]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/vmx.c
tools/kvm_stat: sort '-f help' output
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
c207aee4 36#include <linux/frame.h>
5fdbf976 37#include "kvm_cache_regs.h"
35920a35 38#include "x86.h"
e495606d 39
28b835d6 40#include <asm/cpu.h>
6aa8b732 41#include <asm/io.h>
3b3be0d1 42#include <asm/desc.h>
13673a90 43#include <asm/vmx.h>
6210e37b 44#include <asm/virtext.h>
a0861c02 45#include <asm/mce.h>
952f07ec 46#include <asm/fpu/internal.h>
d7cd9796 47#include <asm/perf_event.h>
81908bf4 48#include <asm/debugreg.h>
8f536b76 49#include <asm/kexec.h>
dab2087d 50#include <asm/apic.h>
efc64404 51#include <asm/irq_remapping.h>
d6e41f11 52#include <asm/mmu_context.h>
6aa8b732 53
229456fc 54#include "trace.h"
25462f7f 55#include "pmu.h"
229456fc 56
4ecac3fd 57#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
58#define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 60
6aa8b732
AK
61MODULE_AUTHOR("Qumranet");
62MODULE_LICENSE("GPL");
63
e9bda3b3
JT
64static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67};
68MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
476bc001 70static bool __read_mostly enable_vpid = 1;
736caefe 71module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 72
d02fcf50
PB
73static bool __read_mostly enable_vnmi = 1;
74module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
75
476bc001 76static bool __read_mostly flexpriority_enabled = 1;
736caefe 77module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 78
476bc001 79static bool __read_mostly enable_ept = 1;
736caefe 80module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 81
476bc001 82static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
83module_param_named(unrestricted_guest,
84 enable_unrestricted_guest, bool, S_IRUGO);
85
83c3a331
XH
86static bool __read_mostly enable_ept_ad_bits = 1;
87module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
88
a27685c3 89static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 90module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 91
476bc001 92static bool __read_mostly fasteoi = 1;
58fbbf26
KT
93module_param(fasteoi, bool, S_IRUGO);
94
5a71785d 95static bool __read_mostly enable_apicv = 1;
01e439be 96module_param(enable_apicv, bool, S_IRUGO);
83d4c286 97
abc4fc58
AG
98static bool __read_mostly enable_shadow_vmcs = 1;
99module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
100/*
101 * If nested=1, nested virtualization is supported, i.e., guests may use
102 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
103 * use VMX instructions.
104 */
476bc001 105static bool __read_mostly nested = 0;
801d3424
NHE
106module_param(nested, bool, S_IRUGO);
107
20300099
WL
108static u64 __read_mostly host_xss;
109
843e4330
KH
110static bool __read_mostly enable_pml = 1;
111module_param_named(pml, enable_pml, bool, S_IRUGO);
112
64903d61
HZ
113#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
114
64672c95
YJ
115/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
116static int __read_mostly cpu_preemption_timer_multi;
117static bool __read_mostly enable_preemption_timer = 1;
118#ifdef CONFIG_X86_64
119module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
120#endif
121
5037878e
GN
122#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
123#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
124#define KVM_VM_CR0_ALWAYS_ON \
125 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
126#define KVM_CR4_GUEST_OWNED_BITS \
127 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
fd8cb433 128 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
4c38609a 129
cdc0e244
AK
130#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
131#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
132
78ac8b47
AK
133#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
134
f4124500
JK
135#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
136
16c2aec6
JD
137/*
138 * Hyper-V requires all of these, so mark them as supported even though
139 * they are just treated the same as all-context.
140 */
141#define VMX_VPID_EXTENT_SUPPORTED_MASK \
142 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
143 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
144 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
145 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
146
4b8d54f9
ZE
147/*
148 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
149 * ple_gap: upper bound on the amount of time between two successive
150 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 151 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
152 * ple_window: upper bound on the amount of time a guest is allowed to execute
153 * in a PAUSE loop. Tests indicate that most spinlocks are held for
154 * less than 2^12 cycles
155 * Time is measured based on a counter that runs at the same rate as the TSC,
156 * refer SDM volume 3b section 21.6.13 & 22.1.3.
157 */
b4a2d31d
RK
158#define KVM_VMX_DEFAULT_PLE_GAP 128
159#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
160#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
161#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
162#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
163 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
164
4b8d54f9
ZE
165static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
166module_param(ple_gap, int, S_IRUGO);
167
168static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
169module_param(ple_window, int, S_IRUGO);
170
b4a2d31d
RK
171/* Default doubles per-vcpu window every exit. */
172static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
173module_param(ple_window_grow, int, S_IRUGO);
174
175/* Default resets per-vcpu window every exit to ple_window. */
176static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
177module_param(ple_window_shrink, int, S_IRUGO);
178
179/* Default is to compute the maximum so we can never overflow. */
180static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
181static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
182module_param(ple_window_max, int, S_IRUGO);
183
83287ea4
AK
184extern const ulong vmx_return;
185
8bf00a52 186#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 187#define VMCS02_POOL_SIZE 1
61d2ef2c 188
a2fa3e9f
GH
189struct vmcs {
190 u32 revision_id;
191 u32 abort;
192 char data[0];
193};
194
d462b819
NHE
195/*
196 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
197 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
198 * loaded on this CPU (so we can clear them if the CPU goes down).
199 */
200struct loaded_vmcs {
201 struct vmcs *vmcs;
355f4fb1 202 struct vmcs *shadow_vmcs;
d462b819 203 int cpu;
4c4a6f79
PB
204 bool launched;
205 bool nmi_known_unmasked;
44889942
LP
206 unsigned long vmcs_host_cr3; /* May not match real cr3 */
207 unsigned long vmcs_host_cr4; /* May not match real cr4 */
8a1b4392
PB
208 /* Support for vnmi-less CPUs */
209 int soft_vnmi_blocked;
210 ktime_t entry_time;
211 s64 vnmi_blocked_time;
d462b819
NHE
212 struct list_head loaded_vmcss_on_cpu_link;
213};
214
26bb0981
AK
215struct shared_msr_entry {
216 unsigned index;
217 u64 data;
d5696725 218 u64 mask;
26bb0981
AK
219};
220
a9d30f33
NHE
221/*
222 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
223 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
224 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
225 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
226 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
227 * More than one of these structures may exist, if L1 runs multiple L2 guests.
228 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
229 * underlying hardware which will be used to run L2.
230 * This structure is packed to ensure that its layout is identical across
231 * machines (necessary for live migration).
232 * If there are changes in this struct, VMCS12_REVISION must be changed.
233 */
22bd0358 234typedef u64 natural_width;
a9d30f33
NHE
235struct __packed vmcs12 {
236 /* According to the Intel spec, a VMCS region must start with the
237 * following two fields. Then follow implementation-specific data.
238 */
239 u32 revision_id;
240 u32 abort;
22bd0358 241
27d6c865
NHE
242 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
243 u32 padding[7]; /* room for future expansion */
244
22bd0358
NHE
245 u64 io_bitmap_a;
246 u64 io_bitmap_b;
247 u64 msr_bitmap;
248 u64 vm_exit_msr_store_addr;
249 u64 vm_exit_msr_load_addr;
250 u64 vm_entry_msr_load_addr;
251 u64 tsc_offset;
252 u64 virtual_apic_page_addr;
253 u64 apic_access_addr;
705699a1 254 u64 posted_intr_desc_addr;
27c42a1b 255 u64 vm_function_control;
22bd0358 256 u64 ept_pointer;
608406e2
WV
257 u64 eoi_exit_bitmap0;
258 u64 eoi_exit_bitmap1;
259 u64 eoi_exit_bitmap2;
260 u64 eoi_exit_bitmap3;
41ab9372 261 u64 eptp_list_address;
81dc01f7 262 u64 xss_exit_bitmap;
22bd0358
NHE
263 u64 guest_physical_address;
264 u64 vmcs_link_pointer;
c5f983f6 265 u64 pml_address;
22bd0358
NHE
266 u64 guest_ia32_debugctl;
267 u64 guest_ia32_pat;
268 u64 guest_ia32_efer;
269 u64 guest_ia32_perf_global_ctrl;
270 u64 guest_pdptr0;
271 u64 guest_pdptr1;
272 u64 guest_pdptr2;
273 u64 guest_pdptr3;
36be0b9d 274 u64 guest_bndcfgs;
22bd0358
NHE
275 u64 host_ia32_pat;
276 u64 host_ia32_efer;
277 u64 host_ia32_perf_global_ctrl;
278 u64 padding64[8]; /* room for future expansion */
279 /*
280 * To allow migration of L1 (complete with its L2 guests) between
281 * machines of different natural widths (32 or 64 bit), we cannot have
282 * unsigned long fields with no explict size. We use u64 (aliased
283 * natural_width) instead. Luckily, x86 is little-endian.
284 */
285 natural_width cr0_guest_host_mask;
286 natural_width cr4_guest_host_mask;
287 natural_width cr0_read_shadow;
288 natural_width cr4_read_shadow;
289 natural_width cr3_target_value0;
290 natural_width cr3_target_value1;
291 natural_width cr3_target_value2;
292 natural_width cr3_target_value3;
293 natural_width exit_qualification;
294 natural_width guest_linear_address;
295 natural_width guest_cr0;
296 natural_width guest_cr3;
297 natural_width guest_cr4;
298 natural_width guest_es_base;
299 natural_width guest_cs_base;
300 natural_width guest_ss_base;
301 natural_width guest_ds_base;
302 natural_width guest_fs_base;
303 natural_width guest_gs_base;
304 natural_width guest_ldtr_base;
305 natural_width guest_tr_base;
306 natural_width guest_gdtr_base;
307 natural_width guest_idtr_base;
308 natural_width guest_dr7;
309 natural_width guest_rsp;
310 natural_width guest_rip;
311 natural_width guest_rflags;
312 natural_width guest_pending_dbg_exceptions;
313 natural_width guest_sysenter_esp;
314 natural_width guest_sysenter_eip;
315 natural_width host_cr0;
316 natural_width host_cr3;
317 natural_width host_cr4;
318 natural_width host_fs_base;
319 natural_width host_gs_base;
320 natural_width host_tr_base;
321 natural_width host_gdtr_base;
322 natural_width host_idtr_base;
323 natural_width host_ia32_sysenter_esp;
324 natural_width host_ia32_sysenter_eip;
325 natural_width host_rsp;
326 natural_width host_rip;
327 natural_width paddingl[8]; /* room for future expansion */
328 u32 pin_based_vm_exec_control;
329 u32 cpu_based_vm_exec_control;
330 u32 exception_bitmap;
331 u32 page_fault_error_code_mask;
332 u32 page_fault_error_code_match;
333 u32 cr3_target_count;
334 u32 vm_exit_controls;
335 u32 vm_exit_msr_store_count;
336 u32 vm_exit_msr_load_count;
337 u32 vm_entry_controls;
338 u32 vm_entry_msr_load_count;
339 u32 vm_entry_intr_info_field;
340 u32 vm_entry_exception_error_code;
341 u32 vm_entry_instruction_len;
342 u32 tpr_threshold;
343 u32 secondary_vm_exec_control;
344 u32 vm_instruction_error;
345 u32 vm_exit_reason;
346 u32 vm_exit_intr_info;
347 u32 vm_exit_intr_error_code;
348 u32 idt_vectoring_info_field;
349 u32 idt_vectoring_error_code;
350 u32 vm_exit_instruction_len;
351 u32 vmx_instruction_info;
352 u32 guest_es_limit;
353 u32 guest_cs_limit;
354 u32 guest_ss_limit;
355 u32 guest_ds_limit;
356 u32 guest_fs_limit;
357 u32 guest_gs_limit;
358 u32 guest_ldtr_limit;
359 u32 guest_tr_limit;
360 u32 guest_gdtr_limit;
361 u32 guest_idtr_limit;
362 u32 guest_es_ar_bytes;
363 u32 guest_cs_ar_bytes;
364 u32 guest_ss_ar_bytes;
365 u32 guest_ds_ar_bytes;
366 u32 guest_fs_ar_bytes;
367 u32 guest_gs_ar_bytes;
368 u32 guest_ldtr_ar_bytes;
369 u32 guest_tr_ar_bytes;
370 u32 guest_interruptibility_info;
371 u32 guest_activity_state;
372 u32 guest_sysenter_cs;
373 u32 host_ia32_sysenter_cs;
0238ea91
JK
374 u32 vmx_preemption_timer_value;
375 u32 padding32[7]; /* room for future expansion */
22bd0358 376 u16 virtual_processor_id;
705699a1 377 u16 posted_intr_nv;
22bd0358
NHE
378 u16 guest_es_selector;
379 u16 guest_cs_selector;
380 u16 guest_ss_selector;
381 u16 guest_ds_selector;
382 u16 guest_fs_selector;
383 u16 guest_gs_selector;
384 u16 guest_ldtr_selector;
385 u16 guest_tr_selector;
608406e2 386 u16 guest_intr_status;
c5f983f6 387 u16 guest_pml_index;
22bd0358
NHE
388 u16 host_es_selector;
389 u16 host_cs_selector;
390 u16 host_ss_selector;
391 u16 host_ds_selector;
392 u16 host_fs_selector;
393 u16 host_gs_selector;
394 u16 host_tr_selector;
a9d30f33
NHE
395};
396
397/*
398 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
399 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
400 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
401 */
402#define VMCS12_REVISION 0x11e57ed0
403
404/*
405 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
406 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
407 * current implementation, 4K are reserved to avoid future complications.
408 */
409#define VMCS12_SIZE 0x1000
410
ff2f6fe9
NHE
411/* Used to remember the last vmcs02 used for some recently used vmcs12s */
412struct vmcs02_list {
413 struct list_head list;
414 gpa_t vmptr;
415 struct loaded_vmcs vmcs02;
416};
417
ec378aee
NHE
418/*
419 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
420 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
421 */
422struct nested_vmx {
423 /* Has the level1 guest done vmxon? */
424 bool vmxon;
3573e22c 425 gpa_t vmxon_ptr;
c5f983f6 426 bool pml_full;
a9d30f33
NHE
427
428 /* The guest-physical address of the current VMCS L1 keeps for L2 */
429 gpa_t current_vmptr;
4f2777bc
DM
430 /*
431 * Cache of the guest's VMCS, existing outside of guest memory.
432 * Loaded from guest memory during VMPTRLD. Flushed to guest
8ca44e88 433 * memory during VMCLEAR and VMPTRLD.
4f2777bc
DM
434 */
435 struct vmcs12 *cached_vmcs12;
012f83cb
AG
436 /*
437 * Indicates if the shadow vmcs must be updated with the
438 * data hold by vmcs12
439 */
440 bool sync_shadow_vmcs;
ff2f6fe9
NHE
441
442 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
443 struct list_head vmcs02_pool;
444 int vmcs02_num;
dccbfcf5 445 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
446 /* L2 must run next, and mustn't decide to exit to L1. */
447 bool nested_run_pending;
fe3ef05c
NHE
448 /*
449 * Guest pages referred to in vmcs02 with host-physical pointers, so
450 * we must keep them pinned while L2 runs.
451 */
452 struct page *apic_access_page;
a7c0b07d 453 struct page *virtual_apic_page;
705699a1
WV
454 struct page *pi_desc_page;
455 struct pi_desc *pi_desc;
456 bool pi_pending;
457 u16 posted_intr_nv;
f4124500 458
d048c098
RK
459 unsigned long *msr_bitmap;
460
f4124500
JK
461 struct hrtimer preemption_timer;
462 bool preemption_timer_expired;
2996fca0
JK
463
464 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
465 u64 vmcs01_debugctl;
b9c237bb 466
5c614b35
WL
467 u16 vpid02;
468 u16 last_vpid;
469
0115f9cb
DM
470 /*
471 * We only store the "true" versions of the VMX capability MSRs. We
472 * generate the "non-true" versions by setting the must-be-1 bits
473 * according to the SDM.
474 */
b9c237bb
WV
475 u32 nested_vmx_procbased_ctls_low;
476 u32 nested_vmx_procbased_ctls_high;
b9c237bb
WV
477 u32 nested_vmx_secondary_ctls_low;
478 u32 nested_vmx_secondary_ctls_high;
479 u32 nested_vmx_pinbased_ctls_low;
480 u32 nested_vmx_pinbased_ctls_high;
481 u32 nested_vmx_exit_ctls_low;
482 u32 nested_vmx_exit_ctls_high;
b9c237bb
WV
483 u32 nested_vmx_entry_ctls_low;
484 u32 nested_vmx_entry_ctls_high;
b9c237bb
WV
485 u32 nested_vmx_misc_low;
486 u32 nested_vmx_misc_high;
487 u32 nested_vmx_ept_caps;
99b83ac8 488 u32 nested_vmx_vpid_caps;
62cc6b9d
DM
489 u64 nested_vmx_basic;
490 u64 nested_vmx_cr0_fixed0;
491 u64 nested_vmx_cr0_fixed1;
492 u64 nested_vmx_cr4_fixed0;
493 u64 nested_vmx_cr4_fixed1;
494 u64 nested_vmx_vmcs_enum;
27c42a1b 495 u64 nested_vmx_vmfunc_controls;
72e9cbdb
LP
496
497 /* SMM related state */
498 struct {
499 /* in VMX operation on SMM entry? */
500 bool vmxon;
501 /* in guest mode on SMM entry? */
502 bool guest_mode;
503 } smm;
ec378aee
NHE
504};
505
01e439be 506#define POSTED_INTR_ON 0
ebbfc765
FW
507#define POSTED_INTR_SN 1
508
01e439be
YZ
509/* Posted-Interrupt Descriptor */
510struct pi_desc {
511 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
512 union {
513 struct {
514 /* bit 256 - Outstanding Notification */
515 u16 on : 1,
516 /* bit 257 - Suppress Notification */
517 sn : 1,
518 /* bit 271:258 - Reserved */
519 rsvd_1 : 14;
520 /* bit 279:272 - Notification Vector */
521 u8 nv;
522 /* bit 287:280 - Reserved */
523 u8 rsvd_2;
524 /* bit 319:288 - Notification Destination */
525 u32 ndst;
526 };
527 u64 control;
528 };
529 u32 rsvd[6];
01e439be
YZ
530} __aligned(64);
531
a20ed54d
YZ
532static bool pi_test_and_set_on(struct pi_desc *pi_desc)
533{
534 return test_and_set_bit(POSTED_INTR_ON,
535 (unsigned long *)&pi_desc->control);
536}
537
538static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
539{
540 return test_and_clear_bit(POSTED_INTR_ON,
541 (unsigned long *)&pi_desc->control);
542}
543
544static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
545{
546 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
547}
548
ebbfc765
FW
549static inline void pi_clear_sn(struct pi_desc *pi_desc)
550{
551 return clear_bit(POSTED_INTR_SN,
552 (unsigned long *)&pi_desc->control);
553}
554
555static inline void pi_set_sn(struct pi_desc *pi_desc)
556{
557 return set_bit(POSTED_INTR_SN,
558 (unsigned long *)&pi_desc->control);
559}
560
ad361091
PB
561static inline void pi_clear_on(struct pi_desc *pi_desc)
562{
563 clear_bit(POSTED_INTR_ON,
564 (unsigned long *)&pi_desc->control);
565}
566
ebbfc765
FW
567static inline int pi_test_on(struct pi_desc *pi_desc)
568{
569 return test_bit(POSTED_INTR_ON,
570 (unsigned long *)&pi_desc->control);
571}
572
573static inline int pi_test_sn(struct pi_desc *pi_desc)
574{
575 return test_bit(POSTED_INTR_SN,
576 (unsigned long *)&pi_desc->control);
577}
578
a2fa3e9f 579struct vcpu_vmx {
fb3f0f51 580 struct kvm_vcpu vcpu;
313dbd49 581 unsigned long host_rsp;
29bd8a78 582 u8 fail;
51aa01d1 583 u32 exit_intr_info;
1155f76a 584 u32 idt_vectoring_info;
6de12732 585 ulong rflags;
26bb0981 586 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
587 int nmsrs;
588 int save_nmsrs;
a547c6db 589 unsigned long host_idt_base;
a2fa3e9f 590#ifdef CONFIG_X86_64
44ea2b17
AK
591 u64 msr_host_kernel_gs_base;
592 u64 msr_guest_kernel_gs_base;
a2fa3e9f 593#endif
2961e876
GN
594 u32 vm_entry_controls_shadow;
595 u32 vm_exit_controls_shadow;
80154d77
PB
596 u32 secondary_exec_control;
597
d462b819
NHE
598 /*
599 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
600 * non-nested (L1) guest, it always points to vmcs01. For a nested
601 * guest (L2), it points to a different VMCS.
602 */
603 struct loaded_vmcs vmcs01;
604 struct loaded_vmcs *loaded_vmcs;
605 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
606 struct msr_autoload {
607 unsigned nr;
608 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
609 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
610 } msr_autoload;
a2fa3e9f
GH
611 struct {
612 int loaded;
613 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
614#ifdef CONFIG_X86_64
615 u16 ds_sel, es_sel;
616#endif
152d3f2f
LV
617 int gs_ldt_reload_needed;
618 int fs_reload_needed;
da8999d3 619 u64 msr_host_bndcfgs;
d77c26fc 620 } host_state;
9c8cba37 621 struct {
7ffd92c5 622 int vm86_active;
78ac8b47 623 ulong save_rflags;
f5f7b2fe
AK
624 struct kvm_segment segs[8];
625 } rmode;
626 struct {
627 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
628 struct kvm_save_segment {
629 u16 selector;
630 unsigned long base;
631 u32 limit;
632 u32 ar;
f5f7b2fe 633 } seg[8];
2fb92db1 634 } segment_cache;
2384d2b3 635 int vpid;
04fa4d32 636 bool emulation_required;
3b86cd99 637
a0861c02 638 u32 exit_reason;
4e47c7a6 639
01e439be
YZ
640 /* Posted interrupt descriptor */
641 struct pi_desc pi_desc;
642
ec378aee
NHE
643 /* Support for a guest hypervisor (nested VMX) */
644 struct nested_vmx nested;
a7653ecd
RK
645
646 /* Dynamic PLE window. */
647 int ple_window;
648 bool ple_window_dirty;
843e4330
KH
649
650 /* Support for PML */
651#define PML_ENTITY_NUM 512
652 struct page *pml_pg;
2680d6da 653
64672c95
YJ
654 /* apic deadline value in host tsc */
655 u64 hv_deadline_tsc;
656
2680d6da 657 u64 current_tsc_ratio;
1be0e61c 658
1be0e61c 659 u32 host_pkru;
3b84080b 660
37e4c997
HZ
661 /*
662 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
663 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
664 * in msr_ia32_feature_control_valid_bits.
665 */
3b84080b 666 u64 msr_ia32_feature_control;
37e4c997 667 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
668};
669
2fb92db1
AK
670enum segment_cache_field {
671 SEG_FIELD_SEL = 0,
672 SEG_FIELD_BASE = 1,
673 SEG_FIELD_LIMIT = 2,
674 SEG_FIELD_AR = 3,
675
676 SEG_FIELD_NR = 4
677};
678
a2fa3e9f
GH
679static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
680{
fb3f0f51 681 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
682}
683
efc64404
FW
684static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
685{
686 return &(to_vmx(vcpu)->pi_desc);
687}
688
22bd0358
NHE
689#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
690#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
691#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
692 [number##_HIGH] = VMCS12_OFFSET(name)+4
693
4607c2d7 694
fe2b201b 695static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
696 /*
697 * We do NOT shadow fields that are modified when L0
698 * traps and emulates any vmx instruction (e.g. VMPTRLD,
699 * VMXON...) executed by L1.
700 * For example, VM_INSTRUCTION_ERROR is read
701 * by L1 if a vmx instruction fails (part of the error path).
702 * Note the code assumes this logic. If for some reason
703 * we start shadowing these fields then we need to
704 * force a shadow sync when L0 emulates vmx instructions
705 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
706 * by nested_vmx_failValid)
707 */
708 VM_EXIT_REASON,
709 VM_EXIT_INTR_INFO,
710 VM_EXIT_INSTRUCTION_LEN,
711 IDT_VECTORING_INFO_FIELD,
712 IDT_VECTORING_ERROR_CODE,
713 VM_EXIT_INTR_ERROR_CODE,
714 EXIT_QUALIFICATION,
715 GUEST_LINEAR_ADDRESS,
716 GUEST_PHYSICAL_ADDRESS
717};
fe2b201b 718static int max_shadow_read_only_fields =
4607c2d7
AG
719 ARRAY_SIZE(shadow_read_only_fields);
720
fe2b201b 721static unsigned long shadow_read_write_fields[] = {
a7c0b07d 722 TPR_THRESHOLD,
4607c2d7
AG
723 GUEST_RIP,
724 GUEST_RSP,
725 GUEST_CR0,
726 GUEST_CR3,
727 GUEST_CR4,
728 GUEST_INTERRUPTIBILITY_INFO,
729 GUEST_RFLAGS,
730 GUEST_CS_SELECTOR,
731 GUEST_CS_AR_BYTES,
732 GUEST_CS_LIMIT,
733 GUEST_CS_BASE,
734 GUEST_ES_BASE,
36be0b9d 735 GUEST_BNDCFGS,
4607c2d7
AG
736 CR0_GUEST_HOST_MASK,
737 CR0_READ_SHADOW,
738 CR4_READ_SHADOW,
739 TSC_OFFSET,
740 EXCEPTION_BITMAP,
741 CPU_BASED_VM_EXEC_CONTROL,
742 VM_ENTRY_EXCEPTION_ERROR_CODE,
743 VM_ENTRY_INTR_INFO_FIELD,
744 VM_ENTRY_INSTRUCTION_LEN,
745 VM_ENTRY_EXCEPTION_ERROR_CODE,
746 HOST_FS_BASE,
747 HOST_GS_BASE,
748 HOST_FS_SELECTOR,
749 HOST_GS_SELECTOR
750};
fe2b201b 751static int max_shadow_read_write_fields =
4607c2d7
AG
752 ARRAY_SIZE(shadow_read_write_fields);
753
772e0318 754static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 755 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 756 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
757 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
758 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
759 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
760 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
761 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
762 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
763 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
764 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 765 FIELD(GUEST_INTR_STATUS, guest_intr_status),
c5f983f6 766 FIELD(GUEST_PML_INDEX, guest_pml_index),
22bd0358
NHE
767 FIELD(HOST_ES_SELECTOR, host_es_selector),
768 FIELD(HOST_CS_SELECTOR, host_cs_selector),
769 FIELD(HOST_SS_SELECTOR, host_ss_selector),
770 FIELD(HOST_DS_SELECTOR, host_ds_selector),
771 FIELD(HOST_FS_SELECTOR, host_fs_selector),
772 FIELD(HOST_GS_SELECTOR, host_gs_selector),
773 FIELD(HOST_TR_SELECTOR, host_tr_selector),
774 FIELD64(IO_BITMAP_A, io_bitmap_a),
775 FIELD64(IO_BITMAP_B, io_bitmap_b),
776 FIELD64(MSR_BITMAP, msr_bitmap),
777 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
778 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
779 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
780 FIELD64(TSC_OFFSET, tsc_offset),
781 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
782 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 783 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
27c42a1b 784 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
22bd0358 785 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
786 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
787 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
788 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
789 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
41ab9372 790 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
81dc01f7 791 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
792 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
793 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
c5f983f6 794 FIELD64(PML_ADDRESS, pml_address),
22bd0358
NHE
795 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
796 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
797 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
798 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
799 FIELD64(GUEST_PDPTR0, guest_pdptr0),
800 FIELD64(GUEST_PDPTR1, guest_pdptr1),
801 FIELD64(GUEST_PDPTR2, guest_pdptr2),
802 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 803 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
804 FIELD64(HOST_IA32_PAT, host_ia32_pat),
805 FIELD64(HOST_IA32_EFER, host_ia32_efer),
806 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
807 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
808 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
809 FIELD(EXCEPTION_BITMAP, exception_bitmap),
810 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
811 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
812 FIELD(CR3_TARGET_COUNT, cr3_target_count),
813 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
814 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
815 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
816 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
817 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
818 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
819 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
820 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
821 FIELD(TPR_THRESHOLD, tpr_threshold),
822 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
823 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
824 FIELD(VM_EXIT_REASON, vm_exit_reason),
825 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
826 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
827 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
828 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
829 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
830 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
831 FIELD(GUEST_ES_LIMIT, guest_es_limit),
832 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
833 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
834 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
835 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
836 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
837 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
838 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
839 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
840 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
841 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
842 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
843 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
844 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
845 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
846 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
847 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
848 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
849 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
850 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
851 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
852 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 853 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
854 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
855 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
856 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
857 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
858 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
859 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
860 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
861 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
862 FIELD(EXIT_QUALIFICATION, exit_qualification),
863 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
864 FIELD(GUEST_CR0, guest_cr0),
865 FIELD(GUEST_CR3, guest_cr3),
866 FIELD(GUEST_CR4, guest_cr4),
867 FIELD(GUEST_ES_BASE, guest_es_base),
868 FIELD(GUEST_CS_BASE, guest_cs_base),
869 FIELD(GUEST_SS_BASE, guest_ss_base),
870 FIELD(GUEST_DS_BASE, guest_ds_base),
871 FIELD(GUEST_FS_BASE, guest_fs_base),
872 FIELD(GUEST_GS_BASE, guest_gs_base),
873 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
874 FIELD(GUEST_TR_BASE, guest_tr_base),
875 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
876 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
877 FIELD(GUEST_DR7, guest_dr7),
878 FIELD(GUEST_RSP, guest_rsp),
879 FIELD(GUEST_RIP, guest_rip),
880 FIELD(GUEST_RFLAGS, guest_rflags),
881 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
882 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
883 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
884 FIELD(HOST_CR0, host_cr0),
885 FIELD(HOST_CR3, host_cr3),
886 FIELD(HOST_CR4, host_cr4),
887 FIELD(HOST_FS_BASE, host_fs_base),
888 FIELD(HOST_GS_BASE, host_gs_base),
889 FIELD(HOST_TR_BASE, host_tr_base),
890 FIELD(HOST_GDTR_BASE, host_gdtr_base),
891 FIELD(HOST_IDTR_BASE, host_idtr_base),
892 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
893 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
894 FIELD(HOST_RSP, host_rsp),
895 FIELD(HOST_RIP, host_rip),
896};
22bd0358
NHE
897
898static inline short vmcs_field_to_offset(unsigned long field)
899{
a2ae9df7
PB
900 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
901
902 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
903 vmcs_field_to_offset_table[field] == 0)
904 return -ENOENT;
905
22bd0358
NHE
906 return vmcs_field_to_offset_table[field];
907}
908
a9d30f33
NHE
909static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
910{
4f2777bc 911 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
912}
913
995f00a6 914static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
bfd0a56b 915static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
995f00a6 916static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
f53cd63c 917static bool vmx_xsaves_supported(void);
b246dd5d
OW
918static void vmx_set_segment(struct kvm_vcpu *vcpu,
919 struct kvm_segment *var, int seg);
920static void vmx_get_segment(struct kvm_vcpu *vcpu,
921 struct kvm_segment *var, int seg);
d99e4152
GN
922static bool guest_state_valid(struct kvm_vcpu *vcpu);
923static u32 vmx_segment_access_rights(struct kvm_segment *var);
16f5b903 924static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
b96fb439
PB
925static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
926static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
927static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
928 u16 error_code);
75880a01 929
6aa8b732
AK
930static DEFINE_PER_CPU(struct vmcs *, vmxarea);
931static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
932/*
933 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
934 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
935 */
936static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
6aa8b732 937
bf9f6ac8
FW
938/*
939 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
940 * can find which vCPU should be waken up.
941 */
942static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
943static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
944
23611332
RK
945enum {
946 VMX_IO_BITMAP_A,
947 VMX_IO_BITMAP_B,
948 VMX_MSR_BITMAP_LEGACY,
949 VMX_MSR_BITMAP_LONGMODE,
950 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
951 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
952 VMX_MSR_BITMAP_LEGACY_X2APIC,
953 VMX_MSR_BITMAP_LONGMODE_X2APIC,
954 VMX_VMREAD_BITMAP,
955 VMX_VMWRITE_BITMAP,
956 VMX_BITMAP_NR
957};
958
959static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
960
961#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
962#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
963#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
964#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
965#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
966#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
967#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
968#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
969#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
970#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 971
110312c8 972static bool cpu_has_load_ia32_efer;
8bf00a52 973static bool cpu_has_load_perf_global_ctrl;
110312c8 974
2384d2b3
SY
975static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
976static DEFINE_SPINLOCK(vmx_vpid_lock);
977
1c3d14fe 978static struct vmcs_config {
6aa8b732
AK
979 int size;
980 int order;
9ac7e3e8 981 u32 basic_cap;
6aa8b732 982 u32 revision_id;
1c3d14fe
YS
983 u32 pin_based_exec_ctrl;
984 u32 cpu_based_exec_ctrl;
f78e0e2e 985 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
986 u32 vmexit_ctrl;
987 u32 vmentry_ctrl;
988} vmcs_config;
6aa8b732 989
efff9e53 990static struct vmx_capability {
d56f546d
SY
991 u32 ept;
992 u32 vpid;
993} vmx_capability;
994
6aa8b732
AK
995#define VMX_SEGMENT_FIELD(seg) \
996 [VCPU_SREG_##seg] = { \
997 .selector = GUEST_##seg##_SELECTOR, \
998 .base = GUEST_##seg##_BASE, \
999 .limit = GUEST_##seg##_LIMIT, \
1000 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1001 }
1002
772e0318 1003static const struct kvm_vmx_segment_field {
6aa8b732
AK
1004 unsigned selector;
1005 unsigned base;
1006 unsigned limit;
1007 unsigned ar_bytes;
1008} kvm_vmx_segment_fields[] = {
1009 VMX_SEGMENT_FIELD(CS),
1010 VMX_SEGMENT_FIELD(DS),
1011 VMX_SEGMENT_FIELD(ES),
1012 VMX_SEGMENT_FIELD(FS),
1013 VMX_SEGMENT_FIELD(GS),
1014 VMX_SEGMENT_FIELD(SS),
1015 VMX_SEGMENT_FIELD(TR),
1016 VMX_SEGMENT_FIELD(LDTR),
1017};
1018
26bb0981
AK
1019static u64 host_efer;
1020
6de4f3ad
AK
1021static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1022
4d56c8a7 1023/*
8c06585d 1024 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1025 * away by decrementing the array size.
1026 */
6aa8b732 1027static const u32 vmx_msr_index[] = {
05b3e0c2 1028#ifdef CONFIG_X86_64
44ea2b17 1029 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1030#endif
8c06585d 1031 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1032};
6aa8b732 1033
5bb16016 1034static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1035{
1036 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1037 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1038 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1039}
1040
6f05485d
JK
1041static inline bool is_debug(u32 intr_info)
1042{
1043 return is_exception_n(intr_info, DB_VECTOR);
1044}
1045
1046static inline bool is_breakpoint(u32 intr_info)
1047{
1048 return is_exception_n(intr_info, BP_VECTOR);
1049}
1050
5bb16016
JK
1051static inline bool is_page_fault(u32 intr_info)
1052{
1053 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1054}
1055
31299944 1056static inline bool is_no_device(u32 intr_info)
2ab455cc 1057{
5bb16016 1058 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1059}
1060
31299944 1061static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1062{
5bb16016 1063 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1064}
1065
31299944 1066static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1067{
1068 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1069 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1070}
1071
31299944 1072static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1073{
1074 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1075 INTR_INFO_VALID_MASK)) ==
1076 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1077}
1078
31299944 1079static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1080{
04547156 1081 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1082}
1083
31299944 1084static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1085{
04547156 1086 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1087}
1088
35754c98 1089static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1090{
35754c98 1091 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1092}
1093
31299944 1094static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1095{
04547156
SY
1096 return vmcs_config.cpu_based_exec_ctrl &
1097 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1098}
1099
774ead3a 1100static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1101{
04547156
SY
1102 return vmcs_config.cpu_based_2nd_exec_ctrl &
1103 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1104}
1105
8d14695f
YZ
1106static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1107{
1108 return vmcs_config.cpu_based_2nd_exec_ctrl &
1109 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1110}
1111
83d4c286
YZ
1112static inline bool cpu_has_vmx_apic_register_virt(void)
1113{
1114 return vmcs_config.cpu_based_2nd_exec_ctrl &
1115 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1116}
1117
c7c9c56c
YZ
1118static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1119{
1120 return vmcs_config.cpu_based_2nd_exec_ctrl &
1121 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1122}
1123
64672c95
YJ
1124/*
1125 * Comment's format: document - errata name - stepping - processor name.
1126 * Refer from
1127 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1128 */
1129static u32 vmx_preemption_cpu_tfms[] = {
1130/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
11310x000206E6,
1132/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1133/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1134/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11350x00020652,
1136/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11370x00020655,
1138/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1139/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1140/*
1141 * 320767.pdf - AAP86 - B1 -
1142 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1143 */
11440x000106E5,
1145/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11460x000106A0,
1147/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11480x000106A1,
1149/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11500x000106A4,
1151 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1152 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1153 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11540x000106A5,
1155};
1156
1157static inline bool cpu_has_broken_vmx_preemption_timer(void)
1158{
1159 u32 eax = cpuid_eax(0x00000001), i;
1160
1161 /* Clear the reserved bits */
1162 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1163 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1164 if (eax == vmx_preemption_cpu_tfms[i])
1165 return true;
1166
1167 return false;
1168}
1169
1170static inline bool cpu_has_vmx_preemption_timer(void)
1171{
64672c95
YJ
1172 return vmcs_config.pin_based_exec_ctrl &
1173 PIN_BASED_VMX_PREEMPTION_TIMER;
1174}
1175
01e439be
YZ
1176static inline bool cpu_has_vmx_posted_intr(void)
1177{
d6a858d1
PB
1178 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1179 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1180}
1181
1182static inline bool cpu_has_vmx_apicv(void)
1183{
1184 return cpu_has_vmx_apic_register_virt() &&
1185 cpu_has_vmx_virtual_intr_delivery() &&
1186 cpu_has_vmx_posted_intr();
1187}
1188
04547156
SY
1189static inline bool cpu_has_vmx_flexpriority(void)
1190{
1191 return cpu_has_vmx_tpr_shadow() &&
1192 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1193}
1194
e799794e
MT
1195static inline bool cpu_has_vmx_ept_execute_only(void)
1196{
31299944 1197 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1198}
1199
e799794e
MT
1200static inline bool cpu_has_vmx_ept_2m_page(void)
1201{
31299944 1202 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1203}
1204
878403b7
SY
1205static inline bool cpu_has_vmx_ept_1g_page(void)
1206{
31299944 1207 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1208}
1209
4bc9b982
SY
1210static inline bool cpu_has_vmx_ept_4levels(void)
1211{
1212 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1213}
1214
42aa53b4
DH
1215static inline bool cpu_has_vmx_ept_mt_wb(void)
1216{
1217 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1218}
1219
855feb67
YZ
1220static inline bool cpu_has_vmx_ept_5levels(void)
1221{
1222 return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1223}
1224
83c3a331
XH
1225static inline bool cpu_has_vmx_ept_ad_bits(void)
1226{
1227 return vmx_capability.ept & VMX_EPT_AD_BIT;
1228}
1229
31299944 1230static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1231{
31299944 1232 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1233}
1234
31299944 1235static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1236{
31299944 1237 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1238}
1239
518c8aee
GJ
1240static inline bool cpu_has_vmx_invvpid_single(void)
1241{
1242 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1243}
1244
b9d762fa
GJ
1245static inline bool cpu_has_vmx_invvpid_global(void)
1246{
1247 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1248}
1249
08d839c4
WL
1250static inline bool cpu_has_vmx_invvpid(void)
1251{
1252 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1253}
1254
31299944 1255static inline bool cpu_has_vmx_ept(void)
d56f546d 1256{
04547156
SY
1257 return vmcs_config.cpu_based_2nd_exec_ctrl &
1258 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1259}
1260
31299944 1261static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1262{
1263 return vmcs_config.cpu_based_2nd_exec_ctrl &
1264 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1265}
1266
31299944 1267static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1268{
1269 return vmcs_config.cpu_based_2nd_exec_ctrl &
1270 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1271}
1272
9ac7e3e8
JD
1273static inline bool cpu_has_vmx_basic_inout(void)
1274{
1275 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1276}
1277
35754c98 1278static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1279{
35754c98 1280 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1281}
1282
31299944 1283static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1284{
04547156
SY
1285 return vmcs_config.cpu_based_2nd_exec_ctrl &
1286 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1287}
1288
31299944 1289static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1290{
1291 return vmcs_config.cpu_based_2nd_exec_ctrl &
1292 SECONDARY_EXEC_RDTSCP;
1293}
1294
ad756a16
MJ
1295static inline bool cpu_has_vmx_invpcid(void)
1296{
1297 return vmcs_config.cpu_based_2nd_exec_ctrl &
1298 SECONDARY_EXEC_ENABLE_INVPCID;
1299}
1300
8a1b4392
PB
1301static inline bool cpu_has_virtual_nmis(void)
1302{
1303 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1304}
1305
f5f48ee1
SY
1306static inline bool cpu_has_vmx_wbinvd_exit(void)
1307{
1308 return vmcs_config.cpu_based_2nd_exec_ctrl &
1309 SECONDARY_EXEC_WBINVD_EXITING;
1310}
1311
abc4fc58
AG
1312static inline bool cpu_has_vmx_shadow_vmcs(void)
1313{
1314 u64 vmx_msr;
1315 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1316 /* check if the cpu supports writing r/o exit information fields */
1317 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1318 return false;
1319
1320 return vmcs_config.cpu_based_2nd_exec_ctrl &
1321 SECONDARY_EXEC_SHADOW_VMCS;
1322}
1323
843e4330
KH
1324static inline bool cpu_has_vmx_pml(void)
1325{
1326 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1327}
1328
64903d61
HZ
1329static inline bool cpu_has_vmx_tsc_scaling(void)
1330{
1331 return vmcs_config.cpu_based_2nd_exec_ctrl &
1332 SECONDARY_EXEC_TSC_SCALING;
1333}
1334
2a499e49
BD
1335static inline bool cpu_has_vmx_vmfunc(void)
1336{
1337 return vmcs_config.cpu_based_2nd_exec_ctrl &
1338 SECONDARY_EXEC_ENABLE_VMFUNC;
1339}
1340
04547156
SY
1341static inline bool report_flexpriority(void)
1342{
1343 return flexpriority_enabled;
1344}
1345
c7c2c709
JM
1346static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1347{
1348 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1349}
1350
fe3ef05c
NHE
1351static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1352{
1353 return vmcs12->cpu_based_vm_exec_control & bit;
1354}
1355
1356static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1357{
1358 return (vmcs12->cpu_based_vm_exec_control &
1359 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1360 (vmcs12->secondary_vm_exec_control & bit);
1361}
1362
f4124500
JK
1363static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1364{
1365 return vmcs12->pin_based_vm_exec_control &
1366 PIN_BASED_VMX_PREEMPTION_TIMER;
1367}
1368
155a97a3
NHE
1369static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1370{
1371 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1372}
1373
81dc01f7
WL
1374static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1375{
3db13480 1376 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
81dc01f7
WL
1377}
1378
c5f983f6
BD
1379static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1380{
1381 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1382}
1383
f2b93280
WV
1384static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1385{
1386 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1387}
1388
5c614b35
WL
1389static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1390{
1391 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1392}
1393
82f0dd4b
WV
1394static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1395{
1396 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1397}
1398
608406e2
WV
1399static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1400{
1401 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1402}
1403
705699a1
WV
1404static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1405{
1406 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1407}
1408
27c42a1b
BD
1409static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1410{
1411 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1412}
1413
41ab9372
BD
1414static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1415{
1416 return nested_cpu_has_vmfunc(vmcs12) &&
1417 (vmcs12->vm_function_control &
1418 VMX_VMFUNC_EPTP_SWITCHING);
1419}
1420
ef85b673 1421static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1422{
1423 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1424 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1425}
1426
533558bc
JK
1427static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1428 u32 exit_intr_info,
1429 unsigned long exit_qualification);
7c177938
NHE
1430static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1431 struct vmcs12 *vmcs12,
1432 u32 reason, unsigned long qualification);
1433
8b9cf98c 1434static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1435{
1436 int i;
1437
a2fa3e9f 1438 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1439 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1440 return i;
1441 return -1;
1442}
1443
2384d2b3
SY
1444static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1445{
1446 struct {
1447 u64 vpid : 16;
1448 u64 rsvd : 48;
1449 u64 gva;
1450 } operand = { vpid, 0, gva };
1451
4ecac3fd 1452 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1453 /* CF==1 or ZF==1 --> rc = -1 */
1454 "; ja 1f ; ud2 ; 1:"
1455 : : "a"(&operand), "c"(ext) : "cc", "memory");
1456}
1457
1439442c
SY
1458static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1459{
1460 struct {
1461 u64 eptp, gpa;
1462 } operand = {eptp, gpa};
1463
4ecac3fd 1464 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1465 /* CF==1 or ZF==1 --> rc = -1 */
1466 "; ja 1f ; ud2 ; 1:\n"
1467 : : "a" (&operand), "c" (ext) : "cc", "memory");
1468}
1469
26bb0981 1470static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1471{
1472 int i;
1473
8b9cf98c 1474 i = __find_msr_index(vmx, msr);
a75beee6 1475 if (i >= 0)
a2fa3e9f 1476 return &vmx->guest_msrs[i];
8b6d44c7 1477 return NULL;
7725f0ba
AK
1478}
1479
6aa8b732
AK
1480static void vmcs_clear(struct vmcs *vmcs)
1481{
1482 u64 phys_addr = __pa(vmcs);
1483 u8 error;
1484
4ecac3fd 1485 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1486 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1487 : "cc", "memory");
1488 if (error)
1489 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1490 vmcs, phys_addr);
1491}
1492
d462b819
NHE
1493static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1494{
1495 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1496 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1497 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1498 loaded_vmcs->cpu = -1;
1499 loaded_vmcs->launched = 0;
1500}
1501
7725b894
DX
1502static void vmcs_load(struct vmcs *vmcs)
1503{
1504 u64 phys_addr = __pa(vmcs);
1505 u8 error;
1506
1507 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1508 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1509 : "cc", "memory");
1510 if (error)
2844d849 1511 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1512 vmcs, phys_addr);
1513}
1514
2965faa5 1515#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1516/*
1517 * This bitmap is used to indicate whether the vmclear
1518 * operation is enabled on all cpus. All disabled by
1519 * default.
