]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: VMX: Fix VPID capability detection
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
c207aee4 36#include <linux/frame.h>
5fdbf976 37#include "kvm_cache_regs.h"
35920a35 38#include "x86.h"
e495606d 39
28b835d6 40#include <asm/cpu.h>
6aa8b732 41#include <asm/io.h>
3b3be0d1 42#include <asm/desc.h>
13673a90 43#include <asm/vmx.h>
6210e37b 44#include <asm/virtext.h>
a0861c02 45#include <asm/mce.h>
952f07ec 46#include <asm/fpu/internal.h>
d7cd9796 47#include <asm/perf_event.h>
81908bf4 48#include <asm/debugreg.h>
8f536b76 49#include <asm/kexec.h>
dab2087d 50#include <asm/apic.h>
efc64404 51#include <asm/irq_remapping.h>
d6e41f11 52#include <asm/mmu_context.h>
6aa8b732 53
229456fc 54#include "trace.h"
25462f7f 55#include "pmu.h"
229456fc 56
4ecac3fd 57#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
58#define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 60
6aa8b732
AK
61MODULE_AUTHOR("Qumranet");
62MODULE_LICENSE("GPL");
63
e9bda3b3
JT
64static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67};
68MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
476bc001 70static bool __read_mostly enable_vpid = 1;
736caefe 71module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 72
476bc001 73static bool __read_mostly flexpriority_enabled = 1;
736caefe 74module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 75
476bc001 76static bool __read_mostly enable_ept = 1;
736caefe 77module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 78
476bc001 79static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
80module_param_named(unrestricted_guest,
81 enable_unrestricted_guest, bool, S_IRUGO);
82
83c3a331
XH
83static bool __read_mostly enable_ept_ad_bits = 1;
84module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
a27685c3 86static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 87module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 88
476bc001 89static bool __read_mostly fasteoi = 1;
58fbbf26
KT
90module_param(fasteoi, bool, S_IRUGO);
91
5a71785d 92static bool __read_mostly enable_apicv = 1;
01e439be 93module_param(enable_apicv, bool, S_IRUGO);
83d4c286 94
abc4fc58
AG
95static bool __read_mostly enable_shadow_vmcs = 1;
96module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
97/*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
476bc001 102static bool __read_mostly nested = 0;
801d3424
NHE
103module_param(nested, bool, S_IRUGO);
104
20300099
WL
105static u64 __read_mostly host_xss;
106
843e4330
KH
107static bool __read_mostly enable_pml = 1;
108module_param_named(pml, enable_pml, bool, S_IRUGO);
109
64903d61
HZ
110#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
111
64672c95
YJ
112/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
113static int __read_mostly cpu_preemption_timer_multi;
114static bool __read_mostly enable_preemption_timer = 1;
115#ifdef CONFIG_X86_64
116module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117#endif
118
5037878e
GN
119#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
121#define KVM_VM_CR0_ALWAYS_ON \
122 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
123#define KVM_CR4_GUEST_OWNED_BITS \
124 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
fd8cb433 125 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
4c38609a 126
cdc0e244
AK
127#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
78ac8b47
AK
130#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
f4124500
JK
132#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
16c2aec6
JD
134/*
135 * Hyper-V requires all of these, so mark them as supported even though
136 * they are just treated the same as all-context.
137 */
138#define VMX_VPID_EXTENT_SUPPORTED_MASK \
139 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
140 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
141 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
4b8d54f9
ZE
144/*
145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146 * ple_gap: upper bound on the amount of time between two successive
147 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 148 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
149 * ple_window: upper bound on the amount of time a guest is allowed to execute
150 * in a PAUSE loop. Tests indicate that most spinlocks are held for
151 * less than 2^12 cycles
152 * Time is measured based on a counter that runs at the same rate as the TSC,
153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
154 */
b4a2d31d
RK
155#define KVM_VMX_DEFAULT_PLE_GAP 128
156#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
157#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
158#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
160 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
4b8d54f9
ZE
162static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163module_param(ple_gap, int, S_IRUGO);
164
165static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166module_param(ple_window, int, S_IRUGO);
167
b4a2d31d
RK
168/* Default doubles per-vcpu window every exit. */
169static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170module_param(ple_window_grow, int, S_IRUGO);
171
172/* Default resets per-vcpu window every exit to ple_window. */
173static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174module_param(ple_window_shrink, int, S_IRUGO);
175
176/* Default is to compute the maximum so we can never overflow. */
177static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179module_param(ple_window_max, int, S_IRUGO);
180
83287ea4
AK
181extern const ulong vmx_return;
182
8bf00a52 183#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 184#define VMCS02_POOL_SIZE 1
61d2ef2c 185
a2fa3e9f
GH
186struct vmcs {
187 u32 revision_id;
188 u32 abort;
189 char data[0];
190};
191
d462b819
NHE
192/*
193 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195 * loaded on this CPU (so we can clear them if the CPU goes down).
196 */
197struct loaded_vmcs {
198 struct vmcs *vmcs;
355f4fb1 199 struct vmcs *shadow_vmcs;
d462b819 200 int cpu;
4c4a6f79
PB
201 bool launched;
202 bool nmi_known_unmasked;
44889942
LP
203 unsigned long vmcs_host_cr3; /* May not match real cr3 */
204 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d462b819
NHE
205 struct list_head loaded_vmcss_on_cpu_link;
206};
207
26bb0981
AK
208struct shared_msr_entry {
209 unsigned index;
210 u64 data;
d5696725 211 u64 mask;
26bb0981
AK
212};
213
a9d30f33
NHE
214/*
215 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
216 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
217 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
218 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
219 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
220 * More than one of these structures may exist, if L1 runs multiple L2 guests.
221 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
222 * underlying hardware which will be used to run L2.
223 * This structure is packed to ensure that its layout is identical across
224 * machines (necessary for live migration).
225 * If there are changes in this struct, VMCS12_REVISION must be changed.
226 */
22bd0358 227typedef u64 natural_width;
a9d30f33
NHE
228struct __packed vmcs12 {
229 /* According to the Intel spec, a VMCS region must start with the
230 * following two fields. Then follow implementation-specific data.
231 */
232 u32 revision_id;
233 u32 abort;
22bd0358 234
27d6c865
NHE
235 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
236 u32 padding[7]; /* room for future expansion */
237
22bd0358
NHE
238 u64 io_bitmap_a;
239 u64 io_bitmap_b;
240 u64 msr_bitmap;
241 u64 vm_exit_msr_store_addr;
242 u64 vm_exit_msr_load_addr;
243 u64 vm_entry_msr_load_addr;
244 u64 tsc_offset;
245 u64 virtual_apic_page_addr;
246 u64 apic_access_addr;
705699a1 247 u64 posted_intr_desc_addr;
27c42a1b 248 u64 vm_function_control;
22bd0358 249 u64 ept_pointer;
608406e2
WV
250 u64 eoi_exit_bitmap0;
251 u64 eoi_exit_bitmap1;
252 u64 eoi_exit_bitmap2;
253 u64 eoi_exit_bitmap3;
41ab9372 254 u64 eptp_list_address;
81dc01f7 255 u64 xss_exit_bitmap;
22bd0358
NHE
256 u64 guest_physical_address;
257 u64 vmcs_link_pointer;
c5f983f6 258 u64 pml_address;
22bd0358
NHE
259 u64 guest_ia32_debugctl;
260 u64 guest_ia32_pat;
261 u64 guest_ia32_efer;
262 u64 guest_ia32_perf_global_ctrl;
263 u64 guest_pdptr0;
264 u64 guest_pdptr1;
265 u64 guest_pdptr2;
266 u64 guest_pdptr3;
36be0b9d 267 u64 guest_bndcfgs;
22bd0358
NHE
268 u64 host_ia32_pat;
269 u64 host_ia32_efer;
270 u64 host_ia32_perf_global_ctrl;
271 u64 padding64[8]; /* room for future expansion */
272 /*
273 * To allow migration of L1 (complete with its L2 guests) between
274 * machines of different natural widths (32 or 64 bit), we cannot have
275 * unsigned long fields with no explict size. We use u64 (aliased
276 * natural_width) instead. Luckily, x86 is little-endian.
277 */
278 natural_width cr0_guest_host_mask;
279 natural_width cr4_guest_host_mask;
280 natural_width cr0_read_shadow;
281 natural_width cr4_read_shadow;
282 natural_width cr3_target_value0;
283 natural_width cr3_target_value1;
284 natural_width cr3_target_value2;
285 natural_width cr3_target_value3;
286 natural_width exit_qualification;
287 natural_width guest_linear_address;
288 natural_width guest_cr0;
289 natural_width guest_cr3;
290 natural_width guest_cr4;
291 natural_width guest_es_base;
292 natural_width guest_cs_base;
293 natural_width guest_ss_base;
294 natural_width guest_ds_base;
295 natural_width guest_fs_base;
296 natural_width guest_gs_base;
297 natural_width guest_ldtr_base;
298 natural_width guest_tr_base;
299 natural_width guest_gdtr_base;
300 natural_width guest_idtr_base;
301 natural_width guest_dr7;
302 natural_width guest_rsp;
303 natural_width guest_rip;
304 natural_width guest_rflags;
305 natural_width guest_pending_dbg_exceptions;
306 natural_width guest_sysenter_esp;
307 natural_width guest_sysenter_eip;
308 natural_width host_cr0;
309 natural_width host_cr3;
310 natural_width host_cr4;
311 natural_width host_fs_base;
312 natural_width host_gs_base;
313 natural_width host_tr_base;
314 natural_width host_gdtr_base;
315 natural_width host_idtr_base;
316 natural_width host_ia32_sysenter_esp;
317 natural_width host_ia32_sysenter_eip;
318 natural_width host_rsp;
319 natural_width host_rip;
320 natural_width paddingl[8]; /* room for future expansion */
321 u32 pin_based_vm_exec_control;
322 u32 cpu_based_vm_exec_control;
323 u32 exception_bitmap;
324 u32 page_fault_error_code_mask;
325 u32 page_fault_error_code_match;
326 u32 cr3_target_count;
327 u32 vm_exit_controls;
328 u32 vm_exit_msr_store_count;
329 u32 vm_exit_msr_load_count;
330 u32 vm_entry_controls;
331 u32 vm_entry_msr_load_count;
332 u32 vm_entry_intr_info_field;
333 u32 vm_entry_exception_error_code;
334 u32 vm_entry_instruction_len;
335 u32 tpr_threshold;
336 u32 secondary_vm_exec_control;
337 u32 vm_instruction_error;
338 u32 vm_exit_reason;
339 u32 vm_exit_intr_info;
340 u32 vm_exit_intr_error_code;
341 u32 idt_vectoring_info_field;
342 u32 idt_vectoring_error_code;
343 u32 vm_exit_instruction_len;
344 u32 vmx_instruction_info;
345 u32 guest_es_limit;
346 u32 guest_cs_limit;
347 u32 guest_ss_limit;
348 u32 guest_ds_limit;
349 u32 guest_fs_limit;
350 u32 guest_gs_limit;
351 u32 guest_ldtr_limit;
352 u32 guest_tr_limit;
353 u32 guest_gdtr_limit;
354 u32 guest_idtr_limit;
355 u32 guest_es_ar_bytes;
356 u32 guest_cs_ar_bytes;
357 u32 guest_ss_ar_bytes;
358 u32 guest_ds_ar_bytes;
359 u32 guest_fs_ar_bytes;
360 u32 guest_gs_ar_bytes;
361 u32 guest_ldtr_ar_bytes;
362 u32 guest_tr_ar_bytes;
363 u32 guest_interruptibility_info;
364 u32 guest_activity_state;
365 u32 guest_sysenter_cs;
366 u32 host_ia32_sysenter_cs;
0238ea91
JK
367 u32 vmx_preemption_timer_value;
368 u32 padding32[7]; /* room for future expansion */
22bd0358 369 u16 virtual_processor_id;
705699a1 370 u16 posted_intr_nv;
22bd0358
NHE
371 u16 guest_es_selector;
372 u16 guest_cs_selector;
373 u16 guest_ss_selector;
374 u16 guest_ds_selector;
375 u16 guest_fs_selector;
376 u16 guest_gs_selector;
377 u16 guest_ldtr_selector;
378 u16 guest_tr_selector;
608406e2 379 u16 guest_intr_status;
c5f983f6 380 u16 guest_pml_index;
22bd0358
NHE
381 u16 host_es_selector;
382 u16 host_cs_selector;
383 u16 host_ss_selector;
384 u16 host_ds_selector;
385 u16 host_fs_selector;
386 u16 host_gs_selector;
387 u16 host_tr_selector;
a9d30f33
NHE
388};
389
390/*
391 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
392 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
393 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
394 */
395#define VMCS12_REVISION 0x11e57ed0
396
397/*
398 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
399 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
400 * current implementation, 4K are reserved to avoid future complications.
401 */
402#define VMCS12_SIZE 0x1000
403
ff2f6fe9
NHE
404/* Used to remember the last vmcs02 used for some recently used vmcs12s */
405struct vmcs02_list {
406 struct list_head list;
407 gpa_t vmptr;
408 struct loaded_vmcs vmcs02;
409};
410
ec378aee
NHE
411/*
412 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
413 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
414 */
415struct nested_vmx {
416 /* Has the level1 guest done vmxon? */
417 bool vmxon;
3573e22c 418 gpa_t vmxon_ptr;
c5f983f6 419 bool pml_full;
a9d30f33
NHE
420
421 /* The guest-physical address of the current VMCS L1 keeps for L2 */
422 gpa_t current_vmptr;
4f2777bc
DM
423 /*
424 * Cache of the guest's VMCS, existing outside of guest memory.
425 * Loaded from guest memory during VMPTRLD. Flushed to guest
8ca44e88 426 * memory during VMCLEAR and VMPTRLD.
4f2777bc
DM
427 */
428 struct vmcs12 *cached_vmcs12;
012f83cb
AG
429 /*
430 * Indicates if the shadow vmcs must be updated with the
431 * data hold by vmcs12
432 */
433 bool sync_shadow_vmcs;
ff2f6fe9
NHE
434
435 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
436 struct list_head vmcs02_pool;
437 int vmcs02_num;
dccbfcf5 438 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
439 /* L2 must run next, and mustn't decide to exit to L1. */
440 bool nested_run_pending;
fe3ef05c
NHE
441 /*
442 * Guest pages referred to in vmcs02 with host-physical pointers, so
443 * we must keep them pinned while L2 runs.
444 */
445 struct page *apic_access_page;
a7c0b07d 446 struct page *virtual_apic_page;
705699a1
WV
447 struct page *pi_desc_page;
448 struct pi_desc *pi_desc;
449 bool pi_pending;
450 u16 posted_intr_nv;
f4124500 451
d048c098
RK
452 unsigned long *msr_bitmap;
453
f4124500
JK
454 struct hrtimer preemption_timer;
455 bool preemption_timer_expired;
2996fca0
JK
456
457 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
458 u64 vmcs01_debugctl;
b9c237bb 459
5c614b35
WL
460 u16 vpid02;
461 u16 last_vpid;
462
0115f9cb
DM
463 /*
464 * We only store the "true" versions of the VMX capability MSRs. We
465 * generate the "non-true" versions by setting the must-be-1 bits
466 * according to the SDM.
467 */
b9c237bb
WV
468 u32 nested_vmx_procbased_ctls_low;
469 u32 nested_vmx_procbased_ctls_high;
b9c237bb
WV
470 u32 nested_vmx_secondary_ctls_low;
471 u32 nested_vmx_secondary_ctls_high;
472 u32 nested_vmx_pinbased_ctls_low;
473 u32 nested_vmx_pinbased_ctls_high;
474 u32 nested_vmx_exit_ctls_low;
475 u32 nested_vmx_exit_ctls_high;
b9c237bb
WV
476 u32 nested_vmx_entry_ctls_low;
477 u32 nested_vmx_entry_ctls_high;
b9c237bb
WV
478 u32 nested_vmx_misc_low;
479 u32 nested_vmx_misc_high;
480 u32 nested_vmx_ept_caps;
99b83ac8 481 u32 nested_vmx_vpid_caps;
62cc6b9d
DM
482 u64 nested_vmx_basic;
483 u64 nested_vmx_cr0_fixed0;
484 u64 nested_vmx_cr0_fixed1;
485 u64 nested_vmx_cr4_fixed0;
486 u64 nested_vmx_cr4_fixed1;
487 u64 nested_vmx_vmcs_enum;
27c42a1b 488 u64 nested_vmx_vmfunc_controls;
72e9cbdb
LP
489
490 /* SMM related state */
491 struct {
492 /* in VMX operation on SMM entry? */
493 bool vmxon;
494 /* in guest mode on SMM entry? */
495 bool guest_mode;
496 } smm;
ec378aee
NHE
497};
498
01e439be 499#define POSTED_INTR_ON 0
ebbfc765
FW
500#define POSTED_INTR_SN 1
501
01e439be
YZ
502/* Posted-Interrupt Descriptor */
503struct pi_desc {
504 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
505 union {
506 struct {
507 /* bit 256 - Outstanding Notification */
508 u16 on : 1,
509 /* bit 257 - Suppress Notification */
510 sn : 1,
511 /* bit 271:258 - Reserved */
512 rsvd_1 : 14;
513 /* bit 279:272 - Notification Vector */
514 u8 nv;
515 /* bit 287:280 - Reserved */
516 u8 rsvd_2;
517 /* bit 319:288 - Notification Destination */
518 u32 ndst;
519 };
520 u64 control;
521 };
522 u32 rsvd[6];
01e439be
YZ
523} __aligned(64);
524
a20ed54d
YZ
525static bool pi_test_and_set_on(struct pi_desc *pi_desc)
526{
527 return test_and_set_bit(POSTED_INTR_ON,
528 (unsigned long *)&pi_desc->control);
529}
530
531static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
532{
533 return test_and_clear_bit(POSTED_INTR_ON,
534 (unsigned long *)&pi_desc->control);
535}
536
537static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
538{
539 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
540}
541
ebbfc765
FW
542static inline void pi_clear_sn(struct pi_desc *pi_desc)
543{
544 return clear_bit(POSTED_INTR_SN,
545 (unsigned long *)&pi_desc->control);
546}
547
548static inline void pi_set_sn(struct pi_desc *pi_desc)
549{
550 return set_bit(POSTED_INTR_SN,
551 (unsigned long *)&pi_desc->control);
552}
553
ad361091
PB
554static inline void pi_clear_on(struct pi_desc *pi_desc)
555{
556 clear_bit(POSTED_INTR_ON,
557 (unsigned long *)&pi_desc->control);
558}
559
ebbfc765
FW
560static inline int pi_test_on(struct pi_desc *pi_desc)
561{
562 return test_bit(POSTED_INTR_ON,
563 (unsigned long *)&pi_desc->control);
564}
565
566static inline int pi_test_sn(struct pi_desc *pi_desc)
567{
568 return test_bit(POSTED_INTR_SN,
569 (unsigned long *)&pi_desc->control);
570}
571
a2fa3e9f 572struct vcpu_vmx {
fb3f0f51 573 struct kvm_vcpu vcpu;
313dbd49 574 unsigned long host_rsp;
29bd8a78 575 u8 fail;
51aa01d1 576 u32 exit_intr_info;
1155f76a 577 u32 idt_vectoring_info;
6de12732 578 ulong rflags;
26bb0981 579 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
580 int nmsrs;
581 int save_nmsrs;
a547c6db 582 unsigned long host_idt_base;
a2fa3e9f 583#ifdef CONFIG_X86_64
44ea2b17
AK
584 u64 msr_host_kernel_gs_base;
585 u64 msr_guest_kernel_gs_base;
a2fa3e9f 586#endif
2961e876
GN
587 u32 vm_entry_controls_shadow;
588 u32 vm_exit_controls_shadow;
80154d77
PB
589 u32 secondary_exec_control;
590
d462b819
NHE
591 /*
592 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
593 * non-nested (L1) guest, it always points to vmcs01. For a nested
594 * guest (L2), it points to a different VMCS.
595 */
596 struct loaded_vmcs vmcs01;
597 struct loaded_vmcs *loaded_vmcs;
598 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
599 struct msr_autoload {
600 unsigned nr;
601 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
602 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
603 } msr_autoload;
a2fa3e9f
GH
604 struct {
605 int loaded;
606 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
607#ifdef CONFIG_X86_64
608 u16 ds_sel, es_sel;
609#endif
152d3f2f
LV
610 int gs_ldt_reload_needed;
611 int fs_reload_needed;
da8999d3 612 u64 msr_host_bndcfgs;
d77c26fc 613 } host_state;
9c8cba37 614 struct {
7ffd92c5 615 int vm86_active;
78ac8b47 616 ulong save_rflags;
f5f7b2fe
AK
617 struct kvm_segment segs[8];
618 } rmode;
619 struct {
620 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
621 struct kvm_save_segment {
622 u16 selector;
623 unsigned long base;
624 u32 limit;
625 u32 ar;
f5f7b2fe 626 } seg[8];
2fb92db1 627 } segment_cache;
2384d2b3 628 int vpid;
04fa4d32 629 bool emulation_required;
3b86cd99 630
a0861c02 631 u32 exit_reason;
4e47c7a6 632
01e439be
YZ
633 /* Posted interrupt descriptor */
634 struct pi_desc pi_desc;
635
ec378aee
NHE
636 /* Support for a guest hypervisor (nested VMX) */
637 struct nested_vmx nested;
a7653ecd
RK
638
639 /* Dynamic PLE window. */
640 int ple_window;
641 bool ple_window_dirty;
843e4330
KH
642
643 /* Support for PML */
644#define PML_ENTITY_NUM 512
645 struct page *pml_pg;
2680d6da 646
64672c95
YJ
647 /* apic deadline value in host tsc */
648 u64 hv_deadline_tsc;
649
2680d6da 650 u64 current_tsc_ratio;
1be0e61c 651
1be0e61c 652 u32 host_pkru;
3b84080b 653
37e4c997
HZ
654 /*
655 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
656 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
657 * in msr_ia32_feature_control_valid_bits.
658 */
3b84080b 659 u64 msr_ia32_feature_control;
37e4c997 660 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
661};
662
2fb92db1
AK
663enum segment_cache_field {
664 SEG_FIELD_SEL = 0,
665 SEG_FIELD_BASE = 1,
666 SEG_FIELD_LIMIT = 2,
667 SEG_FIELD_AR = 3,
668
669 SEG_FIELD_NR = 4
670};
671
a2fa3e9f
GH
672static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
673{
fb3f0f51 674 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
675}
676
efc64404
FW
677static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
678{
679 return &(to_vmx(vcpu)->pi_desc);
680}
681
22bd0358
NHE
682#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
683#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
684#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
685 [number##_HIGH] = VMCS12_OFFSET(name)+4
686
4607c2d7 687
fe2b201b 688static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
689 /*
690 * We do NOT shadow fields that are modified when L0
691 * traps and emulates any vmx instruction (e.g. VMPTRLD,
692 * VMXON...) executed by L1.
693 * For example, VM_INSTRUCTION_ERROR is read
694 * by L1 if a vmx instruction fails (part of the error path).
695 * Note the code assumes this logic. If for some reason
696 * we start shadowing these fields then we need to
697 * force a shadow sync when L0 emulates vmx instructions
698 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
699 * by nested_vmx_failValid)
700 */
701 VM_EXIT_REASON,
702 VM_EXIT_INTR_INFO,
703 VM_EXIT_INSTRUCTION_LEN,
704 IDT_VECTORING_INFO_FIELD,
705 IDT_VECTORING_ERROR_CODE,
706 VM_EXIT_INTR_ERROR_CODE,
707 EXIT_QUALIFICATION,
708 GUEST_LINEAR_ADDRESS,
709 GUEST_PHYSICAL_ADDRESS
710};
fe2b201b 711static int max_shadow_read_only_fields =
4607c2d7
AG
712 ARRAY_SIZE(shadow_read_only_fields);
713
fe2b201b 714static unsigned long shadow_read_write_fields[] = {
a7c0b07d 715 TPR_THRESHOLD,
4607c2d7
AG
716 GUEST_RIP,
717 GUEST_RSP,
718 GUEST_CR0,
719 GUEST_CR3,
720 GUEST_CR4,
721 GUEST_INTERRUPTIBILITY_INFO,
722 GUEST_RFLAGS,
723 GUEST_CS_SELECTOR,
724 GUEST_CS_AR_BYTES,
725 GUEST_CS_LIMIT,
726 GUEST_CS_BASE,
727 GUEST_ES_BASE,
36be0b9d 728 GUEST_BNDCFGS,
4607c2d7
AG
729 CR0_GUEST_HOST_MASK,
730 CR0_READ_SHADOW,
731 CR4_READ_SHADOW,
732 TSC_OFFSET,
733 EXCEPTION_BITMAP,
734 CPU_BASED_VM_EXEC_CONTROL,
735 VM_ENTRY_EXCEPTION_ERROR_CODE,
736 VM_ENTRY_INTR_INFO_FIELD,
737 VM_ENTRY_INSTRUCTION_LEN,
738 VM_ENTRY_EXCEPTION_ERROR_CODE,
739 HOST_FS_BASE,
740 HOST_GS_BASE,
741 HOST_FS_SELECTOR,
742 HOST_GS_SELECTOR
743};
fe2b201b 744static int max_shadow_read_write_fields =
4607c2d7
AG
745 ARRAY_SIZE(shadow_read_write_fields);
746
772e0318 747static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 748 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 749 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
750 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
751 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
752 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
753 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
754 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
755 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
756 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
757 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 758 FIELD(GUEST_INTR_STATUS, guest_intr_status),
c5f983f6 759 FIELD(GUEST_PML_INDEX, guest_pml_index),
22bd0358
NHE
760 FIELD(HOST_ES_SELECTOR, host_es_selector),
761 FIELD(HOST_CS_SELECTOR, host_cs_selector),
762 FIELD(HOST_SS_SELECTOR, host_ss_selector),
763 FIELD(HOST_DS_SELECTOR, host_ds_selector),
764 FIELD(HOST_FS_SELECTOR, host_fs_selector),
765 FIELD(HOST_GS_SELECTOR, host_gs_selector),
766 FIELD(HOST_TR_SELECTOR, host_tr_selector),
767 FIELD64(IO_BITMAP_A, io_bitmap_a),
768 FIELD64(IO_BITMAP_B, io_bitmap_b),
769 FIELD64(MSR_BITMAP, msr_bitmap),
770 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
771 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
772 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
773 FIELD64(TSC_OFFSET, tsc_offset),
774 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
775 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 776 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
27c42a1b 777 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
22bd0358 778 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
779 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
780 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
781 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
782 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
41ab9372 783 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
81dc01f7 784 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
785 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
786 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
c5f983f6 787 FIELD64(PML_ADDRESS, pml_address),
22bd0358
NHE
788 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
789 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
790 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
791 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
792 FIELD64(GUEST_PDPTR0, guest_pdptr0),
793 FIELD64(GUEST_PDPTR1, guest_pdptr1),
794 FIELD64(GUEST_PDPTR2, guest_pdptr2),
795 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 796 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
797 FIELD64(HOST_IA32_PAT, host_ia32_pat),
798 FIELD64(HOST_IA32_EFER, host_ia32_efer),
799 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
800 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
801 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
802 FIELD(EXCEPTION_BITMAP, exception_bitmap),
803 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
804 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
805 FIELD(CR3_TARGET_COUNT, cr3_target_count),
806 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
807 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
808 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
809 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
810 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
811 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
812 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
813 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
814 FIELD(TPR_THRESHOLD, tpr_threshold),
815 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
816 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
817 FIELD(VM_EXIT_REASON, vm_exit_reason),
818 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
819 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
820 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
821 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
822 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
823 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
824 FIELD(GUEST_ES_LIMIT, guest_es_limit),
825 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
826 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
827 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
828 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
829 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
830 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
831 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
832 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
833 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
834 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
835 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
836 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
837 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
838 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
839 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
840 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
841 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
842 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
843 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
844 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
845 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 846 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
847 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
848 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
849 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
850 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
851 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
852 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
853 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
854 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
855 FIELD(EXIT_QUALIFICATION, exit_qualification),
856 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
857 FIELD(GUEST_CR0, guest_cr0),
858 FIELD(GUEST_CR3, guest_cr3),
859 FIELD(GUEST_CR4, guest_cr4),
860 FIELD(GUEST_ES_BASE, guest_es_base),
861 FIELD(GUEST_CS_BASE, guest_cs_base),
862 FIELD(GUEST_SS_BASE, guest_ss_base),
863 FIELD(GUEST_DS_BASE, guest_ds_base),
864 FIELD(GUEST_FS_BASE, guest_fs_base),
865 FIELD(GUEST_GS_BASE, guest_gs_base),
866 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
867 FIELD(GUEST_TR_BASE, guest_tr_base),
868 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
869 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
870 FIELD(GUEST_DR7, guest_dr7),
871 FIELD(GUEST_RSP, guest_rsp),
872 FIELD(GUEST_RIP, guest_rip),
873 FIELD(GUEST_RFLAGS, guest_rflags),
874 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
875 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
876 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
877 FIELD(HOST_CR0, host_cr0),
878 FIELD(HOST_CR3, host_cr3),
879 FIELD(HOST_CR4, host_cr4),
880 FIELD(HOST_FS_BASE, host_fs_base),
881 FIELD(HOST_GS_BASE, host_gs_base),
882 FIELD(HOST_TR_BASE, host_tr_base),
883 FIELD(HOST_GDTR_BASE, host_gdtr_base),
884 FIELD(HOST_IDTR_BASE, host_idtr_base),
885 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
886 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
887 FIELD(HOST_RSP, host_rsp),
888 FIELD(HOST_RIP, host_rip),
889};
22bd0358
NHE
890
891static inline short vmcs_field_to_offset(unsigned long field)
892{
a2ae9df7
PB
893 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
894
895 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
896 vmcs_field_to_offset_table[field] == 0)
897 return -ENOENT;
898
22bd0358
NHE
899 return vmcs_field_to_offset_table[field];
900}
901
a9d30f33
NHE
902static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
903{
4f2777bc 904 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
905}
906
995f00a6 907static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
bfd0a56b 908static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
995f00a6 909static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
f53cd63c 910static bool vmx_xsaves_supported(void);
b246dd5d
OW
911static void vmx_set_segment(struct kvm_vcpu *vcpu,
912 struct kvm_segment *var, int seg);
913static void vmx_get_segment(struct kvm_vcpu *vcpu,
914 struct kvm_segment *var, int seg);
d99e4152
GN
915static bool guest_state_valid(struct kvm_vcpu *vcpu);
916static u32 vmx_segment_access_rights(struct kvm_segment *var);
16f5b903 917static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
b96fb439
PB
918static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
919static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
920static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
921 u16 error_code);
75880a01 922
6aa8b732
AK
923static DEFINE_PER_CPU(struct vmcs *, vmxarea);
924static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
925/*
926 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
927 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
928 */
929static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
6aa8b732 930
bf9f6ac8
FW
931/*
932 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
933 * can find which vCPU should be waken up.
934 */
935static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
936static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
937
23611332
RK
938enum {
939 VMX_IO_BITMAP_A,
940 VMX_IO_BITMAP_B,
941 VMX_MSR_BITMAP_LEGACY,
942 VMX_MSR_BITMAP_LONGMODE,
943 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
944 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
945 VMX_MSR_BITMAP_LEGACY_X2APIC,
946 VMX_MSR_BITMAP_LONGMODE_X2APIC,
947 VMX_VMREAD_BITMAP,
948 VMX_VMWRITE_BITMAP,
949 VMX_BITMAP_NR
950};
951
952static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
953
954#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
955#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
956#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
957#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
958#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
959#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
960#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
961#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
962#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
963#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 964
110312c8 965static bool cpu_has_load_ia32_efer;
8bf00a52 966static bool cpu_has_load_perf_global_ctrl;
110312c8 967
2384d2b3
SY
968static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
969static DEFINE_SPINLOCK(vmx_vpid_lock);
970
1c3d14fe 971static struct vmcs_config {
6aa8b732
AK
972 int size;
973 int order;
9ac7e3e8 974 u32 basic_cap;
6aa8b732 975 u32 revision_id;
1c3d14fe
YS
976 u32 pin_based_exec_ctrl;
977 u32 cpu_based_exec_ctrl;
f78e0e2e 978 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
979 u32 vmexit_ctrl;
980 u32 vmentry_ctrl;
981} vmcs_config;
6aa8b732 982
efff9e53 983static struct vmx_capability {
d56f546d
SY
984 u32 ept;
985 u32 vpid;
986} vmx_capability;
987
6aa8b732
AK
988#define VMX_SEGMENT_FIELD(seg) \
989 [VCPU_SREG_##seg] = { \
990 .selector = GUEST_##seg##_SELECTOR, \
991 .base = GUEST_##seg##_BASE, \
992 .limit = GUEST_##seg##_LIMIT, \
993 .ar_bytes = GUEST_##seg##_AR_BYTES, \
994 }
995
772e0318 996static const struct kvm_vmx_segment_field {
6aa8b732
AK
997 unsigned selector;
998 unsigned base;
999 unsigned limit;
1000 unsigned ar_bytes;
1001} kvm_vmx_segment_fields[] = {
1002 VMX_SEGMENT_FIELD(CS),
1003 VMX_SEGMENT_FIELD(DS),
1004 VMX_SEGMENT_FIELD(ES),
1005 VMX_SEGMENT_FIELD(FS),
1006 VMX_SEGMENT_FIELD(GS),
1007 VMX_SEGMENT_FIELD(SS),
1008 VMX_SEGMENT_FIELD(TR),
1009 VMX_SEGMENT_FIELD(LDTR),
1010};
1011
26bb0981
AK
1012static u64 host_efer;
1013
6de4f3ad
AK
1014static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1015
4d56c8a7 1016/*
8c06585d 1017 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1018 * away by decrementing the array size.
1019 */
6aa8b732 1020static const u32 vmx_msr_index[] = {
05b3e0c2 1021#ifdef CONFIG_X86_64
44ea2b17 1022 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1023#endif
8c06585d 1024 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1025};
6aa8b732 1026
5bb16016 1027static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1028{
1029 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1030 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1031 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1032}
1033
6f05485d
JK
1034static inline bool is_debug(u32 intr_info)
1035{
1036 return is_exception_n(intr_info, DB_VECTOR);
1037}
1038
1039static inline bool is_breakpoint(u32 intr_info)
1040{
1041 return is_exception_n(intr_info, BP_VECTOR);
1042}
1043
5bb16016
JK
1044static inline bool is_page_fault(u32 intr_info)
1045{
1046 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1047}
1048
31299944 1049static inline bool is_no_device(u32 intr_info)
2ab455cc 1050{
5bb16016 1051 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1052}
1053
31299944 1054static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1055{
5bb16016 1056 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1057}
1058
31299944 1059static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1060{
1061 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1062 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1063}
1064
31299944 1065static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1066{
1067 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1068 INTR_INFO_VALID_MASK)) ==
1069 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1070}
1071
31299944 1072static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1073{
04547156 1074 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1075}
1076
31299944 1077static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1078{
04547156 1079 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1080}
1081
35754c98 1082static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1083{
35754c98 1084 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1085}
1086
31299944 1087static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1088{
04547156
SY
1089 return vmcs_config.cpu_based_exec_ctrl &
1090 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1091}
1092
774ead3a 1093static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1094{
04547156
SY
1095 return vmcs_config.cpu_based_2nd_exec_ctrl &
1096 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1097}
1098
8d14695f
YZ
1099static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1100{
1101 return vmcs_config.cpu_based_2nd_exec_ctrl &
1102 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1103}
1104
83d4c286
YZ
1105static inline bool cpu_has_vmx_apic_register_virt(void)
1106{
1107 return vmcs_config.cpu_based_2nd_exec_ctrl &
1108 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1109}
1110
c7c9c56c
YZ
1111static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1112{
1113 return vmcs_config.cpu_based_2nd_exec_ctrl &
1114 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1115}
1116
64672c95
YJ
1117/*
1118 * Comment's format: document - errata name - stepping - processor name.
1119 * Refer from
1120 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1121 */
1122static u32 vmx_preemption_cpu_tfms[] = {
1123/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
11240x000206E6,
1125/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1126/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1127/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11280x00020652,
1129/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11300x00020655,
1131/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1132/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1133/*
1134 * 320767.pdf - AAP86 - B1 -
1135 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1136 */
11370x000106E5,
1138/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11390x000106A0,
1140/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11410x000106A1,
1142/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11430x000106A4,
1144 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1145 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1146 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11470x000106A5,
1148};
1149
1150static inline bool cpu_has_broken_vmx_preemption_timer(void)
1151{
1152 u32 eax = cpuid_eax(0x00000001), i;
1153
1154 /* Clear the reserved bits */
1155 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1156 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1157 if (eax == vmx_preemption_cpu_tfms[i])
1158 return true;
1159
1160 return false;
1161}
1162
1163static inline bool cpu_has_vmx_preemption_timer(void)
1164{
64672c95
YJ
1165 return vmcs_config.pin_based_exec_ctrl &
1166 PIN_BASED_VMX_PREEMPTION_TIMER;
1167}
1168
01e439be
YZ
1169static inline bool cpu_has_vmx_posted_intr(void)
1170{
d6a858d1
PB
1171 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1172 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1173}
1174
1175static inline bool cpu_has_vmx_apicv(void)
1176{
1177 return cpu_has_vmx_apic_register_virt() &&
1178 cpu_has_vmx_virtual_intr_delivery() &&
1179 cpu_has_vmx_posted_intr();
1180}
1181
04547156
SY
1182static inline bool cpu_has_vmx_flexpriority(void)
1183{
1184 return cpu_has_vmx_tpr_shadow() &&
1185 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1186}
1187
e799794e
MT
1188static inline bool cpu_has_vmx_ept_execute_only(void)
1189{
31299944 1190 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1191}
1192
e799794e
MT
1193static inline bool cpu_has_vmx_ept_2m_page(void)
1194{
31299944 1195 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1196}
1197
878403b7
SY
1198static inline bool cpu_has_vmx_ept_1g_page(void)
1199{
31299944 1200 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1201}
1202
4bc9b982
SY
1203static inline bool cpu_has_vmx_ept_4levels(void)
1204{
1205 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1206}
1207
42aa53b4
DH
1208static inline bool cpu_has_vmx_ept_mt_wb(void)
1209{
1210 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1211}
1212
855feb67
YZ
1213static inline bool cpu_has_vmx_ept_5levels(void)
1214{
1215 return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1216}
1217
83c3a331
XH
1218static inline bool cpu_has_vmx_ept_ad_bits(void)
1219{
1220 return vmx_capability.ept & VMX_EPT_AD_BIT;
1221}
1222
31299944 1223static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1224{
31299944 1225 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1226}
1227
31299944 1228static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1229{
31299944 1230 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1231}
1232
518c8aee
GJ
1233static inline bool cpu_has_vmx_invvpid_single(void)
1234{
1235 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1236}
1237
b9d762fa
GJ
1238static inline bool cpu_has_vmx_invvpid_global(void)
1239{
1240 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1241}
1242
08d839c4
WL
1243static inline bool cpu_has_vmx_invvpid(void)
1244{
1245 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1246}
1247
31299944 1248static inline bool cpu_has_vmx_ept(void)
d56f546d 1249{
04547156
SY
1250 return vmcs_config.cpu_based_2nd_exec_ctrl &
1251 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1252}
1253
31299944 1254static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1255{
1256 return vmcs_config.cpu_based_2nd_exec_ctrl &
1257 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1258}
1259
31299944 1260static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1261{
1262 return vmcs_config.cpu_based_2nd_exec_ctrl &
1263 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1264}
1265
9ac7e3e8
JD
1266static inline bool cpu_has_vmx_basic_inout(void)
1267{
1268 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1269}
1270
35754c98 1271static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1272{
35754c98 1273 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1274}
1275
31299944 1276static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1277{
04547156
SY
1278 return vmcs_config.cpu_based_2nd_exec_ctrl &
1279 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1280}
1281
31299944 1282static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1283{
1284 return vmcs_config.cpu_based_2nd_exec_ctrl &
1285 SECONDARY_EXEC_RDTSCP;
1286}
1287
ad756a16
MJ
1288static inline bool cpu_has_vmx_invpcid(void)
1289{
1290 return vmcs_config.cpu_based_2nd_exec_ctrl &
1291 SECONDARY_EXEC_ENABLE_INVPCID;
1292}
1293
f5f48ee1
SY
1294static inline bool cpu_has_vmx_wbinvd_exit(void)
1295{
1296 return vmcs_config.cpu_based_2nd_exec_ctrl &
1297 SECONDARY_EXEC_WBINVD_EXITING;
1298}
1299
abc4fc58
AG
1300static inline bool cpu_has_vmx_shadow_vmcs(void)
1301{
1302 u64 vmx_msr;
1303 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1304 /* check if the cpu supports writing r/o exit information fields */
1305 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1306 return false;
1307
1308 return vmcs_config.cpu_based_2nd_exec_ctrl &
1309 SECONDARY_EXEC_SHADOW_VMCS;
1310}
1311
843e4330
KH
1312static inline bool cpu_has_vmx_pml(void)
1313{
1314 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1315}
1316
64903d61
HZ
1317static inline bool cpu_has_vmx_tsc_scaling(void)
1318{
1319 return vmcs_config.cpu_based_2nd_exec_ctrl &
1320 SECONDARY_EXEC_TSC_SCALING;
1321}
1322
2a499e49
BD
1323static inline bool cpu_has_vmx_vmfunc(void)
1324{
1325 return vmcs_config.cpu_based_2nd_exec_ctrl &
1326 SECONDARY_EXEC_ENABLE_VMFUNC;
1327}
1328
04547156
SY
1329static inline bool report_flexpriority(void)
1330{
1331 return flexpriority_enabled;
1332}
1333
c7c2c709
JM
1334static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1335{
1336 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1337}
1338
fe3ef05c
NHE
1339static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1340{
1341 return vmcs12->cpu_based_vm_exec_control & bit;
1342}
1343
1344static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1345{
1346 return (vmcs12->cpu_based_vm_exec_control &
1347 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1348 (vmcs12->secondary_vm_exec_control & bit);
1349}
1350
f5c4368f 1351static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1352{
1353 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1354}
1355
f4124500
JK
1356static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1357{
1358 return vmcs12->pin_based_vm_exec_control &
1359 PIN_BASED_VMX_PREEMPTION_TIMER;
1360}
1361
155a97a3
NHE
1362static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1363{
1364 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1365}
1366
81dc01f7
WL
1367static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1368{
3db13480 1369 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
81dc01f7
WL
1370}
1371
c5f983f6
BD
1372static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1373{
1374 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1375}
1376
f2b93280
WV
1377static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1378{
1379 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1380}
1381
5c614b35
WL
1382static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1383{
1384 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1385}
1386
82f0dd4b
WV
1387static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1388{
1389 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1390}
1391
608406e2
WV
1392static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1393{
1394 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1395}
1396
705699a1
WV
1397static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1398{
1399 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1400}
1401
27c42a1b
BD
1402static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1403{
1404 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1405}
1406
41ab9372
BD
1407static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1408{
1409 return nested_cpu_has_vmfunc(vmcs12) &&
1410 (vmcs12->vm_function_control &
1411 VMX_VMFUNC_EPTP_SWITCHING);
1412}
1413
ef85b673 1414static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1415{
1416 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1417 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1418}
1419
533558bc
JK
1420static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1421 u32 exit_intr_info,
1422 unsigned long exit_qualification);
7c177938
NHE
1423static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1424 struct vmcs12 *vmcs12,
1425 u32 reason, unsigned long qualification);
1426
8b9cf98c 1427static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1428{
1429 int i;
1430
a2fa3e9f 1431 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1432 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1433 return i;
1434 return -1;
1435}
1436
2384d2b3
SY
1437static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1438{
1439 struct {
1440 u64 vpid : 16;
1441 u64 rsvd : 48;
1442 u64 gva;
1443 } operand = { vpid, 0, gva };
1444
4ecac3fd 1445 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1446 /* CF==1 or ZF==1 --> rc = -1 */
1447 "; ja 1f ; ud2 ; 1:"
1448 : : "a"(&operand), "c"(ext) : "cc", "memory");
1449}
1450
1439442c
SY
1451static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1452{
1453 struct {
1454 u64 eptp, gpa;
1455 } operand = {eptp, gpa};
1456
4ecac3fd 1457 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1458 /* CF==1 or ZF==1 --> rc = -1 */
1459 "; ja 1f ; ud2 ; 1:\n"
1460 : : "a" (&operand), "c" (ext) : "cc", "memory");
1461}
1462
26bb0981 1463static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1464{
1465 int i;
1466
8b9cf98c 1467 i = __find_msr_index(vmx, msr);
a75beee6 1468 if (i >= 0)
a2fa3e9f 1469 return &vmx->guest_msrs[i];
8b6d44c7 1470 return NULL;
7725f0ba
AK
1471}
1472
6aa8b732
AK
1473static void vmcs_clear(struct vmcs *vmcs)
1474{
1475 u64 phys_addr = __pa(vmcs);
1476 u8 error;
1477
4ecac3fd 1478 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1479 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1480 : "cc", "memory");
1481 if (error)
1482 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1483 vmcs, phys_addr);
1484}
1485
d462b819
NHE
1486static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1487{
1488 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1489 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1490 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1491 loaded_vmcs->cpu = -1;
1492 loaded_vmcs->launched = 0;
1493}
1494
7725b894
DX
1495static void vmcs_load(struct vmcs *vmcs)
1496{
1497 u64 phys_addr = __pa(vmcs);
1498 u8 error;
1499
1500 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1501 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1502 : "cc", "memory");
1503 if (error)
2844d849 1504 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1505 vmcs, phys_addr);
1506}
1507
2965faa5 1508#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1509/*
1510 * This bitmap is used to indicate whether the vmclear
1511 * operation is enabled on all cpus. All disabled by
1512 * default.
