]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: MMU: Rename PT64_ROOT_LEVEL to PT64_ROOT_4LEVEL.
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
c207aee4 36#include <linux/frame.h>
5fdbf976 37#include "kvm_cache_regs.h"
35920a35 38#include "x86.h"
e495606d 39
28b835d6 40#include <asm/cpu.h>
6aa8b732 41#include <asm/io.h>
3b3be0d1 42#include <asm/desc.h>
13673a90 43#include <asm/vmx.h>
6210e37b 44#include <asm/virtext.h>
a0861c02 45#include <asm/mce.h>
952f07ec 46#include <asm/fpu/internal.h>
d7cd9796 47#include <asm/perf_event.h>
81908bf4 48#include <asm/debugreg.h>
8f536b76 49#include <asm/kexec.h>
dab2087d 50#include <asm/apic.h>
efc64404 51#include <asm/irq_remapping.h>
d6e41f11 52#include <asm/mmu_context.h>
6aa8b732 53
229456fc 54#include "trace.h"
25462f7f 55#include "pmu.h"
229456fc 56
4ecac3fd 57#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
58#define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 60
6aa8b732
AK
61MODULE_AUTHOR("Qumranet");
62MODULE_LICENSE("GPL");
63
e9bda3b3
JT
64static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67};
68MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
476bc001 70static bool __read_mostly enable_vpid = 1;
736caefe 71module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 72
476bc001 73static bool __read_mostly flexpriority_enabled = 1;
736caefe 74module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 75
476bc001 76static bool __read_mostly enable_ept = 1;
736caefe 77module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 78
476bc001 79static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
80module_param_named(unrestricted_guest,
81 enable_unrestricted_guest, bool, S_IRUGO);
82
83c3a331
XH
83static bool __read_mostly enable_ept_ad_bits = 1;
84module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
a27685c3 86static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 87module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 88
476bc001 89static bool __read_mostly fasteoi = 1;
58fbbf26
KT
90module_param(fasteoi, bool, S_IRUGO);
91
5a71785d 92static bool __read_mostly enable_apicv = 1;
01e439be 93module_param(enable_apicv, bool, S_IRUGO);
83d4c286 94
abc4fc58
AG
95static bool __read_mostly enable_shadow_vmcs = 1;
96module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
97/*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
476bc001 102static bool __read_mostly nested = 0;
801d3424
NHE
103module_param(nested, bool, S_IRUGO);
104
20300099
WL
105static u64 __read_mostly host_xss;
106
843e4330
KH
107static bool __read_mostly enable_pml = 1;
108module_param_named(pml, enable_pml, bool, S_IRUGO);
109
64903d61
HZ
110#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
111
64672c95
YJ
112/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
113static int __read_mostly cpu_preemption_timer_multi;
114static bool __read_mostly enable_preemption_timer = 1;
115#ifdef CONFIG_X86_64
116module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117#endif
118
5037878e
GN
119#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
121#define KVM_VM_CR0_ALWAYS_ON \
122 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
123#define KVM_CR4_GUEST_OWNED_BITS \
124 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 125 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 126
cdc0e244
AK
127#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
78ac8b47
AK
130#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
f4124500
JK
132#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
16c2aec6
JD
134/*
135 * Hyper-V requires all of these, so mark them as supported even though
136 * they are just treated the same as all-context.
137 */
138#define VMX_VPID_EXTENT_SUPPORTED_MASK \
139 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
140 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
141 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
4b8d54f9
ZE
144/*
145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146 * ple_gap: upper bound on the amount of time between two successive
147 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 148 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
149 * ple_window: upper bound on the amount of time a guest is allowed to execute
150 * in a PAUSE loop. Tests indicate that most spinlocks are held for
151 * less than 2^12 cycles
152 * Time is measured based on a counter that runs at the same rate as the TSC,
153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
154 */
b4a2d31d
RK
155#define KVM_VMX_DEFAULT_PLE_GAP 128
156#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
157#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
158#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
160 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
4b8d54f9
ZE
162static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163module_param(ple_gap, int, S_IRUGO);
164
165static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166module_param(ple_window, int, S_IRUGO);
167
b4a2d31d
RK
168/* Default doubles per-vcpu window every exit. */
169static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170module_param(ple_window_grow, int, S_IRUGO);
171
172/* Default resets per-vcpu window every exit to ple_window. */
173static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174module_param(ple_window_shrink, int, S_IRUGO);
175
176/* Default is to compute the maximum so we can never overflow. */
177static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179module_param(ple_window_max, int, S_IRUGO);
180
83287ea4
AK
181extern const ulong vmx_return;
182
8bf00a52 183#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 184#define VMCS02_POOL_SIZE 1
61d2ef2c 185
a2fa3e9f
GH
186struct vmcs {
187 u32 revision_id;
188 u32 abort;
189 char data[0];
190};
191
d462b819
NHE
192/*
193 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195 * loaded on this CPU (so we can clear them if the CPU goes down).
196 */
197struct loaded_vmcs {
198 struct vmcs *vmcs;
355f4fb1 199 struct vmcs *shadow_vmcs;
d462b819 200 int cpu;
4c4a6f79
PB
201 bool launched;
202 bool nmi_known_unmasked;
d462b819
NHE
203 struct list_head loaded_vmcss_on_cpu_link;
204};
205
26bb0981
AK
206struct shared_msr_entry {
207 unsigned index;
208 u64 data;
d5696725 209 u64 mask;
26bb0981
AK
210};
211
a9d30f33
NHE
212/*
213 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
214 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
215 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
216 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
217 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
218 * More than one of these structures may exist, if L1 runs multiple L2 guests.
219 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
220 * underlying hardware which will be used to run L2.
221 * This structure is packed to ensure that its layout is identical across
222 * machines (necessary for live migration).
223 * If there are changes in this struct, VMCS12_REVISION must be changed.
224 */
22bd0358 225typedef u64 natural_width;
a9d30f33
NHE
226struct __packed vmcs12 {
227 /* According to the Intel spec, a VMCS region must start with the
228 * following two fields. Then follow implementation-specific data.
229 */
230 u32 revision_id;
231 u32 abort;
22bd0358 232
27d6c865
NHE
233 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
234 u32 padding[7]; /* room for future expansion */
235
22bd0358
NHE
236 u64 io_bitmap_a;
237 u64 io_bitmap_b;
238 u64 msr_bitmap;
239 u64 vm_exit_msr_store_addr;
240 u64 vm_exit_msr_load_addr;
241 u64 vm_entry_msr_load_addr;
242 u64 tsc_offset;
243 u64 virtual_apic_page_addr;
244 u64 apic_access_addr;
705699a1 245 u64 posted_intr_desc_addr;
27c42a1b 246 u64 vm_function_control;
22bd0358 247 u64 ept_pointer;
608406e2
WV
248 u64 eoi_exit_bitmap0;
249 u64 eoi_exit_bitmap1;
250 u64 eoi_exit_bitmap2;
251 u64 eoi_exit_bitmap3;
41ab9372 252 u64 eptp_list_address;
81dc01f7 253 u64 xss_exit_bitmap;
22bd0358
NHE
254 u64 guest_physical_address;
255 u64 vmcs_link_pointer;
c5f983f6 256 u64 pml_address;
22bd0358
NHE
257 u64 guest_ia32_debugctl;
258 u64 guest_ia32_pat;
259 u64 guest_ia32_efer;
260 u64 guest_ia32_perf_global_ctrl;
261 u64 guest_pdptr0;
262 u64 guest_pdptr1;
263 u64 guest_pdptr2;
264 u64 guest_pdptr3;
36be0b9d 265 u64 guest_bndcfgs;
22bd0358
NHE
266 u64 host_ia32_pat;
267 u64 host_ia32_efer;
268 u64 host_ia32_perf_global_ctrl;
269 u64 padding64[8]; /* room for future expansion */
270 /*
271 * To allow migration of L1 (complete with its L2 guests) between
272 * machines of different natural widths (32 or 64 bit), we cannot have
273 * unsigned long fields with no explict size. We use u64 (aliased
274 * natural_width) instead. Luckily, x86 is little-endian.
275 */
276 natural_width cr0_guest_host_mask;
277 natural_width cr4_guest_host_mask;
278 natural_width cr0_read_shadow;
279 natural_width cr4_read_shadow;
280 natural_width cr3_target_value0;
281 natural_width cr3_target_value1;
282 natural_width cr3_target_value2;
283 natural_width cr3_target_value3;
284 natural_width exit_qualification;
285 natural_width guest_linear_address;
286 natural_width guest_cr0;
287 natural_width guest_cr3;
288 natural_width guest_cr4;
289 natural_width guest_es_base;
290 natural_width guest_cs_base;
291 natural_width guest_ss_base;
292 natural_width guest_ds_base;
293 natural_width guest_fs_base;
294 natural_width guest_gs_base;
295 natural_width guest_ldtr_base;
296 natural_width guest_tr_base;
297 natural_width guest_gdtr_base;
298 natural_width guest_idtr_base;
299 natural_width guest_dr7;
300 natural_width guest_rsp;
301 natural_width guest_rip;
302 natural_width guest_rflags;
303 natural_width guest_pending_dbg_exceptions;
304 natural_width guest_sysenter_esp;
305 natural_width guest_sysenter_eip;
306 natural_width host_cr0;
307 natural_width host_cr3;
308 natural_width host_cr4;
309 natural_width host_fs_base;
310 natural_width host_gs_base;
311 natural_width host_tr_base;
312 natural_width host_gdtr_base;
313 natural_width host_idtr_base;
314 natural_width host_ia32_sysenter_esp;
315 natural_width host_ia32_sysenter_eip;
316 natural_width host_rsp;
317 natural_width host_rip;
318 natural_width paddingl[8]; /* room for future expansion */
319 u32 pin_based_vm_exec_control;
320 u32 cpu_based_vm_exec_control;
321 u32 exception_bitmap;
322 u32 page_fault_error_code_mask;
323 u32 page_fault_error_code_match;
324 u32 cr3_target_count;
325 u32 vm_exit_controls;
326 u32 vm_exit_msr_store_count;
327 u32 vm_exit_msr_load_count;
328 u32 vm_entry_controls;
329 u32 vm_entry_msr_load_count;
330 u32 vm_entry_intr_info_field;
331 u32 vm_entry_exception_error_code;
332 u32 vm_entry_instruction_len;
333 u32 tpr_threshold;
334 u32 secondary_vm_exec_control;
335 u32 vm_instruction_error;
336 u32 vm_exit_reason;
337 u32 vm_exit_intr_info;
338 u32 vm_exit_intr_error_code;
339 u32 idt_vectoring_info_field;
340 u32 idt_vectoring_error_code;
341 u32 vm_exit_instruction_len;
342 u32 vmx_instruction_info;
343 u32 guest_es_limit;
344 u32 guest_cs_limit;
345 u32 guest_ss_limit;
346 u32 guest_ds_limit;
347 u32 guest_fs_limit;
348 u32 guest_gs_limit;
349 u32 guest_ldtr_limit;
350 u32 guest_tr_limit;
351 u32 guest_gdtr_limit;
352 u32 guest_idtr_limit;
353 u32 guest_es_ar_bytes;
354 u32 guest_cs_ar_bytes;
355 u32 guest_ss_ar_bytes;
356 u32 guest_ds_ar_bytes;
357 u32 guest_fs_ar_bytes;
358 u32 guest_gs_ar_bytes;
359 u32 guest_ldtr_ar_bytes;
360 u32 guest_tr_ar_bytes;
361 u32 guest_interruptibility_info;
362 u32 guest_activity_state;
363 u32 guest_sysenter_cs;
364 u32 host_ia32_sysenter_cs;
0238ea91
JK
365 u32 vmx_preemption_timer_value;
366 u32 padding32[7]; /* room for future expansion */
22bd0358 367 u16 virtual_processor_id;
705699a1 368 u16 posted_intr_nv;
22bd0358
NHE
369 u16 guest_es_selector;
370 u16 guest_cs_selector;
371 u16 guest_ss_selector;
372 u16 guest_ds_selector;
373 u16 guest_fs_selector;
374 u16 guest_gs_selector;
375 u16 guest_ldtr_selector;
376 u16 guest_tr_selector;
608406e2 377 u16 guest_intr_status;
c5f983f6 378 u16 guest_pml_index;
22bd0358
NHE
379 u16 host_es_selector;
380 u16 host_cs_selector;
381 u16 host_ss_selector;
382 u16 host_ds_selector;
383 u16 host_fs_selector;
384 u16 host_gs_selector;
385 u16 host_tr_selector;
a9d30f33
NHE
386};
387
388/*
389 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
390 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
391 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
392 */
393#define VMCS12_REVISION 0x11e57ed0
394
395/*
396 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
397 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
398 * current implementation, 4K are reserved to avoid future complications.
399 */
400#define VMCS12_SIZE 0x1000
401
ff2f6fe9
NHE
402/* Used to remember the last vmcs02 used for some recently used vmcs12s */
403struct vmcs02_list {
404 struct list_head list;
405 gpa_t vmptr;
406 struct loaded_vmcs vmcs02;
407};
408
ec378aee
NHE
409/*
410 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
411 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
412 */
413struct nested_vmx {
414 /* Has the level1 guest done vmxon? */
415 bool vmxon;
3573e22c 416 gpa_t vmxon_ptr;
c5f983f6 417 bool pml_full;
a9d30f33
NHE
418
419 /* The guest-physical address of the current VMCS L1 keeps for L2 */
420 gpa_t current_vmptr;
4f2777bc
DM
421 /*
422 * Cache of the guest's VMCS, existing outside of guest memory.
423 * Loaded from guest memory during VMPTRLD. Flushed to guest
8ca44e88 424 * memory during VMCLEAR and VMPTRLD.
4f2777bc
DM
425 */
426 struct vmcs12 *cached_vmcs12;
012f83cb
AG
427 /*
428 * Indicates if the shadow vmcs must be updated with the
429 * data hold by vmcs12
430 */
431 bool sync_shadow_vmcs;
ff2f6fe9
NHE
432
433 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
434 struct list_head vmcs02_pool;
435 int vmcs02_num;
dccbfcf5 436 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
437 /* L2 must run next, and mustn't decide to exit to L1. */
438 bool nested_run_pending;
fe3ef05c
NHE
439 /*
440 * Guest pages referred to in vmcs02 with host-physical pointers, so
441 * we must keep them pinned while L2 runs.
442 */
443 struct page *apic_access_page;
a7c0b07d 444 struct page *virtual_apic_page;
705699a1
WV
445 struct page *pi_desc_page;
446 struct pi_desc *pi_desc;
447 bool pi_pending;
448 u16 posted_intr_nv;
f4124500 449
d048c098
RK
450 unsigned long *msr_bitmap;
451
f4124500
JK
452 struct hrtimer preemption_timer;
453 bool preemption_timer_expired;
2996fca0
JK
454
455 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
456 u64 vmcs01_debugctl;
b9c237bb 457
5c614b35
WL
458 u16 vpid02;
459 u16 last_vpid;
460
0115f9cb
DM
461 /*
462 * We only store the "true" versions of the VMX capability MSRs. We
463 * generate the "non-true" versions by setting the must-be-1 bits
464 * according to the SDM.
465 */
b9c237bb
WV
466 u32 nested_vmx_procbased_ctls_low;
467 u32 nested_vmx_procbased_ctls_high;
b9c237bb
WV
468 u32 nested_vmx_secondary_ctls_low;
469 u32 nested_vmx_secondary_ctls_high;
470 u32 nested_vmx_pinbased_ctls_low;
471 u32 nested_vmx_pinbased_ctls_high;
472 u32 nested_vmx_exit_ctls_low;
473 u32 nested_vmx_exit_ctls_high;
b9c237bb
WV
474 u32 nested_vmx_entry_ctls_low;
475 u32 nested_vmx_entry_ctls_high;
b9c237bb
WV
476 u32 nested_vmx_misc_low;
477 u32 nested_vmx_misc_high;
478 u32 nested_vmx_ept_caps;
99b83ac8 479 u32 nested_vmx_vpid_caps;
62cc6b9d
DM
480 u64 nested_vmx_basic;
481 u64 nested_vmx_cr0_fixed0;
482 u64 nested_vmx_cr0_fixed1;
483 u64 nested_vmx_cr4_fixed0;
484 u64 nested_vmx_cr4_fixed1;
485 u64 nested_vmx_vmcs_enum;
27c42a1b 486 u64 nested_vmx_vmfunc_controls;
ec378aee
NHE
487};
488
01e439be 489#define POSTED_INTR_ON 0
ebbfc765
FW
490#define POSTED_INTR_SN 1
491
01e439be
YZ
492/* Posted-Interrupt Descriptor */
493struct pi_desc {
494 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
495 union {
496 struct {
497 /* bit 256 - Outstanding Notification */
498 u16 on : 1,
499 /* bit 257 - Suppress Notification */
500 sn : 1,
501 /* bit 271:258 - Reserved */
502 rsvd_1 : 14;
503 /* bit 279:272 - Notification Vector */
504 u8 nv;
505 /* bit 287:280 - Reserved */
506 u8 rsvd_2;
507 /* bit 319:288 - Notification Destination */
508 u32 ndst;
509 };
510 u64 control;
511 };
512 u32 rsvd[6];
01e439be
YZ
513} __aligned(64);
514
a20ed54d
YZ
515static bool pi_test_and_set_on(struct pi_desc *pi_desc)
516{
517 return test_and_set_bit(POSTED_INTR_ON,
518 (unsigned long *)&pi_desc->control);
519}
520
521static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
522{
523 return test_and_clear_bit(POSTED_INTR_ON,
524 (unsigned long *)&pi_desc->control);
525}
526
527static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
528{
529 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
530}
531
ebbfc765
FW
532static inline void pi_clear_sn(struct pi_desc *pi_desc)
533{
534 return clear_bit(POSTED_INTR_SN,
535 (unsigned long *)&pi_desc->control);
536}
537
538static inline void pi_set_sn(struct pi_desc *pi_desc)
539{
540 return set_bit(POSTED_INTR_SN,
541 (unsigned long *)&pi_desc->control);
542}
543
ad361091
PB
544static inline void pi_clear_on(struct pi_desc *pi_desc)
545{
546 clear_bit(POSTED_INTR_ON,
547 (unsigned long *)&pi_desc->control);
548}
549
ebbfc765
FW
550static inline int pi_test_on(struct pi_desc *pi_desc)
551{
552 return test_bit(POSTED_INTR_ON,
553 (unsigned long *)&pi_desc->control);
554}
555
556static inline int pi_test_sn(struct pi_desc *pi_desc)
557{
558 return test_bit(POSTED_INTR_SN,
559 (unsigned long *)&pi_desc->control);
560}
561
a2fa3e9f 562struct vcpu_vmx {
fb3f0f51 563 struct kvm_vcpu vcpu;
313dbd49 564 unsigned long host_rsp;
29bd8a78 565 u8 fail;
51aa01d1 566 u32 exit_intr_info;
1155f76a 567 u32 idt_vectoring_info;
6de12732 568 ulong rflags;
26bb0981 569 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
570 int nmsrs;
571 int save_nmsrs;
a547c6db 572 unsigned long host_idt_base;
a2fa3e9f 573#ifdef CONFIG_X86_64
44ea2b17
AK
574 u64 msr_host_kernel_gs_base;
575 u64 msr_guest_kernel_gs_base;
a2fa3e9f 576#endif
2961e876
GN
577 u32 vm_entry_controls_shadow;
578 u32 vm_exit_controls_shadow;
80154d77
PB
579 u32 secondary_exec_control;
580
d462b819
NHE
581 /*
582 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
583 * non-nested (L1) guest, it always points to vmcs01. For a nested
584 * guest (L2), it points to a different VMCS.
585 */
586 struct loaded_vmcs vmcs01;
587 struct loaded_vmcs *loaded_vmcs;
588 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
589 struct msr_autoload {
590 unsigned nr;
591 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
592 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
593 } msr_autoload;
a2fa3e9f
GH
594 struct {
595 int loaded;
596 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
597#ifdef CONFIG_X86_64
598 u16 ds_sel, es_sel;
599#endif
152d3f2f
LV
600 int gs_ldt_reload_needed;
601 int fs_reload_needed;
da8999d3 602 u64 msr_host_bndcfgs;
d6e41f11 603 unsigned long vmcs_host_cr3; /* May not match real cr3 */
d974baa3 604 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 605 } host_state;
9c8cba37 606 struct {
7ffd92c5 607 int vm86_active;
78ac8b47 608 ulong save_rflags;
f5f7b2fe
AK
609 struct kvm_segment segs[8];
610 } rmode;
611 struct {
612 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
613 struct kvm_save_segment {
614 u16 selector;
615 unsigned long base;
616 u32 limit;
617 u32 ar;
f5f7b2fe 618 } seg[8];
2fb92db1 619 } segment_cache;
2384d2b3 620 int vpid;
04fa4d32 621 bool emulation_required;
3b86cd99 622
a0861c02 623 u32 exit_reason;
4e47c7a6 624
01e439be
YZ
625 /* Posted interrupt descriptor */
626 struct pi_desc pi_desc;
627
ec378aee
NHE
628 /* Support for a guest hypervisor (nested VMX) */
629 struct nested_vmx nested;
a7653ecd
RK
630
631 /* Dynamic PLE window. */
632 int ple_window;
633 bool ple_window_dirty;
843e4330
KH
634
635 /* Support for PML */
636#define PML_ENTITY_NUM 512
637 struct page *pml_pg;
2680d6da 638
64672c95
YJ
639 /* apic deadline value in host tsc */
640 u64 hv_deadline_tsc;
641
2680d6da 642 u64 current_tsc_ratio;
1be0e61c
XG
643
644 bool guest_pkru_valid;
645 u32 guest_pkru;
646 u32 host_pkru;
3b84080b 647
37e4c997
HZ
648 /*
649 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
650 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
651 * in msr_ia32_feature_control_valid_bits.
652 */
3b84080b 653 u64 msr_ia32_feature_control;
37e4c997 654 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
655};
656
2fb92db1
AK
657enum segment_cache_field {
658 SEG_FIELD_SEL = 0,
659 SEG_FIELD_BASE = 1,
660 SEG_FIELD_LIMIT = 2,
661 SEG_FIELD_AR = 3,
662
663 SEG_FIELD_NR = 4
664};
665
a2fa3e9f
GH
666static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
667{
fb3f0f51 668 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
669}
670
efc64404
FW
671static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
672{
673 return &(to_vmx(vcpu)->pi_desc);
674}
675
22bd0358
NHE
676#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
677#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
678#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
679 [number##_HIGH] = VMCS12_OFFSET(name)+4
680
4607c2d7 681
fe2b201b 682static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
683 /*
684 * We do NOT shadow fields that are modified when L0
685 * traps and emulates any vmx instruction (e.g. VMPTRLD,
686 * VMXON...) executed by L1.
687 * For example, VM_INSTRUCTION_ERROR is read
688 * by L1 if a vmx instruction fails (part of the error path).
689 * Note the code assumes this logic. If for some reason
690 * we start shadowing these fields then we need to
691 * force a shadow sync when L0 emulates vmx instructions
692 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
693 * by nested_vmx_failValid)
694 */
695 VM_EXIT_REASON,
696 VM_EXIT_INTR_INFO,
697 VM_EXIT_INSTRUCTION_LEN,
698 IDT_VECTORING_INFO_FIELD,
699 IDT_VECTORING_ERROR_CODE,
700 VM_EXIT_INTR_ERROR_CODE,
701 EXIT_QUALIFICATION,
702 GUEST_LINEAR_ADDRESS,
703 GUEST_PHYSICAL_ADDRESS
704};
fe2b201b 705static int max_shadow_read_only_fields =
4607c2d7
AG
706 ARRAY_SIZE(shadow_read_only_fields);
707
fe2b201b 708static unsigned long shadow_read_write_fields[] = {
a7c0b07d 709 TPR_THRESHOLD,
4607c2d7
AG
710 GUEST_RIP,
711 GUEST_RSP,
712 GUEST_CR0,
713 GUEST_CR3,
714 GUEST_CR4,
715 GUEST_INTERRUPTIBILITY_INFO,
716 GUEST_RFLAGS,
717 GUEST_CS_SELECTOR,
718 GUEST_CS_AR_BYTES,
719 GUEST_CS_LIMIT,
720 GUEST_CS_BASE,
721 GUEST_ES_BASE,
36be0b9d 722 GUEST_BNDCFGS,
4607c2d7
AG
723 CR0_GUEST_HOST_MASK,
724 CR0_READ_SHADOW,
725 CR4_READ_SHADOW,
726 TSC_OFFSET,
727 EXCEPTION_BITMAP,
728 CPU_BASED_VM_EXEC_CONTROL,
729 VM_ENTRY_EXCEPTION_ERROR_CODE,
730 VM_ENTRY_INTR_INFO_FIELD,
731 VM_ENTRY_INSTRUCTION_LEN,
732 VM_ENTRY_EXCEPTION_ERROR_CODE,
733 HOST_FS_BASE,
734 HOST_GS_BASE,
735 HOST_FS_SELECTOR,
736 HOST_GS_SELECTOR
737};
fe2b201b 738static int max_shadow_read_write_fields =
4607c2d7
AG
739 ARRAY_SIZE(shadow_read_write_fields);
740
772e0318 741static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 742 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 743 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
744 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
745 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
746 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
747 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
748 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
749 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
750 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
751 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 752 FIELD(GUEST_INTR_STATUS, guest_intr_status),
c5f983f6 753 FIELD(GUEST_PML_INDEX, guest_pml_index),
22bd0358
NHE
754 FIELD(HOST_ES_SELECTOR, host_es_selector),
755 FIELD(HOST_CS_SELECTOR, host_cs_selector),
756 FIELD(HOST_SS_SELECTOR, host_ss_selector),
757 FIELD(HOST_DS_SELECTOR, host_ds_selector),
758 FIELD(HOST_FS_SELECTOR, host_fs_selector),
759 FIELD(HOST_GS_SELECTOR, host_gs_selector),
760 FIELD(HOST_TR_SELECTOR, host_tr_selector),
761 FIELD64(IO_BITMAP_A, io_bitmap_a),
762 FIELD64(IO_BITMAP_B, io_bitmap_b),
763 FIELD64(MSR_BITMAP, msr_bitmap),
764 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
765 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
766 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
767 FIELD64(TSC_OFFSET, tsc_offset),
768 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
769 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 770 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
27c42a1b 771 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
22bd0358 772 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
773 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
774 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
775 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
776 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
41ab9372 777 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
81dc01f7 778 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
779 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
780 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
c5f983f6 781 FIELD64(PML_ADDRESS, pml_address),
22bd0358
NHE
782 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
783 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
784 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
785 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
786 FIELD64(GUEST_PDPTR0, guest_pdptr0),
787 FIELD64(GUEST_PDPTR1, guest_pdptr1),
788 FIELD64(GUEST_PDPTR2, guest_pdptr2),
789 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 790 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
791 FIELD64(HOST_IA32_PAT, host_ia32_pat),
792 FIELD64(HOST_IA32_EFER, host_ia32_efer),
793 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
794 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
795 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
796 FIELD(EXCEPTION_BITMAP, exception_bitmap),
797 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
798 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
799 FIELD(CR3_TARGET_COUNT, cr3_target_count),
800 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
801 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
802 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
803 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
804 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
805 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
806 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
807 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
808 FIELD(TPR_THRESHOLD, tpr_threshold),
809 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
810 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
811 FIELD(VM_EXIT_REASON, vm_exit_reason),
812 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
813 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
814 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
815 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
816 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
817 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
818 FIELD(GUEST_ES_LIMIT, guest_es_limit),
819 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
820 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
821 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
822 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
823 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
824 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
825 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
826 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
827 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
828 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
829 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
830 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
831 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
832 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
833 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
834 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
835 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
836 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
837 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
838 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
839 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 840 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
841 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
842 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
843 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
844 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
845 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
846 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
847 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
848 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
849 FIELD(EXIT_QUALIFICATION, exit_qualification),
850 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
851 FIELD(GUEST_CR0, guest_cr0),
852 FIELD(GUEST_CR3, guest_cr3),
853 FIELD(GUEST_CR4, guest_cr4),
854 FIELD(GUEST_ES_BASE, guest_es_base),
855 FIELD(GUEST_CS_BASE, guest_cs_base),
856 FIELD(GUEST_SS_BASE, guest_ss_base),
857 FIELD(GUEST_DS_BASE, guest_ds_base),
858 FIELD(GUEST_FS_BASE, guest_fs_base),
859 FIELD(GUEST_GS_BASE, guest_gs_base),
860 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
861 FIELD(GUEST_TR_BASE, guest_tr_base),
862 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
863 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
864 FIELD(GUEST_DR7, guest_dr7),
865 FIELD(GUEST_RSP, guest_rsp),
866 FIELD(GUEST_RIP, guest_rip),
867 FIELD(GUEST_RFLAGS, guest_rflags),
868 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
869 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
870 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
871 FIELD(HOST_CR0, host_cr0),
872 FIELD(HOST_CR3, host_cr3),
873 FIELD(HOST_CR4, host_cr4),
874 FIELD(HOST_FS_BASE, host_fs_base),
875 FIELD(HOST_GS_BASE, host_gs_base),
876 FIELD(HOST_TR_BASE, host_tr_base),
877 FIELD(HOST_GDTR_BASE, host_gdtr_base),
878 FIELD(HOST_IDTR_BASE, host_idtr_base),
879 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
880 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
881 FIELD(HOST_RSP, host_rsp),
882 FIELD(HOST_RIP, host_rip),
883};
22bd0358
NHE
884
885static inline short vmcs_field_to_offset(unsigned long field)
886{
a2ae9df7
PB
887 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
888
889 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
890 vmcs_field_to_offset_table[field] == 0)
891 return -ENOENT;
892
22bd0358
NHE
893 return vmcs_field_to_offset_table[field];
894}
895
a9d30f33
NHE
896static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
897{
4f2777bc 898 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
899}
900
995f00a6 901static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
bfd0a56b 902static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
995f00a6 903static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
f53cd63c 904static bool vmx_xsaves_supported(void);
776e58ea 905static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
906static void vmx_set_segment(struct kvm_vcpu *vcpu,
907 struct kvm_segment *var, int seg);
908static void vmx_get_segment(struct kvm_vcpu *vcpu,
909 struct kvm_segment *var, int seg);
d99e4152
GN
910static bool guest_state_valid(struct kvm_vcpu *vcpu);
911static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 912static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 913static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 914static int alloc_identity_pagetable(struct kvm *kvm);
b96fb439
PB
915static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
916static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
917static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
918 u16 error_code);
75880a01 919
6aa8b732
AK
920static DEFINE_PER_CPU(struct vmcs *, vmxarea);
921static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
922/*
923 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
924 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
925 */
926static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
6aa8b732 927
bf9f6ac8
FW
928/*
929 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
930 * can find which vCPU should be waken up.
931 */
932static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
933static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
934
23611332
RK
935enum {
936 VMX_IO_BITMAP_A,
937 VMX_IO_BITMAP_B,
938 VMX_MSR_BITMAP_LEGACY,
939 VMX_MSR_BITMAP_LONGMODE,
940 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
941 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
942 VMX_MSR_BITMAP_LEGACY_X2APIC,
943 VMX_MSR_BITMAP_LONGMODE_X2APIC,
944 VMX_VMREAD_BITMAP,
945 VMX_VMWRITE_BITMAP,
946 VMX_BITMAP_NR
947};
948
949static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
950
951#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
952#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
953#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
954#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
955#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
956#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
957#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
958#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
959#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
960#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 961
110312c8 962static bool cpu_has_load_ia32_efer;
8bf00a52 963static bool cpu_has_load_perf_global_ctrl;
110312c8 964
2384d2b3
SY
965static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
966static DEFINE_SPINLOCK(vmx_vpid_lock);
967
1c3d14fe 968static struct vmcs_config {
6aa8b732
AK
969 int size;
970 int order;
9ac7e3e8 971 u32 basic_cap;
6aa8b732 972 u32 revision_id;
1c3d14fe
YS
973 u32 pin_based_exec_ctrl;
974 u32 cpu_based_exec_ctrl;
f78e0e2e 975 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
976 u32 vmexit_ctrl;
977 u32 vmentry_ctrl;
978} vmcs_config;
6aa8b732 979
efff9e53 980static struct vmx_capability {
d56f546d
SY
981 u32 ept;
982 u32 vpid;
983} vmx_capability;
984
6aa8b732
AK
985#define VMX_SEGMENT_FIELD(seg) \
986 [VCPU_SREG_##seg] = { \
987 .selector = GUEST_##seg##_SELECTOR, \
988 .base = GUEST_##seg##_BASE, \
989 .limit = GUEST_##seg##_LIMIT, \
990 .ar_bytes = GUEST_##seg##_AR_BYTES, \
991 }
992
772e0318 993static const struct kvm_vmx_segment_field {
6aa8b732
AK
994 unsigned selector;
995 unsigned base;
996 unsigned limit;
997 unsigned ar_bytes;
998} kvm_vmx_segment_fields[] = {
999 VMX_SEGMENT_FIELD(CS),
1000 VMX_SEGMENT_FIELD(DS),
1001 VMX_SEGMENT_FIELD(ES),
1002 VMX_SEGMENT_FIELD(FS),
1003 VMX_SEGMENT_FIELD(GS),
1004 VMX_SEGMENT_FIELD(SS),
1005 VMX_SEGMENT_FIELD(TR),
1006 VMX_SEGMENT_FIELD(LDTR),
1007};
1008
26bb0981
AK
1009static u64 host_efer;
1010
6de4f3ad
AK
1011static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1012
4d56c8a7 1013/*
8c06585d 1014 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1015 * away by decrementing the array size.
1016 */
6aa8b732 1017static const u32 vmx_msr_index[] = {
05b3e0c2 1018#ifdef CONFIG_X86_64
44ea2b17 1019 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1020#endif
8c06585d 1021 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1022};
6aa8b732 1023
5bb16016 1024static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1025{
1026 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1027 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1028 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1029}
1030
6f05485d
JK
1031static inline bool is_debug(u32 intr_info)
1032{
1033 return is_exception_n(intr_info, DB_VECTOR);
1034}
1035
1036static inline bool is_breakpoint(u32 intr_info)
1037{
1038 return is_exception_n(intr_info, BP_VECTOR);
1039}
1040
5bb16016
JK
1041static inline bool is_page_fault(u32 intr_info)
1042{
1043 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1044}
1045
31299944 1046static inline bool is_no_device(u32 intr_info)
2ab455cc 1047{
5bb16016 1048 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1049}
1050
31299944 1051static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1052{
5bb16016 1053 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1054}
1055
31299944 1056static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1057{
1058 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1059 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1060}
1061
31299944 1062static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1063{
1064 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1065 INTR_INFO_VALID_MASK)) ==
1066 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1067}
1068
31299944 1069static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1070{
04547156 1071 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1072}
1073
31299944 1074static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1075{
04547156 1076 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1077}
1078
35754c98 1079static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1080{
35754c98 1081 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1082}
1083
31299944 1084static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1085{
04547156
SY
1086 return vmcs_config.cpu_based_exec_ctrl &
1087 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1088}
1089
774ead3a 1090static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1091{
04547156
SY
1092 return vmcs_config.cpu_based_2nd_exec_ctrl &
1093 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1094}
1095
8d14695f
YZ
1096static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1097{
1098 return vmcs_config.cpu_based_2nd_exec_ctrl &
1099 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1100}
1101
83d4c286
YZ
1102static inline bool cpu_has_vmx_apic_register_virt(void)
1103{
1104 return vmcs_config.cpu_based_2nd_exec_ctrl &
1105 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1106}
1107
c7c9c56c
YZ
1108static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1109{
1110 return vmcs_config.cpu_based_2nd_exec_ctrl &
1111 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1112}
1113
64672c95
YJ
1114/*
1115 * Comment's format: document - errata name - stepping - processor name.
1116 * Refer from
1117 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1118 */
1119static u32 vmx_preemption_cpu_tfms[] = {
1120/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
11210x000206E6,
1122/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1123/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1124/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11250x00020652,
1126/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11270x00020655,
1128/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1129/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1130/*
1131 * 320767.pdf - AAP86 - B1 -
1132 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1133 */
11340x000106E5,
1135/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11360x000106A0,
1137/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11380x000106A1,
1139/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11400x000106A4,
1141 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1142 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1143 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11440x000106A5,
1145};
1146
1147static inline bool cpu_has_broken_vmx_preemption_timer(void)
1148{
1149 u32 eax = cpuid_eax(0x00000001), i;
1150
1151 /* Clear the reserved bits */
1152 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1153 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1154 if (eax == vmx_preemption_cpu_tfms[i])
1155 return true;
1156
1157 return false;
1158}
1159
1160static inline bool cpu_has_vmx_preemption_timer(void)
1161{
64672c95
YJ
1162 return vmcs_config.pin_based_exec_ctrl &
1163 PIN_BASED_VMX_PREEMPTION_TIMER;
1164}
1165
01e439be
YZ
1166static inline bool cpu_has_vmx_posted_intr(void)
1167{
d6a858d1
PB
1168 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1169 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1170}
1171
1172static inline bool cpu_has_vmx_apicv(void)
1173{
1174 return cpu_has_vmx_apic_register_virt() &&
1175 cpu_has_vmx_virtual_intr_delivery() &&
1176 cpu_has_vmx_posted_intr();
1177}
1178
04547156
SY
1179static inline bool cpu_has_vmx_flexpriority(void)
1180{
1181 return cpu_has_vmx_tpr_shadow() &&
1182 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1183}
1184
e799794e
MT
1185static inline bool cpu_has_vmx_ept_execute_only(void)
1186{
31299944 1187 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1188}
1189
e799794e
MT
1190static inline bool cpu_has_vmx_ept_2m_page(void)
1191{
31299944 1192 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1193}
1194
878403b7
SY
1195static inline bool cpu_has_vmx_ept_1g_page(void)
1196{
31299944 1197 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1198}
1199
4bc9b982
SY
1200static inline bool cpu_has_vmx_ept_4levels(void)
1201{
1202 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1203}
1204
42aa53b4
DH
1205static inline bool cpu_has_vmx_ept_mt_wb(void)
1206{
1207 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1208}
1209
83c3a331
XH
1210static inline bool cpu_has_vmx_ept_ad_bits(void)
1211{
1212 return vmx_capability.ept & VMX_EPT_AD_BIT;
1213}
1214
31299944 1215static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1216{
31299944 1217 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1218}
1219
31299944 1220static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1221{
31299944 1222 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1223}
1224
518c8aee
GJ
1225static inline bool cpu_has_vmx_invvpid_single(void)
1226{
1227 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1228}
1229
b9d762fa
GJ
1230static inline bool cpu_has_vmx_invvpid_global(void)
1231{
1232 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1233}
1234
08d839c4
WL
1235static inline bool cpu_has_vmx_invvpid(void)
1236{
1237 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1238}
1239
31299944 1240static inline bool cpu_has_vmx_ept(void)
d56f546d 1241{
04547156
SY
1242 return vmcs_config.cpu_based_2nd_exec_ctrl &
1243 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1244}
1245
31299944 1246static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1247{
1248 return vmcs_config.cpu_based_2nd_exec_ctrl &
1249 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1250}
1251
31299944 1252static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1253{
1254 return vmcs_config.cpu_based_2nd_exec_ctrl &
1255 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1256}
1257
9ac7e3e8
JD
1258static inline bool cpu_has_vmx_basic_inout(void)
1259{
1260 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1261}
1262
35754c98 1263static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1264{
35754c98 1265 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1266}
1267
31299944 1268static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1269{
04547156
SY
1270 return vmcs_config.cpu_based_2nd_exec_ctrl &
1271 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1272}
1273
31299944 1274static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1275{
1276 return vmcs_config.cpu_based_2nd_exec_ctrl &
1277 SECONDARY_EXEC_RDTSCP;
1278}
1279
ad756a16
MJ
1280static inline bool cpu_has_vmx_invpcid(void)
1281{
1282 return vmcs_config.cpu_based_2nd_exec_ctrl &
1283 SECONDARY_EXEC_ENABLE_INVPCID;
1284}
1285
f5f48ee1
SY
1286static inline bool cpu_has_vmx_wbinvd_exit(void)
1287{
1288 return vmcs_config.cpu_based_2nd_exec_ctrl &
1289 SECONDARY_EXEC_WBINVD_EXITING;
1290}
1291
abc4fc58
AG
1292static inline bool cpu_has_vmx_shadow_vmcs(void)
1293{
1294 u64 vmx_msr;
1295 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1296 /* check if the cpu supports writing r/o exit information fields */
1297 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1298 return false;
1299
1300 return vmcs_config.cpu_based_2nd_exec_ctrl &
1301 SECONDARY_EXEC_SHADOW_VMCS;
1302}
1303
843e4330
KH
1304static inline bool cpu_has_vmx_pml(void)
1305{
1306 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1307}
1308
64903d61
HZ
1309static inline bool cpu_has_vmx_tsc_scaling(void)
1310{
1311 return vmcs_config.cpu_based_2nd_exec_ctrl &
1312 SECONDARY_EXEC_TSC_SCALING;
1313}
1314
2a499e49
BD
1315static inline bool cpu_has_vmx_vmfunc(void)
1316{
1317 return vmcs_config.cpu_based_2nd_exec_ctrl &
1318 SECONDARY_EXEC_ENABLE_VMFUNC;
1319}
1320
04547156
SY
1321static inline bool report_flexpriority(void)
1322{
1323 return flexpriority_enabled;
1324}
1325
c7c2c709
JM
1326static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1327{
1328 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1329}
1330
fe3ef05c
NHE
1331static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1332{
1333 return vmcs12->cpu_based_vm_exec_control & bit;
1334}
1335
1336static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1337{
1338 return (vmcs12->cpu_based_vm_exec_control &
1339 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1340 (vmcs12->secondary_vm_exec_control & bit);
1341}
1342
f5c4368f 1343static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1344{
1345 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1346}
1347
f4124500
JK
1348static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1349{
1350 return vmcs12->pin_based_vm_exec_control &
1351 PIN_BASED_VMX_PREEMPTION_TIMER;
1352}
1353
155a97a3
NHE
1354static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1355{
1356 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1357}
1358
81dc01f7
WL
1359static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1360{
3db13480 1361 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
81dc01f7
WL
1362}
1363
c5f983f6
BD
1364static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1365{
1366 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1367}
1368
f2b93280
WV
1369static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1370{
1371 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1372}
1373
5c614b35
WL
1374static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1375{
1376 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1377}
1378
82f0dd4b
WV
1379static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1380{
1381 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1382}
1383
608406e2
WV
1384static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1385{
1386 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1387}
1388
705699a1
WV
1389static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1390{
1391 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1392}
1393
27c42a1b
BD
1394static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1395{
1396 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1397}
1398
41ab9372
BD
1399static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1400{
1401 return nested_cpu_has_vmfunc(vmcs12) &&
1402 (vmcs12->vm_function_control &
1403 VMX_VMFUNC_EPTP_SWITCHING);
1404}
1405
ef85b673 1406static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1407{
1408 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1409 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1410}
1411
533558bc
JK
1412static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1413 u32 exit_intr_info,
1414 unsigned long exit_qualification);
7c177938
NHE
1415static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1416 struct vmcs12 *vmcs12,
1417 u32 reason, unsigned long qualification);
1418
8b9cf98c 1419static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1420{
1421 int i;
1422
a2fa3e9f 1423 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1424 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1425 return i;
1426 return -1;
1427}
1428
2384d2b3
SY
1429static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1430{
1431 struct {
1432 u64 vpid : 16;
1433 u64 rsvd : 48;
1434 u64 gva;
1435 } operand = { vpid, 0, gva };
1436
4ecac3fd 1437 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1438 /* CF==1 or ZF==1 --> rc = -1 */
1439 "; ja 1f ; ud2 ; 1:"
1440 : : "a"(&operand), "c"(ext) : "cc", "memory");
1441}
1442
1439442c
SY
1443static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1444{
1445 struct {
1446 u64 eptp, gpa;
1447 } operand = {eptp, gpa};
1448
4ecac3fd 1449 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1450 /* CF==1 or ZF==1 --> rc = -1 */
1451 "; ja 1f ; ud2 ; 1:\n"
1452 : : "a" (&operand), "c" (ext) : "cc", "memory");
1453}
1454
26bb0981 1455static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1456{
1457 int i;
1458
8b9cf98c 1459 i = __find_msr_index(vmx, msr);
a75beee6 1460 if (i >= 0)
a2fa3e9f 1461 return &vmx->guest_msrs[i];
8b6d44c7 1462 return NULL;
7725f0ba
AK
1463}
1464
6aa8b732
AK
1465static void vmcs_clear(struct vmcs *vmcs)
1466{
1467 u64 phys_addr = __pa(vmcs);
1468 u8 error;
1469
4ecac3fd 1470 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1471 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1472 : "cc", "memory");
1473 if (error)
1474 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1475 vmcs, phys_addr);
1476}
1477
d462b819
NHE
1478static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1479{
1480 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1481 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1482 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1483 loaded_vmcs->cpu = -1;
1484 loaded_vmcs->launched = 0;
1485}
1486
7725b894
DX
1487static void vmcs_load(struct vmcs *vmcs)
1488{
1489 u64 phys_addr = __pa(vmcs);
1490 u8 error;
1491
1492 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1493 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1494 : "cc", "memory");
1495 if (error)
2844d849 1496 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1497 vmcs, phys_addr);
1498}
1499
2965faa5 1500#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1501/*
1502 * This bitmap is used to indicate whether the vmclear
1503 * operation is enabled on all cpus. All disabled by
1504 * default.