1520 */
1521static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1522
1523static inline void crash_enable_local_vmclear(int cpu)
1524{
1525 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1526}
1527
1528static inline void crash_disable_local_vmclear(int cpu)
1529{
1530 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1531}
1532
1533static inline int crash_local_vmclear_enabled(int cpu)
1534{
1535 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1536}
1537
1538static void crash_vmclear_local_loaded_vmcss(void)
1539{
1540 int cpu = raw_smp_processor_id();
1541 struct loaded_vmcs *v;
1542
1543 if (!crash_local_vmclear_enabled(cpu))
1544 return;
1545
1546 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1547 loaded_vmcss_on_cpu_link)
1548 vmcs_clear(v->vmcs);
1549}
1550#else
1551static inline void crash_enable_local_vmclear(int cpu) { }
1552static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1553#endif /* CONFIG_KEXEC_CORE */
8f536b76 1554
d462b819 1555static void __loaded_vmcs_clear(void *arg)
6aa8b732 1556{
d462b819 1557 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1558 int cpu = raw_smp_processor_id();
6aa8b732 1559
d462b819
NHE
1560 if (loaded_vmcs->cpu != cpu)
1561 return; /* vcpu migration can race with cpu offline */
1562 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1563 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1564 crash_disable_local_vmclear(cpu);
d462b819 1565 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1566
1567 /*
1568 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1569 * is before setting loaded_vmcs->vcpu to -1 which is done in
1570 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1571 * then adds the vmcs into percpu list before it is deleted.
1572 */
1573 smp_wmb();
1574
d462b819 1575 loaded_vmcs_init(loaded_vmcs);
8f536b76 1576 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1577}
1578
d462b819 1579static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1580{
e6c7d321
XG
1581 int cpu = loaded_vmcs->cpu;
1582
1583 if (cpu != -1)
1584 smp_call_function_single(cpu,
1585 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1586}
1587
dd5f5341 1588static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1589{
dd5f5341 1590 if (vpid == 0)
2384d2b3
SY
1591 return;
1592
518c8aee 1593 if (cpu_has_vmx_invvpid_single())
dd5f5341 1594 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1595}
1596
b9d762fa
GJ
1597static inline void vpid_sync_vcpu_global(void)
1598{
1599 if (cpu_has_vmx_invvpid_global())
1600 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1601}
1602
dd5f5341 1603static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1604{
1605 if (cpu_has_vmx_invvpid_single())
dd5f5341 1606 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1607 else
1608 vpid_sync_vcpu_global();
1609}
1610
1439442c
SY
1611static inline void ept_sync_global(void)
1612{
f5f51586 1613 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1439442c
SY
1614}
1615
1616static inline void ept_sync_context(u64 eptp)
1617{
0e1252dc
DH
1618 if (cpu_has_vmx_invept_context())
1619 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1620 else
1621 ept_sync_global();
1439442c
SY
1622}
1623
8a86aea9
PB
1624static __always_inline void vmcs_check16(unsigned long field)
1625{
1626 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1627 "16-bit accessor invalid for 64-bit field");
1628 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1629 "16-bit accessor invalid for 64-bit high field");
1630 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1631 "16-bit accessor invalid for 32-bit high field");
1632 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1633 "16-bit accessor invalid for natural width field");
1634}
1635
1636static __always_inline void vmcs_check32(unsigned long field)
1637{
1638 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1639 "32-bit accessor invalid for 16-bit field");
1640 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1641 "32-bit accessor invalid for natural width field");
1642}
1643
1644static __always_inline void vmcs_check64(unsigned long field)
1645{
1646 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1647 "64-bit accessor invalid for 16-bit field");
1648 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1649 "64-bit accessor invalid for 64-bit high field");
1650 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1651 "64-bit accessor invalid for 32-bit field");
1652 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1653 "64-bit accessor invalid for natural width field");
1654}
1655
1656static __always_inline void vmcs_checkl(unsigned long field)
1657{
1658 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1659 "Natural width accessor invalid for 16-bit field");
1660 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1661 "Natural width accessor invalid for 64-bit field");
1662 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1663 "Natural width accessor invalid for 64-bit high field");
1664 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1665 "Natural width accessor invalid for 32-bit field");
1666}
1667
1668static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1669{
5e520e62 1670 unsigned long value;
6aa8b732 1671
5e520e62
AK
1672 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1673 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1674 return value;
1675}
1676
96304217 1677static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1678{
8a86aea9
PB
1679 vmcs_check16(field);
1680 return __vmcs_readl(field);
6aa8b732
AK
1681}
1682
96304217 1683static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1684{
8a86aea9
PB
1685 vmcs_check32(field);
1686 return __vmcs_readl(field);
6aa8b732
AK
1687}
1688
96304217 1689static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1690{
8a86aea9 1691 vmcs_check64(field);
05b3e0c2 1692#ifdef CONFIG_X86_64
8a86aea9 1693 return __vmcs_readl(field);
6aa8b732 1694#else
8a86aea9 1695 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1696#endif
1697}
1698
8a86aea9
PB
1699static __always_inline unsigned long vmcs_readl(unsigned long field)
1700{
1701 vmcs_checkl(field);
1702 return __vmcs_readl(field);
1703}
1704
e52de1b8
AK
1705static noinline void vmwrite_error(unsigned long field, unsigned long value)
1706{
1707 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1708 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1709 dump_stack();
1710}
1711
8a86aea9 1712static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1713{
1714 u8 error;
1715
4ecac3fd 1716 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1717 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1718 if (unlikely(error))
1719 vmwrite_error(field, value);
6aa8b732
AK
1720}
1721
8a86aea9 1722static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1723{
8a86aea9
PB
1724 vmcs_check16(field);
1725 __vmcs_writel(field, value);
6aa8b732
AK
1726}
1727
8a86aea9 1728static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1729{
8a86aea9
PB
1730 vmcs_check32(field);
1731 __vmcs_writel(field, value);
6aa8b732
AK
1732}
1733
8a86aea9 1734static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1735{
8a86aea9
PB
1736 vmcs_check64(field);
1737 __vmcs_writel(field, value);
7682f2d0 1738#ifndef CONFIG_X86_64
6aa8b732 1739 asm volatile ("");
8a86aea9 1740 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1741#endif
1742}
1743
8a86aea9 1744static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1745{
8a86aea9
PB
1746 vmcs_checkl(field);
1747 __vmcs_writel(field, value);
2ab455cc
AL
1748}
1749
8a86aea9 1750static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1751{
8a86aea9
PB
1752 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1753 "vmcs_clear_bits does not support 64-bit fields");
1754 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1755}
1756
8a86aea9 1757static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1758{
8a86aea9
PB
1759 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1760 "vmcs_set_bits does not support 64-bit fields");
1761 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1762}
1763
8391ce44
PB
1764static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1765{
1766 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1767}
1768
2961e876
GN
1769static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1770{
1771 vmcs_write32(VM_ENTRY_CONTROLS, val);
1772 vmx->vm_entry_controls_shadow = val;
1773}
1774
1775static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1776{
1777 if (vmx->vm_entry_controls_shadow != val)
1778 vm_entry_controls_init(vmx, val);
1779}
1780
1781static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1782{
1783 return vmx->vm_entry_controls_shadow;
1784}
1785
1786
1787static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1788{
1789 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1790}
1791
1792static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1793{
1794 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1795}
1796
8391ce44
PB
1797static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1798{
1799 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1800}
1801
2961e876
GN
1802static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1803{
1804 vmcs_write32(VM_EXIT_CONTROLS, val);
1805 vmx->vm_exit_controls_shadow = val;
1806}
1807
1808static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1809{
1810 if (vmx->vm_exit_controls_shadow != val)
1811 vm_exit_controls_init(vmx, val);
1812}
1813
1814static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1815{
1816 return vmx->vm_exit_controls_shadow;
1817}
1818
1819
1820static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1821{
1822 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1823}
1824
1825static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1826{
1827 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1828}
1829
2fb92db1
AK
1830static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1831{
1832 vmx->segment_cache.bitmask = 0;
1833}
1834
1835static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1836 unsigned field)
1837{
1838 bool ret;
1839 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1840
1841 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1842 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1843 vmx->segment_cache.bitmask = 0;
1844 }
1845 ret = vmx->segment_cache.bitmask & mask;
1846 vmx->segment_cache.bitmask |= mask;
1847 return ret;
1848}
1849
1850static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1851{
1852 u16 *p = &vmx->segment_cache.seg[seg].selector;
1853
1854 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1855 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1856 return *p;
1857}
1858
1859static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1860{
1861 ulong *p = &vmx->segment_cache.seg[seg].base;
1862
1863 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1864 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1865 return *p;
1866}
1867
1868static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1869{
1870 u32 *p = &vmx->segment_cache.seg[seg].limit;
1871
1872 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1873 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1874 return *p;
1875}
1876
1877static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1878{
1879 u32 *p = &vmx->segment_cache.seg[seg].ar;
1880
1881 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1882 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1883 return *p;
1884}
1885
abd3f2d6
AK
1886static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1887{
1888 u32 eb;
1889
ac9b305c 1890 eb = (1u << PF_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 1891 (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1892 if ((vcpu->guest_debug &
1893 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1894 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1895 eb |= 1u << BP_VECTOR;
7ffd92c5 1896 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1897 eb = ~0;
089d034e 1898 if (enable_ept)
1439442c 1899 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
1900
1901 /* When we are running a nested L2 guest and L1 specified for it a
1902 * certain exception bitmap, we must trap the same exceptions and pass
1903 * them to L1. When running L2, we will only handle the exceptions
1904 * specified above if L1 did not want them.
1905 */
1906 if (is_guest_mode(vcpu))
1907 eb |= get_vmcs12(vcpu)->exception_bitmap;
ac9b305c
LA
1908 else
1909 eb |= 1u << UD_VECTOR;
36cf24e0 1910
abd3f2d6
AK
1911 vmcs_write32(EXCEPTION_BITMAP, eb);
1912}
1913
2961e876
GN
1914static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1915 unsigned long entry, unsigned long exit)
8bf00a52 1916{
2961e876
GN
1917 vm_entry_controls_clearbit(vmx, entry);
1918 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1919}
1920
61d2ef2c
AK
1921static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1922{
1923 unsigned i;
1924 struct msr_autoload *m = &vmx->msr_autoload;
1925
8bf00a52
GN
1926 switch (msr) {
1927 case MSR_EFER:
1928 if (cpu_has_load_ia32_efer) {
2961e876
GN
1929 clear_atomic_switch_msr_special(vmx,
1930 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1931 VM_EXIT_LOAD_IA32_EFER);
1932 return;
1933 }
1934 break;
1935 case MSR_CORE_PERF_GLOBAL_CTRL:
1936 if (cpu_has_load_perf_global_ctrl) {
2961e876 1937 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1938 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1939 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1940 return;
1941 }
1942 break;
110312c8
AK
1943 }
1944
61d2ef2c
AK
1945 for (i = 0; i < m->nr; ++i)
1946 if (m->guest[i].index == msr)
1947 break;
1948
1949 if (i == m->nr)
1950 return;
1951 --m->nr;
1952 m->guest[i] = m->guest[m->nr];
1953 m->host[i] = m->host[m->nr];
1954 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1955 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1956}
1957
2961e876
GN
1958static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1959 unsigned long entry, unsigned long exit,
1960 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1961 u64 guest_val, u64 host_val)
8bf00a52
GN
1962{
1963 vmcs_write64(guest_val_vmcs, guest_val);
1964 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1965 vm_entry_controls_setbit(vmx, entry);
1966 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1967}
1968
61d2ef2c
AK
1969static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1970 u64 guest_val, u64 host_val)
1971{
1972 unsigned i;
1973 struct msr_autoload *m = &vmx->msr_autoload;
1974
8bf00a52
GN
1975 switch (msr) {
1976 case MSR_EFER:
1977 if (cpu_has_load_ia32_efer) {
2961e876
GN
1978 add_atomic_switch_msr_special(vmx,
1979 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1980 VM_EXIT_LOAD_IA32_EFER,
1981 GUEST_IA32_EFER,
1982 HOST_IA32_EFER,
1983 guest_val, host_val);
1984 return;
1985 }
1986 break;
1987 case MSR_CORE_PERF_GLOBAL_CTRL:
1988 if (cpu_has_load_perf_global_ctrl) {
2961e876 1989 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1990 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1991 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1992 GUEST_IA32_PERF_GLOBAL_CTRL,
1993 HOST_IA32_PERF_GLOBAL_CTRL,
1994 guest_val, host_val);
1995 return;
1996 }
1997 break;
7099e2e1
RK
1998 case MSR_IA32_PEBS_ENABLE:
1999 /* PEBS needs a quiescent period after being disabled (to write
2000 * a record). Disabling PEBS through VMX MSR swapping doesn't
2001 * provide that period, so a CPU could write host's record into
2002 * guest's memory.
2003 */
2004 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
2005 }
2006
61d2ef2c
AK
2007 for (i = 0; i < m->nr; ++i)
2008 if (m->guest[i].index == msr)
2009 break;
2010
e7fc6f93 2011 if (i == NR_AUTOLOAD_MSRS) {
60266204 2012 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
2013 "Can't add msr %x\n", msr);
2014 return;
2015 } else if (i == m->nr) {
61d2ef2c
AK
2016 ++m->nr;
2017 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2018 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2019 }
2020
2021 m->guest[i].index = msr;
2022 m->guest[i].value = guest_val;
2023 m->host[i].index = msr;
2024 m->host[i].value = host_val;
2025}
2026
92c0d900 2027static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2028{
844a5fe2
PB
2029 u64 guest_efer = vmx->vcpu.arch.efer;
2030 u64 ignore_bits = 0;
2031
2032 if (!enable_ept) {
2033 /*
2034 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2035 * host CPUID is more efficient than testing guest CPUID
2036 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2037 */
2038 if (boot_cpu_has(X86_FEATURE_SMEP))
2039 guest_efer |= EFER_NX;
2040 else if (!(guest_efer & EFER_NX))
2041 ignore_bits |= EFER_NX;
2042 }
3a34a881 2043
51c6cf66 2044 /*
844a5fe2 2045 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2046 */
844a5fe2 2047 ignore_bits |= EFER_SCE;
51c6cf66
AK
2048#ifdef CONFIG_X86_64
2049 ignore_bits |= EFER_LMA | EFER_LME;
2050 /* SCE is meaningful only in long mode on Intel */
2051 if (guest_efer & EFER_LMA)
2052 ignore_bits &= ~(u64)EFER_SCE;
2053#endif
84ad33ef
AK
2054
2055 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2056
2057 /*
2058 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2059 * On CPUs that support "load IA32_EFER", always switch EFER
2060 * atomically, since it's faster than switching it manually.
2061 */
2062 if (cpu_has_load_ia32_efer ||
2063 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2064 if (!(guest_efer & EFER_LMA))
2065 guest_efer &= ~EFER_LME;
54b98bff
AL
2066 if (guest_efer != host_efer)
2067 add_atomic_switch_msr(vmx, MSR_EFER,
2068 guest_efer, host_efer);
84ad33ef 2069 return false;
844a5fe2
PB
2070 } else {
2071 guest_efer &= ~ignore_bits;
2072 guest_efer |= host_efer & ignore_bits;
2073
2074 vmx->guest_msrs[efer_offset].data = guest_efer;
2075 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2076
844a5fe2
PB
2077 return true;
2078 }
51c6cf66
AK
2079}
2080
e28baead
AL
2081#ifdef CONFIG_X86_32
2082/*
2083 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2084 * VMCS rather than the segment table. KVM uses this helper to figure
2085 * out the current bases to poke them into the VMCS before entry.
2086 */
2d49ec72
GN
2087static unsigned long segment_base(u16 selector)
2088{
8c2e41f7 2089 struct desc_struct *table;
2d49ec72
GN
2090 unsigned long v;
2091
8c2e41f7 2092 if (!(selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2093 return 0;
2094
45fc8757 2095 table = get_current_gdt_ro();
2d49ec72 2096
8c2e41f7 2097 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2d49ec72
GN
2098 u16 ldt_selector = kvm_read_ldt();
2099
8c2e41f7 2100 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2101 return 0;
2102
8c2e41f7 2103 table = (struct desc_struct *)segment_base(ldt_selector);
2d49ec72 2104 }
8c2e41f7 2105 v = get_desc_base(&table[selector >> 3]);
2d49ec72
GN
2106 return v;
2107}
e28baead 2108#endif
2d49ec72 2109
04d2cc77 2110static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2111{
04d2cc77 2112 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2113 int i;
04d2cc77 2114
a2fa3e9f 2115 if (vmx->host_state.loaded)
33ed6329
AK
2116 return;
2117
a2fa3e9f 2118 vmx->host_state.loaded = 1;
33ed6329
AK
2119 /*
2120 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2121 * allow segment selectors with cpl > 0 or ti == 1.
2122 */
d6e88aec 2123 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2124 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2125 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2126 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2127 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2128 vmx->host_state.fs_reload_needed = 0;
2129 } else {
33ed6329 2130 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2131 vmx->host_state.fs_reload_needed = 1;
33ed6329 2132 }
9581d442 2133 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2134 if (!(vmx->host_state.gs_sel & 7))
2135 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2136 else {
2137 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2138 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2139 }
2140
b2da15ac
AK
2141#ifdef CONFIG_X86_64
2142 savesegment(ds, vmx->host_state.ds_sel);
2143 savesegment(es, vmx->host_state.es_sel);
2144#endif
2145
33ed6329
AK
2146#ifdef CONFIG_X86_64
2147 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2148 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2149#else
a2fa3e9f
GH
2150 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2151 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2152#endif
707c0874
AK
2153
2154#ifdef CONFIG_X86_64
c8770e7b
AK
2155 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2156 if (is_long_mode(&vmx->vcpu))
44ea2b17 2157 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2158#endif
da8999d3
LJ
2159 if (boot_cpu_has(X86_FEATURE_MPX))
2160 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2161 for (i = 0; i < vmx->save_nmsrs; ++i)
2162 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2163 vmx->guest_msrs[i].data,
2164 vmx->guest_msrs[i].mask);
33ed6329
AK
2165}
2166
a9b21b62 2167static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2168{
a2fa3e9f 2169 if (!vmx->host_state.loaded)
33ed6329
AK
2170 return;
2171
e1beb1d3 2172 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2173 vmx->host_state.loaded = 0;
c8770e7b
AK
2174#ifdef CONFIG_X86_64
2175 if (is_long_mode(&vmx->vcpu))
2176 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2177#endif
152d3f2f 2178 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2179 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2180#ifdef CONFIG_X86_64
9581d442 2181 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2182#else
2183 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2184#endif
33ed6329 2185 }
0a77fe4c
AK
2186 if (vmx->host_state.fs_reload_needed)
2187 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2188#ifdef CONFIG_X86_64
2189 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2190 loadsegment(ds, vmx->host_state.ds_sel);
2191 loadsegment(es, vmx->host_state.es_sel);
2192 }
b2da15ac 2193#endif
b7ffc44d 2194 invalidate_tss_limit();
44ea2b17 2195#ifdef CONFIG_X86_64
c8770e7b 2196 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2197#endif
da8999d3
LJ
2198 if (vmx->host_state.msr_host_bndcfgs)
2199 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
45fc8757 2200 load_fixmap_gdt(raw_smp_processor_id());
33ed6329
AK
2201}
2202
a9b21b62
AK
2203static void vmx_load_host_state(struct vcpu_vmx *vmx)
2204{
2205 preempt_disable();
2206 __vmx_load_host_state(vmx);
2207 preempt_enable();
2208}
2209
28b835d6
FW
2210static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2211{
2212 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2213 struct pi_desc old, new;
2214 unsigned int dest;
2215
31afb2ea
PB
2216 /*
2217 * In case of hot-plug or hot-unplug, we may have to undo
2218 * vmx_vcpu_pi_put even if there is no assigned device. And we
2219 * always keep PI.NDST up to date for simplicity: it makes the
2220 * code easier, and CPU migration is not a fast path.
2221 */
2222 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
28b835d6
FW
2223 return;
2224
31afb2ea
PB
2225 /*
2226 * First handle the simple case where no cmpxchg is necessary; just
2227 * allow posting non-urgent interrupts.
2228 *
2229 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2230 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2231 * expects the VCPU to be on the blocked_vcpu_list that matches
2232 * PI.NDST.
2233 */
2234 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2235 vcpu->cpu == cpu) {
2236 pi_clear_sn(pi_desc);
28b835d6 2237 return;
31afb2ea 2238 }
28b835d6 2239
31afb2ea 2240 /* The full case. */
28b835d6
FW
2241 do {
2242 old.control = new.control = pi_desc->control;
2243
31afb2ea 2244 dest = cpu_physical_id(cpu);
28b835d6 2245
31afb2ea
PB
2246 if (x2apic_enabled())
2247 new.ndst = dest;
2248 else
2249 new.ndst = (dest << 8) & 0xFF00;
28b835d6 2250
28b835d6 2251 new.sn = 0;
c0a1666b
PB
2252 } while (cmpxchg64(&pi_desc->control, old.control,
2253 new.control) != old.control);
28b835d6 2254}
1be0e61c 2255
c95ba92a
PF
2256static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2257{
2258 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2259 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2260}
2261
6aa8b732
AK
2262/*
2263 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2264 * vcpu mutex is already taken.
2265 */
15ad7146 2266static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2267{
a2fa3e9f 2268 struct vcpu_vmx *vmx = to_vmx(vcpu);
b80c76ec 2269 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2270
b80c76ec 2271 if (!already_loaded) {
fe0e80be 2272 loaded_vmcs_clear(vmx->loaded_vmcs);
92fe13be 2273 local_irq_disable();
8f536b76 2274 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2275
2276 /*
2277 * Read loaded_vmcs->cpu should be before fetching
2278 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2279 * See the comments in __loaded_vmcs_clear().
2280 */
2281 smp_rmb();
2282
d462b819
NHE
2283 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2284 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2285 crash_enable_local_vmclear(cpu);
92fe13be 2286 local_irq_enable();
b80c76ec
JM
2287 }
2288
2289 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2290 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2291 vmcs_load(vmx->loaded_vmcs->vmcs);
2292 }
2293
2294 if (!already_loaded) {
59c58ceb 2295 void *gdt = get_current_gdt_ro();
b80c76ec
JM
2296 unsigned long sysenter_esp;
2297
2298 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2299
6aa8b732
AK
2300 /*
2301 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2302 * processors. See 22.2.4.
6aa8b732 2303 */
e0c23063
AL
2304 vmcs_writel(HOST_TR_BASE,
2305 (unsigned long)this_cpu_ptr(&cpu_tss));
59c58ceb 2306 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
6aa8b732 2307
b7ffc44d
AL
2308 /*
2309 * VM exits change the host TR limit to 0x67 after a VM
2310 * exit. This is okay, since 0x67 covers everything except
2311 * the IO bitmap and have have code to handle the IO bitmap
2312 * being lost after a VM exit.
2313 */
2314 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2315
6aa8b732
AK
2316 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2317 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2318
d462b819 2319 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2320 }
28b835d6 2321
2680d6da
OH
2322 /* Setup TSC multiplier */
2323 if (kvm_has_tsc_control &&
c95ba92a
PF
2324 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2325 decache_tsc_multiplier(vmx);
2680d6da 2326
28b835d6 2327 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2328 vmx->host_pkru = read_pkru();
28b835d6
FW
2329}
2330
2331static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2332{
2333 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2334
2335 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2336 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2337 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2338 return;
2339
2340 /* Set SN when the vCPU is preempted */
2341 if (vcpu->preempted)
2342 pi_set_sn(pi_desc);
6aa8b732
AK
2343}
2344
2345static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2346{
28b835d6
FW
2347 vmx_vcpu_pi_put(vcpu);
2348
a9b21b62 2349 __vmx_load_host_state(to_vmx(vcpu));
6aa8b732
AK
2350}
2351
f244deed
WL
2352static bool emulation_required(struct kvm_vcpu *vcpu)
2353{
2354 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2355}
2356
edcafe3c
AK
2357static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2358
fe3ef05c
NHE
2359/*
2360 * Return the cr0 value that a nested guest would read. This is a combination
2361 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2362 * its hypervisor (cr0_read_shadow).
2363 */
2364static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2365{
2366 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2367 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2368}
2369static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2370{
2371 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2372 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2373}
2374
6aa8b732
AK
2375static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2376{
78ac8b47 2377 unsigned long rflags, save_rflags;
345dcaa8 2378
6de12732
AK
2379 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2380 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2381 rflags = vmcs_readl(GUEST_RFLAGS);
2382 if (to_vmx(vcpu)->rmode.vm86_active) {
2383 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2384 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2385 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2386 }
2387 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2388 }
6de12732 2389 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2390}
2391
2392static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2393{
f244deed
WL
2394 unsigned long old_rflags = vmx_get_rflags(vcpu);
2395
6de12732
AK
2396 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2397 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2398 if (to_vmx(vcpu)->rmode.vm86_active) {
2399 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2400 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2401 }
6aa8b732 2402 vmcs_writel(GUEST_RFLAGS, rflags);
f244deed
WL
2403
2404 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2405 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
6aa8b732
AK
2406}
2407
37ccdcbe 2408static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2409{
2410 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2411 int ret = 0;
2412
2413 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2414 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2415 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2416 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2417
37ccdcbe 2418 return ret;
2809f5d2
GC
2419}
2420
2421static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2422{
2423 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2424 u32 interruptibility = interruptibility_old;
2425
2426 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2427
48005f64 2428 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2429 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2430 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2431 interruptibility |= GUEST_INTR_STATE_STI;
2432
2433 if ((interruptibility != interruptibility_old))
2434 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2435}
2436
6aa8b732
AK
2437static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2438{
2439 unsigned long rip;
6aa8b732 2440
5fdbf976 2441 rip = kvm_rip_read(vcpu);
6aa8b732 2442 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2443 kvm_rip_write(vcpu, rip);
6aa8b732 2444
2809f5d2
GC
2445 /* skipping an emulated instruction also counts */
2446 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2447}
2448
b96fb439
PB
2449static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2450 unsigned long exit_qual)
2451{
2452 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2453 unsigned int nr = vcpu->arch.exception.nr;
2454 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2455
2456 if (vcpu->arch.exception.has_error_code) {
2457 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2458 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2459 }
2460
2461 if (kvm_exception_is_soft(nr))
2462 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2463 else
2464 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2465
2466 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2467 vmx_get_nmi_mask(vcpu))
2468 intr_info |= INTR_INFO_UNBLOCK_NMI;
2469
2470 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2471}
2472
0b6ac343
NHE
2473/*
2474 * KVM wants to inject page-faults which it got to the guest. This function
2475 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2476 */
bfcf83b1 2477static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
0b6ac343
NHE
2478{
2479 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
adfe20fb 2480 unsigned int nr = vcpu->arch.exception.nr;
0b6ac343 2481
b96fb439
PB
2482 if (nr == PF_VECTOR) {
2483 if (vcpu->arch.exception.nested_apf) {
bfcf83b1 2484 *exit_qual = vcpu->arch.apf.nested_apf_token;
b96fb439
PB
2485 return 1;
2486 }
2487 /*
2488 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2489 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2490 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2491 * can be written only when inject_pending_event runs. This should be
2492 * conditional on a new capability---if the capability is disabled,
2493 * kvm_multiple_exception would write the ancillary information to
2494 * CR2 or DR6, for backwards ABI-compatibility.
2495 */
2496 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2497 vcpu->arch.exception.error_code)) {
bfcf83b1 2498 *exit_qual = vcpu->arch.cr2;
b96fb439
PB
2499 return 1;
2500 }
2501 } else {
b96fb439 2502 if (vmcs12->exception_bitmap & (1u << nr)) {
bfcf83b1
WL
2503 if (nr == DB_VECTOR)
2504 *exit_qual = vcpu->arch.dr6;
2505 else
2506 *exit_qual = 0;
b96fb439
PB
2507 return 1;
2508 }
adfe20fb
WL
2509 }
2510
b96fb439 2511 return 0;
0b6ac343
NHE
2512}
2513
cfcd20e5 2514static void vmx_queue_exception(struct kvm_vcpu *vcpu)
298101da 2515{
77ab6db0 2516 struct vcpu_vmx *vmx = to_vmx(vcpu);
cfcd20e5
WL
2517 unsigned nr = vcpu->arch.exception.nr;
2518 bool has_error_code = vcpu->arch.exception.has_error_code;
cfcd20e5 2519 u32 error_code = vcpu->arch.exception.error_code;
8ab2d2e2 2520 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2521
8ab2d2e2 2522 if (has_error_code) {
77ab6db0 2523 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2524 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2525 }
77ab6db0 2526
7ffd92c5 2527 if (vmx->rmode.vm86_active) {
71f9833b
SH
2528 int inc_eip = 0;
2529 if (kvm_exception_is_soft(nr))
2530 inc_eip = vcpu->arch.event_exit_inst_len;
2531 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2532 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2533 return;
2534 }
2535
66fd3f7f
GN
2536 if (kvm_exception_is_soft(nr)) {
2537 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2538 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2539 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2540 } else
2541 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2542
2543 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2544}
2545
4e47c7a6
SY
2546static bool vmx_rdtscp_supported(void)
2547{
2548 return cpu_has_vmx_rdtscp();
2549}
2550
ad756a16
MJ
2551static bool vmx_invpcid_supported(void)
2552{
2553 return cpu_has_vmx_invpcid() && enable_ept;
2554}
2555
a75beee6
ED
2556/*
2557 * Swap MSR entry in host/guest MSR entry array.
2558 */
8b9cf98c 2559static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2560{
26bb0981 2561 struct shared_msr_entry tmp;
a2fa3e9f
GH
2562
2563 tmp = vmx->guest_msrs[to];
2564 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2565 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2566}
2567
8d14695f
YZ
2568static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2569{
2570 unsigned long *msr_bitmap;
2571
670125bd 2572 if (is_guest_mode(vcpu))
d048c098 2573 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
3ce424e4
RK
2574 else if (cpu_has_secondary_exec_ctrls() &&
2575 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2576 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
f6e90f9e
WL
2577 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2578 if (is_long_mode(vcpu))
c63e4563 2579 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
f6e90f9e 2580 else
c63e4563 2581 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
f6e90f9e
WL
2582 } else {
2583 if (is_long_mode(vcpu))
c63e4563 2584 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
f6e90f9e 2585 else
c63e4563 2586 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
f6e90f9e 2587 }
8d14695f
YZ
2588 } else {
2589 if (is_long_mode(vcpu))
2590 msr_bitmap = vmx_msr_bitmap_longmode;
2591 else
2592 msr_bitmap = vmx_msr_bitmap_legacy;
2593 }
2594
2595 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2596}
2597
e38aea3e
AK
2598/*
2599 * Set up the vmcs to automatically save and restore system
2600 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2601 * mode, as fiddling with msrs is very expensive.
2602 */
8b9cf98c 2603static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2604{
26bb0981 2605 int save_nmsrs, index;
e38aea3e 2606
a75beee6
ED
2607 save_nmsrs = 0;
2608#ifdef CONFIG_X86_64
8b9cf98c 2609 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2610 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2611 if (index >= 0)
8b9cf98c
RR
2612 move_msr_up(vmx, index, save_nmsrs++);
2613 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2614 if (index >= 0)
8b9cf98c
RR
2615 move_msr_up(vmx, index, save_nmsrs++);
2616 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2617 if (index >= 0)
8b9cf98c 2618 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2619 index = __find_msr_index(vmx, MSR_TSC_AUX);
d6321d49 2620 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
4e47c7a6 2621 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2622 /*
8c06585d 2623 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2624 * if efer.sce is enabled.
2625 */
8c06585d 2626 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2627 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2628 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2629 }
2630#endif
92c0d900
AK
2631 index = __find_msr_index(vmx, MSR_EFER);
2632 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2633 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2634
26bb0981 2635 vmx->save_nmsrs = save_nmsrs;
5897297b 2636
8d14695f
YZ
2637 if (cpu_has_vmx_msr_bitmap())
2638 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2639}
2640
6aa8b732
AK
2641/*
2642 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2643 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2644 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2645 */
be7b263e 2646static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2647{
2648 u64 host_tsc, tsc_offset;
2649
4ea1636b 2650 host_tsc = rdtsc();
6aa8b732 2651 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2652 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2653}
2654
2655/*
99e3e30a 2656 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2657 */
99e3e30a 2658static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2659{
27fc51b2 2660 if (is_guest_mode(vcpu)) {
7991825b 2661 /*
27fc51b2
NHE
2662 * We're here if L1 chose not to trap WRMSR to TSC. According
2663 * to the spec, this should set L1's TSC; The offset that L1
2664 * set for L2 remains unchanged, and still needs to be added
2665 * to the newly set TSC to get L2's TSC.
7991825b 2666 */
27fc51b2 2667 struct vmcs12 *vmcs12;
27fc51b2
NHE
2668 /* recalculate vmcs02.TSC_OFFSET: */
2669 vmcs12 = get_vmcs12(vcpu);
2670 vmcs_write64(TSC_OFFSET, offset +
2671 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2672 vmcs12->tsc_offset : 0));
2673 } else {
489223ed
YY
2674 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2675 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2676 vmcs_write64(TSC_OFFSET, offset);
2677 }
6aa8b732
AK
2678}
2679
801d3424
NHE
2680/*
2681 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2682 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2683 * all guests if the "nested" module option is off, and can also be disabled
2684 * for a single guest by disabling its VMX cpuid bit.
2685 */
2686static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2687{
d6321d49 2688 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
801d3424
NHE
2689}
2690
b87a51ae
NHE
2691/*
2692 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2693 * returned for the various VMX controls MSRs when nested VMX is enabled.
2694 * The same values should also be used to verify that vmcs12 control fields are
2695 * valid during nested entry from L1 to L2.
2696 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2697 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2698 * bit in the high half is on if the corresponding bit in the control field
2699 * may be on. See also vmx_control_verify().
b87a51ae 2700 */
b9c237bb 2701static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2702{
2703 /*
2704 * Note that as a general rule, the high half of the MSRs (bits in
2705 * the control fields which may be 1) should be initialized by the
2706 * intersection of the underlying hardware's MSR (i.e., features which
2707 * can be supported) and the list of features we want to expose -
2708 * because they are known to be properly supported in our code.
2709 * Also, usually, the low half of the MSRs (bits which must be 1) can
2710 * be set to 0, meaning that L1 may turn off any of these bits. The
2711 * reason is that if one of these bits is necessary, it will appear
2712 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2713 * fields of vmcs01 and vmcs02, will turn these bits off - and
7313c698 2714 * nested_vmx_exit_reflected() will not pass related exits to L1.
b87a51ae
NHE
2715 * These rules have exceptions below.
2716 */
2717
2718 /* pin-based controls */
eabeaacc 2719 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2720 vmx->nested.nested_vmx_pinbased_ctls_low,
2721 vmx->nested.nested_vmx_pinbased_ctls_high);
2722 vmx->nested.nested_vmx_pinbased_ctls_low |=
2723 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2724 vmx->nested.nested_vmx_pinbased_ctls_high &=
2725 PIN_BASED_EXT_INTR_MASK |
2726 PIN_BASED_NMI_EXITING |
2727 PIN_BASED_VIRTUAL_NMIS;
2728 vmx->nested.nested_vmx_pinbased_ctls_high |=
2729 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2730 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2731 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2732 vmx->nested.nested_vmx_pinbased_ctls_high |=
2733 PIN_BASED_POSTED_INTR;
b87a51ae 2734
3dbcd8da 2735 /* exit controls */
c0dfee58 2736 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2737 vmx->nested.nested_vmx_exit_ctls_low,
2738 vmx->nested.nested_vmx_exit_ctls_high);
2739 vmx->nested.nested_vmx_exit_ctls_low =
2740 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2741
b9c237bb 2742 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2743#ifdef CONFIG_X86_64
c0dfee58 2744 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2745#endif
f4124500 2746 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2747 vmx->nested.nested_vmx_exit_ctls_high |=
2748 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2749 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2750 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2751
a87036ad 2752 if (kvm_mpx_supported())
b9c237bb 2753 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2754
2996fca0 2755 /* We support free control of debug control saving. */
0115f9cb 2756 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2757
b87a51ae
NHE
2758 /* entry controls */
2759 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2760 vmx->nested.nested_vmx_entry_ctls_low,
2761 vmx->nested.nested_vmx_entry_ctls_high);
2762 vmx->nested.nested_vmx_entry_ctls_low =
2763 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2764 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2765#ifdef CONFIG_X86_64
2766 VM_ENTRY_IA32E_MODE |
2767#endif
2768 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2769 vmx->nested.nested_vmx_entry_ctls_high |=
2770 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2771 if (kvm_mpx_supported())
b9c237bb 2772 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2773
2996fca0 2774 /* We support free control of debug control loading. */
0115f9cb 2775 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 2776
b87a51ae
NHE
2777 /* cpu-based controls */
2778 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2779 vmx->nested.nested_vmx_procbased_ctls_low,
2780 vmx->nested.nested_vmx_procbased_ctls_high);
2781 vmx->nested.nested_vmx_procbased_ctls_low =
2782 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2783 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2784 CPU_BASED_VIRTUAL_INTR_PENDING |
2785 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2786 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2787 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2788 CPU_BASED_CR3_STORE_EXITING |
2789#ifdef CONFIG_X86_64
2790 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2791#endif
2792 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2793 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2794 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2795 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2796 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2797 /*
2798 * We can allow some features even when not supported by the
2799 * hardware. For example, L1 can specify an MSR bitmap - and we
2800 * can use it to avoid exits to L1 - even when L0 runs L2
2801 * without MSR bitmaps.
2802 */
b9c237bb
WV
2803 vmx->nested.nested_vmx_procbased_ctls_high |=
2804 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2805 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2806
3dcdf3ec 2807 /* We support free control of CR3 access interception. */
0115f9cb 2808 vmx->nested.nested_vmx_procbased_ctls_low &=
3dcdf3ec
JK
2809 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2810
80154d77
PB
2811 /*
2812 * secondary cpu-based controls. Do not include those that
2813 * depend on CPUID bits, they are added later by vmx_cpuid_update.
2814 */
b87a51ae 2815 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2816 vmx->nested.nested_vmx_secondary_ctls_low,
2817 vmx->nested.nested_vmx_secondary_ctls_high);
2818 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2819 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2820 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1b07304c 2821 SECONDARY_EXEC_DESC |
f2b93280 2822 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 2823 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2824 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3db13480 2825 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2 2826
afa61f75
NHE
2827 if (enable_ept) {
2828 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2829 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2830 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2831 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
7db74265 2832 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
02120c45
BD
2833 if (cpu_has_vmx_ept_execute_only())
2834 vmx->nested.nested_vmx_ept_caps |=
2835 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2836 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817 2837 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7db74265
PB
2838 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2839 VMX_EPT_1GB_PAGE_BIT;
03efce6f
BD
2840 if (enable_ept_ad_bits) {
2841 vmx->nested.nested_vmx_secondary_ctls_high |=
2842 SECONDARY_EXEC_ENABLE_PML;
7461fbc4 2843 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
03efce6f 2844 }
1c13bffd 2845 }
afa61f75 2846
27c42a1b
BD
2847 if (cpu_has_vmx_vmfunc()) {
2848 vmx->nested.nested_vmx_secondary_ctls_high |=
2849 SECONDARY_EXEC_ENABLE_VMFUNC;
41ab9372
BD
2850 /*
2851 * Advertise EPTP switching unconditionally
2852 * since we emulate it
2853 */
575b3a2c
WL
2854 if (enable_ept)
2855 vmx->nested.nested_vmx_vmfunc_controls =
2856 VMX_VMFUNC_EPTP_SWITCHING;
27c42a1b
BD
2857 }
2858
ef697a71
PB
2859 /*
2860 * Old versions of KVM use the single-context version without
2861 * checking for support, so declare that it is supported even
2862 * though it is treated as global context. The alternative is
2863 * not failing the single-context invvpid, and it is worse.
2864 */
63cb6d5f
WL
2865 if (enable_vpid) {
2866 vmx->nested.nested_vmx_secondary_ctls_high |=
2867 SECONDARY_EXEC_ENABLE_VPID;
089d7b6e 2868 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 2869 VMX_VPID_EXTENT_SUPPORTED_MASK;
1c13bffd 2870 }
99b83ac8 2871
0790ec17
RK
2872 if (enable_unrestricted_guest)
2873 vmx->nested.nested_vmx_secondary_ctls_high |=
2874 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2875
c18911a2 2876 /* miscellaneous data */
b9c237bb
WV
2877 rdmsr(MSR_IA32_VMX_MISC,
2878 vmx->nested.nested_vmx_misc_low,
2879 vmx->nested.nested_vmx_misc_high);
2880 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2881 vmx->nested.nested_vmx_misc_low |=
2882 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2883 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2884 vmx->nested.nested_vmx_misc_high = 0;
62cc6b9d
DM
2885
2886 /*
2887 * This MSR reports some information about VMX support. We
2888 * should return information about the VMX we emulate for the
2889 * guest, and the VMCS structure we give it - not about the
2890 * VMX support of the underlying hardware.
2891 */
2892 vmx->nested.nested_vmx_basic =
2893 VMCS12_REVISION |
2894 VMX_BASIC_TRUE_CTLS |
2895 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2896 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2897
2898 if (cpu_has_vmx_basic_inout())
2899 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2900
2901 /*
8322ebbb 2902 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
2903 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2904 * We picked the standard core2 setting.
2905 */
2906#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2907#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2908 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
62cc6b9d 2909 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
2910
2911 /* These MSRs specify bits which the guest must keep fixed off. */
2912 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2913 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
62cc6b9d
DM
2914
2915 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2916 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
b87a51ae
NHE
2917}
2918
3899152c
DM
2919/*
2920 * if fixed0[i] == 1: val[i] must be 1
2921 * if fixed1[i] == 0: val[i] must be 0
2922 */
2923static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2924{
2925 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
2926}
2927
2928static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2929{
3899152c 2930 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
2931}
2932
2933static inline u64 vmx_control_msr(u32 low, u32 high)
2934{
2935 return low | ((u64)high << 32);
2936}
2937
62cc6b9d
DM
2938static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2939{
2940 superset &= mask;
2941 subset &= mask;
2942
2943 return (superset | subset) == superset;
2944}
2945
2946static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2947{
2948 const u64 feature_and_reserved =
2949 /* feature (except bit 48; see below) */
2950 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2951 /* reserved */
2952 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2953 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2954
2955 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2956 return -EINVAL;
2957
2958 /*
2959 * KVM does not emulate a version of VMX that constrains physical
2960 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2961 */
2962 if (data & BIT_ULL(48))
2963 return -EINVAL;
2964
2965 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2966 vmx_basic_vmcs_revision_id(data))
2967 return -EINVAL;
2968
2969 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2970 return -EINVAL;
2971
2972 vmx->nested.nested_vmx_basic = data;
2973 return 0;
2974}
2975
2976static int
2977vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2978{
2979 u64 supported;
2980 u32 *lowp, *highp;
2981
2982 switch (msr_index) {
2983 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2984 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2985 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2986 break;
2987 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2988 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2989 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2990 break;
2991 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2992 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2993 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2994 break;
2995 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2996 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2997 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2998 break;
2999 case MSR_IA32_VMX_PROCBASED_CTLS2:
3000 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
3001 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
3002 break;
3003 default:
3004 BUG();
3005 }
3006
3007 supported = vmx_control_msr(*lowp, *highp);
3008
3009 /* Check must-be-1 bits are still 1. */
3010 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3011 return -EINVAL;
3012
3013 /* Check must-be-0 bits are still 0. */
3014 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3015 return -EINVAL;
3016
3017 *lowp = data;
3018 *highp = data >> 32;
3019 return 0;
3020}
3021
3022static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3023{
3024 const u64 feature_and_reserved_bits =
3025 /* feature */
3026 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3027 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3028 /* reserved */
3029 GENMASK_ULL(13, 9) | BIT_ULL(31);
3030 u64 vmx_misc;
3031
3032 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3033 vmx->nested.nested_vmx_misc_high);
3034
3035 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3036 return -EINVAL;
3037
3038 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3039 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3040 vmx_misc_preemption_timer_rate(data) !=
3041 vmx_misc_preemption_timer_rate(vmx_misc))
3042 return -EINVAL;
3043
3044 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3045 return -EINVAL;
3046
3047 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3048 return -EINVAL;
3049
3050 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3051 return -EINVAL;
3052
3053 vmx->nested.nested_vmx_misc_low = data;
3054 vmx->nested.nested_vmx_misc_high = data >> 32;
3055 return 0;
3056}
3057
3058static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3059{
3060 u64 vmx_ept_vpid_cap;
3061
3062 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3063 vmx->nested.nested_vmx_vpid_caps);
3064
3065 /* Every bit is either reserved or a feature bit. */
3066 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3067 return -EINVAL;
3068
3069 vmx->nested.nested_vmx_ept_caps = data;
3070 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3071 return 0;
3072}
3073
3074static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3075{
3076 u64 *msr;
3077
3078 switch (msr_index) {
3079 case MSR_IA32_VMX_CR0_FIXED0:
3080 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3081 break;
3082 case MSR_IA32_VMX_CR4_FIXED0:
3083 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3084 break;
3085 default:
3086 BUG();
3087 }
3088
3089 /*
3090 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3091 * must be 1 in the restored value.
3092 */
3093 if (!is_bitwise_subset(data, *msr, -1ULL))
3094 return -EINVAL;
3095
3096 *msr = data;
3097 return 0;
3098}
3099
3100/*
3101 * Called when userspace is restoring VMX MSRs.
