 vmcs12->tsc_offset : 0));
2656 } else {
489223ed
YY
2657 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2658 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2659 vmcs_write64(TSC_OFFSET, offset);
2660 }
6aa8b732
AK
2661}
2662
801d3424
NHE
2663/*
2664 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2665 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2666 * all guests if the "nested" module option is off, and can also be disabled
2667 * for a single guest by disabling its VMX cpuid bit.
2668 */
2669static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2670{
d6321d49 2671 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
801d3424
NHE
2672}
2673
b87a51ae
NHE
2674/*
2675 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2676 * returned for the various VMX controls MSRs when nested VMX is enabled.
2677 * The same values should also be used to verify that vmcs12 control fields are
2678 * valid during nested entry from L1 to L2.
2679 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2680 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2681 * bit in the high half is on if the corresponding bit in the control field
2682 * may be on. See also vmx_control_verify().
b87a51ae 2683 */
b9c237bb 2684static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2685{
2686 /*
2687 * Note that as a general rule, the high half of the MSRs (bits in
2688 * the control fields which may be 1) should be initialized by the
2689 * intersection of the underlying hardware's MSR (i.e., features which
2690 * can be supported) and the list of features we want to expose -
2691 * because they are known to be properly supported in our code.
2692 * Also, usually, the low half of the MSRs (bits which must be 1) can
2693 * be set to 0, meaning that L1 may turn off any of these bits. The
2694 * reason is that if one of these bits is necessary, it will appear
2695 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2696 * fields of vmcs01 and vmcs02, will turn these bits off - and
7313c698 2697 * nested_vmx_exit_reflected() will not pass related exits to L1.
b87a51ae
NHE
2698 * These rules have exceptions below.
2699 */
2700
2701 /* pin-based controls */
eabeaacc 2702 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2703 vmx->nested.nested_vmx_pinbased_ctls_low,
2704 vmx->nested.nested_vmx_pinbased_ctls_high);
2705 vmx->nested.nested_vmx_pinbased_ctls_low |=
2706 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2707 vmx->nested.nested_vmx_pinbased_ctls_high &=
2708 PIN_BASED_EXT_INTR_MASK |
2709 PIN_BASED_NMI_EXITING |
2710 PIN_BASED_VIRTUAL_NMIS;
2711 vmx->nested.nested_vmx_pinbased_ctls_high |=
2712 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2713 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2714 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2715 vmx->nested.nested_vmx_pinbased_ctls_high |=
2716 PIN_BASED_POSTED_INTR;
b87a51ae 2717
3dbcd8da 2718 /* exit controls */
c0dfee58 2719 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2720 vmx->nested.nested_vmx_exit_ctls_low,
2721 vmx->nested.nested_vmx_exit_ctls_high);
2722 vmx->nested.nested_vmx_exit_ctls_low =
2723 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2724
b9c237bb 2725 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2726#ifdef CONFIG_X86_64
c0dfee58 2727 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2728#endif
f4124500 2729 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2730 vmx->nested.nested_vmx_exit_ctls_high |=
2731 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2732 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2733 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2734
a87036ad 2735 if (kvm_mpx_supported())
b9c237bb 2736 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2737
2996fca0 2738 /* We support free control of debug control saving. */
0115f9cb 2739 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2740
b87a51ae
NHE
2741 /* entry controls */
2742 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2743 vmx->nested.nested_vmx_entry_ctls_low,
2744 vmx->nested.nested_vmx_entry_ctls_high);
2745 vmx->nested.nested_vmx_entry_ctls_low =
2746 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2747 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2748#ifdef CONFIG_X86_64
2749 VM_ENTRY_IA32E_MODE |
2750#endif
2751 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2752 vmx->nested.nested_vmx_entry_ctls_high |=
2753 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2754 if (kvm_mpx_supported())
b9c237bb 2755 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2756
2996fca0 2757 /* We support free control of debug control loading. */
0115f9cb 2758 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 2759
b87a51ae
NHE
2760 /* cpu-based controls */
2761 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2762 vmx->nested.nested_vmx_procbased_ctls_low,
2763 vmx->nested.nested_vmx_procbased_ctls_high);
2764 vmx->nested.nested_vmx_procbased_ctls_low =
2765 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2766 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2767 CPU_BASED_VIRTUAL_INTR_PENDING |
2768 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2769 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2770 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2771 CPU_BASED_CR3_STORE_EXITING |
2772#ifdef CONFIG_X86_64
2773 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2774#endif
2775 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2776 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2777 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2778 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2779 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2780 /*
2781 * We can allow some features even when not supported by the
2782 * hardware. For example, L1 can specify an MSR bitmap - and we
2783 * can use it to avoid exits to L1 - even when L0 runs L2
2784 * without MSR bitmaps.
2785 */
b9c237bb
WV
2786 vmx->nested.nested_vmx_procbased_ctls_high |=
2787 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2788 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2789
3dcdf3ec 2790 /* We support free control of CR3 access interception. */
0115f9cb 2791 vmx->nested.nested_vmx_procbased_ctls_low &=
3dcdf3ec
JK
2792 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2793
80154d77
PB
2794 /*
2795 * secondary cpu-based controls. Do not include those that
2796 * depend on CPUID bits, they are added later by vmx_cpuid_update.
2797 */
b87a51ae 2798 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2799 vmx->nested.nested_vmx_secondary_ctls_low,
2800 vmx->nested.nested_vmx_secondary_ctls_high);
2801 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2802 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2803 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1b07304c 2804 SECONDARY_EXEC_DESC |
f2b93280 2805 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 2806 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2807 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3db13480 2808 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2 2809
afa61f75
NHE
2810 if (enable_ept) {
2811 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2812 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2813 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2814 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
7db74265 2815 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
02120c45
BD
2816 if (cpu_has_vmx_ept_execute_only())
2817 vmx->nested.nested_vmx_ept_caps |=
2818 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2819 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817 2820 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7db74265
PB
2821 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2822 VMX_EPT_1GB_PAGE_BIT;
03efce6f
BD
2823 if (enable_ept_ad_bits) {
2824 vmx->nested.nested_vmx_secondary_ctls_high |=
2825 SECONDARY_EXEC_ENABLE_PML;
7461fbc4 2826 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
03efce6f 2827 }
1c13bffd 2828 }
afa61f75 2829
27c42a1b
BD
2830 if (cpu_has_vmx_vmfunc()) {
2831 vmx->nested.nested_vmx_secondary_ctls_high |=
2832 SECONDARY_EXEC_ENABLE_VMFUNC;
41ab9372
BD
2833 /*
2834 * Advertise EPTP switching unconditionally
2835 * since we emulate it
2836 */
2837 vmx->nested.nested_vmx_vmfunc_controls =
2838 VMX_VMFUNC_EPTP_SWITCHING;
27c42a1b
BD
2839 }
2840
ef697a71
PB
2841 /*
2842 * Old versions of KVM use the single-context version without
2843 * checking for support, so declare that it is supported even
2844 * though it is treated as global context. The alternative is
2845 * not failing the single-context invvpid, and it is worse.
2846 */
63cb6d5f
WL
2847 if (enable_vpid) {
2848 vmx->nested.nested_vmx_secondary_ctls_high |=
2849 SECONDARY_EXEC_ENABLE_VPID;
089d7b6e 2850 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 2851 VMX_VPID_EXTENT_SUPPORTED_MASK;
1c13bffd 2852 }
99b83ac8 2853
0790ec17
RK
2854 if (enable_unrestricted_guest)
2855 vmx->nested.nested_vmx_secondary_ctls_high |=
2856 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2857
c18911a2 2858 /* miscellaneous data */
b9c237bb
WV
2859 rdmsr(MSR_IA32_VMX_MISC,
2860 vmx->nested.nested_vmx_misc_low,
2861 vmx->nested.nested_vmx_misc_high);
2862 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2863 vmx->nested.nested_vmx_misc_low |=
2864 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2865 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2866 vmx->nested.nested_vmx_misc_high = 0;
62cc6b9d
DM
2867
2868 /*
2869 * This MSR reports some information about VMX support. We
2870 * should return information about the VMX we emulate for the
2871 * guest, and the VMCS structure we give it - not about the
2872 * VMX support of the underlying hardware.
2873 */
2874 vmx->nested.nested_vmx_basic =
2875 VMCS12_REVISION |
2876 VMX_BASIC_TRUE_CTLS |
2877 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2878 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2879
2880 if (cpu_has_vmx_basic_inout())
2881 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2882
2883 /*
8322ebbb 2884 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
2885 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2886 * We picked the standard core2 setting.
2887 */
2888#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2889#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2890 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
62cc6b9d 2891 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
2892
2893 /* These MSRs specify bits which the guest must keep fixed off. */
2894 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2895 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
62cc6b9d
DM
2896
2897 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2898 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
b87a51ae
NHE
2899}
2900
3899152c
DM
2901/*
2902 * if fixed0[i] == 1: val[i] must be 1
2903 * if fixed1[i] == 0: val[i] must be 0
2904 */
2905static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2906{
2907 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
2908}
2909
2910static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2911{
3899152c 2912 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
2913}
2914
2915static inline u64 vmx_control_msr(u32 low, u32 high)
2916{
2917 return low | ((u64)high << 32);
2918}
2919
62cc6b9d
DM
2920static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2921{
2922 superset &= mask;
2923 subset &= mask;
2924
2925 return (superset | subset) == superset;
2926}
2927
2928static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2929{
2930 const u64 feature_and_reserved =
2931 /* feature (except bit 48; see below) */
2932 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2933 /* reserved */
2934 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2935 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2936
2937 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2938 return -EINVAL;
2939
2940 /*
2941 * KVM does not emulate a version of VMX that constrains physical
2942 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2943 */
2944 if (data & BIT_ULL(48))
2945 return -EINVAL;
2946
2947 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2948 vmx_basic_vmcs_revision_id(data))
2949 return -EINVAL;
2950
2951 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2952 return -EINVAL;
2953
2954 vmx->nested.nested_vmx_basic = data;
2955 return 0;
2956}
2957
2958static int
2959vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2960{
2961 u64 supported;
2962 u32 *lowp, *highp;
2963
2964 switch (msr_index) {
2965 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2966 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2967 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2968 break;
2969 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2970 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2971 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2972 break;
2973 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2974 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2975 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2976 break;
2977 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2978 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2979 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2980 break;
2981 case MSR_IA32_VMX_PROCBASED_CTLS2:
2982 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2983 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2984 break;
2985 default:
2986 BUG();
2987 }
2988
2989 supported = vmx_control_msr(*lowp, *highp);
2990
2991 /* Check must-be-1 bits are still 1. */
2992 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2993 return -EINVAL;
2994
2995 /* Check must-be-0 bits are still 0. */
2996 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2997 return -EINVAL;
2998
2999 *lowp = data;
3000 *highp = data >> 32;
3001 return 0;
3002}
3003
3004static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3005{
3006 const u64 feature_and_reserved_bits =
3007 /* feature */
3008 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3009 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3010 /* reserved */
3011 GENMASK_ULL(13, 9) | BIT_ULL(31);
3012 u64 vmx_misc;
3013
3014 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3015 vmx->nested.nested_vmx_misc_high);
3016
3017 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3018 return -EINVAL;
3019
3020 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3021 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3022 vmx_misc_preemption_timer_rate(data) !=
3023 vmx_misc_preemption_timer_rate(vmx_misc))
3024 return -EINVAL;
3025
3026 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3027 return -EINVAL;
3028
3029 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3030 return -EINVAL;
3031
3032 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3033 return -EINVAL;
3034
3035 vmx->nested.nested_vmx_misc_low = data;
3036 vmx->nested.nested_vmx_misc_high = data >> 32;
3037 return 0;
3038}
3039
3040static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3041{
3042 u64 vmx_ept_vpid_cap;
3043
3044 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3045 vmx->nested.nested_vmx_vpid_caps);
3046
3047 /* Every bit is either reserved or a feature bit. */
3048 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3049 return -EINVAL;
3050
3051 vmx->nested.nested_vmx_ept_caps = data;
3052 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3053 return 0;
3054}
3055
3056static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3057{
3058 u64 *msr;
3059
3060 switch (msr_index) {
3061 case MSR_IA32_VMX_CR0_FIXED0:
3062 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3063 break;
3064 case MSR_IA32_VMX_CR4_FIXED0:
3065 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3066 break;
3067 default:
3068 BUG();
3069 }
3070
3071 /*
3072 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3073 * must be 1 in the restored value.
3074 */
3075 if (!is_bitwise_subset(data, *msr, -1ULL))
3076 return -EINVAL;
3077
3078 *msr = data;
3079 return 0;
3080}
3081
3082/*
3083 * Called when userspace is restoring VMX MSRs.
3084 *
3085 * Returns 0 on success, non-0 otherwise.
3086 */
3087static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3088{
b9c237bb
WV
3089 struct vcpu_vmx *vmx = to_vmx(vcpu);
3090
b87a51ae 3091 switch (msr_index) {
b87a51ae 3092 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3093 return vmx_restore_vmx_basic(vmx, data);
3094 case MSR_IA32_VMX_PINBASED_CTLS:
3095 case MSR_IA32_VMX_PROCBASED_CTLS:
3096 case MSR_IA32_VMX_EXIT_CTLS:
3097 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3098 /*
62cc6b9d
DM
3099 * The "non-true" VMX capability MSRs are generated from the
3100 * "true" MSRs, so we do not support restoring them directly.
3101 *
3102 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3103 * should restore the "true" MSRs with the must-be-1 bits
3104 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3105 * DEFAULT SETTINGS".
b87a51ae 3106 */
62cc6b9d
DM
3107 return -EINVAL;
3108 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3109 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3110 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3111 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3112 case MSR_IA32_VMX_PROCBASED_CTLS2:
3113 return vmx_restore_control_msr(vmx, msr_index, data);
3114 case MSR_IA32_VMX_MISC:
3115 return vmx_restore_vmx_misc(vmx, data);
3116 case MSR_IA32_VMX_CR0_FIXED0:
3117 case MSR_IA32_VMX_CR4_FIXED0:
3118 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3119 case MSR_IA32_VMX_CR0_FIXED1:
3120 case MSR_IA32_VMX_CR4_FIXED1:
3121 /*
3122 * These MSRs are generated based on the vCPU's CPUID, so we
3123 * do not support restoring them directly.
3124 */
3125 return -EINVAL;
3126 case MSR_IA32_VMX_EPT_VPID_CAP:
3127 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3128 case MSR_IA32_VMX_VMCS_ENUM:
3129 vmx->nested.nested_vmx_vmcs_enum = data;
3130 return 0;
3131 default:
b87a51ae 3132 /*
62cc6b9d 3133 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3134 */
62cc6b9d
DM
3135 return -EINVAL;
3136 }
3137}
3138
3139/* Returns 0 on success, non-0 otherwise. */
3140static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3141{
3142 struct vcpu_vmx *vmx = to_vmx(vcpu);
3143
3144 switch (msr_index) {
3145 case MSR_IA32_VMX_BASIC:
3146 *pdata = vmx->nested.nested_vmx_basic;
b87a51ae
NHE
3147 break;
3148 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3149 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
3150 *pdata = vmx_control_msr(
3151 vmx->nested.nested_vmx_pinbased_ctls_low,
3152 vmx->nested.nested_vmx_pinbased_ctls_high);
0115f9cb
DM
3153 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3154 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3155 break;
3156 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3157 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
3158 *pdata = vmx_control_msr(
3159 vmx->nested.nested_vmx_procbased_ctls_low,
3160 vmx->nested.nested_vmx_procbased_ctls_high);
0115f9cb
DM
3161 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3162 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3163 break;
3164 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3165 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
3166 *pdata = vmx_control_msr(
3167 vmx->nested.nested_vmx_exit_ctls_low,
3168 vmx->nested.nested_vmx_exit_ctls_high);
0115f9cb
DM
3169 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3170 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3171 break;
3172 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3173 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
3174 *pdata = vmx_control_msr(
3175 vmx->nested.nested_vmx_entry_ctls_low,
3176 vmx->nested.nested_vmx_entry_ctls_high);
0115f9cb
DM
3177 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3178 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3179 break;
3180 case MSR_IA32_VMX_MISC:
b9c237bb
WV
3181 *pdata = vmx_control_msr(
3182 vmx->nested.nested_vmx_misc_low,
3183 vmx->nested.nested_vmx_misc_high);
b87a51ae 3184 break;
b87a51ae 3185 case MSR_IA32_VMX_CR0_FIXED0:
62cc6b9d 3186 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
b87a51ae
NHE
3187 break;
3188 case MSR_IA32_VMX_CR0_FIXED1:
62cc6b9d 3189 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
b87a51ae
NHE
3190 break;
3191 case MSR_IA32_VMX_CR4_FIXED0:
62cc6b9d 3192 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
b87a51ae
NHE
3193 break;
3194 case MSR_IA32_VMX_CR4_FIXED1:
62cc6b9d 3195 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
b87a51ae
NHE
3196 break;
3197 case MSR_IA32_VMX_VMCS_ENUM:
62cc6b9d 3198 *pdata = vmx->nested.nested_vmx_vmcs_enum;
b87a51ae
NHE
3199 break;
3200 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
3201 *pdata = vmx_control_msr(
3202 vmx->nested.nested_vmx_secondary_ctls_low,
3203 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
3204 break;
3205 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
3206 *pdata = vmx->nested.nested_vmx_ept_caps |
3207 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae 3208 break;
27c42a1b
BD
3209 case MSR_IA32_VMX_VMFUNC:
3210 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3211 break;
b87a51ae 3212 default:
b87a51ae 3213 return 1;
b3897a49
NHE
3214 }
3215
b87a51ae
NHE
3216 return 0;
3217}
3218
37e4c997
HZ
3219static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3220 uint64_t val)
3221{
3222 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3223
3224 return !(val & ~valid_bits);
3225}
3226
6aa8b732
AK
3227/*
3228 * Reads an msr value (of 'msr_index') into 'pdata'.
3229 * Returns 0 on success, non-0 otherwise.
3230 * Assumes vcpu_load() was already called.
3231 */
609e36d3 3232static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3233{
26bb0981 3234 struct shared_msr_entry *msr;
6aa8b732 3235
609e36d3 3236 switch (msr_info->index) {
05b3e0c2 3237#ifdef CONFIG_X86_64
6aa8b732 3238 case MSR_FS_BASE:
609e36d3 3239 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3240 break;
3241 case MSR_GS_BASE:
609e36d3 3242 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3243 break;
44ea2b17
AK
3244 case MSR_KERNEL_GS_BASE:
3245 vmx_load_host_state(to_vmx(vcpu));
609e36d3 3246 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3247 break;
26bb0981 3248#endif
6aa8b732 3249 case MSR_EFER:
609e36d3 3250 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3251 case MSR_IA32_TSC:
be7b263e 3252 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
3253 break;
3254 case MSR_IA32_SYSENTER_CS:
609e36d3 3255 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3256 break;
3257 case MSR_IA32_SYSENTER_EIP:
609e36d3 3258 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3259 break;
3260 case MSR_IA32_SYSENTER_ESP:
609e36d3 3261 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3262 break;
0dd376e7 3263 case MSR_IA32_BNDCFGS:
691bd434 3264 if (!kvm_mpx_supported() ||
d6321d49
RK
3265 (!msr_info->host_initiated &&
3266 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3267 return 1;
609e36d3 3268 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3269 break;
c45dcc71
AR
3270 case MSR_IA32_MCG_EXT_CTL:
3271 if (!msr_info->host_initiated &&
3272 !(to_vmx(vcpu)->msr_ia32_feature_control &
3273 FEATURE_CONTROL_LMCE))
cae50139 3274 return 1;
c45dcc71
AR
3275 msr_info->data = vcpu->arch.mcg_ext_ctl;
3276 break;
cae50139 3277 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3278 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3279 break;
3280 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3281 if (!nested_vmx_allowed(vcpu))
3282 return 1;
609e36d3 3283 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3284 case MSR_IA32_XSS:
3285 if (!vmx_xsaves_supported())
3286 return 1;
609e36d3 3287 msr_info->data = vcpu->arch.ia32_xss;
20300099 3288 break;
4e47c7a6 3289 case MSR_TSC_AUX:
d6321d49
RK
3290 if (!msr_info->host_initiated &&
3291 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3292 return 1;
3293 /* Otherwise falls through */
6aa8b732 3294 default:
609e36d3 3295 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3296 if (msr) {
609e36d3 3297 msr_info->data = msr->data;
3bab1f5d 3298 break;
6aa8b732 3299 }
609e36d3 3300 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3301 }
3302
6aa8b732
AK
3303 return 0;
3304}
3305
cae50139
JK
3306static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3307
6aa8b732
AK
3308/*
3309 * Writes msr value into into the appropriate "register".
3310 * Returns 0 on success, non-0 otherwise.
3311 * Assumes vcpu_load() was already called.
3312 */
8fe8ab46 3313static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3314{
a2fa3e9f 3315 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3316 struct shared_msr_entry *msr;
2cc51560 3317 int ret = 0;
8fe8ab46
WA
3318 u32 msr_index = msr_info->index;
3319 u64 data = msr_info->data;
2cc51560 3320
6aa8b732 3321 switch (msr_index) {
3bab1f5d 3322 case MSR_EFER:
8fe8ab46 3323 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3324 break;
16175a79 3325#ifdef CONFIG_X86_64
6aa8b732 3326 case MSR_FS_BASE:
2fb92db1 3327 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3328 vmcs_writel(GUEST_FS_BASE, data);
3329 break;
3330 case MSR_GS_BASE:
2fb92db1 3331 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3332 vmcs_writel(GUEST_GS_BASE, data);
3333 break;
44ea2b17
AK
3334 case MSR_KERNEL_GS_BASE:
3335 vmx_load_host_state(vmx);
3336 vmx->msr_guest_kernel_gs_base = data;
3337 break;
6aa8b732
AK
3338#endif
3339 case MSR_IA32_SYSENTER_CS:
3340 vmcs_write32(GUEST_SYSENTER_CS, data);
3341 break;
3342 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3343 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3344 break;
3345 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3346 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3347 break;
0dd376e7 3348 case MSR_IA32_BNDCFGS:
691bd434 3349 if (!kvm_mpx_supported() ||
d6321d49
RK
3350 (!msr_info->host_initiated &&
3351 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3352 return 1;
fd8cb433 3353 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
4531662d 3354 (data & MSR_IA32_BNDCFGS_RSVD))
93c4adc7 3355 return 1;
0dd376e7
LJ
3356 vmcs_write64(GUEST_BNDCFGS, data);
3357 break;
af24a4e4 3358 case MSR_IA32_TSC:
8fe8ab46 3359 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3360 break;
468d472f
SY
3361 case MSR_IA32_CR_PAT:
3362 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3363 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3364 return 1;
468d472f
SY
3365 vmcs_write64(GUEST_IA32_PAT, data);
3366 vcpu->arch.pat = data;
3367 break;
3368 }
8fe8ab46 3369 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3370 break;
ba904635
WA
3371 case MSR_IA32_TSC_ADJUST:
3372 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3373 break;
c45dcc71
AR
3374 case MSR_IA32_MCG_EXT_CTL:
3375 if ((!msr_info->host_initiated &&
3376 !(to_vmx(vcpu)->msr_ia32_feature_control &
3377 FEATURE_CONTROL_LMCE)) ||
3378 (data & ~MCG_EXT_CTL_LMCE_EN))
3379 return 1;
3380 vcpu->arch.mcg_ext_ctl = data;
3381 break;
cae50139 3382 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3383 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3384 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3385 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3386 return 1;
3b84080b 3387 vmx->msr_ia32_feature_control = data;
cae50139
JK
3388 if (msr_info->host_initiated && data == 0)
3389 vmx_leave_nested(vcpu);
3390 break;
3391 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3392 if (!msr_info->host_initiated)
3393 return 1; /* they are read-only */
3394 if (!nested_vmx_allowed(vcpu))
3395 return 1;
3396 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3397 case MSR_IA32_XSS:
3398 if (!vmx_xsaves_supported())
3399 return 1;
3400 /*
3401 * The only supported bit as of Skylake is bit 8, but
3402 * it is not supported on KVM.
3403 */
3404 if (data != 0)
3405 return 1;
3406 vcpu->arch.ia32_xss = data;
3407 if (vcpu->arch.ia32_xss != host_xss)
3408 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3409 vcpu->arch.ia32_xss, host_xss);
3410 else
3411 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3412 break;
4e47c7a6 3413 case MSR_TSC_AUX:
d6321d49
RK
3414 if (!msr_info->host_initiated &&
3415 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3416 return 1;
3417 /* Check reserved bit, higher 32 bits should be zero */
3418 if ((data >> 32) != 0)
3419 return 1;
3420 /* Otherwise falls through */
6aa8b732 3421 default:
8b9cf98c 3422 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3423 if (msr) {
8b3c3104 3424 u64 old_msr_data = msr->data;
3bab1f5d 3425 msr->data = data;
2225fd56
AK
3426 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3427 preempt_disable();
8b3c3104
AH
3428 ret = kvm_set_shared_msr(msr->index, msr->data,
3429 msr->mask);
2225fd56 3430 preempt_enable();
8b3c3104
AH
3431 if (ret)
3432 msr->data = old_msr_data;
2225fd56 3433 }
3bab1f5d 3434 break;
6aa8b732 3435 }
8fe8ab46 3436 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3437 }
3438
2cc51560 3439 return ret;
6aa8b732
AK
3440}
3441
5fdbf976 3442static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3443{
5fdbf976
MT
3444 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3445 switch (reg) {
3446 case VCPU_REGS_RSP:
3447 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3448 break;
3449 case VCPU_REGS_RIP:
3450 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3451 break;
6de4f3ad
AK
3452 case VCPU_EXREG_PDPTR:
3453 if (enable_ept)
3454 ept_save_pdptrs(vcpu);
3455 break;
5fdbf976
MT
3456 default:
3457 break;
3458 }
6aa8b732
AK
3459}
3460
6aa8b732
AK
3461static __init int cpu_has_kvm_support(void)
3462{
6210e37b 3463 return cpu_has_vmx();
6aa8b732
AK
3464}
3465
3466static __init int vmx_disabled_by_bios(void)
3467{
3468 u64 msr;
3469
3470 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3471 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3472 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3473 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3474 && tboot_enabled())
3475 return 1;
23f3e991 3476 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3477 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3478 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3479 && !tboot_enabled()) {
3480 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3481 "activate TXT before enabling KVM\n");
cafd6659 3482 return 1;
f9335afe 3483 }
23f3e991
JC
3484 /* launched w/o TXT and VMX disabled */
3485 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3486 && !tboot_enabled())
3487 return 1;
cafd6659
SW
3488 }
3489
3490 return 0;
6aa8b732
AK
3491}
3492
7725b894
DX
3493static void kvm_cpu_vmxon(u64 addr)
3494{
fe0e80be 3495 cr4_set_bits(X86_CR4_VMXE);
1c5ac21a
AS
3496 intel_pt_handle_vmx(1);
3497
7725b894
DX
3498 asm volatile (ASM_VMX_VMXON_RAX
3499 : : "a"(&addr), "m"(addr)
3500 : "memory", "cc");
3501}
3502
13a34e06 3503static int hardware_enable(void)
6aa8b732
AK
3504{
3505 int cpu = raw_smp_processor_id();
3506 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3507 u64 old, test_bits;
6aa8b732 3508
1e02ce4c 3509 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3510 return -EBUSY;
3511
d462b819 3512 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3513 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3514 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3515
3516 /*
3517 * Now we can enable the vmclear operation in kdump
3518 * since the loaded_vmcss_on_cpu list on this cpu
3519 * has been initialized.
3520 *
3521 * Though the cpu is not in VMX operation now, there
3522 * is no problem to enable the vmclear operation
3523 * for the loaded_vmcss_on_cpu list is empty!
3524 */
3525 crash_enable_local_vmclear(cpu);
3526
6aa8b732 3527 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3528
3529 test_bits = FEATURE_CONTROL_LOCKED;
3530 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3531 if (tboot_enabled())
3532 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3533
3534 if ((old & test_bits) != test_bits) {
6aa8b732 3535 /* enable and lock */
cafd6659
SW
3536 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3537 }
fe0e80be 3538 kvm_cpu_vmxon(phys_addr);
fdf288bf
DH
3539 if (enable_ept)
3540 ept_sync_global();
10474ae8
AG
3541
3542 return 0;
6aa8b732
AK
3543}
3544
d462b819 3545static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3546{
3547 int cpu = raw_smp_processor_id();
d462b819 3548 struct loaded_vmcs *v, *n;
543e4243 3549
d462b819
NHE
3550 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3551 loaded_vmcss_on_cpu_link)
3552 __loaded_vmcs_clear(v);
543e4243
AK
3553}
3554
710ff4a8
EH
3555
3556/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3557 * tricks.
3558 */
3559static void kvm_cpu_vmxoff(void)
6aa8b732 3560{
4ecac3fd 3561 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3562
3563 intel_pt_handle_vmx(0);
fe0e80be 3564 cr4_clear_bits(X86_CR4_VMXE);
6aa8b732
AK
3565}
3566
13a34e06 3567static void hardware_disable(void)
710ff4a8 3568{
fe0e80be
DH
3569 vmclear_local_loaded_vmcss();
3570 kvm_cpu_vmxoff();
710ff4a8
EH
3571}
3572
1c3d14fe 3573static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3574 u32 msr, u32 *result)
1c3d14fe
YS
3575{
3576 u32 vmx_msr_low, vmx_msr_high;
3577 u32 ctl = ctl_min | ctl_opt;
3578
3579 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3580
3581 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3582 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3583
3584 /* Ensure minimum (required) set of control bits are supported. */
3585 if (ctl_min & ~ctl)
002c7f7c 3586 return -EIO;
1c3d14fe
YS
3587
3588 *result = ctl;
3589 return 0;
3590}
3591
110312c8
AK
3592static __init bool allow_1_setting(u32 msr, u32 ctl)
3593{
3594 u32 vmx_msr_low, vmx_msr_high;
3595
3596 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3597 return vmx_msr_high & ctl;
3598}
3599
002c7f7c 3600static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3601{
3602 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3603 u32 min, opt, min2, opt2;
1c3d14fe
YS
3604 u32 _pin_based_exec_control = 0;
3605 u32 _cpu_based_exec_control = 0;
f78e0e2e 3606 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3607 u32 _vmexit_control = 0;
3608 u32 _vmentry_control = 0;
3609
10166744 3610 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3611#ifdef CONFIG_X86_64
3612 CPU_BASED_CR8_LOAD_EXITING |
3613 CPU_BASED_CR8_STORE_EXITING |
3614#endif
d56f546d
SY
3615 CPU_BASED_CR3_LOAD_EXITING |
3616 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3617 CPU_BASED_USE_IO_BITMAPS |
3618 CPU_BASED_MOV_DR_EXITING |
a7052897 3619 CPU_BASED_USE_TSC_OFFSETING |
fee84b07
AK
3620 CPU_BASED_INVLPG_EXITING |
3621 CPU_BASED_RDPMC_EXITING;
443381a8 3622
668fffa3
MT
3623 if (!kvm_mwait_in_guest())
3624 min |= CPU_BASED_MWAIT_EXITING |
3625 CPU_BASED_MONITOR_EXITING;
3626
f78e0e2e 3627 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3628 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3629 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3630 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3631 &_cpu_based_exec_control) < 0)
002c7f7c 3632 return -EIO;
6e5d865c
YS
3633#ifdef CONFIG_X86_64
3634 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3635 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3636 ~CPU_BASED_CR8_STORE_EXITING;
3637#endif
f78e0e2e 3638 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3639 min2 = 0;
3640 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3641 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3642 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3643 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3644 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3645 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3646 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3647 SECONDARY_EXEC_RDTSCP |
83d4c286 3648 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3649 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3650 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3651 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3652 SECONDARY_EXEC_XSAVES |
75f4fc8d 3653 SECONDARY_EXEC_RDSEED |
45ec368c 3654 SECONDARY_EXEC_RDRAND |
8b3e34e4 3655 SECONDARY_EXEC_ENABLE_PML |
2a499e49
BD
3656 SECONDARY_EXEC_TSC_SCALING |
3657 SECONDARY_EXEC_ENABLE_VMFUNC;
d56f546d
SY
3658 if (adjust_vmx_controls(min2, opt2,
3659 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3660 &_cpu_based_2nd_exec_control) < 0)
3661 return -EIO;
3662 }
3663#ifndef CONFIG_X86_64
3664 if (!(_cpu_based_2nd_exec_control &
3665 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3666 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3667#endif
83d4c286
YZ
3668
3669 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3670 _cpu_based_2nd_exec_control &= ~(
8d14695f 3671 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3672 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3673 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3674
d56f546d 3675 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3676 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3677 enabled */
5fff7d27
GN
3678 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3679 CPU_BASED_CR3_STORE_EXITING |
3680 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3681 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3682 vmx_capability.ept, vmx_capability.vpid);
3683 }
1c3d14fe 3684
91fa0f8e 3685 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3686#ifdef CONFIG_X86_64
3687 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3688#endif
a547c6db 3689 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3690 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3691 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3692 &_vmexit_control) < 0)
002c7f7c 3693 return -EIO;
1c3d14fe 3694
2c82878b
PB
3695 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3696 PIN_BASED_VIRTUAL_NMIS;
3697 opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3698 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3699 &_pin_based_exec_control) < 0)
3700 return -EIO;
3701
1c17c3e6
PB
3702 if (cpu_has_broken_vmx_preemption_timer())
3703 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3704 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3705 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3706 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3707
c845f9c6 3708 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3709 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3710 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3711 &_vmentry_control) < 0)
002c7f7c 3712 return -EIO;
6aa8b732 3713
c68876fd 3714 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3715
3716 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3717 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3718 return -EIO;
1c3d14fe
YS
3719
3720#ifdef CONFIG_X86_64
3721 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3722 if (vmx_msr_high & (1u<<16))
002c7f7c 3723 return -EIO;
1c3d14fe
YS
3724#endif
3725
3726 /* Require Write-Back (WB) memory type for VMCS accesses. */
3727 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3728 return -EIO;
1c3d14fe 3729
002c7f7c 3730 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3731 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3732 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3733 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3734
002c7f7c
YS
3735 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3736 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3737 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3738 vmcs_conf->vmexit_ctrl = _vmexit_control;
3739 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3740
110312c8
AK
3741 cpu_has_load_ia32_efer =
3742 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3743 VM_ENTRY_LOAD_IA32_EFER)
3744 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3745 VM_EXIT_LOAD_IA32_EFER);
3746
8bf00a52
GN
3747 cpu_has_load_perf_global_ctrl =
3748 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3749 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3750 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3751 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3752
3753 /*
3754 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3755 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3756 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3757 *
3758 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3759 *
3760 * AAK155 (model 26)
3761 * AAP115 (model 30)
3762 * AAT100 (model 37)
3763 * BC86,AAY89,BD102 (model 44)
3764 * BA97 (model 46)
3765 *
3766 */
3767 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3768 switch (boot_cpu_data.x86_model) {
3769 case 26:
3770 case 30:
3771 case 37:
3772 case 44:
3773 case 46:
3774 cpu_has_load_perf_global_ctrl = false;
3775 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3776 "does not work properly. Using workaround\n");
3777 break;
3778 default:
3779 break;
3780 }
3781 }
3782
782511b0 3783 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3784 rdmsrl(MSR_IA32_XSS, host_xss);
3785
1c3d14fe 3786 return 0;
c68876fd 3787}
6aa8b732
AK
3788
3789static struct vmcs *alloc_vmcs_cpu(int cpu)
3790{
3791 int node = cpu_to_node(cpu);
3792 struct page *pages;
3793 struct vmcs *vmcs;
3794
96db800f 3795 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3796 if (!pages)
3797 return NULL;
3798 vmcs = page_address(pages);
1c3d14fe
YS
3799 memset(vmcs, 0, vmcs_config.size);
3800 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3801 return vmcs;
3802}
3803
3804static struct vmcs *alloc_vmcs(void)
3805{
d3b2c338 3806 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3807}
3808
3809static void free_vmcs(struct vmcs *vmcs)
3810{
1c3d14fe 3811 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3812}
3813
d462b819
NHE
3814/*
3815 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3816 */
3817static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3818{
3819 if (!loaded_vmcs->vmcs)
3820 return;
3821 loaded_vmcs_clear(loaded_vmcs);
3822 free_vmcs(loaded_vmcs->vmcs);
3823 loaded_vmcs->vmcs = NULL;
355f4fb1 3824 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
3825}
3826
39959588 3827static void free_kvm_area(void)
6aa8b732
AK
3828{
3829 int cpu;
3830
3230bb47 3831 for_each_possible_cpu(cpu) {
6aa8b732 3832 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3833 per_cpu(vmxarea, cpu) = NULL;
3834 }
6aa8b732
AK
3835}
3836
85fd514e
JM
3837enum vmcs_field_type {
3838 VMCS_FIELD_TYPE_U16 = 0,
3839 VMCS_FIELD_TYPE_U64 = 1,
3840 VMCS_FIELD_TYPE_U32 = 2,
3841 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3842};
3843
3844static inline int vmcs_field_type(unsigned long field)
3845{
3846 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
3847 return VMCS_FIELD_TYPE_U32;
3848 return (field >> 13) & 0x3 ;
3849}
3850
3851static inline int vmcs_field_readonly(unsigned long field)
3852{
3853 return (((field >> 10) & 0x3) == 1);
3854}
3855
fe2b201b
BD
3856static void init_vmcs_shadow_fields(void)
3857{
3858 int i, j;
3859
3860 /* No checks for read only fields yet */
3861
3862 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3863 switch (shadow_read_write_fields[i]) {
3864 case GUEST_BNDCFGS:
a87036ad 3865 if (!kvm_mpx_supported())
fe2b201b
BD
3866 continue;
3867 break;
3868 default:
3869 break;
3870 }
3871
3872 if (j < i)
3873 shadow_read_write_fields[j] =
3874 shadow_read_write_fields[i];
3875 j++;
3876 }
3877 max_shadow_read_write_fields = j;
3878
3879 /* shadowed fields guest access without vmexit */
3880 for (i = 0; i < max_shadow_read_write_fields; i++) {
85fd514e
JM
3881 unsigned long field = shadow_read_write_fields[i];
3882
3883 clear_bit(field, vmx_vmwrite_bitmap);
3884 clear_bit(field, vmx_vmread_bitmap);
3885 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3886 clear_bit(field + 1, vmx_vmwrite_bitmap);
3887 clear_bit(field + 1, vmx_vmread_bitmap);
3888 }
3889 }
3890 for (i = 0; i < max_shadow_read_only_fields; i++) {
3891 unsigned long field = shadow_read_only_fields[i];
3892
3893 clear_bit(field, vmx_vmread_bitmap);
3894 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3895 clear_bit(field + 1, vmx_vmread_bitmap);
fe2b201b 3896 }
fe2b201b
BD
3897}
3898
6aa8b732
AK
3899static __init int alloc_kvm_area(void)
3900{
3901 int cpu;
3902
3230bb47 3903 for_each_possible_cpu(cpu) {
6aa8b732
AK
3904 struct vmcs *vmcs;
3905
3906 vmcs = alloc_vmcs_cpu(cpu);
3907 if (!vmcs) {
3908 free_kvm_area();
3909 return -ENOMEM;
3910 }
3911
3912 per_cpu(vmxarea, cpu) = vmcs;
3913 }
3914 return 0;
3915}
3916
91b0aa2c 3917static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3918 struct kvm_segment *save)
6aa8b732 3919{
d99e4152
GN
3920 if (!emulate_invalid_guest_state) {
3921 /*
3922 * CS and SS RPL should be equal during guest entry according
3923 * to VMX spec, but in reality it is not always so. Since vcpu
3924 * is in the middle of the transition from real mode to
3925 * protected mode it is safe to assume that RPL 0 is a good
3926 * default value.
