]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: x86: X86_FEATURE_NRIPS is not scattered anymore
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
c207aee4 36#include <linux/frame.h>
5fdbf976 37#include "kvm_cache_regs.h"
35920a35 38#include "x86.h"
e495606d 39
28b835d6 40#include <asm/cpu.h>
6aa8b732 41#include <asm/io.h>
3b3be0d1 42#include <asm/desc.h>
13673a90 43#include <asm/vmx.h>
6210e37b 44#include <asm/virtext.h>
a0861c02 45#include <asm/mce.h>
952f07ec 46#include <asm/fpu/internal.h>
d7cd9796 47#include <asm/perf_event.h>
81908bf4 48#include <asm/debugreg.h>
8f536b76 49#include <asm/kexec.h>
dab2087d 50#include <asm/apic.h>
efc64404 51#include <asm/irq_remapping.h>
d6e41f11 52#include <asm/mmu_context.h>
6aa8b732 53
229456fc 54#include "trace.h"
25462f7f 55#include "pmu.h"
229456fc 56
4ecac3fd 57#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
58#define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 60
6aa8b732
AK
61MODULE_AUTHOR("Qumranet");
62MODULE_LICENSE("GPL");
63
e9bda3b3
JT
64static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67};
68MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
476bc001 70static bool __read_mostly enable_vpid = 1;
736caefe 71module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 72
476bc001 73static bool __read_mostly flexpriority_enabled = 1;
736caefe 74module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 75
476bc001 76static bool __read_mostly enable_ept = 1;
736caefe 77module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 78
476bc001 79static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
80module_param_named(unrestricted_guest,
81 enable_unrestricted_guest, bool, S_IRUGO);
82
83c3a331
XH
83static bool __read_mostly enable_ept_ad_bits = 1;
84module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
a27685c3 86static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 87module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 88
476bc001 89static bool __read_mostly fasteoi = 1;
58fbbf26
KT
90module_param(fasteoi, bool, S_IRUGO);
91
5a71785d 92static bool __read_mostly enable_apicv = 1;
01e439be 93module_param(enable_apicv, bool, S_IRUGO);
83d4c286 94
abc4fc58
AG
95static bool __read_mostly enable_shadow_vmcs = 1;
96module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
97/*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
476bc001 102static bool __read_mostly nested = 0;
801d3424
NHE
103module_param(nested, bool, S_IRUGO);
104
20300099
WL
105static u64 __read_mostly host_xss;
106
843e4330
KH
107static bool __read_mostly enable_pml = 1;
108module_param_named(pml, enable_pml, bool, S_IRUGO);
109
64903d61
HZ
110#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
111
64672c95
YJ
112/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
113static int __read_mostly cpu_preemption_timer_multi;
114static bool __read_mostly enable_preemption_timer = 1;
115#ifdef CONFIG_X86_64
116module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117#endif
118
5037878e
GN
119#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
121#define KVM_VM_CR0_ALWAYS_ON \
122 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
123#define KVM_CR4_GUEST_OWNED_BITS \
124 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 125 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 126
cdc0e244
AK
127#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
78ac8b47
AK
130#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
f4124500
JK
132#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
16c2aec6
JD
134/*
135 * Hyper-V requires all of these, so mark them as supported even though
136 * they are just treated the same as all-context.
137 */
138#define VMX_VPID_EXTENT_SUPPORTED_MASK \
139 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
140 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
141 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
4b8d54f9
ZE
144/*
145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146 * ple_gap: upper bound on the amount of time between two successive
147 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 148 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
149 * ple_window: upper bound on the amount of time a guest is allowed to execute
150 * in a PAUSE loop. Tests indicate that most spinlocks are held for
151 * less than 2^12 cycles
152 * Time is measured based on a counter that runs at the same rate as the TSC,
153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
154 */
b4a2d31d
RK
155#define KVM_VMX_DEFAULT_PLE_GAP 128
156#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
157#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
158#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
160 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
4b8d54f9
ZE
162static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163module_param(ple_gap, int, S_IRUGO);
164
165static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166module_param(ple_window, int, S_IRUGO);
167
b4a2d31d
RK
168/* Default doubles per-vcpu window every exit. */
169static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170module_param(ple_window_grow, int, S_IRUGO);
171
172/* Default resets per-vcpu window every exit to ple_window. */
173static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174module_param(ple_window_shrink, int, S_IRUGO);
175
176/* Default is to compute the maximum so we can never overflow. */
177static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179module_param(ple_window_max, int, S_IRUGO);
180
83287ea4
AK
181extern const ulong vmx_return;
182
8bf00a52 183#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 184#define VMCS02_POOL_SIZE 1
61d2ef2c 185
a2fa3e9f
GH
186struct vmcs {
187 u32 revision_id;
188 u32 abort;
189 char data[0];
190};
191
d462b819
NHE
192/*
193 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195 * loaded on this CPU (so we can clear them if the CPU goes down).
196 */
197struct loaded_vmcs {
198 struct vmcs *vmcs;
355f4fb1 199 struct vmcs *shadow_vmcs;
d462b819 200 int cpu;
4c4a6f79
PB
201 bool launched;
202 bool nmi_known_unmasked;
d462b819
NHE
203 struct list_head loaded_vmcss_on_cpu_link;
204};
205
26bb0981
AK
206struct shared_msr_entry {
207 unsigned index;
208 u64 data;
d5696725 209 u64 mask;
26bb0981
AK
210};
211
a9d30f33
NHE
212/*
213 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
214 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
215 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
216 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
217 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
218 * More than one of these structures may exist, if L1 runs multiple L2 guests.
219 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
220 * underlying hardware which will be used to run L2.
221 * This structure is packed to ensure that its layout is identical across
222 * machines (necessary for live migration).
223 * If there are changes in this struct, VMCS12_REVISION must be changed.
224 */
22bd0358 225typedef u64 natural_width;
a9d30f33
NHE
226struct __packed vmcs12 {
227 /* According to the Intel spec, a VMCS region must start with the
228 * following two fields. Then follow implementation-specific data.
229 */
230 u32 revision_id;
231 u32 abort;
22bd0358 232
27d6c865
NHE
233 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
234 u32 padding[7]; /* room for future expansion */
235
22bd0358
NHE
236 u64 io_bitmap_a;
237 u64 io_bitmap_b;
238 u64 msr_bitmap;
239 u64 vm_exit_msr_store_addr;
240 u64 vm_exit_msr_load_addr;
241 u64 vm_entry_msr_load_addr;
242 u64 tsc_offset;
243 u64 virtual_apic_page_addr;
244 u64 apic_access_addr;
705699a1 245 u64 posted_intr_desc_addr;
27c42a1b 246 u64 vm_function_control;
22bd0358 247 u64 ept_pointer;
608406e2
WV
248 u64 eoi_exit_bitmap0;
249 u64 eoi_exit_bitmap1;
250 u64 eoi_exit_bitmap2;
251 u64 eoi_exit_bitmap3;
41ab9372 252 u64 eptp_list_address;
81dc01f7 253 u64 xss_exit_bitmap;
22bd0358
NHE
254 u64 guest_physical_address;
255 u64 vmcs_link_pointer;
c5f983f6 256 u64 pml_address;
22bd0358
NHE
257 u64 guest_ia32_debugctl;
258 u64 guest_ia32_pat;
259 u64 guest_ia32_efer;
260 u64 guest_ia32_perf_global_ctrl;
261 u64 guest_pdptr0;
262 u64 guest_pdptr1;
263 u64 guest_pdptr2;
264 u64 guest_pdptr3;
36be0b9d 265 u64 guest_bndcfgs;
22bd0358
NHE
266 u64 host_ia32_pat;
267 u64 host_ia32_efer;
268 u64 host_ia32_perf_global_ctrl;
269 u64 padding64[8]; /* room for future expansion */
270 /*
271 * To allow migration of L1 (complete with its L2 guests) between
272 * machines of different natural widths (32 or 64 bit), we cannot have
273 * unsigned long fields with no explict size. We use u64 (aliased
274 * natural_width) instead. Luckily, x86 is little-endian.
275 */
276 natural_width cr0_guest_host_mask;
277 natural_width cr4_guest_host_mask;
278 natural_width cr0_read_shadow;
279 natural_width cr4_read_shadow;
280 natural_width cr3_target_value0;
281 natural_width cr3_target_value1;
282 natural_width cr3_target_value2;
283 natural_width cr3_target_value3;
284 natural_width exit_qualification;
285 natural_width guest_linear_address;
286 natural_width guest_cr0;
287 natural_width guest_cr3;
288 natural_width guest_cr4;
289 natural_width guest_es_base;
290 natural_width guest_cs_base;
291 natural_width guest_ss_base;
292 natural_width guest_ds_base;
293 natural_width guest_fs_base;
294 natural_width guest_gs_base;
295 natural_width guest_ldtr_base;
296 natural_width guest_tr_base;
297 natural_width guest_gdtr_base;
298 natural_width guest_idtr_base;
299 natural_width guest_dr7;
300 natural_width guest_rsp;
301 natural_width guest_rip;
302 natural_width guest_rflags;
303 natural_width guest_pending_dbg_exceptions;
304 natural_width guest_sysenter_esp;
305 natural_width guest_sysenter_eip;
306 natural_width host_cr0;
307 natural_width host_cr3;
308 natural_width host_cr4;
309 natural_width host_fs_base;
310 natural_width host_gs_base;
311 natural_width host_tr_base;
312 natural_width host_gdtr_base;
313 natural_width host_idtr_base;
314 natural_width host_ia32_sysenter_esp;
315 natural_width host_ia32_sysenter_eip;
316 natural_width host_rsp;
317 natural_width host_rip;
318 natural_width paddingl[8]; /* room for future expansion */
319 u32 pin_based_vm_exec_control;
320 u32 cpu_based_vm_exec_control;
321 u32 exception_bitmap;
322 u32 page_fault_error_code_mask;
323 u32 page_fault_error_code_match;
324 u32 cr3_target_count;
325 u32 vm_exit_controls;
326 u32 vm_exit_msr_store_count;
327 u32 vm_exit_msr_load_count;
328 u32 vm_entry_controls;
329 u32 vm_entry_msr_load_count;
330 u32 vm_entry_intr_info_field;
331 u32 vm_entry_exception_error_code;
332 u32 vm_entry_instruction_len;
333 u32 tpr_threshold;
334 u32 secondary_vm_exec_control;
335 u32 vm_instruction_error;
336 u32 vm_exit_reason;
337 u32 vm_exit_intr_info;
338 u32 vm_exit_intr_error_code;
339 u32 idt_vectoring_info_field;
340 u32 idt_vectoring_error_code;
341 u32 vm_exit_instruction_len;
342 u32 vmx_instruction_info;
343 u32 guest_es_limit;
344 u32 guest_cs_limit;
345 u32 guest_ss_limit;
346 u32 guest_ds_limit;
347 u32 guest_fs_limit;
348 u32 guest_gs_limit;
349 u32 guest_ldtr_limit;
350 u32 guest_tr_limit;
351 u32 guest_gdtr_limit;
352 u32 guest_idtr_limit;
353 u32 guest_es_ar_bytes;
354 u32 guest_cs_ar_bytes;
355 u32 guest_ss_ar_bytes;
356 u32 guest_ds_ar_bytes;
357 u32 guest_fs_ar_bytes;
358 u32 guest_gs_ar_bytes;
359 u32 guest_ldtr_ar_bytes;
360 u32 guest_tr_ar_bytes;
361 u32 guest_interruptibility_info;
362 u32 guest_activity_state;
363 u32 guest_sysenter_cs;
364 u32 host_ia32_sysenter_cs;
0238ea91
JK
365 u32 vmx_preemption_timer_value;
366 u32 padding32[7]; /* room for future expansion */
22bd0358 367 u16 virtual_processor_id;
705699a1 368 u16 posted_intr_nv;
22bd0358
NHE
369 u16 guest_es_selector;
370 u16 guest_cs_selector;
371 u16 guest_ss_selector;
372 u16 guest_ds_selector;
373 u16 guest_fs_selector;
374 u16 guest_gs_selector;
375 u16 guest_ldtr_selector;
376 u16 guest_tr_selector;
608406e2 377 u16 guest_intr_status;
c5f983f6 378 u16 guest_pml_index;
22bd0358
NHE
379 u16 host_es_selector;
380 u16 host_cs_selector;
381 u16 host_ss_selector;
382 u16 host_ds_selector;
383 u16 host_fs_selector;
384 u16 host_gs_selector;
385 u16 host_tr_selector;
a9d30f33
NHE
386};
387
388/*
389 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
390 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
391 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
392 */
393#define VMCS12_REVISION 0x11e57ed0
394
395/*
396 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
397 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
398 * current implementation, 4K are reserved to avoid future complications.
399 */
400#define VMCS12_SIZE 0x1000
401
ff2f6fe9
NHE
402/* Used to remember the last vmcs02 used for some recently used vmcs12s */
403struct vmcs02_list {
404 struct list_head list;
405 gpa_t vmptr;
406 struct loaded_vmcs vmcs02;
407};
408
ec378aee
NHE
409/*
410 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
411 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
412 */
413struct nested_vmx {
414 /* Has the level1 guest done vmxon? */
415 bool vmxon;
3573e22c 416 gpa_t vmxon_ptr;
c5f983f6 417 bool pml_full;
a9d30f33
NHE
418
419 /* The guest-physical address of the current VMCS L1 keeps for L2 */
420 gpa_t current_vmptr;
4f2777bc
DM
421 /*
422 * Cache of the guest's VMCS, existing outside of guest memory.
423 * Loaded from guest memory during VMPTRLD. Flushed to guest
8ca44e88 424 * memory during VMCLEAR and VMPTRLD.
4f2777bc
DM
425 */
426 struct vmcs12 *cached_vmcs12;
012f83cb
AG
427 /*
428 * Indicates if the shadow vmcs must be updated with the
429 * data hold by vmcs12
430 */
431 bool sync_shadow_vmcs;
ff2f6fe9
NHE
432
433 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
434 struct list_head vmcs02_pool;
435 int vmcs02_num;
dccbfcf5 436 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
437 /* L2 must run next, and mustn't decide to exit to L1. */
438 bool nested_run_pending;
fe3ef05c
NHE
439 /*
440 * Guest pages referred to in vmcs02 with host-physical pointers, so
441 * we must keep them pinned while L2 runs.
442 */
443 struct page *apic_access_page;
a7c0b07d 444 struct page *virtual_apic_page;
705699a1
WV
445 struct page *pi_desc_page;
446 struct pi_desc *pi_desc;
447 bool pi_pending;
448 u16 posted_intr_nv;
f4124500 449
d048c098
RK
450 unsigned long *msr_bitmap;
451
f4124500
JK
452 struct hrtimer preemption_timer;
453 bool preemption_timer_expired;
2996fca0
JK
454
455 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
456 u64 vmcs01_debugctl;
b9c237bb 457
5c614b35
WL
458 u16 vpid02;
459 u16 last_vpid;
460
0115f9cb
DM
461 /*
462 * We only store the "true" versions of the VMX capability MSRs. We
463 * generate the "non-true" versions by setting the must-be-1 bits
464 * according to the SDM.
465 */
b9c237bb
WV
466 u32 nested_vmx_procbased_ctls_low;
467 u32 nested_vmx_procbased_ctls_high;
b9c237bb
WV
468 u32 nested_vmx_secondary_ctls_low;
469 u32 nested_vmx_secondary_ctls_high;
470 u32 nested_vmx_pinbased_ctls_low;
471 u32 nested_vmx_pinbased_ctls_high;
472 u32 nested_vmx_exit_ctls_low;
473 u32 nested_vmx_exit_ctls_high;
b9c237bb
WV
474 u32 nested_vmx_entry_ctls_low;
475 u32 nested_vmx_entry_ctls_high;
b9c237bb
WV
476 u32 nested_vmx_misc_low;
477 u32 nested_vmx_misc_high;
478 u32 nested_vmx_ept_caps;
99b83ac8 479 u32 nested_vmx_vpid_caps;
62cc6b9d
DM
480 u64 nested_vmx_basic;
481 u64 nested_vmx_cr0_fixed0;
482 u64 nested_vmx_cr0_fixed1;
483 u64 nested_vmx_cr4_fixed0;
484 u64 nested_vmx_cr4_fixed1;
485 u64 nested_vmx_vmcs_enum;
27c42a1b 486 u64 nested_vmx_vmfunc_controls;
ec378aee
NHE
487};
488
01e439be 489#define POSTED_INTR_ON 0
ebbfc765
FW
490#define POSTED_INTR_SN 1
491
01e439be
YZ
492/* Posted-Interrupt Descriptor */
493struct pi_desc {
494 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
495 union {
496 struct {
497 /* bit 256 - Outstanding Notification */
498 u16 on : 1,
499 /* bit 257 - Suppress Notification */
500 sn : 1,
501 /* bit 271:258 - Reserved */
502 rsvd_1 : 14;
503 /* bit 279:272 - Notification Vector */
504 u8 nv;
505 /* bit 287:280 - Reserved */
506 u8 rsvd_2;
507 /* bit 319:288 - Notification Destination */
508 u32 ndst;
509 };
510 u64 control;
511 };
512 u32 rsvd[6];
01e439be
YZ
513} __aligned(64);
514
a20ed54d
YZ
515static bool pi_test_and_set_on(struct pi_desc *pi_desc)
516{
517 return test_and_set_bit(POSTED_INTR_ON,
518 (unsigned long *)&pi_desc->control);
519}
520
521static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
522{
523 return test_and_clear_bit(POSTED_INTR_ON,
524 (unsigned long *)&pi_desc->control);
525}
526
527static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
528{
529 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
530}
531
ebbfc765
FW
532static inline void pi_clear_sn(struct pi_desc *pi_desc)
533{
534 return clear_bit(POSTED_INTR_SN,
535 (unsigned long *)&pi_desc->control);
536}
537
538static inline void pi_set_sn(struct pi_desc *pi_desc)
539{
540 return set_bit(POSTED_INTR_SN,
541 (unsigned long *)&pi_desc->control);
542}
543
ad361091
PB
544static inline void pi_clear_on(struct pi_desc *pi_desc)
545{
546 clear_bit(POSTED_INTR_ON,
547 (unsigned long *)&pi_desc->control);
548}
549
ebbfc765
FW
550static inline int pi_test_on(struct pi_desc *pi_desc)
551{
552 return test_bit(POSTED_INTR_ON,
553 (unsigned long *)&pi_desc->control);
554}
555
556static inline int pi_test_sn(struct pi_desc *pi_desc)
557{
558 return test_bit(POSTED_INTR_SN,
559 (unsigned long *)&pi_desc->control);
560}
561
a2fa3e9f 562struct vcpu_vmx {
fb3f0f51 563 struct kvm_vcpu vcpu;
313dbd49 564 unsigned long host_rsp;
29bd8a78 565 u8 fail;
51aa01d1 566 u32 exit_intr_info;
1155f76a 567 u32 idt_vectoring_info;
6de12732 568 ulong rflags;
26bb0981 569 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
570 int nmsrs;
571 int save_nmsrs;
a547c6db 572 unsigned long host_idt_base;
a2fa3e9f 573#ifdef CONFIG_X86_64
44ea2b17
AK
574 u64 msr_host_kernel_gs_base;
575 u64 msr_guest_kernel_gs_base;
a2fa3e9f 576#endif
2961e876
GN
577 u32 vm_entry_controls_shadow;
578 u32 vm_exit_controls_shadow;
d462b819
NHE
579 /*
580 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
581 * non-nested (L1) guest, it always points to vmcs01. For a nested
582 * guest (L2), it points to a different VMCS.
583 */
584 struct loaded_vmcs vmcs01;
585 struct loaded_vmcs *loaded_vmcs;
586 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
587 struct msr_autoload {
588 unsigned nr;
589 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
590 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
591 } msr_autoload;
a2fa3e9f
GH
592 struct {
593 int loaded;
594 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
595#ifdef CONFIG_X86_64
596 u16 ds_sel, es_sel;
597#endif
152d3f2f
LV
598 int gs_ldt_reload_needed;
599 int fs_reload_needed;
da8999d3 600 u64 msr_host_bndcfgs;
d6e41f11 601 unsigned long vmcs_host_cr3; /* May not match real cr3 */
d974baa3 602 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 603 } host_state;
9c8cba37 604 struct {
7ffd92c5 605 int vm86_active;
78ac8b47 606 ulong save_rflags;
f5f7b2fe
AK
607 struct kvm_segment segs[8];
608 } rmode;
609 struct {
610 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
611 struct kvm_save_segment {
612 u16 selector;
613 unsigned long base;
614 u32 limit;
615 u32 ar;
f5f7b2fe 616 } seg[8];
2fb92db1 617 } segment_cache;
2384d2b3 618 int vpid;
04fa4d32 619 bool emulation_required;
3b86cd99 620
a0861c02 621 u32 exit_reason;
4e47c7a6 622
01e439be
YZ
623 /* Posted interrupt descriptor */
624 struct pi_desc pi_desc;
625
ec378aee
NHE
626 /* Support for a guest hypervisor (nested VMX) */
627 struct nested_vmx nested;
a7653ecd
RK
628
629 /* Dynamic PLE window. */
630 int ple_window;
631 bool ple_window_dirty;
843e4330
KH
632
633 /* Support for PML */
634#define PML_ENTITY_NUM 512
635 struct page *pml_pg;
2680d6da 636
64672c95
YJ
637 /* apic deadline value in host tsc */
638 u64 hv_deadline_tsc;
639
2680d6da 640 u64 current_tsc_ratio;
1be0e61c
XG
641
642 bool guest_pkru_valid;
643 u32 guest_pkru;
644 u32 host_pkru;
3b84080b 645
37e4c997
HZ
646 /*
647 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
648 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
649 * in msr_ia32_feature_control_valid_bits.
650 */
3b84080b 651 u64 msr_ia32_feature_control;
37e4c997 652 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
653};
654
2fb92db1
AK
655enum segment_cache_field {
656 SEG_FIELD_SEL = 0,
657 SEG_FIELD_BASE = 1,
658 SEG_FIELD_LIMIT = 2,
659 SEG_FIELD_AR = 3,
660
661 SEG_FIELD_NR = 4
662};
663
a2fa3e9f
GH
664static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
665{
fb3f0f51 666 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
667}
668
efc64404
FW
669static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
670{
671 return &(to_vmx(vcpu)->pi_desc);
672}
673
22bd0358
NHE
674#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
675#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
676#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
677 [number##_HIGH] = VMCS12_OFFSET(name)+4
678
4607c2d7 679
fe2b201b 680static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
681 /*
682 * We do NOT shadow fields that are modified when L0
683 * traps and emulates any vmx instruction (e.g. VMPTRLD,
684 * VMXON...) executed by L1.
685 * For example, VM_INSTRUCTION_ERROR is read
686 * by L1 if a vmx instruction fails (part of the error path).
687 * Note the code assumes this logic. If for some reason
688 * we start shadowing these fields then we need to
689 * force a shadow sync when L0 emulates vmx instructions
690 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
691 * by nested_vmx_failValid)
692 */
693 VM_EXIT_REASON,
694 VM_EXIT_INTR_INFO,
695 VM_EXIT_INSTRUCTION_LEN,
696 IDT_VECTORING_INFO_FIELD,
697 IDT_VECTORING_ERROR_CODE,
698 VM_EXIT_INTR_ERROR_CODE,
699 EXIT_QUALIFICATION,
700 GUEST_LINEAR_ADDRESS,
701 GUEST_PHYSICAL_ADDRESS
702};
fe2b201b 703static int max_shadow_read_only_fields =
4607c2d7
AG
704 ARRAY_SIZE(shadow_read_only_fields);
705
fe2b201b 706static unsigned long shadow_read_write_fields[] = {
a7c0b07d 707 TPR_THRESHOLD,
4607c2d7
AG
708 GUEST_RIP,
709 GUEST_RSP,
710 GUEST_CR0,
711 GUEST_CR3,
712 GUEST_CR4,
713 GUEST_INTERRUPTIBILITY_INFO,
714 GUEST_RFLAGS,
715 GUEST_CS_SELECTOR,
716 GUEST_CS_AR_BYTES,
717 GUEST_CS_LIMIT,
718 GUEST_CS_BASE,
719 GUEST_ES_BASE,
36be0b9d 720 GUEST_BNDCFGS,
4607c2d7
AG
721 CR0_GUEST_HOST_MASK,
722 CR0_READ_SHADOW,
723 CR4_READ_SHADOW,
724 TSC_OFFSET,
725 EXCEPTION_BITMAP,
726 CPU_BASED_VM_EXEC_CONTROL,
727 VM_ENTRY_EXCEPTION_ERROR_CODE,
728 VM_ENTRY_INTR_INFO_FIELD,
729 VM_ENTRY_INSTRUCTION_LEN,
730 VM_ENTRY_EXCEPTION_ERROR_CODE,
731 HOST_FS_BASE,
732 HOST_GS_BASE,
733 HOST_FS_SELECTOR,
734 HOST_GS_SELECTOR
735};
fe2b201b 736static int max_shadow_read_write_fields =
4607c2d7
AG
737 ARRAY_SIZE(shadow_read_write_fields);
738
772e0318 739static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 740 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 741 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
742 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
743 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
744 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
745 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
746 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
747 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
748 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
749 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 750 FIELD(GUEST_INTR_STATUS, guest_intr_status),
c5f983f6 751 FIELD(GUEST_PML_INDEX, guest_pml_index),
22bd0358
NHE
752 FIELD(HOST_ES_SELECTOR, host_es_selector),
753 FIELD(HOST_CS_SELECTOR, host_cs_selector),
754 FIELD(HOST_SS_SELECTOR, host_ss_selector),
755 FIELD(HOST_DS_SELECTOR, host_ds_selector),
756 FIELD(HOST_FS_SELECTOR, host_fs_selector),
757 FIELD(HOST_GS_SELECTOR, host_gs_selector),
758 FIELD(HOST_TR_SELECTOR, host_tr_selector),
759 FIELD64(IO_BITMAP_A, io_bitmap_a),
760 FIELD64(IO_BITMAP_B, io_bitmap_b),
761 FIELD64(MSR_BITMAP, msr_bitmap),
762 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765 FIELD64(TSC_OFFSET, tsc_offset),
766 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 768 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
27c42a1b 769 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
22bd0358 770 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
771 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
772 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
773 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
774 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
41ab9372 775 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
81dc01f7 776 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
777 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
778 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
c5f983f6 779 FIELD64(PML_ADDRESS, pml_address),
22bd0358
NHE
780 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
781 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
782 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
783 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
784 FIELD64(GUEST_PDPTR0, guest_pdptr0),
785 FIELD64(GUEST_PDPTR1, guest_pdptr1),
786 FIELD64(GUEST_PDPTR2, guest_pdptr2),
787 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 788 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
789 FIELD64(HOST_IA32_PAT, host_ia32_pat),
790 FIELD64(HOST_IA32_EFER, host_ia32_efer),
791 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
792 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
793 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
794 FIELD(EXCEPTION_BITMAP, exception_bitmap),
795 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
796 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
797 FIELD(CR3_TARGET_COUNT, cr3_target_count),
798 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
799 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
800 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
801 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
802 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
803 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
804 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
805 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
806 FIELD(TPR_THRESHOLD, tpr_threshold),
807 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
808 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
809 FIELD(VM_EXIT_REASON, vm_exit_reason),
810 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
811 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
812 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
813 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
814 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
815 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
816 FIELD(GUEST_ES_LIMIT, guest_es_limit),
817 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
818 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
819 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
820 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
821 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
822 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
823 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
824 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
825 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
826 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
827 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
828 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
829 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
830 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
831 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
832 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
833 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
834 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
835 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
836 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
837 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 838 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
839 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
840 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
841 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
842 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
843 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
844 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
845 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
846 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
847 FIELD(EXIT_QUALIFICATION, exit_qualification),
848 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
849 FIELD(GUEST_CR0, guest_cr0),
850 FIELD(GUEST_CR3, guest_cr3),
851 FIELD(GUEST_CR4, guest_cr4),
852 FIELD(GUEST_ES_BASE, guest_es_base),
853 FIELD(GUEST_CS_BASE, guest_cs_base),
854 FIELD(GUEST_SS_BASE, guest_ss_base),
855 FIELD(GUEST_DS_BASE, guest_ds_base),
856 FIELD(GUEST_FS_BASE, guest_fs_base),
857 FIELD(GUEST_GS_BASE, guest_gs_base),
858 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
859 FIELD(GUEST_TR_BASE, guest_tr_base),
860 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
861 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
862 FIELD(GUEST_DR7, guest_dr7),
863 FIELD(GUEST_RSP, guest_rsp),
864 FIELD(GUEST_RIP, guest_rip),
865 FIELD(GUEST_RFLAGS, guest_rflags),
866 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
867 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
868 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
869 FIELD(HOST_CR0, host_cr0),
870 FIELD(HOST_CR3, host_cr3),
871 FIELD(HOST_CR4, host_cr4),
872 FIELD(HOST_FS_BASE, host_fs_base),
873 FIELD(HOST_GS_BASE, host_gs_base),
874 FIELD(HOST_TR_BASE, host_tr_base),
875 FIELD(HOST_GDTR_BASE, host_gdtr_base),
876 FIELD(HOST_IDTR_BASE, host_idtr_base),
877 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
878 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
879 FIELD(HOST_RSP, host_rsp),
880 FIELD(HOST_RIP, host_rip),
881};
22bd0358
NHE
882
883static inline short vmcs_field_to_offset(unsigned long field)
884{
a2ae9df7
PB
885 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
886
887 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
888 vmcs_field_to_offset_table[field] == 0)
889 return -ENOENT;
890
22bd0358
NHE
891 return vmcs_field_to_offset_table[field];
892}
893
a9d30f33
NHE
894static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
895{
4f2777bc 896 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
897}
898
995f00a6 899static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
bfd0a56b 900static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
995f00a6 901static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
f53cd63c 902static bool vmx_xsaves_supported(void);
776e58ea 903static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
904static void vmx_set_segment(struct kvm_vcpu *vcpu,
905 struct kvm_segment *var, int seg);
906static void vmx_get_segment(struct kvm_vcpu *vcpu,
907 struct kvm_segment *var, int seg);
d99e4152
GN
908static bool guest_state_valid(struct kvm_vcpu *vcpu);
909static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 910static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 911static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 912static int alloc_identity_pagetable(struct kvm *kvm);
b96fb439
PB
913static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
914static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
915static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
916 u16 error_code);
75880a01 917
6aa8b732
AK
918static DEFINE_PER_CPU(struct vmcs *, vmxarea);
919static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
920/*
921 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
922 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
923 */
924static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
6aa8b732 925
bf9f6ac8
FW
926/*
927 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
928 * can find which vCPU should be waken up.
929 */
930static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
931static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
932
23611332
RK
933enum {
934 VMX_IO_BITMAP_A,
935 VMX_IO_BITMAP_B,
936 VMX_MSR_BITMAP_LEGACY,
937 VMX_MSR_BITMAP_LONGMODE,
938 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
939 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
940 VMX_MSR_BITMAP_LEGACY_X2APIC,
941 VMX_MSR_BITMAP_LONGMODE_X2APIC,
942 VMX_VMREAD_BITMAP,
943 VMX_VMWRITE_BITMAP,
944 VMX_BITMAP_NR
945};
946
947static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
948
949#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
950#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
951#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
952#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
953#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
954#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
955#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
956#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
957#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
958#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 959
110312c8 960static bool cpu_has_load_ia32_efer;
8bf00a52 961static bool cpu_has_load_perf_global_ctrl;
110312c8 962
2384d2b3
SY
963static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
964static DEFINE_SPINLOCK(vmx_vpid_lock);
965
1c3d14fe 966static struct vmcs_config {
6aa8b732
AK
967 int size;
968 int order;
9ac7e3e8 969 u32 basic_cap;
6aa8b732 970 u32 revision_id;
1c3d14fe
YS
971 u32 pin_based_exec_ctrl;
972 u32 cpu_based_exec_ctrl;
f78e0e2e 973 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
974 u32 vmexit_ctrl;
975 u32 vmentry_ctrl;
976} vmcs_config;
6aa8b732 977
efff9e53 978static struct vmx_capability {
d56f546d
SY
979 u32 ept;
980 u32 vpid;
981} vmx_capability;
982
6aa8b732
AK
983#define VMX_SEGMENT_FIELD(seg) \
984 [VCPU_SREG_##seg] = { \
985 .selector = GUEST_##seg##_SELECTOR, \
986 .base = GUEST_##seg##_BASE, \
987 .limit = GUEST_##seg##_LIMIT, \
988 .ar_bytes = GUEST_##seg##_AR_BYTES, \
989 }
990
772e0318 991static const struct kvm_vmx_segment_field {
6aa8b732
AK
992 unsigned selector;
993 unsigned base;
994 unsigned limit;
995 unsigned ar_bytes;
996} kvm_vmx_segment_fields[] = {
997 VMX_SEGMENT_FIELD(CS),
998 VMX_SEGMENT_FIELD(DS),
999 VMX_SEGMENT_FIELD(ES),
1000 VMX_SEGMENT_FIELD(FS),
1001 VMX_SEGMENT_FIELD(GS),
1002 VMX_SEGMENT_FIELD(SS),
1003 VMX_SEGMENT_FIELD(TR),
1004 VMX_SEGMENT_FIELD(LDTR),
1005};
1006
26bb0981
AK
1007static u64 host_efer;
1008
6de4f3ad
AK
1009static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1010
4d56c8a7 1011/*
8c06585d 1012 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1013 * away by decrementing the array size.
1014 */
6aa8b732 1015static const u32 vmx_msr_index[] = {
05b3e0c2 1016#ifdef CONFIG_X86_64
44ea2b17 1017 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1018#endif
8c06585d 1019 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1020};
6aa8b732 1021
5bb16016 1022static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1023{
1024 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1025 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1026 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1027}
1028
6f05485d
JK
1029static inline bool is_debug(u32 intr_info)
1030{
1031 return is_exception_n(intr_info, DB_VECTOR);
1032}
1033
1034static inline bool is_breakpoint(u32 intr_info)
1035{
1036 return is_exception_n(intr_info, BP_VECTOR);
1037}
1038
5bb16016
JK
1039static inline bool is_page_fault(u32 intr_info)
1040{
1041 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1042}
1043
31299944 1044static inline bool is_no_device(u32 intr_info)
2ab455cc 1045{
5bb16016 1046 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1047}
1048
31299944 1049static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1050{
5bb16016 1051 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1052}
1053
31299944 1054static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1055{
1056 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1057 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1058}
1059
31299944 1060static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1061{
1062 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1063 INTR_INFO_VALID_MASK)) ==
1064 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1065}
1066
31299944 1067static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1068{
04547156 1069 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1070}
1071
31299944 1072static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1073{
04547156 1074 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1075}
1076
35754c98 1077static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1078{
35754c98 1079 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1080}
1081
31299944 1082static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1083{
04547156
SY
1084 return vmcs_config.cpu_based_exec_ctrl &
1085 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1086}
1087
774ead3a 1088static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1089{
04547156
SY
1090 return vmcs_config.cpu_based_2nd_exec_ctrl &
1091 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1092}
1093
8d14695f
YZ
1094static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1095{
1096 return vmcs_config.cpu_based_2nd_exec_ctrl &
1097 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1098}
1099
83d4c286
YZ
1100static inline bool cpu_has_vmx_apic_register_virt(void)
1101{
1102 return vmcs_config.cpu_based_2nd_exec_ctrl &
1103 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1104}
1105
c7c9c56c
YZ
1106static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1107{
1108 return vmcs_config.cpu_based_2nd_exec_ctrl &
1109 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1110}
1111
64672c95
YJ
1112/*
1113 * Comment's format: document - errata name - stepping - processor name.
1114 * Refer from
1115 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1116 */
1117static u32 vmx_preemption_cpu_tfms[] = {
1118/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
11190x000206E6,
1120/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1121/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1122/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11230x00020652,
1124/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11250x00020655,
1126/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1127/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1128/*
1129 * 320767.pdf - AAP86 - B1 -
1130 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1131 */
11320x000106E5,
1133/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11340x000106A0,
1135/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11360x000106A1,
1137/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11380x000106A4,
1139 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1140 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1141 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11420x000106A5,
1143};
1144
1145static inline bool cpu_has_broken_vmx_preemption_timer(void)
1146{
1147 u32 eax = cpuid_eax(0x00000001), i;
1148
1149 /* Clear the reserved bits */
1150 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1151 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1152 if (eax == vmx_preemption_cpu_tfms[i])
1153 return true;
1154
1155 return false;
1156}
1157
1158static inline bool cpu_has_vmx_preemption_timer(void)
1159{
64672c95
YJ
1160 return vmcs_config.pin_based_exec_ctrl &
1161 PIN_BASED_VMX_PREEMPTION_TIMER;
1162}
1163
01e439be
YZ
1164static inline bool cpu_has_vmx_posted_intr(void)
1165{
d6a858d1
PB
1166 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1167 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1168}
1169
1170static inline bool cpu_has_vmx_apicv(void)
1171{
1172 return cpu_has_vmx_apic_register_virt() &&
1173 cpu_has_vmx_virtual_intr_delivery() &&
1174 cpu_has_vmx_posted_intr();
1175}
1176
04547156
SY
1177static inline bool cpu_has_vmx_flexpriority(void)
1178{
1179 return cpu_has_vmx_tpr_shadow() &&
1180 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1181}
1182
e799794e
MT
1183static inline bool cpu_has_vmx_ept_execute_only(void)
1184{
31299944 1185 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1186}
1187
e799794e
MT
1188static inline bool cpu_has_vmx_ept_2m_page(void)
1189{
31299944 1190 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1191}
1192
878403b7
SY
1193static inline bool cpu_has_vmx_ept_1g_page(void)
1194{
31299944 1195 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1196}
1197
4bc9b982
SY
1198static inline bool cpu_has_vmx_ept_4levels(void)
1199{
1200 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1201}
1202
83c3a331
XH
1203static inline bool cpu_has_vmx_ept_ad_bits(void)
1204{
1205 return vmx_capability.ept & VMX_EPT_AD_BIT;
1206}
1207
31299944 1208static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1209{
31299944 1210 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1211}
1212
31299944 1213static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1214{
31299944 1215 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1216}
1217
518c8aee
GJ
1218static inline bool cpu_has_vmx_invvpid_single(void)
1219{
1220 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1221}
1222
b9d762fa
GJ
1223static inline bool cpu_has_vmx_invvpid_global(void)
1224{
1225 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1226}
1227
08d839c4
WL
1228static inline bool cpu_has_vmx_invvpid(void)
1229{
1230 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1231}
1232
31299944 1233static inline bool cpu_has_vmx_ept(void)
d56f546d 1234{
04547156
SY
1235 return vmcs_config.cpu_based_2nd_exec_ctrl &
1236 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1237}
1238
31299944 1239static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1240{
1241 return vmcs_config.cpu_based_2nd_exec_ctrl &
1242 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1243}
1244
31299944 1245static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1246{
1247 return vmcs_config.cpu_based_2nd_exec_ctrl &
1248 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1249}
1250
9ac7e3e8
JD
1251static inline bool cpu_has_vmx_basic_inout(void)
1252{
1253 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1254}
1255
35754c98 1256static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1257{
35754c98 1258 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1259}
1260
31299944 1261static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1262{
04547156
SY
1263 return vmcs_config.cpu_based_2nd_exec_ctrl &
1264 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1265}
1266
31299944 1267static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1268{
1269 return vmcs_config.cpu_based_2nd_exec_ctrl &
1270 SECONDARY_EXEC_RDTSCP;
1271}
1272
ad756a16
MJ
1273static inline bool cpu_has_vmx_invpcid(void)
1274{
1275 return vmcs_config.cpu_based_2nd_exec_ctrl &
1276 SECONDARY_EXEC_ENABLE_INVPCID;
1277}
1278
f5f48ee1
SY
1279static inline bool cpu_has_vmx_wbinvd_exit(void)
1280{
1281 return vmcs_config.cpu_based_2nd_exec_ctrl &
1282 SECONDARY_EXEC_WBINVD_EXITING;
1283}
1284
abc4fc58
AG
1285static inline bool cpu_has_vmx_shadow_vmcs(void)
1286{
1287 u64 vmx_msr;
1288 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1289 /* check if the cpu supports writing r/o exit information fields */
1290 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1291 return false;
1292
1293 return vmcs_config.cpu_based_2nd_exec_ctrl &
1294 SECONDARY_EXEC_SHADOW_VMCS;
1295}
1296
843e4330
KH
1297static inline bool cpu_has_vmx_pml(void)
1298{
1299 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1300}
1301
64903d61
HZ
1302static inline bool cpu_has_vmx_tsc_scaling(void)
1303{
1304 return vmcs_config.cpu_based_2nd_exec_ctrl &
1305 SECONDARY_EXEC_TSC_SCALING;
1306}
1307
2a499e49
BD
1308static inline bool cpu_has_vmx_vmfunc(void)
1309{
1310 return vmcs_config.cpu_based_2nd_exec_ctrl &
1311 SECONDARY_EXEC_ENABLE_VMFUNC;
1312}
1313
04547156
SY
1314static inline bool report_flexpriority(void)
1315{
1316 return flexpriority_enabled;
1317}
1318
c7c2c709
JM
1319static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1320{
1321 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1322}
1323
fe3ef05c
NHE
1324static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1325{
1326 return vmcs12->cpu_based_vm_exec_control & bit;
1327}
1328
1329static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1330{
1331 return (vmcs12->cpu_based_vm_exec_control &
1332 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1333 (vmcs12->secondary_vm_exec_control & bit);
1334}
1335
f5c4368f 1336static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1337{
1338 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1339}
1340
f4124500
JK
1341static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1342{
1343 return vmcs12->pin_based_vm_exec_control &
1344 PIN_BASED_VMX_PREEMPTION_TIMER;
1345}
1346
155a97a3
NHE
1347static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1348{
1349 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1350}
1351
81dc01f7
WL
1352static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1353{
1354 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1355 vmx_xsaves_supported();
1356}
1357
c5f983f6
BD
1358static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1359{
1360 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1361}
1362
f2b93280
WV
1363static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1364{
1365 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1366}
1367
5c614b35
WL
1368static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1369{
1370 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1371}
1372
82f0dd4b
WV
1373static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1374{
1375 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1376}
1377
608406e2
WV
1378static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1379{
1380 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1381}
1382
705699a1
WV
1383static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1384{
1385 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1386}
1387
27c42a1b
BD
1388static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1389{
1390 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1391}
1392
41ab9372
BD
1393static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1394{
1395 return nested_cpu_has_vmfunc(vmcs12) &&
1396 (vmcs12->vm_function_control &
1397 VMX_VMFUNC_EPTP_SWITCHING);
1398}
1399
ef85b673 1400static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1401{
1402 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1403 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1404}
1405
533558bc
JK
1406static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1407 u32 exit_intr_info,
1408 unsigned long exit_qualification);
7c177938
NHE
1409static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1410 struct vmcs12 *vmcs12,
1411 u32 reason, unsigned long qualification);
1412
8b9cf98c 1413static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1414{
1415 int i;
1416
a2fa3e9f 1417 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1418 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1419 return i;
1420 return -1;
1421}
1422
2384d2b3
SY
1423static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1424{
1425 struct {
1426 u64 vpid : 16;
1427 u64 rsvd : 48;
1428 u64 gva;
1429 } operand = { vpid, 0, gva };
1430
4ecac3fd 1431 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1432 /* CF==1 or ZF==1 --> rc = -1 */
1433 "; ja 1f ; ud2 ; 1:"
1434 : : "a"(&operand), "c"(ext) : "cc", "memory");
1435}
1436
1439442c
SY
1437static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1438{
1439 struct {
1440 u64 eptp, gpa;
1441 } operand = {eptp, gpa};
1442
4ecac3fd 1443 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1444 /* CF==1 or ZF==1 --> rc = -1 */
1445 "; ja 1f ; ud2 ; 1:\n"
1446 : : "a" (&operand), "c" (ext) : "cc", "memory");
1447}
1448
26bb0981 1449static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1450{
1451 int i;
1452
8b9cf98c 1453 i = __find_msr_index(vmx, msr);
a75beee6 1454 if (i >= 0)
a2fa3e9f 1455 return &vmx->guest_msrs[i];
8b6d44c7 1456 return NULL;
7725f0ba
AK
1457}
1458
6aa8b732
AK
1459static void vmcs_clear(struct vmcs *vmcs)
1460{
1461 u64 phys_addr = __pa(vmcs);
1462 u8 error;
1463
4ecac3fd 1464 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1465 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1466 : "cc", "memory");
1467 if (error)
1468 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1469 vmcs, phys_addr);
1470}
1471
d462b819
NHE
1472static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1473{
1474 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1475 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1476 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1477 loaded_vmcs->cpu = -1;
1478 loaded_vmcs->launched = 0;
1479}
1480
7725b894
DX
1481static void vmcs_load(struct vmcs *vmcs)
1482{
1483 u64 phys_addr = __pa(vmcs);
1484 u8 error;
1485
1486 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1487 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1488 : "cc", "memory");
1489 if (error)
2844d849 1490 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1491 vmcs, phys_addr);
1492}
1493
2965faa5 1494#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1495/*
1496 * This bitmap is used to indicate whether the vmclear
1497 * operation is enabled on all cpus. All disabled by
1498 * default.