3102 *
3103 * Returns 0 on success, non-0 otherwise.
3104 */
3105static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3106{
b9c237bb
WV
3107 struct vcpu_vmx *vmx = to_vmx(vcpu);
3108
b87a51ae 3109 switch (msr_index) {
b87a51ae 3110 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3111 return vmx_restore_vmx_basic(vmx, data);
3112 case MSR_IA32_VMX_PINBASED_CTLS:
3113 case MSR_IA32_VMX_PROCBASED_CTLS:
3114 case MSR_IA32_VMX_EXIT_CTLS:
3115 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3116 /*
62cc6b9d
DM
3117 * The "non-true" VMX capability MSRs are generated from the
3118 * "true" MSRs, so we do not support restoring them directly.
3119 *
3120 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3121 * should restore the "true" MSRs with the must-be-1 bits
3122 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3123 * DEFAULT SETTINGS".
b87a51ae 3124 */
62cc6b9d
DM
3125 return -EINVAL;
3126 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3127 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3128 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3129 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3130 case MSR_IA32_VMX_PROCBASED_CTLS2:
3131 return vmx_restore_control_msr(vmx, msr_index, data);
3132 case MSR_IA32_VMX_MISC:
3133 return vmx_restore_vmx_misc(vmx, data);
3134 case MSR_IA32_VMX_CR0_FIXED0:
3135 case MSR_IA32_VMX_CR4_FIXED0:
3136 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3137 case MSR_IA32_VMX_CR0_FIXED1:
3138 case MSR_IA32_VMX_CR4_FIXED1:
3139 /*
3140 * These MSRs are generated based on the vCPU's CPUID, so we
3141 * do not support restoring them directly.
3142 */
3143 return -EINVAL;
3144 case MSR_IA32_VMX_EPT_VPID_CAP:
3145 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3146 case MSR_IA32_VMX_VMCS_ENUM:
3147 vmx->nested.nested_vmx_vmcs_enum = data;
3148 return 0;
3149 default:
b87a51ae 3150 /*
62cc6b9d 3151 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3152 */
62cc6b9d
DM
3153 return -EINVAL;
3154 }
3155}
3156
3157/* Returns 0 on success, non-0 otherwise. */
3158static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3159{
3160 struct vcpu_vmx *vmx = to_vmx(vcpu);
3161
3162 switch (msr_index) {
3163 case MSR_IA32_VMX_BASIC:
3164 *pdata = vmx->nested.nested_vmx_basic;
b87a51ae
NHE
3165 break;
3166 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3167 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
3168 *pdata = vmx_control_msr(
3169 vmx->nested.nested_vmx_pinbased_ctls_low,
3170 vmx->nested.nested_vmx_pinbased_ctls_high);
0115f9cb
DM
3171 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3172 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3173 break;
3174 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3175 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
3176 *pdata = vmx_control_msr(
3177 vmx->nested.nested_vmx_procbased_ctls_low,
3178 vmx->nested.nested_vmx_procbased_ctls_high);
0115f9cb
DM
3179 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3180 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3181 break;
3182 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3183 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
3184 *pdata = vmx_control_msr(
3185 vmx->nested.nested_vmx_exit_ctls_low,
3186 vmx->nested.nested_vmx_exit_ctls_high);
0115f9cb
DM
3187 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3188 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3189 break;
3190 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3191 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
3192 *pdata = vmx_control_msr(
3193 vmx->nested.nested_vmx_entry_ctls_low,
3194 vmx->nested.nested_vmx_entry_ctls_high);
0115f9cb
DM
3195 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3196 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3197 break;
3198 case MSR_IA32_VMX_MISC:
b9c237bb
WV
3199 *pdata = vmx_control_msr(
3200 vmx->nested.nested_vmx_misc_low,
3201 vmx->nested.nested_vmx_misc_high);
b87a51ae 3202 break;
b87a51ae 3203 case MSR_IA32_VMX_CR0_FIXED0:
62cc6b9d 3204 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
b87a51ae
NHE
3205 break;
3206 case MSR_IA32_VMX_CR0_FIXED1:
62cc6b9d 3207 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
b87a51ae
NHE
3208 break;
3209 case MSR_IA32_VMX_CR4_FIXED0:
62cc6b9d 3210 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
b87a51ae
NHE
3211 break;
3212 case MSR_IA32_VMX_CR4_FIXED1:
62cc6b9d 3213 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
b87a51ae
NHE
3214 break;
3215 case MSR_IA32_VMX_VMCS_ENUM:
62cc6b9d 3216 *pdata = vmx->nested.nested_vmx_vmcs_enum;
b87a51ae
NHE
3217 break;
3218 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
3219 *pdata = vmx_control_msr(
3220 vmx->nested.nested_vmx_secondary_ctls_low,
3221 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
3222 break;
3223 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
3224 *pdata = vmx->nested.nested_vmx_ept_caps |
3225 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae 3226 break;
27c42a1b
BD
3227 case MSR_IA32_VMX_VMFUNC:
3228 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3229 break;
b87a51ae 3230 default:
b87a51ae 3231 return 1;
b3897a49
NHE
3232 }
3233
b87a51ae
NHE
3234 return 0;
3235}
3236
37e4c997
HZ
3237static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3238 uint64_t val)
3239{
3240 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3241
3242 return !(val & ~valid_bits);
3243}
3244
6aa8b732
AK
3245/*
3246 * Reads an msr value (of 'msr_index') into 'pdata'.
3247 * Returns 0 on success, non-0 otherwise.
3248 * Assumes vcpu_load() was already called.
3249 */
609e36d3 3250static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3251{
26bb0981 3252 struct shared_msr_entry *msr;
6aa8b732 3253
609e36d3 3254 switch (msr_info->index) {
05b3e0c2 3255#ifdef CONFIG_X86_64
6aa8b732 3256 case MSR_FS_BASE:
609e36d3 3257 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3258 break;
3259 case MSR_GS_BASE:
609e36d3 3260 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3261 break;
44ea2b17
AK
3262 case MSR_KERNEL_GS_BASE:
3263 vmx_load_host_state(to_vmx(vcpu));
609e36d3 3264 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3265 break;
26bb0981 3266#endif
6aa8b732 3267 case MSR_EFER:
609e36d3 3268 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3269 case MSR_IA32_TSC:
be7b263e 3270 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
3271 break;
3272 case MSR_IA32_SYSENTER_CS:
609e36d3 3273 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3274 break;
3275 case MSR_IA32_SYSENTER_EIP:
609e36d3 3276 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3277 break;
3278 case MSR_IA32_SYSENTER_ESP:
609e36d3 3279 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3280 break;
0dd376e7 3281 case MSR_IA32_BNDCFGS:
691bd434 3282 if (!kvm_mpx_supported() ||
d6321d49
RK
3283 (!msr_info->host_initiated &&
3284 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3285 return 1;
609e36d3 3286 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3287 break;
c45dcc71
AR
3288 case MSR_IA32_MCG_EXT_CTL:
3289 if (!msr_info->host_initiated &&
3290 !(to_vmx(vcpu)->msr_ia32_feature_control &
3291 FEATURE_CONTROL_LMCE))
cae50139 3292 return 1;
c45dcc71
AR
3293 msr_info->data = vcpu->arch.mcg_ext_ctl;
3294 break;
cae50139 3295 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3296 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3297 break;
3298 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3299 if (!nested_vmx_allowed(vcpu))
3300 return 1;
609e36d3 3301 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3302 case MSR_IA32_XSS:
3303 if (!vmx_xsaves_supported())
3304 return 1;
609e36d3 3305 msr_info->data = vcpu->arch.ia32_xss;
20300099 3306 break;
4e47c7a6 3307 case MSR_TSC_AUX:
d6321d49
RK
3308 if (!msr_info->host_initiated &&
3309 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3310 return 1;
3311 /* Otherwise falls through */
6aa8b732 3312 default:
609e36d3 3313 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3314 if (msr) {
609e36d3 3315 msr_info->data = msr->data;
3bab1f5d 3316 break;
6aa8b732 3317 }
609e36d3 3318 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3319 }
3320
6aa8b732
AK
3321 return 0;
3322}
3323
cae50139
JK
3324static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3325
6aa8b732
AK
3326/*
3327 * Writes msr value into into the appropriate "register".
3328 * Returns 0 on success, non-0 otherwise.
3329 * Assumes vcpu_load() was already called.
3330 */
8fe8ab46 3331static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3332{
a2fa3e9f 3333 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3334 struct shared_msr_entry *msr;
2cc51560 3335 int ret = 0;
8fe8ab46
WA
3336 u32 msr_index = msr_info->index;
3337 u64 data = msr_info->data;
2cc51560 3338
6aa8b732 3339 switch (msr_index) {
3bab1f5d 3340 case MSR_EFER:
8fe8ab46 3341 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3342 break;
16175a79 3343#ifdef CONFIG_X86_64
6aa8b732 3344 case MSR_FS_BASE:
2fb92db1 3345 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3346 vmcs_writel(GUEST_FS_BASE, data);
3347 break;
3348 case MSR_GS_BASE:
2fb92db1 3349 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3350 vmcs_writel(GUEST_GS_BASE, data);
3351 break;
44ea2b17
AK
3352 case MSR_KERNEL_GS_BASE:
3353 vmx_load_host_state(vmx);
3354 vmx->msr_guest_kernel_gs_base = data;
3355 break;
6aa8b732
AK
3356#endif
3357 case MSR_IA32_SYSENTER_CS:
3358 vmcs_write32(GUEST_SYSENTER_CS, data);
3359 break;
3360 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3361 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3362 break;
3363 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3364 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3365 break;
0dd376e7 3366 case MSR_IA32_BNDCFGS:
691bd434 3367 if (!kvm_mpx_supported() ||
d6321d49
RK
3368 (!msr_info->host_initiated &&
3369 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3370 return 1;
fd8cb433 3371 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
4531662d 3372 (data & MSR_IA32_BNDCFGS_RSVD))
93c4adc7 3373 return 1;
0dd376e7
LJ
3374 vmcs_write64(GUEST_BNDCFGS, data);
3375 break;
af24a4e4 3376 case MSR_IA32_TSC:
8fe8ab46 3377 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3378 break;
468d472f
SY
3379 case MSR_IA32_CR_PAT:
3380 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3381 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3382 return 1;
468d472f
SY
3383 vmcs_write64(GUEST_IA32_PAT, data);
3384 vcpu->arch.pat = data;
3385 break;
3386 }
8fe8ab46 3387 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3388 break;
ba904635
WA
3389 case MSR_IA32_TSC_ADJUST:
3390 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3391 break;
c45dcc71
AR
3392 case MSR_IA32_MCG_EXT_CTL:
3393 if ((!msr_info->host_initiated &&
3394 !(to_vmx(vcpu)->msr_ia32_feature_control &
3395 FEATURE_CONTROL_LMCE)) ||
3396 (data & ~MCG_EXT_CTL_LMCE_EN))
3397 return 1;
3398 vcpu->arch.mcg_ext_ctl = data;
3399 break;
cae50139 3400 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3401 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3402 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3403 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3404 return 1;
3b84080b 3405 vmx->msr_ia32_feature_control = data;
cae50139
JK
3406 if (msr_info->host_initiated && data == 0)
3407 vmx_leave_nested(vcpu);
3408 break;
3409 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3410 if (!msr_info->host_initiated)
3411 return 1; /* they are read-only */
3412 if (!nested_vmx_allowed(vcpu))
3413 return 1;
3414 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3415 case MSR_IA32_XSS:
3416 if (!vmx_xsaves_supported())
3417 return 1;
3418 /*
3419 * The only supported bit as of Skylake is bit 8, but
3420 * it is not supported on KVM.
3421 */
3422 if (data != 0)
3423 return 1;
3424 vcpu->arch.ia32_xss = data;
3425 if (vcpu->arch.ia32_xss != host_xss)
3426 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3427 vcpu->arch.ia32_xss, host_xss);
3428 else
3429 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3430 break;
4e47c7a6 3431 case MSR_TSC_AUX:
d6321d49
RK
3432 if (!msr_info->host_initiated &&
3433 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3434 return 1;
3435 /* Check reserved bit, higher 32 bits should be zero */
3436 if ((data >> 32) != 0)
3437 return 1;
3438 /* Otherwise falls through */
6aa8b732 3439 default:
8b9cf98c 3440 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3441 if (msr) {
8b3c3104 3442 u64 old_msr_data = msr->data;
3bab1f5d 3443 msr->data = data;
2225fd56
AK
3444 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3445 preempt_disable();
8b3c3104
AH
3446 ret = kvm_set_shared_msr(msr->index, msr->data,
3447 msr->mask);
2225fd56 3448 preempt_enable();
8b3c3104
AH
3449 if (ret)
3450 msr->data = old_msr_data;
2225fd56 3451 }
3bab1f5d 3452 break;
6aa8b732 3453 }
8fe8ab46 3454 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3455 }
3456
2cc51560 3457 return ret;
6aa8b732
AK
3458}
3459
5fdbf976 3460static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3461{
5fdbf976
MT
3462 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3463 switch (reg) {
3464 case VCPU_REGS_RSP:
3465 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3466 break;
3467 case VCPU_REGS_RIP:
3468 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3469 break;
6de4f3ad
AK
3470 case VCPU_EXREG_PDPTR:
3471 if (enable_ept)
3472 ept_save_pdptrs(vcpu);
3473 break;
5fdbf976
MT
3474 default:
3475 break;
3476 }
6aa8b732
AK
3477}
3478
6aa8b732
AK
3479static __init int cpu_has_kvm_support(void)
3480{
6210e37b 3481 return cpu_has_vmx();
6aa8b732
AK
3482}
3483
3484static __init int vmx_disabled_by_bios(void)
3485{
3486 u64 msr;
3487
3488 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3489 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3490 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3491 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3492 && tboot_enabled())
3493 return 1;
23f3e991 3494 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3495 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3496 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3497 && !tboot_enabled()) {
3498 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3499 "activate TXT before enabling KVM\n");
cafd6659 3500 return 1;
f9335afe 3501 }
23f3e991
JC
3502 /* launched w/o TXT and VMX disabled */
3503 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3504 && !tboot_enabled())
3505 return 1;
cafd6659
SW
3506 }
3507
3508 return 0;
6aa8b732
AK
3509}
3510
7725b894
DX
3511static void kvm_cpu_vmxon(u64 addr)
3512{
fe0e80be 3513 cr4_set_bits(X86_CR4_VMXE);
1c5ac21a
AS
3514 intel_pt_handle_vmx(1);
3515
7725b894
DX
3516 asm volatile (ASM_VMX_VMXON_RAX
3517 : : "a"(&addr), "m"(addr)
3518 : "memory", "cc");
3519}
3520
13a34e06 3521static int hardware_enable(void)
6aa8b732
AK
3522{
3523 int cpu = raw_smp_processor_id();
3524 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3525 u64 old, test_bits;
6aa8b732 3526
1e02ce4c 3527 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3528 return -EBUSY;
3529
d462b819 3530 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3531 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3532 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3533
3534 /*
3535 * Now we can enable the vmclear operation in kdump
3536 * since the loaded_vmcss_on_cpu list on this cpu
3537 * has been initialized.
3538 *
3539 * Though the cpu is not in VMX operation now, there
3540 * is no problem to enable the vmclear operation
3541 * for the loaded_vmcss_on_cpu list is empty!
3542 */
3543 crash_enable_local_vmclear(cpu);
3544
6aa8b732 3545 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3546
3547 test_bits = FEATURE_CONTROL_LOCKED;
3548 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3549 if (tboot_enabled())
3550 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3551
3552 if ((old & test_bits) != test_bits) {
6aa8b732 3553 /* enable and lock */
cafd6659
SW
3554 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3555 }
fe0e80be 3556 kvm_cpu_vmxon(phys_addr);
fdf288bf
DH
3557 if (enable_ept)
3558 ept_sync_global();
10474ae8
AG
3559
3560 return 0;
6aa8b732
AK
3561}
3562
d462b819 3563static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3564{
3565 int cpu = raw_smp_processor_id();
d462b819 3566 struct loaded_vmcs *v, *n;
543e4243 3567
d462b819
NHE
3568 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3569 loaded_vmcss_on_cpu_link)
3570 __loaded_vmcs_clear(v);
543e4243
AK
3571}
3572
710ff4a8
EH
3573
3574/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3575 * tricks.
3576 */
3577static void kvm_cpu_vmxoff(void)
6aa8b732 3578{
4ecac3fd 3579 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3580
3581 intel_pt_handle_vmx(0);
fe0e80be 3582 cr4_clear_bits(X86_CR4_VMXE);
6aa8b732
AK
3583}
3584
13a34e06 3585static void hardware_disable(void)
710ff4a8 3586{
fe0e80be
DH
3587 vmclear_local_loaded_vmcss();
3588 kvm_cpu_vmxoff();
710ff4a8
EH
3589}
3590
1c3d14fe 3591static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3592 u32 msr, u32 *result)
1c3d14fe
YS
3593{
3594 u32 vmx_msr_low, vmx_msr_high;
3595 u32 ctl = ctl_min | ctl_opt;
3596
3597 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3598
3599 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3600 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3601
3602 /* Ensure minimum (required) set of control bits are supported. */
3603 if (ctl_min & ~ctl)
002c7f7c 3604 return -EIO;
1c3d14fe
YS
3605
3606 *result = ctl;
3607 return 0;
3608}
3609
110312c8
AK
3610static __init bool allow_1_setting(u32 msr, u32 ctl)
3611{
3612 u32 vmx_msr_low, vmx_msr_high;
3613
3614 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3615 return vmx_msr_high & ctl;
3616}
3617
002c7f7c 3618static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3619{
3620 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3621 u32 min, opt, min2, opt2;
1c3d14fe
YS
3622 u32 _pin_based_exec_control = 0;
3623 u32 _cpu_based_exec_control = 0;
f78e0e2e 3624 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3625 u32 _vmexit_control = 0;
3626 u32 _vmentry_control = 0;
3627
10166744 3628 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3629#ifdef CONFIG_X86_64
3630 CPU_BASED_CR8_LOAD_EXITING |
3631 CPU_BASED_CR8_STORE_EXITING |
3632#endif
d56f546d
SY
3633 CPU_BASED_CR3_LOAD_EXITING |
3634 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3635 CPU_BASED_USE_IO_BITMAPS |
3636 CPU_BASED_MOV_DR_EXITING |
a7052897 3637 CPU_BASED_USE_TSC_OFFSETING |
fee84b07
AK
3638 CPU_BASED_INVLPG_EXITING |
3639 CPU_BASED_RDPMC_EXITING;
443381a8 3640
668fffa3
MT
3641 if (!kvm_mwait_in_guest())
3642 min |= CPU_BASED_MWAIT_EXITING |
3643 CPU_BASED_MONITOR_EXITING;
3644
f78e0e2e 3645 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3646 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3647 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3648 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3649 &_cpu_based_exec_control) < 0)
002c7f7c 3650 return -EIO;
6e5d865c
YS
3651#ifdef CONFIG_X86_64
3652 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3653 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3654 ~CPU_BASED_CR8_STORE_EXITING;
3655#endif
f78e0e2e 3656 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3657 min2 = 0;
3658 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3659 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3660 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3661 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3662 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3663 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3664 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3665 SECONDARY_EXEC_RDTSCP |
83d4c286 3666 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3667 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3668 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3669 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3670 SECONDARY_EXEC_XSAVES |
736fdf72
DH
3671 SECONDARY_EXEC_RDSEED_EXITING |
3672 SECONDARY_EXEC_RDRAND_EXITING |
8b3e34e4 3673 SECONDARY_EXEC_ENABLE_PML |
2a499e49
BD
3674 SECONDARY_EXEC_TSC_SCALING |
3675 SECONDARY_EXEC_ENABLE_VMFUNC;
d56f546d
SY
3676 if (adjust_vmx_controls(min2, opt2,
3677 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3678 &_cpu_based_2nd_exec_control) < 0)
3679 return -EIO;
3680 }
3681#ifndef CONFIG_X86_64
3682 if (!(_cpu_based_2nd_exec_control &
3683 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3684 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3685#endif
83d4c286
YZ
3686
3687 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3688 _cpu_based_2nd_exec_control &= ~(
8d14695f 3689 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3690 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3691 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3692
61f1dd90
WL
3693 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
3694 &vmx_capability.ept, &vmx_capability.vpid);
3695
d56f546d 3696 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3697 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3698 enabled */
5fff7d27
GN
3699 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3700 CPU_BASED_CR3_STORE_EXITING |
3701 CPU_BASED_INVLPG_EXITING);
61f1dd90
WL
3702 } else if (vmx_capability.ept) {
3703 vmx_capability.ept = 0;
3704 pr_warn_once("EPT CAP should not exist if not support "
3705 "1-setting enable EPT VM-execution control\n");
3706 }
3707 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
3708 vmx_capability.vpid) {
3709 vmx_capability.vpid = 0;
3710 pr_warn_once("VPID CAP should not exist if not support "
3711 "1-setting enable VPID VM-execution control\n");
d56f546d 3712 }
1c3d14fe 3713
91fa0f8e 3714 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3715#ifdef CONFIG_X86_64
3716 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3717#endif
a547c6db 3718 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3719 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3720 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3721 &_vmexit_control) < 0)
002c7f7c 3722 return -EIO;
1c3d14fe 3723
8a1b4392
PB
3724 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3725 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3726 PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3727 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3728 &_pin_based_exec_control) < 0)
3729 return -EIO;
3730
1c17c3e6
PB
3731 if (cpu_has_broken_vmx_preemption_timer())
3732 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3733 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3734 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3735 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3736
c845f9c6 3737 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3738 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3739 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3740 &_vmentry_control) < 0)
002c7f7c 3741 return -EIO;
6aa8b732 3742
c68876fd 3743 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3744
3745 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3746 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3747 return -EIO;
1c3d14fe
YS
3748
3749#ifdef CONFIG_X86_64
3750 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3751 if (vmx_msr_high & (1u<<16))
002c7f7c 3752 return -EIO;
1c3d14fe
YS
3753#endif
3754
3755 /* Require Write-Back (WB) memory type for VMCS accesses. */
3756 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3757 return -EIO;
1c3d14fe 3758
002c7f7c 3759 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3760 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3761 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3762 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3763
002c7f7c
YS
3764 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3765 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3766 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3767 vmcs_conf->vmexit_ctrl = _vmexit_control;
3768 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3769
110312c8
AK
3770 cpu_has_load_ia32_efer =
3771 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3772 VM_ENTRY_LOAD_IA32_EFER)
3773 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3774 VM_EXIT_LOAD_IA32_EFER);
3775
8bf00a52
GN
3776 cpu_has_load_perf_global_ctrl =
3777 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3778 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3779 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3780 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3781
3782 /*
3783 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3784 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3785 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3786 *
3787 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3788 *
3789 * AAK155 (model 26)
3790 * AAP115 (model 30)
3791 * AAT100 (model 37)
3792 * BC86,AAY89,BD102 (model 44)
3793 * BA97 (model 46)
3794 *
3795 */
3796 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3797 switch (boot_cpu_data.x86_model) {
3798 case 26:
3799 case 30:
3800 case 37:
3801 case 44:
3802 case 46:
3803 cpu_has_load_perf_global_ctrl = false;
3804 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3805 "does not work properly. Using workaround\n");
3806 break;
3807 default:
3808 break;
3809 }
3810 }
3811
782511b0 3812 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3813 rdmsrl(MSR_IA32_XSS, host_xss);
3814
1c3d14fe 3815 return 0;
c68876fd 3816}
6aa8b732
AK
3817
3818static struct vmcs *alloc_vmcs_cpu(int cpu)
3819{
3820 int node = cpu_to_node(cpu);
3821 struct page *pages;
3822 struct vmcs *vmcs;
3823
96db800f 3824 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3825 if (!pages)
3826 return NULL;
3827 vmcs = page_address(pages);
1c3d14fe
YS
3828 memset(vmcs, 0, vmcs_config.size);
3829 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3830 return vmcs;
3831}
3832
3833static struct vmcs *alloc_vmcs(void)
3834{
d3b2c338 3835 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3836}
3837
3838static void free_vmcs(struct vmcs *vmcs)
3839{
1c3d14fe 3840 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3841}
3842
d462b819
NHE
3843/*
3844 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3845 */
3846static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3847{
3848 if (!loaded_vmcs->vmcs)
3849 return;
3850 loaded_vmcs_clear(loaded_vmcs);
3851 free_vmcs(loaded_vmcs->vmcs);
3852 loaded_vmcs->vmcs = NULL;
355f4fb1 3853 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
3854}
3855
39959588 3856static void free_kvm_area(void)
6aa8b732
AK
3857{
3858 int cpu;
3859
3230bb47 3860 for_each_possible_cpu(cpu) {
6aa8b732 3861 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3862 per_cpu(vmxarea, cpu) = NULL;
3863 }
6aa8b732
AK
3864}
3865
85fd514e
JM
3866enum vmcs_field_type {
3867 VMCS_FIELD_TYPE_U16 = 0,
3868 VMCS_FIELD_TYPE_U64 = 1,
3869 VMCS_FIELD_TYPE_U32 = 2,
3870 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3871};
3872
3873static inline int vmcs_field_type(unsigned long field)
3874{
3875 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
3876 return VMCS_FIELD_TYPE_U32;
3877 return (field >> 13) & 0x3 ;
3878}
3879
3880static inline int vmcs_field_readonly(unsigned long field)
3881{
3882 return (((field >> 10) & 0x3) == 1);
3883}
3884
fe2b201b
BD
3885static void init_vmcs_shadow_fields(void)
3886{
3887 int i, j;
3888
3889 /* No checks for read only fields yet */
3890
3891 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3892 switch (shadow_read_write_fields[i]) {
3893 case GUEST_BNDCFGS:
a87036ad 3894 if (!kvm_mpx_supported())
fe2b201b
BD
3895 continue;
3896 break;
3897 default:
3898 break;
3899 }
3900
3901 if (j < i)
3902 shadow_read_write_fields[j] =
3903 shadow_read_write_fields[i];
3904 j++;
3905 }
3906 max_shadow_read_write_fields = j;
3907
3908 /* shadowed fields guest access without vmexit */
3909 for (i = 0; i < max_shadow_read_write_fields; i++) {
85fd514e
JM
3910 unsigned long field = shadow_read_write_fields[i];
3911
3912 clear_bit(field, vmx_vmwrite_bitmap);
3913 clear_bit(field, vmx_vmread_bitmap);
3914 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3915 clear_bit(field + 1, vmx_vmwrite_bitmap);
3916 clear_bit(field + 1, vmx_vmread_bitmap);
3917 }
3918 }
3919 for (i = 0; i < max_shadow_read_only_fields; i++) {
3920 unsigned long field = shadow_read_only_fields[i];
3921
3922 clear_bit(field, vmx_vmread_bitmap);
3923 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3924 clear_bit(field + 1, vmx_vmread_bitmap);
fe2b201b 3925 }
fe2b201b
BD
3926}
3927
6aa8b732
AK
3928static __init int alloc_kvm_area(void)
3929{
3930 int cpu;
3931
3230bb47 3932 for_each_possible_cpu(cpu) {
6aa8b732
AK
3933 struct vmcs *vmcs;
3934
3935 vmcs = alloc_vmcs_cpu(cpu);
3936 if (!vmcs) {
3937 free_kvm_area();
3938 return -ENOMEM;
3939 }
3940
3941 per_cpu(vmxarea, cpu) = vmcs;
3942 }
3943 return 0;
3944}
3945
91b0aa2c 3946static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3947 struct kvm_segment *save)
6aa8b732 3948{
d99e4152
GN
3949 if (!emulate_invalid_guest_state) {
3950 /*
3951 * CS and SS RPL should be equal during guest entry according
3952 * to VMX spec, but in reality it is not always so. Since vcpu
3953 * is in the middle of the transition from real mode to
3954 * protected mode it is safe to assume that RPL 0 is a good
3955 * default value.
3956 */
3957 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3958 save->selector &= ~SEGMENT_RPL_MASK;
3959 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3960 save->s = 1;
6aa8b732 3961 }
d99e4152 3962 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3963}
3964
3965static void enter_pmode(struct kvm_vcpu *vcpu)
3966{
3967 unsigned long flags;
a89a8fb9 3968 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3969
d99e4152
GN
3970 /*
3971 * Update real mode segment cache. It may be not up-to-date if sement
3972 * register was written while vcpu was in a guest mode.
3973 */
3974 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3975 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3976 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3977 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3978 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3979 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3980
7ffd92c5 3981 vmx->rmode.vm86_active = 0;
6aa8b732 3982
2fb92db1
AK
3983 vmx_segment_cache_clear(vmx);
3984
f5f7b2fe 3985 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3986
3987 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3988 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3989 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3990 vmcs_writel(GUEST_RFLAGS, flags);
3991
66aee91a
RR
3992 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3993 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3994
3995 update_exception_bitmap(vcpu);
3996
91b0aa2c
GN
3997 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3998 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3999 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4000 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4001 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4002 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
4003}
4004
f5f7b2fe 4005static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 4006{
772e0318 4007 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
4008 struct kvm_segment var = *save;
4009
4010 var.dpl = 0x3;
4011 if (seg == VCPU_SREG_CS)
4012 var.type = 0x3;
4013
4014 if (!emulate_invalid_guest_state) {
4015 var.selector = var.base >> 4;
4016 var.base = var.base & 0xffff0;
4017 var.limit = 0xffff;
4018 var.g = 0;
4019 var.db = 0;
4020 var.present = 1;
4021 var.s = 1;
4022 var.l = 0;
4023 var.unusable = 0;
4024 var.type = 0x3;
4025 var.avl = 0;
4026 if (save->base & 0xf)
4027 printk_once(KERN_WARNING "kvm: segment base is not "
4028 "paragraph aligned when entering "
4029 "protected mode (seg=%d)", seg);
4030 }
6aa8b732 4031
d99e4152 4032 vmcs_write16(sf->selector, var.selector);
96794e4e 4033 vmcs_writel(sf->base, var.base);
d99e4152
GN
4034 vmcs_write32(sf->limit, var.limit);
4035 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
4036}
4037
4038static void enter_rmode(struct kvm_vcpu *vcpu)
4039{
4040 unsigned long flags;
a89a8fb9 4041 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 4042
f5f7b2fe
AK
4043 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4044 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4045 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4046 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4047 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
4048 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4049 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 4050
7ffd92c5 4051 vmx->rmode.vm86_active = 1;
6aa8b732 4052
776e58ea
GN
4053 /*
4054 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 4055 * vcpu. Warn the user that an update is overdue.
776e58ea 4056 */
4918c6ca 4057 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
4058 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4059 "called before entering vcpu\n");
776e58ea 4060
2fb92db1
AK
4061 vmx_segment_cache_clear(vmx);
4062
4918c6ca 4063 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 4064 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
4065 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4066
4067 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 4068 vmx->rmode.save_rflags = flags;
6aa8b732 4069
053de044 4070 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
4071
4072 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 4073 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
4074 update_exception_bitmap(vcpu);
4075
d99e4152
GN
4076 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4077 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4078 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4079 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4080 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4081 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 4082
8668a3c4 4083 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
4084}
4085
401d10de
AS
4086static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4087{
4088 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
4089 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4090
4091 if (!msr)
4092 return;
401d10de 4093
44ea2b17
AK
4094 /*
4095 * Force kernel_gs_base reloading before EFER changes, as control
4096 * of this msr depends on is_long_mode().
4097 */
4098 vmx_load_host_state(to_vmx(vcpu));
f6801dff 4099 vcpu->arch.efer = efer;
401d10de 4100 if (efer & EFER_LMA) {
2961e876 4101 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4102 msr->data = efer;
4103 } else {
2961e876 4104 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4105
4106 msr->data = efer & ~EFER_LME;
4107 }
4108 setup_msrs(vmx);
4109}
4110
05b3e0c2 4111#ifdef CONFIG_X86_64
6aa8b732
AK
4112
4113static void enter_lmode(struct kvm_vcpu *vcpu)
4114{
4115 u32 guest_tr_ar;
4116
2fb92db1
AK
4117 vmx_segment_cache_clear(to_vmx(vcpu));
4118
6aa8b732 4119 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 4120 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
4121 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4122 __func__);
6aa8b732 4123 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
4124 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4125 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4126 }
da38f438 4127 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4128}
4129
4130static void exit_lmode(struct kvm_vcpu *vcpu)
4131{
2961e876 4132 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4133 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4134}
4135
4136#endif
4137
dd5f5341 4138static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 4139{
dd180b3e
XG
4140 if (enable_ept) {
4141 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4142 return;
995f00a6 4143 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
f0b98c02
JM
4144 } else {
4145 vpid_sync_context(vpid);
dd180b3e 4146 }
2384d2b3
SY
4147}
4148
dd5f5341
WL
4149static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4150{
4151 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4152}
4153
fb6c8198
JM
4154static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4155{
4156 if (enable_ept)
4157 vmx_flush_tlb(vcpu);
4158}
4159
e8467fda
AK
4160static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4161{
4162 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4163
4164 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4165 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4166}
4167
aff48baa
AK
4168static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4169{
4170 if (enable_ept && is_paging(vcpu))
4171 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4172 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4173}
4174
25c4c276 4175static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4176{
fc78f519
AK
4177 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4178
4179 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4180 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4181}
4182
1439442c
SY
4183static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4184{
d0d538b9
GN
4185 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4186
6de4f3ad
AK
4187 if (!test_bit(VCPU_EXREG_PDPTR,
4188 (unsigned long *)&vcpu->arch.regs_dirty))
4189 return;
4190
1439442c 4191 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4192 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4193 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4194 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4195 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4196 }
4197}
4198
8f5d549f
AK
4199static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4200{
d0d538b9
GN
4201 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4202
8f5d549f 4203 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4204 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4205 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4206 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4207 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4208 }
6de4f3ad
AK
4209
4210 __set_bit(VCPU_EXREG_PDPTR,
4211 (unsigned long *)&vcpu->arch.regs_avail);
4212 __set_bit(VCPU_EXREG_PDPTR,
4213 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4214}
4215
3899152c
DM
4216static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4217{
4218 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4219 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4220 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4221
4222 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4223 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4224 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4225 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4226
4227 return fixed_bits_valid(val, fixed0, fixed1);
4228}
4229
4230static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4231{
4232 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4233 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4234
4235 return fixed_bits_valid(val, fixed0, fixed1);
4236}
4237
4238static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4239{
4240 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4241 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4242
4243 return fixed_bits_valid(val, fixed0, fixed1);
4244}
4245
4246/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4247#define nested_guest_cr4_valid nested_cr4_valid
4248#define nested_host_cr4_valid nested_cr4_valid
4249
5e1746d6 4250static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4251
4252static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4253 unsigned long cr0,
4254 struct kvm_vcpu *vcpu)
4255{
5233dd51
MT
4256 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4257 vmx_decache_cr3(vcpu);
1439442c
SY
4258 if (!(cr0 & X86_CR0_PG)) {
4259 /* From paging/starting to nonpaging */
4260 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4261 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4262 (CPU_BASED_CR3_LOAD_EXITING |
4263 CPU_BASED_CR3_STORE_EXITING));
4264 vcpu->arch.cr0 = cr0;
fc78f519 4265 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4266 } else if (!is_paging(vcpu)) {
4267 /* From nonpaging to paging */
4268 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4269 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4270 ~(CPU_BASED_CR3_LOAD_EXITING |
4271 CPU_BASED_CR3_STORE_EXITING));
4272 vcpu->arch.cr0 = cr0;
fc78f519 4273 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4274 }
95eb84a7
SY
4275
4276 if (!(cr0 & X86_CR0_WP))
4277 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4278}
4279
6aa8b732
AK
4280static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4281{
7ffd92c5 4282 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4283 unsigned long hw_cr0;
4284
5037878e 4285 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4286 if (enable_unrestricted_guest)
5037878e 4287 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4288 else {
5037878e 4289 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4290
218e763f
GN
4291 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4292 enter_pmode(vcpu);
6aa8b732 4293
218e763f
GN
4294 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4295 enter_rmode(vcpu);
4296 }
6aa8b732 4297
05b3e0c2 4298#ifdef CONFIG_X86_64
f6801dff 4299 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4300 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4301 enter_lmode(vcpu);
707d92fa 4302 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4303 exit_lmode(vcpu);
4304 }
4305#endif
4306
089d034e 4307 if (enable_ept)
1439442c
SY
4308 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4309
6aa8b732 4310 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4311 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4312 vcpu->arch.cr0 = cr0;
14168786
GN
4313
4314 /* depends on vcpu->arch.cr0 to be set to a new value */
4315 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4316}
4317
855feb67
YZ
4318static int get_ept_level(struct kvm_vcpu *vcpu)
4319{
4320 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4321 return 5;
4322 return 4;
4323}
4324
995f00a6 4325static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
1439442c 4326{
855feb67
YZ
4327 u64 eptp = VMX_EPTP_MT_WB;
4328
4329 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
1439442c 4330
995f00a6
PF
4331 if (enable_ept_ad_bits &&
4332 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
bb97a016 4333 eptp |= VMX_EPTP_AD_ENABLE_BIT;
1439442c
SY
4334 eptp |= (root_hpa & PAGE_MASK);
4335
4336 return eptp;
4337}
4338
6aa8b732
AK
4339static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4340{
1439442c
SY
4341 unsigned long guest_cr3;
4342 u64 eptp;
4343
4344 guest_cr3 = cr3;
089d034e 4345 if (enable_ept) {
995f00a6 4346 eptp = construct_eptp(vcpu, cr3);
1439442c 4347 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
4348 if (is_paging(vcpu) || is_guest_mode(vcpu))
4349 guest_cr3 = kvm_read_cr3(vcpu);
4350 else
4351 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 4352 ept_load_pdptrs(vcpu);
1439442c
SY
4353 }
4354
2384d2b3 4355 vmx_flush_tlb(vcpu);
1439442c 4356 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4357}
4358
5e1746d6 4359static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4360{
085e68ee
BS
4361 /*
4362 * Pass through host's Machine Check Enable value to hw_cr4, which
4363 * is in force while we are in guest mode. Do not let guests control
4364 * this bit, even if host CR4.MCE == 0.
4365 */
4366 unsigned long hw_cr4 =
4367 (cr4_read_shadow() & X86_CR4_MCE) |
4368 (cr4 & ~X86_CR4_MCE) |
4369 (to_vmx(vcpu)->rmode.vm86_active ?
4370 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4371
5e1746d6
NHE
4372 if (cr4 & X86_CR4_VMXE) {
4373 /*
4374 * To use VMXON (and later other VMX instructions), a guest
4375 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4376 * So basically the check on whether to allow nested VMX
4377 * is here.
4378 */
4379 if (!nested_vmx_allowed(vcpu))
4380 return 1;
1a0d74e6 4381 }
3899152c
DM
4382
4383 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4384 return 1;
4385
ad312c7c 4386 vcpu->arch.cr4 = cr4;
bc23008b
AK
4387 if (enable_ept) {
4388 if (!is_paging(vcpu)) {
4389 hw_cr4 &= ~X86_CR4_PAE;
4390 hw_cr4 |= X86_CR4_PSE;
4391 } else if (!(cr4 & X86_CR4_PAE)) {
4392 hw_cr4 &= ~X86_CR4_PAE;
4393 }
4394 }
1439442c 4395
656ec4a4
RK
4396 if (!enable_unrestricted_guest && !is_paging(vcpu))
4397 /*
ddba2628
HH
4398 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4399 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4400 * to be manually disabled when guest switches to non-paging
4401 * mode.
4402 *
4403 * If !enable_unrestricted_guest, the CPU is always running
4404 * with CR0.PG=1 and CR4 needs to be modified.
4405 * If enable_unrestricted_guest, the CPU automatically
4406 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4407 */
ddba2628 4408 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4409
1439442c
SY
4410 vmcs_writel(CR4_READ_SHADOW, cr4);
4411 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4412 return 0;
6aa8b732
AK
4413}
4414
6aa8b732
AK
4415static void vmx_get_segment(struct kvm_vcpu *vcpu,
4416 struct kvm_segment *var, int seg)
4417{
a9179499 4418 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4419 u32 ar;
4420
c6ad1153 4421 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4422 *var = vmx->rmode.segs[seg];
a9179499 4423 if (seg == VCPU_SREG_TR
2fb92db1 4424 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4425 return;
1390a28b
AK
4426 var->base = vmx_read_guest_seg_base(vmx, seg);
4427 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4428 return;
a9179499 4429 }
2fb92db1
AK
4430 var->base = vmx_read_guest_seg_base(vmx, seg);
4431 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4432 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4433 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4434 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4435 var->type = ar & 15;
4436 var->s = (ar >> 4) & 1;
4437 var->dpl = (ar >> 5) & 3;
03617c18
GN
4438 /*
4439 * Some userspaces do not preserve unusable property. Since usable
4440 * segment has to be present according to VMX spec we can use present
4441 * property to amend userspace bug by making unusable segment always
4442 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4443 * segment as unusable.
4444 */
4445 var->present = !var->unusable;
6aa8b732
AK
4446 var->avl = (ar >> 12) & 1;
4447 var->l = (ar >> 13) & 1;
4448 var->db = (ar >> 14) & 1;
4449 var->g = (ar >> 15) & 1;
6aa8b732
AK
4450}
4451
a9179499
AK
4452static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4453{
a9179499
AK
4454 struct kvm_segment s;
4455
4456 if (to_vmx(vcpu)->rmode.vm86_active) {
4457 vmx_get_segment(vcpu, &s, seg);
4458 return s.base;
4459 }
2fb92db1 4460 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4461}
4462
b09408d0 4463static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4464{
b09408d0
MT
4465 struct vcpu_vmx *vmx = to_vmx(vcpu);
4466
ae9fedc7 4467 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4468 return 0;
ae9fedc7
PB
4469 else {
4470 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4471 return VMX_AR_DPL(ar);
69c73028 4472 }
69c73028
AK
4473}
4474
653e3108 4475static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4476{
6aa8b732
AK
4477 u32 ar;
4478
f0495f9b 4479 if (var->unusable || !var->present)
6aa8b732
AK
4480 ar = 1 << 16;
4481 else {
4482 ar = var->type & 15;
4483 ar |= (var->s & 1) << 4;
4484 ar |= (var->dpl & 3) << 5;
4485 ar |= (var->present & 1) << 7;
4486 ar |= (var->avl & 1) << 12;
4487 ar |= (var->l & 1) << 13;
4488 ar |= (var->db & 1) << 14;
4489 ar |= (var->g & 1) << 15;
4490 }
653e3108
AK
4491
4492 return ar;
4493}
4494
4495static void vmx_set_segment(struct kvm_vcpu *vcpu,
4496 struct kvm_segment *var, int seg)
4497{
7ffd92c5 4498 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4499 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4500
2fb92db1
AK
4501 vmx_segment_cache_clear(vmx);
4502
1ecd50a9
GN
4503 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4504 vmx->rmode.segs[seg] = *var;
4505 if (seg == VCPU_SREG_TR)
4506 vmcs_write16(sf->selector, var->selector);
4507 else if (var->s)
4508 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4509 goto out;
653e3108 4510 }
1ecd50a9 4511
653e3108
AK
4512 vmcs_writel(sf->base, var->base);
4513 vmcs_write32(sf->limit, var->limit);
4514 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4515
4516 /*
4517 * Fix the "Accessed" bit in AR field of segment registers for older
4518 * qemu binaries.
4519 * IA32 arch specifies that at the time of processor reset the
4520 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4521 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4522 * state vmexit when "unrestricted guest" mode is turned on.
4523 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4524 * tree. Newer qemu binaries with that qemu fix would not need this
4525 * kvm hack.
4526 */
4527 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4528 var->type |= 0x1; /* Accessed */
3a624e29 4529
f924d66d 4530 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4531
4532out:
98eb2f8b 4533 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4534}
4535
6aa8b732
AK
4536static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4537{
2fb92db1 4538 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4539
4540 *db = (ar >> 14) & 1;
4541 *l = (ar >> 13) & 1;
4542}
4543
89a27f4d 4544static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4545{
89a27f4d
GN
4546 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4547 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4548}
4549
89a27f4d 4550static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4551{
89a27f4d
GN
4552 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4553 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4554}
4555
89a27f4d 4556static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4557{
89a27f4d
GN
4558 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4559 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4560}
4561
89a27f4d 4562static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4563{
89a27f4d
GN
4564 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4565 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4566}
4567
648dfaa7
MG
4568static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4569{
4570 struct kvm_segment var;
4571 u32 ar;
4572
4573 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4574 var.dpl = 0x3;
0647f4aa
GN
4575 if (seg == VCPU_SREG_CS)
4576 var.type = 0x3;
648dfaa7
MG
4577 ar = vmx_segment_access_rights(&var);
4578
4579 if (var.base != (var.selector << 4))
4580 return false;
89efbed0 4581 if (var.limit != 0xffff)
648dfaa7 4582 return false;
07f42f5f 4583 if (ar != 0xf3)
648dfaa7
MG
4584 return false;
4585
4586 return true;
4587}
4588
4589static bool code_segment_valid(struct kvm_vcpu *vcpu)
4590{
4591 struct kvm_segment cs;
4592 unsigned int cs_rpl;
4593
4594 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4595 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4596
1872a3f4
AK
4597 if (cs.unusable)
4598 return false;
4d283ec9 4599 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4600 return false;
4601 if (!cs.s)
4602 return false;
4d283ec9 4603 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4604 if (cs.dpl > cs_rpl)
4605 return false;
1872a3f4 4606 } else {
648dfaa7
MG
4607 if (cs.dpl != cs_rpl)
4608 return false;
4609 }
4610 if (!cs.present)
4611 return false;
4612
4613 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4614 return true;
4615}
4616
4617static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4618{
4619 struct kvm_segment ss;
4620 unsigned int ss_rpl;
4621
4622 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4623 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4624
1872a3f4
AK
4625 if (ss.unusable)
4626 return true;
4627 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4628 return false;
4629 if (!ss.s)
4630 return false;
4631 if (ss.dpl != ss_rpl) /* DPL != RPL */
4632 return false;
4633 if (!ss.present)
4634 return false;
4635
4636 return true;
4637}
4638
4639static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4640{
4641 struct kvm_segment var;
4642 unsigned int rpl;
4643
4644 vmx_get_segment(vcpu, &var, seg);
b32a9918 4645 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4646
1872a3f4
AK
4647 if (var.unusable)
4648 return true;
648dfaa7
MG
4649 if (!var.s)
4650 return false;
4651 if (!var.present)
4652 return false;
4d283ec9 4653 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4654 if (var.dpl < rpl) /* DPL < RPL */
4655 return false;
4656 }
4657
4658 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4659 * rights flags
4660 */
4661 return true;
4662}
4663
4664static bool tr_valid(struct kvm_vcpu *vcpu)
4665{
4666 struct kvm_segment tr;
4667
4668 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4669
1872a3f4
AK
4670 if (tr.unusable)
4671 return false;
b32a9918 4672 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4673 return false;
1872a3f4 4674 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4675 return false;
4676 if (!tr.present)
4677 return false;
4678
4679 return true;
4680}
4681
4682static bool ldtr_valid(struct kvm_vcpu *vcpu)
4683{
4684 struct kvm_segment ldtr;
4685
4686 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4687
1872a3f4
AK
4688 if (ldtr.unusable)
4689 return true;
b32a9918 4690 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4691 return false;
4692 if (ldtr.type != 2)
4693 return false;
4694 if (!ldtr.present)
4695 return false;
4696
4697 return true;
4698}
4699
4700static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4701{
4702 struct kvm_segment cs, ss;
4703
4704 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4705 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4706
b32a9918
NA
4707 return ((cs.selector & SEGMENT_RPL_MASK) ==
4708 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4709}
4710
4711/*
4712 * Check if guest state is valid. Returns true if valid, false if
4713 * not.