1505 */
1506static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1507
1508static inline void crash_enable_local_vmclear(int cpu)
1509{
1510 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1511}
1512
1513static inline void crash_disable_local_vmclear(int cpu)
1514{
1515 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1516}
1517
1518static inline int crash_local_vmclear_enabled(int cpu)
1519{
1520 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1521}
1522
1523static void crash_vmclear_local_loaded_vmcss(void)
1524{
1525 int cpu = raw_smp_processor_id();
1526 struct loaded_vmcs *v;
1527
1528 if (!crash_local_vmclear_enabled(cpu))
1529 return;
1530
1531 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1532 loaded_vmcss_on_cpu_link)
1533 vmcs_clear(v->vmcs);
1534}
1535#else
1536static inline void crash_enable_local_vmclear(int cpu) { }
1537static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1538#endif /* CONFIG_KEXEC_CORE */
8f536b76 1539
d462b819 1540static void __loaded_vmcs_clear(void *arg)
6aa8b732 1541{
d462b819 1542 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1543 int cpu = raw_smp_processor_id();
6aa8b732 1544
d462b819
NHE
1545 if (loaded_vmcs->cpu != cpu)
1546 return; /* vcpu migration can race with cpu offline */
1547 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1548 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1549 crash_disable_local_vmclear(cpu);
d462b819 1550 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1551
1552 /*
1553 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1554 * is before setting loaded_vmcs->vcpu to -1 which is done in
1555 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1556 * then adds the vmcs into percpu list before it is deleted.
1557 */
1558 smp_wmb();
1559
d462b819 1560 loaded_vmcs_init(loaded_vmcs);
8f536b76 1561 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1562}
1563
d462b819 1564static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1565{
e6c7d321
XG
1566 int cpu = loaded_vmcs->cpu;
1567
1568 if (cpu != -1)
1569 smp_call_function_single(cpu,
1570 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1571}
1572
dd5f5341 1573static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1574{
dd5f5341 1575 if (vpid == 0)
2384d2b3
SY
1576 return;
1577
518c8aee 1578 if (cpu_has_vmx_invvpid_single())
dd5f5341 1579 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1580}
1581
b9d762fa
GJ
1582static inline void vpid_sync_vcpu_global(void)
1583{
1584 if (cpu_has_vmx_invvpid_global())
1585 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1586}
1587
dd5f5341 1588static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1589{
1590 if (cpu_has_vmx_invvpid_single())
dd5f5341 1591 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1592 else
1593 vpid_sync_vcpu_global();
1594}
1595
1439442c
SY
1596static inline void ept_sync_global(void)
1597{
1598 if (cpu_has_vmx_invept_global())
1599 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1600}
1601
1602static inline void ept_sync_context(u64 eptp)
1603{
089d034e 1604 if (enable_ept) {
1439442c
SY
1605 if (cpu_has_vmx_invept_context())
1606 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1607 else
1608 ept_sync_global();
1609 }
1610}
1611
8a86aea9
PB
1612static __always_inline void vmcs_check16(unsigned long field)
1613{
1614 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1615 "16-bit accessor invalid for 64-bit field");
1616 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1617 "16-bit accessor invalid for 64-bit high field");
1618 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1619 "16-bit accessor invalid for 32-bit high field");
1620 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1621 "16-bit accessor invalid for natural width field");
1622}
1623
1624static __always_inline void vmcs_check32(unsigned long field)
1625{
1626 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1627 "32-bit accessor invalid for 16-bit field");
1628 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1629 "32-bit accessor invalid for natural width field");
1630}
1631
1632static __always_inline void vmcs_check64(unsigned long field)
1633{
1634 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1635 "64-bit accessor invalid for 16-bit field");
1636 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1637 "64-bit accessor invalid for 64-bit high field");
1638 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1639 "64-bit accessor invalid for 32-bit field");
1640 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1641 "64-bit accessor invalid for natural width field");
1642}
1643
1644static __always_inline void vmcs_checkl(unsigned long field)
1645{
1646 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1647 "Natural width accessor invalid for 16-bit field");
1648 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1649 "Natural width accessor invalid for 64-bit field");
1650 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1651 "Natural width accessor invalid for 64-bit high field");
1652 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1653 "Natural width accessor invalid for 32-bit field");
1654}
1655
1656static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1657{
5e520e62 1658 unsigned long value;
6aa8b732 1659
5e520e62
AK
1660 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1661 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1662 return value;
1663}
1664
96304217 1665static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1666{
8a86aea9
PB
1667 vmcs_check16(field);
1668 return __vmcs_readl(field);
6aa8b732
AK
1669}
1670
96304217 1671static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1672{
8a86aea9
PB
1673 vmcs_check32(field);
1674 return __vmcs_readl(field);
6aa8b732
AK
1675}
1676
96304217 1677static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1678{
8a86aea9 1679 vmcs_check64(field);
05b3e0c2 1680#ifdef CONFIG_X86_64
8a86aea9 1681 return __vmcs_readl(field);
6aa8b732 1682#else
8a86aea9 1683 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1684#endif
1685}
1686
8a86aea9
PB
1687static __always_inline unsigned long vmcs_readl(unsigned long field)
1688{
1689 vmcs_checkl(field);
1690 return __vmcs_readl(field);
1691}
1692
e52de1b8
AK
1693static noinline void vmwrite_error(unsigned long field, unsigned long value)
1694{
1695 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1696 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1697 dump_stack();
1698}
1699
8a86aea9 1700static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1701{
1702 u8 error;
1703
4ecac3fd 1704 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1705 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1706 if (unlikely(error))
1707 vmwrite_error(field, value);
6aa8b732
AK
1708}
1709
8a86aea9 1710static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1711{
8a86aea9
PB
1712 vmcs_check16(field);
1713 __vmcs_writel(field, value);
6aa8b732
AK
1714}
1715
8a86aea9 1716static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1717{
8a86aea9
PB
1718 vmcs_check32(field);
1719 __vmcs_writel(field, value);
6aa8b732
AK
1720}
1721
8a86aea9 1722static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1723{
8a86aea9
PB
1724 vmcs_check64(field);
1725 __vmcs_writel(field, value);
7682f2d0 1726#ifndef CONFIG_X86_64
6aa8b732 1727 asm volatile ("");
8a86aea9 1728 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1729#endif
1730}
1731
8a86aea9 1732static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1733{
8a86aea9
PB
1734 vmcs_checkl(field);
1735 __vmcs_writel(field, value);
2ab455cc
AL
1736}
1737
8a86aea9 1738static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1739{
8a86aea9
PB
1740 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1741 "vmcs_clear_bits does not support 64-bit fields");
1742 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1743}
1744
8a86aea9 1745static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1746{
8a86aea9
PB
1747 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1748 "vmcs_set_bits does not support 64-bit fields");
1749 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1750}
1751
8391ce44
PB
1752static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1753{
1754 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1755}
1756
2961e876
GN
1757static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1758{
1759 vmcs_write32(VM_ENTRY_CONTROLS, val);
1760 vmx->vm_entry_controls_shadow = val;
1761}
1762
1763static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1764{
1765 if (vmx->vm_entry_controls_shadow != val)
1766 vm_entry_controls_init(vmx, val);
1767}
1768
1769static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1770{
1771 return vmx->vm_entry_controls_shadow;
1772}
1773
1774
1775static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1776{
1777 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1778}
1779
1780static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1781{
1782 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1783}
1784
8391ce44
PB
1785static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1786{
1787 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1788}
1789
2961e876
GN
1790static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1791{
1792 vmcs_write32(VM_EXIT_CONTROLS, val);
1793 vmx->vm_exit_controls_shadow = val;
1794}
1795
1796static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1797{
1798 if (vmx->vm_exit_controls_shadow != val)
1799 vm_exit_controls_init(vmx, val);
1800}
1801
1802static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1803{
1804 return vmx->vm_exit_controls_shadow;
1805}
1806
1807
1808static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1809{
1810 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1811}
1812
1813static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1814{
1815 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1816}
1817
2fb92db1
AK
1818static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1819{
1820 vmx->segment_cache.bitmask = 0;
1821}
1822
1823static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1824 unsigned field)
1825{
1826 bool ret;
1827 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1828
1829 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1830 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1831 vmx->segment_cache.bitmask = 0;
1832 }
1833 ret = vmx->segment_cache.bitmask & mask;
1834 vmx->segment_cache.bitmask |= mask;
1835 return ret;
1836}
1837
1838static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1839{
1840 u16 *p = &vmx->segment_cache.seg[seg].selector;
1841
1842 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1843 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1844 return *p;
1845}
1846
1847static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1848{
1849 ulong *p = &vmx->segment_cache.seg[seg].base;
1850
1851 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1852 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1853 return *p;
1854}
1855
1856static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1857{
1858 u32 *p = &vmx->segment_cache.seg[seg].limit;
1859
1860 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1861 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1862 return *p;
1863}
1864
1865static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1866{
1867 u32 *p = &vmx->segment_cache.seg[seg].ar;
1868
1869 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1870 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1871 return *p;
1872}
1873
abd3f2d6
AK
1874static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1875{
1876 u32 eb;
1877
fd7373cc 1878 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 1879 (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1880 if ((vcpu->guest_debug &
1881 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1882 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1883 eb |= 1u << BP_VECTOR;
7ffd92c5 1884 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1885 eb = ~0;
089d034e 1886 if (enable_ept)
1439442c 1887 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
1888
1889 /* When we are running a nested L2 guest and L1 specified for it a
1890 * certain exception bitmap, we must trap the same exceptions and pass
1891 * them to L1. When running L2, we will only handle the exceptions
1892 * specified above if L1 did not want them.
1893 */
1894 if (is_guest_mode(vcpu))
1895 eb |= get_vmcs12(vcpu)->exception_bitmap;
1896
abd3f2d6
AK
1897 vmcs_write32(EXCEPTION_BITMAP, eb);
1898}
1899
2961e876
GN
1900static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1901 unsigned long entry, unsigned long exit)
8bf00a52 1902{
2961e876
GN
1903 vm_entry_controls_clearbit(vmx, entry);
1904 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1905}
1906
61d2ef2c
AK
1907static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1908{
1909 unsigned i;
1910 struct msr_autoload *m = &vmx->msr_autoload;
1911
8bf00a52
GN
1912 switch (msr) {
1913 case MSR_EFER:
1914 if (cpu_has_load_ia32_efer) {
2961e876
GN
1915 clear_atomic_switch_msr_special(vmx,
1916 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1917 VM_EXIT_LOAD_IA32_EFER);
1918 return;
1919 }
1920 break;
1921 case MSR_CORE_PERF_GLOBAL_CTRL:
1922 if (cpu_has_load_perf_global_ctrl) {
2961e876 1923 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1924 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1925 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1926 return;
1927 }
1928 break;
110312c8
AK
1929 }
1930
61d2ef2c
AK
1931 for (i = 0; i < m->nr; ++i)
1932 if (m->guest[i].index == msr)
1933 break;
1934
1935 if (i == m->nr)
1936 return;
1937 --m->nr;
1938 m->guest[i] = m->guest[m->nr];
1939 m->host[i] = m->host[m->nr];
1940 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1941 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1942}
1943
2961e876
GN
1944static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1945 unsigned long entry, unsigned long exit,
1946 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1947 u64 guest_val, u64 host_val)
8bf00a52
GN
1948{
1949 vmcs_write64(guest_val_vmcs, guest_val);
1950 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1951 vm_entry_controls_setbit(vmx, entry);
1952 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1953}
1954
61d2ef2c
AK
1955static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1956 u64 guest_val, u64 host_val)
1957{
1958 unsigned i;
1959 struct msr_autoload *m = &vmx->msr_autoload;
1960
8bf00a52
GN
1961 switch (msr) {
1962 case MSR_EFER:
1963 if (cpu_has_load_ia32_efer) {
2961e876
GN
1964 add_atomic_switch_msr_special(vmx,
1965 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1966 VM_EXIT_LOAD_IA32_EFER,
1967 GUEST_IA32_EFER,
1968 HOST_IA32_EFER,
1969 guest_val, host_val);
1970 return;
1971 }
1972 break;
1973 case MSR_CORE_PERF_GLOBAL_CTRL:
1974 if (cpu_has_load_perf_global_ctrl) {
2961e876 1975 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1976 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1977 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1978 GUEST_IA32_PERF_GLOBAL_CTRL,
1979 HOST_IA32_PERF_GLOBAL_CTRL,
1980 guest_val, host_val);
1981 return;
1982 }
1983 break;
7099e2e1
RK
1984 case MSR_IA32_PEBS_ENABLE:
1985 /* PEBS needs a quiescent period after being disabled (to write
1986 * a record). Disabling PEBS through VMX MSR swapping doesn't
1987 * provide that period, so a CPU could write host's record into
1988 * guest's memory.
1989 */
1990 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1991 }
1992
61d2ef2c
AK
1993 for (i = 0; i < m->nr; ++i)
1994 if (m->guest[i].index == msr)
1995 break;
1996
e7fc6f93 1997 if (i == NR_AUTOLOAD_MSRS) {
60266204 1998 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1999 "Can't add msr %x\n", msr);
2000 return;
2001 } else if (i == m->nr) {
61d2ef2c
AK
2002 ++m->nr;
2003 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2004 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2005 }
2006
2007 m->guest[i].index = msr;
2008 m->guest[i].value = guest_val;
2009 m->host[i].index = msr;
2010 m->host[i].value = host_val;
2011}
2012
92c0d900 2013static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2014{
844a5fe2
PB
2015 u64 guest_efer = vmx->vcpu.arch.efer;
2016 u64 ignore_bits = 0;
2017
2018 if (!enable_ept) {
2019 /*
2020 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2021 * host CPUID is more efficient than testing guest CPUID
2022 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2023 */
2024 if (boot_cpu_has(X86_FEATURE_SMEP))
2025 guest_efer |= EFER_NX;
2026 else if (!(guest_efer & EFER_NX))
2027 ignore_bits |= EFER_NX;
2028 }
3a34a881 2029
51c6cf66 2030 /*
844a5fe2 2031 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2032 */
844a5fe2 2033 ignore_bits |= EFER_SCE;
51c6cf66
AK
2034#ifdef CONFIG_X86_64
2035 ignore_bits |= EFER_LMA | EFER_LME;
2036 /* SCE is meaningful only in long mode on Intel */
2037 if (guest_efer & EFER_LMA)
2038 ignore_bits &= ~(u64)EFER_SCE;
2039#endif
84ad33ef
AK
2040
2041 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2042
2043 /*
2044 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2045 * On CPUs that support "load IA32_EFER", always switch EFER
2046 * atomically, since it's faster than switching it manually.
2047 */
2048 if (cpu_has_load_ia32_efer ||
2049 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2050 if (!(guest_efer & EFER_LMA))
2051 guest_efer &= ~EFER_LME;
54b98bff
AL
2052 if (guest_efer != host_efer)
2053 add_atomic_switch_msr(vmx, MSR_EFER,
2054 guest_efer, host_efer);
84ad33ef 2055 return false;
844a5fe2
PB
2056 } else {
2057 guest_efer &= ~ignore_bits;
2058 guest_efer |= host_efer & ignore_bits;
2059
2060 vmx->guest_msrs[efer_offset].data = guest_efer;
2061 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2062
844a5fe2
PB
2063 return true;
2064 }
51c6cf66
AK
2065}
2066
e28baead
AL
2067#ifdef CONFIG_X86_32
2068/*
2069 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2070 * VMCS rather than the segment table. KVM uses this helper to figure
2071 * out the current bases to poke them into the VMCS before entry.
2072 */
2d49ec72
GN
2073static unsigned long segment_base(u16 selector)
2074{
8c2e41f7 2075 struct desc_struct *table;
2d49ec72
GN
2076 unsigned long v;
2077
8c2e41f7 2078 if (!(selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2079 return 0;
2080
45fc8757 2081 table = get_current_gdt_ro();
2d49ec72 2082
8c2e41f7 2083 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2d49ec72
GN
2084 u16 ldt_selector = kvm_read_ldt();
2085
8c2e41f7 2086 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2087 return 0;
2088
8c2e41f7 2089 table = (struct desc_struct *)segment_base(ldt_selector);
2d49ec72 2090 }
8c2e41f7 2091 v = get_desc_base(&table[selector >> 3]);
2d49ec72
GN
2092 return v;
2093}
e28baead 2094#endif
2d49ec72 2095
04d2cc77 2096static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2097{
04d2cc77 2098 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2099 int i;
04d2cc77 2100
a2fa3e9f 2101 if (vmx->host_state.loaded)
33ed6329
AK
2102 return;
2103
a2fa3e9f 2104 vmx->host_state.loaded = 1;
33ed6329
AK
2105 /*
2106 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2107 * allow segment selectors with cpl > 0 or ti == 1.
2108 */
d6e88aec 2109 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2110 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2111 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2112 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2113 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2114 vmx->host_state.fs_reload_needed = 0;
2115 } else {
33ed6329 2116 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2117 vmx->host_state.fs_reload_needed = 1;
33ed6329 2118 }
9581d442 2119 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2120 if (!(vmx->host_state.gs_sel & 7))
2121 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2122 else {
2123 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2124 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2125 }
2126
b2da15ac
AK
2127#ifdef CONFIG_X86_64
2128 savesegment(ds, vmx->host_state.ds_sel);
2129 savesegment(es, vmx->host_state.es_sel);
2130#endif
2131
33ed6329
AK
2132#ifdef CONFIG_X86_64
2133 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2134 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2135#else
a2fa3e9f
GH
2136 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2137 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2138#endif
707c0874
AK
2139
2140#ifdef CONFIG_X86_64
c8770e7b
AK
2141 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2142 if (is_long_mode(&vmx->vcpu))
44ea2b17 2143 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2144#endif
da8999d3
LJ
2145 if (boot_cpu_has(X86_FEATURE_MPX))
2146 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2147 for (i = 0; i < vmx->save_nmsrs; ++i)
2148 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2149 vmx->guest_msrs[i].data,
2150 vmx->guest_msrs[i].mask);
33ed6329
AK
2151}
2152
a9b21b62 2153static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2154{
a2fa3e9f 2155 if (!vmx->host_state.loaded)
33ed6329
AK
2156 return;
2157
e1beb1d3 2158 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2159 vmx->host_state.loaded = 0;
c8770e7b
AK
2160#ifdef CONFIG_X86_64
2161 if (is_long_mode(&vmx->vcpu))
2162 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2163#endif
152d3f2f 2164 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2165 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2166#ifdef CONFIG_X86_64
9581d442 2167 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2168#else
2169 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2170#endif
33ed6329 2171 }
0a77fe4c
AK
2172 if (vmx->host_state.fs_reload_needed)
2173 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2174#ifdef CONFIG_X86_64
2175 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2176 loadsegment(ds, vmx->host_state.ds_sel);
2177 loadsegment(es, vmx->host_state.es_sel);
2178 }
b2da15ac 2179#endif
b7ffc44d 2180 invalidate_tss_limit();
44ea2b17 2181#ifdef CONFIG_X86_64
c8770e7b 2182 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2183#endif
da8999d3
LJ
2184 if (vmx->host_state.msr_host_bndcfgs)
2185 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
45fc8757 2186 load_fixmap_gdt(raw_smp_processor_id());
33ed6329
AK
2187}
2188
a9b21b62
AK
2189static void vmx_load_host_state(struct vcpu_vmx *vmx)
2190{
2191 preempt_disable();
2192 __vmx_load_host_state(vmx);
2193 preempt_enable();
2194}
2195
28b835d6
FW
2196static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2197{
2198 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2199 struct pi_desc old, new;
2200 unsigned int dest;
2201
2202 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2203 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2204 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2205 return;
2206
2207 do {
2208 old.control = new.control = pi_desc->control;
2209
2210 /*
2211 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2212 * are two possible cases:
2213 * 1. After running 'pre_block', context switch
2214 * happened. For this case, 'sn' was set in
2215 * vmx_vcpu_put(), so we need to clear it here.
2216 * 2. After running 'pre_block', we were blocked,
2217 * and woken up by some other guy. For this case,
2218 * we don't need to do anything, 'pi_post_block'
2219 * will do everything for us. However, we cannot
2220 * check whether it is case #1 or case #2 here
2221 * (maybe, not needed), so we also clear sn here,
2222 * I think it is not a big deal.
2223 */
2224 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2225 if (vcpu->cpu != cpu) {
2226 dest = cpu_physical_id(cpu);
2227
2228 if (x2apic_enabled())
2229 new.ndst = dest;
2230 else
2231 new.ndst = (dest << 8) & 0xFF00;
2232 }
2233
2234 /* set 'NV' to 'notification vector' */
2235 new.nv = POSTED_INTR_VECTOR;
2236 }
2237
2238 /* Allow posting non-urgent interrupts */
2239 new.sn = 0;
2240 } while (cmpxchg(&pi_desc->control, old.control,
2241 new.control) != old.control);
2242}
1be0e61c 2243
c95ba92a
PF
2244static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2245{
2246 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2247 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2248}
2249
6aa8b732
AK
2250/*
2251 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2252 * vcpu mutex is already taken.
2253 */
15ad7146 2254static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2255{
a2fa3e9f 2256 struct vcpu_vmx *vmx = to_vmx(vcpu);
b80c76ec 2257 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2258
b80c76ec 2259 if (!already_loaded) {
fe0e80be 2260 loaded_vmcs_clear(vmx->loaded_vmcs);
92fe13be 2261 local_irq_disable();
8f536b76 2262 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2263
2264 /*
2265 * Read loaded_vmcs->cpu should be before fetching
2266 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2267 * See the comments in __loaded_vmcs_clear().
2268 */
2269 smp_rmb();
2270
d462b819
NHE
2271 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2272 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2273 crash_enable_local_vmclear(cpu);
92fe13be 2274 local_irq_enable();
b80c76ec
JM
2275 }
2276
2277 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2278 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2279 vmcs_load(vmx->loaded_vmcs->vmcs);
2280 }
2281
2282 if (!already_loaded) {
59c58ceb 2283 void *gdt = get_current_gdt_ro();
b80c76ec
JM
2284 unsigned long sysenter_esp;
2285
2286 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2287
6aa8b732
AK
2288 /*
2289 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2290 * processors. See 22.2.4.
6aa8b732 2291 */
e0c23063
AL
2292 vmcs_writel(HOST_TR_BASE,
2293 (unsigned long)this_cpu_ptr(&cpu_tss));
59c58ceb 2294 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
6aa8b732 2295
b7ffc44d
AL
2296 /*
2297 * VM exits change the host TR limit to 0x67 after a VM
2298 * exit. This is okay, since 0x67 covers everything except
2299 * the IO bitmap and have have code to handle the IO bitmap
2300 * being lost after a VM exit.
2301 */
2302 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2303
6aa8b732
AK
2304 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2305 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2306
d462b819 2307 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2308 }
28b835d6 2309
2680d6da
OH
2310 /* Setup TSC multiplier */
2311 if (kvm_has_tsc_control &&
c95ba92a
PF
2312 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2313 decache_tsc_multiplier(vmx);
2680d6da 2314
28b835d6 2315 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2316 vmx->host_pkru = read_pkru();
28b835d6
FW
2317}
2318
2319static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2320{
2321 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2322
2323 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2324 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2325 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2326 return;
2327
2328 /* Set SN when the vCPU is preempted */
2329 if (vcpu->preempted)
2330 pi_set_sn(pi_desc);
6aa8b732
AK
2331}
2332
2333static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2334{
28b835d6
FW
2335 vmx_vcpu_pi_put(vcpu);
2336
a9b21b62 2337 __vmx_load_host_state(to_vmx(vcpu));
6aa8b732
AK
2338}
2339
f244deed
WL
2340static bool emulation_required(struct kvm_vcpu *vcpu)
2341{
2342 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2343}
2344
edcafe3c
AK
2345static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2346
fe3ef05c
NHE
2347/*
2348 * Return the cr0 value that a nested guest would read. This is a combination
2349 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2350 * its hypervisor (cr0_read_shadow).
2351 */
2352static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2353{
2354 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2355 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2356}
2357static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2358{
2359 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2360 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2361}
2362
6aa8b732
AK
2363static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2364{
78ac8b47 2365 unsigned long rflags, save_rflags;
345dcaa8 2366
6de12732
AK
2367 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2368 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2369 rflags = vmcs_readl(GUEST_RFLAGS);
2370 if (to_vmx(vcpu)->rmode.vm86_active) {
2371 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2372 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2373 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2374 }
2375 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2376 }
6de12732 2377 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2378}
2379
2380static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2381{
f244deed
WL
2382 unsigned long old_rflags = vmx_get_rflags(vcpu);
2383
6de12732
AK
2384 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2385 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2386 if (to_vmx(vcpu)->rmode.vm86_active) {
2387 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2388 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2389 }
6aa8b732 2390 vmcs_writel(GUEST_RFLAGS, rflags);
f244deed
WL
2391
2392 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2393 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
6aa8b732
AK
2394}
2395
be94f6b7
HH
2396static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2397{
2398 return to_vmx(vcpu)->guest_pkru;
2399}
2400
37ccdcbe 2401static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2402{
2403 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2404 int ret = 0;
2405
2406 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2407 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2408 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2409 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2410
37ccdcbe 2411 return ret;
2809f5d2
GC
2412}
2413
2414static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2415{
2416 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2417 u32 interruptibility = interruptibility_old;
2418
2419 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2420
48005f64 2421 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2422 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2423 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2424 interruptibility |= GUEST_INTR_STATE_STI;
2425
2426 if ((interruptibility != interruptibility_old))
2427 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2428}
2429
6aa8b732
AK
2430static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2431{
2432 unsigned long rip;
6aa8b732 2433
5fdbf976 2434 rip = kvm_rip_read(vcpu);
6aa8b732 2435 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2436 kvm_rip_write(vcpu, rip);
6aa8b732 2437
2809f5d2
GC
2438 /* skipping an emulated instruction also counts */
2439 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2440}
2441
b96fb439
PB
2442static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2443 unsigned long exit_qual)
2444{
2445 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2446 unsigned int nr = vcpu->arch.exception.nr;
2447 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2448
2449 if (vcpu->arch.exception.has_error_code) {
2450 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2451 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2452 }
2453
2454 if (kvm_exception_is_soft(nr))
2455 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2456 else
2457 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2458
2459 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2460 vmx_get_nmi_mask(vcpu))
2461 intr_info |= INTR_INFO_UNBLOCK_NMI;
2462
2463 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2464}
2465
0b6ac343
NHE
2466/*
2467 * KVM wants to inject page-faults which it got to the guest. This function
2468 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2469 */
adfe20fb 2470static int nested_vmx_check_exception(struct kvm_vcpu *vcpu)
0b6ac343
NHE
2471{
2472 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
adfe20fb 2473 unsigned int nr = vcpu->arch.exception.nr;
0b6ac343 2474
b96fb439
PB
2475 if (nr == PF_VECTOR) {
2476 if (vcpu->arch.exception.nested_apf) {
2477 nested_vmx_inject_exception_vmexit(vcpu,
2478 vcpu->arch.apf.nested_apf_token);
2479 return 1;
2480 }
2481 /*
2482 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2483 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2484 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2485 * can be written only when inject_pending_event runs. This should be
2486 * conditional on a new capability---if the capability is disabled,
2487 * kvm_multiple_exception would write the ancillary information to
2488 * CR2 or DR6, for backwards ABI-compatibility.
2489 */
2490 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2491 vcpu->arch.exception.error_code)) {
2492 nested_vmx_inject_exception_vmexit(vcpu, vcpu->arch.cr2);
2493 return 1;
2494 }
2495 } else {
2496 unsigned long exit_qual = 0;
2497 if (nr == DB_VECTOR)
2498 exit_qual = vcpu->arch.dr6;
0b6ac343 2499
b96fb439
PB
2500 if (vmcs12->exception_bitmap & (1u << nr)) {
2501 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
2502 return 1;
2503 }
adfe20fb
WL
2504 }
2505
b96fb439 2506 return 0;
0b6ac343
NHE
2507}
2508
cfcd20e5 2509static void vmx_queue_exception(struct kvm_vcpu *vcpu)
298101da 2510{
77ab6db0 2511 struct vcpu_vmx *vmx = to_vmx(vcpu);
cfcd20e5
WL
2512 unsigned nr = vcpu->arch.exception.nr;
2513 bool has_error_code = vcpu->arch.exception.has_error_code;
2514 bool reinject = vcpu->arch.exception.reinject;
2515 u32 error_code = vcpu->arch.exception.error_code;
8ab2d2e2 2516 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2517
e011c663 2518 if (!reinject && is_guest_mode(vcpu) &&
adfe20fb 2519 nested_vmx_check_exception(vcpu))
0b6ac343
NHE
2520 return;
2521
8ab2d2e2 2522 if (has_error_code) {
77ab6db0 2523 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2524 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2525 }
77ab6db0 2526
7ffd92c5 2527 if (vmx->rmode.vm86_active) {
71f9833b
SH
2528 int inc_eip = 0;
2529 if (kvm_exception_is_soft(nr))
2530 inc_eip = vcpu->arch.event_exit_inst_len;
2531 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2532 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2533 return;
2534 }
2535
66fd3f7f
GN
2536 if (kvm_exception_is_soft(nr)) {
2537 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2538 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2539 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2540 } else
2541 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2542
2543 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2544}
2545
4e47c7a6
SY
2546static bool vmx_rdtscp_supported(void)
2547{
2548 return cpu_has_vmx_rdtscp();
2549}
2550
ad756a16
MJ
2551static bool vmx_invpcid_supported(void)
2552{
2553 return cpu_has_vmx_invpcid() && enable_ept;
2554}
2555
a75beee6
ED
2556/*
2557 * Swap MSR entry in host/guest MSR entry array.
2558 */
8b9cf98c 2559static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2560{
26bb0981 2561 struct shared_msr_entry tmp;
a2fa3e9f
GH
2562
2563 tmp = vmx->guest_msrs[to];
2564 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2565 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2566}
2567
8d14695f
YZ
2568static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2569{
2570 unsigned long *msr_bitmap;
2571
670125bd 2572 if (is_guest_mode(vcpu))
d048c098 2573 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
3ce424e4
RK
2574 else if (cpu_has_secondary_exec_ctrls() &&
2575 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2576 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
f6e90f9e
WL
2577 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2578 if (is_long_mode(vcpu))
c63e4563 2579 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
f6e90f9e 2580 else
c63e4563 2581 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
f6e90f9e
WL
2582 } else {
2583 if (is_long_mode(vcpu))
c63e4563 2584 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
f6e90f9e 2585 else
c63e4563 2586 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
f6e90f9e 2587 }
8d14695f
YZ
2588 } else {
2589 if (is_long_mode(vcpu))
2590 msr_bitmap = vmx_msr_bitmap_longmode;
2591 else
2592 msr_bitmap = vmx_msr_bitmap_legacy;
2593 }
2594
2595 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2596}
2597
e38aea3e
AK
2598/*
2599 * Set up the vmcs to automatically save and restore system
2600 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2601 * mode, as fiddling with msrs is very expensive.
2602 */
8b9cf98c 2603static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2604{
26bb0981 2605 int save_nmsrs, index;
e38aea3e 2606
a75beee6
ED
2607 save_nmsrs = 0;
2608#ifdef CONFIG_X86_64
8b9cf98c 2609 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2610 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2611 if (index >= 0)
8b9cf98c
RR
2612 move_msr_up(vmx, index, save_nmsrs++);
2613 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2614 if (index >= 0)
8b9cf98c
RR
2615 move_msr_up(vmx, index, save_nmsrs++);
2616 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2617 if (index >= 0)
8b9cf98c 2618 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2619 index = __find_msr_index(vmx, MSR_TSC_AUX);
d6321d49 2620 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
4e47c7a6 2621 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2622 /*
8c06585d 2623 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2624 * if efer.sce is enabled.
2625 */
8c06585d 2626 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2627 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2628 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2629 }
2630#endif
92c0d900
AK
2631 index = __find_msr_index(vmx, MSR_EFER);
2632 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2633 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2634
26bb0981 2635 vmx->save_nmsrs = save_nmsrs;
5897297b 2636
8d14695f
YZ
2637 if (cpu_has_vmx_msr_bitmap())
2638 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2639}
2640
6aa8b732
AK
2641/*
2642 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2643 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2644 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2645 */
be7b263e 2646static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2647{
2648 u64 host_tsc, tsc_offset;
2649
4ea1636b 2650 host_tsc = rdtsc();
6aa8b732 2651 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2652 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2653}
2654
2655/*
99e3e30a 2656 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2657 */
99e3e30a 2658static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2659{
27fc51b2 2660 if (is_guest_mode(vcpu)) {
7991825b 2661 /*
27fc51b2
NHE
2662 * We're here if L1 chose not to trap WRMSR to TSC. According
2663 * to the spec, this should set L1's TSC; The offset that L1
2664 * set for L2 remains unchanged, and still needs to be added
2665 * to the newly set TSC to get L2's TSC.
7991825b 2666 */
27fc51b2 2667 struct vmcs12 *vmcs12;
27fc51b2
NHE
2668 /* recalculate vmcs02.TSC_OFFSET: */
2669 vmcs12 = get_vmcs12(vcpu);
2670 vmcs_write64(TSC_OFFSET, offset +
2671 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2672 vmcs12->tsc_offset : 0));
2673 } else {
489223ed
YY
2674 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2675 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2676 vmcs_write64(TSC_OFFSET, offset);
2677 }
6aa8b732
AK
2678}
2679
801d3424
NHE
2680/*
2681 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2682 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2683 * all guests if the "nested" module option is off, and can also be disabled
2684 * for a single guest by disabling its VMX cpuid bit.
2685 */
2686static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2687{
d6321d49 2688 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
801d3424
NHE
2689}
2690
b87a51ae
NHE
2691/*
2692 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2693 * returned for the various VMX controls MSRs when nested VMX is enabled.
2694 * The same values should also be used to verify that vmcs12 control fields are
2695 * valid during nested entry from L1 to L2.
2696 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2697 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2698 * bit in the high half is on if the corresponding bit in the control field
2699 * may be on. See also vmx_control_verify().
b87a51ae 2700 */
b9c237bb 2701static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2702{
2703 /*
2704 * Note that as a general rule, the high half of the MSRs (bits in
2705 * the control fields which may be 1) should be initialized by the
2706 * intersection of the underlying hardware's MSR (i.e., features which
2707 * can be supported) and the list of features we want to expose -
2708 * because they are known to be properly supported in our code.
2709 * Also, usually, the low half of the MSRs (bits which must be 1) can
2710 * be set to 0, meaning that L1 may turn off any of these bits. The
2711 * reason is that if one of these bits is necessary, it will appear
2712 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2713 * fields of vmcs01 and vmcs02, will turn these bits off - and
7313c698 2714 * nested_vmx_exit_reflected() will not pass related exits to L1.
b87a51ae
NHE
2715 * These rules have exceptions below.
2716 */
2717
2718 /* pin-based controls */
eabeaacc 2719 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2720 vmx->nested.nested_vmx_pinbased_ctls_low,
2721 vmx->nested.nested_vmx_pinbased_ctls_high);
2722 vmx->nested.nested_vmx_pinbased_ctls_low |=
2723 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2724 vmx->nested.nested_vmx_pinbased_ctls_high &=
2725 PIN_BASED_EXT_INTR_MASK |
2726 PIN_BASED_NMI_EXITING |
2727 PIN_BASED_VIRTUAL_NMIS;
2728 vmx->nested.nested_vmx_pinbased_ctls_high |=
2729 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2730 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2731 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2732 vmx->nested.nested_vmx_pinbased_ctls_high |=
2733 PIN_BASED_POSTED_INTR;
b87a51ae 2734
3dbcd8da 2735 /* exit controls */
c0dfee58 2736 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2737 vmx->nested.nested_vmx_exit_ctls_low,
2738 vmx->nested.nested_vmx_exit_ctls_high);
2739 vmx->nested.nested_vmx_exit_ctls_low =
2740 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2741
b9c237bb 2742 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2743#ifdef CONFIG_X86_64
c0dfee58 2744 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2745#endif
f4124500 2746 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2747 vmx->nested.nested_vmx_exit_ctls_high |=
2748 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2749 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2750 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2751
a87036ad 2752 if (kvm_mpx_supported())
b9c237bb 2753 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2754
2996fca0 2755 /* We support free control of debug control saving. */
0115f9cb 2756 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2757
b87a51ae
NHE
2758 /* entry controls */
2759 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2760 vmx->nested.nested_vmx_entry_ctls_low,
2761 vmx->nested.nested_vmx_entry_ctls_high);
2762 vmx->nested.nested_vmx_entry_ctls_low =
2763 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2764 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2765#ifdef CONFIG_X86_64
2766 VM_ENTRY_IA32E_MODE |
2767#endif
2768 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2769 vmx->nested.nested_vmx_entry_ctls_high |=
2770 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2771 if (kvm_mpx_supported())
b9c237bb 2772 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2773
2996fca0 2774 /* We support free control of debug control loading. */
0115f9cb 2775 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 2776
b87a51ae
NHE
2777 /* cpu-based controls */
2778 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2779 vmx->nested.nested_vmx_procbased_ctls_low,
2780 vmx->nested.nested_vmx_procbased_ctls_high);
2781 vmx->nested.nested_vmx_procbased_ctls_low =
2782 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2783 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2784 CPU_BASED_VIRTUAL_INTR_PENDING |
2785 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2786 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2787 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2788 CPU_BASED_CR3_STORE_EXITING |
2789#ifdef CONFIG_X86_64
2790 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2791#endif
2792 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2793 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2794 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2795 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2796 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2797 /*
2798 * We can allow some features even when not supported by the
2799 * hardware. For example, L1 can specify an MSR bitmap - and we
2800 * can use it to avoid exits to L1 - even when L0 runs L2
2801 * without MSR bitmaps.
2802 */
b9c237bb
WV
2803 vmx->nested.nested_vmx_procbased_ctls_high |=
2804 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2805 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2806
3dcdf3ec 2807 /* We support free control of CR3 access interception. */
0115f9cb 2808 vmx->nested.nested_vmx_procbased_ctls_low &=
3dcdf3ec
JK
2809 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2810
80154d77
PB
2811 /*
2812 * secondary cpu-based controls. Do not include those that
2813 * depend on CPUID bits, they are added later by vmx_cpuid_update.
2814 */
b87a51ae 2815 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2816 vmx->nested.nested_vmx_secondary_ctls_low,
2817 vmx->nested.nested_vmx_secondary_ctls_high);
2818 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2819 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2820 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1b07304c 2821 SECONDARY_EXEC_DESC |
f2b93280 2822 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 2823 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2824 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3db13480 2825 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2 2826
afa61f75
NHE
2827 if (enable_ept) {
2828 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2829 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2830 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2831 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
7db74265 2832 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
02120c45
BD
2833 if (cpu_has_vmx_ept_execute_only())
2834 vmx->nested.nested_vmx_ept_caps |=
2835 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2836 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817 2837 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7db74265
PB
2838 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2839 VMX_EPT_1GB_PAGE_BIT;
03efce6f
BD
2840 if (enable_ept_ad_bits) {
2841 vmx->nested.nested_vmx_secondary_ctls_high |=
2842 SECONDARY_EXEC_ENABLE_PML;
7461fbc4 2843 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
03efce6f 2844 }
afa61f75 2845 } else
b9c237bb 2846 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2847
27c42a1b
BD
2848 if (cpu_has_vmx_vmfunc()) {
2849 vmx->nested.nested_vmx_secondary_ctls_high |=
2850 SECONDARY_EXEC_ENABLE_VMFUNC;
41ab9372
BD
2851 /*
2852 * Advertise EPTP switching unconditionally
2853 * since we emulate it
2854 */
2855 vmx->nested.nested_vmx_vmfunc_controls =
2856 VMX_VMFUNC_EPTP_SWITCHING;
27c42a1b
BD
2857 }
2858
ef697a71
PB
2859 /*
2860 * Old versions of KVM use the single-context version without
2861 * checking for support, so declare that it is supported even
2862 * though it is treated as global context. The alternative is
2863 * not failing the single-context invvpid, and it is worse.
2864 */
63cb6d5f
WL
2865 if (enable_vpid) {
2866 vmx->nested.nested_vmx_secondary_ctls_high |=
2867 SECONDARY_EXEC_ENABLE_VPID;
089d7b6e 2868 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 2869 VMX_VPID_EXTENT_SUPPORTED_MASK;
63cb6d5f 2870 } else
089d7b6e 2871 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2872
0790ec17
RK
2873 if (enable_unrestricted_guest)
2874 vmx->nested.nested_vmx_secondary_ctls_high |=
2875 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2876
c18911a2 2877 /* miscellaneous data */
b9c237bb
WV
2878 rdmsr(MSR_IA32_VMX_MISC,
2879 vmx->nested.nested_vmx_misc_low,
2880 vmx->nested.nested_vmx_misc_high);
2881 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2882 vmx->nested.nested_vmx_misc_low |=
2883 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2884 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2885 vmx->nested.nested_vmx_misc_high = 0;
62cc6b9d
DM
2886
2887 /*
2888 * This MSR reports some information about VMX support. We
2889 * should return information about the VMX we emulate for the
2890 * guest, and the VMCS structure we give it - not about the
2891 * VMX support of the underlying hardware.
2892 */
2893 vmx->nested.nested_vmx_basic =
2894 VMCS12_REVISION |
2895 VMX_BASIC_TRUE_CTLS |
2896 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2897 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2898
2899 if (cpu_has_vmx_basic_inout())
2900 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2901
2902 /*
8322ebbb 2903 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
2904 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2905 * We picked the standard core2 setting.
2906 */
2907#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2908#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2909 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
62cc6b9d 2910 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
2911
2912 /* These MSRs specify bits which the guest must keep fixed off. */
2913 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2914 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
62cc6b9d
DM
2915
2916 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2917 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
b87a51ae
NHE
2918}
2919
3899152c
DM
2920/*
2921 * if fixed0[i] == 1: val[i] must be 1
2922 * if fixed1[i] == 0: val[i] must be 0
2923 */
2924static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2925{
2926 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
2927}
2928
2929static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2930{
3899152c 2931 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
2932}
2933
2934static inline u64 vmx_control_msr(u32 low, u32 high)
2935{
2936 return low | ((u64)high << 32);
2937}
2938
62cc6b9d
DM
2939static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2940{
2941 superset &= mask;
2942 subset &= mask;
2943
2944 return (superset | subset) == superset;
2945}
2946
2947static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2948{
2949 const u64 feature_and_reserved =
2950 /* feature (except bit 48; see below) */
2951 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2952 /* reserved */
2953 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2954 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2955
2956 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2957 return -EINVAL;
2958
2959 /*
2960 * KVM does not emulate a version of VMX that constrains physical
2961 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2962 */
2963 if (data & BIT_ULL(48))
2964 return -EINVAL;
2965
2966 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2967 vmx_basic_vmcs_revision_id(data))
2968 return -EINVAL;
2969
2970 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2971 return -EINVAL;
2972
2973 vmx->nested.nested_vmx_basic = data;
2974 return 0;
2975}
2976
2977static int
2978vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2979{
2980 u64 supported;
2981 u32 *lowp, *highp;
2982
2983 switch (msr_index) {
2984 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2985 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2986 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2987 break;
2988 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2989 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2990 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2991 break;
2992 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2993 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2994 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2995 break;
2996 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2997 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2998 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2999 break;
3000 case MSR_IA32_VMX_PROCBASED_CTLS2:
3001 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
3002 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
3003 break;
3004 default:
3005 BUG();
3006 }
3007
3008 supported = vmx_control_msr(*lowp, *highp);
3009
3010 /* Check must-be-1 bits are still 1. */
3011 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3012 return -EINVAL;
3013
3014 /* Check must-be-0 bits are still 0. */
3015 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3016 return -EINVAL;
3017
3018 *lowp = data;
3019 *highp = data >> 32;
3020 return 0;
3021}
3022
3023static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3024{
3025 const u64 feature_and_reserved_bits =
3026 /* feature */
3027 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3028 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3029 /* reserved */
3030 GENMASK_ULL(13, 9) | BIT_ULL(31);
3031 u64 vmx_misc;
3032
3033 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3034 vmx->nested.nested_vmx_misc_high);
3035
3036 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3037 return -EINVAL;
3038
3039 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3040 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3041 vmx_misc_preemption_timer_rate(data) !=
3042 vmx_misc_preemption_timer_rate(vmx_misc))
3043 return -EINVAL;
3044
3045 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3046 return -EINVAL;
3047
3048 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3049 return -EINVAL;
3050
3051 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3052 return -EINVAL;
3053
3054 vmx->nested.nested_vmx_misc_low = data;
3055 vmx->nested.nested_vmx_misc_high = data >> 32;
3056 return 0;
3057}
3058
3059static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3060{
3061 u64 vmx_ept_vpid_cap;
3062
3063 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3064 vmx->nested.nested_vmx_vpid_caps);
3065
3066 /* Every bit is either reserved or a feature bit. */
3067 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3068 return -EINVAL;
3069
3070 vmx->nested.nested_vmx_ept_caps = data;
3071 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3072 return 0;
3073}
3074
3075static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3076{
3077 u64 *msr;
3078
3079 switch (msr_index) {
3080 case MSR_IA32_VMX_CR0_FIXED0:
3081 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3082 break;
3083 case MSR_IA32_VMX_CR4_FIXED0:
3084 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3085 break;
3086 default:
3087 BUG();
3088 }
3089
3090 /*
3091 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3092 * must be 1 in the restored value.