1499 */
1500static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1501
1502static inline void crash_enable_local_vmclear(int cpu)
1503{
1504 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1505}
1506
1507static inline void crash_disable_local_vmclear(int cpu)
1508{
1509 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1510}
1511
1512static inline int crash_local_vmclear_enabled(int cpu)
1513{
1514 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1515}
1516
1517static void crash_vmclear_local_loaded_vmcss(void)
1518{
1519 int cpu = raw_smp_processor_id();
1520 struct loaded_vmcs *v;
1521
1522 if (!crash_local_vmclear_enabled(cpu))
1523 return;
1524
1525 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1526 loaded_vmcss_on_cpu_link)
1527 vmcs_clear(v->vmcs);
1528}
1529#else
1530static inline void crash_enable_local_vmclear(int cpu) { }
1531static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1532#endif /* CONFIG_KEXEC_CORE */
8f536b76 1533
d462b819 1534static void __loaded_vmcs_clear(void *arg)
6aa8b732 1535{
d462b819 1536 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1537 int cpu = raw_smp_processor_id();
6aa8b732 1538
d462b819
NHE
1539 if (loaded_vmcs->cpu != cpu)
1540 return; /* vcpu migration can race with cpu offline */
1541 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1542 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1543 crash_disable_local_vmclear(cpu);
d462b819 1544 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1545
1546 /*
1547 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1548 * is before setting loaded_vmcs->vcpu to -1 which is done in
1549 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1550 * then adds the vmcs into percpu list before it is deleted.
1551 */
1552 smp_wmb();
1553
d462b819 1554 loaded_vmcs_init(loaded_vmcs);
8f536b76 1555 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1556}
1557
d462b819 1558static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1559{
e6c7d321
XG
1560 int cpu = loaded_vmcs->cpu;
1561
1562 if (cpu != -1)
1563 smp_call_function_single(cpu,
1564 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1565}
1566
dd5f5341 1567static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1568{
dd5f5341 1569 if (vpid == 0)
2384d2b3
SY
1570 return;
1571
518c8aee 1572 if (cpu_has_vmx_invvpid_single())
dd5f5341 1573 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1574}
1575
b9d762fa
GJ
1576static inline void vpid_sync_vcpu_global(void)
1577{
1578 if (cpu_has_vmx_invvpid_global())
1579 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1580}
1581
dd5f5341 1582static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1583{
1584 if (cpu_has_vmx_invvpid_single())
dd5f5341 1585 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1586 else
1587 vpid_sync_vcpu_global();
1588}
1589
1439442c
SY
1590static inline void ept_sync_global(void)
1591{
1592 if (cpu_has_vmx_invept_global())
1593 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1594}
1595
1596static inline void ept_sync_context(u64 eptp)
1597{
089d034e 1598 if (enable_ept) {
1439442c
SY
1599 if (cpu_has_vmx_invept_context())
1600 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1601 else
1602 ept_sync_global();
1603 }
1604}
1605
8a86aea9
PB
1606static __always_inline void vmcs_check16(unsigned long field)
1607{
1608 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1609 "16-bit accessor invalid for 64-bit field");
1610 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1611 "16-bit accessor invalid for 64-bit high field");
1612 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1613 "16-bit accessor invalid for 32-bit high field");
1614 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1615 "16-bit accessor invalid for natural width field");
1616}
1617
1618static __always_inline void vmcs_check32(unsigned long field)
1619{
1620 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1621 "32-bit accessor invalid for 16-bit field");
1622 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1623 "32-bit accessor invalid for natural width field");
1624}
1625
1626static __always_inline void vmcs_check64(unsigned long field)
1627{
1628 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1629 "64-bit accessor invalid for 16-bit field");
1630 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1631 "64-bit accessor invalid for 64-bit high field");
1632 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1633 "64-bit accessor invalid for 32-bit field");
1634 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1635 "64-bit accessor invalid for natural width field");
1636}
1637
1638static __always_inline void vmcs_checkl(unsigned long field)
1639{
1640 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1641 "Natural width accessor invalid for 16-bit field");
1642 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1643 "Natural width accessor invalid for 64-bit field");
1644 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1645 "Natural width accessor invalid for 64-bit high field");
1646 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1647 "Natural width accessor invalid for 32-bit field");
1648}
1649
1650static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1651{
5e520e62 1652 unsigned long value;
6aa8b732 1653
5e520e62
AK
1654 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1655 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1656 return value;
1657}
1658
96304217 1659static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1660{
8a86aea9
PB
1661 vmcs_check16(field);
1662 return __vmcs_readl(field);
6aa8b732
AK
1663}
1664
96304217 1665static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1666{
8a86aea9
PB
1667 vmcs_check32(field);
1668 return __vmcs_readl(field);
6aa8b732
AK
1669}
1670
96304217 1671static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1672{
8a86aea9 1673 vmcs_check64(field);
05b3e0c2 1674#ifdef CONFIG_X86_64
8a86aea9 1675 return __vmcs_readl(field);
6aa8b732 1676#else
8a86aea9 1677 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1678#endif
1679}
1680
8a86aea9
PB
1681static __always_inline unsigned long vmcs_readl(unsigned long field)
1682{
1683 vmcs_checkl(field);
1684 return __vmcs_readl(field);
1685}
1686
e52de1b8
AK
1687static noinline void vmwrite_error(unsigned long field, unsigned long value)
1688{
1689 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1690 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1691 dump_stack();
1692}
1693
8a86aea9 1694static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1695{
1696 u8 error;
1697
4ecac3fd 1698 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1699 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1700 if (unlikely(error))
1701 vmwrite_error(field, value);
6aa8b732
AK
1702}
1703
8a86aea9 1704static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1705{
8a86aea9
PB
1706 vmcs_check16(field);
1707 __vmcs_writel(field, value);
6aa8b732
AK
1708}
1709
8a86aea9 1710static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1711{
8a86aea9
PB
1712 vmcs_check32(field);
1713 __vmcs_writel(field, value);
6aa8b732
AK
1714}
1715
8a86aea9 1716static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1717{
8a86aea9
PB
1718 vmcs_check64(field);
1719 __vmcs_writel(field, value);
7682f2d0 1720#ifndef CONFIG_X86_64
6aa8b732 1721 asm volatile ("");
8a86aea9 1722 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1723#endif
1724}
1725
8a86aea9 1726static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1727{
8a86aea9
PB
1728 vmcs_checkl(field);
1729 __vmcs_writel(field, value);
2ab455cc
AL
1730}
1731
8a86aea9 1732static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1733{
8a86aea9
PB
1734 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1735 "vmcs_clear_bits does not support 64-bit fields");
1736 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1737}
1738
8a86aea9 1739static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1740{
8a86aea9
PB
1741 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1742 "vmcs_set_bits does not support 64-bit fields");
1743 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1744}
1745
8391ce44
PB
1746static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1747{
1748 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1749}
1750
2961e876
GN
1751static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1752{
1753 vmcs_write32(VM_ENTRY_CONTROLS, val);
1754 vmx->vm_entry_controls_shadow = val;
1755}
1756
1757static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1758{
1759 if (vmx->vm_entry_controls_shadow != val)
1760 vm_entry_controls_init(vmx, val);
1761}
1762
1763static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1764{
1765 return vmx->vm_entry_controls_shadow;
1766}
1767
1768
1769static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1770{
1771 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1772}
1773
1774static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1775{
1776 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1777}
1778
8391ce44
PB
1779static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1780{
1781 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1782}
1783
2961e876
GN
1784static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1785{
1786 vmcs_write32(VM_EXIT_CONTROLS, val);
1787 vmx->vm_exit_controls_shadow = val;
1788}
1789
1790static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1791{
1792 if (vmx->vm_exit_controls_shadow != val)
1793 vm_exit_controls_init(vmx, val);
1794}
1795
1796static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1797{
1798 return vmx->vm_exit_controls_shadow;
1799}
1800
1801
1802static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1803{
1804 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1805}
1806
1807static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1808{
1809 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1810}
1811
2fb92db1
AK
1812static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1813{
1814 vmx->segment_cache.bitmask = 0;
1815}
1816
1817static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1818 unsigned field)
1819{
1820 bool ret;
1821 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1822
1823 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1824 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1825 vmx->segment_cache.bitmask = 0;
1826 }
1827 ret = vmx->segment_cache.bitmask & mask;
1828 vmx->segment_cache.bitmask |= mask;
1829 return ret;
1830}
1831
1832static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1833{
1834 u16 *p = &vmx->segment_cache.seg[seg].selector;
1835
1836 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1837 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1838 return *p;
1839}
1840
1841static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1842{
1843 ulong *p = &vmx->segment_cache.seg[seg].base;
1844
1845 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1846 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1847 return *p;
1848}
1849
1850static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1851{
1852 u32 *p = &vmx->segment_cache.seg[seg].limit;
1853
1854 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1855 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1856 return *p;
1857}
1858
1859static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1860{
1861 u32 *p = &vmx->segment_cache.seg[seg].ar;
1862
1863 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1864 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1865 return *p;
1866}
1867
abd3f2d6
AK
1868static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1869{
1870 u32 eb;
1871
fd7373cc 1872 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 1873 (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1874 if ((vcpu->guest_debug &
1875 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1876 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1877 eb |= 1u << BP_VECTOR;
7ffd92c5 1878 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1879 eb = ~0;
089d034e 1880 if (enable_ept)
1439442c 1881 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
1882
1883 /* When we are running a nested L2 guest and L1 specified for it a
1884 * certain exception bitmap, we must trap the same exceptions and pass
1885 * them to L1. When running L2, we will only handle the exceptions
1886 * specified above if L1 did not want them.
1887 */
1888 if (is_guest_mode(vcpu))
1889 eb |= get_vmcs12(vcpu)->exception_bitmap;
1890
abd3f2d6
AK
1891 vmcs_write32(EXCEPTION_BITMAP, eb);
1892}
1893
2961e876
GN
1894static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1895 unsigned long entry, unsigned long exit)
8bf00a52 1896{
2961e876
GN
1897 vm_entry_controls_clearbit(vmx, entry);
1898 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1899}
1900
61d2ef2c
AK
1901static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1902{
1903 unsigned i;
1904 struct msr_autoload *m = &vmx->msr_autoload;
1905
8bf00a52
GN
1906 switch (msr) {
1907 case MSR_EFER:
1908 if (cpu_has_load_ia32_efer) {
2961e876
GN
1909 clear_atomic_switch_msr_special(vmx,
1910 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1911 VM_EXIT_LOAD_IA32_EFER);
1912 return;
1913 }
1914 break;
1915 case MSR_CORE_PERF_GLOBAL_CTRL:
1916 if (cpu_has_load_perf_global_ctrl) {
2961e876 1917 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1918 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1919 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1920 return;
1921 }
1922 break;
110312c8
AK
1923 }
1924
61d2ef2c
AK
1925 for (i = 0; i < m->nr; ++i)
1926 if (m->guest[i].index == msr)
1927 break;
1928
1929 if (i == m->nr)
1930 return;
1931 --m->nr;
1932 m->guest[i] = m->guest[m->nr];
1933 m->host[i] = m->host[m->nr];
1934 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1935 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1936}
1937
2961e876
GN
1938static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1939 unsigned long entry, unsigned long exit,
1940 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1941 u64 guest_val, u64 host_val)
8bf00a52
GN
1942{
1943 vmcs_write64(guest_val_vmcs, guest_val);
1944 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1945 vm_entry_controls_setbit(vmx, entry);
1946 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1947}
1948
61d2ef2c
AK
1949static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1950 u64 guest_val, u64 host_val)
1951{
1952 unsigned i;
1953 struct msr_autoload *m = &vmx->msr_autoload;
1954
8bf00a52
GN
1955 switch (msr) {
1956 case MSR_EFER:
1957 if (cpu_has_load_ia32_efer) {
2961e876
GN
1958 add_atomic_switch_msr_special(vmx,
1959 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1960 VM_EXIT_LOAD_IA32_EFER,
1961 GUEST_IA32_EFER,
1962 HOST_IA32_EFER,
1963 guest_val, host_val);
1964 return;
1965 }
1966 break;
1967 case MSR_CORE_PERF_GLOBAL_CTRL:
1968 if (cpu_has_load_perf_global_ctrl) {
2961e876 1969 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1970 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1971 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1972 GUEST_IA32_PERF_GLOBAL_CTRL,
1973 HOST_IA32_PERF_GLOBAL_CTRL,
1974 guest_val, host_val);
1975 return;
1976 }
1977 break;
7099e2e1
RK
1978 case MSR_IA32_PEBS_ENABLE:
1979 /* PEBS needs a quiescent period after being disabled (to write
1980 * a record). Disabling PEBS through VMX MSR swapping doesn't
1981 * provide that period, so a CPU could write host's record into
1982 * guest's memory.
1983 */
1984 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1985 }
1986
61d2ef2c
AK
1987 for (i = 0; i < m->nr; ++i)
1988 if (m->guest[i].index == msr)
1989 break;
1990
e7fc6f93 1991 if (i == NR_AUTOLOAD_MSRS) {
60266204 1992 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1993 "Can't add msr %x\n", msr);
1994 return;
1995 } else if (i == m->nr) {
61d2ef2c
AK
1996 ++m->nr;
1997 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1998 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1999 }
2000
2001 m->guest[i].index = msr;
2002 m->guest[i].value = guest_val;
2003 m->host[i].index = msr;
2004 m->host[i].value = host_val;
2005}
2006
92c0d900 2007static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2008{
844a5fe2
PB
2009 u64 guest_efer = vmx->vcpu.arch.efer;
2010 u64 ignore_bits = 0;
2011
2012 if (!enable_ept) {
2013 /*
2014 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2015 * host CPUID is more efficient than testing guest CPUID
2016 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2017 */
2018 if (boot_cpu_has(X86_FEATURE_SMEP))
2019 guest_efer |= EFER_NX;
2020 else if (!(guest_efer & EFER_NX))
2021 ignore_bits |= EFER_NX;
2022 }
3a34a881 2023
51c6cf66 2024 /*
844a5fe2 2025 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2026 */
844a5fe2 2027 ignore_bits |= EFER_SCE;
51c6cf66
AK
2028#ifdef CONFIG_X86_64
2029 ignore_bits |= EFER_LMA | EFER_LME;
2030 /* SCE is meaningful only in long mode on Intel */
2031 if (guest_efer & EFER_LMA)
2032 ignore_bits &= ~(u64)EFER_SCE;
2033#endif
84ad33ef
AK
2034
2035 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2036
2037 /*
2038 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2039 * On CPUs that support "load IA32_EFER", always switch EFER
2040 * atomically, since it's faster than switching it manually.
2041 */
2042 if (cpu_has_load_ia32_efer ||
2043 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2044 if (!(guest_efer & EFER_LMA))
2045 guest_efer &= ~EFER_LME;
54b98bff
AL
2046 if (guest_efer != host_efer)
2047 add_atomic_switch_msr(vmx, MSR_EFER,
2048 guest_efer, host_efer);
84ad33ef 2049 return false;
844a5fe2
PB
2050 } else {
2051 guest_efer &= ~ignore_bits;
2052 guest_efer |= host_efer & ignore_bits;
2053
2054 vmx->guest_msrs[efer_offset].data = guest_efer;
2055 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2056
844a5fe2
PB
2057 return true;
2058 }
51c6cf66
AK
2059}
2060
e28baead
AL
2061#ifdef CONFIG_X86_32
2062/*
2063 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2064 * VMCS rather than the segment table. KVM uses this helper to figure
2065 * out the current bases to poke them into the VMCS before entry.
2066 */
2d49ec72
GN
2067static unsigned long segment_base(u16 selector)
2068{
8c2e41f7 2069 struct desc_struct *table;
2d49ec72
GN
2070 unsigned long v;
2071
8c2e41f7 2072 if (!(selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2073 return 0;
2074
45fc8757 2075 table = get_current_gdt_ro();
2d49ec72 2076
8c2e41f7 2077 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2d49ec72
GN
2078 u16 ldt_selector = kvm_read_ldt();
2079
8c2e41f7 2080 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2081 return 0;
2082
8c2e41f7 2083 table = (struct desc_struct *)segment_base(ldt_selector);
2d49ec72 2084 }
8c2e41f7 2085 v = get_desc_base(&table[selector >> 3]);
2d49ec72
GN
2086 return v;
2087}
e28baead 2088#endif
2d49ec72 2089
04d2cc77 2090static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2091{
04d2cc77 2092 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2093 int i;
04d2cc77 2094
a2fa3e9f 2095 if (vmx->host_state.loaded)
33ed6329
AK
2096 return;
2097
a2fa3e9f 2098 vmx->host_state.loaded = 1;
33ed6329
AK
2099 /*
2100 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2101 * allow segment selectors with cpl > 0 or ti == 1.
2102 */
d6e88aec 2103 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2104 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2105 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2106 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2107 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2108 vmx->host_state.fs_reload_needed = 0;
2109 } else {
33ed6329 2110 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2111 vmx->host_state.fs_reload_needed = 1;
33ed6329 2112 }
9581d442 2113 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2114 if (!(vmx->host_state.gs_sel & 7))
2115 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2116 else {
2117 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2118 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2119 }
2120
b2da15ac
AK
2121#ifdef CONFIG_X86_64
2122 savesegment(ds, vmx->host_state.ds_sel);
2123 savesegment(es, vmx->host_state.es_sel);
2124#endif
2125
33ed6329
AK
2126#ifdef CONFIG_X86_64
2127 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2128 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2129#else
a2fa3e9f
GH
2130 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2131 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2132#endif
707c0874
AK
2133
2134#ifdef CONFIG_X86_64
c8770e7b
AK
2135 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2136 if (is_long_mode(&vmx->vcpu))
44ea2b17 2137 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2138#endif
da8999d3
LJ
2139 if (boot_cpu_has(X86_FEATURE_MPX))
2140 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2141 for (i = 0; i < vmx->save_nmsrs; ++i)
2142 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2143 vmx->guest_msrs[i].data,
2144 vmx->guest_msrs[i].mask);
33ed6329
AK
2145}
2146
a9b21b62 2147static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2148{
a2fa3e9f 2149 if (!vmx->host_state.loaded)
33ed6329
AK
2150 return;
2151
e1beb1d3 2152 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2153 vmx->host_state.loaded = 0;
c8770e7b
AK
2154#ifdef CONFIG_X86_64
2155 if (is_long_mode(&vmx->vcpu))
2156 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2157#endif
152d3f2f 2158 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2159 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2160#ifdef CONFIG_X86_64
9581d442 2161 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2162#else
2163 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2164#endif
33ed6329 2165 }
0a77fe4c
AK
2166 if (vmx->host_state.fs_reload_needed)
2167 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2168#ifdef CONFIG_X86_64
2169 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2170 loadsegment(ds, vmx->host_state.ds_sel);
2171 loadsegment(es, vmx->host_state.es_sel);
2172 }
b2da15ac 2173#endif
b7ffc44d 2174 invalidate_tss_limit();
44ea2b17 2175#ifdef CONFIG_X86_64
c8770e7b 2176 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2177#endif
da8999d3
LJ
2178 if (vmx->host_state.msr_host_bndcfgs)
2179 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
45fc8757 2180 load_fixmap_gdt(raw_smp_processor_id());
33ed6329
AK
2181}
2182
a9b21b62
AK
2183static void vmx_load_host_state(struct vcpu_vmx *vmx)
2184{
2185 preempt_disable();
2186 __vmx_load_host_state(vmx);
2187 preempt_enable();
2188}
2189
28b835d6
FW
2190static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2191{
2192 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2193 struct pi_desc old, new;
2194 unsigned int dest;
2195
2196 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2197 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2198 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2199 return;
2200
2201 do {
2202 old.control = new.control = pi_desc->control;
2203
2204 /*
2205 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2206 * are two possible cases:
2207 * 1. After running 'pre_block', context switch
2208 * happened. For this case, 'sn' was set in
2209 * vmx_vcpu_put(), so we need to clear it here.
2210 * 2. After running 'pre_block', we were blocked,
2211 * and woken up by some other guy. For this case,
2212 * we don't need to do anything, 'pi_post_block'
2213 * will do everything for us. However, we cannot
2214 * check whether it is case #1 or case #2 here
2215 * (maybe, not needed), so we also clear sn here,
2216 * I think it is not a big deal.
2217 */
2218 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2219 if (vcpu->cpu != cpu) {
2220 dest = cpu_physical_id(cpu);
2221
2222 if (x2apic_enabled())
2223 new.ndst = dest;
2224 else
2225 new.ndst = (dest << 8) & 0xFF00;
2226 }
2227
2228 /* set 'NV' to 'notification vector' */
2229 new.nv = POSTED_INTR_VECTOR;
2230 }
2231
2232 /* Allow posting non-urgent interrupts */
2233 new.sn = 0;
2234 } while (cmpxchg(&pi_desc->control, old.control,
2235 new.control) != old.control);
2236}
1be0e61c 2237
c95ba92a
PF
2238static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2239{
2240 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2241 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2242}
2243
6aa8b732
AK
2244/*
2245 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2246 * vcpu mutex is already taken.
2247 */
15ad7146 2248static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2249{
a2fa3e9f 2250 struct vcpu_vmx *vmx = to_vmx(vcpu);
b80c76ec 2251 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2252
b80c76ec 2253 if (!already_loaded) {
fe0e80be 2254 loaded_vmcs_clear(vmx->loaded_vmcs);
92fe13be 2255 local_irq_disable();
8f536b76 2256 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2257
2258 /*
2259 * Read loaded_vmcs->cpu should be before fetching
2260 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2261 * See the comments in __loaded_vmcs_clear().
2262 */
2263 smp_rmb();
2264
d462b819
NHE
2265 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2266 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2267 crash_enable_local_vmclear(cpu);
92fe13be 2268 local_irq_enable();
b80c76ec
JM
2269 }
2270
2271 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2272 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2273 vmcs_load(vmx->loaded_vmcs->vmcs);
2274 }
2275
2276 if (!already_loaded) {
59c58ceb 2277 void *gdt = get_current_gdt_ro();
b80c76ec
JM
2278 unsigned long sysenter_esp;
2279
2280 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2281
6aa8b732
AK
2282 /*
2283 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2284 * processors. See 22.2.4.
6aa8b732 2285 */
e0c23063
AL
2286 vmcs_writel(HOST_TR_BASE,
2287 (unsigned long)this_cpu_ptr(&cpu_tss));
59c58ceb 2288 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
6aa8b732 2289
b7ffc44d
AL
2290 /*
2291 * VM exits change the host TR limit to 0x67 after a VM
2292 * exit. This is okay, since 0x67 covers everything except
2293 * the IO bitmap and have have code to handle the IO bitmap
2294 * being lost after a VM exit.
2295 */
2296 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2297
6aa8b732
AK
2298 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2299 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2300
d462b819 2301 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2302 }
28b835d6 2303
2680d6da
OH
2304 /* Setup TSC multiplier */
2305 if (kvm_has_tsc_control &&
c95ba92a
PF
2306 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2307 decache_tsc_multiplier(vmx);
2680d6da 2308
28b835d6 2309 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2310 vmx->host_pkru = read_pkru();
28b835d6
FW
2311}
2312
2313static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2314{
2315 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2316
2317 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2318 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2319 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2320 return;
2321
2322 /* Set SN when the vCPU is preempted */
2323 if (vcpu->preempted)
2324 pi_set_sn(pi_desc);
6aa8b732
AK
2325}
2326
2327static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2328{
28b835d6
FW
2329 vmx_vcpu_pi_put(vcpu);
2330
a9b21b62 2331 __vmx_load_host_state(to_vmx(vcpu));
6aa8b732
AK
2332}
2333
f244deed
WL
2334static bool emulation_required(struct kvm_vcpu *vcpu)
2335{
2336 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2337}
2338
edcafe3c
AK
2339static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2340
fe3ef05c
NHE
2341/*
2342 * Return the cr0 value that a nested guest would read. This is a combination
2343 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2344 * its hypervisor (cr0_read_shadow).
2345 */
2346static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2347{
2348 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2349 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2350}
2351static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2352{
2353 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2354 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2355}
2356
6aa8b732
AK
2357static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2358{
78ac8b47 2359 unsigned long rflags, save_rflags;
345dcaa8 2360
6de12732
AK
2361 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2362 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2363 rflags = vmcs_readl(GUEST_RFLAGS);
2364 if (to_vmx(vcpu)->rmode.vm86_active) {
2365 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2366 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2367 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2368 }
2369 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2370 }
6de12732 2371 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2372}
2373
2374static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2375{
f244deed
WL
2376 unsigned long old_rflags = vmx_get_rflags(vcpu);
2377
6de12732
AK
2378 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2379 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2380 if (to_vmx(vcpu)->rmode.vm86_active) {
2381 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2382 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2383 }
6aa8b732 2384 vmcs_writel(GUEST_RFLAGS, rflags);
f244deed
WL
2385
2386 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2387 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
6aa8b732
AK
2388}
2389
be94f6b7
HH
2390static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2391{
2392 return to_vmx(vcpu)->guest_pkru;
2393}
2394
37ccdcbe 2395static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2396{
2397 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2398 int ret = 0;
2399
2400 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2401 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2402 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2403 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2404
37ccdcbe 2405 return ret;
2809f5d2
GC
2406}
2407
2408static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2409{
2410 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2411 u32 interruptibility = interruptibility_old;
2412
2413 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2414
48005f64 2415 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2416 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2417 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2418 interruptibility |= GUEST_INTR_STATE_STI;
2419
2420 if ((interruptibility != interruptibility_old))
2421 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2422}
2423
6aa8b732
AK
2424static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2425{
2426 unsigned long rip;
6aa8b732 2427
5fdbf976 2428 rip = kvm_rip_read(vcpu);
6aa8b732 2429 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2430 kvm_rip_write(vcpu, rip);
6aa8b732 2431
2809f5d2
GC
2432 /* skipping an emulated instruction also counts */
2433 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2434}
2435
b96fb439
PB
2436static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2437 unsigned long exit_qual)
2438{
2439 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2440 unsigned int nr = vcpu->arch.exception.nr;
2441 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2442
2443 if (vcpu->arch.exception.has_error_code) {
2444 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2445 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2446 }
2447
2448 if (kvm_exception_is_soft(nr))
2449 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2450 else
2451 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2452
2453 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2454 vmx_get_nmi_mask(vcpu))
2455 intr_info |= INTR_INFO_UNBLOCK_NMI;
2456
2457 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2458}
2459
0b6ac343
NHE
2460/*
2461 * KVM wants to inject page-faults which it got to the guest. This function
2462 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2463 */
adfe20fb 2464static int nested_vmx_check_exception(struct kvm_vcpu *vcpu)
0b6ac343
NHE
2465{
2466 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
adfe20fb 2467 unsigned int nr = vcpu->arch.exception.nr;
0b6ac343 2468
b96fb439
PB
2469 if (nr == PF_VECTOR) {
2470 if (vcpu->arch.exception.nested_apf) {
2471 nested_vmx_inject_exception_vmexit(vcpu,
2472 vcpu->arch.apf.nested_apf_token);
2473 return 1;
2474 }
2475 /*
2476 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2477 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2478 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2479 * can be written only when inject_pending_event runs. This should be
2480 * conditional on a new capability---if the capability is disabled,
2481 * kvm_multiple_exception would write the ancillary information to
2482 * CR2 or DR6, for backwards ABI-compatibility.
2483 */
2484 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2485 vcpu->arch.exception.error_code)) {
2486 nested_vmx_inject_exception_vmexit(vcpu, vcpu->arch.cr2);
2487 return 1;
2488 }
2489 } else {
2490 unsigned long exit_qual = 0;
2491 if (nr == DB_VECTOR)
2492 exit_qual = vcpu->arch.dr6;
0b6ac343 2493
b96fb439
PB
2494 if (vmcs12->exception_bitmap & (1u << nr)) {
2495 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
2496 return 1;
2497 }
adfe20fb
WL
2498 }
2499
b96fb439 2500 return 0;
0b6ac343
NHE
2501}
2502
cfcd20e5 2503static void vmx_queue_exception(struct kvm_vcpu *vcpu)
298101da 2504{
77ab6db0 2505 struct vcpu_vmx *vmx = to_vmx(vcpu);
cfcd20e5
WL
2506 unsigned nr = vcpu->arch.exception.nr;
2507 bool has_error_code = vcpu->arch.exception.has_error_code;
2508 bool reinject = vcpu->arch.exception.reinject;
2509 u32 error_code = vcpu->arch.exception.error_code;
8ab2d2e2 2510 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2511
e011c663 2512 if (!reinject && is_guest_mode(vcpu) &&
adfe20fb 2513 nested_vmx_check_exception(vcpu))
0b6ac343
NHE
2514 return;
2515
8ab2d2e2 2516 if (has_error_code) {
77ab6db0 2517 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2518 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2519 }
77ab6db0 2520
7ffd92c5 2521 if (vmx->rmode.vm86_active) {
71f9833b
SH
2522 int inc_eip = 0;
2523 if (kvm_exception_is_soft(nr))
2524 inc_eip = vcpu->arch.event_exit_inst_len;
2525 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2526 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2527 return;
2528 }
2529
66fd3f7f
GN
2530 if (kvm_exception_is_soft(nr)) {
2531 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2532 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2533 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2534 } else
2535 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2536
2537 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2538}
2539
4e47c7a6
SY
2540static bool vmx_rdtscp_supported(void)
2541{
2542 return cpu_has_vmx_rdtscp();
2543}
2544
ad756a16
MJ
2545static bool vmx_invpcid_supported(void)
2546{
2547 return cpu_has_vmx_invpcid() && enable_ept;
2548}
2549
a75beee6
ED
2550/*
2551 * Swap MSR entry in host/guest MSR entry array.
2552 */
8b9cf98c 2553static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2554{
26bb0981 2555 struct shared_msr_entry tmp;
a2fa3e9f
GH
2556
2557 tmp = vmx->guest_msrs[to];
2558 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2559 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2560}
2561
8d14695f
YZ
2562static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2563{
2564 unsigned long *msr_bitmap;
2565
670125bd 2566 if (is_guest_mode(vcpu))
d048c098 2567 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
3ce424e4
RK
2568 else if (cpu_has_secondary_exec_ctrls() &&
2569 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2570 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
f6e90f9e
WL
2571 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2572 if (is_long_mode(vcpu))
c63e4563 2573 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
f6e90f9e 2574 else
c63e4563 2575 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
f6e90f9e
WL
2576 } else {
2577 if (is_long_mode(vcpu))
c63e4563 2578 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
f6e90f9e 2579 else
c63e4563 2580 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
f6e90f9e 2581 }
8d14695f
YZ
2582 } else {
2583 if (is_long_mode(vcpu))
2584 msr_bitmap = vmx_msr_bitmap_longmode;
2585 else
2586 msr_bitmap = vmx_msr_bitmap_legacy;
2587 }
2588
2589 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2590}
2591
e38aea3e
AK
2592/*
2593 * Set up the vmcs to automatically save and restore system
2594 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2595 * mode, as fiddling with msrs is very expensive.
2596 */
8b9cf98c 2597static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2598{
26bb0981 2599 int save_nmsrs, index;
e38aea3e 2600
a75beee6
ED
2601 save_nmsrs = 0;
2602#ifdef CONFIG_X86_64
8b9cf98c 2603 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2604 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2605 if (index >= 0)
8b9cf98c
RR
2606 move_msr_up(vmx, index, save_nmsrs++);
2607 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2608 if (index >= 0)
8b9cf98c
RR
2609 move_msr_up(vmx, index, save_nmsrs++);
2610 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2611 if (index >= 0)
8b9cf98c 2612 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2613 index = __find_msr_index(vmx, MSR_TSC_AUX);
1cea0ce6 2614 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
4e47c7a6 2615 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2616 /*
8c06585d 2617 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2618 * if efer.sce is enabled.
2619 */
8c06585d 2620 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2621 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2622 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2623 }
2624#endif
92c0d900
AK
2625 index = __find_msr_index(vmx, MSR_EFER);
2626 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2627 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2628
26bb0981 2629 vmx->save_nmsrs = save_nmsrs;
5897297b 2630
8d14695f
YZ
2631 if (cpu_has_vmx_msr_bitmap())
2632 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2633}
2634
6aa8b732
AK
2635/*
2636 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2637 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2638 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2639 */
be7b263e 2640static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2641{
2642 u64 host_tsc, tsc_offset;
2643
4ea1636b 2644 host_tsc = rdtsc();
6aa8b732 2645 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2646 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2647}
2648
2649/*
99e3e30a 2650 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2651 */
99e3e30a 2652static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2653{
27fc51b2 2654 if (is_guest_mode(vcpu)) {
7991825b 2655 /*
27fc51b2
NHE
2656 * We're here if L1 chose not to trap WRMSR to TSC. According
2657 * to the spec, this should set L1's TSC; The offset that L1
2658 * set for L2 remains unchanged, and still needs to be added
2659 * to the newly set TSC to get L2's TSC.
7991825b 2660 */
27fc51b2 2661 struct vmcs12 *vmcs12;
27fc51b2
NHE
2662 /* recalculate vmcs02.TSC_OFFSET: */
2663 vmcs12 = get_vmcs12(vcpu);
2664 vmcs_write64(TSC_OFFSET, offset +
2665 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2666 vmcs12->tsc_offset : 0));
2667 } else {
489223ed
YY
2668 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2669 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2670 vmcs_write64(TSC_OFFSET, offset);
2671 }
6aa8b732
AK
2672}
2673
801d3424
NHE
2674static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2675{
2676 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2677 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2678}
2679
2680/*
2681 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2682 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2683 * all guests if the "nested" module option is off, and can also be disabled
2684 * for a single guest by disabling its VMX cpuid bit.
2685 */
2686static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2687{
2688 return nested && guest_cpuid_has_vmx(vcpu);
2689}
2690
b87a51ae
NHE
2691/*
2692 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2693 * returned for the various VMX controls MSRs when nested VMX is enabled.
2694 * The same values should also be used to verify that vmcs12 control fields are
2695 * valid during nested entry from L1 to L2.
2696 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2697 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2698 * bit in the high half is on if the corresponding bit in the control field
2699 * may be on. See also vmx_control_verify().
b87a51ae 2700 */
b9c237bb 2701static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2702{
2703 /*
2704 * Note that as a general rule, the high half of the MSRs (bits in
2705 * the control fields which may be 1) should be initialized by the
2706 * intersection of the underlying hardware's MSR (i.e., features which
2707 * can be supported) and the list of features we want to expose -
2708 * because they are known to be properly supported in our code.
2709 * Also, usually, the low half of the MSRs (bits which must be 1) can
2710 * be set to 0, meaning that L1 may turn off any of these bits. The
2711 * reason is that if one of these bits is necessary, it will appear
2712 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2713 * fields of vmcs01 and vmcs02, will turn these bits off - and
7313c698 2714 * nested_vmx_exit_reflected() will not pass related exits to L1.
b87a51ae
NHE
2715 * These rules have exceptions below.
2716 */
2717
2718 /* pin-based controls */
eabeaacc 2719 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2720 vmx->nested.nested_vmx_pinbased_ctls_low,
2721 vmx->nested.nested_vmx_pinbased_ctls_high);
2722 vmx->nested.nested_vmx_pinbased_ctls_low |=
2723 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2724 vmx->nested.nested_vmx_pinbased_ctls_high &=
2725 PIN_BASED_EXT_INTR_MASK |
2726 PIN_BASED_NMI_EXITING |
2727 PIN_BASED_VIRTUAL_NMIS;
2728 vmx->nested.nested_vmx_pinbased_ctls_high |=
2729 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2730 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2731 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2732 vmx->nested.nested_vmx_pinbased_ctls_high |=
2733 PIN_BASED_POSTED_INTR;
b87a51ae 2734
3dbcd8da 2735 /* exit controls */
c0dfee58 2736 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2737 vmx->nested.nested_vmx_exit_ctls_low,
2738 vmx->nested.nested_vmx_exit_ctls_high);
2739 vmx->nested.nested_vmx_exit_ctls_low =
2740 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2741
b9c237bb 2742 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2743#ifdef CONFIG_X86_64
c0dfee58 2744 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2745#endif
f4124500 2746 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2747 vmx->nested.nested_vmx_exit_ctls_high |=
2748 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2749 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2750 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2751
a87036ad 2752 if (kvm_mpx_supported())
b9c237bb 2753 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2754
2996fca0 2755 /* We support free control of debug control saving. */
0115f9cb 2756 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2757
b87a51ae
NHE
2758 /* entry controls */
2759 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2760 vmx->nested.nested_vmx_entry_ctls_low,
2761 vmx->nested.nested_vmx_entry_ctls_high);
2762 vmx->nested.nested_vmx_entry_ctls_low =
2763 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2764 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2765#ifdef CONFIG_X86_64
2766 VM_ENTRY_IA32E_MODE |
2767#endif
2768 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2769 vmx->nested.nested_vmx_entry_ctls_high |=
2770 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2771 if (kvm_mpx_supported())
b9c237bb 2772 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2773
2996fca0 2774 /* We support free control of debug control loading. */
0115f9cb 2775 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 2776
b87a51ae
NHE
2777 /* cpu-based controls */
2778 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2779 vmx->nested.nested_vmx_procbased_ctls_low,
2780 vmx->nested.nested_vmx_procbased_ctls_high);
2781 vmx->nested.nested_vmx_procbased_ctls_low =
2782 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2783 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2784 CPU_BASED_VIRTUAL_INTR_PENDING |
2785 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2786 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2787 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2788 CPU_BASED_CR3_STORE_EXITING |
2789#ifdef CONFIG_X86_64
2790 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2791#endif
2792 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2793 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2794 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2795 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2796 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2797 /*
2798 * We can allow some features even when not supported by the
2799 * hardware. For example, L1 can specify an MSR bitmap - and we
2800 * can use it to avoid exits to L1 - even when L0 runs L2
2801 * without MSR bitmaps.
2802 */
b9c237bb
WV
2803 vmx->nested.nested_vmx_procbased_ctls_high |=
2804 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2805 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2806
3dcdf3ec 2807 /* We support free control of CR3 access interception. */
0115f9cb 2808 vmx->nested.nested_vmx_procbased_ctls_low &=
3dcdf3ec
JK
2809 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2810
b87a51ae
NHE
2811 /* secondary cpu-based controls */
2812 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2813 vmx->nested.nested_vmx_secondary_ctls_low,
2814 vmx->nested.nested_vmx_secondary_ctls_high);
2815 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2816 vmx->nested.nested_vmx_secondary_ctls_high &=
a5f46457 2817 SECONDARY_EXEC_RDRAND | SECONDARY_EXEC_RDSEED |
d6851fbe 2818 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2819 SECONDARY_EXEC_RDTSCP |
1b07304c 2820 SECONDARY_EXEC_DESC |
f2b93280 2821 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 2822 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2823 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7 2824 SECONDARY_EXEC_WBINVD_EXITING |
dfa169bb 2825 SECONDARY_EXEC_XSAVES;
c18911a2 2826
afa61f75
NHE
2827 if (enable_ept) {
2828 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2829 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2830 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2831 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
7db74265 2832 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
02120c45
BD
2833 if (cpu_has_vmx_ept_execute_only())
2834 vmx->nested.nested_vmx_ept_caps |=
2835 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2836 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817 2837 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7db74265
PB
2838 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2839 VMX_EPT_1GB_PAGE_BIT;
03efce6f
BD
2840 if (enable_ept_ad_bits) {
2841 vmx->nested.nested_vmx_secondary_ctls_high |=
2842 SECONDARY_EXEC_ENABLE_PML;
7461fbc4 2843 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
03efce6f 2844 }
afa61f75 2845 } else
b9c237bb 2846 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2847
27c42a1b
BD
2848 if (cpu_has_vmx_vmfunc()) {
2849 vmx->nested.nested_vmx_secondary_ctls_high |=
2850 SECONDARY_EXEC_ENABLE_VMFUNC;
41ab9372
BD
2851 /*
2852 * Advertise EPTP switching unconditionally
2853 * since we emulate it
2854 */
2855 vmx->nested.nested_vmx_vmfunc_controls =
2856 VMX_VMFUNC_EPTP_SWITCHING;
27c42a1b
BD
2857 }
2858
ef697a71
PB
2859 /*
2860 * Old versions of KVM use the single-context version without
2861 * checking for support, so declare that it is supported even
2862 * though it is treated as global context. The alternative is
2863 * not failing the single-context invvpid, and it is worse.
2864 */
63cb6d5f
WL
2865 if (enable_vpid) {
2866 vmx->nested.nested_vmx_secondary_ctls_high |=
2867 SECONDARY_EXEC_ENABLE_VPID;
089d7b6e 2868 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 2869 VMX_VPID_EXTENT_SUPPORTED_MASK;
63cb6d5f 2870 } else
089d7b6e 2871 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2872
0790ec17
RK
2873 if (enable_unrestricted_guest)
2874 vmx->nested.nested_vmx_secondary_ctls_high |=
2875 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2876
c18911a2 2877 /* miscellaneous data */
b9c237bb
WV
2878 rdmsr(MSR_IA32_VMX_MISC,
2879 vmx->nested.nested_vmx_misc_low,
2880 vmx->nested.nested_vmx_misc_high);
2881 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2882 vmx->nested.nested_vmx_misc_low |=
2883 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2884 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2885 vmx->nested.nested_vmx_misc_high = 0;
62cc6b9d
DM
2886
2887 /*
2888 * This MSR reports some information about VMX support. We
2889 * should return information about the VMX we emulate for the
2890 * guest, and the VMCS structure we give it - not about the
2891 * VMX support of the underlying hardware.
2892 */
2893 vmx->nested.nested_vmx_basic =
2894 VMCS12_REVISION |
2895 VMX_BASIC_TRUE_CTLS |
2896 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2897 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2898
2899 if (cpu_has_vmx_basic_inout())
2900 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2901
2902 /*
8322ebbb 2903 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
2904 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2905 * We picked the standard core2 setting.