4714 * We assume that registers are always usable
4715 */
4716static bool guest_state_valid(struct kvm_vcpu *vcpu)
4717{
c5e97c80
GN
4718 if (enable_unrestricted_guest)
4719 return true;
4720
648dfaa7 4721 /* real mode guest state checks */
f13882d8 4722 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4723 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4724 return false;
4725 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4726 return false;
4727 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4728 return false;
4729 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4730 return false;
4731 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4732 return false;
4733 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4734 return false;
4735 } else {
4736 /* protected mode guest state checks */
4737 if (!cs_ss_rpl_check(vcpu))
4738 return false;
4739 if (!code_segment_valid(vcpu))
4740 return false;
4741 if (!stack_segment_valid(vcpu))
4742 return false;
4743 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4744 return false;
4745 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4746 return false;
4747 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4748 return false;
4749 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4750 return false;
4751 if (!tr_valid(vcpu))
4752 return false;
4753 if (!ldtr_valid(vcpu))
4754 return false;
4755 }
4756 /* TODO:
4757 * - Add checks on RIP
4758 * - Add checks on RFLAGS
4759 */
4760
4761 return true;
4762}
4763
5fa99cbe
JM
4764static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4765{
4766 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4767}
4768
d77c26fc 4769static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4770{
40dcaa9f 4771 gfn_t fn;
195aefde 4772 u16 data = 0;
1f755a82 4773 int idx, r;
6aa8b732 4774
40dcaa9f 4775 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4776 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4777 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4778 if (r < 0)
10589a46 4779 goto out;
195aefde 4780 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4781 r = kvm_write_guest_page(kvm, fn++, &data,
4782 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4783 if (r < 0)
10589a46 4784 goto out;
195aefde
IE
4785 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4786 if (r < 0)
10589a46 4787 goto out;
195aefde
IE
4788 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4789 if (r < 0)
10589a46 4790 goto out;
195aefde 4791 data = ~0;
10589a46
MT
4792 r = kvm_write_guest_page(kvm, fn, &data,
4793 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4794 sizeof(u8));
10589a46 4795out:
40dcaa9f 4796 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4797 return r;
6aa8b732
AK
4798}
4799
b7ebfb05
SY
4800static int init_rmode_identity_map(struct kvm *kvm)
4801{
f51770ed 4802 int i, idx, r = 0;
ba049e93 4803 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4804 u32 tmp;
4805
a255d479
TC
4806 /* Protect kvm->arch.ept_identity_pagetable_done. */
4807 mutex_lock(&kvm->slots_lock);
4808
f51770ed 4809 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4810 goto out2;
a255d479 4811
d8a6e365
DH
4812 if (!kvm->arch.ept_identity_map_addr)
4813 kvm->arch.ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
b927a3ce 4814 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479 4815
d8a6e365
DH
4816 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4817 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
f51770ed 4818 if (r < 0)
a255d479
TC
4819 goto out2;
4820
40dcaa9f 4821 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4822 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4823 if (r < 0)
4824 goto out;
4825 /* Set up identity-mapping pagetable for EPT in real mode */
4826 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4827 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4828 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4829 r = kvm_write_guest_page(kvm, identity_map_pfn,
4830 &tmp, i * sizeof(tmp), sizeof(tmp));
4831 if (r < 0)
4832 goto out;
4833 }
4834 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4835
b7ebfb05 4836out:
40dcaa9f 4837 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4838
4839out2:
4840 mutex_unlock(&kvm->slots_lock);
f51770ed 4841 return r;
b7ebfb05
SY
4842}
4843
6aa8b732
AK
4844static void seg_setup(int seg)
4845{
772e0318 4846 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4847 unsigned int ar;
6aa8b732
AK
4848
4849 vmcs_write16(sf->selector, 0);
4850 vmcs_writel(sf->base, 0);
4851 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4852 ar = 0x93;
4853 if (seg == VCPU_SREG_CS)
4854 ar |= 0x08; /* code segment */
3a624e29
NK
4855
4856 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4857}
4858
f78e0e2e
SY
4859static int alloc_apic_access_page(struct kvm *kvm)
4860{
4484141a 4861 struct page *page;
f78e0e2e
SY
4862 int r = 0;
4863
79fac95e 4864 mutex_lock(&kvm->slots_lock);
c24ae0dc 4865 if (kvm->arch.apic_access_page_done)
f78e0e2e 4866 goto out;
1d8007bd
PB
4867 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4868 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4869 if (r)
4870 goto out;
72dc67a6 4871
73a6d941 4872 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4873 if (is_error_page(page)) {
4874 r = -EFAULT;
4875 goto out;
4876 }
4877
c24ae0dc
TC
4878 /*
4879 * Do not pin the page in memory, so that memory hot-unplug
4880 * is able to migrate it.
4881 */
4882 put_page(page);
4883 kvm->arch.apic_access_page_done = true;
f78e0e2e 4884out:
79fac95e 4885 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4886 return r;
4887}
4888
991e7a0e 4889static int allocate_vpid(void)
2384d2b3
SY
4890{
4891 int vpid;
4892
919818ab 4893 if (!enable_vpid)
991e7a0e 4894 return 0;
2384d2b3
SY
4895 spin_lock(&vmx_vpid_lock);
4896 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4897 if (vpid < VMX_NR_VPIDS)
2384d2b3 4898 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4899 else
4900 vpid = 0;
2384d2b3 4901 spin_unlock(&vmx_vpid_lock);
991e7a0e 4902 return vpid;
2384d2b3
SY
4903}
4904
991e7a0e 4905static void free_vpid(int vpid)
cdbecfc3 4906{
991e7a0e 4907 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4908 return;
4909 spin_lock(&vmx_vpid_lock);
991e7a0e 4910 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4911 spin_unlock(&vmx_vpid_lock);
4912}
4913
8d14695f
YZ
4914#define MSR_TYPE_R 1
4915#define MSR_TYPE_W 2
4916static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4917 u32 msr, int type)
25c5f225 4918{
3e7c73e9 4919 int f = sizeof(unsigned long);
25c5f225
SY
4920
4921 if (!cpu_has_vmx_msr_bitmap())
4922 return;
4923
4924 /*
4925 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4926 * have the write-low and read-high bitmap offsets the wrong way round.
4927 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4928 */
25c5f225 4929 if (msr <= 0x1fff) {
8d14695f
YZ
4930 if (type & MSR_TYPE_R)
4931 /* read-low */
4932 __clear_bit(msr, msr_bitmap + 0x000 / f);
4933
4934 if (type & MSR_TYPE_W)
4935 /* write-low */
4936 __clear_bit(msr, msr_bitmap + 0x800 / f);
4937
25c5f225
SY
4938 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4939 msr &= 0x1fff;
8d14695f
YZ
4940 if (type & MSR_TYPE_R)
4941 /* read-high */
4942 __clear_bit(msr, msr_bitmap + 0x400 / f);
4943
4944 if (type & MSR_TYPE_W)
4945 /* write-high */
4946 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4947
4948 }
4949}
4950
f2b93280
WV
4951/*
4952 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4953 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4954 */
4955static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4956 unsigned long *msr_bitmap_nested,
4957 u32 msr, int type)
4958{
4959 int f = sizeof(unsigned long);
4960
4961 if (!cpu_has_vmx_msr_bitmap()) {
4962 WARN_ON(1);
4963 return;
4964 }
4965
4966 /*
4967 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4968 * have the write-low and read-high bitmap offsets the wrong way round.
4969 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4970 */
4971 if (msr <= 0x1fff) {
4972 if (type & MSR_TYPE_R &&
4973 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4974 /* read-low */
4975 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4976
4977 if (type & MSR_TYPE_W &&
4978 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4979 /* write-low */
4980 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4981
4982 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4983 msr &= 0x1fff;
4984 if (type & MSR_TYPE_R &&
4985 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4986 /* read-high */
4987 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4988
4989 if (type & MSR_TYPE_W &&
4990 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4991 /* write-high */
4992 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4993
4994 }
4995}
4996
5897297b
AK
4997static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4998{
4999 if (!longmode_only)
8d14695f
YZ
5000 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
5001 msr, MSR_TYPE_R | MSR_TYPE_W);
5002 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
5003 msr, MSR_TYPE_R | MSR_TYPE_W);
5004}
5005
2e69f865 5006static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
8d14695f 5007{
f6e90f9e 5008 if (apicv_active) {
c63e4563 5009 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
2e69f865 5010 msr, type);
c63e4563 5011 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
2e69f865 5012 msr, type);
f6e90f9e 5013 } else {
f6e90f9e 5014 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
2e69f865 5015 msr, type);
f6e90f9e 5016 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
2e69f865 5017 msr, type);
f6e90f9e 5018 }
5897297b
AK
5019}
5020
b2a05fef 5021static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
d50ab6c1 5022{
d62caabb 5023 return enable_apicv;
d50ab6c1
PB
5024}
5025
c9f04407
DM
5026static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5027{
5028 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5029 gfn_t gfn;
5030
5031 /*
5032 * Don't need to mark the APIC access page dirty; it is never
5033 * written to by the CPU during APIC virtualization.
5034 */
5035
5036 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5037 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5038 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5039 }
5040
5041 if (nested_cpu_has_posted_intr(vmcs12)) {
5042 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5043 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5044 }
5045}
5046
5047
6342c50a 5048static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
5049{
5050 struct vcpu_vmx *vmx = to_vmx(vcpu);
5051 int max_irr;
5052 void *vapic_page;
5053 u16 status;
5054
c9f04407
DM
5055 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5056 return;
705699a1 5057
c9f04407
DM
5058 vmx->nested.pi_pending = false;
5059 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5060 return;
705699a1 5061
c9f04407
DM
5062 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5063 if (max_irr != 256) {
705699a1 5064 vapic_page = kmap(vmx->nested.virtual_apic_page);
705699a1
WV
5065 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5066 kunmap(vmx->nested.virtual_apic_page);
5067
5068 status = vmcs_read16(GUEST_INTR_STATUS);
5069 if ((u8)max_irr > ((u8)status & 0xff)) {
5070 status &= ~0xff;
5071 status |= (u8)max_irr;
5072 vmcs_write16(GUEST_INTR_STATUS, status);
5073 }
5074 }
c9f04407
DM
5075
5076 nested_mark_vmcs12_pages_dirty(vcpu);
705699a1
WV
5077}
5078
06a5524f
WV
5079static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5080 bool nested)
21bc8dc5
RK
5081{
5082#ifdef CONFIG_SMP
06a5524f
WV
5083 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5084
21bc8dc5 5085 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6 5086 /*
5753743f
HZ
5087 * The vector of interrupt to be delivered to vcpu had
5088 * been set in PIR before this function.
5089 *
5090 * Following cases will be reached in this block, and
5091 * we always send a notification event in all cases as
5092 * explained below.
5093 *
5094 * Case 1: vcpu keeps in non-root mode. Sending a
5095 * notification event posts the interrupt to vcpu.
5096 *
5097 * Case 2: vcpu exits to root mode and is still
5098 * runnable. PIR will be synced to vIRR before the
5099 * next vcpu entry. Sending a notification event in
5100 * this case has no effect, as vcpu is not in root
5101 * mode.
28b835d6 5102 *
5753743f
HZ
5103 * Case 3: vcpu exits to root mode and is blocked.
5104 * vcpu_block() has already synced PIR to vIRR and
5105 * never blocks vcpu if vIRR is not cleared. Therefore,
5106 * a blocked vcpu here does not wait for any requested
5107 * interrupts in PIR, and sending a notification event
5108 * which has no effect is safe here.
28b835d6 5109 */
28b835d6 5110
06a5524f 5111 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
21bc8dc5
RK
5112 return true;
5113 }
5114#endif
5115 return false;
5116}
5117
705699a1
WV
5118static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5119 int vector)
5120{
5121 struct vcpu_vmx *vmx = to_vmx(vcpu);
5122
5123 if (is_guest_mode(vcpu) &&
5124 vector == vmx->nested.posted_intr_nv) {
5125 /* the PIR and ON have been set by L1. */
06a5524f 5126 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
705699a1
WV
5127 /*
5128 * If a posted intr is not recognized by hardware,
5129 * we will accomplish it in the next vmentry.
5130 */
5131 vmx->nested.pi_pending = true;
5132 kvm_make_request(KVM_REQ_EVENT, vcpu);
5133 return 0;
5134 }
5135 return -1;
5136}
a20ed54d
YZ
5137/*
5138 * Send interrupt to vcpu via posted interrupt way.
5139 * 1. If target vcpu is running(non-root mode), send posted interrupt
5140 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5141 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5142 * interrupt from PIR in next vmentry.
5143 */
5144static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5145{
5146 struct vcpu_vmx *vmx = to_vmx(vcpu);
5147 int r;
5148
705699a1
WV
5149 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5150 if (!r)
5151 return;
5152
a20ed54d
YZ
5153 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5154 return;
5155
b95234c8
PB
5156 /* If a previous notification has sent the IPI, nothing to do. */
5157 if (pi_test_and_set_on(&vmx->pi_desc))
5158 return;
5159
06a5524f 5160 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
a20ed54d
YZ
5161 kvm_vcpu_kick(vcpu);
5162}
5163
a3a8ff8e
NHE
5164/*
5165 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5166 * will not change in the lifetime of the guest.
5167 * Note that host-state that does change is set elsewhere. E.g., host-state
5168 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5169 */
a547c6db 5170static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5171{
5172 u32 low32, high32;
5173 unsigned long tmpl;
5174 struct desc_ptr dt;
d6e41f11 5175 unsigned long cr0, cr3, cr4;
a3a8ff8e 5176
04ac88ab
AL
5177 cr0 = read_cr0();
5178 WARN_ON(cr0 & X86_CR0_TS);
5179 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
d6e41f11
AL
5180
5181 /*
5182 * Save the most likely value for this task's CR3 in the VMCS.
5183 * We can't use __get_current_cr3_fast() because we're not atomic.
5184 */
6c690ee1 5185 cr3 = __read_cr3();
d6e41f11 5186 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
44889942 5187 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
a3a8ff8e 5188
d974baa3 5189 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5190 cr4 = cr4_read_shadow();
d974baa3 5191 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
44889942 5192 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3 5193
a3a8ff8e 5194 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5195#ifdef CONFIG_X86_64
5196 /*
5197 * Load null selectors, so we can avoid reloading them in
5198 * __vmx_load_host_state(), in case userspace uses the null selectors
5199 * too (the expected case).
5200 */
5201 vmcs_write16(HOST_DS_SELECTOR, 0);
5202 vmcs_write16(HOST_ES_SELECTOR, 0);
5203#else
a3a8ff8e
NHE
5204 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5205 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5206#endif
a3a8ff8e
NHE
5207 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5208 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5209
87930019 5210 store_idt(&dt);
a3a8ff8e 5211 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5212 vmx->host_idt_base = dt.address;
a3a8ff8e 5213
83287ea4 5214 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5215
5216 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5217 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5218 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5219 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5220
5221 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5222 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5223 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5224 }
5225}
5226
bf8179a0
NHE
5227static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5228{
5229 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5230 if (enable_ept)
5231 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5232 if (is_guest_mode(&vmx->vcpu))
5233 vmx->vcpu.arch.cr4_guest_owned_bits &=
5234 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5235 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5236}
5237
01e439be
YZ
5238static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5239{
5240 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5241
d62caabb 5242 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5243 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
d02fcf50
PB
5244
5245 if (!enable_vnmi)
5246 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
5247
64672c95
YJ
5248 /* Enable the preemption timer dynamically */
5249 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5250 return pin_based_exec_ctrl;
5251}
5252
d62caabb
AS
5253static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5254{
5255 struct vcpu_vmx *vmx = to_vmx(vcpu);
5256
5257 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5258 if (cpu_has_secondary_exec_ctrls()) {
5259 if (kvm_vcpu_apicv_active(vcpu))
5260 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5261 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5262 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5263 else
5264 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5265 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5266 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5267 }
5268
5269 if (cpu_has_vmx_msr_bitmap())
5270 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
5271}
5272
bf8179a0
NHE
5273static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5274{
5275 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5276
5277 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5278 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5279
35754c98 5280 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5281 exec_control &= ~CPU_BASED_TPR_SHADOW;
5282#ifdef CONFIG_X86_64
5283 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5284 CPU_BASED_CR8_LOAD_EXITING;
5285#endif
5286 }
5287 if (!enable_ept)
5288 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5289 CPU_BASED_CR3_LOAD_EXITING |
5290 CPU_BASED_INVLPG_EXITING;
5291 return exec_control;
5292}
5293
45ec368c 5294static bool vmx_rdrand_supported(void)
bf8179a0 5295{
45ec368c 5296 return vmcs_config.cpu_based_2nd_exec_ctrl &
736fdf72 5297 SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5298}
5299
75f4fc8d
JM
5300static bool vmx_rdseed_supported(void)
5301{
5302 return vmcs_config.cpu_based_2nd_exec_ctrl &
736fdf72 5303 SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5304}
5305
80154d77 5306static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
bf8179a0 5307{
80154d77
PB
5308 struct kvm_vcpu *vcpu = &vmx->vcpu;
5309
bf8179a0 5310 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
80154d77 5311 if (!cpu_need_virtualize_apic_accesses(vcpu))
bf8179a0
NHE
5312 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5313 if (vmx->vpid == 0)
5314 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5315 if (!enable_ept) {
5316 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5317 enable_unrestricted_guest = 0;
ad756a16
MJ
5318 /* Enable INVPCID for non-ept guests may cause performance regression. */
5319 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5320 }
5321 if (!enable_unrestricted_guest)
5322 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5323 if (!ple_gap)
5324 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
80154d77 5325 if (!kvm_vcpu_apicv_active(vcpu))
c7c9c56c
YZ
5326 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5327 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5328 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5329 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5330 (handle_vmptrld).
5331 We can NOT enable shadow_vmcs here because we don't have yet
5332 a current VMCS12
5333 */
5334 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5335
5336 if (!enable_pml)
5337 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5338
3db13480
PB
5339 if (vmx_xsaves_supported()) {
5340 /* Exposing XSAVES only when XSAVE is exposed */
5341 bool xsaves_enabled =
5342 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5343 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5344
5345 if (!xsaves_enabled)
5346 exec_control &= ~SECONDARY_EXEC_XSAVES;
5347
5348 if (nested) {
5349 if (xsaves_enabled)
5350 vmx->nested.nested_vmx_secondary_ctls_high |=
5351 SECONDARY_EXEC_XSAVES;
5352 else
5353 vmx->nested.nested_vmx_secondary_ctls_high &=
5354 ~SECONDARY_EXEC_XSAVES;
5355 }
5356 }
5357
80154d77
PB
5358 if (vmx_rdtscp_supported()) {
5359 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5360 if (!rdtscp_enabled)
5361 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5362
5363 if (nested) {
5364 if (rdtscp_enabled)
5365 vmx->nested.nested_vmx_secondary_ctls_high |=
5366 SECONDARY_EXEC_RDTSCP;
5367 else
5368 vmx->nested.nested_vmx_secondary_ctls_high &=
5369 ~SECONDARY_EXEC_RDTSCP;
5370 }
5371 }
5372
5373 if (vmx_invpcid_supported()) {
5374 /* Exposing INVPCID only when PCID is exposed */
5375 bool invpcid_enabled =
5376 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5377 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5378
5379 if (!invpcid_enabled) {
5380 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5381 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5382 }
5383
5384 if (nested) {
5385 if (invpcid_enabled)
5386 vmx->nested.nested_vmx_secondary_ctls_high |=
5387 SECONDARY_EXEC_ENABLE_INVPCID;
5388 else
5389 vmx->nested.nested_vmx_secondary_ctls_high &=
5390 ~SECONDARY_EXEC_ENABLE_INVPCID;
5391 }
5392 }
5393
45ec368c
JM
5394 if (vmx_rdrand_supported()) {
5395 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5396 if (rdrand_enabled)
736fdf72 5397 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5398
5399 if (nested) {
5400 if (rdrand_enabled)
5401 vmx->nested.nested_vmx_secondary_ctls_high |=
736fdf72 5402 SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5403 else
5404 vmx->nested.nested_vmx_secondary_ctls_high &=
736fdf72 5405 ~SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5406 }
5407 }
5408
75f4fc8d
JM
5409 if (vmx_rdseed_supported()) {
5410 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5411 if (rdseed_enabled)
736fdf72 5412 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5413
5414 if (nested) {
5415 if (rdseed_enabled)
5416 vmx->nested.nested_vmx_secondary_ctls_high |=
736fdf72 5417 SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5418 else
5419 vmx->nested.nested_vmx_secondary_ctls_high &=
736fdf72 5420 ~SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5421 }
5422 }
5423
80154d77 5424 vmx->secondary_exec_control = exec_control;
bf8179a0
NHE
5425}
5426
ce88decf
XG
5427static void ept_set_mmio_spte_mask(void)
5428{
5429 /*
5430 * EPT Misconfigurations can be generated if the value of bits 2:0
5431 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5432 */
dcdca5fe
PF
5433 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5434 VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5435}
5436
f53cd63c 5437#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5438/*
5439 * Sets up the vmcs for emulated real mode.
5440 */
12d79917 5441static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5442{
2e4ce7f5 5443#ifdef CONFIG_X86_64
6aa8b732 5444 unsigned long a;
2e4ce7f5 5445#endif
6aa8b732 5446 int i;
6aa8b732 5447
6aa8b732 5448 /* I/O */
3e7c73e9
AK
5449 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5450 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5451
4607c2d7
AG
5452 if (enable_shadow_vmcs) {
5453 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5454 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5455 }
25c5f225 5456 if (cpu_has_vmx_msr_bitmap())
5897297b 5457 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 5458
6aa8b732
AK
5459 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5460
6aa8b732 5461 /* Control */
01e439be 5462 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5463 vmx->hv_deadline_tsc = -1;
6e5d865c 5464
bf8179a0 5465 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5466
dfa169bb 5467 if (cpu_has_secondary_exec_ctrls()) {
80154d77 5468 vmx_compute_secondary_exec_control(vmx);
bf8179a0 5469 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
80154d77 5470 vmx->secondary_exec_control);
dfa169bb 5471 }
f78e0e2e 5472
d62caabb 5473 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5474 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5475 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5476 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5477 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5478
5479 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5480
0bcf261c 5481 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5482 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5483 }
5484
4b8d54f9
ZE
5485 if (ple_gap) {
5486 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5487 vmx->ple_window = ple_window;
5488 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5489 }
5490
c3707958
XG
5491 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5492 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5493 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5494
9581d442
AK
5495 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5496 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5497 vmx_set_constant_host_state(vmx);
05b3e0c2 5498#ifdef CONFIG_X86_64
6aa8b732
AK
5499 rdmsrl(MSR_FS_BASE, a);
5500 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5501 rdmsrl(MSR_GS_BASE, a);
5502 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5503#else
5504 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5505 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5506#endif
5507
2a499e49
BD
5508 if (cpu_has_vmx_vmfunc())
5509 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5510
2cc51560
ED
5511 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5512 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5513 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5514 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5515 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5516
74545705
RK
5517 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5518 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5519
03916db9 5520 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5521 u32 index = vmx_msr_index[i];
5522 u32 data_low, data_high;
a2fa3e9f 5523 int j = vmx->nmsrs;
6aa8b732
AK
5524
5525 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5526 continue;
432bd6cb
AK
5527 if (wrmsr_safe(index, data_low, data_high) < 0)
5528 continue;
26bb0981
AK
5529 vmx->guest_msrs[j].index = i;
5530 vmx->guest_msrs[j].data = 0;
d5696725 5531 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5532 ++vmx->nmsrs;
6aa8b732 5533 }
6aa8b732 5534
2961e876
GN
5535
5536 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5537
5538 /* 22.2.1, 20.8.1 */
2961e876 5539 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5540
bd7e5b08
PB
5541 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5542 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5543
bf8179a0 5544 set_cr4_guest_host_mask(vmx);
e00c8cf2 5545
f53cd63c
WL
5546 if (vmx_xsaves_supported())
5547 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5548
4e59516a
PF
5549 if (enable_pml) {
5550 ASSERT(vmx->pml_pg);
5551 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5552 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5553 }
e00c8cf2
AK
5554}
5555
d28bc9dd 5556static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5557{
5558 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5559 struct msr_data apic_base_msr;
d28bc9dd 5560 u64 cr0;
e00c8cf2 5561
7ffd92c5 5562 vmx->rmode.vm86_active = 0;
e00c8cf2 5563
ad312c7c 5564 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5565 kvm_set_cr8(vcpu, 0);
5566
5567 if (!init_event) {
5568 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5569 MSR_IA32_APICBASE_ENABLE;
5570 if (kvm_vcpu_is_reset_bsp(vcpu))
5571 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5572 apic_base_msr.host_initiated = true;
5573 kvm_set_apic_base(vcpu, &apic_base_msr);
5574 }
e00c8cf2 5575
2fb92db1
AK
5576 vmx_segment_cache_clear(vmx);
5577
5706be0d 5578 seg_setup(VCPU_SREG_CS);
66450a21 5579 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5580 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5581
5582 seg_setup(VCPU_SREG_DS);
5583 seg_setup(VCPU_SREG_ES);
5584 seg_setup(VCPU_SREG_FS);
5585 seg_setup(VCPU_SREG_GS);
5586 seg_setup(VCPU_SREG_SS);
5587
5588 vmcs_write16(GUEST_TR_SELECTOR, 0);
5589 vmcs_writel(GUEST_TR_BASE, 0);
5590 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5591 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5592
5593 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5594 vmcs_writel(GUEST_LDTR_BASE, 0);
5595 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5596 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5597
d28bc9dd
NA
5598 if (!init_event) {
5599 vmcs_write32(GUEST_SYSENTER_CS, 0);
5600 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5601 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5602 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5603 }
e00c8cf2 5604
c37c2873 5605 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
66450a21 5606 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5607
e00c8cf2
AK
5608 vmcs_writel(GUEST_GDTR_BASE, 0);
5609 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5610
5611 vmcs_writel(GUEST_IDTR_BASE, 0);
5612 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5613
443381a8 5614 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5615 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5616 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
a554d207
WL
5617 if (kvm_mpx_supported())
5618 vmcs_write64(GUEST_BNDCFGS, 0);
e00c8cf2 5619
e00c8cf2
AK
5620 setup_msrs(vmx);
5621
6aa8b732
AK
5622 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5623
d28bc9dd 5624 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5625 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5626 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5627 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5628 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5629 vmcs_write32(TPR_THRESHOLD, 0);
5630 }
5631
a73896cb 5632 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5633
2384d2b3
SY
5634 if (vmx->vpid != 0)
5635 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5636
d28bc9dd 5637 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5638 vmx->vcpu.arch.cr0 = cr0;
f2463247 5639 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5640 vmx_set_cr4(vcpu, 0);
5690891b 5641 vmx_set_efer(vcpu, 0);
bd7e5b08 5642
d28bc9dd 5643 update_exception_bitmap(vcpu);
6aa8b732 5644
dd5f5341 5645 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5646}
5647
b6f1250e
NHE
5648/*
5649 * In nested virtualization, check if L1 asked to exit on external interrupts.
5650 * For most existing hypervisors, this will always return true.
5651 */
5652static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5653{
5654 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5655 PIN_BASED_EXT_INTR_MASK;
5656}
5657
77b0f5d6
BD
5658/*
5659 * In nested virtualization, check if L1 has set
5660 * VM_EXIT_ACK_INTR_ON_EXIT
5661 */
5662static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5663{
5664 return get_vmcs12(vcpu)->vm_exit_controls &
5665 VM_EXIT_ACK_INTR_ON_EXIT;
5666}
5667
ea8ceb83
JK
5668static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5669{
5670 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5671 PIN_BASED_NMI_EXITING;
5672}
5673
c9a7953f 5674static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 5675{
47c0152e
PB
5676 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5677 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
5678}
5679
c9a7953f 5680static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 5681{
d02fcf50 5682 if (!enable_vnmi ||
8a1b4392 5683 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
c9a7953f
JK
5684 enable_irq_window(vcpu);
5685 return;
5686 }
3b86cd99 5687
47c0152e
PB
5688 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5689 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
5690}
5691
66fd3f7f 5692static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5693{
9c8cba37 5694 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5695 uint32_t intr;
5696 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5697
229456fc 5698 trace_kvm_inj_virq(irq);
2714d1d3 5699
fa89a817 5700 ++vcpu->stat.irq_injections;
7ffd92c5 5701 if (vmx->rmode.vm86_active) {
71f9833b
SH
5702 int inc_eip = 0;
5703 if (vcpu->arch.interrupt.soft)
5704 inc_eip = vcpu->arch.event_exit_inst_len;
5705 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5706 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5707 return;
5708 }
66fd3f7f
GN
5709 intr = irq | INTR_INFO_VALID_MASK;
5710 if (vcpu->arch.interrupt.soft) {
5711 intr |= INTR_TYPE_SOFT_INTR;
5712 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5713 vmx->vcpu.arch.event_exit_inst_len);
5714 } else
5715 intr |= INTR_TYPE_EXT_INTR;
5716 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5717}
5718
f08864b4
SY
5719static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5720{
66a5a347
JK
5721 struct vcpu_vmx *vmx = to_vmx(vcpu);
5722
d02fcf50 5723 if (!enable_vnmi) {
8a1b4392
PB
5724 /*
5725 * Tracking the NMI-blocked state in software is built upon
5726 * finding the next open IRQ window. This, in turn, depends on
5727 * well-behaving guests: They have to keep IRQs disabled at
5728 * least as long as the NMI handler runs. Otherwise we may
5729 * cause NMI nesting, maybe breaking the guest. But as this is
5730 * highly unlikely, we can live with the residual risk.
5731 */
5732 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
5733 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5734 }
5735
4c4a6f79
PB
5736 ++vcpu->stat.nmi_injections;
5737 vmx->loaded_vmcs->nmi_known_unmasked = false;
3b86cd99 5738
7ffd92c5 5739 if (vmx->rmode.vm86_active) {
71f9833b 5740 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5741 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5742 return;
5743 }
c5a6d5f7 5744
f08864b4
SY
5745 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5746 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5747}
5748
3cfc3092
JK
5749static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5750{
4c4a6f79
PB
5751 struct vcpu_vmx *vmx = to_vmx(vcpu);
5752 bool masked;
5753
d02fcf50 5754 if (!enable_vnmi)
8a1b4392 5755 return vmx->loaded_vmcs->soft_vnmi_blocked;
4c4a6f79 5756 if (vmx->loaded_vmcs->nmi_known_unmasked)
9d58b931 5757 return false;
4c4a6f79
PB
5758 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5759 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5760 return masked;
3cfc3092
JK
5761}
5762
5763static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5764{
5765 struct vcpu_vmx *vmx = to_vmx(vcpu);
5766
d02fcf50 5767 if (!enable_vnmi) {
8a1b4392
PB
5768 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5769 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5770 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5771 }
5772 } else {
5773 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5774 if (masked)
5775 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5776 GUEST_INTR_STATE_NMI);
5777 else
5778 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5779 GUEST_INTR_STATE_NMI);
5780 }
3cfc3092
JK
5781}
5782
2505dc9f
JK
5783static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5784{
b6b8a145
JK
5785 if (to_vmx(vcpu)->nested.nested_run_pending)
5786 return 0;
ea8ceb83 5787
d02fcf50 5788 if (!enable_vnmi &&
8a1b4392
PB
5789 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5790 return 0;
5791
2505dc9f
JK
5792 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5793 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5794 | GUEST_INTR_STATE_NMI));
5795}
5796
78646121
GN
5797static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5798{
b6b8a145
JK
5799 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5800 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5801 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5802 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5803}
5804
cbc94022
IE
5805static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5806{
5807 int ret;
cbc94022 5808
1d8007bd
PB
5809 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5810 PAGE_SIZE * 3);
cbc94022
IE
5811 if (ret)
5812 return ret;
bfc6d222 5813 kvm->arch.tss_addr = addr;
1f755a82 5814 return init_rmode_tss(kvm);
cbc94022
IE
5815}
5816
0ca1b4f4 5817static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5818{
77ab6db0 5819 switch (vec) {
77ab6db0 5820 case BP_VECTOR:
c573cd22
JK
5821 /*
5822 * Update instruction length as we may reinject the exception
5823 * from user space while in guest debugging mode.
5824 */
5825 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5826 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5827 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5828 return false;
5829 /* fall through */
5830 case DB_VECTOR:
5831 if (vcpu->guest_debug &
5832 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5833 return false;
d0bfb940
JK
5834 /* fall through */
5835 case DE_VECTOR:
77ab6db0
JK
5836 case OF_VECTOR:
5837 case BR_VECTOR:
5838 case UD_VECTOR:
5839 case DF_VECTOR:
5840 case SS_VECTOR:
5841 case GP_VECTOR:
5842 case MF_VECTOR:
0ca1b4f4
GN
5843 return true;
5844 break;
77ab6db0 5845 }
0ca1b4f4
GN
5846 return false;
5847}
5848
5849static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5850 int vec, u32 err_code)
5851{
5852 /*
5853 * Instruction with address size override prefix opcode 0x67
5854 * Cause the #SS fault with 0 error code in VM86 mode.
5855 */
5856 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5857 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5858 if (vcpu->arch.halt_request) {
5859 vcpu->arch.halt_request = 0;
5cb56059 5860 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5861 }
5862 return 1;
5863 }
5864 return 0;
5865 }
5866
5867 /*
5868 * Forward all other exceptions that are valid in real mode.
5869 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5870 * the required debugging infrastructure rework.
5871 */
5872 kvm_queue_exception(vcpu, vec);
5873 return 1;
6aa8b732
AK
5874}
5875
a0861c02
AK
5876/*
5877 * Trigger machine check on the host. We assume all the MSRs are already set up
5878 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5879 * We pass a fake environment to the machine check handler because we want
5880 * the guest to be always treated like user space, no matter what context
5881 * it used internally.
5882 */
5883static void kvm_machine_check(void)
5884{
5885#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5886 struct pt_regs regs = {
5887 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5888 .flags = X86_EFLAGS_IF,
5889 };
5890
5891 do_machine_check(&regs, 0);
5892#endif
5893}
5894
851ba692 5895static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5896{
5897 /* already handled by vcpu_run */
5898 return 1;
5899}
5900
851ba692 5901static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5902{
1155f76a 5903 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5904 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5905 u32 intr_info, ex_no, error_code;
42dbaa5a 5906 unsigned long cr2, rip, dr6;
6aa8b732
AK
5907 u32 vect_info;
5908 enum emulation_result er;
5909
1155f76a 5910 vect_info = vmx->idt_vectoring_info;
88786475 5911 intr_info = vmx->exit_intr_info;
6aa8b732 5912
a0861c02 5913 if (is_machine_check(intr_info))
851ba692 5914 return handle_machine_check(vcpu);
a0861c02 5915
ef85b673 5916 if (is_nmi(intr_info))
1b6269db 5917 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 5918
7aa81cc0 5919 if (is_invalid_opcode(intr_info)) {
ac9b305c 5920 WARN_ON_ONCE(is_guest_mode(vcpu));
51d8b661 5921 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
61cb57c9
LA
5922 if (er == EMULATE_USER_EXIT)
5923 return 0;
7aa81cc0 5924 if (er != EMULATE_DONE)
7ee5d940 5925 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5926 return 1;
5927 }
5928
6aa8b732 5929 error_code = 0;
2e11384c 5930 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5931 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5932
5933 /*
5934 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5935 * MMIO, it is better to report an internal error.
5936 * See the comments in vmx_handle_exit.
5937 */
5938 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5939 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5940 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5941 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5942 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5943 vcpu->run->internal.data[0] = vect_info;
5944 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5945 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5946 return 0;
5947 }
5948
6aa8b732
AK
5949 if (is_page_fault(intr_info)) {
5950 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1261bfa3
WL
5951 /* EPT won't cause page fault directly */
5952 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
d0006530 5953 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
6aa8b732
AK
5954 }
5955
d0bfb940 5956 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5957
5958 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5959 return handle_rmode_exception(vcpu, ex_no, error_code);
5960
42dbaa5a 5961 switch (ex_no) {
54a20552
EN
5962 case AC_VECTOR:
5963 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5964 return 1;
42dbaa5a
JK
5965 case DB_VECTOR:
5966 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5967 if (!(vcpu->guest_debug &
5968 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5969 vcpu->arch.dr6 &= ~15;
6f43ed01 5970 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5971 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5972 skip_emulated_instruction(vcpu);
5973
42dbaa5a
JK
5974 kvm_queue_exception(vcpu, DB_VECTOR);
5975 return 1;
5976 }
5977 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5978 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5979 /* fall through */
5980 case BP_VECTOR:
c573cd22
JK
5981 /*
5982 * Update instruction length as we may reinject #BP from
5983 * user space while in guest debugging mode. Reading it for
5984 * #DB as well causes no harm, it is not used in that case.
5985 */
5986 vmx->vcpu.arch.event_exit_inst_len =
5987 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5988 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5989 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5990 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5991 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5992 break;
5993 default:
d0bfb940
JK
5994 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5995 kvm_run->ex.exception = ex_no;
5996 kvm_run->ex.error_code = error_code;
42dbaa5a 5997 break;
6aa8b732 5998 }
6aa8b732
AK
5999 return 0;
6000}
6001
851ba692 6002static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 6003{
1165f5fe 6004 ++vcpu->stat.irq_exits;
6aa8b732
AK
6005 return 1;
6006}
6007
851ba692 6008static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 6009{
851ba692 6010 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
bbeac283 6011 vcpu->mmio_needed = 0;
988ad74f
AK
6012 return 0;
6013}
6aa8b732 6014
851ba692 6015static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 6016{
bfdaab09 6017 unsigned long exit_qualification;
6affcbed 6018 int size, in, string, ret;
039576c0 6019 unsigned port;
6aa8b732 6020
bfdaab09 6021 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 6022 string = (exit_qualification & 16) != 0;
cf8f70bf 6023 in = (exit_qualification & 8) != 0;
e70669ab 6024
cf8f70bf 6025 ++vcpu->stat.io_exits;
e70669ab 6026
cf8f70bf 6027 if (string || in)
51d8b661 6028 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 6029
cf8f70bf
GN
6030 port = exit_qualification >> 16;
6031 size = (exit_qualification & 7) + 1;
cf8f70bf 6032
6affcbed
KH
6033 ret = kvm_skip_emulated_instruction(vcpu);
6034
6035 /*
6036 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6037 * KVM_EXIT_DEBUG here.
6038 */
6039 return kvm_fast_pio_out(vcpu, size, port) && ret;
6aa8b732
AK
6040}
6041
102d8325
IM
6042static void
6043vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6044{
6045 /*
6046 * Patch in the VMCALL instruction:
6047 */
6048 hypercall[0] = 0x0f;
6049 hypercall[1] = 0x01;
6050 hypercall[2] = 0xc1;
102d8325
IM
6051}
6052
0fa06071 6053/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
6054static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6055{
eeadf9e7 6056 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6057 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6058 unsigned long orig_val = val;
6059
eeadf9e7
NHE
6060 /*
6061 * We get here when L2 changed cr0 in a way that did not change
6062 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
6063 * but did change L0 shadowed bits. So we first calculate the
6064 * effective cr0 value that L1 would like to write into the
6065 * hardware. It consists of the L2-owned bits from the new
6066 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 6067 */
1a0d74e6
JK
6068 val = (val & ~vmcs12->cr0_guest_host_mask) |
6069 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6070
3899152c 6071 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 6072 return 1;
1a0d74e6
JK
6073
6074 if (kvm_set_cr0(vcpu, val))
6075 return 1;
6076 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 6077 return 0;
1a0d74e6
JK
6078 } else {
6079 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 6080 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 6081 return 1;
3899152c 6082
eeadf9e7 6083 return kvm_set_cr0(vcpu, val);
1a0d74e6 6084 }
eeadf9e7
NHE
6085}
6086
6087static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6088{
6089 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6090 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6091 unsigned long orig_val = val;
6092
6093 /* analogously to handle_set_cr0 */
6094 val = (val & ~vmcs12->cr4_guest_host_mask) |
6095 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6096 if (kvm_set_cr4(vcpu, val))
eeadf9e7 6097 return 1;
1a0d74e6 6098 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
6099 return 0;
6100 } else
6101 return kvm_set_cr4(vcpu, val);
6102}
6103
851ba692 6104static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 6105{
229456fc 6106 unsigned long exit_qualification, val;
6aa8b732
AK
6107 int cr;
6108 int reg;
49a9b07e 6109 int err;
6affcbed 6110 int ret;
6aa8b732 6111
bfdaab09 6112 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
6113 cr = exit_qualification & 15;
6114 reg = (exit_qualification >> 8) & 15;
6115 switch ((exit_qualification >> 4) & 3) {
6116 case 0: /* mov to cr */
1e32c079 6117 val = kvm_register_readl(vcpu, reg);
229456fc 6118 trace_kvm_cr_write(cr, val);
6aa8b732
AK
6119 switch (cr) {
6120 case 0:
eeadf9e7 6121 err = handle_set_cr0(vcpu, val);
6affcbed 6122 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6123 case 3:
2390218b 6124 err = kvm_set_cr3(vcpu, val);
6affcbed 6125 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6126 case 4:
eeadf9e7 6127 err = handle_set_cr4(vcpu, val);
6affcbed 6128 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
6129 case 8: {
6130 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 6131 u8 cr8 = (u8)val;
eea1cff9 6132 err = kvm_set_cr8(vcpu, cr8);
6affcbed 6133 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 6134 if (lapic_in_kernel(vcpu))
6affcbed 6135 return ret;
0a5fff19 6136 if (cr8_prev <= cr8)
6affcbed
KH
6137 return ret;
6138 /*
6139 * TODO: we might be squashing a
6140 * KVM_GUESTDBG_SINGLESTEP-triggered
6141 * KVM_EXIT_DEBUG here.
6142 */
851ba692 6143 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
6144 return 0;
6145 }
4b8073e4 6146 }
6aa8b732 6147 break;
25c4c276 6148 case 2: /* clts */
bd7e5b08
PB
6149 WARN_ONCE(1, "Guest should always own CR0.TS");
6150 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 6151 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 6152 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6153 case 1: /*mov from cr*/
6154 switch (cr) {
6155 case 3:
9f8fe504
AK
6156 val = kvm_read_cr3(vcpu);
6157 kvm_register_write(vcpu, reg, val);
6158 trace_kvm_cr_read(cr, val);
6affcbed 6159 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 6160 case 8:
229456fc
MT
6161 val = kvm_get_cr8(vcpu);
6162 kvm_register_write(vcpu, reg, val);
6163 trace_kvm_cr_read(cr, val);
6affcbed 6164 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6165 }
6166 break;
6167 case 3: /* lmsw */
a1f83a74 6168 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 6169 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 6170 kvm_lmsw(vcpu, val);
6aa8b732 6171
6affcbed 6172 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6173 default:
6174 break;
6175 }
851ba692 6176 vcpu->run->exit_reason = 0;
a737f256 6177 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
6178 (int)(exit_qualification >> 4) & 3, cr);
6179 return 0;
6180}
6181
851ba692 6182static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 6183{
bfdaab09 6184 unsigned long exit_qualification;
16f8a6f9
NA
6185 int dr, dr7, reg;
6186
6187 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6188 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6189
6190 /* First, if DR does not exist, trigger UD */
6191 if (!kvm_require_dr(vcpu, dr))
6192 return 1;
6aa8b732 6193
f2483415 6194 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
6195 if (!kvm_require_cpl(vcpu, 0))
6196 return 1;
16f8a6f9
NA
6197 dr7 = vmcs_readl(GUEST_DR7);
6198 if (dr7 & DR7_GD) {
42dbaa5a
JK
6199 /*
6200 * As the vm-exit takes precedence over the debug trap, we
6201 * need to emulate the latter, either for the host or the
6202 * guest debugging itself.