3093 */
3094 if (!is_bitwise_subset(data, *msr, -1ULL))
3095 return -EINVAL;
3096
3097 *msr = data;
3098 return 0;
3099}
3100
3101/*
3102 * Called when userspace is restoring VMX MSRs.
3103 *
3104 * Returns 0 on success, non-0 otherwise.
3105 */
3106static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3107{
b9c237bb
WV
3108 struct vcpu_vmx *vmx = to_vmx(vcpu);
3109
b87a51ae 3110 switch (msr_index) {
b87a51ae 3111 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3112 return vmx_restore_vmx_basic(vmx, data);
3113 case MSR_IA32_VMX_PINBASED_CTLS:
3114 case MSR_IA32_VMX_PROCBASED_CTLS:
3115 case MSR_IA32_VMX_EXIT_CTLS:
3116 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3117 /*
62cc6b9d
DM
3118 * The "non-true" VMX capability MSRs are generated from the
3119 * "true" MSRs, so we do not support restoring them directly.
3120 *
3121 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3122 * should restore the "true" MSRs with the must-be-1 bits
3123 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3124 * DEFAULT SETTINGS".
b87a51ae 3125 */
62cc6b9d
DM
3126 return -EINVAL;
3127 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3128 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3129 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3130 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3131 case MSR_IA32_VMX_PROCBASED_CTLS2:
3132 return vmx_restore_control_msr(vmx, msr_index, data);
3133 case MSR_IA32_VMX_MISC:
3134 return vmx_restore_vmx_misc(vmx, data);
3135 case MSR_IA32_VMX_CR0_FIXED0:
3136 case MSR_IA32_VMX_CR4_FIXED0:
3137 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3138 case MSR_IA32_VMX_CR0_FIXED1:
3139 case MSR_IA32_VMX_CR4_FIXED1:
3140 /*
3141 * These MSRs are generated based on the vCPU's CPUID, so we
3142 * do not support restoring them directly.
3143 */
3144 return -EINVAL;
3145 case MSR_IA32_VMX_EPT_VPID_CAP:
3146 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3147 case MSR_IA32_VMX_VMCS_ENUM:
3148 vmx->nested.nested_vmx_vmcs_enum = data;
3149 return 0;
3150 default:
b87a51ae 3151 /*
62cc6b9d 3152 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3153 */
62cc6b9d
DM
3154 return -EINVAL;
3155 }
3156}
3157
3158/* Returns 0 on success, non-0 otherwise. */
3159static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3160{
3161 struct vcpu_vmx *vmx = to_vmx(vcpu);
3162
3163 switch (msr_index) {
3164 case MSR_IA32_VMX_BASIC:
3165 *pdata = vmx->nested.nested_vmx_basic;
b87a51ae
NHE
3166 break;
3167 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3168 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
3169 *pdata = vmx_control_msr(
3170 vmx->nested.nested_vmx_pinbased_ctls_low,
3171 vmx->nested.nested_vmx_pinbased_ctls_high);
0115f9cb
DM
3172 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3173 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3174 break;
3175 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3176 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
3177 *pdata = vmx_control_msr(
3178 vmx->nested.nested_vmx_procbased_ctls_low,
3179 vmx->nested.nested_vmx_procbased_ctls_high);
0115f9cb
DM
3180 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3181 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3182 break;
3183 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3184 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
3185 *pdata = vmx_control_msr(
3186 vmx->nested.nested_vmx_exit_ctls_low,
3187 vmx->nested.nested_vmx_exit_ctls_high);
0115f9cb
DM
3188 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3189 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3190 break;
3191 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3192 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
3193 *pdata = vmx_control_msr(
3194 vmx->nested.nested_vmx_entry_ctls_low,
3195 vmx->nested.nested_vmx_entry_ctls_high);
0115f9cb
DM
3196 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3197 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3198 break;
3199 case MSR_IA32_VMX_MISC:
b9c237bb
WV
3200 *pdata = vmx_control_msr(
3201 vmx->nested.nested_vmx_misc_low,
3202 vmx->nested.nested_vmx_misc_high);
b87a51ae 3203 break;
b87a51ae 3204 case MSR_IA32_VMX_CR0_FIXED0:
62cc6b9d 3205 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
b87a51ae
NHE
3206 break;
3207 case MSR_IA32_VMX_CR0_FIXED1:
62cc6b9d 3208 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
b87a51ae
NHE
3209 break;
3210 case MSR_IA32_VMX_CR4_FIXED0:
62cc6b9d 3211 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
b87a51ae
NHE
3212 break;
3213 case MSR_IA32_VMX_CR4_FIXED1:
62cc6b9d 3214 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
b87a51ae
NHE
3215 break;
3216 case MSR_IA32_VMX_VMCS_ENUM:
62cc6b9d 3217 *pdata = vmx->nested.nested_vmx_vmcs_enum;
b87a51ae
NHE
3218 break;
3219 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
3220 *pdata = vmx_control_msr(
3221 vmx->nested.nested_vmx_secondary_ctls_low,
3222 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
3223 break;
3224 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
3225 *pdata = vmx->nested.nested_vmx_ept_caps |
3226 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae 3227 break;
27c42a1b
BD
3228 case MSR_IA32_VMX_VMFUNC:
3229 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3230 break;
b87a51ae 3231 default:
b87a51ae 3232 return 1;
b3897a49
NHE
3233 }
3234
b87a51ae
NHE
3235 return 0;
3236}
3237
37e4c997
HZ
3238static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3239 uint64_t val)
3240{
3241 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3242
3243 return !(val & ~valid_bits);
3244}
3245
6aa8b732
AK
3246/*
3247 * Reads an msr value (of 'msr_index') into 'pdata'.
3248 * Returns 0 on success, non-0 otherwise.
3249 * Assumes vcpu_load() was already called.
3250 */
609e36d3 3251static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3252{
26bb0981 3253 struct shared_msr_entry *msr;
6aa8b732 3254
609e36d3 3255 switch (msr_info->index) {
05b3e0c2 3256#ifdef CONFIG_X86_64
6aa8b732 3257 case MSR_FS_BASE:
609e36d3 3258 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3259 break;
3260 case MSR_GS_BASE:
609e36d3 3261 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3262 break;
44ea2b17
AK
3263 case MSR_KERNEL_GS_BASE:
3264 vmx_load_host_state(to_vmx(vcpu));
609e36d3 3265 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3266 break;
26bb0981 3267#endif
6aa8b732 3268 case MSR_EFER:
609e36d3 3269 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3270 case MSR_IA32_TSC:
be7b263e 3271 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
3272 break;
3273 case MSR_IA32_SYSENTER_CS:
609e36d3 3274 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3275 break;
3276 case MSR_IA32_SYSENTER_EIP:
609e36d3 3277 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3278 break;
3279 case MSR_IA32_SYSENTER_ESP:
609e36d3 3280 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3281 break;
0dd376e7 3282 case MSR_IA32_BNDCFGS:
691bd434 3283 if (!kvm_mpx_supported() ||
d6321d49
RK
3284 (!msr_info->host_initiated &&
3285 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3286 return 1;
609e36d3 3287 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3288 break;
c45dcc71
AR
3289 case MSR_IA32_MCG_EXT_CTL:
3290 if (!msr_info->host_initiated &&
3291 !(to_vmx(vcpu)->msr_ia32_feature_control &
3292 FEATURE_CONTROL_LMCE))
cae50139 3293 return 1;
c45dcc71
AR
3294 msr_info->data = vcpu->arch.mcg_ext_ctl;
3295 break;
cae50139 3296 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3297 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3298 break;
3299 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3300 if (!nested_vmx_allowed(vcpu))
3301 return 1;
609e36d3 3302 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3303 case MSR_IA32_XSS:
3304 if (!vmx_xsaves_supported())
3305 return 1;
609e36d3 3306 msr_info->data = vcpu->arch.ia32_xss;
20300099 3307 break;
4e47c7a6 3308 case MSR_TSC_AUX:
d6321d49
RK
3309 if (!msr_info->host_initiated &&
3310 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3311 return 1;
3312 /* Otherwise falls through */
6aa8b732 3313 default:
609e36d3 3314 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3315 if (msr) {
609e36d3 3316 msr_info->data = msr->data;
3bab1f5d 3317 break;
6aa8b732 3318 }
609e36d3 3319 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3320 }
3321
6aa8b732
AK
3322 return 0;
3323}
3324
cae50139
JK
3325static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3326
6aa8b732
AK
3327/*
3328 * Writes msr value into into the appropriate "register".
3329 * Returns 0 on success, non-0 otherwise.
3330 * Assumes vcpu_load() was already called.
3331 */
8fe8ab46 3332static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3333{
a2fa3e9f 3334 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3335 struct shared_msr_entry *msr;
2cc51560 3336 int ret = 0;
8fe8ab46
WA
3337 u32 msr_index = msr_info->index;
3338 u64 data = msr_info->data;
2cc51560 3339
6aa8b732 3340 switch (msr_index) {
3bab1f5d 3341 case MSR_EFER:
8fe8ab46 3342 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3343 break;
16175a79 3344#ifdef CONFIG_X86_64
6aa8b732 3345 case MSR_FS_BASE:
2fb92db1 3346 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3347 vmcs_writel(GUEST_FS_BASE, data);
3348 break;
3349 case MSR_GS_BASE:
2fb92db1 3350 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3351 vmcs_writel(GUEST_GS_BASE, data);
3352 break;
44ea2b17
AK
3353 case MSR_KERNEL_GS_BASE:
3354 vmx_load_host_state(vmx);
3355 vmx->msr_guest_kernel_gs_base = data;
3356 break;
6aa8b732
AK
3357#endif
3358 case MSR_IA32_SYSENTER_CS:
3359 vmcs_write32(GUEST_SYSENTER_CS, data);
3360 break;
3361 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3362 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3363 break;
3364 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3365 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3366 break;
0dd376e7 3367 case MSR_IA32_BNDCFGS:
691bd434 3368 if (!kvm_mpx_supported() ||
d6321d49
RK
3369 (!msr_info->host_initiated &&
3370 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3371 return 1;
4531662d
JM
3372 if (is_noncanonical_address(data & PAGE_MASK) ||
3373 (data & MSR_IA32_BNDCFGS_RSVD))
93c4adc7 3374 return 1;
0dd376e7
LJ
3375 vmcs_write64(GUEST_BNDCFGS, data);
3376 break;
af24a4e4 3377 case MSR_IA32_TSC:
8fe8ab46 3378 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3379 break;
468d472f
SY
3380 case MSR_IA32_CR_PAT:
3381 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3382 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3383 return 1;
468d472f
SY
3384 vmcs_write64(GUEST_IA32_PAT, data);
3385 vcpu->arch.pat = data;
3386 break;
3387 }
8fe8ab46 3388 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3389 break;
ba904635
WA
3390 case MSR_IA32_TSC_ADJUST:
3391 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3392 break;
c45dcc71
AR
3393 case MSR_IA32_MCG_EXT_CTL:
3394 if ((!msr_info->host_initiated &&
3395 !(to_vmx(vcpu)->msr_ia32_feature_control &
3396 FEATURE_CONTROL_LMCE)) ||
3397 (data & ~MCG_EXT_CTL_LMCE_EN))
3398 return 1;
3399 vcpu->arch.mcg_ext_ctl = data;
3400 break;
cae50139 3401 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3402 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3403 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3404 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3405 return 1;
3b84080b 3406 vmx->msr_ia32_feature_control = data;
cae50139
JK
3407 if (msr_info->host_initiated && data == 0)
3408 vmx_leave_nested(vcpu);
3409 break;
3410 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3411 if (!msr_info->host_initiated)
3412 return 1; /* they are read-only */
3413 if (!nested_vmx_allowed(vcpu))
3414 return 1;
3415 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3416 case MSR_IA32_XSS:
3417 if (!vmx_xsaves_supported())
3418 return 1;
3419 /*
3420 * The only supported bit as of Skylake is bit 8, but
3421 * it is not supported on KVM.
3422 */
3423 if (data != 0)
3424 return 1;
3425 vcpu->arch.ia32_xss = data;
3426 if (vcpu->arch.ia32_xss != host_xss)
3427 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3428 vcpu->arch.ia32_xss, host_xss);
3429 else
3430 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3431 break;
4e47c7a6 3432 case MSR_TSC_AUX:
d6321d49
RK
3433 if (!msr_info->host_initiated &&
3434 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3435 return 1;
3436 /* Check reserved bit, higher 32 bits should be zero */
3437 if ((data >> 32) != 0)
3438 return 1;
3439 /* Otherwise falls through */
6aa8b732 3440 default:
8b9cf98c 3441 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3442 if (msr) {
8b3c3104 3443 u64 old_msr_data = msr->data;
3bab1f5d 3444 msr->data = data;
2225fd56
AK
3445 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3446 preempt_disable();
8b3c3104
AH
3447 ret = kvm_set_shared_msr(msr->index, msr->data,
3448 msr->mask);
2225fd56 3449 preempt_enable();
8b3c3104
AH
3450 if (ret)
3451 msr->data = old_msr_data;
2225fd56 3452 }
3bab1f5d 3453 break;
6aa8b732 3454 }
8fe8ab46 3455 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3456 }
3457
2cc51560 3458 return ret;
6aa8b732
AK
3459}
3460
5fdbf976 3461static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3462{
5fdbf976
MT
3463 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3464 switch (reg) {
3465 case VCPU_REGS_RSP:
3466 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3467 break;
3468 case VCPU_REGS_RIP:
3469 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3470 break;
6de4f3ad
AK
3471 case VCPU_EXREG_PDPTR:
3472 if (enable_ept)
3473 ept_save_pdptrs(vcpu);
3474 break;
5fdbf976
MT
3475 default:
3476 break;
3477 }
6aa8b732
AK
3478}
3479
6aa8b732
AK
3480static __init int cpu_has_kvm_support(void)
3481{
6210e37b 3482 return cpu_has_vmx();
6aa8b732
AK
3483}
3484
3485static __init int vmx_disabled_by_bios(void)
3486{
3487 u64 msr;
3488
3489 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3490 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3491 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3492 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3493 && tboot_enabled())
3494 return 1;
23f3e991 3495 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3496 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3497 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3498 && !tboot_enabled()) {
3499 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3500 "activate TXT before enabling KVM\n");
cafd6659 3501 return 1;
f9335afe 3502 }
23f3e991
JC
3503 /* launched w/o TXT and VMX disabled */
3504 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3505 && !tboot_enabled())
3506 return 1;
cafd6659
SW
3507 }
3508
3509 return 0;
6aa8b732
AK
3510}
3511
7725b894
DX
3512static void kvm_cpu_vmxon(u64 addr)
3513{
fe0e80be 3514 cr4_set_bits(X86_CR4_VMXE);
1c5ac21a
AS
3515 intel_pt_handle_vmx(1);
3516
7725b894
DX
3517 asm volatile (ASM_VMX_VMXON_RAX
3518 : : "a"(&addr), "m"(addr)
3519 : "memory", "cc");
3520}
3521
13a34e06 3522static int hardware_enable(void)
6aa8b732
AK
3523{
3524 int cpu = raw_smp_processor_id();
3525 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3526 u64 old, test_bits;
6aa8b732 3527
1e02ce4c 3528 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3529 return -EBUSY;
3530
d462b819 3531 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3532 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3533 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3534
3535 /*
3536 * Now we can enable the vmclear operation in kdump
3537 * since the loaded_vmcss_on_cpu list on this cpu
3538 * has been initialized.
3539 *
3540 * Though the cpu is not in VMX operation now, there
3541 * is no problem to enable the vmclear operation
3542 * for the loaded_vmcss_on_cpu list is empty!
3543 */
3544 crash_enable_local_vmclear(cpu);
3545
6aa8b732 3546 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3547
3548 test_bits = FEATURE_CONTROL_LOCKED;
3549 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3550 if (tboot_enabled())
3551 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3552
3553 if ((old & test_bits) != test_bits) {
6aa8b732 3554 /* enable and lock */
cafd6659
SW
3555 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3556 }
fe0e80be
DH
3557 kvm_cpu_vmxon(phys_addr);
3558 ept_sync_global();
10474ae8
AG
3559
3560 return 0;
6aa8b732
AK
3561}
3562
d462b819 3563static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3564{
3565 int cpu = raw_smp_processor_id();
d462b819 3566 struct loaded_vmcs *v, *n;
543e4243 3567
d462b819
NHE
3568 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3569 loaded_vmcss_on_cpu_link)
3570 __loaded_vmcs_clear(v);
543e4243
AK
3571}
3572
710ff4a8
EH
3573
3574/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3575 * tricks.
3576 */
3577static void kvm_cpu_vmxoff(void)
6aa8b732 3578{
4ecac3fd 3579 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3580
3581 intel_pt_handle_vmx(0);
fe0e80be 3582 cr4_clear_bits(X86_CR4_VMXE);
6aa8b732
AK
3583}
3584
13a34e06 3585static void hardware_disable(void)
710ff4a8 3586{
fe0e80be
DH
3587 vmclear_local_loaded_vmcss();
3588 kvm_cpu_vmxoff();
710ff4a8
EH
3589}
3590
1c3d14fe 3591static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3592 u32 msr, u32 *result)
1c3d14fe
YS
3593{
3594 u32 vmx_msr_low, vmx_msr_high;
3595 u32 ctl = ctl_min | ctl_opt;
3596
3597 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3598
3599 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3600 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3601
3602 /* Ensure minimum (required) set of control bits are supported. */
3603 if (ctl_min & ~ctl)
002c7f7c 3604 return -EIO;
1c3d14fe
YS
3605
3606 *result = ctl;
3607 return 0;
3608}
3609
110312c8
AK
3610static __init bool allow_1_setting(u32 msr, u32 ctl)
3611{
3612 u32 vmx_msr_low, vmx_msr_high;
3613
3614 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3615 return vmx_msr_high & ctl;
3616}
3617
002c7f7c 3618static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3619{
3620 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3621 u32 min, opt, min2, opt2;
1c3d14fe
YS
3622 u32 _pin_based_exec_control = 0;
3623 u32 _cpu_based_exec_control = 0;
f78e0e2e 3624 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3625 u32 _vmexit_control = 0;
3626 u32 _vmentry_control = 0;
3627
10166744 3628 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3629#ifdef CONFIG_X86_64
3630 CPU_BASED_CR8_LOAD_EXITING |
3631 CPU_BASED_CR8_STORE_EXITING |
3632#endif
d56f546d
SY
3633 CPU_BASED_CR3_LOAD_EXITING |
3634 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3635 CPU_BASED_USE_IO_BITMAPS |
3636 CPU_BASED_MOV_DR_EXITING |
a7052897 3637 CPU_BASED_USE_TSC_OFFSETING |
fee84b07
AK
3638 CPU_BASED_INVLPG_EXITING |
3639 CPU_BASED_RDPMC_EXITING;
443381a8 3640
668fffa3
MT
3641 if (!kvm_mwait_in_guest())
3642 min |= CPU_BASED_MWAIT_EXITING |
3643 CPU_BASED_MONITOR_EXITING;
3644
f78e0e2e 3645 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3646 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3647 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3648 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3649 &_cpu_based_exec_control) < 0)
002c7f7c 3650 return -EIO;
6e5d865c
YS
3651#ifdef CONFIG_X86_64
3652 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3653 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3654 ~CPU_BASED_CR8_STORE_EXITING;
3655#endif
f78e0e2e 3656 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3657 min2 = 0;
3658 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3659 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3660 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3661 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3662 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3663 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3664 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3665 SECONDARY_EXEC_RDTSCP |
83d4c286 3666 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3667 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3668 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3669 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3670 SECONDARY_EXEC_XSAVES |
75f4fc8d 3671 SECONDARY_EXEC_RDSEED |
45ec368c 3672 SECONDARY_EXEC_RDRAND |
8b3e34e4 3673 SECONDARY_EXEC_ENABLE_PML |
2a499e49
BD
3674 SECONDARY_EXEC_TSC_SCALING |
3675 SECONDARY_EXEC_ENABLE_VMFUNC;
d56f546d
SY
3676 if (adjust_vmx_controls(min2, opt2,
3677 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3678 &_cpu_based_2nd_exec_control) < 0)
3679 return -EIO;
3680 }
3681#ifndef CONFIG_X86_64
3682 if (!(_cpu_based_2nd_exec_control &
3683 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3684 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3685#endif
83d4c286
YZ
3686
3687 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3688 _cpu_based_2nd_exec_control &= ~(
8d14695f 3689 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3690 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3691 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3692
d56f546d 3693 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3694 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3695 enabled */
5fff7d27
GN
3696 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3697 CPU_BASED_CR3_STORE_EXITING |
3698 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3699 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3700 vmx_capability.ept, vmx_capability.vpid);
3701 }
1c3d14fe 3702
91fa0f8e 3703 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3704#ifdef CONFIG_X86_64
3705 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3706#endif
a547c6db 3707 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3708 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3709 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3710 &_vmexit_control) < 0)
002c7f7c 3711 return -EIO;
1c3d14fe 3712
2c82878b
PB
3713 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3714 PIN_BASED_VIRTUAL_NMIS;
3715 opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3716 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3717 &_pin_based_exec_control) < 0)
3718 return -EIO;
3719
1c17c3e6
PB
3720 if (cpu_has_broken_vmx_preemption_timer())
3721 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3722 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3723 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3724 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3725
c845f9c6 3726 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3727 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3728 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3729 &_vmentry_control) < 0)
002c7f7c 3730 return -EIO;
6aa8b732 3731
c68876fd 3732 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3733
3734 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3735 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3736 return -EIO;
1c3d14fe
YS
3737
3738#ifdef CONFIG_X86_64
3739 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3740 if (vmx_msr_high & (1u<<16))
002c7f7c 3741 return -EIO;
1c3d14fe
YS
3742#endif
3743
3744 /* Require Write-Back (WB) memory type for VMCS accesses. */
3745 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3746 return -EIO;
1c3d14fe 3747
002c7f7c 3748 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3749 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3750 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3751 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3752
002c7f7c
YS
3753 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3754 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3755 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3756 vmcs_conf->vmexit_ctrl = _vmexit_control;
3757 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3758
110312c8
AK
3759 cpu_has_load_ia32_efer =
3760 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3761 VM_ENTRY_LOAD_IA32_EFER)
3762 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3763 VM_EXIT_LOAD_IA32_EFER);
3764
8bf00a52
GN
3765 cpu_has_load_perf_global_ctrl =
3766 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3767 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3768 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3769 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3770
3771 /*
3772 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3773 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3774 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3775 *
3776 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3777 *
3778 * AAK155 (model 26)
3779 * AAP115 (model 30)
3780 * AAT100 (model 37)
3781 * BC86,AAY89,BD102 (model 44)
3782 * BA97 (model 46)
3783 *
3784 */
3785 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3786 switch (boot_cpu_data.x86_model) {
3787 case 26:
3788 case 30:
3789 case 37:
3790 case 44:
3791 case 46:
3792 cpu_has_load_perf_global_ctrl = false;
3793 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3794 "does not work properly. Using workaround\n");
3795 break;
3796 default:
3797 break;
3798 }
3799 }
3800
782511b0 3801 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3802 rdmsrl(MSR_IA32_XSS, host_xss);
3803
1c3d14fe 3804 return 0;
c68876fd 3805}
6aa8b732
AK
3806
3807static struct vmcs *alloc_vmcs_cpu(int cpu)
3808{
3809 int node = cpu_to_node(cpu);
3810 struct page *pages;
3811 struct vmcs *vmcs;
3812
96db800f 3813 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3814 if (!pages)
3815 return NULL;
3816 vmcs = page_address(pages);
1c3d14fe
YS
3817 memset(vmcs, 0, vmcs_config.size);
3818 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3819 return vmcs;
3820}
3821
3822static struct vmcs *alloc_vmcs(void)
3823{
d3b2c338 3824 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3825}
3826
3827static void free_vmcs(struct vmcs *vmcs)
3828{
1c3d14fe 3829 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3830}
3831
d462b819
NHE
3832/*
3833 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3834 */
3835static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3836{
3837 if (!loaded_vmcs->vmcs)
3838 return;
3839 loaded_vmcs_clear(loaded_vmcs);
3840 free_vmcs(loaded_vmcs->vmcs);
3841 loaded_vmcs->vmcs = NULL;
355f4fb1 3842 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
3843}
3844
39959588 3845static void free_kvm_area(void)
6aa8b732
AK
3846{
3847 int cpu;
3848
3230bb47 3849 for_each_possible_cpu(cpu) {
6aa8b732 3850 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3851 per_cpu(vmxarea, cpu) = NULL;
3852 }
6aa8b732
AK
3853}
3854
85fd514e
JM
3855enum vmcs_field_type {
3856 VMCS_FIELD_TYPE_U16 = 0,
3857 VMCS_FIELD_TYPE_U64 = 1,
3858 VMCS_FIELD_TYPE_U32 = 2,
3859 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3860};
3861
3862static inline int vmcs_field_type(unsigned long field)
3863{
3864 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
3865 return VMCS_FIELD_TYPE_U32;
3866 return (field >> 13) & 0x3 ;
3867}
3868
3869static inline int vmcs_field_readonly(unsigned long field)
3870{
3871 return (((field >> 10) & 0x3) == 1);
3872}
3873
fe2b201b
BD
3874static void init_vmcs_shadow_fields(void)
3875{
3876 int i, j;
3877
3878 /* No checks for read only fields yet */
3879
3880 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3881 switch (shadow_read_write_fields[i]) {
3882 case GUEST_BNDCFGS:
a87036ad 3883 if (!kvm_mpx_supported())
fe2b201b
BD
3884 continue;
3885 break;
3886 default:
3887 break;
3888 }
3889
3890 if (j < i)
3891 shadow_read_write_fields[j] =
3892 shadow_read_write_fields[i];
3893 j++;
3894 }
3895 max_shadow_read_write_fields = j;
3896
3897 /* shadowed fields guest access without vmexit */
3898 for (i = 0; i < max_shadow_read_write_fields; i++) {
85fd514e
JM
3899 unsigned long field = shadow_read_write_fields[i];
3900
3901 clear_bit(field, vmx_vmwrite_bitmap);
3902 clear_bit(field, vmx_vmread_bitmap);
3903 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3904 clear_bit(field + 1, vmx_vmwrite_bitmap);
3905 clear_bit(field + 1, vmx_vmread_bitmap);
3906 }
3907 }
3908 for (i = 0; i < max_shadow_read_only_fields; i++) {
3909 unsigned long field = shadow_read_only_fields[i];
3910
3911 clear_bit(field, vmx_vmread_bitmap);
3912 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3913 clear_bit(field + 1, vmx_vmread_bitmap);
fe2b201b 3914 }
fe2b201b
BD
3915}
3916
6aa8b732
AK
3917static __init int alloc_kvm_area(void)
3918{
3919 int cpu;
3920
3230bb47 3921 for_each_possible_cpu(cpu) {
6aa8b732
AK
3922 struct vmcs *vmcs;
3923
3924 vmcs = alloc_vmcs_cpu(cpu);
3925 if (!vmcs) {
3926 free_kvm_area();
3927 return -ENOMEM;
3928 }
3929
3930 per_cpu(vmxarea, cpu) = vmcs;
3931 }
3932 return 0;
3933}
3934
91b0aa2c 3935static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3936 struct kvm_segment *save)
6aa8b732 3937{
d99e4152
GN
3938 if (!emulate_invalid_guest_state) {
3939 /*
3940 * CS and SS RPL should be equal during guest entry according
3941 * to VMX spec, but in reality it is not always so. Since vcpu
3942 * is in the middle of the transition from real mode to
3943 * protected mode it is safe to assume that RPL 0 is a good
3944 * default value.
3945 */
3946 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3947 save->selector &= ~SEGMENT_RPL_MASK;
3948 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3949 save->s = 1;
6aa8b732 3950 }
d99e4152 3951 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3952}
3953
3954static void enter_pmode(struct kvm_vcpu *vcpu)
3955{
3956 unsigned long flags;
a89a8fb9 3957 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3958
d99e4152
GN
3959 /*
3960 * Update real mode segment cache. It may be not up-to-date if sement
3961 * register was written while vcpu was in a guest mode.
3962 */
3963 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3964 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3965 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3966 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3967 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3968 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3969
7ffd92c5 3970 vmx->rmode.vm86_active = 0;
6aa8b732 3971
2fb92db1
AK
3972 vmx_segment_cache_clear(vmx);
3973
f5f7b2fe 3974 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3975
3976 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3977 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3978 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3979 vmcs_writel(GUEST_RFLAGS, flags);
3980
66aee91a
RR
3981 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3982 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3983
3984 update_exception_bitmap(vcpu);
3985
91b0aa2c
GN
3986 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3987 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3988 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3989 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3990 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3991 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3992}
3993
f5f7b2fe 3994static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3995{
772e0318 3996 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3997 struct kvm_segment var = *save;
3998
3999 var.dpl = 0x3;
4000 if (seg == VCPU_SREG_CS)
4001 var.type = 0x3;
4002
4003 if (!emulate_invalid_guest_state) {
4004 var.selector = var.base >> 4;
4005 var.base = var.base & 0xffff0;
4006 var.limit = 0xffff;
4007 var.g = 0;
4008 var.db = 0;
4009 var.present = 1;
4010 var.s = 1;
4011 var.l = 0;
4012 var.unusable = 0;
4013 var.type = 0x3;
4014 var.avl = 0;
4015 if (save->base & 0xf)
4016 printk_once(KERN_WARNING "kvm: segment base is not "
4017 "paragraph aligned when entering "
4018 "protected mode (seg=%d)", seg);
4019 }
6aa8b732 4020
d99e4152 4021 vmcs_write16(sf->selector, var.selector);
96794e4e 4022 vmcs_writel(sf->base, var.base);
d99e4152
GN
4023 vmcs_write32(sf->limit, var.limit);
4024 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
4025}
4026
4027static void enter_rmode(struct kvm_vcpu *vcpu)
4028{
4029 unsigned long flags;
a89a8fb9 4030 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 4031
f5f7b2fe
AK
4032 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4033 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4034 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4035 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4036 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
4037 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4038 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 4039
7ffd92c5 4040 vmx->rmode.vm86_active = 1;
6aa8b732 4041
776e58ea
GN
4042 /*
4043 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 4044 * vcpu. Warn the user that an update is overdue.
776e58ea 4045 */
4918c6ca 4046 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
4047 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4048 "called before entering vcpu\n");
776e58ea 4049
2fb92db1
AK
4050 vmx_segment_cache_clear(vmx);
4051
4918c6ca 4052 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 4053 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
4054 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4055
4056 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 4057 vmx->rmode.save_rflags = flags;
6aa8b732 4058
053de044 4059 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
4060
4061 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 4062 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
4063 update_exception_bitmap(vcpu);
4064
d99e4152
GN
4065 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4066 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4067 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4068 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4069 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4070 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 4071
8668a3c4 4072 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
4073}
4074
401d10de
AS
4075static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4076{
4077 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
4078 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4079
4080 if (!msr)
4081 return;
401d10de 4082
44ea2b17
AK
4083 /*
4084 * Force kernel_gs_base reloading before EFER changes, as control
4085 * of this msr depends on is_long_mode().
4086 */
4087 vmx_load_host_state(to_vmx(vcpu));
f6801dff 4088 vcpu->arch.efer = efer;
401d10de 4089 if (efer & EFER_LMA) {
2961e876 4090 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4091 msr->data = efer;
4092 } else {
2961e876 4093 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4094
4095 msr->data = efer & ~EFER_LME;
4096 }
4097 setup_msrs(vmx);
4098}
4099
05b3e0c2 4100#ifdef CONFIG_X86_64
6aa8b732
AK
4101
4102static void enter_lmode(struct kvm_vcpu *vcpu)
4103{
4104 u32 guest_tr_ar;
4105
2fb92db1
AK
4106 vmx_segment_cache_clear(to_vmx(vcpu));
4107
6aa8b732 4108 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 4109 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
4110 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4111 __func__);
6aa8b732 4112 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
4113 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4114 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4115 }
da38f438 4116 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4117}
4118
4119static void exit_lmode(struct kvm_vcpu *vcpu)
4120{
2961e876 4121 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4122 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4123}
4124
4125#endif
4126
dd5f5341 4127static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 4128{
dd180b3e
XG
4129 if (enable_ept) {
4130 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4131 return;
995f00a6 4132 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
f0b98c02
JM
4133 } else {
4134 vpid_sync_context(vpid);
dd180b3e 4135 }
2384d2b3
SY
4136}
4137
dd5f5341
WL
4138static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4139{
4140 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4141}
4142
fb6c8198
JM
4143static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4144{
4145 if (enable_ept)
4146 vmx_flush_tlb(vcpu);
4147}
4148
e8467fda
AK
4149static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4150{
4151 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4152
4153 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4154 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4155}
4156
aff48baa
AK
4157static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4158{
4159 if (enable_ept && is_paging(vcpu))
4160 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4161 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4162}
4163
25c4c276 4164static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4165{
fc78f519
AK
4166 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4167
4168 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4169 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4170}
4171
1439442c
SY
4172static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4173{
d0d538b9
GN
4174 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4175
6de4f3ad
AK
4176 if (!test_bit(VCPU_EXREG_PDPTR,
4177 (unsigned long *)&vcpu->arch.regs_dirty))
4178 return;
4179
1439442c 4180 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4181 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4182 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4183 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4184 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4185 }
4186}
4187
8f5d549f
AK
4188static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4189{
d0d538b9
GN
4190 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4191
8f5d549f 4192 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4193 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4194 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4195 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4196 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4197 }
6de4f3ad
AK
4198
4199 __set_bit(VCPU_EXREG_PDPTR,
4200 (unsigned long *)&vcpu->arch.regs_avail);
4201 __set_bit(VCPU_EXREG_PDPTR,
4202 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4203}
4204
3899152c
DM
4205static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4206{
4207 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4208 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4209 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4210
4211 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4212 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4213 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4214 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4215
4216 return fixed_bits_valid(val, fixed0, fixed1);
4217}
4218
4219static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4220{
4221 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4222 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4223
4224 return fixed_bits_valid(val, fixed0, fixed1);
4225}
4226
4227static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4228{
4229 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4230 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4231
4232 return fixed_bits_valid(val, fixed0, fixed1);
4233}
4234
4235/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4236#define nested_guest_cr4_valid nested_cr4_valid
4237#define nested_host_cr4_valid nested_cr4_valid
4238
5e1746d6 4239static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4240
4241static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4242 unsigned long cr0,
4243 struct kvm_vcpu *vcpu)
4244{
5233dd51
MT
4245 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4246 vmx_decache_cr3(vcpu);
1439442c
SY
4247 if (!(cr0 & X86_CR0_PG)) {
4248 /* From paging/starting to nonpaging */
4249 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4250 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4251 (CPU_BASED_CR3_LOAD_EXITING |
4252 CPU_BASED_CR3_STORE_EXITING));
4253 vcpu->arch.cr0 = cr0;
fc78f519 4254 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4255 } else if (!is_paging(vcpu)) {
4256 /* From nonpaging to paging */
4257 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4258 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4259 ~(CPU_BASED_CR3_LOAD_EXITING |
4260 CPU_BASED_CR3_STORE_EXITING));
4261 vcpu->arch.cr0 = cr0;
fc78f519 4262 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4263 }
95eb84a7
SY
4264
4265 if (!(cr0 & X86_CR0_WP))
4266 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4267}
4268
6aa8b732
AK
4269static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4270{
7ffd92c5 4271 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4272 unsigned long hw_cr0;
4273
5037878e 4274 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4275 if (enable_unrestricted_guest)
5037878e 4276 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4277 else {
5037878e 4278 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4279
218e763f
GN
4280 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4281 enter_pmode(vcpu);
6aa8b732 4282
218e763f
GN
4283 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4284 enter_rmode(vcpu);
4285 }
6aa8b732 4286
05b3e0c2 4287#ifdef CONFIG_X86_64
f6801dff 4288 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4289 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4290 enter_lmode(vcpu);
707d92fa 4291 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4292 exit_lmode(vcpu);
4293 }
4294#endif
4295
089d034e 4296 if (enable_ept)
1439442c
SY
4297 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4298
6aa8b732 4299 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4300 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4301 vcpu->arch.cr0 = cr0;
14168786
GN
4302
4303 /* depends on vcpu->arch.cr0 to be set to a new value */
4304 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4305}
4306
995f00a6 4307static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
1439442c 4308{
bb97a016 4309 u64 eptp = VMX_EPTP_MT_WB | VMX_EPTP_PWL_4;
1439442c 4310
995f00a6
PF
4311 if (enable_ept_ad_bits &&
4312 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
bb97a016 4313 eptp |= VMX_EPTP_AD_ENABLE_BIT;
1439442c
SY
4314 eptp |= (root_hpa & PAGE_MASK);
4315
4316 return eptp;
4317}
4318
6aa8b732
AK
4319static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4320{
1439442c
SY
4321 unsigned long guest_cr3;
4322 u64 eptp;
4323
4324 guest_cr3 = cr3;
089d034e 4325 if (enable_ept) {
995f00a6 4326 eptp = construct_eptp(vcpu, cr3);
1439442c 4327 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
4328 if (is_paging(vcpu) || is_guest_mode(vcpu))
4329 guest_cr3 = kvm_read_cr3(vcpu);
4330 else
4331 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 4332 ept_load_pdptrs(vcpu);
1439442c
SY
4333 }
4334
2384d2b3 4335 vmx_flush_tlb(vcpu);
1439442c 4336 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4337}
4338
5e1746d6 4339static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4340{
085e68ee
BS
4341 /*
4342 * Pass through host's Machine Check Enable value to hw_cr4, which
4343 * is in force while we are in guest mode. Do not let guests control
4344 * this bit, even if host CR4.MCE == 0.
4345 */
4346 unsigned long hw_cr4 =
4347 (cr4_read_shadow() & X86_CR4_MCE) |
4348 (cr4 & ~X86_CR4_MCE) |
4349 (to_vmx(vcpu)->rmode.vm86_active ?
4350 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4351
5e1746d6
NHE
4352 if (cr4 & X86_CR4_VMXE) {
4353 /*
4354 * To use VMXON (and later other VMX instructions), a guest
4355 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4356 * So basically the check on whether to allow nested VMX
4357 * is here.
4358 */
4359 if (!nested_vmx_allowed(vcpu))
4360 return 1;
1a0d74e6 4361 }
3899152c
DM
4362
4363 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4364 return 1;
4365
ad312c7c 4366 vcpu->arch.cr4 = cr4;
bc23008b
AK
4367 if (enable_ept) {
4368 if (!is_paging(vcpu)) {
4369 hw_cr4 &= ~X86_CR4_PAE;
4370 hw_cr4 |= X86_CR4_PSE;
4371 } else if (!(cr4 & X86_CR4_PAE)) {
4372 hw_cr4 &= ~X86_CR4_PAE;
4373 }
4374 }
1439442c 4375
656ec4a4
RK
4376 if (!enable_unrestricted_guest && !is_paging(vcpu))
4377 /*
ddba2628
HH
4378 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4379 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4380 * to be manually disabled when guest switches to non-paging
4381 * mode.
4382 *
4383 * If !enable_unrestricted_guest, the CPU is always running
4384 * with CR0.PG=1 and CR4 needs to be modified.
4385 * If enable_unrestricted_guest, the CPU automatically
4386 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4387 */
ddba2628 4388 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4389
1439442c
SY
4390 vmcs_writel(CR4_READ_SHADOW, cr4);
4391 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4392 return 0;
6aa8b732
AK
4393}
4394
6aa8b732
AK
4395static void vmx_get_segment(struct kvm_vcpu *vcpu,
4396 struct kvm_segment *var, int seg)
4397{
a9179499 4398 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4399 u32 ar;
4400
c6ad1153 4401 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4402 *var = vmx->rmode.segs[seg];
a9179499 4403 if (seg == VCPU_SREG_TR
2fb92db1 4404 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4405 return;
1390a28b
AK
4406 var->base = vmx_read_guest_seg_base(vmx, seg);
4407 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4408 return;
a9179499 4409 }
2fb92db1
AK
4410 var->base = vmx_read_guest_seg_base(vmx, seg);
4411 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4412 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4413 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4414 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4415 var->type = ar & 15;
4416 var->s = (ar >> 4) & 1;
4417 var->dpl = (ar >> 5) & 3;
03617c18
GN
4418 /*
4419 * Some userspaces do not preserve unusable property. Since usable
4420 * segment has to be present according to VMX spec we can use present
4421 * property to amend userspace bug by making unusable segment always
4422 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4423 * segment as unusable.
4424 */
4425 var->present = !var->unusable;
6aa8b732
AK
4426 var->avl = (ar >> 12) & 1;
4427 var->l = (ar >> 13) & 1;
4428 var->db = (ar >> 14) & 1;
4429 var->g = (ar >> 15) & 1;
6aa8b732
AK
4430}
4431
a9179499
AK
4432static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4433{
a9179499
AK
4434 struct kvm_segment s;
4435
4436 if (to_vmx(vcpu)->rmode.vm86_active) {
4437 vmx_get_segment(vcpu, &s, seg);
4438 return s.base;
4439 }
2fb92db1 4440 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4441}
4442
b09408d0 4443static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4444{
b09408d0
MT
4445 struct vcpu_vmx *vmx = to_vmx(vcpu);
4446
ae9fedc7 4447 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4448 return 0;
ae9fedc7
PB
4449 else {
4450 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4451 return VMX_AR_DPL(ar);
69c73028 4452 }
69c73028
AK
4453}
4454
653e3108 4455static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4456{
6aa8b732
AK
4457 u32 ar;
4458
f0495f9b 4459 if (var->unusable || !var->present)
6aa8b732
AK
4460 ar = 1 << 16;
4461 else {
4462 ar = var->type & 15;
4463 ar |= (var->s & 1) << 4;
4464 ar |= (var->dpl & 3) << 5;
4465 ar |= (var->present & 1) << 7;
4466 ar |= (var->avl & 1) << 12;
4467 ar |= (var->l & 1) << 13;
4468 ar |= (var->db & 1) << 14;
4469 ar |= (var->g & 1) << 15;
4470 }
653e3108
AK
4471
4472 return ar;
4473}
4474
4475static void vmx_set_segment(struct kvm_vcpu *vcpu,
4476 struct kvm_segment *var, int seg)
4477{
7ffd92c5 4478 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4479 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4480
2fb92db1
AK
4481 vmx_segment_cache_clear(vmx);
4482
1ecd50a9
GN
4483 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4484 vmx->rmode.segs[seg] = *var;
4485 if (seg == VCPU_SREG_TR)
4486 vmcs_write16(sf->selector, var->selector);
4487 else if (var->s)
4488 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4489 goto out;
653e3108 4490 }
1ecd50a9 4491
653e3108
AK
4492 vmcs_writel(sf->base, var->base);
4493 vmcs_write32(sf->limit, var->limit);
4494 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4495
4496 /*
4497 * Fix the "Accessed" bit in AR field of segment registers for older
4498 * qemu binaries.
4499 * IA32 arch specifies that at the time of processor reset the
4500 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4501 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4502 * state vmexit when "unrestricted guest" mode is turned on.
4503 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4504 * tree. Newer qemu binaries with that qemu fix would not need this
4505 * kvm hack.