2906 */
2907#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2908#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2909 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
62cc6b9d 2910 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
2911
2912 /* These MSRs specify bits which the guest must keep fixed off. */
2913 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2914 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
62cc6b9d
DM
2915
2916 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2917 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
b87a51ae
NHE
2918}
2919
3899152c
DM
2920/*
2921 * if fixed0[i] == 1: val[i] must be 1
2922 * if fixed1[i] == 0: val[i] must be 0
2923 */
2924static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2925{
2926 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
2927}
2928
2929static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2930{
3899152c 2931 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
2932}
2933
2934static inline u64 vmx_control_msr(u32 low, u32 high)
2935{
2936 return low | ((u64)high << 32);
2937}
2938
62cc6b9d
DM
2939static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2940{
2941 superset &= mask;
2942 subset &= mask;
2943
2944 return (superset | subset) == superset;
2945}
2946
2947static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2948{
2949 const u64 feature_and_reserved =
2950 /* feature (except bit 48; see below) */
2951 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2952 /* reserved */
2953 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2954 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2955
2956 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2957 return -EINVAL;
2958
2959 /*
2960 * KVM does not emulate a version of VMX that constrains physical
2961 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2962 */
2963 if (data & BIT_ULL(48))
2964 return -EINVAL;
2965
2966 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2967 vmx_basic_vmcs_revision_id(data))
2968 return -EINVAL;
2969
2970 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2971 return -EINVAL;
2972
2973 vmx->nested.nested_vmx_basic = data;
2974 return 0;
2975}
2976
2977static int
2978vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2979{
2980 u64 supported;
2981 u32 *lowp, *highp;
2982
2983 switch (msr_index) {
2984 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2985 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2986 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2987 break;
2988 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2989 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2990 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2991 break;
2992 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2993 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2994 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2995 break;
2996 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2997 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2998 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2999 break;
3000 case MSR_IA32_VMX_PROCBASED_CTLS2:
3001 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
3002 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
3003 break;
3004 default:
3005 BUG();
3006 }
3007
3008 supported = vmx_control_msr(*lowp, *highp);
3009
3010 /* Check must-be-1 bits are still 1. */
3011 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3012 return -EINVAL;
3013
3014 /* Check must-be-0 bits are still 0. */
3015 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3016 return -EINVAL;
3017
3018 *lowp = data;
3019 *highp = data >> 32;
3020 return 0;
3021}
3022
3023static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3024{
3025 const u64 feature_and_reserved_bits =
3026 /* feature */
3027 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3028 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3029 /* reserved */
3030 GENMASK_ULL(13, 9) | BIT_ULL(31);
3031 u64 vmx_misc;
3032
3033 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3034 vmx->nested.nested_vmx_misc_high);
3035
3036 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3037 return -EINVAL;
3038
3039 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3040 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3041 vmx_misc_preemption_timer_rate(data) !=
3042 vmx_misc_preemption_timer_rate(vmx_misc))
3043 return -EINVAL;
3044
3045 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3046 return -EINVAL;
3047
3048 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3049 return -EINVAL;
3050
3051 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3052 return -EINVAL;
3053
3054 vmx->nested.nested_vmx_misc_low = data;
3055 vmx->nested.nested_vmx_misc_high = data >> 32;
3056 return 0;
3057}
3058
3059static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3060{
3061 u64 vmx_ept_vpid_cap;
3062
3063 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3064 vmx->nested.nested_vmx_vpid_caps);
3065
3066 /* Every bit is either reserved or a feature bit. */
3067 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3068 return -EINVAL;
3069
3070 vmx->nested.nested_vmx_ept_caps = data;
3071 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3072 return 0;
3073}
3074
3075static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3076{
3077 u64 *msr;
3078
3079 switch (msr_index) {
3080 case MSR_IA32_VMX_CR0_FIXED0:
3081 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3082 break;
3083 case MSR_IA32_VMX_CR4_FIXED0:
3084 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3085 break;
3086 default:
3087 BUG();
3088 }
3089
3090 /*
3091 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3092 * must be 1 in the restored value.
3093 */
3094 if (!is_bitwise_subset(data, *msr, -1ULL))
3095 return -EINVAL;
3096
3097 *msr = data;
3098 return 0;
3099}
3100
3101/*
3102 * Called when userspace is restoring VMX MSRs.
3103 *
3104 * Returns 0 on success, non-0 otherwise.
3105 */
3106static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3107{
b9c237bb
WV
3108 struct vcpu_vmx *vmx = to_vmx(vcpu);
3109
b87a51ae 3110 switch (msr_index) {
b87a51ae 3111 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3112 return vmx_restore_vmx_basic(vmx, data);
3113 case MSR_IA32_VMX_PINBASED_CTLS:
3114 case MSR_IA32_VMX_PROCBASED_CTLS:
3115 case MSR_IA32_VMX_EXIT_CTLS:
3116 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3117 /*
62cc6b9d
DM
3118 * The "non-true" VMX capability MSRs are generated from the
3119 * "true" MSRs, so we do not support restoring them directly.
3120 *
3121 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3122 * should restore the "true" MSRs with the must-be-1 bits
3123 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3124 * DEFAULT SETTINGS".
b87a51ae 3125 */
62cc6b9d
DM
3126 return -EINVAL;
3127 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3128 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3129 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3130 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3131 case MSR_IA32_VMX_PROCBASED_CTLS2:
3132 return vmx_restore_control_msr(vmx, msr_index, data);
3133 case MSR_IA32_VMX_MISC:
3134 return vmx_restore_vmx_misc(vmx, data);
3135 case MSR_IA32_VMX_CR0_FIXED0:
3136 case MSR_IA32_VMX_CR4_FIXED0:
3137 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3138 case MSR_IA32_VMX_CR0_FIXED1:
3139 case MSR_IA32_VMX_CR4_FIXED1:
3140 /*
3141 * These MSRs are generated based on the vCPU's CPUID, so we
3142 * do not support restoring them directly.
3143 */
3144 return -EINVAL;
3145 case MSR_IA32_VMX_EPT_VPID_CAP:
3146 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3147 case MSR_IA32_VMX_VMCS_ENUM:
3148 vmx->nested.nested_vmx_vmcs_enum = data;
3149 return 0;
3150 default:
b87a51ae 3151 /*
62cc6b9d 3152 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3153 */
62cc6b9d
DM
3154 return -EINVAL;
3155 }
3156}
3157
3158/* Returns 0 on success, non-0 otherwise. */
3159static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3160{
3161 struct vcpu_vmx *vmx = to_vmx(vcpu);
3162
3163 switch (msr_index) {
3164 case MSR_IA32_VMX_BASIC:
3165 *pdata = vmx->nested.nested_vmx_basic;
b87a51ae
NHE
3166 break;
3167 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3168 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
3169 *pdata = vmx_control_msr(
3170 vmx->nested.nested_vmx_pinbased_ctls_low,
3171 vmx->nested.nested_vmx_pinbased_ctls_high);
0115f9cb
DM
3172 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3173 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3174 break;
3175 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3176 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
3177 *pdata = vmx_control_msr(
3178 vmx->nested.nested_vmx_procbased_ctls_low,
3179 vmx->nested.nested_vmx_procbased_ctls_high);
0115f9cb
DM
3180 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3181 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3182 break;
3183 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3184 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
3185 *pdata = vmx_control_msr(
3186 vmx->nested.nested_vmx_exit_ctls_low,
3187 vmx->nested.nested_vmx_exit_ctls_high);
0115f9cb
DM
3188 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3189 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3190 break;
3191 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3192 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
3193 *pdata = vmx_control_msr(
3194 vmx->nested.nested_vmx_entry_ctls_low,
3195 vmx->nested.nested_vmx_entry_ctls_high);
0115f9cb
DM
3196 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3197 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3198 break;
3199 case MSR_IA32_VMX_MISC:
b9c237bb
WV
3200 *pdata = vmx_control_msr(
3201 vmx->nested.nested_vmx_misc_low,
3202 vmx->nested.nested_vmx_misc_high);
b87a51ae 3203 break;
b87a51ae 3204 case MSR_IA32_VMX_CR0_FIXED0:
62cc6b9d 3205 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
b87a51ae
NHE
3206 break;
3207 case MSR_IA32_VMX_CR0_FIXED1:
62cc6b9d 3208 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
b87a51ae
NHE
3209 break;
3210 case MSR_IA32_VMX_CR4_FIXED0:
62cc6b9d 3211 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
b87a51ae
NHE
3212 break;
3213 case MSR_IA32_VMX_CR4_FIXED1:
62cc6b9d 3214 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
b87a51ae
NHE
3215 break;
3216 case MSR_IA32_VMX_VMCS_ENUM:
62cc6b9d 3217 *pdata = vmx->nested.nested_vmx_vmcs_enum;
b87a51ae
NHE
3218 break;
3219 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
3220 *pdata = vmx_control_msr(
3221 vmx->nested.nested_vmx_secondary_ctls_low,
3222 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
3223 break;
3224 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
3225 *pdata = vmx->nested.nested_vmx_ept_caps |
3226 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae 3227 break;
27c42a1b
BD
3228 case MSR_IA32_VMX_VMFUNC:
3229 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3230 break;
b87a51ae 3231 default:
b87a51ae 3232 return 1;
b3897a49
NHE
3233 }
3234
b87a51ae
NHE
3235 return 0;
3236}
3237
37e4c997
HZ
3238static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3239 uint64_t val)
3240{
3241 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3242
3243 return !(val & ~valid_bits);
3244}
3245
6aa8b732
AK
3246/*
3247 * Reads an msr value (of 'msr_index') into 'pdata'.
3248 * Returns 0 on success, non-0 otherwise.
3249 * Assumes vcpu_load() was already called.
3250 */
609e36d3 3251static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3252{
26bb0981 3253 struct shared_msr_entry *msr;
6aa8b732 3254
609e36d3 3255 switch (msr_info->index) {
05b3e0c2 3256#ifdef CONFIG_X86_64
6aa8b732 3257 case MSR_FS_BASE:
609e36d3 3258 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3259 break;
3260 case MSR_GS_BASE:
609e36d3 3261 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3262 break;
44ea2b17
AK
3263 case MSR_KERNEL_GS_BASE:
3264 vmx_load_host_state(to_vmx(vcpu));
609e36d3 3265 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3266 break;
26bb0981 3267#endif
6aa8b732 3268 case MSR_EFER:
609e36d3 3269 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3270 case MSR_IA32_TSC:
be7b263e 3271 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
3272 break;
3273 case MSR_IA32_SYSENTER_CS:
609e36d3 3274 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3275 break;
3276 case MSR_IA32_SYSENTER_EIP:
609e36d3 3277 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3278 break;
3279 case MSR_IA32_SYSENTER_ESP:
609e36d3 3280 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3281 break;
0dd376e7 3282 case MSR_IA32_BNDCFGS:
691bd434
HZ
3283 if (!kvm_mpx_supported() ||
3284 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
93c4adc7 3285 return 1;
609e36d3 3286 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3287 break;
c45dcc71
AR
3288 case MSR_IA32_MCG_EXT_CTL:
3289 if (!msr_info->host_initiated &&
3290 !(to_vmx(vcpu)->msr_ia32_feature_control &
3291 FEATURE_CONTROL_LMCE))
cae50139 3292 return 1;
c45dcc71
AR
3293 msr_info->data = vcpu->arch.mcg_ext_ctl;
3294 break;
cae50139 3295 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3296 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3297 break;
3298 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3299 if (!nested_vmx_allowed(vcpu))
3300 return 1;
609e36d3 3301 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3302 case MSR_IA32_XSS:
3303 if (!vmx_xsaves_supported())
3304 return 1;
609e36d3 3305 msr_info->data = vcpu->arch.ia32_xss;
20300099 3306 break;
4e47c7a6 3307 case MSR_TSC_AUX:
81b1b9ca 3308 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3309 return 1;
3310 /* Otherwise falls through */
6aa8b732 3311 default:
609e36d3 3312 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3313 if (msr) {
609e36d3 3314 msr_info->data = msr->data;
3bab1f5d 3315 break;
6aa8b732 3316 }
609e36d3 3317 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3318 }
3319
6aa8b732
AK
3320 return 0;
3321}
3322
cae50139
JK
3323static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3324
6aa8b732
AK
3325/*
3326 * Writes msr value into into the appropriate "register".
3327 * Returns 0 on success, non-0 otherwise.
3328 * Assumes vcpu_load() was already called.
3329 */
8fe8ab46 3330static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3331{
a2fa3e9f 3332 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3333 struct shared_msr_entry *msr;
2cc51560 3334 int ret = 0;
8fe8ab46
WA
3335 u32 msr_index = msr_info->index;
3336 u64 data = msr_info->data;
2cc51560 3337
6aa8b732 3338 switch (msr_index) {
3bab1f5d 3339 case MSR_EFER:
8fe8ab46 3340 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3341 break;
16175a79 3342#ifdef CONFIG_X86_64
6aa8b732 3343 case MSR_FS_BASE:
2fb92db1 3344 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3345 vmcs_writel(GUEST_FS_BASE, data);
3346 break;
3347 case MSR_GS_BASE:
2fb92db1 3348 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3349 vmcs_writel(GUEST_GS_BASE, data);
3350 break;
44ea2b17
AK
3351 case MSR_KERNEL_GS_BASE:
3352 vmx_load_host_state(vmx);
3353 vmx->msr_guest_kernel_gs_base = data;
3354 break;
6aa8b732
AK
3355#endif
3356 case MSR_IA32_SYSENTER_CS:
3357 vmcs_write32(GUEST_SYSENTER_CS, data);
3358 break;
3359 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3360 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3361 break;
3362 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3363 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3364 break;
0dd376e7 3365 case MSR_IA32_BNDCFGS:
691bd434
HZ
3366 if (!kvm_mpx_supported() ||
3367 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
93c4adc7 3368 return 1;
4531662d
JM
3369 if (is_noncanonical_address(data & PAGE_MASK) ||
3370 (data & MSR_IA32_BNDCFGS_RSVD))
93c4adc7 3371 return 1;
0dd376e7
LJ
3372 vmcs_write64(GUEST_BNDCFGS, data);
3373 break;
af24a4e4 3374 case MSR_IA32_TSC:
8fe8ab46 3375 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3376 break;
468d472f
SY
3377 case MSR_IA32_CR_PAT:
3378 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3379 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3380 return 1;
468d472f
SY
3381 vmcs_write64(GUEST_IA32_PAT, data);
3382 vcpu->arch.pat = data;
3383 break;
3384 }
8fe8ab46 3385 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3386 break;
ba904635
WA
3387 case MSR_IA32_TSC_ADJUST:
3388 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3389 break;
c45dcc71
AR
3390 case MSR_IA32_MCG_EXT_CTL:
3391 if ((!msr_info->host_initiated &&
3392 !(to_vmx(vcpu)->msr_ia32_feature_control &
3393 FEATURE_CONTROL_LMCE)) ||
3394 (data & ~MCG_EXT_CTL_LMCE_EN))
3395 return 1;
3396 vcpu->arch.mcg_ext_ctl = data;
3397 break;
cae50139 3398 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3399 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3400 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3401 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3402 return 1;
3b84080b 3403 vmx->msr_ia32_feature_control = data;
cae50139
JK
3404 if (msr_info->host_initiated && data == 0)
3405 vmx_leave_nested(vcpu);
3406 break;
3407 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3408 if (!msr_info->host_initiated)
3409 return 1; /* they are read-only */
3410 if (!nested_vmx_allowed(vcpu))
3411 return 1;
3412 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3413 case MSR_IA32_XSS:
3414 if (!vmx_xsaves_supported())
3415 return 1;
3416 /*
3417 * The only supported bit as of Skylake is bit 8, but
3418 * it is not supported on KVM.
3419 */
3420 if (data != 0)
3421 return 1;
3422 vcpu->arch.ia32_xss = data;
3423 if (vcpu->arch.ia32_xss != host_xss)
3424 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3425 vcpu->arch.ia32_xss, host_xss);
3426 else
3427 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3428 break;
4e47c7a6 3429 case MSR_TSC_AUX:
81b1b9ca 3430 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3431 return 1;
3432 /* Check reserved bit, higher 32 bits should be zero */
3433 if ((data >> 32) != 0)
3434 return 1;
3435 /* Otherwise falls through */
6aa8b732 3436 default:
8b9cf98c 3437 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3438 if (msr) {
8b3c3104 3439 u64 old_msr_data = msr->data;
3bab1f5d 3440 msr->data = data;
2225fd56
AK
3441 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3442 preempt_disable();
8b3c3104
AH
3443 ret = kvm_set_shared_msr(msr->index, msr->data,
3444 msr->mask);
2225fd56 3445 preempt_enable();
8b3c3104
AH
3446 if (ret)
3447 msr->data = old_msr_data;
2225fd56 3448 }
3bab1f5d 3449 break;
6aa8b732 3450 }
8fe8ab46 3451 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3452 }
3453
2cc51560 3454 return ret;
6aa8b732
AK
3455}
3456
5fdbf976 3457static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3458{
5fdbf976
MT
3459 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3460 switch (reg) {
3461 case VCPU_REGS_RSP:
3462 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3463 break;
3464 case VCPU_REGS_RIP:
3465 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3466 break;
6de4f3ad
AK
3467 case VCPU_EXREG_PDPTR:
3468 if (enable_ept)
3469 ept_save_pdptrs(vcpu);
3470 break;
5fdbf976
MT
3471 default:
3472 break;
3473 }
6aa8b732
AK
3474}
3475
6aa8b732
AK
3476static __init int cpu_has_kvm_support(void)
3477{
6210e37b 3478 return cpu_has_vmx();
6aa8b732
AK
3479}
3480
3481static __init int vmx_disabled_by_bios(void)
3482{
3483 u64 msr;
3484
3485 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3486 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3487 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3488 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3489 && tboot_enabled())
3490 return 1;
23f3e991 3491 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3492 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3493 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3494 && !tboot_enabled()) {
3495 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3496 "activate TXT before enabling KVM\n");
cafd6659 3497 return 1;
f9335afe 3498 }
23f3e991
JC
3499 /* launched w/o TXT and VMX disabled */
3500 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3501 && !tboot_enabled())
3502 return 1;
cafd6659
SW
3503 }
3504
3505 return 0;
6aa8b732
AK
3506}
3507
7725b894
DX
3508static void kvm_cpu_vmxon(u64 addr)
3509{
fe0e80be 3510 cr4_set_bits(X86_CR4_VMXE);
1c5ac21a
AS
3511 intel_pt_handle_vmx(1);
3512
7725b894
DX
3513 asm volatile (ASM_VMX_VMXON_RAX
3514 : : "a"(&addr), "m"(addr)
3515 : "memory", "cc");
3516}
3517
13a34e06 3518static int hardware_enable(void)
6aa8b732
AK
3519{
3520 int cpu = raw_smp_processor_id();
3521 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3522 u64 old, test_bits;
6aa8b732 3523
1e02ce4c 3524 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3525 return -EBUSY;
3526
d462b819 3527 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3528 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3529 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3530
3531 /*
3532 * Now we can enable the vmclear operation in kdump
3533 * since the loaded_vmcss_on_cpu list on this cpu
3534 * has been initialized.
3535 *
3536 * Though the cpu is not in VMX operation now, there
3537 * is no problem to enable the vmclear operation
3538 * for the loaded_vmcss_on_cpu list is empty!
3539 */
3540 crash_enable_local_vmclear(cpu);
3541
6aa8b732 3542 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3543
3544 test_bits = FEATURE_CONTROL_LOCKED;
3545 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3546 if (tboot_enabled())
3547 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3548
3549 if ((old & test_bits) != test_bits) {
6aa8b732 3550 /* enable and lock */
cafd6659
SW
3551 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3552 }
fe0e80be
DH
3553 kvm_cpu_vmxon(phys_addr);
3554 ept_sync_global();
10474ae8
AG
3555
3556 return 0;
6aa8b732
AK
3557}
3558
d462b819 3559static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3560{
3561 int cpu = raw_smp_processor_id();
d462b819 3562 struct loaded_vmcs *v, *n;
543e4243 3563
d462b819
NHE
3564 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3565 loaded_vmcss_on_cpu_link)
3566 __loaded_vmcs_clear(v);
543e4243
AK
3567}
3568
710ff4a8
EH
3569
3570/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3571 * tricks.
3572 */
3573static void kvm_cpu_vmxoff(void)
6aa8b732 3574{
4ecac3fd 3575 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3576
3577 intel_pt_handle_vmx(0);
fe0e80be 3578 cr4_clear_bits(X86_CR4_VMXE);
6aa8b732
AK
3579}
3580
13a34e06 3581static void hardware_disable(void)
710ff4a8 3582{
fe0e80be
DH
3583 vmclear_local_loaded_vmcss();
3584 kvm_cpu_vmxoff();
710ff4a8
EH
3585}
3586
1c3d14fe 3587static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3588 u32 msr, u32 *result)
1c3d14fe
YS
3589{
3590 u32 vmx_msr_low, vmx_msr_high;
3591 u32 ctl = ctl_min | ctl_opt;
3592
3593 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3594
3595 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3596 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3597
3598 /* Ensure minimum (required) set of control bits are supported. */
3599 if (ctl_min & ~ctl)
002c7f7c 3600 return -EIO;
1c3d14fe
YS
3601
3602 *result = ctl;
3603 return 0;
3604}
3605
110312c8
AK
3606static __init bool allow_1_setting(u32 msr, u32 ctl)
3607{
3608 u32 vmx_msr_low, vmx_msr_high;
3609
3610 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3611 return vmx_msr_high & ctl;
3612}
3613
002c7f7c 3614static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3615{
3616 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3617 u32 min, opt, min2, opt2;
1c3d14fe
YS
3618 u32 _pin_based_exec_control = 0;
3619 u32 _cpu_based_exec_control = 0;
f78e0e2e 3620 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3621 u32 _vmexit_control = 0;
3622 u32 _vmentry_control = 0;
3623
10166744 3624 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3625#ifdef CONFIG_X86_64
3626 CPU_BASED_CR8_LOAD_EXITING |
3627 CPU_BASED_CR8_STORE_EXITING |
3628#endif
d56f546d
SY
3629 CPU_BASED_CR3_LOAD_EXITING |
3630 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3631 CPU_BASED_USE_IO_BITMAPS |
3632 CPU_BASED_MOV_DR_EXITING |
a7052897 3633 CPU_BASED_USE_TSC_OFFSETING |
fee84b07
AK
3634 CPU_BASED_INVLPG_EXITING |
3635 CPU_BASED_RDPMC_EXITING;
443381a8 3636
668fffa3
MT
3637 if (!kvm_mwait_in_guest())
3638 min |= CPU_BASED_MWAIT_EXITING |
3639 CPU_BASED_MONITOR_EXITING;
3640
f78e0e2e 3641 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3642 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3643 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3644 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3645 &_cpu_based_exec_control) < 0)
002c7f7c 3646 return -EIO;
6e5d865c
YS
3647#ifdef CONFIG_X86_64
3648 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3649 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3650 ~CPU_BASED_CR8_STORE_EXITING;
3651#endif
f78e0e2e 3652 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3653 min2 = 0;
3654 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3655 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3656 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3657 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3658 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3659 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3660 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3661 SECONDARY_EXEC_RDTSCP |
83d4c286 3662 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3663 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3664 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3665 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3666 SECONDARY_EXEC_XSAVES |
8b3e34e4 3667 SECONDARY_EXEC_ENABLE_PML |
2a499e49
BD
3668 SECONDARY_EXEC_TSC_SCALING |
3669 SECONDARY_EXEC_ENABLE_VMFUNC;
d56f546d
SY
3670 if (adjust_vmx_controls(min2, opt2,
3671 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3672 &_cpu_based_2nd_exec_control) < 0)
3673 return -EIO;
3674 }
3675#ifndef CONFIG_X86_64
3676 if (!(_cpu_based_2nd_exec_control &
3677 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3678 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3679#endif
83d4c286
YZ
3680
3681 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3682 _cpu_based_2nd_exec_control &= ~(
8d14695f 3683 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3684 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3685 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3686
d56f546d 3687 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3688 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3689 enabled */
5fff7d27
GN
3690 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3691 CPU_BASED_CR3_STORE_EXITING |
3692 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3693 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3694 vmx_capability.ept, vmx_capability.vpid);
3695 }
1c3d14fe 3696
91fa0f8e 3697 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3698#ifdef CONFIG_X86_64
3699 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3700#endif
a547c6db 3701 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3702 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3703 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3704 &_vmexit_control) < 0)
002c7f7c 3705 return -EIO;
1c3d14fe 3706
2c82878b
PB
3707 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3708 PIN_BASED_VIRTUAL_NMIS;
3709 opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3710 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3711 &_pin_based_exec_control) < 0)
3712 return -EIO;
3713
1c17c3e6
PB
3714 if (cpu_has_broken_vmx_preemption_timer())
3715 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3716 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3717 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3718 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3719
c845f9c6 3720 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3721 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3722 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3723 &_vmentry_control) < 0)
002c7f7c 3724 return -EIO;
6aa8b732 3725
c68876fd 3726 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3727
3728 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3729 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3730 return -EIO;
1c3d14fe
YS
3731
3732#ifdef CONFIG_X86_64
3733 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3734 if (vmx_msr_high & (1u<<16))
002c7f7c 3735 return -EIO;
1c3d14fe
YS
3736#endif
3737
3738 /* Require Write-Back (WB) memory type for VMCS accesses. */
3739 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3740 return -EIO;
1c3d14fe 3741
002c7f7c 3742 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3743 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3744 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3745 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3746
002c7f7c
YS
3747 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3748 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3749 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3750 vmcs_conf->vmexit_ctrl = _vmexit_control;
3751 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3752
110312c8
AK
3753 cpu_has_load_ia32_efer =
3754 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3755 VM_ENTRY_LOAD_IA32_EFER)
3756 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3757 VM_EXIT_LOAD_IA32_EFER);
3758
8bf00a52
GN
3759 cpu_has_load_perf_global_ctrl =
3760 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3761 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3762 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3763 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3764
3765 /*
3766 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3767 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3768 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3769 *
3770 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3771 *
3772 * AAK155 (model 26)
3773 * AAP115 (model 30)
3774 * AAT100 (model 37)
3775 * BC86,AAY89,BD102 (model 44)
3776 * BA97 (model 46)
3777 *
3778 */
3779 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3780 switch (boot_cpu_data.x86_model) {
3781 case 26:
3782 case 30:
3783 case 37:
3784 case 44:
3785 case 46:
3786 cpu_has_load_perf_global_ctrl = false;
3787 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3788 "does not work properly. Using workaround\n");
3789 break;
3790 default:
3791 break;
3792 }
3793 }
3794
782511b0 3795 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3796 rdmsrl(MSR_IA32_XSS, host_xss);
3797
1c3d14fe 3798 return 0;
c68876fd 3799}
6aa8b732
AK
3800
3801static struct vmcs *alloc_vmcs_cpu(int cpu)
3802{
3803 int node = cpu_to_node(cpu);
3804 struct page *pages;
3805 struct vmcs *vmcs;
3806
96db800f 3807 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3808 if (!pages)
3809 return NULL;
3810 vmcs = page_address(pages);
1c3d14fe
YS
3811 memset(vmcs, 0, vmcs_config.size);
3812 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3813 return vmcs;
3814}
3815
3816static struct vmcs *alloc_vmcs(void)
3817{
d3b2c338 3818 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3819}
3820
3821static void free_vmcs(struct vmcs *vmcs)
3822{
1c3d14fe 3823 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3824}
3825
d462b819
NHE
3826/*
3827 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3828 */
3829static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3830{
3831 if (!loaded_vmcs->vmcs)
3832 return;
3833 loaded_vmcs_clear(loaded_vmcs);
3834 free_vmcs(loaded_vmcs->vmcs);
3835 loaded_vmcs->vmcs = NULL;
355f4fb1 3836 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
3837}
3838
39959588 3839static void free_kvm_area(void)
6aa8b732
AK
3840{
3841 int cpu;
3842
3230bb47 3843 for_each_possible_cpu(cpu) {
6aa8b732 3844 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3845 per_cpu(vmxarea, cpu) = NULL;
3846 }
6aa8b732
AK
3847}
3848
85fd514e
JM
3849enum vmcs_field_type {
3850 VMCS_FIELD_TYPE_U16 = 0,
3851 VMCS_FIELD_TYPE_U64 = 1,
3852 VMCS_FIELD_TYPE_U32 = 2,
3853 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3854};
3855
3856static inline int vmcs_field_type(unsigned long field)
3857{
3858 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
3859 return VMCS_FIELD_TYPE_U32;
3860 return (field >> 13) & 0x3 ;
3861}
3862
3863static inline int vmcs_field_readonly(unsigned long field)
3864{
3865 return (((field >> 10) & 0x3) == 1);
3866}
3867
fe2b201b
BD
3868static void init_vmcs_shadow_fields(void)
3869{
3870 int i, j;
3871
3872 /* No checks for read only fields yet */
3873
3874 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3875 switch (shadow_read_write_fields[i]) {
3876 case GUEST_BNDCFGS:
a87036ad 3877 if (!kvm_mpx_supported())
fe2b201b
BD
3878 continue;
3879 break;
3880 default:
3881 break;
3882 }
3883
3884 if (j < i)
3885 shadow_read_write_fields[j] =
3886 shadow_read_write_fields[i];
3887 j++;
3888 }
3889 max_shadow_read_write_fields = j;
3890
3891 /* shadowed fields guest access without vmexit */
3892 for (i = 0; i < max_shadow_read_write_fields; i++) {
85fd514e
JM
3893 unsigned long field = shadow_read_write_fields[i];
3894
3895 clear_bit(field, vmx_vmwrite_bitmap);
3896 clear_bit(field, vmx_vmread_bitmap);
3897 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3898 clear_bit(field + 1, vmx_vmwrite_bitmap);
3899 clear_bit(field + 1, vmx_vmread_bitmap);
3900 }
3901 }
3902 for (i = 0; i < max_shadow_read_only_fields; i++) {
3903 unsigned long field = shadow_read_only_fields[i];
3904
3905 clear_bit(field, vmx_vmread_bitmap);
3906 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3907 clear_bit(field + 1, vmx_vmread_bitmap);
fe2b201b 3908 }
fe2b201b
BD
3909}
3910
6aa8b732
AK
3911static __init int alloc_kvm_area(void)
3912{
3913 int cpu;
3914
3230bb47 3915 for_each_possible_cpu(cpu) {
6aa8b732
AK
3916 struct vmcs *vmcs;
3917
3918 vmcs = alloc_vmcs_cpu(cpu);
3919 if (!vmcs) {
3920 free_kvm_area();
3921 return -ENOMEM;
3922 }
3923
3924 per_cpu(vmxarea, cpu) = vmcs;
3925 }
3926 return 0;
3927}
3928
91b0aa2c 3929static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3930 struct kvm_segment *save)
6aa8b732 3931{
d99e4152
GN
3932 if (!emulate_invalid_guest_state) {
3933 /*
3934 * CS and SS RPL should be equal during guest entry according
3935 * to VMX spec, but in reality it is not always so. Since vcpu
3936 * is in the middle of the transition from real mode to
3937 * protected mode it is safe to assume that RPL 0 is a good
3938 * default value.
3939 */
3940 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3941 save->selector &= ~SEGMENT_RPL_MASK;
3942 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3943 save->s = 1;
6aa8b732 3944 }
d99e4152 3945 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3946}
3947
3948static void enter_pmode(struct kvm_vcpu *vcpu)
3949{
3950 unsigned long flags;
a89a8fb9 3951 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3952
d99e4152
GN
3953 /*
3954 * Update real mode segment cache. It may be not up-to-date if sement
3955 * register was written while vcpu was in a guest mode.
3956 */
3957 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3958 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3959 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3960 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3961 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3962 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3963
7ffd92c5 3964 vmx->rmode.vm86_active = 0;
6aa8b732 3965
2fb92db1
AK
3966 vmx_segment_cache_clear(vmx);
3967
f5f7b2fe 3968 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3969
3970 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3971 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3972 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3973 vmcs_writel(GUEST_RFLAGS, flags);
3974
66aee91a
RR
3975 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3976 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3977
3978 update_exception_bitmap(vcpu);
3979
91b0aa2c
GN
3980 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3981 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3982 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3983 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3984 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3985 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3986}
3987
f5f7b2fe 3988static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3989{
772e0318 3990 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3991 struct kvm_segment var = *save;
3992
3993 var.dpl = 0x3;
3994 if (seg == VCPU_SREG_CS)
3995 var.type = 0x3;
3996
3997 if (!emulate_invalid_guest_state) {
3998 var.selector = var.base >> 4;
3999 var.base = var.base & 0xffff0;
4000 var.limit = 0xffff;
4001 var.g = 0;
4002 var.db = 0;
4003 var.present = 1;
4004 var.s = 1;
4005 var.l = 0;
4006 var.unusable = 0;
4007 var.type = 0x3;
4008 var.avl = 0;
4009 if (save->base & 0xf)
4010 printk_once(KERN_WARNING "kvm: segment base is not "
4011 "paragraph aligned when entering "
4012 "protected mode (seg=%d)", seg);
4013 }
6aa8b732 4014
d99e4152 4015 vmcs_write16(sf->selector, var.selector);
96794e4e 4016 vmcs_writel(sf->base, var.base);
d99e4152
GN
4017 vmcs_write32(sf->limit, var.limit);
4018 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
4019}
4020
4021static void enter_rmode(struct kvm_vcpu *vcpu)
4022{
4023 unsigned long flags;
a89a8fb9 4024 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 4025
f5f7b2fe
AK
4026 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4027 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4028 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4029 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4030 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
4031 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4032 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 4033
7ffd92c5 4034 vmx->rmode.vm86_active = 1;
6aa8b732 4035
776e58ea
GN
4036 /*
4037 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 4038 * vcpu. Warn the user that an update is overdue.
776e58ea 4039 */
4918c6ca 4040 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
4041 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4042 "called before entering vcpu\n");
776e58ea 4043
2fb92db1
AK
4044 vmx_segment_cache_clear(vmx);
4045
4918c6ca 4046 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 4047 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
4048 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4049
4050 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 4051 vmx->rmode.save_rflags = flags;
6aa8b732 4052
053de044 4053 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
4054
4055 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 4056 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
4057 update_exception_bitmap(vcpu);
4058
d99e4152
GN
4059 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4060 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4061 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4062 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4063 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4064 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 4065
8668a3c4 4066 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
4067}
4068
401d10de
AS
4069static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4070{
4071 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
4072 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4073
4074 if (!msr)
4075 return;
401d10de 4076
44ea2b17
AK
4077 /*
4078 * Force kernel_gs_base reloading before EFER changes, as control
4079 * of this msr depends on is_long_mode().
4080 */
4081 vmx_load_host_state(to_vmx(vcpu));
f6801dff 4082 vcpu->arch.efer = efer;
401d10de 4083 if (efer & EFER_LMA) {
2961e876 4084 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4085 msr->data = efer;
4086 } else {
2961e876 4087 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4088
4089 msr->data = efer & ~EFER_LME;
4090 }
4091 setup_msrs(vmx);
4092}
4093
05b3e0c2 4094#ifdef CONFIG_X86_64
6aa8b732
AK
4095
4096static void enter_lmode(struct kvm_vcpu *vcpu)
4097{
4098 u32 guest_tr_ar;
4099
2fb92db1
AK
4100 vmx_segment_cache_clear(to_vmx(vcpu));
4101
6aa8b732 4102 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 4103 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
4104 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4105 __func__);
6aa8b732 4106 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
4107 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4108 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4109 }
da38f438 4110 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4111}
4112
4113static void exit_lmode(struct kvm_vcpu *vcpu)
4114{
2961e876 4115 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4116 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4117}
4118
4119#endif
4120
dd5f5341 4121static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 4122{
dd180b3e
XG
4123 if (enable_ept) {
4124 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4125 return;
995f00a6 4126 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
f0b98c02
JM
4127 } else {
4128 vpid_sync_context(vpid);
dd180b3e 4129 }
2384d2b3
SY
4130}
4131
dd5f5341
WL
4132static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4133{
4134 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4135}
4136
fb6c8198
JM
4137static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4138{
4139 if (enable_ept)
4140 vmx_flush_tlb(vcpu);
4141}
4142
e8467fda
AK
4143static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4144{
4145 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4146
4147 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4148 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4149}
4150
aff48baa
AK
4151static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4152{
4153 if (enable_ept && is_paging(vcpu))
4154 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4155 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4156}
4157
25c4c276 4158static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4159{
fc78f519
AK
4160 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4161
4162 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4163 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4164}
4165
1439442c
SY
4166static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4167{
d0d538b9
GN
4168 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4169
6de4f3ad
AK
4170 if (!test_bit(VCPU_EXREG_PDPTR,
4171 (unsigned long *)&vcpu->arch.regs_dirty))
4172 return;
4173
1439442c 4174 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4175 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4176 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4177 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4178 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4179 }
4180}
4181
8f5d549f
AK
4182static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4183{
d0d538b9
GN
4184 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4185
8f5d549f 4186 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4187 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4188 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4189 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4190 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4191 }
6de4f3ad
AK
4192
4193 __set_bit(VCPU_EXREG_PDPTR,
4194 (unsigned long *)&vcpu->arch.regs_avail);
4195 __set_bit(VCPU_EXREG_PDPTR,
4196 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4197}
4198
3899152c
DM
4199static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4200{
4201 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4202 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4203 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4204
4205 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4206 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4207 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4208 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4209
4210 return fixed_bits_valid(val, fixed0, fixed1);
4211}
4212
4213static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4214{
4215 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4216 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4217
4218 return fixed_bits_valid(val, fixed0, fixed1);
4219}
4220
4221static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4222{
4223 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4224 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4225
4226 return fixed_bits_valid(val, fixed0, fixed1);
4227}
4228
4229/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4230#define nested_guest_cr4_valid nested_cr4_valid
4231#define nested_host_cr4_valid nested_cr4_valid
4232
5e1746d6 4233static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4234
4235static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4236 unsigned long cr0,
4237 struct kvm_vcpu *vcpu)
4238{
5233dd51
MT
4239 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4240 vmx_decache_cr3(vcpu);
1439442c
SY
4241 if (!(cr0 & X86_CR0_PG)) {
4242 /* From paging/starting to nonpaging */
4243 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4244 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4245 (CPU_BASED_CR3_LOAD_EXITING |
4246 CPU_BASED_CR3_STORE_EXITING));
4247 vcpu->arch.cr0 = cr0;
fc78f519 4248 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4249 } else if (!is_paging(vcpu)) {
4250 /* From nonpaging to paging */
4251 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4252 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4253 ~(CPU_BASED_CR3_LOAD_EXITING |
4254 CPU_BASED_CR3_STORE_EXITING));
4255 vcpu->arch.cr0 = cr0;
fc78f519 4256 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4257 }
95eb84a7
SY
4258
4259 if (!(cr0 & X86_CR0_WP))
4260 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4261}
4262
6aa8b732
AK
4263static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4264{
7ffd92c5 4265 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4266 unsigned long hw_cr0;
4267
5037878e 4268 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4269 if (enable_unrestricted_guest)
5037878e 4270 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4271 else {
5037878e 4272 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4273
218e763f
GN
4274 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4275 enter_pmode(vcpu);
6aa8b732 4276
218e763f
GN
4277 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4278 enter_rmode(vcpu);
4279 }
6aa8b732 4280
05b3e0c2 4281#ifdef CONFIG_X86_64
f6801dff 4282 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4283 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4284 enter_lmode(vcpu);
707d92fa 4285 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4286 exit_lmode(vcpu);
4287 }
4288#endif
4289
089d034e 4290 if (enable_ept)
1439442c
SY
4291 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4292
6aa8b732 4293 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4294 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4295 vcpu->arch.cr0 = cr0;
14168786
GN
4296
4297 /* depends on vcpu->arch.cr0 to be set to a new value */
4298 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4299}
4300
995f00a6 4301static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
1439442c
SY
4302{
4303 u64 eptp;
4304
4305 /* TODO write the value reading from MSR */
4306 eptp = VMX_EPT_DEFAULT_MT |
4307 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
995f00a6
PF
4308 if (enable_ept_ad_bits &&
4309 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
b38f9934 4310 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
4311 eptp |= (root_hpa & PAGE_MASK);
4312
4313 return eptp;
4314}
4315
6aa8b732
AK
4316static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4317{
1439442c
SY
4318 unsigned long guest_cr3;
4319 u64 eptp;
4320
4321 guest_cr3 = cr3;
089d034e 4322 if (enable_ept) {
995f00a6 4323 eptp = construct_eptp(vcpu, cr3);
1439442c 4324 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
4325 if (is_paging(vcpu) || is_guest_mode(vcpu))
4326 guest_cr3 = kvm_read_cr3(vcpu);
4327 else
4328 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 4329 ept_load_pdptrs(vcpu);
1439442c
SY
4330 }
4331
2384d2b3 4332 vmx_flush_tlb(vcpu);
1439442c 4333 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4334}
4335
5e1746d6 4336static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4337{
085e68ee
BS
4338 /*
4339 * Pass through host's Machine Check Enable value to hw_cr4, which
4340 * is in force while we are in guest mode. Do not let guests control
4341 * this bit, even if host CR4.MCE == 0.
4342 */
4343 unsigned long hw_cr4 =
4344 (cr4_read_shadow() & X86_CR4_MCE) |
4345 (cr4 & ~X86_CR4_MCE) |
4346 (to_vmx(vcpu)->rmode.vm86_active ?
4347 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4348
5e1746d6
NHE
4349 if (cr4 & X86_CR4_VMXE) {
4350 /*
4351 * To use VMXON (and later other VMX instructions), a guest
4352 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4353 * So basically the check on whether to allow nested VMX
4354 * is here.
4355 */
4356 if (!nested_vmx_allowed(vcpu))
4357 return 1;
1a0d74e6 4358 }
3899152c
DM
4359
4360 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4361 return 1;
4362
ad312c7c 4363 vcpu->arch.cr4 = cr4;
bc23008b
AK
4364 if (enable_ept) {
4365 if (!is_paging(vcpu)) {
4366 hw_cr4 &= ~X86_CR4_PAE;
4367 hw_cr4 |= X86_CR4_PSE;
4368 } else if (!(cr4 & X86_CR4_PAE)) {
4369 hw_cr4 &= ~X86_CR4_PAE;
4370 }
4371 }
1439442c 4372
656ec4a4
RK
4373 if (!enable_unrestricted_guest && !is_paging(vcpu))
4374 /*
ddba2628
HH
4375 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4376 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4377 * to be manually disabled when guest switches to non-paging
4378 * mode.
4379 *
4380 * If !enable_unrestricted_guest, the CPU is always running
4381 * with CR0.PG=1 and CR4 needs to be modified.
4382 * If enable_unrestricted_guest, the CPU automatically
4383 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4384 */
ddba2628 4385 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4386
1439442c
SY
4387 vmcs_writel(CR4_READ_SHADOW, cr4);
4388 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4389 return 0;
6aa8b732
AK
4390}
4391
6aa8b732
AK
4392static void vmx_get_segment(struct kvm_vcpu *vcpu,
4393 struct kvm_segment *var, int seg)
4394{
a9179499 4395 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4396 u32 ar;
4397
c6ad1153 4398 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4399 *var = vmx->rmode.segs[seg];
a9179499 4400 if (seg == VCPU_SREG_TR
2fb92db1 4401 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4402 return;
1390a28b
AK
4403 var->base = vmx_read_guest_seg_base(vmx, seg);
4404 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4405 return;
a9179499 4406 }
2fb92db1
AK
4407 var->base = vmx_read_guest_seg_base(vmx, seg);
4408 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4409 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4410 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4411 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4412 var->type = ar & 15;
4413 var->s = (ar >> 4) & 1;
4414 var->dpl = (ar >> 5) & 3;
03617c18
GN
4415 /*
4416 * Some userspaces do not preserve unusable property. Since usable
4417 * segment has to be present according to VMX spec we can use present
4418 * property to amend userspace bug by making unusable segment always
4419 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4420 * segment as unusable.
4421 */
4422 var->present = !var->unusable;
6aa8b732
AK
4423 var->avl = (ar >> 12) & 1;
4424 var->l = (ar >> 13) & 1;
4425 var->db = (ar >> 14) & 1;
4426 var->g = (ar >> 15) & 1;
6aa8b732
AK
4427}
4428
a9179499
AK
4429static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4430{
a9179499
AK
4431 struct kvm_segment s;
4432
4433 if (to_vmx(vcpu)->rmode.vm86_active) {
4434 vmx_get_segment(vcpu, &s, seg);
4435 return s.base;
4436 }
2fb92db1 4437 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4438}
4439
b09408d0 4440static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4441{
b09408d0
MT
4442 struct vcpu_vmx *vmx = to_vmx(vcpu);
4443
ae9fedc7 4444 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4445 return 0;
ae9fedc7
PB
4446 else {
4447 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4448 return VMX_AR_DPL(ar);
69c73028 4449 }
69c73028
AK
4450}
4451
653e3108 4452static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4453{
6aa8b732
AK
4454 u32 ar;
4455
f0495f9b 4456 if (var->unusable || !var->present)
6aa8b732
AK
4457 ar = 1 << 16;
4458 else {
4459 ar = var->type & 15;
4460 ar |= (var->s & 1) << 4;
4461 ar |= (var->dpl & 3) << 5;
4462 ar |= (var->present & 1) << 7;
4463 ar |= (var->avl & 1) << 12;
4464 ar |= (var->l & 1) << 13;
4465 ar |= (var->db & 1) << 14;
4466 ar |= (var->g & 1) << 15;
4467 }
653e3108
AK
4468
4469 return ar;
4470}
4471
4472static void vmx_set_segment(struct kvm_vcpu *vcpu,
4473 struct kvm_segment *var, int seg)
4474{
7ffd92c5 4475 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4476 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4477
2fb92db1
AK
4478 vmx_segment_cache_clear(vmx);
4479
1ecd50a9
GN
4480 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4481 vmx->rmode.segs[seg] = *var;
4482 if (seg == VCPU_SREG_TR)
4483 vmcs_write16(sf->selector, var->selector);
4484 else if (var->s)
4485 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4486 goto out;
653e3108 4487 }
1ecd50a9 4488
653e3108
AK
4489 vmcs_writel(sf->base, var->base);
4490 vmcs_write32(sf->limit, var->limit);
4491 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4492
4493 /*
4494 * Fix the "Accessed" bit in AR field of segment registers for older
4495 * qemu binaries.