3927 */
3928 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3929 save->selector &= ~SEGMENT_RPL_MASK;
3930 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3931 save->s = 1;
6aa8b732 3932 }
d99e4152 3933 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3934}
3935
3936static void enter_pmode(struct kvm_vcpu *vcpu)
3937{
3938 unsigned long flags;
a89a8fb9 3939 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3940
d99e4152
GN
3941 /*
3942 * Update real mode segment cache. It may be not up-to-date if sement
3943 * register was written while vcpu was in a guest mode.
3944 */
3945 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3946 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3947 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3948 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3949 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3950 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3951
7ffd92c5 3952 vmx->rmode.vm86_active = 0;
6aa8b732 3953
2fb92db1
AK
3954 vmx_segment_cache_clear(vmx);
3955
f5f7b2fe 3956 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3957
3958 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3959 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3960 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3961 vmcs_writel(GUEST_RFLAGS, flags);
3962
66aee91a
RR
3963 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3964 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3965
3966 update_exception_bitmap(vcpu);
3967
91b0aa2c
GN
3968 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3969 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3970 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3971 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3972 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3973 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3974}
3975
f5f7b2fe 3976static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3977{
772e0318 3978 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3979 struct kvm_segment var = *save;
3980
3981 var.dpl = 0x3;
3982 if (seg == VCPU_SREG_CS)
3983 var.type = 0x3;
3984
3985 if (!emulate_invalid_guest_state) {
3986 var.selector = var.base >> 4;
3987 var.base = var.base & 0xffff0;
3988 var.limit = 0xffff;
3989 var.g = 0;
3990 var.db = 0;
3991 var.present = 1;
3992 var.s = 1;
3993 var.l = 0;
3994 var.unusable = 0;
3995 var.type = 0x3;
3996 var.avl = 0;
3997 if (save->base & 0xf)
3998 printk_once(KERN_WARNING "kvm: segment base is not "
3999 "paragraph aligned when entering "
4000 "protected mode (seg=%d)", seg);
4001 }
6aa8b732 4002
d99e4152 4003 vmcs_write16(sf->selector, var.selector);
96794e4e 4004 vmcs_writel(sf->base, var.base);
d99e4152
GN
4005 vmcs_write32(sf->limit, var.limit);
4006 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
4007}
4008
4009static void enter_rmode(struct kvm_vcpu *vcpu)
4010{
4011 unsigned long flags;
a89a8fb9 4012 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 4013
f5f7b2fe
AK
4014 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4015 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4016 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4017 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4018 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
4019 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4020 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 4021
7ffd92c5 4022 vmx->rmode.vm86_active = 1;
6aa8b732 4023
776e58ea
GN
4024 /*
4025 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 4026 * vcpu. Warn the user that an update is overdue.
776e58ea 4027 */
4918c6ca 4028 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
4029 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4030 "called before entering vcpu\n");
776e58ea 4031
2fb92db1
AK
4032 vmx_segment_cache_clear(vmx);
4033
4918c6ca 4034 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 4035 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
4036 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4037
4038 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 4039 vmx->rmode.save_rflags = flags;
6aa8b732 4040
053de044 4041 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
4042
4043 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 4044 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
4045 update_exception_bitmap(vcpu);
4046
d99e4152
GN
4047 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4048 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4049 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4050 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4051 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4052 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 4053
8668a3c4 4054 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
4055}
4056
401d10de
AS
4057static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4058{
4059 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
4060 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4061
4062 if (!msr)
4063 return;
401d10de 4064
44ea2b17
AK
4065 /*
4066 * Force kernel_gs_base reloading before EFER changes, as control
4067 * of this msr depends on is_long_mode().
4068 */
4069 vmx_load_host_state(to_vmx(vcpu));
f6801dff 4070 vcpu->arch.efer = efer;
401d10de 4071 if (efer & EFER_LMA) {
2961e876 4072 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4073 msr->data = efer;
4074 } else {
2961e876 4075 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4076
4077 msr->data = efer & ~EFER_LME;
4078 }
4079 setup_msrs(vmx);
4080}
4081
05b3e0c2 4082#ifdef CONFIG_X86_64
6aa8b732
AK
4083
4084static void enter_lmode(struct kvm_vcpu *vcpu)
4085{
4086 u32 guest_tr_ar;
4087
2fb92db1
AK
4088 vmx_segment_cache_clear(to_vmx(vcpu));
4089
6aa8b732 4090 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 4091 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
4092 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4093 __func__);
6aa8b732 4094 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
4095 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4096 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4097 }
da38f438 4098 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4099}
4100
4101static void exit_lmode(struct kvm_vcpu *vcpu)
4102{
2961e876 4103 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4104 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4105}
4106
4107#endif
4108
dd5f5341 4109static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 4110{
dd180b3e
XG
4111 if (enable_ept) {
4112 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4113 return;
995f00a6 4114 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
f0b98c02
JM
4115 } else {
4116 vpid_sync_context(vpid);
dd180b3e 4117 }
2384d2b3
SY
4118}
4119
dd5f5341
WL
4120static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4121{
4122 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4123}
4124
fb6c8198
JM
4125static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4126{
4127 if (enable_ept)
4128 vmx_flush_tlb(vcpu);
4129}
4130
e8467fda
AK
4131static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4132{
4133 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4134
4135 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4136 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4137}
4138
aff48baa
AK
4139static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4140{
4141 if (enable_ept && is_paging(vcpu))
4142 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4143 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4144}
4145
25c4c276 4146static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4147{
fc78f519
AK
4148 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4149
4150 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4151 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4152}
4153
1439442c
SY
4154static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4155{
d0d538b9
GN
4156 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4157
6de4f3ad
AK
4158 if (!test_bit(VCPU_EXREG_PDPTR,
4159 (unsigned long *)&vcpu->arch.regs_dirty))
4160 return;
4161
1439442c 4162 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4163 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4164 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4165 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4166 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4167 }
4168}
4169
8f5d549f
AK
4170static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4171{
d0d538b9
GN
4172 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4173
8f5d549f 4174 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4175 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4176 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4177 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4178 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4179 }
6de4f3ad
AK
4180
4181 __set_bit(VCPU_EXREG_PDPTR,
4182 (unsigned long *)&vcpu->arch.regs_avail);
4183 __set_bit(VCPU_EXREG_PDPTR,
4184 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4185}
4186
3899152c
DM
4187static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4188{
4189 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4190 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4191 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4192
4193 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4194 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4195 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4196 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4197
4198 return fixed_bits_valid(val, fixed0, fixed1);
4199}
4200
4201static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4202{
4203 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4204 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4205
4206 return fixed_bits_valid(val, fixed0, fixed1);
4207}
4208
4209static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4210{
4211 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4212 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4213
4214 return fixed_bits_valid(val, fixed0, fixed1);
4215}
4216
4217/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4218#define nested_guest_cr4_valid nested_cr4_valid
4219#define nested_host_cr4_valid nested_cr4_valid
4220
5e1746d6 4221static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4222
4223static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4224 unsigned long cr0,
4225 struct kvm_vcpu *vcpu)
4226{
5233dd51
MT
4227 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4228 vmx_decache_cr3(vcpu);
1439442c
SY
4229 if (!(cr0 & X86_CR0_PG)) {
4230 /* From paging/starting to nonpaging */
4231 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4232 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4233 (CPU_BASED_CR3_LOAD_EXITING |
4234 CPU_BASED_CR3_STORE_EXITING));
4235 vcpu->arch.cr0 = cr0;
fc78f519 4236 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4237 } else if (!is_paging(vcpu)) {
4238 /* From nonpaging to paging */
4239 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4240 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4241 ~(CPU_BASED_CR3_LOAD_EXITING |
4242 CPU_BASED_CR3_STORE_EXITING));
4243 vcpu->arch.cr0 = cr0;
fc78f519 4244 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4245 }
95eb84a7
SY
4246
4247 if (!(cr0 & X86_CR0_WP))
4248 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4249}
4250
6aa8b732
AK
4251static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4252{
7ffd92c5 4253 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4254 unsigned long hw_cr0;
4255
5037878e 4256 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4257 if (enable_unrestricted_guest)
5037878e 4258 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4259 else {
5037878e 4260 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4261
218e763f
GN
4262 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4263 enter_pmode(vcpu);
6aa8b732 4264
218e763f
GN
4265 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4266 enter_rmode(vcpu);
4267 }
6aa8b732 4268
05b3e0c2 4269#ifdef CONFIG_X86_64
f6801dff 4270 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4271 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4272 enter_lmode(vcpu);
707d92fa 4273 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4274 exit_lmode(vcpu);
4275 }
4276#endif
4277
089d034e 4278 if (enable_ept)
1439442c
SY
4279 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4280
6aa8b732 4281 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4282 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4283 vcpu->arch.cr0 = cr0;
14168786
GN
4284
4285 /* depends on vcpu->arch.cr0 to be set to a new value */
4286 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4287}
4288
855feb67
YZ
4289static int get_ept_level(struct kvm_vcpu *vcpu)
4290{
4291 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4292 return 5;
4293 return 4;
4294}
4295
995f00a6 4296static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
1439442c 4297{
855feb67
YZ
4298 u64 eptp = VMX_EPTP_MT_WB;
4299
4300 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
1439442c 4301
995f00a6
PF
4302 if (enable_ept_ad_bits &&
4303 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
bb97a016 4304 eptp |= VMX_EPTP_AD_ENABLE_BIT;
1439442c
SY
4305 eptp |= (root_hpa & PAGE_MASK);
4306
4307 return eptp;
4308}
4309
6aa8b732
AK
4310static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4311{
1439442c
SY
4312 unsigned long guest_cr3;
4313 u64 eptp;
4314
4315 guest_cr3 = cr3;
089d034e 4316 if (enable_ept) {
995f00a6 4317 eptp = construct_eptp(vcpu, cr3);
1439442c 4318 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
4319 if (is_paging(vcpu) || is_guest_mode(vcpu))
4320 guest_cr3 = kvm_read_cr3(vcpu);
4321 else
4322 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 4323 ept_load_pdptrs(vcpu);
1439442c
SY
4324 }
4325
2384d2b3 4326 vmx_flush_tlb(vcpu);
1439442c 4327 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4328}
4329
5e1746d6 4330static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4331{
085e68ee
BS
4332 /*
4333 * Pass through host's Machine Check Enable value to hw_cr4, which
4334 * is in force while we are in guest mode. Do not let guests control
4335 * this bit, even if host CR4.MCE == 0.
4336 */
4337 unsigned long hw_cr4 =
4338 (cr4_read_shadow() & X86_CR4_MCE) |
4339 (cr4 & ~X86_CR4_MCE) |
4340 (to_vmx(vcpu)->rmode.vm86_active ?
4341 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4342
5e1746d6
NHE
4343 if (cr4 & X86_CR4_VMXE) {
4344 /*
4345 * To use VMXON (and later other VMX instructions), a guest
4346 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4347 * So basically the check on whether to allow nested VMX
4348 * is here.
4349 */
4350 if (!nested_vmx_allowed(vcpu))
4351 return 1;
1a0d74e6 4352 }
3899152c
DM
4353
4354 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4355 return 1;
4356
ad312c7c 4357 vcpu->arch.cr4 = cr4;
bc23008b
AK
4358 if (enable_ept) {
4359 if (!is_paging(vcpu)) {
4360 hw_cr4 &= ~X86_CR4_PAE;
4361 hw_cr4 |= X86_CR4_PSE;
4362 } else if (!(cr4 & X86_CR4_PAE)) {
4363 hw_cr4 &= ~X86_CR4_PAE;
4364 }
4365 }
1439442c 4366
656ec4a4
RK
4367 if (!enable_unrestricted_guest && !is_paging(vcpu))
4368 /*
ddba2628
HH
4369 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4370 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4371 * to be manually disabled when guest switches to non-paging
4372 * mode.
4373 *
4374 * If !enable_unrestricted_guest, the CPU is always running
4375 * with CR0.PG=1 and CR4 needs to be modified.
4376 * If enable_unrestricted_guest, the CPU automatically
4377 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4378 */
ddba2628 4379 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4380
1439442c
SY
4381 vmcs_writel(CR4_READ_SHADOW, cr4);
4382 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4383 return 0;
6aa8b732
AK
4384}
4385
6aa8b732
AK
4386static void vmx_get_segment(struct kvm_vcpu *vcpu,
4387 struct kvm_segment *var, int seg)
4388{
a9179499 4389 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4390 u32 ar;
4391
c6ad1153 4392 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4393 *var = vmx->rmode.segs[seg];
a9179499 4394 if (seg == VCPU_SREG_TR
2fb92db1 4395 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4396 return;
1390a28b
AK
4397 var->base = vmx_read_guest_seg_base(vmx, seg);
4398 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4399 return;
a9179499 4400 }
2fb92db1
AK
4401 var->base = vmx_read_guest_seg_base(vmx, seg);
4402 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4403 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4404 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4405 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4406 var->type = ar & 15;
4407 var->s = (ar >> 4) & 1;
4408 var->dpl = (ar >> 5) & 3;
03617c18
GN
4409 /*
4410 * Some userspaces do not preserve unusable property. Since usable
4411 * segment has to be present according to VMX spec we can use present
4412 * property to amend userspace bug by making unusable segment always
4413 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4414 * segment as unusable.
4415 */
4416 var->present = !var->unusable;
6aa8b732
AK
4417 var->avl = (ar >> 12) & 1;
4418 var->l = (ar >> 13) & 1;
4419 var->db = (ar >> 14) & 1;
4420 var->g = (ar >> 15) & 1;
6aa8b732
AK
4421}
4422
a9179499
AK
4423static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4424{
a9179499
AK
4425 struct kvm_segment s;
4426
4427 if (to_vmx(vcpu)->rmode.vm86_active) {
4428 vmx_get_segment(vcpu, &s, seg);
4429 return s.base;
4430 }
2fb92db1 4431 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4432}
4433
b09408d0 4434static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4435{
b09408d0
MT
4436 struct vcpu_vmx *vmx = to_vmx(vcpu);
4437
ae9fedc7 4438 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4439 return 0;
ae9fedc7
PB
4440 else {
4441 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4442 return VMX_AR_DPL(ar);
69c73028 4443 }
69c73028
AK
4444}
4445
653e3108 4446static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4447{
6aa8b732
AK
4448 u32 ar;
4449
f0495f9b 4450 if (var->unusable || !var->present)
6aa8b732
AK
4451 ar = 1 << 16;
4452 else {
4453 ar = var->type & 15;
4454 ar |= (var->s & 1) << 4;
4455 ar |= (var->dpl & 3) << 5;
4456 ar |= (var->present & 1) << 7;
4457 ar |= (var->avl & 1) << 12;
4458 ar |= (var->l & 1) << 13;
4459 ar |= (var->db & 1) << 14;
4460 ar |= (var->g & 1) << 15;
4461 }
653e3108
AK
4462
4463 return ar;
4464}
4465
4466static void vmx_set_segment(struct kvm_vcpu *vcpu,
4467 struct kvm_segment *var, int seg)
4468{
7ffd92c5 4469 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4470 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4471
2fb92db1
AK
4472 vmx_segment_cache_clear(vmx);
4473
1ecd50a9
GN
4474 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4475 vmx->rmode.segs[seg] = *var;
4476 if (seg == VCPU_SREG_TR)
4477 vmcs_write16(sf->selector, var->selector);
4478 else if (var->s)
4479 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4480 goto out;
653e3108 4481 }
1ecd50a9 4482
653e3108
AK
4483 vmcs_writel(sf->base, var->base);
4484 vmcs_write32(sf->limit, var->limit);
4485 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4486
4487 /*
4488 * Fix the "Accessed" bit in AR field of segment registers for older
4489 * qemu binaries.
4490 * IA32 arch specifies that at the time of processor reset the
4491 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4492 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4493 * state vmexit when "unrestricted guest" mode is turned on.
4494 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4495 * tree. Newer qemu binaries with that qemu fix would not need this
4496 * kvm hack.
4497 */
4498 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4499 var->type |= 0x1; /* Accessed */
3a624e29 4500
f924d66d 4501 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4502
4503out:
98eb2f8b 4504 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4505}
4506
6aa8b732
AK
4507static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4508{
2fb92db1 4509 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4510
4511 *db = (ar >> 14) & 1;
4512 *l = (ar >> 13) & 1;
4513}
4514
89a27f4d 4515static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4516{
89a27f4d
GN
4517 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4518 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4519}
4520
89a27f4d 4521static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4522{
89a27f4d
GN
4523 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4524 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4525}
4526
89a27f4d 4527static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4528{
89a27f4d
GN
4529 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4530 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4531}
4532
89a27f4d 4533static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4534{
89a27f4d
GN
4535 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4536 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4537}
4538
648dfaa7
MG
4539static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4540{
4541 struct kvm_segment var;
4542 u32 ar;
4543
4544 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4545 var.dpl = 0x3;
0647f4aa
GN
4546 if (seg == VCPU_SREG_CS)
4547 var.type = 0x3;
648dfaa7
MG
4548 ar = vmx_segment_access_rights(&var);
4549
4550 if (var.base != (var.selector << 4))
4551 return false;
89efbed0 4552 if (var.limit != 0xffff)
648dfaa7 4553 return false;
07f42f5f 4554 if (ar != 0xf3)
648dfaa7
MG
4555 return false;
4556
4557 return true;
4558}
4559
4560static bool code_segment_valid(struct kvm_vcpu *vcpu)
4561{
4562 struct kvm_segment cs;
4563 unsigned int cs_rpl;
4564
4565 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4566 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4567
1872a3f4
AK
4568 if (cs.unusable)
4569 return false;
4d283ec9 4570 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4571 return false;
4572 if (!cs.s)
4573 return false;
4d283ec9 4574 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4575 if (cs.dpl > cs_rpl)
4576 return false;
1872a3f4 4577 } else {
648dfaa7
MG
4578 if (cs.dpl != cs_rpl)
4579 return false;
4580 }
4581 if (!cs.present)
4582 return false;
4583
4584 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4585 return true;
4586}
4587
4588static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4589{
4590 struct kvm_segment ss;
4591 unsigned int ss_rpl;
4592
4593 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4594 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4595
1872a3f4
AK
4596 if (ss.unusable)
4597 return true;
4598 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4599 return false;
4600 if (!ss.s)
4601 return false;
4602 if (ss.dpl != ss_rpl) /* DPL != RPL */
4603 return false;
4604 if (!ss.present)
4605 return false;
4606
4607 return true;
4608}
4609
4610static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4611{
4612 struct kvm_segment var;
4613 unsigned int rpl;
4614
4615 vmx_get_segment(vcpu, &var, seg);
b32a9918 4616 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4617
1872a3f4
AK
4618 if (var.unusable)
4619 return true;
648dfaa7
MG
4620 if (!var.s)
4621 return false;
4622 if (!var.present)
4623 return false;
4d283ec9 4624 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4625 if (var.dpl < rpl) /* DPL < RPL */
4626 return false;
4627 }
4628
4629 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4630 * rights flags
4631 */
4632 return true;
4633}
4634
4635static bool tr_valid(struct kvm_vcpu *vcpu)
4636{
4637 struct kvm_segment tr;
4638
4639 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4640
1872a3f4
AK
4641 if (tr.unusable)
4642 return false;
b32a9918 4643 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4644 return false;
1872a3f4 4645 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4646 return false;
4647 if (!tr.present)
4648 return false;
4649
4650 return true;
4651}
4652
4653static bool ldtr_valid(struct kvm_vcpu *vcpu)
4654{
4655 struct kvm_segment ldtr;
4656
4657 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4658
1872a3f4
AK
4659 if (ldtr.unusable)
4660 return true;
b32a9918 4661 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4662 return false;
4663 if (ldtr.type != 2)
4664 return false;
4665 if (!ldtr.present)
4666 return false;
4667
4668 return true;
4669}
4670
4671static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4672{
4673 struct kvm_segment cs, ss;
4674
4675 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4676 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4677
b32a9918
NA
4678 return ((cs.selector & SEGMENT_RPL_MASK) ==
4679 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4680}
4681
4682/*
4683 * Check if guest state is valid. Returns true if valid, false if
4684 * not.
4685 * We assume that registers are always usable
4686 */
4687static bool guest_state_valid(struct kvm_vcpu *vcpu)
4688{
c5e97c80
GN
4689 if (enable_unrestricted_guest)
4690 return true;
4691
648dfaa7 4692 /* real mode guest state checks */
f13882d8 4693 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4694 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4695 return false;
4696 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4697 return false;
4698 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4699 return false;
4700 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4701 return false;
4702 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4703 return false;
4704 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4705 return false;
4706 } else {
4707 /* protected mode guest state checks */
4708 if (!cs_ss_rpl_check(vcpu))
4709 return false;
4710 if (!code_segment_valid(vcpu))
4711 return false;
4712 if (!stack_segment_valid(vcpu))
4713 return false;
4714 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4715 return false;
4716 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4717 return false;
4718 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4719 return false;
4720 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4721 return false;
4722 if (!tr_valid(vcpu))
4723 return false;
4724 if (!ldtr_valid(vcpu))
4725 return false;
4726 }
4727 /* TODO:
4728 * - Add checks on RIP
4729 * - Add checks on RFLAGS
4730 */
4731
4732 return true;
4733}
4734
5fa99cbe
JM
4735static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4736{
4737 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4738}
4739
d77c26fc 4740static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4741{
40dcaa9f 4742 gfn_t fn;
195aefde 4743 u16 data = 0;
1f755a82 4744 int idx, r;
6aa8b732 4745
40dcaa9f 4746 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4747 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4748 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4749 if (r < 0)
10589a46 4750 goto out;
195aefde 4751 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4752 r = kvm_write_guest_page(kvm, fn++, &data,
4753 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4754 if (r < 0)
10589a46 4755 goto out;
195aefde
IE
4756 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4757 if (r < 0)
10589a46 4758 goto out;
195aefde
IE
4759 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4760 if (r < 0)
10589a46 4761 goto out;
195aefde 4762 data = ~0;
10589a46
MT
4763 r = kvm_write_guest_page(kvm, fn, &data,
4764 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4765 sizeof(u8));
10589a46 4766out:
40dcaa9f 4767 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4768 return r;
6aa8b732
AK
4769}
4770
b7ebfb05
SY
4771static int init_rmode_identity_map(struct kvm *kvm)
4772{
f51770ed 4773 int i, idx, r = 0;
ba049e93 4774 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4775 u32 tmp;
4776
a255d479
TC
4777 /* Protect kvm->arch.ept_identity_pagetable_done. */
4778 mutex_lock(&kvm->slots_lock);
4779
f51770ed 4780 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4781 goto out2;
a255d479 4782
d8a6e365
DH
4783 if (!kvm->arch.ept_identity_map_addr)
4784 kvm->arch.ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
b927a3ce 4785 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479 4786
d8a6e365
DH
4787 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4788 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
f51770ed 4789 if (r < 0)
a255d479
TC
4790 goto out2;
4791
40dcaa9f 4792 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4793 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4794 if (r < 0)
4795 goto out;
4796 /* Set up identity-mapping pagetable for EPT in real mode */
4797 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4798 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4799 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4800 r = kvm_write_guest_page(kvm, identity_map_pfn,
4801 &tmp, i * sizeof(tmp), sizeof(tmp));
4802 if (r < 0)
4803 goto out;
4804 }
4805 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4806
b7ebfb05 4807out:
40dcaa9f 4808 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4809
4810out2:
4811 mutex_unlock(&kvm->slots_lock);
f51770ed 4812 return r;
b7ebfb05
SY
4813}
4814
6aa8b732
AK
4815static void seg_setup(int seg)
4816{
772e0318 4817 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4818 unsigned int ar;
6aa8b732
AK
4819
4820 vmcs_write16(sf->selector, 0);
4821 vmcs_writel(sf->base, 0);
4822 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4823 ar = 0x93;
4824 if (seg == VCPU_SREG_CS)
4825 ar |= 0x08; /* code segment */
3a624e29
NK
4826
4827 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4828}
4829
f78e0e2e
SY
4830static int alloc_apic_access_page(struct kvm *kvm)
4831{
4484141a 4832 struct page *page;
f78e0e2e
SY
4833 int r = 0;
4834
79fac95e 4835 mutex_lock(&kvm->slots_lock);
c24ae0dc 4836 if (kvm->arch.apic_access_page_done)
f78e0e2e 4837 goto out;
1d8007bd
PB
4838 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4839 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4840 if (r)
4841 goto out;
72dc67a6 4842
73a6d941 4843 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4844 if (is_error_page(page)) {
4845 r = -EFAULT;
4846 goto out;
4847 }
4848
c24ae0dc
TC
4849 /*
4850 * Do not pin the page in memory, so that memory hot-unplug
4851 * is able to migrate it.
4852 */
4853 put_page(page);
4854 kvm->arch.apic_access_page_done = true;
f78e0e2e 4855out:
79fac95e 4856 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4857 return r;
4858}
4859
991e7a0e 4860static int allocate_vpid(void)
2384d2b3
SY
4861{
4862 int vpid;
4863
919818ab 4864 if (!enable_vpid)
991e7a0e 4865 return 0;
2384d2b3
SY
4866 spin_lock(&vmx_vpid_lock);
4867 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4868 if (vpid < VMX_NR_VPIDS)
2384d2b3 4869 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4870 else
4871 vpid = 0;
2384d2b3 4872 spin_unlock(&vmx_vpid_lock);
991e7a0e 4873 return vpid;
2384d2b3
SY
4874}
4875
991e7a0e 4876static void free_vpid(int vpid)
cdbecfc3 4877{
991e7a0e 4878 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4879 return;
4880 spin_lock(&vmx_vpid_lock);
991e7a0e 4881 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4882 spin_unlock(&vmx_vpid_lock);
4883}
4884
8d14695f
YZ
4885#define MSR_TYPE_R 1
4886#define MSR_TYPE_W 2
4887static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4888 u32 msr, int type)
25c5f225 4889{
3e7c73e9 4890 int f = sizeof(unsigned long);
25c5f225
SY
4891
4892 if (!cpu_has_vmx_msr_bitmap())
4893 return;
4894
4895 /*
4896 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4897 * have the write-low and read-high bitmap offsets the wrong way round.
4898 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4899 */
25c5f225 4900 if (msr <= 0x1fff) {
8d14695f
YZ
4901 if (type & MSR_TYPE_R)
4902 /* read-low */
4903 __clear_bit(msr, msr_bitmap + 0x000 / f);
4904
4905 if (type & MSR_TYPE_W)
4906 /* write-low */
4907 __clear_bit(msr, msr_bitmap + 0x800 / f);
4908
25c5f225
SY
4909 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4910 msr &= 0x1fff;
8d14695f
YZ
4911 if (type & MSR_TYPE_R)
4912 /* read-high */
4913 __clear_bit(msr, msr_bitmap + 0x400 / f);
4914
4915 if (type & MSR_TYPE_W)
4916 /* write-high */
4917 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4918
4919 }
4920}
4921
f2b93280
WV
4922/*
4923 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4924 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4925 */
4926static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4927 unsigned long *msr_bitmap_nested,
4928 u32 msr, int type)
4929{
4930 int f = sizeof(unsigned long);
4931
4932 if (!cpu_has_vmx_msr_bitmap()) {
4933 WARN_ON(1);
4934 return;
4935 }
4936
4937 /*
4938 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4939 * have the write-low and read-high bitmap offsets the wrong way round.
4940 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4941 */
4942 if (msr <= 0x1fff) {
4943 if (type & MSR_TYPE_R &&
4944 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4945 /* read-low */
4946 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4947
4948 if (type & MSR_TYPE_W &&
4949 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4950 /* write-low */
4951 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4952
4953 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4954 msr &= 0x1fff;
4955 if (type & MSR_TYPE_R &&
4956 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4957 /* read-high */
4958 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4959
4960 if (type & MSR_TYPE_W &&
4961 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4962 /* write-high */
4963 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4964
4965 }
4966}
4967
5897297b
AK
4968static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4969{
4970 if (!longmode_only)
8d14695f
YZ
4971 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4972 msr, MSR_TYPE_R | MSR_TYPE_W);
4973 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4974 msr, MSR_TYPE_R | MSR_TYPE_W);
4975}
4976
2e69f865 4977static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
8d14695f 4978{
f6e90f9e 4979 if (apicv_active) {
c63e4563 4980 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
2e69f865 4981 msr, type);
c63e4563 4982 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
2e69f865 4983 msr, type);
f6e90f9e 4984 } else {
f6e90f9e 4985 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
2e69f865 4986 msr, type);
f6e90f9e 4987 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
2e69f865 4988 msr, type);
f6e90f9e 4989 }
5897297b
AK
4990}
4991
b2a05fef 4992static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
d50ab6c1 4993{
d62caabb 4994 return enable_apicv;
d50ab6c1
PB
4995}
4996
c9f04407
DM
4997static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
4998{
4999 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5000 gfn_t gfn;
5001
5002 /*
5003 * Don't need to mark the APIC access page dirty; it is never
5004 * written to by the CPU during APIC virtualization.
5005 */
5006
5007 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5008 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5009 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5010 }
5011
5012 if (nested_cpu_has_posted_intr(vmcs12)) {
5013 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5014 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5015 }
5016}
5017
5018
6342c50a 5019static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
5020{
5021 struct vcpu_vmx *vmx = to_vmx(vcpu);
5022 int max_irr;
5023 void *vapic_page;
5024 u16 status;
5025
c9f04407
DM
5026 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5027 return;
705699a1 5028
c9f04407
DM
5029 vmx->nested.pi_pending = false;
5030 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5031 return;
705699a1 5032
c9f04407
DM
5033 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5034 if (max_irr != 256) {
705699a1 5035 vapic_page = kmap(vmx->nested.virtual_apic_page);
705699a1
WV
5036 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5037 kunmap(vmx->nested.virtual_apic_page);
5038
5039 status = vmcs_read16(GUEST_INTR_STATUS);
5040 if ((u8)max_irr > ((u8)status & 0xff)) {
5041 status &= ~0xff;
5042 status |= (u8)max_irr;
5043 vmcs_write16(GUEST_INTR_STATUS, status);
5044 }
5045 }
c9f04407
DM
5046
5047 nested_mark_vmcs12_pages_dirty(vcpu);
705699a1
WV
5048}
5049
06a5524f
WV
5050static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5051 bool nested)
21bc8dc5
RK
5052{
5053#ifdef CONFIG_SMP
06a5524f
WV
5054 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5055
21bc8dc5 5056 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6 5057 /*
5753743f
HZ
5058 * The vector of interrupt to be delivered to vcpu had
5059 * been set in PIR before this function.
5060 *
5061 * Following cases will be reached in this block, and
5062 * we always send a notification event in all cases as
5063 * explained below.
5064 *
5065 * Case 1: vcpu keeps in non-root mode. Sending a
5066 * notification event posts the interrupt to vcpu.