4506 */
4507 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4508 var->type |= 0x1; /* Accessed */
3a624e29 4509
f924d66d 4510 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4511
4512out:
98eb2f8b 4513 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4514}
4515
6aa8b732
AK
4516static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4517{
2fb92db1 4518 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4519
4520 *db = (ar >> 14) & 1;
4521 *l = (ar >> 13) & 1;
4522}
4523
89a27f4d 4524static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4525{
89a27f4d
GN
4526 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4527 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4528}
4529
89a27f4d 4530static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4531{
89a27f4d
GN
4532 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4533 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4534}
4535
89a27f4d 4536static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4537{
89a27f4d
GN
4538 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4539 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4540}
4541
89a27f4d 4542static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4543{
89a27f4d
GN
4544 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4545 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4546}
4547
648dfaa7
MG
4548static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4549{
4550 struct kvm_segment var;
4551 u32 ar;
4552
4553 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4554 var.dpl = 0x3;
0647f4aa
GN
4555 if (seg == VCPU_SREG_CS)
4556 var.type = 0x3;
648dfaa7
MG
4557 ar = vmx_segment_access_rights(&var);
4558
4559 if (var.base != (var.selector << 4))
4560 return false;
89efbed0 4561 if (var.limit != 0xffff)
648dfaa7 4562 return false;
07f42f5f 4563 if (ar != 0xf3)
648dfaa7
MG
4564 return false;
4565
4566 return true;
4567}
4568
4569static bool code_segment_valid(struct kvm_vcpu *vcpu)
4570{
4571 struct kvm_segment cs;
4572 unsigned int cs_rpl;
4573
4574 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4575 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4576
1872a3f4
AK
4577 if (cs.unusable)
4578 return false;
4d283ec9 4579 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4580 return false;
4581 if (!cs.s)
4582 return false;
4d283ec9 4583 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4584 if (cs.dpl > cs_rpl)
4585 return false;
1872a3f4 4586 } else {
648dfaa7
MG
4587 if (cs.dpl != cs_rpl)
4588 return false;
4589 }
4590 if (!cs.present)
4591 return false;
4592
4593 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4594 return true;
4595}
4596
4597static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4598{
4599 struct kvm_segment ss;
4600 unsigned int ss_rpl;
4601
4602 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4603 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4604
1872a3f4
AK
4605 if (ss.unusable)
4606 return true;
4607 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4608 return false;
4609 if (!ss.s)
4610 return false;
4611 if (ss.dpl != ss_rpl) /* DPL != RPL */
4612 return false;
4613 if (!ss.present)
4614 return false;
4615
4616 return true;
4617}
4618
4619static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4620{
4621 struct kvm_segment var;
4622 unsigned int rpl;
4623
4624 vmx_get_segment(vcpu, &var, seg);
b32a9918 4625 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4626
1872a3f4
AK
4627 if (var.unusable)
4628 return true;
648dfaa7
MG
4629 if (!var.s)
4630 return false;
4631 if (!var.present)
4632 return false;
4d283ec9 4633 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4634 if (var.dpl < rpl) /* DPL < RPL */
4635 return false;
4636 }
4637
4638 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4639 * rights flags
4640 */
4641 return true;
4642}
4643
4644static bool tr_valid(struct kvm_vcpu *vcpu)
4645{
4646 struct kvm_segment tr;
4647
4648 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4649
1872a3f4
AK
4650 if (tr.unusable)
4651 return false;
b32a9918 4652 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4653 return false;
1872a3f4 4654 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4655 return false;
4656 if (!tr.present)
4657 return false;
4658
4659 return true;
4660}
4661
4662static bool ldtr_valid(struct kvm_vcpu *vcpu)
4663{
4664 struct kvm_segment ldtr;
4665
4666 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4667
1872a3f4
AK
4668 if (ldtr.unusable)
4669 return true;
b32a9918 4670 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4671 return false;
4672 if (ldtr.type != 2)
4673 return false;
4674 if (!ldtr.present)
4675 return false;
4676
4677 return true;
4678}
4679
4680static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4681{
4682 struct kvm_segment cs, ss;
4683
4684 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4685 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4686
b32a9918
NA
4687 return ((cs.selector & SEGMENT_RPL_MASK) ==
4688 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4689}
4690
4691/*
4692 * Check if guest state is valid. Returns true if valid, false if
4693 * not.
4694 * We assume that registers are always usable
4695 */
4696static bool guest_state_valid(struct kvm_vcpu *vcpu)
4697{
c5e97c80
GN
4698 if (enable_unrestricted_guest)
4699 return true;
4700
648dfaa7 4701 /* real mode guest state checks */
f13882d8 4702 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4703 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4704 return false;
4705 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4706 return false;
4707 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4708 return false;
4709 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4710 return false;
4711 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4712 return false;
4713 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4714 return false;
4715 } else {
4716 /* protected mode guest state checks */
4717 if (!cs_ss_rpl_check(vcpu))
4718 return false;
4719 if (!code_segment_valid(vcpu))
4720 return false;
4721 if (!stack_segment_valid(vcpu))
4722 return false;
4723 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4724 return false;
4725 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4726 return false;
4727 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4728 return false;
4729 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4730 return false;
4731 if (!tr_valid(vcpu))
4732 return false;
4733 if (!ldtr_valid(vcpu))
4734 return false;
4735 }
4736 /* TODO:
4737 * - Add checks on RIP
4738 * - Add checks on RFLAGS
4739 */
4740
4741 return true;
4742}
4743
5fa99cbe
JM
4744static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4745{
4746 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4747}
4748
d77c26fc 4749static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4750{
40dcaa9f 4751 gfn_t fn;
195aefde 4752 u16 data = 0;
1f755a82 4753 int idx, r;
6aa8b732 4754
40dcaa9f 4755 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4756 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4757 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4758 if (r < 0)
10589a46 4759 goto out;
195aefde 4760 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4761 r = kvm_write_guest_page(kvm, fn++, &data,
4762 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4763 if (r < 0)
10589a46 4764 goto out;
195aefde
IE
4765 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4766 if (r < 0)
10589a46 4767 goto out;
195aefde
IE
4768 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4769 if (r < 0)
10589a46 4770 goto out;
195aefde 4771 data = ~0;
10589a46
MT
4772 r = kvm_write_guest_page(kvm, fn, &data,
4773 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4774 sizeof(u8));
10589a46 4775out:
40dcaa9f 4776 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4777 return r;
6aa8b732
AK
4778}
4779
b7ebfb05
SY
4780static int init_rmode_identity_map(struct kvm *kvm)
4781{
f51770ed 4782 int i, idx, r = 0;
ba049e93 4783 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4784 u32 tmp;
4785
089d034e 4786 if (!enable_ept)
f51770ed 4787 return 0;
a255d479
TC
4788
4789 /* Protect kvm->arch.ept_identity_pagetable_done. */
4790 mutex_lock(&kvm->slots_lock);
4791
f51770ed 4792 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4793 goto out2;
a255d479 4794
b927a3ce 4795 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4796
4797 r = alloc_identity_pagetable(kvm);
f51770ed 4798 if (r < 0)
a255d479
TC
4799 goto out2;
4800
40dcaa9f 4801 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4802 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4803 if (r < 0)
4804 goto out;
4805 /* Set up identity-mapping pagetable for EPT in real mode */
4806 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4807 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4808 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4809 r = kvm_write_guest_page(kvm, identity_map_pfn,
4810 &tmp, i * sizeof(tmp), sizeof(tmp));
4811 if (r < 0)
4812 goto out;
4813 }
4814 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4815
b7ebfb05 4816out:
40dcaa9f 4817 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4818
4819out2:
4820 mutex_unlock(&kvm->slots_lock);
f51770ed 4821 return r;
b7ebfb05
SY
4822}
4823
6aa8b732
AK
4824static void seg_setup(int seg)
4825{
772e0318 4826 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4827 unsigned int ar;
6aa8b732
AK
4828
4829 vmcs_write16(sf->selector, 0);
4830 vmcs_writel(sf->base, 0);
4831 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4832 ar = 0x93;
4833 if (seg == VCPU_SREG_CS)
4834 ar |= 0x08; /* code segment */
3a624e29
NK
4835
4836 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4837}
4838
f78e0e2e
SY
4839static int alloc_apic_access_page(struct kvm *kvm)
4840{
4484141a 4841 struct page *page;
f78e0e2e
SY
4842 int r = 0;
4843
79fac95e 4844 mutex_lock(&kvm->slots_lock);
c24ae0dc 4845 if (kvm->arch.apic_access_page_done)
f78e0e2e 4846 goto out;
1d8007bd
PB
4847 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4848 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4849 if (r)
4850 goto out;
72dc67a6 4851
73a6d941 4852 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4853 if (is_error_page(page)) {
4854 r = -EFAULT;
4855 goto out;
4856 }
4857
c24ae0dc
TC
4858 /*
4859 * Do not pin the page in memory, so that memory hot-unplug
4860 * is able to migrate it.
4861 */
4862 put_page(page);
4863 kvm->arch.apic_access_page_done = true;
f78e0e2e 4864out:
79fac95e 4865 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4866 return r;
4867}
4868
b7ebfb05
SY
4869static int alloc_identity_pagetable(struct kvm *kvm)
4870{
a255d479
TC
4871 /* Called with kvm->slots_lock held. */
4872
b7ebfb05
SY
4873 int r = 0;
4874
a255d479
TC
4875 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4876
1d8007bd
PB
4877 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4878 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4879
b7ebfb05
SY
4880 return r;
4881}
4882
991e7a0e 4883static int allocate_vpid(void)
2384d2b3
SY
4884{
4885 int vpid;
4886
919818ab 4887 if (!enable_vpid)
991e7a0e 4888 return 0;
2384d2b3
SY
4889 spin_lock(&vmx_vpid_lock);
4890 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4891 if (vpid < VMX_NR_VPIDS)
2384d2b3 4892 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4893 else
4894 vpid = 0;
2384d2b3 4895 spin_unlock(&vmx_vpid_lock);
991e7a0e 4896 return vpid;
2384d2b3
SY
4897}
4898
991e7a0e 4899static void free_vpid(int vpid)
cdbecfc3 4900{
991e7a0e 4901 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4902 return;
4903 spin_lock(&vmx_vpid_lock);
991e7a0e 4904 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4905 spin_unlock(&vmx_vpid_lock);
4906}
4907
8d14695f
YZ
4908#define MSR_TYPE_R 1
4909#define MSR_TYPE_W 2
4910static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4911 u32 msr, int type)
25c5f225 4912{
3e7c73e9 4913 int f = sizeof(unsigned long);
25c5f225
SY
4914
4915 if (!cpu_has_vmx_msr_bitmap())
4916 return;
4917
4918 /*
4919 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4920 * have the write-low and read-high bitmap offsets the wrong way round.
4921 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4922 */
25c5f225 4923 if (msr <= 0x1fff) {
8d14695f
YZ
4924 if (type & MSR_TYPE_R)
4925 /* read-low */
4926 __clear_bit(msr, msr_bitmap + 0x000 / f);
4927
4928 if (type & MSR_TYPE_W)
4929 /* write-low */
4930 __clear_bit(msr, msr_bitmap + 0x800 / f);
4931
25c5f225
SY
4932 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4933 msr &= 0x1fff;
8d14695f
YZ
4934 if (type & MSR_TYPE_R)
4935 /* read-high */
4936 __clear_bit(msr, msr_bitmap + 0x400 / f);
4937
4938 if (type & MSR_TYPE_W)
4939 /* write-high */
4940 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4941
4942 }
4943}
4944
f2b93280
WV
4945/*
4946 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4947 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4948 */
4949static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4950 unsigned long *msr_bitmap_nested,
4951 u32 msr, int type)
4952{
4953 int f = sizeof(unsigned long);
4954
4955 if (!cpu_has_vmx_msr_bitmap()) {
4956 WARN_ON(1);
4957 return;
4958 }
4959
4960 /*
4961 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4962 * have the write-low and read-high bitmap offsets the wrong way round.
4963 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4964 */
4965 if (msr <= 0x1fff) {
4966 if (type & MSR_TYPE_R &&
4967 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4968 /* read-low */
4969 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4970
4971 if (type & MSR_TYPE_W &&
4972 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4973 /* write-low */
4974 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4975
4976 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4977 msr &= 0x1fff;
4978 if (type & MSR_TYPE_R &&
4979 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4980 /* read-high */
4981 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4982
4983 if (type & MSR_TYPE_W &&
4984 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4985 /* write-high */
4986 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4987
4988 }
4989}
4990
5897297b
AK
4991static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4992{
4993 if (!longmode_only)
8d14695f
YZ
4994 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4995 msr, MSR_TYPE_R | MSR_TYPE_W);
4996 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4997 msr, MSR_TYPE_R | MSR_TYPE_W);
4998}
4999
2e69f865 5000static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
8d14695f 5001{
f6e90f9e 5002 if (apicv_active) {
c63e4563 5003 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
2e69f865 5004 msr, type);
c63e4563 5005 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
2e69f865 5006 msr, type);
f6e90f9e 5007 } else {
f6e90f9e 5008 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
2e69f865 5009 msr, type);
f6e90f9e 5010 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
2e69f865 5011 msr, type);
f6e90f9e 5012 }
5897297b
AK
5013}
5014
d62caabb 5015static bool vmx_get_enable_apicv(void)
d50ab6c1 5016{
d62caabb 5017 return enable_apicv;
d50ab6c1
PB
5018}
5019
c9f04407
DM
5020static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5021{
5022 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5023 gfn_t gfn;
5024
5025 /*
5026 * Don't need to mark the APIC access page dirty; it is never
5027 * written to by the CPU during APIC virtualization.
5028 */
5029
5030 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5031 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5032 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5033 }
5034
5035 if (nested_cpu_has_posted_intr(vmcs12)) {
5036 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5037 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5038 }
5039}
5040
5041
6342c50a 5042static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
5043{
5044 struct vcpu_vmx *vmx = to_vmx(vcpu);
5045 int max_irr;
5046 void *vapic_page;
5047 u16 status;
5048
c9f04407
DM
5049 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5050 return;
705699a1 5051
c9f04407
DM
5052 vmx->nested.pi_pending = false;
5053 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5054 return;
705699a1 5055
c9f04407
DM
5056 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5057 if (max_irr != 256) {
705699a1 5058 vapic_page = kmap(vmx->nested.virtual_apic_page);
705699a1
WV
5059 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5060 kunmap(vmx->nested.virtual_apic_page);
5061
5062 status = vmcs_read16(GUEST_INTR_STATUS);
5063 if ((u8)max_irr > ((u8)status & 0xff)) {
5064 status &= ~0xff;
5065 status |= (u8)max_irr;
5066 vmcs_write16(GUEST_INTR_STATUS, status);
5067 }
5068 }
c9f04407
DM
5069
5070 nested_mark_vmcs12_pages_dirty(vcpu);
705699a1
WV
5071}
5072
06a5524f
WV
5073static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5074 bool nested)
21bc8dc5
RK
5075{
5076#ifdef CONFIG_SMP
06a5524f
WV
5077 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5078
21bc8dc5 5079 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6
FW
5080 struct vcpu_vmx *vmx = to_vmx(vcpu);
5081
5082 /*
5083 * Currently, we don't support urgent interrupt,
5084 * all interrupts are recognized as non-urgent
5085 * interrupt, so we cannot post interrupts when
5086 * 'SN' is set.
5087 *
5088 * If the vcpu is in guest mode, it means it is
5089 * running instead of being scheduled out and
5090 * waiting in the run queue, and that's the only
5091 * case when 'SN' is set currently, warning if
5092 * 'SN' is set.
5093 */
5094 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
5095
06a5524f 5096 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
21bc8dc5
RK
5097 return true;
5098 }
5099#endif
5100 return false;
5101}
5102
705699a1
WV
5103static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5104 int vector)
5105{
5106 struct vcpu_vmx *vmx = to_vmx(vcpu);
5107
5108 if (is_guest_mode(vcpu) &&
5109 vector == vmx->nested.posted_intr_nv) {
5110 /* the PIR and ON have been set by L1. */
06a5524f 5111 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
705699a1
WV
5112 /*
5113 * If a posted intr is not recognized by hardware,
5114 * we will accomplish it in the next vmentry.
5115 */
5116 vmx->nested.pi_pending = true;
5117 kvm_make_request(KVM_REQ_EVENT, vcpu);
5118 return 0;
5119 }
5120 return -1;
5121}
a20ed54d
YZ
5122/*
5123 * Send interrupt to vcpu via posted interrupt way.
5124 * 1. If target vcpu is running(non-root mode), send posted interrupt
5125 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5126 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5127 * interrupt from PIR in next vmentry.
5128 */
5129static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5130{
5131 struct vcpu_vmx *vmx = to_vmx(vcpu);
5132 int r;
5133
705699a1
WV
5134 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5135 if (!r)
5136 return;
5137
a20ed54d
YZ
5138 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5139 return;
5140
b95234c8
PB
5141 /* If a previous notification has sent the IPI, nothing to do. */
5142 if (pi_test_and_set_on(&vmx->pi_desc))
5143 return;
5144
06a5524f 5145 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
a20ed54d
YZ
5146 kvm_vcpu_kick(vcpu);
5147}
5148
a3a8ff8e
NHE
5149/*
5150 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5151 * will not change in the lifetime of the guest.
5152 * Note that host-state that does change is set elsewhere. E.g., host-state
5153 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5154 */
a547c6db 5155static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5156{
5157 u32 low32, high32;
5158 unsigned long tmpl;
5159 struct desc_ptr dt;
d6e41f11 5160 unsigned long cr0, cr3, cr4;
a3a8ff8e 5161
04ac88ab
AL
5162 cr0 = read_cr0();
5163 WARN_ON(cr0 & X86_CR0_TS);
5164 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
d6e41f11
AL
5165
5166 /*
5167 * Save the most likely value for this task's CR3 in the VMCS.
5168 * We can't use __get_current_cr3_fast() because we're not atomic.
5169 */
6c690ee1 5170 cr3 = __read_cr3();
d6e41f11
AL
5171 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
5172 vmx->host_state.vmcs_host_cr3 = cr3;
a3a8ff8e 5173
d974baa3 5174 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5175 cr4 = cr4_read_shadow();
d974baa3
AL
5176 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5177 vmx->host_state.vmcs_host_cr4 = cr4;
5178
a3a8ff8e 5179 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5180#ifdef CONFIG_X86_64
5181 /*
5182 * Load null selectors, so we can avoid reloading them in
5183 * __vmx_load_host_state(), in case userspace uses the null selectors
5184 * too (the expected case).
5185 */
5186 vmcs_write16(HOST_DS_SELECTOR, 0);
5187 vmcs_write16(HOST_ES_SELECTOR, 0);
5188#else
a3a8ff8e
NHE
5189 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5190 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5191#endif
a3a8ff8e
NHE
5192 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5193 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5194
5195 native_store_idt(&dt);
5196 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5197 vmx->host_idt_base = dt.address;
a3a8ff8e 5198
83287ea4 5199 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5200
5201 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5202 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5203 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5204 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5205
5206 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5207 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5208 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5209 }
5210}
5211
bf8179a0
NHE
5212static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5213{
5214 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5215 if (enable_ept)
5216 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5217 if (is_guest_mode(&vmx->vcpu))
5218 vmx->vcpu.arch.cr4_guest_owned_bits &=
5219 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5220 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5221}
5222
01e439be
YZ
5223static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5224{
5225 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5226
d62caabb 5227 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5228 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
64672c95
YJ
5229 /* Enable the preemption timer dynamically */
5230 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5231 return pin_based_exec_ctrl;
5232}
5233
d62caabb
AS
5234static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5235{
5236 struct vcpu_vmx *vmx = to_vmx(vcpu);
5237
5238 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5239 if (cpu_has_secondary_exec_ctrls()) {
5240 if (kvm_vcpu_apicv_active(vcpu))
5241 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5242 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5243 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5244 else
5245 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5246 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5247 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5248 }
5249
5250 if (cpu_has_vmx_msr_bitmap())
5251 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
5252}
5253
bf8179a0
NHE
5254static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5255{
5256 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5257
5258 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5259 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5260
35754c98 5261 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5262 exec_control &= ~CPU_BASED_TPR_SHADOW;
5263#ifdef CONFIG_X86_64
5264 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5265 CPU_BASED_CR8_LOAD_EXITING;
5266#endif
5267 }
5268 if (!enable_ept)
5269 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5270 CPU_BASED_CR3_LOAD_EXITING |
5271 CPU_BASED_INVLPG_EXITING;
5272 return exec_control;
5273}
5274
45ec368c
JM
5275static bool vmx_rdrand_supported(void)
5276{
5277 return vmcs_config.cpu_based_2nd_exec_ctrl &
5278 SECONDARY_EXEC_RDRAND;
5279}
5280
75f4fc8d
JM
5281static bool vmx_rdseed_supported(void)
5282{
5283 return vmcs_config.cpu_based_2nd_exec_ctrl &
5284 SECONDARY_EXEC_RDSEED;
5285}
5286
80154d77 5287static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
bf8179a0 5288{
80154d77
PB
5289 struct kvm_vcpu *vcpu = &vmx->vcpu;
5290
bf8179a0 5291 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
80154d77 5292 if (!cpu_need_virtualize_apic_accesses(vcpu))
bf8179a0
NHE
5293 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5294 if (vmx->vpid == 0)
5295 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5296 if (!enable_ept) {
5297 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5298 enable_unrestricted_guest = 0;
ad756a16
MJ
5299 /* Enable INVPCID for non-ept guests may cause performance regression. */
5300 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5301 }
5302 if (!enable_unrestricted_guest)
5303 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5304 if (!ple_gap)
5305 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
80154d77 5306 if (!kvm_vcpu_apicv_active(vcpu))
c7c9c56c
YZ
5307 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5308 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5309 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5310 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5311 (handle_vmptrld).
5312 We can NOT enable shadow_vmcs here because we don't have yet
5313 a current VMCS12
5314 */
5315 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5316
5317 if (!enable_pml)
5318 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5319
3db13480
PB
5320 if (vmx_xsaves_supported()) {
5321 /* Exposing XSAVES only when XSAVE is exposed */
5322 bool xsaves_enabled =
5323 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5324 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5325
5326 if (!xsaves_enabled)
5327 exec_control &= ~SECONDARY_EXEC_XSAVES;
5328
5329 if (nested) {
5330 if (xsaves_enabled)
5331 vmx->nested.nested_vmx_secondary_ctls_high |=
5332 SECONDARY_EXEC_XSAVES;
5333 else
5334 vmx->nested.nested_vmx_secondary_ctls_high &=
5335 ~SECONDARY_EXEC_XSAVES;
5336 }
5337 }
5338
80154d77
PB
5339 if (vmx_rdtscp_supported()) {
5340 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5341 if (!rdtscp_enabled)
5342 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5343
5344 if (nested) {
5345 if (rdtscp_enabled)
5346 vmx->nested.nested_vmx_secondary_ctls_high |=
5347 SECONDARY_EXEC_RDTSCP;
5348 else
5349 vmx->nested.nested_vmx_secondary_ctls_high &=
5350 ~SECONDARY_EXEC_RDTSCP;
5351 }
5352 }
5353
5354 if (vmx_invpcid_supported()) {
5355 /* Exposing INVPCID only when PCID is exposed */
5356 bool invpcid_enabled =
5357 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5358 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5359
5360 if (!invpcid_enabled) {
5361 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5362 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5363 }
5364
5365 if (nested) {
5366 if (invpcid_enabled)
5367 vmx->nested.nested_vmx_secondary_ctls_high |=
5368 SECONDARY_EXEC_ENABLE_INVPCID;
5369 else
5370 vmx->nested.nested_vmx_secondary_ctls_high &=
5371 ~SECONDARY_EXEC_ENABLE_INVPCID;
5372 }
5373 }
5374
45ec368c
JM
5375 if (vmx_rdrand_supported()) {
5376 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5377 if (rdrand_enabled)
5378 exec_control &= ~SECONDARY_EXEC_RDRAND;
5379
5380 if (nested) {
5381 if (rdrand_enabled)
5382 vmx->nested.nested_vmx_secondary_ctls_high |=
5383 SECONDARY_EXEC_RDRAND;
5384 else
5385 vmx->nested.nested_vmx_secondary_ctls_high &=
5386 ~SECONDARY_EXEC_RDRAND;
5387 }
5388 }
5389
75f4fc8d
JM
5390 if (vmx_rdseed_supported()) {
5391 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5392 if (rdseed_enabled)
5393 exec_control &= ~SECONDARY_EXEC_RDSEED;
5394
5395 if (nested) {
5396 if (rdseed_enabled)
5397 vmx->nested.nested_vmx_secondary_ctls_high |=
5398 SECONDARY_EXEC_RDSEED;
5399 else
5400 vmx->nested.nested_vmx_secondary_ctls_high &=
5401 ~SECONDARY_EXEC_RDSEED;
5402 }
5403 }
5404
80154d77 5405 vmx->secondary_exec_control = exec_control;
bf8179a0
NHE
5406}
5407
ce88decf
XG
5408static void ept_set_mmio_spte_mask(void)
5409{
5410 /*
5411 * EPT Misconfigurations can be generated if the value of bits 2:0
5412 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5413 */
dcdca5fe
PF
5414 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5415 VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5416}
5417
f53cd63c 5418#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5419/*
5420 * Sets up the vmcs for emulated real mode.
5421 */
8b9cf98c 5422static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5423{
2e4ce7f5 5424#ifdef CONFIG_X86_64
6aa8b732 5425 unsigned long a;
2e4ce7f5 5426#endif
6aa8b732 5427 int i;
6aa8b732 5428
6aa8b732 5429 /* I/O */
3e7c73e9
AK
5430 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5431 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5432
4607c2d7
AG
5433 if (enable_shadow_vmcs) {
5434 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5435 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5436 }
25c5f225 5437 if (cpu_has_vmx_msr_bitmap())
5897297b 5438 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 5439
6aa8b732
AK
5440 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5441
6aa8b732 5442 /* Control */
01e439be 5443 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5444 vmx->hv_deadline_tsc = -1;
6e5d865c 5445
bf8179a0 5446 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5447
dfa169bb 5448 if (cpu_has_secondary_exec_ctrls()) {
80154d77 5449 vmx_compute_secondary_exec_control(vmx);
bf8179a0 5450 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
80154d77 5451 vmx->secondary_exec_control);
dfa169bb 5452 }
f78e0e2e 5453
d62caabb 5454 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5455 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5456 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5457 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5458 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5459
5460 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5461
0bcf261c 5462 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5463 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5464 }
5465
4b8d54f9
ZE
5466 if (ple_gap) {
5467 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5468 vmx->ple_window = ple_window;
5469 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5470 }
5471
c3707958
XG
5472 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5473 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5474 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5475
9581d442
AK
5476 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5477 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5478 vmx_set_constant_host_state(vmx);
05b3e0c2 5479#ifdef CONFIG_X86_64
6aa8b732
AK
5480 rdmsrl(MSR_FS_BASE, a);
5481 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5482 rdmsrl(MSR_GS_BASE, a);
5483 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5484#else
5485 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5486 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5487#endif
5488
2a499e49
BD
5489 if (cpu_has_vmx_vmfunc())
5490 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5491
2cc51560
ED
5492 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5493 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5494 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5495 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5496 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5497
74545705
RK
5498 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5499 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5500
03916db9 5501 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5502 u32 index = vmx_msr_index[i];
5503 u32 data_low, data_high;
a2fa3e9f 5504 int j = vmx->nmsrs;
6aa8b732
AK
5505
5506 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5507 continue;
432bd6cb
AK
5508 if (wrmsr_safe(index, data_low, data_high) < 0)
5509 continue;
26bb0981
AK
5510 vmx->guest_msrs[j].index = i;
5511 vmx->guest_msrs[j].data = 0;
d5696725 5512 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5513 ++vmx->nmsrs;
6aa8b732 5514 }
6aa8b732 5515
2961e876
GN
5516
5517 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5518
5519 /* 22.2.1, 20.8.1 */
2961e876 5520 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5521
bd7e5b08
PB
5522 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5523 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5524
bf8179a0 5525 set_cr4_guest_host_mask(vmx);
e00c8cf2 5526
f53cd63c
WL
5527 if (vmx_xsaves_supported())
5528 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5529
4e59516a
PF
5530 if (enable_pml) {
5531 ASSERT(vmx->pml_pg);
5532 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5533 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5534 }
5535
e00c8cf2
AK
5536 return 0;
5537}
5538
d28bc9dd 5539static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5540{
5541 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5542 struct msr_data apic_base_msr;
d28bc9dd 5543 u64 cr0;
e00c8cf2 5544
7ffd92c5 5545 vmx->rmode.vm86_active = 0;
e00c8cf2 5546
ad312c7c 5547 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5548 kvm_set_cr8(vcpu, 0);
5549
5550 if (!init_event) {
5551 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5552 MSR_IA32_APICBASE_ENABLE;
5553 if (kvm_vcpu_is_reset_bsp(vcpu))
5554 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5555 apic_base_msr.host_initiated = true;
5556 kvm_set_apic_base(vcpu, &apic_base_msr);
5557 }
e00c8cf2 5558
2fb92db1
AK
5559 vmx_segment_cache_clear(vmx);
5560
5706be0d 5561 seg_setup(VCPU_SREG_CS);
66450a21 5562 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5563 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5564
5565 seg_setup(VCPU_SREG_DS);
5566 seg_setup(VCPU_SREG_ES);
5567 seg_setup(VCPU_SREG_FS);
5568 seg_setup(VCPU_SREG_GS);
5569 seg_setup(VCPU_SREG_SS);
5570
5571 vmcs_write16(GUEST_TR_SELECTOR, 0);
5572 vmcs_writel(GUEST_TR_BASE, 0);
5573 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5574 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5575
5576 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5577 vmcs_writel(GUEST_LDTR_BASE, 0);
5578 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5579 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5580
d28bc9dd
NA
5581 if (!init_event) {
5582 vmcs_write32(GUEST_SYSENTER_CS, 0);
5583 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5584 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5585 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5586 }
e00c8cf2
AK
5587
5588 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5589 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5590
e00c8cf2
AK
5591 vmcs_writel(GUEST_GDTR_BASE, 0);
5592 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5593
5594 vmcs_writel(GUEST_IDTR_BASE, 0);
5595 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5596
443381a8 5597 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5598 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5599 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5600
e00c8cf2
AK
5601 setup_msrs(vmx);
5602
6aa8b732
AK
5603 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5604
d28bc9dd 5605 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5606 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5607 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5608 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5609 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5610 vmcs_write32(TPR_THRESHOLD, 0);
5611 }
5612
a73896cb 5613 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5614
d62caabb 5615 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5616 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5617
2384d2b3
SY
5618 if (vmx->vpid != 0)
5619 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5620
d28bc9dd 5621 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5622 vmx->vcpu.arch.cr0 = cr0;
f2463247 5623 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5624 vmx_set_cr4(vcpu, 0);
5690891b 5625 vmx_set_efer(vcpu, 0);
bd7e5b08 5626
d28bc9dd 5627 update_exception_bitmap(vcpu);
6aa8b732 5628
dd5f5341 5629 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5630}
5631
b6f1250e
NHE
5632/*
5633 * In nested virtualization, check if L1 asked to exit on external interrupts.
5634 * For most existing hypervisors, this will always return true.
5635 */
5636static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5637{
5638 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5639 PIN_BASED_EXT_INTR_MASK;
5640}
5641
77b0f5d6
BD
5642/*
5643 * In nested virtualization, check if L1 has set
5644 * VM_EXIT_ACK_INTR_ON_EXIT
5645 */
5646static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5647{
5648 return get_vmcs12(vcpu)->vm_exit_controls &
5649 VM_EXIT_ACK_INTR_ON_EXIT;
5650}
5651
ea8ceb83
JK
5652static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5653{
5654 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5655 PIN_BASED_NMI_EXITING;
5656}
5657
c9a7953f 5658static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 5659{
47c0152e
PB
5660 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5661 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
5662}
5663
c9a7953f 5664static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 5665{
2c82878b 5666 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
c9a7953f
JK
5667 enable_irq_window(vcpu);
5668 return;
5669 }
3b86cd99 5670
47c0152e
PB
5671 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5672 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
5673}
5674
66fd3f7f 5675static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5676{
9c8cba37 5677 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5678 uint32_t intr;
5679 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5680
229456fc 5681 trace_kvm_inj_virq(irq);
2714d1d3 5682
fa89a817 5683 ++vcpu->stat.irq_injections;
7ffd92c5 5684 if (vmx->rmode.vm86_active) {
71f9833b
SH
5685 int inc_eip = 0;
5686 if (vcpu->arch.interrupt.soft)
5687 inc_eip = vcpu->arch.event_exit_inst_len;
5688 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5689 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5690 return;
5691 }
66fd3f7f
GN
5692 intr = irq | INTR_INFO_VALID_MASK;
5693 if (vcpu->arch.interrupt.soft) {
5694 intr |= INTR_TYPE_SOFT_INTR;
5695 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5696 vmx->vcpu.arch.event_exit_inst_len);
5697 } else
5698 intr |= INTR_TYPE_EXT_INTR;
5699 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5700}
5701
f08864b4
SY
5702static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5703{
66a5a347
JK
5704 struct vcpu_vmx *vmx = to_vmx(vcpu);
5705
4c4a6f79
PB
5706 ++vcpu->stat.nmi_injections;
5707 vmx->loaded_vmcs->nmi_known_unmasked = false;
3b86cd99 5708
7ffd92c5 5709 if (vmx->rmode.vm86_active) {
71f9833b 5710 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5711 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5712 return;
5713 }
c5a6d5f7 5714
f08864b4
SY
5715 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5716 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5717}
5718
3cfc3092
JK
5719static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5720{
4c4a6f79
PB
5721 struct vcpu_vmx *vmx = to_vmx(vcpu);
5722 bool masked;
5723
5724 if (vmx->loaded_vmcs->nmi_known_unmasked)
9d58b931 5725 return false;
4c4a6f79
PB
5726 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5727 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5728 return masked;
3cfc3092
JK
5729}
5730
5731static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5732{
5733 struct vcpu_vmx *vmx = to_vmx(vcpu);
5734
4c4a6f79 5735 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
2c82878b
PB
5736 if (masked)
5737 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5738 GUEST_INTR_STATE_NMI);
5739 else
5740 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5741 GUEST_INTR_STATE_NMI);
3cfc3092
JK
5742}
5743
2505dc9f
JK
5744static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5745{
b6b8a145
JK
5746 if (to_vmx(vcpu)->nested.nested_run_pending)
5747 return 0;
ea8ceb83 5748
2505dc9f
JK
5749 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5750 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5751 | GUEST_INTR_STATE_NMI));
5752}
5753
78646121
GN
5754static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5755{
b6b8a145
JK
5756 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5757 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5758 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5759 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5760}
5761
cbc94022
IE
5762static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5763{
5764 int ret;
cbc94022 5765
1d8007bd
PB
5766 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5767 PAGE_SIZE * 3);
cbc94022
IE
5768 if (ret)
5769 return ret;
bfc6d222 5770 kvm->arch.tss_addr = addr;
1f755a82 5771 return init_rmode_tss(kvm);
cbc94022
IE
5772}
5773
0ca1b4f4 5774static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5775{
77ab6db0 5776 switch (vec) {
77ab6db0 5777 case BP_VECTOR:
c573cd22
JK
5778 /*
5779 * Update instruction length as we may reinject the exception
5780 * from user space while in guest debugging mode.
5781 */
5782 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5783 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5784 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5785 return false;
5786 /* fall through */
5787 case DB_VECTOR:
5788 if (vcpu->guest_debug &
5789 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5790 return false;
d0bfb940
JK
5791 /* fall through */
5792 case DE_VECTOR:
77ab6db0
JK
5793 case OF_VECTOR:
5794 case BR_VECTOR:
5795 case UD_VECTOR:
5796 case DF_VECTOR:
5797 case SS_VECTOR:
5798 case GP_VECTOR:
5799 case MF_VECTOR:
0ca1b4f4
GN
5800 return true;
5801 break;
77ab6db0 5802 }
0ca1b4f4
GN
5803 return false;
5804}
5805
5806static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5807 int vec, u32 err_code)
5808{
5809 /*
5810 * Instruction with address size override prefix opcode 0x67
5811 * Cause the #SS fault with 0 error code in VM86 mode.
5812 */
5813 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5814 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5815 if (vcpu->arch.halt_request) {
5816 vcpu->arch.halt_request = 0;
5cb56059 5817 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5818 }
5819 return 1;
5820 }
5821 return 0;
5822 }
5823
5824 /*
5825 * Forward all other exceptions that are valid in real mode.
5826 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5827 * the required debugging infrastructure rework.
5828 */
5829 kvm_queue_exception(vcpu, vec);
5830 return 1;
6aa8b732
AK
5831}
5832
a0861c02
AK
5833/*
5834 * Trigger machine check on the host. We assume all the MSRs are already set up
5835 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5836 * We pass a fake environment to the machine check handler because we want
5837 * the guest to be always treated like user space, no matter what context
5838 * it used internally.
5839 */
5840static void kvm_machine_check(void)
5841{
5842#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5843 struct pt_regs regs = {
5844 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5845 .flags = X86_EFLAGS_IF,
5846 };
5847
5848 do_machine_check(&regs, 0);
5849#endif
5850}
5851
851ba692 5852static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5853{
5854 /* already handled by vcpu_run */
5855 return 1;
5856}
5857
851ba692 5858static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5859{
1155f76a 5860 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5861 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5862 u32 intr_info, ex_no, error_code;
42dbaa5a 5863 unsigned long cr2, rip, dr6;
6aa8b732
AK
5864 u32 vect_info;
5865 enum emulation_result er;
5866
1155f76a 5867 vect_info = vmx->idt_vectoring_info;
88786475 5868 intr_info = vmx->exit_intr_info;
6aa8b732 5869
a0861c02 5870 if (is_machine_check(intr_info))
851ba692 5871 return handle_machine_check(vcpu);
a0861c02 5872
ef85b673 5873 if (is_nmi(intr_info))
1b6269db 5874 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 5875
7aa81cc0 5876 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5877 if (is_guest_mode(vcpu)) {
5878 kvm_queue_exception(vcpu, UD_VECTOR);
5879 return 1;
5880 }
51d8b661 5881 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5882 if (er != EMULATE_DONE)
7ee5d940 5883 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5884 return 1;
5885 }
5886
6aa8b732 5887 error_code = 0;
2e11384c 5888 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5889 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5890
5891 /*
5892 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5893 * MMIO, it is better to report an internal error.
5894 * See the comments in vmx_handle_exit.
5895 */
5896 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5897 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5898 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5899 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5900 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5901 vcpu->run->internal.data[0] = vect_info;
5902 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5903 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5904 return 0;
5905 }
5906
6aa8b732
AK
5907 if (is_page_fault(intr_info)) {
5908 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1261bfa3
WL
5909 /* EPT won't cause page fault directly */
5910 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5911 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5912 true);
6aa8b732
AK
5913 }
5914
d0bfb940 5915 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5916
5917 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5918 return handle_rmode_exception(vcpu, ex_no, error_code);
5919
42dbaa5a 5920 switch (ex_no) {
54a20552
EN
5921 case AC_VECTOR:
5922 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5923 return 1;
42dbaa5a
JK
5924 case DB_VECTOR:
5925 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5926 if (!(vcpu->guest_debug &
5927 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5928 vcpu->arch.dr6 &= ~15;
6f43ed01 5929 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5930 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5931 skip_emulated_instruction(vcpu);
5932
42dbaa5a
JK
5933 kvm_queue_exception(vcpu, DB_VECTOR);
5934 return 1;
5935 }
5936 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5937 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5938 /* fall through */
5939 case BP_VECTOR:
c573cd22
JK
5940 /*
5941 * Update instruction length as we may reinject #BP from
5942 * user space while in guest debugging mode. Reading it for
5943 * #DB as well causes no harm, it is not used in that case.
5944 */
5945 vmx->vcpu.arch.event_exit_inst_len =
5946 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5947 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5948 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5949 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5950 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5951 break;
5952 default:
d0bfb940
JK
5953 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5954 kvm_run->ex.exception = ex_no;
5955 kvm_run->ex.error_code = error_code;
42dbaa5a 5956 break;
6aa8b732 5957 }
6aa8b732
AK
5958 return 0;
5959}
5960
851ba692 5961static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5962{
1165f5fe 5963 ++vcpu->stat.irq_exits;
6aa8b732
AK
5964 return 1;
5965}
5966
851ba692 5967static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5968{
851ba692 5969 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
bbeac283 5970 vcpu->mmio_needed = 0;
988ad74f
AK
5971 return 0;
5972}
6aa8b732 5973
851ba692 5974static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5975{
bfdaab09 5976 unsigned long exit_qualification;
6affcbed 5977 int size, in, string, ret;
039576c0 5978 unsigned port;
6aa8b732 5979
bfdaab09 5980 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5981 string = (exit_qualification & 16) != 0;
cf8f70bf 5982 in = (exit_qualification & 8) != 0;
e70669ab 5983
cf8f70bf 5984 ++vcpu->stat.io_exits;
e70669ab 5985
cf8f70bf 5986 if (string || in)
51d8b661 5987 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5988
cf8f70bf
GN
5989 port = exit_qualification >> 16;
5990 size = (exit_qualification & 7) + 1;
cf8f70bf 5991
6affcbed
KH
5992 ret = kvm_skip_emulated_instruction(vcpu);
5993
5994 /*
5995 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5996 * KVM_EXIT_DEBUG here.
5997 */
5998 return kvm_fast_pio_out(vcpu, size, port) && ret;
6aa8b732
AK
5999}
6000
102d8325
IM
6001static void
6002vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6003{
6004 /*
6005 * Patch in the VMCALL instruction:
6006 */
6007 hypercall[0] = 0x0f;
6008 hypercall[1] = 0x01;
6009 hypercall[2] = 0xc1;
102d8325
IM
6010}
6011
0fa06071 6012/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
6013static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6014{
eeadf9e7 6015 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6016 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6017 unsigned long orig_val = val;
6018
eeadf9e7
NHE
6019 /*
6020 * We get here when L2 changed cr0 in a way that did not change
6021 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
6022 * but did change L0 shadowed bits. So we first calculate the
6023 * effective cr0 value that L1 would like to write into the
6024 * hardware. It consists of the L2-owned bits from the new
6025 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 6026 */
1a0d74e6
JK
6027 val = (val & ~vmcs12->cr0_guest_host_mask) |
6028 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6029
3899152c 6030 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 6031 return 1;
1a0d74e6
JK
6032
6033 if (kvm_set_cr0(vcpu, val))
6034 return 1;
6035 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 6036 return 0;
1a0d74e6
JK
6037 } else {
6038 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 6039 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 6040 return 1;
3899152c 6041
eeadf9e7 6042 return kvm_set_cr0(vcpu, val);
1a0d74e6 6043 }
eeadf9e7
NHE
6044}
6045
6046static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6047{
6048 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6049 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6050 unsigned long orig_val = val;
6051
6052 /* analogously to handle_set_cr0 */
6053 val = (val & ~vmcs12->cr4_guest_host_mask) |
6054 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6055 if (kvm_set_cr4(vcpu, val))
eeadf9e7 6056 return 1;
1a0d74e6 6057 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
6058 return 0;
6059 } else
6060 return kvm_set_cr4(vcpu, val);
6061}
6062
851ba692 6063static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 6064{
229456fc 6065 unsigned long exit_qualification, val;
6aa8b732
AK
6066 int cr;
6067 int reg;
49a9b07e 6068 int err;
6affcbed 6069 int ret;
6aa8b732 6070
bfdaab09 6071 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
6072 cr = exit_qualification & 15;
6073 reg = (exit_qualification >> 8) & 15;
6074 switch ((exit_qualification >> 4) & 3) {
6075 case 0: /* mov to cr */
1e32c079 6076 val = kvm_register_readl(vcpu, reg);
229456fc 6077 trace_kvm_cr_write(cr, val);
6aa8b732
AK
6078 switch (cr) {
6079 case 0:
eeadf9e7 6080 err = handle_set_cr0(vcpu, val);
6affcbed 6081 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6082 case 3:
2390218b 6083 err = kvm_set_cr3(vcpu, val);
6affcbed 6084 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6085 case 4:
eeadf9e7 6086 err = handle_set_cr4(vcpu, val);
6affcbed 6087 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
6088 case 8: {
6089 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 6090 u8 cr8 = (u8)val;
eea1cff9 6091 err = kvm_set_cr8(vcpu, cr8);
6affcbed 6092 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 6093 if (lapic_in_kernel(vcpu))
6affcbed 6094 return ret;
0a5fff19 6095 if (cr8_prev <= cr8)
6affcbed
KH
6096 return ret;
6097 /*
6098 * TODO: we might be squashing a
6099 * KVM_GUESTDBG_SINGLESTEP-triggered
6100 * KVM_EXIT_DEBUG here.