4496 * IA32 arch specifies that at the time of processor reset the
4497 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4498 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4499 * state vmexit when "unrestricted guest" mode is turned on.
4500 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4501 * tree. Newer qemu binaries with that qemu fix would not need this
4502 * kvm hack.
4503 */
4504 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4505 var->type |= 0x1; /* Accessed */
3a624e29 4506
f924d66d 4507 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4508
4509out:
98eb2f8b 4510 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4511}
4512
6aa8b732
AK
4513static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4514{
2fb92db1 4515 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4516
4517 *db = (ar >> 14) & 1;
4518 *l = (ar >> 13) & 1;
4519}
4520
89a27f4d 4521static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4522{
89a27f4d
GN
4523 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4524 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4525}
4526
89a27f4d 4527static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4528{
89a27f4d
GN
4529 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4530 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4531}
4532
89a27f4d 4533static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4534{
89a27f4d
GN
4535 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4536 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4537}
4538
89a27f4d 4539static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4540{
89a27f4d
GN
4541 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4542 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4543}
4544
648dfaa7
MG
4545static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4546{
4547 struct kvm_segment var;
4548 u32 ar;
4549
4550 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4551 var.dpl = 0x3;
0647f4aa
GN
4552 if (seg == VCPU_SREG_CS)
4553 var.type = 0x3;
648dfaa7
MG
4554 ar = vmx_segment_access_rights(&var);
4555
4556 if (var.base != (var.selector << 4))
4557 return false;
89efbed0 4558 if (var.limit != 0xffff)
648dfaa7 4559 return false;
07f42f5f 4560 if (ar != 0xf3)
648dfaa7
MG
4561 return false;
4562
4563 return true;
4564}
4565
4566static bool code_segment_valid(struct kvm_vcpu *vcpu)
4567{
4568 struct kvm_segment cs;
4569 unsigned int cs_rpl;
4570
4571 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4572 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4573
1872a3f4
AK
4574 if (cs.unusable)
4575 return false;
4d283ec9 4576 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4577 return false;
4578 if (!cs.s)
4579 return false;
4d283ec9 4580 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4581 if (cs.dpl > cs_rpl)
4582 return false;
1872a3f4 4583 } else {
648dfaa7
MG
4584 if (cs.dpl != cs_rpl)
4585 return false;
4586 }
4587 if (!cs.present)
4588 return false;
4589
4590 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4591 return true;
4592}
4593
4594static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4595{
4596 struct kvm_segment ss;
4597 unsigned int ss_rpl;
4598
4599 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4600 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4601
1872a3f4
AK
4602 if (ss.unusable)
4603 return true;
4604 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4605 return false;
4606 if (!ss.s)
4607 return false;
4608 if (ss.dpl != ss_rpl) /* DPL != RPL */
4609 return false;
4610 if (!ss.present)
4611 return false;
4612
4613 return true;
4614}
4615
4616static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4617{
4618 struct kvm_segment var;
4619 unsigned int rpl;
4620
4621 vmx_get_segment(vcpu, &var, seg);
b32a9918 4622 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4623
1872a3f4
AK
4624 if (var.unusable)
4625 return true;
648dfaa7
MG
4626 if (!var.s)
4627 return false;
4628 if (!var.present)
4629 return false;
4d283ec9 4630 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4631 if (var.dpl < rpl) /* DPL < RPL */
4632 return false;
4633 }
4634
4635 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4636 * rights flags
4637 */
4638 return true;
4639}
4640
4641static bool tr_valid(struct kvm_vcpu *vcpu)
4642{
4643 struct kvm_segment tr;
4644
4645 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4646
1872a3f4
AK
4647 if (tr.unusable)
4648 return false;
b32a9918 4649 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4650 return false;
1872a3f4 4651 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4652 return false;
4653 if (!tr.present)
4654 return false;
4655
4656 return true;
4657}
4658
4659static bool ldtr_valid(struct kvm_vcpu *vcpu)
4660{
4661 struct kvm_segment ldtr;
4662
4663 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4664
1872a3f4
AK
4665 if (ldtr.unusable)
4666 return true;
b32a9918 4667 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4668 return false;
4669 if (ldtr.type != 2)
4670 return false;
4671 if (!ldtr.present)
4672 return false;
4673
4674 return true;
4675}
4676
4677static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4678{
4679 struct kvm_segment cs, ss;
4680
4681 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4682 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4683
b32a9918
NA
4684 return ((cs.selector & SEGMENT_RPL_MASK) ==
4685 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4686}
4687
4688/*
4689 * Check if guest state is valid. Returns true if valid, false if
4690 * not.
4691 * We assume that registers are always usable
4692 */
4693static bool guest_state_valid(struct kvm_vcpu *vcpu)
4694{
c5e97c80
GN
4695 if (enable_unrestricted_guest)
4696 return true;
4697
648dfaa7 4698 /* real mode guest state checks */
f13882d8 4699 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4700 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4701 return false;
4702 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4703 return false;
4704 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4705 return false;
4706 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4707 return false;
4708 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4709 return false;
4710 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4711 return false;
4712 } else {
4713 /* protected mode guest state checks */
4714 if (!cs_ss_rpl_check(vcpu))
4715 return false;
4716 if (!code_segment_valid(vcpu))
4717 return false;
4718 if (!stack_segment_valid(vcpu))
4719 return false;
4720 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4721 return false;
4722 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4723 return false;
4724 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4725 return false;
4726 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4727 return false;
4728 if (!tr_valid(vcpu))
4729 return false;
4730 if (!ldtr_valid(vcpu))
4731 return false;
4732 }
4733 /* TODO:
4734 * - Add checks on RIP
4735 * - Add checks on RFLAGS
4736 */
4737
4738 return true;
4739}
4740
5fa99cbe
JM
4741static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4742{
4743 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4744}
4745
d77c26fc 4746static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4747{
40dcaa9f 4748 gfn_t fn;
195aefde 4749 u16 data = 0;
1f755a82 4750 int idx, r;
6aa8b732 4751
40dcaa9f 4752 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4753 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4754 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4755 if (r < 0)
10589a46 4756 goto out;
195aefde 4757 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4758 r = kvm_write_guest_page(kvm, fn++, &data,
4759 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4760 if (r < 0)
10589a46 4761 goto out;
195aefde
IE
4762 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4763 if (r < 0)
10589a46 4764 goto out;
195aefde
IE
4765 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4766 if (r < 0)
10589a46 4767 goto out;
195aefde 4768 data = ~0;
10589a46
MT
4769 r = kvm_write_guest_page(kvm, fn, &data,
4770 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4771 sizeof(u8));
10589a46 4772out:
40dcaa9f 4773 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4774 return r;
6aa8b732
AK
4775}
4776
b7ebfb05
SY
4777static int init_rmode_identity_map(struct kvm *kvm)
4778{
f51770ed 4779 int i, idx, r = 0;
ba049e93 4780 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4781 u32 tmp;
4782
089d034e 4783 if (!enable_ept)
f51770ed 4784 return 0;
a255d479
TC
4785
4786 /* Protect kvm->arch.ept_identity_pagetable_done. */
4787 mutex_lock(&kvm->slots_lock);
4788
f51770ed 4789 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4790 goto out2;
a255d479 4791
b927a3ce 4792 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4793
4794 r = alloc_identity_pagetable(kvm);
f51770ed 4795 if (r < 0)
a255d479
TC
4796 goto out2;
4797
40dcaa9f 4798 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4799 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4800 if (r < 0)
4801 goto out;
4802 /* Set up identity-mapping pagetable for EPT in real mode */
4803 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4804 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4805 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4806 r = kvm_write_guest_page(kvm, identity_map_pfn,
4807 &tmp, i * sizeof(tmp), sizeof(tmp));
4808 if (r < 0)
4809 goto out;
4810 }
4811 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4812
b7ebfb05 4813out:
40dcaa9f 4814 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4815
4816out2:
4817 mutex_unlock(&kvm->slots_lock);
f51770ed 4818 return r;
b7ebfb05
SY
4819}
4820
6aa8b732
AK
4821static void seg_setup(int seg)
4822{
772e0318 4823 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4824 unsigned int ar;
6aa8b732
AK
4825
4826 vmcs_write16(sf->selector, 0);
4827 vmcs_writel(sf->base, 0);
4828 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4829 ar = 0x93;
4830 if (seg == VCPU_SREG_CS)
4831 ar |= 0x08; /* code segment */
3a624e29
NK
4832
4833 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4834}
4835
f78e0e2e
SY
4836static int alloc_apic_access_page(struct kvm *kvm)
4837{
4484141a 4838 struct page *page;
f78e0e2e
SY
4839 int r = 0;
4840
79fac95e 4841 mutex_lock(&kvm->slots_lock);
c24ae0dc 4842 if (kvm->arch.apic_access_page_done)
f78e0e2e 4843 goto out;
1d8007bd
PB
4844 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4845 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4846 if (r)
4847 goto out;
72dc67a6 4848
73a6d941 4849 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4850 if (is_error_page(page)) {
4851 r = -EFAULT;
4852 goto out;
4853 }
4854
c24ae0dc
TC
4855 /*
4856 * Do not pin the page in memory, so that memory hot-unplug
4857 * is able to migrate it.
4858 */
4859 put_page(page);
4860 kvm->arch.apic_access_page_done = true;
f78e0e2e 4861out:
79fac95e 4862 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4863 return r;
4864}
4865
b7ebfb05
SY
4866static int alloc_identity_pagetable(struct kvm *kvm)
4867{
a255d479
TC
4868 /* Called with kvm->slots_lock held. */
4869
b7ebfb05
SY
4870 int r = 0;
4871
a255d479
TC
4872 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4873
1d8007bd
PB
4874 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4875 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4876
b7ebfb05
SY
4877 return r;
4878}
4879
991e7a0e 4880static int allocate_vpid(void)
2384d2b3
SY
4881{
4882 int vpid;
4883
919818ab 4884 if (!enable_vpid)
991e7a0e 4885 return 0;
2384d2b3
SY
4886 spin_lock(&vmx_vpid_lock);
4887 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4888 if (vpid < VMX_NR_VPIDS)
2384d2b3 4889 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4890 else
4891 vpid = 0;
2384d2b3 4892 spin_unlock(&vmx_vpid_lock);
991e7a0e 4893 return vpid;
2384d2b3
SY
4894}
4895
991e7a0e 4896static void free_vpid(int vpid)
cdbecfc3 4897{
991e7a0e 4898 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4899 return;
4900 spin_lock(&vmx_vpid_lock);
991e7a0e 4901 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4902 spin_unlock(&vmx_vpid_lock);
4903}
4904
8d14695f
YZ
4905#define MSR_TYPE_R 1
4906#define MSR_TYPE_W 2
4907static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4908 u32 msr, int type)
25c5f225 4909{
3e7c73e9 4910 int f = sizeof(unsigned long);
25c5f225
SY
4911
4912 if (!cpu_has_vmx_msr_bitmap())
4913 return;
4914
4915 /*
4916 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4917 * have the write-low and read-high bitmap offsets the wrong way round.
4918 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4919 */
25c5f225 4920 if (msr <= 0x1fff) {
8d14695f
YZ
4921 if (type & MSR_TYPE_R)
4922 /* read-low */
4923 __clear_bit(msr, msr_bitmap + 0x000 / f);
4924
4925 if (type & MSR_TYPE_W)
4926 /* write-low */
4927 __clear_bit(msr, msr_bitmap + 0x800 / f);
4928
25c5f225
SY
4929 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4930 msr &= 0x1fff;
8d14695f
YZ
4931 if (type & MSR_TYPE_R)
4932 /* read-high */
4933 __clear_bit(msr, msr_bitmap + 0x400 / f);
4934
4935 if (type & MSR_TYPE_W)
4936 /* write-high */
4937 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4938
4939 }
4940}
4941
f2b93280
WV
4942/*
4943 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4944 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4945 */
4946static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4947 unsigned long *msr_bitmap_nested,
4948 u32 msr, int type)
4949{
4950 int f = sizeof(unsigned long);
4951
4952 if (!cpu_has_vmx_msr_bitmap()) {
4953 WARN_ON(1);
4954 return;
4955 }
4956
4957 /*
4958 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4959 * have the write-low and read-high bitmap offsets the wrong way round.
4960 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4961 */
4962 if (msr <= 0x1fff) {
4963 if (type & MSR_TYPE_R &&
4964 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4965 /* read-low */
4966 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4967
4968 if (type & MSR_TYPE_W &&
4969 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4970 /* write-low */
4971 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4972
4973 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4974 msr &= 0x1fff;
4975 if (type & MSR_TYPE_R &&
4976 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4977 /* read-high */
4978 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4979
4980 if (type & MSR_TYPE_W &&
4981 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4982 /* write-high */
4983 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4984
4985 }
4986}
4987
5897297b
AK
4988static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4989{
4990 if (!longmode_only)
8d14695f
YZ
4991 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4992 msr, MSR_TYPE_R | MSR_TYPE_W);
4993 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4994 msr, MSR_TYPE_R | MSR_TYPE_W);
4995}
4996
2e69f865 4997static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
8d14695f 4998{
f6e90f9e 4999 if (apicv_active) {
c63e4563 5000 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
2e69f865 5001 msr, type);
c63e4563 5002 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
2e69f865 5003 msr, type);
f6e90f9e 5004 } else {
f6e90f9e 5005 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
2e69f865 5006 msr, type);
f6e90f9e 5007 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
2e69f865 5008 msr, type);
f6e90f9e 5009 }
5897297b
AK
5010}
5011
d62caabb 5012static bool vmx_get_enable_apicv(void)
d50ab6c1 5013{
d62caabb 5014 return enable_apicv;
d50ab6c1
PB
5015}
5016
c9f04407
DM
5017static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5018{
5019 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5020 gfn_t gfn;
5021
5022 /*
5023 * Don't need to mark the APIC access page dirty; it is never
5024 * written to by the CPU during APIC virtualization.
5025 */
5026
5027 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5028 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5029 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5030 }
5031
5032 if (nested_cpu_has_posted_intr(vmcs12)) {
5033 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5034 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5035 }
5036}
5037
5038
6342c50a 5039static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
5040{
5041 struct vcpu_vmx *vmx = to_vmx(vcpu);
5042 int max_irr;
5043 void *vapic_page;
5044 u16 status;
5045
c9f04407
DM
5046 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5047 return;
705699a1 5048
c9f04407
DM
5049 vmx->nested.pi_pending = false;
5050 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5051 return;
705699a1 5052
c9f04407
DM
5053 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5054 if (max_irr != 256) {
705699a1 5055 vapic_page = kmap(vmx->nested.virtual_apic_page);
705699a1
WV
5056 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5057 kunmap(vmx->nested.virtual_apic_page);
5058
5059 status = vmcs_read16(GUEST_INTR_STATUS);
5060 if ((u8)max_irr > ((u8)status & 0xff)) {
5061 status &= ~0xff;
5062 status |= (u8)max_irr;
5063 vmcs_write16(GUEST_INTR_STATUS, status);
5064 }
5065 }
c9f04407
DM
5066
5067 nested_mark_vmcs12_pages_dirty(vcpu);
705699a1
WV
5068}
5069
06a5524f
WV
5070static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5071 bool nested)
21bc8dc5
RK
5072{
5073#ifdef CONFIG_SMP
06a5524f
WV
5074 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5075
21bc8dc5 5076 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6
FW
5077 struct vcpu_vmx *vmx = to_vmx(vcpu);
5078
5079 /*
5080 * Currently, we don't support urgent interrupt,
5081 * all interrupts are recognized as non-urgent
5082 * interrupt, so we cannot post interrupts when
5083 * 'SN' is set.
5084 *
5085 * If the vcpu is in guest mode, it means it is
5086 * running instead of being scheduled out and
5087 * waiting in the run queue, and that's the only
5088 * case when 'SN' is set currently, warning if
5089 * 'SN' is set.
5090 */
5091 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
5092
06a5524f 5093 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
21bc8dc5
RK
5094 return true;
5095 }
5096#endif
5097 return false;
5098}
5099
705699a1
WV
5100static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5101 int vector)
5102{
5103 struct vcpu_vmx *vmx = to_vmx(vcpu);
5104
5105 if (is_guest_mode(vcpu) &&
5106 vector == vmx->nested.posted_intr_nv) {
5107 /* the PIR and ON have been set by L1. */
06a5524f 5108 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
705699a1
WV
5109 /*
5110 * If a posted intr is not recognized by hardware,
5111 * we will accomplish it in the next vmentry.
5112 */
5113 vmx->nested.pi_pending = true;
5114 kvm_make_request(KVM_REQ_EVENT, vcpu);
5115 return 0;
5116 }
5117 return -1;
5118}
a20ed54d
YZ
5119/*
5120 * Send interrupt to vcpu via posted interrupt way.
5121 * 1. If target vcpu is running(non-root mode), send posted interrupt
5122 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5123 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5124 * interrupt from PIR in next vmentry.
5125 */
5126static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5127{
5128 struct vcpu_vmx *vmx = to_vmx(vcpu);
5129 int r;
5130
705699a1
WV
5131 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5132 if (!r)
5133 return;
5134
a20ed54d
YZ
5135 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5136 return;
5137
b95234c8
PB
5138 /* If a previous notification has sent the IPI, nothing to do. */
5139 if (pi_test_and_set_on(&vmx->pi_desc))
5140 return;
5141
06a5524f 5142 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
a20ed54d
YZ
5143 kvm_vcpu_kick(vcpu);
5144}
5145
a3a8ff8e
NHE
5146/*
5147 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5148 * will not change in the lifetime of the guest.
5149 * Note that host-state that does change is set elsewhere. E.g., host-state
5150 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5151 */
a547c6db 5152static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5153{
5154 u32 low32, high32;
5155 unsigned long tmpl;
5156 struct desc_ptr dt;
d6e41f11 5157 unsigned long cr0, cr3, cr4;
a3a8ff8e 5158
04ac88ab
AL
5159 cr0 = read_cr0();
5160 WARN_ON(cr0 & X86_CR0_TS);
5161 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
d6e41f11
AL
5162
5163 /*
5164 * Save the most likely value for this task's CR3 in the VMCS.
5165 * We can't use __get_current_cr3_fast() because we're not atomic.
5166 */
6c690ee1 5167 cr3 = __read_cr3();
d6e41f11
AL
5168 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
5169 vmx->host_state.vmcs_host_cr3 = cr3;
a3a8ff8e 5170
d974baa3 5171 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5172 cr4 = cr4_read_shadow();
d974baa3
AL
5173 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5174 vmx->host_state.vmcs_host_cr4 = cr4;
5175
a3a8ff8e 5176 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5177#ifdef CONFIG_X86_64
5178 /*
5179 * Load null selectors, so we can avoid reloading them in
5180 * __vmx_load_host_state(), in case userspace uses the null selectors
5181 * too (the expected case).
5182 */
5183 vmcs_write16(HOST_DS_SELECTOR, 0);
5184 vmcs_write16(HOST_ES_SELECTOR, 0);
5185#else
a3a8ff8e
NHE
5186 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5187 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5188#endif
a3a8ff8e
NHE
5189 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5190 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5191
5192 native_store_idt(&dt);
5193 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5194 vmx->host_idt_base = dt.address;
a3a8ff8e 5195
83287ea4 5196 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5197
5198 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5199 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5200 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5201 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5202
5203 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5204 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5205 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5206 }
5207}
5208
bf8179a0
NHE
5209static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5210{
5211 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5212 if (enable_ept)
5213 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5214 if (is_guest_mode(&vmx->vcpu))
5215 vmx->vcpu.arch.cr4_guest_owned_bits &=
5216 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5217 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5218}
5219
01e439be
YZ
5220static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5221{
5222 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5223
d62caabb 5224 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5225 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
64672c95
YJ
5226 /* Enable the preemption timer dynamically */
5227 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5228 return pin_based_exec_ctrl;
5229}
5230
d62caabb
AS
5231static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5232{
5233 struct vcpu_vmx *vmx = to_vmx(vcpu);
5234
5235 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5236 if (cpu_has_secondary_exec_ctrls()) {
5237 if (kvm_vcpu_apicv_active(vcpu))
5238 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5239 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5240 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5241 else
5242 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5243 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5244 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5245 }
5246
5247 if (cpu_has_vmx_msr_bitmap())
5248 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
5249}
5250
bf8179a0
NHE
5251static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5252{
5253 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5254
5255 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5256 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5257
35754c98 5258 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5259 exec_control &= ~CPU_BASED_TPR_SHADOW;
5260#ifdef CONFIG_X86_64
5261 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5262 CPU_BASED_CR8_LOAD_EXITING;
5263#endif
5264 }
5265 if (!enable_ept)
5266 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5267 CPU_BASED_CR3_LOAD_EXITING |
5268 CPU_BASED_INVLPG_EXITING;
5269 return exec_control;
5270}
5271
5272static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5273{
5274 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
35754c98 5275 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
bf8179a0
NHE
5276 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5277 if (vmx->vpid == 0)
5278 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5279 if (!enable_ept) {
5280 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5281 enable_unrestricted_guest = 0;
ad756a16
MJ
5282 /* Enable INVPCID for non-ept guests may cause performance regression. */
5283 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5284 }
5285 if (!enable_unrestricted_guest)
5286 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5287 if (!ple_gap)
5288 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
d62caabb 5289 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
c7c9c56c
YZ
5290 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5291 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5292 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5293 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5294 (handle_vmptrld).
5295 We can NOT enable shadow_vmcs here because we don't have yet
5296 a current VMCS12
5297 */
5298 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5299
5300 if (!enable_pml)
5301 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5302
bf8179a0
NHE
5303 return exec_control;
5304}
5305
ce88decf
XG
5306static void ept_set_mmio_spte_mask(void)
5307{
5308 /*
5309 * EPT Misconfigurations can be generated if the value of bits 2:0
5310 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5311 */
dcdca5fe
PF
5312 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5313 VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5314}
5315
f53cd63c 5316#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5317/*
5318 * Sets up the vmcs for emulated real mode.
5319 */
8b9cf98c 5320static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5321{
2e4ce7f5 5322#ifdef CONFIG_X86_64
6aa8b732 5323 unsigned long a;
2e4ce7f5 5324#endif
6aa8b732 5325 int i;
6aa8b732 5326
6aa8b732 5327 /* I/O */
3e7c73e9
AK
5328 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5329 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5330
4607c2d7
AG
5331 if (enable_shadow_vmcs) {
5332 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5333 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5334 }
25c5f225 5335 if (cpu_has_vmx_msr_bitmap())
5897297b 5336 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 5337
6aa8b732
AK
5338 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5339
6aa8b732 5340 /* Control */
01e439be 5341 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5342 vmx->hv_deadline_tsc = -1;
6e5d865c 5343
bf8179a0 5344 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5345
dfa169bb 5346 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
5347 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5348 vmx_secondary_exec_control(vmx));
dfa169bb 5349 }
f78e0e2e 5350
d62caabb 5351 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5352 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5353 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5354 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5355 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5356
5357 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5358
0bcf261c 5359 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5360 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5361 }
5362
4b8d54f9
ZE
5363 if (ple_gap) {
5364 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5365 vmx->ple_window = ple_window;
5366 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5367 }
5368
c3707958
XG
5369 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5370 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5371 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5372
9581d442
AK
5373 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5374 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5375 vmx_set_constant_host_state(vmx);
05b3e0c2 5376#ifdef CONFIG_X86_64
6aa8b732
AK
5377 rdmsrl(MSR_FS_BASE, a);
5378 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5379 rdmsrl(MSR_GS_BASE, a);
5380 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5381#else
5382 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5383 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5384#endif
5385
2a499e49
BD
5386 if (cpu_has_vmx_vmfunc())
5387 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5388
2cc51560
ED
5389 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5390 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5391 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5392 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5393 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5394
74545705
RK
5395 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5396 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5397
03916db9 5398 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5399 u32 index = vmx_msr_index[i];
5400 u32 data_low, data_high;
a2fa3e9f 5401 int j = vmx->nmsrs;
6aa8b732
AK
5402
5403 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5404 continue;
432bd6cb
AK
5405 if (wrmsr_safe(index, data_low, data_high) < 0)
5406 continue;
26bb0981
AK
5407 vmx->guest_msrs[j].index = i;
5408 vmx->guest_msrs[j].data = 0;
d5696725 5409 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5410 ++vmx->nmsrs;
6aa8b732 5411 }
6aa8b732 5412
2961e876
GN
5413
5414 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5415
5416 /* 22.2.1, 20.8.1 */
2961e876 5417 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5418
bd7e5b08
PB
5419 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5420 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5421
bf8179a0 5422 set_cr4_guest_host_mask(vmx);
e00c8cf2 5423
f53cd63c
WL
5424 if (vmx_xsaves_supported())
5425 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5426
4e59516a
PF
5427 if (enable_pml) {
5428 ASSERT(vmx->pml_pg);
5429 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5430 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5431 }
5432
e00c8cf2
AK
5433 return 0;
5434}
5435
d28bc9dd 5436static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5437{
5438 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5439 struct msr_data apic_base_msr;
d28bc9dd 5440 u64 cr0;
e00c8cf2 5441
7ffd92c5 5442 vmx->rmode.vm86_active = 0;
e00c8cf2 5443
ad312c7c 5444 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5445 kvm_set_cr8(vcpu, 0);
5446
5447 if (!init_event) {
5448 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5449 MSR_IA32_APICBASE_ENABLE;
5450 if (kvm_vcpu_is_reset_bsp(vcpu))
5451 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5452 apic_base_msr.host_initiated = true;
5453 kvm_set_apic_base(vcpu, &apic_base_msr);
5454 }
e00c8cf2 5455
2fb92db1
AK
5456 vmx_segment_cache_clear(vmx);
5457
5706be0d 5458 seg_setup(VCPU_SREG_CS);
66450a21 5459 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5460 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5461
5462 seg_setup(VCPU_SREG_DS);
5463 seg_setup(VCPU_SREG_ES);
5464 seg_setup(VCPU_SREG_FS);
5465 seg_setup(VCPU_SREG_GS);
5466 seg_setup(VCPU_SREG_SS);
5467
5468 vmcs_write16(GUEST_TR_SELECTOR, 0);
5469 vmcs_writel(GUEST_TR_BASE, 0);
5470 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5471 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5472
5473 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5474 vmcs_writel(GUEST_LDTR_BASE, 0);
5475 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5476 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5477
d28bc9dd
NA
5478 if (!init_event) {
5479 vmcs_write32(GUEST_SYSENTER_CS, 0);
5480 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5481 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5482 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5483 }
e00c8cf2
AK
5484
5485 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5486 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5487
e00c8cf2
AK
5488 vmcs_writel(GUEST_GDTR_BASE, 0);
5489 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5490
5491 vmcs_writel(GUEST_IDTR_BASE, 0);
5492 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5493
443381a8 5494 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5495 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5496 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5497
e00c8cf2
AK
5498 setup_msrs(vmx);
5499
6aa8b732
AK
5500 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5501
d28bc9dd 5502 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5503 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5504 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5505 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5506 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5507 vmcs_write32(TPR_THRESHOLD, 0);
5508 }
5509
a73896cb 5510 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5511
d62caabb 5512 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5513 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5514
2384d2b3
SY
5515 if (vmx->vpid != 0)
5516 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5517
d28bc9dd 5518 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5519 vmx->vcpu.arch.cr0 = cr0;
f2463247 5520 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5521 vmx_set_cr4(vcpu, 0);
5690891b 5522 vmx_set_efer(vcpu, 0);
bd7e5b08 5523
d28bc9dd 5524 update_exception_bitmap(vcpu);
6aa8b732 5525
dd5f5341 5526 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5527}
5528
b6f1250e
NHE
5529/*
5530 * In nested virtualization, check if L1 asked to exit on external interrupts.
5531 * For most existing hypervisors, this will always return true.
5532 */
5533static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5534{
5535 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5536 PIN_BASED_EXT_INTR_MASK;
5537}
5538
77b0f5d6
BD
5539/*
5540 * In nested virtualization, check if L1 has set
5541 * VM_EXIT_ACK_INTR_ON_EXIT
5542 */
5543static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5544{
5545 return get_vmcs12(vcpu)->vm_exit_controls &
5546 VM_EXIT_ACK_INTR_ON_EXIT;
5547}
5548
ea8ceb83
JK
5549static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5550{
5551 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5552 PIN_BASED_NMI_EXITING;
5553}
5554
c9a7953f 5555static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 5556{
47c0152e
PB
5557 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5558 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
5559}
5560
c9a7953f 5561static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 5562{
2c82878b 5563 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
c9a7953f
JK
5564 enable_irq_window(vcpu);
5565 return;
5566 }
3b86cd99 5567
47c0152e
PB
5568 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5569 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
5570}
5571
66fd3f7f 5572static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5573{
9c8cba37 5574 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5575 uint32_t intr;
5576 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5577
229456fc 5578 trace_kvm_inj_virq(irq);
2714d1d3 5579
fa89a817 5580 ++vcpu->stat.irq_injections;
7ffd92c5 5581 if (vmx->rmode.vm86_active) {
71f9833b
SH
5582 int inc_eip = 0;
5583 if (vcpu->arch.interrupt.soft)
5584 inc_eip = vcpu->arch.event_exit_inst_len;
5585 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5586 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5587 return;
5588 }
66fd3f7f
GN
5589 intr = irq | INTR_INFO_VALID_MASK;
5590 if (vcpu->arch.interrupt.soft) {
5591 intr |= INTR_TYPE_SOFT_INTR;
5592 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5593 vmx->vcpu.arch.event_exit_inst_len);
5594 } else
5595 intr |= INTR_TYPE_EXT_INTR;
5596 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5597}
5598
f08864b4
SY
5599static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5600{
66a5a347
JK
5601 struct vcpu_vmx *vmx = to_vmx(vcpu);
5602
4c4a6f79
PB
5603 ++vcpu->stat.nmi_injections;
5604 vmx->loaded_vmcs->nmi_known_unmasked = false;
3b86cd99 5605
7ffd92c5 5606 if (vmx->rmode.vm86_active) {
71f9833b 5607 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5608 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5609 return;
5610 }
c5a6d5f7 5611
f08864b4
SY
5612 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5613 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5614}
5615
3cfc3092
JK
5616static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5617{
4c4a6f79
PB
5618 struct vcpu_vmx *vmx = to_vmx(vcpu);
5619 bool masked;
5620
5621 if (vmx->loaded_vmcs->nmi_known_unmasked)
9d58b931 5622 return false;
4c4a6f79
PB
5623 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5624 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5625 return masked;
3cfc3092
JK
5626}
5627
5628static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5629{
5630 struct vcpu_vmx *vmx = to_vmx(vcpu);
5631
4c4a6f79 5632 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
2c82878b
PB
5633 if (masked)
5634 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5635 GUEST_INTR_STATE_NMI);
5636 else
5637 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5638 GUEST_INTR_STATE_NMI);
3cfc3092
JK
5639}
5640
2505dc9f
JK
5641static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5642{
b6b8a145
JK
5643 if (to_vmx(vcpu)->nested.nested_run_pending)
5644 return 0;
ea8ceb83 5645
2505dc9f
JK
5646 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5647 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5648 | GUEST_INTR_STATE_NMI));
5649}
5650
78646121
GN
5651static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5652{
b6b8a145
JK
5653 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5654 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5655 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5656 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5657}
5658
cbc94022
IE
5659static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5660{
5661 int ret;
cbc94022 5662
1d8007bd
PB
5663 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5664 PAGE_SIZE * 3);
cbc94022
IE
5665 if (ret)
5666 return ret;
bfc6d222 5667 kvm->arch.tss_addr = addr;
1f755a82 5668 return init_rmode_tss(kvm);
cbc94022
IE
5669}
5670
0ca1b4f4 5671static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5672{
77ab6db0 5673 switch (vec) {
77ab6db0 5674 case BP_VECTOR:
c573cd22
JK
5675 /*
5676 * Update instruction length as we may reinject the exception
5677 * from user space while in guest debugging mode.
5678 */
5679 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5680 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5681 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5682 return false;
5683 /* fall through */
5684 case DB_VECTOR:
5685 if (vcpu->guest_debug &
5686 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5687 return false;
d0bfb940
JK
5688 /* fall through */
5689 case DE_VECTOR:
77ab6db0
JK
5690 case OF_VECTOR:
5691 case BR_VECTOR:
5692 case UD_VECTOR:
5693 case DF_VECTOR:
5694 case SS_VECTOR:
5695 case GP_VECTOR:
5696 case MF_VECTOR:
0ca1b4f4
GN
5697 return true;
5698 break;
77ab6db0 5699 }
0ca1b4f4
GN
5700 return false;
5701}
5702
5703static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5704 int vec, u32 err_code)
5705{
5706 /*
5707 * Instruction with address size override prefix opcode 0x67
5708 * Cause the #SS fault with 0 error code in VM86 mode.
5709 */
5710 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5711 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5712 if (vcpu->arch.halt_request) {
5713 vcpu->arch.halt_request = 0;
5cb56059 5714 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5715 }
5716 return 1;
5717 }
5718 return 0;
5719 }
5720
5721 /*
5722 * Forward all other exceptions that are valid in real mode.
5723 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5724 * the required debugging infrastructure rework.
5725 */
5726 kvm_queue_exception(vcpu, vec);
5727 return 1;
6aa8b732
AK
5728}
5729
a0861c02
AK
5730/*
5731 * Trigger machine check on the host. We assume all the MSRs are already set up
5732 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5733 * We pass a fake environment to the machine check handler because we want
5734 * the guest to be always treated like user space, no matter what context
5735 * it used internally.
5736 */
5737static void kvm_machine_check(void)
5738{
5739#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5740 struct pt_regs regs = {
5741 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5742 .flags = X86_EFLAGS_IF,
5743 };
5744
5745 do_machine_check(&regs, 0);
5746#endif
5747}
5748
851ba692 5749static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5750{
5751 /* already handled by vcpu_run */
5752 return 1;
5753}
5754
851ba692 5755static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5756{
1155f76a 5757 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5758 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5759 u32 intr_info, ex_no, error_code;
42dbaa5a 5760 unsigned long cr2, rip, dr6;
6aa8b732
AK
5761 u32 vect_info;
5762 enum emulation_result er;
5763
1155f76a 5764 vect_info = vmx->idt_vectoring_info;
88786475 5765 intr_info = vmx->exit_intr_info;
6aa8b732 5766
a0861c02 5767 if (is_machine_check(intr_info))
851ba692 5768 return handle_machine_check(vcpu);
a0861c02 5769
ef85b673 5770 if (is_nmi(intr_info))
1b6269db 5771 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 5772
7aa81cc0 5773 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5774 if (is_guest_mode(vcpu)) {
5775 kvm_queue_exception(vcpu, UD_VECTOR);
5776 return 1;
5777 }
51d8b661 5778 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5779 if (er != EMULATE_DONE)
7ee5d940 5780 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5781 return 1;
5782 }
5783
6aa8b732 5784 error_code = 0;
2e11384c 5785 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5786 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5787
5788 /*
5789 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5790 * MMIO, it is better to report an internal error.
5791 * See the comments in vmx_handle_exit.
5792 */
5793 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5794 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5795 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5796 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5797 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5798 vcpu->run->internal.data[0] = vect_info;
5799 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5800 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5801 return 0;
5802 }
5803
6aa8b732
AK
5804 if (is_page_fault(intr_info)) {
5805 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1261bfa3
WL
5806 /* EPT won't cause page fault directly */
5807 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5808 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5809 true);
6aa8b732
AK
5810 }
5811
d0bfb940 5812 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5813
5814 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5815 return handle_rmode_exception(vcpu, ex_no, error_code);
5816
42dbaa5a 5817 switch (ex_no) {
54a20552
EN
5818 case AC_VECTOR:
5819 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5820 return 1;
42dbaa5a
JK
5821 case DB_VECTOR:
5822 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5823 if (!(vcpu->guest_debug &
5824 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5825 vcpu->arch.dr6 &= ~15;
6f43ed01 5826 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5827 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5828 skip_emulated_instruction(vcpu);
5829
42dbaa5a
JK
5830 kvm_queue_exception(vcpu, DB_VECTOR);
5831 return 1;
5832 }
5833 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5834 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5835 /* fall through */
5836 case BP_VECTOR:
c573cd22
JK
5837 /*
5838 * Update instruction length as we may reinject #BP from
5839 * user space while in guest debugging mode. Reading it for
5840 * #DB as well causes no harm, it is not used in that case.
5841 */
5842 vmx->vcpu.arch.event_exit_inst_len =
5843 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5844 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5845 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5846 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5847 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5848 break;
5849 default:
d0bfb940
JK
5850 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5851 kvm_run->ex.exception = ex_no;
5852 kvm_run->ex.error_code = error_code;
42dbaa5a 5853 break;
6aa8b732 5854 }
6aa8b732
AK
5855 return 0;
5856}
5857
851ba692 5858static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5859{
1165f5fe 5860 ++vcpu->stat.irq_exits;
6aa8b732
AK
5861 return 1;
5862}
5863
851ba692 5864static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5865{
851ba692 5866 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
5867 return 0;
5868}
6aa8b732 5869
851ba692 5870static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5871{
bfdaab09 5872 unsigned long exit_qualification;
6affcbed 5873 int size, in, string, ret;
039576c0 5874 unsigned port;
6aa8b732 5875
bfdaab09 5876 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5877 string = (exit_qualification & 16) != 0;
cf8f70bf 5878 in = (exit_qualification & 8) != 0;
e70669ab 5879
cf8f70bf 5880 ++vcpu->stat.io_exits;
e70669ab 5881
cf8f70bf 5882 if (string || in)
51d8b661 5883 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5884
cf8f70bf
GN
5885 port = exit_qualification >> 16;
5886 size = (exit_qualification & 7) + 1;
cf8f70bf 5887
6affcbed
KH
5888 ret = kvm_skip_emulated_instruction(vcpu);
5889
5890 /*
5891 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5892 * KVM_EXIT_DEBUG here.
5893 */
5894 return kvm_fast_pio_out(vcpu, size, port) && ret;
6aa8b732
AK
5895}
5896
102d8325
IM
5897static void
5898vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5899{
5900 /*
5901 * Patch in the VMCALL instruction:
5902 */
5903 hypercall[0] = 0x0f;
5904 hypercall[1] = 0x01;
5905 hypercall[2] = 0xc1;
102d8325
IM
5906}
5907
0fa06071 5908/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5909static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5910{
eeadf9e7 5911 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5912 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5913 unsigned long orig_val = val;
5914
eeadf9e7
NHE
5915 /*
5916 * We get here when L2 changed cr0 in a way that did not change
5917 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5918 * but did change L0 shadowed bits. So we first calculate the
5919 * effective cr0 value that L1 would like to write into the
5920 * hardware. It consists of the L2-owned bits from the new
5921 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5922 */
1a0d74e6
JK
5923 val = (val & ~vmcs12->cr0_guest_host_mask) |
5924 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5925
3899152c 5926 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 5927 return 1;
1a0d74e6
JK
5928
5929 if (kvm_set_cr0(vcpu, val))
5930 return 1;
5931 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5932 return 0;
1a0d74e6
JK
5933 } else {
5934 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 5935 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 5936 return 1;
3899152c 5937
eeadf9e7 5938 return kvm_set_cr0(vcpu, val);
1a0d74e6 5939 }
eeadf9e7
NHE
5940}
5941
5942static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5943{
5944 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5945 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5946 unsigned long orig_val = val;
5947
5948 /* analogously to handle_set_cr0 */
5949 val = (val & ~vmcs12->cr4_guest_host_mask) |
5950 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5951 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5952 return 1;
1a0d74e6 5953 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5954 return 0;
5955 } else
5956 return kvm_set_cr4(vcpu, val);
5957}
5958
851ba692 5959static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5960{
229456fc 5961 unsigned long exit_qualification, val;
6aa8b732
AK
5962 int cr;
5963 int reg;
49a9b07e 5964 int err;
6affcbed 5965 int ret;
6aa8b732 5966
bfdaab09 5967 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5968 cr = exit_qualification & 15;
5969 reg = (exit_qualification >> 8) & 15;
5970 switch ((exit_qualification >> 4) & 3) {
5971 case 0: /* mov to cr */
1e32c079 5972 val = kvm_register_readl(vcpu, reg);
229456fc 5973 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5974 switch (cr) {
5975 case 0:
eeadf9e7 5976 err = handle_set_cr0(vcpu, val);
6affcbed 5977 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 5978 case 3:
2390218b 5979 err = kvm_set_cr3(vcpu, val);
6affcbed 5980 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 5981 case 4:
eeadf9e7 5982 err = handle_set_cr4(vcpu, val);
6affcbed 5983 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
5984 case 8: {
5985 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5986 u8 cr8 = (u8)val;
eea1cff9 5987 err = kvm_set_cr8(vcpu, cr8);
6affcbed 5988 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 5989 if (lapic_in_kernel(vcpu))
6affcbed 5990 return ret;
0a5fff19 5991 if (cr8_prev <= cr8)
6affcbed
KH
5992 return ret;
5993 /*
5994 * TODO: we might be squashing a
5995 * KVM_GUESTDBG_SINGLESTEP-triggered
5996 * KVM_EXIT_DEBUG here.
5997 */
851ba692 5998 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5999 return 0;
6000 }
4b8073e4 6001 }
6aa8b732 6002 break;
25c4c276 6003 case 2: /* clts */
bd7e5b08
PB
6004 WARN_ONCE(1, "Guest should always own CR0.TS");
6005 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 6006 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 6007 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6008 case 1: /*mov from cr*/
6009 switch (cr) {
6010 case 3:
9f8fe504
AK
6011 val = kvm_read_cr3(vcpu);
6012 kvm_register_write(vcpu, reg, val);
6013 trace_kvm_cr_read(cr, val);
6affcbed 6014 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 6015 case 8:
229456fc
MT
6016 val = kvm_get_cr8(vcpu);
6017 kvm_register_write(vcpu, reg, val);
6018 trace_kvm_cr_read(cr, val);
6affcbed 6019 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6020 }
6021 break;
6022 case 3: /* lmsw */
a1f83a74 6023 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 6024 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 6025 kvm_lmsw(vcpu, val);
6aa8b732 6026
6affcbed 6027 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6028 default:
6029 break;
6030 }
851ba692 6031 vcpu->run->exit_reason = 0;
a737f256 6032 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
6033 (int)(exit_qualification >> 4) & 3, cr);
6034 return 0;
6035}
6036
851ba692 6037static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 6038{
bfdaab09 6039 unsigned long exit_qualification;
16f8a6f9
NA
6040 int dr, dr7, reg;
6041
6042 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6043 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6044
6045 /* First, if DR does not exist, trigger UD */
6046 if (!kvm_require_dr(vcpu, dr))
6047 return 1;
6aa8b732 6048
f2483415 6049 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
6050 if (!kvm_require_cpl(vcpu, 0))
6051 return 1;
16f8a6f9
NA
6052 dr7 = vmcs_readl(GUEST_DR7);
6053 if (dr7 & DR7_GD) {
42dbaa5a
JK
6054 /*
6055 * As the vm-exit takes precedence over the debug trap, we
6056 * need to emulate the latter, either for the host or the
6057 * guest debugging itself.
6058 */
6059 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 6060 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 6061 vcpu->run->debug.arch.dr7 = dr7;
82b32774 6062 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
6063 vcpu->run->debug.arch.exception = DB_VECTOR;
6064 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
6065 return 0;
6066 } else {
7305eb5d 6067 vcpu->arch.dr6 &= ~15;
6f43ed01 6068 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
6069 kvm_queue_exception(vcpu, DB_VECTOR);
6070 return 1;
6071 }
6072 }
6073
81908bf4 6074 if (vcpu->guest_debug == 0) {
8f22372f
PB
6075 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6076 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6077
6078 /*
6079 * No more DR vmexits; force a reload of the debug registers
6080 * and reenter on this instruction. The next vmexit will
6081 * retrieve the full state of the debug registers.