6203 */
6204 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 6205 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 6206 vcpu->run->debug.arch.dr7 = dr7;
82b32774 6207 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
6208 vcpu->run->debug.arch.exception = DB_VECTOR;
6209 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
6210 return 0;
6211 } else {
7305eb5d 6212 vcpu->arch.dr6 &= ~15;
6f43ed01 6213 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
6214 kvm_queue_exception(vcpu, DB_VECTOR);
6215 return 1;
6216 }
6217 }
6218
81908bf4 6219 if (vcpu->guest_debug == 0) {
8f22372f
PB
6220 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6221 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6222
6223 /*
6224 * No more DR vmexits; force a reload of the debug registers
6225 * and reenter on this instruction. The next vmexit will
6226 * retrieve the full state of the debug registers.
6227 */
6228 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6229 return 1;
6230 }
6231
42dbaa5a
JK
6232 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6233 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 6234 unsigned long val;
4c4d563b
JK
6235
6236 if (kvm_get_dr(vcpu, dr, &val))
6237 return 1;
6238 kvm_register_write(vcpu, reg, val);
020df079 6239 } else
5777392e 6240 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
6241 return 1;
6242
6affcbed 6243 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6244}
6245
73aaf249
JK
6246static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6247{
6248 return vcpu->arch.dr6;
6249}
6250
6251static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6252{
6253}
6254
81908bf4
PB
6255static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6256{
81908bf4
PB
6257 get_debugreg(vcpu->arch.db[0], 0);
6258 get_debugreg(vcpu->arch.db[1], 1);
6259 get_debugreg(vcpu->arch.db[2], 2);
6260 get_debugreg(vcpu->arch.db[3], 3);
6261 get_debugreg(vcpu->arch.dr6, 6);
6262 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6263
6264 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 6265 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6266}
6267
020df079
GN
6268static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6269{
6270 vmcs_writel(GUEST_DR7, val);
6271}
6272
851ba692 6273static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 6274{
6a908b62 6275 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
6276}
6277
851ba692 6278static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 6279{
ad312c7c 6280 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 6281 struct msr_data msr_info;
6aa8b732 6282
609e36d3
PB
6283 msr_info.index = ecx;
6284 msr_info.host_initiated = false;
6285 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 6286 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 6287 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6288 return 1;
6289 }
6290
609e36d3 6291 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6292
6aa8b732 6293 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6294 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6295 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6296 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6297}
6298
851ba692 6299static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6300{
8fe8ab46 6301 struct msr_data msr;
ad312c7c
ZX
6302 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6303 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6304 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6305
8fe8ab46
WA
6306 msr.data = data;
6307 msr.index = ecx;
6308 msr.host_initiated = false;
854e8bb1 6309 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6310 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6311 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6312 return 1;
6313 }
6314
59200273 6315 trace_kvm_msr_write(ecx, data);
6affcbed 6316 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6317}
6318
851ba692 6319static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6320{
eb90f341 6321 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6322 return 1;
6323}
6324
851ba692 6325static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6326{
47c0152e
PB
6327 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6328 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6329
3842d135
AK
6330 kvm_make_request(KVM_REQ_EVENT, vcpu);
6331
a26bf12a 6332 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6333 return 1;
6334}
6335
851ba692 6336static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6337{
d3bef15f 6338 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6339}
6340
851ba692 6341static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6342{
0d9c055e 6343 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6344}
6345
ec25d5e6
GN
6346static int handle_invd(struct kvm_vcpu *vcpu)
6347{
51d8b661 6348 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6349}
6350
851ba692 6351static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6352{
f9c617f6 6353 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6354
6355 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6356 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6357}
6358
fee84b07
AK
6359static int handle_rdpmc(struct kvm_vcpu *vcpu)
6360{
6361 int err;
6362
6363 err = kvm_rdpmc(vcpu);
6affcbed 6364 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6365}
6366
851ba692 6367static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6368{
6affcbed 6369 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6370}
6371
2acf923e
DC
6372static int handle_xsetbv(struct kvm_vcpu *vcpu)
6373{
6374 u64 new_bv = kvm_read_edx_eax(vcpu);
6375 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6376
6377 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6378 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6379 return 1;
6380}
6381
f53cd63c
WL
6382static int handle_xsaves(struct kvm_vcpu *vcpu)
6383{
6affcbed 6384 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6385 WARN(1, "this should never happen\n");
6386 return 1;
6387}
6388
6389static int handle_xrstors(struct kvm_vcpu *vcpu)
6390{
6affcbed 6391 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6392 WARN(1, "this should never happen\n");
6393 return 1;
6394}
6395
851ba692 6396static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6397{
58fbbf26
KT
6398 if (likely(fasteoi)) {
6399 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6400 int access_type, offset;
6401
6402 access_type = exit_qualification & APIC_ACCESS_TYPE;
6403 offset = exit_qualification & APIC_ACCESS_OFFSET;
6404 /*
6405 * Sane guest uses MOV to write EOI, with written value
6406 * not cared. So make a short-circuit here by avoiding
6407 * heavy instruction emulation.
6408 */
6409 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6410 (offset == APIC_EOI)) {
6411 kvm_lapic_set_eoi(vcpu);
6affcbed 6412 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6413 }
6414 }
51d8b661 6415 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6416}
6417
c7c9c56c
YZ
6418static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6419{
6420 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6421 int vector = exit_qualification & 0xff;
6422
6423 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6424 kvm_apic_set_eoi_accelerated(vcpu, vector);
6425 return 1;
6426}
6427
83d4c286
YZ
6428static int handle_apic_write(struct kvm_vcpu *vcpu)
6429{
6430 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6431 u32 offset = exit_qualification & 0xfff;
6432
6433 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6434 kvm_apic_write_nodecode(vcpu, offset);
6435 return 1;
6436}
6437
851ba692 6438static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6439{
60637aac 6440 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6441 unsigned long exit_qualification;
e269fb21
JK
6442 bool has_error_code = false;
6443 u32 error_code = 0;
37817f29 6444 u16 tss_selector;
7f3d35fd 6445 int reason, type, idt_v, idt_index;
64a7ec06
GN
6446
6447 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6448 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6449 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6450
6451 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6452
6453 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6454 if (reason == TASK_SWITCH_GATE && idt_v) {
6455 switch (type) {
6456 case INTR_TYPE_NMI_INTR:
6457 vcpu->arch.nmi_injected = false;
654f06fc 6458 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6459 break;
6460 case INTR_TYPE_EXT_INTR:
66fd3f7f 6461 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6462 kvm_clear_interrupt_queue(vcpu);
6463 break;
6464 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6465 if (vmx->idt_vectoring_info &
6466 VECTORING_INFO_DELIVER_CODE_MASK) {
6467 has_error_code = true;
6468 error_code =
6469 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6470 }
6471 /* fall through */
64a7ec06
GN
6472 case INTR_TYPE_SOFT_EXCEPTION:
6473 kvm_clear_exception_queue(vcpu);
6474 break;
6475 default:
6476 break;
6477 }
60637aac 6478 }
37817f29
IE
6479 tss_selector = exit_qualification;
6480
64a7ec06
GN
6481 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6482 type != INTR_TYPE_EXT_INTR &&
6483 type != INTR_TYPE_NMI_INTR))
6484 skip_emulated_instruction(vcpu);
6485
7f3d35fd
KW
6486 if (kvm_task_switch(vcpu, tss_selector,
6487 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6488 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6489 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6490 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6491 vcpu->run->internal.ndata = 0;
42dbaa5a 6492 return 0;
acb54517 6493 }
42dbaa5a 6494
42dbaa5a
JK
6495 /*
6496 * TODO: What about debug traps on tss switch?
6497 * Are we supposed to inject them and update dr6?
6498 */
6499
6500 return 1;
37817f29
IE
6501}
6502
851ba692 6503static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6504{
f9c617f6 6505 unsigned long exit_qualification;
1439442c 6506 gpa_t gpa;
eebed243 6507 u64 error_code;
1439442c 6508
f9c617f6 6509 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6510
0be9c7a8
GN
6511 /*
6512 * EPT violation happened while executing iret from NMI,
6513 * "blocked by NMI" bit has to be set before next VM entry.
6514 * There are errata that may cause this bit to not be set:
6515 * AAK134, BY25.
6516 */
bcd1c294 6517 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
d02fcf50 6518 enable_vnmi &&
bcd1c294 6519 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6520 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6521
1439442c 6522 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6523 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6524
27959a44 6525 /* Is it a read fault? */
ab22a473 6526 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
6527 ? PFERR_USER_MASK : 0;
6528 /* Is it a write fault? */
ab22a473 6529 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
6530 ? PFERR_WRITE_MASK : 0;
6531 /* Is it a fetch fault? */
ab22a473 6532 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
6533 ? PFERR_FETCH_MASK : 0;
6534 /* ept page table entry is present? */
6535 error_code |= (exit_qualification &
6536 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6537 EPT_VIOLATION_EXECUTABLE))
6538 ? PFERR_PRESENT_MASK : 0;
4f5982a5 6539
eebed243
PB
6540 error_code |= (exit_qualification & 0x100) != 0 ?
6541 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
25d92081 6542
25d92081 6543 vcpu->arch.exit_qualification = exit_qualification;
4f5982a5 6544 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6545}
6546
851ba692 6547static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6548{
f735d4af 6549 int ret;
68f89400
MT
6550 gpa_t gpa;
6551
9034e6e8
PB
6552 /*
6553 * A nested guest cannot optimize MMIO vmexits, because we have an
6554 * nGPA here instead of the required GPA.
6555 */
68f89400 6556 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
9034e6e8
PB
6557 if (!is_guest_mode(vcpu) &&
6558 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 6559 trace_kvm_fast_mmio(gpa);
6affcbed 6560 return kvm_skip_emulated_instruction(vcpu);
68c3b4d1 6561 }
68f89400 6562
e08d26f0
PB
6563 ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6564 if (ret >= 0)
6565 return ret;
ce88decf
XG
6566
6567 /* It is the real ept misconfig */
f735d4af 6568 WARN_ON(1);
68f89400 6569
851ba692
AK
6570 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6571 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6572
6573 return 0;
6574}
6575
851ba692 6576static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 6577{
d02fcf50 6578 WARN_ON_ONCE(!enable_vnmi);
47c0152e
PB
6579 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6580 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 6581 ++vcpu->stat.nmi_window_exits;
3842d135 6582 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6583
6584 return 1;
6585}
6586
80ced186 6587static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6588{
8b3079a5
AK
6589 struct vcpu_vmx *vmx = to_vmx(vcpu);
6590 enum emulation_result err = EMULATE_DONE;
80ced186 6591 int ret = 1;
49e9d557
AK
6592 u32 cpu_exec_ctrl;
6593 bool intr_window_requested;
b8405c18 6594 unsigned count = 130;
49e9d557
AK
6595
6596 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6597 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6598
98eb2f8b 6599 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6600 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6601 return handle_interrupt_window(&vmx->vcpu);
6602
72875d8a 6603 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
de87dcdd
AK
6604 return 1;
6605
9b8ae637 6606 err = emulate_instruction(vcpu, 0);
ea953ef0 6607
ac0a48c3 6608 if (err == EMULATE_USER_EXIT) {
94452b9e 6609 ++vcpu->stat.mmio_exits;
80ced186
MG
6610 ret = 0;
6611 goto out;
6612 }
1d5a4d9b 6613
de5f70e0
AK
6614 if (err != EMULATE_DONE) {
6615 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6616 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6617 vcpu->run->internal.ndata = 0;
6d77dbfc 6618 return 0;
de5f70e0 6619 }
ea953ef0 6620
8d76c49e
GN
6621 if (vcpu->arch.halt_request) {
6622 vcpu->arch.halt_request = 0;
5cb56059 6623 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6624 goto out;
6625 }
6626
ea953ef0 6627 if (signal_pending(current))
80ced186 6628 goto out;
ea953ef0
MG
6629 if (need_resched())
6630 schedule();
6631 }
6632
80ced186
MG
6633out:
6634 return ret;
ea953ef0
MG
6635}
6636
b4a2d31d
RK
6637static int __grow_ple_window(int val)
6638{
6639 if (ple_window_grow < 1)
6640 return ple_window;
6641
6642 val = min(val, ple_window_actual_max);
6643
6644 if (ple_window_grow < ple_window)
6645 val *= ple_window_grow;
6646 else
6647 val += ple_window_grow;
6648
6649 return val;
6650}
6651
6652static int __shrink_ple_window(int val, int modifier, int minimum)
6653{
6654 if (modifier < 1)
6655 return ple_window;
6656
6657 if (modifier < ple_window)
6658 val /= modifier;
6659 else
6660 val -= modifier;
6661
6662 return max(val, minimum);
6663}
6664
6665static void grow_ple_window(struct kvm_vcpu *vcpu)
6666{
6667 struct vcpu_vmx *vmx = to_vmx(vcpu);
6668 int old = vmx->ple_window;
6669
6670 vmx->ple_window = __grow_ple_window(old);
6671
6672 if (vmx->ple_window != old)
6673 vmx->ple_window_dirty = true;
7b46268d
RK
6674
6675 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6676}
6677
6678static void shrink_ple_window(struct kvm_vcpu *vcpu)
6679{
6680 struct vcpu_vmx *vmx = to_vmx(vcpu);
6681 int old = vmx->ple_window;
6682
6683 vmx->ple_window = __shrink_ple_window(old,
6684 ple_window_shrink, ple_window);
6685
6686 if (vmx->ple_window != old)
6687 vmx->ple_window_dirty = true;
7b46268d
RK
6688
6689 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6690}
6691
6692/*
6693 * ple_window_actual_max is computed to be one grow_ple_window() below
6694 * ple_window_max. (See __grow_ple_window for the reason.)
6695 * This prevents overflows, because ple_window_max is int.
6696 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6697 * this process.
6698 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6699 */
6700static void update_ple_window_actual_max(void)
6701{
6702 ple_window_actual_max =
6703 __shrink_ple_window(max(ple_window_max, ple_window),
6704 ple_window_grow, INT_MIN);
6705}
6706
bf9f6ac8
FW
6707/*
6708 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6709 */
6710static void wakeup_handler(void)
6711{
6712 struct kvm_vcpu *vcpu;
6713 int cpu = smp_processor_id();
6714
6715 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6716 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6717 blocked_vcpu_list) {
6718 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6719
6720 if (pi_test_on(pi_desc) == 1)
6721 kvm_vcpu_kick(vcpu);
6722 }
6723 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6724}
6725
f160c7b7
JS
6726void vmx_enable_tdp(void)
6727{
6728 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6729 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6730 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6731 0ull, VMX_EPT_EXECUTABLE_MASK,
6732 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
d0ec49d4 6733 VMX_EPT_RWX_MASK, 0ull);
f160c7b7
JS
6734
6735 ept_set_mmio_spte_mask();
6736 kvm_enable_tdp();
6737}
6738
f2c7648d
TC
6739static __init int hardware_setup(void)
6740{
34a1cd60
TC
6741 int r = -ENOMEM, i, msr;
6742
6743 rdmsrl_safe(MSR_EFER, &host_efer);
6744
6745 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6746 kvm_define_shared_msr(i, vmx_msr_index[i]);
6747
23611332
RK
6748 for (i = 0; i < VMX_BITMAP_NR; i++) {
6749 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6750 if (!vmx_bitmap[i])
6751 goto out;
6752 }
34a1cd60 6753
34a1cd60
TC
6754 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6755 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6756
34a1cd60 6757 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
34a1cd60
TC
6758
6759 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6760
6761 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6762 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6763
34a1cd60
TC
6764 if (setup_vmcs_config(&vmcs_config) < 0) {
6765 r = -EIO;
23611332 6766 goto out;
baa03522 6767 }
f2c7648d
TC
6768
6769 if (boot_cpu_has(X86_FEATURE_NX))
6770 kvm_enable_efer_bits(EFER_NX);
6771
08d839c4
WL
6772 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6773 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
f2c7648d 6774 enable_vpid = 0;
08d839c4 6775
f2c7648d
TC
6776 if (!cpu_has_vmx_shadow_vmcs())
6777 enable_shadow_vmcs = 0;
6778 if (enable_shadow_vmcs)
6779 init_vmcs_shadow_fields();
6780
6781 if (!cpu_has_vmx_ept() ||
42aa53b4 6782 !cpu_has_vmx_ept_4levels() ||
f5f51586 6783 !cpu_has_vmx_ept_mt_wb() ||
8ad8182e 6784 !cpu_has_vmx_invept_global())
f2c7648d 6785 enable_ept = 0;
f2c7648d 6786
fce6ac4c 6787 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
f2c7648d
TC
6788 enable_ept_ad_bits = 0;
6789
8ad8182e 6790 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
f2c7648d
TC
6791 enable_unrestricted_guest = 0;
6792
ad15a296 6793 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6794 flexpriority_enabled = 0;
6795
d02fcf50
PB
6796 if (!cpu_has_virtual_nmis())
6797 enable_vnmi = 0;
6798
ad15a296
PB
6799 /*
6800 * set_apic_access_page_addr() is used to reload apic access
6801 * page upon invalidation. No need to do anything if not
6802 * using the APIC_ACCESS_ADDR VMCS field.
6803 */
6804 if (!flexpriority_enabled)
f2c7648d 6805 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6806
6807 if (!cpu_has_vmx_tpr_shadow())
6808 kvm_x86_ops->update_cr8_intercept = NULL;
6809
6810 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6811 kvm_disable_largepages();
6812
0f107682 6813 if (!cpu_has_vmx_ple()) {
f2c7648d 6814 ple_gap = 0;
0f107682
WL
6815 ple_window = 0;
6816 ple_window_grow = 0;
6817 ple_window_max = 0;
6818 ple_window_shrink = 0;
6819 }
f2c7648d 6820
76dfafd5 6821 if (!cpu_has_vmx_apicv()) {
f2c7648d 6822 enable_apicv = 0;
76dfafd5
PB
6823 kvm_x86_ops->sync_pir_to_irr = NULL;
6824 }
f2c7648d 6825
64903d61
HZ
6826 if (cpu_has_vmx_tsc_scaling()) {
6827 kvm_has_tsc_control = true;
6828 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6829 kvm_tsc_scaling_ratio_frac_bits = 48;
6830 }
6831
baa03522
TC
6832 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6833 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6834 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6835 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6836 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6837 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
baa03522 6838
c63e4563 6839 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
baa03522 6840 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6841 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
baa03522 6842 vmx_msr_bitmap_longmode, PAGE_SIZE);
c63e4563 6843 memcpy(vmx_msr_bitmap_legacy_x2apic,
f6e90f9e 6844 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6845 memcpy(vmx_msr_bitmap_longmode_x2apic,
f6e90f9e 6846 vmx_msr_bitmap_longmode, PAGE_SIZE);
baa03522 6847
04bb92e4
WL
6848 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6849
40d8338d
RK
6850 for (msr = 0x800; msr <= 0x8ff; msr++) {
6851 if (msr == 0x839 /* TMCCT */)
6852 continue;
2e69f865 6853 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
40d8338d 6854 }
3ce424e4 6855
f6e90f9e 6856 /*
2e69f865
RK
6857 * TPR reads and writes can be virtualized even if virtual interrupt
6858 * delivery is not in use.
f6e90f9e 6859 */
2e69f865
RK
6860 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6861 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
3ce424e4 6862
3ce424e4 6863 /* EOI */
2e69f865 6864 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
3ce424e4 6865 /* SELF-IPI */
2e69f865 6866 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
baa03522 6867
f160c7b7
JS
6868 if (enable_ept)
6869 vmx_enable_tdp();
6870 else
baa03522
TC
6871 kvm_disable_tdp();
6872
6873 update_ple_window_actual_max();
6874
843e4330
KH
6875 /*
6876 * Only enable PML when hardware supports PML feature, and both EPT
6877 * and EPT A/D bit features are enabled -- PML depends on them to work.
6878 */
6879 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6880 enable_pml = 0;
6881
6882 if (!enable_pml) {
6883 kvm_x86_ops->slot_enable_log_dirty = NULL;
6884 kvm_x86_ops->slot_disable_log_dirty = NULL;
6885 kvm_x86_ops->flush_log_dirty = NULL;
6886 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6887 }
6888
64672c95
YJ
6889 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6890 u64 vmx_msr;
6891
6892 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6893 cpu_preemption_timer_multi =
6894 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6895 } else {
6896 kvm_x86_ops->set_hv_timer = NULL;
6897 kvm_x86_ops->cancel_hv_timer = NULL;
6898 }
6899
bf9f6ac8
FW
6900 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6901
c45dcc71
AR
6902 kvm_mce_cap_supported |= MCG_LMCE_P;
6903
f2c7648d 6904 return alloc_kvm_area();
34a1cd60 6905
34a1cd60 6906out:
23611332
RK
6907 for (i = 0; i < VMX_BITMAP_NR; i++)
6908 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
6909
6910 return r;
f2c7648d
TC
6911}
6912
6913static __exit void hardware_unsetup(void)
6914{
23611332
RK
6915 int i;
6916
6917 for (i = 0; i < VMX_BITMAP_NR; i++)
6918 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 6919
f2c7648d
TC
6920 free_kvm_area();
6921}
6922
4b8d54f9
ZE
6923/*
6924 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6925 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6926 */
9fb41ba8 6927static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6928{
b4a2d31d
RK
6929 if (ple_gap)
6930 grow_ple_window(vcpu);
6931
de63ad4c
LM
6932 /*
6933 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6934 * VM-execution control is ignored if CPL > 0. OTOH, KVM
6935 * never set PAUSE_EXITING and just set PLE if supported,
6936 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6937 */
6938 kvm_vcpu_on_spin(vcpu, true);
6affcbed 6939 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
6940}
6941
87c00572 6942static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6943{
6affcbed 6944 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
6945}
6946
87c00572
GS
6947static int handle_mwait(struct kvm_vcpu *vcpu)
6948{
6949 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6950 return handle_nop(vcpu);
6951}
6952
45ec368c
JM
6953static int handle_invalid_op(struct kvm_vcpu *vcpu)
6954{
6955 kvm_queue_exception(vcpu, UD_VECTOR);
6956 return 1;
6957}
6958
5f3d45e7
MD
6959static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6960{
6961 return 1;
6962}
6963
87c00572
GS
6964static int handle_monitor(struct kvm_vcpu *vcpu)
6965{
6966 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6967 return handle_nop(vcpu);
6968}
6969
ff2f6fe9
NHE
6970/*
6971 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6972 * We could reuse a single VMCS for all the L2 guests, but we also want the
6973 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6974 * allows keeping them loaded on the processor, and in the future will allow
6975 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6976 * every entry if they never change.
6977 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6978 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6979 *
6980 * The following functions allocate and free a vmcs02 in this pool.
6981 */
6982
6983/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6984static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6985{
6986 struct vmcs02_list *item;
6987 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6988 if (item->vmptr == vmx->nested.current_vmptr) {
6989 list_move(&item->list, &vmx->nested.vmcs02_pool);
6990 return &item->vmcs02;
6991 }
6992
6993 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6994 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6995 item = list_last_entry(&vmx->nested.vmcs02_pool,
6996 struct vmcs02_list, list);
ff2f6fe9
NHE
6997 item->vmptr = vmx->nested.current_vmptr;
6998 list_move(&item->list, &vmx->nested.vmcs02_pool);
6999 return &item->vmcs02;
7000 }
7001
7002 /* Create a new VMCS */
8a1b4392 7003 item = kzalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
7004 if (!item)
7005 return NULL;
7006 item->vmcs02.vmcs = alloc_vmcs();
355f4fb1 7007 item->vmcs02.shadow_vmcs = NULL;
ff2f6fe9
NHE
7008 if (!item->vmcs02.vmcs) {
7009 kfree(item);
7010 return NULL;
7011 }
7012 loaded_vmcs_init(&item->vmcs02);
7013 item->vmptr = vmx->nested.current_vmptr;
7014 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
7015 vmx->nested.vmcs02_num++;
7016 return &item->vmcs02;
7017}
7018
7019/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
7020static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
7021{
7022 struct vmcs02_list *item;
7023 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
7024 if (item->vmptr == vmptr) {
7025 free_loaded_vmcs(&item->vmcs02);
7026 list_del(&item->list);
7027 kfree(item);
7028 vmx->nested.vmcs02_num--;
7029 return;
7030 }
7031}
7032
7033/*
7034 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
7035 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
7036 * must be &vmx->vmcs01.
ff2f6fe9
NHE
7037 */
7038static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
7039{
7040 struct vmcs02_list *item, *n;
4fa7734c
PB
7041
7042 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 7043 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
7044 /*
7045 * Something will leak if the above WARN triggers. Better than
7046 * a use-after-free.
7047 */
7048 if (vmx->loaded_vmcs == &item->vmcs02)
7049 continue;
7050
7051 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
7052 list_del(&item->list);
7053 kfree(item);
4fa7734c 7054 vmx->nested.vmcs02_num--;
ff2f6fe9 7055 }
ff2f6fe9
NHE
7056}
7057
0658fbaa
ACL
7058/*
7059 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7060 * set the success or error code of an emulated VMX instruction, as specified
7061 * by Vol 2B, VMX Instruction Reference, "Conventions".
7062 */
7063static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7064{
7065 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7066 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7067 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7068}
7069
7070static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7071{
7072 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7073 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7074 X86_EFLAGS_SF | X86_EFLAGS_OF))
7075 | X86_EFLAGS_CF);
7076}
7077
145c28dd 7078static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
7079 u32 vm_instruction_error)
7080{
7081 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7082 /*
7083 * failValid writes the error number to the current VMCS, which
7084 * can't be done there isn't a current VMCS.
7085 */
7086 nested_vmx_failInvalid(vcpu);
7087 return;
7088 }
7089 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7090 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7091 X86_EFLAGS_SF | X86_EFLAGS_OF))
7092 | X86_EFLAGS_ZF);
7093 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7094 /*
7095 * We don't need to force a shadow sync because
7096 * VM_INSTRUCTION_ERROR is not shadowed
7097 */
7098}
145c28dd 7099
ff651cb6
WV
7100static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7101{
7102 /* TODO: not to reset guest simply here. */
7103 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 7104 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
7105}
7106
f4124500
JK
7107static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7108{
7109 struct vcpu_vmx *vmx =
7110 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7111
7112 vmx->nested.preemption_timer_expired = true;
7113 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7114 kvm_vcpu_kick(&vmx->vcpu);
7115
7116 return HRTIMER_NORESTART;
7117}
7118
19677e32
BD
7119/*
7120 * Decode the memory-address operand of a vmx instruction, as recorded on an
7121 * exit caused by such an instruction (run by a guest hypervisor).
7122 * On success, returns 0. When the operand is invalid, returns 1 and throws
7123 * #UD or #GP.
7124 */
7125static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7126 unsigned long exit_qualification,
f9eb4af6 7127 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 7128{
f9eb4af6
EK
7129 gva_t off;
7130 bool exn;
7131 struct kvm_segment s;
7132
19677e32
BD
7133 /*
7134 * According to Vol. 3B, "Information for VM Exits Due to Instruction
7135 * Execution", on an exit, vmx_instruction_info holds most of the
7136 * addressing components of the operand. Only the displacement part
7137 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7138 * For how an actual address is calculated from all these components,
7139 * refer to Vol. 1, "Operand Addressing".
7140 */
7141 int scaling = vmx_instruction_info & 3;
7142 int addr_size = (vmx_instruction_info >> 7) & 7;
7143 bool is_reg = vmx_instruction_info & (1u << 10);
7144 int seg_reg = (vmx_instruction_info >> 15) & 7;
7145 int index_reg = (vmx_instruction_info >> 18) & 0xf;
7146 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7147 int base_reg = (vmx_instruction_info >> 23) & 0xf;
7148 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
7149
7150 if (is_reg) {
7151 kvm_queue_exception(vcpu, UD_VECTOR);
7152 return 1;
7153 }
7154
7155 /* Addr = segment_base + offset */
7156 /* offset = base + [index * scale] + displacement */
f9eb4af6 7157 off = exit_qualification; /* holds the displacement */
19677e32 7158 if (base_is_valid)
f9eb4af6 7159 off += kvm_register_read(vcpu, base_reg);
19677e32 7160 if (index_is_valid)
f9eb4af6
EK
7161 off += kvm_register_read(vcpu, index_reg)<<scaling;
7162 vmx_get_segment(vcpu, &s, seg_reg);
7163 *ret = s.base + off;
19677e32
BD
7164
7165 if (addr_size == 1) /* 32 bit */
7166 *ret &= 0xffffffff;
7167
f9eb4af6
EK
7168 /* Checks for #GP/#SS exceptions. */
7169 exn = false;
ff30ef40
QC
7170 if (is_long_mode(vcpu)) {
7171 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7172 * non-canonical form. This is the only check on the memory
7173 * destination for long mode!
7174 */
fd8cb433 7175 exn = is_noncanonical_address(*ret, vcpu);
ff30ef40 7176 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
7177 /* Protected mode: apply checks for segment validity in the
7178 * following order:
7179 * - segment type check (#GP(0) may be thrown)
7180 * - usability check (#GP(0)/#SS(0))
7181 * - limit check (#GP(0)/#SS(0))
7182 */
7183 if (wr)
7184 /* #GP(0) if the destination operand is located in a
7185 * read-only data segment or any code segment.
7186 */
7187 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7188 else
7189 /* #GP(0) if the source operand is located in an
7190 * execute-only code segment
7191 */
7192 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
7193 if (exn) {
7194 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7195 return 1;
7196 }
f9eb4af6
EK
7197 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7198 */
7199 exn = (s.unusable != 0);
7200 /* Protected mode: #GP(0)/#SS(0) if the memory
7201 * operand is outside the segment limit.
7202 */
7203 exn = exn || (off + sizeof(u64) > s.limit);
7204 }
7205 if (exn) {
7206 kvm_queue_exception_e(vcpu,
7207 seg_reg == VCPU_SREG_SS ?
7208 SS_VECTOR : GP_VECTOR,
7209 0);
7210 return 1;
7211 }
7212
19677e32
BD
7213 return 0;
7214}
7215
cbf71279 7216static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
3573e22c
BD
7217{
7218 gva_t gva;
3573e22c 7219 struct x86_exception e;
3573e22c
BD
7220
7221 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7222 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
7223 return 1;
7224
cbf71279
RK
7225 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7226 sizeof(*vmpointer), &e)) {
3573e22c
BD
7227 kvm_inject_page_fault(vcpu, &e);
7228 return 1;
7229 }
7230
3573e22c
BD
7231 return 0;
7232}
7233
e29acc55
JM
7234static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7235{
7236 struct vcpu_vmx *vmx = to_vmx(vcpu);
7237 struct vmcs *shadow_vmcs;
7238
7239 if (cpu_has_vmx_msr_bitmap()) {
7240 vmx->nested.msr_bitmap =
7241 (unsigned long *)__get_free_page(GFP_KERNEL);
7242 if (!vmx->nested.msr_bitmap)
7243 goto out_msr_bitmap;
7244 }
7245
7246 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7247 if (!vmx->nested.cached_vmcs12)
7248 goto out_cached_vmcs12;
7249
7250 if (enable_shadow_vmcs) {
7251 shadow_vmcs = alloc_vmcs();
7252 if (!shadow_vmcs)
7253 goto out_shadow_vmcs;
7254 /* mark vmcs as shadow */
7255 shadow_vmcs->revision_id |= (1u << 31);
7256 /* init shadow vmcs */
7257 vmcs_clear(shadow_vmcs);
7258 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7259 }
7260
7261 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7262 vmx->nested.vmcs02_num = 0;
7263
7264 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7265 HRTIMER_MODE_REL_PINNED);
7266 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7267
7268 vmx->nested.vmxon = true;
7269 return 0;
7270
7271out_shadow_vmcs:
7272 kfree(vmx->nested.cached_vmcs12);
7273
7274out_cached_vmcs12:
7275 free_page((unsigned long)vmx->nested.msr_bitmap);
7276
7277out_msr_bitmap:
7278 return -ENOMEM;
7279}
7280
ec378aee
NHE
7281/*
7282 * Emulate the VMXON instruction.
7283 * Currently, we just remember that VMX is active, and do not save or even
7284 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7285 * do not currently need to store anything in that guest-allocated memory
7286 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7287 * argument is different from the VMXON pointer (which the spec says they do).
7288 */
7289static int handle_vmon(struct kvm_vcpu *vcpu)
7290{
e29acc55 7291 int ret;
cbf71279
RK
7292 gpa_t vmptr;
7293 struct page *page;
ec378aee 7294 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
7295 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7296 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee 7297
70f3aac9
JM
7298 /*
7299 * The Intel VMX Instruction Reference lists a bunch of bits that are
7300 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7301 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7302 * Otherwise, we should fail with #UD. But most faulting conditions
7303 * have already been checked by hardware, prior to the VM-exit for
7304 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7305 * that bit set to 1 in non-root mode.
ec378aee 7306 */
70f3aac9 7307 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
ec378aee
NHE
7308 kvm_queue_exception(vcpu, UD_VECTOR);
7309 return 1;
7310 }
7311
145c28dd
AG
7312 if (vmx->nested.vmxon) {
7313 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7314 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7315 }
b3897a49 7316
3b84080b 7317 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7318 != VMXON_NEEDED_FEATURES) {
7319 kvm_inject_gp(vcpu, 0);
7320 return 1;
7321 }
7322
cbf71279 7323 if (nested_vmx_get_vmptr(vcpu, &vmptr))
21e7fbe7 7324 return 1;
cbf71279
RK
7325
7326 /*
7327 * SDM 3: 24.11.5
7328 * The first 4 bytes of VMXON region contain the supported
7329 * VMCS revision identifier
7330 *
7331 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7332 * which replaces physical address width with 32
7333 */
7334 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7335 nested_vmx_failInvalid(vcpu);
7336 return kvm_skip_emulated_instruction(vcpu);
7337 }
7338
5e2f30b7
DH
7339 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7340 if (is_error_page(page)) {
cbf71279
RK
7341 nested_vmx_failInvalid(vcpu);
7342 return kvm_skip_emulated_instruction(vcpu);
7343 }
7344 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7345 kunmap(page);
53a70daf 7346 kvm_release_page_clean(page);
cbf71279
RK
7347 nested_vmx_failInvalid(vcpu);
7348 return kvm_skip_emulated_instruction(vcpu);
7349 }
7350 kunmap(page);
53a70daf 7351 kvm_release_page_clean(page);
cbf71279
RK
7352
7353 vmx->nested.vmxon_ptr = vmptr;
e29acc55
JM
7354 ret = enter_vmx_operation(vcpu);
7355 if (ret)
7356 return ret;
ec378aee 7357
a25eb114 7358 nested_vmx_succeed(vcpu);
6affcbed 7359 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7360}
7361
7362/*
7363 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7364 * for running VMX instructions (except VMXON, whose prerequisites are
7365 * slightly different). It also specifies what exception to inject otherwise.
70f3aac9
JM
7366 * Note that many of these exceptions have priority over VM exits, so they
7367 * don't have to be checked again here.
ec378aee
NHE
7368 */
7369static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7370{
70f3aac9 7371 if (!to_vmx(vcpu)->nested.vmxon) {
ec378aee
NHE
7372 kvm_queue_exception(vcpu, UD_VECTOR);
7373 return 0;
7374 }
ec378aee
NHE
7375 return 1;
7376}
7377
8ca44e88
DM
7378static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7379{
7380 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7381 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7382}
7383
e7953d7f
AG
7384static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7385{
9a2a05b9
PB
7386 if (vmx->nested.current_vmptr == -1ull)
7387 return;
7388
012f83cb 7389 if (enable_shadow_vmcs) {
9a2a05b9
PB
7390 /* copy to memory all shadowed fields in case
7391 they were modified */
7392 copy_shadow_to_vmcs12(vmx);
7393 vmx->nested.sync_shadow_vmcs = false;
8ca44e88 7394 vmx_disable_shadow_vmcs(vmx);
012f83cb 7395 }
705699a1 7396 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7397
7398 /* Flush VMCS12 to guest memory */
9f744c59
PB
7399 kvm_vcpu_write_guest_page(&vmx->vcpu,
7400 vmx->nested.current_vmptr >> PAGE_SHIFT,
7401 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4f2777bc 7402
9a2a05b9 7403 vmx->nested.current_vmptr = -1ull;
e7953d7f
AG
7404}
7405
ec378aee
NHE
7406/*
7407 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7408 * just stops using VMX.
7409 */
7410static void free_nested(struct vcpu_vmx *vmx)
7411{
b7455825 7412 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
ec378aee 7413 return;
9a2a05b9 7414
ec378aee 7415 vmx->nested.vmxon = false;
b7455825 7416 vmx->nested.smm.vmxon = false;
5c614b35 7417 free_vpid(vmx->nested.vpid02);
8ca44e88
DM
7418 vmx->nested.posted_intr_nv = -1;
7419 vmx->nested.current_vmptr = -1ull;
d048c098
RK
7420 if (vmx->nested.msr_bitmap) {
7421 free_page((unsigned long)vmx->nested.msr_bitmap);
7422 vmx->nested.msr_bitmap = NULL;
7423 }
355f4fb1 7424 if (enable_shadow_vmcs) {
8ca44e88 7425 vmx_disable_shadow_vmcs(vmx);
355f4fb1
JM
7426 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7427 free_vmcs(vmx->vmcs01.shadow_vmcs);
7428 vmx->vmcs01.shadow_vmcs = NULL;
7429 }
4f2777bc 7430 kfree(vmx->nested.cached_vmcs12);
fe3ef05c
NHE
7431 /* Unpin physical memory we referred to in current vmcs02 */
7432 if (vmx->nested.apic_access_page) {
53a70daf 7433 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 7434 vmx->nested.apic_access_page = NULL;
fe3ef05c 7435 }
a7c0b07d 7436 if (vmx->nested.virtual_apic_page) {
53a70daf 7437 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 7438 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7439 }
705699a1
WV
7440 if (vmx->nested.pi_desc_page) {
7441 kunmap(vmx->nested.pi_desc_page);
53a70daf 7442 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
7443 vmx->nested.pi_desc_page = NULL;
7444 vmx->nested.pi_desc = NULL;
7445 }
ff2f6fe9
NHE
7446
7447 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
7448}
7449
7450/* Emulate the VMXOFF instruction */
7451static int handle_vmoff(struct kvm_vcpu *vcpu)
7452{
7453 if (!nested_vmx_check_permission(vcpu))
7454 return 1;
7455 free_nested(to_vmx(vcpu));
a25eb114 7456 nested_vmx_succeed(vcpu);
6affcbed 7457 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7458}
7459
27d6c865
NHE
7460/* Emulate the VMCLEAR instruction */
7461static int handle_vmclear(struct kvm_vcpu *vcpu)
7462{
7463 struct vcpu_vmx *vmx = to_vmx(vcpu);
587d7e72 7464 u32 zero = 0;
27d6c865 7465 gpa_t vmptr;
27d6c865
NHE
7466
7467 if (!nested_vmx_check_permission(vcpu))
7468 return 1;
7469
cbf71279 7470 if (nested_vmx_get_vmptr(vcpu, &vmptr))
27d6c865 7471 return 1;
27d6c865 7472
cbf71279
RK
7473 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7474 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7475 return kvm_skip_emulated_instruction(vcpu);
7476 }
7477
7478 if (vmptr == vmx->nested.vmxon_ptr) {
7479 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7480 return kvm_skip_emulated_instruction(vcpu);
7481 }
7482
9a2a05b9 7483 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7484 nested_release_vmcs12(vmx);
27d6c865 7485
587d7e72
JM
7486 kvm_vcpu_write_guest(vcpu,
7487 vmptr + offsetof(struct vmcs12, launch_state),
7488 &zero, sizeof(zero));
27d6c865
NHE
7489
7490 nested_free_vmcs02(vmx, vmptr);
7491
27d6c865 7492 nested_vmx_succeed(vcpu);
6affcbed 7493 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7494}
7495
cd232ad0
NHE
7496static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7497
7498/* Emulate the VMLAUNCH instruction */
7499static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7500{
7501 return nested_vmx_run(vcpu, true);
7502}
7503
7504/* Emulate the VMRESUME instruction */
7505static int handle_vmresume(struct kvm_vcpu *vcpu)
7506{
7507
7508 return nested_vmx_run(vcpu, false);
7509}
7510
49f705c5
NHE
7511/*
7512 * Read a vmcs12 field. Since these can have varying lengths and we return
7513 * one type, we chose the biggest type (u64) and zero-extend the return value
7514 * to that size. Note that the caller, handle_vmread, might need to use only
7515 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7516 * 64-bit fields are to be returned).
7517 */
a2ae9df7
PB
7518static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7519 unsigned long field, u64 *ret)
49f705c5
NHE
7520{
7521 short offset = vmcs_field_to_offset(field);
7522 char *p;
7523
7524 if (offset < 0)
a2ae9df7 7525 return offset;
49f705c5
NHE
7526
7527 p = ((char *)(get_vmcs12(vcpu))) + offset;
7528
7529 switch (vmcs_field_type(field)) {
7530 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7531 *ret = *((natural_width *)p);
a2ae9df7 7532 return 0;
49f705c5
NHE
7533 case VMCS_FIELD_TYPE_U16:
7534 *ret = *((u16 *)p);
a2ae9df7 7535 return 0;
49f705c5
NHE
7536 case VMCS_FIELD_TYPE_U32:
7537 *ret = *((u32 *)p);
a2ae9df7 7538 return 0;
49f705c5
NHE
7539 case VMCS_FIELD_TYPE_U64:
7540 *ret = *((u64 *)p);
a2ae9df7 7541 return 0;
49f705c5 7542 default:
a2ae9df7
PB
7543 WARN_ON(1);
7544 return -ENOENT;
49f705c5
NHE
7545 }
7546}
7547
20b97fea 7548
a2ae9df7
PB
7549static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7550 unsigned long field, u64 field_value){
20b97fea
AG
7551 short offset = vmcs_field_to_offset(field);
7552 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7553 if (offset < 0)
a2ae9df7 7554 return offset;
20b97fea
AG
7555
7556 switch (vmcs_field_type(field)) {
7557 case VMCS_FIELD_TYPE_U16:
7558 *(u16 *)p = field_value;
a2ae9df7 7559 return 0;
20b97fea
AG
7560 case VMCS_FIELD_TYPE_U32:
7561 *(u32 *)p = field_value;
a2ae9df7 7562 return 0;
20b97fea
AG
7563 case VMCS_FIELD_TYPE_U64:
7564 *(u64 *)p = field_value;
a2ae9df7 7565 return 0;
20b97fea
AG
7566 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7567 *(natural_width *)p = field_value;
a2ae9df7 7568 return 0;
20b97fea 7569 default:
a2ae9df7
PB
7570 WARN_ON(1);
7571 return -ENOENT;
20b97fea
AG
7572 }
7573
7574}
7575
16f5b903
AG
7576static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7577{
7578 int i;
7579 unsigned long field;
7580 u64 field_value;
355f4fb1 7581 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c2bae893
MK
7582 const unsigned long *fields = shadow_read_write_fields;
7583 const int num_fields = max_shadow_read_write_fields;
16f5b903 7584
282da870
JK
7585 preempt_disable();
7586
16f5b903
AG
7587 vmcs_load(shadow_vmcs);
7588
7589 for (i = 0; i < num_fields; i++) {
7590 field = fields[i];
7591 switch (vmcs_field_type(field)) {
7592 case VMCS_FIELD_TYPE_U16:
7593 field_value = vmcs_read16(field);
7594 break;
7595 case VMCS_FIELD_TYPE_U32:
7596 field_value = vmcs_read32(field);
7597 break;
7598 case VMCS_FIELD_TYPE_U64:
7599 field_value = vmcs_read64(field);
7600 break;
7601 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7602 field_value = vmcs_readl(field);
7603 break;
a2ae9df7
PB
7604 default:
7605 WARN_ON(1);
7606 continue;
16f5b903
AG
7607 }
7608 vmcs12_write_any(&vmx->vcpu, field, field_value);
7609 }
7610
7611 vmcs_clear(shadow_vmcs);
7612 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7613
7614 preempt_enable();
16f5b903
AG
7615}
7616
c3114420
AG
7617static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7618{
c2bae893
MK
7619 const unsigned long *fields[] = {
7620 shadow_read_write_fields,
7621 shadow_read_only_fields
c3114420 7622 };
c2bae893 7623 const int max_fields[] = {
c3114420
AG
7624 max_shadow_read_write_fields,
7625 max_shadow_read_only_fields
7626 };
7627 int i, q;
7628 unsigned long field;
7629 u64 field_value = 0;
355f4fb1 7630 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7631
7632 vmcs_load(shadow_vmcs);
7633
c2bae893 7634 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7635 for (i = 0; i < max_fields[q]; i++) {
7636 field = fields[q][i];
7637 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7638
7639 switch (vmcs_field_type(field)) {
7640 case VMCS_FIELD_TYPE_U16:
7641 vmcs_write16(field, (u16)field_value);
7642 break;
7643 case VMCS_FIELD_TYPE_U32:
7644 vmcs_write32(field, (u32)field_value);
7645 break;
7646 case VMCS_FIELD_TYPE_U64:
7647 vmcs_write64(field, (u64)field_value);
7648 break;
7649 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7650 vmcs_writel(field, (long)field_value);
7651 break;
a2ae9df7
PB
7652 default:
7653 WARN_ON(1);
7654 break;
c3114420
AG
7655 }
7656 }
7657 }
7658
7659 vmcs_clear(shadow_vmcs);
7660 vmcs_load(vmx->loaded_vmcs->vmcs);
7661}
7662
49f705c5
NHE
7663/*
7664 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7665 * used before) all generate the same failure when it is missing.
7666 */
7667static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7668{
7669 struct vcpu_vmx *vmx = to_vmx(vcpu);
7670 if (vmx->nested.current_vmptr == -1ull) {
7671 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7672 return 0;
7673 }
7674 return 1;
7675}
7676
7677static int handle_vmread(struct kvm_vcpu *vcpu)
7678{
7679 unsigned long field;
7680 u64 field_value;
7681 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7682 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7683 gva_t gva = 0;
7684
eb277562 7685 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7686 return 1;
7687
6affcbed
KH
7688 if (!nested_vmx_check_vmcs12(vcpu))
7689 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7690
7691 /* Decode instruction info and find the field to read */
27e6fb5d 7692 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7693 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7694 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 7695 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7696 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7697 }
7698 /*
7699 * Now copy part of this value to register or memory, as requested.