6101 */
851ba692 6102 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
6103 return 0;
6104 }
4b8073e4 6105 }
6aa8b732 6106 break;
25c4c276 6107 case 2: /* clts */
bd7e5b08
PB
6108 WARN_ONCE(1, "Guest should always own CR0.TS");
6109 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 6110 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 6111 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6112 case 1: /*mov from cr*/
6113 switch (cr) {
6114 case 3:
9f8fe504
AK
6115 val = kvm_read_cr3(vcpu);
6116 kvm_register_write(vcpu, reg, val);
6117 trace_kvm_cr_read(cr, val);
6affcbed 6118 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 6119 case 8:
229456fc
MT
6120 val = kvm_get_cr8(vcpu);
6121 kvm_register_write(vcpu, reg, val);
6122 trace_kvm_cr_read(cr, val);
6affcbed 6123 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6124 }
6125 break;
6126 case 3: /* lmsw */
a1f83a74 6127 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 6128 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 6129 kvm_lmsw(vcpu, val);
6aa8b732 6130
6affcbed 6131 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6132 default:
6133 break;
6134 }
851ba692 6135 vcpu->run->exit_reason = 0;
a737f256 6136 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
6137 (int)(exit_qualification >> 4) & 3, cr);
6138 return 0;
6139}
6140
851ba692 6141static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 6142{
bfdaab09 6143 unsigned long exit_qualification;
16f8a6f9
NA
6144 int dr, dr7, reg;
6145
6146 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6147 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6148
6149 /* First, if DR does not exist, trigger UD */
6150 if (!kvm_require_dr(vcpu, dr))
6151 return 1;
6aa8b732 6152
f2483415 6153 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
6154 if (!kvm_require_cpl(vcpu, 0))
6155 return 1;
16f8a6f9
NA
6156 dr7 = vmcs_readl(GUEST_DR7);
6157 if (dr7 & DR7_GD) {
42dbaa5a
JK
6158 /*
6159 * As the vm-exit takes precedence over the debug trap, we
6160 * need to emulate the latter, either for the host or the
6161 * guest debugging itself.
6162 */
6163 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 6164 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 6165 vcpu->run->debug.arch.dr7 = dr7;
82b32774 6166 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
6167 vcpu->run->debug.arch.exception = DB_VECTOR;
6168 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
6169 return 0;
6170 } else {
7305eb5d 6171 vcpu->arch.dr6 &= ~15;
6f43ed01 6172 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
6173 kvm_queue_exception(vcpu, DB_VECTOR);
6174 return 1;
6175 }
6176 }
6177
81908bf4 6178 if (vcpu->guest_debug == 0) {
8f22372f
PB
6179 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6180 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6181
6182 /*
6183 * No more DR vmexits; force a reload of the debug registers
6184 * and reenter on this instruction. The next vmexit will
6185 * retrieve the full state of the debug registers.
6186 */
6187 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6188 return 1;
6189 }
6190
42dbaa5a
JK
6191 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6192 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 6193 unsigned long val;
4c4d563b
JK
6194
6195 if (kvm_get_dr(vcpu, dr, &val))
6196 return 1;
6197 kvm_register_write(vcpu, reg, val);
020df079 6198 } else
5777392e 6199 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
6200 return 1;
6201
6affcbed 6202 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6203}
6204
73aaf249
JK
6205static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6206{
6207 return vcpu->arch.dr6;
6208}
6209
6210static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6211{
6212}
6213
81908bf4
PB
6214static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6215{
81908bf4
PB
6216 get_debugreg(vcpu->arch.db[0], 0);
6217 get_debugreg(vcpu->arch.db[1], 1);
6218 get_debugreg(vcpu->arch.db[2], 2);
6219 get_debugreg(vcpu->arch.db[3], 3);
6220 get_debugreg(vcpu->arch.dr6, 6);
6221 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6222
6223 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 6224 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6225}
6226
020df079
GN
6227static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6228{
6229 vmcs_writel(GUEST_DR7, val);
6230}
6231
851ba692 6232static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 6233{
6a908b62 6234 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
6235}
6236
851ba692 6237static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 6238{
ad312c7c 6239 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 6240 struct msr_data msr_info;
6aa8b732 6241
609e36d3
PB
6242 msr_info.index = ecx;
6243 msr_info.host_initiated = false;
6244 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 6245 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 6246 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6247 return 1;
6248 }
6249
609e36d3 6250 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6251
6aa8b732 6252 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6253 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6254 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6255 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6256}
6257
851ba692 6258static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6259{
8fe8ab46 6260 struct msr_data msr;
ad312c7c
ZX
6261 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6262 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6263 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6264
8fe8ab46
WA
6265 msr.data = data;
6266 msr.index = ecx;
6267 msr.host_initiated = false;
854e8bb1 6268 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6269 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6270 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6271 return 1;
6272 }
6273
59200273 6274 trace_kvm_msr_write(ecx, data);
6affcbed 6275 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6276}
6277
851ba692 6278static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6279{
eb90f341 6280 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6281 return 1;
6282}
6283
851ba692 6284static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6285{
47c0152e
PB
6286 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6287 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6288
3842d135
AK
6289 kvm_make_request(KVM_REQ_EVENT, vcpu);
6290
a26bf12a 6291 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6292 return 1;
6293}
6294
851ba692 6295static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6296{
d3bef15f 6297 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6298}
6299
851ba692 6300static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6301{
0d9c055e 6302 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6303}
6304
ec25d5e6
GN
6305static int handle_invd(struct kvm_vcpu *vcpu)
6306{
51d8b661 6307 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6308}
6309
851ba692 6310static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6311{
f9c617f6 6312 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6313
6314 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6315 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6316}
6317
fee84b07
AK
6318static int handle_rdpmc(struct kvm_vcpu *vcpu)
6319{
6320 int err;
6321
6322 err = kvm_rdpmc(vcpu);
6affcbed 6323 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6324}
6325
851ba692 6326static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6327{
6affcbed 6328 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6329}
6330
2acf923e
DC
6331static int handle_xsetbv(struct kvm_vcpu *vcpu)
6332{
6333 u64 new_bv = kvm_read_edx_eax(vcpu);
6334 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6335
6336 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6337 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6338 return 1;
6339}
6340
f53cd63c
WL
6341static int handle_xsaves(struct kvm_vcpu *vcpu)
6342{
6affcbed 6343 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6344 WARN(1, "this should never happen\n");
6345 return 1;
6346}
6347
6348static int handle_xrstors(struct kvm_vcpu *vcpu)
6349{
6affcbed 6350 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6351 WARN(1, "this should never happen\n");
6352 return 1;
6353}
6354
851ba692 6355static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6356{
58fbbf26
KT
6357 if (likely(fasteoi)) {
6358 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6359 int access_type, offset;
6360
6361 access_type = exit_qualification & APIC_ACCESS_TYPE;
6362 offset = exit_qualification & APIC_ACCESS_OFFSET;
6363 /*
6364 * Sane guest uses MOV to write EOI, with written value
6365 * not cared. So make a short-circuit here by avoiding
6366 * heavy instruction emulation.
6367 */
6368 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6369 (offset == APIC_EOI)) {
6370 kvm_lapic_set_eoi(vcpu);
6affcbed 6371 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6372 }
6373 }
51d8b661 6374 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6375}
6376
c7c9c56c
YZ
6377static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6378{
6379 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6380 int vector = exit_qualification & 0xff;
6381
6382 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6383 kvm_apic_set_eoi_accelerated(vcpu, vector);
6384 return 1;
6385}
6386
83d4c286
YZ
6387static int handle_apic_write(struct kvm_vcpu *vcpu)
6388{
6389 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6390 u32 offset = exit_qualification & 0xfff;
6391
6392 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6393 kvm_apic_write_nodecode(vcpu, offset);
6394 return 1;
6395}
6396
851ba692 6397static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6398{
60637aac 6399 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6400 unsigned long exit_qualification;
e269fb21
JK
6401 bool has_error_code = false;
6402 u32 error_code = 0;
37817f29 6403 u16 tss_selector;
7f3d35fd 6404 int reason, type, idt_v, idt_index;
64a7ec06
GN
6405
6406 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6407 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6408 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6409
6410 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6411
6412 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6413 if (reason == TASK_SWITCH_GATE && idt_v) {
6414 switch (type) {
6415 case INTR_TYPE_NMI_INTR:
6416 vcpu->arch.nmi_injected = false;
654f06fc 6417 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6418 break;
6419 case INTR_TYPE_EXT_INTR:
66fd3f7f 6420 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6421 kvm_clear_interrupt_queue(vcpu);
6422 break;
6423 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6424 if (vmx->idt_vectoring_info &
6425 VECTORING_INFO_DELIVER_CODE_MASK) {
6426 has_error_code = true;
6427 error_code =
6428 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6429 }
6430 /* fall through */
64a7ec06
GN
6431 case INTR_TYPE_SOFT_EXCEPTION:
6432 kvm_clear_exception_queue(vcpu);
6433 break;
6434 default:
6435 break;
6436 }
60637aac 6437 }
37817f29
IE
6438 tss_selector = exit_qualification;
6439
64a7ec06
GN
6440 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6441 type != INTR_TYPE_EXT_INTR &&
6442 type != INTR_TYPE_NMI_INTR))
6443 skip_emulated_instruction(vcpu);
6444
7f3d35fd
KW
6445 if (kvm_task_switch(vcpu, tss_selector,
6446 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6447 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6448 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6449 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6450 vcpu->run->internal.ndata = 0;
42dbaa5a 6451 return 0;
acb54517 6452 }
42dbaa5a 6453
42dbaa5a
JK
6454 /*
6455 * TODO: What about debug traps on tss switch?
6456 * Are we supposed to inject them and update dr6?
6457 */
6458
6459 return 1;
37817f29
IE
6460}
6461
851ba692 6462static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6463{
f9c617f6 6464 unsigned long exit_qualification;
1439442c 6465 gpa_t gpa;
eebed243 6466 u64 error_code;
1439442c 6467
f9c617f6 6468 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6469
0be9c7a8
GN
6470 /*
6471 * EPT violation happened while executing iret from NMI,
6472 * "blocked by NMI" bit has to be set before next VM entry.
6473 * There are errata that may cause this bit to not be set:
6474 * AAK134, BY25.
6475 */
bcd1c294 6476 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
bcd1c294 6477 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6478 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6479
1439442c 6480 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6481 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6482
27959a44 6483 /* Is it a read fault? */
ab22a473 6484 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
6485 ? PFERR_USER_MASK : 0;
6486 /* Is it a write fault? */
ab22a473 6487 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
6488 ? PFERR_WRITE_MASK : 0;
6489 /* Is it a fetch fault? */
ab22a473 6490 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
6491 ? PFERR_FETCH_MASK : 0;
6492 /* ept page table entry is present? */
6493 error_code |= (exit_qualification &
6494 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6495 EPT_VIOLATION_EXECUTABLE))
6496 ? PFERR_PRESENT_MASK : 0;
4f5982a5 6497
eebed243
PB
6498 error_code |= (exit_qualification & 0x100) != 0 ?
6499 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
6500
25d92081 6501 vcpu->arch.exit_qualification = exit_qualification;
4f5982a5 6502 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6503}
6504
851ba692 6505static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6506{
f735d4af 6507 int ret;
68f89400
MT
6508 gpa_t gpa;
6509
9034e6e8
PB
6510 /*
6511 * A nested guest cannot optimize MMIO vmexits, because we have an
6512 * nGPA here instead of the required GPA.
6513 */
68f89400 6514 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
9034e6e8
PB
6515 if (!is_guest_mode(vcpu) &&
6516 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 6517 trace_kvm_fast_mmio(gpa);
6affcbed 6518 return kvm_skip_emulated_instruction(vcpu);
68c3b4d1 6519 }
68f89400 6520
e08d26f0
PB
6521 ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6522 if (ret >= 0)
6523 return ret;
ce88decf
XG
6524
6525 /* It is the real ept misconfig */
f735d4af 6526 WARN_ON(1);
68f89400 6527
851ba692
AK
6528 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6529 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6530
6531 return 0;
6532}
6533
851ba692 6534static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 6535{
47c0152e
PB
6536 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6537 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 6538 ++vcpu->stat.nmi_window_exits;
3842d135 6539 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6540
6541 return 1;
6542}
6543
80ced186 6544static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6545{
8b3079a5
AK
6546 struct vcpu_vmx *vmx = to_vmx(vcpu);
6547 enum emulation_result err = EMULATE_DONE;
80ced186 6548 int ret = 1;
49e9d557
AK
6549 u32 cpu_exec_ctrl;
6550 bool intr_window_requested;
b8405c18 6551 unsigned count = 130;
49e9d557
AK
6552
6553 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6554 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6555
98eb2f8b 6556 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6557 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6558 return handle_interrupt_window(&vmx->vcpu);
6559
72875d8a 6560 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
de87dcdd
AK
6561 return 1;
6562
991eebf9 6563 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6564
ac0a48c3 6565 if (err == EMULATE_USER_EXIT) {
94452b9e 6566 ++vcpu->stat.mmio_exits;
80ced186
MG
6567 ret = 0;
6568 goto out;
6569 }
1d5a4d9b 6570
de5f70e0
AK
6571 if (err != EMULATE_DONE) {
6572 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6573 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6574 vcpu->run->internal.ndata = 0;
6d77dbfc 6575 return 0;
de5f70e0 6576 }
ea953ef0 6577
8d76c49e
GN
6578 if (vcpu->arch.halt_request) {
6579 vcpu->arch.halt_request = 0;
5cb56059 6580 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6581 goto out;
6582 }
6583
ea953ef0 6584 if (signal_pending(current))
80ced186 6585 goto out;
ea953ef0
MG
6586 if (need_resched())
6587 schedule();
6588 }
6589
80ced186
MG
6590out:
6591 return ret;
ea953ef0
MG
6592}
6593
b4a2d31d
RK
6594static int __grow_ple_window(int val)
6595{
6596 if (ple_window_grow < 1)
6597 return ple_window;
6598
6599 val = min(val, ple_window_actual_max);
6600
6601 if (ple_window_grow < ple_window)
6602 val *= ple_window_grow;
6603 else
6604 val += ple_window_grow;
6605
6606 return val;
6607}
6608
6609static int __shrink_ple_window(int val, int modifier, int minimum)
6610{
6611 if (modifier < 1)
6612 return ple_window;
6613
6614 if (modifier < ple_window)
6615 val /= modifier;
6616 else
6617 val -= modifier;
6618
6619 return max(val, minimum);
6620}
6621
6622static void grow_ple_window(struct kvm_vcpu *vcpu)
6623{
6624 struct vcpu_vmx *vmx = to_vmx(vcpu);
6625 int old = vmx->ple_window;
6626
6627 vmx->ple_window = __grow_ple_window(old);
6628
6629 if (vmx->ple_window != old)
6630 vmx->ple_window_dirty = true;
7b46268d
RK
6631
6632 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6633}
6634
6635static void shrink_ple_window(struct kvm_vcpu *vcpu)
6636{
6637 struct vcpu_vmx *vmx = to_vmx(vcpu);
6638 int old = vmx->ple_window;
6639
6640 vmx->ple_window = __shrink_ple_window(old,
6641 ple_window_shrink, ple_window);
6642
6643 if (vmx->ple_window != old)
6644 vmx->ple_window_dirty = true;
7b46268d
RK
6645
6646 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6647}
6648
6649/*
6650 * ple_window_actual_max is computed to be one grow_ple_window() below
6651 * ple_window_max. (See __grow_ple_window for the reason.)
6652 * This prevents overflows, because ple_window_max is int.
6653 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6654 * this process.
6655 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6656 */
6657static void update_ple_window_actual_max(void)
6658{
6659 ple_window_actual_max =
6660 __shrink_ple_window(max(ple_window_max, ple_window),
6661 ple_window_grow, INT_MIN);
6662}
6663
bf9f6ac8
FW
6664/*
6665 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6666 */
6667static void wakeup_handler(void)
6668{
6669 struct kvm_vcpu *vcpu;
6670 int cpu = smp_processor_id();
6671
6672 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6673 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6674 blocked_vcpu_list) {
6675 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6676
6677 if (pi_test_on(pi_desc) == 1)
6678 kvm_vcpu_kick(vcpu);
6679 }
6680 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6681}
6682
f160c7b7
JS
6683void vmx_enable_tdp(void)
6684{
6685 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6686 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6687 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6688 0ull, VMX_EPT_EXECUTABLE_MASK,
6689 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
995f00a6 6690 VMX_EPT_RWX_MASK);
f160c7b7
JS
6691
6692 ept_set_mmio_spte_mask();
6693 kvm_enable_tdp();
6694}
6695
f2c7648d
TC
6696static __init int hardware_setup(void)
6697{
34a1cd60
TC
6698 int r = -ENOMEM, i, msr;
6699
6700 rdmsrl_safe(MSR_EFER, &host_efer);
6701
6702 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6703 kvm_define_shared_msr(i, vmx_msr_index[i]);
6704
23611332
RK
6705 for (i = 0; i < VMX_BITMAP_NR; i++) {
6706 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6707 if (!vmx_bitmap[i])
6708 goto out;
6709 }
34a1cd60
TC
6710
6711 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
34a1cd60
TC
6712 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6713 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6714
6715 /*
6716 * Allow direct access to the PC debug port (it is often used for I/O
6717 * delays, but the vmexits simply slow things down).
6718 */
6719 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6720 clear_bit(0x80, vmx_io_bitmap_a);
6721
6722 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6723
6724 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6725 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6726
34a1cd60
TC
6727 if (setup_vmcs_config(&vmcs_config) < 0) {
6728 r = -EIO;
23611332 6729 goto out;
baa03522 6730 }
f2c7648d
TC
6731
6732 if (boot_cpu_has(X86_FEATURE_NX))
6733 kvm_enable_efer_bits(EFER_NX);
6734
08d839c4
WL
6735 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6736 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
f2c7648d 6737 enable_vpid = 0;
08d839c4 6738
f2c7648d
TC
6739 if (!cpu_has_vmx_shadow_vmcs())
6740 enable_shadow_vmcs = 0;
6741 if (enable_shadow_vmcs)
6742 init_vmcs_shadow_fields();
6743
6744 if (!cpu_has_vmx_ept() ||
42aa53b4
DH
6745 !cpu_has_vmx_ept_4levels() ||
6746 !cpu_has_vmx_ept_mt_wb()) {
f2c7648d
TC
6747 enable_ept = 0;
6748 enable_unrestricted_guest = 0;
6749 enable_ept_ad_bits = 0;
6750 }
6751
fce6ac4c 6752 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
f2c7648d
TC
6753 enable_ept_ad_bits = 0;
6754
6755 if (!cpu_has_vmx_unrestricted_guest())
6756 enable_unrestricted_guest = 0;
6757
ad15a296 6758 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6759 flexpriority_enabled = 0;
6760
ad15a296
PB
6761 /*
6762 * set_apic_access_page_addr() is used to reload apic access
6763 * page upon invalidation. No need to do anything if not
6764 * using the APIC_ACCESS_ADDR VMCS field.
6765 */
6766 if (!flexpriority_enabled)
f2c7648d 6767 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6768
6769 if (!cpu_has_vmx_tpr_shadow())
6770 kvm_x86_ops->update_cr8_intercept = NULL;
6771
6772 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6773 kvm_disable_largepages();
6774
6775 if (!cpu_has_vmx_ple())
6776 ple_gap = 0;
6777
76dfafd5 6778 if (!cpu_has_vmx_apicv()) {
f2c7648d 6779 enable_apicv = 0;
76dfafd5
PB
6780 kvm_x86_ops->sync_pir_to_irr = NULL;
6781 }
f2c7648d 6782
64903d61
HZ
6783 if (cpu_has_vmx_tsc_scaling()) {
6784 kvm_has_tsc_control = true;
6785 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6786 kvm_tsc_scaling_ratio_frac_bits = 48;
6787 }
6788
baa03522
TC
6789 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6790 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6791 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6792 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6793 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6794 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
baa03522 6795
c63e4563 6796 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
baa03522 6797 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6798 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
baa03522 6799 vmx_msr_bitmap_longmode, PAGE_SIZE);
c63e4563 6800 memcpy(vmx_msr_bitmap_legacy_x2apic,
f6e90f9e 6801 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6802 memcpy(vmx_msr_bitmap_longmode_x2apic,
f6e90f9e 6803 vmx_msr_bitmap_longmode, PAGE_SIZE);
baa03522 6804
04bb92e4
WL
6805 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6806
40d8338d
RK
6807 for (msr = 0x800; msr <= 0x8ff; msr++) {
6808 if (msr == 0x839 /* TMCCT */)
6809 continue;
2e69f865 6810 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
40d8338d 6811 }
3ce424e4 6812
f6e90f9e 6813 /*
2e69f865
RK
6814 * TPR reads and writes can be virtualized even if virtual interrupt
6815 * delivery is not in use.
f6e90f9e 6816 */
2e69f865
RK
6817 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6818 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
3ce424e4 6819
3ce424e4 6820 /* EOI */
2e69f865 6821 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
3ce424e4 6822 /* SELF-IPI */
2e69f865 6823 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
baa03522 6824
f160c7b7
JS
6825 if (enable_ept)
6826 vmx_enable_tdp();
6827 else
baa03522
TC
6828 kvm_disable_tdp();
6829
6830 update_ple_window_actual_max();
6831
843e4330
KH
6832 /*
6833 * Only enable PML when hardware supports PML feature, and both EPT
6834 * and EPT A/D bit features are enabled -- PML depends on them to work.
6835 */
6836 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6837 enable_pml = 0;
6838
6839 if (!enable_pml) {
6840 kvm_x86_ops->slot_enable_log_dirty = NULL;
6841 kvm_x86_ops->slot_disable_log_dirty = NULL;
6842 kvm_x86_ops->flush_log_dirty = NULL;
6843 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6844 }
6845
64672c95
YJ
6846 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6847 u64 vmx_msr;
6848
6849 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6850 cpu_preemption_timer_multi =
6851 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6852 } else {
6853 kvm_x86_ops->set_hv_timer = NULL;
6854 kvm_x86_ops->cancel_hv_timer = NULL;
6855 }
6856
bf9f6ac8
FW
6857 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6858
c45dcc71
AR
6859 kvm_mce_cap_supported |= MCG_LMCE_P;
6860
f2c7648d 6861 return alloc_kvm_area();
34a1cd60 6862
34a1cd60 6863out:
23611332
RK
6864 for (i = 0; i < VMX_BITMAP_NR; i++)
6865 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
6866
6867 return r;
f2c7648d
TC
6868}
6869
6870static __exit void hardware_unsetup(void)
6871{
23611332
RK
6872 int i;
6873
6874 for (i = 0; i < VMX_BITMAP_NR; i++)
6875 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 6876
f2c7648d
TC
6877 free_kvm_area();
6878}
6879
4b8d54f9
ZE
6880/*
6881 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6882 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6883 */
9fb41ba8 6884static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6885{
b4a2d31d
RK
6886 if (ple_gap)
6887 grow_ple_window(vcpu);
6888
de63ad4c
LM
6889 /*
6890 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6891 * VM-execution control is ignored if CPL > 0. OTOH, KVM
6892 * never set PAUSE_EXITING and just set PLE if supported,
6893 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6894 */
6895 kvm_vcpu_on_spin(vcpu, true);
6affcbed 6896 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
6897}
6898
87c00572 6899static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6900{
6affcbed 6901 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
6902}
6903
87c00572
GS
6904static int handle_mwait(struct kvm_vcpu *vcpu)
6905{
6906 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6907 return handle_nop(vcpu);
6908}
6909
45ec368c
JM
6910static int handle_invalid_op(struct kvm_vcpu *vcpu)
6911{
6912 kvm_queue_exception(vcpu, UD_VECTOR);
6913 return 1;
6914}
6915
5f3d45e7
MD
6916static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6917{
6918 return 1;
6919}
6920
87c00572
GS
6921static int handle_monitor(struct kvm_vcpu *vcpu)
6922{
6923 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6924 return handle_nop(vcpu);
6925}
6926
ff2f6fe9
NHE
6927/*
6928 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6929 * We could reuse a single VMCS for all the L2 guests, but we also want the
6930 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6931 * allows keeping them loaded on the processor, and in the future will allow
6932 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6933 * every entry if they never change.
6934 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6935 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6936 *
6937 * The following functions allocate and free a vmcs02 in this pool.
6938 */
6939
6940/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6941static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6942{
6943 struct vmcs02_list *item;
6944 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6945 if (item->vmptr == vmx->nested.current_vmptr) {
6946 list_move(&item->list, &vmx->nested.vmcs02_pool);
6947 return &item->vmcs02;
6948 }
6949
6950 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6951 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6952 item = list_last_entry(&vmx->nested.vmcs02_pool,
6953 struct vmcs02_list, list);
ff2f6fe9
NHE
6954 item->vmptr = vmx->nested.current_vmptr;
6955 list_move(&item->list, &vmx->nested.vmcs02_pool);
6956 return &item->vmcs02;
6957 }
6958
6959 /* Create a new VMCS */
0fa24ce3 6960 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6961 if (!item)
6962 return NULL;
6963 item->vmcs02.vmcs = alloc_vmcs();
355f4fb1 6964 item->vmcs02.shadow_vmcs = NULL;
ff2f6fe9
NHE
6965 if (!item->vmcs02.vmcs) {
6966 kfree(item);
6967 return NULL;
6968 }
6969 loaded_vmcs_init(&item->vmcs02);
6970 item->vmptr = vmx->nested.current_vmptr;
6971 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6972 vmx->nested.vmcs02_num++;
6973 return &item->vmcs02;
6974}
6975
6976/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6977static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6978{
6979 struct vmcs02_list *item;
6980 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6981 if (item->vmptr == vmptr) {
6982 free_loaded_vmcs(&item->vmcs02);
6983 list_del(&item->list);
6984 kfree(item);
6985 vmx->nested.vmcs02_num--;
6986 return;
6987 }
6988}
6989
6990/*
6991 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6992 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6993 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6994 */
6995static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6996{
6997 struct vmcs02_list *item, *n;
4fa7734c
PB
6998
6999 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 7000 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
7001 /*
7002 * Something will leak if the above WARN triggers. Better than
7003 * a use-after-free.
7004 */
7005 if (vmx->loaded_vmcs == &item->vmcs02)
7006 continue;
7007
7008 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
7009 list_del(&item->list);
7010 kfree(item);
4fa7734c 7011 vmx->nested.vmcs02_num--;
ff2f6fe9 7012 }
ff2f6fe9
NHE
7013}
7014
0658fbaa
ACL
7015/*
7016 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7017 * set the success or error code of an emulated VMX instruction, as specified
7018 * by Vol 2B, VMX Instruction Reference, "Conventions".
7019 */
7020static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7021{
7022 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7023 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7024 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7025}
7026
7027static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7028{
7029 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7030 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7031 X86_EFLAGS_SF | X86_EFLAGS_OF))
7032 | X86_EFLAGS_CF);
7033}
7034
145c28dd 7035static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
7036 u32 vm_instruction_error)
7037{
7038 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7039 /*
7040 * failValid writes the error number to the current VMCS, which
7041 * can't be done there isn't a current VMCS.
7042 */
7043 nested_vmx_failInvalid(vcpu);
7044 return;
7045 }
7046 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7047 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7048 X86_EFLAGS_SF | X86_EFLAGS_OF))
7049 | X86_EFLAGS_ZF);
7050 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7051 /*
7052 * We don't need to force a shadow sync because
7053 * VM_INSTRUCTION_ERROR is not shadowed
7054 */
7055}
145c28dd 7056
ff651cb6
WV
7057static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7058{
7059 /* TODO: not to reset guest simply here. */
7060 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 7061 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
7062}
7063
f4124500
JK
7064static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7065{
7066 struct vcpu_vmx *vmx =
7067 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7068
7069 vmx->nested.preemption_timer_expired = true;
7070 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7071 kvm_vcpu_kick(&vmx->vcpu);
7072
7073 return HRTIMER_NORESTART;
7074}
7075
19677e32
BD
7076/*
7077 * Decode the memory-address operand of a vmx instruction, as recorded on an
7078 * exit caused by such an instruction (run by a guest hypervisor).
7079 * On success, returns 0. When the operand is invalid, returns 1 and throws
7080 * #UD or #GP.
7081 */
7082static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7083 unsigned long exit_qualification,
f9eb4af6 7084 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 7085{
f9eb4af6
EK
7086 gva_t off;
7087 bool exn;
7088 struct kvm_segment s;
7089
19677e32
BD
7090 /*
7091 * According to Vol. 3B, "Information for VM Exits Due to Instruction
7092 * Execution", on an exit, vmx_instruction_info holds most of the
7093 * addressing components of the operand. Only the displacement part
7094 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7095 * For how an actual address is calculated from all these components,
7096 * refer to Vol. 1, "Operand Addressing".
7097 */
7098 int scaling = vmx_instruction_info & 3;
7099 int addr_size = (vmx_instruction_info >> 7) & 7;
7100 bool is_reg = vmx_instruction_info & (1u << 10);
7101 int seg_reg = (vmx_instruction_info >> 15) & 7;
7102 int index_reg = (vmx_instruction_info >> 18) & 0xf;
7103 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7104 int base_reg = (vmx_instruction_info >> 23) & 0xf;
7105 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
7106
7107 if (is_reg) {
7108 kvm_queue_exception(vcpu, UD_VECTOR);
7109 return 1;
7110 }
7111
7112 /* Addr = segment_base + offset */
7113 /* offset = base + [index * scale] + displacement */
f9eb4af6 7114 off = exit_qualification; /* holds the displacement */
19677e32 7115 if (base_is_valid)
f9eb4af6 7116 off += kvm_register_read(vcpu, base_reg);
19677e32 7117 if (index_is_valid)
f9eb4af6
EK
7118 off += kvm_register_read(vcpu, index_reg)<<scaling;
7119 vmx_get_segment(vcpu, &s, seg_reg);
7120 *ret = s.base + off;
19677e32
BD
7121
7122 if (addr_size == 1) /* 32 bit */
7123 *ret &= 0xffffffff;
7124
f9eb4af6
EK
7125 /* Checks for #GP/#SS exceptions. */
7126 exn = false;
ff30ef40
QC
7127 if (is_long_mode(vcpu)) {
7128 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7129 * non-canonical form. This is the only check on the memory
7130 * destination for long mode!
7131 */
7132 exn = is_noncanonical_address(*ret);
7133 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
7134 /* Protected mode: apply checks for segment validity in the
7135 * following order:
7136 * - segment type check (#GP(0) may be thrown)
7137 * - usability check (#GP(0)/#SS(0))
7138 * - limit check (#GP(0)/#SS(0))
7139 */
7140 if (wr)
7141 /* #GP(0) if the destination operand is located in a
7142 * read-only data segment or any code segment.
7143 */
7144 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7145 else
7146 /* #GP(0) if the source operand is located in an
7147 * execute-only code segment
7148 */
7149 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
7150 if (exn) {
7151 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7152 return 1;
7153 }
f9eb4af6
EK
7154 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7155 */
7156 exn = (s.unusable != 0);
7157 /* Protected mode: #GP(0)/#SS(0) if the memory
7158 * operand is outside the segment limit.
7159 */
7160 exn = exn || (off + sizeof(u64) > s.limit);
7161 }
7162 if (exn) {
7163 kvm_queue_exception_e(vcpu,
7164 seg_reg == VCPU_SREG_SS ?
7165 SS_VECTOR : GP_VECTOR,
7166 0);
7167 return 1;
7168 }
7169
19677e32
BD
7170 return 0;
7171}
7172
cbf71279 7173static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
3573e22c
BD
7174{
7175 gva_t gva;
3573e22c 7176 struct x86_exception e;
3573e22c
BD
7177
7178 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7179 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
7180 return 1;
7181
cbf71279
RK
7182 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7183 sizeof(*vmpointer), &e)) {
3573e22c
BD
7184 kvm_inject_page_fault(vcpu, &e);
7185 return 1;
7186 }
7187
3573e22c
BD
7188 return 0;
7189}
7190
e29acc55
JM
7191static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7192{
7193 struct vcpu_vmx *vmx = to_vmx(vcpu);
7194 struct vmcs *shadow_vmcs;
7195
7196 if (cpu_has_vmx_msr_bitmap()) {
7197 vmx->nested.msr_bitmap =
7198 (unsigned long *)__get_free_page(GFP_KERNEL);
7199 if (!vmx->nested.msr_bitmap)
7200 goto out_msr_bitmap;
7201 }
7202
7203 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7204 if (!vmx->nested.cached_vmcs12)
7205 goto out_cached_vmcs12;
7206
7207 if (enable_shadow_vmcs) {
7208 shadow_vmcs = alloc_vmcs();
7209 if (!shadow_vmcs)
7210 goto out_shadow_vmcs;
7211 /* mark vmcs as shadow */
7212 shadow_vmcs->revision_id |= (1u << 31);
7213 /* init shadow vmcs */
7214 vmcs_clear(shadow_vmcs);
7215 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7216 }
7217
7218 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7219 vmx->nested.vmcs02_num = 0;
7220
7221 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7222 HRTIMER_MODE_REL_PINNED);
7223 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7224
7225 vmx->nested.vmxon = true;
7226 return 0;
7227
7228out_shadow_vmcs:
7229 kfree(vmx->nested.cached_vmcs12);
7230
7231out_cached_vmcs12:
7232 free_page((unsigned long)vmx->nested.msr_bitmap);
7233
7234out_msr_bitmap:
7235 return -ENOMEM;
7236}
7237
ec378aee
NHE
7238/*
7239 * Emulate the VMXON instruction.
7240 * Currently, we just remember that VMX is active, and do not save or even
7241 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7242 * do not currently need to store anything in that guest-allocated memory
7243 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7244 * argument is different from the VMXON pointer (which the spec says they do).
7245 */
7246static int handle_vmon(struct kvm_vcpu *vcpu)
7247{
e29acc55 7248 int ret;
cbf71279
RK
7249 gpa_t vmptr;
7250 struct page *page;
ec378aee 7251 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
7252 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7253 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee 7254
70f3aac9
JM
7255 /*
7256 * The Intel VMX Instruction Reference lists a bunch of bits that are
7257 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7258 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7259 * Otherwise, we should fail with #UD. But most faulting conditions
7260 * have already been checked by hardware, prior to the VM-exit for
7261 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7262 * that bit set to 1 in non-root mode.
ec378aee 7263 */
70f3aac9 7264 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
ec378aee
NHE
7265 kvm_queue_exception(vcpu, UD_VECTOR);
7266 return 1;
7267 }
7268
145c28dd
AG
7269 if (vmx->nested.vmxon) {
7270 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7271 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7272 }
b3897a49 7273
3b84080b 7274 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7275 != VMXON_NEEDED_FEATURES) {
7276 kvm_inject_gp(vcpu, 0);
7277 return 1;
7278 }
7279
cbf71279 7280 if (nested_vmx_get_vmptr(vcpu, &vmptr))
21e7fbe7 7281 return 1;
cbf71279
RK
7282
7283 /*
7284 * SDM 3: 24.11.5
7285 * The first 4 bytes of VMXON region contain the supported
7286 * VMCS revision identifier
7287 *
7288 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7289 * which replaces physical address width with 32
7290 */
7291 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7292 nested_vmx_failInvalid(vcpu);
7293 return kvm_skip_emulated_instruction(vcpu);
7294 }
7295
5e2f30b7
DH
7296 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7297 if (is_error_page(page)) {
cbf71279
RK
7298 nested_vmx_failInvalid(vcpu);
7299 return kvm_skip_emulated_instruction(vcpu);
7300 }
7301 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7302 kunmap(page);
53a70daf 7303 kvm_release_page_clean(page);
cbf71279
RK
7304 nested_vmx_failInvalid(vcpu);
7305 return kvm_skip_emulated_instruction(vcpu);
7306 }
7307 kunmap(page);
53a70daf 7308 kvm_release_page_clean(page);
cbf71279
RK
7309
7310 vmx->nested.vmxon_ptr = vmptr;
e29acc55
JM
7311 ret = enter_vmx_operation(vcpu);
7312 if (ret)
7313 return ret;
ec378aee 7314
a25eb114 7315 nested_vmx_succeed(vcpu);
6affcbed 7316 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7317}
7318
7319/*
7320 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7321 * for running VMX instructions (except VMXON, whose prerequisites are
7322 * slightly different). It also specifies what exception to inject otherwise.
70f3aac9
JM
7323 * Note that many of these exceptions have priority over VM exits, so they
7324 * don't have to be checked again here.
ec378aee
NHE
7325 */
7326static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7327{
70f3aac9 7328 if (!to_vmx(vcpu)->nested.vmxon) {
ec378aee
NHE
7329 kvm_queue_exception(vcpu, UD_VECTOR);
7330 return 0;
7331 }
ec378aee
NHE
7332 return 1;
7333}
7334
8ca44e88
DM
7335static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7336{
7337 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7338 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7339}
7340
e7953d7f
AG
7341static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7342{
9a2a05b9
PB
7343 if (vmx->nested.current_vmptr == -1ull)
7344 return;
7345
012f83cb 7346 if (enable_shadow_vmcs) {
9a2a05b9
PB
7347 /* copy to memory all shadowed fields in case
7348 they were modified */
7349 copy_shadow_to_vmcs12(vmx);
7350 vmx->nested.sync_shadow_vmcs = false;
8ca44e88 7351 vmx_disable_shadow_vmcs(vmx);
012f83cb 7352 }
705699a1 7353 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7354
7355 /* Flush VMCS12 to guest memory */
9f744c59
PB
7356 kvm_vcpu_write_guest_page(&vmx->vcpu,
7357 vmx->nested.current_vmptr >> PAGE_SHIFT,
7358 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4f2777bc 7359
9a2a05b9 7360 vmx->nested.current_vmptr = -1ull;
e7953d7f
AG
7361}
7362
ec378aee
NHE
7363/*
7364 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7365 * just stops using VMX.
7366 */
7367static void free_nested(struct vcpu_vmx *vmx)
7368{
7369 if (!vmx->nested.vmxon)
7370 return;
9a2a05b9 7371
ec378aee 7372 vmx->nested.vmxon = false;
5c614b35 7373 free_vpid(vmx->nested.vpid02);
8ca44e88
DM
7374 vmx->nested.posted_intr_nv = -1;
7375 vmx->nested.current_vmptr = -1ull;
d048c098
RK
7376 if (vmx->nested.msr_bitmap) {
7377 free_page((unsigned long)vmx->nested.msr_bitmap);
7378 vmx->nested.msr_bitmap = NULL;
7379 }
355f4fb1 7380 if (enable_shadow_vmcs) {
8ca44e88 7381 vmx_disable_shadow_vmcs(vmx);
355f4fb1
JM
7382 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7383 free_vmcs(vmx->vmcs01.shadow_vmcs);
7384 vmx->vmcs01.shadow_vmcs = NULL;
7385 }
4f2777bc 7386 kfree(vmx->nested.cached_vmcs12);
fe3ef05c
NHE
7387 /* Unpin physical memory we referred to in current vmcs02 */
7388 if (vmx->nested.apic_access_page) {
53a70daf 7389 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 7390 vmx->nested.apic_access_page = NULL;
fe3ef05c 7391 }
a7c0b07d 7392 if (vmx->nested.virtual_apic_page) {
53a70daf 7393 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 7394 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7395 }
705699a1
WV
7396 if (vmx->nested.pi_desc_page) {
7397 kunmap(vmx->nested.pi_desc_page);
53a70daf 7398 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
7399 vmx->nested.pi_desc_page = NULL;
7400 vmx->nested.pi_desc = NULL;
7401 }
ff2f6fe9
NHE
7402
7403 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
7404}
7405
7406/* Emulate the VMXOFF instruction */
7407static int handle_vmoff(struct kvm_vcpu *vcpu)
7408{
7409 if (!nested_vmx_check_permission(vcpu))
7410 return 1;
7411 free_nested(to_vmx(vcpu));
a25eb114 7412 nested_vmx_succeed(vcpu);
6affcbed 7413 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7414}
7415
27d6c865
NHE
7416/* Emulate the VMCLEAR instruction */
7417static int handle_vmclear(struct kvm_vcpu *vcpu)
7418{
7419 struct vcpu_vmx *vmx = to_vmx(vcpu);
587d7e72 7420 u32 zero = 0;
27d6c865 7421 gpa_t vmptr;
27d6c865
NHE
7422
7423 if (!nested_vmx_check_permission(vcpu))
7424 return 1;
7425
cbf71279 7426 if (nested_vmx_get_vmptr(vcpu, &vmptr))
27d6c865 7427 return 1;
27d6c865 7428
cbf71279
RK
7429 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7430 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7431 return kvm_skip_emulated_instruction(vcpu);
7432 }
7433
7434 if (vmptr == vmx->nested.vmxon_ptr) {
7435 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7436 return kvm_skip_emulated_instruction(vcpu);
7437 }
7438
9a2a05b9 7439 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7440 nested_release_vmcs12(vmx);
27d6c865 7441
587d7e72
JM
7442 kvm_vcpu_write_guest(vcpu,
7443 vmptr + offsetof(struct vmcs12, launch_state),
7444 &zero, sizeof(zero));
27d6c865
NHE
7445
7446 nested_free_vmcs02(vmx, vmptr);
7447
27d6c865 7448 nested_vmx_succeed(vcpu);
6affcbed 7449 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7450}
7451
cd232ad0
NHE
7452static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7453
7454/* Emulate the VMLAUNCH instruction */
7455static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7456{
7457 return nested_vmx_run(vcpu, true);
7458}
7459
7460/* Emulate the VMRESUME instruction */
7461static int handle_vmresume(struct kvm_vcpu *vcpu)
7462{
7463
7464 return nested_vmx_run(vcpu, false);
7465}
7466
49f705c5
NHE
7467/*
7468 * Read a vmcs12 field. Since these can have varying lengths and we return
7469 * one type, we chose the biggest type (u64) and zero-extend the return value
7470 * to that size. Note that the caller, handle_vmread, might need to use only
7471 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7472 * 64-bit fields are to be returned).
7473 */
a2ae9df7
PB
7474static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7475 unsigned long field, u64 *ret)
49f705c5
NHE
7476{
7477 short offset = vmcs_field_to_offset(field);
7478 char *p;
7479
7480 if (offset < 0)
a2ae9df7 7481 return offset;
49f705c5
NHE
7482
7483 p = ((char *)(get_vmcs12(vcpu))) + offset;
7484
7485 switch (vmcs_field_type(field)) {
7486 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7487 *ret = *((natural_width *)p);
a2ae9df7 7488 return 0;
49f705c5
NHE
7489 case VMCS_FIELD_TYPE_U16:
7490 *ret = *((u16 *)p);
a2ae9df7 7491 return 0;
49f705c5
NHE
7492 case VMCS_FIELD_TYPE_U32:
7493 *ret = *((u32 *)p);
a2ae9df7 7494 return 0;
49f705c5
NHE
7495 case VMCS_FIELD_TYPE_U64:
7496 *ret = *((u64 *)p);
a2ae9df7 7497 return 0;
49f705c5 7498 default:
a2ae9df7
PB
7499 WARN_ON(1);
7500 return -ENOENT;
49f705c5
NHE
7501 }
7502}
7503
20b97fea 7504
a2ae9df7
PB
7505static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7506 unsigned long field, u64 field_value){
20b97fea
AG
7507 short offset = vmcs_field_to_offset(field);
7508 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7509 if (offset < 0)
a2ae9df7 7510 return offset;
20b97fea
AG
7511
7512 switch (vmcs_field_type(field)) {
7513 case VMCS_FIELD_TYPE_U16:
7514 *(u16 *)p = field_value;
a2ae9df7 7515 return 0;
20b97fea
AG
7516 case VMCS_FIELD_TYPE_U32:
7517 *(u32 *)p = field_value;
a2ae9df7 7518 return 0;
20b97fea
AG
7519 case VMCS_FIELD_TYPE_U64:
7520 *(u64 *)p = field_value;
a2ae9df7 7521 return 0;
20b97fea
AG
7522 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7523 *(natural_width *)p = field_value;
a2ae9df7 7524 return 0;
20b97fea 7525 default:
a2ae9df7
PB
7526 WARN_ON(1);
7527 return -ENOENT;
20b97fea
AG
7528 }
7529
7530}
7531
16f5b903
AG
7532static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7533{
7534 int i;
7535 unsigned long field;
7536 u64 field_value;
355f4fb1 7537 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c2bae893
MK
7538 const unsigned long *fields = shadow_read_write_fields;
7539 const int num_fields = max_shadow_read_write_fields;
16f5b903 7540
282da870
JK
7541 preempt_disable();
7542
16f5b903
AG
7543 vmcs_load(shadow_vmcs);
7544
7545 for (i = 0; i < num_fields; i++) {
7546 field = fields[i];
7547 switch (vmcs_field_type(field)) {
7548 case VMCS_FIELD_TYPE_U16:
7549 field_value = vmcs_read16(field);
7550 break;
7551 case VMCS_FIELD_TYPE_U32:
7552 field_value = vmcs_read32(field);
7553 break;
7554 case VMCS_FIELD_TYPE_U64:
7555 field_value = vmcs_read64(field);
7556 break;
7557 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7558 field_value = vmcs_readl(field);
7559 break;
a2ae9df7
PB
7560 default:
7561 WARN_ON(1);
7562 continue;
16f5b903
AG
7563 }
7564 vmcs12_write_any(&vmx->vcpu, field, field_value);
7565 }
7566
7567 vmcs_clear(shadow_vmcs);
7568 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7569
7570 preempt_enable();
16f5b903
AG
7571}
7572
c3114420
AG
7573static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7574{
c2bae893
MK
7575 const unsigned long *fields[] = {
7576 shadow_read_write_fields,
7577 shadow_read_only_fields
c3114420 7578 };
c2bae893 7579 const int max_fields[] = {
c3114420
AG
7580 max_shadow_read_write_fields,
7581 max_shadow_read_only_fields
7582 };
7583 int i, q;
7584 unsigned long field;
7585 u64 field_value = 0;
355f4fb1 7586 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7587
7588 vmcs_load(shadow_vmcs);
7589
c2bae893 7590 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7591 for (i = 0; i < max_fields[q]; i++) {
7592 field = fields[q][i];
7593 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7594
7595 switch (vmcs_field_type(field)) {
7596 case VMCS_FIELD_TYPE_U16:
7597 vmcs_write16(field, (u16)field_value);
7598 break;
7599 case VMCS_FIELD_TYPE_U32:
7600 vmcs_write32(field, (u32)field_value);
7601 break;
7602 case VMCS_FIELD_TYPE_U64:
7603 vmcs_write64(field, (u64)field_value);
7604 break;
7605 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7606 vmcs_writel(field, (long)field_value);
7607 break;
a2ae9df7
PB
7608 default:
7609 WARN_ON(1);
7610 break;
c3114420
AG
7611 }
7612 }
7613 }
7614
7615 vmcs_clear(shadow_vmcs);
7616 vmcs_load(vmx->loaded_vmcs->vmcs);
7617}
7618
49f705c5
NHE
7619/*
7620 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7621 * used before) all generate the same failure when it is missing.