6082 */
6083 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6084 return 1;
6085 }
6086
42dbaa5a
JK
6087 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6088 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 6089 unsigned long val;
4c4d563b
JK
6090
6091 if (kvm_get_dr(vcpu, dr, &val))
6092 return 1;
6093 kvm_register_write(vcpu, reg, val);
020df079 6094 } else
5777392e 6095 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
6096 return 1;
6097
6affcbed 6098 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6099}
6100
73aaf249
JK
6101static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6102{
6103 return vcpu->arch.dr6;
6104}
6105
6106static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6107{
6108}
6109
81908bf4
PB
6110static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6111{
81908bf4
PB
6112 get_debugreg(vcpu->arch.db[0], 0);
6113 get_debugreg(vcpu->arch.db[1], 1);
6114 get_debugreg(vcpu->arch.db[2], 2);
6115 get_debugreg(vcpu->arch.db[3], 3);
6116 get_debugreg(vcpu->arch.dr6, 6);
6117 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6118
6119 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 6120 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6121}
6122
020df079
GN
6123static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6124{
6125 vmcs_writel(GUEST_DR7, val);
6126}
6127
851ba692 6128static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 6129{
6a908b62 6130 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
6131}
6132
851ba692 6133static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 6134{
ad312c7c 6135 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 6136 struct msr_data msr_info;
6aa8b732 6137
609e36d3
PB
6138 msr_info.index = ecx;
6139 msr_info.host_initiated = false;
6140 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 6141 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 6142 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6143 return 1;
6144 }
6145
609e36d3 6146 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6147
6aa8b732 6148 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6149 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6150 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6151 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6152}
6153
851ba692 6154static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6155{
8fe8ab46 6156 struct msr_data msr;
ad312c7c
ZX
6157 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6158 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6159 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6160
8fe8ab46
WA
6161 msr.data = data;
6162 msr.index = ecx;
6163 msr.host_initiated = false;
854e8bb1 6164 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6165 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6166 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6167 return 1;
6168 }
6169
59200273 6170 trace_kvm_msr_write(ecx, data);
6affcbed 6171 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6172}
6173
851ba692 6174static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6175{
eb90f341 6176 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6177 return 1;
6178}
6179
851ba692 6180static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6181{
47c0152e
PB
6182 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6183 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6184
3842d135
AK
6185 kvm_make_request(KVM_REQ_EVENT, vcpu);
6186
a26bf12a 6187 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6188 return 1;
6189}
6190
851ba692 6191static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6192{
d3bef15f 6193 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6194}
6195
851ba692 6196static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6197{
0d9c055e 6198 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6199}
6200
ec25d5e6
GN
6201static int handle_invd(struct kvm_vcpu *vcpu)
6202{
51d8b661 6203 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6204}
6205
851ba692 6206static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6207{
f9c617f6 6208 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6209
6210 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6211 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6212}
6213
fee84b07
AK
6214static int handle_rdpmc(struct kvm_vcpu *vcpu)
6215{
6216 int err;
6217
6218 err = kvm_rdpmc(vcpu);
6affcbed 6219 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6220}
6221
851ba692 6222static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6223{
6affcbed 6224 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6225}
6226
2acf923e
DC
6227static int handle_xsetbv(struct kvm_vcpu *vcpu)
6228{
6229 u64 new_bv = kvm_read_edx_eax(vcpu);
6230 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6231
6232 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6233 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6234 return 1;
6235}
6236
f53cd63c
WL
6237static int handle_xsaves(struct kvm_vcpu *vcpu)
6238{
6affcbed 6239 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6240 WARN(1, "this should never happen\n");
6241 return 1;
6242}
6243
6244static int handle_xrstors(struct kvm_vcpu *vcpu)
6245{
6affcbed 6246 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6247 WARN(1, "this should never happen\n");
6248 return 1;
6249}
6250
851ba692 6251static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6252{
58fbbf26
KT
6253 if (likely(fasteoi)) {
6254 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6255 int access_type, offset;
6256
6257 access_type = exit_qualification & APIC_ACCESS_TYPE;
6258 offset = exit_qualification & APIC_ACCESS_OFFSET;
6259 /*
6260 * Sane guest uses MOV to write EOI, with written value
6261 * not cared. So make a short-circuit here by avoiding
6262 * heavy instruction emulation.
6263 */
6264 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6265 (offset == APIC_EOI)) {
6266 kvm_lapic_set_eoi(vcpu);
6affcbed 6267 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6268 }
6269 }
51d8b661 6270 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6271}
6272
c7c9c56c
YZ
6273static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6274{
6275 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6276 int vector = exit_qualification & 0xff;
6277
6278 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6279 kvm_apic_set_eoi_accelerated(vcpu, vector);
6280 return 1;
6281}
6282
83d4c286
YZ
6283static int handle_apic_write(struct kvm_vcpu *vcpu)
6284{
6285 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6286 u32 offset = exit_qualification & 0xfff;
6287
6288 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6289 kvm_apic_write_nodecode(vcpu, offset);
6290 return 1;
6291}
6292
851ba692 6293static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6294{
60637aac 6295 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6296 unsigned long exit_qualification;
e269fb21
JK
6297 bool has_error_code = false;
6298 u32 error_code = 0;
37817f29 6299 u16 tss_selector;
7f3d35fd 6300 int reason, type, idt_v, idt_index;
64a7ec06
GN
6301
6302 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6303 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6304 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6305
6306 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6307
6308 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6309 if (reason == TASK_SWITCH_GATE && idt_v) {
6310 switch (type) {
6311 case INTR_TYPE_NMI_INTR:
6312 vcpu->arch.nmi_injected = false;
654f06fc 6313 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6314 break;
6315 case INTR_TYPE_EXT_INTR:
66fd3f7f 6316 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6317 kvm_clear_interrupt_queue(vcpu);
6318 break;
6319 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6320 if (vmx->idt_vectoring_info &
6321 VECTORING_INFO_DELIVER_CODE_MASK) {
6322 has_error_code = true;
6323 error_code =
6324 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6325 }
6326 /* fall through */
64a7ec06
GN
6327 case INTR_TYPE_SOFT_EXCEPTION:
6328 kvm_clear_exception_queue(vcpu);
6329 break;
6330 default:
6331 break;
6332 }
60637aac 6333 }
37817f29
IE
6334 tss_selector = exit_qualification;
6335
64a7ec06
GN
6336 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6337 type != INTR_TYPE_EXT_INTR &&
6338 type != INTR_TYPE_NMI_INTR))
6339 skip_emulated_instruction(vcpu);
6340
7f3d35fd
KW
6341 if (kvm_task_switch(vcpu, tss_selector,
6342 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6343 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6344 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6345 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6346 vcpu->run->internal.ndata = 0;
42dbaa5a 6347 return 0;
acb54517 6348 }
42dbaa5a 6349
42dbaa5a
JK
6350 /*
6351 * TODO: What about debug traps on tss switch?
6352 * Are we supposed to inject them and update dr6?
6353 */
6354
6355 return 1;
37817f29
IE
6356}
6357
851ba692 6358static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6359{
f9c617f6 6360 unsigned long exit_qualification;
1439442c 6361 gpa_t gpa;
4f5982a5 6362 u32 error_code;
1439442c 6363
f9c617f6 6364 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6365
0be9c7a8
GN
6366 /*
6367 * EPT violation happened while executing iret from NMI,
6368 * "blocked by NMI" bit has to be set before next VM entry.
6369 * There are errata that may cause this bit to not be set:
6370 * AAK134, BY25.
6371 */
bcd1c294 6372 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
bcd1c294 6373 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6374 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6375
1439442c 6376 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6377 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6378
27959a44 6379 /* Is it a read fault? */
ab22a473 6380 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
6381 ? PFERR_USER_MASK : 0;
6382 /* Is it a write fault? */
ab22a473 6383 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
6384 ? PFERR_WRITE_MASK : 0;
6385 /* Is it a fetch fault? */
ab22a473 6386 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
6387 ? PFERR_FETCH_MASK : 0;
6388 /* ept page table entry is present? */
6389 error_code |= (exit_qualification &
6390 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6391 EPT_VIOLATION_EXECUTABLE))
6392 ? PFERR_PRESENT_MASK : 0;
4f5982a5 6393
db1c056c 6394 vcpu->arch.gpa_available = true;
25d92081
YZ
6395 vcpu->arch.exit_qualification = exit_qualification;
6396
4f5982a5 6397 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6398}
6399
851ba692 6400static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6401{
f735d4af 6402 int ret;
68f89400
MT
6403 gpa_t gpa;
6404
6405 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
e32edf4f 6406 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 6407 trace_kvm_fast_mmio(gpa);
6affcbed 6408 return kvm_skip_emulated_instruction(vcpu);
68c3b4d1 6409 }
68f89400 6410
450869d6 6411 ret = handle_mmio_page_fault(vcpu, gpa, true);
db1c056c 6412 vcpu->arch.gpa_available = true;
b37fbea6 6413 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
6414 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6415 EMULATE_DONE;
f8f55942
XG
6416
6417 if (unlikely(ret == RET_MMIO_PF_INVALID))
6418 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6419
b37fbea6 6420 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
6421 return 1;
6422
6423 /* It is the real ept misconfig */
f735d4af 6424 WARN_ON(1);
68f89400 6425
851ba692
AK
6426 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6427 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6428
6429 return 0;
6430}
6431
851ba692 6432static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 6433{
47c0152e
PB
6434 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6435 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 6436 ++vcpu->stat.nmi_window_exits;
3842d135 6437 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6438
6439 return 1;
6440}
6441
80ced186 6442static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6443{
8b3079a5
AK
6444 struct vcpu_vmx *vmx = to_vmx(vcpu);
6445 enum emulation_result err = EMULATE_DONE;
80ced186 6446 int ret = 1;
49e9d557
AK
6447 u32 cpu_exec_ctrl;
6448 bool intr_window_requested;
b8405c18 6449 unsigned count = 130;
49e9d557
AK
6450
6451 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6452 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6453
98eb2f8b 6454 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6455 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6456 return handle_interrupt_window(&vmx->vcpu);
6457
72875d8a 6458 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
de87dcdd
AK
6459 return 1;
6460
991eebf9 6461 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6462
ac0a48c3 6463 if (err == EMULATE_USER_EXIT) {
94452b9e 6464 ++vcpu->stat.mmio_exits;
80ced186
MG
6465 ret = 0;
6466 goto out;
6467 }
1d5a4d9b 6468
de5f70e0
AK
6469 if (err != EMULATE_DONE) {
6470 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6471 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6472 vcpu->run->internal.ndata = 0;
6d77dbfc 6473 return 0;
de5f70e0 6474 }
ea953ef0 6475
8d76c49e
GN
6476 if (vcpu->arch.halt_request) {
6477 vcpu->arch.halt_request = 0;
5cb56059 6478 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6479 goto out;
6480 }
6481
ea953ef0 6482 if (signal_pending(current))
80ced186 6483 goto out;
ea953ef0
MG
6484 if (need_resched())
6485 schedule();
6486 }
6487
80ced186
MG
6488out:
6489 return ret;
ea953ef0
MG
6490}
6491
b4a2d31d
RK
6492static int __grow_ple_window(int val)
6493{
6494 if (ple_window_grow < 1)
6495 return ple_window;
6496
6497 val = min(val, ple_window_actual_max);
6498
6499 if (ple_window_grow < ple_window)
6500 val *= ple_window_grow;
6501 else
6502 val += ple_window_grow;
6503
6504 return val;
6505}
6506
6507static int __shrink_ple_window(int val, int modifier, int minimum)
6508{
6509 if (modifier < 1)
6510 return ple_window;
6511
6512 if (modifier < ple_window)
6513 val /= modifier;
6514 else
6515 val -= modifier;
6516
6517 return max(val, minimum);
6518}
6519
6520static void grow_ple_window(struct kvm_vcpu *vcpu)
6521{
6522 struct vcpu_vmx *vmx = to_vmx(vcpu);
6523 int old = vmx->ple_window;
6524
6525 vmx->ple_window = __grow_ple_window(old);
6526
6527 if (vmx->ple_window != old)
6528 vmx->ple_window_dirty = true;
7b46268d
RK
6529
6530 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6531}
6532
6533static void shrink_ple_window(struct kvm_vcpu *vcpu)
6534{
6535 struct vcpu_vmx *vmx = to_vmx(vcpu);
6536 int old = vmx->ple_window;
6537
6538 vmx->ple_window = __shrink_ple_window(old,
6539 ple_window_shrink, ple_window);
6540
6541 if (vmx->ple_window != old)
6542 vmx->ple_window_dirty = true;
7b46268d
RK
6543
6544 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6545}
6546
6547/*
6548 * ple_window_actual_max is computed to be one grow_ple_window() below
6549 * ple_window_max. (See __grow_ple_window for the reason.)
6550 * This prevents overflows, because ple_window_max is int.
6551 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6552 * this process.
6553 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6554 */
6555static void update_ple_window_actual_max(void)
6556{
6557 ple_window_actual_max =
6558 __shrink_ple_window(max(ple_window_max, ple_window),
6559 ple_window_grow, INT_MIN);
6560}
6561
bf9f6ac8
FW
6562/*
6563 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6564 */
6565static void wakeup_handler(void)
6566{
6567 struct kvm_vcpu *vcpu;
6568 int cpu = smp_processor_id();
6569
6570 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6571 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6572 blocked_vcpu_list) {
6573 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6574
6575 if (pi_test_on(pi_desc) == 1)
6576 kvm_vcpu_kick(vcpu);
6577 }
6578 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6579}
6580
f160c7b7
JS
6581void vmx_enable_tdp(void)
6582{
6583 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6584 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6585 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6586 0ull, VMX_EPT_EXECUTABLE_MASK,
6587 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
995f00a6 6588 VMX_EPT_RWX_MASK);
f160c7b7
JS
6589
6590 ept_set_mmio_spte_mask();
6591 kvm_enable_tdp();
6592}
6593
f2c7648d
TC
6594static __init int hardware_setup(void)
6595{
34a1cd60
TC
6596 int r = -ENOMEM, i, msr;
6597
6598 rdmsrl_safe(MSR_EFER, &host_efer);
6599
6600 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6601 kvm_define_shared_msr(i, vmx_msr_index[i]);
6602
23611332
RK
6603 for (i = 0; i < VMX_BITMAP_NR; i++) {
6604 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6605 if (!vmx_bitmap[i])
6606 goto out;
6607 }
34a1cd60
TC
6608
6609 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
34a1cd60
TC
6610 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6611 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6612
6613 /*
6614 * Allow direct access to the PC debug port (it is often used for I/O
6615 * delays, but the vmexits simply slow things down).
6616 */
6617 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6618 clear_bit(0x80, vmx_io_bitmap_a);
6619
6620 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6621
6622 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6623 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6624
34a1cd60
TC
6625 if (setup_vmcs_config(&vmcs_config) < 0) {
6626 r = -EIO;
23611332 6627 goto out;
baa03522 6628 }
f2c7648d
TC
6629
6630 if (boot_cpu_has(X86_FEATURE_NX))
6631 kvm_enable_efer_bits(EFER_NX);
6632
08d839c4
WL
6633 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6634 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
f2c7648d 6635 enable_vpid = 0;
08d839c4 6636
f2c7648d
TC
6637 if (!cpu_has_vmx_shadow_vmcs())
6638 enable_shadow_vmcs = 0;
6639 if (enable_shadow_vmcs)
6640 init_vmcs_shadow_fields();
6641
6642 if (!cpu_has_vmx_ept() ||
6643 !cpu_has_vmx_ept_4levels()) {
6644 enable_ept = 0;
6645 enable_unrestricted_guest = 0;
6646 enable_ept_ad_bits = 0;
6647 }
6648
fce6ac4c 6649 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
f2c7648d
TC
6650 enable_ept_ad_bits = 0;
6651
6652 if (!cpu_has_vmx_unrestricted_guest())
6653 enable_unrestricted_guest = 0;
6654
ad15a296 6655 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6656 flexpriority_enabled = 0;
6657
ad15a296
PB
6658 /*
6659 * set_apic_access_page_addr() is used to reload apic access
6660 * page upon invalidation. No need to do anything if not
6661 * using the APIC_ACCESS_ADDR VMCS field.
6662 */
6663 if (!flexpriority_enabled)
f2c7648d 6664 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6665
6666 if (!cpu_has_vmx_tpr_shadow())
6667 kvm_x86_ops->update_cr8_intercept = NULL;
6668
6669 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6670 kvm_disable_largepages();
6671
6672 if (!cpu_has_vmx_ple())
6673 ple_gap = 0;
6674
76dfafd5 6675 if (!cpu_has_vmx_apicv()) {
f2c7648d 6676 enable_apicv = 0;
76dfafd5
PB
6677 kvm_x86_ops->sync_pir_to_irr = NULL;
6678 }
f2c7648d 6679
64903d61
HZ
6680 if (cpu_has_vmx_tsc_scaling()) {
6681 kvm_has_tsc_control = true;
6682 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6683 kvm_tsc_scaling_ratio_frac_bits = 48;
6684 }
6685
baa03522
TC
6686 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6687 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6688 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6689 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6690 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6691 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
baa03522 6692
c63e4563 6693 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
baa03522 6694 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6695 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
baa03522 6696 vmx_msr_bitmap_longmode, PAGE_SIZE);
c63e4563 6697 memcpy(vmx_msr_bitmap_legacy_x2apic,
f6e90f9e 6698 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6699 memcpy(vmx_msr_bitmap_longmode_x2apic,
f6e90f9e 6700 vmx_msr_bitmap_longmode, PAGE_SIZE);
baa03522 6701
04bb92e4
WL
6702 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6703
40d8338d
RK
6704 for (msr = 0x800; msr <= 0x8ff; msr++) {
6705 if (msr == 0x839 /* TMCCT */)
6706 continue;
2e69f865 6707 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
40d8338d 6708 }
3ce424e4 6709
f6e90f9e 6710 /*
2e69f865
RK
6711 * TPR reads and writes can be virtualized even if virtual interrupt
6712 * delivery is not in use.
f6e90f9e 6713 */
2e69f865
RK
6714 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6715 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
3ce424e4 6716
3ce424e4 6717 /* EOI */
2e69f865 6718 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
3ce424e4 6719 /* SELF-IPI */
2e69f865 6720 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
baa03522 6721
f160c7b7
JS
6722 if (enable_ept)
6723 vmx_enable_tdp();
6724 else
baa03522
TC
6725 kvm_disable_tdp();
6726
6727 update_ple_window_actual_max();
6728
843e4330
KH
6729 /*
6730 * Only enable PML when hardware supports PML feature, and both EPT
6731 * and EPT A/D bit features are enabled -- PML depends on them to work.
6732 */
6733 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6734 enable_pml = 0;
6735
6736 if (!enable_pml) {
6737 kvm_x86_ops->slot_enable_log_dirty = NULL;
6738 kvm_x86_ops->slot_disable_log_dirty = NULL;
6739 kvm_x86_ops->flush_log_dirty = NULL;
6740 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6741 }
6742
64672c95
YJ
6743 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6744 u64 vmx_msr;
6745
6746 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6747 cpu_preemption_timer_multi =
6748 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6749 } else {
6750 kvm_x86_ops->set_hv_timer = NULL;
6751 kvm_x86_ops->cancel_hv_timer = NULL;
6752 }
6753
bf9f6ac8
FW
6754 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6755
c45dcc71
AR
6756 kvm_mce_cap_supported |= MCG_LMCE_P;
6757
f2c7648d 6758 return alloc_kvm_area();
34a1cd60 6759
34a1cd60 6760out:
23611332
RK
6761 for (i = 0; i < VMX_BITMAP_NR; i++)
6762 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
6763
6764 return r;
f2c7648d
TC
6765}
6766
6767static __exit void hardware_unsetup(void)
6768{
23611332
RK
6769 int i;
6770
6771 for (i = 0; i < VMX_BITMAP_NR; i++)
6772 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 6773
f2c7648d
TC
6774 free_kvm_area();
6775}
6776
4b8d54f9
ZE
6777/*
6778 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6779 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6780 */
9fb41ba8 6781static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6782{
b4a2d31d
RK
6783 if (ple_gap)
6784 grow_ple_window(vcpu);
6785
4b8d54f9 6786 kvm_vcpu_on_spin(vcpu);
6affcbed 6787 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
6788}
6789
87c00572 6790static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6791{
6affcbed 6792 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
6793}
6794
87c00572
GS
6795static int handle_mwait(struct kvm_vcpu *vcpu)
6796{
6797 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6798 return handle_nop(vcpu);
6799}
6800
5f3d45e7
MD
6801static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6802{
6803 return 1;
6804}
6805
87c00572
GS
6806static int handle_monitor(struct kvm_vcpu *vcpu)
6807{
6808 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6809 return handle_nop(vcpu);
6810}
6811
ff2f6fe9
NHE
6812/*
6813 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6814 * We could reuse a single VMCS for all the L2 guests, but we also want the
6815 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6816 * allows keeping them loaded on the processor, and in the future will allow
6817 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6818 * every entry if they never change.
6819 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6820 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6821 *
6822 * The following functions allocate and free a vmcs02 in this pool.
6823 */
6824
6825/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6826static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6827{
6828 struct vmcs02_list *item;
6829 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6830 if (item->vmptr == vmx->nested.current_vmptr) {
6831 list_move(&item->list, &vmx->nested.vmcs02_pool);
6832 return &item->vmcs02;
6833 }
6834
6835 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6836 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6837 item = list_last_entry(&vmx->nested.vmcs02_pool,
6838 struct vmcs02_list, list);
ff2f6fe9
NHE
6839 item->vmptr = vmx->nested.current_vmptr;
6840 list_move(&item->list, &vmx->nested.vmcs02_pool);
6841 return &item->vmcs02;
6842 }
6843
6844 /* Create a new VMCS */
0fa24ce3 6845 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6846 if (!item)
6847 return NULL;
6848 item->vmcs02.vmcs = alloc_vmcs();
355f4fb1 6849 item->vmcs02.shadow_vmcs = NULL;
ff2f6fe9
NHE
6850 if (!item->vmcs02.vmcs) {
6851 kfree(item);
6852 return NULL;
6853 }
6854 loaded_vmcs_init(&item->vmcs02);
6855 item->vmptr = vmx->nested.current_vmptr;
6856 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6857 vmx->nested.vmcs02_num++;
6858 return &item->vmcs02;
6859}
6860
6861/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6862static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6863{
6864 struct vmcs02_list *item;
6865 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6866 if (item->vmptr == vmptr) {
6867 free_loaded_vmcs(&item->vmcs02);
6868 list_del(&item->list);
6869 kfree(item);
6870 vmx->nested.vmcs02_num--;
6871 return;
6872 }
6873}
6874
6875/*
6876 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6877 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6878 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6879 */
6880static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6881{
6882 struct vmcs02_list *item, *n;
4fa7734c
PB
6883
6884 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6885 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6886 /*
6887 * Something will leak if the above WARN triggers. Better than
6888 * a use-after-free.
6889 */
6890 if (vmx->loaded_vmcs == &item->vmcs02)
6891 continue;
6892
6893 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6894 list_del(&item->list);
6895 kfree(item);
4fa7734c 6896 vmx->nested.vmcs02_num--;
ff2f6fe9 6897 }
ff2f6fe9
NHE
6898}
6899
0658fbaa
ACL
6900/*
6901 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6902 * set the success or error code of an emulated VMX instruction, as specified
6903 * by Vol 2B, VMX Instruction Reference, "Conventions".
6904 */
6905static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6906{
6907 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6908 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6909 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6910}
6911
6912static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6913{
6914 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6915 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6916 X86_EFLAGS_SF | X86_EFLAGS_OF))
6917 | X86_EFLAGS_CF);
6918}
6919
145c28dd 6920static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6921 u32 vm_instruction_error)
6922{
6923 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6924 /*
6925 * failValid writes the error number to the current VMCS, which
6926 * can't be done there isn't a current VMCS.
6927 */
6928 nested_vmx_failInvalid(vcpu);
6929 return;
6930 }
6931 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6932 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6933 X86_EFLAGS_SF | X86_EFLAGS_OF))
6934 | X86_EFLAGS_ZF);
6935 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6936 /*
6937 * We don't need to force a shadow sync because
6938 * VM_INSTRUCTION_ERROR is not shadowed
6939 */
6940}
145c28dd 6941
ff651cb6
WV
6942static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6943{
6944 /* TODO: not to reset guest simply here. */
6945 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 6946 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
6947}
6948
f4124500
JK
6949static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6950{
6951 struct vcpu_vmx *vmx =
6952 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6953
6954 vmx->nested.preemption_timer_expired = true;
6955 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6956 kvm_vcpu_kick(&vmx->vcpu);
6957
6958 return HRTIMER_NORESTART;
6959}
6960
19677e32
BD
6961/*
6962 * Decode the memory-address operand of a vmx instruction, as recorded on an
6963 * exit caused by such an instruction (run by a guest hypervisor).
6964 * On success, returns 0. When the operand is invalid, returns 1 and throws
6965 * #UD or #GP.
6966 */
6967static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6968 unsigned long exit_qualification,
f9eb4af6 6969 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 6970{
f9eb4af6
EK
6971 gva_t off;
6972 bool exn;
6973 struct kvm_segment s;
6974
19677e32
BD
6975 /*
6976 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6977 * Execution", on an exit, vmx_instruction_info holds most of the
6978 * addressing components of the operand. Only the displacement part
6979 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6980 * For how an actual address is calculated from all these components,
6981 * refer to Vol. 1, "Operand Addressing".
6982 */
6983 int scaling = vmx_instruction_info & 3;
6984 int addr_size = (vmx_instruction_info >> 7) & 7;
6985 bool is_reg = vmx_instruction_info & (1u << 10);
6986 int seg_reg = (vmx_instruction_info >> 15) & 7;
6987 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6988 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6989 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6990 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6991
6992 if (is_reg) {
6993 kvm_queue_exception(vcpu, UD_VECTOR);
6994 return 1;
6995 }
6996
6997 /* Addr = segment_base + offset */
6998 /* offset = base + [index * scale] + displacement */
f9eb4af6 6999 off = exit_qualification; /* holds the displacement */
19677e32 7000 if (base_is_valid)
f9eb4af6 7001 off += kvm_register_read(vcpu, base_reg);
19677e32 7002 if (index_is_valid)
f9eb4af6
EK
7003 off += kvm_register_read(vcpu, index_reg)<<scaling;
7004 vmx_get_segment(vcpu, &s, seg_reg);
7005 *ret = s.base + off;
19677e32
BD
7006
7007 if (addr_size == 1) /* 32 bit */
7008 *ret &= 0xffffffff;
7009
f9eb4af6
EK
7010 /* Checks for #GP/#SS exceptions. */
7011 exn = false;
ff30ef40
QC
7012 if (is_long_mode(vcpu)) {
7013 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7014 * non-canonical form. This is the only check on the memory
7015 * destination for long mode!
7016 */
7017 exn = is_noncanonical_address(*ret);
7018 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
7019 /* Protected mode: apply checks for segment validity in the
7020 * following order:
7021 * - segment type check (#GP(0) may be thrown)
7022 * - usability check (#GP(0)/#SS(0))
7023 * - limit check (#GP(0)/#SS(0))
7024 */
7025 if (wr)
7026 /* #GP(0) if the destination operand is located in a
7027 * read-only data segment or any code segment.
7028 */
7029 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7030 else
7031 /* #GP(0) if the source operand is located in an
7032 * execute-only code segment
7033 */
7034 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
7035 if (exn) {
7036 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7037 return 1;
7038 }
f9eb4af6
EK
7039 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7040 */
7041 exn = (s.unusable != 0);
7042 /* Protected mode: #GP(0)/#SS(0) if the memory
7043 * operand is outside the segment limit.
7044 */
7045 exn = exn || (off + sizeof(u64) > s.limit);
7046 }
7047 if (exn) {
7048 kvm_queue_exception_e(vcpu,
7049 seg_reg == VCPU_SREG_SS ?
7050 SS_VECTOR : GP_VECTOR,
7051 0);
7052 return 1;
7053 }
7054
19677e32
BD
7055 return 0;
7056}
7057
cbf71279 7058static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
3573e22c
BD
7059{
7060 gva_t gva;
3573e22c 7061 struct x86_exception e;
3573e22c
BD
7062
7063 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7064 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
7065 return 1;
7066
cbf71279
RK
7067 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7068 sizeof(*vmpointer), &e)) {
3573e22c
BD
7069 kvm_inject_page_fault(vcpu, &e);
7070 return 1;
7071 }
7072
3573e22c
BD
7073 return 0;
7074}
7075
e29acc55
JM
7076static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7077{
7078 struct vcpu_vmx *vmx = to_vmx(vcpu);
7079 struct vmcs *shadow_vmcs;
7080
7081 if (cpu_has_vmx_msr_bitmap()) {
7082 vmx->nested.msr_bitmap =
7083 (unsigned long *)__get_free_page(GFP_KERNEL);
7084 if (!vmx->nested.msr_bitmap)
7085 goto out_msr_bitmap;
7086 }
7087
7088 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7089 if (!vmx->nested.cached_vmcs12)
7090 goto out_cached_vmcs12;
7091
7092 if (enable_shadow_vmcs) {
7093 shadow_vmcs = alloc_vmcs();
7094 if (!shadow_vmcs)
7095 goto out_shadow_vmcs;
7096 /* mark vmcs as shadow */
7097 shadow_vmcs->revision_id |= (1u << 31);
7098 /* init shadow vmcs */
7099 vmcs_clear(shadow_vmcs);
7100 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7101 }
7102
7103 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7104 vmx->nested.vmcs02_num = 0;
7105
7106 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7107 HRTIMER_MODE_REL_PINNED);
7108 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7109
7110 vmx->nested.vmxon = true;
7111 return 0;
7112
7113out_shadow_vmcs:
7114 kfree(vmx->nested.cached_vmcs12);
7115
7116out_cached_vmcs12:
7117 free_page((unsigned long)vmx->nested.msr_bitmap);
7118
7119out_msr_bitmap:
7120 return -ENOMEM;
7121}
7122
ec378aee
NHE
7123/*
7124 * Emulate the VMXON instruction.
7125 * Currently, we just remember that VMX is active, and do not save or even
7126 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7127 * do not currently need to store anything in that guest-allocated memory
7128 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7129 * argument is different from the VMXON pointer (which the spec says they do).
7130 */
7131static int handle_vmon(struct kvm_vcpu *vcpu)
7132{
e29acc55 7133 int ret;
cbf71279
RK
7134 gpa_t vmptr;
7135 struct page *page;
ec378aee 7136 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
7137 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7138 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee 7139
70f3aac9
JM
7140 /*
7141 * The Intel VMX Instruction Reference lists a bunch of bits that are
7142 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7143 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7144 * Otherwise, we should fail with #UD. But most faulting conditions
7145 * have already been checked by hardware, prior to the VM-exit for
7146 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7147 * that bit set to 1 in non-root mode.
ec378aee 7148 */
70f3aac9 7149 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
ec378aee
NHE
7150 kvm_queue_exception(vcpu, UD_VECTOR);
7151 return 1;
7152 }
7153
145c28dd
AG
7154 if (vmx->nested.vmxon) {
7155 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7156 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7157 }
b3897a49 7158
3b84080b 7159 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7160 != VMXON_NEEDED_FEATURES) {
7161 kvm_inject_gp(vcpu, 0);
7162 return 1;
7163 }
7164
cbf71279 7165 if (nested_vmx_get_vmptr(vcpu, &vmptr))
21e7fbe7 7166 return 1;
cbf71279
RK
7167
7168 /*
7169 * SDM 3: 24.11.5
7170 * The first 4 bytes of VMXON region contain the supported
7171 * VMCS revision identifier
7172 *
7173 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7174 * which replaces physical address width with 32
7175 */
7176 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7177 nested_vmx_failInvalid(vcpu);
7178 return kvm_skip_emulated_instruction(vcpu);
7179 }
7180
5e2f30b7
DH
7181 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7182 if (is_error_page(page)) {
cbf71279
RK
7183 nested_vmx_failInvalid(vcpu);
7184 return kvm_skip_emulated_instruction(vcpu);
7185 }
7186 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7187 kunmap(page);
53a70daf 7188 kvm_release_page_clean(page);
cbf71279
RK
7189 nested_vmx_failInvalid(vcpu);
7190 return kvm_skip_emulated_instruction(vcpu);
7191 }
7192 kunmap(page);
53a70daf 7193 kvm_release_page_clean(page);
cbf71279
RK
7194
7195 vmx->nested.vmxon_ptr = vmptr;
e29acc55
JM
7196 ret = enter_vmx_operation(vcpu);
7197 if (ret)
7198 return ret;
ec378aee 7199
a25eb114 7200 nested_vmx_succeed(vcpu);
6affcbed 7201 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7202}
7203
7204/*
7205 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7206 * for running VMX instructions (except VMXON, whose prerequisites are
7207 * slightly different). It also specifies what exception to inject otherwise.
70f3aac9
JM
7208 * Note that many of these exceptions have priority over VM exits, so they
7209 * don't have to be checked again here.
ec378aee
NHE
7210 */
7211static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7212{
70f3aac9 7213 if (!to_vmx(vcpu)->nested.vmxon) {
ec378aee
NHE
7214 kvm_queue_exception(vcpu, UD_VECTOR);
7215 return 0;
7216 }
ec378aee
NHE
7217 return 1;
7218}
7219
8ca44e88
DM
7220static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7221{
7222 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7223 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7224}
7225
e7953d7f
AG
7226static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7227{
9a2a05b9
PB
7228 if (vmx->nested.current_vmptr == -1ull)
7229 return;
7230
012f83cb 7231 if (enable_shadow_vmcs) {
9a2a05b9
PB
7232 /* copy to memory all shadowed fields in case
7233 they were modified */
7234 copy_shadow_to_vmcs12(vmx);
7235 vmx->nested.sync_shadow_vmcs = false;
8ca44e88 7236 vmx_disable_shadow_vmcs(vmx);
012f83cb 7237 }
705699a1 7238 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7239
7240 /* Flush VMCS12 to guest memory */
9f744c59
PB
7241 kvm_vcpu_write_guest_page(&vmx->vcpu,
7242 vmx->nested.current_vmptr >> PAGE_SHIFT,
7243 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4f2777bc 7244
9a2a05b9 7245 vmx->nested.current_vmptr = -1ull;
e7953d7f
AG
7246}
7247
ec378aee
NHE
7248/*
7249 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7250 * just stops using VMX.
7251 */
7252static void free_nested(struct vcpu_vmx *vmx)
7253{
7254 if (!vmx->nested.vmxon)
7255 return;
9a2a05b9 7256
ec378aee 7257 vmx->nested.vmxon = false;
5c614b35 7258 free_vpid(vmx->nested.vpid02);
8ca44e88
DM
7259 vmx->nested.posted_intr_nv = -1;
7260 vmx->nested.current_vmptr = -1ull;
d048c098
RK
7261 if (vmx->nested.msr_bitmap) {
7262 free_page((unsigned long)vmx->nested.msr_bitmap);
7263 vmx->nested.msr_bitmap = NULL;
7264 }
355f4fb1 7265 if (enable_shadow_vmcs) {
8ca44e88 7266 vmx_disable_shadow_vmcs(vmx);
355f4fb1
JM
7267 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7268 free_vmcs(vmx->vmcs01.shadow_vmcs);
7269 vmx->vmcs01.shadow_vmcs = NULL;
7270 }
4f2777bc 7271 kfree(vmx->nested.cached_vmcs12);
fe3ef05c
NHE
7272 /* Unpin physical memory we referred to in current vmcs02 */
7273 if (vmx->nested.apic_access_page) {
53a70daf 7274 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 7275 vmx->nested.apic_access_page = NULL;
fe3ef05c 7276 }
a7c0b07d 7277 if (vmx->nested.virtual_apic_page) {
53a70daf 7278 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 7279 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7280 }
705699a1
WV
7281 if (vmx->nested.pi_desc_page) {
7282 kunmap(vmx->nested.pi_desc_page);
53a70daf 7283 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
7284 vmx->nested.pi_desc_page = NULL;
7285 vmx->nested.pi_desc = NULL;
7286 }
ff2f6fe9
NHE
7287
7288 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
7289}
7290
7291/* Emulate the VMXOFF instruction */
7292static int handle_vmoff(struct kvm_vcpu *vcpu)
7293{
7294 if (!nested_vmx_check_permission(vcpu))
7295 return 1;
7296 free_nested(to_vmx(vcpu));
a25eb114 7297 nested_vmx_succeed(vcpu);
6affcbed 7298 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7299}
7300
27d6c865
NHE
7301/* Emulate the VMCLEAR instruction */
7302static int handle_vmclear(struct kvm_vcpu *vcpu)
7303{
7304 struct vcpu_vmx *vmx = to_vmx(vcpu);
587d7e72 7305 u32 zero = 0;
27d6c865 7306 gpa_t vmptr;
27d6c865
NHE
7307
7308 if (!nested_vmx_check_permission(vcpu))
7309 return 1;
7310
cbf71279 7311 if (nested_vmx_get_vmptr(vcpu, &vmptr))
27d6c865 7312 return 1;
27d6c865 7313
cbf71279
RK
7314 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7315 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7316 return kvm_skip_emulated_instruction(vcpu);
7317 }
7318
7319 if (vmptr == vmx->nested.vmxon_ptr) {
7320 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7321 return kvm_skip_emulated_instruction(vcpu);
7322 }
7323
9a2a05b9 7324 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7325 nested_release_vmcs12(vmx);
27d6c865 7326
587d7e72
JM
7327 kvm_vcpu_write_guest(vcpu,
7328 vmptr + offsetof(struct vmcs12, launch_state),
7329 &zero, sizeof(zero));
27d6c865
NHE
7330
7331 nested_free_vmcs02(vmx, vmptr);
7332
27d6c865 7333 nested_vmx_succeed(vcpu);
6affcbed 7334 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7335}
7336
cd232ad0
NHE
7337static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7338
7339/* Emulate the VMLAUNCH instruction */
7340static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7341{
7342 return nested_vmx_run(vcpu, true);
7343}
7344
7345/* Emulate the VMRESUME instruction */
7346static int handle_vmresume(struct kvm_vcpu *vcpu)
7347{
7348
7349 return nested_vmx_run(vcpu, false);
7350}
7351
49f705c5
NHE
7352/*
7353 * Read a vmcs12 field. Since these can have varying lengths and we return
7354 * one type, we chose the biggest type (u64) and zero-extend the return value
7355 * to that size. Note that the caller, handle_vmread, might need to use only
7356 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7357 * 64-bit fields are to be returned).
7358 */
a2ae9df7
PB
7359static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7360 unsigned long field, u64 *ret)
49f705c5
NHE
7361{
7362 short offset = vmcs_field_to_offset(field);
7363 char *p;
7364
7365 if (offset < 0)
a2ae9df7 7366 return offset;
49f705c5
NHE
7367
7368 p = ((char *)(get_vmcs12(vcpu))) + offset;
7369
7370 switch (vmcs_field_type(field)) {
7371 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7372 *ret = *((natural_width *)p);
a2ae9df7 7373 return 0;
49f705c5
NHE
7374 case VMCS_FIELD_TYPE_U16:
7375 *ret = *((u16 *)p);
a2ae9df7 7376 return 0;
49f705c5
NHE
7377 case VMCS_FIELD_TYPE_U32:
7378 *ret = *((u32 *)p);
a2ae9df7 7379 return 0;
49f705c5
NHE
7380 case VMCS_FIELD_TYPE_U64:
7381 *ret = *((u64 *)p);
a2ae9df7 7382 return 0;
49f705c5 7383 default:
a2ae9df7
PB
7384 WARN_ON(1);
7385 return -ENOENT;
49f705c5
NHE
7386 }
7387}
7388
20b97fea 7389
a2ae9df7
PB
7390static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7391 unsigned long field, u64 field_value){
20b97fea
AG
7392 short offset = vmcs_field_to_offset(field);
7393 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7394 if (offset < 0)
a2ae9df7 7395 return offset;
20b97fea
AG
7396
7397 switch (vmcs_field_type(field)) {
7398 case VMCS_FIELD_TYPE_U16:
7399 *(u16 *)p = field_value;
a2ae9df7 7400 return 0;
20b97fea
AG
7401 case VMCS_FIELD_TYPE_U32:
7402 *(u32 *)p = field_value;
a2ae9df7 7403 return 0;
20b97fea
AG
7404 case VMCS_FIELD_TYPE_U64:
7405 *(u64 *)p = field_value;
a2ae9df7 7406 return 0;
20b97fea
AG
7407 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7408 *(natural_width *)p = field_value;
a2ae9df7 7409 return 0;
20b97fea 7410 default:
a2ae9df7
PB
7411 WARN_ON(1);
7412 return -ENOENT;
20b97fea
AG
7413 }
7414
7415}
7416
16f5b903
AG
7417static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7418{
7419 int i;
7420 unsigned long field;
7421 u64 field_value;
355f4fb1 7422 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c2bae893
MK
7423 const unsigned long *fields = shadow_read_write_fields;
7424 const int num_fields = max_shadow_read_write_fields;
16f5b903 7425
282da870
JK
7426 preempt_disable();
7427
16f5b903
AG
7428 vmcs_load(shadow_vmcs);
7429
7430 for (i = 0; i < num_fields; i++) {
7431 field = fields[i];
7432 switch (vmcs_field_type(field)) {
7433 case VMCS_FIELD_TYPE_U16:
7434 field_value = vmcs_read16(field);
7435 break;
7436 case VMCS_FIELD_TYPE_U32:
7437 field_value = vmcs_read32(field);
7438 break;
7439 case VMCS_FIELD_TYPE_U64:
7440 field_value = vmcs_read64(field);
7441 break;
7442 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7443 field_value = vmcs_readl(field);
7444 break;
a2ae9df7
PB
7445 default:
7446 WARN_ON(1);
7447 continue;
16f5b903
AG
7448 }
7449 vmcs12_write_any(&vmx->vcpu, field, field_value);
7450 }
7451
7452 vmcs_clear(shadow_vmcs);
7453 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7454
7455 preempt_enable();
16f5b903
AG
7456}
7457
c3114420
AG
7458static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7459{
c2bae893
MK
7460 const unsigned long *fields[] = {
7461 shadow_read_write_fields,
7462 shadow_read_only_fields
c3114420 7463 };
c2bae893 7464 const int max_fields[] = {
c3114420
AG
7465 max_shadow_read_write_fields,
7466 max_shadow_read_only_fields
7467 };
7468 int i, q;
7469 unsigned long field;
7470 u64 field_value = 0;
355f4fb1 7471 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7472
7473 vmcs_load(shadow_vmcs);
7474
c2bae893 7475 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7476 for (i = 0; i < max_fields[q]; i++) {
7477 field = fields[q][i];
7478 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7479
7480 switch (vmcs_field_type(field)) {
7481 case VMCS_FIELD_TYPE_U16:
7482 vmcs_write16(field, (u16)field_value);
7483 break;
7484 case VMCS_FIELD_TYPE_U32:
7485 vmcs_write32(field, (u32)field_value);
7486 break;
7487 case VMCS_FIELD_TYPE_U64:
7488 vmcs_write64(field, (u64)field_value);
7489 break;
7490 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7491 vmcs_writel(field, (long)field_value);
7492 break;
a2ae9df7
PB
7493 default:
7494 WARN_ON(1);
7495 break;
c3114420
AG
7496 }
7497 }
7498 }
7499
7500 vmcs_clear(shadow_vmcs);
7501 vmcs_load(vmx->loaded_vmcs->vmcs);
7502}
7503
49f705c5
NHE
7504/*
7505 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7506 * used before) all generate the same failure when it is missing.
7507 */
7508static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7509{
7510 struct vcpu_vmx *vmx = to_vmx(vcpu);
7511 if (vmx->nested.current_vmptr == -1ull) {
7512 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7513 return 0;
7514 }
7515 return 1;
7516}
7517
7518static int handle_vmread(struct kvm_vcpu *vcpu)
7519{
7520 unsigned long field;
7521 u64 field_value;
7522 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7523 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7524 gva_t gva = 0;
7525
eb277562 7526 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7527 return 1;
7528
6affcbed
KH
7529 if (!nested_vmx_check_vmcs12(vcpu))
7530 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7531
7532 /* Decode instruction info and find the field to read */
27e6fb5d 7533 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7534 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7535 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 7536 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7537 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7538 }
7539 /*
7540 * Now copy part of this value to register or memory, as requested.