7700 * Note that the number of bits actually copied is 32 or 64 depending
7701 * on the guest's mode (32 or 64 bit), not on the given field's length.
7702 */
7703 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7704 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7705 field_value);
7706 } else {
7707 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7708 vmx_instruction_info, true, &gva))
49f705c5 7709 return 1;
70f3aac9 7710 /* _system ok, as hardware has verified cpl=0 */
49f705c5
NHE
7711 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7712 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7713 }
7714
7715 nested_vmx_succeed(vcpu);
6affcbed 7716 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7717}
7718
7719
7720static int handle_vmwrite(struct kvm_vcpu *vcpu)
7721{
7722 unsigned long field;
7723 gva_t gva;
7724 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7725 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7726 /* The value to write might be 32 or 64 bits, depending on L1's long
7727 * mode, and eventually we need to write that into a field of several
7728 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7729 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7730 * bits into the vmcs12 field.
7731 */
7732 u64 field_value = 0;
7733 struct x86_exception e;
7734
eb277562 7735 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7736 return 1;
7737
6affcbed
KH
7738 if (!nested_vmx_check_vmcs12(vcpu))
7739 return kvm_skip_emulated_instruction(vcpu);
eb277562 7740
49f705c5 7741 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7742 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7743 (((vmx_instruction_info) >> 3) & 0xf));
7744 else {
7745 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7746 vmx_instruction_info, false, &gva))
49f705c5
NHE
7747 return 1;
7748 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7749 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7750 kvm_inject_page_fault(vcpu, &e);
7751 return 1;
7752 }
7753 }
7754
7755
27e6fb5d 7756 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7757 if (vmcs_field_readonly(field)) {
7758 nested_vmx_failValid(vcpu,
7759 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 7760 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7761 }
7762
a2ae9df7 7763 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 7764 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7765 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7766 }
7767
7768 nested_vmx_succeed(vcpu);
6affcbed 7769 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7770}
7771
a8bc284e
JM
7772static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7773{
7774 vmx->nested.current_vmptr = vmptr;
7775 if (enable_shadow_vmcs) {
7776 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7777 SECONDARY_EXEC_SHADOW_VMCS);
7778 vmcs_write64(VMCS_LINK_POINTER,
7779 __pa(vmx->vmcs01.shadow_vmcs));
7780 vmx->nested.sync_shadow_vmcs = true;
7781 }
7782}
7783
63846663
NHE
7784/* Emulate the VMPTRLD instruction */
7785static int handle_vmptrld(struct kvm_vcpu *vcpu)
7786{
7787 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7788 gpa_t vmptr;
63846663
NHE
7789
7790 if (!nested_vmx_check_permission(vcpu))
7791 return 1;
7792
cbf71279 7793 if (nested_vmx_get_vmptr(vcpu, &vmptr))
63846663 7794 return 1;
63846663 7795
cbf71279
RK
7796 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7797 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7798 return kvm_skip_emulated_instruction(vcpu);
7799 }
7800
7801 if (vmptr == vmx->nested.vmxon_ptr) {
7802 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7803 return kvm_skip_emulated_instruction(vcpu);
7804 }
7805
63846663
NHE
7806 if (vmx->nested.current_vmptr != vmptr) {
7807 struct vmcs12 *new_vmcs12;
7808 struct page *page;
5e2f30b7
DH
7809 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7810 if (is_error_page(page)) {
63846663 7811 nested_vmx_failInvalid(vcpu);
6affcbed 7812 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7813 }
7814 new_vmcs12 = kmap(page);
7815 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7816 kunmap(page);
53a70daf 7817 kvm_release_page_clean(page);
63846663
NHE
7818 nested_vmx_failValid(vcpu,
7819 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 7820 return kvm_skip_emulated_instruction(vcpu);
63846663 7821 }
63846663 7822
9a2a05b9 7823 nested_release_vmcs12(vmx);
4f2777bc
DM
7824 /*
7825 * Load VMCS12 from guest memory since it is not already
7826 * cached.
7827 */
9f744c59
PB
7828 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7829 kunmap(page);
53a70daf 7830 kvm_release_page_clean(page);
9f744c59 7831
a8bc284e 7832 set_current_vmptr(vmx, vmptr);
63846663
NHE
7833 }
7834
7835 nested_vmx_succeed(vcpu);
6affcbed 7836 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7837}
7838
6a4d7550
NHE
7839/* Emulate the VMPTRST instruction */
7840static int handle_vmptrst(struct kvm_vcpu *vcpu)
7841{
7842 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7843 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7844 gva_t vmcs_gva;
7845 struct x86_exception e;
7846
7847 if (!nested_vmx_check_permission(vcpu))
7848 return 1;
7849
7850 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7851 vmx_instruction_info, true, &vmcs_gva))
6a4d7550 7852 return 1;
70f3aac9 7853 /* ok to use *_system, as hardware has verified cpl=0 */
6a4d7550
NHE
7854 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7855 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7856 sizeof(u64), &e)) {
7857 kvm_inject_page_fault(vcpu, &e);
7858 return 1;
7859 }
7860 nested_vmx_succeed(vcpu);
6affcbed 7861 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
7862}
7863
bfd0a56b
NHE
7864/* Emulate the INVEPT instruction */
7865static int handle_invept(struct kvm_vcpu *vcpu)
7866{
b9c237bb 7867 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7868 u32 vmx_instruction_info, types;
7869 unsigned long type;
7870 gva_t gva;
7871 struct x86_exception e;
7872 struct {
7873 u64 eptp, gpa;
7874 } operand;
bfd0a56b 7875
b9c237bb
WV
7876 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7877 SECONDARY_EXEC_ENABLE_EPT) ||
7878 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7879 kvm_queue_exception(vcpu, UD_VECTOR);
7880 return 1;
7881 }
7882
7883 if (!nested_vmx_check_permission(vcpu))
7884 return 1;
7885
bfd0a56b 7886 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7887 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7888
b9c237bb 7889 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 7890
85c856b3 7891 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
7892 nested_vmx_failValid(vcpu,
7893 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7894 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7895 }
7896
7897 /* According to the Intel VMX instruction reference, the memory
7898 * operand is read even if it isn't needed (e.g., for type==global)
7899 */
7900 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7901 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7902 return 1;
7903 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7904 sizeof(operand), &e)) {
7905 kvm_inject_page_fault(vcpu, &e);
7906 return 1;
7907 }
7908
7909 switch (type) {
bfd0a56b 7910 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7911 /*
7912 * TODO: track mappings and invalidate
7913 * single context requests appropriately
7914 */
7915 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7916 kvm_mmu_sync_roots(vcpu);
77c3913b 7917 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7918 nested_vmx_succeed(vcpu);
7919 break;
7920 default:
7921 BUG_ON(1);
7922 break;
7923 }
7924
6affcbed 7925 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7926}
7927
a642fc30
PM
7928static int handle_invvpid(struct kvm_vcpu *vcpu)
7929{
99b83ac8
WL
7930 struct vcpu_vmx *vmx = to_vmx(vcpu);
7931 u32 vmx_instruction_info;
7932 unsigned long type, types;
7933 gva_t gva;
7934 struct x86_exception e;
40352605
JM
7935 struct {
7936 u64 vpid;
7937 u64 gla;
7938 } operand;
99b83ac8
WL
7939
7940 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7941 SECONDARY_EXEC_ENABLE_VPID) ||
7942 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7943 kvm_queue_exception(vcpu, UD_VECTOR);
7944 return 1;
7945 }
7946
7947 if (!nested_vmx_check_permission(vcpu))
7948 return 1;
7949
7950 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7951 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7952
bcdde302
JD
7953 types = (vmx->nested.nested_vmx_vpid_caps &
7954 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 7955
85c856b3 7956 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
7957 nested_vmx_failValid(vcpu,
7958 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7959 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7960 }
7961
7962 /* according to the intel vmx instruction reference, the memory
7963 * operand is read even if it isn't needed (e.g., for type==global)
7964 */
7965 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7966 vmx_instruction_info, false, &gva))
7967 return 1;
40352605
JM
7968 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7969 sizeof(operand), &e)) {
99b83ac8
WL
7970 kvm_inject_page_fault(vcpu, &e);
7971 return 1;
7972 }
40352605
JM
7973 if (operand.vpid >> 16) {
7974 nested_vmx_failValid(vcpu,
7975 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7976 return kvm_skip_emulated_instruction(vcpu);
7977 }
99b83ac8
WL
7978
7979 switch (type) {
bcdde302 7980 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
fd8cb433 7981 if (is_noncanonical_address(operand.gla, vcpu)) {
40352605
JM
7982 nested_vmx_failValid(vcpu,
7983 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7984 return kvm_skip_emulated_instruction(vcpu);
7985 }
7986 /* fall through */
ef697a71 7987 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302 7988 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
40352605 7989 if (!operand.vpid) {
bcdde302
JD
7990 nested_vmx_failValid(vcpu,
7991 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7992 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
7993 }
7994 break;
99b83ac8 7995 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
7996 break;
7997 default:
bcdde302 7998 WARN_ON_ONCE(1);
6affcbed 7999 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
8000 }
8001
bcdde302
JD
8002 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
8003 nested_vmx_succeed(vcpu);
8004
6affcbed 8005 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
8006}
8007
843e4330
KH
8008static int handle_pml_full(struct kvm_vcpu *vcpu)
8009{
8010 unsigned long exit_qualification;
8011
8012 trace_kvm_pml_full(vcpu->vcpu_id);
8013
8014 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8015
8016 /*
8017 * PML buffer FULL happened while executing iret from NMI,
8018 * "blocked by NMI" bit has to be set before next VM entry.
8019 */
8020 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
d02fcf50 8021 enable_vnmi &&
843e4330
KH
8022 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
8023 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8024 GUEST_INTR_STATE_NMI);
8025
8026 /*
8027 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
8028 * here.., and there's no userspace involvement needed for PML.
8029 */
8030 return 1;
8031}
8032
64672c95
YJ
8033static int handle_preemption_timer(struct kvm_vcpu *vcpu)
8034{
8035 kvm_lapic_expired_hv_timer(vcpu);
8036 return 1;
8037}
8038
41ab9372
BD
8039static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8040{
8041 struct vcpu_vmx *vmx = to_vmx(vcpu);
41ab9372
BD
8042 int maxphyaddr = cpuid_maxphyaddr(vcpu);
8043
8044 /* Check for memory type validity */
bb97a016
DH
8045 switch (address & VMX_EPTP_MT_MASK) {
8046 case VMX_EPTP_MT_UC:
41ab9372
BD
8047 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8048 return false;
8049 break;
bb97a016 8050 case VMX_EPTP_MT_WB:
41ab9372
BD
8051 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8052 return false;
8053 break;
8054 default:
8055 return false;
8056 }
8057
bb97a016
DH
8058 /* only 4 levels page-walk length are valid */
8059 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
41ab9372
BD
8060 return false;
8061
8062 /* Reserved bits should not be set */
8063 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8064 return false;
8065
8066 /* AD, if set, should be supported */
bb97a016 8067 if (address & VMX_EPTP_AD_ENABLE_BIT) {
41ab9372
BD
8068 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8069 return false;
8070 }
8071
8072 return true;
8073}
8074
8075static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8076 struct vmcs12 *vmcs12)
8077{
8078 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8079 u64 address;
8080 bool accessed_dirty;
8081 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8082
8083 if (!nested_cpu_has_eptp_switching(vmcs12) ||
8084 !nested_cpu_has_ept(vmcs12))
8085 return 1;
8086
8087 if (index >= VMFUNC_EPTP_ENTRIES)
8088 return 1;
8089
8090
8091 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8092 &address, index * 8, 8))
8093 return 1;
8094
bb97a016 8095 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
41ab9372
BD
8096
8097 /*
8098 * If the (L2) guest does a vmfunc to the currently
8099 * active ept pointer, we don't have to do anything else
8100 */
8101 if (vmcs12->ept_pointer != address) {
8102 if (!valid_ept_address(vcpu, address))
8103 return 1;
8104
8105 kvm_mmu_unload(vcpu);
8106 mmu->ept_ad = accessed_dirty;
8107 mmu->base_role.ad_disabled = !accessed_dirty;
8108 vmcs12->ept_pointer = address;
8109 /*
8110 * TODO: Check what's the correct approach in case
8111 * mmu reload fails. Currently, we just let the next
8112 * reload potentially fail
8113 */
8114 kvm_mmu_reload(vcpu);
8115 }
8116
8117 return 0;
8118}
8119
2a499e49
BD
8120static int handle_vmfunc(struct kvm_vcpu *vcpu)
8121{
27c42a1b
BD
8122 struct vcpu_vmx *vmx = to_vmx(vcpu);
8123 struct vmcs12 *vmcs12;
8124 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8125
8126 /*
8127 * VMFUNC is only supported for nested guests, but we always enable the
8128 * secondary control for simplicity; for non-nested mode, fake that we
8129 * didn't by injecting #UD.
8130 */
8131 if (!is_guest_mode(vcpu)) {
8132 kvm_queue_exception(vcpu, UD_VECTOR);
8133 return 1;
8134 }
8135
8136 vmcs12 = get_vmcs12(vcpu);
8137 if ((vmcs12->vm_function_control & (1 << function)) == 0)
8138 goto fail;
41ab9372
BD
8139
8140 switch (function) {
8141 case 0:
8142 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8143 goto fail;
8144 break;
8145 default:
8146 goto fail;
8147 }
8148 return kvm_skip_emulated_instruction(vcpu);
27c42a1b
BD
8149
8150fail:
8151 nested_vmx_vmexit(vcpu, vmx->exit_reason,
8152 vmcs_read32(VM_EXIT_INTR_INFO),
8153 vmcs_readl(EXIT_QUALIFICATION));
2a499e49
BD
8154 return 1;
8155}
8156
6aa8b732
AK
8157/*
8158 * The exit handlers return 1 if the exit was handled fully and guest execution
8159 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8160 * to be done to userspace and return 0.
8161 */
772e0318 8162static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
8163 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8164 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 8165 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 8166 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 8167 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
8168 [EXIT_REASON_CR_ACCESS] = handle_cr,
8169 [EXIT_REASON_DR_ACCESS] = handle_dr,
8170 [EXIT_REASON_CPUID] = handle_cpuid,
8171 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8172 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8173 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8174 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 8175 [EXIT_REASON_INVD] = handle_invd,
a7052897 8176 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 8177 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 8178 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 8179 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 8180 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 8181 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 8182 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 8183 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 8184 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 8185 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
8186 [EXIT_REASON_VMOFF] = handle_vmoff,
8187 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
8188 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8189 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 8190 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 8191 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 8192 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 8193 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 8194 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 8195 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
8196 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8197 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 8198 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 8199 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 8200 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 8201 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 8202 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 8203 [EXIT_REASON_INVVPID] = handle_invvpid,
45ec368c 8204 [EXIT_REASON_RDRAND] = handle_invalid_op,
75f4fc8d 8205 [EXIT_REASON_RDSEED] = handle_invalid_op,
f53cd63c
WL
8206 [EXIT_REASON_XSAVES] = handle_xsaves,
8207 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 8208 [EXIT_REASON_PML_FULL] = handle_pml_full,
2a499e49 8209 [EXIT_REASON_VMFUNC] = handle_vmfunc,
64672c95 8210 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
8211};
8212
8213static const int kvm_vmx_max_exit_handlers =
50a3485c 8214 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 8215
908a7bdd
JK
8216static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8217 struct vmcs12 *vmcs12)
8218{
8219 unsigned long exit_qualification;
8220 gpa_t bitmap, last_bitmap;
8221 unsigned int port;
8222 int size;
8223 u8 b;
8224
908a7bdd 8225 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 8226 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
8227
8228 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8229
8230 port = exit_qualification >> 16;
8231 size = (exit_qualification & 7) + 1;
8232
8233 last_bitmap = (gpa_t)-1;
8234 b = -1;
8235
8236 while (size > 0) {
8237 if (port < 0x8000)
8238 bitmap = vmcs12->io_bitmap_a;
8239 else if (port < 0x10000)
8240 bitmap = vmcs12->io_bitmap_b;
8241 else
1d804d07 8242 return true;
908a7bdd
JK
8243 bitmap += (port & 0x7fff) / 8;
8244
8245 if (last_bitmap != bitmap)
54bf36aa 8246 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 8247 return true;
908a7bdd 8248 if (b & (1 << (port & 7)))
1d804d07 8249 return true;
908a7bdd
JK
8250
8251 port++;
8252 size--;
8253 last_bitmap = bitmap;
8254 }
8255
1d804d07 8256 return false;
908a7bdd
JK
8257}
8258
644d711a
NHE
8259/*
8260 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8261 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8262 * disinterest in the current event (read or write a specific MSR) by using an
8263 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8264 */
8265static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8266 struct vmcs12 *vmcs12, u32 exit_reason)
8267{
8268 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8269 gpa_t bitmap;
8270
cbd29cb6 8271 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 8272 return true;
644d711a
NHE
8273
8274 /*
8275 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8276 * for the four combinations of read/write and low/high MSR numbers.
8277 * First we need to figure out which of the four to use:
8278 */
8279 bitmap = vmcs12->msr_bitmap;
8280 if (exit_reason == EXIT_REASON_MSR_WRITE)
8281 bitmap += 2048;
8282 if (msr_index >= 0xc0000000) {
8283 msr_index -= 0xc0000000;
8284 bitmap += 1024;
8285 }
8286
8287 /* Then read the msr_index'th bit from this bitmap: */
8288 if (msr_index < 1024*8) {
8289 unsigned char b;
54bf36aa 8290 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 8291 return true;
644d711a
NHE
8292 return 1 & (b >> (msr_index & 7));
8293 } else
1d804d07 8294 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
8295}
8296
8297/*
8298 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8299 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8300 * intercept (via guest_host_mask etc.) the current event.
8301 */
8302static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8303 struct vmcs12 *vmcs12)
8304{
8305 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8306 int cr = exit_qualification & 15;
e1d39b17
JS
8307 int reg;
8308 unsigned long val;
644d711a
NHE
8309
8310 switch ((exit_qualification >> 4) & 3) {
8311 case 0: /* mov to cr */
e1d39b17
JS
8312 reg = (exit_qualification >> 8) & 15;
8313 val = kvm_register_readl(vcpu, reg);
644d711a
NHE
8314 switch (cr) {
8315 case 0:
8316 if (vmcs12->cr0_guest_host_mask &
8317 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8318 return true;
644d711a
NHE
8319 break;
8320 case 3:
8321 if ((vmcs12->cr3_target_count >= 1 &&
8322 vmcs12->cr3_target_value0 == val) ||
8323 (vmcs12->cr3_target_count >= 2 &&
8324 vmcs12->cr3_target_value1 == val) ||
8325 (vmcs12->cr3_target_count >= 3 &&
8326 vmcs12->cr3_target_value2 == val) ||
8327 (vmcs12->cr3_target_count >= 4 &&
8328 vmcs12->cr3_target_value3 == val))
1d804d07 8329 return false;
644d711a 8330 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 8331 return true;
644d711a
NHE
8332 break;
8333 case 4:
8334 if (vmcs12->cr4_guest_host_mask &
8335 (vmcs12->cr4_read_shadow ^ val))
1d804d07 8336 return true;
644d711a
NHE
8337 break;
8338 case 8:
8339 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 8340 return true;
644d711a
NHE
8341 break;
8342 }
8343 break;
8344 case 2: /* clts */
8345 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8346 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 8347 return true;
644d711a
NHE
8348 break;
8349 case 1: /* mov from cr */
8350 switch (cr) {
8351 case 3:
8352 if (vmcs12->cpu_based_vm_exec_control &
8353 CPU_BASED_CR3_STORE_EXITING)
1d804d07 8354 return true;
644d711a
NHE
8355 break;
8356 case 8:
8357 if (vmcs12->cpu_based_vm_exec_control &
8358 CPU_BASED_CR8_STORE_EXITING)
1d804d07 8359 return true;
644d711a
NHE
8360 break;
8361 }
8362 break;
8363 case 3: /* lmsw */
8364 /*
8365 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8366 * cr0. Other attempted changes are ignored, with no exit.
8367 */
e1d39b17 8368 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
644d711a
NHE
8369 if (vmcs12->cr0_guest_host_mask & 0xe &
8370 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8371 return true;
644d711a
NHE
8372 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8373 !(vmcs12->cr0_read_shadow & 0x1) &&
8374 (val & 0x1))
1d804d07 8375 return true;
644d711a
NHE
8376 break;
8377 }
1d804d07 8378 return false;
644d711a
NHE
8379}
8380
8381/*
8382 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8383 * should handle it ourselves in L0 (and then continue L2). Only call this
8384 * when in is_guest_mode (L2).
8385 */
7313c698 8386static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
644d711a 8387{
644d711a
NHE
8388 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8389 struct vcpu_vmx *vmx = to_vmx(vcpu);
8390 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8391
4f350c6d
JM
8392 if (vmx->nested.nested_run_pending)
8393 return false;
8394
8395 if (unlikely(vmx->fail)) {
8396 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8397 vmcs_read32(VM_INSTRUCTION_ERROR));
8398 return true;
8399 }
542060ea 8400
c9f04407
DM
8401 /*
8402 * The host physical addresses of some pages of guest memory
8403 * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8404 * may write to these pages via their host physical address while
8405 * L2 is running, bypassing any address-translation-based dirty
8406 * tracking (e.g. EPT write protection).
8407 *
8408 * Mark them dirty on every exit from L2 to prevent them from
8409 * getting out of sync with dirty tracking.
8410 */
8411 nested_mark_vmcs12_pages_dirty(vcpu);
8412
4f350c6d
JM
8413 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8414 vmcs_readl(EXIT_QUALIFICATION),
8415 vmx->idt_vectoring_info,
8416 intr_info,
8417 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8418 KVM_ISA_VMX);
644d711a
NHE
8419
8420 switch (exit_reason) {
8421 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8422 if (is_nmi(intr_info))
1d804d07 8423 return false;
644d711a 8424 else if (is_page_fault(intr_info))
52a5c155 8425 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
e504c909 8426 else if (is_no_device(intr_info) &&
ccf9844e 8427 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8428 return false;
6f05485d
JK
8429 else if (is_debug(intr_info) &&
8430 vcpu->guest_debug &
8431 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8432 return false;
8433 else if (is_breakpoint(intr_info) &&
8434 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8435 return false;
644d711a
NHE
8436 return vmcs12->exception_bitmap &
8437 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8438 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8439 return false;
644d711a 8440 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8441 return true;
644d711a 8442 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8443 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8444 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8445 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8446 case EXIT_REASON_TASK_SWITCH:
1d804d07 8447 return true;
644d711a 8448 case EXIT_REASON_CPUID:
1d804d07 8449 return true;
644d711a
NHE
8450 case EXIT_REASON_HLT:
8451 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8452 case EXIT_REASON_INVD:
1d804d07 8453 return true;
644d711a
NHE
8454 case EXIT_REASON_INVLPG:
8455 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8456 case EXIT_REASON_RDPMC:
8457 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
a5f46457 8458 case EXIT_REASON_RDRAND:
736fdf72 8459 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
a5f46457 8460 case EXIT_REASON_RDSEED:
736fdf72 8461 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
b3a2a907 8462 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8463 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8464 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8465 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8466 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8467 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8468 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8469 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8470 /*
8471 * VMX instructions trap unconditionally. This allows L1 to
8472 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8473 */
1d804d07 8474 return true;
644d711a
NHE
8475 case EXIT_REASON_CR_ACCESS:
8476 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8477 case EXIT_REASON_DR_ACCESS:
8478 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8479 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8480 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8481 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8482 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8483 case EXIT_REASON_MSR_READ:
8484 case EXIT_REASON_MSR_WRITE:
8485 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8486 case EXIT_REASON_INVALID_STATE:
1d804d07 8487 return true;
644d711a
NHE
8488 case EXIT_REASON_MWAIT_INSTRUCTION:
8489 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8490 case EXIT_REASON_MONITOR_TRAP_FLAG:
8491 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8492 case EXIT_REASON_MONITOR_INSTRUCTION:
8493 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8494 case EXIT_REASON_PAUSE_INSTRUCTION:
8495 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8496 nested_cpu_has2(vmcs12,
8497 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8498 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8499 return false;
644d711a 8500 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8501 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8502 case EXIT_REASON_APIC_ACCESS:
8503 return nested_cpu_has2(vmcs12,
8504 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8505 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8506 case EXIT_REASON_EOI_INDUCED:
8507 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8508 return true;
644d711a 8509 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8510 /*
8511 * L0 always deals with the EPT violation. If nested EPT is
8512 * used, and the nested mmu code discovers that the address is
8513 * missing in the guest EPT table (EPT12), the EPT violation
8514 * will be injected with nested_ept_inject_page_fault()
8515 */
1d804d07 8516 return false;
644d711a 8517 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8518 /*
8519 * L2 never uses directly L1's EPT, but rather L0's own EPT
8520 * table (shadow on EPT) or a merged EPT table that L0 built
8521 * (EPT on EPT). So any problems with the structure of the
8522 * table is L0's fault.
8523 */
1d804d07 8524 return false;
90a2db6d
PB
8525 case EXIT_REASON_INVPCID:
8526 return
8527 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8528 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
644d711a
NHE
8529 case EXIT_REASON_WBINVD:
8530 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8531 case EXIT_REASON_XSETBV:
1d804d07 8532 return true;
81dc01f7
WL
8533 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8534 /*
8535 * This should never happen, since it is not possible to
8536 * set XSS to a non-zero value---neither in L1 nor in L2.
8537 * If if it were, XSS would have to be checked against
8538 * the XSS exit bitmap in vmcs12.
8539 */
8540 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8541 case EXIT_REASON_PREEMPTION_TIMER:
8542 return false;
ab007cc9 8543 case EXIT_REASON_PML_FULL:
03efce6f 8544 /* We emulate PML support to L1. */
ab007cc9 8545 return false;
2a499e49
BD
8546 case EXIT_REASON_VMFUNC:
8547 /* VM functions are emulated through L2->L0 vmexits. */
8548 return false;
644d711a 8549 default:
1d804d07 8550 return true;
644d711a
NHE
8551 }
8552}
8553
7313c698
PB
8554static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8555{
8556 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8557
8558 /*
8559 * At this point, the exit interruption info in exit_intr_info
8560 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8561 * we need to query the in-kernel LAPIC.
8562 */
8563 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8564 if ((exit_intr_info &
8565 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8566 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8567 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8568 vmcs12->vm_exit_intr_error_code =
8569 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8570 }
8571
8572 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8573 vmcs_readl(EXIT_QUALIFICATION));
8574 return 1;
8575}
8576
586f9607
AK
8577static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8578{
8579 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8580 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8581}
8582
a3eaa864 8583static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8584{
a3eaa864
KH
8585 if (vmx->pml_pg) {
8586 __free_page(vmx->pml_pg);
8587 vmx->pml_pg = NULL;
8588 }
843e4330
KH
8589}
8590
54bf36aa 8591static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8592{
54bf36aa 8593 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8594 u64 *pml_buf;
8595 u16 pml_idx;
8596
8597 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8598
8599 /* Do nothing if PML buffer is empty */
8600 if (pml_idx == (PML_ENTITY_NUM - 1))
8601 return;
8602
8603 /* PML index always points to next available PML buffer entity */
8604 if (pml_idx >= PML_ENTITY_NUM)
8605 pml_idx = 0;
8606 else
8607 pml_idx++;
8608
8609 pml_buf = page_address(vmx->pml_pg);
8610 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8611 u64 gpa;
8612
8613 gpa = pml_buf[pml_idx];
8614 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8615 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8616 }
8617
8618 /* reset PML index */
8619 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8620}
8621
8622/*
8623 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8624 * Called before reporting dirty_bitmap to userspace.
8625 */
8626static void kvm_flush_pml_buffers(struct kvm *kvm)
8627{
8628 int i;
8629 struct kvm_vcpu *vcpu;
8630 /*
8631 * We only need to kick vcpu out of guest mode here, as PML buffer
8632 * is flushed at beginning of all VMEXITs, and it's obvious that only
8633 * vcpus running in guest are possible to have unflushed GPAs in PML
8634 * buffer.
8635 */
8636 kvm_for_each_vcpu(i, vcpu, kvm)
8637 kvm_vcpu_kick(vcpu);
8638}
8639
4eb64dce
PB
8640static void vmx_dump_sel(char *name, uint32_t sel)
8641{
8642 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
96794e4e 8643 name, vmcs_read16(sel),
4eb64dce
PB
8644 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8645 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8646 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8647}
8648
8649static void vmx_dump_dtsel(char *name, uint32_t limit)
8650{
8651 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8652 name, vmcs_read32(limit),
8653 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8654}
8655
8656static void dump_vmcs(void)
8657{
8658 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8659 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8660 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8661 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8662 u32 secondary_exec_control = 0;
8663 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8664 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8665 int i, n;
8666
8667 if (cpu_has_secondary_exec_ctrls())
8668 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8669
8670 pr_err("*** Guest State ***\n");
8671 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8672 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8673 vmcs_readl(CR0_GUEST_HOST_MASK));
8674 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8675 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8676 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8677 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8678 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8679 {
845c5b40
PB
8680 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8681 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8682 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8683 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8684 }
8685 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8686 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8687 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8688 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8689 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8690 vmcs_readl(GUEST_SYSENTER_ESP),
8691 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8692 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8693 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8694 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8695 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8696 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8697 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8698 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8699 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8700 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8701 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8702 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8703 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8704 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8705 efer, vmcs_read64(GUEST_IA32_PAT));
8706 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8707 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8708 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8709 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8710 pr_err("PerfGlobCtl = 0x%016llx\n",
8711 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8712 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8713 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8714 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8715 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8716 vmcs_read32(GUEST_ACTIVITY_STATE));
8717 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8718 pr_err("InterruptStatus = %04x\n",
8719 vmcs_read16(GUEST_INTR_STATUS));
8720
8721 pr_err("*** Host State ***\n");
8722 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8723 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8724 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8725 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8726 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8727 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8728 vmcs_read16(HOST_TR_SELECTOR));
8729 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8730 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8731 vmcs_readl(HOST_TR_BASE));
8732 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8733 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8734 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8735 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8736 vmcs_readl(HOST_CR4));
8737 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8738 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8739 vmcs_read32(HOST_IA32_SYSENTER_CS),
8740 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8741 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8742 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8743 vmcs_read64(HOST_IA32_EFER),
8744 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8745 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8746 pr_err("PerfGlobCtl = 0x%016llx\n",
8747 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8748
8749 pr_err("*** Control State ***\n");
8750 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8751 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8752 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8753 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8754 vmcs_read32(EXCEPTION_BITMAP),
8755 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8756 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8757 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8758 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8759 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8760 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8761 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8762 vmcs_read32(VM_EXIT_INTR_INFO),
8763 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8764 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8765 pr_err(" reason=%08x qualification=%016lx\n",
8766 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8767 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8768 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8769 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8770 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8771 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8772 pr_err("TSC Multiplier = 0x%016llx\n",
8773 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8774 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8775 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8776 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8777 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8778 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8779 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8780 n = vmcs_read32(CR3_TARGET_COUNT);
8781 for (i = 0; i + 1 < n; i += 4)
8782 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8783 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8784 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8785 if (i < n)
8786 pr_err("CR3 target%u=%016lx\n",
8787 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8788 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8789 pr_err("PLE Gap=%08x Window=%08x\n",
8790 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8791 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8792 pr_err("Virtual processor ID = 0x%04x\n",
8793 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8794}
8795
6aa8b732
AK
8796/*
8797 * The guest has exited. See if we can fix it or if we need userspace
8798 * assistance.
8799 */
851ba692 8800static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8801{
29bd8a78 8802 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8803 u32 exit_reason = vmx->exit_reason;
1155f76a 8804 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8805
8b89fe1f
PB
8806 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8807
843e4330
KH
8808 /*
8809 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8810 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8811 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8812 * mode as if vcpus is in root mode, the PML buffer must has been
8813 * flushed already.
8814 */
8815 if (enable_pml)
54bf36aa 8816 vmx_flush_pml_buffer(vcpu);
843e4330 8817
80ced186 8818 /* If guest state is invalid, start emulating */
14168786 8819 if (vmx->emulation_required)
80ced186 8820 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8821
7313c698
PB
8822 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8823 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
644d711a 8824
5120702e 8825 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8826 dump_vmcs();
5120702e
MG
8827 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8828 vcpu->run->fail_entry.hardware_entry_failure_reason
8829 = exit_reason;
8830 return 0;
8831 }
8832
29bd8a78 8833 if (unlikely(vmx->fail)) {
851ba692
AK
8834 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8835 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8836 = vmcs_read32(VM_INSTRUCTION_ERROR);
8837 return 0;
8838 }
6aa8b732 8839
b9bf6882
XG
8840 /*
8841 * Note:
8842 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8843 * delivery event since it indicates guest is accessing MMIO.
8844 * The vm-exit can be triggered again after return to guest that
8845 * will cause infinite loop.
8846 */
d77c26fc 8847 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8848 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8849 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8850 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8851 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8852 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8853 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
70bcd708 8854 vcpu->run->internal.ndata = 3;
b9bf6882
XG
8855 vcpu->run->internal.data[0] = vectoring_info;
8856 vcpu->run->internal.data[1] = exit_reason;
70bcd708
PB
8857 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8858 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8859 vcpu->run->internal.ndata++;
8860 vcpu->run->internal.data[3] =
8861 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8862 }
b9bf6882
XG
8863 return 0;
8864 }
3b86cd99 8865
d02fcf50 8866 if (unlikely(!enable_vnmi &&
8a1b4392
PB
8867 vmx->loaded_vmcs->soft_vnmi_blocked)) {
8868 if (vmx_interrupt_allowed(vcpu)) {
8869 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
8870 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
8871 vcpu->arch.nmi_pending) {
8872 /*
8873 * This CPU don't support us in finding the end of an
8874 * NMI-blocked window if the guest runs with IRQs
8875 * disabled. So we pull the trigger after 1 s of
8876 * futile waiting, but inform the user about this.
8877 */
8878 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8879 "state on VCPU %d after 1 s timeout\n",
8880 __func__, vcpu->vcpu_id);
8881 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
8882 }
8883 }
8884
6aa8b732
AK
8885 if (exit_reason < kvm_vmx_max_exit_handlers
8886 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8887 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8888 else {
6c6c5e03
RK
8889 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8890 exit_reason);
2bc19dc3
MT
8891 kvm_queue_exception(vcpu, UD_VECTOR);
8892 return 1;
6aa8b732 8893 }
6aa8b732
AK
8894}
8895
95ba8273 8896static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8897{
a7c0b07d
WL
8898 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8899
8900 if (is_guest_mode(vcpu) &&
8901 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8902 return;
8903
95ba8273 8904 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8905 vmcs_write32(TPR_THRESHOLD, 0);
8906 return;
8907 }
8908
95ba8273 8909 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8910}
8911
8d14695f
YZ
8912static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8913{
8914 u32 sec_exec_control;
8915
dccbfcf5
RK
8916 /* Postpone execution until vmcs01 is the current VMCS. */
8917 if (is_guest_mode(vcpu)) {
8918 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8919 return;
8920 }
8921
f6e90f9e 8922 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8923 return;
8924
35754c98 8925 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8926 return;
8927
8928 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8929
8930 if (set) {
8931 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8932 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8933 } else {
8934 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8935 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
fb6c8198 8936 vmx_flush_tlb_ept_only(vcpu);
8d14695f
YZ
8937 }
8938 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8939
8940 vmx_set_msr_bitmap(vcpu);
8941}
8942
38b99173
TC
8943static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8944{
8945 struct vcpu_vmx *vmx = to_vmx(vcpu);
8946
8947 /*
8948 * Currently we do not handle the nested case where L2 has an
8949 * APIC access page of its own; that page is still pinned.
8950 * Hence, we skip the case where the VCPU is in guest mode _and_
8951 * L1 prepared an APIC access page for L2.
8952 *
8953 * For the case where L1 and L2 share the same APIC access page
8954 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8955 * in the vmcs12), this function will only update either the vmcs01
8956 * or the vmcs02. If the former, the vmcs02 will be updated by
8957 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8958 * the next L2->L1 exit.
8959 */
8960 if (!is_guest_mode(vcpu) ||
4f2777bc 8961 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
fb6c8198 8962 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
38b99173 8963 vmcs_write64(APIC_ACCESS_ADDR, hpa);
fb6c8198
JM
8964 vmx_flush_tlb_ept_only(vcpu);
8965 }
38b99173
TC
8966}
8967
67c9dddc 8968static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8969{
8970 u16 status;
8971 u8 old;
8972
67c9dddc
PB
8973 if (max_isr == -1)
8974 max_isr = 0;
c7c9c56c
YZ
8975
8976 status = vmcs_read16(GUEST_INTR_STATUS);
8977 old = status >> 8;
67c9dddc 8978 if (max_isr != old) {
c7c9c56c 8979 status &= 0xff;
67c9dddc 8980 status |= max_isr << 8;
c7c9c56c
YZ
8981 vmcs_write16(GUEST_INTR_STATUS, status);
8982 }
8983}
8984
8985static void vmx_set_rvi(int vector)
8986{
8987 u16 status;
8988 u8 old;
8989
4114c27d
WW
8990 if (vector == -1)
8991 vector = 0;
8992
c7c9c56c
YZ
8993 status = vmcs_read16(GUEST_INTR_STATUS);
8994 old = (u8)status & 0xff;
8995 if ((u8)vector != old) {
8996 status &= ~0xff;
8997 status |= (u8)vector;
8998 vmcs_write16(GUEST_INTR_STATUS, status);
8999 }
9000}
9001
9002static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
9003{
4114c27d
WW
9004 if (!is_guest_mode(vcpu)) {
9005 vmx_set_rvi(max_irr);
9006 return;
9007 }
9008
c7c9c56c
YZ
9009 if (max_irr == -1)
9010 return;
9011
963fee16 9012 /*
4114c27d
WW
9013 * In guest mode. If a vmexit is needed, vmx_check_nested_events
9014 * handles it.
963fee16 9015 */
4114c27d 9016 if (nested_exit_on_intr(vcpu))
963fee16
WL
9017 return;
9018
963fee16 9019 /*
4114c27d 9020 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
9021 * is run without virtual interrupt delivery.
9022 */
9023 if (!kvm_event_needs_reinjection(vcpu) &&
9024 vmx_interrupt_allowed(vcpu)) {
9025 kvm_queue_interrupt(vcpu, max_irr, false);
9026 vmx_inject_irq(vcpu);
9027 }
c7c9c56c
YZ
9028}
9029
76dfafd5 9030static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
9031{
9032 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 9033 int max_irr;
810e6def 9034
76dfafd5
PB
9035 WARN_ON(!vcpu->arch.apicv_active);
9036 if (pi_test_on(&vmx->pi_desc)) {
9037 pi_clear_on(&vmx->pi_desc);
9038 /*
9039 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
9040 * But on x86 this is just a compiler barrier anyway.
9041 */
9042 smp_mb__after_atomic();
9043 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
9044 } else {
9045 max_irr = kvm_lapic_find_highest_irr(vcpu);
9046 }
9047 vmx_hwapic_irr_update(vcpu, max_irr);
9048 return max_irr;
810e6def
PB
9049}
9050
6308630b 9051static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 9052{
d62caabb 9053 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
9054 return;
9055
c7c9c56c
YZ
9056 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9057 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9058 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9059 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9060}
9061
967235d3
PB
9062static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9063{
9064 struct vcpu_vmx *vmx = to_vmx(vcpu);
9065
9066 pi_clear_on(&vmx->pi_desc);
9067 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9068}
9069
51aa01d1 9070static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 9071{
48ae0fb4
JM
9072 u32 exit_intr_info = 0;
9073 u16 basic_exit_reason = (u16)vmx->exit_reason;
00eba012 9074
48ae0fb4
JM
9075 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9076 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
00eba012
AK
9077 return;
9078
48ae0fb4
JM
9079 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9080 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9081 vmx->exit_intr_info = exit_intr_info;
a0861c02 9082
1261bfa3
WL
9083 /* if exit due to PF check for async PF */
9084 if (is_page_fault(exit_intr_info))
9085 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9086
a0861c02 9087 /* Handle machine checks before interrupts are enabled */
48ae0fb4
JM
9088 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9089 is_machine_check(exit_intr_info))
a0861c02
AK
9090 kvm_machine_check();
9091
20f65983 9092 /* We need to handle NMIs before interrupts are enabled */
ef85b673 9093 if (is_nmi(exit_intr_info)) {
ff9d07a0 9094 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 9095 asm("int $2");
ff9d07a0
ZY
9096 kvm_after_handle_nmi(&vmx->vcpu);
9097 }
51aa01d1 9098}
20f65983 9099
a547c6db
YZ
9100static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9101{
9102 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9103
a547c6db
YZ
9104 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9105 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9106 unsigned int vector;
9107 unsigned long entry;
9108 gate_desc *desc;
9109 struct vcpu_vmx *vmx = to_vmx(vcpu);
9110#ifdef CONFIG_X86_64
9111 unsigned long tmp;
9112#endif
9113
9114 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9115 desc = (gate_desc *)vmx->host_idt_base + vector;
64b163fa 9116 entry = gate_offset(desc);
a547c6db
YZ
9117 asm volatile(
9118#ifdef CONFIG_X86_64
9119 "mov %%" _ASM_SP ", %[sp]\n\t"
9120 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9121 "push $%c[ss]\n\t"
9122 "push %[sp]\n\t"
9123#endif
9124 "pushf\n\t"
a547c6db
YZ
9125 __ASM_SIZE(push) " $%c[cs]\n\t"
9126 "call *%[entry]\n\t"
9127 :
9128#ifdef CONFIG_X86_64
3f62de5f 9129 [sp]"=&r"(tmp),
a547c6db 9130#endif
f5caf621 9131 ASM_CALL_CONSTRAINT
a547c6db
YZ
9132 :
9133 [entry]"r"(entry),
9134 [ss]"i"(__KERNEL_DS),
9135 [cs]"i"(__KERNEL_CS)
9136 );
f2485b3e 9137 }
a547c6db 9138}
c207aee4 9139STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
a547c6db 9140
6d396b55
PB
9141static bool vmx_has_high_real_mode_segbase(void)
9142{
9143 return enable_unrestricted_guest || emulate_invalid_guest_state;
9144}
9145
da8999d3
LJ
9146static bool vmx_mpx_supported(void)
9147{
9148 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9149 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9150}
9151
55412b2e
WL
9152static bool vmx_xsaves_supported(void)
9153{
9154 return vmcs_config.cpu_based_2nd_exec_ctrl &
9155 SECONDARY_EXEC_XSAVES;
9156}
9157
51aa01d1
AK
9158static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9159{
c5ca8e57 9160 u32 exit_intr_info;
51aa01d1
AK
9161 bool unblock_nmi;
9162 u8 vector;
9163 bool idtv_info_valid;
9164
9165 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 9166
d02fcf50 9167 if (enable_vnmi) {
8a1b4392
PB
9168 if (vmx->loaded_vmcs->nmi_known_unmasked)
9169 return;
9170 /*
9171 * Can't use vmx->exit_intr_info since we're not sure what
9172 * the exit reason is.
9173 */
9174 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9175 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9176 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9177 /*
9178 * SDM 3: 27.7.1.2 (September 2008)
9179 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9180 * a guest IRET fault.
9181 * SDM 3: 23.2.2 (September 2008)
9182 * Bit 12 is undefined in any of the following cases:
9183 * If the VM exit sets the valid bit in the IDT-vectoring
9184 * information field.
9185 * If the VM exit is due to a double fault.
9186 */
9187 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9188 vector != DF_VECTOR && !idtv_info_valid)
9189 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9190 GUEST_INTR_STATE_NMI);
9191 else
9192 vmx->loaded_vmcs->nmi_known_unmasked =
9193 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9194 & GUEST_INTR_STATE_NMI);
9195 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
9196 vmx->loaded_vmcs->vnmi_blocked_time +=
9197 ktime_to_ns(ktime_sub(ktime_get(),
9198 vmx->loaded_vmcs->entry_time));
51aa01d1
AK
9199}
9200
3ab66e8a 9201static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
9202 u32 idt_vectoring_info,
9203 int instr_len_field,
9204 int error_code_field)
51aa01d1 9205{
51aa01d1
AK
9206 u8 vector;
9207 int type;
9208 bool idtv_info_valid;
9209
9210 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 9211
3ab66e8a
JK
9212 vcpu->arch.nmi_injected = false;
9213 kvm_clear_exception_queue(vcpu);
9214 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
9215
9216 if (!idtv_info_valid)
9217 return;
9218
3ab66e8a 9219 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 9220
668f612f
AK
9221 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9222 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 9223
64a7ec06 9224 switch (type) {
37b96e98 9225 case INTR_TYPE_NMI_INTR:
3ab66e8a 9226 vcpu->arch.nmi_injected = true;
668f612f 9227 /*
7b4a25cb 9228 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
9229 * Clear bit "block by NMI" before VM entry if a NMI
9230 * delivery faulted.