1513 */
1514static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1515
1516static inline void crash_enable_local_vmclear(int cpu)
1517{
1518 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1519}
1520
1521static inline void crash_disable_local_vmclear(int cpu)
1522{
1523 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1524}
1525
1526static inline int crash_local_vmclear_enabled(int cpu)
1527{
1528 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1529}
1530
1531static void crash_vmclear_local_loaded_vmcss(void)
1532{
1533 int cpu = raw_smp_processor_id();
1534 struct loaded_vmcs *v;
1535
1536 if (!crash_local_vmclear_enabled(cpu))
1537 return;
1538
1539 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1540 loaded_vmcss_on_cpu_link)
1541 vmcs_clear(v->vmcs);
1542}
1543#else
1544static inline void crash_enable_local_vmclear(int cpu) { }
1545static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1546#endif /* CONFIG_KEXEC_CORE */
8f536b76 1547
d462b819 1548static void __loaded_vmcs_clear(void *arg)
6aa8b732 1549{
d462b819 1550 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1551 int cpu = raw_smp_processor_id();
6aa8b732 1552
d462b819
NHE
1553 if (loaded_vmcs->cpu != cpu)
1554 return; /* vcpu migration can race with cpu offline */
1555 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1556 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1557 crash_disable_local_vmclear(cpu);
d462b819 1558 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1559
1560 /*
1561 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1562 * is before setting loaded_vmcs->vcpu to -1 which is done in
1563 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1564 * then adds the vmcs into percpu list before it is deleted.
1565 */
1566 smp_wmb();
1567
d462b819 1568 loaded_vmcs_init(loaded_vmcs);
8f536b76 1569 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1570}
1571
d462b819 1572static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1573{
e6c7d321
XG
1574 int cpu = loaded_vmcs->cpu;
1575
1576 if (cpu != -1)
1577 smp_call_function_single(cpu,
1578 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1579}
1580
dd5f5341 1581static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1582{
dd5f5341 1583 if (vpid == 0)
2384d2b3
SY
1584 return;
1585
518c8aee 1586 if (cpu_has_vmx_invvpid_single())
dd5f5341 1587 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1588}
1589
b9d762fa
GJ
1590static inline void vpid_sync_vcpu_global(void)
1591{
1592 if (cpu_has_vmx_invvpid_global())
1593 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1594}
1595
dd5f5341 1596static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1597{
1598 if (cpu_has_vmx_invvpid_single())
dd5f5341 1599 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1600 else
1601 vpid_sync_vcpu_global();
1602}
1603
1439442c
SY
1604static inline void ept_sync_global(void)
1605{
f5f51586 1606 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1439442c
SY
1607}
1608
1609static inline void ept_sync_context(u64 eptp)
1610{
0e1252dc
DH
1611 if (cpu_has_vmx_invept_context())
1612 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1613 else
1614 ept_sync_global();
1439442c
SY
1615}
1616
8a86aea9
PB
1617static __always_inline void vmcs_check16(unsigned long field)
1618{
1619 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1620 "16-bit accessor invalid for 64-bit field");
1621 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1622 "16-bit accessor invalid for 64-bit high field");
1623 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1624 "16-bit accessor invalid for 32-bit high field");
1625 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1626 "16-bit accessor invalid for natural width field");
1627}
1628
1629static __always_inline void vmcs_check32(unsigned long field)
1630{
1631 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1632 "32-bit accessor invalid for 16-bit field");
1633 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1634 "32-bit accessor invalid for natural width field");
1635}
1636
1637static __always_inline void vmcs_check64(unsigned long field)
1638{
1639 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1640 "64-bit accessor invalid for 16-bit field");
1641 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1642 "64-bit accessor invalid for 64-bit high field");
1643 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1644 "64-bit accessor invalid for 32-bit field");
1645 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1646 "64-bit accessor invalid for natural width field");
1647}
1648
1649static __always_inline void vmcs_checkl(unsigned long field)
1650{
1651 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1652 "Natural width accessor invalid for 16-bit field");
1653 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1654 "Natural width accessor invalid for 64-bit field");
1655 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1656 "Natural width accessor invalid for 64-bit high field");
1657 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1658 "Natural width accessor invalid for 32-bit field");
1659}
1660
1661static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1662{
5e520e62 1663 unsigned long value;
6aa8b732 1664
5e520e62
AK
1665 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1666 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1667 return value;
1668}
1669
96304217 1670static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1671{
8a86aea9
PB
1672 vmcs_check16(field);
1673 return __vmcs_readl(field);
6aa8b732
AK
1674}
1675
96304217 1676static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1677{
8a86aea9
PB
1678 vmcs_check32(field);
1679 return __vmcs_readl(field);
6aa8b732
AK
1680}
1681
96304217 1682static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1683{
8a86aea9 1684 vmcs_check64(field);
05b3e0c2 1685#ifdef CONFIG_X86_64
8a86aea9 1686 return __vmcs_readl(field);
6aa8b732 1687#else
8a86aea9 1688 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1689#endif
1690}
1691
8a86aea9
PB
1692static __always_inline unsigned long vmcs_readl(unsigned long field)
1693{
1694 vmcs_checkl(field);
1695 return __vmcs_readl(field);
1696}
1697
e52de1b8
AK
1698static noinline void vmwrite_error(unsigned long field, unsigned long value)
1699{
1700 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1701 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1702 dump_stack();
1703}
1704
8a86aea9 1705static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1706{
1707 u8 error;
1708
4ecac3fd 1709 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1710 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1711 if (unlikely(error))
1712 vmwrite_error(field, value);
6aa8b732
AK
1713}
1714
8a86aea9 1715static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1716{
8a86aea9
PB
1717 vmcs_check16(field);
1718 __vmcs_writel(field, value);
6aa8b732
AK
1719}
1720
8a86aea9 1721static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1722{
8a86aea9
PB
1723 vmcs_check32(field);
1724 __vmcs_writel(field, value);
6aa8b732
AK
1725}
1726
8a86aea9 1727static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1728{
8a86aea9
PB
1729 vmcs_check64(field);
1730 __vmcs_writel(field, value);
7682f2d0 1731#ifndef CONFIG_X86_64
6aa8b732 1732 asm volatile ("");
8a86aea9 1733 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1734#endif
1735}
1736
8a86aea9 1737static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1738{
8a86aea9
PB
1739 vmcs_checkl(field);
1740 __vmcs_writel(field, value);
2ab455cc
AL
1741}
1742
8a86aea9 1743static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1744{
8a86aea9
PB
1745 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1746 "vmcs_clear_bits does not support 64-bit fields");
1747 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1748}
1749
8a86aea9 1750static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1751{
8a86aea9
PB
1752 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1753 "vmcs_set_bits does not support 64-bit fields");
1754 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1755}
1756
8391ce44
PB
1757static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1758{
1759 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1760}
1761
2961e876
GN
1762static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1763{
1764 vmcs_write32(VM_ENTRY_CONTROLS, val);
1765 vmx->vm_entry_controls_shadow = val;
1766}
1767
1768static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1769{
1770 if (vmx->vm_entry_controls_shadow != val)
1771 vm_entry_controls_init(vmx, val);
1772}
1773
1774static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1775{
1776 return vmx->vm_entry_controls_shadow;
1777}
1778
1779
1780static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1781{
1782 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1783}
1784
1785static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1786{
1787 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1788}
1789
8391ce44
PB
1790static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1791{
1792 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1793}
1794
2961e876
GN
1795static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1796{
1797 vmcs_write32(VM_EXIT_CONTROLS, val);
1798 vmx->vm_exit_controls_shadow = val;
1799}
1800
1801static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1802{
1803 if (vmx->vm_exit_controls_shadow != val)
1804 vm_exit_controls_init(vmx, val);
1805}
1806
1807static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1808{
1809 return vmx->vm_exit_controls_shadow;
1810}
1811
1812
1813static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1814{
1815 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1816}
1817
1818static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1819{
1820 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1821}
1822
2fb92db1
AK
1823static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1824{
1825 vmx->segment_cache.bitmask = 0;
1826}
1827
1828static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1829 unsigned field)
1830{
1831 bool ret;
1832 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1833
1834 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1835 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1836 vmx->segment_cache.bitmask = 0;
1837 }
1838 ret = vmx->segment_cache.bitmask & mask;
1839 vmx->segment_cache.bitmask |= mask;
1840 return ret;
1841}
1842
1843static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1844{
1845 u16 *p = &vmx->segment_cache.seg[seg].selector;
1846
1847 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1848 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1849 return *p;
1850}
1851
1852static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1853{
1854 ulong *p = &vmx->segment_cache.seg[seg].base;
1855
1856 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1857 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1858 return *p;
1859}
1860
1861static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1862{
1863 u32 *p = &vmx->segment_cache.seg[seg].limit;
1864
1865 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1866 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1867 return *p;
1868}
1869
1870static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1871{
1872 u32 *p = &vmx->segment_cache.seg[seg].ar;
1873
1874 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1875 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1876 return *p;
1877}
1878
abd3f2d6
AK
1879static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1880{
1881 u32 eb;
1882
fd7373cc 1883 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 1884 (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1885 if ((vcpu->guest_debug &
1886 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1887 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1888 eb |= 1u << BP_VECTOR;
7ffd92c5 1889 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1890 eb = ~0;
089d034e 1891 if (enable_ept)
1439442c 1892 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
1893
1894 /* When we are running a nested L2 guest and L1 specified for it a
1895 * certain exception bitmap, we must trap the same exceptions and pass
1896 * them to L1. When running L2, we will only handle the exceptions
1897 * specified above if L1 did not want them.
1898 */
1899 if (is_guest_mode(vcpu))
1900 eb |= get_vmcs12(vcpu)->exception_bitmap;
1901
abd3f2d6
AK
1902 vmcs_write32(EXCEPTION_BITMAP, eb);
1903}
1904
2961e876
GN
1905static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1906 unsigned long entry, unsigned long exit)
8bf00a52 1907{
2961e876
GN
1908 vm_entry_controls_clearbit(vmx, entry);
1909 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1910}
1911
61d2ef2c
AK
1912static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1913{
1914 unsigned i;
1915 struct msr_autoload *m = &vmx->msr_autoload;
1916
8bf00a52
GN
1917 switch (msr) {
1918 case MSR_EFER:
1919 if (cpu_has_load_ia32_efer) {
2961e876
GN
1920 clear_atomic_switch_msr_special(vmx,
1921 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1922 VM_EXIT_LOAD_IA32_EFER);
1923 return;
1924 }
1925 break;
1926 case MSR_CORE_PERF_GLOBAL_CTRL:
1927 if (cpu_has_load_perf_global_ctrl) {
2961e876 1928 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1929 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1930 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1931 return;
1932 }
1933 break;
110312c8
AK
1934 }
1935
61d2ef2c
AK
1936 for (i = 0; i < m->nr; ++i)
1937 if (m->guest[i].index == msr)
1938 break;
1939
1940 if (i == m->nr)
1941 return;
1942 --m->nr;
1943 m->guest[i] = m->guest[m->nr];
1944 m->host[i] = m->host[m->nr];
1945 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1946 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1947}
1948
2961e876
GN
1949static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1950 unsigned long entry, unsigned long exit,
1951 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1952 u64 guest_val, u64 host_val)
8bf00a52
GN
1953{
1954 vmcs_write64(guest_val_vmcs, guest_val);
1955 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1956 vm_entry_controls_setbit(vmx, entry);
1957 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1958}
1959
61d2ef2c
AK
1960static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1961 u64 guest_val, u64 host_val)
1962{
1963 unsigned i;
1964 struct msr_autoload *m = &vmx->msr_autoload;
1965
8bf00a52
GN
1966 switch (msr) {
1967 case MSR_EFER:
1968 if (cpu_has_load_ia32_efer) {
2961e876
GN
1969 add_atomic_switch_msr_special(vmx,
1970 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1971 VM_EXIT_LOAD_IA32_EFER,
1972 GUEST_IA32_EFER,
1973 HOST_IA32_EFER,
1974 guest_val, host_val);
1975 return;
1976 }
1977 break;
1978 case MSR_CORE_PERF_GLOBAL_CTRL:
1979 if (cpu_has_load_perf_global_ctrl) {
2961e876 1980 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1981 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1982 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1983 GUEST_IA32_PERF_GLOBAL_CTRL,
1984 HOST_IA32_PERF_GLOBAL_CTRL,
1985 guest_val, host_val);
1986 return;
1987 }
1988 break;
7099e2e1
RK
1989 case MSR_IA32_PEBS_ENABLE:
1990 /* PEBS needs a quiescent period after being disabled (to write
1991 * a record). Disabling PEBS through VMX MSR swapping doesn't
1992 * provide that period, so a CPU could write host's record into
1993 * guest's memory.
1994 */
1995 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1996 }
1997
61d2ef2c
AK
1998 for (i = 0; i < m->nr; ++i)
1999 if (m->guest[i].index == msr)
2000 break;
2001
e7fc6f93 2002 if (i == NR_AUTOLOAD_MSRS) {
60266204 2003 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
2004 "Can't add msr %x\n", msr);
2005 return;
2006 } else if (i == m->nr) {
61d2ef2c
AK
2007 ++m->nr;
2008 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2009 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2010 }
2011
2012 m->guest[i].index = msr;
2013 m->guest[i].value = guest_val;
2014 m->host[i].index = msr;
2015 m->host[i].value = host_val;
2016}
2017
92c0d900 2018static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2019{
844a5fe2
PB
2020 u64 guest_efer = vmx->vcpu.arch.efer;
2021 u64 ignore_bits = 0;
2022
2023 if (!enable_ept) {
2024 /*
2025 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2026 * host CPUID is more efficient than testing guest CPUID
2027 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2028 */
2029 if (boot_cpu_has(X86_FEATURE_SMEP))
2030 guest_efer |= EFER_NX;
2031 else if (!(guest_efer & EFER_NX))
2032 ignore_bits |= EFER_NX;
2033 }
3a34a881 2034
51c6cf66 2035 /*
844a5fe2 2036 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2037 */
844a5fe2 2038 ignore_bits |= EFER_SCE;
51c6cf66
AK
2039#ifdef CONFIG_X86_64
2040 ignore_bits |= EFER_LMA | EFER_LME;
2041 /* SCE is meaningful only in long mode on Intel */
2042 if (guest_efer & EFER_LMA)
2043 ignore_bits &= ~(u64)EFER_SCE;
2044#endif
84ad33ef
AK
2045
2046 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2047
2048 /*
2049 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2050 * On CPUs that support "load IA32_EFER", always switch EFER
2051 * atomically, since it's faster than switching it manually.
2052 */
2053 if (cpu_has_load_ia32_efer ||
2054 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2055 if (!(guest_efer & EFER_LMA))
2056 guest_efer &= ~EFER_LME;
54b98bff
AL
2057 if (guest_efer != host_efer)
2058 add_atomic_switch_msr(vmx, MSR_EFER,
2059 guest_efer, host_efer);
84ad33ef 2060 return false;
844a5fe2
PB
2061 } else {
2062 guest_efer &= ~ignore_bits;
2063 guest_efer |= host_efer & ignore_bits;
2064
2065 vmx->guest_msrs[efer_offset].data = guest_efer;
2066 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2067
844a5fe2
PB
2068 return true;
2069 }
51c6cf66
AK
2070}
2071
e28baead
AL
2072#ifdef CONFIG_X86_32
2073/*
2074 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2075 * VMCS rather than the segment table. KVM uses this helper to figure
2076 * out the current bases to poke them into the VMCS before entry.
2077 */
2d49ec72
GN
2078static unsigned long segment_base(u16 selector)
2079{
8c2e41f7 2080 struct desc_struct *table;
2d49ec72
GN
2081 unsigned long v;
2082
8c2e41f7 2083 if (!(selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2084 return 0;
2085
45fc8757 2086 table = get_current_gdt_ro();
2d49ec72 2087
8c2e41f7 2088 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2d49ec72
GN
2089 u16 ldt_selector = kvm_read_ldt();
2090
8c2e41f7 2091 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2092 return 0;
2093
8c2e41f7 2094 table = (struct desc_struct *)segment_base(ldt_selector);
2d49ec72 2095 }
8c2e41f7 2096 v = get_desc_base(&table[selector >> 3]);
2d49ec72
GN
2097 return v;
2098}
e28baead 2099#endif
2d49ec72 2100
04d2cc77 2101static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2102{
04d2cc77 2103 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2104 int i;
04d2cc77 2105
a2fa3e9f 2106 if (vmx->host_state.loaded)
33ed6329
AK
2107 return;
2108
a2fa3e9f 2109 vmx->host_state.loaded = 1;
33ed6329
AK
2110 /*
2111 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2112 * allow segment selectors with cpl > 0 or ti == 1.
2113 */
d6e88aec 2114 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2115 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2116 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2117 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2118 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2119 vmx->host_state.fs_reload_needed = 0;
2120 } else {
33ed6329 2121 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2122 vmx->host_state.fs_reload_needed = 1;
33ed6329 2123 }
9581d442 2124 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2125 if (!(vmx->host_state.gs_sel & 7))
2126 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2127 else {
2128 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2129 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2130 }
2131
b2da15ac
AK
2132#ifdef CONFIG_X86_64
2133 savesegment(ds, vmx->host_state.ds_sel);
2134 savesegment(es, vmx->host_state.es_sel);
2135#endif
2136
33ed6329
AK
2137#ifdef CONFIG_X86_64
2138 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2139 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2140#else
a2fa3e9f
GH
2141 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2142 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2143#endif
707c0874
AK
2144
2145#ifdef CONFIG_X86_64
c8770e7b
AK
2146 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2147 if (is_long_mode(&vmx->vcpu))
44ea2b17 2148 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2149#endif
da8999d3
LJ
2150 if (boot_cpu_has(X86_FEATURE_MPX))
2151 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2152 for (i = 0; i < vmx->save_nmsrs; ++i)
2153 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2154 vmx->guest_msrs[i].data,
2155 vmx->guest_msrs[i].mask);
33ed6329
AK
2156}
2157
a9b21b62 2158static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2159{
a2fa3e9f 2160 if (!vmx->host_state.loaded)
33ed6329
AK
2161 return;
2162
e1beb1d3 2163 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2164 vmx->host_state.loaded = 0;
c8770e7b
AK
2165#ifdef CONFIG_X86_64
2166 if (is_long_mode(&vmx->vcpu))
2167 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2168#endif
152d3f2f 2169 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2170 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2171#ifdef CONFIG_X86_64
9581d442 2172 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2173#else
2174 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2175#endif
33ed6329 2176 }
0a77fe4c
AK
2177 if (vmx->host_state.fs_reload_needed)
2178 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2179#ifdef CONFIG_X86_64
2180 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2181 loadsegment(ds, vmx->host_state.ds_sel);
2182 loadsegment(es, vmx->host_state.es_sel);
2183 }
b2da15ac 2184#endif
b7ffc44d 2185 invalidate_tss_limit();
44ea2b17 2186#ifdef CONFIG_X86_64
c8770e7b 2187 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2188#endif
da8999d3
LJ
2189 if (vmx->host_state.msr_host_bndcfgs)
2190 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
45fc8757 2191 load_fixmap_gdt(raw_smp_processor_id());
33ed6329
AK
2192}
2193
a9b21b62
AK
2194static void vmx_load_host_state(struct vcpu_vmx *vmx)
2195{
2196 preempt_disable();
2197 __vmx_load_host_state(vmx);
2198 preempt_enable();
2199}
2200
28b835d6
FW
2201static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2202{
2203 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2204 struct pi_desc old, new;
2205 unsigned int dest;
2206
31afb2ea
PB
2207 /*
2208 * In case of hot-plug or hot-unplug, we may have to undo
2209 * vmx_vcpu_pi_put even if there is no assigned device. And we
2210 * always keep PI.NDST up to date for simplicity: it makes the
2211 * code easier, and CPU migration is not a fast path.
2212 */
2213 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
28b835d6
FW
2214 return;
2215
31afb2ea
PB
2216 /*
2217 * First handle the simple case where no cmpxchg is necessary; just
2218 * allow posting non-urgent interrupts.
2219 *
2220 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2221 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2222 * expects the VCPU to be on the blocked_vcpu_list that matches
2223 * PI.NDST.
2224 */
2225 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2226 vcpu->cpu == cpu) {
2227 pi_clear_sn(pi_desc);
28b835d6 2228 return;
31afb2ea 2229 }
28b835d6 2230
31afb2ea 2231 /* The full case. */
28b835d6
FW
2232 do {
2233 old.control = new.control = pi_desc->control;
2234
31afb2ea 2235 dest = cpu_physical_id(cpu);
28b835d6 2236
31afb2ea
PB
2237 if (x2apic_enabled())
2238 new.ndst = dest;
2239 else
2240 new.ndst = (dest << 8) & 0xFF00;
28b835d6 2241
28b835d6 2242 new.sn = 0;
c0a1666b
PB
2243 } while (cmpxchg64(&pi_desc->control, old.control,
2244 new.control) != old.control);
28b835d6 2245}
1be0e61c 2246
c95ba92a
PF
2247static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2248{
2249 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2250 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2251}
2252
6aa8b732
AK
2253/*
2254 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2255 * vcpu mutex is already taken.
2256 */
15ad7146 2257static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2258{
a2fa3e9f 2259 struct vcpu_vmx *vmx = to_vmx(vcpu);
b80c76ec 2260 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2261
b80c76ec 2262 if (!already_loaded) {
fe0e80be 2263 loaded_vmcs_clear(vmx->loaded_vmcs);
92fe13be 2264 local_irq_disable();
8f536b76 2265 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2266
2267 /*
2268 * Read loaded_vmcs->cpu should be before fetching
2269 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2270 * See the comments in __loaded_vmcs_clear().
2271 */
2272 smp_rmb();
2273
d462b819
NHE
2274 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2275 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2276 crash_enable_local_vmclear(cpu);
92fe13be 2277 local_irq_enable();
b80c76ec
JM
2278 }
2279
2280 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2281 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2282 vmcs_load(vmx->loaded_vmcs->vmcs);
2283 }
2284
2285 if (!already_loaded) {
59c58ceb 2286 void *gdt = get_current_gdt_ro();
b80c76ec
JM
2287 unsigned long sysenter_esp;
2288
2289 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2290
6aa8b732
AK
2291 /*
2292 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2293 * processors. See 22.2.4.
6aa8b732 2294 */
e0c23063
AL
2295 vmcs_writel(HOST_TR_BASE,
2296 (unsigned long)this_cpu_ptr(&cpu_tss));
59c58ceb 2297 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
6aa8b732 2298
b7ffc44d
AL
2299 /*
2300 * VM exits change the host TR limit to 0x67 after a VM
2301 * exit. This is okay, since 0x67 covers everything except
2302 * the IO bitmap and have have code to handle the IO bitmap
2303 * being lost after a VM exit.
2304 */
2305 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2306
6aa8b732
AK
2307 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2308 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2309
d462b819 2310 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2311 }
28b835d6 2312
2680d6da
OH
2313 /* Setup TSC multiplier */
2314 if (kvm_has_tsc_control &&
c95ba92a
PF
2315 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2316 decache_tsc_multiplier(vmx);
2680d6da 2317
28b835d6 2318 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2319 vmx->host_pkru = read_pkru();
28b835d6
FW
2320}
2321
2322static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2323{
2324 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2325
2326 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2327 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2328 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2329 return;
2330
2331 /* Set SN when the vCPU is preempted */
2332 if (vcpu->preempted)
2333 pi_set_sn(pi_desc);
6aa8b732
AK
2334}
2335
2336static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2337{
28b835d6
FW
2338 vmx_vcpu_pi_put(vcpu);
2339
a9b21b62 2340 __vmx_load_host_state(to_vmx(vcpu));
6aa8b732
AK
2341}
2342
f244deed
WL
2343static bool emulation_required(struct kvm_vcpu *vcpu)
2344{
2345 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2346}
2347
edcafe3c
AK
2348static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2349
fe3ef05c
NHE
2350/*
2351 * Return the cr0 value that a nested guest would read. This is a combination
2352 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2353 * its hypervisor (cr0_read_shadow).
2354 */
2355static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2356{
2357 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2358 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2359}
2360static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2361{
2362 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2363 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2364}
2365
6aa8b732
AK
2366static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2367{
78ac8b47 2368 unsigned long rflags, save_rflags;
345dcaa8 2369
6de12732
AK
2370 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2371 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2372 rflags = vmcs_readl(GUEST_RFLAGS);
2373 if (to_vmx(vcpu)->rmode.vm86_active) {
2374 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2375 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2376 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2377 }
2378 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2379 }
6de12732 2380 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2381}
2382
2383static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2384{
f244deed
WL
2385 unsigned long old_rflags = vmx_get_rflags(vcpu);
2386
6de12732
AK
2387 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2388 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2389 if (to_vmx(vcpu)->rmode.vm86_active) {
2390 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2391 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2392 }
6aa8b732 2393 vmcs_writel(GUEST_RFLAGS, rflags);
f244deed
WL
2394
2395 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2396 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
6aa8b732
AK
2397}
2398
37ccdcbe 2399static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2400{
2401 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2402 int ret = 0;
2403
2404 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2405 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2406 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2407 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2408
37ccdcbe 2409 return ret;
2809f5d2
GC
2410}
2411
2412static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2413{
2414 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2415 u32 interruptibility = interruptibility_old;
2416
2417 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2418
48005f64 2419 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2420 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2421 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2422 interruptibility |= GUEST_INTR_STATE_STI;
2423
2424 if ((interruptibility != interruptibility_old))
2425 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2426}
2427
6aa8b732
AK
2428static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2429{
2430 unsigned long rip;
6aa8b732 2431
5fdbf976 2432 rip = kvm_rip_read(vcpu);
6aa8b732 2433 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2434 kvm_rip_write(vcpu, rip);
6aa8b732 2435
2809f5d2
GC
2436 /* skipping an emulated instruction also counts */
2437 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2438}
2439
b96fb439
PB
2440static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2441 unsigned long exit_qual)
2442{
2443 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2444 unsigned int nr = vcpu->arch.exception.nr;
2445 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2446
2447 if (vcpu->arch.exception.has_error_code) {
2448 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2449 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2450 }
2451
2452 if (kvm_exception_is_soft(nr))
2453 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2454 else
2455 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2456
2457 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2458 vmx_get_nmi_mask(vcpu))
2459 intr_info |= INTR_INFO_UNBLOCK_NMI;
2460
2461 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2462}
2463
0b6ac343
NHE
2464/*
2465 * KVM wants to inject page-faults which it got to the guest. This function
2466 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2467 */
bfcf83b1 2468static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
0b6ac343
NHE
2469{
2470 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
adfe20fb 2471 unsigned int nr = vcpu->arch.exception.nr;
0b6ac343 2472
b96fb439
PB
2473 if (nr == PF_VECTOR) {
2474 if (vcpu->arch.exception.nested_apf) {
bfcf83b1 2475 *exit_qual = vcpu->arch.apf.nested_apf_token;
b96fb439
PB
2476 return 1;
2477 }
2478 /*
2479 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2480 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2481 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2482 * can be written only when inject_pending_event runs. This should be
2483 * conditional on a new capability---if the capability is disabled,
2484 * kvm_multiple_exception would write the ancillary information to
2485 * CR2 or DR6, for backwards ABI-compatibility.
2486 */
2487 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2488 vcpu->arch.exception.error_code)) {
bfcf83b1 2489 *exit_qual = vcpu->arch.cr2;
b96fb439
PB
2490 return 1;
2491 }
2492 } else {
b96fb439 2493 if (vmcs12->exception_bitmap & (1u << nr)) {
bfcf83b1
WL
2494 if (nr == DB_VECTOR)
2495 *exit_qual = vcpu->arch.dr6;
2496 else
2497 *exit_qual = 0;
b96fb439
PB
2498 return 1;
2499 }
adfe20fb
WL
2500 }
2501
b96fb439 2502 return 0;
0b6ac343
NHE
2503}
2504
cfcd20e5 2505static void vmx_queue_exception(struct kvm_vcpu *vcpu)
298101da 2506{
77ab6db0 2507 struct vcpu_vmx *vmx = to_vmx(vcpu);
cfcd20e5
WL
2508 unsigned nr = vcpu->arch.exception.nr;
2509 bool has_error_code = vcpu->arch.exception.has_error_code;
cfcd20e5 2510 u32 error_code = vcpu->arch.exception.error_code;
8ab2d2e2 2511 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2512
8ab2d2e2 2513 if (has_error_code) {
77ab6db0 2514 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2515 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2516 }
77ab6db0 2517
7ffd92c5 2518 if (vmx->rmode.vm86_active) {
71f9833b
SH
2519 int inc_eip = 0;
2520 if (kvm_exception_is_soft(nr))
2521 inc_eip = vcpu->arch.event_exit_inst_len;
2522 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2523 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2524 return;
2525 }
2526
66fd3f7f
GN
2527 if (kvm_exception_is_soft(nr)) {
2528 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2529 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2530 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2531 } else
2532 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2533
2534 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2535}
2536
4e47c7a6
SY
2537static bool vmx_rdtscp_supported(void)
2538{
2539 return cpu_has_vmx_rdtscp();
2540}
2541
ad756a16
MJ
2542static bool vmx_invpcid_supported(void)
2543{
2544 return cpu_has_vmx_invpcid() && enable_ept;
2545}
2546
a75beee6
ED
2547/*
2548 * Swap MSR entry in host/guest MSR entry array.
2549 */
8b9cf98c 2550static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2551{
26bb0981 2552 struct shared_msr_entry tmp;
a2fa3e9f
GH
2553
2554 tmp = vmx->guest_msrs[to];
2555 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2556 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2557}
2558
8d14695f
YZ
2559static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2560{
2561 unsigned long *msr_bitmap;
2562
670125bd 2563 if (is_guest_mode(vcpu))
d048c098 2564 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
3ce424e4
RK
2565 else if (cpu_has_secondary_exec_ctrls() &&
2566 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2567 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
f6e90f9e
WL
2568 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2569 if (is_long_mode(vcpu))
c63e4563 2570 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
f6e90f9e 2571 else
c63e4563 2572 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
f6e90f9e
WL
2573 } else {
2574 if (is_long_mode(vcpu))
c63e4563 2575 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
f6e90f9e 2576 else
c63e4563 2577 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
f6e90f9e 2578 }
8d14695f
YZ
2579 } else {
2580 if (is_long_mode(vcpu))
2581 msr_bitmap = vmx_msr_bitmap_longmode;
2582 else
2583 msr_bitmap = vmx_msr_bitmap_legacy;
2584 }
2585
2586 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2587}
2588
e38aea3e
AK
2589/*
2590 * Set up the vmcs to automatically save and restore system
2591 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2592 * mode, as fiddling with msrs is very expensive.
2593 */
8b9cf98c 2594static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2595{
26bb0981 2596 int save_nmsrs, index;
e38aea3e 2597
a75beee6
ED
2598 save_nmsrs = 0;
2599#ifdef CONFIG_X86_64
8b9cf98c 2600 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2601 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2602 if (index >= 0)
8b9cf98c
RR
2603 move_msr_up(vmx, index, save_nmsrs++);
2604 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2605 if (index >= 0)
8b9cf98c
RR
2606 move_msr_up(vmx, index, save_nmsrs++);
2607 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2608 if (index >= 0)
8b9cf98c 2609 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2610 index = __find_msr_index(vmx, MSR_TSC_AUX);
d6321d49 2611 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
4e47c7a6 2612 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2613 /*
8c06585d 2614 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2615 * if efer.sce is enabled.
2616 */
8c06585d 2617 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2618 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2619 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2620 }
2621#endif
92c0d900
AK
2622 index = __find_msr_index(vmx, MSR_EFER);
2623 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2624 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2625
26bb0981 2626 vmx->save_nmsrs = save_nmsrs;
5897297b 2627
8d14695f
YZ
2628 if (cpu_has_vmx_msr_bitmap())
2629 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2630}
2631
6aa8b732
AK
2632/*
2633 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2634 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2635 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2636 */
be7b263e 2637static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2638{
2639 u64 host_tsc, tsc_offset;
2640
4ea1636b 2641 host_tsc = rdtsc();
6aa8b732 2642 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2643 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2644}
2645
2646/*
99e3e30a 2647 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2648 */
99e3e30a 2649static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2650{
27fc51b2 2651 if (is_guest_mode(vcpu)) {
7991825b 2652 /*
27fc51b2
NHE
2653 * We're here if L1 chose not to trap WRMSR to TSC. According
2654 * to the spec, this should set L1's TSC; The offset that L1
2655 * set for L2 remains unchanged, and still needs to be added
2656 * to the newly set TSC to get L2's TSC.
7991825b 2657 */
27fc51b2 2658 struct vmcs12 *vmcs12;
27fc51b2
NHE
2659 /* recalculate vmcs02.TSC_OFFSET: */
2660 vmcs12 = get_vmcs12(vcpu);
2661 vmcs_write64(TSC_OFFSET, offset +
2662 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2663 vmcs12->tsc_offset : 0));
2664 } else {
489223ed
YY
2665 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2666 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2667 vmcs_write64(TSC_OFFSET, offset);
2668 }
6aa8b732
AK
2669}
2670
801d3424
NHE
2671/*
2672 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2673 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2674 * all guests if the "nested" module option is off, and can also be disabled
2675 * for a single guest by disabling its VMX cpuid bit.
2676 */
2677static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2678{
d6321d49 2679 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
801d3424
NHE
2680}
2681
b87a51ae
NHE
2682/*
2683 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2684 * returned for the various VMX controls MSRs when nested VMX is enabled.
2685 * The same values should also be used to verify that vmcs12 control fields are
2686 * valid during nested entry from L1 to L2.
2687 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2688 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2689 * bit in the high half is on if the corresponding bit in the control field
2690 * may be on. See also vmx_control_verify().
b87a51ae 2691 */
b9c237bb 2692static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2693{
2694 /*
2695 * Note that as a general rule, the high half of the MSRs (bits in
2696 * the control fields which may be 1) should be initialized by the
2697 * intersection of the underlying hardware's MSR (i.e., features which
2698 * can be supported) and the list of features we want to expose -
2699 * because they are known to be properly supported in our code.
2700 * Also, usually, the low half of the MSRs (bits which must be 1) can
2701 * be set to 0, meaning that L1 may turn off any of these bits. The
2702 * reason is that if one of these bits is necessary, it will appear
2703 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2704 * fields of vmcs01 and vmcs02, will turn these bits off - and
7313c698 2705 * nested_vmx_exit_reflected() will not pass related exits to L1.
b87a51ae
NHE
2706 * These rules have exceptions below.
2707 */
2708
2709 /* pin-based controls */
eabeaacc 2710 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2711 vmx->nested.nested_vmx_pinbased_ctls_low,
2712 vmx->nested.nested_vmx_pinbased_ctls_high);
2713 vmx->nested.nested_vmx_pinbased_ctls_low |=
2714 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2715 vmx->nested.nested_vmx_pinbased_ctls_high &=
2716 PIN_BASED_EXT_INTR_MASK |
2717 PIN_BASED_NMI_EXITING |
2718 PIN_BASED_VIRTUAL_NMIS;
2719 vmx->nested.nested_vmx_pinbased_ctls_high |=
2720 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2721 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2722 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2723 vmx->nested.nested_vmx_pinbased_ctls_high |=
2724 PIN_BASED_POSTED_INTR;
b87a51ae 2725
3dbcd8da 2726 /* exit controls */
c0dfee58 2727 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2728 vmx->nested.nested_vmx_exit_ctls_low,
2729 vmx->nested.nested_vmx_exit_ctls_high);
2730 vmx->nested.nested_vmx_exit_ctls_low =
2731 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2732
b9c237bb 2733 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2734#ifdef CONFIG_X86_64
c0dfee58 2735 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2736#endif
f4124500 2737 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2738 vmx->nested.nested_vmx_exit_ctls_high |=
2739 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2740 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2741 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2742
a87036ad 2743 if (kvm_mpx_supported())
b9c237bb 2744 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2745
2996fca0 2746 /* We support free control of debug control saving. */
0115f9cb 2747 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2748
b87a51ae
NHE
2749 /* entry controls */
2750 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2751 vmx->nested.nested_vmx_entry_ctls_low,
2752 vmx->nested.nested_vmx_entry_ctls_high);
2753 vmx->nested.nested_vmx_entry_ctls_low =
2754 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2755 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2756#ifdef CONFIG_X86_64
2757 VM_ENTRY_IA32E_MODE |
2758#endif
2759 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2760 vmx->nested.nested_vmx_entry_ctls_high |=
2761 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2762 if (kvm_mpx_supported())
b9c237bb 2763 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2764
2996fca0 2765 /* We support free control of debug control loading. */
0115f9cb 2766 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 2767
b87a51ae
NHE
2768 /* cpu-based controls */
2769 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2770 vmx->nested.nested_vmx_procbased_ctls_low,
2771 vmx->nested.nested_vmx_procbased_ctls_high);
2772 vmx->nested.nested_vmx_procbased_ctls_low =
2773 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2774 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2775 CPU_BASED_VIRTUAL_INTR_PENDING |
2776 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2777 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2778 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2779 CPU_BASED_CR3_STORE_EXITING |
2780#ifdef CONFIG_X86_64
2781 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2782#endif
2783 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2784 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2785 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2786 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2787 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2788 /*
2789 * We can allow some features even when not supported by the
2790 * hardware. For example, L1 can specify an MSR bitmap - and we
2791 * can use it to avoid exits to L1 - even when L0 runs L2
2792 * without MSR bitmaps.
2793 */
b9c237bb
WV
2794 vmx->nested.nested_vmx_procbased_ctls_high |=
2795 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2796 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2797
3dcdf3ec 2798 /* We support free control of CR3 access interception. */
0115f9cb 2799 vmx->nested.nested_vmx_procbased_ctls_low &=
3dcdf3ec
JK
2800 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2801
80154d77
PB
2802 /*
2803 * secondary cpu-based controls. Do not include those that
2804 * depend on CPUID bits, they are added later by vmx_cpuid_update.
2805 */
b87a51ae 2806 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2807 vmx->nested.nested_vmx_secondary_ctls_low,
2808 vmx->nested.nested_vmx_secondary_ctls_high);
2809 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2810 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2811 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1b07304c 2812 SECONDARY_EXEC_DESC |
f2b93280 2813 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 2814 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2815 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3db13480 2816 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2 2817
afa61f75
NHE
2818 if (enable_ept) {
2819 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2820 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2821 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2822 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
7db74265 2823 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
02120c45
BD
2824 if (cpu_has_vmx_ept_execute_only())
2825 vmx->nested.nested_vmx_ept_caps |=
2826 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2827 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817 2828 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7db74265
PB
2829 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2830 VMX_EPT_1GB_PAGE_BIT;
03efce6f
BD
2831 if (enable_ept_ad_bits) {
2832 vmx->nested.nested_vmx_secondary_ctls_high |=
2833 SECONDARY_EXEC_ENABLE_PML;
7461fbc4 2834 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
03efce6f 2835 }
1c13bffd 2836 }
afa61f75 2837
27c42a1b
BD
2838 if (cpu_has_vmx_vmfunc()) {
2839 vmx->nested.nested_vmx_secondary_ctls_high |=
2840 SECONDARY_EXEC_ENABLE_VMFUNC;
41ab9372
BD
2841 /*
2842 * Advertise EPTP switching unconditionally
2843 * since we emulate it
2844 */
575b3a2c
WL
2845 if (enable_ept)
2846 vmx->nested.nested_vmx_vmfunc_controls =
2847 VMX_VMFUNC_EPTP_SWITCHING;
27c42a1b
BD
2848 }
2849
ef697a71
PB
2850 /*
2851 * Old versions of KVM use the single-context version without
2852 * checking for support, so declare that it is supported even
2853 * though it is treated as global context. The alternative is
2854 * not failing the single-context invvpid, and it is worse.
2855 */
63cb6d5f
WL
2856 if (enable_vpid) {
2857 vmx->nested.nested_vmx_secondary_ctls_high |=
2858 SECONDARY_EXEC_ENABLE_VPID;
089d7b6e 2859 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 2860 VMX_VPID_EXTENT_SUPPORTED_MASK;
1c13bffd 2861 }
99b83ac8 2862
0790ec17
RK
2863 if (enable_unrestricted_guest)
2864 vmx->nested.nested_vmx_secondary_ctls_high |=
2865 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2866
c18911a2 2867 /* miscellaneous data */
b9c237bb
WV
2868 rdmsr(MSR_IA32_VMX_MISC,
2869 vmx->nested.nested_vmx_misc_low,
2870 vmx->nested.nested_vmx_misc_high);
2871 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2872 vmx->nested.nested_vmx_misc_low |=
2873 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2874 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2875 vmx->nested.nested_vmx_misc_high = 0;
62cc6b9d
DM
2876
2877 /*
2878 * This MSR reports some information about VMX support. We
2879 * should return information about the VMX we emulate for the
2880 * guest, and the VMCS structure we give it - not about the
2881 * VMX support of the underlying hardware.
2882 */
2883 vmx->nested.nested_vmx_basic =
2884 VMCS12_REVISION |
2885 VMX_BASIC_TRUE_CTLS |
2886 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2887 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2888
2889 if (cpu_has_vmx_basic_inout())
2890 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2891
2892 /*
8322ebbb 2893 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
2894 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2895 * We picked the standard core2 setting.
2896 */
2897#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2898#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2899 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
62cc6b9d 2900 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
2901
2902 /* These MSRs specify bits which the guest must keep fixed off. */
2903 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2904 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
62cc6b9d
DM
2905
2906 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2907 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
b87a51ae
NHE
2908}
2909
3899152c
DM
2910/*
2911 * if fixed0[i] == 1: val[i] must be 1
2912 * if fixed1[i] == 0: val[i] must be 0
2913 */
2914static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2915{
2916 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
2917}
2918
2919static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2920{
3899152c 2921 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
2922}
2923
2924static inline u64 vmx_control_msr(u32 low, u32 high)
2925{
2926 return low | ((u64)high << 32);
2927}
2928
62cc6b9d
DM
2929static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2930{
2931 superset &= mask;
2932 subset &= mask;
2933
2934 return (superset | subset) == superset;
2935}
2936
2937static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2938{
2939 const u64 feature_and_reserved =
2940 /* feature (except bit 48; see below) */
2941 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2942 /* reserved */
2943 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2944 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2945
2946 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2947 return -EINVAL;
2948
2949 /*
2950 * KVM does not emulate a version of VMX that constrains physical
2951 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2952 */
2953 if (data & BIT_ULL(48))
2954 return -EINVAL;
2955
2956 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2957 vmx_basic_vmcs_revision_id(data))
2958 return -EINVAL;
2959
2960 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2961 return -EINVAL;
2962
2963 vmx->nested.nested_vmx_basic = data;
2964 return 0;
2965}
2966
2967static int
2968vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2969{
2970 u64 supported;
2971 u32 *lowp, *highp;
2972
2973 switch (msr_index) {
2974 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2975 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2976 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2977 break;
2978 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2979 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2980 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2981 break;
2982 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2983 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2984 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2985 break;
2986 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2987 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2988 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2989 break;
2990 case MSR_IA32_VMX_PROCBASED_CTLS2:
2991 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2992 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2993 break;
2994 default:
2995 BUG();
2996 }
2997
2998 supported = vmx_control_msr(*lowp, *highp);
2999
3000 /* Check must-be-1 bits are still 1. */
3001 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3002 return -EINVAL;
3003
3004 /* Check must-be-0 bits are still 0. */
3005 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3006 return -EINVAL;
3007
3008 *lowp = data;
3009 *highp = data >> 32;
3010 return 0;
3011}
3012
3013static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3014{
3015 const u64 feature_and_reserved_bits =
3016 /* feature */
3017 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3018 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3019 /* reserved */
3020 GENMASK_ULL(13, 9) | BIT_ULL(31);
3021 u64 vmx_misc;
3022
3023 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3024 vmx->nested.nested_vmx_misc_high);
3025
3026 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3027 return -EINVAL;
3028
3029 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3030 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3031 vmx_misc_preemption_timer_rate(data) !=
3032 vmx_misc_preemption_timer_rate(vmx_misc))
3033 return -EINVAL;
3034
3035 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3036 return -EINVAL;
3037
3038 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3039 return -EINVAL;
3040
3041 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3042 return -EINVAL;
3043
3044 vmx->nested.nested_vmx_misc_low = data;
3045 vmx->nested.nested_vmx_misc_high = data >> 32;
3046 return 0;
3047}
3048
3049static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3050{
3051 u64 vmx_ept_vpid_cap;
3052
3053 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3054 vmx->nested.nested_vmx_vpid_caps);
3055
3056 /* Every bit is either reserved or a feature bit. */
3057 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3058 return -EINVAL;
3059
3060 vmx->nested.nested_vmx_ept_caps = data;
3061 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3062 return 0;
3063}
3064
3065static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3066{
3067 u64 *msr;
3068
3069 switch (msr_index) {
3070 case MSR_IA32_VMX_CR0_FIXED0:
3071 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3072 break;
3073 case MSR_IA32_VMX_CR4_FIXED0:
3074 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3075 break;
3076 default:
3077 BUG();
3078 }
3079
3080 /*
3081 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3082 * must be 1 in the restored value.