7541 * Note that the number of bits actually copied is 32 or 64 depending
7542 * on the guest's mode (32 or 64 bit), not on the given field's length.
7543 */
7544 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7545 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7546 field_value);
7547 } else {
7548 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7549 vmx_instruction_info, true, &gva))
49f705c5 7550 return 1;
70f3aac9 7551 /* _system ok, as hardware has verified cpl=0 */
49f705c5
NHE
7552 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7553 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7554 }
7555
7556 nested_vmx_succeed(vcpu);
6affcbed 7557 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7558}
7559
7560
7561static int handle_vmwrite(struct kvm_vcpu *vcpu)
7562{
7563 unsigned long field;
7564 gva_t gva;
7565 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7566 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7567 /* The value to write might be 32 or 64 bits, depending on L1's long
7568 * mode, and eventually we need to write that into a field of several
7569 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7570 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7571 * bits into the vmcs12 field.
7572 */
7573 u64 field_value = 0;
7574 struct x86_exception e;
7575
eb277562 7576 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7577 return 1;
7578
6affcbed
KH
7579 if (!nested_vmx_check_vmcs12(vcpu))
7580 return kvm_skip_emulated_instruction(vcpu);
eb277562 7581
49f705c5 7582 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7583 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7584 (((vmx_instruction_info) >> 3) & 0xf));
7585 else {
7586 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7587 vmx_instruction_info, false, &gva))
49f705c5
NHE
7588 return 1;
7589 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7590 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7591 kvm_inject_page_fault(vcpu, &e);
7592 return 1;
7593 }
7594 }
7595
7596
27e6fb5d 7597 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7598 if (vmcs_field_readonly(field)) {
7599 nested_vmx_failValid(vcpu,
7600 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 7601 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7602 }
7603
a2ae9df7 7604 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 7605 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7606 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7607 }
7608
7609 nested_vmx_succeed(vcpu);
6affcbed 7610 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7611}
7612
a8bc284e
JM
7613static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7614{
7615 vmx->nested.current_vmptr = vmptr;
7616 if (enable_shadow_vmcs) {
7617 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7618 SECONDARY_EXEC_SHADOW_VMCS);
7619 vmcs_write64(VMCS_LINK_POINTER,
7620 __pa(vmx->vmcs01.shadow_vmcs));
7621 vmx->nested.sync_shadow_vmcs = true;
7622 }
7623}
7624
63846663
NHE
7625/* Emulate the VMPTRLD instruction */
7626static int handle_vmptrld(struct kvm_vcpu *vcpu)
7627{
7628 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7629 gpa_t vmptr;
63846663
NHE
7630
7631 if (!nested_vmx_check_permission(vcpu))
7632 return 1;
7633
cbf71279 7634 if (nested_vmx_get_vmptr(vcpu, &vmptr))
63846663 7635 return 1;
63846663 7636
cbf71279
RK
7637 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7638 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7639 return kvm_skip_emulated_instruction(vcpu);
7640 }
7641
7642 if (vmptr == vmx->nested.vmxon_ptr) {
7643 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7644 return kvm_skip_emulated_instruction(vcpu);
7645 }
7646
63846663
NHE
7647 if (vmx->nested.current_vmptr != vmptr) {
7648 struct vmcs12 *new_vmcs12;
7649 struct page *page;
5e2f30b7
DH
7650 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7651 if (is_error_page(page)) {
63846663 7652 nested_vmx_failInvalid(vcpu);
6affcbed 7653 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7654 }
7655 new_vmcs12 = kmap(page);
7656 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7657 kunmap(page);
53a70daf 7658 kvm_release_page_clean(page);
63846663
NHE
7659 nested_vmx_failValid(vcpu,
7660 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 7661 return kvm_skip_emulated_instruction(vcpu);
63846663 7662 }
63846663 7663
9a2a05b9 7664 nested_release_vmcs12(vmx);
4f2777bc
DM
7665 /*
7666 * Load VMCS12 from guest memory since it is not already
7667 * cached.
7668 */
9f744c59
PB
7669 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7670 kunmap(page);
53a70daf 7671 kvm_release_page_clean(page);
9f744c59 7672
a8bc284e 7673 set_current_vmptr(vmx, vmptr);
63846663
NHE
7674 }
7675
7676 nested_vmx_succeed(vcpu);
6affcbed 7677 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7678}
7679
6a4d7550
NHE
7680/* Emulate the VMPTRST instruction */
7681static int handle_vmptrst(struct kvm_vcpu *vcpu)
7682{
7683 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7684 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7685 gva_t vmcs_gva;
7686 struct x86_exception e;
7687
7688 if (!nested_vmx_check_permission(vcpu))
7689 return 1;
7690
7691 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7692 vmx_instruction_info, true, &vmcs_gva))
6a4d7550 7693 return 1;
70f3aac9 7694 /* ok to use *_system, as hardware has verified cpl=0 */
6a4d7550
NHE
7695 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7696 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7697 sizeof(u64), &e)) {
7698 kvm_inject_page_fault(vcpu, &e);
7699 return 1;
7700 }
7701 nested_vmx_succeed(vcpu);
6affcbed 7702 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
7703}
7704
bfd0a56b
NHE
7705/* Emulate the INVEPT instruction */
7706static int handle_invept(struct kvm_vcpu *vcpu)
7707{
b9c237bb 7708 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7709 u32 vmx_instruction_info, types;
7710 unsigned long type;
7711 gva_t gva;
7712 struct x86_exception e;
7713 struct {
7714 u64 eptp, gpa;
7715 } operand;
bfd0a56b 7716
b9c237bb
WV
7717 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7718 SECONDARY_EXEC_ENABLE_EPT) ||
7719 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7720 kvm_queue_exception(vcpu, UD_VECTOR);
7721 return 1;
7722 }
7723
7724 if (!nested_vmx_check_permission(vcpu))
7725 return 1;
7726
bfd0a56b 7727 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7728 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7729
b9c237bb 7730 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 7731
85c856b3 7732 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
7733 nested_vmx_failValid(vcpu,
7734 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7735 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7736 }
7737
7738 /* According to the Intel VMX instruction reference, the memory
7739 * operand is read even if it isn't needed (e.g., for type==global)
7740 */
7741 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7742 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7743 return 1;
7744 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7745 sizeof(operand), &e)) {
7746 kvm_inject_page_fault(vcpu, &e);
7747 return 1;
7748 }
7749
7750 switch (type) {
bfd0a56b 7751 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7752 /*
7753 * TODO: track mappings and invalidate
7754 * single context requests appropriately
7755 */
7756 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7757 kvm_mmu_sync_roots(vcpu);
77c3913b 7758 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7759 nested_vmx_succeed(vcpu);
7760 break;
7761 default:
7762 BUG_ON(1);
7763 break;
7764 }
7765
6affcbed 7766 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7767}
7768
a642fc30
PM
7769static int handle_invvpid(struct kvm_vcpu *vcpu)
7770{
99b83ac8
WL
7771 struct vcpu_vmx *vmx = to_vmx(vcpu);
7772 u32 vmx_instruction_info;
7773 unsigned long type, types;
7774 gva_t gva;
7775 struct x86_exception e;
40352605
JM
7776 struct {
7777 u64 vpid;
7778 u64 gla;
7779 } operand;
99b83ac8
WL
7780
7781 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7782 SECONDARY_EXEC_ENABLE_VPID) ||
7783 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7784 kvm_queue_exception(vcpu, UD_VECTOR);
7785 return 1;
7786 }
7787
7788 if (!nested_vmx_check_permission(vcpu))
7789 return 1;
7790
7791 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7792 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7793
bcdde302
JD
7794 types = (vmx->nested.nested_vmx_vpid_caps &
7795 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 7796
85c856b3 7797 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
7798 nested_vmx_failValid(vcpu,
7799 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7800 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7801 }
7802
7803 /* according to the intel vmx instruction reference, the memory
7804 * operand is read even if it isn't needed (e.g., for type==global)
7805 */
7806 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7807 vmx_instruction_info, false, &gva))
7808 return 1;
40352605
JM
7809 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7810 sizeof(operand), &e)) {
99b83ac8
WL
7811 kvm_inject_page_fault(vcpu, &e);
7812 return 1;
7813 }
40352605
JM
7814 if (operand.vpid >> 16) {
7815 nested_vmx_failValid(vcpu,
7816 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7817 return kvm_skip_emulated_instruction(vcpu);
7818 }
99b83ac8
WL
7819
7820 switch (type) {
bcdde302 7821 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
40352605
JM
7822 if (is_noncanonical_address(operand.gla)) {
7823 nested_vmx_failValid(vcpu,
7824 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7825 return kvm_skip_emulated_instruction(vcpu);
7826 }
7827 /* fall through */
ef697a71 7828 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302 7829 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
40352605 7830 if (!operand.vpid) {
bcdde302
JD
7831 nested_vmx_failValid(vcpu,
7832 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7833 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
7834 }
7835 break;
99b83ac8 7836 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
7837 break;
7838 default:
bcdde302 7839 WARN_ON_ONCE(1);
6affcbed 7840 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7841 }
7842
bcdde302
JD
7843 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7844 nested_vmx_succeed(vcpu);
7845
6affcbed 7846 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
7847}
7848
843e4330
KH
7849static int handle_pml_full(struct kvm_vcpu *vcpu)
7850{
7851 unsigned long exit_qualification;
7852
7853 trace_kvm_pml_full(vcpu->vcpu_id);
7854
7855 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7856
7857 /*
7858 * PML buffer FULL happened while executing iret from NMI,
7859 * "blocked by NMI" bit has to be set before next VM entry.
7860 */
7861 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
843e4330
KH
7862 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7863 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7864 GUEST_INTR_STATE_NMI);
7865
7866 /*
7867 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7868 * here.., and there's no userspace involvement needed for PML.
7869 */
7870 return 1;
7871}
7872
64672c95
YJ
7873static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7874{
7875 kvm_lapic_expired_hv_timer(vcpu);
7876 return 1;
7877}
7878
41ab9372
BD
7879static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
7880{
7881 struct vcpu_vmx *vmx = to_vmx(vcpu);
7882 u64 mask = address & 0x7;
7883 int maxphyaddr = cpuid_maxphyaddr(vcpu);
7884
7885 /* Check for memory type validity */
7886 switch (mask) {
7887 case 0:
7888 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
7889 return false;
7890 break;
7891 case 6:
7892 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
7893 return false;
7894 break;
7895 default:
7896 return false;
7897 }
7898
7899 /* Bits 5:3 must be 3 */
7900 if (((address >> VMX_EPT_GAW_EPTP_SHIFT) & 0x7) != VMX_EPT_DEFAULT_GAW)
7901 return false;
7902
7903 /* Reserved bits should not be set */
7904 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
7905 return false;
7906
7907 /* AD, if set, should be supported */
7908 if ((address & VMX_EPT_AD_ENABLE_BIT)) {
7909 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
7910 return false;
7911 }
7912
7913 return true;
7914}
7915
7916static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
7917 struct vmcs12 *vmcs12)
7918{
7919 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
7920 u64 address;
7921 bool accessed_dirty;
7922 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7923
7924 if (!nested_cpu_has_eptp_switching(vmcs12) ||
7925 !nested_cpu_has_ept(vmcs12))
7926 return 1;
7927
7928 if (index >= VMFUNC_EPTP_ENTRIES)
7929 return 1;
7930
7931
7932 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
7933 &address, index * 8, 8))
7934 return 1;
7935
7936 accessed_dirty = !!(address & VMX_EPT_AD_ENABLE_BIT);
7937
7938 /*
7939 * If the (L2) guest does a vmfunc to the currently
7940 * active ept pointer, we don't have to do anything else
7941 */
7942 if (vmcs12->ept_pointer != address) {
7943 if (!valid_ept_address(vcpu, address))
7944 return 1;
7945
7946 kvm_mmu_unload(vcpu);
7947 mmu->ept_ad = accessed_dirty;
7948 mmu->base_role.ad_disabled = !accessed_dirty;
7949 vmcs12->ept_pointer = address;
7950 /*
7951 * TODO: Check what's the correct approach in case
7952 * mmu reload fails. Currently, we just let the next
7953 * reload potentially fail
7954 */
7955 kvm_mmu_reload(vcpu);
7956 }
7957
7958 return 0;
7959}
7960
2a499e49
BD
7961static int handle_vmfunc(struct kvm_vcpu *vcpu)
7962{
27c42a1b
BD
7963 struct vcpu_vmx *vmx = to_vmx(vcpu);
7964 struct vmcs12 *vmcs12;
7965 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
7966
7967 /*
7968 * VMFUNC is only supported for nested guests, but we always enable the
7969 * secondary control for simplicity; for non-nested mode, fake that we
7970 * didn't by injecting #UD.
7971 */
7972 if (!is_guest_mode(vcpu)) {
7973 kvm_queue_exception(vcpu, UD_VECTOR);
7974 return 1;
7975 }
7976
7977 vmcs12 = get_vmcs12(vcpu);
7978 if ((vmcs12->vm_function_control & (1 << function)) == 0)
7979 goto fail;
41ab9372
BD
7980
7981 switch (function) {
7982 case 0:
7983 if (nested_vmx_eptp_switching(vcpu, vmcs12))
7984 goto fail;
7985 break;
7986 default:
7987 goto fail;
7988 }
7989 return kvm_skip_emulated_instruction(vcpu);
27c42a1b
BD
7990
7991fail:
7992 nested_vmx_vmexit(vcpu, vmx->exit_reason,
7993 vmcs_read32(VM_EXIT_INTR_INFO),
7994 vmcs_readl(EXIT_QUALIFICATION));
2a499e49
BD
7995 return 1;
7996}
7997
6aa8b732
AK
7998/*
7999 * The exit handlers return 1 if the exit was handled fully and guest execution
8000 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8001 * to be done to userspace and return 0.
8002 */
772e0318 8003static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
8004 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8005 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 8006 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 8007 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 8008 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
8009 [EXIT_REASON_CR_ACCESS] = handle_cr,
8010 [EXIT_REASON_DR_ACCESS] = handle_dr,
8011 [EXIT_REASON_CPUID] = handle_cpuid,
8012 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8013 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8014 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8015 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 8016 [EXIT_REASON_INVD] = handle_invd,
a7052897 8017 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 8018 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 8019 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 8020 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 8021 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 8022 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 8023 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 8024 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 8025 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 8026 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
8027 [EXIT_REASON_VMOFF] = handle_vmoff,
8028 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
8029 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8030 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 8031 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 8032 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 8033 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 8034 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 8035 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 8036 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
8037 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8038 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 8039 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 8040 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 8041 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 8042 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 8043 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 8044 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
8045 [EXIT_REASON_XSAVES] = handle_xsaves,
8046 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 8047 [EXIT_REASON_PML_FULL] = handle_pml_full,
2a499e49 8048 [EXIT_REASON_VMFUNC] = handle_vmfunc,
64672c95 8049 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
8050};
8051
8052static const int kvm_vmx_max_exit_handlers =
50a3485c 8053 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 8054
908a7bdd
JK
8055static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8056 struct vmcs12 *vmcs12)
8057{
8058 unsigned long exit_qualification;
8059 gpa_t bitmap, last_bitmap;
8060 unsigned int port;
8061 int size;
8062 u8 b;
8063
908a7bdd 8064 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 8065 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
8066
8067 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8068
8069 port = exit_qualification >> 16;
8070 size = (exit_qualification & 7) + 1;
8071
8072 last_bitmap = (gpa_t)-1;
8073 b = -1;
8074
8075 while (size > 0) {
8076 if (port < 0x8000)
8077 bitmap = vmcs12->io_bitmap_a;
8078 else if (port < 0x10000)
8079 bitmap = vmcs12->io_bitmap_b;
8080 else
1d804d07 8081 return true;
908a7bdd
JK
8082 bitmap += (port & 0x7fff) / 8;
8083
8084 if (last_bitmap != bitmap)
54bf36aa 8085 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 8086 return true;
908a7bdd 8087 if (b & (1 << (port & 7)))
1d804d07 8088 return true;
908a7bdd
JK
8089
8090 port++;
8091 size--;
8092 last_bitmap = bitmap;
8093 }
8094
1d804d07 8095 return false;
908a7bdd
JK
8096}
8097
644d711a
NHE
8098/*
8099 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8100 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8101 * disinterest in the current event (read or write a specific MSR) by using an
8102 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8103 */
8104static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8105 struct vmcs12 *vmcs12, u32 exit_reason)
8106{
8107 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8108 gpa_t bitmap;
8109
cbd29cb6 8110 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 8111 return true;
644d711a
NHE
8112
8113 /*
8114 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8115 * for the four combinations of read/write and low/high MSR numbers.
8116 * First we need to figure out which of the four to use:
8117 */
8118 bitmap = vmcs12->msr_bitmap;
8119 if (exit_reason == EXIT_REASON_MSR_WRITE)
8120 bitmap += 2048;
8121 if (msr_index >= 0xc0000000) {
8122 msr_index -= 0xc0000000;
8123 bitmap += 1024;
8124 }
8125
8126 /* Then read the msr_index'th bit from this bitmap: */
8127 if (msr_index < 1024*8) {
8128 unsigned char b;
54bf36aa 8129 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 8130 return true;
644d711a
NHE
8131 return 1 & (b >> (msr_index & 7));
8132 } else
1d804d07 8133 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
8134}
8135
8136/*
8137 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8138 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8139 * intercept (via guest_host_mask etc.) the current event.
8140 */
8141static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8142 struct vmcs12 *vmcs12)
8143{
8144 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8145 int cr = exit_qualification & 15;
e1d39b17
JS
8146 int reg;
8147 unsigned long val;
644d711a
NHE
8148
8149 switch ((exit_qualification >> 4) & 3) {
8150 case 0: /* mov to cr */
e1d39b17
JS
8151 reg = (exit_qualification >> 8) & 15;
8152 val = kvm_register_readl(vcpu, reg);
644d711a
NHE
8153 switch (cr) {
8154 case 0:
8155 if (vmcs12->cr0_guest_host_mask &
8156 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8157 return true;
644d711a
NHE
8158 break;
8159 case 3:
8160 if ((vmcs12->cr3_target_count >= 1 &&
8161 vmcs12->cr3_target_value0 == val) ||
8162 (vmcs12->cr3_target_count >= 2 &&
8163 vmcs12->cr3_target_value1 == val) ||
8164 (vmcs12->cr3_target_count >= 3 &&
8165 vmcs12->cr3_target_value2 == val) ||
8166 (vmcs12->cr3_target_count >= 4 &&
8167 vmcs12->cr3_target_value3 == val))
1d804d07 8168 return false;
644d711a 8169 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 8170 return true;
644d711a
NHE
8171 break;
8172 case 4:
8173 if (vmcs12->cr4_guest_host_mask &
8174 (vmcs12->cr4_read_shadow ^ val))
1d804d07 8175 return true;
644d711a
NHE
8176 break;
8177 case 8:
8178 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 8179 return true;
644d711a
NHE
8180 break;
8181 }
8182 break;
8183 case 2: /* clts */
8184 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8185 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 8186 return true;
644d711a
NHE
8187 break;
8188 case 1: /* mov from cr */
8189 switch (cr) {
8190 case 3:
8191 if (vmcs12->cpu_based_vm_exec_control &
8192 CPU_BASED_CR3_STORE_EXITING)
1d804d07 8193 return true;
644d711a
NHE
8194 break;
8195 case 8:
8196 if (vmcs12->cpu_based_vm_exec_control &
8197 CPU_BASED_CR8_STORE_EXITING)
1d804d07 8198 return true;
644d711a
NHE
8199 break;
8200 }
8201 break;
8202 case 3: /* lmsw */
8203 /*
8204 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8205 * cr0. Other attempted changes are ignored, with no exit.
8206 */
e1d39b17 8207 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
644d711a
NHE
8208 if (vmcs12->cr0_guest_host_mask & 0xe &
8209 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8210 return true;
644d711a
NHE
8211 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8212 !(vmcs12->cr0_read_shadow & 0x1) &&
8213 (val & 0x1))
1d804d07 8214 return true;
644d711a
NHE
8215 break;
8216 }
1d804d07 8217 return false;
644d711a
NHE
8218}
8219
8220/*
8221 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8222 * should handle it ourselves in L0 (and then continue L2). Only call this
8223 * when in is_guest_mode (L2).
8224 */
7313c698 8225static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
644d711a 8226{
644d711a
NHE
8227 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8228 struct vcpu_vmx *vmx = to_vmx(vcpu);
8229 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8230
542060ea
JK
8231 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8232 vmcs_readl(EXIT_QUALIFICATION),
8233 vmx->idt_vectoring_info,
8234 intr_info,
8235 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8236 KVM_ISA_VMX);
8237
c9f04407
DM
8238 /*
8239 * The host physical addresses of some pages of guest memory
8240 * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8241 * may write to these pages via their host physical address while
8242 * L2 is running, bypassing any address-translation-based dirty
8243 * tracking (e.g. EPT write protection).
8244 *
8245 * Mark them dirty on every exit from L2 to prevent them from
8246 * getting out of sync with dirty tracking.
8247 */
8248 nested_mark_vmcs12_pages_dirty(vcpu);
8249
644d711a 8250 if (vmx->nested.nested_run_pending)
1d804d07 8251 return false;
644d711a
NHE
8252
8253 if (unlikely(vmx->fail)) {
bd80158a
JK
8254 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8255 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 8256 return true;
644d711a
NHE
8257 }
8258
8259 switch (exit_reason) {
8260 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8261 if (is_nmi(intr_info))
1d804d07 8262 return false;
644d711a 8263 else if (is_page_fault(intr_info))
52a5c155 8264 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
e504c909 8265 else if (is_no_device(intr_info) &&
ccf9844e 8266 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8267 return false;
6f05485d
JK
8268 else if (is_debug(intr_info) &&
8269 vcpu->guest_debug &
8270 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8271 return false;
8272 else if (is_breakpoint(intr_info) &&
8273 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8274 return false;
644d711a
NHE
8275 return vmcs12->exception_bitmap &
8276 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8277 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8278 return false;
644d711a 8279 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8280 return true;
644d711a 8281 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8282 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8283 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8284 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8285 case EXIT_REASON_TASK_SWITCH:
1d804d07 8286 return true;
644d711a 8287 case EXIT_REASON_CPUID:
1d804d07 8288 return true;
644d711a
NHE
8289 case EXIT_REASON_HLT:
8290 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8291 case EXIT_REASON_INVD:
1d804d07 8292 return true;
644d711a
NHE
8293 case EXIT_REASON_INVLPG:
8294 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8295 case EXIT_REASON_RDPMC:
8296 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
a5f46457
PB
8297 case EXIT_REASON_RDRAND:
8298 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8299 case EXIT_REASON_RDSEED:
8300 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
b3a2a907 8301 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8302 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8303 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8304 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8305 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8306 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8307 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8308 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8309 /*
8310 * VMX instructions trap unconditionally. This allows L1 to
8311 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8312 */
1d804d07 8313 return true;
644d711a
NHE
8314 case EXIT_REASON_CR_ACCESS:
8315 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8316 case EXIT_REASON_DR_ACCESS:
8317 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8318 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8319 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8320 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8321 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8322 case EXIT_REASON_MSR_READ:
8323 case EXIT_REASON_MSR_WRITE:
8324 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8325 case EXIT_REASON_INVALID_STATE:
1d804d07 8326 return true;
644d711a
NHE
8327 case EXIT_REASON_MWAIT_INSTRUCTION:
8328 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8329 case EXIT_REASON_MONITOR_TRAP_FLAG:
8330 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8331 case EXIT_REASON_MONITOR_INSTRUCTION:
8332 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8333 case EXIT_REASON_PAUSE_INSTRUCTION:
8334 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8335 nested_cpu_has2(vmcs12,
8336 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8337 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8338 return false;
644d711a 8339 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8340 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8341 case EXIT_REASON_APIC_ACCESS:
8342 return nested_cpu_has2(vmcs12,
8343 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8344 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8345 case EXIT_REASON_EOI_INDUCED:
8346 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8347 return true;
644d711a 8348 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8349 /*
8350 * L0 always deals with the EPT violation. If nested EPT is
8351 * used, and the nested mmu code discovers that the address is
8352 * missing in the guest EPT table (EPT12), the EPT violation
8353 * will be injected with nested_ept_inject_page_fault()
8354 */
1d804d07 8355 return false;
644d711a 8356 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8357 /*
8358 * L2 never uses directly L1's EPT, but rather L0's own EPT
8359 * table (shadow on EPT) or a merged EPT table that L0 built
8360 * (EPT on EPT). So any problems with the structure of the
8361 * table is L0's fault.
8362 */
1d804d07 8363 return false;
90a2db6d
PB
8364 case EXIT_REASON_INVPCID:
8365 return
8366 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8367 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
644d711a
NHE
8368 case EXIT_REASON_WBINVD:
8369 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8370 case EXIT_REASON_XSETBV:
1d804d07 8371 return true;
81dc01f7
WL
8372 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8373 /*
8374 * This should never happen, since it is not possible to
8375 * set XSS to a non-zero value---neither in L1 nor in L2.
8376 * If if it were, XSS would have to be checked against
8377 * the XSS exit bitmap in vmcs12.
8378 */
8379 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8380 case EXIT_REASON_PREEMPTION_TIMER:
8381 return false;
ab007cc9 8382 case EXIT_REASON_PML_FULL:
03efce6f 8383 /* We emulate PML support to L1. */
ab007cc9 8384 return false;
2a499e49
BD
8385 case EXIT_REASON_VMFUNC:
8386 /* VM functions are emulated through L2->L0 vmexits. */
8387 return false;
644d711a 8388 default:
1d804d07 8389 return true;
644d711a
NHE
8390 }
8391}
8392
7313c698
PB
8393static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8394{
8395 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8396
8397 /*
8398 * At this point, the exit interruption info in exit_intr_info
8399 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8400 * we need to query the in-kernel LAPIC.
8401 */
8402 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8403 if ((exit_intr_info &
8404 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8405 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8406 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8407 vmcs12->vm_exit_intr_error_code =
8408 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8409 }
8410
8411 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8412 vmcs_readl(EXIT_QUALIFICATION));
8413 return 1;
8414}
8415
586f9607
AK
8416static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8417{
8418 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8419 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8420}
8421
a3eaa864 8422static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8423{
a3eaa864
KH
8424 if (vmx->pml_pg) {
8425 __free_page(vmx->pml_pg);
8426 vmx->pml_pg = NULL;
8427 }
843e4330
KH
8428}
8429
54bf36aa 8430static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8431{
54bf36aa 8432 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8433 u64 *pml_buf;
8434 u16 pml_idx;
8435
8436 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8437
8438 /* Do nothing if PML buffer is empty */
8439 if (pml_idx == (PML_ENTITY_NUM - 1))
8440 return;
8441
8442 /* PML index always points to next available PML buffer entity */
8443 if (pml_idx >= PML_ENTITY_NUM)
8444 pml_idx = 0;
8445 else
8446 pml_idx++;
8447
8448 pml_buf = page_address(vmx->pml_pg);
8449 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8450 u64 gpa;
8451
8452 gpa = pml_buf[pml_idx];
8453 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8454 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8455 }
8456
8457 /* reset PML index */
8458 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8459}
8460
8461/*
8462 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8463 * Called before reporting dirty_bitmap to userspace.
8464 */
8465static void kvm_flush_pml_buffers(struct kvm *kvm)
8466{
8467 int i;
8468 struct kvm_vcpu *vcpu;
8469 /*
8470 * We only need to kick vcpu out of guest mode here, as PML buffer
8471 * is flushed at beginning of all VMEXITs, and it's obvious that only
8472 * vcpus running in guest are possible to have unflushed GPAs in PML
8473 * buffer.
8474 */
8475 kvm_for_each_vcpu(i, vcpu, kvm)
8476 kvm_vcpu_kick(vcpu);
8477}
8478
4eb64dce
PB
8479static void vmx_dump_sel(char *name, uint32_t sel)
8480{
8481 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
96794e4e 8482 name, vmcs_read16(sel),
4eb64dce
PB
8483 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8484 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8485 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8486}
8487
8488static void vmx_dump_dtsel(char *name, uint32_t limit)
8489{
8490 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8491 name, vmcs_read32(limit),
8492 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8493}
8494
8495static void dump_vmcs(void)
8496{
8497 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8498 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8499 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8500 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8501 u32 secondary_exec_control = 0;
8502 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8503 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8504 int i, n;
8505
8506 if (cpu_has_secondary_exec_ctrls())
8507 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8508
8509 pr_err("*** Guest State ***\n");
8510 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8511 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8512 vmcs_readl(CR0_GUEST_HOST_MASK));
8513 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8514 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8515 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8516 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8517 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8518 {
845c5b40
PB
8519 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8520 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8521 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8522 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8523 }
8524 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8525 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8526 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8527 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8528 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8529 vmcs_readl(GUEST_SYSENTER_ESP),
8530 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8531 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8532 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8533 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8534 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8535 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8536 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8537 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8538 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8539 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8540 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8541 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8542 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8543 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8544 efer, vmcs_read64(GUEST_IA32_PAT));
8545 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8546 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8547 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8548 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8549 pr_err("PerfGlobCtl = 0x%016llx\n",
8550 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8551 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8552 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8553 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8554 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8555 vmcs_read32(GUEST_ACTIVITY_STATE));
8556 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8557 pr_err("InterruptStatus = %04x\n",
8558 vmcs_read16(GUEST_INTR_STATUS));
8559
8560 pr_err("*** Host State ***\n");
8561 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8562 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8563 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8564 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8565 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8566 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8567 vmcs_read16(HOST_TR_SELECTOR));
8568 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8569 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8570 vmcs_readl(HOST_TR_BASE));
8571 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8572 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8573 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8574 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8575 vmcs_readl(HOST_CR4));
8576 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8577 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8578 vmcs_read32(HOST_IA32_SYSENTER_CS),
8579 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8580 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8581 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8582 vmcs_read64(HOST_IA32_EFER),
8583 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8584 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8585 pr_err("PerfGlobCtl = 0x%016llx\n",
8586 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8587
8588 pr_err("*** Control State ***\n");
8589 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8590 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8591 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8592 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8593 vmcs_read32(EXCEPTION_BITMAP),
8594 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8595 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8596 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8597 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8598 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8599 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8600 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8601 vmcs_read32(VM_EXIT_INTR_INFO),
8602 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8603 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8604 pr_err(" reason=%08x qualification=%016lx\n",
8605 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8606 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8607 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8608 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8609 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8610 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8611 pr_err("TSC Multiplier = 0x%016llx\n",
8612 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8613 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8614 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8615 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8616 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8617 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8618 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8619 n = vmcs_read32(CR3_TARGET_COUNT);
8620 for (i = 0; i + 1 < n; i += 4)
8621 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8622 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8623 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8624 if (i < n)
8625 pr_err("CR3 target%u=%016lx\n",
8626 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8627 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8628 pr_err("PLE Gap=%08x Window=%08x\n",
8629 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8630 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8631 pr_err("Virtual processor ID = 0x%04x\n",
8632 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8633}
8634
6aa8b732
AK
8635/*
8636 * The guest has exited. See if we can fix it or if we need userspace
8637 * assistance.
8638 */
851ba692 8639static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8640{
29bd8a78 8641 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8642 u32 exit_reason = vmx->exit_reason;
1155f76a 8643 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8644
8b89fe1f 8645 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
db1c056c 8646 vcpu->arch.gpa_available = false;
8b89fe1f 8647
843e4330
KH
8648 /*
8649 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8650 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8651 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8652 * mode as if vcpus is in root mode, the PML buffer must has been
8653 * flushed already.
8654 */
8655 if (enable_pml)
54bf36aa 8656 vmx_flush_pml_buffer(vcpu);
843e4330 8657
80ced186 8658 /* If guest state is invalid, start emulating */
14168786 8659 if (vmx->emulation_required)
80ced186 8660 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8661
7313c698
PB
8662 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8663 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
644d711a 8664
5120702e 8665 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8666 dump_vmcs();
5120702e
MG
8667 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8668 vcpu->run->fail_entry.hardware_entry_failure_reason
8669 = exit_reason;
8670 return 0;
8671 }
8672
29bd8a78 8673 if (unlikely(vmx->fail)) {
851ba692
AK
8674 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8675 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8676 = vmcs_read32(VM_INSTRUCTION_ERROR);
8677 return 0;
8678 }
6aa8b732 8679
b9bf6882
XG
8680 /*
8681 * Note:
8682 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8683 * delivery event since it indicates guest is accessing MMIO.
8684 * The vm-exit can be triggered again after return to guest that
8685 * will cause infinite loop.
8686 */
d77c26fc 8687 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8688 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8689 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8690 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8691 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8692 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8693 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
70bcd708 8694 vcpu->run->internal.ndata = 3;
b9bf6882
XG
8695 vcpu->run->internal.data[0] = vectoring_info;
8696 vcpu->run->internal.data[1] = exit_reason;
70bcd708
PB
8697 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8698 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8699 vcpu->run->internal.ndata++;
8700 vcpu->run->internal.data[3] =
8701 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8702 }
b9bf6882
XG
8703 return 0;
8704 }
3b86cd99 8705
6aa8b732
AK
8706 if (exit_reason < kvm_vmx_max_exit_handlers
8707 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8708 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8709 else {
6c6c5e03
RK
8710 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8711 exit_reason);
2bc19dc3
MT
8712 kvm_queue_exception(vcpu, UD_VECTOR);
8713 return 1;
6aa8b732 8714 }
6aa8b732
AK
8715}
8716
95ba8273 8717static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8718{
a7c0b07d
WL
8719 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8720
8721 if (is_guest_mode(vcpu) &&
8722 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8723 return;
8724
95ba8273 8725 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8726 vmcs_write32(TPR_THRESHOLD, 0);
8727 return;
8728 }
8729
95ba8273 8730 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8731}
8732
8d14695f
YZ
8733static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8734{
8735 u32 sec_exec_control;
8736
dccbfcf5
RK
8737 /* Postpone execution until vmcs01 is the current VMCS. */
8738 if (is_guest_mode(vcpu)) {
8739 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8740 return;
8741 }
8742
f6e90f9e 8743 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8744 return;
8745
35754c98 8746 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8747 return;
8748
8749 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8750
8751 if (set) {
8752 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8753 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8754 } else {
8755 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8756 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
fb6c8198 8757 vmx_flush_tlb_ept_only(vcpu);
8d14695f
YZ
8758 }
8759 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8760
8761 vmx_set_msr_bitmap(vcpu);
8762}
8763
38b99173
TC
8764static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8765{
8766 struct vcpu_vmx *vmx = to_vmx(vcpu);
8767
8768 /*
8769 * Currently we do not handle the nested case where L2 has an
8770 * APIC access page of its own; that page is still pinned.
8771 * Hence, we skip the case where the VCPU is in guest mode _and_
8772 * L1 prepared an APIC access page for L2.
8773 *
8774 * For the case where L1 and L2 share the same APIC access page
8775 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8776 * in the vmcs12), this function will only update either the vmcs01
8777 * or the vmcs02. If the former, the vmcs02 will be updated by
8778 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8779 * the next L2->L1 exit.
8780 */
8781 if (!is_guest_mode(vcpu) ||
4f2777bc 8782 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
fb6c8198 8783 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
38b99173 8784 vmcs_write64(APIC_ACCESS_ADDR, hpa);
fb6c8198
JM
8785 vmx_flush_tlb_ept_only(vcpu);
8786 }
38b99173
TC
8787}
8788
67c9dddc 8789static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8790{
8791 u16 status;
8792 u8 old;
8793
67c9dddc
PB
8794 if (max_isr == -1)
8795 max_isr = 0;
c7c9c56c
YZ
8796
8797 status = vmcs_read16(GUEST_INTR_STATUS);
8798 old = status >> 8;
67c9dddc 8799 if (max_isr != old) {
c7c9c56c 8800 status &= 0xff;
67c9dddc 8801 status |= max_isr << 8;
c7c9c56c
YZ
8802 vmcs_write16(GUEST_INTR_STATUS, status);
8803 }
8804}
8805
8806static void vmx_set_rvi(int vector)
8807{
8808 u16 status;
8809 u8 old;
8810
4114c27d
WW
8811 if (vector == -1)
8812 vector = 0;
8813
c7c9c56c
YZ
8814 status = vmcs_read16(GUEST_INTR_STATUS);
8815 old = (u8)status & 0xff;
8816 if ((u8)vector != old) {
8817 status &= ~0xff;
8818 status |= (u8)vector;
8819 vmcs_write16(GUEST_INTR_STATUS, status);
8820 }
8821}
8822
8823static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8824{
4114c27d
WW
8825 if (!is_guest_mode(vcpu)) {
8826 vmx_set_rvi(max_irr);
8827 return;
8828 }
8829
c7c9c56c
YZ
8830 if (max_irr == -1)
8831 return;
8832
963fee16 8833 /*
4114c27d
WW
8834 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8835 * handles it.
963fee16 8836 */
4114c27d 8837 if (nested_exit_on_intr(vcpu))
963fee16
WL
8838 return;
8839
963fee16 8840 /*
4114c27d 8841 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8842 * is run without virtual interrupt delivery.
8843 */
8844 if (!kvm_event_needs_reinjection(vcpu) &&
8845 vmx_interrupt_allowed(vcpu)) {
8846 kvm_queue_interrupt(vcpu, max_irr, false);
8847 vmx_inject_irq(vcpu);
8848 }
c7c9c56c
YZ
8849}
8850
76dfafd5 8851static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
8852{
8853 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 8854 int max_irr;
810e6def 8855
76dfafd5
PB
8856 WARN_ON(!vcpu->arch.apicv_active);
8857 if (pi_test_on(&vmx->pi_desc)) {
8858 pi_clear_on(&vmx->pi_desc);
8859 /*
8860 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8861 * But on x86 this is just a compiler barrier anyway.
8862 */
8863 smp_mb__after_atomic();
8864 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8865 } else {
8866 max_irr = kvm_lapic_find_highest_irr(vcpu);
8867 }
8868 vmx_hwapic_irr_update(vcpu, max_irr);
8869 return max_irr;
810e6def
PB
8870}
8871
6308630b 8872static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8873{
d62caabb 8874 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8875 return;
8876
c7c9c56c
YZ
8877 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8878 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8879 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8880 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8881}
8882
967235d3
PB
8883static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8884{
8885 struct vcpu_vmx *vmx = to_vmx(vcpu);
8886
8887 pi_clear_on(&vmx->pi_desc);
8888 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8889}
8890
51aa01d1 8891static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8892{
48ae0fb4
JM
8893 u32 exit_intr_info = 0;
8894 u16 basic_exit_reason = (u16)vmx->exit_reason;
00eba012 8895
48ae0fb4
JM
8896 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8897 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
00eba012
AK
8898 return;
8899
48ae0fb4
JM
8900 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
8901 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8902 vmx->exit_intr_info = exit_intr_info;
a0861c02 8903
1261bfa3
WL
8904 /* if exit due to PF check for async PF */
8905 if (is_page_fault(exit_intr_info))
8906 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
8907
a0861c02 8908 /* Handle machine checks before interrupts are enabled */
48ae0fb4
JM
8909 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
8910 is_machine_check(exit_intr_info))
a0861c02
AK
8911 kvm_machine_check();
8912
20f65983 8913 /* We need to handle NMIs before interrupts are enabled */
ef85b673 8914 if (is_nmi(exit_intr_info)) {
ff9d07a0 8915 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 8916 asm("int $2");
ff9d07a0
ZY
8917 kvm_after_handle_nmi(&vmx->vcpu);
8918 }
51aa01d1 8919}
20f65983 8920
a547c6db
YZ
8921static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8922{
8923 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3f62de5f 8924 register void *__sp asm(_ASM_SP);
a547c6db 8925
a547c6db
YZ
8926 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8927 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8928 unsigned int vector;
8929 unsigned long entry;
8930 gate_desc *desc;
8931 struct vcpu_vmx *vmx = to_vmx(vcpu);
8932#ifdef CONFIG_X86_64
8933 unsigned long tmp;
8934#endif
8935
8936 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8937 desc = (gate_desc *)vmx->host_idt_base + vector;
8938 entry = gate_offset(*desc);
8939 asm volatile(
8940#ifdef CONFIG_X86_64
8941 "mov %%" _ASM_SP ", %[sp]\n\t"
8942 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8943 "push $%c[ss]\n\t"
8944 "push %[sp]\n\t"
8945#endif
8946 "pushf\n\t"
a547c6db
YZ
8947 __ASM_SIZE(push) " $%c[cs]\n\t"
8948 "call *%[entry]\n\t"
8949 :
8950#ifdef CONFIG_X86_64
3f62de5f 8951 [sp]"=&r"(tmp),
a547c6db 8952#endif
3f62de5f 8953 "+r"(__sp)
a547c6db
YZ
8954 :
8955 [entry]"r"(entry),
8956 [ss]"i"(__KERNEL_DS),
8957 [cs]"i"(__KERNEL_CS)
8958 );
f2485b3e 8959 }
a547c6db 8960}
c207aee4 8961STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
a547c6db 8962
6d396b55
PB
8963static bool vmx_has_high_real_mode_segbase(void)
8964{
8965 return enable_unrestricted_guest || emulate_invalid_guest_state;
8966}
8967
da8999d3
LJ
8968static bool vmx_mpx_supported(void)
8969{
8970 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8971 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8972}
8973
55412b2e
WL
8974static bool vmx_xsaves_supported(void)
8975{
8976 return vmcs_config.cpu_based_2nd_exec_ctrl &
8977 SECONDARY_EXEC_XSAVES;
8978}
8979
51aa01d1
AK
8980static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8981{
c5ca8e57 8982 u32 exit_intr_info;
51aa01d1
AK
8983 bool unblock_nmi;
8984 u8 vector;
8985 bool idtv_info_valid;
8986
8987 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8988
4c4a6f79 8989 if (vmx->loaded_vmcs->nmi_known_unmasked)
2c82878b
PB
8990 return;
8991 /*
8992 * Can't use vmx->exit_intr_info since we're not sure what
8993 * the exit reason is.
8994 */
8995 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8996 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8997 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8998 /*
8999 * SDM 3: 27.7.1.2 (September 2008)
9000 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9001 * a guest IRET fault.
9002 * SDM 3: 23.2.2 (September 2008)
9003 * Bit 12 is undefined in any of the following cases:
9004 * If the VM exit sets the valid bit in the IDT-vectoring
9005 * information field.
9006 * If the VM exit is due to a double fault.
9007 */
9008 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9009 vector != DF_VECTOR && !idtv_info_valid)
9010 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9011 GUEST_INTR_STATE_NMI);
9012 else
4c4a6f79 9013 vmx->loaded_vmcs->nmi_known_unmasked =
2c82878b
PB
9014 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9015 & GUEST_INTR_STATE_NMI);
51aa01d1
AK
9016}
9017
3ab66e8a 9018static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
9019 u32 idt_vectoring_info,
9020 int instr_len_field,
9021 int error_code_field)
51aa01d1 9022{
51aa01d1
AK
9023 u8 vector;
9024 int type;
9025 bool idtv_info_valid;
9026
9027 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 9028
3ab66e8a
JK
9029 vcpu->arch.nmi_injected = false;
9030 kvm_clear_exception_queue(vcpu);
9031 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
9032
9033 if (!idtv_info_valid)
9034 return;
9035
3ab66e8a 9036 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 9037
668f612f
AK
9038 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9039 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 9040
64a7ec06 9041 switch (type) {
37b96e98 9042 case INTR_TYPE_NMI_INTR:
3ab66e8a 9043 vcpu->arch.nmi_injected = true;
668f612f 9044 /*
7b4a25cb 9045 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
9046 * Clear bit "block by NMI" before VM entry if a NMI
9047 * delivery faulted.