5067 *
5068 * Case 2: vcpu exits to root mode and is still
5069 * runnable. PIR will be synced to vIRR before the
5070 * next vcpu entry. Sending a notification event in
5071 * this case has no effect, as vcpu is not in root
5072 * mode.
28b835d6 5073 *
5753743f
HZ
5074 * Case 3: vcpu exits to root mode and is blocked.
5075 * vcpu_block() has already synced PIR to vIRR and
5076 * never blocks vcpu if vIRR is not cleared. Therefore,
5077 * a blocked vcpu here does not wait for any requested
5078 * interrupts in PIR, and sending a notification event
5079 * which has no effect is safe here.
28b835d6 5080 */
28b835d6 5081
06a5524f 5082 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
21bc8dc5
RK
5083 return true;
5084 }
5085#endif
5086 return false;
5087}
5088
705699a1
WV
5089static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5090 int vector)
5091{
5092 struct vcpu_vmx *vmx = to_vmx(vcpu);
5093
5094 if (is_guest_mode(vcpu) &&
5095 vector == vmx->nested.posted_intr_nv) {
5096 /* the PIR and ON have been set by L1. */
06a5524f 5097 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
705699a1
WV
5098 /*
5099 * If a posted intr is not recognized by hardware,
5100 * we will accomplish it in the next vmentry.
5101 */
5102 vmx->nested.pi_pending = true;
5103 kvm_make_request(KVM_REQ_EVENT, vcpu);
5104 return 0;
5105 }
5106 return -1;
5107}
a20ed54d
YZ
5108/*
5109 * Send interrupt to vcpu via posted interrupt way.
5110 * 1. If target vcpu is running(non-root mode), send posted interrupt
5111 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5112 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5113 * interrupt from PIR in next vmentry.
5114 */
5115static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5116{
5117 struct vcpu_vmx *vmx = to_vmx(vcpu);
5118 int r;
5119
705699a1
WV
5120 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5121 if (!r)
5122 return;
5123
a20ed54d
YZ
5124 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5125 return;
5126
b95234c8
PB
5127 /* If a previous notification has sent the IPI, nothing to do. */
5128 if (pi_test_and_set_on(&vmx->pi_desc))
5129 return;
5130
06a5524f 5131 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
a20ed54d
YZ
5132 kvm_vcpu_kick(vcpu);
5133}
5134
a3a8ff8e
NHE
5135/*
5136 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5137 * will not change in the lifetime of the guest.
5138 * Note that host-state that does change is set elsewhere. E.g., host-state
5139 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5140 */
a547c6db 5141static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5142{
5143 u32 low32, high32;
5144 unsigned long tmpl;
5145 struct desc_ptr dt;
d6e41f11 5146 unsigned long cr0, cr3, cr4;
a3a8ff8e 5147
04ac88ab
AL
5148 cr0 = read_cr0();
5149 WARN_ON(cr0 & X86_CR0_TS);
5150 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
d6e41f11
AL
5151
5152 /*
5153 * Save the most likely value for this task's CR3 in the VMCS.
5154 * We can't use __get_current_cr3_fast() because we're not atomic.
5155 */
6c690ee1 5156 cr3 = __read_cr3();
d6e41f11 5157 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
44889942 5158 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
a3a8ff8e 5159
d974baa3 5160 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5161 cr4 = cr4_read_shadow();
d974baa3 5162 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
44889942 5163 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3 5164
a3a8ff8e 5165 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5166#ifdef CONFIG_X86_64
5167 /*
5168 * Load null selectors, so we can avoid reloading them in
5169 * __vmx_load_host_state(), in case userspace uses the null selectors
5170 * too (the expected case).
5171 */
5172 vmcs_write16(HOST_DS_SELECTOR, 0);
5173 vmcs_write16(HOST_ES_SELECTOR, 0);
5174#else
a3a8ff8e
NHE
5175 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5176 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5177#endif
a3a8ff8e
NHE
5178 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5179 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5180
87930019 5181 store_idt(&dt);
a3a8ff8e 5182 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5183 vmx->host_idt_base = dt.address;
a3a8ff8e 5184
83287ea4 5185 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5186
5187 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5188 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5189 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5190 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5191
5192 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5193 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5194 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5195 }
5196}
5197
bf8179a0
NHE
5198static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5199{
5200 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5201 if (enable_ept)
5202 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5203 if (is_guest_mode(&vmx->vcpu))
5204 vmx->vcpu.arch.cr4_guest_owned_bits &=
5205 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5206 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5207}
5208
01e439be
YZ
5209static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5210{
5211 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5212
d62caabb 5213 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5214 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
64672c95
YJ
5215 /* Enable the preemption timer dynamically */
5216 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5217 return pin_based_exec_ctrl;
5218}
5219
d62caabb
AS
5220static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5221{
5222 struct vcpu_vmx *vmx = to_vmx(vcpu);
5223
5224 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5225 if (cpu_has_secondary_exec_ctrls()) {
5226 if (kvm_vcpu_apicv_active(vcpu))
5227 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5228 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5229 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5230 else
5231 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5232 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5233 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5234 }
5235
5236 if (cpu_has_vmx_msr_bitmap())
5237 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
5238}
5239
bf8179a0
NHE
5240static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5241{
5242 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5243
5244 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5245 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5246
35754c98 5247 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5248 exec_control &= ~CPU_BASED_TPR_SHADOW;
5249#ifdef CONFIG_X86_64
5250 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5251 CPU_BASED_CR8_LOAD_EXITING;
5252#endif
5253 }
5254 if (!enable_ept)
5255 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5256 CPU_BASED_CR3_LOAD_EXITING |
5257 CPU_BASED_INVLPG_EXITING;
5258 return exec_control;
5259}
5260
45ec368c 5261static bool vmx_rdrand_supported(void)
bf8179a0 5262{
45ec368c
JM
5263 return vmcs_config.cpu_based_2nd_exec_ctrl &
5264 SECONDARY_EXEC_RDRAND;
5265}
5266
75f4fc8d
JM
5267static bool vmx_rdseed_supported(void)
5268{
5269 return vmcs_config.cpu_based_2nd_exec_ctrl &
5270 SECONDARY_EXEC_RDSEED;
5271}
5272
80154d77 5273static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
bf8179a0 5274{
80154d77
PB
5275 struct kvm_vcpu *vcpu = &vmx->vcpu;
5276
bf8179a0 5277 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
80154d77 5278 if (!cpu_need_virtualize_apic_accesses(vcpu))
bf8179a0
NHE
5279 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5280 if (vmx->vpid == 0)
5281 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5282 if (!enable_ept) {
5283 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5284 enable_unrestricted_guest = 0;
ad756a16
MJ
5285 /* Enable INVPCID for non-ept guests may cause performance regression. */
5286 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5287 }
5288 if (!enable_unrestricted_guest)
5289 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5290 if (!ple_gap)
5291 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
80154d77 5292 if (!kvm_vcpu_apicv_active(vcpu))
c7c9c56c
YZ
5293 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5294 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5295 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5296 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5297 (handle_vmptrld).
5298 We can NOT enable shadow_vmcs here because we don't have yet
5299 a current VMCS12
5300 */
5301 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5302
5303 if (!enable_pml)
5304 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5305
3db13480
PB
5306 if (vmx_xsaves_supported()) {
5307 /* Exposing XSAVES only when XSAVE is exposed */
5308 bool xsaves_enabled =
5309 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5310 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5311
5312 if (!xsaves_enabled)
5313 exec_control &= ~SECONDARY_EXEC_XSAVES;
5314
5315 if (nested) {
5316 if (xsaves_enabled)
5317 vmx->nested.nested_vmx_secondary_ctls_high |=
5318 SECONDARY_EXEC_XSAVES;
5319 else
5320 vmx->nested.nested_vmx_secondary_ctls_high &=
5321 ~SECONDARY_EXEC_XSAVES;
5322 }
5323 }
5324
80154d77
PB
5325 if (vmx_rdtscp_supported()) {
5326 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5327 if (!rdtscp_enabled)
5328 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5329
5330 if (nested) {
5331 if (rdtscp_enabled)
5332 vmx->nested.nested_vmx_secondary_ctls_high |=
5333 SECONDARY_EXEC_RDTSCP;
5334 else
5335 vmx->nested.nested_vmx_secondary_ctls_high &=
5336 ~SECONDARY_EXEC_RDTSCP;
5337 }
5338 }
5339
5340 if (vmx_invpcid_supported()) {
5341 /* Exposing INVPCID only when PCID is exposed */
5342 bool invpcid_enabled =
5343 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5344 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5345
5346 if (!invpcid_enabled) {
5347 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5348 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5349 }
5350
5351 if (nested) {
5352 if (invpcid_enabled)
5353 vmx->nested.nested_vmx_secondary_ctls_high |=
5354 SECONDARY_EXEC_ENABLE_INVPCID;
5355 else
5356 vmx->nested.nested_vmx_secondary_ctls_high &=
5357 ~SECONDARY_EXEC_ENABLE_INVPCID;
5358 }
5359 }
5360
45ec368c
JM
5361 if (vmx_rdrand_supported()) {
5362 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5363 if (rdrand_enabled)
5364 exec_control &= ~SECONDARY_EXEC_RDRAND;
5365
5366 if (nested) {
5367 if (rdrand_enabled)
5368 vmx->nested.nested_vmx_secondary_ctls_high |=
5369 SECONDARY_EXEC_RDRAND;
5370 else
5371 vmx->nested.nested_vmx_secondary_ctls_high &=
5372 ~SECONDARY_EXEC_RDRAND;
5373 }
5374 }
5375
75f4fc8d
JM
5376 if (vmx_rdseed_supported()) {
5377 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5378 if (rdseed_enabled)
5379 exec_control &= ~SECONDARY_EXEC_RDSEED;
5380
5381 if (nested) {
5382 if (rdseed_enabled)
5383 vmx->nested.nested_vmx_secondary_ctls_high |=
5384 SECONDARY_EXEC_RDSEED;
5385 else
5386 vmx->nested.nested_vmx_secondary_ctls_high &=
5387 ~SECONDARY_EXEC_RDSEED;
5388 }
5389 }
5390
80154d77 5391 vmx->secondary_exec_control = exec_control;
bf8179a0
NHE
5392}
5393
ce88decf
XG
5394static void ept_set_mmio_spte_mask(void)
5395{
5396 /*
5397 * EPT Misconfigurations can be generated if the value of bits 2:0
5398 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5399 */
dcdca5fe
PF
5400 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5401 VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5402}
5403
f53cd63c 5404#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5405/*
5406 * Sets up the vmcs for emulated real mode.
5407 */
12d79917 5408static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5409{
2e4ce7f5 5410#ifdef CONFIG_X86_64
6aa8b732 5411 unsigned long a;
2e4ce7f5 5412#endif
6aa8b732 5413 int i;
6aa8b732 5414
6aa8b732 5415 /* I/O */
3e7c73e9
AK
5416 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5417 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5418
4607c2d7
AG
5419 if (enable_shadow_vmcs) {
5420 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5421 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5422 }
25c5f225 5423 if (cpu_has_vmx_msr_bitmap())
5897297b 5424 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 5425
6aa8b732
AK
5426 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5427
6aa8b732 5428 /* Control */
01e439be 5429 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5430 vmx->hv_deadline_tsc = -1;
6e5d865c 5431
bf8179a0 5432 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5433
dfa169bb 5434 if (cpu_has_secondary_exec_ctrls()) {
80154d77 5435 vmx_compute_secondary_exec_control(vmx);
bf8179a0 5436 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
80154d77 5437 vmx->secondary_exec_control);
dfa169bb 5438 }
f78e0e2e 5439
d62caabb 5440 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5441 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5442 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5443 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5444 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5445
5446 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5447
0bcf261c 5448 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5449 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5450 }
5451
4b8d54f9
ZE
5452 if (ple_gap) {
5453 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5454 vmx->ple_window = ple_window;
5455 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5456 }
5457
c3707958
XG
5458 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5459 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5460 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5461
9581d442
AK
5462 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5463 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5464 vmx_set_constant_host_state(vmx);
05b3e0c2 5465#ifdef CONFIG_X86_64
6aa8b732
AK
5466 rdmsrl(MSR_FS_BASE, a);
5467 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5468 rdmsrl(MSR_GS_BASE, a);
5469 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5470#else
5471 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5472 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5473#endif
5474
2a499e49
BD
5475 if (cpu_has_vmx_vmfunc())
5476 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5477
2cc51560
ED
5478 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5479 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5480 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5481 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5482 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5483
74545705
RK
5484 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5485 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5486
03916db9 5487 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5488 u32 index = vmx_msr_index[i];
5489 u32 data_low, data_high;
a2fa3e9f 5490 int j = vmx->nmsrs;
6aa8b732
AK
5491
5492 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5493 continue;
432bd6cb
AK
5494 if (wrmsr_safe(index, data_low, data_high) < 0)
5495 continue;
26bb0981
AK
5496 vmx->guest_msrs[j].index = i;
5497 vmx->guest_msrs[j].data = 0;
d5696725 5498 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5499 ++vmx->nmsrs;
6aa8b732 5500 }
6aa8b732 5501
2961e876
GN
5502
5503 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5504
5505 /* 22.2.1, 20.8.1 */
2961e876 5506 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5507
bd7e5b08
PB
5508 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5509 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5510
bf8179a0 5511 set_cr4_guest_host_mask(vmx);
e00c8cf2 5512
f53cd63c
WL
5513 if (vmx_xsaves_supported())
5514 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5515
4e59516a
PF
5516 if (enable_pml) {
5517 ASSERT(vmx->pml_pg);
5518 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5519 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5520 }
e00c8cf2
AK
5521}
5522
d28bc9dd 5523static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5524{
5525 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5526 struct msr_data apic_base_msr;
d28bc9dd 5527 u64 cr0;
e00c8cf2 5528
7ffd92c5 5529 vmx->rmode.vm86_active = 0;
e00c8cf2 5530
ad312c7c 5531 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5532 kvm_set_cr8(vcpu, 0);
5533
5534 if (!init_event) {
5535 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5536 MSR_IA32_APICBASE_ENABLE;
5537 if (kvm_vcpu_is_reset_bsp(vcpu))
5538 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5539 apic_base_msr.host_initiated = true;
5540 kvm_set_apic_base(vcpu, &apic_base_msr);
5541 }
e00c8cf2 5542
2fb92db1
AK
5543 vmx_segment_cache_clear(vmx);
5544
5706be0d 5545 seg_setup(VCPU_SREG_CS);
66450a21 5546 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5547 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5548
5549 seg_setup(VCPU_SREG_DS);
5550 seg_setup(VCPU_SREG_ES);
5551 seg_setup(VCPU_SREG_FS);
5552 seg_setup(VCPU_SREG_GS);
5553 seg_setup(VCPU_SREG_SS);
5554
5555 vmcs_write16(GUEST_TR_SELECTOR, 0);
5556 vmcs_writel(GUEST_TR_BASE, 0);
5557 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5558 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5559
5560 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5561 vmcs_writel(GUEST_LDTR_BASE, 0);
5562 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5563 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5564
d28bc9dd
NA
5565 if (!init_event) {
5566 vmcs_write32(GUEST_SYSENTER_CS, 0);
5567 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5568 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5569 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5570 }
e00c8cf2
AK
5571
5572 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5573 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5574
e00c8cf2
AK
5575 vmcs_writel(GUEST_GDTR_BASE, 0);
5576 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5577
5578 vmcs_writel(GUEST_IDTR_BASE, 0);
5579 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5580
443381a8 5581 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5582 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5583 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5584
e00c8cf2
AK
5585 setup_msrs(vmx);
5586
6aa8b732
AK
5587 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5588
d28bc9dd 5589 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5590 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5591 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5592 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5593 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5594 vmcs_write32(TPR_THRESHOLD, 0);
5595 }
5596
a73896cb 5597 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5598
d62caabb 5599 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5600 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5601
2384d2b3
SY
5602 if (vmx->vpid != 0)
5603 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5604
d28bc9dd 5605 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5606 vmx->vcpu.arch.cr0 = cr0;
f2463247 5607 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5608 vmx_set_cr4(vcpu, 0);
5690891b 5609 vmx_set_efer(vcpu, 0);
bd7e5b08 5610
d28bc9dd 5611 update_exception_bitmap(vcpu);
6aa8b732 5612
dd5f5341 5613 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5614}
5615
b6f1250e
NHE
5616/*
5617 * In nested virtualization, check if L1 asked to exit on external interrupts.
5618 * For most existing hypervisors, this will always return true.
5619 */
5620static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5621{
5622 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5623 PIN_BASED_EXT_INTR_MASK;
5624}
5625
77b0f5d6
BD
5626/*
5627 * In nested virtualization, check if L1 has set
5628 * VM_EXIT_ACK_INTR_ON_EXIT
5629 */
5630static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5631{
5632 return get_vmcs12(vcpu)->vm_exit_controls &
5633 VM_EXIT_ACK_INTR_ON_EXIT;
5634}
5635
ea8ceb83
JK
5636static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5637{
5638 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5639 PIN_BASED_NMI_EXITING;
5640}
5641
c9a7953f 5642static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 5643{
47c0152e
PB
5644 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5645 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
5646}
5647
c9a7953f 5648static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 5649{
2c82878b 5650 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
c9a7953f
JK
5651 enable_irq_window(vcpu);
5652 return;
5653 }
3b86cd99 5654
47c0152e
PB
5655 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5656 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
5657}
5658
66fd3f7f 5659static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5660{
9c8cba37 5661 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5662 uint32_t intr;
5663 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5664
229456fc 5665 trace_kvm_inj_virq(irq);
2714d1d3 5666
fa89a817 5667 ++vcpu->stat.irq_injections;
7ffd92c5 5668 if (vmx->rmode.vm86_active) {
71f9833b
SH
5669 int inc_eip = 0;
5670 if (vcpu->arch.interrupt.soft)
5671 inc_eip = vcpu->arch.event_exit_inst_len;
5672 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5673 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5674 return;
5675 }
66fd3f7f
GN
5676 intr = irq | INTR_INFO_VALID_MASK;
5677 if (vcpu->arch.interrupt.soft) {
5678 intr |= INTR_TYPE_SOFT_INTR;
5679 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5680 vmx->vcpu.arch.event_exit_inst_len);
5681 } else
5682 intr |= INTR_TYPE_EXT_INTR;
5683 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5684}
5685
f08864b4
SY
5686static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5687{
66a5a347
JK
5688 struct vcpu_vmx *vmx = to_vmx(vcpu);
5689
4c4a6f79
PB
5690 ++vcpu->stat.nmi_injections;
5691 vmx->loaded_vmcs->nmi_known_unmasked = false;
3b86cd99 5692
7ffd92c5 5693 if (vmx->rmode.vm86_active) {
71f9833b 5694 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5695 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5696 return;
5697 }
c5a6d5f7 5698
f08864b4
SY
5699 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5700 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5701}
5702
3cfc3092
JK
5703static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5704{
4c4a6f79
PB
5705 struct vcpu_vmx *vmx = to_vmx(vcpu);
5706 bool masked;
5707
5708 if (vmx->loaded_vmcs->nmi_known_unmasked)
9d58b931 5709 return false;
4c4a6f79
PB
5710 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5711 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5712 return masked;
3cfc3092
JK
5713}
5714
5715static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5716{
5717 struct vcpu_vmx *vmx = to_vmx(vcpu);
5718
4c4a6f79 5719 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
2c82878b
PB
5720 if (masked)
5721 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5722 GUEST_INTR_STATE_NMI);
5723 else
5724 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5725 GUEST_INTR_STATE_NMI);
3cfc3092
JK
5726}
5727
2505dc9f
JK
5728static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5729{
b6b8a145
JK
5730 if (to_vmx(vcpu)->nested.nested_run_pending)
5731 return 0;
ea8ceb83 5732
2505dc9f
JK
5733 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5734 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5735 | GUEST_INTR_STATE_NMI));
5736}
5737
78646121
GN
5738static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5739{
b6b8a145
JK
5740 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5741 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5742 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5743 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5744}
5745
cbc94022
IE
5746static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5747{
5748 int ret;
cbc94022 5749
1d8007bd
PB
5750 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5751 PAGE_SIZE * 3);
cbc94022
IE
5752 if (ret)
5753 return ret;
bfc6d222 5754 kvm->arch.tss_addr = addr;
1f755a82 5755 return init_rmode_tss(kvm);
cbc94022
IE
5756}
5757
0ca1b4f4 5758static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5759{
77ab6db0 5760 switch (vec) {
77ab6db0 5761 case BP_VECTOR:
c573cd22
JK
5762 /*
5763 * Update instruction length as we may reinject the exception
5764 * from user space while in guest debugging mode.
5765 */
5766 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5767 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5768 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5769 return false;
5770 /* fall through */
5771 case DB_VECTOR:
5772 if (vcpu->guest_debug &
5773 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5774 return false;
d0bfb940
JK
5775 /* fall through */
5776 case DE_VECTOR:
77ab6db0
JK
5777 case OF_VECTOR:
5778 case BR_VECTOR:
5779 case UD_VECTOR:
5780 case DF_VECTOR:
5781 case SS_VECTOR:
5782 case GP_VECTOR:
5783 case MF_VECTOR:
0ca1b4f4
GN
5784 return true;
5785 break;
77ab6db0 5786 }
0ca1b4f4
GN
5787 return false;
5788}
5789
5790static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5791 int vec, u32 err_code)
5792{
5793 /*
5794 * Instruction with address size override prefix opcode 0x67
5795 * Cause the #SS fault with 0 error code in VM86 mode.
5796 */
5797 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5798 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5799 if (vcpu->arch.halt_request) {
5800 vcpu->arch.halt_request = 0;
5cb56059 5801 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5802 }
5803 return 1;
5804 }
5805 return 0;
5806 }
5807
5808 /*
5809 * Forward all other exceptions that are valid in real mode.
5810 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5811 * the required debugging infrastructure rework.
5812 */
5813 kvm_queue_exception(vcpu, vec);
5814 return 1;
6aa8b732
AK
5815}
5816
a0861c02
AK
5817/*
5818 * Trigger machine check on the host. We assume all the MSRs are already set up
5819 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5820 * We pass a fake environment to the machine check handler because we want
5821 * the guest to be always treated like user space, no matter what context
5822 * it used internally.
5823 */
5824static void kvm_machine_check(void)
5825{
5826#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5827 struct pt_regs regs = {
5828 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5829 .flags = X86_EFLAGS_IF,
5830 };
5831
5832 do_machine_check(&regs, 0);
5833#endif
5834}
5835
851ba692 5836static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5837{
5838 /* already handled by vcpu_run */
5839 return 1;
5840}
5841
851ba692 5842static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5843{
1155f76a 5844 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5845 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5846 u32 intr_info, ex_no, error_code;
42dbaa5a 5847 unsigned long cr2, rip, dr6;
6aa8b732
AK
5848 u32 vect_info;
5849 enum emulation_result er;
5850
1155f76a 5851 vect_info = vmx->idt_vectoring_info;
88786475 5852 intr_info = vmx->exit_intr_info;
6aa8b732 5853
a0861c02 5854 if (is_machine_check(intr_info))
851ba692 5855 return handle_machine_check(vcpu);
a0861c02 5856
ef85b673 5857 if (is_nmi(intr_info))
1b6269db 5858 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 5859
7aa81cc0 5860 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5861 if (is_guest_mode(vcpu)) {
5862 kvm_queue_exception(vcpu, UD_VECTOR);
5863 return 1;
5864 }
51d8b661 5865 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5866 if (er != EMULATE_DONE)
7ee5d940 5867 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5868 return 1;
5869 }
5870
6aa8b732 5871 error_code = 0;
2e11384c 5872 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5873 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5874
5875 /*
5876 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5877 * MMIO, it is better to report an internal error.
5878 * See the comments in vmx_handle_exit.
5879 */
5880 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5881 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5882 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5883 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5884 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5885 vcpu->run->internal.data[0] = vect_info;
5886 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5887 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5888 return 0;
5889 }
5890
6aa8b732
AK
5891 if (is_page_fault(intr_info)) {
5892 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1261bfa3
WL
5893 /* EPT won't cause page fault directly */
5894 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5895 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5896 true);
6aa8b732
AK
5897 }
5898
d0bfb940 5899 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5900
5901 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5902 return handle_rmode_exception(vcpu, ex_no, error_code);
5903
42dbaa5a 5904 switch (ex_no) {
54a20552
EN
5905 case AC_VECTOR:
5906 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5907 return 1;
42dbaa5a
JK
5908 case DB_VECTOR:
5909 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5910 if (!(vcpu->guest_debug &
5911 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5912 vcpu->arch.dr6 &= ~15;
6f43ed01 5913 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5914 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5915 skip_emulated_instruction(vcpu);
5916
42dbaa5a
JK
5917 kvm_queue_exception(vcpu, DB_VECTOR);
5918 return 1;
5919 }
5920 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5921 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5922 /* fall through */
5923 case BP_VECTOR:
c573cd22
JK
5924 /*
5925 * Update instruction length as we may reinject #BP from
5926 * user space while in guest debugging mode. Reading it for
5927 * #DB as well causes no harm, it is not used in that case.
5928 */
5929 vmx->vcpu.arch.event_exit_inst_len =
5930 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5931 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5932 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5933 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5934 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5935 break;
5936 default:
d0bfb940
JK
5937 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5938 kvm_run->ex.exception = ex_no;
5939 kvm_run->ex.error_code = error_code;
42dbaa5a 5940 break;
6aa8b732 5941 }
6aa8b732
AK
5942 return 0;
5943}
5944
851ba692 5945static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5946{
1165f5fe 5947 ++vcpu->stat.irq_exits;
6aa8b732
AK
5948 return 1;
5949}
5950
851ba692 5951static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5952{
851ba692 5953 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
bbeac283 5954 vcpu->mmio_needed = 0;
988ad74f
AK
5955 return 0;
5956}
6aa8b732 5957
851ba692 5958static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5959{
bfdaab09 5960 unsigned long exit_qualification;
6affcbed 5961 int size, in, string, ret;
039576c0 5962 unsigned port;
6aa8b732 5963
bfdaab09 5964 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5965 string = (exit_qualification & 16) != 0;
cf8f70bf 5966 in = (exit_qualification & 8) != 0;
e70669ab 5967
cf8f70bf 5968 ++vcpu->stat.io_exits;
e70669ab 5969
cf8f70bf 5970 if (string || in)
51d8b661 5971 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5972
cf8f70bf
GN
5973 port = exit_qualification >> 16;
5974 size = (exit_qualification & 7) + 1;
cf8f70bf 5975
6affcbed
KH
5976 ret = kvm_skip_emulated_instruction(vcpu);
5977
5978 /*
5979 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5980 * KVM_EXIT_DEBUG here.
5981 */
5982 return kvm_fast_pio_out(vcpu, size, port) && ret;
6aa8b732
AK
5983}
5984
102d8325
IM
5985static void
5986vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5987{
5988 /*
5989 * Patch in the VMCALL instruction:
5990 */
5991 hypercall[0] = 0x0f;
5992 hypercall[1] = 0x01;
5993 hypercall[2] = 0xc1;
102d8325
IM
5994}
5995
0fa06071 5996/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5997static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5998{
eeadf9e7 5999 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6000 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6001 unsigned long orig_val = val;
6002
eeadf9e7
NHE
6003 /*
6004 * We get here when L2 changed cr0 in a way that did not change
6005 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
6006 * but did change L0 shadowed bits. So we first calculate the
6007 * effective cr0 value that L1 would like to write into the
6008 * hardware. It consists of the L2-owned bits from the new
6009 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 6010 */
1a0d74e6
JK
6011 val = (val & ~vmcs12->cr0_guest_host_mask) |
6012 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6013
3899152c 6014 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 6015 return 1;
1a0d74e6
JK
6016
6017 if (kvm_set_cr0(vcpu, val))
6018 return 1;
6019 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 6020 return 0;
1a0d74e6
JK
6021 } else {
6022 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 6023 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 6024 return 1;
3899152c 6025
eeadf9e7 6026 return kvm_set_cr0(vcpu, val);
1a0d74e6 6027 }
eeadf9e7
NHE
6028}
6029
6030static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6031{
6032 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6033 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6034 unsigned long orig_val = val;
6035
6036 /* analogously to handle_set_cr0 */
6037 val = (val & ~vmcs12->cr4_guest_host_mask) |
6038 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6039 if (kvm_set_cr4(vcpu, val))
eeadf9e7 6040 return 1;
1a0d74e6 6041 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
6042 return 0;
6043 } else
6044 return kvm_set_cr4(vcpu, val);
6045}
6046
851ba692 6047static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 6048{
229456fc 6049 unsigned long exit_qualification, val;
6aa8b732
AK
6050 int cr;
6051 int reg;
49a9b07e 6052 int err;
6affcbed 6053 int ret;
6aa8b732 6054
bfdaab09 6055 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
6056 cr = exit_qualification & 15;
6057 reg = (exit_qualification >> 8) & 15;
6058 switch ((exit_qualification >> 4) & 3) {
6059 case 0: /* mov to cr */
1e32c079 6060 val = kvm_register_readl(vcpu, reg);
229456fc 6061 trace_kvm_cr_write(cr, val);
6aa8b732
AK
6062 switch (cr) {
6063 case 0:
eeadf9e7 6064 err = handle_set_cr0(vcpu, val);
6affcbed 6065 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6066 case 3:
2390218b 6067 err = kvm_set_cr3(vcpu, val);
6affcbed 6068 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6069 case 4:
eeadf9e7 6070 err = handle_set_cr4(vcpu, val);
6affcbed 6071 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
6072 case 8: {
6073 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 6074 u8 cr8 = (u8)val;
eea1cff9 6075 err = kvm_set_cr8(vcpu, cr8);
6affcbed 6076 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 6077 if (lapic_in_kernel(vcpu))
6affcbed 6078 return ret;
0a5fff19 6079 if (cr8_prev <= cr8)
6affcbed
KH
6080 return ret;
6081 /*
6082 * TODO: we might be squashing a
6083 * KVM_GUESTDBG_SINGLESTEP-triggered
6084 * KVM_EXIT_DEBUG here.
6085 */
851ba692 6086 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
6087 return 0;
6088 }
4b8073e4 6089 }
6aa8b732 6090 break;
25c4c276 6091 case 2: /* clts */
bd7e5b08
PB
6092 WARN_ONCE(1, "Guest should always own CR0.TS");
6093 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 6094 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 6095 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6096 case 1: /*mov from cr*/
6097 switch (cr) {
6098 case 3:
9f8fe504
AK
6099 val = kvm_read_cr3(vcpu);
6100 kvm_register_write(vcpu, reg, val);
6101 trace_kvm_cr_read(cr, val);
6affcbed 6102 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 6103 case 8:
229456fc
MT
6104 val = kvm_get_cr8(vcpu);
6105 kvm_register_write(vcpu, reg, val);
6106 trace_kvm_cr_read(cr, val);
6affcbed 6107 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6108 }
6109 break;
6110 case 3: /* lmsw */
a1f83a74 6111 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 6112 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 6113 kvm_lmsw(vcpu, val);
6aa8b732 6114
6affcbed 6115 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6116 default:
6117 break;
6118 }
851ba692 6119 vcpu->run->exit_reason = 0;
a737f256 6120 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
6121 (int)(exit_qualification >> 4) & 3, cr);
6122 return 0;
6123}
6124
851ba692 6125static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 6126{
bfdaab09 6127 unsigned long exit_qualification;
16f8a6f9
NA
6128 int dr, dr7, reg;
6129
6130 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6131 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6132
6133 /* First, if DR does not exist, trigger UD */
6134 if (!kvm_require_dr(vcpu, dr))
6135 return 1;
6aa8b732 6136
f2483415 6137 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
6138 if (!kvm_require_cpl(vcpu, 0))
6139 return 1;
16f8a6f9
NA
6140 dr7 = vmcs_readl(GUEST_DR7);
6141 if (dr7 & DR7_GD) {
42dbaa5a
JK
6142 /*
6143 * As the vm-exit takes precedence over the debug trap, we
6144 * need to emulate the latter, either for the host or the
6145 * guest debugging itself.
6146 */
6147 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 6148 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 6149 vcpu->run->debug.arch.dr7 = dr7;
82b32774 6150 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
6151 vcpu->run->debug.arch.exception = DB_VECTOR;
6152 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
6153 return 0;
6154 } else {
7305eb5d 6155 vcpu->arch.dr6 &= ~15;
6f43ed01 6156 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
6157 kvm_queue_exception(vcpu, DB_VECTOR);
6158 return 1;
6159 }
6160 }
6161
81908bf4 6162 if (vcpu->guest_debug == 0) {
8f22372f
PB
6163 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6164 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6165
6166 /*
6167 * No more DR vmexits; force a reload of the debug registers
6168 * and reenter on this instruction. The next vmexit will
6169 * retrieve the full state of the debug registers.
6170 */
6171 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6172 return 1;
6173 }
6174
42dbaa5a
JK
6175 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6176 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 6177 unsigned long val;
4c4d563b
JK
6178
6179 if (kvm_get_dr(vcpu, dr, &val))
6180 return 1;
6181 kvm_register_write(vcpu, reg, val);
020df079 6182 } else
5777392e 6183 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
6184 return 1;
6185
6affcbed 6186 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6187}
6188
73aaf249
JK
6189static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6190{
6191 return vcpu->arch.dr6;
6192}
6193
6194static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6195{
6196}
6197
81908bf4
PB
6198static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6199{
81908bf4
PB
6200 get_debugreg(vcpu->arch.db[0], 0);
6201 get_debugreg(vcpu->arch.db[1], 1);
6202 get_debugreg(vcpu->arch.db[2], 2);
6203 get_debugreg(vcpu->arch.db[3], 3);
6204 get_debugreg(vcpu->arch.dr6, 6);
6205 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6206
6207 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 6208 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6209}
6210
020df079
GN
6211static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6212{
6213 vmcs_writel(GUEST_DR7, val);
6214}
6215
851ba692 6216static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 6217{
6a908b62 6218 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
6219}
6220
851ba692 6221static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 6222{
ad312c7c 6223 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 6224 struct msr_data msr_info;
6aa8b732 6225
609e36d3
PB
6226 msr_info.index = ecx;
6227 msr_info.host_initiated = false;
6228 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 6229 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 6230 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6231 return 1;
6232 }
6233
609e36d3 6234 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6235
6aa8b732 6236 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6237 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6238 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6239 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6240}
6241
851ba692 6242static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6243{
8fe8ab46 6244 struct msr_data msr;
ad312c7c
ZX
6245 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6246 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6247 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6248
8fe8ab46
WA
6249 msr.data = data;
6250 msr.index = ecx;
6251 msr.host_initiated = false;
854e8bb1 6252 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6253 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6254 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6255 return 1;
6256 }
6257
59200273 6258 trace_kvm_msr_write(ecx, data);
6affcbed 6259 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6260}
6261
851ba692 6262static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6263{
eb90f341 6264 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6265 return 1;
6266}
6267
851ba692 6268static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6269{
47c0152e
PB
6270 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6271 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6272
3842d135
AK
6273 kvm_make_request(KVM_REQ_EVENT, vcpu);
6274
a26bf12a 6275 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6276 return 1;
6277}
6278
851ba692 6279static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6280{
d3bef15f 6281 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6282}
6283
851ba692 6284static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6285{
0d9c055e 6286 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6287}
6288
ec25d5e6
GN
6289static int handle_invd(struct kvm_vcpu *vcpu)
6290{
51d8b661 6291 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6292}
6293
851ba692 6294static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6295{
f9c617f6 6296 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6297
6298 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6299 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6300}
6301
fee84b07
AK
6302static int handle_rdpmc(struct kvm_vcpu *vcpu)
6303{
6304 int err;
6305
6306 err = kvm_rdpmc(vcpu);
6affcbed 6307 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6308}
6309
851ba692 6310static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6311{
6affcbed 6312 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6313}
6314
2acf923e
DC
6315static int handle_xsetbv(struct kvm_vcpu *vcpu)
6316{
6317 u64 new_bv = kvm_read_edx_eax(vcpu);
6318 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6319
6320 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6321 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6322 return 1;
6323}
6324
f53cd63c
WL
6325static int handle_xsaves(struct kvm_vcpu *vcpu)
6326{
6affcbed 6327 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6328 WARN(1, "this should never happen\n");
6329 return 1;
6330}
6331
6332static int handle_xrstors(struct kvm_vcpu *vcpu)
6333{
6affcbed 6334 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6335 WARN(1, "this should never happen\n");
6336 return 1;
6337}
6338
851ba692 6339static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6340{
58fbbf26
KT
6341 if (likely(fasteoi)) {
6342 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6343 int access_type, offset;
6344
6345 access_type = exit_qualification & APIC_ACCESS_TYPE;
6346 offset = exit_qualification & APIC_ACCESS_OFFSET;
6347 /*
6348 * Sane guest uses MOV to write EOI, with written value
6349 * not cared. So make a short-circuit here by avoiding
6350 * heavy instruction emulation.