3083 */
3084 if (!is_bitwise_subset(data, *msr, -1ULL))
3085 return -EINVAL;
3086
3087 *msr = data;
3088 return 0;
3089}
3090
3091/*
3092 * Called when userspace is restoring VMX MSRs.
3093 *
3094 * Returns 0 on success, non-0 otherwise.
3095 */
3096static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3097{
b9c237bb
WV
3098 struct vcpu_vmx *vmx = to_vmx(vcpu);
3099
b87a51ae 3100 switch (msr_index) {
b87a51ae 3101 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3102 return vmx_restore_vmx_basic(vmx, data);
3103 case MSR_IA32_VMX_PINBASED_CTLS:
3104 case MSR_IA32_VMX_PROCBASED_CTLS:
3105 case MSR_IA32_VMX_EXIT_CTLS:
3106 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3107 /*
62cc6b9d
DM
3108 * The "non-true" VMX capability MSRs are generated from the
3109 * "true" MSRs, so we do not support restoring them directly.
3110 *
3111 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3112 * should restore the "true" MSRs with the must-be-1 bits
3113 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3114 * DEFAULT SETTINGS".
b87a51ae 3115 */
62cc6b9d
DM
3116 return -EINVAL;
3117 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3118 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3119 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3120 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3121 case MSR_IA32_VMX_PROCBASED_CTLS2:
3122 return vmx_restore_control_msr(vmx, msr_index, data);
3123 case MSR_IA32_VMX_MISC:
3124 return vmx_restore_vmx_misc(vmx, data);
3125 case MSR_IA32_VMX_CR0_FIXED0:
3126 case MSR_IA32_VMX_CR4_FIXED0:
3127 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3128 case MSR_IA32_VMX_CR0_FIXED1:
3129 case MSR_IA32_VMX_CR4_FIXED1:
3130 /*
3131 * These MSRs are generated based on the vCPU's CPUID, so we
3132 * do not support restoring them directly.
3133 */
3134 return -EINVAL;
3135 case MSR_IA32_VMX_EPT_VPID_CAP:
3136 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3137 case MSR_IA32_VMX_VMCS_ENUM:
3138 vmx->nested.nested_vmx_vmcs_enum = data;
3139 return 0;
3140 default:
b87a51ae 3141 /*
62cc6b9d 3142 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3143 */
62cc6b9d
DM
3144 return -EINVAL;
3145 }
3146}
3147
3148/* Returns 0 on success, non-0 otherwise. */
3149static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3150{
3151 struct vcpu_vmx *vmx = to_vmx(vcpu);
3152
3153 switch (msr_index) {
3154 case MSR_IA32_VMX_BASIC:
3155 *pdata = vmx->nested.nested_vmx_basic;
b87a51ae
NHE
3156 break;
3157 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3158 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
3159 *pdata = vmx_control_msr(
3160 vmx->nested.nested_vmx_pinbased_ctls_low,
3161 vmx->nested.nested_vmx_pinbased_ctls_high);
0115f9cb
DM
3162 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3163 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3164 break;
3165 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3166 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
3167 *pdata = vmx_control_msr(
3168 vmx->nested.nested_vmx_procbased_ctls_low,
3169 vmx->nested.nested_vmx_procbased_ctls_high);
0115f9cb
DM
3170 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3171 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3172 break;
3173 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3174 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
3175 *pdata = vmx_control_msr(
3176 vmx->nested.nested_vmx_exit_ctls_low,
3177 vmx->nested.nested_vmx_exit_ctls_high);
0115f9cb
DM
3178 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3179 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3180 break;
3181 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3182 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
3183 *pdata = vmx_control_msr(
3184 vmx->nested.nested_vmx_entry_ctls_low,
3185 vmx->nested.nested_vmx_entry_ctls_high);
0115f9cb
DM
3186 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3187 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3188 break;
3189 case MSR_IA32_VMX_MISC:
b9c237bb
WV
3190 *pdata = vmx_control_msr(
3191 vmx->nested.nested_vmx_misc_low,
3192 vmx->nested.nested_vmx_misc_high);
b87a51ae 3193 break;
b87a51ae 3194 case MSR_IA32_VMX_CR0_FIXED0:
62cc6b9d 3195 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
b87a51ae
NHE
3196 break;
3197 case MSR_IA32_VMX_CR0_FIXED1:
62cc6b9d 3198 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
b87a51ae
NHE
3199 break;
3200 case MSR_IA32_VMX_CR4_FIXED0:
62cc6b9d 3201 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
b87a51ae
NHE
3202 break;
3203 case MSR_IA32_VMX_CR4_FIXED1:
62cc6b9d 3204 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
b87a51ae
NHE
3205 break;
3206 case MSR_IA32_VMX_VMCS_ENUM:
62cc6b9d 3207 *pdata = vmx->nested.nested_vmx_vmcs_enum;
b87a51ae
NHE
3208 break;
3209 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
3210 *pdata = vmx_control_msr(
3211 vmx->nested.nested_vmx_secondary_ctls_low,
3212 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
3213 break;
3214 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
3215 *pdata = vmx->nested.nested_vmx_ept_caps |
3216 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae 3217 break;
27c42a1b
BD
3218 case MSR_IA32_VMX_VMFUNC:
3219 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3220 break;
b87a51ae 3221 default:
b87a51ae 3222 return 1;
b3897a49
NHE
3223 }
3224
b87a51ae
NHE
3225 return 0;
3226}
3227
37e4c997
HZ
3228static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3229 uint64_t val)
3230{
3231 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3232
3233 return !(val & ~valid_bits);
3234}
3235
6aa8b732
AK
3236/*
3237 * Reads an msr value (of 'msr_index') into 'pdata'.
3238 * Returns 0 on success, non-0 otherwise.
3239 * Assumes vcpu_load() was already called.
3240 */
609e36d3 3241static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3242{
26bb0981 3243 struct shared_msr_entry *msr;
6aa8b732 3244
609e36d3 3245 switch (msr_info->index) {
05b3e0c2 3246#ifdef CONFIG_X86_64
6aa8b732 3247 case MSR_FS_BASE:
609e36d3 3248 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3249 break;
3250 case MSR_GS_BASE:
609e36d3 3251 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3252 break;
44ea2b17
AK
3253 case MSR_KERNEL_GS_BASE:
3254 vmx_load_host_state(to_vmx(vcpu));
609e36d3 3255 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3256 break;
26bb0981 3257#endif
6aa8b732 3258 case MSR_EFER:
609e36d3 3259 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3260 case MSR_IA32_TSC:
be7b263e 3261 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
3262 break;
3263 case MSR_IA32_SYSENTER_CS:
609e36d3 3264 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3265 break;
3266 case MSR_IA32_SYSENTER_EIP:
609e36d3 3267 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3268 break;
3269 case MSR_IA32_SYSENTER_ESP:
609e36d3 3270 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3271 break;
0dd376e7 3272 case MSR_IA32_BNDCFGS:
691bd434 3273 if (!kvm_mpx_supported() ||
d6321d49
RK
3274 (!msr_info->host_initiated &&
3275 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3276 return 1;
609e36d3 3277 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3278 break;
c45dcc71
AR
3279 case MSR_IA32_MCG_EXT_CTL:
3280 if (!msr_info->host_initiated &&
3281 !(to_vmx(vcpu)->msr_ia32_feature_control &
3282 FEATURE_CONTROL_LMCE))
cae50139 3283 return 1;
c45dcc71
AR
3284 msr_info->data = vcpu->arch.mcg_ext_ctl;
3285 break;
cae50139 3286 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3287 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3288 break;
3289 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3290 if (!nested_vmx_allowed(vcpu))
3291 return 1;
609e36d3 3292 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3293 case MSR_IA32_XSS:
3294 if (!vmx_xsaves_supported())
3295 return 1;
609e36d3 3296 msr_info->data = vcpu->arch.ia32_xss;
20300099 3297 break;
4e47c7a6 3298 case MSR_TSC_AUX:
d6321d49
RK
3299 if (!msr_info->host_initiated &&
3300 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3301 return 1;
3302 /* Otherwise falls through */
6aa8b732 3303 default:
609e36d3 3304 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3305 if (msr) {
609e36d3 3306 msr_info->data = msr->data;
3bab1f5d 3307 break;
6aa8b732 3308 }
609e36d3 3309 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3310 }
3311
6aa8b732
AK
3312 return 0;
3313}
3314
cae50139
JK
3315static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3316
6aa8b732
AK
3317/*
3318 * Writes msr value into into the appropriate "register".
3319 * Returns 0 on success, non-0 otherwise.
3320 * Assumes vcpu_load() was already called.
3321 */
8fe8ab46 3322static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3323{
a2fa3e9f 3324 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3325 struct shared_msr_entry *msr;
2cc51560 3326 int ret = 0;
8fe8ab46
WA
3327 u32 msr_index = msr_info->index;
3328 u64 data = msr_info->data;
2cc51560 3329
6aa8b732 3330 switch (msr_index) {
3bab1f5d 3331 case MSR_EFER:
8fe8ab46 3332 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3333 break;
16175a79 3334#ifdef CONFIG_X86_64
6aa8b732 3335 case MSR_FS_BASE:
2fb92db1 3336 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3337 vmcs_writel(GUEST_FS_BASE, data);
3338 break;
3339 case MSR_GS_BASE:
2fb92db1 3340 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3341 vmcs_writel(GUEST_GS_BASE, data);
3342 break;
44ea2b17
AK
3343 case MSR_KERNEL_GS_BASE:
3344 vmx_load_host_state(vmx);
3345 vmx->msr_guest_kernel_gs_base = data;
3346 break;
6aa8b732
AK
3347#endif
3348 case MSR_IA32_SYSENTER_CS:
3349 vmcs_write32(GUEST_SYSENTER_CS, data);
3350 break;
3351 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3352 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3353 break;
3354 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3355 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3356 break;
0dd376e7 3357 case MSR_IA32_BNDCFGS:
691bd434 3358 if (!kvm_mpx_supported() ||
d6321d49
RK
3359 (!msr_info->host_initiated &&
3360 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3361 return 1;
fd8cb433 3362 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
4531662d 3363 (data & MSR_IA32_BNDCFGS_RSVD))
93c4adc7 3364 return 1;
0dd376e7
LJ
3365 vmcs_write64(GUEST_BNDCFGS, data);
3366 break;
af24a4e4 3367 case MSR_IA32_TSC:
8fe8ab46 3368 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3369 break;
468d472f
SY
3370 case MSR_IA32_CR_PAT:
3371 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3372 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3373 return 1;
468d472f
SY
3374 vmcs_write64(GUEST_IA32_PAT, data);
3375 vcpu->arch.pat = data;
3376 break;
3377 }
8fe8ab46 3378 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3379 break;
ba904635
WA
3380 case MSR_IA32_TSC_ADJUST:
3381 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3382 break;
c45dcc71
AR
3383 case MSR_IA32_MCG_EXT_CTL:
3384 if ((!msr_info->host_initiated &&
3385 !(to_vmx(vcpu)->msr_ia32_feature_control &
3386 FEATURE_CONTROL_LMCE)) ||
3387 (data & ~MCG_EXT_CTL_LMCE_EN))
3388 return 1;
3389 vcpu->arch.mcg_ext_ctl = data;
3390 break;
cae50139 3391 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3392 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3393 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3394 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3395 return 1;
3b84080b 3396 vmx->msr_ia32_feature_control = data;
cae50139
JK
3397 if (msr_info->host_initiated && data == 0)
3398 vmx_leave_nested(vcpu);
3399 break;
3400 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3401 if (!msr_info->host_initiated)
3402 return 1; /* they are read-only */
3403 if (!nested_vmx_allowed(vcpu))
3404 return 1;
3405 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3406 case MSR_IA32_XSS:
3407 if (!vmx_xsaves_supported())
3408 return 1;
3409 /*
3410 * The only supported bit as of Skylake is bit 8, but
3411 * it is not supported on KVM.
3412 */
3413 if (data != 0)
3414 return 1;
3415 vcpu->arch.ia32_xss = data;
3416 if (vcpu->arch.ia32_xss != host_xss)
3417 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3418 vcpu->arch.ia32_xss, host_xss);
3419 else
3420 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3421 break;
4e47c7a6 3422 case MSR_TSC_AUX:
d6321d49
RK
3423 if (!msr_info->host_initiated &&
3424 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3425 return 1;
3426 /* Check reserved bit, higher 32 bits should be zero */
3427 if ((data >> 32) != 0)
3428 return 1;
3429 /* Otherwise falls through */
6aa8b732 3430 default:
8b9cf98c 3431 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3432 if (msr) {
8b3c3104 3433 u64 old_msr_data = msr->data;
3bab1f5d 3434 msr->data = data;
2225fd56
AK
3435 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3436 preempt_disable();
8b3c3104
AH
3437 ret = kvm_set_shared_msr(msr->index, msr->data,
3438 msr->mask);
2225fd56 3439 preempt_enable();
8b3c3104
AH
3440 if (ret)
3441 msr->data = old_msr_data;
2225fd56 3442 }
3bab1f5d 3443 break;
6aa8b732 3444 }
8fe8ab46 3445 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3446 }
3447
2cc51560 3448 return ret;
6aa8b732
AK
3449}
3450
5fdbf976 3451static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3452{
5fdbf976
MT
3453 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3454 switch (reg) {
3455 case VCPU_REGS_RSP:
3456 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3457 break;
3458 case VCPU_REGS_RIP:
3459 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3460 break;
6de4f3ad
AK
3461 case VCPU_EXREG_PDPTR:
3462 if (enable_ept)
3463 ept_save_pdptrs(vcpu);
3464 break;
5fdbf976
MT
3465 default:
3466 break;
3467 }
6aa8b732
AK
3468}
3469
6aa8b732
AK
3470static __init int cpu_has_kvm_support(void)
3471{
6210e37b 3472 return cpu_has_vmx();
6aa8b732
AK
3473}
3474
3475static __init int vmx_disabled_by_bios(void)
3476{
3477 u64 msr;
3478
3479 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3480 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3481 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3482 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3483 && tboot_enabled())
3484 return 1;
23f3e991 3485 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3486 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3487 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3488 && !tboot_enabled()) {
3489 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3490 "activate TXT before enabling KVM\n");
cafd6659 3491 return 1;
f9335afe 3492 }
23f3e991
JC
3493 /* launched w/o TXT and VMX disabled */
3494 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3495 && !tboot_enabled())
3496 return 1;
cafd6659
SW
3497 }
3498
3499 return 0;
6aa8b732
AK
3500}
3501
7725b894
DX
3502static void kvm_cpu_vmxon(u64 addr)
3503{
fe0e80be 3504 cr4_set_bits(X86_CR4_VMXE);
1c5ac21a
AS
3505 intel_pt_handle_vmx(1);
3506
7725b894
DX
3507 asm volatile (ASM_VMX_VMXON_RAX
3508 : : "a"(&addr), "m"(addr)
3509 : "memory", "cc");
3510}
3511
13a34e06 3512static int hardware_enable(void)
6aa8b732
AK
3513{
3514 int cpu = raw_smp_processor_id();
3515 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3516 u64 old, test_bits;
6aa8b732 3517
1e02ce4c 3518 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3519 return -EBUSY;
3520
d462b819 3521 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3522 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3523 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3524
3525 /*
3526 * Now we can enable the vmclear operation in kdump
3527 * since the loaded_vmcss_on_cpu list on this cpu
3528 * has been initialized.
3529 *
3530 * Though the cpu is not in VMX operation now, there
3531 * is no problem to enable the vmclear operation
3532 * for the loaded_vmcss_on_cpu list is empty!
3533 */
3534 crash_enable_local_vmclear(cpu);
3535
6aa8b732 3536 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3537
3538 test_bits = FEATURE_CONTROL_LOCKED;
3539 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3540 if (tboot_enabled())
3541 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3542
3543 if ((old & test_bits) != test_bits) {
6aa8b732 3544 /* enable and lock */
cafd6659
SW
3545 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3546 }
fe0e80be 3547 kvm_cpu_vmxon(phys_addr);
fdf288bf
DH
3548 if (enable_ept)
3549 ept_sync_global();
10474ae8
AG
3550
3551 return 0;
6aa8b732
AK
3552}
3553
d462b819 3554static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3555{
3556 int cpu = raw_smp_processor_id();
d462b819 3557 struct loaded_vmcs *v, *n;
543e4243 3558
d462b819
NHE
3559 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3560 loaded_vmcss_on_cpu_link)
3561 __loaded_vmcs_clear(v);
543e4243
AK
3562}
3563
710ff4a8
EH
3564
3565/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3566 * tricks.
3567 */
3568static void kvm_cpu_vmxoff(void)
6aa8b732 3569{
4ecac3fd 3570 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3571
3572 intel_pt_handle_vmx(0);
fe0e80be 3573 cr4_clear_bits(X86_CR4_VMXE);
6aa8b732
AK
3574}
3575
13a34e06 3576static void hardware_disable(void)
710ff4a8 3577{
fe0e80be
DH
3578 vmclear_local_loaded_vmcss();
3579 kvm_cpu_vmxoff();
710ff4a8
EH
3580}
3581
1c3d14fe 3582static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3583 u32 msr, u32 *result)
1c3d14fe
YS
3584{
3585 u32 vmx_msr_low, vmx_msr_high;
3586 u32 ctl = ctl_min | ctl_opt;
3587
3588 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3589
3590 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3591 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3592
3593 /* Ensure minimum (required) set of control bits are supported. */
3594 if (ctl_min & ~ctl)
002c7f7c 3595 return -EIO;
1c3d14fe
YS
3596
3597 *result = ctl;
3598 return 0;
3599}
3600
110312c8
AK
3601static __init bool allow_1_setting(u32 msr, u32 ctl)
3602{
3603 u32 vmx_msr_low, vmx_msr_high;
3604
3605 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3606 return vmx_msr_high & ctl;
3607}
3608
002c7f7c 3609static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3610{
3611 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3612 u32 min, opt, min2, opt2;
1c3d14fe
YS
3613 u32 _pin_based_exec_control = 0;
3614 u32 _cpu_based_exec_control = 0;
f78e0e2e 3615 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3616 u32 _vmexit_control = 0;
3617 u32 _vmentry_control = 0;
3618
10166744 3619 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3620#ifdef CONFIG_X86_64
3621 CPU_BASED_CR8_LOAD_EXITING |
3622 CPU_BASED_CR8_STORE_EXITING |
3623#endif
d56f546d
SY
3624 CPU_BASED_CR3_LOAD_EXITING |
3625 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3626 CPU_BASED_USE_IO_BITMAPS |
3627 CPU_BASED_MOV_DR_EXITING |
a7052897 3628 CPU_BASED_USE_TSC_OFFSETING |
fee84b07
AK
3629 CPU_BASED_INVLPG_EXITING |
3630 CPU_BASED_RDPMC_EXITING;
443381a8 3631
668fffa3
MT
3632 if (!kvm_mwait_in_guest())
3633 min |= CPU_BASED_MWAIT_EXITING |
3634 CPU_BASED_MONITOR_EXITING;
3635
f78e0e2e 3636 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3637 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3638 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3639 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3640 &_cpu_based_exec_control) < 0)
002c7f7c 3641 return -EIO;
6e5d865c
YS
3642#ifdef CONFIG_X86_64
3643 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3644 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3645 ~CPU_BASED_CR8_STORE_EXITING;
3646#endif
f78e0e2e 3647 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3648 min2 = 0;
3649 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3650 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3651 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3652 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3653 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3654 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3655 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3656 SECONDARY_EXEC_RDTSCP |
83d4c286 3657 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3658 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3659 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3660 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3661 SECONDARY_EXEC_XSAVES |
736fdf72
DH
3662 SECONDARY_EXEC_RDSEED_EXITING |
3663 SECONDARY_EXEC_RDRAND_EXITING |
8b3e34e4 3664 SECONDARY_EXEC_ENABLE_PML |
2a499e49
BD
3665 SECONDARY_EXEC_TSC_SCALING |
3666 SECONDARY_EXEC_ENABLE_VMFUNC;
d56f546d
SY
3667 if (adjust_vmx_controls(min2, opt2,
3668 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3669 &_cpu_based_2nd_exec_control) < 0)
3670 return -EIO;
3671 }
3672#ifndef CONFIG_X86_64
3673 if (!(_cpu_based_2nd_exec_control &
3674 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3675 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3676#endif
83d4c286
YZ
3677
3678 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3679 _cpu_based_2nd_exec_control &= ~(
8d14695f 3680 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3681 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3682 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3683
61f1dd90
WL
3684 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
3685 &vmx_capability.ept, &vmx_capability.vpid);
3686
d56f546d 3687 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3688 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3689 enabled */
5fff7d27
GN
3690 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3691 CPU_BASED_CR3_STORE_EXITING |
3692 CPU_BASED_INVLPG_EXITING);
61f1dd90
WL
3693 } else if (vmx_capability.ept) {
3694 vmx_capability.ept = 0;
3695 pr_warn_once("EPT CAP should not exist if not support "
3696 "1-setting enable EPT VM-execution control\n");
3697 }
3698 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
3699 vmx_capability.vpid) {
3700 vmx_capability.vpid = 0;
3701 pr_warn_once("VPID CAP should not exist if not support "
3702 "1-setting enable VPID VM-execution control\n");
d56f546d 3703 }
1c3d14fe 3704
91fa0f8e 3705 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3706#ifdef CONFIG_X86_64
3707 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3708#endif
a547c6db 3709 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3710 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3711 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3712 &_vmexit_control) < 0)
002c7f7c 3713 return -EIO;
1c3d14fe 3714
2c82878b
PB
3715 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3716 PIN_BASED_VIRTUAL_NMIS;
3717 opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3718 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3719 &_pin_based_exec_control) < 0)
3720 return -EIO;
3721
1c17c3e6
PB
3722 if (cpu_has_broken_vmx_preemption_timer())
3723 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3724 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3725 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3726 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3727
c845f9c6 3728 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3729 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3730 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3731 &_vmentry_control) < 0)
002c7f7c 3732 return -EIO;
6aa8b732 3733
c68876fd 3734 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3735
3736 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3737 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3738 return -EIO;
1c3d14fe
YS
3739
3740#ifdef CONFIG_X86_64
3741 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3742 if (vmx_msr_high & (1u<<16))
002c7f7c 3743 return -EIO;
1c3d14fe
YS
3744#endif
3745
3746 /* Require Write-Back (WB) memory type for VMCS accesses. */
3747 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3748 return -EIO;
1c3d14fe 3749
002c7f7c 3750 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3751 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3752 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3753 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3754
002c7f7c
YS
3755 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3756 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3757 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3758 vmcs_conf->vmexit_ctrl = _vmexit_control;
3759 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3760
110312c8
AK
3761 cpu_has_load_ia32_efer =
3762 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3763 VM_ENTRY_LOAD_IA32_EFER)
3764 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3765 VM_EXIT_LOAD_IA32_EFER);
3766
8bf00a52
GN
3767 cpu_has_load_perf_global_ctrl =
3768 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3769 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3770 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3771 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3772
3773 /*
3774 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3775 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3776 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3777 *
3778 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3779 *
3780 * AAK155 (model 26)
3781 * AAP115 (model 30)
3782 * AAT100 (model 37)
3783 * BC86,AAY89,BD102 (model 44)
3784 * BA97 (model 46)
3785 *
3786 */
3787 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3788 switch (boot_cpu_data.x86_model) {
3789 case 26:
3790 case 30:
3791 case 37:
3792 case 44:
3793 case 46:
3794 cpu_has_load_perf_global_ctrl = false;
3795 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3796 "does not work properly. Using workaround\n");
3797 break;
3798 default:
3799 break;
3800 }
3801 }
3802
782511b0 3803 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3804 rdmsrl(MSR_IA32_XSS, host_xss);
3805
1c3d14fe 3806 return 0;
c68876fd 3807}
6aa8b732
AK
3808
3809static struct vmcs *alloc_vmcs_cpu(int cpu)
3810{
3811 int node = cpu_to_node(cpu);
3812 struct page *pages;
3813 struct vmcs *vmcs;
3814
96db800f 3815 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3816 if (!pages)
3817 return NULL;
3818 vmcs = page_address(pages);
1c3d14fe
YS
3819 memset(vmcs, 0, vmcs_config.size);
3820 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3821 return vmcs;
3822}
3823
3824static struct vmcs *alloc_vmcs(void)
3825{
d3b2c338 3826 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3827}
3828
3829static void free_vmcs(struct vmcs *vmcs)
3830{
1c3d14fe 3831 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3832}
3833
d462b819
NHE
3834/*
3835 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3836 */
3837static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3838{
3839 if (!loaded_vmcs->vmcs)
3840 return;
3841 loaded_vmcs_clear(loaded_vmcs);
3842 free_vmcs(loaded_vmcs->vmcs);
3843 loaded_vmcs->vmcs = NULL;
355f4fb1 3844 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
3845}
3846
39959588 3847static void free_kvm_area(void)
6aa8b732
AK
3848{
3849 int cpu;
3850
3230bb47 3851 for_each_possible_cpu(cpu) {
6aa8b732 3852 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3853 per_cpu(vmxarea, cpu) = NULL;
3854 }
6aa8b732
AK
3855}
3856
85fd514e
JM
3857enum vmcs_field_type {
3858 VMCS_FIELD_TYPE_U16 = 0,
3859 VMCS_FIELD_TYPE_U64 = 1,
3860 VMCS_FIELD_TYPE_U32 = 2,
3861 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3862};
3863
3864static inline int vmcs_field_type(unsigned long field)
3865{
3866 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
3867 return VMCS_FIELD_TYPE_U32;
3868 return (field >> 13) & 0x3 ;
3869}
3870
3871static inline int vmcs_field_readonly(unsigned long field)
3872{
3873 return (((field >> 10) & 0x3) == 1);
3874}
3875
fe2b201b
BD
3876static void init_vmcs_shadow_fields(void)
3877{
3878 int i, j;
3879
3880 /* No checks for read only fields yet */
3881
3882 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3883 switch (shadow_read_write_fields[i]) {
3884 case GUEST_BNDCFGS:
a87036ad 3885 if (!kvm_mpx_supported())
fe2b201b
BD
3886 continue;
3887 break;
3888 default:
3889 break;
3890 }
3891
3892 if (j < i)
3893 shadow_read_write_fields[j] =
3894 shadow_read_write_fields[i];
3895 j++;
3896 }
3897 max_shadow_read_write_fields = j;
3898
3899 /* shadowed fields guest access without vmexit */
3900 for (i = 0; i < max_shadow_read_write_fields; i++) {
85fd514e
JM
3901 unsigned long field = shadow_read_write_fields[i];
3902
3903 clear_bit(field, vmx_vmwrite_bitmap);
3904 clear_bit(field, vmx_vmread_bitmap);
3905 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3906 clear_bit(field + 1, vmx_vmwrite_bitmap);
3907 clear_bit(field + 1, vmx_vmread_bitmap);
3908 }
3909 }
3910 for (i = 0; i < max_shadow_read_only_fields; i++) {
3911 unsigned long field = shadow_read_only_fields[i];
3912
3913 clear_bit(field, vmx_vmread_bitmap);
3914 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3915 clear_bit(field + 1, vmx_vmread_bitmap);
fe2b201b 3916 }
fe2b201b
BD
3917}
3918
6aa8b732
AK
3919static __init int alloc_kvm_area(void)
3920{
3921 int cpu;
3922
3230bb47 3923 for_each_possible_cpu(cpu) {
6aa8b732
AK
3924 struct vmcs *vmcs;
3925
3926 vmcs = alloc_vmcs_cpu(cpu);
3927 if (!vmcs) {
3928 free_kvm_area();
3929 return -ENOMEM;
3930 }
3931
3932 per_cpu(vmxarea, cpu) = vmcs;
3933 }
3934 return 0;
3935}
3936
91b0aa2c 3937static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3938 struct kvm_segment *save)
6aa8b732 3939{
d99e4152
GN
3940 if (!emulate_invalid_guest_state) {
3941 /*
3942 * CS and SS RPL should be equal during guest entry according
3943 * to VMX spec, but in reality it is not always so. Since vcpu
3944 * is in the middle of the transition from real mode to
3945 * protected mode it is safe to assume that RPL 0 is a good
3946 * default value.
3947 */
3948 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3949 save->selector &= ~SEGMENT_RPL_MASK;
3950 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3951 save->s = 1;
6aa8b732 3952 }
d99e4152 3953 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3954}
3955
3956static void enter_pmode(struct kvm_vcpu *vcpu)
3957{
3958 unsigned long flags;
a89a8fb9 3959 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3960
d99e4152
GN
3961 /*
3962 * Update real mode segment cache. It may be not up-to-date if sement
3963 * register was written while vcpu was in a guest mode.
3964 */
3965 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3966 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3967 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3968 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3969 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3970 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3971
7ffd92c5 3972 vmx->rmode.vm86_active = 0;
6aa8b732 3973
2fb92db1
AK
3974 vmx_segment_cache_clear(vmx);
3975
f5f7b2fe 3976 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3977
3978 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3979 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3980 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3981 vmcs_writel(GUEST_RFLAGS, flags);
3982
66aee91a
RR
3983 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3984 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3985
3986 update_exception_bitmap(vcpu);
3987
91b0aa2c
GN
3988 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3989 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3990 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3991 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3992 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3993 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3994}
3995
f5f7b2fe 3996static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3997{
772e0318 3998 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3999 struct kvm_segment var = *save;
4000
4001 var.dpl = 0x3;
4002 if (seg == VCPU_SREG_CS)
4003 var.type = 0x3;
4004
4005 if (!emulate_invalid_guest_state) {
4006 var.selector = var.base >> 4;
4007 var.base = var.base & 0xffff0;
4008 var.limit = 0xffff;
4009 var.g = 0;
4010 var.db = 0;
4011 var.present = 1;
4012 var.s = 1;
4013 var.l = 0;
4014 var.unusable = 0;
4015 var.type = 0x3;
4016 var.avl = 0;
4017 if (save->base & 0xf)
4018 printk_once(KERN_WARNING "kvm: segment base is not "
4019 "paragraph aligned when entering "
4020 "protected mode (seg=%d)", seg);
4021 }
6aa8b732 4022
d99e4152 4023 vmcs_write16(sf->selector, var.selector);
96794e4e 4024 vmcs_writel(sf->base, var.base);
d99e4152
GN
4025 vmcs_write32(sf->limit, var.limit);
4026 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
4027}
4028
4029static void enter_rmode(struct kvm_vcpu *vcpu)
4030{
4031 unsigned long flags;
a89a8fb9 4032 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 4033
f5f7b2fe
AK
4034 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4035 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4036 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4037 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4038 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
4039 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4040 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 4041
7ffd92c5 4042 vmx->rmode.vm86_active = 1;
6aa8b732 4043
776e58ea
GN
4044 /*
4045 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 4046 * vcpu. Warn the user that an update is overdue.
776e58ea 4047 */
4918c6ca 4048 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
4049 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4050 "called before entering vcpu\n");
776e58ea 4051
2fb92db1
AK
4052 vmx_segment_cache_clear(vmx);
4053
4918c6ca 4054 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 4055 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
4056 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4057
4058 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 4059 vmx->rmode.save_rflags = flags;
6aa8b732 4060
053de044 4061 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
4062
4063 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 4064 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
4065 update_exception_bitmap(vcpu);
4066
d99e4152
GN
4067 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4068 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4069 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4070 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4071 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4072 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 4073
8668a3c4 4074 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
4075}
4076
401d10de
AS
4077static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4078{
4079 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
4080 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4081
4082 if (!msr)
4083 return;
401d10de 4084
44ea2b17
AK
4085 /*
4086 * Force kernel_gs_base reloading before EFER changes, as control
4087 * of this msr depends on is_long_mode().
4088 */
4089 vmx_load_host_state(to_vmx(vcpu));
f6801dff 4090 vcpu->arch.efer = efer;
401d10de 4091 if (efer & EFER_LMA) {
2961e876 4092 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4093 msr->data = efer;
4094 } else {
2961e876 4095 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4096
4097 msr->data = efer & ~EFER_LME;
4098 }
4099 setup_msrs(vmx);
4100}
4101
05b3e0c2 4102#ifdef CONFIG_X86_64
6aa8b732
AK
4103
4104static void enter_lmode(struct kvm_vcpu *vcpu)
4105{
4106 u32 guest_tr_ar;
4107
2fb92db1
AK
4108 vmx_segment_cache_clear(to_vmx(vcpu));
4109
6aa8b732 4110 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 4111 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
4112 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4113 __func__);
6aa8b732 4114 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
4115 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4116 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4117 }
da38f438 4118 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4119}
4120
4121static void exit_lmode(struct kvm_vcpu *vcpu)
4122{
2961e876 4123 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4124 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4125}
4126
4127#endif
4128
dd5f5341 4129static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 4130{
dd180b3e
XG
4131 if (enable_ept) {
4132 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4133 return;
995f00a6 4134 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
f0b98c02
JM
4135 } else {
4136 vpid_sync_context(vpid);
dd180b3e 4137 }
2384d2b3
SY
4138}
4139
dd5f5341
WL
4140static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4141{
4142 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4143}
4144
fb6c8198
JM
4145static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4146{
4147 if (enable_ept)
4148 vmx_flush_tlb(vcpu);
4149}
4150
e8467fda
AK
4151static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4152{
4153 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4154
4155 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4156 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4157}
4158
aff48baa
AK
4159static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4160{
4161 if (enable_ept && is_paging(vcpu))
4162 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4163 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4164}
4165
25c4c276 4166static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4167{
fc78f519
AK
4168 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4169
4170 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4171 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4172}
4173
1439442c
SY
4174static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4175{
d0d538b9
GN
4176 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4177
6de4f3ad
AK
4178 if (!test_bit(VCPU_EXREG_PDPTR,
4179 (unsigned long *)&vcpu->arch.regs_dirty))
4180 return;
4181
1439442c 4182 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4183 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4184 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4185 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4186 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4187 }
4188}
4189
8f5d549f
AK
4190static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4191{
d0d538b9
GN
4192 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4193
8f5d549f 4194 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4195 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4196 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4197 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4198 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4199 }
6de4f3ad
AK
4200
4201 __set_bit(VCPU_EXREG_PDPTR,
4202 (unsigned long *)&vcpu->arch.regs_avail);
4203 __set_bit(VCPU_EXREG_PDPTR,
4204 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4205}
4206
3899152c
DM
4207static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4208{
4209 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4210 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4211 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4212
4213 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4214 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4215 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4216 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4217
4218 return fixed_bits_valid(val, fixed0, fixed1);
4219}
4220
4221static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4222{
4223 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4224 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4225
4226 return fixed_bits_valid(val, fixed0, fixed1);
4227}
4228
4229static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4230{
4231 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4232 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4233
4234 return fixed_bits_valid(val, fixed0, fixed1);
4235}
4236
4237/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4238#define nested_guest_cr4_valid nested_cr4_valid
4239#define nested_host_cr4_valid nested_cr4_valid
4240
5e1746d6 4241static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4242
4243static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4244 unsigned long cr0,
4245 struct kvm_vcpu *vcpu)
4246{
5233dd51
MT
4247 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4248 vmx_decache_cr3(vcpu);
1439442c
SY
4249 if (!(cr0 & X86_CR0_PG)) {
4250 /* From paging/starting to nonpaging */
4251 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4252 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4253 (CPU_BASED_CR3_LOAD_EXITING |
4254 CPU_BASED_CR3_STORE_EXITING));
4255 vcpu->arch.cr0 = cr0;
fc78f519 4256 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4257 } else if (!is_paging(vcpu)) {
4258 /* From nonpaging to paging */
4259 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4260 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4261 ~(CPU_BASED_CR3_LOAD_EXITING |
4262 CPU_BASED_CR3_STORE_EXITING));
4263 vcpu->arch.cr0 = cr0;
fc78f519 4264 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4265 }
95eb84a7
SY
4266
4267 if (!(cr0 & X86_CR0_WP))
4268 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4269}
4270
6aa8b732
AK
4271static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4272{
7ffd92c5 4273 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4274 unsigned long hw_cr0;
4275
5037878e 4276 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4277 if (enable_unrestricted_guest)
5037878e 4278 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4279 else {
5037878e 4280 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4281
218e763f
GN
4282 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4283 enter_pmode(vcpu);
6aa8b732 4284
218e763f
GN
4285 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4286 enter_rmode(vcpu);
4287 }
6aa8b732 4288
05b3e0c2 4289#ifdef CONFIG_X86_64
f6801dff 4290 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4291 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4292 enter_lmode(vcpu);
707d92fa 4293 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4294 exit_lmode(vcpu);
4295 }
4296#endif
4297
089d034e 4298 if (enable_ept)
1439442c
SY
4299 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4300
6aa8b732 4301 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4302 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4303 vcpu->arch.cr0 = cr0;
14168786
GN
4304
4305 /* depends on vcpu->arch.cr0 to be set to a new value */
4306 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4307}
4308
855feb67
YZ
4309static int get_ept_level(struct kvm_vcpu *vcpu)
4310{
4311 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4312 return 5;
4313 return 4;
4314}
4315
995f00a6 4316static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
1439442c 4317{
855feb67
YZ
4318 u64 eptp = VMX_EPTP_MT_WB;
4319
4320 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
1439442c 4321
995f00a6
PF
4322 if (enable_ept_ad_bits &&
4323 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
bb97a016 4324 eptp |= VMX_EPTP_AD_ENABLE_BIT;
1439442c
SY
4325 eptp |= (root_hpa & PAGE_MASK);
4326
4327 return eptp;
4328}
4329
6aa8b732
AK
4330static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4331{
1439442c
SY
4332 unsigned long guest_cr3;
4333 u64 eptp;
4334
4335 guest_cr3 = cr3;
089d034e 4336 if (enable_ept) {
995f00a6 4337 eptp = construct_eptp(vcpu, cr3);
1439442c 4338 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
4339 if (is_paging(vcpu) || is_guest_mode(vcpu))
4340 guest_cr3 = kvm_read_cr3(vcpu);
4341 else
4342 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 4343 ept_load_pdptrs(vcpu);
1439442c
SY
4344 }
4345
2384d2b3 4346 vmx_flush_tlb(vcpu);
1439442c 4347 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4348}
4349
5e1746d6 4350static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4351{
085e68ee
BS
4352 /*
4353 * Pass through host's Machine Check Enable value to hw_cr4, which
4354 * is in force while we are in guest mode. Do not let guests control
4355 * this bit, even if host CR4.MCE == 0.
4356 */
4357 unsigned long hw_cr4 =
4358 (cr4_read_shadow() & X86_CR4_MCE) |
4359 (cr4 & ~X86_CR4_MCE) |
4360 (to_vmx(vcpu)->rmode.vm86_active ?
4361 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4362
5e1746d6
NHE
4363 if (cr4 & X86_CR4_VMXE) {
4364 /*
4365 * To use VMXON (and later other VMX instructions), a guest
4366 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4367 * So basically the check on whether to allow nested VMX
4368 * is here.
4369 */
4370 if (!nested_vmx_allowed(vcpu))
4371 return 1;
1a0d74e6 4372 }
3899152c
DM
4373
4374 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4375 return 1;
4376
ad312c7c 4377 vcpu->arch.cr4 = cr4;
bc23008b
AK
4378 if (enable_ept) {
4379 if (!is_paging(vcpu)) {
4380 hw_cr4 &= ~X86_CR4_PAE;
4381 hw_cr4 |= X86_CR4_PSE;
4382 } else if (!(cr4 & X86_CR4_PAE)) {
4383 hw_cr4 &= ~X86_CR4_PAE;
4384 }
4385 }
1439442c 4386
656ec4a4
RK
4387 if (!enable_unrestricted_guest && !is_paging(vcpu))
4388 /*
ddba2628
HH
4389 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4390 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4391 * to be manually disabled when guest switches to non-paging
4392 * mode.
4393 *
4394 * If !enable_unrestricted_guest, the CPU is always running
4395 * with CR0.PG=1 and CR4 needs to be modified.
4396 * If enable_unrestricted_guest, the CPU automatically
4397 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4398 */
ddba2628 4399 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4400
1439442c
SY
4401 vmcs_writel(CR4_READ_SHADOW, cr4);
4402 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4403 return 0;
6aa8b732
AK
4404}
4405
6aa8b732
AK
4406static void vmx_get_segment(struct kvm_vcpu *vcpu,
4407 struct kvm_segment *var, int seg)
4408{
a9179499 4409 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4410 u32 ar;
4411
c6ad1153 4412 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4413 *var = vmx->rmode.segs[seg];
a9179499 4414 if (seg == VCPU_SREG_TR
2fb92db1 4415 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4416 return;
1390a28b
AK
4417 var->base = vmx_read_guest_seg_base(vmx, seg);
4418 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4419 return;
a9179499 4420 }
2fb92db1
AK
4421 var->base = vmx_read_guest_seg_base(vmx, seg);
4422 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4423 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4424 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4425 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4426 var->type = ar & 15;
4427 var->s = (ar >> 4) & 1;
4428 var->dpl = (ar >> 5) & 3;
03617c18
GN
4429 /*
4430 * Some userspaces do not preserve unusable property. Since usable
4431 * segment has to be present according to VMX spec we can use present
4432 * property to amend userspace bug by making unusable segment always
4433 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4434 * segment as unusable.
4435 */
4436 var->present = !var->unusable;
6aa8b732
AK
4437 var->avl = (ar >> 12) & 1;
4438 var->l = (ar >> 13) & 1;
4439 var->db = (ar >> 14) & 1;
4440 var->g = (ar >> 15) & 1;
6aa8b732
AK
4441}
4442
a9179499
AK
4443static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4444{
a9179499
AK
4445 struct kvm_segment s;
4446
4447 if (to_vmx(vcpu)->rmode.vm86_active) {
4448 vmx_get_segment(vcpu, &s, seg);
4449 return s.base;
4450 }
2fb92db1 4451 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4452}
4453
b09408d0 4454static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4455{
b09408d0
MT
4456 struct vcpu_vmx *vmx = to_vmx(vcpu);
4457
ae9fedc7 4458 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4459 return 0;
ae9fedc7
PB
4460 else {
4461 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4462 return VMX_AR_DPL(ar);
69c73028 4463 }
69c73028
AK
4464}
4465
653e3108 4466static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4467{
6aa8b732
AK
4468 u32 ar;
4469
f0495f9b 4470 if (var->unusable || !var->present)
6aa8b732
AK
4471 ar = 1 << 16;
4472 else {
4473 ar = var->type & 15;
4474 ar |= (var->s & 1) << 4;
4475 ar |= (var->dpl & 3) << 5;
4476 ar |= (var->present & 1) << 7;
4477 ar |= (var->avl & 1) << 12;
4478 ar |= (var->l & 1) << 13;
4479 ar |= (var->db & 1) << 14;
4480 ar |= (var->g & 1) << 15;
4481 }
653e3108
AK
4482
4483 return ar;
4484}
4485
4486static void vmx_set_segment(struct kvm_vcpu *vcpu,
4487 struct kvm_segment *var, int seg)
4488{
7ffd92c5 4489 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4490 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4491
2fb92db1
AK
4492 vmx_segment_cache_clear(vmx);
4493
1ecd50a9
GN
4494 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4495 vmx->rmode.segs[seg] = *var;
4496 if (seg == VCPU_SREG_TR)
4497 vmcs_write16(sf->selector, var->selector);
4498 else if (var->s)
4499 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4500 goto out;
653e3108 4501 }
1ecd50a9 4502
653e3108
AK
4503 vmcs_writel(sf->base, var->base);
4504 vmcs_write32(sf->limit, var->limit);
4505 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4506
4507 /*
4508 * Fix the "Accessed" bit in AR field of segment registers for older
4509 * qemu binaries.
4510 * IA32 arch specifies that at the time of processor reset the
4511 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4512 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4513 * state vmexit when "unrestricted guest" mode is turned on.
4514 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4515 * tree. Newer qemu binaries with that qemu fix would not need this
4516 * kvm hack.