7622 */
7623static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7624{
7625 struct vcpu_vmx *vmx = to_vmx(vcpu);
7626 if (vmx->nested.current_vmptr == -1ull) {
7627 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7628 return 0;
7629 }
7630 return 1;
7631}
7632
7633static int handle_vmread(struct kvm_vcpu *vcpu)
7634{
7635 unsigned long field;
7636 u64 field_value;
7637 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7638 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7639 gva_t gva = 0;
7640
eb277562 7641 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7642 return 1;
7643
6affcbed
KH
7644 if (!nested_vmx_check_vmcs12(vcpu))
7645 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7646
7647 /* Decode instruction info and find the field to read */
27e6fb5d 7648 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7649 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7650 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 7651 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7652 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7653 }
7654 /*
7655 * Now copy part of this value to register or memory, as requested.
7656 * Note that the number of bits actually copied is 32 or 64 depending
7657 * on the guest's mode (32 or 64 bit), not on the given field's length.
7658 */
7659 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7660 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7661 field_value);
7662 } else {
7663 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7664 vmx_instruction_info, true, &gva))
49f705c5 7665 return 1;
70f3aac9 7666 /* _system ok, as hardware has verified cpl=0 */
49f705c5
NHE
7667 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7668 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7669 }
7670
7671 nested_vmx_succeed(vcpu);
6affcbed 7672 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7673}
7674
7675
7676static int handle_vmwrite(struct kvm_vcpu *vcpu)
7677{
7678 unsigned long field;
7679 gva_t gva;
7680 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7681 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7682 /* The value to write might be 32 or 64 bits, depending on L1's long
7683 * mode, and eventually we need to write that into a field of several
7684 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7685 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7686 * bits into the vmcs12 field.
7687 */
7688 u64 field_value = 0;
7689 struct x86_exception e;
7690
eb277562 7691 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7692 return 1;
7693
6affcbed
KH
7694 if (!nested_vmx_check_vmcs12(vcpu))
7695 return kvm_skip_emulated_instruction(vcpu);
eb277562 7696
49f705c5 7697 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7698 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7699 (((vmx_instruction_info) >> 3) & 0xf));
7700 else {
7701 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7702 vmx_instruction_info, false, &gva))
49f705c5
NHE
7703 return 1;
7704 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7705 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7706 kvm_inject_page_fault(vcpu, &e);
7707 return 1;
7708 }
7709 }
7710
7711
27e6fb5d 7712 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7713 if (vmcs_field_readonly(field)) {
7714 nested_vmx_failValid(vcpu,
7715 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 7716 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7717 }
7718
a2ae9df7 7719 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 7720 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7721 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7722 }
7723
7724 nested_vmx_succeed(vcpu);
6affcbed 7725 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7726}
7727
a8bc284e
JM
7728static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7729{
7730 vmx->nested.current_vmptr = vmptr;
7731 if (enable_shadow_vmcs) {
7732 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7733 SECONDARY_EXEC_SHADOW_VMCS);
7734 vmcs_write64(VMCS_LINK_POINTER,
7735 __pa(vmx->vmcs01.shadow_vmcs));
7736 vmx->nested.sync_shadow_vmcs = true;
7737 }
7738}
7739
63846663
NHE
7740/* Emulate the VMPTRLD instruction */
7741static int handle_vmptrld(struct kvm_vcpu *vcpu)
7742{
7743 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7744 gpa_t vmptr;
63846663
NHE
7745
7746 if (!nested_vmx_check_permission(vcpu))
7747 return 1;
7748
cbf71279 7749 if (nested_vmx_get_vmptr(vcpu, &vmptr))
63846663 7750 return 1;
63846663 7751
cbf71279
RK
7752 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7753 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7754 return kvm_skip_emulated_instruction(vcpu);
7755 }
7756
7757 if (vmptr == vmx->nested.vmxon_ptr) {
7758 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7759 return kvm_skip_emulated_instruction(vcpu);
7760 }
7761
63846663
NHE
7762 if (vmx->nested.current_vmptr != vmptr) {
7763 struct vmcs12 *new_vmcs12;
7764 struct page *page;
5e2f30b7
DH
7765 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7766 if (is_error_page(page)) {
63846663 7767 nested_vmx_failInvalid(vcpu);
6affcbed 7768 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7769 }
7770 new_vmcs12 = kmap(page);
7771 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7772 kunmap(page);
53a70daf 7773 kvm_release_page_clean(page);
63846663
NHE
7774 nested_vmx_failValid(vcpu,
7775 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 7776 return kvm_skip_emulated_instruction(vcpu);
63846663 7777 }
63846663 7778
9a2a05b9 7779 nested_release_vmcs12(vmx);
4f2777bc
DM
7780 /*
7781 * Load VMCS12 from guest memory since it is not already
7782 * cached.
7783 */
9f744c59
PB
7784 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7785 kunmap(page);
53a70daf 7786 kvm_release_page_clean(page);
9f744c59 7787
a8bc284e 7788 set_current_vmptr(vmx, vmptr);
63846663
NHE
7789 }
7790
7791 nested_vmx_succeed(vcpu);
6affcbed 7792 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7793}
7794
6a4d7550
NHE
7795/* Emulate the VMPTRST instruction */
7796static int handle_vmptrst(struct kvm_vcpu *vcpu)
7797{
7798 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7799 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7800 gva_t vmcs_gva;
7801 struct x86_exception e;
7802
7803 if (!nested_vmx_check_permission(vcpu))
7804 return 1;
7805
7806 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7807 vmx_instruction_info, true, &vmcs_gva))
6a4d7550 7808 return 1;
70f3aac9 7809 /* ok to use *_system, as hardware has verified cpl=0 */
6a4d7550
NHE
7810 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7811 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7812 sizeof(u64), &e)) {
7813 kvm_inject_page_fault(vcpu, &e);
7814 return 1;
7815 }
7816 nested_vmx_succeed(vcpu);
6affcbed 7817 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
7818}
7819
bfd0a56b
NHE
7820/* Emulate the INVEPT instruction */
7821static int handle_invept(struct kvm_vcpu *vcpu)
7822{
b9c237bb 7823 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7824 u32 vmx_instruction_info, types;
7825 unsigned long type;
7826 gva_t gva;
7827 struct x86_exception e;
7828 struct {
7829 u64 eptp, gpa;
7830 } operand;
bfd0a56b 7831
b9c237bb
WV
7832 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7833 SECONDARY_EXEC_ENABLE_EPT) ||
7834 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7835 kvm_queue_exception(vcpu, UD_VECTOR);
7836 return 1;
7837 }
7838
7839 if (!nested_vmx_check_permission(vcpu))
7840 return 1;
7841
bfd0a56b 7842 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7843 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7844
b9c237bb 7845 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 7846
85c856b3 7847 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
7848 nested_vmx_failValid(vcpu,
7849 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7850 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7851 }
7852
7853 /* According to the Intel VMX instruction reference, the memory
7854 * operand is read even if it isn't needed (e.g., for type==global)
7855 */
7856 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7857 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7858 return 1;
7859 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7860 sizeof(operand), &e)) {
7861 kvm_inject_page_fault(vcpu, &e);
7862 return 1;
7863 }
7864
7865 switch (type) {
bfd0a56b 7866 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7867 /*
7868 * TODO: track mappings and invalidate
7869 * single context requests appropriately
7870 */
7871 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7872 kvm_mmu_sync_roots(vcpu);
77c3913b 7873 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7874 nested_vmx_succeed(vcpu);
7875 break;
7876 default:
7877 BUG_ON(1);
7878 break;
7879 }
7880
6affcbed 7881 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7882}
7883
a642fc30
PM
7884static int handle_invvpid(struct kvm_vcpu *vcpu)
7885{
99b83ac8
WL
7886 struct vcpu_vmx *vmx = to_vmx(vcpu);
7887 u32 vmx_instruction_info;
7888 unsigned long type, types;
7889 gva_t gva;
7890 struct x86_exception e;
40352605
JM
7891 struct {
7892 u64 vpid;
7893 u64 gla;
7894 } operand;
99b83ac8
WL
7895
7896 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7897 SECONDARY_EXEC_ENABLE_VPID) ||
7898 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7899 kvm_queue_exception(vcpu, UD_VECTOR);
7900 return 1;
7901 }
7902
7903 if (!nested_vmx_check_permission(vcpu))
7904 return 1;
7905
7906 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7907 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7908
bcdde302
JD
7909 types = (vmx->nested.nested_vmx_vpid_caps &
7910 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 7911
85c856b3 7912 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
7913 nested_vmx_failValid(vcpu,
7914 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7915 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7916 }
7917
7918 /* according to the intel vmx instruction reference, the memory
7919 * operand is read even if it isn't needed (e.g., for type==global)
7920 */
7921 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7922 vmx_instruction_info, false, &gva))
7923 return 1;
40352605
JM
7924 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7925 sizeof(operand), &e)) {
99b83ac8
WL
7926 kvm_inject_page_fault(vcpu, &e);
7927 return 1;
7928 }
40352605
JM
7929 if (operand.vpid >> 16) {
7930 nested_vmx_failValid(vcpu,
7931 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7932 return kvm_skip_emulated_instruction(vcpu);
7933 }
99b83ac8
WL
7934
7935 switch (type) {
bcdde302 7936 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
40352605
JM
7937 if (is_noncanonical_address(operand.gla)) {
7938 nested_vmx_failValid(vcpu,
7939 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7940 return kvm_skip_emulated_instruction(vcpu);
7941 }
7942 /* fall through */
ef697a71 7943 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302 7944 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
40352605 7945 if (!operand.vpid) {
bcdde302
JD
7946 nested_vmx_failValid(vcpu,
7947 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7948 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
7949 }
7950 break;
99b83ac8 7951 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
7952 break;
7953 default:
bcdde302 7954 WARN_ON_ONCE(1);
6affcbed 7955 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7956 }
7957
bcdde302
JD
7958 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7959 nested_vmx_succeed(vcpu);
7960
6affcbed 7961 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
7962}
7963
843e4330
KH
7964static int handle_pml_full(struct kvm_vcpu *vcpu)
7965{
7966 unsigned long exit_qualification;
7967
7968 trace_kvm_pml_full(vcpu->vcpu_id);
7969
7970 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7971
7972 /*
7973 * PML buffer FULL happened while executing iret from NMI,
7974 * "blocked by NMI" bit has to be set before next VM entry.
7975 */
7976 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
843e4330
KH
7977 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7978 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7979 GUEST_INTR_STATE_NMI);
7980
7981 /*
7982 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7983 * here.., and there's no userspace involvement needed for PML.
7984 */
7985 return 1;
7986}
7987
64672c95
YJ
7988static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7989{
7990 kvm_lapic_expired_hv_timer(vcpu);
7991 return 1;
7992}
7993
41ab9372
BD
7994static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
7995{
7996 struct vcpu_vmx *vmx = to_vmx(vcpu);
41ab9372
BD
7997 int maxphyaddr = cpuid_maxphyaddr(vcpu);
7998
7999 /* Check for memory type validity */
bb97a016
DH
8000 switch (address & VMX_EPTP_MT_MASK) {
8001 case VMX_EPTP_MT_UC:
41ab9372
BD
8002 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8003 return false;
8004 break;
bb97a016 8005 case VMX_EPTP_MT_WB:
41ab9372
BD
8006 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8007 return false;
8008 break;
8009 default:
8010 return false;
8011 }
8012
bb97a016
DH
8013 /* only 4 levels page-walk length are valid */
8014 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
41ab9372
BD
8015 return false;
8016
8017 /* Reserved bits should not be set */
8018 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8019 return false;
8020
8021 /* AD, if set, should be supported */
bb97a016 8022 if (address & VMX_EPTP_AD_ENABLE_BIT) {
41ab9372
BD
8023 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8024 return false;
8025 }
8026
8027 return true;
8028}
8029
8030static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8031 struct vmcs12 *vmcs12)
8032{
8033 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8034 u64 address;
8035 bool accessed_dirty;
8036 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8037
8038 if (!nested_cpu_has_eptp_switching(vmcs12) ||
8039 !nested_cpu_has_ept(vmcs12))
8040 return 1;
8041
8042 if (index >= VMFUNC_EPTP_ENTRIES)
8043 return 1;
8044
8045
8046 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8047 &address, index * 8, 8))
8048 return 1;
8049
bb97a016 8050 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
41ab9372
BD
8051
8052 /*
8053 * If the (L2) guest does a vmfunc to the currently
8054 * active ept pointer, we don't have to do anything else
8055 */
8056 if (vmcs12->ept_pointer != address) {
8057 if (!valid_ept_address(vcpu, address))
8058 return 1;
8059
8060 kvm_mmu_unload(vcpu);
8061 mmu->ept_ad = accessed_dirty;
8062 mmu->base_role.ad_disabled = !accessed_dirty;
8063 vmcs12->ept_pointer = address;
8064 /*
8065 * TODO: Check what's the correct approach in case
8066 * mmu reload fails. Currently, we just let the next
8067 * reload potentially fail
8068 */
8069 kvm_mmu_reload(vcpu);
8070 }
8071
8072 return 0;
8073}
8074
2a499e49
BD
8075static int handle_vmfunc(struct kvm_vcpu *vcpu)
8076{
27c42a1b
BD
8077 struct vcpu_vmx *vmx = to_vmx(vcpu);
8078 struct vmcs12 *vmcs12;
8079 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8080
8081 /*
8082 * VMFUNC is only supported for nested guests, but we always enable the
8083 * secondary control for simplicity; for non-nested mode, fake that we
8084 * didn't by injecting #UD.
8085 */
8086 if (!is_guest_mode(vcpu)) {
8087 kvm_queue_exception(vcpu, UD_VECTOR);
8088 return 1;
8089 }
8090
8091 vmcs12 = get_vmcs12(vcpu);
8092 if ((vmcs12->vm_function_control & (1 << function)) == 0)
8093 goto fail;
41ab9372
BD
8094
8095 switch (function) {
8096 case 0:
8097 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8098 goto fail;
8099 break;
8100 default:
8101 goto fail;
8102 }
8103 return kvm_skip_emulated_instruction(vcpu);
27c42a1b
BD
8104
8105fail:
8106 nested_vmx_vmexit(vcpu, vmx->exit_reason,
8107 vmcs_read32(VM_EXIT_INTR_INFO),
8108 vmcs_readl(EXIT_QUALIFICATION));
2a499e49
BD
8109 return 1;
8110}
8111
6aa8b732
AK
8112/*
8113 * The exit handlers return 1 if the exit was handled fully and guest execution
8114 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8115 * to be done to userspace and return 0.
8116 */
772e0318 8117static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
8118 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8119 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 8120 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 8121 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 8122 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
8123 [EXIT_REASON_CR_ACCESS] = handle_cr,
8124 [EXIT_REASON_DR_ACCESS] = handle_dr,
8125 [EXIT_REASON_CPUID] = handle_cpuid,
8126 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8127 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8128 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8129 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 8130 [EXIT_REASON_INVD] = handle_invd,
a7052897 8131 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 8132 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 8133 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 8134 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 8135 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 8136 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 8137 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 8138 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 8139 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 8140 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
8141 [EXIT_REASON_VMOFF] = handle_vmoff,
8142 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
8143 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8144 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 8145 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 8146 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 8147 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 8148 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 8149 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 8150 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
8151 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8152 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 8153 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 8154 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 8155 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 8156 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 8157 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 8158 [EXIT_REASON_INVVPID] = handle_invvpid,
45ec368c 8159 [EXIT_REASON_RDRAND] = handle_invalid_op,
75f4fc8d 8160 [EXIT_REASON_RDSEED] = handle_invalid_op,
f53cd63c
WL
8161 [EXIT_REASON_XSAVES] = handle_xsaves,
8162 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 8163 [EXIT_REASON_PML_FULL] = handle_pml_full,
2a499e49 8164 [EXIT_REASON_VMFUNC] = handle_vmfunc,
64672c95 8165 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
8166};
8167
8168static const int kvm_vmx_max_exit_handlers =
50a3485c 8169 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 8170
908a7bdd
JK
8171static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8172 struct vmcs12 *vmcs12)
8173{
8174 unsigned long exit_qualification;
8175 gpa_t bitmap, last_bitmap;
8176 unsigned int port;
8177 int size;
8178 u8 b;
8179
908a7bdd 8180 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 8181 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
8182
8183 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8184
8185 port = exit_qualification >> 16;
8186 size = (exit_qualification & 7) + 1;
8187
8188 last_bitmap = (gpa_t)-1;
8189 b = -1;
8190
8191 while (size > 0) {
8192 if (port < 0x8000)
8193 bitmap = vmcs12->io_bitmap_a;
8194 else if (port < 0x10000)
8195 bitmap = vmcs12->io_bitmap_b;
8196 else
1d804d07 8197 return true;
908a7bdd
JK
8198 bitmap += (port & 0x7fff) / 8;
8199
8200 if (last_bitmap != bitmap)
54bf36aa 8201 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 8202 return true;
908a7bdd 8203 if (b & (1 << (port & 7)))
1d804d07 8204 return true;
908a7bdd
JK
8205
8206 port++;
8207 size--;
8208 last_bitmap = bitmap;
8209 }
8210
1d804d07 8211 return false;
908a7bdd
JK
8212}
8213
644d711a
NHE
8214/*
8215 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8216 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8217 * disinterest in the current event (read or write a specific MSR) by using an
8218 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8219 */
8220static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8221 struct vmcs12 *vmcs12, u32 exit_reason)
8222{
8223 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8224 gpa_t bitmap;
8225
cbd29cb6 8226 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 8227 return true;
644d711a
NHE
8228
8229 /*
8230 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8231 * for the four combinations of read/write and low/high MSR numbers.
8232 * First we need to figure out which of the four to use:
8233 */
8234 bitmap = vmcs12->msr_bitmap;
8235 if (exit_reason == EXIT_REASON_MSR_WRITE)
8236 bitmap += 2048;
8237 if (msr_index >= 0xc0000000) {
8238 msr_index -= 0xc0000000;
8239 bitmap += 1024;
8240 }
8241
8242 /* Then read the msr_index'th bit from this bitmap: */
8243 if (msr_index < 1024*8) {
8244 unsigned char b;
54bf36aa 8245 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 8246 return true;
644d711a
NHE
8247 return 1 & (b >> (msr_index & 7));
8248 } else
1d804d07 8249 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
8250}
8251
8252/*
8253 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8254 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8255 * intercept (via guest_host_mask etc.) the current event.
8256 */
8257static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8258 struct vmcs12 *vmcs12)
8259{
8260 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8261 int cr = exit_qualification & 15;
e1d39b17
JS
8262 int reg;
8263 unsigned long val;
644d711a
NHE
8264
8265 switch ((exit_qualification >> 4) & 3) {
8266 case 0: /* mov to cr */
e1d39b17
JS
8267 reg = (exit_qualification >> 8) & 15;
8268 val = kvm_register_readl(vcpu, reg);
644d711a
NHE
8269 switch (cr) {
8270 case 0:
8271 if (vmcs12->cr0_guest_host_mask &
8272 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8273 return true;
644d711a
NHE
8274 break;
8275 case 3:
8276 if ((vmcs12->cr3_target_count >= 1 &&
8277 vmcs12->cr3_target_value0 == val) ||
8278 (vmcs12->cr3_target_count >= 2 &&
8279 vmcs12->cr3_target_value1 == val) ||
8280 (vmcs12->cr3_target_count >= 3 &&
8281 vmcs12->cr3_target_value2 == val) ||
8282 (vmcs12->cr3_target_count >= 4 &&
8283 vmcs12->cr3_target_value3 == val))
1d804d07 8284 return false;
644d711a 8285 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 8286 return true;
644d711a
NHE
8287 break;
8288 case 4:
8289 if (vmcs12->cr4_guest_host_mask &
8290 (vmcs12->cr4_read_shadow ^ val))
1d804d07 8291 return true;
644d711a
NHE
8292 break;
8293 case 8:
8294 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 8295 return true;
644d711a
NHE
8296 break;
8297 }
8298 break;
8299 case 2: /* clts */
8300 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8301 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 8302 return true;
644d711a
NHE
8303 break;
8304 case 1: /* mov from cr */
8305 switch (cr) {
8306 case 3:
8307 if (vmcs12->cpu_based_vm_exec_control &
8308 CPU_BASED_CR3_STORE_EXITING)
1d804d07 8309 return true;
644d711a
NHE
8310 break;
8311 case 8:
8312 if (vmcs12->cpu_based_vm_exec_control &
8313 CPU_BASED_CR8_STORE_EXITING)
1d804d07 8314 return true;
644d711a
NHE
8315 break;
8316 }
8317 break;
8318 case 3: /* lmsw */
8319 /*
8320 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8321 * cr0. Other attempted changes are ignored, with no exit.
8322 */
e1d39b17 8323 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
644d711a
NHE
8324 if (vmcs12->cr0_guest_host_mask & 0xe &
8325 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8326 return true;
644d711a
NHE
8327 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8328 !(vmcs12->cr0_read_shadow & 0x1) &&
8329 (val & 0x1))
1d804d07 8330 return true;
644d711a
NHE
8331 break;
8332 }
1d804d07 8333 return false;
644d711a
NHE
8334}
8335
8336/*
8337 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8338 * should handle it ourselves in L0 (and then continue L2). Only call this
8339 * when in is_guest_mode (L2).
8340 */
7313c698 8341static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
644d711a 8342{
644d711a
NHE
8343 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8344 struct vcpu_vmx *vmx = to_vmx(vcpu);
8345 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8346
542060ea
JK
8347 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8348 vmcs_readl(EXIT_QUALIFICATION),
8349 vmx->idt_vectoring_info,
8350 intr_info,
8351 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8352 KVM_ISA_VMX);
8353
c9f04407
DM
8354 /*
8355 * The host physical addresses of some pages of guest memory
8356 * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8357 * may write to these pages via their host physical address while
8358 * L2 is running, bypassing any address-translation-based dirty
8359 * tracking (e.g. EPT write protection).
8360 *
8361 * Mark them dirty on every exit from L2 to prevent them from
8362 * getting out of sync with dirty tracking.
8363 */
8364 nested_mark_vmcs12_pages_dirty(vcpu);
8365
644d711a 8366 if (vmx->nested.nested_run_pending)
1d804d07 8367 return false;
644d711a
NHE
8368
8369 if (unlikely(vmx->fail)) {
bd80158a
JK
8370 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8371 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 8372 return true;
644d711a
NHE
8373 }
8374
8375 switch (exit_reason) {
8376 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8377 if (is_nmi(intr_info))
1d804d07 8378 return false;
644d711a 8379 else if (is_page_fault(intr_info))
52a5c155 8380 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
e504c909 8381 else if (is_no_device(intr_info) &&
ccf9844e 8382 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8383 return false;
6f05485d
JK
8384 else if (is_debug(intr_info) &&
8385 vcpu->guest_debug &
8386 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8387 return false;
8388 else if (is_breakpoint(intr_info) &&
8389 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8390 return false;
644d711a
NHE
8391 return vmcs12->exception_bitmap &
8392 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8393 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8394 return false;
644d711a 8395 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8396 return true;
644d711a 8397 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8398 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8399 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8400 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8401 case EXIT_REASON_TASK_SWITCH:
1d804d07 8402 return true;
644d711a 8403 case EXIT_REASON_CPUID:
1d804d07 8404 return true;
644d711a
NHE
8405 case EXIT_REASON_HLT:
8406 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8407 case EXIT_REASON_INVD:
1d804d07 8408 return true;
644d711a
NHE
8409 case EXIT_REASON_INVLPG:
8410 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8411 case EXIT_REASON_RDPMC:
8412 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
a5f46457
PB
8413 case EXIT_REASON_RDRAND:
8414 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8415 case EXIT_REASON_RDSEED:
8416 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
b3a2a907 8417 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8418 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8419 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8420 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8421 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8422 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8423 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8424 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8425 /*
8426 * VMX instructions trap unconditionally. This allows L1 to
8427 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8428 */
1d804d07 8429 return true;
644d711a
NHE
8430 case EXIT_REASON_CR_ACCESS:
8431 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8432 case EXIT_REASON_DR_ACCESS:
8433 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8434 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8435 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8436 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8437 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8438 case EXIT_REASON_MSR_READ:
8439 case EXIT_REASON_MSR_WRITE:
8440 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8441 case EXIT_REASON_INVALID_STATE:
1d804d07 8442 return true;
644d711a
NHE
8443 case EXIT_REASON_MWAIT_INSTRUCTION:
8444 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8445 case EXIT_REASON_MONITOR_TRAP_FLAG:
8446 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8447 case EXIT_REASON_MONITOR_INSTRUCTION:
8448 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8449 case EXIT_REASON_PAUSE_INSTRUCTION:
8450 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8451 nested_cpu_has2(vmcs12,
8452 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8453 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8454 return false;
644d711a 8455 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8456 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8457 case EXIT_REASON_APIC_ACCESS:
8458 return nested_cpu_has2(vmcs12,
8459 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8460 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8461 case EXIT_REASON_EOI_INDUCED:
8462 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8463 return true;
644d711a 8464 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8465 /*
8466 * L0 always deals with the EPT violation. If nested EPT is
8467 * used, and the nested mmu code discovers that the address is
8468 * missing in the guest EPT table (EPT12), the EPT violation
8469 * will be injected with nested_ept_inject_page_fault()
8470 */
1d804d07 8471 return false;
644d711a 8472 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8473 /*
8474 * L2 never uses directly L1's EPT, but rather L0's own EPT
8475 * table (shadow on EPT) or a merged EPT table that L0 built
8476 * (EPT on EPT). So any problems with the structure of the
8477 * table is L0's fault.
8478 */
1d804d07 8479 return false;
90a2db6d
PB
8480 case EXIT_REASON_INVPCID:
8481 return
8482 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8483 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
644d711a
NHE
8484 case EXIT_REASON_WBINVD:
8485 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8486 case EXIT_REASON_XSETBV:
1d804d07 8487 return true;
81dc01f7
WL
8488 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8489 /*
8490 * This should never happen, since it is not possible to
8491 * set XSS to a non-zero value---neither in L1 nor in L2.
8492 * If if it were, XSS would have to be checked against
8493 * the XSS exit bitmap in vmcs12.
8494 */
8495 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8496 case EXIT_REASON_PREEMPTION_TIMER:
8497 return false;
ab007cc9 8498 case EXIT_REASON_PML_FULL:
03efce6f 8499 /* We emulate PML support to L1. */
ab007cc9 8500 return false;
2a499e49
BD
8501 case EXIT_REASON_VMFUNC:
8502 /* VM functions are emulated through L2->L0 vmexits. */
8503 return false;
644d711a 8504 default:
1d804d07 8505 return true;
644d711a
NHE
8506 }
8507}
8508
7313c698
PB
8509static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8510{
8511 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8512
8513 /*
8514 * At this point, the exit interruption info in exit_intr_info
8515 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8516 * we need to query the in-kernel LAPIC.
8517 */
8518 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8519 if ((exit_intr_info &
8520 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8521 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8522 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8523 vmcs12->vm_exit_intr_error_code =
8524 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8525 }
8526
8527 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8528 vmcs_readl(EXIT_QUALIFICATION));
8529 return 1;
8530}
8531
586f9607
AK
8532static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8533{
8534 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8535 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8536}
8537
a3eaa864 8538static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8539{
a3eaa864
KH
8540 if (vmx->pml_pg) {
8541 __free_page(vmx->pml_pg);
8542 vmx->pml_pg = NULL;
8543 }
843e4330
KH
8544}
8545
54bf36aa 8546static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8547{
54bf36aa 8548 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8549 u64 *pml_buf;
8550 u16 pml_idx;
8551
8552 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8553
8554 /* Do nothing if PML buffer is empty */
8555 if (pml_idx == (PML_ENTITY_NUM - 1))
8556 return;
8557
8558 /* PML index always points to next available PML buffer entity */
8559 if (pml_idx >= PML_ENTITY_NUM)
8560 pml_idx = 0;
8561 else
8562 pml_idx++;
8563
8564 pml_buf = page_address(vmx->pml_pg);
8565 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8566 u64 gpa;
8567
8568 gpa = pml_buf[pml_idx];
8569 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8570 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8571 }
8572
8573 /* reset PML index */
8574 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8575}
8576
8577/*
8578 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8579 * Called before reporting dirty_bitmap to userspace.
8580 */
8581static void kvm_flush_pml_buffers(struct kvm *kvm)
8582{
8583 int i;
8584 struct kvm_vcpu *vcpu;
8585 /*
8586 * We only need to kick vcpu out of guest mode here, as PML buffer
8587 * is flushed at beginning of all VMEXITs, and it's obvious that only
8588 * vcpus running in guest are possible to have unflushed GPAs in PML
8589 * buffer.
8590 */
8591 kvm_for_each_vcpu(i, vcpu, kvm)
8592 kvm_vcpu_kick(vcpu);
8593}
8594
4eb64dce
PB
8595static void vmx_dump_sel(char *name, uint32_t sel)
8596{
8597 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
96794e4e 8598 name, vmcs_read16(sel),
4eb64dce
PB
8599 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8600 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8601 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8602}
8603
8604static void vmx_dump_dtsel(char *name, uint32_t limit)
8605{
8606 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8607 name, vmcs_read32(limit),
8608 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8609}
8610
8611static void dump_vmcs(void)
8612{
8613 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8614 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8615 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8616 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8617 u32 secondary_exec_control = 0;
8618 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8619 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8620 int i, n;
8621
8622 if (cpu_has_secondary_exec_ctrls())
8623 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8624
8625 pr_err("*** Guest State ***\n");
8626 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8627 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8628 vmcs_readl(CR0_GUEST_HOST_MASK));
8629 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8630 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8631 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8632 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8633 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8634 {
845c5b40
PB
8635 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8636 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8637 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8638 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8639 }
8640 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8641 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8642 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8643 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8644 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8645 vmcs_readl(GUEST_SYSENTER_ESP),
8646 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8647 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8648 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8649 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8650 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8651 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8652 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8653 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8654 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8655 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8656 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8657 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8658 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8659 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8660 efer, vmcs_read64(GUEST_IA32_PAT));
8661 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8662 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8663 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8664 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8665 pr_err("PerfGlobCtl = 0x%016llx\n",
8666 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8667 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8668 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8669 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8670 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8671 vmcs_read32(GUEST_ACTIVITY_STATE));
8672 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8673 pr_err("InterruptStatus = %04x\n",
8674 vmcs_read16(GUEST_INTR_STATUS));
8675
8676 pr_err("*** Host State ***\n");
8677 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8678 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8679 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8680 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8681 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8682 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8683 vmcs_read16(HOST_TR_SELECTOR));
8684 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8685 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8686 vmcs_readl(HOST_TR_BASE));
8687 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8688 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8689 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8690 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8691 vmcs_readl(HOST_CR4));
8692 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8693 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8694 vmcs_read32(HOST_IA32_SYSENTER_CS),
8695 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8696 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8697 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8698 vmcs_read64(HOST_IA32_EFER),
8699 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8700 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8701 pr_err("PerfGlobCtl = 0x%016llx\n",
8702 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8703
8704 pr_err("*** Control State ***\n");
8705 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8706 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8707 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8708 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8709 vmcs_read32(EXCEPTION_BITMAP),
8710 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8711 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8712 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8713 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8714 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8715 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8716 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8717 vmcs_read32(VM_EXIT_INTR_INFO),
8718 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8719 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8720 pr_err(" reason=%08x qualification=%016lx\n",
8721 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8722 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8723 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8724 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8725 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8726 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8727 pr_err("TSC Multiplier = 0x%016llx\n",
8728 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8729 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8730 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8731 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8732 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8733 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8734 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8735 n = vmcs_read32(CR3_TARGET_COUNT);
8736 for (i = 0; i + 1 < n; i += 4)
8737 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8738 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8739 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8740 if (i < n)
8741 pr_err("CR3 target%u=%016lx\n",
8742 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8743 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8744 pr_err("PLE Gap=%08x Window=%08x\n",
8745 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8746 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8747 pr_err("Virtual processor ID = 0x%04x\n",
8748 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8749}
8750
6aa8b732
AK
8751/*
8752 * The guest has exited. See if we can fix it or if we need userspace
8753 * assistance.
8754 */
851ba692 8755static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8756{
29bd8a78 8757 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8758 u32 exit_reason = vmx->exit_reason;
1155f76a 8759 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8760
8b89fe1f
PB
8761 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8762
843e4330
KH
8763 /*
8764 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8765 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8766 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8767 * mode as if vcpus is in root mode, the PML buffer must has been
8768 * flushed already.
8769 */
8770 if (enable_pml)
54bf36aa 8771 vmx_flush_pml_buffer(vcpu);
843e4330 8772
80ced186 8773 /* If guest state is invalid, start emulating */
14168786 8774 if (vmx->emulation_required)
80ced186 8775 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8776
7313c698
PB
8777 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8778 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
644d711a 8779
5120702e 8780 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8781 dump_vmcs();
5120702e
MG
8782 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8783 vcpu->run->fail_entry.hardware_entry_failure_reason
8784 = exit_reason;
8785 return 0;
8786 }
8787
29bd8a78 8788 if (unlikely(vmx->fail)) {
851ba692
AK
8789 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8790 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8791 = vmcs_read32(VM_INSTRUCTION_ERROR);
8792 return 0;
8793 }
6aa8b732 8794
b9bf6882
XG
8795 /*
8796 * Note:
8797 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8798 * delivery event since it indicates guest is accessing MMIO.
8799 * The vm-exit can be triggered again after return to guest that
8800 * will cause infinite loop.
8801 */
d77c26fc 8802 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8803 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8804 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8805 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8806 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8807 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8808 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
70bcd708 8809 vcpu->run->internal.ndata = 3;
b9bf6882
XG
8810 vcpu->run->internal.data[0] = vectoring_info;
8811 vcpu->run->internal.data[1] = exit_reason;
70bcd708
PB
8812 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8813 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8814 vcpu->run->internal.ndata++;
8815 vcpu->run->internal.data[3] =
8816 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8817 }
b9bf6882
XG
8818 return 0;
8819 }
3b86cd99 8820
6aa8b732
AK
8821 if (exit_reason < kvm_vmx_max_exit_handlers
8822 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8823 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8824 else {
6c6c5e03
RK
8825 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8826 exit_reason);
2bc19dc3
MT
8827 kvm_queue_exception(vcpu, UD_VECTOR);
8828 return 1;
6aa8b732 8829 }
6aa8b732
AK
8830}
8831
95ba8273 8832static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8833{
a7c0b07d
WL
8834 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8835
8836 if (is_guest_mode(vcpu) &&
8837 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8838 return;
8839
95ba8273 8840 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8841 vmcs_write32(TPR_THRESHOLD, 0);
8842 return;
8843 }
8844
95ba8273 8845 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8846}
8847
8d14695f
YZ
8848static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8849{
8850 u32 sec_exec_control;
8851
dccbfcf5
RK
8852 /* Postpone execution until vmcs01 is the current VMCS. */
8853 if (is_guest_mode(vcpu)) {
8854 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8855 return;
8856 }
8857
f6e90f9e 8858 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8859 return;
8860
35754c98 8861 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8862 return;
8863
8864 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8865
8866 if (set) {
8867 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8868 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8869 } else {
8870 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8871 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
fb6c8198 8872 vmx_flush_tlb_ept_only(vcpu);
8d14695f
YZ
8873 }
8874 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8875
8876 vmx_set_msr_bitmap(vcpu);
8877}
8878
38b99173
TC
8879static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8880{
8881 struct vcpu_vmx *vmx = to_vmx(vcpu);
8882
8883 /*
8884 * Currently we do not handle the nested case where L2 has an
8885 * APIC access page of its own; that page is still pinned.
8886 * Hence, we skip the case where the VCPU is in guest mode _and_
8887 * L1 prepared an APIC access page for L2.
8888 *
8889 * For the case where L1 and L2 share the same APIC access page
8890 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8891 * in the vmcs12), this function will only update either the vmcs01
8892 * or the vmcs02. If the former, the vmcs02 will be updated by
8893 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8894 * the next L2->L1 exit.
8895 */
8896 if (!is_guest_mode(vcpu) ||
4f2777bc 8897 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
fb6c8198 8898 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
38b99173 8899 vmcs_write64(APIC_ACCESS_ADDR, hpa);
fb6c8198
JM
8900 vmx_flush_tlb_ept_only(vcpu);
8901 }
38b99173
TC
8902}
8903
67c9dddc 8904static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8905{
8906 u16 status;
8907 u8 old;
8908
67c9dddc
PB
8909 if (max_isr == -1)
8910 max_isr = 0;
c7c9c56c
YZ
8911
8912 status = vmcs_read16(GUEST_INTR_STATUS);
8913 old = status >> 8;
67c9dddc 8914 if (max_isr != old) {
c7c9c56c 8915 status &= 0xff;
67c9dddc 8916 status |= max_isr << 8;
c7c9c56c
YZ
8917 vmcs_write16(GUEST_INTR_STATUS, status);
8918 }
8919}
8920
8921static void vmx_set_rvi(int vector)
8922{
8923 u16 status;
8924 u8 old;
8925
4114c27d
WW
8926 if (vector == -1)
8927 vector = 0;
8928
c7c9c56c
YZ
8929 status = vmcs_read16(GUEST_INTR_STATUS);
8930 old = (u8)status & 0xff;
8931 if ((u8)vector != old) {
8932 status &= ~0xff;
8933 status |= (u8)vector;
8934 vmcs_write16(GUEST_INTR_STATUS, status);
8935 }
8936}
8937
8938static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8939{
4114c27d
WW
8940 if (!is_guest_mode(vcpu)) {
8941 vmx_set_rvi(max_irr);
8942 return;
8943 }
8944
c7c9c56c
YZ
8945 if (max_irr == -1)
8946 return;
8947
963fee16 8948 /*
4114c27d
WW
8949 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8950 * handles it.
963fee16 8951 */
4114c27d 8952 if (nested_exit_on_intr(vcpu))
963fee16
WL
8953 return;
8954
963fee16 8955 /*
4114c27d 8956 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8957 * is run without virtual interrupt delivery.
8958 */
8959 if (!kvm_event_needs_reinjection(vcpu) &&
8960 vmx_interrupt_allowed(vcpu)) {
8961 kvm_queue_interrupt(vcpu, max_irr, false);
8962 vmx_inject_irq(vcpu);
8963 }
c7c9c56c
YZ
8964}
8965
76dfafd5 8966static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
8967{
8968 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 8969 int max_irr;
810e6def 8970
76dfafd5
PB
8971 WARN_ON(!vcpu->arch.apicv_active);
8972 if (pi_test_on(&vmx->pi_desc)) {
8973 pi_clear_on(&vmx->pi_desc);
8974 /*
8975 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8976 * But on x86 this is just a compiler barrier anyway.
8977 */
8978 smp_mb__after_atomic();
8979 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8980 } else {
8981 max_irr = kvm_lapic_find_highest_irr(vcpu);
8982 }
8983 vmx_hwapic_irr_update(vcpu, max_irr);
8984 return max_irr;
810e6def
PB
8985}
8986
6308630b 8987static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8988{
d62caabb 8989 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8990 return;
8991
c7c9c56c
YZ
8992 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8993 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8994 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8995 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8996}
8997
967235d3
PB
8998static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8999{
9000 struct vcpu_vmx *vmx = to_vmx(vcpu);
9001
9002 pi_clear_on(&vmx->pi_desc);
9003 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9004}
9005
51aa01d1 9006static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 9007{
48ae0fb4
JM
9008 u32 exit_intr_info = 0;
9009 u16 basic_exit_reason = (u16)vmx->exit_reason;
00eba012 9010
48ae0fb4
JM
9011 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9012 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
00eba012
AK
9013 return;
9014
48ae0fb4
JM
9015 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9016 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9017 vmx->exit_intr_info = exit_intr_info;
a0861c02 9018
1261bfa3
WL
9019 /* if exit due to PF check for async PF */
9020 if (is_page_fault(exit_intr_info))
9021 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9022
a0861c02 9023 /* Handle machine checks before interrupts are enabled */
48ae0fb4
JM
9024 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9025 is_machine_check(exit_intr_info))
a0861c02
AK
9026 kvm_machine_check();
9027
20f65983 9028 /* We need to handle NMIs before interrupts are enabled */
ef85b673 9029 if (is_nmi(exit_intr_info)) {
ff9d07a0 9030 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 9031 asm("int $2");
ff9d07a0
ZY
9032 kvm_after_handle_nmi(&vmx->vcpu);
9033 }
51aa01d1 9034}
20f65983 9035
a547c6db
YZ
9036static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9037{
9038 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3f62de5f 9039 register void *__sp asm(_ASM_SP);
a547c6db 9040
a547c6db
YZ
9041 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9042 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9043 unsigned int vector;
9044 unsigned long entry;
9045 gate_desc *desc;
9046 struct vcpu_vmx *vmx = to_vmx(vcpu);
9047#ifdef CONFIG_X86_64
9048 unsigned long tmp;
9049#endif
9050
9051 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9052 desc = (gate_desc *)vmx->host_idt_base + vector;
9053 entry = gate_offset(*desc);
9054 asm volatile(
9055#ifdef CONFIG_X86_64
9056 "mov %%" _ASM_SP ", %[sp]\n\t"
9057 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9058 "push $%c[ss]\n\t"
9059 "push %[sp]\n\t"
9060#endif
9061 "pushf\n\t"
a547c6db
YZ
9062 __ASM_SIZE(push) " $%c[cs]\n\t"
9063 "call *%[entry]\n\t"
9064 :
9065#ifdef CONFIG_X86_64
3f62de5f 9066 [sp]"=&r"(tmp),
a547c6db 9067#endif
3f62de5f 9068 "+r"(__sp)
a547c6db
YZ
9069 :
9070 [entry]"r"(entry),
9071 [ss]"i"(__KERNEL_DS),
9072 [cs]"i"(__KERNEL_CS)
9073 );
f2485b3e 9074 }
a547c6db 9075}
c207aee4 9076STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
a547c6db 9077
6d396b55
PB
9078static bool vmx_has_high_real_mode_segbase(void)
9079{
9080 return enable_unrestricted_guest || emulate_invalid_guest_state;
9081}
9082
da8999d3
LJ
9083static bool vmx_mpx_supported(void)
9084{
9085 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9086 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9087}
9088
55412b2e
WL
9089static bool vmx_xsaves_supported(void)
9090{
9091 return vmcs_config.cpu_based_2nd_exec_ctrl &
9092 SECONDARY_EXEC_XSAVES;
9093}
9094
51aa01d1
AK
9095static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9096{
c5ca8e57 9097 u32 exit_intr_info;
51aa01d1
AK
9098 bool unblock_nmi;
9099 u8 vector;
9100 bool idtv_info_valid;
9101
9102 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 9103
4c4a6f79 9104 if (vmx->loaded_vmcs->nmi_known_unmasked)
2c82878b
PB
9105 return;
9106 /*
9107 * Can't use vmx->exit_intr_info since we're not sure what
9108 * the exit reason is.