6351 */
6352 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6353 (offset == APIC_EOI)) {
6354 kvm_lapic_set_eoi(vcpu);
6affcbed 6355 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6356 }
6357 }
51d8b661 6358 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6359}
6360
c7c9c56c
YZ
6361static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6362{
6363 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6364 int vector = exit_qualification & 0xff;
6365
6366 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6367 kvm_apic_set_eoi_accelerated(vcpu, vector);
6368 return 1;
6369}
6370
83d4c286
YZ
6371static int handle_apic_write(struct kvm_vcpu *vcpu)
6372{
6373 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6374 u32 offset = exit_qualification & 0xfff;
6375
6376 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6377 kvm_apic_write_nodecode(vcpu, offset);
6378 return 1;
6379}
6380
851ba692 6381static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6382{
60637aac 6383 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6384 unsigned long exit_qualification;
e269fb21
JK
6385 bool has_error_code = false;
6386 u32 error_code = 0;
37817f29 6387 u16 tss_selector;
7f3d35fd 6388 int reason, type, idt_v, idt_index;
64a7ec06
GN
6389
6390 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6391 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6392 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6393
6394 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6395
6396 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6397 if (reason == TASK_SWITCH_GATE && idt_v) {
6398 switch (type) {
6399 case INTR_TYPE_NMI_INTR:
6400 vcpu->arch.nmi_injected = false;
654f06fc 6401 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6402 break;
6403 case INTR_TYPE_EXT_INTR:
66fd3f7f 6404 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6405 kvm_clear_interrupt_queue(vcpu);
6406 break;
6407 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6408 if (vmx->idt_vectoring_info &
6409 VECTORING_INFO_DELIVER_CODE_MASK) {
6410 has_error_code = true;
6411 error_code =
6412 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6413 }
6414 /* fall through */
64a7ec06
GN
6415 case INTR_TYPE_SOFT_EXCEPTION:
6416 kvm_clear_exception_queue(vcpu);
6417 break;
6418 default:
6419 break;
6420 }
60637aac 6421 }
37817f29
IE
6422 tss_selector = exit_qualification;
6423
64a7ec06
GN
6424 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6425 type != INTR_TYPE_EXT_INTR &&
6426 type != INTR_TYPE_NMI_INTR))
6427 skip_emulated_instruction(vcpu);
6428
7f3d35fd
KW
6429 if (kvm_task_switch(vcpu, tss_selector,
6430 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6431 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6432 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6433 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6434 vcpu->run->internal.ndata = 0;
42dbaa5a 6435 return 0;
acb54517 6436 }
42dbaa5a 6437
42dbaa5a
JK
6438 /*
6439 * TODO: What about debug traps on tss switch?
6440 * Are we supposed to inject them and update dr6?
6441 */
6442
6443 return 1;
37817f29
IE
6444}
6445
851ba692 6446static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6447{
f9c617f6 6448 unsigned long exit_qualification;
1439442c 6449 gpa_t gpa;
eebed243 6450 u64 error_code;
1439442c 6451
f9c617f6 6452 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6453
0be9c7a8
GN
6454 /*
6455 * EPT violation happened while executing iret from NMI,
6456 * "blocked by NMI" bit has to be set before next VM entry.
6457 * There are errata that may cause this bit to not be set:
6458 * AAK134, BY25.
6459 */
bcd1c294 6460 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
bcd1c294 6461 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6462 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6463
1439442c 6464 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6465 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6466
27959a44 6467 /* Is it a read fault? */
ab22a473 6468 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
6469 ? PFERR_USER_MASK : 0;
6470 /* Is it a write fault? */
ab22a473 6471 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
6472 ? PFERR_WRITE_MASK : 0;
6473 /* Is it a fetch fault? */
ab22a473 6474 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
6475 ? PFERR_FETCH_MASK : 0;
6476 /* ept page table entry is present? */
6477 error_code |= (exit_qualification &
6478 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6479 EPT_VIOLATION_EXECUTABLE))
6480 ? PFERR_PRESENT_MASK : 0;
4f5982a5 6481
eebed243
PB
6482 error_code |= (exit_qualification & 0x100) != 0 ?
6483 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
25d92081 6484
25d92081 6485 vcpu->arch.exit_qualification = exit_qualification;
4f5982a5 6486 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6487}
6488
851ba692 6489static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6490{
f735d4af 6491 int ret;
68f89400
MT
6492 gpa_t gpa;
6493
9034e6e8
PB
6494 /*
6495 * A nested guest cannot optimize MMIO vmexits, because we have an
6496 * nGPA here instead of the required GPA.
6497 */
68f89400 6498 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
9034e6e8
PB
6499 if (!is_guest_mode(vcpu) &&
6500 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 6501 trace_kvm_fast_mmio(gpa);
6affcbed 6502 return kvm_skip_emulated_instruction(vcpu);
68c3b4d1 6503 }
68f89400 6504
e08d26f0
PB
6505 ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6506 if (ret >= 0)
6507 return ret;
ce88decf
XG
6508
6509 /* It is the real ept misconfig */
f735d4af 6510 WARN_ON(1);
68f89400 6511
851ba692
AK
6512 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6513 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6514
6515 return 0;
6516}
6517
851ba692 6518static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 6519{
47c0152e
PB
6520 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6521 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 6522 ++vcpu->stat.nmi_window_exits;
3842d135 6523 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6524
6525 return 1;
6526}
6527
80ced186 6528static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6529{
8b3079a5
AK
6530 struct vcpu_vmx *vmx = to_vmx(vcpu);
6531 enum emulation_result err = EMULATE_DONE;
80ced186 6532 int ret = 1;
49e9d557
AK
6533 u32 cpu_exec_ctrl;
6534 bool intr_window_requested;
b8405c18 6535 unsigned count = 130;
49e9d557
AK
6536
6537 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6538 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6539
98eb2f8b 6540 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6541 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6542 return handle_interrupt_window(&vmx->vcpu);
6543
72875d8a 6544 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
de87dcdd
AK
6545 return 1;
6546
991eebf9 6547 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6548
ac0a48c3 6549 if (err == EMULATE_USER_EXIT) {
94452b9e 6550 ++vcpu->stat.mmio_exits;
80ced186
MG
6551 ret = 0;
6552 goto out;
6553 }
1d5a4d9b 6554
de5f70e0
AK
6555 if (err != EMULATE_DONE) {
6556 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6557 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6558 vcpu->run->internal.ndata = 0;
6d77dbfc 6559 return 0;
de5f70e0 6560 }
ea953ef0 6561
8d76c49e
GN
6562 if (vcpu->arch.halt_request) {
6563 vcpu->arch.halt_request = 0;
5cb56059 6564 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6565 goto out;
6566 }
6567
ea953ef0 6568 if (signal_pending(current))
80ced186 6569 goto out;
ea953ef0
MG
6570 if (need_resched())
6571 schedule();
6572 }
6573
80ced186
MG
6574out:
6575 return ret;
ea953ef0
MG
6576}
6577
b4a2d31d
RK
6578static int __grow_ple_window(int val)
6579{
6580 if (ple_window_grow < 1)
6581 return ple_window;
6582
6583 val = min(val, ple_window_actual_max);
6584
6585 if (ple_window_grow < ple_window)
6586 val *= ple_window_grow;
6587 else
6588 val += ple_window_grow;
6589
6590 return val;
6591}
6592
6593static int __shrink_ple_window(int val, int modifier, int minimum)
6594{
6595 if (modifier < 1)
6596 return ple_window;
6597
6598 if (modifier < ple_window)
6599 val /= modifier;
6600 else
6601 val -= modifier;
6602
6603 return max(val, minimum);
6604}
6605
6606static void grow_ple_window(struct kvm_vcpu *vcpu)
6607{
6608 struct vcpu_vmx *vmx = to_vmx(vcpu);
6609 int old = vmx->ple_window;
6610
6611 vmx->ple_window = __grow_ple_window(old);
6612
6613 if (vmx->ple_window != old)
6614 vmx->ple_window_dirty = true;
7b46268d
RK
6615
6616 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6617}
6618
6619static void shrink_ple_window(struct kvm_vcpu *vcpu)
6620{
6621 struct vcpu_vmx *vmx = to_vmx(vcpu);
6622 int old = vmx->ple_window;
6623
6624 vmx->ple_window = __shrink_ple_window(old,
6625 ple_window_shrink, ple_window);
6626
6627 if (vmx->ple_window != old)
6628 vmx->ple_window_dirty = true;
7b46268d
RK
6629
6630 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6631}
6632
6633/*
6634 * ple_window_actual_max is computed to be one grow_ple_window() below
6635 * ple_window_max. (See __grow_ple_window for the reason.)
6636 * This prevents overflows, because ple_window_max is int.
6637 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6638 * this process.
6639 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6640 */
6641static void update_ple_window_actual_max(void)
6642{
6643 ple_window_actual_max =
6644 __shrink_ple_window(max(ple_window_max, ple_window),
6645 ple_window_grow, INT_MIN);
6646}
6647
bf9f6ac8
FW
6648/*
6649 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6650 */
6651static void wakeup_handler(void)
6652{
6653 struct kvm_vcpu *vcpu;
6654 int cpu = smp_processor_id();
6655
6656 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6657 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6658 blocked_vcpu_list) {
6659 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6660
6661 if (pi_test_on(pi_desc) == 1)
6662 kvm_vcpu_kick(vcpu);
6663 }
6664 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6665}
6666
f160c7b7
JS
6667void vmx_enable_tdp(void)
6668{
6669 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6670 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6671 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6672 0ull, VMX_EPT_EXECUTABLE_MASK,
6673 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
d0ec49d4 6674 VMX_EPT_RWX_MASK, 0ull);
f160c7b7
JS
6675
6676 ept_set_mmio_spte_mask();
6677 kvm_enable_tdp();
6678}
6679
f2c7648d
TC
6680static __init int hardware_setup(void)
6681{
34a1cd60
TC
6682 int r = -ENOMEM, i, msr;
6683
6684 rdmsrl_safe(MSR_EFER, &host_efer);
6685
6686 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6687 kvm_define_shared_msr(i, vmx_msr_index[i]);
6688
23611332
RK
6689 for (i = 0; i < VMX_BITMAP_NR; i++) {
6690 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6691 if (!vmx_bitmap[i])
6692 goto out;
6693 }
34a1cd60
TC
6694
6695 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
34a1cd60
TC
6696 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6697 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6698
6699 /*
6700 * Allow direct access to the PC debug port (it is often used for I/O
6701 * delays, but the vmexits simply slow things down).
6702 */
6703 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6704 clear_bit(0x80, vmx_io_bitmap_a);
6705
6706 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6707
6708 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6709 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6710
34a1cd60
TC
6711 if (setup_vmcs_config(&vmcs_config) < 0) {
6712 r = -EIO;
23611332 6713 goto out;
baa03522 6714 }
f2c7648d
TC
6715
6716 if (boot_cpu_has(X86_FEATURE_NX))
6717 kvm_enable_efer_bits(EFER_NX);
6718
08d839c4
WL
6719 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6720 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
f2c7648d 6721 enable_vpid = 0;
08d839c4 6722
f2c7648d
TC
6723 if (!cpu_has_vmx_shadow_vmcs())
6724 enable_shadow_vmcs = 0;
6725 if (enable_shadow_vmcs)
6726 init_vmcs_shadow_fields();
6727
6728 if (!cpu_has_vmx_ept() ||
42aa53b4 6729 !cpu_has_vmx_ept_4levels() ||
f5f51586
DH
6730 !cpu_has_vmx_ept_mt_wb() ||
6731 !cpu_has_vmx_invept_global()) {
f2c7648d
TC
6732 enable_ept = 0;
6733 enable_unrestricted_guest = 0;
6734 enable_ept_ad_bits = 0;
6735 }
6736
fce6ac4c 6737 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
f2c7648d
TC
6738 enable_ept_ad_bits = 0;
6739
6740 if (!cpu_has_vmx_unrestricted_guest())
6741 enable_unrestricted_guest = 0;
6742
ad15a296 6743 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6744 flexpriority_enabled = 0;
6745
ad15a296
PB
6746 /*
6747 * set_apic_access_page_addr() is used to reload apic access
6748 * page upon invalidation. No need to do anything if not
6749 * using the APIC_ACCESS_ADDR VMCS field.
6750 */
6751 if (!flexpriority_enabled)
f2c7648d 6752 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6753
6754 if (!cpu_has_vmx_tpr_shadow())
6755 kvm_x86_ops->update_cr8_intercept = NULL;
6756
6757 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6758 kvm_disable_largepages();
6759
0f107682 6760 if (!cpu_has_vmx_ple()) {
f2c7648d 6761 ple_gap = 0;
0f107682
WL
6762 ple_window = 0;
6763 ple_window_grow = 0;
6764 ple_window_max = 0;
6765 ple_window_shrink = 0;
6766 }
f2c7648d 6767
76dfafd5 6768 if (!cpu_has_vmx_apicv()) {
f2c7648d 6769 enable_apicv = 0;
76dfafd5
PB
6770 kvm_x86_ops->sync_pir_to_irr = NULL;
6771 }
f2c7648d 6772
64903d61
HZ
6773 if (cpu_has_vmx_tsc_scaling()) {
6774 kvm_has_tsc_control = true;
6775 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6776 kvm_tsc_scaling_ratio_frac_bits = 48;
6777 }
6778
baa03522
TC
6779 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6780 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6781 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6782 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6783 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6784 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
baa03522 6785
c63e4563 6786 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
baa03522 6787 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6788 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
baa03522 6789 vmx_msr_bitmap_longmode, PAGE_SIZE);
c63e4563 6790 memcpy(vmx_msr_bitmap_legacy_x2apic,
f6e90f9e 6791 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6792 memcpy(vmx_msr_bitmap_longmode_x2apic,
f6e90f9e 6793 vmx_msr_bitmap_longmode, PAGE_SIZE);
baa03522 6794
04bb92e4
WL
6795 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6796
40d8338d
RK
6797 for (msr = 0x800; msr <= 0x8ff; msr++) {
6798 if (msr == 0x839 /* TMCCT */)
6799 continue;
2e69f865 6800 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
40d8338d 6801 }
3ce424e4 6802
f6e90f9e 6803 /*
2e69f865
RK
6804 * TPR reads and writes can be virtualized even if virtual interrupt
6805 * delivery is not in use.
f6e90f9e 6806 */
2e69f865
RK
6807 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6808 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
3ce424e4 6809
3ce424e4 6810 /* EOI */
2e69f865 6811 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
3ce424e4 6812 /* SELF-IPI */
2e69f865 6813 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
baa03522 6814
f160c7b7
JS
6815 if (enable_ept)
6816 vmx_enable_tdp();
6817 else
baa03522
TC
6818 kvm_disable_tdp();
6819
6820 update_ple_window_actual_max();
6821
843e4330
KH
6822 /*
6823 * Only enable PML when hardware supports PML feature, and both EPT
6824 * and EPT A/D bit features are enabled -- PML depends on them to work.
6825 */
6826 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6827 enable_pml = 0;
6828
6829 if (!enable_pml) {
6830 kvm_x86_ops->slot_enable_log_dirty = NULL;
6831 kvm_x86_ops->slot_disable_log_dirty = NULL;
6832 kvm_x86_ops->flush_log_dirty = NULL;
6833 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6834 }
6835
64672c95
YJ
6836 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6837 u64 vmx_msr;
6838
6839 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6840 cpu_preemption_timer_multi =
6841 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6842 } else {
6843 kvm_x86_ops->set_hv_timer = NULL;
6844 kvm_x86_ops->cancel_hv_timer = NULL;
6845 }
6846
bf9f6ac8
FW
6847 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6848
c45dcc71
AR
6849 kvm_mce_cap_supported |= MCG_LMCE_P;
6850
f2c7648d 6851 return alloc_kvm_area();
34a1cd60 6852
34a1cd60 6853out:
23611332
RK
6854 for (i = 0; i < VMX_BITMAP_NR; i++)
6855 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
6856
6857 return r;
f2c7648d
TC
6858}
6859
6860static __exit void hardware_unsetup(void)
6861{
23611332
RK
6862 int i;
6863
6864 for (i = 0; i < VMX_BITMAP_NR; i++)
6865 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 6866
f2c7648d
TC
6867 free_kvm_area();
6868}
6869
4b8d54f9
ZE
6870/*
6871 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6872 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6873 */
9fb41ba8 6874static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6875{
b4a2d31d
RK
6876 if (ple_gap)
6877 grow_ple_window(vcpu);
6878
de63ad4c
LM
6879 /*
6880 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6881 * VM-execution control is ignored if CPL > 0. OTOH, KVM
6882 * never set PAUSE_EXITING and just set PLE if supported,
6883 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6884 */
6885 kvm_vcpu_on_spin(vcpu, true);
6affcbed 6886 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
6887}
6888
87c00572 6889static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6890{
6affcbed 6891 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
6892}
6893
87c00572
GS
6894static int handle_mwait(struct kvm_vcpu *vcpu)
6895{
6896 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6897 return handle_nop(vcpu);
6898}
6899
45ec368c
JM
6900static int handle_invalid_op(struct kvm_vcpu *vcpu)
6901{
6902 kvm_queue_exception(vcpu, UD_VECTOR);
6903 return 1;
6904}
6905
5f3d45e7
MD
6906static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6907{
6908 return 1;
6909}
6910
87c00572
GS
6911static int handle_monitor(struct kvm_vcpu *vcpu)
6912{
6913 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6914 return handle_nop(vcpu);
6915}
6916
ff2f6fe9
NHE
6917/*
6918 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6919 * We could reuse a single VMCS for all the L2 guests, but we also want the
6920 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6921 * allows keeping them loaded on the processor, and in the future will allow
6922 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6923 * every entry if they never change.
6924 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6925 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6926 *
6927 * The following functions allocate and free a vmcs02 in this pool.
6928 */
6929
6930/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6931static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6932{
6933 struct vmcs02_list *item;
6934 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6935 if (item->vmptr == vmx->nested.current_vmptr) {
6936 list_move(&item->list, &vmx->nested.vmcs02_pool);
6937 return &item->vmcs02;
6938 }
6939
6940 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6941 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6942 item = list_last_entry(&vmx->nested.vmcs02_pool,
6943 struct vmcs02_list, list);
ff2f6fe9
NHE
6944 item->vmptr = vmx->nested.current_vmptr;
6945 list_move(&item->list, &vmx->nested.vmcs02_pool);
6946 return &item->vmcs02;
6947 }
6948
6949 /* Create a new VMCS */
0fa24ce3 6950 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6951 if (!item)
6952 return NULL;
6953 item->vmcs02.vmcs = alloc_vmcs();
355f4fb1 6954 item->vmcs02.shadow_vmcs = NULL;
ff2f6fe9
NHE
6955 if (!item->vmcs02.vmcs) {
6956 kfree(item);
6957 return NULL;
6958 }
6959 loaded_vmcs_init(&item->vmcs02);
6960 item->vmptr = vmx->nested.current_vmptr;
6961 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6962 vmx->nested.vmcs02_num++;
6963 return &item->vmcs02;
6964}
6965
6966/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6967static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6968{
6969 struct vmcs02_list *item;
6970 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6971 if (item->vmptr == vmptr) {
6972 free_loaded_vmcs(&item->vmcs02);
6973 list_del(&item->list);
6974 kfree(item);
6975 vmx->nested.vmcs02_num--;
6976 return;
6977 }
6978}
6979
6980/*
6981 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6982 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6983 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6984 */
6985static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6986{
6987 struct vmcs02_list *item, *n;
4fa7734c
PB
6988
6989 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6990 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6991 /*
6992 * Something will leak if the above WARN triggers. Better than
6993 * a use-after-free.
6994 */
6995 if (vmx->loaded_vmcs == &item->vmcs02)
6996 continue;
6997
6998 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6999 list_del(&item->list);
7000 kfree(item);
4fa7734c 7001 vmx->nested.vmcs02_num--;
ff2f6fe9 7002 }
ff2f6fe9
NHE
7003}
7004
0658fbaa
ACL
7005/*
7006 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7007 * set the success or error code of an emulated VMX instruction, as specified
7008 * by Vol 2B, VMX Instruction Reference, "Conventions".
7009 */
7010static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7011{
7012 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7013 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7014 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7015}
7016
7017static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7018{
7019 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7020 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7021 X86_EFLAGS_SF | X86_EFLAGS_OF))
7022 | X86_EFLAGS_CF);
7023}
7024
145c28dd 7025static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
7026 u32 vm_instruction_error)
7027{
7028 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7029 /*
7030 * failValid writes the error number to the current VMCS, which
7031 * can't be done there isn't a current VMCS.
7032 */
7033 nested_vmx_failInvalid(vcpu);
7034 return;
7035 }
7036 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7037 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7038 X86_EFLAGS_SF | X86_EFLAGS_OF))
7039 | X86_EFLAGS_ZF);
7040 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7041 /*
7042 * We don't need to force a shadow sync because
7043 * VM_INSTRUCTION_ERROR is not shadowed
7044 */
7045}
145c28dd 7046
ff651cb6
WV
7047static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7048{
7049 /* TODO: not to reset guest simply here. */
7050 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 7051 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
7052}
7053
f4124500
JK
7054static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7055{
7056 struct vcpu_vmx *vmx =
7057 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7058
7059 vmx->nested.preemption_timer_expired = true;
7060 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7061 kvm_vcpu_kick(&vmx->vcpu);
7062
7063 return HRTIMER_NORESTART;
7064}
7065
19677e32
BD
7066/*
7067 * Decode the memory-address operand of a vmx instruction, as recorded on an
7068 * exit caused by such an instruction (run by a guest hypervisor).
7069 * On success, returns 0. When the operand is invalid, returns 1 and throws
7070 * #UD or #GP.
7071 */
7072static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7073 unsigned long exit_qualification,
f9eb4af6 7074 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 7075{
f9eb4af6
EK
7076 gva_t off;
7077 bool exn;
7078 struct kvm_segment s;
7079
19677e32
BD
7080 /*
7081 * According to Vol. 3B, "Information for VM Exits Due to Instruction
7082 * Execution", on an exit, vmx_instruction_info holds most of the
7083 * addressing components of the operand. Only the displacement part
7084 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7085 * For how an actual address is calculated from all these components,
7086 * refer to Vol. 1, "Operand Addressing".
7087 */
7088 int scaling = vmx_instruction_info & 3;
7089 int addr_size = (vmx_instruction_info >> 7) & 7;
7090 bool is_reg = vmx_instruction_info & (1u << 10);
7091 int seg_reg = (vmx_instruction_info >> 15) & 7;
7092 int index_reg = (vmx_instruction_info >> 18) & 0xf;
7093 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7094 int base_reg = (vmx_instruction_info >> 23) & 0xf;
7095 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
7096
7097 if (is_reg) {
7098 kvm_queue_exception(vcpu, UD_VECTOR);
7099 return 1;
7100 }
7101
7102 /* Addr = segment_base + offset */
7103 /* offset = base + [index * scale] + displacement */
f9eb4af6 7104 off = exit_qualification; /* holds the displacement */
19677e32 7105 if (base_is_valid)
f9eb4af6 7106 off += kvm_register_read(vcpu, base_reg);
19677e32 7107 if (index_is_valid)
f9eb4af6
EK
7108 off += kvm_register_read(vcpu, index_reg)<<scaling;
7109 vmx_get_segment(vcpu, &s, seg_reg);
7110 *ret = s.base + off;
19677e32
BD
7111
7112 if (addr_size == 1) /* 32 bit */
7113 *ret &= 0xffffffff;
7114
f9eb4af6
EK
7115 /* Checks for #GP/#SS exceptions. */
7116 exn = false;
ff30ef40
QC
7117 if (is_long_mode(vcpu)) {
7118 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7119 * non-canonical form. This is the only check on the memory
7120 * destination for long mode!
7121 */
fd8cb433 7122 exn = is_noncanonical_address(*ret, vcpu);
ff30ef40 7123 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
7124 /* Protected mode: apply checks for segment validity in the
7125 * following order:
7126 * - segment type check (#GP(0) may be thrown)
7127 * - usability check (#GP(0)/#SS(0))
7128 * - limit check (#GP(0)/#SS(0))
7129 */
7130 if (wr)
7131 /* #GP(0) if the destination operand is located in a
7132 * read-only data segment or any code segment.
7133 */
7134 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7135 else
7136 /* #GP(0) if the source operand is located in an
7137 * execute-only code segment
7138 */
7139 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
7140 if (exn) {
7141 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7142 return 1;
7143 }
f9eb4af6
EK
7144 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7145 */
7146 exn = (s.unusable != 0);
7147 /* Protected mode: #GP(0)/#SS(0) if the memory
7148 * operand is outside the segment limit.
7149 */
7150 exn = exn || (off + sizeof(u64) > s.limit);
7151 }
7152 if (exn) {
7153 kvm_queue_exception_e(vcpu,
7154 seg_reg == VCPU_SREG_SS ?
7155 SS_VECTOR : GP_VECTOR,
7156 0);
7157 return 1;
7158 }
7159
19677e32
BD
7160 return 0;
7161}
7162
cbf71279 7163static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
3573e22c
BD
7164{
7165 gva_t gva;
3573e22c 7166 struct x86_exception e;
3573e22c
BD
7167
7168 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7169 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
7170 return 1;
7171
cbf71279
RK
7172 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7173 sizeof(*vmpointer), &e)) {
3573e22c
BD
7174 kvm_inject_page_fault(vcpu, &e);
7175 return 1;
7176 }
7177
3573e22c
BD
7178 return 0;
7179}
7180
e29acc55
JM
7181static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7182{
7183 struct vcpu_vmx *vmx = to_vmx(vcpu);
7184 struct vmcs *shadow_vmcs;
7185
7186 if (cpu_has_vmx_msr_bitmap()) {
7187 vmx->nested.msr_bitmap =
7188 (unsigned long *)__get_free_page(GFP_KERNEL);
7189 if (!vmx->nested.msr_bitmap)
7190 goto out_msr_bitmap;
7191 }
7192
7193 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7194 if (!vmx->nested.cached_vmcs12)
7195 goto out_cached_vmcs12;
7196
7197 if (enable_shadow_vmcs) {
7198 shadow_vmcs = alloc_vmcs();
7199 if (!shadow_vmcs)
7200 goto out_shadow_vmcs;
7201 /* mark vmcs as shadow */
7202 shadow_vmcs->revision_id |= (1u << 31);
7203 /* init shadow vmcs */
7204 vmcs_clear(shadow_vmcs);
7205 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7206 }
7207
7208 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7209 vmx->nested.vmcs02_num = 0;
7210
7211 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7212 HRTIMER_MODE_REL_PINNED);
7213 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7214
7215 vmx->nested.vmxon = true;
7216 return 0;
7217
7218out_shadow_vmcs:
7219 kfree(vmx->nested.cached_vmcs12);
7220
7221out_cached_vmcs12:
7222 free_page((unsigned long)vmx->nested.msr_bitmap);
7223
7224out_msr_bitmap:
7225 return -ENOMEM;
7226}
7227
ec378aee
NHE
7228/*
7229 * Emulate the VMXON instruction.
7230 * Currently, we just remember that VMX is active, and do not save or even
7231 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7232 * do not currently need to store anything in that guest-allocated memory
7233 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7234 * argument is different from the VMXON pointer (which the spec says they do).
7235 */
7236static int handle_vmon(struct kvm_vcpu *vcpu)
7237{
e29acc55 7238 int ret;
cbf71279
RK
7239 gpa_t vmptr;
7240 struct page *page;
ec378aee 7241 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
7242 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7243 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee 7244
70f3aac9
JM
7245 /*
7246 * The Intel VMX Instruction Reference lists a bunch of bits that are
7247 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7248 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7249 * Otherwise, we should fail with #UD. But most faulting conditions
7250 * have already been checked by hardware, prior to the VM-exit for
7251 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7252 * that bit set to 1 in non-root mode.
ec378aee 7253 */
70f3aac9 7254 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
ec378aee
NHE
7255 kvm_queue_exception(vcpu, UD_VECTOR);
7256 return 1;
7257 }
7258
145c28dd
AG
7259 if (vmx->nested.vmxon) {
7260 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7261 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7262 }
b3897a49 7263
3b84080b 7264 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7265 != VMXON_NEEDED_FEATURES) {
7266 kvm_inject_gp(vcpu, 0);
7267 return 1;
7268 }
7269
cbf71279 7270 if (nested_vmx_get_vmptr(vcpu, &vmptr))
21e7fbe7 7271 return 1;
cbf71279
RK
7272
7273 /*
7274 * SDM 3: 24.11.5
7275 * The first 4 bytes of VMXON region contain the supported
7276 * VMCS revision identifier
7277 *
7278 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7279 * which replaces physical address width with 32
7280 */
7281 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7282 nested_vmx_failInvalid(vcpu);
7283 return kvm_skip_emulated_instruction(vcpu);
7284 }
7285
5e2f30b7
DH
7286 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7287 if (is_error_page(page)) {
cbf71279
RK
7288 nested_vmx_failInvalid(vcpu);
7289 return kvm_skip_emulated_instruction(vcpu);
7290 }
7291 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7292 kunmap(page);
53a70daf 7293 kvm_release_page_clean(page);
cbf71279
RK
7294 nested_vmx_failInvalid(vcpu);
7295 return kvm_skip_emulated_instruction(vcpu);
7296 }
7297 kunmap(page);
53a70daf 7298 kvm_release_page_clean(page);
cbf71279
RK
7299
7300 vmx->nested.vmxon_ptr = vmptr;
e29acc55
JM
7301 ret = enter_vmx_operation(vcpu);
7302 if (ret)
7303 return ret;
ec378aee 7304
a25eb114 7305 nested_vmx_succeed(vcpu);
6affcbed 7306 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7307}
7308
7309/*
7310 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7311 * for running VMX instructions (except VMXON, whose prerequisites are
7312 * slightly different). It also specifies what exception to inject otherwise.
70f3aac9
JM
7313 * Note that many of these exceptions have priority over VM exits, so they
7314 * don't have to be checked again here.
ec378aee
NHE
7315 */
7316static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7317{
70f3aac9 7318 if (!to_vmx(vcpu)->nested.vmxon) {
ec378aee
NHE
7319 kvm_queue_exception(vcpu, UD_VECTOR);
7320 return 0;
7321 }
ec378aee
NHE
7322 return 1;
7323}
7324
8ca44e88
DM
7325static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7326{
7327 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7328 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7329}
7330
e7953d7f
AG
7331static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7332{
9a2a05b9
PB
7333 if (vmx->nested.current_vmptr == -1ull)
7334 return;
7335
012f83cb 7336 if (enable_shadow_vmcs) {
9a2a05b9
PB
7337 /* copy to memory all shadowed fields in case
7338 they were modified */
7339 copy_shadow_to_vmcs12(vmx);
7340 vmx->nested.sync_shadow_vmcs = false;
8ca44e88 7341 vmx_disable_shadow_vmcs(vmx);
012f83cb 7342 }
705699a1 7343 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7344
7345 /* Flush VMCS12 to guest memory */
9f744c59
PB
7346 kvm_vcpu_write_guest_page(&vmx->vcpu,
7347 vmx->nested.current_vmptr >> PAGE_SHIFT,
7348 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4f2777bc 7349
9a2a05b9 7350 vmx->nested.current_vmptr = -1ull;
e7953d7f
AG
7351}
7352
ec378aee
NHE
7353/*
7354 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7355 * just stops using VMX.
7356 */
7357static void free_nested(struct vcpu_vmx *vmx)
7358{
7359 if (!vmx->nested.vmxon)
7360 return;
9a2a05b9 7361
ec378aee 7362 vmx->nested.vmxon = false;
5c614b35 7363 free_vpid(vmx->nested.vpid02);
8ca44e88
DM
7364 vmx->nested.posted_intr_nv = -1;
7365 vmx->nested.current_vmptr = -1ull;
d048c098
RK
7366 if (vmx->nested.msr_bitmap) {
7367 free_page((unsigned long)vmx->nested.msr_bitmap);
7368 vmx->nested.msr_bitmap = NULL;
7369 }
355f4fb1 7370 if (enable_shadow_vmcs) {
8ca44e88 7371 vmx_disable_shadow_vmcs(vmx);
355f4fb1
JM
7372 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7373 free_vmcs(vmx->vmcs01.shadow_vmcs);
7374 vmx->vmcs01.shadow_vmcs = NULL;
7375 }
4f2777bc 7376 kfree(vmx->nested.cached_vmcs12);
fe3ef05c
NHE
7377 /* Unpin physical memory we referred to in current vmcs02 */
7378 if (vmx->nested.apic_access_page) {
53a70daf 7379 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 7380 vmx->nested.apic_access_page = NULL;
fe3ef05c 7381 }
a7c0b07d 7382 if (vmx->nested.virtual_apic_page) {
53a70daf 7383 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 7384 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7385 }
705699a1
WV
7386 if (vmx->nested.pi_desc_page) {
7387 kunmap(vmx->nested.pi_desc_page);
53a70daf 7388 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
7389 vmx->nested.pi_desc_page = NULL;
7390 vmx->nested.pi_desc = NULL;
7391 }
ff2f6fe9
NHE
7392
7393 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
7394}
7395
7396/* Emulate the VMXOFF instruction */
7397static int handle_vmoff(struct kvm_vcpu *vcpu)
7398{
7399 if (!nested_vmx_check_permission(vcpu))
7400 return 1;
7401 free_nested(to_vmx(vcpu));
a25eb114 7402 nested_vmx_succeed(vcpu);
6affcbed 7403 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7404}
7405
27d6c865
NHE
7406/* Emulate the VMCLEAR instruction */
7407static int handle_vmclear(struct kvm_vcpu *vcpu)
7408{
7409 struct vcpu_vmx *vmx = to_vmx(vcpu);
587d7e72 7410 u32 zero = 0;
27d6c865 7411 gpa_t vmptr;
27d6c865
NHE
7412
7413 if (!nested_vmx_check_permission(vcpu))
7414 return 1;
7415
cbf71279 7416 if (nested_vmx_get_vmptr(vcpu, &vmptr))
27d6c865 7417 return 1;
27d6c865 7418
cbf71279
RK
7419 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7420 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7421 return kvm_skip_emulated_instruction(vcpu);
7422 }
7423
7424 if (vmptr == vmx->nested.vmxon_ptr) {
7425 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7426 return kvm_skip_emulated_instruction(vcpu);
7427 }
7428
9a2a05b9 7429 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7430 nested_release_vmcs12(vmx);
27d6c865 7431
587d7e72
JM
7432 kvm_vcpu_write_guest(vcpu,
7433 vmptr + offsetof(struct vmcs12, launch_state),
7434 &zero, sizeof(zero));
27d6c865
NHE
7435
7436 nested_free_vmcs02(vmx, vmptr);
7437
27d6c865 7438 nested_vmx_succeed(vcpu);
6affcbed 7439 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7440}
7441
cd232ad0
NHE
7442static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7443
7444/* Emulate the VMLAUNCH instruction */
7445static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7446{
7447 return nested_vmx_run(vcpu, true);
7448}
7449
7450/* Emulate the VMRESUME instruction */
7451static int handle_vmresume(struct kvm_vcpu *vcpu)
7452{
7453
7454 return nested_vmx_run(vcpu, false);
7455}
7456
49f705c5
NHE
7457/*
7458 * Read a vmcs12 field. Since these can have varying lengths and we return
7459 * one type, we chose the biggest type (u64) and zero-extend the return value
7460 * to that size. Note that the caller, handle_vmread, might need to use only
7461 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7462 * 64-bit fields are to be returned).
