]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/vmx.c
x86/kvm/vmx: Get rid of segment_base() on 64-bit kernels
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
5fdbf976 36#include "kvm_cache_regs.h"
35920a35 37#include "x86.h"
e495606d 38
28b835d6 39#include <asm/cpu.h>
6aa8b732 40#include <asm/io.h>
3b3be0d1 41#include <asm/desc.h>
13673a90 42#include <asm/vmx.h>
6210e37b 43#include <asm/virtext.h>
a0861c02 44#include <asm/mce.h>
952f07ec 45#include <asm/fpu/internal.h>
d7cd9796 46#include <asm/perf_event.h>
81908bf4 47#include <asm/debugreg.h>
8f536b76 48#include <asm/kexec.h>
dab2087d 49#include <asm/apic.h>
efc64404 50#include <asm/irq_remapping.h>
6aa8b732 51
229456fc 52#include "trace.h"
25462f7f 53#include "pmu.h"
229456fc 54
4ecac3fd 55#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
56#define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 58
6aa8b732
AK
59MODULE_AUTHOR("Qumranet");
60MODULE_LICENSE("GPL");
61
e9bda3b3
JT
62static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65};
66MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
476bc001 68static bool __read_mostly enable_vpid = 1;
736caefe 69module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 70
476bc001 71static bool __read_mostly flexpriority_enabled = 1;
736caefe 72module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 73
476bc001 74static bool __read_mostly enable_ept = 1;
736caefe 75module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 76
476bc001 77static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
78module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
83c3a331
XH
81static bool __read_mostly enable_ept_ad_bits = 1;
82module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
a27685c3 84static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 85module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 86
476bc001 87static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
88module_param(vmm_exclusive, bool, S_IRUGO);
89
476bc001 90static bool __read_mostly fasteoi = 1;
58fbbf26
KT
91module_param(fasteoi, bool, S_IRUGO);
92
5a71785d 93static bool __read_mostly enable_apicv = 1;
01e439be 94module_param(enable_apicv, bool, S_IRUGO);
83d4c286 95
abc4fc58
AG
96static bool __read_mostly enable_shadow_vmcs = 1;
97module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
98/*
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
102 */
476bc001 103static bool __read_mostly nested = 0;
801d3424
NHE
104module_param(nested, bool, S_IRUGO);
105
20300099
WL
106static u64 __read_mostly host_xss;
107
843e4330
KH
108static bool __read_mostly enable_pml = 1;
109module_param_named(pml, enable_pml, bool, S_IRUGO);
110
64903d61
HZ
111#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112
64672c95
YJ
113/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
114static int __read_mostly cpu_preemption_timer_multi;
115static bool __read_mostly enable_preemption_timer = 1;
116#ifdef CONFIG_X86_64
117module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
118#endif
119
5037878e
GN
120#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
121#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
122#define KVM_VM_CR0_ALWAYS_ON \
123 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
124#define KVM_CR4_GUEST_OWNED_BITS \
125 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 126 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 127
cdc0e244
AK
128#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
129#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
130
78ac8b47
AK
131#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
132
f4124500
JK
133#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
134
16c2aec6
JD
135/*
136 * Hyper-V requires all of these, so mark them as supported even though
137 * they are just treated the same as all-context.
138 */
139#define VMX_VPID_EXTENT_SUPPORTED_MASK \
140 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
141 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
143 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
144
4b8d54f9
ZE
145/*
146 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
147 * ple_gap: upper bound on the amount of time between two successive
148 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 149 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
150 * ple_window: upper bound on the amount of time a guest is allowed to execute
151 * in a PAUSE loop. Tests indicate that most spinlocks are held for
152 * less than 2^12 cycles
153 * Time is measured based on a counter that runs at the same rate as the TSC,
154 * refer SDM volume 3b section 21.6.13 & 22.1.3.
155 */
b4a2d31d
RK
156#define KVM_VMX_DEFAULT_PLE_GAP 128
157#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
158#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
159#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
160#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
161 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
162
4b8d54f9
ZE
163static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
164module_param(ple_gap, int, S_IRUGO);
165
166static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167module_param(ple_window, int, S_IRUGO);
168
b4a2d31d
RK
169/* Default doubles per-vcpu window every exit. */
170static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
171module_param(ple_window_grow, int, S_IRUGO);
172
173/* Default resets per-vcpu window every exit to ple_window. */
174static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
175module_param(ple_window_shrink, int, S_IRUGO);
176
177/* Default is to compute the maximum so we can never overflow. */
178static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
180module_param(ple_window_max, int, S_IRUGO);
181
83287ea4
AK
182extern const ulong vmx_return;
183
8bf00a52 184#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 185#define VMCS02_POOL_SIZE 1
61d2ef2c 186
a2fa3e9f
GH
187struct vmcs {
188 u32 revision_id;
189 u32 abort;
190 char data[0];
191};
192
d462b819
NHE
193/*
194 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
195 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
196 * loaded on this CPU (so we can clear them if the CPU goes down).