9109 */
9110 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9111 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9112 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9113 /*
9114 * SDM 3: 27.7.1.2 (September 2008)
9115 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9116 * a guest IRET fault.
9117 * SDM 3: 23.2.2 (September 2008)
9118 * Bit 12 is undefined in any of the following cases:
9119 * If the VM exit sets the valid bit in the IDT-vectoring
9120 * information field.
9121 * If the VM exit is due to a double fault.
9122 */
9123 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9124 vector != DF_VECTOR && !idtv_info_valid)
9125 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9126 GUEST_INTR_STATE_NMI);
9127 else
4c4a6f79 9128 vmx->loaded_vmcs->nmi_known_unmasked =
2c82878b
PB
9129 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9130 & GUEST_INTR_STATE_NMI);
51aa01d1
AK
9131}
9132
3ab66e8a 9133static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
9134 u32 idt_vectoring_info,
9135 int instr_len_field,
9136 int error_code_field)
51aa01d1 9137{
51aa01d1
AK
9138 u8 vector;
9139 int type;
9140 bool idtv_info_valid;
9141
9142 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 9143
3ab66e8a
JK
9144 vcpu->arch.nmi_injected = false;
9145 kvm_clear_exception_queue(vcpu);
9146 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
9147
9148 if (!idtv_info_valid)
9149 return;
9150
3ab66e8a 9151 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 9152
668f612f
AK
9153 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9154 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 9155
64a7ec06 9156 switch (type) {
37b96e98 9157 case INTR_TYPE_NMI_INTR:
3ab66e8a 9158 vcpu->arch.nmi_injected = true;
668f612f 9159 /*
7b4a25cb 9160 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
9161 * Clear bit "block by NMI" before VM entry if a NMI
9162 * delivery faulted.
668f612f 9163 */
3ab66e8a 9164 vmx_set_nmi_mask(vcpu, false);
37b96e98 9165 break;
37b96e98 9166 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 9167 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
9168 /* fall through */
9169 case INTR_TYPE_HARD_EXCEPTION:
35920a35 9170 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 9171 u32 err = vmcs_read32(error_code_field);
851eb667 9172 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 9173 } else
851eb667 9174 kvm_requeue_exception(vcpu, vector);
37b96e98 9175 break;
66fd3f7f 9176 case INTR_TYPE_SOFT_INTR:
3ab66e8a 9177 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 9178 /* fall through */
37b96e98 9179 case INTR_TYPE_EXT_INTR:
3ab66e8a 9180 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
9181 break;
9182 default:
9183 break;
f7d9238f 9184 }
cf393f75
AK
9185}
9186
83422e17
AK
9187static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9188{
3ab66e8a 9189 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
9190 VM_EXIT_INSTRUCTION_LEN,
9191 IDT_VECTORING_ERROR_CODE);
9192}
9193
b463a6f7
AK
9194static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9195{
3ab66e8a 9196 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
9197 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9198 VM_ENTRY_INSTRUCTION_LEN,
9199 VM_ENTRY_EXCEPTION_ERROR_CODE);
9200
9201 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9202}
9203
d7cd9796
GN
9204static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9205{
9206 int i, nr_msrs;
9207 struct perf_guest_switch_msr *msrs;
9208
9209 msrs = perf_guest_get_msrs(&nr_msrs);
9210
9211 if (!msrs)
9212 return;
9213
9214 for (i = 0; i < nr_msrs; i++)
9215 if (msrs[i].host == msrs[i].guest)
9216 clear_atomic_switch_msr(vmx, msrs[i].msr);
9217 else
9218 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9219 msrs[i].host);
9220}
9221
33365e7a 9222static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
9223{
9224 struct vcpu_vmx *vmx = to_vmx(vcpu);
9225 u64 tscl;
9226 u32 delta_tsc;
9227
9228 if (vmx->hv_deadline_tsc == -1)
9229 return;
9230
9231 tscl = rdtsc();
9232 if (vmx->hv_deadline_tsc > tscl)
9233 /* sure to be 32 bit only because checked on set_hv_timer */
9234 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9235 cpu_preemption_timer_multi);
9236 else
9237 delta_tsc = 0;
9238
9239 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9240}
9241
a3b5ba49 9242static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 9243{
a2fa3e9f 9244 struct vcpu_vmx *vmx = to_vmx(vcpu);
d6e41f11 9245 unsigned long debugctlmsr, cr3, cr4;
104f226b 9246
104f226b
AK
9247 /* Don't enter VMX if guest state is invalid, let the exit handler
9248 start emulation until we arrive back to a valid state */
14168786 9249 if (vmx->emulation_required)
104f226b
AK
9250 return;
9251
a7653ecd
RK
9252 if (vmx->ple_window_dirty) {
9253 vmx->ple_window_dirty = false;
9254 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9255 }
9256
012f83cb
AG
9257 if (vmx->nested.sync_shadow_vmcs) {
9258 copy_vmcs12_to_shadow(vmx);
9259 vmx->nested.sync_shadow_vmcs = false;
9260 }
9261
104f226b
AK
9262 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9263 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9264 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9265 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9266
d6e41f11
AL
9267 cr3 = __get_current_cr3_fast();
9268 if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
9269 vmcs_writel(HOST_CR3, cr3);
9270 vmx->host_state.vmcs_host_cr3 = cr3;
9271 }
9272
1e02ce4c 9273 cr4 = cr4_read_shadow();
d974baa3
AL
9274 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
9275 vmcs_writel(HOST_CR4, cr4);
9276 vmx->host_state.vmcs_host_cr4 = cr4;
9277 }
9278
104f226b
AK
9279 /* When single-stepping over STI and MOV SS, we must clear the
9280 * corresponding interruptibility bits in the guest state. Otherwise
9281 * vmentry fails as it then expects bit 14 (BS) in pending debug
9282 * exceptions being set, but that's not correct for the guest debugging
9283 * case. */
9284 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9285 vmx_set_interrupt_shadow(vcpu, 0);
9286
1be0e61c
XG
9287 if (vmx->guest_pkru_valid)
9288 __write_pkru(vmx->guest_pkru);
9289
d7cd9796 9290 atomic_switch_perf_msrs(vmx);
2a7921b7 9291 debugctlmsr = get_debugctlmsr();
d7cd9796 9292
64672c95
YJ
9293 vmx_arm_hv_timer(vcpu);
9294
d462b819 9295 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 9296 asm(
6aa8b732 9297 /* Store host registers */
b188c81f
AK
9298 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9299 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9300 "push %%" _ASM_CX " \n\t"
9301 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 9302 "je 1f \n\t"
b188c81f 9303 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 9304 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 9305 "1: \n\t"
d3edefc0 9306 /* Reload cr2 if changed */
b188c81f
AK
9307 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9308 "mov %%cr2, %%" _ASM_DX " \n\t"
9309 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 9310 "je 2f \n\t"
b188c81f 9311 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 9312 "2: \n\t"
6aa8b732 9313 /* Check if vmlaunch of vmresume is needed */
e08aa78a 9314 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 9315 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
9316 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9317 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9318 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9319 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9320 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9321 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 9322#ifdef CONFIG_X86_64
e08aa78a
AK
9323 "mov %c[r8](%0), %%r8 \n\t"
9324 "mov %c[r9](%0), %%r9 \n\t"
9325 "mov %c[r10](%0), %%r10 \n\t"
9326 "mov %c[r11](%0), %%r11 \n\t"
9327 "mov %c[r12](%0), %%r12 \n\t"
9328 "mov %c[r13](%0), %%r13 \n\t"
9329 "mov %c[r14](%0), %%r14 \n\t"
9330 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 9331#endif
b188c81f 9332 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 9333
6aa8b732 9334 /* Enter guest mode */
83287ea4 9335 "jne 1f \n\t"
4ecac3fd 9336 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
9337 "jmp 2f \n\t"
9338 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9339 "2: "
6aa8b732 9340 /* Save guest registers, load host registers, keep flags */
b188c81f 9341 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 9342 "pop %0 \n\t"
b188c81f
AK
9343 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9344 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9345 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9346 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9347 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9348 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9349 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 9350#ifdef CONFIG_X86_64
e08aa78a
AK
9351 "mov %%r8, %c[r8](%0) \n\t"
9352 "mov %%r9, %c[r9](%0) \n\t"
9353 "mov %%r10, %c[r10](%0) \n\t"
9354 "mov %%r11, %c[r11](%0) \n\t"
9355 "mov %%r12, %c[r12](%0) \n\t"
9356 "mov %%r13, %c[r13](%0) \n\t"
9357 "mov %%r14, %c[r14](%0) \n\t"
9358 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 9359#endif
b188c81f
AK
9360 "mov %%cr2, %%" _ASM_AX " \n\t"
9361 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 9362
b188c81f 9363 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 9364 "setbe %c[fail](%0) \n\t"
83287ea4
AK
9365 ".pushsection .rodata \n\t"
9366 ".global vmx_return \n\t"
9367 "vmx_return: " _ASM_PTR " 2b \n\t"
9368 ".popsection"
e08aa78a 9369 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 9370 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 9371 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 9372 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
9373 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9374 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9375 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9376 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9377 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9378 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9379 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 9380#ifdef CONFIG_X86_64
ad312c7c
ZX
9381 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9382 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9383 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9384 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9385 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9386 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9387 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9388 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9389#endif
40712fae
AK
9390 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9391 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9392 : "cc", "memory"
9393#ifdef CONFIG_X86_64
b188c81f 9394 , "rax", "rbx", "rdi", "rsi"
c2036300 9395 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
9396#else
9397 , "eax", "ebx", "edi", "esi"
c2036300
LV
9398#endif
9399 );
6aa8b732 9400
2a7921b7
GN
9401 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9402 if (debugctlmsr)
9403 update_debugctlmsr(debugctlmsr);
9404
aa67f609
AK
9405#ifndef CONFIG_X86_64
9406 /*
9407 * The sysexit path does not restore ds/es, so we must set them to
9408 * a reasonable value ourselves.
9409 *
9410 * We can't defer this to vmx_load_host_state() since that function
9411 * may be executed in interrupt context, which saves and restore segments
9412 * around it, nullifying its effect.
9413 */
9414 loadsegment(ds, __USER_DS);
9415 loadsegment(es, __USER_DS);
9416#endif
9417
6de4f3ad 9418 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9419 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9420 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9421 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9422 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9423 vcpu->arch.regs_dirty = 0;
9424
1155f76a
AK
9425 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9426
d462b819 9427 vmx->loaded_vmcs->launched = 1;
1b6269db 9428
51aa01d1 9429 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
51aa01d1 9430
1be0e61c
XG
9431 /*
9432 * eager fpu is enabled if PKEY is supported and CR4 is switched
9433 * back on host, so it is safe to read guest PKRU from current
9434 * XSAVE.
9435 */
9436 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9437 vmx->guest_pkru = __read_pkru();
9438 if (vmx->guest_pkru != vmx->host_pkru) {
9439 vmx->guest_pkru_valid = true;
9440 __write_pkru(vmx->host_pkru);
9441 } else
9442 vmx->guest_pkru_valid = false;
9443 }
9444
e0b890d3
GN
9445 /*
9446 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9447 * we did not inject a still-pending event to L1 now because of
9448 * nested_run_pending, we need to re-enable this bit.
9449 */
9450 if (vmx->nested.nested_run_pending)
9451 kvm_make_request(KVM_REQ_EVENT, vcpu);
9452
9453 vmx->nested.nested_run_pending = 0;
9454
51aa01d1
AK
9455 vmx_complete_atomic_exit(vmx);
9456 vmx_recover_nmi_blocking(vmx);
cf393f75 9457 vmx_complete_interrupts(vmx);
6aa8b732 9458}
c207aee4 9459STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
6aa8b732 9460
1279a6b1 9461static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
4fa7734c
PB
9462{
9463 struct vcpu_vmx *vmx = to_vmx(vcpu);
9464 int cpu;
9465
1279a6b1 9466 if (vmx->loaded_vmcs == vmcs)
4fa7734c
PB
9467 return;
9468
9469 cpu = get_cpu();
1279a6b1 9470 vmx->loaded_vmcs = vmcs;
4fa7734c
PB
9471 vmx_vcpu_put(vcpu);
9472 vmx_vcpu_load(vcpu, cpu);
9473 vcpu->cpu = cpu;
9474 put_cpu();
9475}
9476
2f1fe811
JM
9477/*
9478 * Ensure that the current vmcs of the logical processor is the
9479 * vmcs01 of the vcpu before calling free_nested().
9480 */
9481static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9482{
9483 struct vcpu_vmx *vmx = to_vmx(vcpu);
9484 int r;
9485
9486 r = vcpu_load(vcpu);
9487 BUG_ON(r);
1279a6b1 9488 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2f1fe811
JM
9489 free_nested(vmx);
9490 vcpu_put(vcpu);
9491}
9492
6aa8b732
AK
9493static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9494{
fb3f0f51
RR
9495 struct vcpu_vmx *vmx = to_vmx(vcpu);
9496
843e4330 9497 if (enable_pml)
a3eaa864 9498 vmx_destroy_pml_buffer(vmx);
991e7a0e 9499 free_vpid(vmx->vpid);
4fa7734c 9500 leave_guest_mode(vcpu);
2f1fe811 9501 vmx_free_vcpu_nested(vcpu);
4fa7734c 9502 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9503 kfree(vmx->guest_msrs);
9504 kvm_vcpu_uninit(vcpu);
a4770347 9505 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9506}
9507
fb3f0f51 9508static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9509{
fb3f0f51 9510 int err;
c16f862d 9511 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 9512 int cpu;
6aa8b732 9513
a2fa3e9f 9514 if (!vmx)
fb3f0f51
RR
9515 return ERR_PTR(-ENOMEM);
9516
991e7a0e 9517 vmx->vpid = allocate_vpid();
2384d2b3 9518
fb3f0f51
RR
9519 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9520 if (err)
9521 goto free_vcpu;
965b58a5 9522
4e59516a
PF
9523 err = -ENOMEM;
9524
9525 /*
9526 * If PML is turned on, failure on enabling PML just results in failure
9527 * of creating the vcpu, therefore we can simplify PML logic (by
9528 * avoiding dealing with cases, such as enabling PML partially on vcpus
9529 * for the guest, etc.
9530 */
9531 if (enable_pml) {
9532 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9533 if (!vmx->pml_pg)
9534 goto uninit_vcpu;
9535 }
9536
a2fa3e9f 9537 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9538 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9539 > PAGE_SIZE);
0123be42 9540
4e59516a
PF
9541 if (!vmx->guest_msrs)
9542 goto free_pml;
965b58a5 9543
d462b819
NHE
9544 vmx->loaded_vmcs = &vmx->vmcs01;
9545 vmx->loaded_vmcs->vmcs = alloc_vmcs();
355f4fb1 9546 vmx->loaded_vmcs->shadow_vmcs = NULL;
d462b819 9547 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 9548 goto free_msrs;
d462b819 9549 loaded_vmcs_init(vmx->loaded_vmcs);
a2fa3e9f 9550
15ad7146
AK
9551 cpu = get_cpu();
9552 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9553 vmx->vcpu.cpu = cpu;
8b9cf98c 9554 err = vmx_vcpu_setup(vmx);
fb3f0f51 9555 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9556 put_cpu();
fb3f0f51
RR
9557 if (err)
9558 goto free_vmcs;
35754c98 9559 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9560 err = alloc_apic_access_page(kvm);
9561 if (err)
5e4a0b3c 9562 goto free_vmcs;
a63cb560 9563 }
fb3f0f51 9564
b927a3ce
SY
9565 if (enable_ept) {
9566 if (!kvm->arch.ept_identity_map_addr)
9567 kvm->arch.ept_identity_map_addr =
9568 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
9569 err = init_rmode_identity_map(kvm);
9570 if (err)
93ea5388 9571 goto free_vmcs;
b927a3ce 9572 }
b7ebfb05 9573
5c614b35 9574 if (nested) {
b9c237bb 9575 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9576 vmx->nested.vpid02 = allocate_vpid();
9577 }
b9c237bb 9578
705699a1 9579 vmx->nested.posted_intr_nv = -1;
a9d30f33 9580 vmx->nested.current_vmptr = -1ull;
a9d30f33 9581
37e4c997
HZ
9582 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9583
fb3f0f51
RR
9584 return &vmx->vcpu;
9585
9586free_vmcs:
5c614b35 9587 free_vpid(vmx->nested.vpid02);
5f3fbc34 9588 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9589free_msrs:
fb3f0f51 9590 kfree(vmx->guest_msrs);
4e59516a
PF
9591free_pml:
9592 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9593uninit_vcpu:
9594 kvm_vcpu_uninit(&vmx->vcpu);
9595free_vcpu:
991e7a0e 9596 free_vpid(vmx->vpid);
a4770347 9597 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9598 return ERR_PTR(err);
6aa8b732
AK
9599}
9600
002c7f7c
YS
9601static void __init vmx_check_processor_compat(void *rtn)
9602{
9603 struct vmcs_config vmcs_conf;
9604
9605 *(int *)rtn = 0;
9606 if (setup_vmcs_config(&vmcs_conf) < 0)
9607 *(int *)rtn = -EIO;
9608 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9609 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9610 smp_processor_id());
9611 *(int *)rtn = -EIO;
9612 }
9613}
9614
67253af5
SY
9615static int get_ept_level(void)
9616{
bb97a016 9617 return 4;
67253af5
SY
9618}
9619
4b12f0de 9620static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9621{
b18d5431
XG
9622 u8 cache;
9623 u64 ipat = 0;
4b12f0de 9624
522c68c4 9625 /* For VT-d and EPT combination
606decd6 9626 * 1. MMIO: always map as UC
522c68c4
SY
9627 * 2. EPT with VT-d:
9628 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9629 * result, try to trust guest.
522c68c4
SY
9630 * b. VT-d with snooping control feature: snooping control feature of
9631 * VT-d engine can guarantee the cache correctness. Just set it
9632 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9633 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9634 * consistent with host MTRR
9635 */
606decd6
PB
9636 if (is_mmio) {
9637 cache = MTRR_TYPE_UNCACHABLE;
9638 goto exit;
9639 }
9640
9641 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9642 ipat = VMX_EPT_IPAT_BIT;
9643 cache = MTRR_TYPE_WRBACK;
9644 goto exit;
9645 }
9646
9647 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9648 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9649 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9650 cache = MTRR_TYPE_WRBACK;
9651 else
9652 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9653 goto exit;
9654 }
9655
ff53604b 9656 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9657
9658exit:
9659 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9660}
9661
17cc3935 9662static int vmx_get_lpage_level(void)
344f414f 9663{
878403b7
SY
9664 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9665 return PT_DIRECTORY_LEVEL;
9666 else
9667 /* For shadow and EPT supported 1GB page */
9668 return PT_PDPE_LEVEL;
344f414f
JR
9669}
9670
feda805f
XG
9671static void vmcs_set_secondary_exec_control(u32 new_ctl)
9672{
9673 /*
9674 * These bits in the secondary execution controls field
9675 * are dynamic, the others are mostly based on the hypervisor
9676 * architecture and the guest's CPUID. Do not touch the
9677 * dynamic bits.
9678 */
9679 u32 mask =
9680 SECONDARY_EXEC_SHADOW_VMCS |
9681 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9682 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9683
9684 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9685
9686 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9687 (new_ctl & ~mask) | (cur_ctl & mask));
9688}
9689
8322ebbb
DM
9690/*
9691 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9692 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9693 */
9694static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9695{
9696 struct vcpu_vmx *vmx = to_vmx(vcpu);
9697 struct kvm_cpuid_entry2 *entry;
9698
9699 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9700 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9701
9702#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9703 if (entry && (entry->_reg & (_cpuid_mask))) \
9704 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9705} while (0)
9706
9707 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9708 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9709 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9710 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9711 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9712 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9713 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9714 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9715 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9716 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9717 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9718 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9719 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9720 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9721 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9722
9723 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9724 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9725 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9726 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9727 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9728 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9729 cr4_fixed1_update(bit(11), ecx, bit(2));
9730
9731#undef cr4_fixed1_update
9732}
9733
0e851880
SY
9734static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9735{
4e47c7a6 9736 struct vcpu_vmx *vmx = to_vmx(vcpu);
90a2db6d 9737
80154d77
PB
9738 if (cpu_has_secondary_exec_ctrls()) {
9739 vmx_compute_secondary_exec_control(vmx);
9740 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
ad756a16 9741 }
8b3e34e4 9742
37e4c997
HZ
9743 if (nested_vmx_allowed(vcpu))
9744 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9745 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9746 else
9747 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9748 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
9749
9750 if (nested_vmx_allowed(vcpu))
9751 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
9752}
9753
d4330ef2
JR
9754static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9755{
7b8050f5
NHE
9756 if (func == 1 && nested)
9757 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9758}
9759
25d92081
YZ
9760static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9761 struct x86_exception *fault)
9762{
533558bc 9763 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
c5f983f6 9764 struct vcpu_vmx *vmx = to_vmx(vcpu);
533558bc 9765 u32 exit_reason;
c5f983f6 9766 unsigned long exit_qualification = vcpu->arch.exit_qualification;
25d92081 9767
c5f983f6
BD
9768 if (vmx->nested.pml_full) {
9769 exit_reason = EXIT_REASON_PML_FULL;
9770 vmx->nested.pml_full = false;
9771 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9772 } else if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9773 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9774 else
533558bc 9775 exit_reason = EXIT_REASON_EPT_VIOLATION;
c5f983f6
BD
9776
9777 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
25d92081
YZ
9778 vmcs12->guest_physical_address = fault->address;
9779}
9780
995f00a6
PF
9781static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9782{
bb97a016 9783 return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
995f00a6
PF
9784}
9785
155a97a3
NHE
9786/* Callbacks for nested_ept_init_mmu_context: */
9787
9788static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9789{
9790 /* return the page table to be shadowed - in our case, EPT12 */
9791 return get_vmcs12(vcpu)->ept_pointer;
9792}
9793
ae1e2d10 9794static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9795{
ad896af0 9796 WARN_ON(mmu_is_nested(vcpu));
a057e0e2 9797 if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
ae1e2d10
PB
9798 return 1;
9799
9800 kvm_mmu_unload(vcpu);
ad896af0 9801 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb 9802 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
ae1e2d10 9803 VMX_EPT_EXECUTE_ONLY_BIT,
a057e0e2 9804 nested_ept_ad_enabled(vcpu));
155a97a3
NHE
9805 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9806 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9807 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9808
9809 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
ae1e2d10 9810 return 0;
155a97a3
NHE
9811}
9812
9813static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9814{
9815 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9816}
9817
19d5f10b
EK
9818static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9819 u16 error_code)
9820{
9821 bool inequality, bit;
9822
9823 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9824 inequality =
9825 (error_code & vmcs12->page_fault_error_code_mask) !=
9826 vmcs12->page_fault_error_code_match;
9827 return inequality ^ bit;
9828}
9829
feaf0c7d
GN
9830static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9831 struct x86_exception *fault)
9832{
9833 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9834
9835 WARN_ON(!is_guest_mode(vcpu));
9836
7313c698 9837 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code)) {
b96fb439
PB
9838 vmcs12->vm_exit_intr_error_code = fault->error_code;
9839 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9840 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9841 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9842 fault->address);
7313c698 9843 } else {
feaf0c7d 9844 kvm_inject_page_fault(vcpu, fault);
7313c698 9845 }
feaf0c7d
GN
9846}
9847
6beb7bd5
JM
9848static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9849 struct vmcs12 *vmcs12);
9850
9851static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
9852 struct vmcs12 *vmcs12)
9853{
9854 struct vcpu_vmx *vmx = to_vmx(vcpu);
5e2f30b7 9855 struct page *page;
6beb7bd5 9856 u64 hpa;
a2bcba50
WL
9857
9858 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
9859 /*
9860 * Translate L1 physical address to host physical
9861 * address for vmcs02. Keep the page pinned, so this
9862 * physical address remains valid. We keep a reference
9863 * to it so we can release it later.
9864 */
5e2f30b7 9865 if (vmx->nested.apic_access_page) { /* shouldn't happen */
53a70daf 9866 kvm_release_page_dirty(vmx->nested.apic_access_page);
5e2f30b7
DH
9867 vmx->nested.apic_access_page = NULL;
9868 }
9869 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
9870 /*
9871 * If translation failed, no matter: This feature asks
9872 * to exit when accessing the given address, and if it
9873 * can never be accessed, this feature won't do
9874 * anything anyway.
9875 */
5e2f30b7
DH
9876 if (!is_error_page(page)) {
9877 vmx->nested.apic_access_page = page;
6beb7bd5
JM
9878 hpa = page_to_phys(vmx->nested.apic_access_page);
9879 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9880 } else {
9881 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9882 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9883 }
9884 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9885 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9886 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9887 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9888 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 9889 }
a7c0b07d
WL
9890
9891 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5e2f30b7 9892 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
53a70daf 9893 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
5e2f30b7
DH
9894 vmx->nested.virtual_apic_page = NULL;
9895 }
9896 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
a7c0b07d
WL
9897
9898 /*
6beb7bd5
JM
9899 * If translation failed, VM entry will fail because
9900 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9901 * Failing the vm entry is _not_ what the processor
9902 * does but it's basically the only possibility we
9903 * have. We could still enter the guest if CR8 load
9904 * exits are enabled, CR8 store exits are enabled, and
9905 * virtualize APIC access is disabled; in this case
9906 * the processor would never use the TPR shadow and we
9907 * could simply clear the bit from the execution
9908 * control. But such a configuration is useless, so
9909 * let's keep the code simple.
a7c0b07d 9910 */
5e2f30b7
DH
9911 if (!is_error_page(page)) {
9912 vmx->nested.virtual_apic_page = page;
6beb7bd5
JM
9913 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9914 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9915 }
a7c0b07d
WL
9916 }
9917
705699a1 9918 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
9919 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9920 kunmap(vmx->nested.pi_desc_page);
53a70daf 9921 kvm_release_page_dirty(vmx->nested.pi_desc_page);
5e2f30b7 9922 vmx->nested.pi_desc_page = NULL;
705699a1 9923 }
5e2f30b7
DH
9924 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
9925 if (is_error_page(page))
6beb7bd5 9926 return;
5e2f30b7
DH
9927 vmx->nested.pi_desc_page = page;
9928 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
705699a1
WV
9929 vmx->nested.pi_desc =
9930 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9931 (unsigned long)(vmcs12->posted_intr_desc_addr &
9932 (PAGE_SIZE - 1)));
6beb7bd5
JM
9933 vmcs_write64(POSTED_INTR_DESC_ADDR,
9934 page_to_phys(vmx->nested.pi_desc_page) +
9935 (unsigned long)(vmcs12->posted_intr_desc_addr &
9936 (PAGE_SIZE - 1)));
705699a1 9937 }
6beb7bd5
JM
9938 if (cpu_has_vmx_msr_bitmap() &&
9939 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9940 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9941 ;
9942 else
9943 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9944 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
9945}
9946
f4124500
JK
9947static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9948{
9949 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9950 struct vcpu_vmx *vmx = to_vmx(vcpu);
9951
9952 if (vcpu->arch.virtual_tsc_khz == 0)
9953 return;
9954
9955 /* Make sure short timeouts reliably trigger an immediate vmexit.
9956 * hrtimer_start does not guarantee this. */
9957 if (preemption_timeout <= 1) {
9958 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9959 return;
9960 }
9961
9962 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9963 preemption_timeout *= 1000000;
9964 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9965 hrtimer_start(&vmx->nested.preemption_timer,
9966 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9967}
9968
56a20510
JM
9969static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9970 struct vmcs12 *vmcs12)
9971{
9972 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9973 return 0;
9974
9975 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9976 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9977 return -EINVAL;
9978
9979 return 0;
9980}
9981
3af18d9c
WV
9982static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9983 struct vmcs12 *vmcs12)
9984{
3af18d9c
WV
9985 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9986 return 0;
9987
5fa99cbe 9988 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
3af18d9c
WV
9989 return -EINVAL;
9990
9991 return 0;
9992}
9993
9994/*
9995 * Merge L0's and L1's MSR bitmap, return false to indicate that
9996 * we do not use the hardware.
9997 */
9998static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9999 struct vmcs12 *vmcs12)
10000{
82f0dd4b 10001 int msr;
f2b93280 10002 struct page *page;
d048c098
RK
10003 unsigned long *msr_bitmap_l1;
10004 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
f2b93280 10005
d048c098 10006 /* This shortcut is ok because we support only x2APIC MSRs so far. */
f2b93280
WV
10007 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
10008 return false;
10009
5e2f30b7
DH
10010 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10011 if (is_error_page(page))
f2b93280 10012 return false;
d048c098 10013 msr_bitmap_l1 = (unsigned long *)kmap(page);
f2b93280 10014
d048c098
RK
10015 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10016
f2b93280 10017 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
10018 if (nested_cpu_has_apic_reg_virt(vmcs12))
10019 for (msr = 0x800; msr <= 0x8ff; msr++)
10020 nested_vmx_disable_intercept_for_msr(
d048c098 10021 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 10022 msr, MSR_TYPE_R);
d048c098
RK
10023
10024 nested_vmx_disable_intercept_for_msr(
10025 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
10026 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10027 MSR_TYPE_R | MSR_TYPE_W);
d048c098 10028
608406e2 10029 if (nested_cpu_has_vid(vmcs12)) {
608406e2 10030 nested_vmx_disable_intercept_for_msr(
d048c098 10031 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10032 APIC_BASE_MSR + (APIC_EOI >> 4),
10033 MSR_TYPE_W);
10034 nested_vmx_disable_intercept_for_msr(
d048c098 10035 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10036 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10037 MSR_TYPE_W);
10038 }
82f0dd4b 10039 }
f2b93280 10040 kunmap(page);
53a70daf 10041 kvm_release_page_clean(page);
f2b93280
WV
10042
10043 return true;
10044}
10045
10046static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10047 struct vmcs12 *vmcs12)
10048{
82f0dd4b 10049 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 10050 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
10051 !nested_cpu_has_vid(vmcs12) &&
10052 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
10053 return 0;
10054
10055 /*
10056 * If virtualize x2apic mode is enabled,
10057 * virtualize apic access must be disabled.
10058 */
82f0dd4b
WV
10059 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10060 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
10061 return -EINVAL;
10062
608406e2
WV
10063 /*
10064 * If virtual interrupt delivery is enabled,
10065 * we must exit on external interrupts.
10066 */
10067 if (nested_cpu_has_vid(vmcs12) &&
10068 !nested_exit_on_intr(vcpu))
10069 return -EINVAL;
10070
705699a1
WV
10071 /*
10072 * bits 15:8 should be zero in posted_intr_nv,
10073 * the descriptor address has been already checked
10074 * in nested_get_vmcs12_pages.
10075 */
10076 if (nested_cpu_has_posted_intr(vmcs12) &&
10077 (!nested_cpu_has_vid(vmcs12) ||
10078 !nested_exit_intr_ack_set(vcpu) ||
10079 vmcs12->posted_intr_nv & 0xff00))
10080 return -EINVAL;
10081
f2b93280
WV
10082 /* tpr shadow is needed by all apicv features. */
10083 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10084 return -EINVAL;
10085
10086 return 0;
3af18d9c
WV
10087}
10088
e9ac033e
EK
10089static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10090 unsigned long count_field,
92d71bc6 10091 unsigned long addr_field)
ff651cb6 10092{
92d71bc6 10093 int maxphyaddr;
e9ac033e
EK
10094 u64 count, addr;
10095
10096 if (vmcs12_read_any(vcpu, count_field, &count) ||
10097 vmcs12_read_any(vcpu, addr_field, &addr)) {
10098 WARN_ON(1);
10099 return -EINVAL;
10100 }
10101 if (count == 0)
10102 return 0;
92d71bc6 10103 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
10104 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10105 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 10106 pr_debug_ratelimited(
e9ac033e
EK
10107 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10108 addr_field, maxphyaddr, count, addr);
10109 return -EINVAL;
10110 }
10111 return 0;
10112}
10113
10114static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10115 struct vmcs12 *vmcs12)
10116{
e9ac033e
EK
10117 if (vmcs12->vm_exit_msr_load_count == 0 &&
10118 vmcs12->vm_exit_msr_store_count == 0 &&
10119 vmcs12->vm_entry_msr_load_count == 0)
10120 return 0; /* Fast path */
e9ac033e 10121 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 10122 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 10123 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 10124 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 10125 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 10126 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
10127 return -EINVAL;
10128 return 0;
10129}
10130
c5f983f6
BD
10131static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10132 struct vmcs12 *vmcs12)
10133{
10134 u64 address = vmcs12->pml_address;
10135 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10136
10137 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10138 if (!nested_cpu_has_ept(vmcs12) ||
10139 !IS_ALIGNED(address, 4096) ||
10140 address >> maxphyaddr)
10141 return -EINVAL;
10142 }
10143
10144 return 0;
10145}
10146
e9ac033e
EK
10147static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10148 struct vmx_msr_entry *e)
10149{
10150 /* x2APIC MSR accesses are not allowed */
8a9781f7 10151 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
10152 return -EINVAL;
10153 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10154 e->index == MSR_IA32_UCODE_REV)
10155 return -EINVAL;
10156 if (e->reserved != 0)
ff651cb6
WV
10157 return -EINVAL;
10158 return 0;
10159}
10160
e9ac033e
EK
10161static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10162 struct vmx_msr_entry *e)
ff651cb6
WV
10163{
10164 if (e->index == MSR_FS_BASE ||
10165 e->index == MSR_GS_BASE ||
e9ac033e
EK
10166 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10167 nested_vmx_msr_check_common(vcpu, e))
10168 return -EINVAL;
10169 return 0;
10170}
10171
10172static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10173 struct vmx_msr_entry *e)
10174{
10175 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10176 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
10177 return -EINVAL;
10178 return 0;
10179}
10180
10181/*
10182 * Load guest's/host's msr at nested entry/exit.
10183 * return 0 for success, entry index for failure.
10184 */
10185static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10186{
10187 u32 i;
10188 struct vmx_msr_entry e;
10189 struct msr_data msr;
10190
10191 msr.host_initiated = false;
10192 for (i = 0; i < count; i++) {
54bf36aa
PB
10193 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10194 &e, sizeof(e))) {
bbe41b95 10195 pr_debug_ratelimited(
e9ac033e
EK
10196 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10197 __func__, i, gpa + i * sizeof(e));
ff651cb6 10198 goto fail;
e9ac033e
EK
10199 }
10200 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 10201 pr_debug_ratelimited(
e9ac033e
EK
10202 "%s check failed (%u, 0x%x, 0x%x)\n",
10203 __func__, i, e.index, e.reserved);
10204 goto fail;
10205 }
ff651cb6
WV
10206 msr.index = e.index;
10207 msr.data = e.value;
e9ac033e 10208 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 10209 pr_debug_ratelimited(
e9ac033e
EK
10210 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10211 __func__, i, e.index, e.value);
ff651cb6 10212 goto fail;
e9ac033e 10213 }
ff651cb6
WV
10214 }
10215 return 0;
10216fail:
10217 return i + 1;
10218}
10219
10220static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10221{
10222 u32 i;
10223 struct vmx_msr_entry e;
10224
10225 for (i = 0; i < count; i++) {
609e36d3 10226 struct msr_data msr_info;
54bf36aa
PB
10227 if (kvm_vcpu_read_guest(vcpu,
10228 gpa + i * sizeof(e),
10229 &e, 2 * sizeof(u32))) {
bbe41b95 10230 pr_debug_ratelimited(
e9ac033e
EK
10231 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10232 __func__, i, gpa + i * sizeof(e));
ff651cb6 10233 return -EINVAL;
e9ac033e
EK
10234 }
10235 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 10236 pr_debug_ratelimited(
e9ac033e
EK
10237 "%s check failed (%u, 0x%x, 0x%x)\n",
10238 __func__, i, e.index, e.reserved);
ff651cb6 10239 return -EINVAL;
e9ac033e 10240 }
609e36d3
PB
10241 msr_info.host_initiated = false;
10242 msr_info.index = e.index;
10243 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 10244 pr_debug_ratelimited(
e9ac033e
EK
10245 "%s cannot read MSR (%u, 0x%x)\n",
10246 __func__, i, e.index);
10247 return -EINVAL;
10248 }
54bf36aa
PB
10249 if (kvm_vcpu_write_guest(vcpu,
10250 gpa + i * sizeof(e) +
10251 offsetof(struct vmx_msr_entry, value),
10252 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 10253 pr_debug_ratelimited(
e9ac033e 10254 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 10255 __func__, i, e.index, msr_info.data);
e9ac033e
EK
10256 return -EINVAL;
10257 }
ff651cb6
WV
10258 }
10259 return 0;
10260}
10261
1dc35dac
LP
10262static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10263{
10264 unsigned long invalid_mask;
10265
10266 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10267 return (val & invalid_mask) == 0;
10268}
10269
9ed38ffa
LP
10270/*
10271 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10272 * emulating VM entry into a guest with EPT enabled.
10273 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10274 * is assigned to entry_failure_code on failure.
10275 */
10276static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 10277 u32 *entry_failure_code)
9ed38ffa 10278{
9ed38ffa 10279 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 10280 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
10281 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10282 return 1;
10283 }
10284
10285 /*
10286 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10287 * must not be dereferenced.
10288 */
10289 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10290 !nested_ept) {
10291 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10292 *entry_failure_code = ENTRY_FAIL_PDPTE;
10293 return 1;
10294 }
10295 }
10296
10297 vcpu->arch.cr3 = cr3;
10298 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10299 }
10300
10301 kvm_mmu_reset_context(vcpu);
10302 return 0;
10303}
10304
fe3ef05c
NHE
10305/*
10306 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10307 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 10308 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
10309 * guest in a way that will both be appropriate to L1's requests, and our
10310 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10311 * function also has additional necessary side-effects, like setting various
10312 * vcpu->arch fields.
ee146c1c
LP
10313 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10314 * is assigned to entry_failure_code on failure.
fe3ef05c 10315 */
ee146c1c 10316static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
ca0bde28 10317 bool from_vmentry, u32 *entry_failure_code)
fe3ef05c
NHE
10318{
10319 struct vcpu_vmx *vmx = to_vmx(vcpu);
03efce6f 10320 u32 exec_control, vmcs12_exec_ctrl;
fe3ef05c
NHE
10321
10322 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10323 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10324 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10325 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10326 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10327 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10328 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10329 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10330 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10331 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10332 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10333 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10334 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10335 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10336 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10337 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10338 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10339 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10340 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10341 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10342 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10343 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10344 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10345 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10346 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10347 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10348 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10349 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10350 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10351 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10352 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10353 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10354 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10355 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10356 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10357 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10358
cf8b84f4
JM
10359 if (from_vmentry &&
10360 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
10361 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10362 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10363 } else {
10364 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10365 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10366 }
cf8b84f4
JM
10367 if (from_vmentry) {
10368 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10369 vmcs12->vm_entry_intr_info_field);
10370 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10371 vmcs12->vm_entry_exception_error_code);
10372 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10373 vmcs12->vm_entry_instruction_len);
10374 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10375 vmcs12->guest_interruptibility_info);
2d6144e3
WL
10376 vmx->loaded_vmcs->nmi_known_unmasked =
10377 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
cf8b84f4
JM
10378 } else {
10379 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10380 }
fe3ef05c 10381 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 10382 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
10383 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10384 vmcs12->guest_pending_dbg_exceptions);
10385 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10386 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10387
81dc01f7
WL
10388 if (nested_cpu_has_xsaves(vmcs12))
10389 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
10390 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10391
f4124500 10392 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
10393
10394 /* Preemption timer setting is only taken from vmcs01. */
705699a1 10395 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
10396 exec_control |= vmcs_config.pin_based_exec_ctrl;
10397 if (vmx->hv_deadline_tsc == -1)
10398 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 10399
9314006d 10400 /* Posted interrupts setting is only taken from vmcs12. */
705699a1 10401 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
10402 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10403 vmx->nested.pi_pending = false;
06a5524f 10404 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
6beb7bd5 10405 } else {
705699a1 10406 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 10407 }
705699a1 10408
f4124500 10409 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 10410
f4124500
JK
10411 vmx->nested.preemption_timer_expired = false;
10412 if (nested_cpu_has_preemption_timer(vmcs12))
10413 vmx_start_preemption_timer(vcpu);
0238ea91 10414
fe3ef05c
NHE
10415 /*
10416 * Whether page-faults are trapped is determined by a combination of
10417 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10418 * If enable_ept, L0 doesn't care about page faults and we should
10419 * set all of these to L1's desires. However, if !enable_ept, L0 does
10420 * care about (at least some) page faults, and because it is not easy
10421 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10422 * to exit on each and every L2 page fault. This is done by setting
10423 * MASK=MATCH=0 and (see below) EB.PF=1.
10424 * Note that below we don't need special code to set EB.PF beyond the
10425 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10426 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10427 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
fe3ef05c
NHE
10428 */
10429 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10430 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10431 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10432 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10433
10434 if (cpu_has_secondary_exec_ctrls()) {
80154d77 10435 exec_control = vmx->secondary_exec_control;
e2821620 10436
fe3ef05c 10437 /* Take the following fields only from vmcs12 */
696dfd95 10438 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
90a2db6d 10439 SECONDARY_EXEC_ENABLE_INVPCID |
b3a2a907 10440 SECONDARY_EXEC_RDTSCP |
3db13480 10441 SECONDARY_EXEC_XSAVES |
696dfd95 10442 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
27c42a1b
BD
10443 SECONDARY_EXEC_APIC_REGISTER_VIRT |
10444 SECONDARY_EXEC_ENABLE_VMFUNC);
fe3ef05c 10445 if (nested_cpu_has(vmcs12,
03efce6f
BD
10446 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10447 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10448 ~SECONDARY_EXEC_ENABLE_PML;
10449 exec_control |= vmcs12_exec_ctrl;
10450 }
fe3ef05c 10451
27c42a1b
BD
10452 /* All VMFUNCs are currently emulated through L0 vmexits. */
10453 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10454 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10455
608406e2
WV
10456 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10457 vmcs_write64(EOI_EXIT_BITMAP0,
10458 vmcs12->eoi_exit_bitmap0);
10459 vmcs_write64(EOI_EXIT_BITMAP1,
10460 vmcs12->eoi_exit_bitmap1);
10461 vmcs_write64(EOI_EXIT_BITMAP2,
10462 vmcs12->eoi_exit_bitmap2);
10463 vmcs_write64(EOI_EXIT_BITMAP3,
10464 vmcs12->eoi_exit_bitmap3);
10465 vmcs_write16(GUEST_INTR_STATUS,
10466 vmcs12->guest_intr_status);
10467 }
10468
6beb7bd5
JM
10469 /*
10470 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10471 * nested_get_vmcs12_pages will either fix it up or
10472 * remove the VM execution control.
10473 */
10474 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10475 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10476
fe3ef05c
NHE
10477 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10478 }
10479
10480
10481 /*
10482 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10483 * Some constant fields are set here by vmx_set_constant_host_state().
10484 * Other fields are different per CPU, and will be set later when
10485 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10486 */
a547c6db 10487 vmx_set_constant_host_state(vmx);
fe3ef05c 10488
83bafef1
JM
10489 /*
10490 * Set the MSR load/store lists to match L0's settings.
10491 */
10492 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10493 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10494 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10495 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10496 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10497
fe3ef05c
NHE
10498 /*
10499 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10500 * entry, but only if the current (host) sp changed from the value
10501 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10502 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10503 * here we just force the write to happen on entry.
10504 */
10505 vmx->host_rsp = 0;
10506
10507 exec_control = vmx_exec_control(vmx); /* L0's desires */
10508 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10509 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10510 exec_control &= ~CPU_BASED_TPR_SHADOW;
10511 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 10512
6beb7bd5
JM
10513 /*
10514 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10515 * nested_get_vmcs12_pages can't fix it up, the illegal value
10516 * will result in a VM entry failure.
10517 */
a7c0b07d 10518 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 10519 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d
WL
10520 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10521 }
10522
fe3ef05c 10523 /*
3af18d9c 10524 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10525 * Rather, exit every time.
10526 */
fe3ef05c
NHE
10527 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10528 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10529
10530 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10531
10532 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10533 * bitwise-or of what L1 wants to trap for L2, and what we want to
10534 * trap. Note that CR0.TS also needs updating - we do this later.
10535 */
10536 update_exception_bitmap(vcpu);
10537 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10538 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10539
8049d651
NHE
10540 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10541 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10542 * bits are further modified by vmx_set_efer() below.
10543 */
f4124500 10544 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10545
10546 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10547 * emulated by vmx_set_efer(), below.