7463 */
a2ae9df7
PB
7464static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7465 unsigned long field, u64 *ret)
49f705c5
NHE
7466{
7467 short offset = vmcs_field_to_offset(field);
7468 char *p;
7469
7470 if (offset < 0)
a2ae9df7 7471 return offset;
49f705c5
NHE
7472
7473 p = ((char *)(get_vmcs12(vcpu))) + offset;
7474
7475 switch (vmcs_field_type(field)) {
7476 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7477 *ret = *((natural_width *)p);
a2ae9df7 7478 return 0;
49f705c5
NHE
7479 case VMCS_FIELD_TYPE_U16:
7480 *ret = *((u16 *)p);
a2ae9df7 7481 return 0;
49f705c5
NHE
7482 case VMCS_FIELD_TYPE_U32:
7483 *ret = *((u32 *)p);
a2ae9df7 7484 return 0;
49f705c5
NHE
7485 case VMCS_FIELD_TYPE_U64:
7486 *ret = *((u64 *)p);
a2ae9df7 7487 return 0;
49f705c5 7488 default:
a2ae9df7
PB
7489 WARN_ON(1);
7490 return -ENOENT;
49f705c5
NHE
7491 }
7492}
7493
20b97fea 7494
a2ae9df7
PB
7495static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7496 unsigned long field, u64 field_value){
20b97fea
AG
7497 short offset = vmcs_field_to_offset(field);
7498 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7499 if (offset < 0)
a2ae9df7 7500 return offset;
20b97fea
AG
7501
7502 switch (vmcs_field_type(field)) {
7503 case VMCS_FIELD_TYPE_U16:
7504 *(u16 *)p = field_value;
a2ae9df7 7505 return 0;
20b97fea
AG
7506 case VMCS_FIELD_TYPE_U32:
7507 *(u32 *)p = field_value;
a2ae9df7 7508 return 0;
20b97fea
AG
7509 case VMCS_FIELD_TYPE_U64:
7510 *(u64 *)p = field_value;
a2ae9df7 7511 return 0;
20b97fea
AG
7512 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7513 *(natural_width *)p = field_value;
a2ae9df7 7514 return 0;
20b97fea 7515 default:
a2ae9df7
PB
7516 WARN_ON(1);
7517 return -ENOENT;
20b97fea
AG
7518 }
7519
7520}
7521
16f5b903
AG
7522static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7523{
7524 int i;
7525 unsigned long field;
7526 u64 field_value;
355f4fb1 7527 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c2bae893
MK
7528 const unsigned long *fields = shadow_read_write_fields;
7529 const int num_fields = max_shadow_read_write_fields;
16f5b903 7530
282da870
JK
7531 preempt_disable();
7532
16f5b903
AG
7533 vmcs_load(shadow_vmcs);
7534
7535 for (i = 0; i < num_fields; i++) {
7536 field = fields[i];
7537 switch (vmcs_field_type(field)) {
7538 case VMCS_FIELD_TYPE_U16:
7539 field_value = vmcs_read16(field);
7540 break;
7541 case VMCS_FIELD_TYPE_U32:
7542 field_value = vmcs_read32(field);
7543 break;
7544 case VMCS_FIELD_TYPE_U64:
7545 field_value = vmcs_read64(field);
7546 break;
7547 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7548 field_value = vmcs_readl(field);
7549 break;
a2ae9df7
PB
7550 default:
7551 WARN_ON(1);
7552 continue;
16f5b903
AG
7553 }
7554 vmcs12_write_any(&vmx->vcpu, field, field_value);
7555 }
7556
7557 vmcs_clear(shadow_vmcs);
7558 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7559
7560 preempt_enable();
16f5b903
AG
7561}
7562
c3114420
AG
7563static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7564{
c2bae893
MK
7565 const unsigned long *fields[] = {
7566 shadow_read_write_fields,
7567 shadow_read_only_fields
c3114420 7568 };
c2bae893 7569 const int max_fields[] = {
c3114420
AG
7570 max_shadow_read_write_fields,
7571 max_shadow_read_only_fields
7572 };
7573 int i, q;
7574 unsigned long field;
7575 u64 field_value = 0;
355f4fb1 7576 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7577
7578 vmcs_load(shadow_vmcs);
7579
c2bae893 7580 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7581 for (i = 0; i < max_fields[q]; i++) {
7582 field = fields[q][i];
7583 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7584
7585 switch (vmcs_field_type(field)) {
7586 case VMCS_FIELD_TYPE_U16:
7587 vmcs_write16(field, (u16)field_value);
7588 break;
7589 case VMCS_FIELD_TYPE_U32:
7590 vmcs_write32(field, (u32)field_value);
7591 break;
7592 case VMCS_FIELD_TYPE_U64:
7593 vmcs_write64(field, (u64)field_value);
7594 break;
7595 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7596 vmcs_writel(field, (long)field_value);
7597 break;
a2ae9df7
PB
7598 default:
7599 WARN_ON(1);
7600 break;
c3114420
AG
7601 }
7602 }
7603 }
7604
7605 vmcs_clear(shadow_vmcs);
7606 vmcs_load(vmx->loaded_vmcs->vmcs);
7607}
7608
49f705c5
NHE
7609/*
7610 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7611 * used before) all generate the same failure when it is missing.
7612 */
7613static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7614{
7615 struct vcpu_vmx *vmx = to_vmx(vcpu);
7616 if (vmx->nested.current_vmptr == -1ull) {
7617 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7618 return 0;
7619 }
7620 return 1;
7621}
7622
7623static int handle_vmread(struct kvm_vcpu *vcpu)
7624{
7625 unsigned long field;
7626 u64 field_value;
7627 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7628 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7629 gva_t gva = 0;
7630
eb277562 7631 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7632 return 1;
7633
6affcbed
KH
7634 if (!nested_vmx_check_vmcs12(vcpu))
7635 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7636
7637 /* Decode instruction info and find the field to read */
27e6fb5d 7638 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7639 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7640 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 7641 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7642 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7643 }
7644 /*
7645 * Now copy part of this value to register or memory, as requested.
7646 * Note that the number of bits actually copied is 32 or 64 depending
7647 * on the guest's mode (32 or 64 bit), not on the given field's length.
7648 */
7649 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7650 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7651 field_value);
7652 } else {
7653 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7654 vmx_instruction_info, true, &gva))
49f705c5 7655 return 1;
70f3aac9 7656 /* _system ok, as hardware has verified cpl=0 */
49f705c5
NHE
7657 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7658 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7659 }
7660
7661 nested_vmx_succeed(vcpu);
6affcbed 7662 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7663}
7664
7665
7666static int handle_vmwrite(struct kvm_vcpu *vcpu)
7667{
7668 unsigned long field;
7669 gva_t gva;
7670 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7671 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7672 /* The value to write might be 32 or 64 bits, depending on L1's long
7673 * mode, and eventually we need to write that into a field of several
7674 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7675 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7676 * bits into the vmcs12 field.
7677 */
7678 u64 field_value = 0;
7679 struct x86_exception e;
7680
eb277562 7681 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7682 return 1;
7683
6affcbed
KH
7684 if (!nested_vmx_check_vmcs12(vcpu))
7685 return kvm_skip_emulated_instruction(vcpu);
eb277562 7686
49f705c5 7687 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7688 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7689 (((vmx_instruction_info) >> 3) & 0xf));
7690 else {
7691 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7692 vmx_instruction_info, false, &gva))
49f705c5
NHE
7693 return 1;
7694 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7695 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7696 kvm_inject_page_fault(vcpu, &e);
7697 return 1;
7698 }
7699 }
7700
7701
27e6fb5d 7702 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7703 if (vmcs_field_readonly(field)) {
7704 nested_vmx_failValid(vcpu,
7705 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 7706 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7707 }
7708
a2ae9df7 7709 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 7710 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7711 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7712 }
7713
7714 nested_vmx_succeed(vcpu);
6affcbed 7715 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7716}
7717
a8bc284e
JM
7718static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7719{
7720 vmx->nested.current_vmptr = vmptr;
7721 if (enable_shadow_vmcs) {
7722 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7723 SECONDARY_EXEC_SHADOW_VMCS);
7724 vmcs_write64(VMCS_LINK_POINTER,
7725 __pa(vmx->vmcs01.shadow_vmcs));
7726 vmx->nested.sync_shadow_vmcs = true;
7727 }
7728}
7729
63846663
NHE
7730/* Emulate the VMPTRLD instruction */
7731static int handle_vmptrld(struct kvm_vcpu *vcpu)
7732{
7733 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7734 gpa_t vmptr;
63846663
NHE
7735
7736 if (!nested_vmx_check_permission(vcpu))
7737 return 1;
7738
cbf71279 7739 if (nested_vmx_get_vmptr(vcpu, &vmptr))
63846663 7740 return 1;
63846663 7741
cbf71279
RK
7742 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7743 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7744 return kvm_skip_emulated_instruction(vcpu);
7745 }
7746
7747 if (vmptr == vmx->nested.vmxon_ptr) {
7748 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7749 return kvm_skip_emulated_instruction(vcpu);
7750 }
7751
63846663
NHE
7752 if (vmx->nested.current_vmptr != vmptr) {
7753 struct vmcs12 *new_vmcs12;
7754 struct page *page;
5e2f30b7
DH
7755 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7756 if (is_error_page(page)) {
63846663 7757 nested_vmx_failInvalid(vcpu);
6affcbed 7758 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7759 }
7760 new_vmcs12 = kmap(page);
7761 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7762 kunmap(page);
53a70daf 7763 kvm_release_page_clean(page);
63846663
NHE
7764 nested_vmx_failValid(vcpu,
7765 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 7766 return kvm_skip_emulated_instruction(vcpu);
63846663 7767 }
63846663 7768
9a2a05b9 7769 nested_release_vmcs12(vmx);
4f2777bc
DM
7770 /*
7771 * Load VMCS12 from guest memory since it is not already
7772 * cached.
7773 */
9f744c59
PB
7774 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7775 kunmap(page);
53a70daf 7776 kvm_release_page_clean(page);
9f744c59 7777
a8bc284e 7778 set_current_vmptr(vmx, vmptr);
63846663
NHE
7779 }
7780
7781 nested_vmx_succeed(vcpu);
6affcbed 7782 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7783}
7784
6a4d7550
NHE
7785/* Emulate the VMPTRST instruction */
7786static int handle_vmptrst(struct kvm_vcpu *vcpu)
7787{
7788 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7789 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7790 gva_t vmcs_gva;
7791 struct x86_exception e;
7792
7793 if (!nested_vmx_check_permission(vcpu))
7794 return 1;
7795
7796 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7797 vmx_instruction_info, true, &vmcs_gva))
6a4d7550 7798 return 1;
70f3aac9 7799 /* ok to use *_system, as hardware has verified cpl=0 */
6a4d7550
NHE
7800 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7801 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7802 sizeof(u64), &e)) {
7803 kvm_inject_page_fault(vcpu, &e);
7804 return 1;
7805 }
7806 nested_vmx_succeed(vcpu);
6affcbed 7807 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
7808}
7809
bfd0a56b
NHE
7810/* Emulate the INVEPT instruction */
7811static int handle_invept(struct kvm_vcpu *vcpu)
7812{
b9c237bb 7813 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7814 u32 vmx_instruction_info, types;
7815 unsigned long type;
7816 gva_t gva;
7817 struct x86_exception e;
7818 struct {
7819 u64 eptp, gpa;
7820 } operand;
bfd0a56b 7821
b9c237bb
WV
7822 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7823 SECONDARY_EXEC_ENABLE_EPT) ||
7824 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7825 kvm_queue_exception(vcpu, UD_VECTOR);
7826 return 1;
7827 }
7828
7829 if (!nested_vmx_check_permission(vcpu))
7830 return 1;
7831
bfd0a56b 7832 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7833 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7834
b9c237bb 7835 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 7836
85c856b3 7837 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
7838 nested_vmx_failValid(vcpu,
7839 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7840 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7841 }
7842
7843 /* According to the Intel VMX instruction reference, the memory
7844 * operand is read even if it isn't needed (e.g., for type==global)
7845 */
7846 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7847 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7848 return 1;
7849 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7850 sizeof(operand), &e)) {
7851 kvm_inject_page_fault(vcpu, &e);
7852 return 1;
7853 }
7854
7855 switch (type) {
bfd0a56b 7856 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7857 /*
7858 * TODO: track mappings and invalidate
7859 * single context requests appropriately
7860 */
7861 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7862 kvm_mmu_sync_roots(vcpu);
77c3913b 7863 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7864 nested_vmx_succeed(vcpu);
7865 break;
7866 default:
7867 BUG_ON(1);
7868 break;
7869 }
7870
6affcbed 7871 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7872}
7873
a642fc30
PM
7874static int handle_invvpid(struct kvm_vcpu *vcpu)
7875{
99b83ac8
WL
7876 struct vcpu_vmx *vmx = to_vmx(vcpu);
7877 u32 vmx_instruction_info;
7878 unsigned long type, types;
7879 gva_t gva;
7880 struct x86_exception e;
40352605
JM
7881 struct {
7882 u64 vpid;
7883 u64 gla;
7884 } operand;
99b83ac8
WL
7885
7886 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7887 SECONDARY_EXEC_ENABLE_VPID) ||
7888 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7889 kvm_queue_exception(vcpu, UD_VECTOR);
7890 return 1;
7891 }
7892
7893 if (!nested_vmx_check_permission(vcpu))
7894 return 1;
7895
7896 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7897 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7898
bcdde302
JD
7899 types = (vmx->nested.nested_vmx_vpid_caps &
7900 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 7901
85c856b3 7902 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
7903 nested_vmx_failValid(vcpu,
7904 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7905 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7906 }
7907
7908 /* according to the intel vmx instruction reference, the memory
7909 * operand is read even if it isn't needed (e.g., for type==global)
7910 */
7911 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7912 vmx_instruction_info, false, &gva))
7913 return 1;
40352605
JM
7914 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7915 sizeof(operand), &e)) {
99b83ac8
WL
7916 kvm_inject_page_fault(vcpu, &e);
7917 return 1;
7918 }
40352605
JM
7919 if (operand.vpid >> 16) {
7920 nested_vmx_failValid(vcpu,
7921 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7922 return kvm_skip_emulated_instruction(vcpu);
7923 }
99b83ac8
WL
7924
7925 switch (type) {
bcdde302 7926 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
fd8cb433 7927 if (is_noncanonical_address(operand.gla, vcpu)) {
40352605
JM
7928 nested_vmx_failValid(vcpu,
7929 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7930 return kvm_skip_emulated_instruction(vcpu);
7931 }
7932 /* fall through */
ef697a71 7933 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302 7934 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
40352605 7935 if (!operand.vpid) {
bcdde302
JD
7936 nested_vmx_failValid(vcpu,
7937 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7938 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
7939 }
7940 break;
99b83ac8 7941 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
7942 break;
7943 default:
bcdde302 7944 WARN_ON_ONCE(1);
6affcbed 7945 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7946 }
7947
bcdde302
JD
7948 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7949 nested_vmx_succeed(vcpu);
7950
6affcbed 7951 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
7952}
7953
843e4330
KH
7954static int handle_pml_full(struct kvm_vcpu *vcpu)
7955{
7956 unsigned long exit_qualification;
7957
7958 trace_kvm_pml_full(vcpu->vcpu_id);
7959
7960 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7961
7962 /*
7963 * PML buffer FULL happened while executing iret from NMI,
7964 * "blocked by NMI" bit has to be set before next VM entry.
7965 */
7966 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
843e4330
KH
7967 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7968 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7969 GUEST_INTR_STATE_NMI);
7970
7971 /*
7972 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7973 * here.., and there's no userspace involvement needed for PML.
7974 */
7975 return 1;
7976}
7977
64672c95
YJ
7978static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7979{
7980 kvm_lapic_expired_hv_timer(vcpu);
7981 return 1;
7982}
7983
41ab9372
BD
7984static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
7985{
7986 struct vcpu_vmx *vmx = to_vmx(vcpu);
41ab9372
BD
7987 int maxphyaddr = cpuid_maxphyaddr(vcpu);
7988
7989 /* Check for memory type validity */
bb97a016
DH
7990 switch (address & VMX_EPTP_MT_MASK) {
7991 case VMX_EPTP_MT_UC:
41ab9372
BD
7992 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
7993 return false;
7994 break;
bb97a016 7995 case VMX_EPTP_MT_WB:
41ab9372
BD
7996 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
7997 return false;
7998 break;
7999 default:
8000 return false;
8001 }
8002
bb97a016
DH
8003 /* only 4 levels page-walk length are valid */
8004 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
41ab9372
BD
8005 return false;
8006
8007 /* Reserved bits should not be set */
8008 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8009 return false;
8010
8011 /* AD, if set, should be supported */
bb97a016 8012 if (address & VMX_EPTP_AD_ENABLE_BIT) {
41ab9372
BD
8013 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8014 return false;
8015 }
8016
8017 return true;
8018}
8019
8020static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8021 struct vmcs12 *vmcs12)
8022{
8023 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8024 u64 address;
8025 bool accessed_dirty;
8026 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8027
8028 if (!nested_cpu_has_eptp_switching(vmcs12) ||
8029 !nested_cpu_has_ept(vmcs12))
8030 return 1;
8031
8032 if (index >= VMFUNC_EPTP_ENTRIES)
8033 return 1;
8034
8035
8036 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8037 &address, index * 8, 8))
8038 return 1;
8039
bb97a016 8040 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
41ab9372
BD
8041
8042 /*
8043 * If the (L2) guest does a vmfunc to the currently
8044 * active ept pointer, we don't have to do anything else
8045 */
8046 if (vmcs12->ept_pointer != address) {
8047 if (!valid_ept_address(vcpu, address))
8048 return 1;
8049
8050 kvm_mmu_unload(vcpu);
8051 mmu->ept_ad = accessed_dirty;
8052 mmu->base_role.ad_disabled = !accessed_dirty;
8053 vmcs12->ept_pointer = address;
8054 /*
8055 * TODO: Check what's the correct approach in case
8056 * mmu reload fails. Currently, we just let the next
8057 * reload potentially fail
8058 */
8059 kvm_mmu_reload(vcpu);
8060 }
8061
8062 return 0;
8063}
8064
2a499e49
BD
8065static int handle_vmfunc(struct kvm_vcpu *vcpu)
8066{
27c42a1b
BD
8067 struct vcpu_vmx *vmx = to_vmx(vcpu);
8068 struct vmcs12 *vmcs12;
8069 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8070
8071 /*
8072 * VMFUNC is only supported for nested guests, but we always enable the
8073 * secondary control for simplicity; for non-nested mode, fake that we
8074 * didn't by injecting #UD.
8075 */
8076 if (!is_guest_mode(vcpu)) {
8077 kvm_queue_exception(vcpu, UD_VECTOR);
8078 return 1;
8079 }
8080
8081 vmcs12 = get_vmcs12(vcpu);
8082 if ((vmcs12->vm_function_control & (1 << function)) == 0)
8083 goto fail;
41ab9372
BD
8084
8085 switch (function) {
8086 case 0:
8087 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8088 goto fail;
8089 break;
8090 default:
8091 goto fail;
8092 }
8093 return kvm_skip_emulated_instruction(vcpu);
27c42a1b
BD
8094
8095fail:
8096 nested_vmx_vmexit(vcpu, vmx->exit_reason,
8097 vmcs_read32(VM_EXIT_INTR_INFO),
8098 vmcs_readl(EXIT_QUALIFICATION));
2a499e49
BD
8099 return 1;
8100}
8101
6aa8b732
AK
8102/*
8103 * The exit handlers return 1 if the exit was handled fully and guest execution
8104 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8105 * to be done to userspace and return 0.
8106 */
772e0318 8107static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
8108 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8109 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 8110 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 8111 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 8112 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
8113 [EXIT_REASON_CR_ACCESS] = handle_cr,
8114 [EXIT_REASON_DR_ACCESS] = handle_dr,
8115 [EXIT_REASON_CPUID] = handle_cpuid,
8116 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8117 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8118 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8119 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 8120 [EXIT_REASON_INVD] = handle_invd,
a7052897 8121 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 8122 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 8123 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 8124 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 8125 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 8126 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 8127 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 8128 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 8129 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 8130 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
8131 [EXIT_REASON_VMOFF] = handle_vmoff,
8132 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
8133 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8134 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 8135 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 8136 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 8137 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 8138 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 8139 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 8140 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
8141 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8142 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 8143 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 8144 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 8145 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 8146 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 8147 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 8148 [EXIT_REASON_INVVPID] = handle_invvpid,
45ec368c 8149 [EXIT_REASON_RDRAND] = handle_invalid_op,
75f4fc8d 8150 [EXIT_REASON_RDSEED] = handle_invalid_op,
f53cd63c
WL
8151 [EXIT_REASON_XSAVES] = handle_xsaves,
8152 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 8153 [EXIT_REASON_PML_FULL] = handle_pml_full,
2a499e49 8154 [EXIT_REASON_VMFUNC] = handle_vmfunc,
64672c95 8155 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
8156};
8157
8158static const int kvm_vmx_max_exit_handlers =
50a3485c 8159 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 8160
908a7bdd
JK
8161static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8162 struct vmcs12 *vmcs12)
8163{
8164 unsigned long exit_qualification;
8165 gpa_t bitmap, last_bitmap;
8166 unsigned int port;
8167 int size;
8168 u8 b;
8169
908a7bdd 8170 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 8171 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
8172
8173 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8174
8175 port = exit_qualification >> 16;
8176 size = (exit_qualification & 7) + 1;
8177
8178 last_bitmap = (gpa_t)-1;
8179 b = -1;
8180
8181 while (size > 0) {
8182 if (port < 0x8000)
8183 bitmap = vmcs12->io_bitmap_a;
8184 else if (port < 0x10000)
8185 bitmap = vmcs12->io_bitmap_b;
8186 else
1d804d07 8187 return true;
908a7bdd
JK
8188 bitmap += (port & 0x7fff) / 8;
8189
8190 if (last_bitmap != bitmap)
54bf36aa 8191 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 8192 return true;
908a7bdd 8193 if (b & (1 << (port & 7)))
1d804d07 8194 return true;
908a7bdd
JK
8195
8196 port++;
8197 size--;
8198 last_bitmap = bitmap;
8199 }
8200
1d804d07 8201 return false;
908a7bdd
JK
8202}
8203
644d711a
NHE
8204/*
8205 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8206 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8207 * disinterest in the current event (read or write a specific MSR) by using an
8208 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8209 */
8210static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8211 struct vmcs12 *vmcs12, u32 exit_reason)
8212{
8213 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8214 gpa_t bitmap;
8215
cbd29cb6 8216 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 8217 return true;
644d711a
NHE
8218
8219 /*
8220 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8221 * for the four combinations of read/write and low/high MSR numbers.
8222 * First we need to figure out which of the four to use:
8223 */
8224 bitmap = vmcs12->msr_bitmap;
8225 if (exit_reason == EXIT_REASON_MSR_WRITE)
8226 bitmap += 2048;
8227 if (msr_index >= 0xc0000000) {
8228 msr_index -= 0xc0000000;
8229 bitmap += 1024;
8230 }
8231
8232 /* Then read the msr_index'th bit from this bitmap: */
8233 if (msr_index < 1024*8) {
8234 unsigned char b;
54bf36aa 8235 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 8236 return true;
644d711a
NHE
8237 return 1 & (b >> (msr_index & 7));
8238 } else
1d804d07 8239 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
8240}
8241
8242/*
8243 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8244 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8245 * intercept (via guest_host_mask etc.) the current event.
8246 */
8247static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8248 struct vmcs12 *vmcs12)
8249{
8250 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8251 int cr = exit_qualification & 15;
e1d39b17
JS
8252 int reg;
8253 unsigned long val;
644d711a
NHE
8254
8255 switch ((exit_qualification >> 4) & 3) {
8256 case 0: /* mov to cr */
e1d39b17
JS
8257 reg = (exit_qualification >> 8) & 15;
8258 val = kvm_register_readl(vcpu, reg);
644d711a
NHE
8259 switch (cr) {
8260 case 0:
8261 if (vmcs12->cr0_guest_host_mask &
8262 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8263 return true;
644d711a
NHE
8264 break;
8265 case 3:
8266 if ((vmcs12->cr3_target_count >= 1 &&
8267 vmcs12->cr3_target_value0 == val) ||
8268 (vmcs12->cr3_target_count >= 2 &&
8269 vmcs12->cr3_target_value1 == val) ||
8270 (vmcs12->cr3_target_count >= 3 &&
8271 vmcs12->cr3_target_value2 == val) ||
8272 (vmcs12->cr3_target_count >= 4 &&
8273 vmcs12->cr3_target_value3 == val))
1d804d07 8274 return false;
644d711a 8275 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 8276 return true;
644d711a
NHE
8277 break;
8278 case 4:
8279 if (vmcs12->cr4_guest_host_mask &
8280 (vmcs12->cr4_read_shadow ^ val))
1d804d07 8281 return true;
644d711a
NHE
8282 break;
8283 case 8:
8284 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 8285 return true;
644d711a
NHE
8286 break;
8287 }
8288 break;
8289 case 2: /* clts */
8290 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8291 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 8292 return true;
644d711a
NHE
8293 break;
8294 case 1: /* mov from cr */
8295 switch (cr) {
8296 case 3:
8297 if (vmcs12->cpu_based_vm_exec_control &
8298 CPU_BASED_CR3_STORE_EXITING)
1d804d07 8299 return true;
644d711a
NHE
8300 break;
8301 case 8:
8302 if (vmcs12->cpu_based_vm_exec_control &
8303 CPU_BASED_CR8_STORE_EXITING)
1d804d07 8304 return true;
644d711a
NHE
8305 break;
8306 }
8307 break;
8308 case 3: /* lmsw */
8309 /*
8310 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8311 * cr0. Other attempted changes are ignored, with no exit.
8312 */
e1d39b17 8313 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
644d711a
NHE
8314 if (vmcs12->cr0_guest_host_mask & 0xe &
8315 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8316 return true;
644d711a
NHE
8317 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8318 !(vmcs12->cr0_read_shadow & 0x1) &&
8319 (val & 0x1))
1d804d07 8320 return true;
644d711a
NHE
8321 break;
8322 }
1d804d07 8323 return false;
644d711a
NHE
8324}
8325
8326/*
8327 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8328 * should handle it ourselves in L0 (and then continue L2). Only call this
8329 * when in is_guest_mode (L2).
8330 */
7313c698 8331static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
644d711a 8332{
644d711a
NHE
8333 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8334 struct vcpu_vmx *vmx = to_vmx(vcpu);
8335 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8336
4f350c6d
JM
8337 if (vmx->nested.nested_run_pending)
8338 return false;
8339
8340 if (unlikely(vmx->fail)) {
8341 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8342 vmcs_read32(VM_INSTRUCTION_ERROR));
8343 return true;
8344 }
542060ea 8345
c9f04407
DM
8346 /*
8347 * The host physical addresses of some pages of guest memory
8348 * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8349 * may write to these pages via their host physical address while
8350 * L2 is running, bypassing any address-translation-based dirty
8351 * tracking (e.g. EPT write protection).
8352 *
8353 * Mark them dirty on every exit from L2 to prevent them from
8354 * getting out of sync with dirty tracking.
8355 */
8356 nested_mark_vmcs12_pages_dirty(vcpu);
8357
4f350c6d
JM
8358 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8359 vmcs_readl(EXIT_QUALIFICATION),
8360 vmx->idt_vectoring_info,
8361 intr_info,
8362 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8363 KVM_ISA_VMX);
644d711a
NHE
8364
8365 switch (exit_reason) {
8366 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8367 if (is_nmi(intr_info))
1d804d07 8368 return false;
644d711a 8369 else if (is_page_fault(intr_info))
52a5c155 8370 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
e504c909 8371 else if (is_no_device(intr_info) &&
ccf9844e 8372 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8373 return false;
6f05485d
JK
8374 else if (is_debug(intr_info) &&
8375 vcpu->guest_debug &
8376 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8377 return false;
8378 else if (is_breakpoint(intr_info) &&
8379 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8380 return false;
644d711a
NHE
8381 return vmcs12->exception_bitmap &
8382 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8383 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8384 return false;
644d711a 8385 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8386 return true;
644d711a 8387 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8388 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8389 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8390 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8391 case EXIT_REASON_TASK_SWITCH:
1d804d07 8392 return true;
644d711a 8393 case EXIT_REASON_CPUID:
1d804d07 8394 return true;
644d711a
NHE
8395 case EXIT_REASON_HLT:
8396 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8397 case EXIT_REASON_INVD:
1d804d07 8398 return true;
644d711a
NHE
8399 case EXIT_REASON_INVLPG:
8400 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8401 case EXIT_REASON_RDPMC:
8402 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
a5f46457
PB
8403 case EXIT_REASON_RDRAND:
8404 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8405 case EXIT_REASON_RDSEED:
8406 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
b3a2a907 8407 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8408 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8409 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8410 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8411 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8412 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8413 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8414 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8415 /*
8416 * VMX instructions trap unconditionally. This allows L1 to
8417 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8418 */
1d804d07 8419 return true;
644d711a
NHE
8420 case EXIT_REASON_CR_ACCESS:
8421 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8422 case EXIT_REASON_DR_ACCESS:
8423 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8424 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8425 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8426 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8427 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8428 case EXIT_REASON_MSR_READ:
8429 case EXIT_REASON_MSR_WRITE:
8430 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8431 case EXIT_REASON_INVALID_STATE:
1d804d07 8432 return true;
644d711a
NHE
8433 case EXIT_REASON_MWAIT_INSTRUCTION:
8434 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8435 case EXIT_REASON_MONITOR_TRAP_FLAG:
8436 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8437 case EXIT_REASON_MONITOR_INSTRUCTION:
8438 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8439 case EXIT_REASON_PAUSE_INSTRUCTION:
8440 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8441 nested_cpu_has2(vmcs12,
8442 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8443 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8444 return false;
644d711a 8445 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8446 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8447 case EXIT_REASON_APIC_ACCESS:
8448 return nested_cpu_has2(vmcs12,
8449 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8450 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8451 case EXIT_REASON_EOI_INDUCED:
8452 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8453 return true;
644d711a 8454 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8455 /*
8456 * L0 always deals with the EPT violation. If nested EPT is
8457 * used, and the nested mmu code discovers that the address is
8458 * missing in the guest EPT table (EPT12), the EPT violation
8459 * will be injected with nested_ept_inject_page_fault()
8460 */
1d804d07 8461 return false;
644d711a 8462 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8463 /*
8464 * L2 never uses directly L1's EPT, but rather L0's own EPT
8465 * table (shadow on EPT) or a merged EPT table that L0 built
8466 * (EPT on EPT). So any problems with the structure of the
8467 * table is L0's fault.
8468 */
1d804d07 8469 return false;
90a2db6d
PB
8470 case EXIT_REASON_INVPCID:
8471 return
8472 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8473 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
644d711a
NHE
8474 case EXIT_REASON_WBINVD:
8475 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8476 case EXIT_REASON_XSETBV:
1d804d07 8477 return true;
81dc01f7
WL
8478 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8479 /*
8480 * This should never happen, since it is not possible to
8481 * set XSS to a non-zero value---neither in L1 nor in L2.
8482 * If if it were, XSS would have to be checked against
8483 * the XSS exit bitmap in vmcs12.
8484 */
8485 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8486 case EXIT_REASON_PREEMPTION_TIMER:
8487 return false;
ab007cc9 8488 case EXIT_REASON_PML_FULL:
03efce6f 8489 /* We emulate PML support to L1. */
ab007cc9 8490 return false;
2a499e49
BD
8491 case EXIT_REASON_VMFUNC:
8492 /* VM functions are emulated through L2->L0 vmexits. */
8493 return false;
644d711a 8494 default:
1d804d07 8495 return true;
644d711a
NHE
8496 }
8497}
8498
7313c698
PB
8499static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8500{
8501 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8502
8503 /*
8504 * At this point, the exit interruption info in exit_intr_info
8505 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8506 * we need to query the in-kernel LAPIC.
8507 */
8508 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8509 if ((exit_intr_info &
8510 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8511 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8512 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8513 vmcs12->vm_exit_intr_error_code =
8514 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8515 }
8516
8517 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8518 vmcs_readl(EXIT_QUALIFICATION));
8519 return 1;
8520}
8521
586f9607
AK
8522static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8523{
8524 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8525 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8526}
8527
a3eaa864 8528static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8529{
a3eaa864
KH
8530 if (vmx->pml_pg) {
8531 __free_page(vmx->pml_pg);
8532 vmx->pml_pg = NULL;
8533 }
843e4330
KH
8534}
8535
54bf36aa 8536static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8537{
54bf36aa 8538 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8539 u64 *pml_buf;
8540 u16 pml_idx;
8541
8542 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8543
8544 /* Do nothing if PML buffer is empty */
8545 if (pml_idx == (PML_ENTITY_NUM - 1))
8546 return;
8547
8548 /* PML index always points to next available PML buffer entity */
8549 if (pml_idx >= PML_ENTITY_NUM)
8550 pml_idx = 0;
8551 else
8552 pml_idx++;
8553
8554 pml_buf = page_address(vmx->pml_pg);
8555 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8556 u64 gpa;
8557
8558 gpa = pml_buf[pml_idx];
8559 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8560 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8561 }
8562
8563 /* reset PML index */
8564 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8565}
8566
8567/*
8568 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8569 * Called before reporting dirty_bitmap to userspace.