4517 */
4518 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4519 var->type |= 0x1; /* Accessed */
3a624e29 4520
f924d66d 4521 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4522
4523out:
98eb2f8b 4524 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4525}
4526
6aa8b732
AK
4527static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4528{
2fb92db1 4529 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4530
4531 *db = (ar >> 14) & 1;
4532 *l = (ar >> 13) & 1;
4533}
4534
89a27f4d 4535static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4536{
89a27f4d
GN
4537 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4538 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4539}
4540
89a27f4d 4541static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4542{
89a27f4d
GN
4543 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4544 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4545}
4546
89a27f4d 4547static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4548{
89a27f4d
GN
4549 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4550 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4551}
4552
89a27f4d 4553static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4554{
89a27f4d
GN
4555 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4556 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4557}
4558
648dfaa7
MG
4559static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4560{
4561 struct kvm_segment var;
4562 u32 ar;
4563
4564 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4565 var.dpl = 0x3;
0647f4aa
GN
4566 if (seg == VCPU_SREG_CS)
4567 var.type = 0x3;
648dfaa7
MG
4568 ar = vmx_segment_access_rights(&var);
4569
4570 if (var.base != (var.selector << 4))
4571 return false;
89efbed0 4572 if (var.limit != 0xffff)
648dfaa7 4573 return false;
07f42f5f 4574 if (ar != 0xf3)
648dfaa7
MG
4575 return false;
4576
4577 return true;
4578}
4579
4580static bool code_segment_valid(struct kvm_vcpu *vcpu)
4581{
4582 struct kvm_segment cs;
4583 unsigned int cs_rpl;
4584
4585 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4586 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4587
1872a3f4
AK
4588 if (cs.unusable)
4589 return false;
4d283ec9 4590 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4591 return false;
4592 if (!cs.s)
4593 return false;
4d283ec9 4594 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4595 if (cs.dpl > cs_rpl)
4596 return false;
1872a3f4 4597 } else {
648dfaa7
MG
4598 if (cs.dpl != cs_rpl)
4599 return false;
4600 }
4601 if (!cs.present)
4602 return false;
4603
4604 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4605 return true;
4606}
4607
4608static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4609{
4610 struct kvm_segment ss;
4611 unsigned int ss_rpl;
4612
4613 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4614 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4615
1872a3f4
AK
4616 if (ss.unusable)
4617 return true;
4618 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4619 return false;
4620 if (!ss.s)
4621 return false;
4622 if (ss.dpl != ss_rpl) /* DPL != RPL */
4623 return false;
4624 if (!ss.present)
4625 return false;
4626
4627 return true;
4628}
4629
4630static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4631{
4632 struct kvm_segment var;
4633 unsigned int rpl;
4634
4635 vmx_get_segment(vcpu, &var, seg);
b32a9918 4636 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4637
1872a3f4
AK
4638 if (var.unusable)
4639 return true;
648dfaa7
MG
4640 if (!var.s)
4641 return false;
4642 if (!var.present)
4643 return false;
4d283ec9 4644 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4645 if (var.dpl < rpl) /* DPL < RPL */
4646 return false;
4647 }
4648
4649 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4650 * rights flags
4651 */
4652 return true;
4653}
4654
4655static bool tr_valid(struct kvm_vcpu *vcpu)
4656{
4657 struct kvm_segment tr;
4658
4659 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4660
1872a3f4
AK
4661 if (tr.unusable)
4662 return false;
b32a9918 4663 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4664 return false;
1872a3f4 4665 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4666 return false;
4667 if (!tr.present)
4668 return false;
4669
4670 return true;
4671}
4672
4673static bool ldtr_valid(struct kvm_vcpu *vcpu)
4674{
4675 struct kvm_segment ldtr;
4676
4677 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4678
1872a3f4
AK
4679 if (ldtr.unusable)
4680 return true;
b32a9918 4681 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4682 return false;
4683 if (ldtr.type != 2)
4684 return false;
4685 if (!ldtr.present)
4686 return false;
4687
4688 return true;
4689}
4690
4691static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4692{
4693 struct kvm_segment cs, ss;
4694
4695 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4696 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4697
b32a9918
NA
4698 return ((cs.selector & SEGMENT_RPL_MASK) ==
4699 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4700}
4701
4702/*
4703 * Check if guest state is valid. Returns true if valid, false if
4704 * not.
4705 * We assume that registers are always usable
4706 */
4707static bool guest_state_valid(struct kvm_vcpu *vcpu)
4708{
c5e97c80
GN
4709 if (enable_unrestricted_guest)
4710 return true;
4711
648dfaa7 4712 /* real mode guest state checks */
f13882d8 4713 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4714 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4715 return false;
4716 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4717 return false;
4718 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4719 return false;
4720 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4721 return false;
4722 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4723 return false;
4724 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4725 return false;
4726 } else {
4727 /* protected mode guest state checks */
4728 if (!cs_ss_rpl_check(vcpu))
4729 return false;
4730 if (!code_segment_valid(vcpu))
4731 return false;
4732 if (!stack_segment_valid(vcpu))
4733 return false;
4734 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4735 return false;
4736 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4737 return false;
4738 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4739 return false;
4740 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4741 return false;
4742 if (!tr_valid(vcpu))
4743 return false;
4744 if (!ldtr_valid(vcpu))
4745 return false;
4746 }
4747 /* TODO:
4748 * - Add checks on RIP
4749 * - Add checks on RFLAGS
4750 */
4751
4752 return true;
4753}
4754
5fa99cbe
JM
4755static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4756{
4757 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4758}
4759
d77c26fc 4760static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4761{
40dcaa9f 4762 gfn_t fn;
195aefde 4763 u16 data = 0;
1f755a82 4764 int idx, r;
6aa8b732 4765
40dcaa9f 4766 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4767 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4768 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4769 if (r < 0)
10589a46 4770 goto out;
195aefde 4771 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4772 r = kvm_write_guest_page(kvm, fn++, &data,
4773 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4774 if (r < 0)
10589a46 4775 goto out;
195aefde
IE
4776 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4777 if (r < 0)
10589a46 4778 goto out;
195aefde
IE
4779 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4780 if (r < 0)
10589a46 4781 goto out;
195aefde 4782 data = ~0;
10589a46
MT
4783 r = kvm_write_guest_page(kvm, fn, &data,
4784 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4785 sizeof(u8));
10589a46 4786out:
40dcaa9f 4787 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4788 return r;
6aa8b732
AK
4789}
4790
b7ebfb05
SY
4791static int init_rmode_identity_map(struct kvm *kvm)
4792{
f51770ed 4793 int i, idx, r = 0;
ba049e93 4794 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4795 u32 tmp;
4796
a255d479
TC
4797 /* Protect kvm->arch.ept_identity_pagetable_done. */
4798 mutex_lock(&kvm->slots_lock);
4799
f51770ed 4800 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4801 goto out2;
a255d479 4802
d8a6e365
DH
4803 if (!kvm->arch.ept_identity_map_addr)
4804 kvm->arch.ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
b927a3ce 4805 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479 4806
d8a6e365
DH
4807 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4808 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
f51770ed 4809 if (r < 0)
a255d479
TC
4810 goto out2;
4811
40dcaa9f 4812 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4813 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4814 if (r < 0)
4815 goto out;
4816 /* Set up identity-mapping pagetable for EPT in real mode */
4817 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4818 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4819 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4820 r = kvm_write_guest_page(kvm, identity_map_pfn,
4821 &tmp, i * sizeof(tmp), sizeof(tmp));
4822 if (r < 0)
4823 goto out;
4824 }
4825 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4826
b7ebfb05 4827out:
40dcaa9f 4828 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4829
4830out2:
4831 mutex_unlock(&kvm->slots_lock);
f51770ed 4832 return r;
b7ebfb05
SY
4833}
4834
6aa8b732
AK
4835static void seg_setup(int seg)
4836{
772e0318 4837 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4838 unsigned int ar;
6aa8b732
AK
4839
4840 vmcs_write16(sf->selector, 0);
4841 vmcs_writel(sf->base, 0);
4842 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4843 ar = 0x93;
4844 if (seg == VCPU_SREG_CS)
4845 ar |= 0x08; /* code segment */
3a624e29
NK
4846
4847 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4848}
4849
f78e0e2e
SY
4850static int alloc_apic_access_page(struct kvm *kvm)
4851{
4484141a 4852 struct page *page;
f78e0e2e
SY
4853 int r = 0;
4854
79fac95e 4855 mutex_lock(&kvm->slots_lock);
c24ae0dc 4856 if (kvm->arch.apic_access_page_done)
f78e0e2e 4857 goto out;
1d8007bd
PB
4858 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4859 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4860 if (r)
4861 goto out;
72dc67a6 4862
73a6d941 4863 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4864 if (is_error_page(page)) {
4865 r = -EFAULT;
4866 goto out;
4867 }
4868
c24ae0dc
TC
4869 /*
4870 * Do not pin the page in memory, so that memory hot-unplug
4871 * is able to migrate it.
4872 */
4873 put_page(page);
4874 kvm->arch.apic_access_page_done = true;
f78e0e2e 4875out:
79fac95e 4876 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4877 return r;
4878}
4879
991e7a0e 4880static int allocate_vpid(void)
2384d2b3
SY
4881{
4882 int vpid;
4883
919818ab 4884 if (!enable_vpid)
991e7a0e 4885 return 0;
2384d2b3
SY
4886 spin_lock(&vmx_vpid_lock);
4887 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4888 if (vpid < VMX_NR_VPIDS)
2384d2b3 4889 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4890 else
4891 vpid = 0;
2384d2b3 4892 spin_unlock(&vmx_vpid_lock);
991e7a0e 4893 return vpid;
2384d2b3
SY
4894}
4895
991e7a0e 4896static void free_vpid(int vpid)
cdbecfc3 4897{
991e7a0e 4898 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4899 return;
4900 spin_lock(&vmx_vpid_lock);
991e7a0e 4901 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4902 spin_unlock(&vmx_vpid_lock);
4903}
4904
8d14695f
YZ
4905#define MSR_TYPE_R 1
4906#define MSR_TYPE_W 2
4907static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4908 u32 msr, int type)
25c5f225 4909{
3e7c73e9 4910 int f = sizeof(unsigned long);
25c5f225
SY
4911
4912 if (!cpu_has_vmx_msr_bitmap())
4913 return;
4914
4915 /*
4916 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4917 * have the write-low and read-high bitmap offsets the wrong way round.
4918 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4919 */
25c5f225 4920 if (msr <= 0x1fff) {
8d14695f
YZ
4921 if (type & MSR_TYPE_R)
4922 /* read-low */
4923 __clear_bit(msr, msr_bitmap + 0x000 / f);
4924
4925 if (type & MSR_TYPE_W)
4926 /* write-low */
4927 __clear_bit(msr, msr_bitmap + 0x800 / f);
4928
25c5f225
SY
4929 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4930 msr &= 0x1fff;
8d14695f
YZ
4931 if (type & MSR_TYPE_R)
4932 /* read-high */
4933 __clear_bit(msr, msr_bitmap + 0x400 / f);
4934
4935 if (type & MSR_TYPE_W)
4936 /* write-high */
4937 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4938
4939 }
4940}
4941
f2b93280
WV
4942/*
4943 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4944 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4945 */
4946static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4947 unsigned long *msr_bitmap_nested,
4948 u32 msr, int type)
4949{
4950 int f = sizeof(unsigned long);
4951
4952 if (!cpu_has_vmx_msr_bitmap()) {
4953 WARN_ON(1);
4954 return;
4955 }
4956
4957 /*
4958 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4959 * have the write-low and read-high bitmap offsets the wrong way round.
4960 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4961 */
4962 if (msr <= 0x1fff) {
4963 if (type & MSR_TYPE_R &&
4964 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4965 /* read-low */
4966 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4967
4968 if (type & MSR_TYPE_W &&
4969 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4970 /* write-low */
4971 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4972
4973 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4974 msr &= 0x1fff;
4975 if (type & MSR_TYPE_R &&
4976 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4977 /* read-high */
4978 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4979
4980 if (type & MSR_TYPE_W &&
4981 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4982 /* write-high */
4983 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4984
4985 }
4986}
4987
5897297b
AK
4988static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4989{
4990 if (!longmode_only)
8d14695f
YZ
4991 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4992 msr, MSR_TYPE_R | MSR_TYPE_W);
4993 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4994 msr, MSR_TYPE_R | MSR_TYPE_W);
4995}
4996
2e69f865 4997static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
8d14695f 4998{
f6e90f9e 4999 if (apicv_active) {
c63e4563 5000 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
2e69f865 5001 msr, type);
c63e4563 5002 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
2e69f865 5003 msr, type);
f6e90f9e 5004 } else {
f6e90f9e 5005 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
2e69f865 5006 msr, type);
f6e90f9e 5007 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
2e69f865 5008 msr, type);
f6e90f9e 5009 }
5897297b
AK
5010}
5011
b2a05fef 5012static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
d50ab6c1 5013{
d62caabb 5014 return enable_apicv;
d50ab6c1
PB
5015}
5016
c9f04407
DM
5017static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5018{
5019 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5020 gfn_t gfn;
5021
5022 /*
5023 * Don't need to mark the APIC access page dirty; it is never
5024 * written to by the CPU during APIC virtualization.
5025 */
5026
5027 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5028 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5029 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5030 }
5031
5032 if (nested_cpu_has_posted_intr(vmcs12)) {
5033 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5034 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5035 }
5036}
5037
5038
6342c50a 5039static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
5040{
5041 struct vcpu_vmx *vmx = to_vmx(vcpu);
5042 int max_irr;
5043 void *vapic_page;
5044 u16 status;
5045
c9f04407
DM
5046 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5047 return;
705699a1 5048
c9f04407
DM
5049 vmx->nested.pi_pending = false;
5050 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5051 return;
705699a1 5052
c9f04407
DM
5053 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5054 if (max_irr != 256) {
705699a1 5055 vapic_page = kmap(vmx->nested.virtual_apic_page);
705699a1
WV
5056 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5057 kunmap(vmx->nested.virtual_apic_page);
5058
5059 status = vmcs_read16(GUEST_INTR_STATUS);
5060 if ((u8)max_irr > ((u8)status & 0xff)) {
5061 status &= ~0xff;
5062 status |= (u8)max_irr;
5063 vmcs_write16(GUEST_INTR_STATUS, status);
5064 }
5065 }
c9f04407
DM
5066
5067 nested_mark_vmcs12_pages_dirty(vcpu);
705699a1
WV
5068}
5069
06a5524f
WV
5070static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5071 bool nested)
21bc8dc5
RK
5072{
5073#ifdef CONFIG_SMP
06a5524f
WV
5074 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5075
21bc8dc5 5076 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6 5077 /*
5753743f
HZ
5078 * The vector of interrupt to be delivered to vcpu had
5079 * been set in PIR before this function.
5080 *
5081 * Following cases will be reached in this block, and
5082 * we always send a notification event in all cases as
5083 * explained below.
5084 *
5085 * Case 1: vcpu keeps in non-root mode. Sending a
5086 * notification event posts the interrupt to vcpu.
5087 *
5088 * Case 2: vcpu exits to root mode and is still
5089 * runnable. PIR will be synced to vIRR before the
5090 * next vcpu entry. Sending a notification event in
5091 * this case has no effect, as vcpu is not in root
5092 * mode.
28b835d6 5093 *
5753743f
HZ
5094 * Case 3: vcpu exits to root mode and is blocked.
5095 * vcpu_block() has already synced PIR to vIRR and
5096 * never blocks vcpu if vIRR is not cleared. Therefore,
5097 * a blocked vcpu here does not wait for any requested
5098 * interrupts in PIR, and sending a notification event
5099 * which has no effect is safe here.
28b835d6 5100 */
28b835d6 5101
06a5524f 5102 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
21bc8dc5
RK
5103 return true;
5104 }
5105#endif
5106 return false;
5107}
5108
705699a1
WV
5109static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5110 int vector)
5111{
5112 struct vcpu_vmx *vmx = to_vmx(vcpu);
5113
5114 if (is_guest_mode(vcpu) &&
5115 vector == vmx->nested.posted_intr_nv) {
5116 /* the PIR and ON have been set by L1. */
06a5524f 5117 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
705699a1
WV
5118 /*
5119 * If a posted intr is not recognized by hardware,
5120 * we will accomplish it in the next vmentry.
5121 */
5122 vmx->nested.pi_pending = true;
5123 kvm_make_request(KVM_REQ_EVENT, vcpu);
5124 return 0;
5125 }
5126 return -1;
5127}
a20ed54d
YZ
5128/*
5129 * Send interrupt to vcpu via posted interrupt way.
5130 * 1. If target vcpu is running(non-root mode), send posted interrupt
5131 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5132 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5133 * interrupt from PIR in next vmentry.
5134 */
5135static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5136{
5137 struct vcpu_vmx *vmx = to_vmx(vcpu);
5138 int r;
5139
705699a1
WV
5140 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5141 if (!r)
5142 return;
5143
a20ed54d
YZ
5144 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5145 return;
5146
b95234c8
PB
5147 /* If a previous notification has sent the IPI, nothing to do. */
5148 if (pi_test_and_set_on(&vmx->pi_desc))
5149 return;
5150
06a5524f 5151 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
a20ed54d
YZ
5152 kvm_vcpu_kick(vcpu);
5153}
5154
a3a8ff8e
NHE
5155/*
5156 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5157 * will not change in the lifetime of the guest.
5158 * Note that host-state that does change is set elsewhere. E.g., host-state
5159 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5160 */
a547c6db 5161static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5162{
5163 u32 low32, high32;
5164 unsigned long tmpl;
5165 struct desc_ptr dt;
d6e41f11 5166 unsigned long cr0, cr3, cr4;
a3a8ff8e 5167
04ac88ab
AL
5168 cr0 = read_cr0();
5169 WARN_ON(cr0 & X86_CR0_TS);
5170 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
d6e41f11
AL
5171
5172 /*
5173 * Save the most likely value for this task's CR3 in the VMCS.
5174 * We can't use __get_current_cr3_fast() because we're not atomic.
5175 */
6c690ee1 5176 cr3 = __read_cr3();
d6e41f11 5177 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
44889942 5178 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
a3a8ff8e 5179
d974baa3 5180 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5181 cr4 = cr4_read_shadow();
d974baa3 5182 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
44889942 5183 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3 5184
a3a8ff8e 5185 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5186#ifdef CONFIG_X86_64
5187 /*
5188 * Load null selectors, so we can avoid reloading them in
5189 * __vmx_load_host_state(), in case userspace uses the null selectors
5190 * too (the expected case).
5191 */
5192 vmcs_write16(HOST_DS_SELECTOR, 0);
5193 vmcs_write16(HOST_ES_SELECTOR, 0);
5194#else
a3a8ff8e
NHE
5195 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5196 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5197#endif
a3a8ff8e
NHE
5198 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5199 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5200
87930019 5201 store_idt(&dt);
a3a8ff8e 5202 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5203 vmx->host_idt_base = dt.address;
a3a8ff8e 5204
83287ea4 5205 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5206
5207 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5208 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5209 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5210 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5211
5212 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5213 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5214 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5215 }
5216}
5217
bf8179a0
NHE
5218static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5219{
5220 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5221 if (enable_ept)
5222 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5223 if (is_guest_mode(&vmx->vcpu))
5224 vmx->vcpu.arch.cr4_guest_owned_bits &=
5225 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5226 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5227}
5228
01e439be
YZ
5229static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5230{
5231 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5232
d62caabb 5233 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5234 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
64672c95
YJ
5235 /* Enable the preemption timer dynamically */
5236 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5237 return pin_based_exec_ctrl;
5238}
5239
d62caabb
AS
5240static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5241{
5242 struct vcpu_vmx *vmx = to_vmx(vcpu);
5243
5244 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5245 if (cpu_has_secondary_exec_ctrls()) {
5246 if (kvm_vcpu_apicv_active(vcpu))
5247 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5248 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5249 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5250 else
5251 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5252 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5253 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5254 }
5255
5256 if (cpu_has_vmx_msr_bitmap())
5257 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
5258}
5259
bf8179a0
NHE
5260static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5261{
5262 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5263
5264 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5265 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5266
35754c98 5267 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5268 exec_control &= ~CPU_BASED_TPR_SHADOW;
5269#ifdef CONFIG_X86_64
5270 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5271 CPU_BASED_CR8_LOAD_EXITING;
5272#endif
5273 }
5274 if (!enable_ept)
5275 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5276 CPU_BASED_CR3_LOAD_EXITING |
5277 CPU_BASED_INVLPG_EXITING;
5278 return exec_control;
5279}
5280
45ec368c 5281static bool vmx_rdrand_supported(void)
bf8179a0 5282{
45ec368c 5283 return vmcs_config.cpu_based_2nd_exec_ctrl &
736fdf72 5284 SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5285}
5286
75f4fc8d
JM
5287static bool vmx_rdseed_supported(void)
5288{
5289 return vmcs_config.cpu_based_2nd_exec_ctrl &
736fdf72 5290 SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5291}
5292
80154d77 5293static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
bf8179a0 5294{
80154d77
PB
5295 struct kvm_vcpu *vcpu = &vmx->vcpu;
5296
bf8179a0 5297 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
80154d77 5298 if (!cpu_need_virtualize_apic_accesses(vcpu))
bf8179a0
NHE
5299 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5300 if (vmx->vpid == 0)
5301 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5302 if (!enable_ept) {
5303 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5304 enable_unrestricted_guest = 0;
ad756a16
MJ
5305 /* Enable INVPCID for non-ept guests may cause performance regression. */
5306 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5307 }
5308 if (!enable_unrestricted_guest)
5309 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5310 if (!ple_gap)
5311 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
80154d77 5312 if (!kvm_vcpu_apicv_active(vcpu))
c7c9c56c
YZ
5313 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5314 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5315 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5316 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5317 (handle_vmptrld).
5318 We can NOT enable shadow_vmcs here because we don't have yet
5319 a current VMCS12
5320 */
5321 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5322
5323 if (!enable_pml)
5324 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5325
3db13480
PB
5326 if (vmx_xsaves_supported()) {
5327 /* Exposing XSAVES only when XSAVE is exposed */
5328 bool xsaves_enabled =
5329 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5330 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5331
5332 if (!xsaves_enabled)
5333 exec_control &= ~SECONDARY_EXEC_XSAVES;
5334
5335 if (nested) {
5336 if (xsaves_enabled)
5337 vmx->nested.nested_vmx_secondary_ctls_high |=
5338 SECONDARY_EXEC_XSAVES;
5339 else
5340 vmx->nested.nested_vmx_secondary_ctls_high &=
5341 ~SECONDARY_EXEC_XSAVES;
5342 }
5343 }
5344
80154d77
PB
5345 if (vmx_rdtscp_supported()) {
5346 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5347 if (!rdtscp_enabled)
5348 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5349
5350 if (nested) {
5351 if (rdtscp_enabled)
5352 vmx->nested.nested_vmx_secondary_ctls_high |=
5353 SECONDARY_EXEC_RDTSCP;
5354 else
5355 vmx->nested.nested_vmx_secondary_ctls_high &=
5356 ~SECONDARY_EXEC_RDTSCP;
5357 }
5358 }
5359
5360 if (vmx_invpcid_supported()) {
5361 /* Exposing INVPCID only when PCID is exposed */
5362 bool invpcid_enabled =
5363 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5364 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5365
5366 if (!invpcid_enabled) {
5367 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5368 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5369 }
5370
5371 if (nested) {
5372 if (invpcid_enabled)
5373 vmx->nested.nested_vmx_secondary_ctls_high |=
5374 SECONDARY_EXEC_ENABLE_INVPCID;
5375 else
5376 vmx->nested.nested_vmx_secondary_ctls_high &=
5377 ~SECONDARY_EXEC_ENABLE_INVPCID;
5378 }
5379 }
5380
45ec368c
JM
5381 if (vmx_rdrand_supported()) {
5382 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5383 if (rdrand_enabled)
736fdf72 5384 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5385
5386 if (nested) {
5387 if (rdrand_enabled)
5388 vmx->nested.nested_vmx_secondary_ctls_high |=
736fdf72 5389 SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5390 else
5391 vmx->nested.nested_vmx_secondary_ctls_high &=
736fdf72 5392 ~SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5393 }
5394 }
5395
75f4fc8d
JM
5396 if (vmx_rdseed_supported()) {
5397 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5398 if (rdseed_enabled)
736fdf72 5399 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5400
5401 if (nested) {
5402 if (rdseed_enabled)
5403 vmx->nested.nested_vmx_secondary_ctls_high |=
736fdf72 5404 SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5405 else
5406 vmx->nested.nested_vmx_secondary_ctls_high &=
736fdf72 5407 ~SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5408 }
5409 }
5410
80154d77 5411 vmx->secondary_exec_control = exec_control;
bf8179a0
NHE
5412}
5413
ce88decf
XG
5414static void ept_set_mmio_spte_mask(void)
5415{
5416 /*
5417 * EPT Misconfigurations can be generated if the value of bits 2:0
5418 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5419 */
dcdca5fe
PF
5420 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5421 VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5422}
5423
f53cd63c 5424#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5425/*
5426 * Sets up the vmcs for emulated real mode.
5427 */
12d79917 5428static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5429{
2e4ce7f5 5430#ifdef CONFIG_X86_64
6aa8b732 5431 unsigned long a;
2e4ce7f5 5432#endif
6aa8b732 5433 int i;
6aa8b732 5434
6aa8b732 5435 /* I/O */
3e7c73e9
AK
5436 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5437 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5438
4607c2d7
AG
5439 if (enable_shadow_vmcs) {
5440 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5441 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5442 }
25c5f225 5443 if (cpu_has_vmx_msr_bitmap())
5897297b 5444 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 5445
6aa8b732
AK
5446 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5447
6aa8b732 5448 /* Control */
01e439be 5449 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5450 vmx->hv_deadline_tsc = -1;
6e5d865c 5451
bf8179a0 5452 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5453
dfa169bb 5454 if (cpu_has_secondary_exec_ctrls()) {
80154d77 5455 vmx_compute_secondary_exec_control(vmx);
bf8179a0 5456 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
80154d77 5457 vmx->secondary_exec_control);
dfa169bb 5458 }
f78e0e2e 5459
d62caabb 5460 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5461 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5462 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5463 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5464 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5465
5466 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5467
0bcf261c 5468 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5469 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5470 }
5471
4b8d54f9
ZE
5472 if (ple_gap) {
5473 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5474 vmx->ple_window = ple_window;
5475 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5476 }
5477
c3707958
XG
5478 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5479 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5480 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5481
9581d442
AK
5482 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5483 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5484 vmx_set_constant_host_state(vmx);
05b3e0c2 5485#ifdef CONFIG_X86_64
6aa8b732
AK
5486 rdmsrl(MSR_FS_BASE, a);
5487 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5488 rdmsrl(MSR_GS_BASE, a);
5489 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5490#else
5491 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5492 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5493#endif
5494
2a499e49
BD
5495 if (cpu_has_vmx_vmfunc())
5496 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5497
2cc51560
ED
5498 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5499 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5500 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5501 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5502 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5503
74545705
RK
5504 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5505 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5506
03916db9 5507 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5508 u32 index = vmx_msr_index[i];
5509 u32 data_low, data_high;
a2fa3e9f 5510 int j = vmx->nmsrs;
6aa8b732
AK
5511
5512 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5513 continue;
432bd6cb
AK
5514 if (wrmsr_safe(index, data_low, data_high) < 0)
5515 continue;
26bb0981
AK
5516 vmx->guest_msrs[j].index = i;
5517 vmx->guest_msrs[j].data = 0;
d5696725 5518 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5519 ++vmx->nmsrs;
6aa8b732 5520 }
6aa8b732 5521
2961e876
GN
5522
5523 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5524
5525 /* 22.2.1, 20.8.1 */
2961e876 5526 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5527
bd7e5b08
PB
5528 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5529 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5530
bf8179a0 5531 set_cr4_guest_host_mask(vmx);
e00c8cf2 5532
f53cd63c
WL
5533 if (vmx_xsaves_supported())
5534 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5535
4e59516a
PF
5536 if (enable_pml) {
5537 ASSERT(vmx->pml_pg);
5538 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5539 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5540 }
e00c8cf2
AK
5541}
5542
d28bc9dd 5543static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5544{
5545 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5546 struct msr_data apic_base_msr;
d28bc9dd 5547 u64 cr0;
e00c8cf2 5548
7ffd92c5 5549 vmx->rmode.vm86_active = 0;
e00c8cf2 5550
ad312c7c 5551 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5552 kvm_set_cr8(vcpu, 0);
5553
5554 if (!init_event) {
5555 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5556 MSR_IA32_APICBASE_ENABLE;
5557 if (kvm_vcpu_is_reset_bsp(vcpu))
5558 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5559 apic_base_msr.host_initiated = true;
5560 kvm_set_apic_base(vcpu, &apic_base_msr);
5561 }
e00c8cf2 5562
2fb92db1
AK
5563 vmx_segment_cache_clear(vmx);
5564
5706be0d 5565 seg_setup(VCPU_SREG_CS);
66450a21 5566 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5567 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5568
5569 seg_setup(VCPU_SREG_DS);
5570 seg_setup(VCPU_SREG_ES);
5571 seg_setup(VCPU_SREG_FS);
5572 seg_setup(VCPU_SREG_GS);
5573 seg_setup(VCPU_SREG_SS);
5574
5575 vmcs_write16(GUEST_TR_SELECTOR, 0);
5576 vmcs_writel(GUEST_TR_BASE, 0);
5577 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5578 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5579
5580 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5581 vmcs_writel(GUEST_LDTR_BASE, 0);
5582 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5583 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5584
d28bc9dd
NA
5585 if (!init_event) {
5586 vmcs_write32(GUEST_SYSENTER_CS, 0);
5587 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5588 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5589 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5590 }
e00c8cf2
AK
5591
5592 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5593 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5594
e00c8cf2
AK
5595 vmcs_writel(GUEST_GDTR_BASE, 0);
5596 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5597
5598 vmcs_writel(GUEST_IDTR_BASE, 0);
5599 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5600
443381a8 5601 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5602 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5603 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
a554d207
WL
5604 if (kvm_mpx_supported())
5605 vmcs_write64(GUEST_BNDCFGS, 0);
e00c8cf2 5606
e00c8cf2
AK
5607 setup_msrs(vmx);
5608
6aa8b732
AK
5609 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5610
d28bc9dd 5611 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5612 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5613 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5614 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5615 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5616 vmcs_write32(TPR_THRESHOLD, 0);
5617 }
5618
a73896cb 5619 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5620
d62caabb 5621 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5622 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5623
2384d2b3
SY
5624 if (vmx->vpid != 0)
5625 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5626
d28bc9dd 5627 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5628 vmx->vcpu.arch.cr0 = cr0;
f2463247 5629 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5630 vmx_set_cr4(vcpu, 0);
5690891b 5631 vmx_set_efer(vcpu, 0);
bd7e5b08 5632
d28bc9dd 5633 update_exception_bitmap(vcpu);
6aa8b732 5634
dd5f5341 5635 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5636}
5637
b6f1250e
NHE
5638/*
5639 * In nested virtualization, check if L1 asked to exit on external interrupts.
5640 * For most existing hypervisors, this will always return true.
5641 */
5642static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5643{
5644 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5645 PIN_BASED_EXT_INTR_MASK;
5646}
5647
77b0f5d6
BD
5648/*
5649 * In nested virtualization, check if L1 has set
5650 * VM_EXIT_ACK_INTR_ON_EXIT
5651 */
5652static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5653{
5654 return get_vmcs12(vcpu)->vm_exit_controls &
5655 VM_EXIT_ACK_INTR_ON_EXIT;
5656}
5657
ea8ceb83
JK
5658static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5659{
5660 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5661 PIN_BASED_NMI_EXITING;
5662}
5663
c9a7953f 5664static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 5665{
47c0152e
PB
5666 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5667 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
5668}
5669
c9a7953f 5670static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 5671{
2c82878b 5672 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
c9a7953f
JK
5673 enable_irq_window(vcpu);
5674 return;
5675 }
3b86cd99 5676
47c0152e
PB
5677 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5678 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
5679}
5680
66fd3f7f 5681static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5682{
9c8cba37 5683 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5684 uint32_t intr;
5685 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5686
229456fc 5687 trace_kvm_inj_virq(irq);
2714d1d3 5688
fa89a817 5689 ++vcpu->stat.irq_injections;
7ffd92c5 5690 if (vmx->rmode.vm86_active) {
71f9833b
SH
5691 int inc_eip = 0;
5692 if (vcpu->arch.interrupt.soft)
5693 inc_eip = vcpu->arch.event_exit_inst_len;
5694 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5695 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5696 return;
5697 }
66fd3f7f
GN
5698 intr = irq | INTR_INFO_VALID_MASK;
5699 if (vcpu->arch.interrupt.soft) {
5700 intr |= INTR_TYPE_SOFT_INTR;
5701 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5702 vmx->vcpu.arch.event_exit_inst_len);
5703 } else
5704 intr |= INTR_TYPE_EXT_INTR;
5705 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5706}
5707
f08864b4
SY
5708static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5709{
66a5a347
JK
5710 struct vcpu_vmx *vmx = to_vmx(vcpu);
5711
4c4a6f79
PB
5712 ++vcpu->stat.nmi_injections;
5713 vmx->loaded_vmcs->nmi_known_unmasked = false;
3b86cd99 5714
7ffd92c5 5715 if (vmx->rmode.vm86_active) {
71f9833b 5716 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5717 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5718 return;
5719 }
c5a6d5f7 5720
f08864b4
SY
5721 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5722 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5723}
5724
3cfc3092
JK
5725static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5726{
4c4a6f79
PB
5727 struct vcpu_vmx *vmx = to_vmx(vcpu);
5728 bool masked;
5729
5730 if (vmx->loaded_vmcs->nmi_known_unmasked)
9d58b931 5731 return false;
4c4a6f79
PB
5732 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5733 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5734 return masked;
3cfc3092
JK
5735}
5736
5737static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5738{
5739 struct vcpu_vmx *vmx = to_vmx(vcpu);
5740
4c4a6f79 5741 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
2c82878b
PB
5742 if (masked)
5743 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5744 GUEST_INTR_STATE_NMI);
5745 else
5746 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5747 GUEST_INTR_STATE_NMI);
3cfc3092
JK
5748}
5749
2505dc9f
JK
5750static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5751{
b6b8a145
JK
5752 if (to_vmx(vcpu)->nested.nested_run_pending)
5753 return 0;
ea8ceb83 5754
2505dc9f
JK
5755 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5756 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5757 | GUEST_INTR_STATE_NMI));
5758}
5759
78646121
GN
5760static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5761{
b6b8a145
JK
5762 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5763 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5764 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5765 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5766}
5767
cbc94022
IE
5768static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5769{
5770 int ret;
cbc94022 5771
1d8007bd
PB
5772 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5773 PAGE_SIZE * 3);
cbc94022
IE
5774 if (ret)
5775 return ret;
bfc6d222 5776 kvm->arch.tss_addr = addr;
1f755a82 5777 return init_rmode_tss(kvm);
cbc94022
IE
5778}
5779
0ca1b4f4 5780static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5781{
77ab6db0 5782 switch (vec) {
77ab6db0 5783 case BP_VECTOR:
c573cd22
JK
5784 /*
5785 * Update instruction length as we may reinject the exception
5786 * from user space while in guest debugging mode.
5787 */
5788 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5789 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5790 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5791 return false;
5792 /* fall through */
5793 case DB_VECTOR:
5794 if (vcpu->guest_debug &
5795 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5796 return false;
d0bfb940
JK
5797 /* fall through */
5798 case DE_VECTOR:
77ab6db0
JK
5799 case OF_VECTOR:
5800 case BR_VECTOR:
5801 case UD_VECTOR:
5802 case DF_VECTOR:
5803 case SS_VECTOR:
5804 case GP_VECTOR:
5805 case MF_VECTOR:
0ca1b4f4
GN
5806 return true;
5807 break;
77ab6db0 5808 }
0ca1b4f4
GN
5809 return false;
5810}
5811
5812static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5813 int vec, u32 err_code)
5814{
5815 /*
5816 * Instruction with address size override prefix opcode 0x67
5817 * Cause the #SS fault with 0 error code in VM86 mode.
5818 */
5819 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5820 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5821 if (vcpu->arch.halt_request) {
5822 vcpu->arch.halt_request = 0;
5cb56059 5823 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5824 }
5825 return 1;
5826 }
5827 return 0;
5828 }
5829
5830 /*
5831 * Forward all other exceptions that are valid in real mode.
5832 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5833 * the required debugging infrastructure rework.
5834 */
5835 kvm_queue_exception(vcpu, vec);
5836 return 1;
6aa8b732
AK
5837}
5838
a0861c02
AK
5839/*
5840 * Trigger machine check on the host. We assume all the MSRs are already set up
5841 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5842 * We pass a fake environment to the machine check handler because we want
5843 * the guest to be always treated like user space, no matter what context
5844 * it used internally.
5845 */
5846static void kvm_machine_check(void)
5847{
5848#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5849 struct pt_regs regs = {
5850 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5851 .flags = X86_EFLAGS_IF,
5852 };
5853
5854 do_machine_check(&regs, 0);
5855#endif
5856}
5857
851ba692 5858static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5859{
5860 /* already handled by vcpu_run */
5861 return 1;
5862}
5863
851ba692 5864static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5865{
1155f76a 5866 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5867 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5868 u32 intr_info, ex_no, error_code;
42dbaa5a 5869 unsigned long cr2, rip, dr6;
6aa8b732
AK
5870 u32 vect_info;
5871 enum emulation_result er;
5872
1155f76a 5873 vect_info = vmx->idt_vectoring_info;
88786475 5874 intr_info = vmx->exit_intr_info;
6aa8b732 5875
a0861c02 5876 if (is_machine_check(intr_info))
851ba692 5877 return handle_machine_check(vcpu);
a0861c02 5878
ef85b673 5879 if (is_nmi(intr_info))
1b6269db 5880 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 5881
7aa81cc0 5882 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5883 if (is_guest_mode(vcpu)) {
5884 kvm_queue_exception(vcpu, UD_VECTOR);
5885 return 1;
5886 }
51d8b661 5887 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5888 if (er != EMULATE_DONE)
7ee5d940 5889 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5890 return 1;
5891 }
5892
6aa8b732 5893 error_code = 0;
2e11384c 5894 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5895 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5896
5897 /*
5898 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5899 * MMIO, it is better to report an internal error.
5900 * See the comments in vmx_handle_exit.
5901 */
5902 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5903 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5904 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5905 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5906 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5907 vcpu->run->internal.data[0] = vect_info;
5908 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5909 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5910 return 0;
5911 }
5912
6aa8b732
AK
5913 if (is_page_fault(intr_info)) {
5914 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1261bfa3
WL
5915 /* EPT won't cause page fault directly */
5916 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
d0006530 5917 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
6aa8b732
AK
5918 }
5919
d0bfb940 5920 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5921
5922 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5923 return handle_rmode_exception(vcpu, ex_no, error_code);
5924
42dbaa5a 5925 switch (ex_no) {
54a20552
EN
5926 case AC_VECTOR:
5927 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5928 return 1;
42dbaa5a
JK
5929 case DB_VECTOR:
5930 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5931 if (!(vcpu->guest_debug &
5932 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5933 vcpu->arch.dr6 &= ~15;
6f43ed01 5934 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5935 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5936 skip_emulated_instruction(vcpu);
5937
42dbaa5a
JK
5938 kvm_queue_exception(vcpu, DB_VECTOR);
5939 return 1;
5940 }
5941 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5942 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5943 /* fall through */
5944 case BP_VECTOR:
c573cd22
JK
5945 /*
5946 * Update instruction length as we may reinject #BP from
5947 * user space while in guest debugging mode. Reading it for
5948 * #DB as well causes no harm, it is not used in that case.
5949 */
5950 vmx->vcpu.arch.event_exit_inst_len =
5951 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5952 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5953 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5954 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5955 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5956 break;
5957 default:
d0bfb940
JK
5958 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5959 kvm_run->ex.exception = ex_no;
5960 kvm_run->ex.error_code = error_code;
42dbaa5a 5961 break;
6aa8b732 5962 }
6aa8b732
AK
5963 return 0;
5964}
5965
851ba692 5966static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5967{
1165f5fe 5968 ++vcpu->stat.irq_exits;
6aa8b732
AK
5969 return 1;
5970}
5971
851ba692 5972static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5973{
851ba692 5974 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
bbeac283 5975 vcpu->mmio_needed = 0;
988ad74f
AK
5976 return 0;
5977}
6aa8b732 5978
851ba692 5979static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5980{
bfdaab09 5981 unsigned long exit_qualification;
6affcbed 5982 int size, in, string, ret;
039576c0 5983 unsigned port;
6aa8b732 5984
bfdaab09 5985 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5986 string = (exit_qualification & 16) != 0;
cf8f70bf 5987 in = (exit_qualification & 8) != 0;
e70669ab 5988
cf8f70bf 5989 ++vcpu->stat.io_exits;
e70669ab 5990
cf8f70bf 5991 if (string || in)
51d8b661 5992 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5993
cf8f70bf
GN
5994 port = exit_qualification >> 16;
5995 size = (exit_qualification & 7) + 1;
cf8f70bf 5996
6affcbed
KH
5997 ret = kvm_skip_emulated_instruction(vcpu);
5998
5999 /*
6000 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6001 * KVM_EXIT_DEBUG here.
6002 */
6003 return kvm_fast_pio_out(vcpu, size, port) && ret;
6aa8b732
AK
6004}
6005
102d8325
IM
6006static void
6007vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6008{
6009 /*
6010 * Patch in the VMCALL instruction:
6011 */
6012 hypercall[0] = 0x0f;
6013 hypercall[1] = 0x01;
6014 hypercall[2] = 0xc1;
102d8325
IM
6015}
6016
0fa06071 6017/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
6018static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6019{
eeadf9e7 6020 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6021 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6022 unsigned long orig_val = val;
6023
eeadf9e7
NHE
6024 /*
6025 * We get here when L2 changed cr0 in a way that did not change
6026 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
6027 * but did change L0 shadowed bits. So we first calculate the
6028 * effective cr0 value that L1 would like to write into the
6029 * hardware. It consists of the L2-owned bits from the new
6030 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 6031 */
1a0d74e6
JK
6032 val = (val & ~vmcs12->cr0_guest_host_mask) |
6033 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6034
3899152c 6035 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 6036 return 1;
1a0d74e6
JK
6037
6038 if (kvm_set_cr0(vcpu, val))
6039 return 1;
6040 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 6041 return 0;
1a0d74e6
JK
6042 } else {
6043 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 6044 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 6045 return 1;
3899152c 6046
eeadf9e7 6047 return kvm_set_cr0(vcpu, val);
1a0d74e6 6048 }
eeadf9e7
NHE
6049}
6050
6051static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6052{
6053 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6054 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6055 unsigned long orig_val = val;
6056
6057 /* analogously to handle_set_cr0 */
6058 val = (val & ~vmcs12->cr4_guest_host_mask) |
6059 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6060 if (kvm_set_cr4(vcpu, val))
eeadf9e7 6061 return 1;
1a0d74e6 6062 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
6063 return 0;
6064 } else
6065 return kvm_set_cr4(vcpu, val);
6066}
6067
851ba692 6068static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 6069{
229456fc 6070 unsigned long exit_qualification, val;
6aa8b732
AK
6071 int cr;
6072 int reg;
49a9b07e 6073 int err;
6affcbed 6074 int ret;
6aa8b732 6075
bfdaab09 6076 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
6077 cr = exit_qualification & 15;
6078 reg = (exit_qualification >> 8) & 15;
6079 switch ((exit_qualification >> 4) & 3) {
6080 case 0: /* mov to cr */
1e32c079 6081 val = kvm_register_readl(vcpu, reg);
229456fc 6082 trace_kvm_cr_write(cr, val);
6aa8b732
AK
6083 switch (cr) {
6084 case 0:
eeadf9e7 6085 err = handle_set_cr0(vcpu, val);
6affcbed 6086 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6087 case 3:
2390218b 6088 err = kvm_set_cr3(vcpu, val);
6affcbed 6089 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6090 case 4:
eeadf9e7 6091 err = handle_set_cr4(vcpu, val);
6affcbed 6092 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
6093 case 8: {
6094 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 6095 u8 cr8 = (u8)val;
eea1cff9 6096 err = kvm_set_cr8(vcpu, cr8);
6affcbed 6097 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 6098 if (lapic_in_kernel(vcpu))
6affcbed 6099 return ret;
0a5fff19 6100 if (cr8_prev <= cr8)
6affcbed
KH
6101 return ret;
6102 /*
6103 * TODO: we might be squashing a
6104 * KVM_GUESTDBG_SINGLESTEP-triggered
6105 * KVM_EXIT_DEBUG here.
6106 */
851ba692 6107 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
6108 return 0;
6109 }
4b8073e4 6110 }
6aa8b732 6111 break;
25c4c276 6112 case 2: /* clts */
bd7e5b08
PB
6113 WARN_ONCE(1, "Guest should always own CR0.TS");
6114 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 6115 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 6116 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6117 case 1: /*mov from cr*/
6118 switch (cr) {
6119 case 3:
9f8fe504
AK
6120 val = kvm_read_cr3(vcpu);
6121 kvm_register_write(vcpu, reg, val);
6122 trace_kvm_cr_read(cr, val);
6affcbed 6123 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 6124 case 8:
229456fc
MT
6125 val = kvm_get_cr8(vcpu);
6126 kvm_register_write(vcpu, reg, val);
6127 trace_kvm_cr_read(cr, val);
6affcbed 6128 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6129 }
6130 break;
6131 case 3: /* lmsw */
a1f83a74 6132 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 6133 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 6134 kvm_lmsw(vcpu, val);
6aa8b732 6135
6affcbed 6136 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6137 default:
6138 break;
6139 }
851ba692 6140 vcpu->run->exit_reason = 0;
a737f256 6141 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
6142 (int)(exit_qualification >> 4) & 3, cr);
6143 return 0;
6144}
6145
851ba692 6146static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 6147{
bfdaab09 6148 unsigned long exit_qualification;
16f8a6f9
NA
6149 int dr, dr7, reg;
6150
6151 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6152 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6153
6154 /* First, if DR does not exist, trigger UD */
6155 if (!kvm_require_dr(vcpu, dr))
6156 return 1;
6aa8b732 6157
f2483415 6158 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
6159 if (!kvm_require_cpl(vcpu, 0))
6160 return 1;
16f8a6f9
NA
6161 dr7 = vmcs_readl(GUEST_DR7);
6162 if (dr7 & DR7_GD) {
42dbaa5a
JK
6163 /*
6164 * As the vm-exit takes precedence over the debug trap, we
6165 * need to emulate the latter, either for the host or the
6166 * guest debugging itself.