668f612f 9231 */
3ab66e8a 9232 vmx_set_nmi_mask(vcpu, false);
37b96e98 9233 break;
37b96e98 9234 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 9235 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
9236 /* fall through */
9237 case INTR_TYPE_HARD_EXCEPTION:
35920a35 9238 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 9239 u32 err = vmcs_read32(error_code_field);
851eb667 9240 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 9241 } else
851eb667 9242 kvm_requeue_exception(vcpu, vector);
37b96e98 9243 break;
66fd3f7f 9244 case INTR_TYPE_SOFT_INTR:
3ab66e8a 9245 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 9246 /* fall through */
37b96e98 9247 case INTR_TYPE_EXT_INTR:
3ab66e8a 9248 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
9249 break;
9250 default:
9251 break;
f7d9238f 9252 }
cf393f75
AK
9253}
9254
83422e17
AK
9255static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9256{
3ab66e8a 9257 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
9258 VM_EXIT_INSTRUCTION_LEN,
9259 IDT_VECTORING_ERROR_CODE);
9260}
9261
b463a6f7
AK
9262static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9263{
3ab66e8a 9264 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
9265 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9266 VM_ENTRY_INSTRUCTION_LEN,
9267 VM_ENTRY_EXCEPTION_ERROR_CODE);
9268
9269 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9270}
9271
d7cd9796
GN
9272static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9273{
9274 int i, nr_msrs;
9275 struct perf_guest_switch_msr *msrs;
9276
9277 msrs = perf_guest_get_msrs(&nr_msrs);
9278
9279 if (!msrs)
9280 return;
9281
9282 for (i = 0; i < nr_msrs; i++)
9283 if (msrs[i].host == msrs[i].guest)
9284 clear_atomic_switch_msr(vmx, msrs[i].msr);
9285 else
9286 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9287 msrs[i].host);
9288}
9289
33365e7a 9290static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
9291{
9292 struct vcpu_vmx *vmx = to_vmx(vcpu);
9293 u64 tscl;
9294 u32 delta_tsc;
9295
9296 if (vmx->hv_deadline_tsc == -1)
9297 return;
9298
9299 tscl = rdtsc();
9300 if (vmx->hv_deadline_tsc > tscl)
9301 /* sure to be 32 bit only because checked on set_hv_timer */
9302 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9303 cpu_preemption_timer_multi);
9304 else
9305 delta_tsc = 0;
9306
9307 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9308}
9309
a3b5ba49 9310static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 9311{
a2fa3e9f 9312 struct vcpu_vmx *vmx = to_vmx(vcpu);
d6e41f11 9313 unsigned long debugctlmsr, cr3, cr4;
104f226b 9314
8a1b4392 9315 /* Record the guest's net vcpu time for enforced NMI injections. */
d02fcf50 9316 if (unlikely(!enable_vnmi &&
8a1b4392
PB
9317 vmx->loaded_vmcs->soft_vnmi_blocked))
9318 vmx->loaded_vmcs->entry_time = ktime_get();
9319
104f226b
AK
9320 /* Don't enter VMX if guest state is invalid, let the exit handler
9321 start emulation until we arrive back to a valid state */
14168786 9322 if (vmx->emulation_required)
104f226b
AK
9323 return;
9324
a7653ecd
RK
9325 if (vmx->ple_window_dirty) {
9326 vmx->ple_window_dirty = false;
9327 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9328 }
9329
012f83cb
AG
9330 if (vmx->nested.sync_shadow_vmcs) {
9331 copy_vmcs12_to_shadow(vmx);
9332 vmx->nested.sync_shadow_vmcs = false;
9333 }
9334
104f226b
AK
9335 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9336 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9337 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9338 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9339
d6e41f11 9340 cr3 = __get_current_cr3_fast();
44889942 9341 if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
d6e41f11 9342 vmcs_writel(HOST_CR3, cr3);
44889942 9343 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
d6e41f11
AL
9344 }
9345
1e02ce4c 9346 cr4 = cr4_read_shadow();
44889942 9347 if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
d974baa3 9348 vmcs_writel(HOST_CR4, cr4);
44889942 9349 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3
AL
9350 }
9351
104f226b
AK
9352 /* When single-stepping over STI and MOV SS, we must clear the
9353 * corresponding interruptibility bits in the guest state. Otherwise
9354 * vmentry fails as it then expects bit 14 (BS) in pending debug
9355 * exceptions being set, but that's not correct for the guest debugging
9356 * case. */
9357 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9358 vmx_set_interrupt_shadow(vcpu, 0);
9359
b9dd21e1
PB
9360 if (static_cpu_has(X86_FEATURE_PKU) &&
9361 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9362 vcpu->arch.pkru != vmx->host_pkru)
9363 __write_pkru(vcpu->arch.pkru);
1be0e61c 9364
d7cd9796 9365 atomic_switch_perf_msrs(vmx);
2a7921b7 9366 debugctlmsr = get_debugctlmsr();
d7cd9796 9367
64672c95
YJ
9368 vmx_arm_hv_timer(vcpu);
9369
d462b819 9370 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 9371 asm(
6aa8b732 9372 /* Store host registers */
b188c81f
AK
9373 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9374 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9375 "push %%" _ASM_CX " \n\t"
9376 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 9377 "je 1f \n\t"
b188c81f 9378 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 9379 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 9380 "1: \n\t"
d3edefc0 9381 /* Reload cr2 if changed */
b188c81f
AK
9382 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9383 "mov %%cr2, %%" _ASM_DX " \n\t"
9384 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 9385 "je 2f \n\t"
b188c81f 9386 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 9387 "2: \n\t"
6aa8b732 9388 /* Check if vmlaunch of vmresume is needed */
e08aa78a 9389 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 9390 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
9391 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9392 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9393 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9394 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9395 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9396 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 9397#ifdef CONFIG_X86_64
e08aa78a
AK
9398 "mov %c[r8](%0), %%r8 \n\t"
9399 "mov %c[r9](%0), %%r9 \n\t"
9400 "mov %c[r10](%0), %%r10 \n\t"
9401 "mov %c[r11](%0), %%r11 \n\t"
9402 "mov %c[r12](%0), %%r12 \n\t"
9403 "mov %c[r13](%0), %%r13 \n\t"
9404 "mov %c[r14](%0), %%r14 \n\t"
9405 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 9406#endif
b188c81f 9407 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 9408
6aa8b732 9409 /* Enter guest mode */
83287ea4 9410 "jne 1f \n\t"
4ecac3fd 9411 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
9412 "jmp 2f \n\t"
9413 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9414 "2: "
6aa8b732 9415 /* Save guest registers, load host registers, keep flags */
b188c81f 9416 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 9417 "pop %0 \n\t"
b188c81f
AK
9418 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9419 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9420 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9421 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9422 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9423 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9424 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 9425#ifdef CONFIG_X86_64
e08aa78a
AK
9426 "mov %%r8, %c[r8](%0) \n\t"
9427 "mov %%r9, %c[r9](%0) \n\t"
9428 "mov %%r10, %c[r10](%0) \n\t"
9429 "mov %%r11, %c[r11](%0) \n\t"
9430 "mov %%r12, %c[r12](%0) \n\t"
9431 "mov %%r13, %c[r13](%0) \n\t"
9432 "mov %%r14, %c[r14](%0) \n\t"
9433 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 9434#endif
b188c81f
AK
9435 "mov %%cr2, %%" _ASM_AX " \n\t"
9436 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 9437
b188c81f 9438 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 9439 "setbe %c[fail](%0) \n\t"
83287ea4
AK
9440 ".pushsection .rodata \n\t"
9441 ".global vmx_return \n\t"
9442 "vmx_return: " _ASM_PTR " 2b \n\t"
9443 ".popsection"
e08aa78a 9444 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 9445 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 9446 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 9447 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
9448 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9449 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9450 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9451 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9452 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9453 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9454 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 9455#ifdef CONFIG_X86_64
ad312c7c
ZX
9456 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9457 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9458 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9459 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9460 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9461 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9462 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9463 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9464#endif
40712fae
AK
9465 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9466 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9467 : "cc", "memory"
9468#ifdef CONFIG_X86_64
b188c81f 9469 , "rax", "rbx", "rdi", "rsi"
c2036300 9470 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
9471#else
9472 , "eax", "ebx", "edi", "esi"
c2036300
LV
9473#endif
9474 );
6aa8b732 9475
2a7921b7
GN
9476 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9477 if (debugctlmsr)
9478 update_debugctlmsr(debugctlmsr);
9479
aa67f609
AK
9480#ifndef CONFIG_X86_64
9481 /*
9482 * The sysexit path does not restore ds/es, so we must set them to
9483 * a reasonable value ourselves.
9484 *
9485 * We can't defer this to vmx_load_host_state() since that function
9486 * may be executed in interrupt context, which saves and restore segments
9487 * around it, nullifying its effect.
9488 */
9489 loadsegment(ds, __USER_DS);
9490 loadsegment(es, __USER_DS);
9491#endif
9492
6de4f3ad 9493 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9494 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9495 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9496 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9497 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9498 vcpu->arch.regs_dirty = 0;
9499
1be0e61c
XG
9500 /*
9501 * eager fpu is enabled if PKEY is supported and CR4 is switched
9502 * back on host, so it is safe to read guest PKRU from current
9503 * XSAVE.
9504 */
b9dd21e1
PB
9505 if (static_cpu_has(X86_FEATURE_PKU) &&
9506 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9507 vcpu->arch.pkru = __read_pkru();
9508 if (vcpu->arch.pkru != vmx->host_pkru)
1be0e61c 9509 __write_pkru(vmx->host_pkru);
1be0e61c
XG
9510 }
9511
e0b890d3
GN
9512 /*
9513 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9514 * we did not inject a still-pending event to L1 now because of
9515 * nested_run_pending, we need to re-enable this bit.
9516 */
9517 if (vmx->nested.nested_run_pending)
9518 kvm_make_request(KVM_REQ_EVENT, vcpu);
9519
9520 vmx->nested.nested_run_pending = 0;
b060ca3b
JM
9521 vmx->idt_vectoring_info = 0;
9522
9523 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9524 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9525 return;
9526
9527 vmx->loaded_vmcs->launched = 1;
9528 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
e0b890d3 9529
51aa01d1
AK
9530 vmx_complete_atomic_exit(vmx);
9531 vmx_recover_nmi_blocking(vmx);
cf393f75 9532 vmx_complete_interrupts(vmx);
6aa8b732 9533}
c207aee4 9534STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
6aa8b732 9535
1279a6b1 9536static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
4fa7734c
PB
9537{
9538 struct vcpu_vmx *vmx = to_vmx(vcpu);
9539 int cpu;
9540
1279a6b1 9541 if (vmx->loaded_vmcs == vmcs)
4fa7734c
PB
9542 return;
9543
9544 cpu = get_cpu();
1279a6b1 9545 vmx->loaded_vmcs = vmcs;
4fa7734c
PB
9546 vmx_vcpu_put(vcpu);
9547 vmx_vcpu_load(vcpu, cpu);
4fa7734c
PB
9548 put_cpu();
9549}
9550
2f1fe811
JM
9551/*
9552 * Ensure that the current vmcs of the logical processor is the
9553 * vmcs01 of the vcpu before calling free_nested().
9554 */
9555static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9556{
9557 struct vcpu_vmx *vmx = to_vmx(vcpu);
9558 int r;
9559
9560 r = vcpu_load(vcpu);
9561 BUG_ON(r);
1279a6b1 9562 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2f1fe811
JM
9563 free_nested(vmx);
9564 vcpu_put(vcpu);
9565}
9566
6aa8b732
AK
9567static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9568{
fb3f0f51
RR
9569 struct vcpu_vmx *vmx = to_vmx(vcpu);
9570
843e4330 9571 if (enable_pml)
a3eaa864 9572 vmx_destroy_pml_buffer(vmx);
991e7a0e 9573 free_vpid(vmx->vpid);
4fa7734c 9574 leave_guest_mode(vcpu);
2f1fe811 9575 vmx_free_vcpu_nested(vcpu);
4fa7734c 9576 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9577 kfree(vmx->guest_msrs);
9578 kvm_vcpu_uninit(vcpu);
a4770347 9579 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9580}
9581
fb3f0f51 9582static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9583{
fb3f0f51 9584 int err;
c16f862d 9585 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 9586 int cpu;
6aa8b732 9587
a2fa3e9f 9588 if (!vmx)
fb3f0f51
RR
9589 return ERR_PTR(-ENOMEM);
9590
991e7a0e 9591 vmx->vpid = allocate_vpid();
2384d2b3 9592
fb3f0f51
RR
9593 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9594 if (err)
9595 goto free_vcpu;
965b58a5 9596
4e59516a
PF
9597 err = -ENOMEM;
9598
9599 /*
9600 * If PML is turned on, failure on enabling PML just results in failure
9601 * of creating the vcpu, therefore we can simplify PML logic (by
9602 * avoiding dealing with cases, such as enabling PML partially on vcpus
9603 * for the guest, etc.
9604 */
9605 if (enable_pml) {
9606 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9607 if (!vmx->pml_pg)
9608 goto uninit_vcpu;
9609 }
9610
a2fa3e9f 9611 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9612 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9613 > PAGE_SIZE);
0123be42 9614
4e59516a
PF
9615 if (!vmx->guest_msrs)
9616 goto free_pml;
965b58a5 9617
d462b819
NHE
9618 vmx->loaded_vmcs = &vmx->vmcs01;
9619 vmx->loaded_vmcs->vmcs = alloc_vmcs();
355f4fb1 9620 vmx->loaded_vmcs->shadow_vmcs = NULL;
d462b819 9621 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 9622 goto free_msrs;
d462b819 9623 loaded_vmcs_init(vmx->loaded_vmcs);
a2fa3e9f 9624
15ad7146
AK
9625 cpu = get_cpu();
9626 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9627 vmx->vcpu.cpu = cpu;
12d79917 9628 vmx_vcpu_setup(vmx);
fb3f0f51 9629 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9630 put_cpu();
35754c98 9631 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9632 err = alloc_apic_access_page(kvm);
9633 if (err)
5e4a0b3c 9634 goto free_vmcs;
a63cb560 9635 }
fb3f0f51 9636
b927a3ce 9637 if (enable_ept) {
f51770ed
TC
9638 err = init_rmode_identity_map(kvm);
9639 if (err)
93ea5388 9640 goto free_vmcs;
b927a3ce 9641 }
b7ebfb05 9642
5c614b35 9643 if (nested) {
b9c237bb 9644 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9645 vmx->nested.vpid02 = allocate_vpid();
9646 }
b9c237bb 9647
705699a1 9648 vmx->nested.posted_intr_nv = -1;
a9d30f33 9649 vmx->nested.current_vmptr = -1ull;
a9d30f33 9650
37e4c997
HZ
9651 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9652
31afb2ea
PB
9653 /*
9654 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9655 * or POSTED_INTR_WAKEUP_VECTOR.
9656 */
9657 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
9658 vmx->pi_desc.sn = 1;
9659
fb3f0f51
RR
9660 return &vmx->vcpu;
9661
9662free_vmcs:
5c614b35 9663 free_vpid(vmx->nested.vpid02);
5f3fbc34 9664 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9665free_msrs:
fb3f0f51 9666 kfree(vmx->guest_msrs);
4e59516a
PF
9667free_pml:
9668 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9669uninit_vcpu:
9670 kvm_vcpu_uninit(&vmx->vcpu);
9671free_vcpu:
991e7a0e 9672 free_vpid(vmx->vpid);
a4770347 9673 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9674 return ERR_PTR(err);
6aa8b732
AK
9675}
9676
002c7f7c
YS
9677static void __init vmx_check_processor_compat(void *rtn)
9678{
9679 struct vmcs_config vmcs_conf;
9680
9681 *(int *)rtn = 0;
9682 if (setup_vmcs_config(&vmcs_conf) < 0)
9683 *(int *)rtn = -EIO;
9684 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9685 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9686 smp_processor_id());
9687 *(int *)rtn = -EIO;
9688 }
9689}
9690
4b12f0de 9691static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9692{
b18d5431
XG
9693 u8 cache;
9694 u64 ipat = 0;
4b12f0de 9695
522c68c4 9696 /* For VT-d and EPT combination
606decd6 9697 * 1. MMIO: always map as UC
522c68c4
SY
9698 * 2. EPT with VT-d:
9699 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9700 * result, try to trust guest.
522c68c4
SY
9701 * b. VT-d with snooping control feature: snooping control feature of
9702 * VT-d engine can guarantee the cache correctness. Just set it
9703 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9704 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9705 * consistent with host MTRR
9706 */
606decd6
PB
9707 if (is_mmio) {
9708 cache = MTRR_TYPE_UNCACHABLE;
9709 goto exit;
9710 }
9711
9712 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9713 ipat = VMX_EPT_IPAT_BIT;
9714 cache = MTRR_TYPE_WRBACK;
9715 goto exit;
9716 }
9717
9718 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9719 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9720 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9721 cache = MTRR_TYPE_WRBACK;
9722 else
9723 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9724 goto exit;
9725 }
9726
ff53604b 9727 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9728
9729exit:
9730 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9731}
9732
17cc3935 9733static int vmx_get_lpage_level(void)
344f414f 9734{
878403b7
SY
9735 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9736 return PT_DIRECTORY_LEVEL;
9737 else
9738 /* For shadow and EPT supported 1GB page */
9739 return PT_PDPE_LEVEL;
344f414f
JR
9740}
9741
feda805f
XG
9742static void vmcs_set_secondary_exec_control(u32 new_ctl)
9743{
9744 /*
9745 * These bits in the secondary execution controls field
9746 * are dynamic, the others are mostly based on the hypervisor
9747 * architecture and the guest's CPUID. Do not touch the
9748 * dynamic bits.
9749 */
9750 u32 mask =
9751 SECONDARY_EXEC_SHADOW_VMCS |
9752 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9753 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9754
9755 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9756
9757 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9758 (new_ctl & ~mask) | (cur_ctl & mask));
9759}
9760
8322ebbb
DM
9761/*
9762 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9763 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9764 */
9765static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9766{
9767 struct vcpu_vmx *vmx = to_vmx(vcpu);
9768 struct kvm_cpuid_entry2 *entry;
9769
9770 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9771 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9772
9773#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9774 if (entry && (entry->_reg & (_cpuid_mask))) \
9775 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9776} while (0)
9777
9778 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9779 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9780 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9781 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9782 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9783 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9784 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9785 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9786 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9787 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9788 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9789 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9790 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9791 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9792 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9793
9794 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9795 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9796 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9797 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9798 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
c4ad77e0 9799 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
8322ebbb
DM
9800
9801#undef cr4_fixed1_update
9802}
9803
0e851880
SY
9804static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9805{
4e47c7a6 9806 struct vcpu_vmx *vmx = to_vmx(vcpu);
4e47c7a6 9807
80154d77
PB
9808 if (cpu_has_secondary_exec_ctrls()) {
9809 vmx_compute_secondary_exec_control(vmx);
9810 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
ad756a16 9811 }
8b3e34e4 9812
37e4c997
HZ
9813 if (nested_vmx_allowed(vcpu))
9814 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9815 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9816 else
9817 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9818 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
9819
9820 if (nested_vmx_allowed(vcpu))
9821 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
9822}
9823
d4330ef2
JR
9824static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9825{
7b8050f5
NHE
9826 if (func == 1 && nested)
9827 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9828}
9829
25d92081
YZ
9830static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9831 struct x86_exception *fault)
9832{
533558bc 9833 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
c5f983f6 9834 struct vcpu_vmx *vmx = to_vmx(vcpu);
533558bc 9835 u32 exit_reason;
c5f983f6 9836 unsigned long exit_qualification = vcpu->arch.exit_qualification;
25d92081 9837
c5f983f6
BD
9838 if (vmx->nested.pml_full) {
9839 exit_reason = EXIT_REASON_PML_FULL;
9840 vmx->nested.pml_full = false;
9841 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9842 } else if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9843 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9844 else
533558bc 9845 exit_reason = EXIT_REASON_EPT_VIOLATION;
c5f983f6
BD
9846
9847 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
25d92081
YZ
9848 vmcs12->guest_physical_address = fault->address;
9849}
9850
995f00a6
PF
9851static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9852{
bb97a016 9853 return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
995f00a6
PF
9854}
9855
155a97a3
NHE
9856/* Callbacks for nested_ept_init_mmu_context: */
9857
9858static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9859{
9860 /* return the page table to be shadowed - in our case, EPT12 */
9861 return get_vmcs12(vcpu)->ept_pointer;
9862}
9863
ae1e2d10 9864static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9865{
ad896af0 9866 WARN_ON(mmu_is_nested(vcpu));
a057e0e2 9867 if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
ae1e2d10
PB
9868 return 1;
9869
9870 kvm_mmu_unload(vcpu);
ad896af0 9871 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb 9872 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
ae1e2d10 9873 VMX_EPT_EXECUTE_ONLY_BIT,
a057e0e2 9874 nested_ept_ad_enabled(vcpu));
155a97a3
NHE
9875 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9876 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9877 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9878
9879 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
ae1e2d10 9880 return 0;
155a97a3
NHE
9881}
9882
9883static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9884{
9885 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9886}
9887
19d5f10b
EK
9888static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9889 u16 error_code)
9890{
9891 bool inequality, bit;
9892
9893 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9894 inequality =
9895 (error_code & vmcs12->page_fault_error_code_mask) !=
9896 vmcs12->page_fault_error_code_match;
9897 return inequality ^ bit;
9898}
9899
feaf0c7d
GN
9900static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9901 struct x86_exception *fault)
9902{
9903 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9904
9905 WARN_ON(!is_guest_mode(vcpu));
9906
305d0ab4
WL
9907 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
9908 !to_vmx(vcpu)->nested.nested_run_pending) {
b96fb439
PB
9909 vmcs12->vm_exit_intr_error_code = fault->error_code;
9910 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9911 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9912 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9913 fault->address);
7313c698 9914 } else {
feaf0c7d 9915 kvm_inject_page_fault(vcpu, fault);
7313c698 9916 }
feaf0c7d
GN
9917}
9918
6beb7bd5
JM
9919static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9920 struct vmcs12 *vmcs12);
9921
9922static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
9923 struct vmcs12 *vmcs12)
9924{
9925 struct vcpu_vmx *vmx = to_vmx(vcpu);
5e2f30b7 9926 struct page *page;
6beb7bd5 9927 u64 hpa;
a2bcba50
WL
9928
9929 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
9930 /*
9931 * Translate L1 physical address to host physical
9932 * address for vmcs02. Keep the page pinned, so this
9933 * physical address remains valid. We keep a reference
9934 * to it so we can release it later.
9935 */
5e2f30b7 9936 if (vmx->nested.apic_access_page) { /* shouldn't happen */
53a70daf 9937 kvm_release_page_dirty(vmx->nested.apic_access_page);
5e2f30b7
DH
9938 vmx->nested.apic_access_page = NULL;
9939 }
9940 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
9941 /*
9942 * If translation failed, no matter: This feature asks
9943 * to exit when accessing the given address, and if it
9944 * can never be accessed, this feature won't do
9945 * anything anyway.
9946 */
5e2f30b7
DH
9947 if (!is_error_page(page)) {
9948 vmx->nested.apic_access_page = page;
6beb7bd5
JM
9949 hpa = page_to_phys(vmx->nested.apic_access_page);
9950 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9951 } else {
9952 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9953 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9954 }
9955 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9956 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9957 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9958 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9959 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 9960 }
a7c0b07d
WL
9961
9962 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5e2f30b7 9963 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
53a70daf 9964 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
5e2f30b7
DH
9965 vmx->nested.virtual_apic_page = NULL;
9966 }
9967 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
a7c0b07d
WL
9968
9969 /*
6beb7bd5
JM
9970 * If translation failed, VM entry will fail because
9971 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9972 * Failing the vm entry is _not_ what the processor
9973 * does but it's basically the only possibility we
9974 * have. We could still enter the guest if CR8 load
9975 * exits are enabled, CR8 store exits are enabled, and
9976 * virtualize APIC access is disabled; in this case
9977 * the processor would never use the TPR shadow and we
9978 * could simply clear the bit from the execution
9979 * control. But such a configuration is useless, so
9980 * let's keep the code simple.
a7c0b07d 9981 */
5e2f30b7
DH
9982 if (!is_error_page(page)) {
9983 vmx->nested.virtual_apic_page = page;
6beb7bd5
JM
9984 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9985 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9986 }
a7c0b07d
WL
9987 }
9988
705699a1 9989 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
9990 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9991 kunmap(vmx->nested.pi_desc_page);
53a70daf 9992 kvm_release_page_dirty(vmx->nested.pi_desc_page);
5e2f30b7 9993 vmx->nested.pi_desc_page = NULL;
705699a1 9994 }
5e2f30b7
DH
9995 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
9996 if (is_error_page(page))
6beb7bd5 9997 return;
5e2f30b7
DH
9998 vmx->nested.pi_desc_page = page;
9999 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
705699a1
WV
10000 vmx->nested.pi_desc =
10001 (struct pi_desc *)((void *)vmx->nested.pi_desc +
10002 (unsigned long)(vmcs12->posted_intr_desc_addr &
10003 (PAGE_SIZE - 1)));
6beb7bd5
JM
10004 vmcs_write64(POSTED_INTR_DESC_ADDR,
10005 page_to_phys(vmx->nested.pi_desc_page) +
10006 (unsigned long)(vmcs12->posted_intr_desc_addr &
10007 (PAGE_SIZE - 1)));
705699a1 10008 }
6beb7bd5
JM
10009 if (cpu_has_vmx_msr_bitmap() &&
10010 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
10011 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
10012 ;
10013 else
10014 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
10015 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
10016}
10017
f4124500
JK
10018static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
10019{
10020 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
10021 struct vcpu_vmx *vmx = to_vmx(vcpu);
10022
10023 if (vcpu->arch.virtual_tsc_khz == 0)
10024 return;
10025
10026 /* Make sure short timeouts reliably trigger an immediate vmexit.
10027 * hrtimer_start does not guarantee this. */
10028 if (preemption_timeout <= 1) {
10029 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
10030 return;
10031 }
10032
10033 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10034 preemption_timeout *= 1000000;
10035 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
10036 hrtimer_start(&vmx->nested.preemption_timer,
10037 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
10038}
10039
56a20510
JM
10040static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
10041 struct vmcs12 *vmcs12)
10042{
10043 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
10044 return 0;
10045
10046 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
10047 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
10048 return -EINVAL;
10049
10050 return 0;
10051}
10052
3af18d9c
WV
10053static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
10054 struct vmcs12 *vmcs12)
10055{
3af18d9c
WV
10056 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10057 return 0;
10058
5fa99cbe 10059 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
3af18d9c
WV
10060 return -EINVAL;
10061
10062 return 0;
10063}
10064
712b12d7
JM
10065static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10066 struct vmcs12 *vmcs12)
10067{
10068 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10069 return 0;
10070
10071 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10072 return -EINVAL;
10073
10074 return 0;
10075}
10076
3af18d9c
WV
10077/*
10078 * Merge L0's and L1's MSR bitmap, return false to indicate that
10079 * we do not use the hardware.
10080 */
10081static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10082 struct vmcs12 *vmcs12)
10083{
82f0dd4b 10084 int msr;
f2b93280 10085 struct page *page;
d048c098
RK
10086 unsigned long *msr_bitmap_l1;
10087 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
f2b93280 10088
d048c098 10089 /* This shortcut is ok because we support only x2APIC MSRs so far. */
f2b93280
WV
10090 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
10091 return false;
10092
5e2f30b7
DH
10093 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10094 if (is_error_page(page))
f2b93280 10095 return false;
d048c098 10096 msr_bitmap_l1 = (unsigned long *)kmap(page);
f2b93280 10097
d048c098
RK
10098 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10099
f2b93280 10100 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
10101 if (nested_cpu_has_apic_reg_virt(vmcs12))
10102 for (msr = 0x800; msr <= 0x8ff; msr++)
10103 nested_vmx_disable_intercept_for_msr(
d048c098 10104 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 10105 msr, MSR_TYPE_R);
d048c098
RK
10106
10107 nested_vmx_disable_intercept_for_msr(
10108 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
10109 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10110 MSR_TYPE_R | MSR_TYPE_W);
d048c098 10111
608406e2 10112 if (nested_cpu_has_vid(vmcs12)) {
608406e2 10113 nested_vmx_disable_intercept_for_msr(
d048c098 10114 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10115 APIC_BASE_MSR + (APIC_EOI >> 4),
10116 MSR_TYPE_W);
10117 nested_vmx_disable_intercept_for_msr(
d048c098 10118 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10119 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10120 MSR_TYPE_W);
10121 }
82f0dd4b 10122 }
f2b93280 10123 kunmap(page);
53a70daf 10124 kvm_release_page_clean(page);
f2b93280
WV
10125
10126 return true;
10127}
10128
10129static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10130 struct vmcs12 *vmcs12)
10131{
82f0dd4b 10132 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 10133 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
10134 !nested_cpu_has_vid(vmcs12) &&
10135 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
10136 return 0;
10137
10138 /*
10139 * If virtualize x2apic mode is enabled,
10140 * virtualize apic access must be disabled.
10141 */
82f0dd4b
WV
10142 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10143 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
10144 return -EINVAL;
10145
608406e2
WV
10146 /*
10147 * If virtual interrupt delivery is enabled,
10148 * we must exit on external interrupts.
10149 */
10150 if (nested_cpu_has_vid(vmcs12) &&
10151 !nested_exit_on_intr(vcpu))
10152 return -EINVAL;
10153
705699a1
WV
10154 /*
10155 * bits 15:8 should be zero in posted_intr_nv,
10156 * the descriptor address has been already checked
10157 * in nested_get_vmcs12_pages.
10158 */
10159 if (nested_cpu_has_posted_intr(vmcs12) &&
10160 (!nested_cpu_has_vid(vmcs12) ||
10161 !nested_exit_intr_ack_set(vcpu) ||
10162 vmcs12->posted_intr_nv & 0xff00))
10163 return -EINVAL;
10164
f2b93280
WV
10165 /* tpr shadow is needed by all apicv features. */
10166 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10167 return -EINVAL;
10168
10169 return 0;
3af18d9c
WV
10170}
10171
e9ac033e
EK
10172static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10173 unsigned long count_field,
92d71bc6 10174 unsigned long addr_field)
ff651cb6 10175{
92d71bc6 10176 int maxphyaddr;
e9ac033e
EK
10177 u64 count, addr;
10178
10179 if (vmcs12_read_any(vcpu, count_field, &count) ||
10180 vmcs12_read_any(vcpu, addr_field, &addr)) {
10181 WARN_ON(1);
10182 return -EINVAL;
10183 }
10184 if (count == 0)
10185 return 0;
92d71bc6 10186 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
10187 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10188 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 10189 pr_debug_ratelimited(
e9ac033e
EK
10190 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10191 addr_field, maxphyaddr, count, addr);
10192 return -EINVAL;
10193 }
10194 return 0;
10195}
10196
10197static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10198 struct vmcs12 *vmcs12)
10199{
e9ac033e
EK
10200 if (vmcs12->vm_exit_msr_load_count == 0 &&
10201 vmcs12->vm_exit_msr_store_count == 0 &&
10202 vmcs12->vm_entry_msr_load_count == 0)
10203 return 0; /* Fast path */
e9ac033e 10204 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 10205 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 10206 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 10207 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 10208 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 10209 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
10210 return -EINVAL;
10211 return 0;
10212}
10213
c5f983f6
BD
10214static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10215 struct vmcs12 *vmcs12)
10216{
10217 u64 address = vmcs12->pml_address;
10218 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10219
10220 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10221 if (!nested_cpu_has_ept(vmcs12) ||
10222 !IS_ALIGNED(address, 4096) ||
10223 address >> maxphyaddr)
10224 return -EINVAL;
10225 }
10226
10227 return 0;
10228}
10229
e9ac033e
EK
10230static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10231 struct vmx_msr_entry *e)
10232{
10233 /* x2APIC MSR accesses are not allowed */
8a9781f7 10234 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
10235 return -EINVAL;
10236 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10237 e->index == MSR_IA32_UCODE_REV)
10238 return -EINVAL;
10239 if (e->reserved != 0)
ff651cb6
WV
10240 return -EINVAL;
10241 return 0;
10242}
10243
e9ac033e
EK
10244static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10245 struct vmx_msr_entry *e)
ff651cb6
WV
10246{
10247 if (e->index == MSR_FS_BASE ||
10248 e->index == MSR_GS_BASE ||
e9ac033e
EK
10249 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10250 nested_vmx_msr_check_common(vcpu, e))
10251 return -EINVAL;
10252 return 0;
10253}
10254
10255static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10256 struct vmx_msr_entry *e)
10257{
10258 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10259 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
10260 return -EINVAL;
10261 return 0;
10262}
10263
10264/*
10265 * Load guest's/host's msr at nested entry/exit.
10266 * return 0 for success, entry index for failure.
10267 */
10268static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10269{
10270 u32 i;
10271 struct vmx_msr_entry e;
10272 struct msr_data msr;
10273
10274 msr.host_initiated = false;
10275 for (i = 0; i < count; i++) {
54bf36aa
PB
10276 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10277 &e, sizeof(e))) {
bbe41b95 10278 pr_debug_ratelimited(
e9ac033e
EK
10279 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10280 __func__, i, gpa + i * sizeof(e));
ff651cb6 10281 goto fail;
e9ac033e
EK
10282 }
10283 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 10284 pr_debug_ratelimited(
e9ac033e
EK
10285 "%s check failed (%u, 0x%x, 0x%x)\n",
10286 __func__, i, e.index, e.reserved);
10287 goto fail;
10288 }
ff651cb6
WV
10289 msr.index = e.index;
10290 msr.data = e.value;
e9ac033e 10291 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 10292 pr_debug_ratelimited(
e9ac033e
EK
10293 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10294 __func__, i, e.index, e.value);
ff651cb6 10295 goto fail;
e9ac033e 10296 }
ff651cb6
WV
10297 }
10298 return 0;
10299fail:
10300 return i + 1;
10301}
10302
10303static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10304{
10305 u32 i;
10306 struct vmx_msr_entry e;
10307
10308 for (i = 0; i < count; i++) {
609e36d3 10309 struct msr_data msr_info;
54bf36aa
PB
10310 if (kvm_vcpu_read_guest(vcpu,
10311 gpa + i * sizeof(e),
10312 &e, 2 * sizeof(u32))) {
bbe41b95 10313 pr_debug_ratelimited(
e9ac033e
EK
10314 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10315 __func__, i, gpa + i * sizeof(e));
ff651cb6 10316 return -EINVAL;
e9ac033e
EK
10317 }
10318 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 10319 pr_debug_ratelimited(
e9ac033e
EK
10320 "%s check failed (%u, 0x%x, 0x%x)\n",
10321 __func__, i, e.index, e.reserved);
ff651cb6 10322 return -EINVAL;
e9ac033e 10323 }
609e36d3
PB
10324 msr_info.host_initiated = false;
10325 msr_info.index = e.index;
10326 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 10327 pr_debug_ratelimited(
e9ac033e
EK
10328 "%s cannot read MSR (%u, 0x%x)\n",
10329 __func__, i, e.index);
10330 return -EINVAL;
10331 }
54bf36aa
PB
10332 if (kvm_vcpu_write_guest(vcpu,
10333 gpa + i * sizeof(e) +
10334 offsetof(struct vmx_msr_entry, value),
10335 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 10336 pr_debug_ratelimited(
e9ac033e 10337 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 10338 __func__, i, e.index, msr_info.data);
e9ac033e
EK
10339 return -EINVAL;
10340 }
ff651cb6
WV
10341 }
10342 return 0;
10343}
10344
1dc35dac
LP
10345static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10346{
10347 unsigned long invalid_mask;
10348
10349 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10350 return (val & invalid_mask) == 0;
10351}
10352
9ed38ffa
LP
10353/*
10354 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10355 * emulating VM entry into a guest with EPT enabled.
10356 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10357 * is assigned to entry_failure_code on failure.
10358 */
10359static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 10360 u32 *entry_failure_code)
9ed38ffa 10361{
9ed38ffa 10362 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 10363 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
10364 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10365 return 1;
10366 }
10367
10368 /*
10369 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10370 * must not be dereferenced.
10371 */
10372 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10373 !nested_ept) {
10374 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10375 *entry_failure_code = ENTRY_FAIL_PDPTE;
10376 return 1;
10377 }
10378 }
10379
10380 vcpu->arch.cr3 = cr3;
10381 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10382 }
10383
10384 kvm_mmu_reset_context(vcpu);
10385 return 0;
10386}
10387
fe3ef05c
NHE
10388/*
10389 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10390 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 10391 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
10392 * guest in a way that will both be appropriate to L1's requests, and our
10393 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10394 * function also has additional necessary side-effects, like setting various
10395 * vcpu->arch fields.
ee146c1c
LP
10396 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10397 * is assigned to entry_failure_code on failure.
fe3ef05c 10398 */
ee146c1c 10399static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
ca0bde28 10400 bool from_vmentry, u32 *entry_failure_code)
fe3ef05c
NHE
10401{
10402 struct vcpu_vmx *vmx = to_vmx(vcpu);
03efce6f 10403 u32 exec_control, vmcs12_exec_ctrl;
fe3ef05c
NHE
10404
10405 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10406 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10407 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10408 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10409 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10410 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10411 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10412 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10413 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10414 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10415 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10416 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10417 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10418 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10419 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10420 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10421 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10422 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10423 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10424 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10425 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10426 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10427 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10428 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10429 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10430 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10431 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10432 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10433 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10434 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10435 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10436 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10437 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10438 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10439 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10440 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10441
cf8b84f4
JM
10442 if (from_vmentry &&
10443 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
10444 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10445 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10446 } else {
10447 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10448 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10449 }
cf8b84f4
JM
10450 if (from_vmentry) {
10451 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10452 vmcs12->vm_entry_intr_info_field);
10453 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10454 vmcs12->vm_entry_exception_error_code);
10455 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10456 vmcs12->vm_entry_instruction_len);
10457 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10458 vmcs12->guest_interruptibility_info);
2d6144e3
WL
10459 vmx->loaded_vmcs->nmi_known_unmasked =
10460 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
cf8b84f4
JM
10461 } else {
10462 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10463 }
fe3ef05c 10464 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 10465 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
10466 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10467 vmcs12->guest_pending_dbg_exceptions);
10468 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10469 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10470
81dc01f7
WL
10471 if (nested_cpu_has_xsaves(vmcs12))
10472 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
10473 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10474
f4124500 10475 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
10476
10477 /* Preemption timer setting is only taken from vmcs01. */
705699a1 10478 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
10479 exec_control |= vmcs_config.pin_based_exec_ctrl;
10480 if (vmx->hv_deadline_tsc == -1)
10481 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 10482
9314006d 10483 /* Posted interrupts setting is only taken from vmcs12. */
705699a1 10484 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
10485 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10486 vmx->nested.pi_pending = false;
06a5524f 10487 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
6beb7bd5 10488 } else {
705699a1 10489 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 10490 }
705699a1 10491
f4124500 10492 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 10493
f4124500
JK
10494 vmx->nested.preemption_timer_expired = false;
10495 if (nested_cpu_has_preemption_timer(vmcs12))
10496 vmx_start_preemption_timer(vcpu);
0238ea91 10497
fe3ef05c
NHE
10498 /*
10499 * Whether page-faults are trapped is determined by a combination of
10500 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10501 * If enable_ept, L0 doesn't care about page faults and we should
10502 * set all of these to L1's desires. However, if !enable_ept, L0 does
10503 * care about (at least some) page faults, and because it is not easy
10504 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10505 * to exit on each and every L2 page fault. This is done by setting
10506 * MASK=MATCH=0 and (see below) EB.PF=1.
10507 * Note that below we don't need special code to set EB.PF beyond the
10508 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10509 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10510 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
fe3ef05c
NHE
10511 */
10512 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10513 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10514 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10515 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10516
10517 if (cpu_has_secondary_exec_ctrls()) {
80154d77 10518 exec_control = vmx->secondary_exec_control;
e2821620 10519
fe3ef05c 10520 /* Take the following fields only from vmcs12 */
696dfd95 10521 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
90a2db6d 10522 SECONDARY_EXEC_ENABLE_INVPCID |
b3a2a907 10523 SECONDARY_EXEC_RDTSCP |
3db13480 10524 SECONDARY_EXEC_XSAVES |
696dfd95 10525 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
27c42a1b
BD
10526 SECONDARY_EXEC_APIC_REGISTER_VIRT |
10527 SECONDARY_EXEC_ENABLE_VMFUNC);
fe3ef05c 10528 if (nested_cpu_has(vmcs12,
03efce6f
BD
10529 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10530 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10531 ~SECONDARY_EXEC_ENABLE_PML;
10532 exec_control |= vmcs12_exec_ctrl;
10533 }
fe3ef05c 10534
27c42a1b
BD
10535 /* All VMFUNCs are currently emulated through L0 vmexits. */
10536 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10537 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10538
608406e2
WV
10539 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10540 vmcs_write64(EOI_EXIT_BITMAP0,
10541 vmcs12->eoi_exit_bitmap0);
10542 vmcs_write64(EOI_EXIT_BITMAP1,
10543 vmcs12->eoi_exit_bitmap1);
10544 vmcs_write64(EOI_EXIT_BITMAP2,
10545 vmcs12->eoi_exit_bitmap2);
10546 vmcs_write64(EOI_EXIT_BITMAP3,
10547 vmcs12->eoi_exit_bitmap3);
10548 vmcs_write16(GUEST_INTR_STATUS,
10549 vmcs12->guest_intr_status);
10550 }
10551
6beb7bd5
JM
10552 /*
10553 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10554 * nested_get_vmcs12_pages will either fix it up or
10555 * remove the VM execution control.
10556 */
10557 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10558 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10559
fe3ef05c
NHE
10560 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10561 }
10562
10563
10564 /*
10565 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10566 * Some constant fields are set here by vmx_set_constant_host_state().
10567 * Other fields are different per CPU, and will be set later when
10568 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10569 */
a547c6db 10570 vmx_set_constant_host_state(vmx);
fe3ef05c 10571
83bafef1
JM
10572 /*
10573 * Set the MSR load/store lists to match L0's settings.
10574 */
10575 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10576 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10577 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10578 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10579 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10580
fe3ef05c
NHE
10581 /*
10582 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10583 * entry, but only if the current (host) sp changed from the value
10584 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10585 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10586 * here we just force the write to happen on entry.
10587 */
10588 vmx->host_rsp = 0;
10589
10590 exec_control = vmx_exec_control(vmx); /* L0's desires */
10591 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10592 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10593 exec_control &= ~CPU_BASED_TPR_SHADOW;
10594 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 10595
6beb7bd5
JM
10596 /*
10597 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10598 * nested_get_vmcs12_pages can't fix it up, the illegal value
10599 * will result in a VM entry failure.
10600 */
a7c0b07d 10601 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 10602 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d 10603 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
51aa68e7
JM
10604 } else {
10605#ifdef CONFIG_X86_64
10606 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
10607 CPU_BASED_CR8_STORE_EXITING;
10608#endif
a7c0b07d
WL
10609 }
10610
fe3ef05c 10611 /*
3af18d9c 10612 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10613 * Rather, exit every time.
10614 */
fe3ef05c
NHE
10615 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10616 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10617
10618 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10619
10620 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10621 * bitwise-or of what L1 wants to trap for L2, and what we want to
10622 * trap. Note that CR0.TS also needs updating - we do this later.
10623 */
10624 update_exception_bitmap(vcpu);
10625 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10626 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10627
8049d651
NHE
10628 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10629 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10630 * bits are further modified by vmx_set_efer() below.
10631 */
f4124500 10632 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10633
10634 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10635 * emulated by vmx_set_efer(), below.
10636 */
2961e876 10637 vm_entry_controls_init(vmx,
8049d651
NHE
10638 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10639 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10640 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10641
cf8b84f4
JM
10642 if (from_vmentry &&
10643 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 10644 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 10645 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 10646 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10647 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 10648 }
fe3ef05c
NHE
10649
10650 set_cr4_guest_host_mask(vmx);
10651
cf8b84f4
JM
10652 if (from_vmentry &&
10653 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
36be0b9d
PB
10654 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10655
27fc51b2
NHE
10656 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10657 vmcs_write64(TSC_OFFSET,
ea26e4ec 10658 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
27fc51b2 10659 else
ea26e4ec 10660 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
c95ba92a
PF
10661 if (kvm_has_tsc_control)
10662 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
10663
10664 if (enable_vpid) {
10665 /*
5c614b35
WL
10666 * There is no direct mapping between vpid02 and vpid12, the
10667 * vpid02 is per-vCPU for L0 and reused while the value of
10668 * vpid12 is changed w/ one invvpid during nested vmentry.
10669 * The vpid12 is allocated by L1 for L2, so it will not
10670 * influence global bitmap(for vpid01 and vpid02 allocation)
10671 * even if spawn a lot of nested vCPUs.
fe3ef05c 10672 */
5c614b35
WL
10673 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10674 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10675 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10676 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10677 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10678 }
10679 } else {
10680 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10681 vmx_flush_tlb(vcpu);
10682 }
10683
fe3ef05c
NHE
10684 }
10685
1fb883bb
LP
10686 if (enable_pml) {
10687 /*
10688 * Conceptually we want to copy the PML address and index from
10689 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10690 * since we always flush the log on each vmexit, this happens
10691 * to be equivalent to simply resetting the fields in vmcs02.
10692 */
10693 ASSERT(vmx->pml_pg);
10694 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10695 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10696 }
10697
155a97a3 10698 if (nested_cpu_has_ept(vmcs12)) {
ae1e2d10
PB
10699 if (nested_ept_init_mmu_context(vcpu)) {
10700 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10701 return 1;
10702 }
fb6c8198
JM
10703 } else if (nested_cpu_has2(vmcs12,
10704 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10705 vmx_flush_tlb_ept_only(vcpu);
155a97a3
NHE
10706 }
10707
fe3ef05c 10708 /*
bd7e5b08
PB
10709 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10710 * bits which we consider mandatory enabled.
fe3ef05c
NHE
10711 * The CR0_READ_SHADOW is what L2 should have expected to read given
10712 * the specifications by L1; It's not enough to take
10713 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10714 * have more bits than L1 expected.