8570 */
8571static void kvm_flush_pml_buffers(struct kvm *kvm)
8572{
8573 int i;
8574 struct kvm_vcpu *vcpu;
8575 /*
8576 * We only need to kick vcpu out of guest mode here, as PML buffer
8577 * is flushed at beginning of all VMEXITs, and it's obvious that only
8578 * vcpus running in guest are possible to have unflushed GPAs in PML
8579 * buffer.
8580 */
8581 kvm_for_each_vcpu(i, vcpu, kvm)
8582 kvm_vcpu_kick(vcpu);
8583}
8584
4eb64dce
PB
8585static void vmx_dump_sel(char *name, uint32_t sel)
8586{
8587 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
96794e4e 8588 name, vmcs_read16(sel),
4eb64dce
PB
8589 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8590 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8591 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8592}
8593
8594static void vmx_dump_dtsel(char *name, uint32_t limit)
8595{
8596 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8597 name, vmcs_read32(limit),
8598 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8599}
8600
8601static void dump_vmcs(void)
8602{
8603 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8604 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8605 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8606 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8607 u32 secondary_exec_control = 0;
8608 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8609 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8610 int i, n;
8611
8612 if (cpu_has_secondary_exec_ctrls())
8613 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8614
8615 pr_err("*** Guest State ***\n");
8616 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8617 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8618 vmcs_readl(CR0_GUEST_HOST_MASK));
8619 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8620 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8621 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8622 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8623 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8624 {
845c5b40
PB
8625 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8626 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8627 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8628 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8629 }
8630 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8631 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8632 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8633 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8634 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8635 vmcs_readl(GUEST_SYSENTER_ESP),
8636 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8637 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8638 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8639 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8640 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8641 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8642 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8643 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8644 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8645 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8646 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8647 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8648 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8649 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8650 efer, vmcs_read64(GUEST_IA32_PAT));
8651 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8652 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8653 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8654 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8655 pr_err("PerfGlobCtl = 0x%016llx\n",
8656 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8657 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8658 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8659 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8660 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8661 vmcs_read32(GUEST_ACTIVITY_STATE));
8662 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8663 pr_err("InterruptStatus = %04x\n",
8664 vmcs_read16(GUEST_INTR_STATUS));
8665
8666 pr_err("*** Host State ***\n");
8667 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8668 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8669 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8670 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8671 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8672 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8673 vmcs_read16(HOST_TR_SELECTOR));
8674 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8675 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8676 vmcs_readl(HOST_TR_BASE));
8677 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8678 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8679 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8680 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8681 vmcs_readl(HOST_CR4));
8682 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8683 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8684 vmcs_read32(HOST_IA32_SYSENTER_CS),
8685 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8686 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8687 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8688 vmcs_read64(HOST_IA32_EFER),
8689 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8690 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8691 pr_err("PerfGlobCtl = 0x%016llx\n",
8692 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8693
8694 pr_err("*** Control State ***\n");
8695 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8696 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8697 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8698 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8699 vmcs_read32(EXCEPTION_BITMAP),
8700 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8701 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8702 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8703 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8704 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8705 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8706 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8707 vmcs_read32(VM_EXIT_INTR_INFO),
8708 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8709 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8710 pr_err(" reason=%08x qualification=%016lx\n",
8711 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8712 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8713 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8714 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8715 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8716 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8717 pr_err("TSC Multiplier = 0x%016llx\n",
8718 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8719 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8720 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8721 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8722 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8723 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8724 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8725 n = vmcs_read32(CR3_TARGET_COUNT);
8726 for (i = 0; i + 1 < n; i += 4)
8727 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8728 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8729 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8730 if (i < n)
8731 pr_err("CR3 target%u=%016lx\n",
8732 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8733 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8734 pr_err("PLE Gap=%08x Window=%08x\n",
8735 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8736 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8737 pr_err("Virtual processor ID = 0x%04x\n",
8738 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8739}
8740
6aa8b732
AK
8741/*
8742 * The guest has exited. See if we can fix it or if we need userspace
8743 * assistance.
8744 */
851ba692 8745static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8746{
29bd8a78 8747 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8748 u32 exit_reason = vmx->exit_reason;
1155f76a 8749 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8750
8b89fe1f
PB
8751 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8752
843e4330
KH
8753 /*
8754 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8755 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8756 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8757 * mode as if vcpus is in root mode, the PML buffer must has been
8758 * flushed already.
8759 */
8760 if (enable_pml)
54bf36aa 8761 vmx_flush_pml_buffer(vcpu);
843e4330 8762
80ced186 8763 /* If guest state is invalid, start emulating */
14168786 8764 if (vmx->emulation_required)
80ced186 8765 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8766
7313c698
PB
8767 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8768 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
644d711a 8769
5120702e 8770 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8771 dump_vmcs();
5120702e
MG
8772 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8773 vcpu->run->fail_entry.hardware_entry_failure_reason
8774 = exit_reason;
8775 return 0;
8776 }
8777
29bd8a78 8778 if (unlikely(vmx->fail)) {
851ba692
AK
8779 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8780 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8781 = vmcs_read32(VM_INSTRUCTION_ERROR);
8782 return 0;
8783 }
6aa8b732 8784
b9bf6882
XG
8785 /*
8786 * Note:
8787 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8788 * delivery event since it indicates guest is accessing MMIO.
8789 * The vm-exit can be triggered again after return to guest that
8790 * will cause infinite loop.
8791 */
d77c26fc 8792 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8793 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8794 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8795 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8796 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8797 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8798 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
70bcd708 8799 vcpu->run->internal.ndata = 3;
b9bf6882
XG
8800 vcpu->run->internal.data[0] = vectoring_info;
8801 vcpu->run->internal.data[1] = exit_reason;
70bcd708
PB
8802 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8803 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8804 vcpu->run->internal.ndata++;
8805 vcpu->run->internal.data[3] =
8806 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8807 }
b9bf6882
XG
8808 return 0;
8809 }
3b86cd99 8810
6aa8b732
AK
8811 if (exit_reason < kvm_vmx_max_exit_handlers
8812 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8813 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8814 else {
6c6c5e03
RK
8815 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8816 exit_reason);
2bc19dc3
MT
8817 kvm_queue_exception(vcpu, UD_VECTOR);
8818 return 1;
6aa8b732 8819 }
6aa8b732
AK
8820}
8821
95ba8273 8822static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8823{
a7c0b07d
WL
8824 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8825
8826 if (is_guest_mode(vcpu) &&
8827 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8828 return;
8829
95ba8273 8830 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8831 vmcs_write32(TPR_THRESHOLD, 0);
8832 return;
8833 }
8834
95ba8273 8835 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8836}
8837
8d14695f
YZ
8838static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8839{
8840 u32 sec_exec_control;
8841
dccbfcf5
RK
8842 /* Postpone execution until vmcs01 is the current VMCS. */
8843 if (is_guest_mode(vcpu)) {
8844 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8845 return;
8846 }
8847
f6e90f9e 8848 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8849 return;
8850
35754c98 8851 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8852 return;
8853
8854 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8855
8856 if (set) {
8857 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8858 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8859 } else {
8860 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8861 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
fb6c8198 8862 vmx_flush_tlb_ept_only(vcpu);
8d14695f
YZ
8863 }
8864 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8865
8866 vmx_set_msr_bitmap(vcpu);
8867}
8868
38b99173
TC
8869static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8870{
8871 struct vcpu_vmx *vmx = to_vmx(vcpu);
8872
8873 /*
8874 * Currently we do not handle the nested case where L2 has an
8875 * APIC access page of its own; that page is still pinned.
8876 * Hence, we skip the case where the VCPU is in guest mode _and_
8877 * L1 prepared an APIC access page for L2.
8878 *
8879 * For the case where L1 and L2 share the same APIC access page
8880 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8881 * in the vmcs12), this function will only update either the vmcs01
8882 * or the vmcs02. If the former, the vmcs02 will be updated by
8883 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8884 * the next L2->L1 exit.
8885 */
8886 if (!is_guest_mode(vcpu) ||
4f2777bc 8887 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
fb6c8198 8888 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
38b99173 8889 vmcs_write64(APIC_ACCESS_ADDR, hpa);
fb6c8198
JM
8890 vmx_flush_tlb_ept_only(vcpu);
8891 }
38b99173
TC
8892}
8893
67c9dddc 8894static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8895{
8896 u16 status;
8897 u8 old;
8898
67c9dddc
PB
8899 if (max_isr == -1)
8900 max_isr = 0;
c7c9c56c
YZ
8901
8902 status = vmcs_read16(GUEST_INTR_STATUS);
8903 old = status >> 8;
67c9dddc 8904 if (max_isr != old) {
c7c9c56c 8905 status &= 0xff;
67c9dddc 8906 status |= max_isr << 8;
c7c9c56c
YZ
8907 vmcs_write16(GUEST_INTR_STATUS, status);
8908 }
8909}
8910
8911static void vmx_set_rvi(int vector)
8912{
8913 u16 status;
8914 u8 old;
8915
4114c27d
WW
8916 if (vector == -1)
8917 vector = 0;
8918
c7c9c56c
YZ
8919 status = vmcs_read16(GUEST_INTR_STATUS);
8920 old = (u8)status & 0xff;
8921 if ((u8)vector != old) {
8922 status &= ~0xff;
8923 status |= (u8)vector;
8924 vmcs_write16(GUEST_INTR_STATUS, status);
8925 }
8926}
8927
8928static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8929{
4114c27d
WW
8930 if (!is_guest_mode(vcpu)) {
8931 vmx_set_rvi(max_irr);
8932 return;
8933 }
8934
c7c9c56c
YZ
8935 if (max_irr == -1)
8936 return;
8937
963fee16 8938 /*
4114c27d
WW
8939 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8940 * handles it.
963fee16 8941 */
4114c27d 8942 if (nested_exit_on_intr(vcpu))
963fee16
WL
8943 return;
8944
963fee16 8945 /*
4114c27d 8946 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8947 * is run without virtual interrupt delivery.
8948 */
8949 if (!kvm_event_needs_reinjection(vcpu) &&
8950 vmx_interrupt_allowed(vcpu)) {
8951 kvm_queue_interrupt(vcpu, max_irr, false);
8952 vmx_inject_irq(vcpu);
8953 }
c7c9c56c
YZ
8954}
8955
76dfafd5 8956static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
8957{
8958 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 8959 int max_irr;
810e6def 8960
76dfafd5
PB
8961 WARN_ON(!vcpu->arch.apicv_active);
8962 if (pi_test_on(&vmx->pi_desc)) {
8963 pi_clear_on(&vmx->pi_desc);
8964 /*
8965 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8966 * But on x86 this is just a compiler barrier anyway.
8967 */
8968 smp_mb__after_atomic();
8969 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8970 } else {
8971 max_irr = kvm_lapic_find_highest_irr(vcpu);
8972 }
8973 vmx_hwapic_irr_update(vcpu, max_irr);
8974 return max_irr;
810e6def
PB
8975}
8976
6308630b 8977static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8978{
d62caabb 8979 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8980 return;
8981
c7c9c56c
YZ
8982 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8983 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8984 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8985 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8986}
8987
967235d3
PB
8988static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8989{
8990 struct vcpu_vmx *vmx = to_vmx(vcpu);
8991
8992 pi_clear_on(&vmx->pi_desc);
8993 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8994}
8995
51aa01d1 8996static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8997{
48ae0fb4
JM
8998 u32 exit_intr_info = 0;
8999 u16 basic_exit_reason = (u16)vmx->exit_reason;
00eba012 9000
48ae0fb4
JM
9001 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9002 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
00eba012
AK
9003 return;
9004
48ae0fb4
JM
9005 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9006 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9007 vmx->exit_intr_info = exit_intr_info;
a0861c02 9008
1261bfa3
WL
9009 /* if exit due to PF check for async PF */
9010 if (is_page_fault(exit_intr_info))
9011 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9012
a0861c02 9013 /* Handle machine checks before interrupts are enabled */
48ae0fb4
JM
9014 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9015 is_machine_check(exit_intr_info))
a0861c02
AK
9016 kvm_machine_check();
9017
20f65983 9018 /* We need to handle NMIs before interrupts are enabled */
ef85b673 9019 if (is_nmi(exit_intr_info)) {
ff9d07a0 9020 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 9021 asm("int $2");
ff9d07a0
ZY
9022 kvm_after_handle_nmi(&vmx->vcpu);
9023 }
51aa01d1 9024}
20f65983 9025
a547c6db
YZ
9026static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9027{
9028 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9029
a547c6db
YZ
9030 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9031 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9032 unsigned int vector;
9033 unsigned long entry;
9034 gate_desc *desc;
9035 struct vcpu_vmx *vmx = to_vmx(vcpu);
9036#ifdef CONFIG_X86_64
9037 unsigned long tmp;
9038#endif
9039
9040 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9041 desc = (gate_desc *)vmx->host_idt_base + vector;
64b163fa 9042 entry = gate_offset(desc);
a547c6db
YZ
9043 asm volatile(
9044#ifdef CONFIG_X86_64
9045 "mov %%" _ASM_SP ", %[sp]\n\t"
9046 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9047 "push $%c[ss]\n\t"
9048 "push %[sp]\n\t"
9049#endif
9050 "pushf\n\t"
a547c6db
YZ
9051 __ASM_SIZE(push) " $%c[cs]\n\t"
9052 "call *%[entry]\n\t"
9053 :
9054#ifdef CONFIG_X86_64
3f62de5f 9055 [sp]"=&r"(tmp),
a547c6db 9056#endif
f5caf621 9057 ASM_CALL_CONSTRAINT
a547c6db
YZ
9058 :
9059 [entry]"r"(entry),
9060 [ss]"i"(__KERNEL_DS),
9061 [cs]"i"(__KERNEL_CS)
9062 );
f2485b3e 9063 }
a547c6db 9064}
c207aee4 9065STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
a547c6db 9066
6d396b55
PB
9067static bool vmx_has_high_real_mode_segbase(void)
9068{
9069 return enable_unrestricted_guest || emulate_invalid_guest_state;
9070}
9071
da8999d3
LJ
9072static bool vmx_mpx_supported(void)
9073{
9074 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9075 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9076}
9077
55412b2e
WL
9078static bool vmx_xsaves_supported(void)
9079{
9080 return vmcs_config.cpu_based_2nd_exec_ctrl &
9081 SECONDARY_EXEC_XSAVES;
9082}
9083
51aa01d1
AK
9084static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9085{
c5ca8e57 9086 u32 exit_intr_info;
51aa01d1
AK
9087 bool unblock_nmi;
9088 u8 vector;
9089 bool idtv_info_valid;
9090
9091 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 9092
4c4a6f79 9093 if (vmx->loaded_vmcs->nmi_known_unmasked)
2c82878b
PB
9094 return;
9095 /*
9096 * Can't use vmx->exit_intr_info since we're not sure what
9097 * the exit reason is.
9098 */
9099 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9100 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9101 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9102 /*
9103 * SDM 3: 27.7.1.2 (September 2008)
9104 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9105 * a guest IRET fault.
9106 * SDM 3: 23.2.2 (September 2008)
9107 * Bit 12 is undefined in any of the following cases:
9108 * If the VM exit sets the valid bit in the IDT-vectoring
9109 * information field.
9110 * If the VM exit is due to a double fault.
9111 */
9112 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9113 vector != DF_VECTOR && !idtv_info_valid)
9114 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9115 GUEST_INTR_STATE_NMI);
9116 else
4c4a6f79 9117 vmx->loaded_vmcs->nmi_known_unmasked =
2c82878b
PB
9118 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9119 & GUEST_INTR_STATE_NMI);
51aa01d1
AK
9120}
9121
3ab66e8a 9122static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
9123 u32 idt_vectoring_info,
9124 int instr_len_field,
9125 int error_code_field)
51aa01d1 9126{
51aa01d1
AK
9127 u8 vector;
9128 int type;
9129 bool idtv_info_valid;
9130
9131 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 9132
3ab66e8a
JK
9133 vcpu->arch.nmi_injected = false;
9134 kvm_clear_exception_queue(vcpu);
9135 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
9136
9137 if (!idtv_info_valid)
9138 return;
9139
3ab66e8a 9140 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 9141
668f612f
AK
9142 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9143 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 9144
64a7ec06 9145 switch (type) {
37b96e98 9146 case INTR_TYPE_NMI_INTR:
3ab66e8a 9147 vcpu->arch.nmi_injected = true;
668f612f 9148 /*
7b4a25cb 9149 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
9150 * Clear bit "block by NMI" before VM entry if a NMI
9151 * delivery faulted.
668f612f 9152 */
3ab66e8a 9153 vmx_set_nmi_mask(vcpu, false);
37b96e98 9154 break;
37b96e98 9155 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 9156 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
9157 /* fall through */
9158 case INTR_TYPE_HARD_EXCEPTION:
35920a35 9159 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 9160 u32 err = vmcs_read32(error_code_field);
851eb667 9161 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 9162 } else
851eb667 9163 kvm_requeue_exception(vcpu, vector);
37b96e98 9164 break;
66fd3f7f 9165 case INTR_TYPE_SOFT_INTR:
3ab66e8a 9166 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 9167 /* fall through */
37b96e98 9168 case INTR_TYPE_EXT_INTR:
3ab66e8a 9169 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
9170 break;
9171 default:
9172 break;
f7d9238f 9173 }
cf393f75
AK
9174}
9175
83422e17
AK
9176static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9177{
3ab66e8a 9178 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
9179 VM_EXIT_INSTRUCTION_LEN,
9180 IDT_VECTORING_ERROR_CODE);
9181}
9182
b463a6f7
AK
9183static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9184{
3ab66e8a 9185 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
9186 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9187 VM_ENTRY_INSTRUCTION_LEN,
9188 VM_ENTRY_EXCEPTION_ERROR_CODE);
9189
9190 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9191}
9192
d7cd9796
GN
9193static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9194{
9195 int i, nr_msrs;
9196 struct perf_guest_switch_msr *msrs;
9197
9198 msrs = perf_guest_get_msrs(&nr_msrs);
9199
9200 if (!msrs)
9201 return;
9202
9203 for (i = 0; i < nr_msrs; i++)
9204 if (msrs[i].host == msrs[i].guest)
9205 clear_atomic_switch_msr(vmx, msrs[i].msr);
9206 else
9207 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9208 msrs[i].host);
9209}
9210
33365e7a 9211static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
9212{
9213 struct vcpu_vmx *vmx = to_vmx(vcpu);
9214 u64 tscl;
9215 u32 delta_tsc;
9216
9217 if (vmx->hv_deadline_tsc == -1)
9218 return;
9219
9220 tscl = rdtsc();
9221 if (vmx->hv_deadline_tsc > tscl)
9222 /* sure to be 32 bit only because checked on set_hv_timer */
9223 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9224 cpu_preemption_timer_multi);
9225 else
9226 delta_tsc = 0;
9227
9228 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9229}
9230
a3b5ba49 9231static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 9232{
a2fa3e9f 9233 struct vcpu_vmx *vmx = to_vmx(vcpu);
d6e41f11 9234 unsigned long debugctlmsr, cr3, cr4;
104f226b 9235
104f226b
AK
9236 /* Don't enter VMX if guest state is invalid, let the exit handler
9237 start emulation until we arrive back to a valid state */
14168786 9238 if (vmx->emulation_required)
104f226b
AK
9239 return;
9240
a7653ecd
RK
9241 if (vmx->ple_window_dirty) {
9242 vmx->ple_window_dirty = false;
9243 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9244 }
9245
012f83cb
AG
9246 if (vmx->nested.sync_shadow_vmcs) {
9247 copy_vmcs12_to_shadow(vmx);
9248 vmx->nested.sync_shadow_vmcs = false;
9249 }
9250
104f226b
AK
9251 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9252 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9253 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9254 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9255
d6e41f11 9256 cr3 = __get_current_cr3_fast();
44889942 9257 if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
d6e41f11 9258 vmcs_writel(HOST_CR3, cr3);
44889942 9259 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
d6e41f11
AL
9260 }
9261
1e02ce4c 9262 cr4 = cr4_read_shadow();
44889942 9263 if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
d974baa3 9264 vmcs_writel(HOST_CR4, cr4);
44889942 9265 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3
AL
9266 }
9267
104f226b
AK
9268 /* When single-stepping over STI and MOV SS, we must clear the
9269 * corresponding interruptibility bits in the guest state. Otherwise
9270 * vmentry fails as it then expects bit 14 (BS) in pending debug
9271 * exceptions being set, but that's not correct for the guest debugging
9272 * case. */
9273 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9274 vmx_set_interrupt_shadow(vcpu, 0);
9275
b9dd21e1
PB
9276 if (static_cpu_has(X86_FEATURE_PKU) &&
9277 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9278 vcpu->arch.pkru != vmx->host_pkru)
9279 __write_pkru(vcpu->arch.pkru);
1be0e61c 9280
d7cd9796 9281 atomic_switch_perf_msrs(vmx);
2a7921b7 9282 debugctlmsr = get_debugctlmsr();
d7cd9796 9283
64672c95
YJ
9284 vmx_arm_hv_timer(vcpu);
9285
d462b819 9286 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 9287 asm(
6aa8b732 9288 /* Store host registers */
b188c81f
AK
9289 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9290 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9291 "push %%" _ASM_CX " \n\t"
9292 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 9293 "je 1f \n\t"
b188c81f 9294 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 9295 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 9296 "1: \n\t"
d3edefc0 9297 /* Reload cr2 if changed */
b188c81f
AK
9298 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9299 "mov %%cr2, %%" _ASM_DX " \n\t"
9300 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 9301 "je 2f \n\t"
b188c81f 9302 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 9303 "2: \n\t"
6aa8b732 9304 /* Check if vmlaunch of vmresume is needed */
e08aa78a 9305 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 9306 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
9307 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9308 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9309 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9310 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9311 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9312 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 9313#ifdef CONFIG_X86_64
e08aa78a
AK
9314 "mov %c[r8](%0), %%r8 \n\t"
9315 "mov %c[r9](%0), %%r9 \n\t"
9316 "mov %c[r10](%0), %%r10 \n\t"
9317 "mov %c[r11](%0), %%r11 \n\t"
9318 "mov %c[r12](%0), %%r12 \n\t"
9319 "mov %c[r13](%0), %%r13 \n\t"
9320 "mov %c[r14](%0), %%r14 \n\t"
9321 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 9322#endif
b188c81f 9323 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 9324
6aa8b732 9325 /* Enter guest mode */
83287ea4 9326 "jne 1f \n\t"
4ecac3fd 9327 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
9328 "jmp 2f \n\t"
9329 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9330 "2: "
6aa8b732 9331 /* Save guest registers, load host registers, keep flags */
b188c81f 9332 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 9333 "pop %0 \n\t"
b188c81f
AK
9334 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9335 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9336 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9337 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9338 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9339 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9340 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 9341#ifdef CONFIG_X86_64
e08aa78a
AK
9342 "mov %%r8, %c[r8](%0) \n\t"
9343 "mov %%r9, %c[r9](%0) \n\t"
9344 "mov %%r10, %c[r10](%0) \n\t"
9345 "mov %%r11, %c[r11](%0) \n\t"
9346 "mov %%r12, %c[r12](%0) \n\t"
9347 "mov %%r13, %c[r13](%0) \n\t"
9348 "mov %%r14, %c[r14](%0) \n\t"
9349 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 9350#endif
b188c81f
AK
9351 "mov %%cr2, %%" _ASM_AX " \n\t"
9352 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 9353
b188c81f 9354 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 9355 "setbe %c[fail](%0) \n\t"
83287ea4
AK
9356 ".pushsection .rodata \n\t"
9357 ".global vmx_return \n\t"
9358 "vmx_return: " _ASM_PTR " 2b \n\t"
9359 ".popsection"
e08aa78a 9360 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 9361 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 9362 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 9363 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
9364 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9365 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9366 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9367 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9368 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9369 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9370 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 9371#ifdef CONFIG_X86_64
ad312c7c
ZX
9372 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9373 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9374 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9375 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9376 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9377 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9378 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9379 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9380#endif
40712fae
AK
9381 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9382 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9383 : "cc", "memory"
9384#ifdef CONFIG_X86_64
b188c81f 9385 , "rax", "rbx", "rdi", "rsi"
c2036300 9386 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
9387#else
9388 , "eax", "ebx", "edi", "esi"
c2036300
LV
9389#endif
9390 );
6aa8b732 9391
2a7921b7
GN
9392 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9393 if (debugctlmsr)
9394 update_debugctlmsr(debugctlmsr);
9395
aa67f609
AK
9396#ifndef CONFIG_X86_64
9397 /*
9398 * The sysexit path does not restore ds/es, so we must set them to
9399 * a reasonable value ourselves.
9400 *
9401 * We can't defer this to vmx_load_host_state() since that function
9402 * may be executed in interrupt context, which saves and restore segments
9403 * around it, nullifying its effect.
9404 */
9405 loadsegment(ds, __USER_DS);
9406 loadsegment(es, __USER_DS);
9407#endif
9408
6de4f3ad 9409 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9410 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9411 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9412 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9413 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9414 vcpu->arch.regs_dirty = 0;
9415
1be0e61c
XG
9416 /*
9417 * eager fpu is enabled if PKEY is supported and CR4 is switched
9418 * back on host, so it is safe to read guest PKRU from current
9419 * XSAVE.
9420 */
b9dd21e1
PB
9421 if (static_cpu_has(X86_FEATURE_PKU) &&
9422 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9423 vcpu->arch.pkru = __read_pkru();
9424 if (vcpu->arch.pkru != vmx->host_pkru)
1be0e61c 9425 __write_pkru(vmx->host_pkru);
1be0e61c
XG
9426 }
9427
e0b890d3
GN
9428 /*
9429 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9430 * we did not inject a still-pending event to L1 now because of
9431 * nested_run_pending, we need to re-enable this bit.
9432 */
9433 if (vmx->nested.nested_run_pending)
9434 kvm_make_request(KVM_REQ_EVENT, vcpu);
9435
9436 vmx->nested.nested_run_pending = 0;
b060ca3b
JM
9437 vmx->idt_vectoring_info = 0;
9438
9439 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9440 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9441 return;
9442
9443 vmx->loaded_vmcs->launched = 1;
9444 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
e0b890d3 9445
51aa01d1
AK
9446 vmx_complete_atomic_exit(vmx);
9447 vmx_recover_nmi_blocking(vmx);
cf393f75 9448 vmx_complete_interrupts(vmx);
6aa8b732 9449}
c207aee4 9450STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
6aa8b732 9451
1279a6b1 9452static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
4fa7734c
PB
9453{
9454 struct vcpu_vmx *vmx = to_vmx(vcpu);
9455 int cpu;
9456
1279a6b1 9457 if (vmx->loaded_vmcs == vmcs)
4fa7734c
PB
9458 return;
9459
9460 cpu = get_cpu();
1279a6b1 9461 vmx->loaded_vmcs = vmcs;
4fa7734c
PB
9462 vmx_vcpu_put(vcpu);
9463 vmx_vcpu_load(vcpu, cpu);
4fa7734c
PB
9464 put_cpu();
9465}
9466
2f1fe811
JM
9467/*
9468 * Ensure that the current vmcs of the logical processor is the
9469 * vmcs01 of the vcpu before calling free_nested().
9470 */
9471static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9472{
9473 struct vcpu_vmx *vmx = to_vmx(vcpu);
9474 int r;
9475
9476 r = vcpu_load(vcpu);
9477 BUG_ON(r);
1279a6b1 9478 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2f1fe811
JM
9479 free_nested(vmx);
9480 vcpu_put(vcpu);
9481}
9482
6aa8b732
AK
9483static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9484{
fb3f0f51
RR
9485 struct vcpu_vmx *vmx = to_vmx(vcpu);
9486
843e4330 9487 if (enable_pml)
a3eaa864 9488 vmx_destroy_pml_buffer(vmx);
991e7a0e 9489 free_vpid(vmx->vpid);
4fa7734c 9490 leave_guest_mode(vcpu);
2f1fe811 9491 vmx_free_vcpu_nested(vcpu);
4fa7734c 9492 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9493 kfree(vmx->guest_msrs);
9494 kvm_vcpu_uninit(vcpu);
a4770347 9495 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9496}
9497
fb3f0f51 9498static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9499{
fb3f0f51 9500 int err;
c16f862d 9501 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 9502 int cpu;
6aa8b732 9503
a2fa3e9f 9504 if (!vmx)
fb3f0f51
RR
9505 return ERR_PTR(-ENOMEM);
9506
991e7a0e 9507 vmx->vpid = allocate_vpid();
2384d2b3 9508
fb3f0f51
RR
9509 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9510 if (err)
9511 goto free_vcpu;
965b58a5 9512
4e59516a
PF
9513 err = -ENOMEM;
9514
9515 /*
9516 * If PML is turned on, failure on enabling PML just results in failure
9517 * of creating the vcpu, therefore we can simplify PML logic (by
9518 * avoiding dealing with cases, such as enabling PML partially on vcpus
9519 * for the guest, etc.
9520 */
9521 if (enable_pml) {
9522 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9523 if (!vmx->pml_pg)
9524 goto uninit_vcpu;
9525 }
9526
a2fa3e9f 9527 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9528 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9529 > PAGE_SIZE);
0123be42 9530
4e59516a
PF
9531 if (!vmx->guest_msrs)
9532 goto free_pml;
965b58a5 9533
d462b819
NHE
9534 vmx->loaded_vmcs = &vmx->vmcs01;
9535 vmx->loaded_vmcs->vmcs = alloc_vmcs();
355f4fb1 9536 vmx->loaded_vmcs->shadow_vmcs = NULL;
d462b819 9537 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 9538 goto free_msrs;
d462b819 9539 loaded_vmcs_init(vmx->loaded_vmcs);
a2fa3e9f 9540
15ad7146
AK
9541 cpu = get_cpu();
9542 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9543 vmx->vcpu.cpu = cpu;
12d79917 9544 vmx_vcpu_setup(vmx);
fb3f0f51 9545 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9546 put_cpu();
35754c98 9547 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9548 err = alloc_apic_access_page(kvm);
9549 if (err)
5e4a0b3c 9550 goto free_vmcs;
a63cb560 9551 }
fb3f0f51 9552
b927a3ce 9553 if (enable_ept) {
f51770ed
TC
9554 err = init_rmode_identity_map(kvm);
9555 if (err)
93ea5388 9556 goto free_vmcs;
b927a3ce 9557 }
b7ebfb05 9558
5c614b35 9559 if (nested) {
b9c237bb 9560 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9561 vmx->nested.vpid02 = allocate_vpid();
9562 }
b9c237bb 9563
705699a1 9564 vmx->nested.posted_intr_nv = -1;
a9d30f33 9565 vmx->nested.current_vmptr = -1ull;
a9d30f33 9566
37e4c997
HZ
9567 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9568
31afb2ea
PB
9569 /*
9570 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9571 * or POSTED_INTR_WAKEUP_VECTOR.
9572 */
9573 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
9574 vmx->pi_desc.sn = 1;
9575
fb3f0f51
RR
9576 return &vmx->vcpu;
9577
9578free_vmcs:
5c614b35 9579 free_vpid(vmx->nested.vpid02);
5f3fbc34 9580 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9581free_msrs:
fb3f0f51 9582 kfree(vmx->guest_msrs);
4e59516a
PF
9583free_pml:
9584 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9585uninit_vcpu:
9586 kvm_vcpu_uninit(&vmx->vcpu);
9587free_vcpu:
991e7a0e 9588 free_vpid(vmx->vpid);
a4770347 9589 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9590 return ERR_PTR(err);
6aa8b732
AK
9591}
9592
002c7f7c
YS
9593static void __init vmx_check_processor_compat(void *rtn)
9594{
9595 struct vmcs_config vmcs_conf;
9596
9597 *(int *)rtn = 0;
9598 if (setup_vmcs_config(&vmcs_conf) < 0)
9599 *(int *)rtn = -EIO;
9600 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9601 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9602 smp_processor_id());
9603 *(int *)rtn = -EIO;
9604 }
9605}
9606
4b12f0de 9607static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9608{
b18d5431
XG
9609 u8 cache;
9610 u64 ipat = 0;
4b12f0de 9611
522c68c4 9612 /* For VT-d and EPT combination
606decd6 9613 * 1. MMIO: always map as UC
522c68c4
SY
9614 * 2. EPT with VT-d:
9615 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9616 * result, try to trust guest.
522c68c4
SY
9617 * b. VT-d with snooping control feature: snooping control feature of
9618 * VT-d engine can guarantee the cache correctness. Just set it
9619 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9620 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9621 * consistent with host MTRR
9622 */
606decd6
PB
9623 if (is_mmio) {
9624 cache = MTRR_TYPE_UNCACHABLE;
9625 goto exit;
9626 }
9627
9628 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9629 ipat = VMX_EPT_IPAT_BIT;
9630 cache = MTRR_TYPE_WRBACK;
9631 goto exit;
9632 }
9633
9634 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9635 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9636 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9637 cache = MTRR_TYPE_WRBACK;
9638 else
9639 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9640 goto exit;
9641 }
9642
ff53604b 9643 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9644
9645exit:
9646 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9647}
9648
17cc3935 9649static int vmx_get_lpage_level(void)
344f414f 9650{
878403b7
SY
9651 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9652 return PT_DIRECTORY_LEVEL;
9653 else
9654 /* For shadow and EPT supported 1GB page */
9655 return PT_PDPE_LEVEL;
344f414f
JR
9656}
9657
feda805f
XG
9658static void vmcs_set_secondary_exec_control(u32 new_ctl)
9659{
9660 /*
9661 * These bits in the secondary execution controls field
9662 * are dynamic, the others are mostly based on the hypervisor
9663 * architecture and the guest's CPUID. Do not touch the
9664 * dynamic bits.