668f612f 9048 */
3ab66e8a 9049 vmx_set_nmi_mask(vcpu, false);
37b96e98 9050 break;
37b96e98 9051 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 9052 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
9053 /* fall through */
9054 case INTR_TYPE_HARD_EXCEPTION:
35920a35 9055 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 9056 u32 err = vmcs_read32(error_code_field);
851eb667 9057 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 9058 } else
851eb667 9059 kvm_requeue_exception(vcpu, vector);
37b96e98 9060 break;
66fd3f7f 9061 case INTR_TYPE_SOFT_INTR:
3ab66e8a 9062 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 9063 /* fall through */
37b96e98 9064 case INTR_TYPE_EXT_INTR:
3ab66e8a 9065 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
9066 break;
9067 default:
9068 break;
f7d9238f 9069 }
cf393f75
AK
9070}
9071
83422e17
AK
9072static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9073{
3ab66e8a 9074 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
9075 VM_EXIT_INSTRUCTION_LEN,
9076 IDT_VECTORING_ERROR_CODE);
9077}
9078
b463a6f7
AK
9079static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9080{
3ab66e8a 9081 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
9082 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9083 VM_ENTRY_INSTRUCTION_LEN,
9084 VM_ENTRY_EXCEPTION_ERROR_CODE);
9085
9086 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9087}
9088
d7cd9796
GN
9089static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9090{
9091 int i, nr_msrs;
9092 struct perf_guest_switch_msr *msrs;
9093
9094 msrs = perf_guest_get_msrs(&nr_msrs);
9095
9096 if (!msrs)
9097 return;
9098
9099 for (i = 0; i < nr_msrs; i++)
9100 if (msrs[i].host == msrs[i].guest)
9101 clear_atomic_switch_msr(vmx, msrs[i].msr);
9102 else
9103 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9104 msrs[i].host);
9105}
9106
33365e7a 9107static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
9108{
9109 struct vcpu_vmx *vmx = to_vmx(vcpu);
9110 u64 tscl;
9111 u32 delta_tsc;
9112
9113 if (vmx->hv_deadline_tsc == -1)
9114 return;
9115
9116 tscl = rdtsc();
9117 if (vmx->hv_deadline_tsc > tscl)
9118 /* sure to be 32 bit only because checked on set_hv_timer */
9119 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9120 cpu_preemption_timer_multi);
9121 else
9122 delta_tsc = 0;
9123
9124 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9125}
9126
a3b5ba49 9127static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 9128{
a2fa3e9f 9129 struct vcpu_vmx *vmx = to_vmx(vcpu);
d6e41f11 9130 unsigned long debugctlmsr, cr3, cr4;
104f226b 9131
104f226b
AK
9132 /* Don't enter VMX if guest state is invalid, let the exit handler
9133 start emulation until we arrive back to a valid state */
14168786 9134 if (vmx->emulation_required)
104f226b
AK
9135 return;
9136
a7653ecd
RK
9137 if (vmx->ple_window_dirty) {
9138 vmx->ple_window_dirty = false;
9139 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9140 }
9141
012f83cb
AG
9142 if (vmx->nested.sync_shadow_vmcs) {
9143 copy_vmcs12_to_shadow(vmx);
9144 vmx->nested.sync_shadow_vmcs = false;
9145 }
9146
104f226b
AK
9147 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9148 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9149 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9150 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9151
d6e41f11
AL
9152 cr3 = __get_current_cr3_fast();
9153 if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
9154 vmcs_writel(HOST_CR3, cr3);
9155 vmx->host_state.vmcs_host_cr3 = cr3;
9156 }
9157
1e02ce4c 9158 cr4 = cr4_read_shadow();
d974baa3
AL
9159 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
9160 vmcs_writel(HOST_CR4, cr4);
9161 vmx->host_state.vmcs_host_cr4 = cr4;
9162 }
9163
104f226b
AK
9164 /* When single-stepping over STI and MOV SS, we must clear the
9165 * corresponding interruptibility bits in the guest state. Otherwise
9166 * vmentry fails as it then expects bit 14 (BS) in pending debug
9167 * exceptions being set, but that's not correct for the guest debugging
9168 * case. */
9169 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9170 vmx_set_interrupt_shadow(vcpu, 0);
9171
1be0e61c
XG
9172 if (vmx->guest_pkru_valid)
9173 __write_pkru(vmx->guest_pkru);
9174
d7cd9796 9175 atomic_switch_perf_msrs(vmx);
2a7921b7 9176 debugctlmsr = get_debugctlmsr();
d7cd9796 9177
64672c95
YJ
9178 vmx_arm_hv_timer(vcpu);
9179
d462b819 9180 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 9181 asm(
6aa8b732 9182 /* Store host registers */
b188c81f
AK
9183 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9184 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9185 "push %%" _ASM_CX " \n\t"
9186 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 9187 "je 1f \n\t"
b188c81f 9188 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 9189 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 9190 "1: \n\t"
d3edefc0 9191 /* Reload cr2 if changed */
b188c81f
AK
9192 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9193 "mov %%cr2, %%" _ASM_DX " \n\t"
9194 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 9195 "je 2f \n\t"
b188c81f 9196 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 9197 "2: \n\t"
6aa8b732 9198 /* Check if vmlaunch of vmresume is needed */
e08aa78a 9199 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 9200 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
9201 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9202 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9203 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9204 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9205 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9206 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 9207#ifdef CONFIG_X86_64
e08aa78a
AK
9208 "mov %c[r8](%0), %%r8 \n\t"
9209 "mov %c[r9](%0), %%r9 \n\t"
9210 "mov %c[r10](%0), %%r10 \n\t"
9211 "mov %c[r11](%0), %%r11 \n\t"
9212 "mov %c[r12](%0), %%r12 \n\t"
9213 "mov %c[r13](%0), %%r13 \n\t"
9214 "mov %c[r14](%0), %%r14 \n\t"
9215 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 9216#endif
b188c81f 9217 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 9218
6aa8b732 9219 /* Enter guest mode */
83287ea4 9220 "jne 1f \n\t"
4ecac3fd 9221 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
9222 "jmp 2f \n\t"
9223 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9224 "2: "
6aa8b732 9225 /* Save guest registers, load host registers, keep flags */
b188c81f 9226 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 9227 "pop %0 \n\t"
b188c81f
AK
9228 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9229 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9230 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9231 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9232 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9233 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9234 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 9235#ifdef CONFIG_X86_64
e08aa78a
AK
9236 "mov %%r8, %c[r8](%0) \n\t"
9237 "mov %%r9, %c[r9](%0) \n\t"
9238 "mov %%r10, %c[r10](%0) \n\t"
9239 "mov %%r11, %c[r11](%0) \n\t"
9240 "mov %%r12, %c[r12](%0) \n\t"
9241 "mov %%r13, %c[r13](%0) \n\t"
9242 "mov %%r14, %c[r14](%0) \n\t"
9243 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 9244#endif
b188c81f
AK
9245 "mov %%cr2, %%" _ASM_AX " \n\t"
9246 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 9247
b188c81f 9248 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 9249 "setbe %c[fail](%0) \n\t"
83287ea4
AK
9250 ".pushsection .rodata \n\t"
9251 ".global vmx_return \n\t"
9252 "vmx_return: " _ASM_PTR " 2b \n\t"
9253 ".popsection"
e08aa78a 9254 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 9255 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 9256 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 9257 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
9258 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9259 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9260 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9261 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9262 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9263 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9264 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 9265#ifdef CONFIG_X86_64
ad312c7c
ZX
9266 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9267 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9268 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9269 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9270 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9271 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9272 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9273 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9274#endif
40712fae
AK
9275 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9276 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9277 : "cc", "memory"
9278#ifdef CONFIG_X86_64
b188c81f 9279 , "rax", "rbx", "rdi", "rsi"
c2036300 9280 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
9281#else
9282 , "eax", "ebx", "edi", "esi"
c2036300
LV
9283#endif
9284 );
6aa8b732 9285
2a7921b7
GN
9286 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9287 if (debugctlmsr)
9288 update_debugctlmsr(debugctlmsr);
9289
aa67f609
AK
9290#ifndef CONFIG_X86_64
9291 /*
9292 * The sysexit path does not restore ds/es, so we must set them to
9293 * a reasonable value ourselves.
9294 *
9295 * We can't defer this to vmx_load_host_state() since that function
9296 * may be executed in interrupt context, which saves and restore segments
9297 * around it, nullifying its effect.
9298 */
9299 loadsegment(ds, __USER_DS);
9300 loadsegment(es, __USER_DS);
9301#endif
9302
6de4f3ad 9303 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9304 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9305 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9306 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9307 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9308 vcpu->arch.regs_dirty = 0;
9309
1155f76a
AK
9310 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9311
d462b819 9312 vmx->loaded_vmcs->launched = 1;
1b6269db 9313
51aa01d1 9314 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
51aa01d1 9315
1be0e61c
XG
9316 /*
9317 * eager fpu is enabled if PKEY is supported and CR4 is switched
9318 * back on host, so it is safe to read guest PKRU from current
9319 * XSAVE.
9320 */
9321 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9322 vmx->guest_pkru = __read_pkru();
9323 if (vmx->guest_pkru != vmx->host_pkru) {
9324 vmx->guest_pkru_valid = true;
9325 __write_pkru(vmx->host_pkru);
9326 } else
9327 vmx->guest_pkru_valid = false;
9328 }
9329
e0b890d3
GN
9330 /*
9331 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9332 * we did not inject a still-pending event to L1 now because of
9333 * nested_run_pending, we need to re-enable this bit.
9334 */
9335 if (vmx->nested.nested_run_pending)
9336 kvm_make_request(KVM_REQ_EVENT, vcpu);
9337
9338 vmx->nested.nested_run_pending = 0;
9339
51aa01d1
AK
9340 vmx_complete_atomic_exit(vmx);
9341 vmx_recover_nmi_blocking(vmx);
cf393f75 9342 vmx_complete_interrupts(vmx);
6aa8b732 9343}
c207aee4 9344STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
6aa8b732 9345
1279a6b1 9346static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
4fa7734c
PB
9347{
9348 struct vcpu_vmx *vmx = to_vmx(vcpu);
9349 int cpu;
9350
1279a6b1 9351 if (vmx->loaded_vmcs == vmcs)
4fa7734c
PB
9352 return;
9353
9354 cpu = get_cpu();
1279a6b1 9355 vmx->loaded_vmcs = vmcs;
4fa7734c
PB
9356 vmx_vcpu_put(vcpu);
9357 vmx_vcpu_load(vcpu, cpu);
9358 vcpu->cpu = cpu;
9359 put_cpu();
9360}
9361
2f1fe811
JM
9362/*
9363 * Ensure that the current vmcs of the logical processor is the
9364 * vmcs01 of the vcpu before calling free_nested().
9365 */
9366static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9367{
9368 struct vcpu_vmx *vmx = to_vmx(vcpu);
9369 int r;
9370
9371 r = vcpu_load(vcpu);
9372 BUG_ON(r);
1279a6b1 9373 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2f1fe811
JM
9374 free_nested(vmx);
9375 vcpu_put(vcpu);
9376}
9377
6aa8b732
AK
9378static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9379{
fb3f0f51
RR
9380 struct vcpu_vmx *vmx = to_vmx(vcpu);
9381
843e4330 9382 if (enable_pml)
a3eaa864 9383 vmx_destroy_pml_buffer(vmx);
991e7a0e 9384 free_vpid(vmx->vpid);
4fa7734c 9385 leave_guest_mode(vcpu);
2f1fe811 9386 vmx_free_vcpu_nested(vcpu);
4fa7734c 9387 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9388 kfree(vmx->guest_msrs);
9389 kvm_vcpu_uninit(vcpu);
a4770347 9390 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9391}
9392
fb3f0f51 9393static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9394{
fb3f0f51 9395 int err;
c16f862d 9396 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 9397 int cpu;
6aa8b732 9398
a2fa3e9f 9399 if (!vmx)
fb3f0f51
RR
9400 return ERR_PTR(-ENOMEM);
9401
991e7a0e 9402 vmx->vpid = allocate_vpid();
2384d2b3 9403
fb3f0f51
RR
9404 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9405 if (err)
9406 goto free_vcpu;
965b58a5 9407
4e59516a
PF
9408 err = -ENOMEM;
9409
9410 /*
9411 * If PML is turned on, failure on enabling PML just results in failure
9412 * of creating the vcpu, therefore we can simplify PML logic (by
9413 * avoiding dealing with cases, such as enabling PML partially on vcpus
9414 * for the guest, etc.
9415 */
9416 if (enable_pml) {
9417 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9418 if (!vmx->pml_pg)
9419 goto uninit_vcpu;
9420 }
9421
a2fa3e9f 9422 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9423 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9424 > PAGE_SIZE);
0123be42 9425
4e59516a
PF
9426 if (!vmx->guest_msrs)
9427 goto free_pml;
965b58a5 9428
d462b819
NHE
9429 vmx->loaded_vmcs = &vmx->vmcs01;
9430 vmx->loaded_vmcs->vmcs = alloc_vmcs();
355f4fb1 9431 vmx->loaded_vmcs->shadow_vmcs = NULL;
d462b819 9432 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 9433 goto free_msrs;
d462b819 9434 loaded_vmcs_init(vmx->loaded_vmcs);
a2fa3e9f 9435
15ad7146
AK
9436 cpu = get_cpu();
9437 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9438 vmx->vcpu.cpu = cpu;
8b9cf98c 9439 err = vmx_vcpu_setup(vmx);
fb3f0f51 9440 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9441 put_cpu();
fb3f0f51
RR
9442 if (err)
9443 goto free_vmcs;
35754c98 9444 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9445 err = alloc_apic_access_page(kvm);
9446 if (err)
5e4a0b3c 9447 goto free_vmcs;
a63cb560 9448 }
fb3f0f51 9449
b927a3ce
SY
9450 if (enable_ept) {
9451 if (!kvm->arch.ept_identity_map_addr)
9452 kvm->arch.ept_identity_map_addr =
9453 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
9454 err = init_rmode_identity_map(kvm);
9455 if (err)
93ea5388 9456 goto free_vmcs;
b927a3ce 9457 }
b7ebfb05 9458
5c614b35 9459 if (nested) {
b9c237bb 9460 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9461 vmx->nested.vpid02 = allocate_vpid();
9462 }
b9c237bb 9463
705699a1 9464 vmx->nested.posted_intr_nv = -1;
a9d30f33 9465 vmx->nested.current_vmptr = -1ull;
a9d30f33 9466
37e4c997
HZ
9467 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9468
fb3f0f51
RR
9469 return &vmx->vcpu;
9470
9471free_vmcs:
5c614b35 9472 free_vpid(vmx->nested.vpid02);
5f3fbc34 9473 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9474free_msrs:
fb3f0f51 9475 kfree(vmx->guest_msrs);
4e59516a
PF
9476free_pml:
9477 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9478uninit_vcpu:
9479 kvm_vcpu_uninit(&vmx->vcpu);
9480free_vcpu:
991e7a0e 9481 free_vpid(vmx->vpid);
a4770347 9482 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9483 return ERR_PTR(err);
6aa8b732
AK
9484}
9485
002c7f7c
YS
9486static void __init vmx_check_processor_compat(void *rtn)
9487{
9488 struct vmcs_config vmcs_conf;
9489
9490 *(int *)rtn = 0;
9491 if (setup_vmcs_config(&vmcs_conf) < 0)
9492 *(int *)rtn = -EIO;
9493 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9494 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9495 smp_processor_id());
9496 *(int *)rtn = -EIO;
9497 }
9498}
9499
67253af5
SY
9500static int get_ept_level(void)
9501{
9502 return VMX_EPT_DEFAULT_GAW + 1;
9503}
9504
4b12f0de 9505static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9506{
b18d5431
XG
9507 u8 cache;
9508 u64 ipat = 0;
4b12f0de 9509
522c68c4 9510 /* For VT-d and EPT combination
606decd6 9511 * 1. MMIO: always map as UC
522c68c4
SY
9512 * 2. EPT with VT-d:
9513 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9514 * result, try to trust guest.
522c68c4
SY
9515 * b. VT-d with snooping control feature: snooping control feature of
9516 * VT-d engine can guarantee the cache correctness. Just set it
9517 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9518 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9519 * consistent with host MTRR
9520 */
606decd6
PB
9521 if (is_mmio) {
9522 cache = MTRR_TYPE_UNCACHABLE;
9523 goto exit;
9524 }
9525
9526 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9527 ipat = VMX_EPT_IPAT_BIT;
9528 cache = MTRR_TYPE_WRBACK;
9529 goto exit;
9530 }
9531
9532 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9533 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9534 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9535 cache = MTRR_TYPE_WRBACK;
9536 else
9537 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9538 goto exit;
9539 }
9540
ff53604b 9541 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9542
9543exit:
9544 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9545}
9546
17cc3935 9547static int vmx_get_lpage_level(void)
344f414f 9548{
878403b7
SY
9549 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9550 return PT_DIRECTORY_LEVEL;
9551 else
9552 /* For shadow and EPT supported 1GB page */
9553 return PT_PDPE_LEVEL;
344f414f
JR
9554}
9555
feda805f
XG
9556static void vmcs_set_secondary_exec_control(u32 new_ctl)
9557{
9558 /*
9559 * These bits in the secondary execution controls field
9560 * are dynamic, the others are mostly based on the hypervisor
9561 * architecture and the guest's CPUID. Do not touch the
9562 * dynamic bits.
9563 */
9564 u32 mask =
9565 SECONDARY_EXEC_SHADOW_VMCS |
9566 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9567 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9568
9569 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9570
9571 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9572 (new_ctl & ~mask) | (cur_ctl & mask));
9573}
9574
8322ebbb
DM
9575/*
9576 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9577 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9578 */
9579static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9580{
9581 struct vcpu_vmx *vmx = to_vmx(vcpu);
9582 struct kvm_cpuid_entry2 *entry;
9583
9584 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9585 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9586
9587#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9588 if (entry && (entry->_reg & (_cpuid_mask))) \
9589 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9590} while (0)
9591
9592 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9593 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9594 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9595 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9596 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9597 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9598 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9599 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9600 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9601 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9602 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9603 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9604 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9605 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9606 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9607
9608 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9609 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9610 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9611 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9612 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9613 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9614 cr4_fixed1_update(bit(11), ecx, bit(2));
9615
9616#undef cr4_fixed1_update
9617}
9618
0e851880
SY
9619static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9620{
4e47c7a6 9621 struct vcpu_vmx *vmx = to_vmx(vcpu);
feda805f 9622 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
4e47c7a6 9623
4e47c7a6 9624 if (vmx_rdtscp_supported()) {
1cea0ce6
XG
9625 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9626 if (!rdtscp_enabled)
feda805f 9627 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
f36201e5 9628
8b97265a 9629 if (nested) {
1cea0ce6 9630 if (rdtscp_enabled)
8b97265a
PB
9631 vmx->nested.nested_vmx_secondary_ctls_high |=
9632 SECONDARY_EXEC_RDTSCP;
9633 else
9634 vmx->nested.nested_vmx_secondary_ctls_high &=
9635 ~SECONDARY_EXEC_RDTSCP;
9636 }
4e47c7a6 9637 }
ad756a16 9638
90a2db6d
PB
9639 if (vmx_invpcid_supported()) {
9640 /* Exposing INVPCID only when PCID is exposed */
9641 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9642 bool invpcid_enabled =
9643 best && best->ebx & bit(X86_FEATURE_INVPCID) &&
9644 guest_cpuid_has_pcid(vcpu);
29541bb8 9645
90a2db6d
PB
9646 if (!invpcid_enabled) {
9647 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9648 if (best)
9649 best->ebx &= ~bit(X86_FEATURE_INVPCID);
9650 }
9651
9652 if (nested) {
9653 if (invpcid_enabled)
9654 vmx->nested.nested_vmx_secondary_ctls_high |=
9655 SECONDARY_EXEC_ENABLE_INVPCID;
9656 else
9657 vmx->nested.nested_vmx_secondary_ctls_high &=
9658 ~SECONDARY_EXEC_ENABLE_INVPCID;
9659 }
ad756a16 9660 }
8b3e34e4 9661
45bdbcfd
HH
9662 if (cpu_has_secondary_exec_ctrls())
9663 vmcs_set_secondary_exec_control(secondary_exec_ctl);
feda805f 9664
37e4c997
HZ
9665 if (nested_vmx_allowed(vcpu))
9666 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9667 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9668 else
9669 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9670 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
9671
9672 if (nested_vmx_allowed(vcpu))
9673 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
9674}
9675
d4330ef2
JR
9676static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9677{
7b8050f5
NHE
9678 if (func == 1 && nested)
9679 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9680}
9681
25d92081
YZ
9682static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9683 struct x86_exception *fault)
9684{
533558bc 9685 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
c5f983f6 9686 struct vcpu_vmx *vmx = to_vmx(vcpu);
533558bc 9687 u32 exit_reason;
c5f983f6 9688 unsigned long exit_qualification = vcpu->arch.exit_qualification;
25d92081 9689
c5f983f6
BD
9690 if (vmx->nested.pml_full) {
9691 exit_reason = EXIT_REASON_PML_FULL;
9692 vmx->nested.pml_full = false;
9693 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9694 } else if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9695 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9696 else
533558bc 9697 exit_reason = EXIT_REASON_EPT_VIOLATION;
c5f983f6
BD
9698
9699 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
25d92081
YZ
9700 vmcs12->guest_physical_address = fault->address;
9701}
9702
995f00a6
PF
9703static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9704{
9705 return nested_ept_get_cr3(vcpu) & VMX_EPT_AD_ENABLE_BIT;
9706}
9707
155a97a3
NHE
9708/* Callbacks for nested_ept_init_mmu_context: */
9709
9710static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9711{
9712 /* return the page table to be shadowed - in our case, EPT12 */
9713 return get_vmcs12(vcpu)->ept_pointer;
9714}
9715
ae1e2d10 9716static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9717{
995f00a6 9718 bool wants_ad;
ae1e2d10 9719
ad896af0 9720 WARN_ON(mmu_is_nested(vcpu));
995f00a6
PF
9721 wants_ad = nested_ept_ad_enabled(vcpu);
9722 if (wants_ad && !enable_ept_ad_bits)
ae1e2d10
PB
9723 return 1;
9724
9725 kvm_mmu_unload(vcpu);
ad896af0 9726 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb 9727 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
ae1e2d10 9728 VMX_EPT_EXECUTE_ONLY_BIT,
995f00a6 9729 wants_ad);
155a97a3
NHE
9730 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9731 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9732 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9733
9734 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
ae1e2d10 9735 return 0;
155a97a3
NHE
9736}
9737
9738static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9739{
9740 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9741}
9742
19d5f10b
EK
9743static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9744 u16 error_code)
9745{
9746 bool inequality, bit;
9747
9748 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9749 inequality =
9750 (error_code & vmcs12->page_fault_error_code_mask) !=
9751 vmcs12->page_fault_error_code_match;
9752 return inequality ^ bit;
9753}
9754
feaf0c7d
GN
9755static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9756 struct x86_exception *fault)
9757{
9758 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9759
9760 WARN_ON(!is_guest_mode(vcpu));
9761
7313c698 9762 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code)) {
b96fb439
PB
9763 vmcs12->vm_exit_intr_error_code = fault->error_code;
9764 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9765 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9766 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9767 fault->address);
7313c698 9768 } else {
feaf0c7d 9769 kvm_inject_page_fault(vcpu, fault);
7313c698 9770 }
feaf0c7d
GN
9771}
9772
6beb7bd5
JM
9773static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9774 struct vmcs12 *vmcs12);
9775
9776static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
9777 struct vmcs12 *vmcs12)
9778{
9779 struct vcpu_vmx *vmx = to_vmx(vcpu);
5e2f30b7 9780 struct page *page;
6beb7bd5 9781 u64 hpa;
a2bcba50
WL
9782
9783 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
9784 /*
9785 * Translate L1 physical address to host physical
9786 * address for vmcs02. Keep the page pinned, so this
9787 * physical address remains valid. We keep a reference
9788 * to it so we can release it later.
9789 */
5e2f30b7 9790 if (vmx->nested.apic_access_page) { /* shouldn't happen */
53a70daf 9791 kvm_release_page_dirty(vmx->nested.apic_access_page);
5e2f30b7
DH
9792 vmx->nested.apic_access_page = NULL;
9793 }
9794 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
9795 /*
9796 * If translation failed, no matter: This feature asks
9797 * to exit when accessing the given address, and if it
9798 * can never be accessed, this feature won't do
9799 * anything anyway.
9800 */
5e2f30b7
DH
9801 if (!is_error_page(page)) {
9802 vmx->nested.apic_access_page = page;
6beb7bd5
JM
9803 hpa = page_to_phys(vmx->nested.apic_access_page);
9804 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9805 } else {
9806 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9807 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9808 }
9809 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9810 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9811 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9812 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9813 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 9814 }
a7c0b07d
WL
9815
9816 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5e2f30b7 9817 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
53a70daf 9818 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
5e2f30b7
DH
9819 vmx->nested.virtual_apic_page = NULL;
9820 }
9821 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
a7c0b07d
WL
9822
9823 /*
6beb7bd5
JM
9824 * If translation failed, VM entry will fail because
9825 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9826 * Failing the vm entry is _not_ what the processor
9827 * does but it's basically the only possibility we
9828 * have. We could still enter the guest if CR8 load
9829 * exits are enabled, CR8 store exits are enabled, and
9830 * virtualize APIC access is disabled; in this case
9831 * the processor would never use the TPR shadow and we
9832 * could simply clear the bit from the execution
9833 * control. But such a configuration is useless, so
9834 * let's keep the code simple.
a7c0b07d 9835 */
5e2f30b7
DH
9836 if (!is_error_page(page)) {
9837 vmx->nested.virtual_apic_page = page;
6beb7bd5
JM
9838 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9839 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9840 }
a7c0b07d
WL
9841 }
9842
705699a1 9843 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
9844 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9845 kunmap(vmx->nested.pi_desc_page);
53a70daf 9846 kvm_release_page_dirty(vmx->nested.pi_desc_page);
5e2f30b7 9847 vmx->nested.pi_desc_page = NULL;
705699a1 9848 }
5e2f30b7
DH
9849 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
9850 if (is_error_page(page))
6beb7bd5 9851 return;
5e2f30b7
DH
9852 vmx->nested.pi_desc_page = page;
9853 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
705699a1
WV
9854 vmx->nested.pi_desc =
9855 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9856 (unsigned long)(vmcs12->posted_intr_desc_addr &
9857 (PAGE_SIZE - 1)));
6beb7bd5
JM
9858 vmcs_write64(POSTED_INTR_DESC_ADDR,
9859 page_to_phys(vmx->nested.pi_desc_page) +
9860 (unsigned long)(vmcs12->posted_intr_desc_addr &
9861 (PAGE_SIZE - 1)));
705699a1 9862 }
6beb7bd5
JM
9863 if (cpu_has_vmx_msr_bitmap() &&
9864 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9865 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9866 ;
9867 else
9868 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9869 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
9870}
9871
f4124500
JK
9872static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9873{
9874 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9875 struct vcpu_vmx *vmx = to_vmx(vcpu);
9876
9877 if (vcpu->arch.virtual_tsc_khz == 0)
9878 return;
9879
9880 /* Make sure short timeouts reliably trigger an immediate vmexit.
9881 * hrtimer_start does not guarantee this. */
9882 if (preemption_timeout <= 1) {
9883 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9884 return;
9885 }
9886
9887 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9888 preemption_timeout *= 1000000;
9889 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9890 hrtimer_start(&vmx->nested.preemption_timer,
9891 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9892}
9893
56a20510
JM
9894static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9895 struct vmcs12 *vmcs12)
9896{
9897 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9898 return 0;
9899
9900 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9901 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9902 return -EINVAL;
9903
9904 return 0;
9905}
9906
3af18d9c
WV
9907static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9908 struct vmcs12 *vmcs12)
9909{
3af18d9c
WV
9910 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9911 return 0;
9912
5fa99cbe 9913 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
3af18d9c
WV
9914 return -EINVAL;
9915
9916 return 0;
9917}
9918
9919/*
9920 * Merge L0's and L1's MSR bitmap, return false to indicate that
9921 * we do not use the hardware.
9922 */
9923static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9924 struct vmcs12 *vmcs12)
9925{
82f0dd4b 9926 int msr;
f2b93280 9927 struct page *page;
d048c098
RK
9928 unsigned long *msr_bitmap_l1;
9929 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
f2b93280 9930
d048c098 9931 /* This shortcut is ok because we support only x2APIC MSRs so far. */
f2b93280
WV
9932 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9933 return false;
9934
5e2f30b7
DH
9935 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
9936 if (is_error_page(page))
f2b93280 9937 return false;
d048c098 9938 msr_bitmap_l1 = (unsigned long *)kmap(page);
f2b93280 9939
d048c098
RK
9940 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9941
f2b93280 9942 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
9943 if (nested_cpu_has_apic_reg_virt(vmcs12))
9944 for (msr = 0x800; msr <= 0x8ff; msr++)
9945 nested_vmx_disable_intercept_for_msr(
d048c098 9946 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 9947 msr, MSR_TYPE_R);
d048c098
RK
9948
9949 nested_vmx_disable_intercept_for_msr(
9950 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
9951 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9952 MSR_TYPE_R | MSR_TYPE_W);
d048c098 9953
608406e2 9954 if (nested_cpu_has_vid(vmcs12)) {
608406e2 9955 nested_vmx_disable_intercept_for_msr(
d048c098 9956 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9957 APIC_BASE_MSR + (APIC_EOI >> 4),
9958 MSR_TYPE_W);
9959 nested_vmx_disable_intercept_for_msr(
d048c098 9960 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9961 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9962 MSR_TYPE_W);
9963 }
82f0dd4b 9964 }
f2b93280 9965 kunmap(page);
53a70daf 9966 kvm_release_page_clean(page);
f2b93280
WV
9967
9968 return true;
9969}
9970
9971static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9972 struct vmcs12 *vmcs12)
9973{
82f0dd4b 9974 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 9975 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
9976 !nested_cpu_has_vid(vmcs12) &&
9977 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
9978 return 0;
9979
9980 /*
9981 * If virtualize x2apic mode is enabled,
9982 * virtualize apic access must be disabled.
9983 */
82f0dd4b
WV
9984 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9985 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
9986 return -EINVAL;
9987
608406e2
WV
9988 /*
9989 * If virtual interrupt delivery is enabled,
9990 * we must exit on external interrupts.
9991 */
9992 if (nested_cpu_has_vid(vmcs12) &&
9993 !nested_exit_on_intr(vcpu))
9994 return -EINVAL;
9995
705699a1
WV
9996 /*
9997 * bits 15:8 should be zero in posted_intr_nv,
9998 * the descriptor address has been already checked
9999 * in nested_get_vmcs12_pages.
10000 */
10001 if (nested_cpu_has_posted_intr(vmcs12) &&
10002 (!nested_cpu_has_vid(vmcs12) ||
10003 !nested_exit_intr_ack_set(vcpu) ||
10004 vmcs12->posted_intr_nv & 0xff00))
10005 return -EINVAL;
10006
f2b93280
WV
10007 /* tpr shadow is needed by all apicv features. */
10008 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10009 return -EINVAL;
10010
10011 return 0;
3af18d9c
WV
10012}
10013
e9ac033e
EK
10014static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10015 unsigned long count_field,
92d71bc6 10016 unsigned long addr_field)
ff651cb6 10017{
92d71bc6 10018 int maxphyaddr;
e9ac033e
EK
10019 u64 count, addr;
10020
10021 if (vmcs12_read_any(vcpu, count_field, &count) ||
10022 vmcs12_read_any(vcpu, addr_field, &addr)) {
10023 WARN_ON(1);
10024 return -EINVAL;
10025 }
10026 if (count == 0)
10027 return 0;
92d71bc6 10028 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
10029 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10030 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 10031 pr_debug_ratelimited(
e9ac033e
EK
10032 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10033 addr_field, maxphyaddr, count, addr);
10034 return -EINVAL;
10035 }
10036 return 0;
10037}
10038
10039static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10040 struct vmcs12 *vmcs12)
10041{
e9ac033e
EK
10042 if (vmcs12->vm_exit_msr_load_count == 0 &&
10043 vmcs12->vm_exit_msr_store_count == 0 &&
10044 vmcs12->vm_entry_msr_load_count == 0)
10045 return 0; /* Fast path */
e9ac033e 10046 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 10047 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 10048 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 10049 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 10050 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 10051 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
10052 return -EINVAL;
10053 return 0;
10054}
10055
c5f983f6
BD
10056static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10057 struct vmcs12 *vmcs12)
10058{
10059 u64 address = vmcs12->pml_address;
10060 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10061
10062 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10063 if (!nested_cpu_has_ept(vmcs12) ||
10064 !IS_ALIGNED(address, 4096) ||
10065 address >> maxphyaddr)
10066 return -EINVAL;
10067 }
10068
10069 return 0;
10070}
10071
e9ac033e
EK
10072static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10073 struct vmx_msr_entry *e)
10074{
10075 /* x2APIC MSR accesses are not allowed */
8a9781f7 10076 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
10077 return -EINVAL;
10078 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10079 e->index == MSR_IA32_UCODE_REV)
10080 return -EINVAL;
10081 if (e->reserved != 0)
ff651cb6
WV
10082 return -EINVAL;
10083 return 0;
10084}
10085
e9ac033e
EK
10086static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10087 struct vmx_msr_entry *e)
ff651cb6
WV
10088{
10089 if (e->index == MSR_FS_BASE ||
10090 e->index == MSR_GS_BASE ||
e9ac033e
EK
10091 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10092 nested_vmx_msr_check_common(vcpu, e))
10093 return -EINVAL;
10094 return 0;
10095}
10096
10097static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10098 struct vmx_msr_entry *e)
10099{
10100 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10101 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
10102 return -EINVAL;
10103 return 0;
10104}
10105
10106/*
10107 * Load guest's/host's msr at nested entry/exit.
10108 * return 0 for success, entry index for failure.
10109 */
10110static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10111{
10112 u32 i;
10113 struct vmx_msr_entry e;
10114 struct msr_data msr;
10115
10116 msr.host_initiated = false;
10117 for (i = 0; i < count; i++) {
54bf36aa
PB
10118 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10119 &e, sizeof(e))) {
bbe41b95 10120 pr_debug_ratelimited(
e9ac033e
EK
10121 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10122 __func__, i, gpa + i * sizeof(e));
ff651cb6 10123 goto fail;
e9ac033e
EK
10124 }
10125 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 10126 pr_debug_ratelimited(
e9ac033e
EK
10127 "%s check failed (%u, 0x%x, 0x%x)\n",
10128 __func__, i, e.index, e.reserved);
10129 goto fail;
10130 }
ff651cb6
WV
10131 msr.index = e.index;
10132 msr.data = e.value;
e9ac033e 10133 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 10134 pr_debug_ratelimited(
e9ac033e
EK
10135 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10136 __func__, i, e.index, e.value);
ff651cb6 10137 goto fail;
e9ac033e 10138 }
ff651cb6
WV
10139 }
10140 return 0;
10141fail:
10142 return i + 1;
10143}
10144
10145static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10146{
10147 u32 i;
10148 struct vmx_msr_entry e;
10149
10150 for (i = 0; i < count; i++) {
609e36d3 10151 struct msr_data msr_info;
54bf36aa
PB
10152 if (kvm_vcpu_read_guest(vcpu,
10153 gpa + i * sizeof(e),
10154 &e, 2 * sizeof(u32))) {
bbe41b95 10155 pr_debug_ratelimited(
e9ac033e
EK
10156 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10157 __func__, i, gpa + i * sizeof(e));
ff651cb6 10158 return -EINVAL;
e9ac033e
EK
10159 }
10160 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 10161 pr_debug_ratelimited(
e9ac033e
EK
10162 "%s check failed (%u, 0x%x, 0x%x)\n",
10163 __func__, i, e.index, e.reserved);
ff651cb6 10164 return -EINVAL;
e9ac033e 10165 }
609e36d3
PB
10166 msr_info.host_initiated = false;
10167 msr_info.index = e.index;
10168 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 10169 pr_debug_ratelimited(
e9ac033e
EK
10170 "%s cannot read MSR (%u, 0x%x)\n",
10171 __func__, i, e.index);
10172 return -EINVAL;
10173 }
54bf36aa
PB
10174 if (kvm_vcpu_write_guest(vcpu,
10175 gpa + i * sizeof(e) +
10176 offsetof(struct vmx_msr_entry, value),
10177 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 10178 pr_debug_ratelimited(
e9ac033e 10179 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 10180 __func__, i, e.index, msr_info.data);
e9ac033e
EK
10181 return -EINVAL;
10182 }
ff651cb6
WV
10183 }
10184 return 0;
10185}
10186
1dc35dac
LP
10187static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10188{
10189 unsigned long invalid_mask;
10190
10191 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10192 return (val & invalid_mask) == 0;
10193}
10194
9ed38ffa
LP
10195/*
10196 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10197 * emulating VM entry into a guest with EPT enabled.
10198 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10199 * is assigned to entry_failure_code on failure.
10200 */
10201static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 10202 u32 *entry_failure_code)
9ed38ffa 10203{
9ed38ffa 10204 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 10205 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
10206 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10207 return 1;
10208 }
10209
10210 /*
10211 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10212 * must not be dereferenced.
10213 */
10214 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10215 !nested_ept) {
10216 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10217 *entry_failure_code = ENTRY_FAIL_PDPTE;
10218 return 1;
10219 }
10220 }
10221
10222 vcpu->arch.cr3 = cr3;
10223 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10224 }
10225
10226 kvm_mmu_reset_context(vcpu);
10227 return 0;
10228}
10229
fe3ef05c
NHE
10230/*
10231 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10232 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 10233 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
10234 * guest in a way that will both be appropriate to L1's requests, and our
10235 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10236 * function also has additional necessary side-effects, like setting various
10237 * vcpu->arch fields.
ee146c1c
LP
10238 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10239 * is assigned to entry_failure_code on failure.
fe3ef05c 10240 */
ee146c1c 10241static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
ca0bde28 10242 bool from_vmentry, u32 *entry_failure_code)
fe3ef05c
NHE
10243{
10244 struct vcpu_vmx *vmx = to_vmx(vcpu);
03efce6f 10245 u32 exec_control, vmcs12_exec_ctrl;
fe3ef05c
NHE
10246
10247 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10248 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10249 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10250 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10251 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10252 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10253 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10254 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10255 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10256 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10257 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10258 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10259 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10260 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10261 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10262 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10263 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10264 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10265 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10266 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10267 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10268 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10269 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10270 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10271 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10272 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10273 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10274 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10275 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10276 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10277 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10278 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10279 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10280 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10281 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10282 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10283
cf8b84f4
JM
10284 if (from_vmentry &&
10285 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
10286 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10287 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10288 } else {
10289 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10290 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10291 }
cf8b84f4
JM
10292 if (from_vmentry) {
10293 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10294 vmcs12->vm_entry_intr_info_field);
10295 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10296 vmcs12->vm_entry_exception_error_code);
10297 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10298 vmcs12->vm_entry_instruction_len);
10299 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10300 vmcs12->guest_interruptibility_info);
2d6144e3
WL
10301 vmx->loaded_vmcs->nmi_known_unmasked =
10302 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
cf8b84f4
JM
10303 } else {
10304 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10305 }
fe3ef05c 10306 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 10307 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
10308 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10309 vmcs12->guest_pending_dbg_exceptions);
10310 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10311 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10312
81dc01f7
WL
10313 if (nested_cpu_has_xsaves(vmcs12))
10314 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
10315 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10316
f4124500 10317 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
10318
10319 /* Preemption timer setting is only taken from vmcs01. */
705699a1 10320 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
10321 exec_control |= vmcs_config.pin_based_exec_ctrl;
10322 if (vmx->hv_deadline_tsc == -1)
10323 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 10324
9314006d 10325 /* Posted interrupts setting is only taken from vmcs12. */
705699a1 10326 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
10327 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10328 vmx->nested.pi_pending = false;
06a5524f 10329 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
6beb7bd5 10330 } else {
705699a1 10331 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 10332 }
705699a1 10333
f4124500 10334 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 10335
f4124500
JK
10336 vmx->nested.preemption_timer_expired = false;
10337 if (nested_cpu_has_preemption_timer(vmcs12))
10338 vmx_start_preemption_timer(vcpu);
0238ea91 10339
fe3ef05c
NHE
10340 /*
10341 * Whether page-faults are trapped is determined by a combination of
10342 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10343 * If enable_ept, L0 doesn't care about page faults and we should
10344 * set all of these to L1's desires. However, if !enable_ept, L0 does
10345 * care about (at least some) page faults, and because it is not easy
10346 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10347 * to exit on each and every L2 page fault. This is done by setting
10348 * MASK=MATCH=0 and (see below) EB.PF=1.
10349 * Note that below we don't need special code to set EB.PF beyond the
10350 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10351 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10352 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
fe3ef05c
NHE
10353 */
10354 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10355 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10356 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10357 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10358
10359 if (cpu_has_secondary_exec_ctrls()) {
f4124500 10360 exec_control = vmx_secondary_exec_control(vmx);
e2821620 10361
fe3ef05c 10362 /* Take the following fields only from vmcs12 */
696dfd95 10363 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
90a2db6d 10364 SECONDARY_EXEC_ENABLE_INVPCID |
b3a2a907 10365 SECONDARY_EXEC_RDTSCP |
696dfd95 10366 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
27c42a1b
BD
10367 SECONDARY_EXEC_APIC_REGISTER_VIRT |
10368 SECONDARY_EXEC_ENABLE_VMFUNC);
fe3ef05c 10369 if (nested_cpu_has(vmcs12,
03efce6f
BD
10370 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10371 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10372 ~SECONDARY_EXEC_ENABLE_PML;
10373 exec_control |= vmcs12_exec_ctrl;
10374 }
fe3ef05c 10375
27c42a1b
BD
10376 /* All VMFUNCs are currently emulated through L0 vmexits. */
10377 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10378 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10379
608406e2
WV
10380 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10381 vmcs_write64(EOI_EXIT_BITMAP0,
10382 vmcs12->eoi_exit_bitmap0);
10383 vmcs_write64(EOI_EXIT_BITMAP1,
10384 vmcs12->eoi_exit_bitmap1);
10385 vmcs_write64(EOI_EXIT_BITMAP2,
10386 vmcs12->eoi_exit_bitmap2);
10387 vmcs_write64(EOI_EXIT_BITMAP3,
10388 vmcs12->eoi_exit_bitmap3);
10389 vmcs_write16(GUEST_INTR_STATUS,
10390 vmcs12->guest_intr_status);
10391 }
10392
6beb7bd5
JM
10393 /*
10394 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10395 * nested_get_vmcs12_pages will either fix it up or
10396 * remove the VM execution control.
10397 */
10398 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10399 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10400
fe3ef05c
NHE
10401 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10402 }
10403
10404
10405 /*
10406 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10407 * Some constant fields are set here by vmx_set_constant_host_state().
10408 * Other fields are different per CPU, and will be set later when
10409 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10410 */
a547c6db 10411 vmx_set_constant_host_state(vmx);
fe3ef05c 10412
83bafef1
JM
10413 /*
10414 * Set the MSR load/store lists to match L0's settings.
10415 */
10416 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10417 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10418 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10419 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10420 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10421
fe3ef05c
NHE
10422 /*
10423 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10424 * entry, but only if the current (host) sp changed from the value
10425 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10426 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10427 * here we just force the write to happen on entry.
10428 */
10429 vmx->host_rsp = 0;
10430
10431 exec_control = vmx_exec_control(vmx); /* L0's desires */
10432 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10433 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10434 exec_control &= ~CPU_BASED_TPR_SHADOW;
10435 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 10436
6beb7bd5
JM
10437 /*
10438 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10439 * nested_get_vmcs12_pages can't fix it up, the illegal value
10440 * will result in a VM entry failure.
10441 */
a7c0b07d 10442 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 10443 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d
WL
10444 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10445 }
10446
fe3ef05c 10447 /*
3af18d9c 10448 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10449 * Rather, exit every time.
10450 */
fe3ef05c
NHE
10451 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10452 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10453
10454 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10455
10456 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10457 * bitwise-or of what L1 wants to trap for L2, and what we want to
10458 * trap. Note that CR0.TS also needs updating - we do this later.
10459 */
10460 update_exception_bitmap(vcpu);
10461 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10462 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10463
8049d651
NHE
10464 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10465 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10466 * bits are further modified by vmx_set_efer() below.
10467 */
f4124500 10468 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10469
10470 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10471 * emulated by vmx_set_efer(), below.