10548 */
2961e876 10549 vm_entry_controls_init(vmx,
8049d651
NHE
10550 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10551 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10552 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10553
cf8b84f4
JM
10554 if (from_vmentry &&
10555 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 10556 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 10557 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 10558 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10559 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 10560 }
fe3ef05c
NHE
10561
10562 set_cr4_guest_host_mask(vmx);
10563
cf8b84f4
JM
10564 if (from_vmentry &&
10565 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
36be0b9d
PB
10566 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10567
27fc51b2
NHE
10568 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10569 vmcs_write64(TSC_OFFSET,
ea26e4ec 10570 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
27fc51b2 10571 else
ea26e4ec 10572 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
c95ba92a
PF
10573 if (kvm_has_tsc_control)
10574 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
10575
10576 if (enable_vpid) {
10577 /*
5c614b35
WL
10578 * There is no direct mapping between vpid02 and vpid12, the
10579 * vpid02 is per-vCPU for L0 and reused while the value of
10580 * vpid12 is changed w/ one invvpid during nested vmentry.
10581 * The vpid12 is allocated by L1 for L2, so it will not
10582 * influence global bitmap(for vpid01 and vpid02 allocation)
10583 * even if spawn a lot of nested vCPUs.
fe3ef05c 10584 */
5c614b35
WL
10585 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10586 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10587 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10588 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10589 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10590 }
10591 } else {
10592 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10593 vmx_flush_tlb(vcpu);
10594 }
10595
fe3ef05c
NHE
10596 }
10597
1fb883bb
LP
10598 if (enable_pml) {
10599 /*
10600 * Conceptually we want to copy the PML address and index from
10601 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10602 * since we always flush the log on each vmexit, this happens
10603 * to be equivalent to simply resetting the fields in vmcs02.
10604 */
10605 ASSERT(vmx->pml_pg);
10606 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10607 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10608 }
10609
155a97a3 10610 if (nested_cpu_has_ept(vmcs12)) {
ae1e2d10
PB
10611 if (nested_ept_init_mmu_context(vcpu)) {
10612 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10613 return 1;
10614 }
fb6c8198
JM
10615 } else if (nested_cpu_has2(vmcs12,
10616 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10617 vmx_flush_tlb_ept_only(vcpu);
155a97a3
NHE
10618 }
10619
fe3ef05c 10620 /*
bd7e5b08
PB
10621 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10622 * bits which we consider mandatory enabled.
fe3ef05c
NHE
10623 * The CR0_READ_SHADOW is what L2 should have expected to read given
10624 * the specifications by L1; It's not enough to take
10625 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10626 * have more bits than L1 expected.
10627 */
10628 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10629 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10630
10631 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10632 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10633
cf8b84f4
JM
10634 if (from_vmentry &&
10635 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
10636 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10637 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10638 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10639 else
10640 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10641 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10642 vmx_set_efer(vcpu, vcpu->arch.efer);
10643
9ed38ffa 10644 /* Shadow page tables on either EPT or shadow page tables. */
7ad658b6 10645 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
9ed38ffa
LP
10646 entry_failure_code))
10647 return 1;
7ca29de2 10648
feaf0c7d
GN
10649 if (!enable_ept)
10650 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10651
3633cfc3
NHE
10652 /*
10653 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10654 */
10655 if (enable_ept) {
10656 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10657 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10658 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10659 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10660 }
10661
fe3ef05c
NHE
10662 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10663 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 10664 return 0;
fe3ef05c
NHE
10665}
10666
ca0bde28 10667static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 10668{
cd232ad0 10669 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 10670
6dfacadd 10671 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
10672 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10673 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 10674
56a20510
JM
10675 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10676 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10677
ca0bde28
JM
10678 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10679 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10680
ca0bde28
JM
10681 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10682 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 10683
ca0bde28
JM
10684 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10685 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 10686
c5f983f6
BD
10687 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10688 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10689
7c177938 10690 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
0115f9cb 10691 vmx->nested.nested_vmx_procbased_ctls_low,
b9c237bb 10692 vmx->nested.nested_vmx_procbased_ctls_high) ||
2e5b0bd9
JM
10693 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10694 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10695 vmx->nested.nested_vmx_secondary_ctls_low,
10696 vmx->nested.nested_vmx_secondary_ctls_high)) ||
7c177938 10697 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10698 vmx->nested.nested_vmx_pinbased_ctls_low,
10699 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10700 !vmx_control_verify(vmcs12->vm_exit_controls,
0115f9cb 10701 vmx->nested.nested_vmx_exit_ctls_low,
b9c237bb 10702 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10703 !vmx_control_verify(vmcs12->vm_entry_controls,
0115f9cb 10704 vmx->nested.nested_vmx_entry_ctls_low,
b9c237bb 10705 vmx->nested.nested_vmx_entry_ctls_high))
ca0bde28 10706 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10707
41ab9372
BD
10708 if (nested_cpu_has_vmfunc(vmcs12)) {
10709 if (vmcs12->vm_function_control &
10710 ~vmx->nested.nested_vmx_vmfunc_controls)
10711 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10712
10713 if (nested_cpu_has_eptp_switching(vmcs12)) {
10714 if (!nested_cpu_has_ept(vmcs12) ||
10715 !page_address_valid(vcpu, vmcs12->eptp_list_address))
10716 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10717 }
10718 }
27c42a1b 10719
c7c2c709
JM
10720 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10721 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10722
3899152c 10723 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 10724 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
10725 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10726 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10727
10728 return 0;
10729}
10730
10731static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10732 u32 *exit_qual)
10733{
10734 bool ia32e;
10735
10736 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 10737
3899152c 10738 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 10739 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 10740 return 1;
ca0bde28
JM
10741
10742 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10743 vmcs12->vmcs_link_pointer != -1ull) {
10744 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 10745 return 1;
7c177938
NHE
10746 }
10747
384bb783 10748 /*
cb0c8cda 10749 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10750 * are performed on the field for the IA32_EFER MSR:
10751 * - Bits reserved in the IA32_EFER MSR must be 0.
10752 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10753 * the IA-32e mode guest VM-exit control. It must also be identical
10754 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10755 * CR0.PG) is 1.
10756 */
ca0bde28
JM
10757 if (to_vmx(vcpu)->nested.nested_run_pending &&
10758 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
10759 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10760 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10761 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10762 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 10763 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 10764 return 1;
384bb783
JK
10765 }
10766
10767 /*
10768 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10769 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10770 * the values of the LMA and LME bits in the field must each be that of
10771 * the host address-space size VM-exit control.
10772 */
10773 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10774 ia32e = (vmcs12->vm_exit_controls &
10775 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10776 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10777 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 10778 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 10779 return 1;
ca0bde28
JM
10780 }
10781
10782 return 0;
10783}
10784
858e25c0
JM
10785static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10786{
10787 struct vcpu_vmx *vmx = to_vmx(vcpu);
10788 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10789 struct loaded_vmcs *vmcs02;
858e25c0
JM
10790 u32 msr_entry_idx;
10791 u32 exit_qual;
10792
10793 vmcs02 = nested_get_current_vmcs02(vmx);
10794 if (!vmcs02)
10795 return -ENOMEM;
10796
10797 enter_guest_mode(vcpu);
10798
10799 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10800 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10801
1279a6b1 10802 vmx_switch_vmcs(vcpu, vmcs02);
858e25c0
JM
10803 vmx_segment_cache_clear(vmx);
10804
10805 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10806 leave_guest_mode(vcpu);
1279a6b1 10807 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10808 nested_vmx_entry_failure(vcpu, vmcs12,
10809 EXIT_REASON_INVALID_STATE, exit_qual);
10810 return 1;
10811 }
10812
10813 nested_get_vmcs12_pages(vcpu, vmcs12);
10814
10815 msr_entry_idx = nested_vmx_load_msr(vcpu,
10816 vmcs12->vm_entry_msr_load_addr,
10817 vmcs12->vm_entry_msr_load_count);
10818 if (msr_entry_idx) {
10819 leave_guest_mode(vcpu);
1279a6b1 10820 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10821 nested_vmx_entry_failure(vcpu, vmcs12,
10822 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10823 return 1;
10824 }
10825
858e25c0
JM
10826 /*
10827 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10828 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10829 * returned as far as L1 is concerned. It will only return (and set
10830 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10831 */
10832 return 0;
10833}
10834
ca0bde28
JM
10835/*
10836 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10837 * for running an L2 nested guest.
10838 */
10839static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10840{
10841 struct vmcs12 *vmcs12;
10842 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3f1dfb6 10843 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
ca0bde28
JM
10844 u32 exit_qual;
10845 int ret;
10846
10847 if (!nested_vmx_check_permission(vcpu))
10848 return 1;
10849
10850 if (!nested_vmx_check_vmcs12(vcpu))
10851 goto out;
10852
10853 vmcs12 = get_vmcs12(vcpu);
10854
10855 if (enable_shadow_vmcs)
10856 copy_shadow_to_vmcs12(vmx);
10857
10858 /*
10859 * The nested entry process starts with enforcing various prerequisites
10860 * on vmcs12 as required by the Intel SDM, and act appropriately when
10861 * they fail: As the SDM explains, some conditions should cause the
10862 * instruction to fail, while others will cause the instruction to seem
10863 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10864 * To speed up the normal (success) code path, we should avoid checking
10865 * for misconfigurations which will anyway be caught by the processor
10866 * when using the merged vmcs02.
10867 */
b3f1dfb6
JM
10868 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10869 nested_vmx_failValid(vcpu,
10870 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10871 goto out;
10872 }
10873
ca0bde28
JM
10874 if (vmcs12->launch_state == launch) {
10875 nested_vmx_failValid(vcpu,
10876 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10877 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10878 goto out;
10879 }
10880
10881 ret = check_vmentry_prereqs(vcpu, vmcs12);
10882 if (ret) {
10883 nested_vmx_failValid(vcpu, ret);
10884 goto out;
10885 }
10886
10887 /*
10888 * After this point, the trap flag no longer triggers a singlestep trap
10889 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10890 * This is not 100% correct; for performance reasons, we delegate most
10891 * of the checks on host state to the processor. If those fail,
10892 * the singlestep trap is missed.
10893 */
10894 skip_emulated_instruction(vcpu);
10895
10896 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10897 if (ret) {
10898 nested_vmx_entry_failure(vcpu, vmcs12,
10899 EXIT_REASON_INVALID_STATE, exit_qual);
10900 return 1;
384bb783
JK
10901 }
10902
7c177938
NHE
10903 /*
10904 * We're finally done with prerequisite checking, and can start with
10905 * the nested entry.
10906 */
10907
858e25c0
JM
10908 ret = enter_vmx_non_root_mode(vcpu, true);
10909 if (ret)
10910 return ret;
ff651cb6 10911
6dfacadd 10912 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10913 return kvm_vcpu_halt(vcpu);
6dfacadd 10914
7af40ad3
JK
10915 vmx->nested.nested_run_pending = 1;
10916
cd232ad0 10917 return 1;
eb277562
KH
10918
10919out:
6affcbed 10920 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
10921}
10922
4704d0be
NHE
10923/*
10924 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10925 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10926 * This function returns the new value we should put in vmcs12.guest_cr0.
10927 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10928 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10929 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10930 * didn't trap the bit, because if L1 did, so would L0).
10931 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10932 * been modified by L2, and L1 knows it. So just leave the old value of
10933 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10934 * isn't relevant, because if L0 traps this bit it can set it to anything.
10935 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10936 * changed these bits, and therefore they need to be updated, but L0
10937 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10938 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10939 */
10940static inline unsigned long
10941vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10942{
10943 return
10944 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10945 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10946 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10947 vcpu->arch.cr0_guest_owned_bits));
10948}
10949
10950static inline unsigned long
10951vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10952{
10953 return
10954 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10955 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10956 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10957 vcpu->arch.cr4_guest_owned_bits));
10958}
10959
5f3d5799
JK
10960static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10961 struct vmcs12 *vmcs12)
10962{
10963 u32 idt_vectoring;
10964 unsigned int nr;
10965
851eb667 10966 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
10967 nr = vcpu->arch.exception.nr;
10968 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10969
10970 if (kvm_exception_is_soft(nr)) {
10971 vmcs12->vm_exit_instruction_len =
10972 vcpu->arch.event_exit_inst_len;
10973 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10974 } else
10975 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10976
10977 if (vcpu->arch.exception.has_error_code) {
10978 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10979 vmcs12->idt_vectoring_error_code =
10980 vcpu->arch.exception.error_code;
10981 }
10982
10983 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10984 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10985 vmcs12->idt_vectoring_info_field =
10986 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10987 } else if (vcpu->arch.interrupt.pending) {
10988 nr = vcpu->arch.interrupt.nr;
10989 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10990
10991 if (vcpu->arch.interrupt.soft) {
10992 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10993 vmcs12->vm_entry_instruction_len =
10994 vcpu->arch.event_exit_inst_len;
10995 } else
10996 idt_vectoring |= INTR_TYPE_EXT_INTR;
10997
10998 vmcs12->idt_vectoring_info_field = idt_vectoring;
10999 }
11000}
11001
b6b8a145
JK
11002static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11003{
11004 struct vcpu_vmx *vmx = to_vmx(vcpu);
11005
acc9ab60
WL
11006 if (vcpu->arch.exception.pending ||
11007 vcpu->arch.nmi_injected ||
11008 vcpu->arch.interrupt.pending)
11009 return -EBUSY;
11010
f4124500
JK
11011 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11012 vmx->nested.preemption_timer_expired) {
11013 if (vmx->nested.nested_run_pending)
11014 return -EBUSY;
11015 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11016 return 0;
11017 }
11018
b6b8a145 11019 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
acc9ab60 11020 if (vmx->nested.nested_run_pending)
b6b8a145
JK
11021 return -EBUSY;
11022 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11023 NMI_VECTOR | INTR_TYPE_NMI_INTR |
11024 INTR_INFO_VALID_MASK, 0);
11025 /*
11026 * The NMI-triggered VM exit counts as injection:
11027 * clear this one and block further NMIs.
11028 */
11029 vcpu->arch.nmi_pending = 0;
11030 vmx_set_nmi_mask(vcpu, true);
11031 return 0;
11032 }
11033
11034 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11035 nested_exit_on_intr(vcpu)) {
11036 if (vmx->nested.nested_run_pending)
11037 return -EBUSY;
11038 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 11039 return 0;
b6b8a145
JK
11040 }
11041
6342c50a
DH
11042 vmx_complete_nested_posted_interrupt(vcpu);
11043 return 0;
b6b8a145
JK
11044}
11045
f4124500
JK
11046static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11047{
11048 ktime_t remaining =
11049 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11050 u64 value;
11051
11052 if (ktime_to_ns(remaining) <= 0)
11053 return 0;
11054
11055 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11056 do_div(value, 1000000);
11057 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11058}
11059
4704d0be 11060/*
cf8b84f4
JM
11061 * Update the guest state fields of vmcs12 to reflect changes that
11062 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11063 * VM-entry controls is also updated, since this is really a guest
11064 * state bit.)
4704d0be 11065 */
cf8b84f4 11066static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 11067{
4704d0be
NHE
11068 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11069 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11070
4704d0be
NHE
11071 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11072 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11073 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11074
11075 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11076 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11077 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11078 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11079 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11080 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11081 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11082 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11083 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11084 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11085 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11086 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11087 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11088 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11089 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11090 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11091 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11092 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11093 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11094 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11095 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11096 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11097 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11098 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11099 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11100 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11101 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11102 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11103 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11104 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11105 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11106 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11107 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11108 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11109 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11110 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11111
4704d0be
NHE
11112 vmcs12->guest_interruptibility_info =
11113 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11114 vmcs12->guest_pending_dbg_exceptions =
11115 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
11116 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11117 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11118 else
11119 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 11120
f4124500
JK
11121 if (nested_cpu_has_preemption_timer(vmcs12)) {
11122 if (vmcs12->vm_exit_controls &
11123 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11124 vmcs12->vmx_preemption_timer_value =
11125 vmx_get_preemption_timer_value(vcpu);
11126 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11127 }
7854cbca 11128
3633cfc3
NHE
11129 /*
11130 * In some cases (usually, nested EPT), L2 is allowed to change its
11131 * own CR3 without exiting. If it has changed it, we must keep it.
11132 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11133 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11134 *
11135 * Additionally, restore L2's PDPTR to vmcs12.
11136 */
11137 if (enable_ept) {
f3531054 11138 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
11139 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11140 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11141 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11142 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11143 }
11144
d281e13b 11145 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
119a9c01 11146
608406e2
WV
11147 if (nested_cpu_has_vid(vmcs12))
11148 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11149
c18911a2
JK
11150 vmcs12->vm_entry_controls =
11151 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 11152 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 11153
2996fca0
JK
11154 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11155 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11156 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11157 }
11158
4704d0be
NHE
11159 /* TODO: These cannot have changed unless we have MSR bitmaps and
11160 * the relevant bit asks not to trap the change */
b8c07d55 11161 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 11162 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
11163 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11164 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
11165 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11166 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11167 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 11168 if (kvm_mpx_supported())
36be0b9d 11169 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
cf8b84f4
JM
11170}
11171
11172/*
11173 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11174 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11175 * and this function updates it to reflect the changes to the guest state while
11176 * L2 was running (and perhaps made some exits which were handled directly by L0
11177 * without going back to L1), and to reflect the exit reason.
11178 * Note that we do not have to copy here all VMCS fields, just those that
11179 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11180 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11181 * which already writes to vmcs12 directly.
11182 */
11183static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11184 u32 exit_reason, u32 exit_intr_info,
11185 unsigned long exit_qualification)
11186{
11187 /* update guest state fields: */
11188 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
11189
11190 /* update exit information fields: */
11191
533558bc
JK
11192 vmcs12->vm_exit_reason = exit_reason;
11193 vmcs12->exit_qualification = exit_qualification;
533558bc 11194 vmcs12->vm_exit_intr_info = exit_intr_info;
7313c698 11195
5f3d5799 11196 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
11197 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11198 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11199
5f3d5799 11200 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7cdc2d62
JM
11201 vmcs12->launch_state = 1;
11202
5f3d5799
JK
11203 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11204 * instead of reading the real value. */
4704d0be 11205 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
11206
11207 /*
11208 * Transfer the event that L0 or L1 may wanted to inject into
11209 * L2 to IDT_VECTORING_INFO_FIELD.
11210 */
11211 vmcs12_save_pending_event(vcpu, vmcs12);
11212 }
11213
11214 /*
11215 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11216 * preserved above and would only end up incorrectly in L1.
11217 */
11218 vcpu->arch.nmi_injected = false;
11219 kvm_clear_exception_queue(vcpu);
11220 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
11221}
11222
11223/*
11224 * A part of what we need to when the nested L2 guest exits and we want to
11225 * run its L1 parent, is to reset L1's guest state to the host state specified
11226 * in vmcs12.
11227 * This function is to be called not only on normal nested exit, but also on
11228 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11229 * Failures During or After Loading Guest State").
11230 * This function should be called when the active VMCS is L1's (vmcs01).
11231 */
733568f9
JK
11232static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11233 struct vmcs12 *vmcs12)
4704d0be 11234{
21feb4eb 11235 struct kvm_segment seg;
ca0bde28 11236 u32 entry_failure_code;
21feb4eb 11237
4704d0be
NHE
11238 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11239 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 11240 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
11241 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11242 else
11243 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11244 vmx_set_efer(vcpu, vcpu->arch.efer);
11245
11246 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11247 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 11248 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
11249 /*
11250 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
11251 * actually changed, because vmx_set_cr0 refers to efer set above.
11252 *
11253 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11254 * (KVM doesn't change it);
4704d0be 11255 */
bd7e5b08 11256 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 11257 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 11258
bd7e5b08 11259 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be
NHE
11260 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
11261 kvm_set_cr4(vcpu, vmcs12->host_cr4);
11262
29bf08f1 11263 nested_ept_uninit_mmu_context(vcpu);
155a97a3 11264
1dc35dac
LP
11265 /*
11266 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11267 * couldn't have changed.
11268 */
11269 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11270 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4704d0be 11271
feaf0c7d
GN
11272 if (!enable_ept)
11273 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11274
4704d0be
NHE
11275 if (enable_vpid) {
11276 /*
11277 * Trivially support vpid by letting L2s share their parent
11278 * L1's vpid. TODO: move to a more elaborate solution, giving
11279 * each L2 its own vpid and exposing the vpid feature to L1.
11280 */
11281 vmx_flush_tlb(vcpu);
11282 }
06a5524f
WV
11283 /* Restore posted intr vector. */
11284 if (nested_cpu_has_posted_intr(vmcs12))
11285 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4704d0be
NHE
11286
11287 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11288 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11289 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11290 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11291 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 11292
36be0b9d
PB
11293 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11294 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11295 vmcs_write64(GUEST_BNDCFGS, 0);
11296
44811c02 11297 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 11298 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
11299 vcpu->arch.pat = vmcs12->host_ia32_pat;
11300 }
4704d0be
NHE
11301 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11302 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11303 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 11304
21feb4eb
ACL
11305 /* Set L1 segment info according to Intel SDM
11306 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11307 seg = (struct kvm_segment) {
11308 .base = 0,
11309 .limit = 0xFFFFFFFF,
11310 .selector = vmcs12->host_cs_selector,
11311 .type = 11,
11312 .present = 1,
11313 .s = 1,
11314 .g = 1
11315 };
11316 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11317 seg.l = 1;
11318 else
11319 seg.db = 1;
11320 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11321 seg = (struct kvm_segment) {
11322 .base = 0,
11323 .limit = 0xFFFFFFFF,
11324 .type = 3,
11325 .present = 1,
11326 .s = 1,
11327 .db = 1,
11328 .g = 1
11329 };
11330 seg.selector = vmcs12->host_ds_selector;
11331 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11332 seg.selector = vmcs12->host_es_selector;
11333 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11334 seg.selector = vmcs12->host_ss_selector;
11335 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11336 seg.selector = vmcs12->host_fs_selector;
11337 seg.base = vmcs12->host_fs_base;
11338 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11339 seg.selector = vmcs12->host_gs_selector;
11340 seg.base = vmcs12->host_gs_base;
11341 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11342 seg = (struct kvm_segment) {
205befd9 11343 .base = vmcs12->host_tr_base,
21feb4eb
ACL
11344 .limit = 0x67,
11345 .selector = vmcs12->host_tr_selector,
11346 .type = 11,
11347 .present = 1
11348 };
11349 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11350
503cd0c5
JK
11351 kvm_set_dr(vcpu, 7, 0x400);
11352 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 11353
3af18d9c
WV
11354 if (cpu_has_vmx_msr_bitmap())
11355 vmx_set_msr_bitmap(vcpu);
11356
ff651cb6
WV
11357 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11358 vmcs12->vm_exit_msr_load_count))
11359 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
11360}
11361
11362/*
11363 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11364 * and modify vmcs12 to make it see what it would expect to see there if
11365 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11366 */
533558bc
JK
11367static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11368 u32 exit_intr_info,
11369 unsigned long exit_qualification)
4704d0be
NHE
11370{
11371 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be 11372 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
cf3215d9 11373 u32 vm_inst_error = 0;
4704d0be 11374
5f3d5799
JK
11375 /* trying to cancel vmlaunch/vmresume is a bug */
11376 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11377
4704d0be 11378 leave_guest_mode(vcpu);
533558bc
JK
11379 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11380 exit_qualification);
4704d0be 11381
ff651cb6
WV
11382 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11383 vmcs12->vm_exit_msr_store_count))
11384 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11385
cf3215d9
JM
11386 if (unlikely(vmx->fail))
11387 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
11388
1279a6b1 11389 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
f3380ca5 11390
6550c4df
WL
11391 /*
11392 * TODO: SDM says that with acknowledge interrupt on exit, bit 31 of
11393 * the VM-exit interrupt information (valid interrupt) is always set to
11394 * 1 on EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't need
11395 * kvm_cpu_has_interrupt(). See the commit message for details.
11396 */
11397 if (nested_exit_intr_ack_set(vcpu) &&
11398 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11399 kvm_cpu_has_interrupt(vcpu)) {
77b0f5d6
BD
11400 int irq = kvm_cpu_get_interrupt(vcpu);
11401 WARN_ON(irq < 0);
11402 vmcs12->vm_exit_intr_info = irq |
11403 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11404 }
11405
542060ea
JK
11406 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11407 vmcs12->exit_qualification,
11408 vmcs12->idt_vectoring_info_field,
11409 vmcs12->vm_exit_intr_info,
11410 vmcs12->vm_exit_intr_error_code,
11411 KVM_ISA_VMX);
4704d0be 11412
8391ce44
PB
11413 vm_entry_controls_reset_shadow(vmx);
11414 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
11415 vmx_segment_cache_clear(vmx);
11416
4704d0be
NHE
11417 /* if no vmcs02 cache requested, remove the one we used */
11418 if (VMCS02_POOL_SIZE == 0)
11419 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11420
11421 load_vmcs12_host_state(vcpu, vmcs12);
11422
9314006d 11423 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
11424 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11425 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 11426 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
11427 if (vmx->hv_deadline_tsc == -1)
11428 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11429 PIN_BASED_VMX_PREEMPTION_TIMER);
11430 else
11431 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11432 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
11433 if (kvm_has_tsc_control)
11434 decache_tsc_multiplier(vmx);
4704d0be 11435
dccbfcf5
RK
11436 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11437 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11438 vmx_set_virtual_x2apic_mode(vcpu,
11439 vcpu->arch.apic_base & X2APIC_ENABLE);
fb6c8198
JM
11440 } else if (!nested_cpu_has_ept(vmcs12) &&
11441 nested_cpu_has2(vmcs12,
11442 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11443 vmx_flush_tlb_ept_only(vcpu);
dccbfcf5 11444 }
4704d0be
NHE
11445
11446 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11447 vmx->host_rsp = 0;
11448
11449 /* Unpin physical memory we referred to in vmcs02 */
11450 if (vmx->nested.apic_access_page) {
53a70daf 11451 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 11452 vmx->nested.apic_access_page = NULL;
4704d0be 11453 }
a7c0b07d 11454 if (vmx->nested.virtual_apic_page) {
53a70daf 11455 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 11456 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 11457 }
705699a1
WV
11458 if (vmx->nested.pi_desc_page) {
11459 kunmap(vmx->nested.pi_desc_page);
53a70daf 11460 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
11461 vmx->nested.pi_desc_page = NULL;
11462 vmx->nested.pi_desc = NULL;
11463 }
4704d0be 11464
38b99173
TC
11465 /*
11466 * We are now running in L2, mmu_notifier will force to reload the
11467 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11468 */
c83b6d15 11469 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 11470
4704d0be
NHE
11471 /*
11472 * Exiting from L2 to L1, we're now back to L1 which thinks it just
11473 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11474 * success or failure flag accordingly.
11475 */
11476 if (unlikely(vmx->fail)) {
11477 vmx->fail = 0;
cf3215d9 11478 nested_vmx_failValid(vcpu, vm_inst_error);
4704d0be
NHE
11479 } else
11480 nested_vmx_succeed(vcpu);
012f83cb
AG
11481 if (enable_shadow_vmcs)
11482 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
11483
11484 /* in case we halted in L2 */
11485 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
11486}
11487
42124925
JK
11488/*
11489 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11490 */
11491static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11492{
2f707d97
WL
11493 if (is_guest_mode(vcpu)) {
11494 to_vmx(vcpu)->nested.nested_run_pending = 0;
533558bc 11495 nested_vmx_vmexit(vcpu, -1, 0, 0);
2f707d97 11496 }
42124925
JK
11497 free_nested(to_vmx(vcpu));
11498}
11499
7c177938
NHE
11500/*
11501 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11502 * 23.7 "VM-entry failures during or after loading guest state" (this also
11503 * lists the acceptable exit-reason and exit-qualification parameters).
11504 * It should only be called before L2 actually succeeded to run, and when
11505 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11506 */
11507static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11508 struct vmcs12 *vmcs12,
11509 u32 reason, unsigned long qualification)
11510{
11511 load_vmcs12_host_state(vcpu, vmcs12);
11512 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11513 vmcs12->exit_qualification = qualification;
11514 nested_vmx_succeed(vcpu);
012f83cb
AG
11515 if (enable_shadow_vmcs)
11516 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
11517}
11518
8a76d7f2
JR
11519static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11520 struct x86_instruction_info *info,
11521 enum x86_intercept_stage stage)
11522{
11523 return X86EMUL_CONTINUE;
11524}
11525
64672c95
YJ
11526#ifdef CONFIG_X86_64
11527/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11528static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11529 u64 divisor, u64 *result)
11530{
11531 u64 low = a << shift, high = a >> (64 - shift);
11532
11533 /* To avoid the overflow on divq */
11534 if (high >= divisor)
11535 return 1;
11536
11537 /* Low hold the result, high hold rem which is discarded */
11538 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11539 "rm" (divisor), "0" (low), "1" (high));
11540 *result = low;
11541
11542 return 0;
11543}
11544
11545static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11546{
11547 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
11548 u64 tscl = rdtsc();
11549 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11550 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
11551
11552 /* Convert to host delta tsc if tsc scaling is enabled */
11553 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11554 u64_shl_div_u64(delta_tsc,
11555 kvm_tsc_scaling_ratio_frac_bits,
11556 vcpu->arch.tsc_scaling_ratio,
11557 &delta_tsc))
11558 return -ERANGE;
11559
11560 /*
11561 * If the delta tsc can't fit in the 32 bit after the multi shift,
11562 * we can't use the preemption timer.
11563 * It's possible that it fits on later vmentries, but checking
11564 * on every vmentry is costly so we just use an hrtimer.
11565 */
11566 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11567 return -ERANGE;
11568
11569 vmx->hv_deadline_tsc = tscl + delta_tsc;
11570 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11571 PIN_BASED_VMX_PREEMPTION_TIMER);
c8533544
WL
11572
11573 return delta_tsc == 0;
64672c95
YJ
11574}
11575
11576static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11577{
11578 struct vcpu_vmx *vmx = to_vmx(vcpu);
11579 vmx->hv_deadline_tsc = -1;
11580 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11581 PIN_BASED_VMX_PREEMPTION_TIMER);
11582}
11583#endif
11584
48d89b92 11585static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 11586{
b4a2d31d
RK
11587 if (ple_gap)
11588 shrink_ple_window(vcpu);
ae97a3b8
RK
11589}
11590
843e4330
KH
11591static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11592 struct kvm_memory_slot *slot)
11593{
11594 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11595 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11596}
11597
11598static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11599 struct kvm_memory_slot *slot)
11600{
11601 kvm_mmu_slot_set_dirty(kvm, slot);
11602}
11603
11604static void vmx_flush_log_dirty(struct kvm *kvm)
11605{
11606 kvm_flush_pml_buffers(kvm);
11607}
11608
c5f983f6
BD
11609static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11610{
11611 struct vmcs12 *vmcs12;
11612 struct vcpu_vmx *vmx = to_vmx(vcpu);
11613 gpa_t gpa;
11614 struct page *page = NULL;
11615 u64 *pml_address;
11616
11617 if (is_guest_mode(vcpu)) {
11618 WARN_ON_ONCE(vmx->nested.pml_full);
11619
11620 /*
11621 * Check if PML is enabled for the nested guest.
11622 * Whether eptp bit 6 is set is already checked
11623 * as part of A/D emulation.
11624 */
11625 vmcs12 = get_vmcs12(vcpu);
11626 if (!nested_cpu_has_pml(vmcs12))
11627 return 0;
11628
4769886b 11629 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
c5f983f6
BD
11630 vmx->nested.pml_full = true;
11631 return 1;
11632 }
11633
11634 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11635
5e2f30b7
DH
11636 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11637 if (is_error_page(page))
c5f983f6
BD
11638 return 0;
11639
11640 pml_address = kmap(page);
11641 pml_address[vmcs12->guest_pml_index--] = gpa;
11642 kunmap(page);
53a70daf 11643 kvm_release_page_clean(page);
c5f983f6
BD
11644 }
11645
11646 return 0;
11647}
11648
843e4330
KH
11649static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11650 struct kvm_memory_slot *memslot,
11651 gfn_t offset, unsigned long mask)
11652{
11653 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11654}
11655
bf9f6ac8
FW
11656/*
11657 * This routine does the following things for vCPU which is going
11658 * to be blocked if VT-d PI is enabled.
11659 * - Store the vCPU to the wakeup list, so when interrupts happen
11660 * we can find the right vCPU to wake up.
11661 * - Change the Posted-interrupt descriptor as below:
11662 * 'NDST' <-- vcpu->pre_pcpu
11663 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11664 * - If 'ON' is set during this process, which means at least one
11665 * interrupt is posted for this vCPU, we cannot block it, in
11666 * this case, return 1, otherwise, return 0.
11667 *
11668 */
bc22512b 11669static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11670{
11671 unsigned long flags;
11672 unsigned int dest;
11673 struct pi_desc old, new;
11674 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11675
11676 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11677 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11678 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11679 return 0;
11680
11681 vcpu->pre_pcpu = vcpu->cpu;
11682 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11683 vcpu->pre_pcpu), flags);
11684 list_add_tail(&vcpu->blocked_vcpu_list,
11685 &per_cpu(blocked_vcpu_on_cpu,
11686 vcpu->pre_pcpu));
11687 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11688 vcpu->pre_pcpu), flags);
11689
11690 do {
11691 old.control = new.control = pi_desc->control;
11692
11693 /*
11694 * We should not block the vCPU if
11695 * an interrupt is posted for it.
11696 */
11697 if (pi_test_on(pi_desc) == 1) {
11698 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11699 vcpu->pre_pcpu), flags);
11700 list_del(&vcpu->blocked_vcpu_list);
11701 spin_unlock_irqrestore(
11702 &per_cpu(blocked_vcpu_on_cpu_lock,
11703 vcpu->pre_pcpu), flags);
11704 vcpu->pre_pcpu = -1;
11705
11706 return 1;
11707 }
11708
11709 WARN((pi_desc->sn == 1),
11710 "Warning: SN field of posted-interrupts "
11711 "is set before blocking\n");
11712
11713 /*
11714 * Since vCPU can be preempted during this process,
11715 * vcpu->cpu could be different with pre_pcpu, we
11716 * need to set pre_pcpu as the destination of wakeup
11717 * notification event, then we can find the right vCPU
11718 * to wakeup in wakeup handler if interrupts happen
11719 * when the vCPU is in blocked state.
11720 */
11721 dest = cpu_physical_id(vcpu->pre_pcpu);
11722
11723 if (x2apic_enabled())
11724 new.ndst = dest;
11725 else
11726 new.ndst = (dest << 8) & 0xFF00;
11727
11728 /* set 'NV' to 'wakeup vector' */
11729 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11730 } while (cmpxchg(&pi_desc->control, old.control,
11731 new.control) != old.control);
11732
11733 return 0;
11734}
11735
bc22512b
YJ
11736static int vmx_pre_block(struct kvm_vcpu *vcpu)
11737{
11738 if (pi_pre_block(vcpu))
11739 return 1;
11740
64672c95
YJ
11741 if (kvm_lapic_hv_timer_in_use(vcpu))
11742 kvm_lapic_switch_to_sw_timer(vcpu);
11743
bc22512b
YJ
11744 return 0;
11745}
11746
11747static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11748{
11749 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11750 struct pi_desc old, new;
11751 unsigned int dest;
11752 unsigned long flags;
11753
11754 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11755 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11756 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11757 return;
11758
11759 do {
11760 old.control = new.control = pi_desc->control;
11761
11762 dest = cpu_physical_id(vcpu->cpu);
11763
11764 if (x2apic_enabled())
11765 new.ndst = dest;
11766 else
11767 new.ndst = (dest << 8) & 0xFF00;
11768
11769 /* Allow posting non-urgent interrupts */
11770 new.sn = 0;
11771
11772 /* set 'NV' to 'notification vector' */
11773 new.nv = POSTED_INTR_VECTOR;
11774 } while (cmpxchg(&pi_desc->control, old.control,
11775 new.control) != old.control);
11776
11777 if(vcpu->pre_pcpu != -1) {
11778 spin_lock_irqsave(
11779 &per_cpu(blocked_vcpu_on_cpu_lock,
11780 vcpu->pre_pcpu), flags);
11781 list_del(&vcpu->blocked_vcpu_list);
11782 spin_unlock_irqrestore(
11783 &per_cpu(blocked_vcpu_on_cpu_lock,
11784 vcpu->pre_pcpu), flags);
11785 vcpu->pre_pcpu = -1;
11786 }
11787}
11788
bc22512b
YJ
11789static void vmx_post_block(struct kvm_vcpu *vcpu)
11790{
64672c95
YJ
11791 if (kvm_x86_ops->set_hv_timer)
11792 kvm_lapic_switch_to_hv_timer(vcpu);
11793
bc22512b
YJ
11794 pi_post_block(vcpu);
11795}
11796
efc64404
FW
11797/*
11798 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11799 *
11800 * @kvm: kvm
11801 * @host_irq: host irq of the interrupt
11802 * @guest_irq: gsi of the interrupt
11803 * @set: set or unset PI
11804 * returns 0 on success, < 0 on failure
11805 */
11806static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11807 uint32_t guest_irq, bool set)
11808{
11809 struct kvm_kernel_irq_routing_entry *e;
11810 struct kvm_irq_routing_table *irq_rt;
11811 struct kvm_lapic_irq irq;
11812 struct kvm_vcpu *vcpu;
11813 struct vcpu_data vcpu_info;
11814 int idx, ret = -EINVAL;
11815
11816 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
11817 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11818 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
11819 return 0;
11820
11821 idx = srcu_read_lock(&kvm->irq_srcu);
11822 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11823 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11824
11825 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11826 if (e->type != KVM_IRQ_ROUTING_MSI)
11827 continue;
11828 /*
11829 * VT-d PI cannot support posting multicast/broadcast
11830 * interrupts to a vCPU, we still use interrupt remapping
11831 * for these kind of interrupts.
11832 *
11833 * For lowest-priority interrupts, we only support
11834 * those with single CPU as the destination, e.g. user
11835 * configures the interrupts via /proc/irq or uses
11836 * irqbalance to make the interrupts single-CPU.
11837 *
11838 * We will support full lowest-priority interrupt later.
11839 */
11840
37131313 11841 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
11842 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11843 /*
11844 * Make sure the IRTE is in remapped mode if
11845 * we don't handle it in posted mode.
11846 */
11847 ret = irq_set_vcpu_affinity(host_irq, NULL);
11848 if (ret < 0) {
11849 printk(KERN_INFO
11850 "failed to back to remapped mode, irq: %u\n",
11851 host_irq);
11852 goto out;
11853 }
11854
efc64404 11855 continue;
23a1c257 11856 }
efc64404
FW
11857
11858 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11859 vcpu_info.vector = irq.vector;
11860
b6ce9780 11861 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
11862 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11863
11864 if (set)
11865 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11866 else {
11867 /* suppress notification event before unposting */
11868 pi_set_sn(vcpu_to_pi_desc(vcpu));
11869 ret = irq_set_vcpu_affinity(host_irq, NULL);
11870 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11871 }
11872
11873 if (ret < 0) {
11874 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11875 __func__);
11876 goto out;
11877 }
11878 }
11879
11880 ret = 0;
11881out:
11882 srcu_read_unlock(&kvm->irq_srcu, idx);
11883 return ret;
11884}
11885
c45dcc71
AR
11886static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11887{
11888 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11889 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11890 FEATURE_CONTROL_LMCE;
11891 else
11892 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11893 ~FEATURE_CONTROL_LMCE;
11894}
11895
404f6aac 11896static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
11897 .cpu_has_kvm_support = cpu_has_kvm_support,
11898 .disabled_by_bios = vmx_disabled_by_bios,
11899 .hardware_setup = hardware_setup,
11900 .hardware_unsetup = hardware_unsetup,
002c7f7c 11901 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
11902 .hardware_enable = hardware_enable,
11903 .hardware_disable = hardware_disable,
04547156 11904 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 11905 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
11906
11907 .vcpu_create = vmx_create_vcpu,
11908 .vcpu_free = vmx_free_vcpu,
04d2cc77 11909 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 11910
04d2cc77 11911 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
11912 .vcpu_load = vmx_vcpu_load,
11913 .vcpu_put = vmx_vcpu_put,
11914
a96036b8 11915 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
11916 .get_msr = vmx_get_msr,
11917 .set_msr = vmx_set_msr,
11918 .get_segment_base = vmx_get_segment_base,
11919 .get_segment = vmx_get_segment,
11920 .set_segment = vmx_set_segment,
2e4d2653 11921 .get_cpl = vmx_get_cpl,
6aa8b732 11922 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 11923 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 11924 .decache_cr3 = vmx_decache_cr3,
25c4c276 11925 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 11926 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
11927 .set_cr3 = vmx_set_cr3,
11928 .set_cr4 = vmx_set_cr4,
6aa8b732 11929 .set_efer = vmx_set_efer,
6aa8b732
AK
11930 .get_idt = vmx_get_idt,
11931 .set_idt = vmx_set_idt,
11932 .get_gdt = vmx_get_gdt,
11933 .set_gdt = vmx_set_gdt,
73aaf249
JK
11934 .get_dr6 = vmx_get_dr6,
11935 .set_dr6 = vmx_set_dr6,
020df079 11936 .set_dr7 = vmx_set_dr7,
81908bf4 11937 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 11938 .cache_reg = vmx_cache_reg,
6aa8b732
AK
11939 .get_rflags = vmx_get_rflags,
11940 .set_rflags = vmx_set_rflags,
be94f6b7
HH
11941
11942 .get_pkru = vmx_get_pkru,
11943
6aa8b732 11944 .tlb_flush = vmx_flush_tlb,
6aa8b732 11945
6aa8b732 11946 .run = vmx_vcpu_run,
6062d012 11947 .handle_exit = vmx_handle_exit,
6aa8b732 11948 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
11949 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11950 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 11951 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 11952 .set_irq = vmx_inject_irq,
95ba8273 11953 .set_nmi = vmx_inject_nmi,
298101da 11954 .queue_exception = vmx_queue_exception,
b463a6f7 11955 .cancel_injection = vmx_cancel_injection,
78646121 11956 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 11957 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
11958 .get_nmi_mask = vmx_get_nmi_mask,
11959 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
11960 .enable_nmi_window = enable_nmi_window,
11961 .enable_irq_window = enable_irq_window,
11962 .update_cr8_intercept = update_cr8_intercept,
8d14695f 11963 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 11964 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
11965 .get_enable_apicv = vmx_get_enable_apicv,
11966 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 11967 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 11968 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
11969 .hwapic_irr_update = vmx_hwapic_irr_update,
11970 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
11971 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11972 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 11973
cbc94022 11974 .set_tss_addr = vmx_set_tss_addr,
67253af5 11975 .get_tdp_level = get_ept_level,
4b12f0de 11976 .get_mt_mask = vmx_get_mt_mask,
229456fc 11977
586f9607 11978 .get_exit_info = vmx_get_exit_info,
586f9607 11979
17cc3935 11980 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
11981
11982 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
11983
11984 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 11985 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
11986
11987 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
11988
11989 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
11990
11991 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
11992
11993 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
11994
11995 .check_intercept = vmx_check_intercept,
a547c6db 11996 .handle_external_intr = vmx_handle_external_intr,
da8999d3 11997 .mpx_supported = vmx_mpx_supported,
55412b2e 11998 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
11999
12000 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
12001
12002 .sched_in = vmx_sched_in,
843e4330
KH
12003
12004 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12005 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12006 .flush_log_dirty = vmx_flush_log_dirty,
12007 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
c5f983f6 12008 .write_log_dirty = vmx_write_pml_buffer,
25462f7f 12009
bf9f6ac8
FW
12010 .pre_block = vmx_pre_block,
12011 .post_block = vmx_post_block,
12012
25462f7f 12013 .pmu_ops = &intel_pmu_ops,
efc64404
FW
12014
12015 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
12016
12017#ifdef CONFIG_X86_64
12018 .set_hv_timer = vmx_set_hv_timer,
12019 .cancel_hv_timer = vmx_cancel_hv_timer,
12020#endif
c45dcc71
AR
12021
12022 .setup_mce = vmx_setup_mce,
6aa8b732
AK
12023};
12024
12025static int __init vmx_init(void)
12026{
34a1cd60
TC
12027 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12028 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 12029 if (r)
34a1cd60 12030 return r;
25c5f225 12031
2965faa5 12032#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
12033 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12034 crash_vmclear_local_loaded_vmcss);
12035#endif
12036
fdef3ad1 12037 return 0;
6aa8b732
AK
12038}
12039
12040static void __exit vmx_exit(void)
12041{
2965faa5 12042#ifdef CONFIG_KEXEC_CORE
3b63a43f 12043 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
12044 synchronize_rcu();
12045#endif
12046
cb498ea2 12047 kvm_exit();
6aa8b732
AK
12048}
12049
12050module_init(vmx_init)
12051module_exit(vmx_exit)