9665 */
9666 u32 mask =
9667 SECONDARY_EXEC_SHADOW_VMCS |
9668 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9669 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9670
9671 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9672
9673 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9674 (new_ctl & ~mask) | (cur_ctl & mask));
9675}
9676
8322ebbb
DM
9677/*
9678 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9679 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9680 */
9681static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9682{
9683 struct vcpu_vmx *vmx = to_vmx(vcpu);
9684 struct kvm_cpuid_entry2 *entry;
9685
9686 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9687 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9688
9689#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9690 if (entry && (entry->_reg & (_cpuid_mask))) \
9691 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9692} while (0)
9693
9694 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9695 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9696 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9697 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9698 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9699 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9700 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9701 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9702 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9703 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9704 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9705 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9706 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9707 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9708 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9709
9710 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9711 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9712 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9713 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9714 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9715 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9716 cr4_fixed1_update(bit(11), ecx, bit(2));
9717
9718#undef cr4_fixed1_update
9719}
9720
0e851880
SY
9721static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9722{
4e47c7a6 9723 struct vcpu_vmx *vmx = to_vmx(vcpu);
4e47c7a6 9724
80154d77
PB
9725 if (cpu_has_secondary_exec_ctrls()) {
9726 vmx_compute_secondary_exec_control(vmx);
9727 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
ad756a16 9728 }
8b3e34e4 9729
37e4c997
HZ
9730 if (nested_vmx_allowed(vcpu))
9731 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9732 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9733 else
9734 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9735 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
9736
9737 if (nested_vmx_allowed(vcpu))
9738 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
9739}
9740
d4330ef2
JR
9741static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9742{
7b8050f5
NHE
9743 if (func == 1 && nested)
9744 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9745}
9746
25d92081
YZ
9747static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9748 struct x86_exception *fault)
9749{
533558bc 9750 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
c5f983f6 9751 struct vcpu_vmx *vmx = to_vmx(vcpu);
533558bc 9752 u32 exit_reason;
c5f983f6 9753 unsigned long exit_qualification = vcpu->arch.exit_qualification;
25d92081 9754
c5f983f6
BD
9755 if (vmx->nested.pml_full) {
9756 exit_reason = EXIT_REASON_PML_FULL;
9757 vmx->nested.pml_full = false;
9758 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9759 } else if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9760 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9761 else
533558bc 9762 exit_reason = EXIT_REASON_EPT_VIOLATION;
c5f983f6
BD
9763
9764 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
25d92081
YZ
9765 vmcs12->guest_physical_address = fault->address;
9766}
9767
995f00a6
PF
9768static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9769{
bb97a016 9770 return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
995f00a6
PF
9771}
9772
155a97a3
NHE
9773/* Callbacks for nested_ept_init_mmu_context: */
9774
9775static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9776{
9777 /* return the page table to be shadowed - in our case, EPT12 */
9778 return get_vmcs12(vcpu)->ept_pointer;
9779}
9780
ae1e2d10 9781static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9782{
ad896af0 9783 WARN_ON(mmu_is_nested(vcpu));
a057e0e2 9784 if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
ae1e2d10
PB
9785 return 1;
9786
9787 kvm_mmu_unload(vcpu);
ad896af0 9788 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb 9789 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
ae1e2d10 9790 VMX_EPT_EXECUTE_ONLY_BIT,
a057e0e2 9791 nested_ept_ad_enabled(vcpu));
155a97a3
NHE
9792 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9793 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9794 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9795
9796 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
ae1e2d10 9797 return 0;
155a97a3
NHE
9798}
9799
9800static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9801{
9802 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9803}
9804
19d5f10b
EK
9805static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9806 u16 error_code)
9807{
9808 bool inequality, bit;
9809
9810 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9811 inequality =
9812 (error_code & vmcs12->page_fault_error_code_mask) !=
9813 vmcs12->page_fault_error_code_match;
9814 return inequality ^ bit;
9815}
9816
feaf0c7d
GN
9817static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9818 struct x86_exception *fault)
9819{
9820 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9821
9822 WARN_ON(!is_guest_mode(vcpu));
9823
305d0ab4
WL
9824 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
9825 !to_vmx(vcpu)->nested.nested_run_pending) {
b96fb439
PB
9826 vmcs12->vm_exit_intr_error_code = fault->error_code;
9827 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9828 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9829 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9830 fault->address);
7313c698 9831 } else {
feaf0c7d 9832 kvm_inject_page_fault(vcpu, fault);
7313c698 9833 }
feaf0c7d
GN
9834}
9835
6beb7bd5
JM
9836static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9837 struct vmcs12 *vmcs12);
9838
9839static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
9840 struct vmcs12 *vmcs12)
9841{
9842 struct vcpu_vmx *vmx = to_vmx(vcpu);
5e2f30b7 9843 struct page *page;
6beb7bd5 9844 u64 hpa;
a2bcba50
WL
9845
9846 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
9847 /*
9848 * Translate L1 physical address to host physical
9849 * address for vmcs02. Keep the page pinned, so this
9850 * physical address remains valid. We keep a reference
9851 * to it so we can release it later.
9852 */
5e2f30b7 9853 if (vmx->nested.apic_access_page) { /* shouldn't happen */
53a70daf 9854 kvm_release_page_dirty(vmx->nested.apic_access_page);
5e2f30b7
DH
9855 vmx->nested.apic_access_page = NULL;
9856 }
9857 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
9858 /*
9859 * If translation failed, no matter: This feature asks
9860 * to exit when accessing the given address, and if it
9861 * can never be accessed, this feature won't do
9862 * anything anyway.
9863 */
5e2f30b7
DH
9864 if (!is_error_page(page)) {
9865 vmx->nested.apic_access_page = page;
6beb7bd5
JM
9866 hpa = page_to_phys(vmx->nested.apic_access_page);
9867 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9868 } else {
9869 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9870 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9871 }
9872 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9873 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9874 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9875 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9876 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 9877 }
a7c0b07d
WL
9878
9879 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5e2f30b7 9880 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
53a70daf 9881 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
5e2f30b7
DH
9882 vmx->nested.virtual_apic_page = NULL;
9883 }
9884 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
a7c0b07d
WL
9885
9886 /*
6beb7bd5
JM
9887 * If translation failed, VM entry will fail because
9888 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9889 * Failing the vm entry is _not_ what the processor
9890 * does but it's basically the only possibility we
9891 * have. We could still enter the guest if CR8 load
9892 * exits are enabled, CR8 store exits are enabled, and
9893 * virtualize APIC access is disabled; in this case
9894 * the processor would never use the TPR shadow and we
9895 * could simply clear the bit from the execution
9896 * control. But such a configuration is useless, so
9897 * let's keep the code simple.
a7c0b07d 9898 */
5e2f30b7
DH
9899 if (!is_error_page(page)) {
9900 vmx->nested.virtual_apic_page = page;
6beb7bd5
JM
9901 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9902 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9903 }
a7c0b07d
WL
9904 }
9905
705699a1 9906 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
9907 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9908 kunmap(vmx->nested.pi_desc_page);
53a70daf 9909 kvm_release_page_dirty(vmx->nested.pi_desc_page);
5e2f30b7 9910 vmx->nested.pi_desc_page = NULL;
705699a1 9911 }
5e2f30b7
DH
9912 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
9913 if (is_error_page(page))
6beb7bd5 9914 return;
5e2f30b7
DH
9915 vmx->nested.pi_desc_page = page;
9916 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
705699a1
WV
9917 vmx->nested.pi_desc =
9918 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9919 (unsigned long)(vmcs12->posted_intr_desc_addr &
9920 (PAGE_SIZE - 1)));
6beb7bd5
JM
9921 vmcs_write64(POSTED_INTR_DESC_ADDR,
9922 page_to_phys(vmx->nested.pi_desc_page) +
9923 (unsigned long)(vmcs12->posted_intr_desc_addr &
9924 (PAGE_SIZE - 1)));
705699a1 9925 }
6beb7bd5
JM
9926 if (cpu_has_vmx_msr_bitmap() &&
9927 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9928 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9929 ;
9930 else
9931 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9932 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
9933}
9934
f4124500
JK
9935static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9936{
9937 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9938 struct vcpu_vmx *vmx = to_vmx(vcpu);
9939
9940 if (vcpu->arch.virtual_tsc_khz == 0)
9941 return;
9942
9943 /* Make sure short timeouts reliably trigger an immediate vmexit.
9944 * hrtimer_start does not guarantee this. */
9945 if (preemption_timeout <= 1) {
9946 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9947 return;
9948 }
9949
9950 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9951 preemption_timeout *= 1000000;
9952 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9953 hrtimer_start(&vmx->nested.preemption_timer,
9954 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9955}
9956
56a20510
JM
9957static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9958 struct vmcs12 *vmcs12)
9959{
9960 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9961 return 0;
9962
9963 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9964 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9965 return -EINVAL;
9966
9967 return 0;
9968}
9969
3af18d9c
WV
9970static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9971 struct vmcs12 *vmcs12)
9972{
3af18d9c
WV
9973 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9974 return 0;
9975
5fa99cbe 9976 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
3af18d9c
WV
9977 return -EINVAL;
9978
9979 return 0;
9980}
9981
712b12d7
JM
9982static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
9983 struct vmcs12 *vmcs12)
9984{
9985 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9986 return 0;
9987
9988 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
9989 return -EINVAL;
9990
9991 return 0;
9992}
9993
3af18d9c
WV
9994/*
9995 * Merge L0's and L1's MSR bitmap, return false to indicate that
9996 * we do not use the hardware.
9997 */
9998static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9999 struct vmcs12 *vmcs12)
10000{
82f0dd4b 10001 int msr;
f2b93280 10002 struct page *page;
d048c098
RK
10003 unsigned long *msr_bitmap_l1;
10004 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
f2b93280 10005
d048c098 10006 /* This shortcut is ok because we support only x2APIC MSRs so far. */
f2b93280
WV
10007 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
10008 return false;
10009
5e2f30b7
DH
10010 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10011 if (is_error_page(page))
f2b93280 10012 return false;
d048c098 10013 msr_bitmap_l1 = (unsigned long *)kmap(page);
f2b93280 10014
d048c098
RK
10015 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10016
f2b93280 10017 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
10018 if (nested_cpu_has_apic_reg_virt(vmcs12))
10019 for (msr = 0x800; msr <= 0x8ff; msr++)
10020 nested_vmx_disable_intercept_for_msr(
d048c098 10021 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 10022 msr, MSR_TYPE_R);
d048c098
RK
10023
10024 nested_vmx_disable_intercept_for_msr(
10025 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
10026 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10027 MSR_TYPE_R | MSR_TYPE_W);
d048c098 10028
608406e2 10029 if (nested_cpu_has_vid(vmcs12)) {
608406e2 10030 nested_vmx_disable_intercept_for_msr(
d048c098 10031 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10032 APIC_BASE_MSR + (APIC_EOI >> 4),
10033 MSR_TYPE_W);
10034 nested_vmx_disable_intercept_for_msr(
d048c098 10035 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10036 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10037 MSR_TYPE_W);
10038 }
82f0dd4b 10039 }
f2b93280 10040 kunmap(page);
53a70daf 10041 kvm_release_page_clean(page);
f2b93280
WV
10042
10043 return true;
10044}
10045
10046static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10047 struct vmcs12 *vmcs12)
10048{
82f0dd4b 10049 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 10050 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
10051 !nested_cpu_has_vid(vmcs12) &&
10052 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
10053 return 0;
10054
10055 /*
10056 * If virtualize x2apic mode is enabled,
10057 * virtualize apic access must be disabled.
10058 */
82f0dd4b
WV
10059 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10060 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
10061 return -EINVAL;
10062
608406e2
WV
10063 /*
10064 * If virtual interrupt delivery is enabled,
10065 * we must exit on external interrupts.
10066 */
10067 if (nested_cpu_has_vid(vmcs12) &&
10068 !nested_exit_on_intr(vcpu))
10069 return -EINVAL;
10070
705699a1
WV
10071 /*
10072 * bits 15:8 should be zero in posted_intr_nv,
10073 * the descriptor address has been already checked
10074 * in nested_get_vmcs12_pages.
10075 */
10076 if (nested_cpu_has_posted_intr(vmcs12) &&
10077 (!nested_cpu_has_vid(vmcs12) ||
10078 !nested_exit_intr_ack_set(vcpu) ||
10079 vmcs12->posted_intr_nv & 0xff00))
10080 return -EINVAL;
10081
f2b93280
WV
10082 /* tpr shadow is needed by all apicv features. */
10083 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10084 return -EINVAL;
10085
10086 return 0;
3af18d9c
WV
10087}
10088
e9ac033e
EK
10089static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10090 unsigned long count_field,
92d71bc6 10091 unsigned long addr_field)
ff651cb6 10092{
92d71bc6 10093 int maxphyaddr;
e9ac033e
EK
10094 u64 count, addr;
10095
10096 if (vmcs12_read_any(vcpu, count_field, &count) ||
10097 vmcs12_read_any(vcpu, addr_field, &addr)) {
10098 WARN_ON(1);
10099 return -EINVAL;
10100 }
10101 if (count == 0)
10102 return 0;
92d71bc6 10103 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
10104 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10105 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 10106 pr_debug_ratelimited(
e9ac033e
EK
10107 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10108 addr_field, maxphyaddr, count, addr);
10109 return -EINVAL;
10110 }
10111 return 0;
10112}
10113
10114static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10115 struct vmcs12 *vmcs12)
10116{
e9ac033e
EK
10117 if (vmcs12->vm_exit_msr_load_count == 0 &&
10118 vmcs12->vm_exit_msr_store_count == 0 &&
10119 vmcs12->vm_entry_msr_load_count == 0)
10120 return 0; /* Fast path */
e9ac033e 10121 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 10122 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 10123 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 10124 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 10125 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 10126 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
10127 return -EINVAL;
10128 return 0;
10129}
10130
c5f983f6
BD
10131static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10132 struct vmcs12 *vmcs12)
10133{
10134 u64 address = vmcs12->pml_address;
10135 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10136
10137 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10138 if (!nested_cpu_has_ept(vmcs12) ||
10139 !IS_ALIGNED(address, 4096) ||
10140 address >> maxphyaddr)
10141 return -EINVAL;
10142 }
10143
10144 return 0;
10145}
10146
e9ac033e
EK
10147static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10148 struct vmx_msr_entry *e)
10149{
10150 /* x2APIC MSR accesses are not allowed */
8a9781f7 10151 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
10152 return -EINVAL;
10153 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10154 e->index == MSR_IA32_UCODE_REV)
10155 return -EINVAL;
10156 if (e->reserved != 0)
ff651cb6
WV
10157 return -EINVAL;
10158 return 0;
10159}
10160
e9ac033e
EK
10161static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10162 struct vmx_msr_entry *e)
ff651cb6
WV
10163{
10164 if (e->index == MSR_FS_BASE ||
10165 e->index == MSR_GS_BASE ||
e9ac033e
EK
10166 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10167 nested_vmx_msr_check_common(vcpu, e))
10168 return -EINVAL;
10169 return 0;
10170}
10171
10172static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10173 struct vmx_msr_entry *e)
10174{
10175 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10176 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
10177 return -EINVAL;
10178 return 0;
10179}
10180
10181/*
10182 * Load guest's/host's msr at nested entry/exit.
10183 * return 0 for success, entry index for failure.
10184 */
10185static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10186{
10187 u32 i;
10188 struct vmx_msr_entry e;
10189 struct msr_data msr;
10190
10191 msr.host_initiated = false;
10192 for (i = 0; i < count; i++) {
54bf36aa
PB
10193 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10194 &e, sizeof(e))) {
bbe41b95 10195 pr_debug_ratelimited(
e9ac033e
EK
10196 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10197 __func__, i, gpa + i * sizeof(e));
ff651cb6 10198 goto fail;
e9ac033e
EK
10199 }
10200 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 10201 pr_debug_ratelimited(
e9ac033e
EK
10202 "%s check failed (%u, 0x%x, 0x%x)\n",
10203 __func__, i, e.index, e.reserved);
10204 goto fail;
10205 }
ff651cb6
WV
10206 msr.index = e.index;
10207 msr.data = e.value;
e9ac033e 10208 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 10209 pr_debug_ratelimited(
e9ac033e
EK
10210 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10211 __func__, i, e.index, e.value);
ff651cb6 10212 goto fail;
e9ac033e 10213 }
ff651cb6
WV
10214 }
10215 return 0;
10216fail:
10217 return i + 1;
10218}
10219
10220static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10221{
10222 u32 i;
10223 struct vmx_msr_entry e;
10224
10225 for (i = 0; i < count; i++) {
609e36d3 10226 struct msr_data msr_info;
54bf36aa
PB
10227 if (kvm_vcpu_read_guest(vcpu,
10228 gpa + i * sizeof(e),
10229 &e, 2 * sizeof(u32))) {
bbe41b95 10230 pr_debug_ratelimited(
e9ac033e
EK
10231 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10232 __func__, i, gpa + i * sizeof(e));
ff651cb6 10233 return -EINVAL;
e9ac033e
EK
10234 }
10235 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 10236 pr_debug_ratelimited(
e9ac033e
EK
10237 "%s check failed (%u, 0x%x, 0x%x)\n",
10238 __func__, i, e.index, e.reserved);
ff651cb6 10239 return -EINVAL;
e9ac033e 10240 }
609e36d3
PB
10241 msr_info.host_initiated = false;
10242 msr_info.index = e.index;
10243 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 10244 pr_debug_ratelimited(
e9ac033e
EK
10245 "%s cannot read MSR (%u, 0x%x)\n",
10246 __func__, i, e.index);
10247 return -EINVAL;
10248 }
54bf36aa
PB
10249 if (kvm_vcpu_write_guest(vcpu,
10250 gpa + i * sizeof(e) +
10251 offsetof(struct vmx_msr_entry, value),
10252 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 10253 pr_debug_ratelimited(
e9ac033e 10254 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 10255 __func__, i, e.index, msr_info.data);
e9ac033e
EK
10256 return -EINVAL;
10257 }
ff651cb6
WV
10258 }
10259 return 0;
10260}
10261
1dc35dac
LP
10262static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10263{
10264 unsigned long invalid_mask;
10265
10266 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10267 return (val & invalid_mask) == 0;
10268}
10269
9ed38ffa
LP
10270/*
10271 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10272 * emulating VM entry into a guest with EPT enabled.
10273 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10274 * is assigned to entry_failure_code on failure.
10275 */
10276static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 10277 u32 *entry_failure_code)
9ed38ffa 10278{
9ed38ffa 10279 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 10280 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
10281 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10282 return 1;
10283 }
10284
10285 /*
10286 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10287 * must not be dereferenced.
10288 */
10289 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10290 !nested_ept) {
10291 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10292 *entry_failure_code = ENTRY_FAIL_PDPTE;
10293 return 1;
10294 }
10295 }
10296
10297 vcpu->arch.cr3 = cr3;
10298 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10299 }
10300
10301 kvm_mmu_reset_context(vcpu);
10302 return 0;
10303}
10304
fe3ef05c
NHE
10305/*
10306 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10307 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 10308 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
10309 * guest in a way that will both be appropriate to L1's requests, and our
10310 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10311 * function also has additional necessary side-effects, like setting various
10312 * vcpu->arch fields.
ee146c1c
LP
10313 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10314 * is assigned to entry_failure_code on failure.
fe3ef05c 10315 */
ee146c1c 10316static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
ca0bde28 10317 bool from_vmentry, u32 *entry_failure_code)
fe3ef05c
NHE
10318{
10319 struct vcpu_vmx *vmx = to_vmx(vcpu);
03efce6f 10320 u32 exec_control, vmcs12_exec_ctrl;
fe3ef05c
NHE
10321
10322 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10323 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10324 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10325 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10326 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10327 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10328 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10329 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10330 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10331 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10332 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10333 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10334 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10335 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10336 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10337 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10338 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10339 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10340 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10341 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10342 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10343 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10344 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10345 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10346 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10347 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10348 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10349 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10350 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10351 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10352 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10353 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10354 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10355 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10356 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10357 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10358
cf8b84f4
JM
10359 if (from_vmentry &&
10360 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
10361 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10362 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10363 } else {
10364 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10365 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10366 }
cf8b84f4
JM
10367 if (from_vmentry) {
10368 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10369 vmcs12->vm_entry_intr_info_field);
10370 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10371 vmcs12->vm_entry_exception_error_code);
10372 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10373 vmcs12->vm_entry_instruction_len);
10374 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10375 vmcs12->guest_interruptibility_info);
2d6144e3
WL
10376 vmx->loaded_vmcs->nmi_known_unmasked =
10377 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
cf8b84f4
JM
10378 } else {
10379 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10380 }
fe3ef05c 10381 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 10382 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
10383 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10384 vmcs12->guest_pending_dbg_exceptions);
10385 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10386 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10387
81dc01f7
WL
10388 if (nested_cpu_has_xsaves(vmcs12))
10389 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
10390 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10391
f4124500 10392 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
10393
10394 /* Preemption timer setting is only taken from vmcs01. */
705699a1 10395 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
10396 exec_control |= vmcs_config.pin_based_exec_ctrl;
10397 if (vmx->hv_deadline_tsc == -1)
10398 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 10399
9314006d 10400 /* Posted interrupts setting is only taken from vmcs12. */
705699a1 10401 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
10402 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10403 vmx->nested.pi_pending = false;
06a5524f 10404 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
6beb7bd5 10405 } else {
705699a1 10406 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 10407 }
705699a1 10408
f4124500 10409 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 10410
f4124500
JK
10411 vmx->nested.preemption_timer_expired = false;
10412 if (nested_cpu_has_preemption_timer(vmcs12))
10413 vmx_start_preemption_timer(vcpu);
0238ea91 10414
fe3ef05c
NHE
10415 /*
10416 * Whether page-faults are trapped is determined by a combination of
10417 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10418 * If enable_ept, L0 doesn't care about page faults and we should
10419 * set all of these to L1's desires. However, if !enable_ept, L0 does
10420 * care about (at least some) page faults, and because it is not easy
10421 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10422 * to exit on each and every L2 page fault. This is done by setting
10423 * MASK=MATCH=0 and (see below) EB.PF=1.
10424 * Note that below we don't need special code to set EB.PF beyond the
10425 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10426 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10427 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
fe3ef05c
NHE
10428 */
10429 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10430 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10431 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10432 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10433
10434 if (cpu_has_secondary_exec_ctrls()) {
80154d77 10435 exec_control = vmx->secondary_exec_control;
e2821620 10436
fe3ef05c 10437 /* Take the following fields only from vmcs12 */
696dfd95 10438 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
90a2db6d 10439 SECONDARY_EXEC_ENABLE_INVPCID |
b3a2a907 10440 SECONDARY_EXEC_RDTSCP |
3db13480 10441 SECONDARY_EXEC_XSAVES |
696dfd95 10442 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
27c42a1b
BD
10443 SECONDARY_EXEC_APIC_REGISTER_VIRT |
10444 SECONDARY_EXEC_ENABLE_VMFUNC);
fe3ef05c 10445 if (nested_cpu_has(vmcs12,
03efce6f
BD
10446 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10447 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10448 ~SECONDARY_EXEC_ENABLE_PML;
10449 exec_control |= vmcs12_exec_ctrl;
10450 }
fe3ef05c 10451
27c42a1b
BD
10452 /* All VMFUNCs are currently emulated through L0 vmexits. */
10453 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10454 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10455
608406e2
WV
10456 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10457 vmcs_write64(EOI_EXIT_BITMAP0,
10458 vmcs12->eoi_exit_bitmap0);
10459 vmcs_write64(EOI_EXIT_BITMAP1,
10460 vmcs12->eoi_exit_bitmap1);
10461 vmcs_write64(EOI_EXIT_BITMAP2,
10462 vmcs12->eoi_exit_bitmap2);
10463 vmcs_write64(EOI_EXIT_BITMAP3,
10464 vmcs12->eoi_exit_bitmap3);
10465 vmcs_write16(GUEST_INTR_STATUS,
10466 vmcs12->guest_intr_status);
10467 }
10468
6beb7bd5
JM
10469 /*
10470 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10471 * nested_get_vmcs12_pages will either fix it up or
10472 * remove the VM execution control.
10473 */
10474 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10475 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10476
fe3ef05c
NHE
10477 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10478 }
10479
10480
10481 /*
10482 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10483 * Some constant fields are set here by vmx_set_constant_host_state().
10484 * Other fields are different per CPU, and will be set later when
10485 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10486 */
a547c6db 10487 vmx_set_constant_host_state(vmx);
fe3ef05c 10488
83bafef1
JM
10489 /*
10490 * Set the MSR load/store lists to match L0's settings.
10491 */
10492 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10493 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10494 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10495 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10496 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10497
fe3ef05c
NHE
10498 /*
10499 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10500 * entry, but only if the current (host) sp changed from the value
10501 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10502 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10503 * here we just force the write to happen on entry.
10504 */
10505 vmx->host_rsp = 0;
10506
10507 exec_control = vmx_exec_control(vmx); /* L0's desires */
10508 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10509 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10510 exec_control &= ~CPU_BASED_TPR_SHADOW;
10511 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 10512
6beb7bd5
JM
10513 /*
10514 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10515 * nested_get_vmcs12_pages can't fix it up, the illegal value
10516 * will result in a VM entry failure.
10517 */
a7c0b07d 10518 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 10519 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d 10520 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
51aa68e7
JM
10521 } else {
10522#ifdef CONFIG_X86_64
10523 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
10524 CPU_BASED_CR8_STORE_EXITING;
10525#endif
a7c0b07d
WL
10526 }
10527
fe3ef05c 10528 /*
3af18d9c 10529 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10530 * Rather, exit every time.
10531 */
fe3ef05c
NHE
10532 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10533 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10534
10535 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10536
10537 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10538 * bitwise-or of what L1 wants to trap for L2, and what we want to
10539 * trap. Note that CR0.TS also needs updating - we do this later.
10540 */
10541 update_exception_bitmap(vcpu);
10542 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10543 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10544
8049d651
NHE
10545 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10546 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10547 * bits are further modified by vmx_set_efer() below.
10548 */
f4124500 10549 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10550
10551 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10552 * emulated by vmx_set_efer(), below.
10553 */
2961e876 10554 vm_entry_controls_init(vmx,
8049d651
NHE
10555 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10556 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10557 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10558
cf8b84f4
JM
10559 if (from_vmentry &&
10560 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 10561 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 10562 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 10563 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10564 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 10565 }
fe3ef05c
NHE
10566
10567 set_cr4_guest_host_mask(vmx);
10568
cf8b84f4
JM
10569 if (from_vmentry &&
10570 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
36be0b9d
PB
10571 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10572
27fc51b2
NHE
10573 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10574 vmcs_write64(TSC_OFFSET,
ea26e4ec 10575 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
27fc51b2 10576 else
ea26e4ec 10577 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
c95ba92a
PF
10578 if (kvm_has_tsc_control)
10579 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
10580
10581 if (enable_vpid) {
10582 /*
5c614b35
WL
10583 * There is no direct mapping between vpid02 and vpid12, the
10584 * vpid02 is per-vCPU for L0 and reused while the value of
10585 * vpid12 is changed w/ one invvpid during nested vmentry.
10586 * The vpid12 is allocated by L1 for L2, so it will not
10587 * influence global bitmap(for vpid01 and vpid02 allocation)
10588 * even if spawn a lot of nested vCPUs.
fe3ef05c 10589 */
5c614b35
WL
10590 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10591 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10592 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10593 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10594 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10595 }
10596 } else {
10597 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10598 vmx_flush_tlb(vcpu);
10599 }
10600
fe3ef05c
NHE
10601 }
10602
1fb883bb
LP
10603 if (enable_pml) {
10604 /*
10605 * Conceptually we want to copy the PML address and index from
10606 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10607 * since we always flush the log on each vmexit, this happens
10608 * to be equivalent to simply resetting the fields in vmcs02.
10609 */
10610 ASSERT(vmx->pml_pg);
10611 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10612 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10613 }
10614
155a97a3 10615 if (nested_cpu_has_ept(vmcs12)) {
ae1e2d10
PB
10616 if (nested_ept_init_mmu_context(vcpu)) {
10617 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10618 return 1;
10619 }
fb6c8198
JM
10620 } else if (nested_cpu_has2(vmcs12,
10621 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10622 vmx_flush_tlb_ept_only(vcpu);
155a97a3
NHE
10623 }
10624
fe3ef05c 10625 /*
bd7e5b08
PB
10626 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10627 * bits which we consider mandatory enabled.
fe3ef05c
NHE
10628 * The CR0_READ_SHADOW is what L2 should have expected to read given
10629 * the specifications by L1; It's not enough to take
10630 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10631 * have more bits than L1 expected.
10632 */
10633 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10634 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10635
10636 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10637 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10638
cf8b84f4
JM
10639 if (from_vmentry &&
10640 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
10641 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10642 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10643 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10644 else
10645 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10646 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10647 vmx_set_efer(vcpu, vcpu->arch.efer);
10648
9ed38ffa 10649 /* Shadow page tables on either EPT or shadow page tables. */
7ad658b6 10650 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
9ed38ffa
LP
10651 entry_failure_code))
10652 return 1;
7ca29de2 10653
feaf0c7d
GN
10654 if (!enable_ept)
10655 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10656
3633cfc3
NHE
10657 /*
10658 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10659 */
10660 if (enable_ept) {
10661 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10662 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10663 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10664 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10665 }
10666
fe3ef05c
NHE
10667 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10668 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 10669 return 0;
fe3ef05c
NHE
10670}
10671
ca0bde28 10672static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 10673{
cd232ad0 10674 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 10675
6dfacadd 10676 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
10677 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10678 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 10679
56a20510
JM
10680 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10681 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10682
ca0bde28
JM
10683 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10684 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10685
712b12d7
JM
10686 if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
10687 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10688
ca0bde28
JM
10689 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10690 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 10691
ca0bde28
JM
10692 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10693 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 10694
c5f983f6
BD
10695 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10696 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10697
7c177938 10698 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
0115f9cb 10699 vmx->nested.nested_vmx_procbased_ctls_low,
b9c237bb 10700 vmx->nested.nested_vmx_procbased_ctls_high) ||
2e5b0bd9
JM
10701 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10702 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10703 vmx->nested.nested_vmx_secondary_ctls_low,
10704 vmx->nested.nested_vmx_secondary_ctls_high)) ||
7c177938 10705 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10706 vmx->nested.nested_vmx_pinbased_ctls_low,
10707 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10708 !vmx_control_verify(vmcs12->vm_exit_controls,
0115f9cb 10709 vmx->nested.nested_vmx_exit_ctls_low,
b9c237bb 10710 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10711 !vmx_control_verify(vmcs12->vm_entry_controls,
0115f9cb 10712 vmx->nested.nested_vmx_entry_ctls_low,
b9c237bb 10713 vmx->nested.nested_vmx_entry_ctls_high))
ca0bde28 10714 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10715
41ab9372
BD
10716 if (nested_cpu_has_vmfunc(vmcs12)) {
10717 if (vmcs12->vm_function_control &
10718 ~vmx->nested.nested_vmx_vmfunc_controls)
10719 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10720
10721 if (nested_cpu_has_eptp_switching(vmcs12)) {
10722 if (!nested_cpu_has_ept(vmcs12) ||
10723 !page_address_valid(vcpu, vmcs12->eptp_list_address))
10724 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10725 }
10726 }
27c42a1b 10727
c7c2c709
JM
10728 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10729 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10730
3899152c 10731 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 10732 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
10733 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10734 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10735
10736 return 0;
10737}
10738
10739static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10740 u32 *exit_qual)
10741{
10742 bool ia32e;
10743
10744 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 10745
3899152c 10746 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 10747 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 10748 return 1;
ca0bde28
JM
10749
10750 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10751 vmcs12->vmcs_link_pointer != -1ull) {
10752 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 10753 return 1;
7c177938
NHE
10754 }
10755
384bb783 10756 /*
cb0c8cda 10757 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10758 * are performed on the field for the IA32_EFER MSR:
10759 * - Bits reserved in the IA32_EFER MSR must be 0.
10760 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10761 * the IA-32e mode guest VM-exit control. It must also be identical
10762 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10763 * CR0.PG) is 1.
10764 */
ca0bde28
JM
10765 if (to_vmx(vcpu)->nested.nested_run_pending &&
10766 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
10767 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10768 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10769 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10770 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 10771 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 10772 return 1;
384bb783
JK
10773 }
10774
10775 /*
10776 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10777 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10778 * the values of the LMA and LME bits in the field must each be that of
10779 * the host address-space size VM-exit control.
10780 */
10781 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10782 ia32e = (vmcs12->vm_exit_controls &
10783 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10784 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10785 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 10786 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 10787 return 1;
ca0bde28
JM
10788 }
10789
10790 return 0;
10791}
10792
858e25c0
JM
10793static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10794{
10795 struct vcpu_vmx *vmx = to_vmx(vcpu);
10796 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10797 struct loaded_vmcs *vmcs02;
858e25c0
JM
10798 u32 msr_entry_idx;
10799 u32 exit_qual;
10800
10801 vmcs02 = nested_get_current_vmcs02(vmx);
10802 if (!vmcs02)
10803 return -ENOMEM;
10804
10805 enter_guest_mode(vcpu);
10806
10807 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10808 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10809
1279a6b1 10810 vmx_switch_vmcs(vcpu, vmcs02);
858e25c0
JM
10811 vmx_segment_cache_clear(vmx);
10812
10813 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10814 leave_guest_mode(vcpu);
1279a6b1 10815 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10816 nested_vmx_entry_failure(vcpu, vmcs12,
10817 EXIT_REASON_INVALID_STATE, exit_qual);
10818 return 1;
10819 }
10820
10821 nested_get_vmcs12_pages(vcpu, vmcs12);
10822
10823 msr_entry_idx = nested_vmx_load_msr(vcpu,
10824 vmcs12->vm_entry_msr_load_addr,
10825 vmcs12->vm_entry_msr_load_count);
10826 if (msr_entry_idx) {
10827 leave_guest_mode(vcpu);
1279a6b1 10828 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10829 nested_vmx_entry_failure(vcpu, vmcs12,
10830 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10831 return 1;
10832 }
10833
858e25c0
JM
10834 /*
10835 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10836 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10837 * returned as far as L1 is concerned. It will only return (and set
10838 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10839 */
10840 return 0;
10841}
10842
ca0bde28
JM
10843/*
10844 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10845 * for running an L2 nested guest.
10846 */
10847static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10848{
10849 struct vmcs12 *vmcs12;
10850 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3f1dfb6 10851 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
ca0bde28
JM
10852 u32 exit_qual;
10853 int ret;
10854
10855 if (!nested_vmx_check_permission(vcpu))
10856 return 1;
10857
10858 if (!nested_vmx_check_vmcs12(vcpu))
10859 goto out;
10860
10861 vmcs12 = get_vmcs12(vcpu);
10862
10863 if (enable_shadow_vmcs)
10864 copy_shadow_to_vmcs12(vmx);
10865
10866 /*
10867 * The nested entry process starts with enforcing various prerequisites
10868 * on vmcs12 as required by the Intel SDM, and act appropriately when
10869 * they fail: As the SDM explains, some conditions should cause the
10870 * instruction to fail, while others will cause the instruction to seem
10871 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10872 * To speed up the normal (success) code path, we should avoid checking
10873 * for misconfigurations which will anyway be caught by the processor
10874 * when using the merged vmcs02.
10875 */
b3f1dfb6
JM
10876 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10877 nested_vmx_failValid(vcpu,
10878 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10879 goto out;
10880 }
10881
ca0bde28
JM
10882 if (vmcs12->launch_state == launch) {
10883 nested_vmx_failValid(vcpu,
10884 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10885 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10886 goto out;
10887 }
10888
10889 ret = check_vmentry_prereqs(vcpu, vmcs12);
10890 if (ret) {
10891 nested_vmx_failValid(vcpu, ret);
10892 goto out;
10893 }
10894
10895 /*
10896 * After this point, the trap flag no longer triggers a singlestep trap
10897 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10898 * This is not 100% correct; for performance reasons, we delegate most
10899 * of the checks on host state to the processor. If those fail,
10900 * the singlestep trap is missed.
10901 */
10902 skip_emulated_instruction(vcpu);
10903
10904 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10905 if (ret) {
10906 nested_vmx_entry_failure(vcpu, vmcs12,
10907 EXIT_REASON_INVALID_STATE, exit_qual);
10908 return 1;
384bb783
JK
10909 }
10910
7c177938
NHE
10911 /*
10912 * We're finally done with prerequisite checking, and can start with
10913 * the nested entry.