10472 */
2961e876 10473 vm_entry_controls_init(vmx,
8049d651
NHE
10474 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10475 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10476 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10477
cf8b84f4
JM
10478 if (from_vmentry &&
10479 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 10480 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 10481 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 10482 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10483 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 10484 }
fe3ef05c
NHE
10485
10486 set_cr4_guest_host_mask(vmx);
10487
cf8b84f4
JM
10488 if (from_vmentry &&
10489 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
36be0b9d
PB
10490 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10491
27fc51b2
NHE
10492 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10493 vmcs_write64(TSC_OFFSET,
ea26e4ec 10494 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
27fc51b2 10495 else
ea26e4ec 10496 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
c95ba92a
PF
10497 if (kvm_has_tsc_control)
10498 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
10499
10500 if (enable_vpid) {
10501 /*
5c614b35
WL
10502 * There is no direct mapping between vpid02 and vpid12, the
10503 * vpid02 is per-vCPU for L0 and reused while the value of
10504 * vpid12 is changed w/ one invvpid during nested vmentry.
10505 * The vpid12 is allocated by L1 for L2, so it will not
10506 * influence global bitmap(for vpid01 and vpid02 allocation)
10507 * even if spawn a lot of nested vCPUs.
fe3ef05c 10508 */
5c614b35
WL
10509 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10510 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10511 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10512 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10513 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10514 }
10515 } else {
10516 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10517 vmx_flush_tlb(vcpu);
10518 }
10519
fe3ef05c
NHE
10520 }
10521
1fb883bb
LP
10522 if (enable_pml) {
10523 /*
10524 * Conceptually we want to copy the PML address and index from
10525 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10526 * since we always flush the log on each vmexit, this happens
10527 * to be equivalent to simply resetting the fields in vmcs02.
10528 */
10529 ASSERT(vmx->pml_pg);
10530 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10531 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10532 }
10533
155a97a3 10534 if (nested_cpu_has_ept(vmcs12)) {
ae1e2d10
PB
10535 if (nested_ept_init_mmu_context(vcpu)) {
10536 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10537 return 1;
10538 }
fb6c8198
JM
10539 } else if (nested_cpu_has2(vmcs12,
10540 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10541 vmx_flush_tlb_ept_only(vcpu);
155a97a3
NHE
10542 }
10543
fe3ef05c 10544 /*
bd7e5b08
PB
10545 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10546 * bits which we consider mandatory enabled.
fe3ef05c
NHE
10547 * The CR0_READ_SHADOW is what L2 should have expected to read given
10548 * the specifications by L1; It's not enough to take
10549 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10550 * have more bits than L1 expected.
10551 */
10552 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10553 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10554
10555 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10556 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10557
cf8b84f4
JM
10558 if (from_vmentry &&
10559 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
10560 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10561 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10562 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10563 else
10564 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10565 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10566 vmx_set_efer(vcpu, vcpu->arch.efer);
10567
9ed38ffa 10568 /* Shadow page tables on either EPT or shadow page tables. */
7ad658b6 10569 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
9ed38ffa
LP
10570 entry_failure_code))
10571 return 1;
7ca29de2 10572
feaf0c7d
GN
10573 if (!enable_ept)
10574 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10575
3633cfc3
NHE
10576 /*
10577 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10578 */
10579 if (enable_ept) {
10580 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10581 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10582 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10583 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10584 }
10585
fe3ef05c
NHE
10586 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10587 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 10588 return 0;
fe3ef05c
NHE
10589}
10590
ca0bde28 10591static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 10592{
cd232ad0 10593 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 10594
6dfacadd 10595 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
10596 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10597 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 10598
56a20510
JM
10599 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10600 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10601
ca0bde28
JM
10602 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10603 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10604
ca0bde28
JM
10605 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10606 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 10607
ca0bde28
JM
10608 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10609 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 10610
c5f983f6
BD
10611 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10612 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10613
7c177938 10614 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
0115f9cb 10615 vmx->nested.nested_vmx_procbased_ctls_low,
b9c237bb 10616 vmx->nested.nested_vmx_procbased_ctls_high) ||
2e5b0bd9
JM
10617 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10618 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10619 vmx->nested.nested_vmx_secondary_ctls_low,
10620 vmx->nested.nested_vmx_secondary_ctls_high)) ||
7c177938 10621 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10622 vmx->nested.nested_vmx_pinbased_ctls_low,
10623 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10624 !vmx_control_verify(vmcs12->vm_exit_controls,
0115f9cb 10625 vmx->nested.nested_vmx_exit_ctls_low,
b9c237bb 10626 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10627 !vmx_control_verify(vmcs12->vm_entry_controls,
0115f9cb 10628 vmx->nested.nested_vmx_entry_ctls_low,
b9c237bb 10629 vmx->nested.nested_vmx_entry_ctls_high))
ca0bde28 10630 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10631
41ab9372
BD
10632 if (nested_cpu_has_vmfunc(vmcs12)) {
10633 if (vmcs12->vm_function_control &
10634 ~vmx->nested.nested_vmx_vmfunc_controls)
10635 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10636
10637 if (nested_cpu_has_eptp_switching(vmcs12)) {
10638 if (!nested_cpu_has_ept(vmcs12) ||
10639 !page_address_valid(vcpu, vmcs12->eptp_list_address))
10640 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10641 }
10642 }
27c42a1b 10643
c7c2c709
JM
10644 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10645 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10646
3899152c 10647 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 10648 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
10649 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10650 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10651
10652 return 0;
10653}
10654
10655static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10656 u32 *exit_qual)
10657{
10658 bool ia32e;
10659
10660 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 10661
3899152c 10662 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 10663 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 10664 return 1;
ca0bde28
JM
10665
10666 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10667 vmcs12->vmcs_link_pointer != -1ull) {
10668 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 10669 return 1;
7c177938
NHE
10670 }
10671
384bb783 10672 /*
cb0c8cda 10673 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10674 * are performed on the field for the IA32_EFER MSR:
10675 * - Bits reserved in the IA32_EFER MSR must be 0.
10676 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10677 * the IA-32e mode guest VM-exit control. It must also be identical
10678 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10679 * CR0.PG) is 1.
10680 */
ca0bde28
JM
10681 if (to_vmx(vcpu)->nested.nested_run_pending &&
10682 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
10683 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10684 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10685 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10686 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 10687 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 10688 return 1;
384bb783
JK
10689 }
10690
10691 /*
10692 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10693 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10694 * the values of the LMA and LME bits in the field must each be that of
10695 * the host address-space size VM-exit control.
10696 */
10697 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10698 ia32e = (vmcs12->vm_exit_controls &
10699 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10700 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10701 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 10702 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 10703 return 1;
ca0bde28
JM
10704 }
10705
10706 return 0;
10707}
10708
858e25c0
JM
10709static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10710{
10711 struct vcpu_vmx *vmx = to_vmx(vcpu);
10712 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10713 struct loaded_vmcs *vmcs02;
858e25c0
JM
10714 u32 msr_entry_idx;
10715 u32 exit_qual;
10716
10717 vmcs02 = nested_get_current_vmcs02(vmx);
10718 if (!vmcs02)
10719 return -ENOMEM;
10720
10721 enter_guest_mode(vcpu);
10722
10723 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10724 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10725
1279a6b1 10726 vmx_switch_vmcs(vcpu, vmcs02);
858e25c0
JM
10727 vmx_segment_cache_clear(vmx);
10728
10729 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10730 leave_guest_mode(vcpu);
1279a6b1 10731 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10732 nested_vmx_entry_failure(vcpu, vmcs12,
10733 EXIT_REASON_INVALID_STATE, exit_qual);
10734 return 1;
10735 }
10736
10737 nested_get_vmcs12_pages(vcpu, vmcs12);
10738
10739 msr_entry_idx = nested_vmx_load_msr(vcpu,
10740 vmcs12->vm_entry_msr_load_addr,
10741 vmcs12->vm_entry_msr_load_count);
10742 if (msr_entry_idx) {
10743 leave_guest_mode(vcpu);
1279a6b1 10744 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10745 nested_vmx_entry_failure(vcpu, vmcs12,
10746 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10747 return 1;
10748 }
10749
858e25c0
JM
10750 /*
10751 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10752 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10753 * returned as far as L1 is concerned. It will only return (and set
10754 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10755 */
10756 return 0;
10757}
10758
ca0bde28
JM
10759/*
10760 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10761 * for running an L2 nested guest.
10762 */
10763static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10764{
10765 struct vmcs12 *vmcs12;
10766 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3f1dfb6 10767 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
ca0bde28
JM
10768 u32 exit_qual;
10769 int ret;
10770
10771 if (!nested_vmx_check_permission(vcpu))
10772 return 1;
10773
10774 if (!nested_vmx_check_vmcs12(vcpu))
10775 goto out;
10776
10777 vmcs12 = get_vmcs12(vcpu);
10778
10779 if (enable_shadow_vmcs)
10780 copy_shadow_to_vmcs12(vmx);
10781
10782 /*
10783 * The nested entry process starts with enforcing various prerequisites
10784 * on vmcs12 as required by the Intel SDM, and act appropriately when
10785 * they fail: As the SDM explains, some conditions should cause the
10786 * instruction to fail, while others will cause the instruction to seem
10787 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10788 * To speed up the normal (success) code path, we should avoid checking
10789 * for misconfigurations which will anyway be caught by the processor
10790 * when using the merged vmcs02.
10791 */
b3f1dfb6
JM
10792 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10793 nested_vmx_failValid(vcpu,
10794 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10795 goto out;
10796 }
10797
ca0bde28
JM
10798 if (vmcs12->launch_state == launch) {
10799 nested_vmx_failValid(vcpu,
10800 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10801 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10802 goto out;
10803 }
10804
10805 ret = check_vmentry_prereqs(vcpu, vmcs12);
10806 if (ret) {
10807 nested_vmx_failValid(vcpu, ret);
10808 goto out;
10809 }
10810
10811 /*
10812 * After this point, the trap flag no longer triggers a singlestep trap
10813 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10814 * This is not 100% correct; for performance reasons, we delegate most
10815 * of the checks on host state to the processor. If those fail,
10816 * the singlestep trap is missed.
10817 */
10818 skip_emulated_instruction(vcpu);
10819
10820 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10821 if (ret) {
10822 nested_vmx_entry_failure(vcpu, vmcs12,
10823 EXIT_REASON_INVALID_STATE, exit_qual);
10824 return 1;
384bb783
JK
10825 }
10826
7c177938
NHE
10827 /*
10828 * We're finally done with prerequisite checking, and can start with
10829 * the nested entry.
10830 */
10831
858e25c0
JM
10832 ret = enter_vmx_non_root_mode(vcpu, true);
10833 if (ret)
10834 return ret;
ff651cb6 10835
6dfacadd 10836 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10837 return kvm_vcpu_halt(vcpu);
6dfacadd 10838
7af40ad3
JK
10839 vmx->nested.nested_run_pending = 1;
10840
cd232ad0 10841 return 1;
eb277562
KH
10842
10843out:
6affcbed 10844 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
10845}
10846
4704d0be
NHE
10847/*
10848 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10849 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10850 * This function returns the new value we should put in vmcs12.guest_cr0.
10851 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10852 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10853 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10854 * didn't trap the bit, because if L1 did, so would L0).
10855 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10856 * been modified by L2, and L1 knows it. So just leave the old value of
10857 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10858 * isn't relevant, because if L0 traps this bit it can set it to anything.
10859 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10860 * changed these bits, and therefore they need to be updated, but L0
10861 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10862 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10863 */
10864static inline unsigned long
10865vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10866{
10867 return
10868 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10869 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10870 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10871 vcpu->arch.cr0_guest_owned_bits));
10872}
10873
10874static inline unsigned long
10875vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10876{
10877 return
10878 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10879 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10880 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10881 vcpu->arch.cr4_guest_owned_bits));
10882}
10883
5f3d5799
JK
10884static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10885 struct vmcs12 *vmcs12)
10886{
10887 u32 idt_vectoring;
10888 unsigned int nr;
10889
851eb667 10890 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
10891 nr = vcpu->arch.exception.nr;
10892 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10893
10894 if (kvm_exception_is_soft(nr)) {
10895 vmcs12->vm_exit_instruction_len =
10896 vcpu->arch.event_exit_inst_len;
10897 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10898 } else
10899 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10900
10901 if (vcpu->arch.exception.has_error_code) {
10902 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10903 vmcs12->idt_vectoring_error_code =
10904 vcpu->arch.exception.error_code;
10905 }
10906
10907 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10908 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10909 vmcs12->idt_vectoring_info_field =
10910 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10911 } else if (vcpu->arch.interrupt.pending) {
10912 nr = vcpu->arch.interrupt.nr;
10913 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10914
10915 if (vcpu->arch.interrupt.soft) {
10916 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10917 vmcs12->vm_entry_instruction_len =
10918 vcpu->arch.event_exit_inst_len;
10919 } else
10920 idt_vectoring |= INTR_TYPE_EXT_INTR;
10921
10922 vmcs12->idt_vectoring_info_field = idt_vectoring;
10923 }
10924}
10925
b6b8a145
JK
10926static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10927{
10928 struct vcpu_vmx *vmx = to_vmx(vcpu);
10929
acc9ab60
WL
10930 if (vcpu->arch.exception.pending ||
10931 vcpu->arch.nmi_injected ||
10932 vcpu->arch.interrupt.pending)
10933 return -EBUSY;
10934
f4124500
JK
10935 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10936 vmx->nested.preemption_timer_expired) {
10937 if (vmx->nested.nested_run_pending)
10938 return -EBUSY;
10939 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10940 return 0;
10941 }
10942
b6b8a145 10943 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
acc9ab60 10944 if (vmx->nested.nested_run_pending)
b6b8a145
JK
10945 return -EBUSY;
10946 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10947 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10948 INTR_INFO_VALID_MASK, 0);
10949 /*
10950 * The NMI-triggered VM exit counts as injection:
10951 * clear this one and block further NMIs.
10952 */
10953 vcpu->arch.nmi_pending = 0;
10954 vmx_set_nmi_mask(vcpu, true);
10955 return 0;
10956 }
10957
10958 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10959 nested_exit_on_intr(vcpu)) {
10960 if (vmx->nested.nested_run_pending)
10961 return -EBUSY;
10962 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 10963 return 0;
b6b8a145
JK
10964 }
10965
6342c50a
DH
10966 vmx_complete_nested_posted_interrupt(vcpu);
10967 return 0;
b6b8a145
JK
10968}
10969
f4124500
JK
10970static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10971{
10972 ktime_t remaining =
10973 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10974 u64 value;
10975
10976 if (ktime_to_ns(remaining) <= 0)
10977 return 0;
10978
10979 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10980 do_div(value, 1000000);
10981 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10982}
10983
4704d0be 10984/*
cf8b84f4
JM
10985 * Update the guest state fields of vmcs12 to reflect changes that
10986 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10987 * VM-entry controls is also updated, since this is really a guest
10988 * state bit.)
4704d0be 10989 */
cf8b84f4 10990static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 10991{
4704d0be
NHE
10992 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10993 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10994
4704d0be
NHE
10995 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10996 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10997 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10998
10999 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11000 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11001 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11002 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11003 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11004 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11005 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11006 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11007 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11008 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11009 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11010 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11011 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11012 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11013 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11014 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11015 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11016 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11017 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11018 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11019 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11020 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11021 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11022 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11023 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11024 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11025 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11026 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11027 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11028 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11029 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11030 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11031 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11032 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11033 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11034 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11035
4704d0be
NHE
11036 vmcs12->guest_interruptibility_info =
11037 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11038 vmcs12->guest_pending_dbg_exceptions =
11039 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
11040 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11041 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11042 else
11043 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 11044
f4124500
JK
11045 if (nested_cpu_has_preemption_timer(vmcs12)) {
11046 if (vmcs12->vm_exit_controls &
11047 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11048 vmcs12->vmx_preemption_timer_value =
11049 vmx_get_preemption_timer_value(vcpu);
11050 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11051 }
7854cbca 11052
3633cfc3
NHE
11053 /*
11054 * In some cases (usually, nested EPT), L2 is allowed to change its
11055 * own CR3 without exiting. If it has changed it, we must keep it.
11056 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11057 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11058 *
11059 * Additionally, restore L2's PDPTR to vmcs12.
11060 */
11061 if (enable_ept) {
f3531054 11062 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
11063 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11064 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11065 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11066 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11067 }
11068
d281e13b 11069 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
119a9c01 11070
608406e2
WV
11071 if (nested_cpu_has_vid(vmcs12))
11072 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11073
c18911a2
JK
11074 vmcs12->vm_entry_controls =
11075 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 11076 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 11077
2996fca0
JK
11078 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11079 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11080 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11081 }
11082
4704d0be
NHE
11083 /* TODO: These cannot have changed unless we have MSR bitmaps and
11084 * the relevant bit asks not to trap the change */
b8c07d55 11085 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 11086 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
11087 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11088 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
11089 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11090 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11091 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 11092 if (kvm_mpx_supported())
36be0b9d 11093 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
cf8b84f4
JM
11094}
11095
11096/*
11097 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11098 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11099 * and this function updates it to reflect the changes to the guest state while
11100 * L2 was running (and perhaps made some exits which were handled directly by L0
11101 * without going back to L1), and to reflect the exit reason.
11102 * Note that we do not have to copy here all VMCS fields, just those that
11103 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11104 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11105 * which already writes to vmcs12 directly.
11106 */
11107static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11108 u32 exit_reason, u32 exit_intr_info,
11109 unsigned long exit_qualification)
11110{
11111 /* update guest state fields: */
11112 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
11113
11114 /* update exit information fields: */
11115
533558bc
JK
11116 vmcs12->vm_exit_reason = exit_reason;
11117 vmcs12->exit_qualification = exit_qualification;
533558bc 11118 vmcs12->vm_exit_intr_info = exit_intr_info;
7313c698 11119
5f3d5799 11120 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
11121 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11122 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11123
5f3d5799 11124 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7cdc2d62
JM
11125 vmcs12->launch_state = 1;
11126
5f3d5799
JK
11127 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11128 * instead of reading the real value. */
4704d0be 11129 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
11130
11131 /*
11132 * Transfer the event that L0 or L1 may wanted to inject into
11133 * L2 to IDT_VECTORING_INFO_FIELD.
11134 */
11135 vmcs12_save_pending_event(vcpu, vmcs12);
11136 }
11137
11138 /*
11139 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11140 * preserved above and would only end up incorrectly in L1.
11141 */
11142 vcpu->arch.nmi_injected = false;
11143 kvm_clear_exception_queue(vcpu);
11144 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
11145}
11146
11147/*
11148 * A part of what we need to when the nested L2 guest exits and we want to
11149 * run its L1 parent, is to reset L1's guest state to the host state specified
11150 * in vmcs12.
11151 * This function is to be called not only on normal nested exit, but also on
11152 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11153 * Failures During or After Loading Guest State").
11154 * This function should be called when the active VMCS is L1's (vmcs01).
11155 */
733568f9
JK
11156static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11157 struct vmcs12 *vmcs12)
4704d0be 11158{
21feb4eb 11159 struct kvm_segment seg;
ca0bde28 11160 u32 entry_failure_code;
21feb4eb 11161
4704d0be
NHE
11162 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11163 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 11164 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
11165 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11166 else
11167 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11168 vmx_set_efer(vcpu, vcpu->arch.efer);
11169
11170 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11171 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 11172 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
11173 /*
11174 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
11175 * actually changed, because vmx_set_cr0 refers to efer set above.
11176 *
11177 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11178 * (KVM doesn't change it);
4704d0be 11179 */
bd7e5b08 11180 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 11181 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 11182
bd7e5b08 11183 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be
NHE
11184 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
11185 kvm_set_cr4(vcpu, vmcs12->host_cr4);
11186
29bf08f1 11187 nested_ept_uninit_mmu_context(vcpu);
155a97a3 11188
1dc35dac
LP
11189 /*
11190 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11191 * couldn't have changed.
11192 */
11193 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11194 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4704d0be 11195
feaf0c7d
GN
11196 if (!enable_ept)
11197 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11198
4704d0be
NHE
11199 if (enable_vpid) {
11200 /*
11201 * Trivially support vpid by letting L2s share their parent
11202 * L1's vpid. TODO: move to a more elaborate solution, giving
11203 * each L2 its own vpid and exposing the vpid feature to L1.
11204 */
11205 vmx_flush_tlb(vcpu);
11206 }
06a5524f
WV
11207 /* Restore posted intr vector. */
11208 if (nested_cpu_has_posted_intr(vmcs12))
11209 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4704d0be
NHE
11210
11211 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11212 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11213 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11214 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11215 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 11216
36be0b9d
PB
11217 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11218 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11219 vmcs_write64(GUEST_BNDCFGS, 0);
11220
44811c02 11221 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 11222 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
11223 vcpu->arch.pat = vmcs12->host_ia32_pat;
11224 }
4704d0be
NHE
11225 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11226 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11227 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 11228
21feb4eb
ACL
11229 /* Set L1 segment info according to Intel SDM
11230 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11231 seg = (struct kvm_segment) {
11232 .base = 0,
11233 .limit = 0xFFFFFFFF,
11234 .selector = vmcs12->host_cs_selector,
11235 .type = 11,
11236 .present = 1,
11237 .s = 1,
11238 .g = 1
11239 };
11240 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11241 seg.l = 1;
11242 else
11243 seg.db = 1;
11244 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11245 seg = (struct kvm_segment) {
11246 .base = 0,
11247 .limit = 0xFFFFFFFF,
11248 .type = 3,
11249 .present = 1,
11250 .s = 1,
11251 .db = 1,
11252 .g = 1
11253 };
11254 seg.selector = vmcs12->host_ds_selector;
11255 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11256 seg.selector = vmcs12->host_es_selector;
11257 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11258 seg.selector = vmcs12->host_ss_selector;
11259 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11260 seg.selector = vmcs12->host_fs_selector;
11261 seg.base = vmcs12->host_fs_base;
11262 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11263 seg.selector = vmcs12->host_gs_selector;
11264 seg.base = vmcs12->host_gs_base;
11265 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11266 seg = (struct kvm_segment) {
205befd9 11267 .base = vmcs12->host_tr_base,
21feb4eb
ACL
11268 .limit = 0x67,
11269 .selector = vmcs12->host_tr_selector,
11270 .type = 11,
11271 .present = 1
11272 };
11273 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11274
503cd0c5
JK
11275 kvm_set_dr(vcpu, 7, 0x400);
11276 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 11277
3af18d9c
WV
11278 if (cpu_has_vmx_msr_bitmap())
11279 vmx_set_msr_bitmap(vcpu);
11280
ff651cb6
WV
11281 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11282 vmcs12->vm_exit_msr_load_count))
11283 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
11284}
11285
11286/*
11287 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11288 * and modify vmcs12 to make it see what it would expect to see there if
11289 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11290 */
533558bc
JK
11291static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11292 u32 exit_intr_info,
11293 unsigned long exit_qualification)
4704d0be
NHE
11294{
11295 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be 11296 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
cf3215d9 11297 u32 vm_inst_error = 0;
4704d0be 11298
5f3d5799
JK
11299 /* trying to cancel vmlaunch/vmresume is a bug */
11300 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11301
4704d0be 11302 leave_guest_mode(vcpu);
533558bc
JK
11303 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11304 exit_qualification);
4704d0be 11305
ff651cb6
WV
11306 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11307 vmcs12->vm_exit_msr_store_count))
11308 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11309
cf3215d9
JM
11310 if (unlikely(vmx->fail))
11311 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
11312
1279a6b1 11313 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
f3380ca5 11314
6550c4df
WL
11315 /*
11316 * TODO: SDM says that with acknowledge interrupt on exit, bit 31 of
11317 * the VM-exit interrupt information (valid interrupt) is always set to
11318 * 1 on EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't need
11319 * kvm_cpu_has_interrupt(). See the commit message for details.
11320 */
11321 if (nested_exit_intr_ack_set(vcpu) &&
11322 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11323 kvm_cpu_has_interrupt(vcpu)) {
77b0f5d6
BD
11324 int irq = kvm_cpu_get_interrupt(vcpu);
11325 WARN_ON(irq < 0);
11326 vmcs12->vm_exit_intr_info = irq |
11327 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11328 }
11329
542060ea
JK
11330 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11331 vmcs12->exit_qualification,
11332 vmcs12->idt_vectoring_info_field,
11333 vmcs12->vm_exit_intr_info,
11334 vmcs12->vm_exit_intr_error_code,
11335 KVM_ISA_VMX);
4704d0be 11336
8391ce44
PB
11337 vm_entry_controls_reset_shadow(vmx);
11338 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
11339 vmx_segment_cache_clear(vmx);
11340
4704d0be
NHE
11341 /* if no vmcs02 cache requested, remove the one we used */
11342 if (VMCS02_POOL_SIZE == 0)
11343 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11344
11345 load_vmcs12_host_state(vcpu, vmcs12);
11346
9314006d 11347 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
11348 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11349 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 11350 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
11351 if (vmx->hv_deadline_tsc == -1)
11352 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11353 PIN_BASED_VMX_PREEMPTION_TIMER);
11354 else
11355 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11356 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
11357 if (kvm_has_tsc_control)
11358 decache_tsc_multiplier(vmx);
4704d0be 11359
dccbfcf5
RK
11360 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11361 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11362 vmx_set_virtual_x2apic_mode(vcpu,
11363 vcpu->arch.apic_base & X2APIC_ENABLE);
fb6c8198
JM
11364 } else if (!nested_cpu_has_ept(vmcs12) &&
11365 nested_cpu_has2(vmcs12,
11366 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11367 vmx_flush_tlb_ept_only(vcpu);
dccbfcf5 11368 }
4704d0be
NHE
11369
11370 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11371 vmx->host_rsp = 0;
11372
11373 /* Unpin physical memory we referred to in vmcs02 */
11374 if (vmx->nested.apic_access_page) {
53a70daf 11375 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 11376 vmx->nested.apic_access_page = NULL;
4704d0be 11377 }
a7c0b07d 11378 if (vmx->nested.virtual_apic_page) {
53a70daf 11379 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 11380 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 11381 }
705699a1
WV
11382 if (vmx->nested.pi_desc_page) {
11383 kunmap(vmx->nested.pi_desc_page);
53a70daf 11384 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
11385 vmx->nested.pi_desc_page = NULL;
11386 vmx->nested.pi_desc = NULL;
11387 }
4704d0be 11388
38b99173
TC
11389 /*
11390 * We are now running in L2, mmu_notifier will force to reload the
11391 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11392 */
c83b6d15 11393 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 11394
4704d0be
NHE
11395 /*
11396 * Exiting from L2 to L1, we're now back to L1 which thinks it just
11397 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11398 * success or failure flag accordingly.
11399 */
11400 if (unlikely(vmx->fail)) {
11401 vmx->fail = 0;
cf3215d9 11402 nested_vmx_failValid(vcpu, vm_inst_error);
4704d0be
NHE
11403 } else
11404 nested_vmx_succeed(vcpu);
012f83cb
AG
11405 if (enable_shadow_vmcs)
11406 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
11407
11408 /* in case we halted in L2 */
11409 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
11410}
11411
42124925
JK
11412/*
11413 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11414 */
11415static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11416{
2f707d97
WL
11417 if (is_guest_mode(vcpu)) {
11418 to_vmx(vcpu)->nested.nested_run_pending = 0;
533558bc 11419 nested_vmx_vmexit(vcpu, -1, 0, 0);
2f707d97 11420 }
42124925
JK
11421 free_nested(to_vmx(vcpu));
11422}
11423
7c177938
NHE
11424/*
11425 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11426 * 23.7 "VM-entry failures during or after loading guest state" (this also
11427 * lists the acceptable exit-reason and exit-qualification parameters).
11428 * It should only be called before L2 actually succeeded to run, and when
11429 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11430 */
11431static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11432 struct vmcs12 *vmcs12,
11433 u32 reason, unsigned long qualification)
11434{
11435 load_vmcs12_host_state(vcpu, vmcs12);
11436 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11437 vmcs12->exit_qualification = qualification;
11438 nested_vmx_succeed(vcpu);
012f83cb
AG
11439 if (enable_shadow_vmcs)
11440 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
11441}
11442
8a76d7f2
JR
11443static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11444 struct x86_instruction_info *info,
11445 enum x86_intercept_stage stage)
11446{
11447 return X86EMUL_CONTINUE;
11448}
11449
64672c95
YJ
11450#ifdef CONFIG_X86_64
11451/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11452static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11453 u64 divisor, u64 *result)
11454{
11455 u64 low = a << shift, high = a >> (64 - shift);
11456
11457 /* To avoid the overflow on divq */
11458 if (high >= divisor)
11459 return 1;
11460
11461 /* Low hold the result, high hold rem which is discarded */
11462 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11463 "rm" (divisor), "0" (low), "1" (high));
11464 *result = low;
11465
11466 return 0;
11467}
11468
11469static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11470{
11471 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
11472 u64 tscl = rdtsc();
11473 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11474 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
11475
11476 /* Convert to host delta tsc if tsc scaling is enabled */
11477 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11478 u64_shl_div_u64(delta_tsc,
11479 kvm_tsc_scaling_ratio_frac_bits,
11480 vcpu->arch.tsc_scaling_ratio,
11481 &delta_tsc))
11482 return -ERANGE;
11483
11484 /*
11485 * If the delta tsc can't fit in the 32 bit after the multi shift,
11486 * we can't use the preemption timer.
11487 * It's possible that it fits on later vmentries, but checking
11488 * on every vmentry is costly so we just use an hrtimer.
11489 */
11490 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11491 return -ERANGE;
11492
11493 vmx->hv_deadline_tsc = tscl + delta_tsc;
11494 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11495 PIN_BASED_VMX_PREEMPTION_TIMER);
c8533544
WL
11496
11497 return delta_tsc == 0;
64672c95
YJ
11498}
11499
11500static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11501{
11502 struct vcpu_vmx *vmx = to_vmx(vcpu);
11503 vmx->hv_deadline_tsc = -1;
11504 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11505 PIN_BASED_VMX_PREEMPTION_TIMER);
11506}
11507#endif
11508
48d89b92 11509static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 11510{
b4a2d31d
RK
11511 if (ple_gap)
11512 shrink_ple_window(vcpu);
ae97a3b8
RK
11513}
11514
843e4330
KH
11515static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11516 struct kvm_memory_slot *slot)
11517{
11518 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11519 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11520}
11521
11522static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11523 struct kvm_memory_slot *slot)
11524{
11525 kvm_mmu_slot_set_dirty(kvm, slot);
11526}
11527
11528static void vmx_flush_log_dirty(struct kvm *kvm)
11529{
11530 kvm_flush_pml_buffers(kvm);
11531}
11532
c5f983f6
BD
11533static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11534{
11535 struct vmcs12 *vmcs12;
11536 struct vcpu_vmx *vmx = to_vmx(vcpu);
11537 gpa_t gpa;
11538 struct page *page = NULL;
11539 u64 *pml_address;
11540
11541 if (is_guest_mode(vcpu)) {
11542 WARN_ON_ONCE(vmx->nested.pml_full);
11543
11544 /*
11545 * Check if PML is enabled for the nested guest.
11546 * Whether eptp bit 6 is set is already checked
11547 * as part of A/D emulation.
11548 */
11549 vmcs12 = get_vmcs12(vcpu);
11550 if (!nested_cpu_has_pml(vmcs12))
11551 return 0;
11552
4769886b 11553 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
c5f983f6
BD
11554 vmx->nested.pml_full = true;
11555 return 1;
11556 }
11557
11558 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11559
5e2f30b7
DH
11560 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11561 if (is_error_page(page))
c5f983f6
BD
11562 return 0;
11563
11564 pml_address = kmap(page);
11565 pml_address[vmcs12->guest_pml_index--] = gpa;
11566 kunmap(page);
53a70daf 11567 kvm_release_page_clean(page);
c5f983f6
BD
11568 }
11569
11570 return 0;
11571}
11572
843e4330
KH
11573static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11574 struct kvm_memory_slot *memslot,
11575 gfn_t offset, unsigned long mask)
11576{
11577 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11578}
11579
bf9f6ac8
FW
11580/*
11581 * This routine does the following things for vCPU which is going
11582 * to be blocked if VT-d PI is enabled.
11583 * - Store the vCPU to the wakeup list, so when interrupts happen
11584 * we can find the right vCPU to wake up.
11585 * - Change the Posted-interrupt descriptor as below:
11586 * 'NDST' <-- vcpu->pre_pcpu
11587 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11588 * - If 'ON' is set during this process, which means at least one
11589 * interrupt is posted for this vCPU, we cannot block it, in
11590 * this case, return 1, otherwise, return 0.
11591 *
11592 */
bc22512b 11593static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11594{
11595 unsigned long flags;
11596 unsigned int dest;
11597 struct pi_desc old, new;
11598 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11599
11600 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11601 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11602 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11603 return 0;
11604
11605 vcpu->pre_pcpu = vcpu->cpu;
11606 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11607 vcpu->pre_pcpu), flags);
11608 list_add_tail(&vcpu->blocked_vcpu_list,
11609 &per_cpu(blocked_vcpu_on_cpu,
11610 vcpu->pre_pcpu));
11611 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11612 vcpu->pre_pcpu), flags);
11613
11614 do {
11615 old.control = new.control = pi_desc->control;
11616
11617 /*
11618 * We should not block the vCPU if
11619 * an interrupt is posted for it.
11620 */
11621 if (pi_test_on(pi_desc) == 1) {
11622 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11623 vcpu->pre_pcpu), flags);
11624 list_del(&vcpu->blocked_vcpu_list);
11625 spin_unlock_irqrestore(
11626 &per_cpu(blocked_vcpu_on_cpu_lock,
11627 vcpu->pre_pcpu), flags);
11628 vcpu->pre_pcpu = -1;
11629
11630 return 1;
11631 }
11632
11633 WARN((pi_desc->sn == 1),
11634 "Warning: SN field of posted-interrupts "
11635 "is set before blocking\n");
11636
11637 /*
11638 * Since vCPU can be preempted during this process,
11639 * vcpu->cpu could be different with pre_pcpu, we
11640 * need to set pre_pcpu as the destination of wakeup
11641 * notification event, then we can find the right vCPU
11642 * to wakeup in wakeup handler if interrupts happen
11643 * when the vCPU is in blocked state.
11644 */
11645 dest = cpu_physical_id(vcpu->pre_pcpu);
11646
11647 if (x2apic_enabled())
11648 new.ndst = dest;
11649 else
11650 new.ndst = (dest << 8) & 0xFF00;
11651
11652 /* set 'NV' to 'wakeup vector' */
11653 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11654 } while (cmpxchg(&pi_desc->control, old.control,
11655 new.control) != old.control);
11656
11657 return 0;
11658}
11659
bc22512b
YJ
11660static int vmx_pre_block(struct kvm_vcpu *vcpu)
11661{
11662 if (pi_pre_block(vcpu))
11663 return 1;
11664
64672c95
YJ
11665 if (kvm_lapic_hv_timer_in_use(vcpu))
11666 kvm_lapic_switch_to_sw_timer(vcpu);
11667
bc22512b
YJ
11668 return 0;
11669}
11670
11671static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11672{
11673 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11674 struct pi_desc old, new;
11675 unsigned int dest;
11676 unsigned long flags;
11677
11678 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11679 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11680 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11681 return;
11682
11683 do {
11684 old.control = new.control = pi_desc->control;
11685
11686 dest = cpu_physical_id(vcpu->cpu);
11687
11688 if (x2apic_enabled())
11689 new.ndst = dest;
11690 else
11691 new.ndst = (dest << 8) & 0xFF00;
11692
11693 /* Allow posting non-urgent interrupts */
11694 new.sn = 0;
11695
11696 /* set 'NV' to 'notification vector' */
11697 new.nv = POSTED_INTR_VECTOR;
11698 } while (cmpxchg(&pi_desc->control, old.control,
11699 new.control) != old.control);
11700
11701 if(vcpu->pre_pcpu != -1) {
11702 spin_lock_irqsave(
11703 &per_cpu(blocked_vcpu_on_cpu_lock,
11704 vcpu->pre_pcpu), flags);
11705 list_del(&vcpu->blocked_vcpu_list);
11706 spin_unlock_irqrestore(
11707 &per_cpu(blocked_vcpu_on_cpu_lock,
11708 vcpu->pre_pcpu), flags);
11709 vcpu->pre_pcpu = -1;
11710 }
11711}
11712
bc22512b
YJ
11713static void vmx_post_block(struct kvm_vcpu *vcpu)
11714{
64672c95
YJ
11715 if (kvm_x86_ops->set_hv_timer)
11716 kvm_lapic_switch_to_hv_timer(vcpu);
11717
bc22512b
YJ
11718 pi_post_block(vcpu);
11719}
11720
efc64404
FW
11721/*
11722 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11723 *
11724 * @kvm: kvm
11725 * @host_irq: host irq of the interrupt
11726 * @guest_irq: gsi of the interrupt
11727 * @set: set or unset PI
11728 * returns 0 on success, < 0 on failure
11729 */
11730static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11731 uint32_t guest_irq, bool set)
11732{
11733 struct kvm_kernel_irq_routing_entry *e;
11734 struct kvm_irq_routing_table *irq_rt;
11735 struct kvm_lapic_irq irq;
11736 struct kvm_vcpu *vcpu;
11737 struct vcpu_data vcpu_info;
11738 int idx, ret = -EINVAL;
11739
11740 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
11741 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11742 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
11743 return 0;
11744
11745 idx = srcu_read_lock(&kvm->irq_srcu);
11746 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11747 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11748
11749 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11750 if (e->type != KVM_IRQ_ROUTING_MSI)
11751 continue;
11752 /*
11753 * VT-d PI cannot support posting multicast/broadcast
11754 * interrupts to a vCPU, we still use interrupt remapping
11755 * for these kind of interrupts.
11756 *
11757 * For lowest-priority interrupts, we only support
11758 * those with single CPU as the destination, e.g. user
11759 * configures the interrupts via /proc/irq or uses
11760 * irqbalance to make the interrupts single-CPU.
11761 *
11762 * We will support full lowest-priority interrupt later.
11763 */
11764
37131313 11765 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
11766 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11767 /*
11768 * Make sure the IRTE is in remapped mode if
11769 * we don't handle it in posted mode.
11770 */
11771 ret = irq_set_vcpu_affinity(host_irq, NULL);
11772 if (ret < 0) {
11773 printk(KERN_INFO
11774 "failed to back to remapped mode, irq: %u\n",
11775 host_irq);
11776 goto out;
11777 }
11778
efc64404 11779 continue;
23a1c257 11780 }
efc64404
FW
11781
11782 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11783 vcpu_info.vector = irq.vector;
11784
b6ce9780 11785 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
11786 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11787
11788 if (set)
11789 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11790 else {
11791 /* suppress notification event before unposting */
11792 pi_set_sn(vcpu_to_pi_desc(vcpu));
11793 ret = irq_set_vcpu_affinity(host_irq, NULL);
11794 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11795 }
11796
11797 if (ret < 0) {
11798 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11799 __func__);
11800 goto out;
11801 }
11802 }
11803
11804 ret = 0;
11805out:
11806 srcu_read_unlock(&kvm->irq_srcu, idx);
11807 return ret;
11808}
11809
c45dcc71
AR
11810static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11811{
11812 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11813 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11814 FEATURE_CONTROL_LMCE;
11815 else
11816 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11817 ~FEATURE_CONTROL_LMCE;
11818}
11819
404f6aac 11820static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
11821 .cpu_has_kvm_support = cpu_has_kvm_support,
11822 .disabled_by_bios = vmx_disabled_by_bios,
11823 .hardware_setup = hardware_setup,
11824 .hardware_unsetup = hardware_unsetup,
002c7f7c 11825 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
11826 .hardware_enable = hardware_enable,
11827 .hardware_disable = hardware_disable,
04547156 11828 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 11829 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
11830
11831 .vcpu_create = vmx_create_vcpu,
11832 .vcpu_free = vmx_free_vcpu,
04d2cc77 11833 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 11834
04d2cc77 11835 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
11836 .vcpu_load = vmx_vcpu_load,
11837 .vcpu_put = vmx_vcpu_put,
11838
a96036b8 11839 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
11840 .get_msr = vmx_get_msr,
11841 .set_msr = vmx_set_msr,
11842 .get_segment_base = vmx_get_segment_base,
11843 .get_segment = vmx_get_segment,
11844 .set_segment = vmx_set_segment,
2e4d2653 11845 .get_cpl = vmx_get_cpl,
6aa8b732 11846 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 11847 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 11848 .decache_cr3 = vmx_decache_cr3,
25c4c276 11849 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 11850 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
11851 .set_cr3 = vmx_set_cr3,
11852 .set_cr4 = vmx_set_cr4,
6aa8b732 11853 .set_efer = vmx_set_efer,
6aa8b732
AK
11854 .get_idt = vmx_get_idt,
11855 .set_idt = vmx_set_idt,
11856 .get_gdt = vmx_get_gdt,
11857 .set_gdt = vmx_set_gdt,
73aaf249
JK
11858 .get_dr6 = vmx_get_dr6,
11859 .set_dr6 = vmx_set_dr6,
020df079 11860 .set_dr7 = vmx_set_dr7,
81908bf4 11861 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 11862 .cache_reg = vmx_cache_reg,
6aa8b732
AK
11863 .get_rflags = vmx_get_rflags,
11864 .set_rflags = vmx_set_rflags,
be94f6b7
HH
11865
11866 .get_pkru = vmx_get_pkru,
11867
6aa8b732 11868 .tlb_flush = vmx_flush_tlb,
6aa8b732 11869
6aa8b732 11870 .run = vmx_vcpu_run,
6062d012 11871 .handle_exit = vmx_handle_exit,
6aa8b732 11872 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
11873 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11874 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 11875 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 11876 .set_irq = vmx_inject_irq,
95ba8273 11877 .set_nmi = vmx_inject_nmi,
298101da 11878 .queue_exception = vmx_queue_exception,
b463a6f7 11879 .cancel_injection = vmx_cancel_injection,
78646121 11880 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 11881 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
11882 .get_nmi_mask = vmx_get_nmi_mask,
11883 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
11884 .enable_nmi_window = enable_nmi_window,
11885 .enable_irq_window = enable_irq_window,
11886 .update_cr8_intercept = update_cr8_intercept,
8d14695f 11887 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 11888 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
11889 .get_enable_apicv = vmx_get_enable_apicv,
11890 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 11891 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 11892 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
11893 .hwapic_irr_update = vmx_hwapic_irr_update,
11894 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
11895 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11896 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 11897
cbc94022 11898 .set_tss_addr = vmx_set_tss_addr,
67253af5 11899 .get_tdp_level = get_ept_level,
4b12f0de 11900 .get_mt_mask = vmx_get_mt_mask,
229456fc 11901
586f9607 11902 .get_exit_info = vmx_get_exit_info,
586f9607 11903
17cc3935 11904 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
11905
11906 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
11907
11908 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 11909 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
11910
11911 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
11912
11913 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
11914
11915 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
11916
11917 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
11918
11919 .check_intercept = vmx_check_intercept,
a547c6db 11920 .handle_external_intr = vmx_handle_external_intr,
da8999d3 11921 .mpx_supported = vmx_mpx_supported,
55412b2e 11922 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
11923
11924 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
11925
11926 .sched_in = vmx_sched_in,
843e4330
KH
11927
11928 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11929 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11930 .flush_log_dirty = vmx_flush_log_dirty,
11931 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
c5f983f6 11932 .write_log_dirty = vmx_write_pml_buffer,
25462f7f 11933
bf9f6ac8
FW
11934 .pre_block = vmx_pre_block,
11935 .post_block = vmx_post_block,
11936
25462f7f 11937 .pmu_ops = &intel_pmu_ops,
efc64404
FW
11938
11939 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
11940
11941#ifdef CONFIG_X86_64
11942 .set_hv_timer = vmx_set_hv_timer,
11943 .cancel_hv_timer = vmx_cancel_hv_timer,
11944#endif
c45dcc71
AR
11945
11946 .setup_mce = vmx_setup_mce,
6aa8b732
AK
11947};
11948
11949static int __init vmx_init(void)
11950{
34a1cd60
TC
11951 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11952 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 11953 if (r)
34a1cd60 11954 return r;
25c5f225 11955
2965faa5 11956#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
11957 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11958 crash_vmclear_local_loaded_vmcss);
11959#endif
11960
fdef3ad1 11961 return 0;
6aa8b732
AK
11962}
11963
11964static void __exit vmx_exit(void)
11965{
2965faa5 11966#ifdef CONFIG_KEXEC_CORE
3b63a43f 11967 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
11968 synchronize_rcu();
11969#endif
11970
cb498ea2 11971 kvm_exit();
6aa8b732
AK
11972}
11973
11974module_init(vmx_init)
11975module_exit(vmx_exit)