6167 */
6168 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 6169 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 6170 vcpu->run->debug.arch.dr7 = dr7;
82b32774 6171 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
6172 vcpu->run->debug.arch.exception = DB_VECTOR;
6173 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
6174 return 0;
6175 } else {
7305eb5d 6176 vcpu->arch.dr6 &= ~15;
6f43ed01 6177 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
6178 kvm_queue_exception(vcpu, DB_VECTOR);
6179 return 1;
6180 }
6181 }
6182
81908bf4 6183 if (vcpu->guest_debug == 0) {
8f22372f
PB
6184 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6185 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6186
6187 /*
6188 * No more DR vmexits; force a reload of the debug registers
6189 * and reenter on this instruction. The next vmexit will
6190 * retrieve the full state of the debug registers.
6191 */
6192 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6193 return 1;
6194 }
6195
42dbaa5a
JK
6196 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6197 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 6198 unsigned long val;
4c4d563b
JK
6199
6200 if (kvm_get_dr(vcpu, dr, &val))
6201 return 1;
6202 kvm_register_write(vcpu, reg, val);
020df079 6203 } else
5777392e 6204 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
6205 return 1;
6206
6affcbed 6207 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6208}
6209
73aaf249
JK
6210static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6211{
6212 return vcpu->arch.dr6;
6213}
6214
6215static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6216{
6217}
6218
81908bf4
PB
6219static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6220{
81908bf4
PB
6221 get_debugreg(vcpu->arch.db[0], 0);
6222 get_debugreg(vcpu->arch.db[1], 1);
6223 get_debugreg(vcpu->arch.db[2], 2);
6224 get_debugreg(vcpu->arch.db[3], 3);
6225 get_debugreg(vcpu->arch.dr6, 6);
6226 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6227
6228 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 6229 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6230}
6231
020df079
GN
6232static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6233{
6234 vmcs_writel(GUEST_DR7, val);
6235}
6236
851ba692 6237static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 6238{
6a908b62 6239 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
6240}
6241
851ba692 6242static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 6243{
ad312c7c 6244 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 6245 struct msr_data msr_info;
6aa8b732 6246
609e36d3
PB
6247 msr_info.index = ecx;
6248 msr_info.host_initiated = false;
6249 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 6250 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 6251 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6252 return 1;
6253 }
6254
609e36d3 6255 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6256
6aa8b732 6257 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6258 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6259 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6260 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6261}
6262
851ba692 6263static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6264{
8fe8ab46 6265 struct msr_data msr;
ad312c7c
ZX
6266 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6267 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6268 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6269
8fe8ab46
WA
6270 msr.data = data;
6271 msr.index = ecx;
6272 msr.host_initiated = false;
854e8bb1 6273 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6274 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6275 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6276 return 1;
6277 }
6278
59200273 6279 trace_kvm_msr_write(ecx, data);
6affcbed 6280 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6281}
6282
851ba692 6283static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6284{
eb90f341 6285 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6286 return 1;
6287}
6288
851ba692 6289static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6290{
47c0152e
PB
6291 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6292 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6293
3842d135
AK
6294 kvm_make_request(KVM_REQ_EVENT, vcpu);
6295
a26bf12a 6296 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6297 return 1;
6298}
6299
851ba692 6300static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6301{
d3bef15f 6302 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6303}
6304
851ba692 6305static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6306{
0d9c055e 6307 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6308}
6309
ec25d5e6
GN
6310static int handle_invd(struct kvm_vcpu *vcpu)
6311{
51d8b661 6312 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6313}
6314
851ba692 6315static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6316{
f9c617f6 6317 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6318
6319 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6320 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6321}
6322
fee84b07
AK
6323static int handle_rdpmc(struct kvm_vcpu *vcpu)
6324{
6325 int err;
6326
6327 err = kvm_rdpmc(vcpu);
6affcbed 6328 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6329}
6330
851ba692 6331static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6332{
6affcbed 6333 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6334}
6335
2acf923e
DC
6336static int handle_xsetbv(struct kvm_vcpu *vcpu)
6337{
6338 u64 new_bv = kvm_read_edx_eax(vcpu);
6339 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6340
6341 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6342 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6343 return 1;
6344}
6345
f53cd63c
WL
6346static int handle_xsaves(struct kvm_vcpu *vcpu)
6347{
6affcbed 6348 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6349 WARN(1, "this should never happen\n");
6350 return 1;
6351}
6352
6353static int handle_xrstors(struct kvm_vcpu *vcpu)
6354{
6affcbed 6355 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6356 WARN(1, "this should never happen\n");
6357 return 1;
6358}
6359
851ba692 6360static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6361{
58fbbf26
KT
6362 if (likely(fasteoi)) {
6363 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6364 int access_type, offset;
6365
6366 access_type = exit_qualification & APIC_ACCESS_TYPE;
6367 offset = exit_qualification & APIC_ACCESS_OFFSET;
6368 /*
6369 * Sane guest uses MOV to write EOI, with written value
6370 * not cared. So make a short-circuit here by avoiding
6371 * heavy instruction emulation.
6372 */
6373 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6374 (offset == APIC_EOI)) {
6375 kvm_lapic_set_eoi(vcpu);
6affcbed 6376 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6377 }
6378 }
51d8b661 6379 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6380}
6381
c7c9c56c
YZ
6382static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6383{
6384 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6385 int vector = exit_qualification & 0xff;
6386
6387 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6388 kvm_apic_set_eoi_accelerated(vcpu, vector);
6389 return 1;
6390}
6391
83d4c286
YZ
6392static int handle_apic_write(struct kvm_vcpu *vcpu)
6393{
6394 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6395 u32 offset = exit_qualification & 0xfff;
6396
6397 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6398 kvm_apic_write_nodecode(vcpu, offset);
6399 return 1;
6400}
6401
851ba692 6402static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6403{
60637aac 6404 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6405 unsigned long exit_qualification;
e269fb21
JK
6406 bool has_error_code = false;
6407 u32 error_code = 0;
37817f29 6408 u16 tss_selector;
7f3d35fd 6409 int reason, type, idt_v, idt_index;
64a7ec06
GN
6410
6411 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6412 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6413 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6414
6415 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6416
6417 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6418 if (reason == TASK_SWITCH_GATE && idt_v) {
6419 switch (type) {
6420 case INTR_TYPE_NMI_INTR:
6421 vcpu->arch.nmi_injected = false;
654f06fc 6422 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6423 break;
6424 case INTR_TYPE_EXT_INTR:
66fd3f7f 6425 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6426 kvm_clear_interrupt_queue(vcpu);
6427 break;
6428 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6429 if (vmx->idt_vectoring_info &
6430 VECTORING_INFO_DELIVER_CODE_MASK) {
6431 has_error_code = true;
6432 error_code =
6433 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6434 }
6435 /* fall through */
64a7ec06
GN
6436 case INTR_TYPE_SOFT_EXCEPTION:
6437 kvm_clear_exception_queue(vcpu);
6438 break;
6439 default:
6440 break;
6441 }
60637aac 6442 }
37817f29
IE
6443 tss_selector = exit_qualification;
6444
64a7ec06
GN
6445 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6446 type != INTR_TYPE_EXT_INTR &&
6447 type != INTR_TYPE_NMI_INTR))
6448 skip_emulated_instruction(vcpu);
6449
7f3d35fd
KW
6450 if (kvm_task_switch(vcpu, tss_selector,
6451 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6452 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6453 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6454 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6455 vcpu->run->internal.ndata = 0;
42dbaa5a 6456 return 0;
acb54517 6457 }
42dbaa5a 6458
42dbaa5a
JK
6459 /*
6460 * TODO: What about debug traps on tss switch?
6461 * Are we supposed to inject them and update dr6?
6462 */
6463
6464 return 1;
37817f29
IE
6465}
6466
851ba692 6467static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6468{
f9c617f6 6469 unsigned long exit_qualification;
1439442c 6470 gpa_t gpa;
eebed243 6471 u64 error_code;
1439442c 6472
f9c617f6 6473 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6474
0be9c7a8
GN
6475 /*
6476 * EPT violation happened while executing iret from NMI,
6477 * "blocked by NMI" bit has to be set before next VM entry.
6478 * There are errata that may cause this bit to not be set:
6479 * AAK134, BY25.
6480 */
bcd1c294 6481 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
bcd1c294 6482 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6483 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6484
1439442c 6485 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6486 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6487
27959a44 6488 /* Is it a read fault? */
ab22a473 6489 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
6490 ? PFERR_USER_MASK : 0;
6491 /* Is it a write fault? */
ab22a473 6492 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
6493 ? PFERR_WRITE_MASK : 0;
6494 /* Is it a fetch fault? */
ab22a473 6495 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
6496 ? PFERR_FETCH_MASK : 0;
6497 /* ept page table entry is present? */
6498 error_code |= (exit_qualification &
6499 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6500 EPT_VIOLATION_EXECUTABLE))
6501 ? PFERR_PRESENT_MASK : 0;
4f5982a5 6502
eebed243
PB
6503 error_code |= (exit_qualification & 0x100) != 0 ?
6504 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
25d92081 6505
25d92081 6506 vcpu->arch.exit_qualification = exit_qualification;
4f5982a5 6507 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6508}
6509
851ba692 6510static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6511{
f735d4af 6512 int ret;
68f89400
MT
6513 gpa_t gpa;
6514
9034e6e8
PB
6515 /*
6516 * A nested guest cannot optimize MMIO vmexits, because we have an
6517 * nGPA here instead of the required GPA.
6518 */
68f89400 6519 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
9034e6e8
PB
6520 if (!is_guest_mode(vcpu) &&
6521 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 6522 trace_kvm_fast_mmio(gpa);
6affcbed 6523 return kvm_skip_emulated_instruction(vcpu);
68c3b4d1 6524 }
68f89400 6525
e08d26f0
PB
6526 ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6527 if (ret >= 0)
6528 return ret;
ce88decf
XG
6529
6530 /* It is the real ept misconfig */
f735d4af 6531 WARN_ON(1);
68f89400 6532
851ba692
AK
6533 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6534 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6535
6536 return 0;
6537}
6538
851ba692 6539static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 6540{
47c0152e
PB
6541 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6542 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 6543 ++vcpu->stat.nmi_window_exits;
3842d135 6544 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6545
6546 return 1;
6547}
6548
80ced186 6549static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6550{
8b3079a5
AK
6551 struct vcpu_vmx *vmx = to_vmx(vcpu);
6552 enum emulation_result err = EMULATE_DONE;
80ced186 6553 int ret = 1;
49e9d557
AK
6554 u32 cpu_exec_ctrl;
6555 bool intr_window_requested;
b8405c18 6556 unsigned count = 130;
49e9d557
AK
6557
6558 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6559 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6560
98eb2f8b 6561 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6562 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6563 return handle_interrupt_window(&vmx->vcpu);
6564
72875d8a 6565 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
de87dcdd
AK
6566 return 1;
6567
991eebf9 6568 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6569
ac0a48c3 6570 if (err == EMULATE_USER_EXIT) {
94452b9e 6571 ++vcpu->stat.mmio_exits;
80ced186
MG
6572 ret = 0;
6573 goto out;
6574 }
1d5a4d9b 6575
de5f70e0
AK
6576 if (err != EMULATE_DONE) {
6577 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6578 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6579 vcpu->run->internal.ndata = 0;
6d77dbfc 6580 return 0;
de5f70e0 6581 }
ea953ef0 6582
8d76c49e
GN
6583 if (vcpu->arch.halt_request) {
6584 vcpu->arch.halt_request = 0;
5cb56059 6585 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6586 goto out;
6587 }
6588
ea953ef0 6589 if (signal_pending(current))
80ced186 6590 goto out;
ea953ef0
MG
6591 if (need_resched())
6592 schedule();
6593 }
6594
80ced186
MG
6595out:
6596 return ret;
ea953ef0
MG
6597}
6598
b4a2d31d
RK
6599static int __grow_ple_window(int val)
6600{
6601 if (ple_window_grow < 1)
6602 return ple_window;
6603
6604 val = min(val, ple_window_actual_max);
6605
6606 if (ple_window_grow < ple_window)
6607 val *= ple_window_grow;
6608 else
6609 val += ple_window_grow;
6610
6611 return val;
6612}
6613
6614static int __shrink_ple_window(int val, int modifier, int minimum)
6615{
6616 if (modifier < 1)
6617 return ple_window;
6618
6619 if (modifier < ple_window)
6620 val /= modifier;
6621 else
6622 val -= modifier;
6623
6624 return max(val, minimum);
6625}
6626
6627static void grow_ple_window(struct kvm_vcpu *vcpu)
6628{
6629 struct vcpu_vmx *vmx = to_vmx(vcpu);
6630 int old = vmx->ple_window;
6631
6632 vmx->ple_window = __grow_ple_window(old);
6633
6634 if (vmx->ple_window != old)
6635 vmx->ple_window_dirty = true;
7b46268d
RK
6636
6637 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6638}
6639
6640static void shrink_ple_window(struct kvm_vcpu *vcpu)
6641{
6642 struct vcpu_vmx *vmx = to_vmx(vcpu);
6643 int old = vmx->ple_window;
6644
6645 vmx->ple_window = __shrink_ple_window(old,
6646 ple_window_shrink, ple_window);
6647
6648 if (vmx->ple_window != old)
6649 vmx->ple_window_dirty = true;
7b46268d
RK
6650
6651 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6652}
6653
6654/*
6655 * ple_window_actual_max is computed to be one grow_ple_window() below
6656 * ple_window_max. (See __grow_ple_window for the reason.)
6657 * This prevents overflows, because ple_window_max is int.
6658 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6659 * this process.
6660 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6661 */
6662static void update_ple_window_actual_max(void)
6663{
6664 ple_window_actual_max =
6665 __shrink_ple_window(max(ple_window_max, ple_window),
6666 ple_window_grow, INT_MIN);
6667}
6668
bf9f6ac8
FW
6669/*
6670 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6671 */
6672static void wakeup_handler(void)
6673{
6674 struct kvm_vcpu *vcpu;
6675 int cpu = smp_processor_id();
6676
6677 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6678 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6679 blocked_vcpu_list) {
6680 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6681
6682 if (pi_test_on(pi_desc) == 1)
6683 kvm_vcpu_kick(vcpu);
6684 }
6685 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6686}
6687
f160c7b7
JS
6688void vmx_enable_tdp(void)
6689{
6690 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6691 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6692 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6693 0ull, VMX_EPT_EXECUTABLE_MASK,
6694 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
d0ec49d4 6695 VMX_EPT_RWX_MASK, 0ull);
f160c7b7
JS
6696
6697 ept_set_mmio_spte_mask();
6698 kvm_enable_tdp();
6699}
6700
f2c7648d
TC
6701static __init int hardware_setup(void)
6702{
34a1cd60
TC
6703 int r = -ENOMEM, i, msr;
6704
6705 rdmsrl_safe(MSR_EFER, &host_efer);
6706
6707 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6708 kvm_define_shared_msr(i, vmx_msr_index[i]);
6709
23611332
RK
6710 for (i = 0; i < VMX_BITMAP_NR; i++) {
6711 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6712 if (!vmx_bitmap[i])
6713 goto out;
6714 }
34a1cd60
TC
6715
6716 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
34a1cd60
TC
6717 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6718 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6719
6720 /*
6721 * Allow direct access to the PC debug port (it is often used for I/O
6722 * delays, but the vmexits simply slow things down).
6723 */
6724 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6725 clear_bit(0x80, vmx_io_bitmap_a);
6726
6727 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6728
6729 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6730 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6731
34a1cd60
TC
6732 if (setup_vmcs_config(&vmcs_config) < 0) {
6733 r = -EIO;
23611332 6734 goto out;
baa03522 6735 }
f2c7648d
TC
6736
6737 if (boot_cpu_has(X86_FEATURE_NX))
6738 kvm_enable_efer_bits(EFER_NX);
6739
08d839c4
WL
6740 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6741 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
f2c7648d 6742 enable_vpid = 0;
08d839c4 6743
f2c7648d
TC
6744 if (!cpu_has_vmx_shadow_vmcs())
6745 enable_shadow_vmcs = 0;
6746 if (enable_shadow_vmcs)
6747 init_vmcs_shadow_fields();
6748
6749 if (!cpu_has_vmx_ept() ||
42aa53b4 6750 !cpu_has_vmx_ept_4levels() ||
f5f51586 6751 !cpu_has_vmx_ept_mt_wb() ||
8ad8182e 6752 !cpu_has_vmx_invept_global())
f2c7648d 6753 enable_ept = 0;
f2c7648d 6754
fce6ac4c 6755 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
f2c7648d
TC
6756 enable_ept_ad_bits = 0;
6757
8ad8182e 6758 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
f2c7648d
TC
6759 enable_unrestricted_guest = 0;
6760
ad15a296 6761 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6762 flexpriority_enabled = 0;
6763
ad15a296
PB
6764 /*
6765 * set_apic_access_page_addr() is used to reload apic access
6766 * page upon invalidation. No need to do anything if not
6767 * using the APIC_ACCESS_ADDR VMCS field.
6768 */
6769 if (!flexpriority_enabled)
f2c7648d 6770 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6771
6772 if (!cpu_has_vmx_tpr_shadow())
6773 kvm_x86_ops->update_cr8_intercept = NULL;
6774
6775 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6776 kvm_disable_largepages();
6777
0f107682 6778 if (!cpu_has_vmx_ple()) {
f2c7648d 6779 ple_gap = 0;
0f107682
WL
6780 ple_window = 0;
6781 ple_window_grow = 0;
6782 ple_window_max = 0;
6783 ple_window_shrink = 0;
6784 }
f2c7648d 6785
76dfafd5 6786 if (!cpu_has_vmx_apicv()) {
f2c7648d 6787 enable_apicv = 0;
76dfafd5
PB
6788 kvm_x86_ops->sync_pir_to_irr = NULL;
6789 }
f2c7648d 6790
64903d61
HZ
6791 if (cpu_has_vmx_tsc_scaling()) {
6792 kvm_has_tsc_control = true;
6793 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6794 kvm_tsc_scaling_ratio_frac_bits = 48;
6795 }
6796
baa03522
TC
6797 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6798 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6799 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6800 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6801 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6802 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
baa03522 6803
c63e4563 6804 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
baa03522 6805 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6806 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
baa03522 6807 vmx_msr_bitmap_longmode, PAGE_SIZE);
c63e4563 6808 memcpy(vmx_msr_bitmap_legacy_x2apic,
f6e90f9e 6809 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6810 memcpy(vmx_msr_bitmap_longmode_x2apic,
f6e90f9e 6811 vmx_msr_bitmap_longmode, PAGE_SIZE);
baa03522 6812
04bb92e4
WL
6813 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6814
40d8338d
RK
6815 for (msr = 0x800; msr <= 0x8ff; msr++) {
6816 if (msr == 0x839 /* TMCCT */)
6817 continue;
2e69f865 6818 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
40d8338d 6819 }
3ce424e4 6820
f6e90f9e 6821 /*
2e69f865
RK
6822 * TPR reads and writes can be virtualized even if virtual interrupt
6823 * delivery is not in use.
f6e90f9e 6824 */
2e69f865
RK
6825 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6826 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
3ce424e4 6827
3ce424e4 6828 /* EOI */
2e69f865 6829 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
3ce424e4 6830 /* SELF-IPI */
2e69f865 6831 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
baa03522 6832
f160c7b7
JS
6833 if (enable_ept)
6834 vmx_enable_tdp();
6835 else
baa03522
TC
6836 kvm_disable_tdp();
6837
6838 update_ple_window_actual_max();
6839
843e4330
KH
6840 /*
6841 * Only enable PML when hardware supports PML feature, and both EPT
6842 * and EPT A/D bit features are enabled -- PML depends on them to work.
6843 */
6844 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6845 enable_pml = 0;
6846
6847 if (!enable_pml) {
6848 kvm_x86_ops->slot_enable_log_dirty = NULL;
6849 kvm_x86_ops->slot_disable_log_dirty = NULL;
6850 kvm_x86_ops->flush_log_dirty = NULL;
6851 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6852 }
6853
64672c95
YJ
6854 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6855 u64 vmx_msr;
6856
6857 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6858 cpu_preemption_timer_multi =
6859 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6860 } else {
6861 kvm_x86_ops->set_hv_timer = NULL;
6862 kvm_x86_ops->cancel_hv_timer = NULL;
6863 }
6864
bf9f6ac8
FW
6865 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6866
c45dcc71
AR
6867 kvm_mce_cap_supported |= MCG_LMCE_P;
6868
f2c7648d 6869 return alloc_kvm_area();
34a1cd60 6870
34a1cd60 6871out:
23611332
RK
6872 for (i = 0; i < VMX_BITMAP_NR; i++)
6873 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
6874
6875 return r;
f2c7648d
TC
6876}
6877
6878static __exit void hardware_unsetup(void)
6879{
23611332
RK
6880 int i;
6881
6882 for (i = 0; i < VMX_BITMAP_NR; i++)
6883 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 6884
f2c7648d
TC
6885 free_kvm_area();
6886}
6887
4b8d54f9
ZE
6888/*
6889 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6890 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6891 */
9fb41ba8 6892static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6893{
b4a2d31d
RK
6894 if (ple_gap)
6895 grow_ple_window(vcpu);
6896
de63ad4c
LM
6897 /*
6898 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6899 * VM-execution control is ignored if CPL > 0. OTOH, KVM
6900 * never set PAUSE_EXITING and just set PLE if supported,
6901 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6902 */
6903 kvm_vcpu_on_spin(vcpu, true);
6affcbed 6904 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
6905}
6906
87c00572 6907static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6908{
6affcbed 6909 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
6910}
6911
87c00572
GS
6912static int handle_mwait(struct kvm_vcpu *vcpu)
6913{
6914 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6915 return handle_nop(vcpu);
6916}
6917
45ec368c
JM
6918static int handle_invalid_op(struct kvm_vcpu *vcpu)
6919{
6920 kvm_queue_exception(vcpu, UD_VECTOR);
6921 return 1;
6922}
6923
5f3d45e7
MD
6924static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6925{
6926 return 1;
6927}
6928
87c00572
GS
6929static int handle_monitor(struct kvm_vcpu *vcpu)
6930{
6931 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6932 return handle_nop(vcpu);
6933}
6934
ff2f6fe9
NHE
6935/*
6936 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6937 * We could reuse a single VMCS for all the L2 guests, but we also want the
6938 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6939 * allows keeping them loaded on the processor, and in the future will allow
6940 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6941 * every entry if they never change.
6942 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6943 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6944 *
6945 * The following functions allocate and free a vmcs02 in this pool.
6946 */
6947
6948/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6949static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6950{
6951 struct vmcs02_list *item;
6952 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6953 if (item->vmptr == vmx->nested.current_vmptr) {
6954 list_move(&item->list, &vmx->nested.vmcs02_pool);
6955 return &item->vmcs02;
6956 }
6957
6958 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6959 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6960 item = list_last_entry(&vmx->nested.vmcs02_pool,
6961 struct vmcs02_list, list);
ff2f6fe9
NHE
6962 item->vmptr = vmx->nested.current_vmptr;
6963 list_move(&item->list, &vmx->nested.vmcs02_pool);
6964 return &item->vmcs02;
6965 }
6966
6967 /* Create a new VMCS */
0fa24ce3 6968 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6969 if (!item)
6970 return NULL;
6971 item->vmcs02.vmcs = alloc_vmcs();
355f4fb1 6972 item->vmcs02.shadow_vmcs = NULL;
ff2f6fe9
NHE
6973 if (!item->vmcs02.vmcs) {
6974 kfree(item);
6975 return NULL;
6976 }
6977 loaded_vmcs_init(&item->vmcs02);
6978 item->vmptr = vmx->nested.current_vmptr;
6979 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6980 vmx->nested.vmcs02_num++;
6981 return &item->vmcs02;
6982}
6983
6984/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6985static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6986{
6987 struct vmcs02_list *item;
6988 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6989 if (item->vmptr == vmptr) {
6990 free_loaded_vmcs(&item->vmcs02);
6991 list_del(&item->list);
6992 kfree(item);
6993 vmx->nested.vmcs02_num--;
6994 return;
6995 }
6996}
6997
6998/*
6999 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
7000 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
7001 * must be &vmx->vmcs01.
ff2f6fe9
NHE
7002 */
7003static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
7004{
7005 struct vmcs02_list *item, *n;
4fa7734c
PB
7006
7007 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 7008 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
7009 /*
7010 * Something will leak if the above WARN triggers. Better than
7011 * a use-after-free.
7012 */
7013 if (vmx->loaded_vmcs == &item->vmcs02)
7014 continue;
7015
7016 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
7017 list_del(&item->list);
7018 kfree(item);
4fa7734c 7019 vmx->nested.vmcs02_num--;
ff2f6fe9 7020 }
ff2f6fe9
NHE
7021}
7022
0658fbaa
ACL
7023/*
7024 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7025 * set the success or error code of an emulated VMX instruction, as specified
7026 * by Vol 2B, VMX Instruction Reference, "Conventions".
7027 */
7028static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7029{
7030 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7031 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7032 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7033}
7034
7035static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7036{
7037 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7038 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7039 X86_EFLAGS_SF | X86_EFLAGS_OF))
7040 | X86_EFLAGS_CF);
7041}
7042
145c28dd 7043static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
7044 u32 vm_instruction_error)
7045{
7046 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7047 /*
7048 * failValid writes the error number to the current VMCS, which
7049 * can't be done there isn't a current VMCS.
7050 */
7051 nested_vmx_failInvalid(vcpu);
7052 return;
7053 }
7054 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7055 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7056 X86_EFLAGS_SF | X86_EFLAGS_OF))
7057 | X86_EFLAGS_ZF);
7058 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7059 /*
7060 * We don't need to force a shadow sync because
7061 * VM_INSTRUCTION_ERROR is not shadowed
7062 */
7063}
145c28dd 7064
ff651cb6
WV
7065static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7066{
7067 /* TODO: not to reset guest simply here. */
7068 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 7069 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
7070}
7071
f4124500
JK
7072static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7073{
7074 struct vcpu_vmx *vmx =
7075 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7076
7077 vmx->nested.preemption_timer_expired = true;
7078 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7079 kvm_vcpu_kick(&vmx->vcpu);
7080
7081 return HRTIMER_NORESTART;
7082}
7083
19677e32
BD
7084/*
7085 * Decode the memory-address operand of a vmx instruction, as recorded on an
7086 * exit caused by such an instruction (run by a guest hypervisor).
7087 * On success, returns 0. When the operand is invalid, returns 1 and throws
7088 * #UD or #GP.
7089 */
7090static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7091 unsigned long exit_qualification,
f9eb4af6 7092 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 7093{
f9eb4af6
EK
7094 gva_t off;
7095 bool exn;
7096 struct kvm_segment s;
7097
19677e32
BD
7098 /*
7099 * According to Vol. 3B, "Information for VM Exits Due to Instruction
7100 * Execution", on an exit, vmx_instruction_info holds most of the
7101 * addressing components of the operand. Only the displacement part
7102 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7103 * For how an actual address is calculated from all these components,
7104 * refer to Vol. 1, "Operand Addressing".
7105 */
7106 int scaling = vmx_instruction_info & 3;
7107 int addr_size = (vmx_instruction_info >> 7) & 7;
7108 bool is_reg = vmx_instruction_info & (1u << 10);
7109 int seg_reg = (vmx_instruction_info >> 15) & 7;
7110 int index_reg = (vmx_instruction_info >> 18) & 0xf;
7111 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7112 int base_reg = (vmx_instruction_info >> 23) & 0xf;
7113 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
7114
7115 if (is_reg) {
7116 kvm_queue_exception(vcpu, UD_VECTOR);
7117 return 1;
7118 }
7119
7120 /* Addr = segment_base + offset */
7121 /* offset = base + [index * scale] + displacement */
f9eb4af6 7122 off = exit_qualification; /* holds the displacement */
19677e32 7123 if (base_is_valid)
f9eb4af6 7124 off += kvm_register_read(vcpu, base_reg);
19677e32 7125 if (index_is_valid)
f9eb4af6
EK
7126 off += kvm_register_read(vcpu, index_reg)<<scaling;
7127 vmx_get_segment(vcpu, &s, seg_reg);
7128 *ret = s.base + off;
19677e32
BD
7129
7130 if (addr_size == 1) /* 32 bit */
7131 *ret &= 0xffffffff;
7132
f9eb4af6
EK
7133 /* Checks for #GP/#SS exceptions. */
7134 exn = false;
ff30ef40
QC
7135 if (is_long_mode(vcpu)) {
7136 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7137 * non-canonical form. This is the only check on the memory
7138 * destination for long mode!
7139 */
fd8cb433 7140 exn = is_noncanonical_address(*ret, vcpu);
ff30ef40 7141 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
7142 /* Protected mode: apply checks for segment validity in the
7143 * following order:
7144 * - segment type check (#GP(0) may be thrown)
7145 * - usability check (#GP(0)/#SS(0))
7146 * - limit check (#GP(0)/#SS(0))
7147 */
7148 if (wr)
7149 /* #GP(0) if the destination operand is located in a
7150 * read-only data segment or any code segment.
7151 */
7152 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7153 else
7154 /* #GP(0) if the source operand is located in an
7155 * execute-only code segment
7156 */
7157 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
7158 if (exn) {
7159 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7160 return 1;
7161 }
f9eb4af6
EK
7162 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7163 */
7164 exn = (s.unusable != 0);
7165 /* Protected mode: #GP(0)/#SS(0) if the memory
7166 * operand is outside the segment limit.
7167 */
7168 exn = exn || (off + sizeof(u64) > s.limit);
7169 }
7170 if (exn) {
7171 kvm_queue_exception_e(vcpu,
7172 seg_reg == VCPU_SREG_SS ?
7173 SS_VECTOR : GP_VECTOR,
7174 0);
7175 return 1;
7176 }
7177
19677e32
BD
7178 return 0;
7179}
7180
cbf71279 7181static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
3573e22c
BD
7182{
7183 gva_t gva;
3573e22c 7184 struct x86_exception e;
3573e22c
BD
7185
7186 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7187 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
7188 return 1;
7189
cbf71279
RK
7190 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7191 sizeof(*vmpointer), &e)) {
3573e22c
BD
7192 kvm_inject_page_fault(vcpu, &e);
7193 return 1;
7194 }
7195
3573e22c
BD
7196 return 0;
7197}
7198
e29acc55
JM
7199static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7200{
7201 struct vcpu_vmx *vmx = to_vmx(vcpu);
7202 struct vmcs *shadow_vmcs;
7203
7204 if (cpu_has_vmx_msr_bitmap()) {
7205 vmx->nested.msr_bitmap =
7206 (unsigned long *)__get_free_page(GFP_KERNEL);
7207 if (!vmx->nested.msr_bitmap)
7208 goto out_msr_bitmap;
7209 }
7210
7211 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7212 if (!vmx->nested.cached_vmcs12)
7213 goto out_cached_vmcs12;
7214
7215 if (enable_shadow_vmcs) {
7216 shadow_vmcs = alloc_vmcs();
7217 if (!shadow_vmcs)
7218 goto out_shadow_vmcs;
7219 /* mark vmcs as shadow */
7220 shadow_vmcs->revision_id |= (1u << 31);
7221 /* init shadow vmcs */
7222 vmcs_clear(shadow_vmcs);
7223 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7224 }
7225
7226 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7227 vmx->nested.vmcs02_num = 0;
7228
7229 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7230 HRTIMER_MODE_REL_PINNED);
7231 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7232
7233 vmx->nested.vmxon = true;
7234 return 0;
7235
7236out_shadow_vmcs:
7237 kfree(vmx->nested.cached_vmcs12);
7238
7239out_cached_vmcs12:
7240 free_page((unsigned long)vmx->nested.msr_bitmap);
7241
7242out_msr_bitmap:
7243 return -ENOMEM;
7244}
7245
ec378aee
NHE
7246/*
7247 * Emulate the VMXON instruction.
7248 * Currently, we just remember that VMX is active, and do not save or even
7249 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7250 * do not currently need to store anything in that guest-allocated memory
7251 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7252 * argument is different from the VMXON pointer (which the spec says they do).
7253 */
7254static int handle_vmon(struct kvm_vcpu *vcpu)
7255{
e29acc55 7256 int ret;
cbf71279
RK
7257 gpa_t vmptr;
7258 struct page *page;
ec378aee 7259 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
7260 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7261 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee 7262
70f3aac9
JM
7263 /*
7264 * The Intel VMX Instruction Reference lists a bunch of bits that are
7265 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7266 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7267 * Otherwise, we should fail with #UD. But most faulting conditions
7268 * have already been checked by hardware, prior to the VM-exit for
7269 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7270 * that bit set to 1 in non-root mode.
ec378aee 7271 */
70f3aac9 7272 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
ec378aee
NHE
7273 kvm_queue_exception(vcpu, UD_VECTOR);
7274 return 1;
7275 }
7276
145c28dd
AG
7277 if (vmx->nested.vmxon) {
7278 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7279 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7280 }
b3897a49 7281
3b84080b 7282 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7283 != VMXON_NEEDED_FEATURES) {
7284 kvm_inject_gp(vcpu, 0);
7285 return 1;
7286 }
7287
cbf71279 7288 if (nested_vmx_get_vmptr(vcpu, &vmptr))
21e7fbe7 7289 return 1;
cbf71279
RK
7290
7291 /*
7292 * SDM 3: 24.11.5
7293 * The first 4 bytes of VMXON region contain the supported
7294 * VMCS revision identifier
7295 *
7296 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7297 * which replaces physical address width with 32
7298 */
7299 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7300 nested_vmx_failInvalid(vcpu);
7301 return kvm_skip_emulated_instruction(vcpu);
7302 }
7303
5e2f30b7
DH
7304 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7305 if (is_error_page(page)) {
cbf71279
RK
7306 nested_vmx_failInvalid(vcpu);
7307 return kvm_skip_emulated_instruction(vcpu);
7308 }
7309 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7310 kunmap(page);
53a70daf 7311 kvm_release_page_clean(page);
cbf71279
RK
7312 nested_vmx_failInvalid(vcpu);
7313 return kvm_skip_emulated_instruction(vcpu);
7314 }
7315 kunmap(page);
53a70daf 7316 kvm_release_page_clean(page);
cbf71279
RK
7317
7318 vmx->nested.vmxon_ptr = vmptr;
e29acc55
JM
7319 ret = enter_vmx_operation(vcpu);
7320 if (ret)
7321 return ret;
ec378aee 7322
a25eb114 7323 nested_vmx_succeed(vcpu);
6affcbed 7324 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7325}
7326
7327/*
7328 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7329 * for running VMX instructions (except VMXON, whose prerequisites are
7330 * slightly different). It also specifies what exception to inject otherwise.
70f3aac9
JM
7331 * Note that many of these exceptions have priority over VM exits, so they
7332 * don't have to be checked again here.
ec378aee
NHE
7333 */
7334static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7335{
70f3aac9 7336 if (!to_vmx(vcpu)->nested.vmxon) {
ec378aee
NHE
7337 kvm_queue_exception(vcpu, UD_VECTOR);
7338 return 0;
7339 }
ec378aee
NHE
7340 return 1;
7341}
7342
8ca44e88
DM
7343static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7344{
7345 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7346 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7347}
7348
e7953d7f
AG
7349static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7350{
9a2a05b9
PB
7351 if (vmx->nested.current_vmptr == -1ull)
7352 return;
7353
012f83cb 7354 if (enable_shadow_vmcs) {
9a2a05b9
PB
7355 /* copy to memory all shadowed fields in case
7356 they were modified */
7357 copy_shadow_to_vmcs12(vmx);
7358 vmx->nested.sync_shadow_vmcs = false;
8ca44e88 7359 vmx_disable_shadow_vmcs(vmx);
012f83cb 7360 }
705699a1 7361 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7362
7363 /* Flush VMCS12 to guest memory */
9f744c59
PB
7364 kvm_vcpu_write_guest_page(&vmx->vcpu,
7365 vmx->nested.current_vmptr >> PAGE_SHIFT,
7366 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4f2777bc 7367
9a2a05b9 7368 vmx->nested.current_vmptr = -1ull;
e7953d7f
AG
7369}
7370
ec378aee
NHE
7371/*
7372 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7373 * just stops using VMX.
7374 */
7375static void free_nested(struct vcpu_vmx *vmx)
7376{
7377 if (!vmx->nested.vmxon)
7378 return;
9a2a05b9 7379
ec378aee 7380 vmx->nested.vmxon = false;
5c614b35 7381 free_vpid(vmx->nested.vpid02);
8ca44e88
DM
7382 vmx->nested.posted_intr_nv = -1;
7383 vmx->nested.current_vmptr = -1ull;
d048c098
RK
7384 if (vmx->nested.msr_bitmap) {
7385 free_page((unsigned long)vmx->nested.msr_bitmap);
7386 vmx->nested.msr_bitmap = NULL;
7387 }
355f4fb1 7388 if (enable_shadow_vmcs) {
8ca44e88 7389 vmx_disable_shadow_vmcs(vmx);
355f4fb1
JM
7390 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7391 free_vmcs(vmx->vmcs01.shadow_vmcs);
7392 vmx->vmcs01.shadow_vmcs = NULL;
7393 }
4f2777bc 7394 kfree(vmx->nested.cached_vmcs12);
fe3ef05c
NHE
7395 /* Unpin physical memory we referred to in current vmcs02 */
7396 if (vmx->nested.apic_access_page) {
53a70daf 7397 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 7398 vmx->nested.apic_access_page = NULL;
fe3ef05c 7399 }
a7c0b07d 7400 if (vmx->nested.virtual_apic_page) {
53a70daf 7401 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 7402 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7403 }
705699a1
WV
7404 if (vmx->nested.pi_desc_page) {
7405 kunmap(vmx->nested.pi_desc_page);
53a70daf 7406 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
7407 vmx->nested.pi_desc_page = NULL;
7408 vmx->nested.pi_desc = NULL;
7409 }
ff2f6fe9
NHE
7410
7411 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
7412}
7413
7414/* Emulate the VMXOFF instruction */
7415static int handle_vmoff(struct kvm_vcpu *vcpu)
7416{
7417 if (!nested_vmx_check_permission(vcpu))
7418 return 1;
7419 free_nested(to_vmx(vcpu));
a25eb114 7420 nested_vmx_succeed(vcpu);
6affcbed 7421 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7422}
7423
27d6c865
NHE
7424/* Emulate the VMCLEAR instruction */
7425static int handle_vmclear(struct kvm_vcpu *vcpu)
7426{
7427 struct vcpu_vmx *vmx = to_vmx(vcpu);
587d7e72 7428 u32 zero = 0;
27d6c865 7429 gpa_t vmptr;
27d6c865
NHE
7430
7431 if (!nested_vmx_check_permission(vcpu))
7432 return 1;
7433
cbf71279 7434 if (nested_vmx_get_vmptr(vcpu, &vmptr))
27d6c865 7435 return 1;
27d6c865 7436
cbf71279
RK
7437 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7438 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7439 return kvm_skip_emulated_instruction(vcpu);
7440 }
7441
7442 if (vmptr == vmx->nested.vmxon_ptr) {
7443 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7444 return kvm_skip_emulated_instruction(vcpu);
7445 }
7446
9a2a05b9 7447 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7448 nested_release_vmcs12(vmx);
27d6c865 7449
587d7e72
JM
7450 kvm_vcpu_write_guest(vcpu,
7451 vmptr + offsetof(struct vmcs12, launch_state),
7452 &zero, sizeof(zero));
27d6c865
NHE
7453
7454 nested_free_vmcs02(vmx, vmptr);
7455
27d6c865 7456 nested_vmx_succeed(vcpu);
6affcbed 7457 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7458}
7459
cd232ad0
NHE
7460static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7461
7462/* Emulate the VMLAUNCH instruction */
7463static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7464{
7465 return nested_vmx_run(vcpu, true);
7466}
7467
7468/* Emulate the VMRESUME instruction */
7469static int handle_vmresume(struct kvm_vcpu *vcpu)
7470{
7471
7472 return nested_vmx_run(vcpu, false);
7473}
7474
49f705c5
NHE
7475/*
7476 * Read a vmcs12 field. Since these can have varying lengths and we return
7477 * one type, we chose the biggest type (u64) and zero-extend the return value
7478 * to that size. Note that the caller, handle_vmread, might need to use only
7479 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7480 * 64-bit fields are to be returned).
7481 */
a2ae9df7
PB
7482static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7483 unsigned long field, u64 *ret)
49f705c5
NHE
7484{
7485 short offset = vmcs_field_to_offset(field);
7486 char *p;
7487
7488 if (offset < 0)
a2ae9df7 7489 return offset;
49f705c5
NHE
7490
7491 p = ((char *)(get_vmcs12(vcpu))) + offset;
7492
7493 switch (vmcs_field_type(field)) {
7494 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7495 *ret = *((natural_width *)p);
a2ae9df7 7496 return 0;
49f705c5
NHE
7497 case VMCS_FIELD_TYPE_U16:
7498 *ret = *((u16 *)p);
a2ae9df7 7499 return 0;
49f705c5
NHE
7500 case VMCS_FIELD_TYPE_U32:
7501 *ret = *((u32 *)p);
a2ae9df7 7502 return 0;
49f705c5
NHE
7503 case VMCS_FIELD_TYPE_U64:
7504 *ret = *((u64 *)p);
a2ae9df7 7505 return 0;
49f705c5 7506 default:
a2ae9df7
PB
7507 WARN_ON(1);
7508 return -ENOENT;
49f705c5
NHE
7509 }
7510}
7511
20b97fea 7512
a2ae9df7
PB
7513static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7514 unsigned long field, u64 field_value){
20b97fea
AG
7515 short offset = vmcs_field_to_offset(field);
7516 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7517 if (offset < 0)
a2ae9df7 7518 return offset;
20b97fea
AG
7519
7520 switch (vmcs_field_type(field)) {
7521 case VMCS_FIELD_TYPE_U16:
7522 *(u16 *)p = field_value;
a2ae9df7 7523 return 0;
20b97fea
AG
7524 case VMCS_FIELD_TYPE_U32:
7525 *(u32 *)p = field_value;
a2ae9df7 7526 return 0;
20b97fea
AG
7527 case VMCS_FIELD_TYPE_U64:
7528 *(u64 *)p = field_value;
a2ae9df7 7529 return 0;
20b97fea
AG
7530 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7531 *(natural_width *)p = field_value;
a2ae9df7 7532 return 0;
20b97fea 7533 default:
a2ae9df7
PB
7534 WARN_ON(1);
7535 return -ENOENT;
20b97fea
AG
7536 }
7537
7538}
7539
16f5b903
AG
7540static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7541{
7542 int i;
7543 unsigned long field;
7544 u64 field_value;
355f4fb1 7545 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c2bae893
MK
7546 const unsigned long *fields = shadow_read_write_fields;
7547 const int num_fields = max_shadow_read_write_fields;
16f5b903 7548
282da870
JK
7549 preempt_disable();
7550
16f5b903
AG
7551 vmcs_load(shadow_vmcs);
7552
7553 for (i = 0; i < num_fields; i++) {
7554 field = fields[i];
7555 switch (vmcs_field_type(field)) {
7556 case VMCS_FIELD_TYPE_U16:
7557 field_value = vmcs_read16(field);
7558 break;
7559 case VMCS_FIELD_TYPE_U32:
7560 field_value = vmcs_read32(field);
7561 break;
7562 case VMCS_FIELD_TYPE_U64:
7563 field_value = vmcs_read64(field);
7564 break;
7565 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7566 field_value = vmcs_readl(field);
7567 break;
a2ae9df7
PB
7568 default:
7569 WARN_ON(1);
7570 continue;
16f5b903
AG
7571 }
7572 vmcs12_write_any(&vmx->vcpu, field, field_value);
7573 }
7574
7575 vmcs_clear(shadow_vmcs);
7576 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7577
7578 preempt_enable();
16f5b903
AG
7579}
7580
c3114420
AG
7581static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7582{
c2bae893
MK
7583 const unsigned long *fields[] = {
7584 shadow_read_write_fields,
7585 shadow_read_only_fields
c3114420 7586 };
c2bae893 7587 const int max_fields[] = {
c3114420
AG
7588 max_shadow_read_write_fields,
7589 max_shadow_read_only_fields
7590 };
7591 int i, q;
7592 unsigned long field;
7593 u64 field_value = 0;
355f4fb1 7594 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7595
7596 vmcs_load(shadow_vmcs);
7597
c2bae893 7598 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7599 for (i = 0; i < max_fields[q]; i++) {
7600 field = fields[q][i];
7601 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7602
7603 switch (vmcs_field_type(field)) {
7604 case VMCS_FIELD_TYPE_U16:
7605 vmcs_write16(field, (u16)field_value);
7606 break;
7607 case VMCS_FIELD_TYPE_U32:
7608 vmcs_write32(field, (u32)field_value);
7609 break;
7610 case VMCS_FIELD_TYPE_U64:
7611 vmcs_write64(field, (u64)field_value);
7612 break;
7613 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7614 vmcs_writel(field, (long)field_value);
7615 break;
a2ae9df7
PB
7616 default:
7617 WARN_ON(1);
7618 break;
c3114420
AG
7619 }
7620 }
7621 }
7622
7623 vmcs_clear(shadow_vmcs);
7624 vmcs_load(vmx->loaded_vmcs->vmcs);
7625}
7626
49f705c5
NHE
7627/*
7628 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7629 * used before) all generate the same failure when it is missing.