10914 */
10915
858e25c0
JM
10916 ret = enter_vmx_non_root_mode(vcpu, true);
10917 if (ret)
10918 return ret;
ff651cb6 10919
6dfacadd 10920 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10921 return kvm_vcpu_halt(vcpu);
6dfacadd 10922
7af40ad3
JK
10923 vmx->nested.nested_run_pending = 1;
10924
cd232ad0 10925 return 1;
eb277562
KH
10926
10927out:
6affcbed 10928 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
10929}
10930
4704d0be
NHE
10931/*
10932 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10933 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10934 * This function returns the new value we should put in vmcs12.guest_cr0.
10935 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10936 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10937 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10938 * didn't trap the bit, because if L1 did, so would L0).
10939 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10940 * been modified by L2, and L1 knows it. So just leave the old value of
10941 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10942 * isn't relevant, because if L0 traps this bit it can set it to anything.
10943 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10944 * changed these bits, and therefore they need to be updated, but L0
10945 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10946 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10947 */
10948static inline unsigned long
10949vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10950{
10951 return
10952 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10953 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10954 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10955 vcpu->arch.cr0_guest_owned_bits));
10956}
10957
10958static inline unsigned long
10959vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10960{
10961 return
10962 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10963 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10964 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10965 vcpu->arch.cr4_guest_owned_bits));
10966}
10967
5f3d5799
JK
10968static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10969 struct vmcs12 *vmcs12)
10970{
10971 u32 idt_vectoring;
10972 unsigned int nr;
10973
664f8e26 10974 if (vcpu->arch.exception.injected) {
5f3d5799
JK
10975 nr = vcpu->arch.exception.nr;
10976 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10977
10978 if (kvm_exception_is_soft(nr)) {
10979 vmcs12->vm_exit_instruction_len =
10980 vcpu->arch.event_exit_inst_len;
10981 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10982 } else
10983 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10984
10985 if (vcpu->arch.exception.has_error_code) {
10986 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10987 vmcs12->idt_vectoring_error_code =
10988 vcpu->arch.exception.error_code;
10989 }
10990
10991 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10992 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10993 vmcs12->idt_vectoring_info_field =
10994 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10995 } else if (vcpu->arch.interrupt.pending) {
10996 nr = vcpu->arch.interrupt.nr;
10997 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10998
10999 if (vcpu->arch.interrupt.soft) {
11000 idt_vectoring |= INTR_TYPE_SOFT_INTR;
11001 vmcs12->vm_entry_instruction_len =
11002 vcpu->arch.event_exit_inst_len;
11003 } else
11004 idt_vectoring |= INTR_TYPE_EXT_INTR;
11005
11006 vmcs12->idt_vectoring_info_field = idt_vectoring;
11007 }
11008}
11009
b6b8a145
JK
11010static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11011{
11012 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfcf83b1 11013 unsigned long exit_qual;
b6b8a145 11014
274bba52 11015 if (kvm_event_needs_reinjection(vcpu))
acc9ab60
WL
11016 return -EBUSY;
11017
bfcf83b1
WL
11018 if (vcpu->arch.exception.pending &&
11019 nested_vmx_check_exception(vcpu, &exit_qual)) {
11020 if (vmx->nested.nested_run_pending)
11021 return -EBUSY;
11022 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11023 vcpu->arch.exception.pending = false;
11024 return 0;
11025 }
11026
f4124500
JK
11027 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11028 vmx->nested.preemption_timer_expired) {
11029 if (vmx->nested.nested_run_pending)
11030 return -EBUSY;
11031 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11032 return 0;
11033 }
11034
b6b8a145 11035 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
acc9ab60 11036 if (vmx->nested.nested_run_pending)
b6b8a145
JK
11037 return -EBUSY;
11038 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11039 NMI_VECTOR | INTR_TYPE_NMI_INTR |
11040 INTR_INFO_VALID_MASK, 0);
11041 /*
11042 * The NMI-triggered VM exit counts as injection:
11043 * clear this one and block further NMIs.
11044 */
11045 vcpu->arch.nmi_pending = 0;
11046 vmx_set_nmi_mask(vcpu, true);
11047 return 0;
11048 }
11049
11050 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11051 nested_exit_on_intr(vcpu)) {
11052 if (vmx->nested.nested_run_pending)
11053 return -EBUSY;
11054 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 11055 return 0;
b6b8a145
JK
11056 }
11057
6342c50a
DH
11058 vmx_complete_nested_posted_interrupt(vcpu);
11059 return 0;
b6b8a145
JK
11060}
11061
f4124500
JK
11062static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11063{
11064 ktime_t remaining =
11065 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11066 u64 value;
11067
11068 if (ktime_to_ns(remaining) <= 0)
11069 return 0;
11070
11071 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11072 do_div(value, 1000000);
11073 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11074}
11075
4704d0be 11076/*
cf8b84f4
JM
11077 * Update the guest state fields of vmcs12 to reflect changes that
11078 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11079 * VM-entry controls is also updated, since this is really a guest
11080 * state bit.)
4704d0be 11081 */
cf8b84f4 11082static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 11083{
4704d0be
NHE
11084 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11085 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11086
4704d0be
NHE
11087 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11088 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11089 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11090
11091 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11092 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11093 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11094 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11095 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11096 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11097 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11098 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11099 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11100 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11101 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11102 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11103 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11104 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11105 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11106 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11107 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11108 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11109 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11110 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11111 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11112 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11113 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11114 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11115 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11116 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11117 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11118 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11119 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11120 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11121 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11122 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11123 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11124 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11125 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11126 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11127
4704d0be
NHE
11128 vmcs12->guest_interruptibility_info =
11129 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11130 vmcs12->guest_pending_dbg_exceptions =
11131 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
11132 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11133 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11134 else
11135 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 11136
f4124500
JK
11137 if (nested_cpu_has_preemption_timer(vmcs12)) {
11138 if (vmcs12->vm_exit_controls &
11139 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11140 vmcs12->vmx_preemption_timer_value =
11141 vmx_get_preemption_timer_value(vcpu);
11142 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11143 }
7854cbca 11144
3633cfc3
NHE
11145 /*
11146 * In some cases (usually, nested EPT), L2 is allowed to change its
11147 * own CR3 without exiting. If it has changed it, we must keep it.
11148 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11149 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11150 *
11151 * Additionally, restore L2's PDPTR to vmcs12.
11152 */
11153 if (enable_ept) {
f3531054 11154 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
11155 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11156 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11157 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11158 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11159 }
11160
d281e13b 11161 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
119a9c01 11162
608406e2
WV
11163 if (nested_cpu_has_vid(vmcs12))
11164 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11165
c18911a2
JK
11166 vmcs12->vm_entry_controls =
11167 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 11168 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 11169
2996fca0
JK
11170 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11171 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11172 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11173 }
11174
4704d0be
NHE
11175 /* TODO: These cannot have changed unless we have MSR bitmaps and
11176 * the relevant bit asks not to trap the change */
b8c07d55 11177 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 11178 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
11179 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11180 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
11181 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11182 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11183 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 11184 if (kvm_mpx_supported())
36be0b9d 11185 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
cf8b84f4
JM
11186}
11187
11188/*
11189 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11190 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11191 * and this function updates it to reflect the changes to the guest state while
11192 * L2 was running (and perhaps made some exits which were handled directly by L0
11193 * without going back to L1), and to reflect the exit reason.
11194 * Note that we do not have to copy here all VMCS fields, just those that
11195 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11196 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11197 * which already writes to vmcs12 directly.
11198 */
11199static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11200 u32 exit_reason, u32 exit_intr_info,
11201 unsigned long exit_qualification)
11202{
11203 /* update guest state fields: */
11204 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
11205
11206 /* update exit information fields: */
11207
533558bc
JK
11208 vmcs12->vm_exit_reason = exit_reason;
11209 vmcs12->exit_qualification = exit_qualification;
533558bc 11210 vmcs12->vm_exit_intr_info = exit_intr_info;
7313c698 11211
5f3d5799 11212 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
11213 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11214 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11215
5f3d5799 11216 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7cdc2d62
JM
11217 vmcs12->launch_state = 1;
11218
5f3d5799
JK
11219 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11220 * instead of reading the real value. */
4704d0be 11221 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
11222
11223 /*
11224 * Transfer the event that L0 or L1 may wanted to inject into
11225 * L2 to IDT_VECTORING_INFO_FIELD.
11226 */
11227 vmcs12_save_pending_event(vcpu, vmcs12);
11228 }
11229
11230 /*
11231 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11232 * preserved above and would only end up incorrectly in L1.
11233 */
11234 vcpu->arch.nmi_injected = false;
11235 kvm_clear_exception_queue(vcpu);
11236 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
11237}
11238
11239/*
11240 * A part of what we need to when the nested L2 guest exits and we want to
11241 * run its L1 parent, is to reset L1's guest state to the host state specified
11242 * in vmcs12.
11243 * This function is to be called not only on normal nested exit, but also on
11244 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11245 * Failures During or After Loading Guest State").
11246 * This function should be called when the active VMCS is L1's (vmcs01).
11247 */
733568f9
JK
11248static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11249 struct vmcs12 *vmcs12)
4704d0be 11250{
21feb4eb 11251 struct kvm_segment seg;
ca0bde28 11252 u32 entry_failure_code;
21feb4eb 11253
4704d0be
NHE
11254 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11255 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 11256 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
11257 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11258 else
11259 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11260 vmx_set_efer(vcpu, vcpu->arch.efer);
11261
11262 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11263 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 11264 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
11265 /*
11266 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
11267 * actually changed, because vmx_set_cr0 refers to efer set above.
11268 *
11269 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11270 * (KVM doesn't change it);
4704d0be 11271 */
bd7e5b08 11272 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 11273 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 11274
bd7e5b08 11275 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be 11276 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8eb3f87d 11277 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4704d0be 11278
29bf08f1 11279 nested_ept_uninit_mmu_context(vcpu);
155a97a3 11280
1dc35dac
LP
11281 /*
11282 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11283 * couldn't have changed.
11284 */
11285 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11286 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4704d0be 11287
feaf0c7d
GN
11288 if (!enable_ept)
11289 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11290
4704d0be
NHE
11291 if (enable_vpid) {
11292 /*
11293 * Trivially support vpid by letting L2s share their parent
11294 * L1's vpid. TODO: move to a more elaborate solution, giving
11295 * each L2 its own vpid and exposing the vpid feature to L1.
11296 */
11297 vmx_flush_tlb(vcpu);
11298 }
06a5524f
WV
11299 /* Restore posted intr vector. */
11300 if (nested_cpu_has_posted_intr(vmcs12))
11301 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4704d0be
NHE
11302
11303 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11304 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11305 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11306 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11307 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 11308
36be0b9d
PB
11309 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11310 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11311 vmcs_write64(GUEST_BNDCFGS, 0);
11312
44811c02 11313 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 11314 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
11315 vcpu->arch.pat = vmcs12->host_ia32_pat;
11316 }
4704d0be
NHE
11317 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11318 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11319 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 11320
21feb4eb
ACL
11321 /* Set L1 segment info according to Intel SDM
11322 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11323 seg = (struct kvm_segment) {
11324 .base = 0,
11325 .limit = 0xFFFFFFFF,
11326 .selector = vmcs12->host_cs_selector,
11327 .type = 11,
11328 .present = 1,
11329 .s = 1,
11330 .g = 1
11331 };
11332 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11333 seg.l = 1;
11334 else
11335 seg.db = 1;
11336 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11337 seg = (struct kvm_segment) {
11338 .base = 0,
11339 .limit = 0xFFFFFFFF,
11340 .type = 3,
11341 .present = 1,
11342 .s = 1,
11343 .db = 1,
11344 .g = 1
11345 };
11346 seg.selector = vmcs12->host_ds_selector;
11347 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11348 seg.selector = vmcs12->host_es_selector;
11349 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11350 seg.selector = vmcs12->host_ss_selector;
11351 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11352 seg.selector = vmcs12->host_fs_selector;
11353 seg.base = vmcs12->host_fs_base;
11354 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11355 seg.selector = vmcs12->host_gs_selector;
11356 seg.base = vmcs12->host_gs_base;
11357 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11358 seg = (struct kvm_segment) {
205befd9 11359 .base = vmcs12->host_tr_base,
21feb4eb
ACL
11360 .limit = 0x67,
11361 .selector = vmcs12->host_tr_selector,
11362 .type = 11,
11363 .present = 1
11364 };
11365 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11366
503cd0c5
JK
11367 kvm_set_dr(vcpu, 7, 0x400);
11368 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 11369
3af18d9c
WV
11370 if (cpu_has_vmx_msr_bitmap())
11371 vmx_set_msr_bitmap(vcpu);
11372
ff651cb6
WV
11373 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11374 vmcs12->vm_exit_msr_load_count))
11375 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
11376}
11377
11378/*
11379 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11380 * and modify vmcs12 to make it see what it would expect to see there if
11381 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11382 */
533558bc
JK
11383static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11384 u32 exit_intr_info,
11385 unsigned long exit_qualification)
4704d0be
NHE
11386{
11387 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
11388 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11389
5f3d5799
JK
11390 /* trying to cancel vmlaunch/vmresume is a bug */
11391 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11392
4f350c6d
JM
11393 /*
11394 * The only expected VM-instruction error is "VM entry with
11395 * invalid control field(s)." Anything else indicates a
11396 * problem with L0.
11397 */
11398 WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
11399 VMXERR_ENTRY_INVALID_CONTROL_FIELD));
11400
4704d0be 11401 leave_guest_mode(vcpu);
4704d0be 11402
4f350c6d
JM
11403 if (likely(!vmx->fail)) {
11404 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11405 exit_qualification);
ff651cb6 11406
4f350c6d
JM
11407 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11408 vmcs12->vm_exit_msr_store_count))
11409 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11410 }
cf3215d9 11411
1279a6b1 11412 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
8391ce44
PB
11413 vm_entry_controls_reset_shadow(vmx);
11414 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
11415 vmx_segment_cache_clear(vmx);
11416
4704d0be
NHE
11417 /* if no vmcs02 cache requested, remove the one we used */
11418 if (VMCS02_POOL_SIZE == 0)
11419 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11420
9314006d 11421 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
11422 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11423 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 11424 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
11425 if (vmx->hv_deadline_tsc == -1)
11426 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11427 PIN_BASED_VMX_PREEMPTION_TIMER);
11428 else
11429 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11430 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
11431 if (kvm_has_tsc_control)
11432 decache_tsc_multiplier(vmx);
4704d0be 11433
dccbfcf5
RK
11434 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11435 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11436 vmx_set_virtual_x2apic_mode(vcpu,
11437 vcpu->arch.apic_base & X2APIC_ENABLE);
fb6c8198
JM
11438 } else if (!nested_cpu_has_ept(vmcs12) &&
11439 nested_cpu_has2(vmcs12,
11440 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11441 vmx_flush_tlb_ept_only(vcpu);
dccbfcf5 11442 }
4704d0be
NHE
11443
11444 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11445 vmx->host_rsp = 0;
11446
11447 /* Unpin physical memory we referred to in vmcs02 */
11448 if (vmx->nested.apic_access_page) {
53a70daf 11449 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 11450 vmx->nested.apic_access_page = NULL;
4704d0be 11451 }
a7c0b07d 11452 if (vmx->nested.virtual_apic_page) {
53a70daf 11453 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 11454 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 11455 }
705699a1
WV
11456 if (vmx->nested.pi_desc_page) {
11457 kunmap(vmx->nested.pi_desc_page);
53a70daf 11458 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
11459 vmx->nested.pi_desc_page = NULL;
11460 vmx->nested.pi_desc = NULL;
11461 }
4704d0be 11462
38b99173
TC
11463 /*
11464 * We are now running in L2, mmu_notifier will force to reload the
11465 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11466 */
c83b6d15 11467 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 11468
012f83cb
AG
11469 if (enable_shadow_vmcs)
11470 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
11471
11472 /* in case we halted in L2 */
11473 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4f350c6d
JM
11474
11475 if (likely(!vmx->fail)) {
11476 /*
11477 * TODO: SDM says that with acknowledge interrupt on
11478 * exit, bit 31 of the VM-exit interrupt information
11479 * (valid interrupt) is always set to 1 on
11480 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
11481 * need kvm_cpu_has_interrupt(). See the commit
11482 * message for details.
11483 */
11484 if (nested_exit_intr_ack_set(vcpu) &&
11485 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11486 kvm_cpu_has_interrupt(vcpu)) {
11487 int irq = kvm_cpu_get_interrupt(vcpu);
11488 WARN_ON(irq < 0);
11489 vmcs12->vm_exit_intr_info = irq |
11490 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11491 }
11492
11493 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11494 vmcs12->exit_qualification,
11495 vmcs12->idt_vectoring_info_field,
11496 vmcs12->vm_exit_intr_info,
11497 vmcs12->vm_exit_intr_error_code,
11498 KVM_ISA_VMX);
11499
11500 load_vmcs12_host_state(vcpu, vmcs12);
11501
11502 return;
11503 }
11504
11505 /*
11506 * After an early L2 VM-entry failure, we're now back
11507 * in L1 which thinks it just finished a VMLAUNCH or
11508 * VMRESUME instruction, so we need to set the failure
11509 * flag and the VM-instruction error field of the VMCS
11510 * accordingly.
11511 */
11512 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
11513 /*
11514 * The emulated instruction was already skipped in
11515 * nested_vmx_run, but the updated RIP was never
11516 * written back to the vmcs01.
11517 */
11518 skip_emulated_instruction(vcpu);
11519 vmx->fail = 0;
4704d0be
NHE
11520}
11521
42124925
JK
11522/*
11523 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11524 */
11525static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11526{
2f707d97
WL
11527 if (is_guest_mode(vcpu)) {
11528 to_vmx(vcpu)->nested.nested_run_pending = 0;
533558bc 11529 nested_vmx_vmexit(vcpu, -1, 0, 0);
2f707d97 11530 }
42124925
JK
11531 free_nested(to_vmx(vcpu));
11532}
11533
7c177938
NHE
11534/*
11535 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11536 * 23.7 "VM-entry failures during or after loading guest state" (this also
11537 * lists the acceptable exit-reason and exit-qualification parameters).
11538 * It should only be called before L2 actually succeeded to run, and when
11539 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11540 */
11541static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11542 struct vmcs12 *vmcs12,
11543 u32 reason, unsigned long qualification)
11544{
11545 load_vmcs12_host_state(vcpu, vmcs12);
11546 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11547 vmcs12->exit_qualification = qualification;
11548 nested_vmx_succeed(vcpu);
012f83cb
AG
11549 if (enable_shadow_vmcs)
11550 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
11551}
11552
8a76d7f2
JR
11553static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11554 struct x86_instruction_info *info,
11555 enum x86_intercept_stage stage)
11556{
11557 return X86EMUL_CONTINUE;
11558}
11559
64672c95
YJ
11560#ifdef CONFIG_X86_64
11561/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11562static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11563 u64 divisor, u64 *result)
11564{
11565 u64 low = a << shift, high = a >> (64 - shift);
11566
11567 /* To avoid the overflow on divq */
11568 if (high >= divisor)
11569 return 1;
11570
11571 /* Low hold the result, high hold rem which is discarded */
11572 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11573 "rm" (divisor), "0" (low), "1" (high));
11574 *result = low;
11575
11576 return 0;
11577}
11578
11579static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11580{
11581 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
11582 u64 tscl = rdtsc();
11583 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11584 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
11585
11586 /* Convert to host delta tsc if tsc scaling is enabled */
11587 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11588 u64_shl_div_u64(delta_tsc,
11589 kvm_tsc_scaling_ratio_frac_bits,
11590 vcpu->arch.tsc_scaling_ratio,
11591 &delta_tsc))
11592 return -ERANGE;
11593
11594 /*
11595 * If the delta tsc can't fit in the 32 bit after the multi shift,
11596 * we can't use the preemption timer.
11597 * It's possible that it fits on later vmentries, but checking
11598 * on every vmentry is costly so we just use an hrtimer.
11599 */
11600 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11601 return -ERANGE;
11602
11603 vmx->hv_deadline_tsc = tscl + delta_tsc;
11604 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11605 PIN_BASED_VMX_PREEMPTION_TIMER);
c8533544
WL
11606
11607 return delta_tsc == 0;
64672c95
YJ
11608}
11609
11610static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11611{
11612 struct vcpu_vmx *vmx = to_vmx(vcpu);
11613 vmx->hv_deadline_tsc = -1;
11614 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11615 PIN_BASED_VMX_PREEMPTION_TIMER);
11616}
11617#endif
11618
48d89b92 11619static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 11620{
b4a2d31d
RK
11621 if (ple_gap)
11622 shrink_ple_window(vcpu);
ae97a3b8
RK
11623}
11624
843e4330
KH
11625static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11626 struct kvm_memory_slot *slot)
11627{
11628 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11629 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11630}
11631
11632static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11633 struct kvm_memory_slot *slot)
11634{
11635 kvm_mmu_slot_set_dirty(kvm, slot);
11636}
11637
11638static void vmx_flush_log_dirty(struct kvm *kvm)
11639{
11640 kvm_flush_pml_buffers(kvm);
11641}
11642
c5f983f6
BD
11643static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11644{
11645 struct vmcs12 *vmcs12;
11646 struct vcpu_vmx *vmx = to_vmx(vcpu);
11647 gpa_t gpa;
11648 struct page *page = NULL;
11649 u64 *pml_address;
11650
11651 if (is_guest_mode(vcpu)) {
11652 WARN_ON_ONCE(vmx->nested.pml_full);
11653
11654 /*
11655 * Check if PML is enabled for the nested guest.
11656 * Whether eptp bit 6 is set is already checked
11657 * as part of A/D emulation.
11658 */
11659 vmcs12 = get_vmcs12(vcpu);
11660 if (!nested_cpu_has_pml(vmcs12))
11661 return 0;
11662
4769886b 11663 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
c5f983f6
BD
11664 vmx->nested.pml_full = true;
11665 return 1;
11666 }
11667
11668 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11669
5e2f30b7
DH
11670 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11671 if (is_error_page(page))
c5f983f6
BD
11672 return 0;
11673
11674 pml_address = kmap(page);
11675 pml_address[vmcs12->guest_pml_index--] = gpa;
11676 kunmap(page);
53a70daf 11677 kvm_release_page_clean(page);
c5f983f6
BD
11678 }
11679
11680 return 0;
11681}
11682
843e4330
KH
11683static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11684 struct kvm_memory_slot *memslot,
11685 gfn_t offset, unsigned long mask)
11686{
11687 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11688}
11689
cd39e117
PB
11690static void __pi_post_block(struct kvm_vcpu *vcpu)
11691{
11692 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11693 struct pi_desc old, new;
11694 unsigned int dest;
cd39e117
PB
11695
11696 do {
11697 old.control = new.control = pi_desc->control;
8b306e2f
PB
11698 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
11699 "Wakeup handler not enabled while the VCPU is blocked\n");
cd39e117
PB
11700
11701 dest = cpu_physical_id(vcpu->cpu);
11702
11703 if (x2apic_enabled())
11704 new.ndst = dest;
11705 else
11706 new.ndst = (dest << 8) & 0xFF00;
11707
cd39e117
PB
11708 /* set 'NV' to 'notification vector' */
11709 new.nv = POSTED_INTR_VECTOR;
c0a1666b
PB
11710 } while (cmpxchg64(&pi_desc->control, old.control,
11711 new.control) != old.control);
cd39e117 11712
8b306e2f
PB
11713 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
11714 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117 11715 list_del(&vcpu->blocked_vcpu_list);
8b306e2f 11716 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117
PB
11717 vcpu->pre_pcpu = -1;
11718 }
11719}
11720
bf9f6ac8
FW
11721/*
11722 * This routine does the following things for vCPU which is going
11723 * to be blocked if VT-d PI is enabled.
11724 * - Store the vCPU to the wakeup list, so when interrupts happen
11725 * we can find the right vCPU to wake up.
11726 * - Change the Posted-interrupt descriptor as below:
11727 * 'NDST' <-- vcpu->pre_pcpu
11728 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11729 * - If 'ON' is set during this process, which means at least one
11730 * interrupt is posted for this vCPU, we cannot block it, in
11731 * this case, return 1, otherwise, return 0.
11732 *
11733 */
bc22512b 11734static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8 11735{
bf9f6ac8
FW
11736 unsigned int dest;
11737 struct pi_desc old, new;
11738 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11739
11740 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11741 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11742 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11743 return 0;
11744
8b306e2f
PB
11745 WARN_ON(irqs_disabled());
11746 local_irq_disable();
11747 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
11748 vcpu->pre_pcpu = vcpu->cpu;
11749 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11750 list_add_tail(&vcpu->blocked_vcpu_list,
11751 &per_cpu(blocked_vcpu_on_cpu,
11752 vcpu->pre_pcpu));
11753 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11754 }
bf9f6ac8
FW
11755
11756 do {
11757 old.control = new.control = pi_desc->control;
11758
bf9f6ac8
FW
11759 WARN((pi_desc->sn == 1),
11760 "Warning: SN field of posted-interrupts "
11761 "is set before blocking\n");
11762
11763 /*
11764 * Since vCPU can be preempted during this process,
11765 * vcpu->cpu could be different with pre_pcpu, we
11766 * need to set pre_pcpu as the destination of wakeup
11767 * notification event, then we can find the right vCPU
11768 * to wakeup in wakeup handler if interrupts happen
11769 * when the vCPU is in blocked state.
11770 */
11771 dest = cpu_physical_id(vcpu->pre_pcpu);
11772
11773 if (x2apic_enabled())
11774 new.ndst = dest;
11775 else
11776 new.ndst = (dest << 8) & 0xFF00;
11777
11778 /* set 'NV' to 'wakeup vector' */
11779 new.nv = POSTED_INTR_WAKEUP_VECTOR;
c0a1666b
PB
11780 } while (cmpxchg64(&pi_desc->control, old.control,
11781 new.control) != old.control);
bf9f6ac8 11782
8b306e2f
PB
11783 /* We should not block the vCPU if an interrupt is posted for it. */
11784 if (pi_test_on(pi_desc) == 1)
11785 __pi_post_block(vcpu);
11786
11787 local_irq_enable();
11788 return (vcpu->pre_pcpu == -1);
bf9f6ac8
FW
11789}
11790
bc22512b
YJ
11791static int vmx_pre_block(struct kvm_vcpu *vcpu)
11792{
11793 if (pi_pre_block(vcpu))
11794 return 1;
11795
64672c95
YJ
11796 if (kvm_lapic_hv_timer_in_use(vcpu))
11797 kvm_lapic_switch_to_sw_timer(vcpu);
11798
bc22512b
YJ
11799 return 0;
11800}
11801
11802static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8 11803{
8b306e2f 11804 if (vcpu->pre_pcpu == -1)
bf9f6ac8
FW
11805 return;
11806
8b306e2f
PB
11807 WARN_ON(irqs_disabled());
11808 local_irq_disable();
cd39e117 11809 __pi_post_block(vcpu);
8b306e2f 11810 local_irq_enable();
bf9f6ac8
FW
11811}
11812
bc22512b
YJ
11813static void vmx_post_block(struct kvm_vcpu *vcpu)
11814{
64672c95
YJ
11815 if (kvm_x86_ops->set_hv_timer)
11816 kvm_lapic_switch_to_hv_timer(vcpu);
11817
bc22512b
YJ
11818 pi_post_block(vcpu);
11819}
11820
efc64404
FW
11821/*
11822 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11823 *
11824 * @kvm: kvm
11825 * @host_irq: host irq of the interrupt
11826 * @guest_irq: gsi of the interrupt
11827 * @set: set or unset PI
11828 * returns 0 on success, < 0 on failure
11829 */
11830static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11831 uint32_t guest_irq, bool set)
11832{
11833 struct kvm_kernel_irq_routing_entry *e;
11834 struct kvm_irq_routing_table *irq_rt;
11835 struct kvm_lapic_irq irq;
11836 struct kvm_vcpu *vcpu;
11837 struct vcpu_data vcpu_info;
3a8b0677 11838 int idx, ret = 0;
efc64404
FW
11839
11840 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
11841 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11842 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
11843 return 0;
11844
11845 idx = srcu_read_lock(&kvm->irq_srcu);
11846 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
3a8b0677
JS
11847 if (guest_irq >= irq_rt->nr_rt_entries ||
11848 hlist_empty(&irq_rt->map[guest_irq])) {
11849 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11850 guest_irq, irq_rt->nr_rt_entries);
11851 goto out;
11852 }
efc64404
FW
11853
11854 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11855 if (e->type != KVM_IRQ_ROUTING_MSI)
11856 continue;
11857 /*
11858 * VT-d PI cannot support posting multicast/broadcast
11859 * interrupts to a vCPU, we still use interrupt remapping
11860 * for these kind of interrupts.
11861 *
11862 * For lowest-priority interrupts, we only support
11863 * those with single CPU as the destination, e.g. user
11864 * configures the interrupts via /proc/irq or uses
11865 * irqbalance to make the interrupts single-CPU.
11866 *
11867 * We will support full lowest-priority interrupt later.
11868 */
11869
37131313 11870 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
11871 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11872 /*
11873 * Make sure the IRTE is in remapped mode if
11874 * we don't handle it in posted mode.
11875 */
11876 ret = irq_set_vcpu_affinity(host_irq, NULL);
11877 if (ret < 0) {
11878 printk(KERN_INFO
11879 "failed to back to remapped mode, irq: %u\n",
11880 host_irq);
11881 goto out;
11882 }
11883
efc64404 11884 continue;
23a1c257 11885 }
efc64404
FW
11886
11887 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11888 vcpu_info.vector = irq.vector;
11889
b6ce9780 11890 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
11891 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11892
11893 if (set)
11894 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
dc91f2eb 11895 else
efc64404 11896 ret = irq_set_vcpu_affinity(host_irq, NULL);
efc64404
FW
11897
11898 if (ret < 0) {
11899 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11900 __func__);
11901 goto out;
11902 }
11903 }
11904
11905 ret = 0;
11906out:
11907 srcu_read_unlock(&kvm->irq_srcu, idx);
11908 return ret;
11909}
11910
c45dcc71
AR
11911static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11912{
11913 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11914 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11915 FEATURE_CONTROL_LMCE;
11916 else
11917 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11918 ~FEATURE_CONTROL_LMCE;
11919}
11920
404f6aac 11921static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
11922 .cpu_has_kvm_support = cpu_has_kvm_support,
11923 .disabled_by_bios = vmx_disabled_by_bios,
11924 .hardware_setup = hardware_setup,
11925 .hardware_unsetup = hardware_unsetup,
002c7f7c 11926 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
11927 .hardware_enable = hardware_enable,
11928 .hardware_disable = hardware_disable,
04547156 11929 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 11930 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
11931
11932 .vcpu_create = vmx_create_vcpu,
11933 .vcpu_free = vmx_free_vcpu,
04d2cc77 11934 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 11935
04d2cc77 11936 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
11937 .vcpu_load = vmx_vcpu_load,
11938 .vcpu_put = vmx_vcpu_put,
11939
a96036b8 11940 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
11941 .get_msr = vmx_get_msr,
11942 .set_msr = vmx_set_msr,
11943 .get_segment_base = vmx_get_segment_base,
11944 .get_segment = vmx_get_segment,
11945 .set_segment = vmx_set_segment,
2e4d2653 11946 .get_cpl = vmx_get_cpl,
6aa8b732 11947 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 11948 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 11949 .decache_cr3 = vmx_decache_cr3,
25c4c276 11950 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 11951 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
11952 .set_cr3 = vmx_set_cr3,
11953 .set_cr4 = vmx_set_cr4,
6aa8b732 11954 .set_efer = vmx_set_efer,
6aa8b732
AK
11955 .get_idt = vmx_get_idt,
11956 .set_idt = vmx_set_idt,
11957 .get_gdt = vmx_get_gdt,
11958 .set_gdt = vmx_set_gdt,
73aaf249
JK
11959 .get_dr6 = vmx_get_dr6,
11960 .set_dr6 = vmx_set_dr6,
020df079 11961 .set_dr7 = vmx_set_dr7,
81908bf4 11962 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 11963 .cache_reg = vmx_cache_reg,
6aa8b732
AK
11964 .get_rflags = vmx_get_rflags,
11965 .set_rflags = vmx_set_rflags,
be94f6b7 11966
6aa8b732 11967 .tlb_flush = vmx_flush_tlb,
6aa8b732 11968
6aa8b732 11969 .run = vmx_vcpu_run,
6062d012 11970 .handle_exit = vmx_handle_exit,
6aa8b732 11971 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
11972 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11973 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 11974 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 11975 .set_irq = vmx_inject_irq,
95ba8273 11976 .set_nmi = vmx_inject_nmi,
298101da 11977 .queue_exception = vmx_queue_exception,
b463a6f7 11978 .cancel_injection = vmx_cancel_injection,
78646121 11979 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 11980 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
11981 .get_nmi_mask = vmx_get_nmi_mask,
11982 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
11983 .enable_nmi_window = enable_nmi_window,
11984 .enable_irq_window = enable_irq_window,
11985 .update_cr8_intercept = update_cr8_intercept,
8d14695f 11986 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 11987 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
11988 .get_enable_apicv = vmx_get_enable_apicv,
11989 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 11990 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 11991 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
11992 .hwapic_irr_update = vmx_hwapic_irr_update,
11993 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
11994 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11995 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 11996
cbc94022 11997 .set_tss_addr = vmx_set_tss_addr,
67253af5 11998 .get_tdp_level = get_ept_level,
4b12f0de 11999 .get_mt_mask = vmx_get_mt_mask,
229456fc 12000
586f9607 12001 .get_exit_info = vmx_get_exit_info,
586f9607 12002
17cc3935 12003 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
12004
12005 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
12006
12007 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 12008 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
12009
12010 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
12011
12012 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
12013
12014 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
12015
12016 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
12017
12018 .check_intercept = vmx_check_intercept,
a547c6db 12019 .handle_external_intr = vmx_handle_external_intr,
da8999d3 12020 .mpx_supported = vmx_mpx_supported,
55412b2e 12021 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
12022
12023 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
12024
12025 .sched_in = vmx_sched_in,
843e4330
KH
12026
12027 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12028 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12029 .flush_log_dirty = vmx_flush_log_dirty,
12030 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
c5f983f6 12031 .write_log_dirty = vmx_write_pml_buffer,
25462f7f 12032
bf9f6ac8
FW
12033 .pre_block = vmx_pre_block,
12034 .post_block = vmx_post_block,
12035
25462f7f 12036 .pmu_ops = &intel_pmu_ops,
efc64404
FW
12037
12038 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
12039
12040#ifdef CONFIG_X86_64
12041 .set_hv_timer = vmx_set_hv_timer,
12042 .cancel_hv_timer = vmx_cancel_hv_timer,
12043#endif
c45dcc71
AR
12044
12045 .setup_mce = vmx_setup_mce,
6aa8b732
AK
12046};
12047
12048static int __init vmx_init(void)
12049{
34a1cd60
TC
12050 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12051 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 12052 if (r)
34a1cd60 12053 return r;
25c5f225 12054
2965faa5 12055#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
12056 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12057 crash_vmclear_local_loaded_vmcss);
12058#endif
12059
fdef3ad1 12060 return 0;
6aa8b732
AK
12061}
12062
12063static void __exit vmx_exit(void)
12064{
2965faa5 12065#ifdef CONFIG_KEXEC_CORE
3b63a43f 12066 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
12067 synchronize_rcu();
12068#endif
12069
cb498ea2 12070 kvm_exit();
6aa8b732
AK
12071}
12072
12073module_init(vmx_init)
12074module_exit(vmx_exit)