10715 */
10716 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10717 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10718
10719 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10720 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10721
cf8b84f4
JM
10722 if (from_vmentry &&
10723 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
10724 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10725 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10726 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10727 else
10728 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10729 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10730 vmx_set_efer(vcpu, vcpu->arch.efer);
10731
9ed38ffa 10732 /* Shadow page tables on either EPT or shadow page tables. */
7ad658b6 10733 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
9ed38ffa
LP
10734 entry_failure_code))
10735 return 1;
7ca29de2 10736
feaf0c7d
GN
10737 if (!enable_ept)
10738 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10739
3633cfc3
NHE
10740 /*
10741 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10742 */
10743 if (enable_ept) {
10744 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10745 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10746 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10747 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10748 }
10749
fe3ef05c
NHE
10750 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10751 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 10752 return 0;
fe3ef05c
NHE
10753}
10754
ca0bde28 10755static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 10756{
cd232ad0 10757 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 10758
6dfacadd 10759 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
10760 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10761 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 10762
56a20510
JM
10763 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10764 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10765
ca0bde28
JM
10766 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10767 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10768
712b12d7
JM
10769 if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
10770 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10771
ca0bde28
JM
10772 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10773 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 10774
ca0bde28
JM
10775 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10776 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 10777
c5f983f6
BD
10778 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10779 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10780
7c177938 10781 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
0115f9cb 10782 vmx->nested.nested_vmx_procbased_ctls_low,
b9c237bb 10783 vmx->nested.nested_vmx_procbased_ctls_high) ||
2e5b0bd9
JM
10784 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10785 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10786 vmx->nested.nested_vmx_secondary_ctls_low,
10787 vmx->nested.nested_vmx_secondary_ctls_high)) ||
7c177938 10788 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10789 vmx->nested.nested_vmx_pinbased_ctls_low,
10790 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10791 !vmx_control_verify(vmcs12->vm_exit_controls,
0115f9cb 10792 vmx->nested.nested_vmx_exit_ctls_low,
b9c237bb 10793 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10794 !vmx_control_verify(vmcs12->vm_entry_controls,
0115f9cb 10795 vmx->nested.nested_vmx_entry_ctls_low,
b9c237bb 10796 vmx->nested.nested_vmx_entry_ctls_high))
ca0bde28 10797 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10798
41ab9372
BD
10799 if (nested_cpu_has_vmfunc(vmcs12)) {
10800 if (vmcs12->vm_function_control &
10801 ~vmx->nested.nested_vmx_vmfunc_controls)
10802 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10803
10804 if (nested_cpu_has_eptp_switching(vmcs12)) {
10805 if (!nested_cpu_has_ept(vmcs12) ||
10806 !page_address_valid(vcpu, vmcs12->eptp_list_address))
10807 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10808 }
10809 }
27c42a1b 10810
c7c2c709
JM
10811 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10812 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10813
3899152c 10814 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 10815 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
10816 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10817 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10818
10819 return 0;
10820}
10821
10822static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10823 u32 *exit_qual)
10824{
10825 bool ia32e;
10826
10827 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 10828
3899152c 10829 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 10830 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 10831 return 1;
ca0bde28
JM
10832
10833 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10834 vmcs12->vmcs_link_pointer != -1ull) {
10835 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 10836 return 1;
7c177938
NHE
10837 }
10838
384bb783 10839 /*
cb0c8cda 10840 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10841 * are performed on the field for the IA32_EFER MSR:
10842 * - Bits reserved in the IA32_EFER MSR must be 0.
10843 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10844 * the IA-32e mode guest VM-exit control. It must also be identical
10845 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10846 * CR0.PG) is 1.
10847 */
ca0bde28
JM
10848 if (to_vmx(vcpu)->nested.nested_run_pending &&
10849 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
10850 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10851 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10852 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10853 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 10854 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 10855 return 1;
384bb783
JK
10856 }
10857
10858 /*
10859 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10860 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10861 * the values of the LMA and LME bits in the field must each be that of
10862 * the host address-space size VM-exit control.
10863 */
10864 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10865 ia32e = (vmcs12->vm_exit_controls &
10866 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10867 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10868 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 10869 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 10870 return 1;
ca0bde28
JM
10871 }
10872
f1b026a3
WL
10873 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
10874 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
10875 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
10876 return 1;
10877
ca0bde28
JM
10878 return 0;
10879}
10880
858e25c0
JM
10881static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10882{
10883 struct vcpu_vmx *vmx = to_vmx(vcpu);
10884 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10885 struct loaded_vmcs *vmcs02;
858e25c0
JM
10886 u32 msr_entry_idx;
10887 u32 exit_qual;
10888
10889 vmcs02 = nested_get_current_vmcs02(vmx);
10890 if (!vmcs02)
10891 return -ENOMEM;
10892
10893 enter_guest_mode(vcpu);
10894
10895 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10896 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10897
1279a6b1 10898 vmx_switch_vmcs(vcpu, vmcs02);
858e25c0
JM
10899 vmx_segment_cache_clear(vmx);
10900
10901 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10902 leave_guest_mode(vcpu);
1279a6b1 10903 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10904 nested_vmx_entry_failure(vcpu, vmcs12,
10905 EXIT_REASON_INVALID_STATE, exit_qual);
10906 return 1;
10907 }
10908
10909 nested_get_vmcs12_pages(vcpu, vmcs12);
10910
10911 msr_entry_idx = nested_vmx_load_msr(vcpu,
10912 vmcs12->vm_entry_msr_load_addr,
10913 vmcs12->vm_entry_msr_load_count);
10914 if (msr_entry_idx) {
10915 leave_guest_mode(vcpu);
1279a6b1 10916 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10917 nested_vmx_entry_failure(vcpu, vmcs12,
10918 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10919 return 1;
10920 }
10921
858e25c0
JM
10922 /*
10923 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10924 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10925 * returned as far as L1 is concerned. It will only return (and set
10926 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10927 */
10928 return 0;
10929}
10930
ca0bde28
JM
10931/*
10932 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10933 * for running an L2 nested guest.
10934 */
10935static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10936{
10937 struct vmcs12 *vmcs12;
10938 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3f1dfb6 10939 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
ca0bde28
JM
10940 u32 exit_qual;
10941 int ret;
10942
10943 if (!nested_vmx_check_permission(vcpu))
10944 return 1;
10945
10946 if (!nested_vmx_check_vmcs12(vcpu))
10947 goto out;
10948
10949 vmcs12 = get_vmcs12(vcpu);
10950
10951 if (enable_shadow_vmcs)
10952 copy_shadow_to_vmcs12(vmx);
10953
10954 /*
10955 * The nested entry process starts with enforcing various prerequisites
10956 * on vmcs12 as required by the Intel SDM, and act appropriately when
10957 * they fail: As the SDM explains, some conditions should cause the
10958 * instruction to fail, while others will cause the instruction to seem
10959 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10960 * To speed up the normal (success) code path, we should avoid checking
10961 * for misconfigurations which will anyway be caught by the processor
10962 * when using the merged vmcs02.
10963 */
b3f1dfb6
JM
10964 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10965 nested_vmx_failValid(vcpu,
10966 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10967 goto out;
10968 }
10969
ca0bde28
JM
10970 if (vmcs12->launch_state == launch) {
10971 nested_vmx_failValid(vcpu,
10972 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10973 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10974 goto out;
10975 }
10976
10977 ret = check_vmentry_prereqs(vcpu, vmcs12);
10978 if (ret) {
10979 nested_vmx_failValid(vcpu, ret);
10980 goto out;
10981 }
10982
10983 /*
10984 * After this point, the trap flag no longer triggers a singlestep trap
10985 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10986 * This is not 100% correct; for performance reasons, we delegate most
10987 * of the checks on host state to the processor. If those fail,
10988 * the singlestep trap is missed.
10989 */
10990 skip_emulated_instruction(vcpu);
10991
10992 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10993 if (ret) {
10994 nested_vmx_entry_failure(vcpu, vmcs12,
10995 EXIT_REASON_INVALID_STATE, exit_qual);
10996 return 1;
384bb783
JK
10997 }
10998
7c177938
NHE
10999 /*
11000 * We're finally done with prerequisite checking, and can start with
11001 * the nested entry.
11002 */
11003
858e25c0
JM
11004 ret = enter_vmx_non_root_mode(vcpu, true);
11005 if (ret)
11006 return ret;
ff651cb6 11007
6dfacadd 11008 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 11009 return kvm_vcpu_halt(vcpu);
6dfacadd 11010
7af40ad3
JK
11011 vmx->nested.nested_run_pending = 1;
11012
cd232ad0 11013 return 1;
eb277562
KH
11014
11015out:
6affcbed 11016 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
11017}
11018
4704d0be
NHE
11019/*
11020 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
11021 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
11022 * This function returns the new value we should put in vmcs12.guest_cr0.
11023 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
11024 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
11025 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
11026 * didn't trap the bit, because if L1 did, so would L0).
11027 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
11028 * been modified by L2, and L1 knows it. So just leave the old value of
11029 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
11030 * isn't relevant, because if L0 traps this bit it can set it to anything.
11031 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
11032 * changed these bits, and therefore they need to be updated, but L0
11033 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
11034 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
11035 */
11036static inline unsigned long
11037vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11038{
11039 return
11040 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
11041 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
11042 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
11043 vcpu->arch.cr0_guest_owned_bits));
11044}
11045
11046static inline unsigned long
11047vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11048{
11049 return
11050 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
11051 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
11052 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
11053 vcpu->arch.cr4_guest_owned_bits));
11054}
11055
5f3d5799
JK
11056static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
11057 struct vmcs12 *vmcs12)
11058{
11059 u32 idt_vectoring;
11060 unsigned int nr;
11061
664f8e26 11062 if (vcpu->arch.exception.injected) {
5f3d5799
JK
11063 nr = vcpu->arch.exception.nr;
11064 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11065
11066 if (kvm_exception_is_soft(nr)) {
11067 vmcs12->vm_exit_instruction_len =
11068 vcpu->arch.event_exit_inst_len;
11069 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11070 } else
11071 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11072
11073 if (vcpu->arch.exception.has_error_code) {
11074 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11075 vmcs12->idt_vectoring_error_code =
11076 vcpu->arch.exception.error_code;
11077 }
11078
11079 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 11080 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
11081 vmcs12->idt_vectoring_info_field =
11082 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
11083 } else if (vcpu->arch.interrupt.pending) {
11084 nr = vcpu->arch.interrupt.nr;
11085 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11086
11087 if (vcpu->arch.interrupt.soft) {
11088 idt_vectoring |= INTR_TYPE_SOFT_INTR;
11089 vmcs12->vm_entry_instruction_len =
11090 vcpu->arch.event_exit_inst_len;
11091 } else
11092 idt_vectoring |= INTR_TYPE_EXT_INTR;
11093
11094 vmcs12->idt_vectoring_info_field = idt_vectoring;
11095 }
11096}
11097
b6b8a145
JK
11098static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11099{
11100 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfcf83b1 11101 unsigned long exit_qual;
917dc606
LA
11102 bool block_nested_events =
11103 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
acc9ab60 11104
bfcf83b1
WL
11105 if (vcpu->arch.exception.pending &&
11106 nested_vmx_check_exception(vcpu, &exit_qual)) {
917dc606 11107 if (block_nested_events)
bfcf83b1
WL
11108 return -EBUSY;
11109 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11110 vcpu->arch.exception.pending = false;
11111 return 0;
11112 }
11113
f4124500
JK
11114 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11115 vmx->nested.preemption_timer_expired) {
917dc606 11116 if (block_nested_events)
f4124500
JK
11117 return -EBUSY;
11118 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11119 return 0;
11120 }
11121
b6b8a145 11122 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
917dc606 11123 if (block_nested_events)
b6b8a145
JK
11124 return -EBUSY;
11125 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11126 NMI_VECTOR | INTR_TYPE_NMI_INTR |
11127 INTR_INFO_VALID_MASK, 0);
11128 /*
11129 * The NMI-triggered VM exit counts as injection:
11130 * clear this one and block further NMIs.
11131 */
11132 vcpu->arch.nmi_pending = 0;
11133 vmx_set_nmi_mask(vcpu, true);
11134 return 0;
11135 }
11136
11137 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11138 nested_exit_on_intr(vcpu)) {
917dc606 11139 if (block_nested_events)
b6b8a145
JK
11140 return -EBUSY;
11141 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 11142 return 0;
b6b8a145
JK
11143 }
11144
6342c50a
DH
11145 vmx_complete_nested_posted_interrupt(vcpu);
11146 return 0;
b6b8a145
JK
11147}
11148
f4124500
JK
11149static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11150{
11151 ktime_t remaining =
11152 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11153 u64 value;
11154
11155 if (ktime_to_ns(remaining) <= 0)
11156 return 0;
11157
11158 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11159 do_div(value, 1000000);
11160 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11161}
11162
4704d0be 11163/*
cf8b84f4
JM
11164 * Update the guest state fields of vmcs12 to reflect changes that
11165 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11166 * VM-entry controls is also updated, since this is really a guest
11167 * state bit.)
4704d0be 11168 */
cf8b84f4 11169static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 11170{
4704d0be
NHE
11171 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11172 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11173
4704d0be
NHE
11174 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11175 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11176 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11177
11178 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11179 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11180 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11181 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11182 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11183 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11184 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11185 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11186 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11187 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11188 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11189 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11190 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11191 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11192 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11193 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11194 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11195 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11196 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11197 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11198 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11199 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11200 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11201 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11202 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11203 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11204 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11205 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11206 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11207 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11208 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11209 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11210 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11211 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11212 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11213 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11214
4704d0be
NHE
11215 vmcs12->guest_interruptibility_info =
11216 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11217 vmcs12->guest_pending_dbg_exceptions =
11218 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
11219 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11220 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11221 else
11222 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 11223
f4124500
JK
11224 if (nested_cpu_has_preemption_timer(vmcs12)) {
11225 if (vmcs12->vm_exit_controls &
11226 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11227 vmcs12->vmx_preemption_timer_value =
11228 vmx_get_preemption_timer_value(vcpu);
11229 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11230 }
7854cbca 11231
3633cfc3
NHE
11232 /*
11233 * In some cases (usually, nested EPT), L2 is allowed to change its
11234 * own CR3 without exiting. If it has changed it, we must keep it.
11235 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11236 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11237 *
11238 * Additionally, restore L2's PDPTR to vmcs12.
11239 */
11240 if (enable_ept) {
f3531054 11241 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
11242 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11243 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11244 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11245 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11246 }
11247
d281e13b 11248 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
119a9c01 11249
608406e2
WV
11250 if (nested_cpu_has_vid(vmcs12))
11251 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11252
c18911a2
JK
11253 vmcs12->vm_entry_controls =
11254 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 11255 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 11256
2996fca0
JK
11257 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11258 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11259 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11260 }
11261
4704d0be
NHE
11262 /* TODO: These cannot have changed unless we have MSR bitmaps and
11263 * the relevant bit asks not to trap the change */
b8c07d55 11264 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 11265 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
11266 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11267 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
11268 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11269 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11270 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 11271 if (kvm_mpx_supported())
36be0b9d 11272 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
cf8b84f4
JM
11273}
11274
11275/*
11276 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11277 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11278 * and this function updates it to reflect the changes to the guest state while
11279 * L2 was running (and perhaps made some exits which were handled directly by L0
11280 * without going back to L1), and to reflect the exit reason.
11281 * Note that we do not have to copy here all VMCS fields, just those that
11282 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11283 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11284 * which already writes to vmcs12 directly.
11285 */
11286static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11287 u32 exit_reason, u32 exit_intr_info,
11288 unsigned long exit_qualification)
11289{
11290 /* update guest state fields: */
11291 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
11292
11293 /* update exit information fields: */
11294
533558bc
JK
11295 vmcs12->vm_exit_reason = exit_reason;
11296 vmcs12->exit_qualification = exit_qualification;
533558bc 11297 vmcs12->vm_exit_intr_info = exit_intr_info;
7313c698 11298
5f3d5799 11299 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
11300 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11301 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11302
5f3d5799 11303 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7cdc2d62
JM
11304 vmcs12->launch_state = 1;
11305
5f3d5799
JK
11306 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11307 * instead of reading the real value. */
4704d0be 11308 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
11309
11310 /*
11311 * Transfer the event that L0 or L1 may wanted to inject into
11312 * L2 to IDT_VECTORING_INFO_FIELD.
11313 */
11314 vmcs12_save_pending_event(vcpu, vmcs12);
11315 }
11316
11317 /*
11318 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11319 * preserved above and would only end up incorrectly in L1.
11320 */
11321 vcpu->arch.nmi_injected = false;
11322 kvm_clear_exception_queue(vcpu);
11323 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
11324}
11325
5af41573
WL
11326static void load_vmcs12_mmu_host_state(struct kvm_vcpu *vcpu,
11327 struct vmcs12 *vmcs12)
11328{
11329 u32 entry_failure_code;
11330
11331 nested_ept_uninit_mmu_context(vcpu);
11332
11333 /*
11334 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11335 * couldn't have changed.
11336 */
11337 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11338 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
11339
11340 if (!enable_ept)
11341 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11342}
11343
4704d0be
NHE
11344/*
11345 * A part of what we need to when the nested L2 guest exits and we want to
11346 * run its L1 parent, is to reset L1's guest state to the host state specified
11347 * in vmcs12.
11348 * This function is to be called not only on normal nested exit, but also on
11349 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11350 * Failures During or After Loading Guest State").
11351 * This function should be called when the active VMCS is L1's (vmcs01).
11352 */
733568f9
JK
11353static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11354 struct vmcs12 *vmcs12)
4704d0be 11355{
21feb4eb
ACL
11356 struct kvm_segment seg;
11357
4704d0be
NHE
11358 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11359 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 11360 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
11361 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11362 else
11363 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11364 vmx_set_efer(vcpu, vcpu->arch.efer);
11365
11366 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11367 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 11368 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
11369 /*
11370 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
11371 * actually changed, because vmx_set_cr0 refers to efer set above.
11372 *
11373 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11374 * (KVM doesn't change it);
4704d0be 11375 */
bd7e5b08 11376 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 11377 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 11378
bd7e5b08 11379 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be 11380 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8eb3f87d 11381 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4704d0be 11382
5af41573 11383 load_vmcs12_mmu_host_state(vcpu, vmcs12);
feaf0c7d 11384
4704d0be
NHE
11385 if (enable_vpid) {
11386 /*
11387 * Trivially support vpid by letting L2s share their parent
11388 * L1's vpid. TODO: move to a more elaborate solution, giving
11389 * each L2 its own vpid and exposing the vpid feature to L1.
11390 */
11391 vmx_flush_tlb(vcpu);
11392 }
06a5524f
WV
11393 /* Restore posted intr vector. */
11394 if (nested_cpu_has_posted_intr(vmcs12))
11395 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4704d0be
NHE
11396
11397 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11398 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11399 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11400 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11401 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
21f2d551
LP
11402 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
11403 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4704d0be 11404
36be0b9d
PB
11405 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11406 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11407 vmcs_write64(GUEST_BNDCFGS, 0);
11408
44811c02 11409 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 11410 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
11411 vcpu->arch.pat = vmcs12->host_ia32_pat;
11412 }
4704d0be
NHE
11413 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11414 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11415 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 11416
21feb4eb
ACL
11417 /* Set L1 segment info according to Intel SDM
11418 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11419 seg = (struct kvm_segment) {
11420 .base = 0,
11421 .limit = 0xFFFFFFFF,
11422 .selector = vmcs12->host_cs_selector,
11423 .type = 11,
11424 .present = 1,
11425 .s = 1,
11426 .g = 1
11427 };
11428 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11429 seg.l = 1;
11430 else
11431 seg.db = 1;
11432 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11433 seg = (struct kvm_segment) {
11434 .base = 0,
11435 .limit = 0xFFFFFFFF,
11436 .type = 3,
11437 .present = 1,
11438 .s = 1,
11439 .db = 1,
11440 .g = 1
11441 };
11442 seg.selector = vmcs12->host_ds_selector;
11443 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11444 seg.selector = vmcs12->host_es_selector;
11445 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11446 seg.selector = vmcs12->host_ss_selector;
11447 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11448 seg.selector = vmcs12->host_fs_selector;
11449 seg.base = vmcs12->host_fs_base;
11450 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11451 seg.selector = vmcs12->host_gs_selector;
11452 seg.base = vmcs12->host_gs_base;
11453 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11454 seg = (struct kvm_segment) {
205befd9 11455 .base = vmcs12->host_tr_base,
21feb4eb
ACL
11456 .limit = 0x67,
11457 .selector = vmcs12->host_tr_selector,
11458 .type = 11,
11459 .present = 1
11460 };
11461 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11462
503cd0c5
JK
11463 kvm_set_dr(vcpu, 7, 0x400);
11464 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 11465
3af18d9c
WV
11466 if (cpu_has_vmx_msr_bitmap())
11467 vmx_set_msr_bitmap(vcpu);
11468
ff651cb6
WV
11469 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11470 vmcs12->vm_exit_msr_load_count))
11471 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
11472}
11473
11474/*
11475 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11476 * and modify vmcs12 to make it see what it would expect to see there if
11477 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11478 */
533558bc
JK
11479static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11480 u32 exit_intr_info,
11481 unsigned long exit_qualification)
4704d0be
NHE
11482{
11483 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
11484 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11485
5f3d5799
JK
11486 /* trying to cancel vmlaunch/vmresume is a bug */
11487 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11488
4f350c6d
JM
11489 /*
11490 * The only expected VM-instruction error is "VM entry with
11491 * invalid control field(s)." Anything else indicates a
11492 * problem with L0.
11493 */
11494 WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
11495 VMXERR_ENTRY_INVALID_CONTROL_FIELD));
11496
4704d0be 11497 leave_guest_mode(vcpu);
4704d0be 11498
4f350c6d 11499 if (likely(!vmx->fail)) {
72e9cbdb
LP
11500 if (exit_reason == -1)
11501 sync_vmcs12(vcpu, vmcs12);
11502 else
11503 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11504 exit_qualification);
ff651cb6 11505
4f350c6d
JM
11506 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11507 vmcs12->vm_exit_msr_store_count))
11508 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11509 }
cf3215d9 11510
1279a6b1 11511 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
8391ce44
PB
11512 vm_entry_controls_reset_shadow(vmx);
11513 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
11514 vmx_segment_cache_clear(vmx);
11515
4704d0be
NHE
11516 /* if no vmcs02 cache requested, remove the one we used */
11517 if (VMCS02_POOL_SIZE == 0)
11518 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11519
9314006d 11520 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
11521 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11522 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 11523 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
11524 if (vmx->hv_deadline_tsc == -1)
11525 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11526 PIN_BASED_VMX_PREEMPTION_TIMER);
11527 else
11528 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11529 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
11530 if (kvm_has_tsc_control)
11531 decache_tsc_multiplier(vmx);
4704d0be 11532
dccbfcf5
RK
11533 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11534 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11535 vmx_set_virtual_x2apic_mode(vcpu,
11536 vcpu->arch.apic_base & X2APIC_ENABLE);
fb6c8198
JM
11537 } else if (!nested_cpu_has_ept(vmcs12) &&
11538 nested_cpu_has2(vmcs12,
11539 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11540 vmx_flush_tlb_ept_only(vcpu);
dccbfcf5 11541 }
4704d0be
NHE
11542
11543 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11544 vmx->host_rsp = 0;
11545
11546 /* Unpin physical memory we referred to in vmcs02 */
11547 if (vmx->nested.apic_access_page) {
53a70daf 11548 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 11549 vmx->nested.apic_access_page = NULL;
4704d0be 11550 }
a7c0b07d 11551 if (vmx->nested.virtual_apic_page) {
53a70daf 11552 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 11553 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 11554 }
705699a1
WV
11555 if (vmx->nested.pi_desc_page) {
11556 kunmap(vmx->nested.pi_desc_page);
53a70daf 11557 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
11558 vmx->nested.pi_desc_page = NULL;
11559 vmx->nested.pi_desc = NULL;
11560 }
4704d0be 11561
38b99173
TC
11562 /*
11563 * We are now running in L2, mmu_notifier will force to reload the
11564 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11565 */
c83b6d15 11566 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 11567
72e9cbdb 11568 if (enable_shadow_vmcs && exit_reason != -1)
012f83cb 11569 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
11570
11571 /* in case we halted in L2 */
11572 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4f350c6d
JM
11573
11574 if (likely(!vmx->fail)) {
11575 /*
11576 * TODO: SDM says that with acknowledge interrupt on
11577 * exit, bit 31 of the VM-exit interrupt information
11578 * (valid interrupt) is always set to 1 on
11579 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
11580 * need kvm_cpu_has_interrupt(). See the commit
11581 * message for details.
11582 */
11583 if (nested_exit_intr_ack_set(vcpu) &&
11584 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11585 kvm_cpu_has_interrupt(vcpu)) {
11586 int irq = kvm_cpu_get_interrupt(vcpu);
11587 WARN_ON(irq < 0);
11588 vmcs12->vm_exit_intr_info = irq |
11589 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11590 }
11591
72e9cbdb
LP
11592 if (exit_reason != -1)
11593 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11594 vmcs12->exit_qualification,
11595 vmcs12->idt_vectoring_info_field,
11596 vmcs12->vm_exit_intr_info,
11597 vmcs12->vm_exit_intr_error_code,
11598 KVM_ISA_VMX);
4f350c6d
JM
11599
11600 load_vmcs12_host_state(vcpu, vmcs12);
11601
11602 return;
11603 }
11604
11605 /*
11606 * After an early L2 VM-entry failure, we're now back
11607 * in L1 which thinks it just finished a VMLAUNCH or
11608 * VMRESUME instruction, so we need to set the failure
11609 * flag and the VM-instruction error field of the VMCS
11610 * accordingly.
11611 */
11612 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5af41573
WL
11613
11614 load_vmcs12_mmu_host_state(vcpu, vmcs12);
11615
4f350c6d
JM
11616 /*
11617 * The emulated instruction was already skipped in
11618 * nested_vmx_run, but the updated RIP was never
11619 * written back to the vmcs01.
11620 */
11621 skip_emulated_instruction(vcpu);
11622 vmx->fail = 0;
4704d0be
NHE
11623}
11624
42124925
JK
11625/*
11626 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11627 */
11628static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11629{
2f707d97
WL
11630 if (is_guest_mode(vcpu)) {
11631 to_vmx(vcpu)->nested.nested_run_pending = 0;
533558bc 11632 nested_vmx_vmexit(vcpu, -1, 0, 0);
2f707d97 11633 }
42124925
JK
11634 free_nested(to_vmx(vcpu));
11635}
11636
7c177938
NHE
11637/*
11638 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11639 * 23.7 "VM-entry failures during or after loading guest state" (this also
11640 * lists the acceptable exit-reason and exit-qualification parameters).
11641 * It should only be called before L2 actually succeeded to run, and when
11642 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11643 */
11644static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11645 struct vmcs12 *vmcs12,
11646 u32 reason, unsigned long qualification)
11647{
11648 load_vmcs12_host_state(vcpu, vmcs12);
11649 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11650 vmcs12->exit_qualification = qualification;
11651 nested_vmx_succeed(vcpu);
012f83cb
AG
11652 if (enable_shadow_vmcs)
11653 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
11654}
11655
8a76d7f2
JR
11656static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11657 struct x86_instruction_info *info,
11658 enum x86_intercept_stage stage)
11659{
11660 return X86EMUL_CONTINUE;
11661}
11662
64672c95
YJ
11663#ifdef CONFIG_X86_64
11664/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11665static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11666 u64 divisor, u64 *result)
11667{
11668 u64 low = a << shift, high = a >> (64 - shift);
11669
11670 /* To avoid the overflow on divq */
11671 if (high >= divisor)
11672 return 1;
11673
11674 /* Low hold the result, high hold rem which is discarded */
11675 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11676 "rm" (divisor), "0" (low), "1" (high));
11677 *result = low;
11678
11679 return 0;
11680}
11681
11682static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11683{
11684 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
11685 u64 tscl = rdtsc();
11686 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11687 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
11688
11689 /* Convert to host delta tsc if tsc scaling is enabled */
11690 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11691 u64_shl_div_u64(delta_tsc,
11692 kvm_tsc_scaling_ratio_frac_bits,
11693 vcpu->arch.tsc_scaling_ratio,
11694 &delta_tsc))
11695 return -ERANGE;
11696
11697 /*
11698 * If the delta tsc can't fit in the 32 bit after the multi shift,
11699 * we can't use the preemption timer.
11700 * It's possible that it fits on later vmentries, but checking
11701 * on every vmentry is costly so we just use an hrtimer.
11702 */
11703 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11704 return -ERANGE;
11705
11706 vmx->hv_deadline_tsc = tscl + delta_tsc;
11707 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11708 PIN_BASED_VMX_PREEMPTION_TIMER);
c8533544
WL
11709
11710 return delta_tsc == 0;
64672c95
YJ
11711}
11712
11713static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11714{
11715 struct vcpu_vmx *vmx = to_vmx(vcpu);
11716 vmx->hv_deadline_tsc = -1;
11717 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11718 PIN_BASED_VMX_PREEMPTION_TIMER);
11719}
11720#endif
11721
48d89b92 11722static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 11723{
b4a2d31d
RK
11724 if (ple_gap)
11725 shrink_ple_window(vcpu);
ae97a3b8
RK
11726}
11727
843e4330
KH
11728static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11729 struct kvm_memory_slot *slot)
11730{
11731 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11732 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11733}
11734
11735static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11736 struct kvm_memory_slot *slot)
11737{
11738 kvm_mmu_slot_set_dirty(kvm, slot);
11739}
11740
11741static void vmx_flush_log_dirty(struct kvm *kvm)
11742{
11743 kvm_flush_pml_buffers(kvm);
11744}
11745
c5f983f6
BD
11746static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11747{
11748 struct vmcs12 *vmcs12;
11749 struct vcpu_vmx *vmx = to_vmx(vcpu);
11750 gpa_t gpa;
11751 struct page *page = NULL;
11752 u64 *pml_address;
11753
11754 if (is_guest_mode(vcpu)) {
11755 WARN_ON_ONCE(vmx->nested.pml_full);
11756
11757 /*
11758 * Check if PML is enabled for the nested guest.
11759 * Whether eptp bit 6 is set is already checked
11760 * as part of A/D emulation.
11761 */
11762 vmcs12 = get_vmcs12(vcpu);
11763 if (!nested_cpu_has_pml(vmcs12))
11764 return 0;
11765
4769886b 11766 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
c5f983f6
BD
11767 vmx->nested.pml_full = true;
11768 return 1;
11769 }
11770
11771 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11772
5e2f30b7
DH
11773 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11774 if (is_error_page(page))
c5f983f6
BD
11775 return 0;
11776
11777 pml_address = kmap(page);
11778 pml_address[vmcs12->guest_pml_index--] = gpa;
11779 kunmap(page);
53a70daf 11780 kvm_release_page_clean(page);
c5f983f6
BD
11781 }
11782
11783 return 0;
11784}
11785
843e4330
KH
11786static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11787 struct kvm_memory_slot *memslot,
11788 gfn_t offset, unsigned long mask)
11789{
11790 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11791}
11792
cd39e117
PB
11793static void __pi_post_block(struct kvm_vcpu *vcpu)
11794{
11795 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11796 struct pi_desc old, new;
11797 unsigned int dest;
cd39e117
PB
11798
11799 do {
11800 old.control = new.control = pi_desc->control;
8b306e2f
PB
11801 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
11802 "Wakeup handler not enabled while the VCPU is blocked\n");
cd39e117
PB
11803
11804 dest = cpu_physical_id(vcpu->cpu);
11805
11806 if (x2apic_enabled())
11807 new.ndst = dest;
11808 else
11809 new.ndst = (dest << 8) & 0xFF00;
11810
cd39e117
PB
11811 /* set 'NV' to 'notification vector' */
11812 new.nv = POSTED_INTR_VECTOR;
c0a1666b
PB
11813 } while (cmpxchg64(&pi_desc->control, old.control,
11814 new.control) != old.control);
cd39e117 11815
8b306e2f
PB
11816 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
11817 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117 11818 list_del(&vcpu->blocked_vcpu_list);
8b306e2f 11819 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117
PB
11820 vcpu->pre_pcpu = -1;
11821 }
11822}
11823
bf9f6ac8
FW
11824/*
11825 * This routine does the following things for vCPU which is going
11826 * to be blocked if VT-d PI is enabled.
11827 * - Store the vCPU to the wakeup list, so when interrupts happen
11828 * we can find the right vCPU to wake up.
11829 * - Change the Posted-interrupt descriptor as below:
11830 * 'NDST' <-- vcpu->pre_pcpu
11831 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11832 * - If 'ON' is set during this process, which means at least one
11833 * interrupt is posted for this vCPU, we cannot block it, in
11834 * this case, return 1, otherwise, return 0.
11835 *
11836 */
bc22512b 11837static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8 11838{
bf9f6ac8
FW
11839 unsigned int dest;
11840 struct pi_desc old, new;
11841 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11842
11843 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11844 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11845 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11846 return 0;
11847
8b306e2f
PB
11848 WARN_ON(irqs_disabled());
11849 local_irq_disable();
11850 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
11851 vcpu->pre_pcpu = vcpu->cpu;
11852 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11853 list_add_tail(&vcpu->blocked_vcpu_list,
11854 &per_cpu(blocked_vcpu_on_cpu,
11855 vcpu->pre_pcpu));
11856 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11857 }
bf9f6ac8
FW
11858
11859 do {
11860 old.control = new.control = pi_desc->control;
11861
bf9f6ac8
FW
11862 WARN((pi_desc->sn == 1),
11863 "Warning: SN field of posted-interrupts "
11864 "is set before blocking\n");
11865
11866 /*
11867 * Since vCPU can be preempted during this process,
11868 * vcpu->cpu could be different with pre_pcpu, we
11869 * need to set pre_pcpu as the destination of wakeup
11870 * notification event, then we can find the right vCPU
11871 * to wakeup in wakeup handler if interrupts happen
11872 * when the vCPU is in blocked state.
11873 */
11874 dest = cpu_physical_id(vcpu->pre_pcpu);
11875
11876 if (x2apic_enabled())
11877 new.ndst = dest;
11878 else
11879 new.ndst = (dest << 8) & 0xFF00;
11880
11881 /* set 'NV' to 'wakeup vector' */
11882 new.nv = POSTED_INTR_WAKEUP_VECTOR;
c0a1666b
PB
11883 } while (cmpxchg64(&pi_desc->control, old.control,
11884 new.control) != old.control);
bf9f6ac8 11885
8b306e2f
PB
11886 /* We should not block the vCPU if an interrupt is posted for it. */
11887 if (pi_test_on(pi_desc) == 1)
11888 __pi_post_block(vcpu);
11889
11890 local_irq_enable();
11891 return (vcpu->pre_pcpu == -1);
bf9f6ac8
FW
11892}
11893
bc22512b
YJ
11894static int vmx_pre_block(struct kvm_vcpu *vcpu)
11895{
11896 if (pi_pre_block(vcpu))
11897 return 1;
11898
64672c95
YJ
11899 if (kvm_lapic_hv_timer_in_use(vcpu))
11900 kvm_lapic_switch_to_sw_timer(vcpu);
11901
bc22512b
YJ
11902 return 0;
11903}
11904
11905static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8 11906{
8b306e2f 11907 if (vcpu->pre_pcpu == -1)
bf9f6ac8
FW
11908 return;
11909
8b306e2f
PB
11910 WARN_ON(irqs_disabled());
11911 local_irq_disable();
cd39e117 11912 __pi_post_block(vcpu);
8b306e2f 11913 local_irq_enable();
bf9f6ac8
FW
11914}
11915
bc22512b
YJ
11916static void vmx_post_block(struct kvm_vcpu *vcpu)
11917{
64672c95
YJ
11918 if (kvm_x86_ops->set_hv_timer)
11919 kvm_lapic_switch_to_hv_timer(vcpu);
11920
bc22512b
YJ
11921 pi_post_block(vcpu);
11922}
11923
efc64404
FW
11924/*
11925 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11926 *
11927 * @kvm: kvm
11928 * @host_irq: host irq of the interrupt
11929 * @guest_irq: gsi of the interrupt
11930 * @set: set or unset PI
11931 * returns 0 on success, < 0 on failure
11932 */
11933static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11934 uint32_t guest_irq, bool set)
11935{
11936 struct kvm_kernel_irq_routing_entry *e;
11937 struct kvm_irq_routing_table *irq_rt;
11938 struct kvm_lapic_irq irq;
11939 struct kvm_vcpu *vcpu;
11940 struct vcpu_data vcpu_info;
3a8b0677 11941 int idx, ret = 0;
efc64404
FW
11942
11943 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
11944 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11945 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
11946 return 0;
11947
11948 idx = srcu_read_lock(&kvm->irq_srcu);
11949 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
3a8b0677
JS
11950 if (guest_irq >= irq_rt->nr_rt_entries ||
11951 hlist_empty(&irq_rt->map[guest_irq])) {
11952 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11953 guest_irq, irq_rt->nr_rt_entries);
11954 goto out;
11955 }
efc64404
FW
11956
11957 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11958 if (e->type != KVM_IRQ_ROUTING_MSI)
11959 continue;
11960 /*
11961 * VT-d PI cannot support posting multicast/broadcast
11962 * interrupts to a vCPU, we still use interrupt remapping
11963 * for these kind of interrupts.
11964 *
11965 * For lowest-priority interrupts, we only support
11966 * those with single CPU as the destination, e.g. user
11967 * configures the interrupts via /proc/irq or uses
11968 * irqbalance to make the interrupts single-CPU.
11969 *
11970 * We will support full lowest-priority interrupt later.
11971 */
11972
37131313 11973 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
11974 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11975 /*
11976 * Make sure the IRTE is in remapped mode if
11977 * we don't handle it in posted mode.
11978 */
11979 ret = irq_set_vcpu_affinity(host_irq, NULL);
11980 if (ret < 0) {
11981 printk(KERN_INFO
11982 "failed to back to remapped mode, irq: %u\n",
11983 host_irq);
11984 goto out;
11985 }
11986
efc64404 11987 continue;
23a1c257 11988 }
efc64404
FW
11989
11990 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11991 vcpu_info.vector = irq.vector;
11992
b6ce9780 11993 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
11994 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11995
11996 if (set)
11997 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
dc91f2eb 11998 else
efc64404 11999 ret = irq_set_vcpu_affinity(host_irq, NULL);
efc64404
FW
12000
12001 if (ret < 0) {
12002 printk(KERN_INFO "%s: failed to update PI IRTE\n",
12003 __func__);
12004 goto out;
12005 }
12006 }
12007
12008 ret = 0;
12009out:
12010 srcu_read_unlock(&kvm->irq_srcu, idx);
12011 return ret;
12012}
12013
c45dcc71
AR
12014static void vmx_setup_mce(struct kvm_vcpu *vcpu)
12015{
12016 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
12017 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
12018 FEATURE_CONTROL_LMCE;
12019 else
12020 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
12021 ~FEATURE_CONTROL_LMCE;
12022}
12023
72d7b374
LP
12024static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
12025{
72e9cbdb
LP
12026 /* we need a nested vmexit to enter SMM, postpone if run is pending */
12027 if (to_vmx(vcpu)->nested.nested_run_pending)
12028 return 0;
72d7b374
LP
12029 return 1;
12030}
12031
0234bf88
LP
12032static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
12033{
72e9cbdb
LP
12034 struct vcpu_vmx *vmx = to_vmx(vcpu);
12035
12036 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
12037 if (vmx->nested.smm.guest_mode)
12038 nested_vmx_vmexit(vcpu, -1, 0, 0);
12039
12040 vmx->nested.smm.vmxon = vmx->nested.vmxon;
12041 vmx->nested.vmxon = false;
0234bf88
LP
12042 return 0;
12043}
12044
12045static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
12046{
72e9cbdb
LP
12047 struct vcpu_vmx *vmx = to_vmx(vcpu);
12048 int ret;
12049
12050 if (vmx->nested.smm.vmxon) {
12051 vmx->nested.vmxon = true;
12052 vmx->nested.smm.vmxon = false;
12053 }
12054
12055 if (vmx->nested.smm.guest_mode) {
12056 vcpu->arch.hflags &= ~HF_SMM_MASK;
12057 ret = enter_vmx_non_root_mode(vcpu, false);
12058 vcpu->arch.hflags |= HF_SMM_MASK;
12059 if (ret)
12060 return ret;
12061
12062 vmx->nested.smm.guest_mode = false;
12063 }
0234bf88
LP
12064 return 0;
12065}
12066
cc3d967f
LP
12067static int enable_smi_window(struct kvm_vcpu *vcpu)
12068{
12069 return 0;
12070}
12071
404f6aac 12072static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
12073 .cpu_has_kvm_support = cpu_has_kvm_support,
12074 .disabled_by_bios = vmx_disabled_by_bios,
12075 .hardware_setup = hardware_setup,
12076 .hardware_unsetup = hardware_unsetup,
002c7f7c 12077 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
12078 .hardware_enable = hardware_enable,
12079 .hardware_disable = hardware_disable,
04547156 12080 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 12081 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
12082
12083 .vcpu_create = vmx_create_vcpu,
12084 .vcpu_free = vmx_free_vcpu,
04d2cc77 12085 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 12086
04d2cc77 12087 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
12088 .vcpu_load = vmx_vcpu_load,
12089 .vcpu_put = vmx_vcpu_put,
12090
a96036b8 12091 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
12092 .get_msr = vmx_get_msr,
12093 .set_msr = vmx_set_msr,
12094 .get_segment_base = vmx_get_segment_base,
12095 .get_segment = vmx_get_segment,
12096 .set_segment = vmx_set_segment,
2e4d2653 12097 .get_cpl = vmx_get_cpl,
6aa8b732 12098 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 12099 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 12100 .decache_cr3 = vmx_decache_cr3,
25c4c276 12101 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 12102 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
12103 .set_cr3 = vmx_set_cr3,
12104 .set_cr4 = vmx_set_cr4,
6aa8b732 12105 .set_efer = vmx_set_efer,
6aa8b732
AK
12106 .get_idt = vmx_get_idt,
12107 .set_idt = vmx_set_idt,
12108 .get_gdt = vmx_get_gdt,
12109 .set_gdt = vmx_set_gdt,
73aaf249
JK
12110 .get_dr6 = vmx_get_dr6,
12111 .set_dr6 = vmx_set_dr6,
020df079 12112 .set_dr7 = vmx_set_dr7,
81908bf4 12113 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 12114 .cache_reg = vmx_cache_reg,
6aa8b732
AK
12115 .get_rflags = vmx_get_rflags,
12116 .set_rflags = vmx_set_rflags,
be94f6b7 12117
6aa8b732 12118 .tlb_flush = vmx_flush_tlb,
6aa8b732 12119
6aa8b732 12120 .run = vmx_vcpu_run,
6062d012 12121 .handle_exit = vmx_handle_exit,
6aa8b732 12122 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
12123 .set_interrupt_shadow = vmx_set_interrupt_shadow,
12124 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 12125 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 12126 .set_irq = vmx_inject_irq,
95ba8273 12127 .set_nmi = vmx_inject_nmi,
298101da 12128 .queue_exception = vmx_queue_exception,
b463a6f7 12129 .cancel_injection = vmx_cancel_injection,
78646121 12130 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 12131 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
12132 .get_nmi_mask = vmx_get_nmi_mask,
12133 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
12134 .enable_nmi_window = enable_nmi_window,
12135 .enable_irq_window = enable_irq_window,
12136 .update_cr8_intercept = update_cr8_intercept,
8d14695f 12137 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 12138 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
12139 .get_enable_apicv = vmx_get_enable_apicv,
12140 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 12141 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 12142 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
12143 .hwapic_irr_update = vmx_hwapic_irr_update,
12144 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
12145 .sync_pir_to_irr = vmx_sync_pir_to_irr,
12146 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 12147
cbc94022 12148 .set_tss_addr = vmx_set_tss_addr,
67253af5 12149 .get_tdp_level = get_ept_level,
4b12f0de 12150 .get_mt_mask = vmx_get_mt_mask,
229456fc 12151
586f9607 12152 .get_exit_info = vmx_get_exit_info,
586f9607 12153
17cc3935 12154 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
12155
12156 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
12157
12158 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 12159 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
12160
12161 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
12162
12163 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
12164
12165 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
12166
12167 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
12168
12169 .check_intercept = vmx_check_intercept,
a547c6db 12170 .handle_external_intr = vmx_handle_external_intr,
da8999d3 12171 .mpx_supported = vmx_mpx_supported,
55412b2e 12172 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
12173
12174 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
12175
12176 .sched_in = vmx_sched_in,
843e4330
KH
12177
12178 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12179 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12180 .flush_log_dirty = vmx_flush_log_dirty,
12181 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
c5f983f6 12182 .write_log_dirty = vmx_write_pml_buffer,
25462f7f 12183
bf9f6ac8
FW
12184 .pre_block = vmx_pre_block,
12185 .post_block = vmx_post_block,
12186
25462f7f 12187 .pmu_ops = &intel_pmu_ops,
efc64404
FW
12188
12189 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
12190
12191#ifdef CONFIG_X86_64
12192 .set_hv_timer = vmx_set_hv_timer,
12193 .cancel_hv_timer = vmx_cancel_hv_timer,
12194#endif
c45dcc71
AR
12195
12196 .setup_mce = vmx_setup_mce,
0234bf88 12197
72d7b374 12198 .smi_allowed = vmx_smi_allowed,
0234bf88
LP
12199 .pre_enter_smm = vmx_pre_enter_smm,
12200 .pre_leave_smm = vmx_pre_leave_smm,
cc3d967f 12201 .enable_smi_window = enable_smi_window,
6aa8b732
AK
12202};
12203
12204static int __init vmx_init(void)
12205{
34a1cd60
TC
12206 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12207 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 12208 if (r)
34a1cd60 12209 return r;
25c5f225 12210
2965faa5 12211#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
12212 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12213 crash_vmclear_local_loaded_vmcss);
12214#endif
12215
fdef3ad1 12216 return 0;
6aa8b732
AK
12217}
12218
12219static void __exit vmx_exit(void)
12220{
2965faa5 12221#ifdef CONFIG_KEXEC_CORE
3b63a43f 12222 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
12223 synchronize_rcu();
12224#endif
12225
cb498ea2 12226 kvm_exit();
6aa8b732
AK
12227}
12228
12229module_init(vmx_init)
12230module_exit(vmx_exit)