7630 */
7631static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7632{
7633 struct vcpu_vmx *vmx = to_vmx(vcpu);
7634 if (vmx->nested.current_vmptr == -1ull) {
7635 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7636 return 0;
7637 }
7638 return 1;
7639}
7640
7641static int handle_vmread(struct kvm_vcpu *vcpu)
7642{
7643 unsigned long field;
7644 u64 field_value;
7645 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7646 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7647 gva_t gva = 0;
7648
eb277562 7649 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7650 return 1;
7651
6affcbed
KH
7652 if (!nested_vmx_check_vmcs12(vcpu))
7653 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7654
7655 /* Decode instruction info and find the field to read */
27e6fb5d 7656 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7657 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7658 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 7659 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7660 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7661 }
7662 /*
7663 * Now copy part of this value to register or memory, as requested.
7664 * Note that the number of bits actually copied is 32 or 64 depending
7665 * on the guest's mode (32 or 64 bit), not on the given field's length.
7666 */
7667 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7668 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7669 field_value);
7670 } else {
7671 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7672 vmx_instruction_info, true, &gva))
49f705c5 7673 return 1;
70f3aac9 7674 /* _system ok, as hardware has verified cpl=0 */
49f705c5
NHE
7675 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7676 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7677 }
7678
7679 nested_vmx_succeed(vcpu);
6affcbed 7680 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7681}
7682
7683
7684static int handle_vmwrite(struct kvm_vcpu *vcpu)
7685{
7686 unsigned long field;
7687 gva_t gva;
7688 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7689 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7690 /* The value to write might be 32 or 64 bits, depending on L1's long
7691 * mode, and eventually we need to write that into a field of several
7692 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7693 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7694 * bits into the vmcs12 field.
7695 */
7696 u64 field_value = 0;
7697 struct x86_exception e;
7698
eb277562 7699 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7700 return 1;
7701
6affcbed
KH
7702 if (!nested_vmx_check_vmcs12(vcpu))
7703 return kvm_skip_emulated_instruction(vcpu);
eb277562 7704
49f705c5 7705 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7706 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7707 (((vmx_instruction_info) >> 3) & 0xf));
7708 else {
7709 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7710 vmx_instruction_info, false, &gva))
49f705c5
NHE
7711 return 1;
7712 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7713 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7714 kvm_inject_page_fault(vcpu, &e);
7715 return 1;
7716 }
7717 }
7718
7719
27e6fb5d 7720 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7721 if (vmcs_field_readonly(field)) {
7722 nested_vmx_failValid(vcpu,
7723 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 7724 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7725 }
7726
a2ae9df7 7727 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 7728 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7729 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7730 }
7731
7732 nested_vmx_succeed(vcpu);
6affcbed 7733 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7734}
7735
a8bc284e
JM
7736static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7737{
7738 vmx->nested.current_vmptr = vmptr;
7739 if (enable_shadow_vmcs) {
7740 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7741 SECONDARY_EXEC_SHADOW_VMCS);
7742 vmcs_write64(VMCS_LINK_POINTER,
7743 __pa(vmx->vmcs01.shadow_vmcs));
7744 vmx->nested.sync_shadow_vmcs = true;
7745 }
7746}
7747
63846663
NHE
7748/* Emulate the VMPTRLD instruction */
7749static int handle_vmptrld(struct kvm_vcpu *vcpu)
7750{
7751 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7752 gpa_t vmptr;
63846663
NHE
7753
7754 if (!nested_vmx_check_permission(vcpu))
7755 return 1;
7756
cbf71279 7757 if (nested_vmx_get_vmptr(vcpu, &vmptr))
63846663 7758 return 1;
63846663 7759
cbf71279
RK
7760 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7761 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7762 return kvm_skip_emulated_instruction(vcpu);
7763 }
7764
7765 if (vmptr == vmx->nested.vmxon_ptr) {
7766 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7767 return kvm_skip_emulated_instruction(vcpu);
7768 }
7769
63846663
NHE
7770 if (vmx->nested.current_vmptr != vmptr) {
7771 struct vmcs12 *new_vmcs12;
7772 struct page *page;
5e2f30b7
DH
7773 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7774 if (is_error_page(page)) {
63846663 7775 nested_vmx_failInvalid(vcpu);
6affcbed 7776 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7777 }
7778 new_vmcs12 = kmap(page);
7779 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7780 kunmap(page);
53a70daf 7781 kvm_release_page_clean(page);
63846663
NHE
7782 nested_vmx_failValid(vcpu,
7783 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 7784 return kvm_skip_emulated_instruction(vcpu);
63846663 7785 }
63846663 7786
9a2a05b9 7787 nested_release_vmcs12(vmx);
4f2777bc
DM
7788 /*
7789 * Load VMCS12 from guest memory since it is not already
7790 * cached.
7791 */
9f744c59
PB
7792 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7793 kunmap(page);
53a70daf 7794 kvm_release_page_clean(page);
9f744c59 7795
a8bc284e 7796 set_current_vmptr(vmx, vmptr);
63846663
NHE
7797 }
7798
7799 nested_vmx_succeed(vcpu);
6affcbed 7800 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7801}
7802
6a4d7550
NHE
7803/* Emulate the VMPTRST instruction */
7804static int handle_vmptrst(struct kvm_vcpu *vcpu)
7805{
7806 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7807 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7808 gva_t vmcs_gva;
7809 struct x86_exception e;
7810
7811 if (!nested_vmx_check_permission(vcpu))
7812 return 1;
7813
7814 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7815 vmx_instruction_info, true, &vmcs_gva))
6a4d7550 7816 return 1;
70f3aac9 7817 /* ok to use *_system, as hardware has verified cpl=0 */
6a4d7550
NHE
7818 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7819 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7820 sizeof(u64), &e)) {
7821 kvm_inject_page_fault(vcpu, &e);
7822 return 1;
7823 }
7824 nested_vmx_succeed(vcpu);
6affcbed 7825 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
7826}
7827
bfd0a56b
NHE
7828/* Emulate the INVEPT instruction */
7829static int handle_invept(struct kvm_vcpu *vcpu)
7830{
b9c237bb 7831 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7832 u32 vmx_instruction_info, types;
7833 unsigned long type;
7834 gva_t gva;
7835 struct x86_exception e;
7836 struct {
7837 u64 eptp, gpa;
7838 } operand;
bfd0a56b 7839
b9c237bb
WV
7840 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7841 SECONDARY_EXEC_ENABLE_EPT) ||
7842 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7843 kvm_queue_exception(vcpu, UD_VECTOR);
7844 return 1;
7845 }
7846
7847 if (!nested_vmx_check_permission(vcpu))
7848 return 1;
7849
bfd0a56b 7850 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7851 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7852
b9c237bb 7853 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 7854
85c856b3 7855 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
7856 nested_vmx_failValid(vcpu,
7857 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7858 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7859 }
7860
7861 /* According to the Intel VMX instruction reference, the memory
7862 * operand is read even if it isn't needed (e.g., for type==global)
7863 */
7864 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7865 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7866 return 1;
7867 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7868 sizeof(operand), &e)) {
7869 kvm_inject_page_fault(vcpu, &e);
7870 return 1;
7871 }
7872
7873 switch (type) {
bfd0a56b 7874 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7875 /*
7876 * TODO: track mappings and invalidate
7877 * single context requests appropriately
7878 */
7879 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7880 kvm_mmu_sync_roots(vcpu);
77c3913b 7881 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7882 nested_vmx_succeed(vcpu);
7883 break;
7884 default:
7885 BUG_ON(1);
7886 break;
7887 }
7888
6affcbed 7889 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7890}
7891
a642fc30
PM
7892static int handle_invvpid(struct kvm_vcpu *vcpu)
7893{
99b83ac8
WL
7894 struct vcpu_vmx *vmx = to_vmx(vcpu);
7895 u32 vmx_instruction_info;
7896 unsigned long type, types;
7897 gva_t gva;
7898 struct x86_exception e;
40352605
JM
7899 struct {
7900 u64 vpid;
7901 u64 gla;
7902 } operand;
99b83ac8
WL
7903
7904 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7905 SECONDARY_EXEC_ENABLE_VPID) ||
7906 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7907 kvm_queue_exception(vcpu, UD_VECTOR);
7908 return 1;
7909 }
7910
7911 if (!nested_vmx_check_permission(vcpu))
7912 return 1;
7913
7914 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7915 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7916
bcdde302
JD
7917 types = (vmx->nested.nested_vmx_vpid_caps &
7918 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 7919
85c856b3 7920 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
7921 nested_vmx_failValid(vcpu,
7922 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7923 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7924 }
7925
7926 /* according to the intel vmx instruction reference, the memory
7927 * operand is read even if it isn't needed (e.g., for type==global)
7928 */
7929 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7930 vmx_instruction_info, false, &gva))
7931 return 1;
40352605
JM
7932 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7933 sizeof(operand), &e)) {
99b83ac8
WL
7934 kvm_inject_page_fault(vcpu, &e);
7935 return 1;
7936 }
40352605
JM
7937 if (operand.vpid >> 16) {
7938 nested_vmx_failValid(vcpu,
7939 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7940 return kvm_skip_emulated_instruction(vcpu);
7941 }
99b83ac8
WL
7942
7943 switch (type) {
bcdde302 7944 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
fd8cb433 7945 if (is_noncanonical_address(operand.gla, vcpu)) {
40352605
JM
7946 nested_vmx_failValid(vcpu,
7947 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7948 return kvm_skip_emulated_instruction(vcpu);
7949 }
7950 /* fall through */
ef697a71 7951 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302 7952 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
40352605 7953 if (!operand.vpid) {
bcdde302
JD
7954 nested_vmx_failValid(vcpu,
7955 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7956 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
7957 }
7958 break;
99b83ac8 7959 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
7960 break;
7961 default:
bcdde302 7962 WARN_ON_ONCE(1);
6affcbed 7963 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7964 }
7965
bcdde302
JD
7966 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7967 nested_vmx_succeed(vcpu);
7968
6affcbed 7969 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
7970}
7971
843e4330
KH
7972static int handle_pml_full(struct kvm_vcpu *vcpu)
7973{
7974 unsigned long exit_qualification;
7975
7976 trace_kvm_pml_full(vcpu->vcpu_id);
7977
7978 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7979
7980 /*
7981 * PML buffer FULL happened while executing iret from NMI,
7982 * "blocked by NMI" bit has to be set before next VM entry.
7983 */
7984 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
843e4330
KH
7985 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7986 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7987 GUEST_INTR_STATE_NMI);
7988
7989 /*
7990 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7991 * here.., and there's no userspace involvement needed for PML.
7992 */
7993 return 1;
7994}
7995
64672c95
YJ
7996static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7997{
7998 kvm_lapic_expired_hv_timer(vcpu);
7999 return 1;
8000}
8001
41ab9372
BD
8002static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8003{
8004 struct vcpu_vmx *vmx = to_vmx(vcpu);
41ab9372
BD
8005 int maxphyaddr = cpuid_maxphyaddr(vcpu);
8006
8007 /* Check for memory type validity */
bb97a016
DH
8008 switch (address & VMX_EPTP_MT_MASK) {
8009 case VMX_EPTP_MT_UC:
41ab9372
BD
8010 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8011 return false;
8012 break;
bb97a016 8013 case VMX_EPTP_MT_WB:
41ab9372
BD
8014 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8015 return false;
8016 break;
8017 default:
8018 return false;
8019 }
8020
bb97a016
DH
8021 /* only 4 levels page-walk length are valid */
8022 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
41ab9372
BD
8023 return false;
8024
8025 /* Reserved bits should not be set */
8026 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8027 return false;
8028
8029 /* AD, if set, should be supported */
bb97a016 8030 if (address & VMX_EPTP_AD_ENABLE_BIT) {
41ab9372
BD
8031 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8032 return false;
8033 }
8034
8035 return true;
8036}
8037
8038static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8039 struct vmcs12 *vmcs12)
8040{
8041 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8042 u64 address;
8043 bool accessed_dirty;
8044 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8045
8046 if (!nested_cpu_has_eptp_switching(vmcs12) ||
8047 !nested_cpu_has_ept(vmcs12))
8048 return 1;
8049
8050 if (index >= VMFUNC_EPTP_ENTRIES)
8051 return 1;
8052
8053
8054 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8055 &address, index * 8, 8))
8056 return 1;
8057
bb97a016 8058 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
41ab9372
BD
8059
8060 /*
8061 * If the (L2) guest does a vmfunc to the currently
8062 * active ept pointer, we don't have to do anything else
8063 */
8064 if (vmcs12->ept_pointer != address) {
8065 if (!valid_ept_address(vcpu, address))
8066 return 1;
8067
8068 kvm_mmu_unload(vcpu);
8069 mmu->ept_ad = accessed_dirty;
8070 mmu->base_role.ad_disabled = !accessed_dirty;
8071 vmcs12->ept_pointer = address;
8072 /*
8073 * TODO: Check what's the correct approach in case
8074 * mmu reload fails. Currently, we just let the next
8075 * reload potentially fail
8076 */
8077 kvm_mmu_reload(vcpu);
8078 }
8079
8080 return 0;
8081}
8082
2a499e49
BD
8083static int handle_vmfunc(struct kvm_vcpu *vcpu)
8084{
27c42a1b
BD
8085 struct vcpu_vmx *vmx = to_vmx(vcpu);
8086 struct vmcs12 *vmcs12;
8087 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8088
8089 /*
8090 * VMFUNC is only supported for nested guests, but we always enable the
8091 * secondary control for simplicity; for non-nested mode, fake that we
8092 * didn't by injecting #UD.
8093 */
8094 if (!is_guest_mode(vcpu)) {
8095 kvm_queue_exception(vcpu, UD_VECTOR);
8096 return 1;
8097 }
8098
8099 vmcs12 = get_vmcs12(vcpu);
8100 if ((vmcs12->vm_function_control & (1 << function)) == 0)
8101 goto fail;
41ab9372
BD
8102
8103 switch (function) {
8104 case 0:
8105 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8106 goto fail;
8107 break;
8108 default:
8109 goto fail;
8110 }
8111 return kvm_skip_emulated_instruction(vcpu);
27c42a1b
BD
8112
8113fail:
8114 nested_vmx_vmexit(vcpu, vmx->exit_reason,
8115 vmcs_read32(VM_EXIT_INTR_INFO),
8116 vmcs_readl(EXIT_QUALIFICATION));
2a499e49
BD
8117 return 1;
8118}
8119
6aa8b732
AK
8120/*
8121 * The exit handlers return 1 if the exit was handled fully and guest execution
8122 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8123 * to be done to userspace and return 0.
8124 */
772e0318 8125static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
8126 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8127 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 8128 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 8129 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 8130 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
8131 [EXIT_REASON_CR_ACCESS] = handle_cr,
8132 [EXIT_REASON_DR_ACCESS] = handle_dr,
8133 [EXIT_REASON_CPUID] = handle_cpuid,
8134 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8135 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8136 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8137 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 8138 [EXIT_REASON_INVD] = handle_invd,
a7052897 8139 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 8140 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 8141 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 8142 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 8143 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 8144 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 8145 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 8146 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 8147 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 8148 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
8149 [EXIT_REASON_VMOFF] = handle_vmoff,
8150 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
8151 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8152 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 8153 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 8154 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 8155 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 8156 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 8157 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 8158 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
8159 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8160 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 8161 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 8162 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 8163 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 8164 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 8165 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 8166 [EXIT_REASON_INVVPID] = handle_invvpid,
45ec368c 8167 [EXIT_REASON_RDRAND] = handle_invalid_op,
75f4fc8d 8168 [EXIT_REASON_RDSEED] = handle_invalid_op,
f53cd63c
WL
8169 [EXIT_REASON_XSAVES] = handle_xsaves,
8170 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 8171 [EXIT_REASON_PML_FULL] = handle_pml_full,
2a499e49 8172 [EXIT_REASON_VMFUNC] = handle_vmfunc,
64672c95 8173 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
8174};
8175
8176static const int kvm_vmx_max_exit_handlers =
50a3485c 8177 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 8178
908a7bdd
JK
8179static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8180 struct vmcs12 *vmcs12)
8181{
8182 unsigned long exit_qualification;
8183 gpa_t bitmap, last_bitmap;
8184 unsigned int port;
8185 int size;
8186 u8 b;
8187
908a7bdd 8188 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 8189 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
8190
8191 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8192
8193 port = exit_qualification >> 16;
8194 size = (exit_qualification & 7) + 1;
8195
8196 last_bitmap = (gpa_t)-1;
8197 b = -1;
8198
8199 while (size > 0) {
8200 if (port < 0x8000)
8201 bitmap = vmcs12->io_bitmap_a;
8202 else if (port < 0x10000)
8203 bitmap = vmcs12->io_bitmap_b;
8204 else
1d804d07 8205 return true;
908a7bdd
JK
8206 bitmap += (port & 0x7fff) / 8;
8207
8208 if (last_bitmap != bitmap)
54bf36aa 8209 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 8210 return true;
908a7bdd 8211 if (b & (1 << (port & 7)))
1d804d07 8212 return true;
908a7bdd
JK
8213
8214 port++;
8215 size--;
8216 last_bitmap = bitmap;
8217 }
8218
1d804d07 8219 return false;
908a7bdd
JK
8220}
8221
644d711a
NHE
8222/*
8223 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8224 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8225 * disinterest in the current event (read or write a specific MSR) by using an
8226 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8227 */
8228static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8229 struct vmcs12 *vmcs12, u32 exit_reason)
8230{
8231 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8232 gpa_t bitmap;
8233
cbd29cb6 8234 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 8235 return true;
644d711a
NHE
8236
8237 /*
8238 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8239 * for the four combinations of read/write and low/high MSR numbers.
8240 * First we need to figure out which of the four to use:
8241 */
8242 bitmap = vmcs12->msr_bitmap;
8243 if (exit_reason == EXIT_REASON_MSR_WRITE)
8244 bitmap += 2048;
8245 if (msr_index >= 0xc0000000) {
8246 msr_index -= 0xc0000000;
8247 bitmap += 1024;
8248 }
8249
8250 /* Then read the msr_index'th bit from this bitmap: */
8251 if (msr_index < 1024*8) {
8252 unsigned char b;
54bf36aa 8253 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 8254 return true;
644d711a
NHE
8255 return 1 & (b >> (msr_index & 7));
8256 } else
1d804d07 8257 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
8258}
8259
8260/*
8261 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8262 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8263 * intercept (via guest_host_mask etc.) the current event.
8264 */
8265static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8266 struct vmcs12 *vmcs12)
8267{
8268 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8269 int cr = exit_qualification & 15;
e1d39b17
JS
8270 int reg;
8271 unsigned long val;
644d711a
NHE
8272
8273 switch ((exit_qualification >> 4) & 3) {
8274 case 0: /* mov to cr */
e1d39b17
JS
8275 reg = (exit_qualification >> 8) & 15;
8276 val = kvm_register_readl(vcpu, reg);
644d711a
NHE
8277 switch (cr) {
8278 case 0:
8279 if (vmcs12->cr0_guest_host_mask &
8280 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8281 return true;
644d711a
NHE
8282 break;
8283 case 3:
8284 if ((vmcs12->cr3_target_count >= 1 &&
8285 vmcs12->cr3_target_value0 == val) ||
8286 (vmcs12->cr3_target_count >= 2 &&
8287 vmcs12->cr3_target_value1 == val) ||
8288 (vmcs12->cr3_target_count >= 3 &&
8289 vmcs12->cr3_target_value2 == val) ||
8290 (vmcs12->cr3_target_count >= 4 &&
8291 vmcs12->cr3_target_value3 == val))
1d804d07 8292 return false;
644d711a 8293 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 8294 return true;
644d711a
NHE
8295 break;
8296 case 4:
8297 if (vmcs12->cr4_guest_host_mask &
8298 (vmcs12->cr4_read_shadow ^ val))
1d804d07 8299 return true;
644d711a
NHE
8300 break;
8301 case 8:
8302 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 8303 return true;
644d711a
NHE
8304 break;
8305 }
8306 break;
8307 case 2: /* clts */
8308 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8309 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 8310 return true;
644d711a
NHE
8311 break;
8312 case 1: /* mov from cr */
8313 switch (cr) {
8314 case 3:
8315 if (vmcs12->cpu_based_vm_exec_control &
8316 CPU_BASED_CR3_STORE_EXITING)
1d804d07 8317 return true;
644d711a
NHE
8318 break;
8319 case 8:
8320 if (vmcs12->cpu_based_vm_exec_control &
8321 CPU_BASED_CR8_STORE_EXITING)
1d804d07 8322 return true;
644d711a
NHE
8323 break;
8324 }
8325 break;
8326 case 3: /* lmsw */
8327 /*
8328 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8329 * cr0. Other attempted changes are ignored, with no exit.
8330 */
e1d39b17 8331 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
644d711a
NHE
8332 if (vmcs12->cr0_guest_host_mask & 0xe &
8333 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8334 return true;
644d711a
NHE
8335 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8336 !(vmcs12->cr0_read_shadow & 0x1) &&
8337 (val & 0x1))
1d804d07 8338 return true;
644d711a
NHE
8339 break;
8340 }
1d804d07 8341 return false;
644d711a
NHE
8342}
8343
8344/*
8345 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8346 * should handle it ourselves in L0 (and then continue L2). Only call this
8347 * when in is_guest_mode (L2).
8348 */
7313c698 8349static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
644d711a 8350{
644d711a
NHE
8351 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8352 struct vcpu_vmx *vmx = to_vmx(vcpu);
8353 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8354
4f350c6d
JM
8355 if (vmx->nested.nested_run_pending)
8356 return false;
8357
8358 if (unlikely(vmx->fail)) {
8359 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8360 vmcs_read32(VM_INSTRUCTION_ERROR));
8361 return true;
8362 }
542060ea 8363
c9f04407
DM
8364 /*
8365 * The host physical addresses of some pages of guest memory
8366 * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8367 * may write to these pages via their host physical address while
8368 * L2 is running, bypassing any address-translation-based dirty
8369 * tracking (e.g. EPT write protection).
8370 *
8371 * Mark them dirty on every exit from L2 to prevent them from
8372 * getting out of sync with dirty tracking.
8373 */
8374 nested_mark_vmcs12_pages_dirty(vcpu);
8375
4f350c6d
JM
8376 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8377 vmcs_readl(EXIT_QUALIFICATION),
8378 vmx->idt_vectoring_info,
8379 intr_info,
8380 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8381 KVM_ISA_VMX);
644d711a
NHE
8382
8383 switch (exit_reason) {
8384 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8385 if (is_nmi(intr_info))
1d804d07 8386 return false;
644d711a 8387 else if (is_page_fault(intr_info))
52a5c155 8388 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
e504c909 8389 else if (is_no_device(intr_info) &&
ccf9844e 8390 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8391 return false;
6f05485d
JK
8392 else if (is_debug(intr_info) &&
8393 vcpu->guest_debug &
8394 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8395 return false;
8396 else if (is_breakpoint(intr_info) &&
8397 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8398 return false;
644d711a
NHE
8399 return vmcs12->exception_bitmap &
8400 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8401 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8402 return false;
644d711a 8403 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8404 return true;
644d711a 8405 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8406 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8407 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8408 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8409 case EXIT_REASON_TASK_SWITCH:
1d804d07 8410 return true;
644d711a 8411 case EXIT_REASON_CPUID:
1d804d07 8412 return true;
644d711a
NHE
8413 case EXIT_REASON_HLT:
8414 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8415 case EXIT_REASON_INVD:
1d804d07 8416 return true;
644d711a
NHE
8417 case EXIT_REASON_INVLPG:
8418 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8419 case EXIT_REASON_RDPMC:
8420 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
a5f46457 8421 case EXIT_REASON_RDRAND:
736fdf72 8422 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
a5f46457 8423 case EXIT_REASON_RDSEED:
736fdf72 8424 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
b3a2a907 8425 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8426 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8427 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8428 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8429 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8430 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8431 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8432 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8433 /*
8434 * VMX instructions trap unconditionally. This allows L1 to
8435 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8436 */
1d804d07 8437 return true;
644d711a
NHE
8438 case EXIT_REASON_CR_ACCESS:
8439 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8440 case EXIT_REASON_DR_ACCESS:
8441 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8442 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8443 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8444 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8445 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8446 case EXIT_REASON_MSR_READ:
8447 case EXIT_REASON_MSR_WRITE:
8448 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8449 case EXIT_REASON_INVALID_STATE:
1d804d07 8450 return true;
644d711a
NHE
8451 case EXIT_REASON_MWAIT_INSTRUCTION:
8452 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8453 case EXIT_REASON_MONITOR_TRAP_FLAG:
8454 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8455 case EXIT_REASON_MONITOR_INSTRUCTION:
8456 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8457 case EXIT_REASON_PAUSE_INSTRUCTION:
8458 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8459 nested_cpu_has2(vmcs12,
8460 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8461 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8462 return false;
644d711a 8463 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8464 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8465 case EXIT_REASON_APIC_ACCESS:
8466 return nested_cpu_has2(vmcs12,
8467 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8468 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8469 case EXIT_REASON_EOI_INDUCED:
8470 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8471 return true;
644d711a 8472 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8473 /*
8474 * L0 always deals with the EPT violation. If nested EPT is
8475 * used, and the nested mmu code discovers that the address is
8476 * missing in the guest EPT table (EPT12), the EPT violation
8477 * will be injected with nested_ept_inject_page_fault()
8478 */
1d804d07 8479 return false;
644d711a 8480 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8481 /*
8482 * L2 never uses directly L1's EPT, but rather L0's own EPT
8483 * table (shadow on EPT) or a merged EPT table that L0 built
8484 * (EPT on EPT). So any problems with the structure of the
8485 * table is L0's fault.
8486 */
1d804d07 8487 return false;
90a2db6d
PB
8488 case EXIT_REASON_INVPCID:
8489 return
8490 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8491 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
644d711a
NHE
8492 case EXIT_REASON_WBINVD:
8493 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8494 case EXIT_REASON_XSETBV:
1d804d07 8495 return true;
81dc01f7
WL
8496 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8497 /*
8498 * This should never happen, since it is not possible to
8499 * set XSS to a non-zero value---neither in L1 nor in L2.
8500 * If if it were, XSS would have to be checked against
8501 * the XSS exit bitmap in vmcs12.
8502 */
8503 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8504 case EXIT_REASON_PREEMPTION_TIMER:
8505 return false;
ab007cc9 8506 case EXIT_REASON_PML_FULL:
03efce6f 8507 /* We emulate PML support to L1. */
ab007cc9 8508 return false;
2a499e49
BD
8509 case EXIT_REASON_VMFUNC:
8510 /* VM functions are emulated through L2->L0 vmexits. */
8511 return false;
644d711a 8512 default:
1d804d07 8513 return true;
644d711a
NHE
8514 }
8515}
8516
7313c698
PB
8517static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8518{
8519 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8520
8521 /*
8522 * At this point, the exit interruption info in exit_intr_info
8523 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8524 * we need to query the in-kernel LAPIC.
8525 */
8526 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8527 if ((exit_intr_info &
8528 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8529 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8530 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8531 vmcs12->vm_exit_intr_error_code =
8532 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8533 }
8534
8535 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8536 vmcs_readl(EXIT_QUALIFICATION));
8537 return 1;
8538}
8539
586f9607
AK
8540static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8541{
8542 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8543 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8544}
8545
a3eaa864 8546static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8547{
a3eaa864
KH
8548 if (vmx->pml_pg) {
8549 __free_page(vmx->pml_pg);
8550 vmx->pml_pg = NULL;
8551 }
843e4330
KH
8552}
8553
54bf36aa 8554static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8555{
54bf36aa 8556 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8557 u64 *pml_buf;
8558 u16 pml_idx;
8559
8560 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8561
8562 /* Do nothing if PML buffer is empty */
8563 if (pml_idx == (PML_ENTITY_NUM - 1))
8564 return;
8565
8566 /* PML index always points to next available PML buffer entity */
8567 if (pml_idx >= PML_ENTITY_NUM)
8568 pml_idx = 0;
8569 else
8570 pml_idx++;
8571
8572 pml_buf = page_address(vmx->pml_pg);
8573 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8574 u64 gpa;
8575
8576 gpa = pml_buf[pml_idx];
8577 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8578 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8579 }
8580
8581 /* reset PML index */
8582 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8583}
8584
8585/*
8586 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8587 * Called before reporting dirty_bitmap to userspace.
8588 */
8589static void kvm_flush_pml_buffers(struct kvm *kvm)
8590{
8591 int i;
8592 struct kvm_vcpu *vcpu;
8593 /*
8594 * We only need to kick vcpu out of guest mode here, as PML buffer
8595 * is flushed at beginning of all VMEXITs, and it's obvious that only
8596 * vcpus running in guest are possible to have unflushed GPAs in PML
8597 * buffer.
8598 */
8599 kvm_for_each_vcpu(i, vcpu, kvm)
8600 kvm_vcpu_kick(vcpu);
8601}
8602
4eb64dce
PB
8603static void vmx_dump_sel(char *name, uint32_t sel)
8604{
8605 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
96794e4e 8606 name, vmcs_read16(sel),
4eb64dce
PB
8607 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8608 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8609 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8610}
8611
8612static void vmx_dump_dtsel(char *name, uint32_t limit)
8613{
8614 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8615 name, vmcs_read32(limit),
8616 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8617}
8618
8619static void dump_vmcs(void)
8620{
8621 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8622 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8623 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8624 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8625 u32 secondary_exec_control = 0;
8626 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8627 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8628 int i, n;
8629
8630 if (cpu_has_secondary_exec_ctrls())
8631 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8632
8633 pr_err("*** Guest State ***\n");
8634 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8635 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8636 vmcs_readl(CR0_GUEST_HOST_MASK));
8637 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8638 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8639 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8640 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8641 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8642 {
845c5b40
PB
8643 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8644 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8645 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8646 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8647 }
8648 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8649 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8650 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8651 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8652 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8653 vmcs_readl(GUEST_SYSENTER_ESP),
8654 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8655 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8656 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8657 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8658 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8659 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8660 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8661 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8662 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8663 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8664 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8665 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8666 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8667 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8668 efer, vmcs_read64(GUEST_IA32_PAT));
8669 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8670 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8671 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8672 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8673 pr_err("PerfGlobCtl = 0x%016llx\n",
8674 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8675 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8676 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8677 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8678 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8679 vmcs_read32(GUEST_ACTIVITY_STATE));
8680 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8681 pr_err("InterruptStatus = %04x\n",
8682 vmcs_read16(GUEST_INTR_STATUS));
8683
8684 pr_err("*** Host State ***\n");
8685 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8686 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8687 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8688 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8689 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8690 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8691 vmcs_read16(HOST_TR_SELECTOR));
8692 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8693 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8694 vmcs_readl(HOST_TR_BASE));
8695 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8696 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8697 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8698 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8699 vmcs_readl(HOST_CR4));
8700 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8701 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8702 vmcs_read32(HOST_IA32_SYSENTER_CS),
8703 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8704 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8705 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8706 vmcs_read64(HOST_IA32_EFER),
8707 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8708 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8709 pr_err("PerfGlobCtl = 0x%016llx\n",
8710 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8711
8712 pr_err("*** Control State ***\n");
8713 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8714 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8715 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8716 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8717 vmcs_read32(EXCEPTION_BITMAP),
8718 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8719 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8720 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8721 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8722 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8723 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8724 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8725 vmcs_read32(VM_EXIT_INTR_INFO),
8726 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8727 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8728 pr_err(" reason=%08x qualification=%016lx\n",
8729 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8730 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8731 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8732 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8733 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8734 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8735 pr_err("TSC Multiplier = 0x%016llx\n",
8736 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8737 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8738 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8739 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8740 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8741 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8742 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8743 n = vmcs_read32(CR3_TARGET_COUNT);
8744 for (i = 0; i + 1 < n; i += 4)
8745 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8746 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8747 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8748 if (i < n)
8749 pr_err("CR3 target%u=%016lx\n",
8750 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8751 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8752 pr_err("PLE Gap=%08x Window=%08x\n",
8753 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8754 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8755 pr_err("Virtual processor ID = 0x%04x\n",
8756 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8757}
8758
6aa8b732
AK
8759/*
8760 * The guest has exited. See if we can fix it or if we need userspace
8761 * assistance.
8762 */
851ba692 8763static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8764{
29bd8a78 8765 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8766 u32 exit_reason = vmx->exit_reason;
1155f76a 8767 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8768
8b89fe1f
PB
8769 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8770
843e4330
KH
8771 /*
8772 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8773 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8774 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8775 * mode as if vcpus is in root mode, the PML buffer must has been
8776 * flushed already.
8777 */
8778 if (enable_pml)
54bf36aa 8779 vmx_flush_pml_buffer(vcpu);
843e4330 8780
80ced186 8781 /* If guest state is invalid, start emulating */
14168786 8782 if (vmx->emulation_required)
80ced186 8783 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8784
7313c698
PB
8785 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8786 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
644d711a 8787
5120702e 8788 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8789 dump_vmcs();
5120702e
MG
8790 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8791 vcpu->run->fail_entry.hardware_entry_failure_reason
8792 = exit_reason;
8793 return 0;
8794 }
8795
29bd8a78 8796 if (unlikely(vmx->fail)) {
851ba692
AK
8797 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8798 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8799 = vmcs_read32(VM_INSTRUCTION_ERROR);
8800 return 0;
8801 }
6aa8b732 8802
b9bf6882
XG
8803 /*
8804 * Note:
8805 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8806 * delivery event since it indicates guest is accessing MMIO.
8807 * The vm-exit can be triggered again after return to guest that
8808 * will cause infinite loop.
8809 */
d77c26fc 8810 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8811 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8812 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8813 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8814 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8815 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8816 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
70bcd708 8817 vcpu->run->internal.ndata = 3;
b9bf6882
XG
8818 vcpu->run->internal.data[0] = vectoring_info;
8819 vcpu->run->internal.data[1] = exit_reason;
70bcd708
PB
8820 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8821 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8822 vcpu->run->internal.ndata++;
8823 vcpu->run->internal.data[3] =
8824 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8825 }
b9bf6882
XG
8826 return 0;
8827 }
3b86cd99 8828
6aa8b732
AK
8829 if (exit_reason < kvm_vmx_max_exit_handlers
8830 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8831 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8832 else {
6c6c5e03
RK
8833 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8834 exit_reason);
2bc19dc3
MT
8835 kvm_queue_exception(vcpu, UD_VECTOR);
8836 return 1;
6aa8b732 8837 }
6aa8b732
AK
8838}
8839
95ba8273 8840static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8841{
a7c0b07d
WL
8842 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8843
8844 if (is_guest_mode(vcpu) &&
8845 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8846 return;
8847
95ba8273 8848 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8849 vmcs_write32(TPR_THRESHOLD, 0);
8850 return;
8851 }
8852
95ba8273 8853 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8854}
8855
8d14695f
YZ
8856static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8857{
8858 u32 sec_exec_control;
8859
dccbfcf5
RK
8860 /* Postpone execution until vmcs01 is the current VMCS. */
8861 if (is_guest_mode(vcpu)) {
8862 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8863 return;
8864 }
8865
f6e90f9e 8866 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8867 return;
8868
35754c98 8869 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8870 return;
8871
8872 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8873
8874 if (set) {
8875 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8876 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8877 } else {
8878 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8879 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
fb6c8198 8880 vmx_flush_tlb_ept_only(vcpu);
8d14695f
YZ
8881 }
8882 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8883
8884 vmx_set_msr_bitmap(vcpu);
8885}
8886
38b99173
TC
8887static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8888{
8889 struct vcpu_vmx *vmx = to_vmx(vcpu);
8890
8891 /*
8892 * Currently we do not handle the nested case where L2 has an
8893 * APIC access page of its own; that page is still pinned.
8894 * Hence, we skip the case where the VCPU is in guest mode _and_
8895 * L1 prepared an APIC access page for L2.
8896 *
8897 * For the case where L1 and L2 share the same APIC access page
8898 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8899 * in the vmcs12), this function will only update either the vmcs01
8900 * or the vmcs02. If the former, the vmcs02 will be updated by
8901 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8902 * the next L2->L1 exit.
8903 */
8904 if (!is_guest_mode(vcpu) ||
4f2777bc 8905 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
fb6c8198 8906 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
38b99173 8907 vmcs_write64(APIC_ACCESS_ADDR, hpa);
fb6c8198
JM
8908 vmx_flush_tlb_ept_only(vcpu);
8909 }
38b99173
TC
8910}
8911
67c9dddc 8912static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8913{
8914 u16 status;
8915 u8 old;
8916
67c9dddc
PB
8917 if (max_isr == -1)
8918 max_isr = 0;
c7c9c56c
YZ
8919
8920 status = vmcs_read16(GUEST_INTR_STATUS);
8921 old = status >> 8;
67c9dddc 8922 if (max_isr != old) {
c7c9c56c 8923 status &= 0xff;
67c9dddc 8924 status |= max_isr << 8;
c7c9c56c
YZ
8925 vmcs_write16(GUEST_INTR_STATUS, status);
8926 }
8927}
8928
8929static void vmx_set_rvi(int vector)
8930{
8931 u16 status;
8932 u8 old;
8933
4114c27d
WW
8934 if (vector == -1)
8935 vector = 0;
8936
c7c9c56c
YZ
8937 status = vmcs_read16(GUEST_INTR_STATUS);
8938 old = (u8)status & 0xff;
8939 if ((u8)vector != old) {
8940 status &= ~0xff;
8941 status |= (u8)vector;
8942 vmcs_write16(GUEST_INTR_STATUS, status);
8943 }
8944}
8945
8946static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8947{
4114c27d
WW
8948 if (!is_guest_mode(vcpu)) {
8949 vmx_set_rvi(max_irr);
8950 return;
8951 }
8952
c7c9c56c
YZ
8953 if (max_irr == -1)
8954 return;
8955
963fee16 8956 /*
4114c27d
WW
8957 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8958 * handles it.
963fee16 8959 */
4114c27d 8960 if (nested_exit_on_intr(vcpu))
963fee16
WL
8961 return;
8962
963fee16 8963 /*
4114c27d 8964 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8965 * is run without virtual interrupt delivery.
8966 */
8967 if (!kvm_event_needs_reinjection(vcpu) &&
8968 vmx_interrupt_allowed(vcpu)) {
8969 kvm_queue_interrupt(vcpu, max_irr, false);
8970 vmx_inject_irq(vcpu);
8971 }
c7c9c56c
YZ
8972}
8973
76dfafd5 8974static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
8975{
8976 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 8977 int max_irr;
810e6def 8978
76dfafd5
PB
8979 WARN_ON(!vcpu->arch.apicv_active);
8980 if (pi_test_on(&vmx->pi_desc)) {
8981 pi_clear_on(&vmx->pi_desc);
8982 /*
8983 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8984 * But on x86 this is just a compiler barrier anyway.
8985 */
8986 smp_mb__after_atomic();
8987 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8988 } else {
8989 max_irr = kvm_lapic_find_highest_irr(vcpu);
8990 }
8991 vmx_hwapic_irr_update(vcpu, max_irr);
8992 return max_irr;
810e6def
PB
8993}
8994
6308630b 8995static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8996{
d62caabb 8997 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8998 return;
8999
c7c9c56c
YZ
9000 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9001 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9002 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9003 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9004}
9005
967235d3
PB
9006static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9007{
9008 struct vcpu_vmx *vmx = to_vmx(vcpu);
9009
9010 pi_clear_on(&vmx->pi_desc);
9011 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9012}
9013
51aa01d1 9014static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 9015{
48ae0fb4
JM
9016 u32 exit_intr_info = 0;
9017 u16 basic_exit_reason = (u16)vmx->exit_reason;
00eba012 9018
48ae0fb4
JM
9019 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9020 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
00eba012
AK
9021 return;
9022
48ae0fb4
JM
9023 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9024 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9025 vmx->exit_intr_info = exit_intr_info;
a0861c02 9026
1261bfa3
WL
9027 /* if exit due to PF check for async PF */
9028 if (is_page_fault(exit_intr_info))
9029 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9030
a0861c02 9031 /* Handle machine checks before interrupts are enabled */
48ae0fb4
JM
9032 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9033 is_machine_check(exit_intr_info))
a0861c02
AK
9034 kvm_machine_check();
9035
20f65983 9036 /* We need to handle NMIs before interrupts are enabled */
ef85b673 9037 if (is_nmi(exit_intr_info)) {
ff9d07a0 9038 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 9039 asm("int $2");
ff9d07a0
ZY
9040 kvm_after_handle_nmi(&vmx->vcpu);
9041 }
51aa01d1 9042}
20f65983 9043
a547c6db
YZ
9044static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9045{
9046 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9047
a547c6db
YZ
9048 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9049 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9050 unsigned int vector;
9051 unsigned long entry;
9052 gate_desc *desc;
9053 struct vcpu_vmx *vmx = to_vmx(vcpu);
9054#ifdef CONFIG_X86_64
9055 unsigned long tmp;
9056#endif
9057
9058 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9059 desc = (gate_desc *)vmx->host_idt_base + vector;
64b163fa 9060 entry = gate_offset(desc);
a547c6db
YZ
9061 asm volatile(
9062#ifdef CONFIG_X86_64
9063 "mov %%" _ASM_SP ", %[sp]\n\t"
9064 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9065 "push $%c[ss]\n\t"
9066 "push %[sp]\n\t"
9067#endif
9068 "pushf\n\t"
a547c6db
YZ
9069 __ASM_SIZE(push) " $%c[cs]\n\t"
9070 "call *%[entry]\n\t"
9071 :
9072#ifdef CONFIG_X86_64
3f62de5f 9073 [sp]"=&r"(tmp),
a547c6db 9074#endif
f5caf621 9075 ASM_CALL_CONSTRAINT
a547c6db
YZ
9076 :
9077 [entry]"r"(entry),
9078 [ss]"i"(__KERNEL_DS),
9079 [cs]"i"(__KERNEL_CS)
9080 );
f2485b3e 9081 }
a547c6db 9082}
c207aee4 9083STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
a547c6db 9084
6d396b55
PB
9085static bool vmx_has_high_real_mode_segbase(void)
9086{
9087 return enable_unrestricted_guest || emulate_invalid_guest_state;
9088}
9089
da8999d3
LJ
9090static bool vmx_mpx_supported(void)
9091{
9092 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9093 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9094}
9095
55412b2e
WL
9096static bool vmx_xsaves_supported(void)
9097{
9098 return vmcs_config.cpu_based_2nd_exec_ctrl &
9099 SECONDARY_EXEC_XSAVES;
9100}
9101
51aa01d1
AK
9102static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9103{
c5ca8e57 9104 u32 exit_intr_info;
51aa01d1
AK
9105 bool unblock_nmi;
9106 u8 vector;
9107 bool idtv_info_valid;
9108
9109 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 9110
4c4a6f79 9111 if (vmx->loaded_vmcs->nmi_known_unmasked)
2c82878b
PB
9112 return;
9113 /*
9114 * Can't use vmx->exit_intr_info since we're not sure what
9115 * the exit reason is.
9116 */
9117 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9118 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9119 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9120 /*
9121 * SDM 3: 27.7.1.2 (September 2008)
9122 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9123 * a guest IRET fault.
9124 * SDM 3: 23.2.2 (September 2008)
9125 * Bit 12 is undefined in any of the following cases:
9126 * If the VM exit sets the valid bit in the IDT-vectoring
9127 * information field.
9128 * If the VM exit is due to a double fault.
9129 */
9130 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9131 vector != DF_VECTOR && !idtv_info_valid)
9132 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9133 GUEST_INTR_STATE_NMI);
9134 else
4c4a6f79 9135 vmx->loaded_vmcs->nmi_known_unmasked =
2c82878b
PB
9136 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9137 & GUEST_INTR_STATE_NMI);
51aa01d1
AK
9138}
9139
3ab66e8a 9140static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
9141 u32 idt_vectoring_info,
9142 int instr_len_field,
9143 int error_code_field)
51aa01d1 9144{
51aa01d1
AK
9145 u8 vector;
9146 int type;
9147 bool idtv_info_valid;
9148
9149 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 9150
3ab66e8a
JK
9151 vcpu->arch.nmi_injected = false;
9152 kvm_clear_exception_queue(vcpu);
9153 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
9154
9155 if (!idtv_info_valid)
9156 return;
9157
3ab66e8a 9158 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 9159
668f612f
AK
9160 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9161 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 9162
64a7ec06 9163 switch (type) {
37b96e98 9164 case INTR_TYPE_NMI_INTR:
3ab66e8a 9165 vcpu->arch.nmi_injected = true;
668f612f 9166 /*
7b4a25cb 9167 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
9168 * Clear bit "block by NMI" before VM entry if a NMI
9169 * delivery faulted.
668f612f 9170 */
3ab66e8a 9171 vmx_set_nmi_mask(vcpu, false);
37b96e98 9172 break;
37b96e98 9173 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 9174 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
9175 /* fall through */
9176 case INTR_TYPE_HARD_EXCEPTION:
35920a35 9177 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 9178 u32 err = vmcs_read32(error_code_field);
851eb667 9179 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 9180 } else
851eb667 9181 kvm_requeue_exception(vcpu, vector);
37b96e98 9182 break;
66fd3f7f 9183 case INTR_TYPE_SOFT_INTR:
3ab66e8a 9184 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 9185 /* fall through */
37b96e98 9186 case INTR_TYPE_EXT_INTR:
3ab66e8a 9187 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
9188 break;
9189 default:
9190 break;
f7d9238f 9191 }
cf393f75
AK
9192}
9193
83422e17
AK
9194static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9195{
3ab66e8a 9196 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
9197 VM_EXIT_INSTRUCTION_LEN,
9198 IDT_VECTORING_ERROR_CODE);
9199}
9200
b463a6f7
AK
9201static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9202{
3ab66e8a 9203 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
9204 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9205 VM_ENTRY_INSTRUCTION_LEN,
9206 VM_ENTRY_EXCEPTION_ERROR_CODE);
9207
9208 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9209}
9210
d7cd9796
GN
9211static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9212{
9213 int i, nr_msrs;
9214 struct perf_guest_switch_msr *msrs;
9215
9216 msrs = perf_guest_get_msrs(&nr_msrs);
9217
9218 if (!msrs)
9219 return;
9220
9221 for (i = 0; i < nr_msrs; i++)
9222 if (msrs[i].host == msrs[i].guest)
9223 clear_atomic_switch_msr(vmx, msrs[i].msr);
9224 else
9225 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9226 msrs[i].host);
9227}
9228
33365e7a 9229static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
9230{
9231 struct vcpu_vmx *vmx = to_vmx(vcpu);
9232 u64 tscl;
9233 u32 delta_tsc;
9234
9235 if (vmx->hv_deadline_tsc == -1)
9236 return;
9237
9238 tscl = rdtsc();
9239 if (vmx->hv_deadline_tsc > tscl)
9240 /* sure to be 32 bit only because checked on set_hv_timer */
9241 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9242 cpu_preemption_timer_multi);
9243 else
9244 delta_tsc = 0;
9245
9246 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9247}
9248
a3b5ba49 9249static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 9250{
a2fa3e9f 9251 struct vcpu_vmx *vmx = to_vmx(vcpu);
d6e41f11 9252 unsigned long debugctlmsr, cr3, cr4;
104f226b 9253
104f226b
AK
9254 /* Don't enter VMX if guest state is invalid, let the exit handler
9255 start emulation until we arrive back to a valid state */
14168786 9256 if (vmx->emulation_required)
104f226b
AK
9257 return;
9258
a7653ecd
RK
9259 if (vmx->ple_window_dirty) {
9260 vmx->ple_window_dirty = false;
9261 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9262 }
9263
012f83cb
AG
9264 if (vmx->nested.sync_shadow_vmcs) {
9265 copy_vmcs12_to_shadow(vmx);
9266 vmx->nested.sync_shadow_vmcs = false;
9267 }
9268
104f226b
AK
9269 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9270 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9271 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9272 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9273
d6e41f11 9274 cr3 = __get_current_cr3_fast();
44889942 9275 if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
d6e41f11 9276 vmcs_writel(HOST_CR3, cr3);
44889942 9277 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
d6e41f11
AL
9278 }
9279
1e02ce4c 9280 cr4 = cr4_read_shadow();
44889942 9281 if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
d974baa3 9282 vmcs_writel(HOST_CR4, cr4);
44889942 9283 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3
AL
9284 }
9285
104f226b
AK
9286 /* When single-stepping over STI and MOV SS, we must clear the
9287 * corresponding interruptibility bits in the guest state. Otherwise
9288 * vmentry fails as it then expects bit 14 (BS) in pending debug
9289 * exceptions being set, but that's not correct for the guest debugging
9290 * case. */
9291 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9292 vmx_set_interrupt_shadow(vcpu, 0);
9293
b9dd21e1
PB
9294 if (static_cpu_has(X86_FEATURE_PKU) &&
9295 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9296 vcpu->arch.pkru != vmx->host_pkru)
9297 __write_pkru(vcpu->arch.pkru);
1be0e61c 9298
d7cd9796 9299 atomic_switch_perf_msrs(vmx);
2a7921b7 9300 debugctlmsr = get_debugctlmsr();
d7cd9796 9301
64672c95
YJ
9302 vmx_arm_hv_timer(vcpu);
9303
d462b819 9304 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 9305 asm(
6aa8b732 9306 /* Store host registers */
b188c81f
AK
9307 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9308 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9309 "push %%" _ASM_CX " \n\t"
9310 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 9311 "je 1f \n\t"
b188c81f 9312 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 9313 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 9314 "1: \n\t"
d3edefc0 9315 /* Reload cr2 if changed */
b188c81f
AK
9316 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9317 "mov %%cr2, %%" _ASM_DX " \n\t"
9318 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 9319 "je 2f \n\t"
b188c81f 9320 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 9321 "2: \n\t"
6aa8b732 9322 /* Check if vmlaunch of vmresume is needed */
e08aa78a 9323 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 9324 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
9325 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9326 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9327 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9328 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9329 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9330 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 9331#ifdef CONFIG_X86_64
e08aa78a
AK
9332 "mov %c[r8](%0), %%r8 \n\t"
9333 "mov %c[r9](%0), %%r9 \n\t"
9334 "mov %c[r10](%0), %%r10 \n\t"
9335 "mov %c[r11](%0), %%r11 \n\t"
9336 "mov %c[r12](%0), %%r12 \n\t"
9337 "mov %c[r13](%0), %%r13 \n\t"
9338 "mov %c[r14](%0), %%r14 \n\t"
9339 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 9340#endif
b188c81f 9341 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 9342
6aa8b732 9343 /* Enter guest mode */
83287ea4 9344 "jne 1f \n\t"
4ecac3fd 9345 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
9346 "jmp 2f \n\t"
9347 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9348 "2: "
6aa8b732 9349 /* Save guest registers, load host registers, keep flags */
b188c81f 9350 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 9351 "pop %0 \n\t"
b188c81f
AK
9352 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9353 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9354 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9355 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9356 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9357 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9358 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 9359#ifdef CONFIG_X86_64
e08aa78a
AK
9360 "mov %%r8, %c[r8](%0) \n\t"
9361 "mov %%r9, %c[r9](%0) \n\t"
9362 "mov %%r10, %c[r10](%0) \n\t"
9363 "mov %%r11, %c[r11](%0) \n\t"
9364 "mov %%r12, %c[r12](%0) \n\t"
9365 "mov %%r13, %c[r13](%0) \n\t"
9366 "mov %%r14, %c[r14](%0) \n\t"
9367 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 9368#endif
b188c81f
AK
9369 "mov %%cr2, %%" _ASM_AX " \n\t"
9370 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 9371
b188c81f 9372 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 9373 "setbe %c[fail](%0) \n\t"
83287ea4
AK
9374 ".pushsection .rodata \n\t"
9375 ".global vmx_return \n\t"
9376 "vmx_return: " _ASM_PTR " 2b \n\t"
9377 ".popsection"
e08aa78a 9378 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 9379 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 9380 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 9381 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
9382 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9383 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9384 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9385 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9386 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9387 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9388 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 9389#ifdef CONFIG_X86_64
ad312c7c
ZX
9390 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9391 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9392 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9393 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9394 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9395 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9396 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9397 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9398#endif
40712fae
AK
9399 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9400 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9401 : "cc", "memory"
9402#ifdef CONFIG_X86_64
b188c81f 9403 , "rax", "rbx", "rdi", "rsi"
c2036300 9404 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
9405#else
9406 , "eax", "ebx", "edi", "esi"
c2036300
LV
9407#endif
9408 );
6aa8b732 9409
2a7921b7
GN
9410 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9411 if (debugctlmsr)
9412 update_debugctlmsr(debugctlmsr);
9413
aa67f609
AK
9414#ifndef CONFIG_X86_64
9415 /*
9416 * The sysexit path does not restore ds/es, so we must set them to
9417 * a reasonable value ourselves.
9418 *
9419 * We can't defer this to vmx_load_host_state() since that function
9420 * may be executed in interrupt context, which saves and restore segments
9421 * around it, nullifying its effect.
9422 */
9423 loadsegment(ds, __USER_DS);
9424 loadsegment(es, __USER_DS);
9425#endif
9426
6de4f3ad 9427 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9428 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9429 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9430 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9431 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9432 vcpu->arch.regs_dirty = 0;
9433
1be0e61c
XG
9434 /*
9435 * eager fpu is enabled if PKEY is supported and CR4 is switched
9436 * back on host, so it is safe to read guest PKRU from current
9437 * XSAVE.
9438 */
b9dd21e1
PB
9439 if (static_cpu_has(X86_FEATURE_PKU) &&
9440 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9441 vcpu->arch.pkru = __read_pkru();
9442 if (vcpu->arch.pkru != vmx->host_pkru)
1be0e61c 9443 __write_pkru(vmx->host_pkru);
1be0e61c
XG
9444 }
9445
e0b890d3
GN
9446 /*
9447 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9448 * we did not inject a still-pending event to L1 now because of
9449 * nested_run_pending, we need to re-enable this bit.
9450 */
9451 if (vmx->nested.nested_run_pending)
9452 kvm_make_request(KVM_REQ_EVENT, vcpu);
9453
9454 vmx->nested.nested_run_pending = 0;
b060ca3b
JM
9455 vmx->idt_vectoring_info = 0;
9456
9457 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9458 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9459 return;
9460
9461 vmx->loaded_vmcs->launched = 1;
9462 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
e0b890d3 9463
51aa01d1
AK
9464 vmx_complete_atomic_exit(vmx);
9465 vmx_recover_nmi_blocking(vmx);
cf393f75 9466 vmx_complete_interrupts(vmx);
6aa8b732 9467}
c207aee4 9468STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
6aa8b732 9469
1279a6b1 9470static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
4fa7734c
PB
9471{
9472 struct vcpu_vmx *vmx = to_vmx(vcpu);
9473 int cpu;
9474
1279a6b1 9475 if (vmx->loaded_vmcs == vmcs)
4fa7734c
PB
9476 return;
9477
9478 cpu = get_cpu();
1279a6b1 9479 vmx->loaded_vmcs = vmcs;
4fa7734c
PB
9480 vmx_vcpu_put(vcpu);
9481 vmx_vcpu_load(vcpu, cpu);
4fa7734c
PB
9482 put_cpu();
9483}
9484
2f1fe811
JM
9485/*
9486 * Ensure that the current vmcs of the logical processor is the
9487 * vmcs01 of the vcpu before calling free_nested().
9488 */
9489static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9490{
9491 struct vcpu_vmx *vmx = to_vmx(vcpu);
9492 int r;
9493
9494 r = vcpu_load(vcpu);
9495 BUG_ON(r);
1279a6b1 9496 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2f1fe811
JM
9497 free_nested(vmx);
9498 vcpu_put(vcpu);
9499}
9500
6aa8b732
AK
9501static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9502{
fb3f0f51
RR
9503 struct vcpu_vmx *vmx = to_vmx(vcpu);
9504
843e4330 9505 if (enable_pml)
a3eaa864 9506 vmx_destroy_pml_buffer(vmx);
991e7a0e 9507 free_vpid(vmx->vpid);
4fa7734c 9508 leave_guest_mode(vcpu);
2f1fe811 9509 vmx_free_vcpu_nested(vcpu);
4fa7734c 9510 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9511 kfree(vmx->guest_msrs);
9512 kvm_vcpu_uninit(vcpu);
a4770347 9513 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9514}
9515
fb3f0f51 9516static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9517{
fb3f0f51 9518 int err;
c16f862d 9519 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 9520 int cpu;
6aa8b732 9521
a2fa3e9f 9522 if (!vmx)
fb3f0f51
RR
9523 return ERR_PTR(-ENOMEM);
9524
991e7a0e 9525 vmx->vpid = allocate_vpid();
2384d2b3 9526
fb3f0f51
RR
9527 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9528 if (err)
9529 goto free_vcpu;
965b58a5 9530
4e59516a
PF
9531 err = -ENOMEM;
9532
9533 /*
9534 * If PML is turned on, failure on enabling PML just results in failure
9535 * of creating the vcpu, therefore we can simplify PML logic (by
9536 * avoiding dealing with cases, such as enabling PML partially on vcpus
9537 * for the guest, etc.
9538 */
9539 if (enable_pml) {
9540 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9541 if (!vmx->pml_pg)
9542 goto uninit_vcpu;
9543 }
9544
a2fa3e9f 9545 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9546 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9547 > PAGE_SIZE);
0123be42 9548
4e59516a
PF
9549 if (!vmx->guest_msrs)
9550 goto free_pml;
965b58a5 9551
d462b819
NHE
9552 vmx->loaded_vmcs = &vmx->vmcs01;
9553 vmx->loaded_vmcs->vmcs = alloc_vmcs();
355f4fb1 9554 vmx->loaded_vmcs->shadow_vmcs = NULL;
d462b819 9555 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 9556 goto free_msrs;
d462b819 9557 loaded_vmcs_init(vmx->loaded_vmcs);
a2fa3e9f 9558
15ad7146
AK
9559 cpu = get_cpu();
9560 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9561 vmx->vcpu.cpu = cpu;
12d79917 9562 vmx_vcpu_setup(vmx);
fb3f0f51 9563 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9564 put_cpu();
35754c98 9565 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9566 err = alloc_apic_access_page(kvm);
9567 if (err)
5e4a0b3c 9568 goto free_vmcs;
a63cb560 9569 }
fb3f0f51 9570
b927a3ce 9571 if (enable_ept) {
f51770ed
TC
9572 err = init_rmode_identity_map(kvm);
9573 if (err)
93ea5388 9574 goto free_vmcs;
b927a3ce 9575 }
b7ebfb05 9576
5c614b35 9577 if (nested) {
b9c237bb 9578 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9579 vmx->nested.vpid02 = allocate_vpid();
9580 }
b9c237bb 9581
705699a1 9582 vmx->nested.posted_intr_nv = -1;
a9d30f33 9583 vmx->nested.current_vmptr = -1ull;
a9d30f33 9584
37e4c997
HZ
9585 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9586
31afb2ea
PB
9587 /*
9588 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9589 * or POSTED_INTR_WAKEUP_VECTOR.
9590 */
9591 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
9592 vmx->pi_desc.sn = 1;
9593
fb3f0f51
RR
9594 return &vmx->vcpu;
9595
9596free_vmcs:
5c614b35 9597 free_vpid(vmx->nested.vpid02);
5f3fbc34 9598 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9599free_msrs:
fb3f0f51 9600 kfree(vmx->guest_msrs);
4e59516a
PF
9601free_pml:
9602 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9603uninit_vcpu:
9604 kvm_vcpu_uninit(&vmx->vcpu);
9605free_vcpu:
991e7a0e 9606 free_vpid(vmx->vpid);
a4770347 9607 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9608 return ERR_PTR(err);
6aa8b732
AK
9609}
9610
002c7f7c
YS
9611static void __init vmx_check_processor_compat(void *rtn)
9612{
9613 struct vmcs_config vmcs_conf;
9614
9615 *(int *)rtn = 0;
9616 if (setup_vmcs_config(&vmcs_conf) < 0)
9617 *(int *)rtn = -EIO;
9618 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9619 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9620 smp_processor_id());
9621 *(int *)rtn = -EIO;
9622 }
9623}
9624
4b12f0de 9625static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9626{
b18d5431
XG
9627 u8 cache;
9628 u64 ipat = 0;
4b12f0de 9629
522c68c4 9630 /* For VT-d and EPT combination
606decd6 9631 * 1. MMIO: always map as UC
522c68c4
SY
9632 * 2. EPT with VT-d:
9633 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9634 * result, try to trust guest.
522c68c4
SY
9635 * b. VT-d with snooping control feature: snooping control feature of
9636 * VT-d engine can guarantee the cache correctness. Just set it
9637 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9638 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9639 * consistent with host MTRR
9640 */
606decd6
PB
9641 if (is_mmio) {
9642 cache = MTRR_TYPE_UNCACHABLE;
9643 goto exit;
9644 }
9645
9646 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9647 ipat = VMX_EPT_IPAT_BIT;
9648 cache = MTRR_TYPE_WRBACK;
9649 goto exit;
9650 }
9651
9652 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9653 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9654 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9655 cache = MTRR_TYPE_WRBACK;
9656 else
9657 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9658 goto exit;
9659 }
9660
ff53604b 9661 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9662
9663exit:
9664 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9665}
9666
17cc3935 9667static int vmx_get_lpage_level(void)
344f414f 9668{
878403b7
SY
9669 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9670 return PT_DIRECTORY_LEVEL;
9671 else
9672 /* For shadow and EPT supported 1GB page */
9673 return PT_PDPE_LEVEL;
344f414f
JR
9674}
9675
feda805f
XG
9676static void vmcs_set_secondary_exec_control(u32 new_ctl)
9677{
9678 /*
9679 * These bits in the secondary execution controls field
9680 * are dynamic, the others are mostly based on the hypervisor
9681 * architecture and the guest's CPUID. Do not touch the
9682 * dynamic bits.
9683 */
9684 u32 mask =
9685 SECONDARY_EXEC_SHADOW_VMCS |
9686 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9687 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9688
9689 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9690
9691 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9692 (new_ctl & ~mask) | (cur_ctl & mask));
9693}
9694
8322ebbb
DM
9695/*
9696 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9697 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9698 */
9699static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9700{
9701 struct vcpu_vmx *vmx = to_vmx(vcpu);
9702 struct kvm_cpuid_entry2 *entry;
9703
9704 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9705 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9706
9707#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9708 if (entry && (entry->_reg & (_cpuid_mask))) \
9709 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9710} while (0)
9711
9712 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9713 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9714 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9715 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9716 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9717 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9718 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9719 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9720 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9721 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9722 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9723 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9724 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9725 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9726 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9727
9728 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9729 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9730 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9731 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9732 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9733 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9734 cr4_fixed1_update(bit(11), ecx, bit(2));
9735
9736#undef cr4_fixed1_update
9737}
9738
0e851880
SY
9739static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9740{
4e47c7a6 9741 struct vcpu_vmx *vmx = to_vmx(vcpu);
4e47c7a6 9742
80154d77
PB
9743 if (cpu_has_secondary_exec_ctrls()) {
9744 vmx_compute_secondary_exec_control(vmx);
9745 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
ad756a16 9746 }
8b3e34e4 9747
37e4c997
HZ
9748 if (nested_vmx_allowed(vcpu))
9749 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9750 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9751 else
9752 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9753 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
9754
9755 if (nested_vmx_allowed(vcpu))
9756 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
9757}
9758
d4330ef2
JR
9759static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9760{
7b8050f5
NHE
9761 if (func == 1 && nested)
9762 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9763}
9764
25d92081
YZ
9765static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9766 struct x86_exception *fault)
9767{
533558bc 9768 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
c5f983f6 9769 struct vcpu_vmx *vmx = to_vmx(vcpu);
533558bc 9770 u32 exit_reason;
c5f983f6 9771 unsigned long exit_qualification = vcpu->arch.exit_qualification;
25d92081 9772
c5f983f6
BD
9773 if (vmx->nested.pml_full) {
9774 exit_reason = EXIT_REASON_PML_FULL;
9775 vmx->nested.pml_full = false;
9776 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9777 } else if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9778 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9779 else
533558bc 9780 exit_reason = EXIT_REASON_EPT_VIOLATION;
c5f983f6
BD
9781
9782 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
25d92081
YZ
9783 vmcs12->guest_physical_address = fault->address;
9784}
9785
995f00a6
PF
9786static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9787{
bb97a016 9788 return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
995f00a6
PF
9789}
9790
155a97a3
NHE
9791/* Callbacks for nested_ept_init_mmu_context: */
9792
9793static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9794{
9795 /* return the page table to be shadowed - in our case, EPT12 */
9796 return get_vmcs12(vcpu)->ept_pointer;
9797}
9798
ae1e2d10 9799static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9800{
ad896af0 9801 WARN_ON(mmu_is_nested(vcpu));
a057e0e2 9802 if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
ae1e2d10
PB
9803 return 1;
9804
9805 kvm_mmu_unload(vcpu);
ad896af0 9806 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb 9807 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
ae1e2d10 9808 VMX_EPT_EXECUTE_ONLY_BIT,
a057e0e2 9809 nested_ept_ad_enabled(vcpu));
155a97a3
NHE
9810 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9811 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9812 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9813
9814 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
ae1e2d10 9815 return 0;
155a97a3
NHE
9816}
9817
9818static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9819{
9820 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9821}
9822
19d5f10b
EK
9823static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9824 u16 error_code)
9825{
9826 bool inequality, bit;
9827
9828 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9829 inequality =
9830 (error_code & vmcs12->page_fault_error_code_mask) !=
9831 vmcs12->page_fault_error_code_match;
9832 return inequality ^ bit;
9833}
9834
feaf0c7d
GN
9835static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9836 struct x86_exception *fault)
9837{
9838 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9839
9840 WARN_ON(!is_guest_mode(vcpu));
9841
305d0ab4
WL
9842 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
9843 !to_vmx(vcpu)->nested.nested_run_pending) {
b96fb439
PB
9844 vmcs12->vm_exit_intr_error_code = fault->error_code;
9845 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9846 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9847 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9848 fault->address);
7313c698 9849 } else {
feaf0c7d 9850 kvm_inject_page_fault(vcpu, fault);
7313c698 9851 }
feaf0c7d
GN
9852}
9853
6beb7bd5
JM
9854static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9855 struct vmcs12 *vmcs12);
9856
9857static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
9858 struct vmcs12 *vmcs12)
9859{
9860 struct vcpu_vmx *vmx = to_vmx(vcpu);
5e2f30b7 9861 struct page *page;
6beb7bd5 9862 u64 hpa;
a2bcba50
WL
9863
9864 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
9865 /*
9866 * Translate L1 physical address to host physical
9867 * address for vmcs02. Keep the page pinned, so this
9868 * physical address remains valid. We keep a reference
9869 * to it so we can release it later.
9870 */
5e2f30b7 9871 if (vmx->nested.apic_access_page) { /* shouldn't happen */
53a70daf 9872 kvm_release_page_dirty(vmx->nested.apic_access_page);
5e2f30b7
DH
9873 vmx->nested.apic_access_page = NULL;
9874 }
9875 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
9876 /*
9877 * If translation failed, no matter: This feature asks
9878 * to exit when accessing the given address, and if it
9879 * can never be accessed, this feature won't do
9880 * anything anyway.
9881 */
5e2f30b7
DH
9882 if (!is_error_page(page)) {
9883 vmx->nested.apic_access_page = page;
6beb7bd5
JM
9884 hpa = page_to_phys(vmx->nested.apic_access_page);
9885 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9886 } else {
9887 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9888 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9889 }
9890 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9891 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9892 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9893 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9894 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 9895 }
a7c0b07d
WL
9896
9897 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5e2f30b7 9898 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
53a70daf 9899 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
5e2f30b7
DH
9900 vmx->nested.virtual_apic_page = NULL;
9901 }
9902 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
a7c0b07d
WL
9903
9904 /*
6beb7bd5
JM
9905 * If translation failed, VM entry will fail because
9906 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9907 * Failing the vm entry is _not_ what the processor
9908 * does but it's basically the only possibility we
9909 * have. We could still enter the guest if CR8 load
9910 * exits are enabled, CR8 store exits are enabled, and
9911 * virtualize APIC access is disabled; in this case
9912 * the processor would never use the TPR shadow and we
9913 * could simply clear the bit from the execution
9914 * control. But such a configuration is useless, so
9915 * let's keep the code simple.
a7c0b07d 9916 */
5e2f30b7
DH
9917 if (!is_error_page(page)) {
9918 vmx->nested.virtual_apic_page = page;
6beb7bd5
JM
9919 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9920 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9921 }
a7c0b07d
WL
9922 }
9923
705699a1 9924 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
9925 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9926 kunmap(vmx->nested.pi_desc_page);
53a70daf 9927 kvm_release_page_dirty(vmx->nested.pi_desc_page);
5e2f30b7 9928 vmx->nested.pi_desc_page = NULL;
705699a1 9929 }
5e2f30b7
DH
9930 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
9931 if (is_error_page(page))
6beb7bd5 9932 return;
5e2f30b7
DH
9933 vmx->nested.pi_desc_page = page;
9934 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
705699a1
WV
9935 vmx->nested.pi_desc =
9936 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9937 (unsigned long)(vmcs12->posted_intr_desc_addr &
9938 (PAGE_SIZE - 1)));
6beb7bd5
JM
9939 vmcs_write64(POSTED_INTR_DESC_ADDR,
9940 page_to_phys(vmx->nested.pi_desc_page) +
9941 (unsigned long)(vmcs12->posted_intr_desc_addr &
9942 (PAGE_SIZE - 1)));
705699a1 9943 }
6beb7bd5
JM
9944 if (cpu_has_vmx_msr_bitmap() &&
9945 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9946 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9947 ;
9948 else
9949 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9950 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
9951}
9952
f4124500
JK
9953static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9954{
9955 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9956 struct vcpu_vmx *vmx = to_vmx(vcpu);
9957
9958 if (vcpu->arch.virtual_tsc_khz == 0)
9959 return;
9960
9961 /* Make sure short timeouts reliably trigger an immediate vmexit.
9962 * hrtimer_start does not guarantee this. */
9963 if (preemption_timeout <= 1) {
9964 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9965 return;
9966 }
9967
9968 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9969 preemption_timeout *= 1000000;
9970 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9971 hrtimer_start(&vmx->nested.preemption_timer,
9972 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9973}
9974
56a20510
JM
9975static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9976 struct vmcs12 *vmcs12)
9977{
9978 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9979 return 0;
9980
9981 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9982 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9983 return -EINVAL;
9984
9985 return 0;
9986}
9987
3af18d9c
WV
9988static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9989 struct vmcs12 *vmcs12)
9990{
3af18d9c
WV
9991 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9992 return 0;
9993
5fa99cbe 9994 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
3af18d9c
WV
9995 return -EINVAL;
9996
9997 return 0;
9998}
9999
712b12d7
JM
10000static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10001 struct vmcs12 *vmcs12)
10002{
10003 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10004 return 0;
10005
10006 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10007 return -EINVAL;
10008
10009 return 0;
10010}
10011
3af18d9c
WV
10012/*
10013 * Merge L0's and L1's MSR bitmap, return false to indicate that
10014 * we do not use the hardware.
10015 */
10016static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10017 struct vmcs12 *vmcs12)
10018{
82f0dd4b 10019 int msr;
f2b93280 10020 struct page *page;
d048c098
RK
10021 unsigned long *msr_bitmap_l1;
10022 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
f2b93280 10023
d048c098 10024 /* This shortcut is ok because we support only x2APIC MSRs so far. */
f2b93280
WV
10025 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
10026 return false;
10027
5e2f30b7
DH
10028 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10029 if (is_error_page(page))
f2b93280 10030 return false;
d048c098 10031 msr_bitmap_l1 = (unsigned long *)kmap(page);
f2b93280 10032
d048c098
RK
10033 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10034
f2b93280 10035 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
10036 if (nested_cpu_has_apic_reg_virt(vmcs12))
10037 for (msr = 0x800; msr <= 0x8ff; msr++)
10038 nested_vmx_disable_intercept_for_msr(
d048c098 10039 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 10040 msr, MSR_TYPE_R);
d048c098
RK
10041
10042 nested_vmx_disable_intercept_for_msr(
10043 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
10044 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10045 MSR_TYPE_R | MSR_TYPE_W);
d048c098 10046
608406e2 10047 if (nested_cpu_has_vid(vmcs12)) {
608406e2 10048 nested_vmx_disable_intercept_for_msr(
d048c098 10049 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10050 APIC_BASE_MSR + (APIC_EOI >> 4),
10051 MSR_TYPE_W);
10052 nested_vmx_disable_intercept_for_msr(
d048c098 10053 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10054 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10055 MSR_TYPE_W);
10056 }
82f0dd4b 10057 }
f2b93280 10058 kunmap(page);
53a70daf 10059 kvm_release_page_clean(page);
f2b93280
WV
10060
10061 return true;
10062}
10063
10064static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10065 struct vmcs12 *vmcs12)
10066{
82f0dd4b 10067 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 10068 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
10069 !nested_cpu_has_vid(vmcs12) &&
10070 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
10071 return 0;
10072
10073 /*
10074 * If virtualize x2apic mode is enabled,
10075 * virtualize apic access must be disabled.
10076 */
82f0dd4b
WV
10077 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10078 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
10079 return -EINVAL;
10080
608406e2
WV
10081 /*
10082 * If virtual interrupt delivery is enabled,
10083 * we must exit on external interrupts.
10084 */
10085 if (nested_cpu_has_vid(vmcs12) &&
10086 !nested_exit_on_intr(vcpu))
10087 return -EINVAL;
10088
705699a1
WV
10089 /*
10090 * bits 15:8 should be zero in posted_intr_nv,
10091 * the descriptor address has been already checked
10092 * in nested_get_vmcs12_pages.
10093 */
10094 if (nested_cpu_has_posted_intr(vmcs12) &&
10095 (!nested_cpu_has_vid(vmcs12) ||
10096 !nested_exit_intr_ack_set(vcpu) ||
10097 vmcs12->posted_intr_nv & 0xff00))
10098 return -EINVAL;
10099
f2b93280
WV
10100 /* tpr shadow is needed by all apicv features. */
10101 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10102 return -EINVAL;
10103
10104 return 0;
3af18d9c
WV
10105}
10106
e9ac033e
EK
10107static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10108 unsigned long count_field,
92d71bc6 10109 unsigned long addr_field)
ff651cb6 10110{
92d71bc6 10111 int maxphyaddr;
e9ac033e
EK
10112 u64 count, addr;
10113
10114 if (vmcs12_read_any(vcpu, count_field, &count) ||
10115 vmcs12_read_any(vcpu, addr_field, &addr)) {
10116 WARN_ON(1);
10117 return -EINVAL;
10118 }
10119 if (count == 0)
10120 return 0;
92d71bc6 10121 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
10122 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10123 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 10124 pr_debug_ratelimited(
e9ac033e
EK
10125 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10126 addr_field, maxphyaddr, count, addr);
10127 return -EINVAL;
10128 }
10129 return 0;
10130}
10131
10132static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10133 struct vmcs12 *vmcs12)
10134{
e9ac033e
EK
10135 if (vmcs12->vm_exit_msr_load_count == 0 &&
10136 vmcs12->vm_exit_msr_store_count == 0 &&
10137 vmcs12->vm_entry_msr_load_count == 0)
10138 return 0; /* Fast path */
e9ac033e 10139 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 10140 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 10141 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 10142 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 10143 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 10144 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
10145 return -EINVAL;
10146 return 0;
10147}
10148
c5f983f6
BD
10149static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10150 struct vmcs12 *vmcs12)
10151{
10152 u64 address = vmcs12->pml_address;
10153 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10154
10155 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10156 if (!nested_cpu_has_ept(vmcs12) ||
10157 !IS_ALIGNED(address, 4096) ||
10158 address >> maxphyaddr)
10159 return -EINVAL;
10160 }
10161
10162 return 0;
10163}
10164
e9ac033e
EK
10165static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10166 struct vmx_msr_entry *e)
10167{
10168 /* x2APIC MSR accesses are not allowed */
8a9781f7 10169 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
10170 return -EINVAL;
10171 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10172 e->index == MSR_IA32_UCODE_REV)
10173 return -EINVAL;
10174 if (e->reserved != 0)
ff651cb6
WV
10175 return -EINVAL;
10176 return 0;
10177}
10178
e9ac033e
EK
10179static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10180 struct vmx_msr_entry *e)
ff651cb6
WV
10181{
10182 if (e->index == MSR_FS_BASE ||
10183 e->index == MSR_GS_BASE ||
e9ac033e
EK
10184 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10185 nested_vmx_msr_check_common(vcpu, e))
10186 return -EINVAL;
10187 return 0;
10188}
10189
10190static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10191 struct vmx_msr_entry *e)
10192{
10193 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10194 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
10195 return -EINVAL;
10196 return 0;
10197}
10198
10199/*
10200 * Load guest's/host's msr at nested entry/exit.
10201 * return 0 for success, entry index for failure.
10202 */
10203static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10204{
10205 u32 i;
10206 struct vmx_msr_entry e;
10207 struct msr_data msr;
10208
10209 msr.host_initiated = false;
10210 for (i = 0; i < count; i++) {
54bf36aa
PB
10211 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10212 &e, sizeof(e))) {
bbe41b95 10213 pr_debug_ratelimited(
e9ac033e
EK
10214 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10215 __func__, i, gpa + i * sizeof(e));
ff651cb6 10216 goto fail;
e9ac033e
EK
10217 }
10218 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 10219 pr_debug_ratelimited(
e9ac033e
EK
10220 "%s check failed (%u, 0x%x, 0x%x)\n",
10221 __func__, i, e.index, e.reserved);
10222 goto fail;
10223 }
ff651cb6
WV
10224 msr.index = e.index;
10225 msr.data = e.value;
e9ac033e 10226 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 10227 pr_debug_ratelimited(
e9ac033e
EK
10228 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10229 __func__, i, e.index, e.value);
ff651cb6 10230 goto fail;
e9ac033e 10231 }
ff651cb6
WV
10232 }
10233 return 0;
10234fail:
10235 return i + 1;
10236}
10237
10238static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10239{
10240 u32 i;
10241 struct vmx_msr_entry e;
10242
10243 for (i = 0; i < count; i++) {
609e36d3 10244 struct msr_data msr_info;
54bf36aa
PB
10245 if (kvm_vcpu_read_guest(vcpu,
10246 gpa + i * sizeof(e),
10247 &e, 2 * sizeof(u32))) {
bbe41b95 10248 pr_debug_ratelimited(
e9ac033e
EK
10249 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10250 __func__, i, gpa + i * sizeof(e));
ff651cb6 10251 return -EINVAL;
e9ac033e
EK
10252 }
10253 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 10254 pr_debug_ratelimited(
e9ac033e
EK
10255 "%s check failed (%u, 0x%x, 0x%x)\n",
10256 __func__, i, e.index, e.reserved);
ff651cb6 10257 return -EINVAL;
e9ac033e 10258 }
609e36d3
PB
10259 msr_info.host_initiated = false;
10260 msr_info.index = e.index;
10261 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 10262 pr_debug_ratelimited(
e9ac033e
EK
10263 "%s cannot read MSR (%u, 0x%x)\n",
10264 __func__, i, e.index);
10265 return -EINVAL;
10266 }
54bf36aa
PB
10267 if (kvm_vcpu_write_guest(vcpu,
10268 gpa + i * sizeof(e) +
10269 offsetof(struct vmx_msr_entry, value),
10270 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 10271 pr_debug_ratelimited(
e9ac033e 10272 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 10273 __func__, i, e.index, msr_info.data);
e9ac033e
EK
10274 return -EINVAL;
10275 }
ff651cb6
WV
10276 }
10277 return 0;
10278}
10279
1dc35dac
LP
10280static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10281{
10282 unsigned long invalid_mask;
10283
10284 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10285 return (val & invalid_mask) == 0;
10286}
10287
9ed38ffa
LP
10288/*
10289 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10290 * emulating VM entry into a guest with EPT enabled.
10291 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10292 * is assigned to entry_failure_code on failure.
10293 */
10294static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 10295 u32 *entry_failure_code)
9ed38ffa 10296{
9ed38ffa 10297 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 10298 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
10299 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10300 return 1;
10301 }
10302
10303 /*
10304 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10305 * must not be dereferenced.
10306 */
10307 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10308 !nested_ept) {
10309 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10310 *entry_failure_code = ENTRY_FAIL_PDPTE;
10311 return 1;
10312 }
10313 }
10314
10315 vcpu->arch.cr3 = cr3;
10316 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10317 }
10318
10319 kvm_mmu_reset_context(vcpu);
10320 return 0;
10321}
10322
fe3ef05c
NHE
10323/*
10324 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10325 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 10326 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
10327 * guest in a way that will both be appropriate to L1's requests, and our
10328 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10329 * function also has additional necessary side-effects, like setting various
10330 * vcpu->arch fields.
ee146c1c
LP
10331 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10332 * is assigned to entry_failure_code on failure.
fe3ef05c 10333 */
ee146c1c 10334static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
ca0bde28 10335 bool from_vmentry, u32 *entry_failure_code)
fe3ef05c
NHE
10336{
10337 struct vcpu_vmx *vmx = to_vmx(vcpu);
03efce6f 10338 u32 exec_control, vmcs12_exec_ctrl;
fe3ef05c
NHE
10339
10340 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10341 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10342 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10343 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10344 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10345 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10346 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10347 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10348 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10349 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10350 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10351 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10352 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10353 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10354 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10355 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10356 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10357 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10358 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10359 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10360 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10361 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10362 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10363 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10364 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10365 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10366 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10367 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10368 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10369 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10370 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10371 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10372 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10373 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10374 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10375 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10376
cf8b84f4
JM
10377 if (from_vmentry &&
10378 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
10379 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10380 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10381 } else {
10382 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10383 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10384 }
cf8b84f4
JM
10385 if (from_vmentry) {
10386 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10387 vmcs12->vm_entry_intr_info_field);
10388 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10389 vmcs12->vm_entry_exception_error_code);
10390 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10391 vmcs12->vm_entry_instruction_len);
10392 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10393 vmcs12->guest_interruptibility_info);
2d6144e3
WL
10394 vmx->loaded_vmcs->nmi_known_unmasked =
10395 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
cf8b84f4
JM
10396 } else {
10397 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10398 }
fe3ef05c 10399 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 10400 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
10401 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10402 vmcs12->guest_pending_dbg_exceptions);
10403 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10404 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10405
81dc01f7
WL
10406 if (nested_cpu_has_xsaves(vmcs12))
10407 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
10408 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10409
f4124500 10410 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
10411
10412 /* Preemption timer setting is only taken from vmcs01. */
705699a1 10413 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
10414 exec_control |= vmcs_config.pin_based_exec_ctrl;
10415 if (vmx->hv_deadline_tsc == -1)
10416 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 10417
9314006d 10418 /* Posted interrupts setting is only taken from vmcs12. */
705699a1 10419 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
10420 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10421 vmx->nested.pi_pending = false;
06a5524f 10422 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
6beb7bd5 10423 } else {
705699a1 10424 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 10425 }
705699a1 10426
f4124500 10427 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 10428
f4124500
JK
10429 vmx->nested.preemption_timer_expired = false;
10430 if (nested_cpu_has_preemption_timer(vmcs12))
10431 vmx_start_preemption_timer(vcpu);
0238ea91 10432
fe3ef05c
NHE
10433 /*
10434 * Whether page-faults are trapped is determined by a combination of
10435 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10436 * If enable_ept, L0 doesn't care about page faults and we should
10437 * set all of these to L1's desires. However, if !enable_ept, L0 does
10438 * care about (at least some) page faults, and because it is not easy
10439 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10440 * to exit on each and every L2 page fault. This is done by setting
10441 * MASK=MATCH=0 and (see below) EB.PF=1.
10442 * Note that below we don't need special code to set EB.PF beyond the
10443 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10444 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10445 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
fe3ef05c
NHE
10446 */
10447 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10448 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10449 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10450 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10451
10452 if (cpu_has_secondary_exec_ctrls()) {
80154d77 10453 exec_control = vmx->secondary_exec_control;
e2821620 10454
fe3ef05c 10455 /* Take the following fields only from vmcs12 */
696dfd95 10456 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
90a2db6d 10457 SECONDARY_EXEC_ENABLE_INVPCID |
b3a2a907 10458 SECONDARY_EXEC_RDTSCP |
3db13480 10459 SECONDARY_EXEC_XSAVES |
696dfd95 10460 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
27c42a1b
BD
10461 SECONDARY_EXEC_APIC_REGISTER_VIRT |
10462 SECONDARY_EXEC_ENABLE_VMFUNC);
fe3ef05c 10463 if (nested_cpu_has(vmcs12,
03efce6f
BD
10464 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10465 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10466 ~SECONDARY_EXEC_ENABLE_PML;
10467 exec_control |= vmcs12_exec_ctrl;
10468 }
fe3ef05c 10469
27c42a1b
BD
10470 /* All VMFUNCs are currently emulated through L0 vmexits. */
10471 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10472 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10473
608406e2
WV
10474 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10475 vmcs_write64(EOI_EXIT_BITMAP0,
10476 vmcs12->eoi_exit_bitmap0);
10477 vmcs_write64(EOI_EXIT_BITMAP1,
10478 vmcs12->eoi_exit_bitmap1);
10479 vmcs_write64(EOI_EXIT_BITMAP2,
10480 vmcs12->eoi_exit_bitmap2);
10481 vmcs_write64(EOI_EXIT_BITMAP3,
10482 vmcs12->eoi_exit_bitmap3);
10483 vmcs_write16(GUEST_INTR_STATUS,
10484 vmcs12->guest_intr_status);
10485 }
10486
6beb7bd5
JM
10487 /*
10488 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10489 * nested_get_vmcs12_pages will either fix it up or
10490 * remove the VM execution control.
10491 */
10492 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10493 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10494
fe3ef05c
NHE
10495 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10496 }
10497
10498
10499 /*
10500 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10501 * Some constant fields are set here by vmx_set_constant_host_state().
10502 * Other fields are different per CPU, and will be set later when
10503 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10504 */
a547c6db 10505 vmx_set_constant_host_state(vmx);
fe3ef05c 10506
83bafef1
JM
10507 /*
10508 * Set the MSR load/store lists to match L0's settings.
10509 */
10510 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10511 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10512 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10513 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10514 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10515
fe3ef05c
NHE
10516 /*
10517 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10518 * entry, but only if the current (host) sp changed from the value
10519 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10520 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10521 * here we just force the write to happen on entry.
10522 */
10523 vmx->host_rsp = 0;
10524
10525 exec_control = vmx_exec_control(vmx); /* L0's desires */
10526 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10527 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10528 exec_control &= ~CPU_BASED_TPR_SHADOW;
10529 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 10530
6beb7bd5
JM
10531 /*
10532 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10533 * nested_get_vmcs12_pages can't fix it up, the illegal value
10534 * will result in a VM entry failure.
10535 */
a7c0b07d 10536 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 10537 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d 10538 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
51aa68e7
JM
10539 } else {
10540#ifdef CONFIG_X86_64
10541 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
10542 CPU_BASED_CR8_STORE_EXITING;
10543#endif
a7c0b07d
WL
10544 }
10545
fe3ef05c 10546 /*
3af18d9c 10547 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10548 * Rather, exit every time.
10549 */
fe3ef05c
NHE
10550 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10551 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10552
10553 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10554
10555 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10556 * bitwise-or of what L1 wants to trap for L2, and what we want to
10557 * trap. Note that CR0.TS also needs updating - we do this later.
10558 */
10559 update_exception_bitmap(vcpu);
10560 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10561 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10562
8049d651
NHE
10563 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10564 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10565 * bits are further modified by vmx_set_efer() below.
10566 */
f4124500 10567 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10568
10569 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10570 * emulated by vmx_set_efer(), below.
10571 */
2961e876 10572 vm_entry_controls_init(vmx,
8049d651
NHE
10573 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10574 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10575 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10576
cf8b84f4
JM
10577 if (from_vmentry &&
10578 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 10579 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 10580 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 10581 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10582 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 10583 }
fe3ef05c
NHE
10584
10585 set_cr4_guest_host_mask(vmx);
10586
cf8b84f4
JM
10587 if (from_vmentry &&
10588 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
36be0b9d
PB
10589 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10590
27fc51b2
NHE
10591 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10592 vmcs_write64(TSC_OFFSET,
ea26e4ec 10593 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
27fc51b2 10594 else
ea26e4ec 10595 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
c95ba92a
PF
10596 if (kvm_has_tsc_control)
10597 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
10598
10599 if (enable_vpid) {
10600 /*
5c614b35
WL
10601 * There is no direct mapping between vpid02 and vpid12, the
10602 * vpid02 is per-vCPU for L0 and reused while the value of
10603 * vpid12 is changed w/ one invvpid during nested vmentry.
10604 * The vpid12 is allocated by L1 for L2, so it will not
10605 * influence global bitmap(for vpid01 and vpid02 allocation)
10606 * even if spawn a lot of nested vCPUs.
fe3ef05c 10607 */
5c614b35
WL
10608 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10609 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10610 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10611 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10612 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10613 }
10614 } else {
10615 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10616 vmx_flush_tlb(vcpu);
10617 }
10618
fe3ef05c
NHE
10619 }
10620
1fb883bb
LP
10621 if (enable_pml) {
10622 /*
10623 * Conceptually we want to copy the PML address and index from
10624 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10625 * since we always flush the log on each vmexit, this happens
10626 * to be equivalent to simply resetting the fields in vmcs02.
10627 */
10628 ASSERT(vmx->pml_pg);
10629 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10630 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10631 }
10632
155a97a3 10633 if (nested_cpu_has_ept(vmcs12)) {
ae1e2d10
PB
10634 if (nested_ept_init_mmu_context(vcpu)) {
10635 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10636 return 1;
10637 }
fb6c8198
JM
10638 } else if (nested_cpu_has2(vmcs12,
10639 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10640 vmx_flush_tlb_ept_only(vcpu);
155a97a3
NHE
10641 }
10642
fe3ef05c 10643 /*
bd7e5b08
PB
10644 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10645 * bits which we consider mandatory enabled.
fe3ef05c
NHE
10646 * The CR0_READ_SHADOW is what L2 should have expected to read given
10647 * the specifications by L1; It's not enough to take
10648 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10649 * have more bits than L1 expected.
10650 */
10651 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10652 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10653
10654 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10655 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10656
cf8b84f4
JM
10657 if (from_vmentry &&
10658 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
10659 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10660 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10661 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10662 else
10663 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10664 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10665 vmx_set_efer(vcpu, vcpu->arch.efer);
10666
9ed38ffa 10667 /* Shadow page tables on either EPT or shadow page tables. */
7ad658b6 10668 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
9ed38ffa
LP
10669 entry_failure_code))
10670 return 1;
7ca29de2 10671
feaf0c7d
GN
10672 if (!enable_ept)
10673 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10674
3633cfc3
NHE
10675 /*
10676 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10677 */
10678 if (enable_ept) {
10679 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10680 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10681 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10682 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10683 }
10684
fe3ef05c
NHE
10685 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10686 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 10687 return 0;
fe3ef05c
NHE
10688}
10689
ca0bde28 10690static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 10691{
cd232ad0 10692 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 10693
6dfacadd 10694 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
10695 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10696 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 10697
56a20510
JM
10698 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10699 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10700
ca0bde28
JM
10701 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10702 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10703
712b12d7
JM
10704 if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
10705 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10706
ca0bde28
JM
10707 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10708 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 10709
ca0bde28
JM
10710 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10711 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 10712
c5f983f6
BD
10713 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10714 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10715
7c177938 10716 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
0115f9cb 10717 vmx->nested.nested_vmx_procbased_ctls_low,
b9c237bb 10718 vmx->nested.nested_vmx_procbased_ctls_high) ||
2e5b0bd9
JM
10719 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10720 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10721 vmx->nested.nested_vmx_secondary_ctls_low,
10722 vmx->nested.nested_vmx_secondary_ctls_high)) ||
7c177938 10723 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10724 vmx->nested.nested_vmx_pinbased_ctls_low,
10725 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10726 !vmx_control_verify(vmcs12->vm_exit_controls,
0115f9cb 10727 vmx->nested.nested_vmx_exit_ctls_low,
b9c237bb 10728 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10729 !vmx_control_verify(vmcs12->vm_entry_controls,
0115f9cb 10730 vmx->nested.nested_vmx_entry_ctls_low,
b9c237bb 10731 vmx->nested.nested_vmx_entry_ctls_high))
ca0bde28 10732 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10733
41ab9372
BD
10734 if (nested_cpu_has_vmfunc(vmcs12)) {
10735 if (vmcs12->vm_function_control &
10736 ~vmx->nested.nested_vmx_vmfunc_controls)
10737 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10738
10739 if (nested_cpu_has_eptp_switching(vmcs12)) {
10740 if (!nested_cpu_has_ept(vmcs12) ||
10741 !page_address_valid(vcpu, vmcs12->eptp_list_address))
10742 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10743 }
10744 }
27c42a1b 10745
c7c2c709
JM
10746 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10747 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10748
3899152c 10749 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 10750 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
10751 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10752 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10753
10754 return 0;
10755}
10756
10757static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10758 u32 *exit_qual)
10759{
10760 bool ia32e;
10761
10762 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 10763
3899152c 10764 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 10765 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 10766 return 1;
ca0bde28
JM
10767
10768 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10769 vmcs12->vmcs_link_pointer != -1ull) {
10770 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 10771 return 1;
7c177938
NHE
10772 }
10773
384bb783 10774 /*
cb0c8cda 10775 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10776 * are performed on the field for the IA32_EFER MSR:
10777 * - Bits reserved in the IA32_EFER MSR must be 0.
10778 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10779 * the IA-32e mode guest VM-exit control. It must also be identical
10780 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10781 * CR0.PG) is 1.
10782 */
ca0bde28
JM
10783 if (to_vmx(vcpu)->nested.nested_run_pending &&
10784 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
10785 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10786 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10787 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10788 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 10789 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 10790 return 1;
384bb783
JK
10791 }
10792
10793 /*
10794 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10795 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10796 * the values of the LMA and LME bits in the field must each be that of
10797 * the host address-space size VM-exit control.
10798 */
10799 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10800 ia32e = (vmcs12->vm_exit_controls &
10801 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10802 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10803 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 10804 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 10805 return 1;
ca0bde28
JM
10806 }
10807
10808 return 0;
10809}
10810
858e25c0
JM
10811static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10812{
10813 struct vcpu_vmx *vmx = to_vmx(vcpu);
10814 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10815 struct loaded_vmcs *vmcs02;
858e25c0
JM
10816 u32 msr_entry_idx;
10817 u32 exit_qual;
10818
10819 vmcs02 = nested_get_current_vmcs02(vmx);
10820 if (!vmcs02)
10821 return -ENOMEM;
10822
10823 enter_guest_mode(vcpu);
10824
10825 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10826 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10827
1279a6b1 10828 vmx_switch_vmcs(vcpu, vmcs02);
858e25c0
JM
10829 vmx_segment_cache_clear(vmx);
10830
10831 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10832 leave_guest_mode(vcpu);
1279a6b1 10833 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10834 nested_vmx_entry_failure(vcpu, vmcs12,
10835 EXIT_REASON_INVALID_STATE, exit_qual);
10836 return 1;
10837 }
10838
10839 nested_get_vmcs12_pages(vcpu, vmcs12);
10840
10841 msr_entry_idx = nested_vmx_load_msr(vcpu,
10842 vmcs12->vm_entry_msr_load_addr,
10843 vmcs12->vm_entry_msr_load_count);
10844 if (msr_entry_idx) {
10845 leave_guest_mode(vcpu);
1279a6b1 10846 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10847 nested_vmx_entry_failure(vcpu, vmcs12,
10848 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10849 return 1;
10850 }
10851
858e25c0
JM
10852 /*
10853 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10854 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10855 * returned as far as L1 is concerned. It will only return (and set
10856 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10857 */
10858 return 0;
10859}
10860
ca0bde28
JM
10861/*
10862 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10863 * for running an L2 nested guest.
10864 */
10865static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10866{
10867 struct vmcs12 *vmcs12;
10868 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3f1dfb6 10869 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
ca0bde28
JM
10870 u32 exit_qual;
10871 int ret;
10872
10873 if (!nested_vmx_check_permission(vcpu))
10874 return 1;
10875
10876 if (!nested_vmx_check_vmcs12(vcpu))
10877 goto out;
10878
10879 vmcs12 = get_vmcs12(vcpu);
10880
10881 if (enable_shadow_vmcs)
10882 copy_shadow_to_vmcs12(vmx);
10883
10884 /*
10885 * The nested entry process starts with enforcing various prerequisites
10886 * on vmcs12 as required by the Intel SDM, and act appropriately when
10887 * they fail: As the SDM explains, some conditions should cause the
10888 * instruction to fail, while others will cause the instruction to seem
10889 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10890 * To speed up the normal (success) code path, we should avoid checking
10891 * for misconfigurations which will anyway be caught by the processor
10892 * when using the merged vmcs02.
10893 */
b3f1dfb6
JM
10894 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10895 nested_vmx_failValid(vcpu,
10896 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10897 goto out;
10898 }
10899
ca0bde28
JM
10900 if (vmcs12->launch_state == launch) {
10901 nested_vmx_failValid(vcpu,
10902 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10903 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10904 goto out;
10905 }
10906
10907 ret = check_vmentry_prereqs(vcpu, vmcs12);
10908 if (ret) {
10909 nested_vmx_failValid(vcpu, ret);
10910 goto out;
10911 }
10912
10913 /*
10914 * After this point, the trap flag no longer triggers a singlestep trap
10915 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10916 * This is not 100% correct; for performance reasons, we delegate most
10917 * of the checks on host state to the processor. If those fail,
10918 * the singlestep trap is missed.
10919 */
10920 skip_emulated_instruction(vcpu);
10921
10922 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10923 if (ret) {
10924 nested_vmx_entry_failure(vcpu, vmcs12,
10925 EXIT_REASON_INVALID_STATE, exit_qual);
10926 return 1;
384bb783
JK
10927 }
10928
7c177938
NHE
10929 /*
10930 * We're finally done with prerequisite checking, and can start with
10931 * the nested entry.
10932 */
10933
858e25c0
JM
10934 ret = enter_vmx_non_root_mode(vcpu, true);
10935 if (ret)
10936 return ret;
ff651cb6 10937
6dfacadd 10938 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10939 return kvm_vcpu_halt(vcpu);
6dfacadd 10940
7af40ad3
JK
10941 vmx->nested.nested_run_pending = 1;
10942
cd232ad0 10943 return 1;
eb277562
KH
10944
10945out:
6affcbed 10946 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
10947}
10948
4704d0be
NHE
10949/*
10950 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10951 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10952 * This function returns the new value we should put in vmcs12.guest_cr0.
10953 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10954 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10955 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10956 * didn't trap the bit, because if L1 did, so would L0).
10957 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10958 * been modified by L2, and L1 knows it. So just leave the old value of
10959 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10960 * isn't relevant, because if L0 traps this bit it can set it to anything.
10961 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10962 * changed these bits, and therefore they need to be updated, but L0
10963 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10964 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10965 */
10966static inline unsigned long
10967vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10968{
10969 return
10970 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10971 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10972 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10973 vcpu->arch.cr0_guest_owned_bits));
10974}
10975
10976static inline unsigned long
10977vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10978{
10979 return
10980 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10981 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10982 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10983 vcpu->arch.cr4_guest_owned_bits));
10984}
10985
5f3d5799
JK
10986static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10987 struct vmcs12 *vmcs12)
10988{
10989 u32 idt_vectoring;
10990 unsigned int nr;
10991
664f8e26 10992 if (vcpu->arch.exception.injected) {
5f3d5799
JK
10993 nr = vcpu->arch.exception.nr;
10994 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10995
10996 if (kvm_exception_is_soft(nr)) {
10997 vmcs12->vm_exit_instruction_len =
10998 vcpu->arch.event_exit_inst_len;
10999 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11000 } else
11001 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11002
11003 if (vcpu->arch.exception.has_error_code) {
11004 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11005 vmcs12->idt_vectoring_error_code =
11006 vcpu->arch.exception.error_code;
11007 }
11008
11009 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 11010 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
11011 vmcs12->idt_vectoring_info_field =
11012 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
11013 } else if (vcpu->arch.interrupt.pending) {
11014 nr = vcpu->arch.interrupt.nr;
11015 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11016
11017 if (vcpu->arch.interrupt.soft) {
11018 idt_vectoring |= INTR_TYPE_SOFT_INTR;
11019 vmcs12->vm_entry_instruction_len =
11020 vcpu->arch.event_exit_inst_len;
11021 } else
11022 idt_vectoring |= INTR_TYPE_EXT_INTR;
11023
11024 vmcs12->idt_vectoring_info_field = idt_vectoring;
11025 }
11026}
11027
b6b8a145
JK
11028static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11029{
11030 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfcf83b1 11031 unsigned long exit_qual;
b6b8a145 11032
274bba52 11033 if (kvm_event_needs_reinjection(vcpu))
acc9ab60
WL
11034 return -EBUSY;
11035
bfcf83b1
WL
11036 if (vcpu->arch.exception.pending &&
11037 nested_vmx_check_exception(vcpu, &exit_qual)) {
11038 if (vmx->nested.nested_run_pending)
11039 return -EBUSY;
11040 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11041 vcpu->arch.exception.pending = false;
11042 return 0;
11043 }
11044
f4124500
JK
11045 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11046 vmx->nested.preemption_timer_expired) {
11047 if (vmx->nested.nested_run_pending)
11048 return -EBUSY;
11049 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11050 return 0;
11051 }
11052
b6b8a145 11053 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
acc9ab60 11054 if (vmx->nested.nested_run_pending)
b6b8a145
JK
11055 return -EBUSY;
11056 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11057 NMI_VECTOR | INTR_TYPE_NMI_INTR |
11058 INTR_INFO_VALID_MASK, 0);
11059 /*
11060 * The NMI-triggered VM exit counts as injection:
11061 * clear this one and block further NMIs.
11062 */
11063 vcpu->arch.nmi_pending = 0;
11064 vmx_set_nmi_mask(vcpu, true);
11065 return 0;
11066 }
11067
11068 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11069 nested_exit_on_intr(vcpu)) {
11070 if (vmx->nested.nested_run_pending)
11071 return -EBUSY;
11072 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 11073 return 0;
b6b8a145
JK
11074 }
11075
6342c50a
DH
11076 vmx_complete_nested_posted_interrupt(vcpu);
11077 return 0;
b6b8a145
JK
11078}
11079
f4124500
JK
11080static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11081{
11082 ktime_t remaining =
11083 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11084 u64 value;
11085
11086 if (ktime_to_ns(remaining) <= 0)
11087 return 0;
11088
11089 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11090 do_div(value, 1000000);
11091 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11092}
11093
4704d0be 11094/*
cf8b84f4
JM
11095 * Update the guest state fields of vmcs12 to reflect changes that
11096 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11097 * VM-entry controls is also updated, since this is really a guest
11098 * state bit.)
4704d0be 11099 */
cf8b84f4 11100static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 11101{
4704d0be
NHE
11102 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11103 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11104
4704d0be
NHE
11105 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11106 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11107 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11108
11109 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11110 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11111 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11112 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11113 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11114 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11115 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11116 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11117 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11118 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11119 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11120 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11121 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11122 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11123 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11124 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11125 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11126 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11127 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11128 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11129 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11130 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11131 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11132 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11133 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11134 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11135 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11136 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11137 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11138 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11139 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11140 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11141 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11142 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11143 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11144 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11145
4704d0be
NHE
11146 vmcs12->guest_interruptibility_info =
11147 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11148 vmcs12->guest_pending_dbg_exceptions =
11149 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
11150 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11151 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11152 else
11153 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 11154
f4124500
JK
11155 if (nested_cpu_has_preemption_timer(vmcs12)) {
11156 if (vmcs12->vm_exit_controls &
11157 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11158 vmcs12->vmx_preemption_timer_value =
11159 vmx_get_preemption_timer_value(vcpu);
11160 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11161 }
7854cbca 11162
3633cfc3
NHE
11163 /*
11164 * In some cases (usually, nested EPT), L2 is allowed to change its
11165 * own CR3 without exiting. If it has changed it, we must keep it.
11166 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11167 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11168 *
11169 * Additionally, restore L2's PDPTR to vmcs12.
11170 */
11171 if (enable_ept) {
f3531054 11172 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
11173 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11174 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11175 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11176 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11177 }
11178
d281e13b 11179 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
119a9c01 11180
608406e2
WV
11181 if (nested_cpu_has_vid(vmcs12))
11182 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11183
c18911a2
JK
11184 vmcs12->vm_entry_controls =
11185 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 11186 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 11187
2996fca0
JK
11188 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11189 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11190 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11191 }
11192
4704d0be
NHE
11193 /* TODO: These cannot have changed unless we have MSR bitmaps and
11194 * the relevant bit asks not to trap the change */
b8c07d55 11195 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 11196 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
11197 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11198 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
11199 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11200 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11201 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 11202 if (kvm_mpx_supported())
36be0b9d 11203 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
cf8b84f4
JM
11204}
11205
11206/*
11207 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11208 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11209 * and this function updates it to reflect the changes to the guest state while
11210 * L2 was running (and perhaps made some exits which were handled directly by L0
11211 * without going back to L1), and to reflect the exit reason.
11212 * Note that we do not have to copy here all VMCS fields, just those that
11213 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11214 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11215 * which already writes to vmcs12 directly.
11216 */
11217static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11218 u32 exit_reason, u32 exit_intr_info,
11219 unsigned long exit_qualification)
11220{
11221 /* update guest state fields: */
11222 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
11223
11224 /* update exit information fields: */
11225
533558bc
JK
11226 vmcs12->vm_exit_reason = exit_reason;
11227 vmcs12->exit_qualification = exit_qualification;
533558bc 11228 vmcs12->vm_exit_intr_info = exit_intr_info;
7313c698 11229
5f3d5799 11230 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
11231 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11232 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11233
5f3d5799 11234 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7cdc2d62
JM
11235 vmcs12->launch_state = 1;
11236
5f3d5799
JK
11237 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11238 * instead of reading the real value. */
4704d0be 11239 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
11240
11241 /*
11242 * Transfer the event that L0 or L1 may wanted to inject into
11243 * L2 to IDT_VECTORING_INFO_FIELD.
11244 */
11245 vmcs12_save_pending_event(vcpu, vmcs12);
11246 }
11247
11248 /*
11249 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11250 * preserved above and would only end up incorrectly in L1.
11251 */
11252 vcpu->arch.nmi_injected = false;
11253 kvm_clear_exception_queue(vcpu);
11254 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
11255}
11256
11257/*
11258 * A part of what we need to when the nested L2 guest exits and we want to
11259 * run its L1 parent, is to reset L1's guest state to the host state specified
11260 * in vmcs12.
11261 * This function is to be called not only on normal nested exit, but also on
11262 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11263 * Failures During or After Loading Guest State").
11264 * This function should be called when the active VMCS is L1's (vmcs01).
11265 */
733568f9
JK
11266static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11267 struct vmcs12 *vmcs12)
4704d0be 11268{
21feb4eb 11269 struct kvm_segment seg;
ca0bde28 11270 u32 entry_failure_code;
21feb4eb 11271
4704d0be
NHE
11272 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11273 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 11274 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
11275 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11276 else
11277 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11278 vmx_set_efer(vcpu, vcpu->arch.efer);
11279
11280 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11281 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 11282 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
11283 /*
11284 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
11285 * actually changed, because vmx_set_cr0 refers to efer set above.
11286 *
11287 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11288 * (KVM doesn't change it);
4704d0be 11289 */
bd7e5b08 11290 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 11291 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 11292
bd7e5b08 11293 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be 11294 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8eb3f87d 11295 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4704d0be 11296
29bf08f1 11297 nested_ept_uninit_mmu_context(vcpu);
155a97a3 11298
1dc35dac
LP
11299 /*
11300 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11301 * couldn't have changed.
11302 */
11303 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11304 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4704d0be 11305
feaf0c7d
GN
11306 if (!enable_ept)
11307 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11308
4704d0be
NHE
11309 if (enable_vpid) {
11310 /*
11311 * Trivially support vpid by letting L2s share their parent
11312 * L1's vpid. TODO: move to a more elaborate solution, giving
11313 * each L2 its own vpid and exposing the vpid feature to L1.
11314 */
11315 vmx_flush_tlb(vcpu);
11316 }
06a5524f
WV
11317 /* Restore posted intr vector. */
11318 if (nested_cpu_has_posted_intr(vmcs12))
11319 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4704d0be
NHE
11320
11321 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11322 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11323 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11324 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11325 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
21f2d551
LP
11326 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
11327 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4704d0be 11328
36be0b9d
PB
11329 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11330 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11331 vmcs_write64(GUEST_BNDCFGS, 0);
11332
44811c02 11333 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 11334 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
11335 vcpu->arch.pat = vmcs12->host_ia32_pat;
11336 }
4704d0be
NHE
11337 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11338 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11339 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 11340
21feb4eb
ACL
11341 /* Set L1 segment info according to Intel SDM
11342 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11343 seg = (struct kvm_segment) {
11344 .base = 0,
11345 .limit = 0xFFFFFFFF,
11346 .selector = vmcs12->host_cs_selector,
11347 .type = 11,
11348 .present = 1,
11349 .s = 1,
11350 .g = 1
11351 };
11352 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11353 seg.l = 1;
11354 else
11355 seg.db = 1;
11356 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11357 seg = (struct kvm_segment) {
11358 .base = 0,
11359 .limit = 0xFFFFFFFF,
11360 .type = 3,
11361 .present = 1,
11362 .s = 1,
11363 .db = 1,
11364 .g = 1
11365 };
11366 seg.selector = vmcs12->host_ds_selector;
11367 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11368 seg.selector = vmcs12->host_es_selector;
11369 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11370 seg.selector = vmcs12->host_ss_selector;
11371 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11372 seg.selector = vmcs12->host_fs_selector;
11373 seg.base = vmcs12->host_fs_base;
11374 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11375 seg.selector = vmcs12->host_gs_selector;
11376 seg.base = vmcs12->host_gs_base;
11377 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11378 seg = (struct kvm_segment) {
205befd9 11379 .base = vmcs12->host_tr_base,
21feb4eb
ACL
11380 .limit = 0x67,
11381 .selector = vmcs12->host_tr_selector,
11382 .type = 11,
11383 .present = 1
11384 };
11385 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11386
503cd0c5
JK
11387 kvm_set_dr(vcpu, 7, 0x400);
11388 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 11389
3af18d9c
WV
11390 if (cpu_has_vmx_msr_bitmap())
11391 vmx_set_msr_bitmap(vcpu);
11392
ff651cb6
WV
11393 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11394 vmcs12->vm_exit_msr_load_count))
11395 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
11396}
11397
11398/*
11399 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11400 * and modify vmcs12 to make it see what it would expect to see there if
11401 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11402 */
533558bc
JK
11403static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11404 u32 exit_intr_info,
11405 unsigned long exit_qualification)
4704d0be
NHE
11406{
11407 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
11408 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11409
5f3d5799
JK
11410 /* trying to cancel vmlaunch/vmresume is a bug */
11411 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11412
4f350c6d
JM
11413 /*
11414 * The only expected VM-instruction error is "VM entry with
11415 * invalid control field(s)." Anything else indicates a
11416 * problem with L0.
11417 */
11418 WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
11419 VMXERR_ENTRY_INVALID_CONTROL_FIELD));
11420
4704d0be 11421 leave_guest_mode(vcpu);
4704d0be 11422
4f350c6d 11423 if (likely(!vmx->fail)) {
72e9cbdb
LP
11424 if (exit_reason == -1)
11425 sync_vmcs12(vcpu, vmcs12);
11426 else
11427 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11428 exit_qualification);
ff651cb6 11429
4f350c6d
JM
11430 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11431 vmcs12->vm_exit_msr_store_count))
11432 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11433 }
cf3215d9 11434
1279a6b1 11435 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
8391ce44
PB
11436 vm_entry_controls_reset_shadow(vmx);
11437 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
11438 vmx_segment_cache_clear(vmx);
11439
4704d0be
NHE
11440 /* if no vmcs02 cache requested, remove the one we used */
11441 if (VMCS02_POOL_SIZE == 0)
11442 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11443
9314006d 11444 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
11445 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11446 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 11447 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
11448 if (vmx->hv_deadline_tsc == -1)
11449 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11450 PIN_BASED_VMX_PREEMPTION_TIMER);
11451 else
11452 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11453 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
11454 if (kvm_has_tsc_control)
11455 decache_tsc_multiplier(vmx);
4704d0be 11456
dccbfcf5
RK
11457 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11458 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11459 vmx_set_virtual_x2apic_mode(vcpu,
11460 vcpu->arch.apic_base & X2APIC_ENABLE);
fb6c8198
JM
11461 } else if (!nested_cpu_has_ept(vmcs12) &&
11462 nested_cpu_has2(vmcs12,
11463 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11464 vmx_flush_tlb_ept_only(vcpu);
dccbfcf5 11465 }
4704d0be
NHE
11466
11467 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11468 vmx->host_rsp = 0;
11469
11470 /* Unpin physical memory we referred to in vmcs02 */
11471 if (vmx->nested.apic_access_page) {
53a70daf 11472 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 11473 vmx->nested.apic_access_page = NULL;
4704d0be 11474 }
a7c0b07d 11475 if (vmx->nested.virtual_apic_page) {
53a70daf 11476 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 11477 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 11478 }
705699a1
WV
11479 if (vmx->nested.pi_desc_page) {
11480 kunmap(vmx->nested.pi_desc_page);
53a70daf 11481 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
11482 vmx->nested.pi_desc_page = NULL;
11483 vmx->nested.pi_desc = NULL;
11484 }
4704d0be 11485
38b99173
TC
11486 /*
11487 * We are now running in L2, mmu_notifier will force to reload the
11488 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11489 */
c83b6d15 11490 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 11491
72e9cbdb 11492 if (enable_shadow_vmcs && exit_reason != -1)
012f83cb 11493 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
11494
11495 /* in case we halted in L2 */
11496 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4f350c6d
JM
11497
11498 if (likely(!vmx->fail)) {
11499 /*
11500 * TODO: SDM says that with acknowledge interrupt on
11501 * exit, bit 31 of the VM-exit interrupt information
11502 * (valid interrupt) is always set to 1 on
11503 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
11504 * need kvm_cpu_has_interrupt(). See the commit
11505 * message for details.
11506 */
11507 if (nested_exit_intr_ack_set(vcpu) &&
11508 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11509 kvm_cpu_has_interrupt(vcpu)) {
11510 int irq = kvm_cpu_get_interrupt(vcpu);
11511 WARN_ON(irq < 0);
11512 vmcs12->vm_exit_intr_info = irq |
11513 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11514 }
11515
72e9cbdb
LP
11516 if (exit_reason != -1)
11517 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11518 vmcs12->exit_qualification,
11519 vmcs12->idt_vectoring_info_field,
11520 vmcs12->vm_exit_intr_info,
11521 vmcs12->vm_exit_intr_error_code,
11522 KVM_ISA_VMX);
4f350c6d
JM
11523
11524 load_vmcs12_host_state(vcpu, vmcs12);
11525
11526 return;
11527 }
11528
11529 /*
11530 * After an early L2 VM-entry failure, we're now back
11531 * in L1 which thinks it just finished a VMLAUNCH or
11532 * VMRESUME instruction, so we need to set the failure
11533 * flag and the VM-instruction error field of the VMCS
11534 * accordingly.
11535 */
11536 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
11537 /*
11538 * The emulated instruction was already skipped in
11539 * nested_vmx_run, but the updated RIP was never
11540 * written back to the vmcs01.
11541 */
11542 skip_emulated_instruction(vcpu);
11543 vmx->fail = 0;
4704d0be
NHE
11544}
11545
42124925
JK
11546/*
11547 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11548 */
11549static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11550{
2f707d97
WL
11551 if (is_guest_mode(vcpu)) {
11552 to_vmx(vcpu)->nested.nested_run_pending = 0;
533558bc 11553 nested_vmx_vmexit(vcpu, -1, 0, 0);
2f707d97 11554 }
42124925
JK
11555 free_nested(to_vmx(vcpu));
11556}
11557
7c177938
NHE
11558/*
11559 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11560 * 23.7 "VM-entry failures during or after loading guest state" (this also
11561 * lists the acceptable exit-reason and exit-qualification parameters).
11562 * It should only be called before L2 actually succeeded to run, and when
11563 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11564 */
11565static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11566 struct vmcs12 *vmcs12,
11567 u32 reason, unsigned long qualification)
11568{
11569 load_vmcs12_host_state(vcpu, vmcs12);
11570 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11571 vmcs12->exit_qualification = qualification;
11572 nested_vmx_succeed(vcpu);
012f83cb
AG
11573 if (enable_shadow_vmcs)
11574 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
11575}
11576
8a76d7f2
JR
11577static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11578 struct x86_instruction_info *info,
11579 enum x86_intercept_stage stage)
11580{
11581 return X86EMUL_CONTINUE;
11582}
11583
64672c95
YJ
11584#ifdef CONFIG_X86_64
11585/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11586static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11587 u64 divisor, u64 *result)
11588{
11589 u64 low = a << shift, high = a >> (64 - shift);
11590
11591 /* To avoid the overflow on divq */
11592 if (high >= divisor)
11593 return 1;
11594
11595 /* Low hold the result, high hold rem which is discarded */
11596 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11597 "rm" (divisor), "0" (low), "1" (high));
11598 *result = low;
11599
11600 return 0;
11601}
11602
11603static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11604{
11605 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
11606 u64 tscl = rdtsc();
11607 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11608 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
11609
11610 /* Convert to host delta tsc if tsc scaling is enabled */
11611 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11612 u64_shl_div_u64(delta_tsc,
11613 kvm_tsc_scaling_ratio_frac_bits,
11614 vcpu->arch.tsc_scaling_ratio,
11615 &delta_tsc))
11616 return -ERANGE;
11617
11618 /*
11619 * If the delta tsc can't fit in the 32 bit after the multi shift,
11620 * we can't use the preemption timer.
11621 * It's possible that it fits on later vmentries, but checking
11622 * on every vmentry is costly so we just use an hrtimer.
11623 */
11624 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11625 return -ERANGE;
11626
11627 vmx->hv_deadline_tsc = tscl + delta_tsc;
11628 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11629 PIN_BASED_VMX_PREEMPTION_TIMER);
c8533544
WL
11630
11631 return delta_tsc == 0;
64672c95
YJ
11632}
11633
11634static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11635{
11636 struct vcpu_vmx *vmx = to_vmx(vcpu);
11637 vmx->hv_deadline_tsc = -1;
11638 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11639 PIN_BASED_VMX_PREEMPTION_TIMER);
11640}
11641#endif
11642
48d89b92 11643static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 11644{
b4a2d31d
RK
11645 if (ple_gap)
11646 shrink_ple_window(vcpu);
ae97a3b8
RK
11647}
11648
843e4330
KH
11649static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11650 struct kvm_memory_slot *slot)
11651{
11652 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11653 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11654}
11655
11656static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11657 struct kvm_memory_slot *slot)
11658{
11659 kvm_mmu_slot_set_dirty(kvm, slot);
11660}
11661
11662static void vmx_flush_log_dirty(struct kvm *kvm)
11663{
11664 kvm_flush_pml_buffers(kvm);
11665}
11666
c5f983f6
BD
11667static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11668{
11669 struct vmcs12 *vmcs12;
11670 struct vcpu_vmx *vmx = to_vmx(vcpu);
11671 gpa_t gpa;
11672 struct page *page = NULL;
11673 u64 *pml_address;
11674
11675 if (is_guest_mode(vcpu)) {
11676 WARN_ON_ONCE(vmx->nested.pml_full);
11677
11678 /*
11679 * Check if PML is enabled for the nested guest.
11680 * Whether eptp bit 6 is set is already checked
11681 * as part of A/D emulation.
11682 */
11683 vmcs12 = get_vmcs12(vcpu);
11684 if (!nested_cpu_has_pml(vmcs12))
11685 return 0;
11686
4769886b 11687 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
c5f983f6
BD
11688 vmx->nested.pml_full = true;
11689 return 1;
11690 }
11691
11692 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11693
5e2f30b7
DH
11694 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11695 if (is_error_page(page))
c5f983f6
BD
11696 return 0;
11697
11698 pml_address = kmap(page);
11699 pml_address[vmcs12->guest_pml_index--] = gpa;
11700 kunmap(page);
53a70daf 11701 kvm_release_page_clean(page);
c5f983f6
BD
11702 }
11703
11704 return 0;
11705}
11706
843e4330
KH
11707static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11708 struct kvm_memory_slot *memslot,
11709 gfn_t offset, unsigned long mask)
11710{
11711 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11712}
11713
cd39e117
PB
11714static void __pi_post_block(struct kvm_vcpu *vcpu)
11715{
11716 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11717 struct pi_desc old, new;
11718 unsigned int dest;
cd39e117
PB
11719
11720 do {
11721 old.control = new.control = pi_desc->control;
8b306e2f
PB
11722 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
11723 "Wakeup handler not enabled while the VCPU is blocked\n");
cd39e117
PB
11724
11725 dest = cpu_physical_id(vcpu->cpu);
11726
11727 if (x2apic_enabled())
11728 new.ndst = dest;
11729 else
11730 new.ndst = (dest << 8) & 0xFF00;
11731
cd39e117
PB
11732 /* set 'NV' to 'notification vector' */
11733 new.nv = POSTED_INTR_VECTOR;
c0a1666b
PB
11734 } while (cmpxchg64(&pi_desc->control, old.control,
11735 new.control) != old.control);
cd39e117 11736
8b306e2f
PB
11737 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
11738 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117 11739 list_del(&vcpu->blocked_vcpu_list);
8b306e2f 11740 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117
PB
11741 vcpu->pre_pcpu = -1;
11742 }
11743}
11744
bf9f6ac8
FW
11745/*
11746 * This routine does the following things for vCPU which is going
11747 * to be blocked if VT-d PI is enabled.
11748 * - Store the vCPU to the wakeup list, so when interrupts happen
11749 * we can find the right vCPU to wake up.
11750 * - Change the Posted-interrupt descriptor as below:
11751 * 'NDST' <-- vcpu->pre_pcpu
11752 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11753 * - If 'ON' is set during this process, which means at least one
11754 * interrupt is posted for this vCPU, we cannot block it, in
11755 * this case, return 1, otherwise, return 0.
11756 *
11757 */
bc22512b 11758static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8 11759{
bf9f6ac8
FW
11760 unsigned int dest;
11761 struct pi_desc old, new;
11762 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11763
11764 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11765 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11766 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11767 return 0;
11768
8b306e2f
PB
11769 WARN_ON(irqs_disabled());
11770 local_irq_disable();
11771 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
11772 vcpu->pre_pcpu = vcpu->cpu;
11773 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11774 list_add_tail(&vcpu->blocked_vcpu_list,
11775 &per_cpu(blocked_vcpu_on_cpu,
11776 vcpu->pre_pcpu));
11777 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11778 }
bf9f6ac8
FW
11779
11780 do {
11781 old.control = new.control = pi_desc->control;
11782
bf9f6ac8
FW
11783 WARN((pi_desc->sn == 1),
11784 "Warning: SN field of posted-interrupts "
11785 "is set before blocking\n");
11786
11787 /*
11788 * Since vCPU can be preempted during this process,
11789 * vcpu->cpu could be different with pre_pcpu, we
11790 * need to set pre_pcpu as the destination of wakeup
11791 * notification event, then we can find the right vCPU
11792 * to wakeup in wakeup handler if interrupts happen
11793 * when the vCPU is in blocked state.
11794 */
11795 dest = cpu_physical_id(vcpu->pre_pcpu);
11796
11797 if (x2apic_enabled())
11798 new.ndst = dest;
11799 else
11800 new.ndst = (dest << 8) & 0xFF00;
11801
11802 /* set 'NV' to 'wakeup vector' */
11803 new.nv = POSTED_INTR_WAKEUP_VECTOR;
c0a1666b
PB
11804 } while (cmpxchg64(&pi_desc->control, old.control,
11805 new.control) != old.control);
bf9f6ac8 11806
8b306e2f
PB
11807 /* We should not block the vCPU if an interrupt is posted for it. */
11808 if (pi_test_on(pi_desc) == 1)
11809 __pi_post_block(vcpu);
11810
11811 local_irq_enable();
11812 return (vcpu->pre_pcpu == -1);
bf9f6ac8
FW
11813}
11814
bc22512b
YJ
11815static int vmx_pre_block(struct kvm_vcpu *vcpu)
11816{
11817 if (pi_pre_block(vcpu))
11818 return 1;
11819
64672c95
YJ
11820 if (kvm_lapic_hv_timer_in_use(vcpu))
11821 kvm_lapic_switch_to_sw_timer(vcpu);
11822
bc22512b
YJ
11823 return 0;
11824}
11825
11826static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8 11827{
8b306e2f 11828 if (vcpu->pre_pcpu == -1)
bf9f6ac8
FW
11829 return;
11830
8b306e2f
PB
11831 WARN_ON(irqs_disabled());
11832 local_irq_disable();
cd39e117 11833 __pi_post_block(vcpu);
8b306e2f 11834 local_irq_enable();
bf9f6ac8
FW
11835}
11836
bc22512b
YJ
11837static void vmx_post_block(struct kvm_vcpu *vcpu)
11838{
64672c95
YJ
11839 if (kvm_x86_ops->set_hv_timer)
11840 kvm_lapic_switch_to_hv_timer(vcpu);
11841
bc22512b
YJ
11842 pi_post_block(vcpu);
11843}
11844
efc64404
FW
11845/*
11846 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11847 *
11848 * @kvm: kvm
11849 * @host_irq: host irq of the interrupt
11850 * @guest_irq: gsi of the interrupt
11851 * @set: set or unset PI
11852 * returns 0 on success, < 0 on failure
11853 */
11854static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11855 uint32_t guest_irq, bool set)
11856{
11857 struct kvm_kernel_irq_routing_entry *e;
11858 struct kvm_irq_routing_table *irq_rt;
11859 struct kvm_lapic_irq irq;
11860 struct kvm_vcpu *vcpu;
11861 struct vcpu_data vcpu_info;
3a8b0677 11862 int idx, ret = 0;
efc64404
FW
11863
11864 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
11865 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11866 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
11867 return 0;
11868
11869 idx = srcu_read_lock(&kvm->irq_srcu);
11870 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
3a8b0677
JS
11871 if (guest_irq >= irq_rt->nr_rt_entries ||
11872 hlist_empty(&irq_rt->map[guest_irq])) {
11873 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11874 guest_irq, irq_rt->nr_rt_entries);
11875 goto out;
11876 }
efc64404
FW
11877
11878 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11879 if (e->type != KVM_IRQ_ROUTING_MSI)
11880 continue;
11881 /*
11882 * VT-d PI cannot support posting multicast/broadcast
11883 * interrupts to a vCPU, we still use interrupt remapping
11884 * for these kind of interrupts.
11885 *
11886 * For lowest-priority interrupts, we only support
11887 * those with single CPU as the destination, e.g. user
11888 * configures the interrupts via /proc/irq or uses
11889 * irqbalance to make the interrupts single-CPU.
11890 *
11891 * We will support full lowest-priority interrupt later.
11892 */
11893
37131313 11894 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
11895 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11896 /*
11897 * Make sure the IRTE is in remapped mode if
11898 * we don't handle it in posted mode.
11899 */
11900 ret = irq_set_vcpu_affinity(host_irq, NULL);
11901 if (ret < 0) {
11902 printk(KERN_INFO
11903 "failed to back to remapped mode, irq: %u\n",
11904 host_irq);
11905 goto out;
11906 }
11907
efc64404 11908 continue;
23a1c257 11909 }
efc64404
FW
11910
11911 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11912 vcpu_info.vector = irq.vector;
11913
b6ce9780 11914 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
11915 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11916
11917 if (set)
11918 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
dc91f2eb 11919 else
efc64404 11920 ret = irq_set_vcpu_affinity(host_irq, NULL);
efc64404
FW
11921
11922 if (ret < 0) {
11923 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11924 __func__);
11925 goto out;
11926 }
11927 }
11928
11929 ret = 0;
11930out:
11931 srcu_read_unlock(&kvm->irq_srcu, idx);
11932 return ret;
11933}
11934
c45dcc71
AR
11935static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11936{
11937 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11938 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11939 FEATURE_CONTROL_LMCE;
11940 else
11941 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11942 ~FEATURE_CONTROL_LMCE;
11943}
11944
72d7b374
LP
11945static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
11946{
72e9cbdb
LP
11947 /* we need a nested vmexit to enter SMM, postpone if run is pending */
11948 if (to_vmx(vcpu)->nested.nested_run_pending)
11949 return 0;
72d7b374
LP
11950 return 1;
11951}
11952
0234bf88
LP
11953static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
11954{
72e9cbdb
LP
11955 struct vcpu_vmx *vmx = to_vmx(vcpu);
11956
11957 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
11958 if (vmx->nested.smm.guest_mode)
11959 nested_vmx_vmexit(vcpu, -1, 0, 0);
11960
11961 vmx->nested.smm.vmxon = vmx->nested.vmxon;
11962 vmx->nested.vmxon = false;
0234bf88
LP
11963 return 0;
11964}
11965
11966static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
11967{
72e9cbdb
LP
11968 struct vcpu_vmx *vmx = to_vmx(vcpu);
11969 int ret;
11970
11971 if (vmx->nested.smm.vmxon) {
11972 vmx->nested.vmxon = true;
11973 vmx->nested.smm.vmxon = false;
11974 }
11975
11976 if (vmx->nested.smm.guest_mode) {
11977 vcpu->arch.hflags &= ~HF_SMM_MASK;
11978 ret = enter_vmx_non_root_mode(vcpu, false);
11979 vcpu->arch.hflags |= HF_SMM_MASK;
11980 if (ret)
11981 return ret;
11982
11983 vmx->nested.smm.guest_mode = false;
11984 }
0234bf88
LP
11985 return 0;
11986}
11987
cc3d967f
LP
11988static int enable_smi_window(struct kvm_vcpu *vcpu)
11989{
11990 return 0;
11991}
11992
404f6aac 11993static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
11994 .cpu_has_kvm_support = cpu_has_kvm_support,
11995 .disabled_by_bios = vmx_disabled_by_bios,
11996 .hardware_setup = hardware_setup,
11997 .hardware_unsetup = hardware_unsetup,
002c7f7c 11998 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
11999 .hardware_enable = hardware_enable,
12000 .hardware_disable = hardware_disable,
04547156 12001 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 12002 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
12003
12004 .vcpu_create = vmx_create_vcpu,
12005 .vcpu_free = vmx_free_vcpu,
04d2cc77 12006 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 12007
04d2cc77 12008 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
12009 .vcpu_load = vmx_vcpu_load,
12010 .vcpu_put = vmx_vcpu_put,
12011
a96036b8 12012 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
12013 .get_msr = vmx_get_msr,
12014 .set_msr = vmx_set_msr,
12015 .get_segment_base = vmx_get_segment_base,
12016 .get_segment = vmx_get_segment,
12017 .set_segment = vmx_set_segment,
2e4d2653 12018 .get_cpl = vmx_get_cpl,
6aa8b732 12019 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 12020 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 12021 .decache_cr3 = vmx_decache_cr3,
25c4c276 12022 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 12023 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
12024 .set_cr3 = vmx_set_cr3,
12025 .set_cr4 = vmx_set_cr4,
6aa8b732 12026 .set_efer = vmx_set_efer,
6aa8b732
AK
12027 .get_idt = vmx_get_idt,
12028 .set_idt = vmx_set_idt,
12029 .get_gdt = vmx_get_gdt,
12030 .set_gdt = vmx_set_gdt,
73aaf249
JK
12031 .get_dr6 = vmx_get_dr6,
12032 .set_dr6 = vmx_set_dr6,
020df079 12033 .set_dr7 = vmx_set_dr7,
81908bf4 12034 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 12035 .cache_reg = vmx_cache_reg,
6aa8b732
AK
12036 .get_rflags = vmx_get_rflags,
12037 .set_rflags = vmx_set_rflags,
be94f6b7 12038
6aa8b732 12039 .tlb_flush = vmx_flush_tlb,
6aa8b732 12040
6aa8b732 12041 .run = vmx_vcpu_run,
6062d012 12042 .handle_exit = vmx_handle_exit,
6aa8b732 12043 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
12044 .set_interrupt_shadow = vmx_set_interrupt_shadow,
12045 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 12046 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 12047 .set_irq = vmx_inject_irq,
95ba8273 12048 .set_nmi = vmx_inject_nmi,
298101da 12049 .queue_exception = vmx_queue_exception,
b463a6f7 12050 .cancel_injection = vmx_cancel_injection,
78646121 12051 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 12052 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
12053 .get_nmi_mask = vmx_get_nmi_mask,
12054 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
12055 .enable_nmi_window = enable_nmi_window,
12056 .enable_irq_window = enable_irq_window,
12057 .update_cr8_intercept = update_cr8_intercept,
8d14695f 12058 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 12059 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
12060 .get_enable_apicv = vmx_get_enable_apicv,
12061 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 12062 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 12063 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
12064 .hwapic_irr_update = vmx_hwapic_irr_update,
12065 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
12066 .sync_pir_to_irr = vmx_sync_pir_to_irr,
12067 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 12068
cbc94022 12069 .set_tss_addr = vmx_set_tss_addr,
67253af5 12070 .get_tdp_level = get_ept_level,
4b12f0de 12071 .get_mt_mask = vmx_get_mt_mask,
229456fc 12072
586f9607 12073 .get_exit_info = vmx_get_exit_info,
586f9607 12074
17cc3935 12075 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
12076
12077 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
12078
12079 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 12080 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
12081
12082 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
12083
12084 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
12085
12086 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
12087
12088 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
12089
12090 .check_intercept = vmx_check_intercept,
a547c6db 12091 .handle_external_intr = vmx_handle_external_intr,
da8999d3 12092 .mpx_supported = vmx_mpx_supported,
55412b2e 12093 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
12094
12095 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
12096
12097 .sched_in = vmx_sched_in,
843e4330
KH
12098
12099 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12100 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12101 .flush_log_dirty = vmx_flush_log_dirty,
12102 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
c5f983f6 12103 .write_log_dirty = vmx_write_pml_buffer,
25462f7f 12104
bf9f6ac8
FW
12105 .pre_block = vmx_pre_block,
12106 .post_block = vmx_post_block,
12107
25462f7f 12108 .pmu_ops = &intel_pmu_ops,
efc64404
FW
12109
12110 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
12111
12112#ifdef CONFIG_X86_64
12113 .set_hv_timer = vmx_set_hv_timer,
12114 .cancel_hv_timer = vmx_cancel_hv_timer,
12115#endif
c45dcc71
AR
12116
12117 .setup_mce = vmx_setup_mce,
0234bf88 12118
72d7b374 12119 .smi_allowed = vmx_smi_allowed,
0234bf88
LP
12120 .pre_enter_smm = vmx_pre_enter_smm,
12121 .pre_leave_smm = vmx_pre_leave_smm,
cc3d967f 12122 .enable_smi_window = enable_smi_window,
6aa8b732
AK
12123};
12124
12125static int __init vmx_init(void)
12126{
34a1cd60
TC
12127 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12128 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 12129 if (r)
34a1cd60 12130 return r;
25c5f225 12131
2965faa5 12132#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
12133 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12134 crash_vmclear_local_loaded_vmcss);
12135#endif
12136
fdef3ad1 12137 return 0;
6aa8b732
AK
12138}
12139
12140static void __exit vmx_exit(void)
12141{
2965faa5 12142#ifdef CONFIG_KEXEC_CORE
3b63a43f 12143 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
12144 synchronize_rcu();
12145#endif
12146
cb498ea2 12147 kvm_exit();
6aa8b732
AK
12148}
12149
12150module_init(vmx_init)
12151module_exit(vmx_exit)