197 */
198struct loaded_vmcs {
199 struct vmcs *vmcs;
355f4fb1 200 struct vmcs *shadow_vmcs;
d462b819
NHE
201 int cpu;
202 int launched;
203 struct list_head loaded_vmcss_on_cpu_link;
204};
205
26bb0981
AK
206struct shared_msr_entry {
207 unsigned index;
208 u64 data;
d5696725 209 u64 mask;
26bb0981
AK
210};
211
a9d30f33
NHE
212/*
213 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
214 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
215 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
216 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
217 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
218 * More than one of these structures may exist, if L1 runs multiple L2 guests.
219 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
220 * underlying hardware which will be used to run L2.
221 * This structure is packed to ensure that its layout is identical across
222 * machines (necessary for live migration).
223 * If there are changes in this struct, VMCS12_REVISION must be changed.
224 */
22bd0358 225typedef u64 natural_width;
a9d30f33
NHE
226struct __packed vmcs12 {
227 /* According to the Intel spec, a VMCS region must start with the
228 * following two fields. Then follow implementation-specific data.
229 */
230 u32 revision_id;
231 u32 abort;
22bd0358 232
27d6c865
NHE
233 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
234 u32 padding[7]; /* room for future expansion */
235
22bd0358
NHE
236 u64 io_bitmap_a;
237 u64 io_bitmap_b;
238 u64 msr_bitmap;
239 u64 vm_exit_msr_store_addr;
240 u64 vm_exit_msr_load_addr;
241 u64 vm_entry_msr_load_addr;
242 u64 tsc_offset;
243 u64 virtual_apic_page_addr;
244 u64 apic_access_addr;
705699a1 245 u64 posted_intr_desc_addr;
22bd0358 246 u64 ept_pointer;
608406e2
WV
247 u64 eoi_exit_bitmap0;
248 u64 eoi_exit_bitmap1;
249 u64 eoi_exit_bitmap2;
250 u64 eoi_exit_bitmap3;
81dc01f7 251 u64 xss_exit_bitmap;
22bd0358
NHE
252 u64 guest_physical_address;
253 u64 vmcs_link_pointer;
254 u64 guest_ia32_debugctl;
255 u64 guest_ia32_pat;
256 u64 guest_ia32_efer;
257 u64 guest_ia32_perf_global_ctrl;
258 u64 guest_pdptr0;
259 u64 guest_pdptr1;
260 u64 guest_pdptr2;
261 u64 guest_pdptr3;
36be0b9d 262 u64 guest_bndcfgs;
22bd0358
NHE
263 u64 host_ia32_pat;
264 u64 host_ia32_efer;
265 u64 host_ia32_perf_global_ctrl;
266 u64 padding64[8]; /* room for future expansion */
267 /*
268 * To allow migration of L1 (complete with its L2 guests) between
269 * machines of different natural widths (32 or 64 bit), we cannot have
270 * unsigned long fields with no explict size. We use u64 (aliased
271 * natural_width) instead. Luckily, x86 is little-endian.
272 */
273 natural_width cr0_guest_host_mask;
274 natural_width cr4_guest_host_mask;
275 natural_width cr0_read_shadow;
276 natural_width cr4_read_shadow;
277 natural_width cr3_target_value0;
278 natural_width cr3_target_value1;
279 natural_width cr3_target_value2;
280 natural_width cr3_target_value3;
281 natural_width exit_qualification;
282 natural_width guest_linear_address;
283 natural_width guest_cr0;
284 natural_width guest_cr3;
285 natural_width guest_cr4;
286 natural_width guest_es_base;
287 natural_width guest_cs_base;
288 natural_width guest_ss_base;
289 natural_width guest_ds_base;
290 natural_width guest_fs_base;
291 natural_width guest_gs_base;
292 natural_width guest_ldtr_base;
293 natural_width guest_tr_base;
294 natural_width guest_gdtr_base;
295 natural_width guest_idtr_base;
296 natural_width guest_dr7;
297 natural_width guest_rsp;
298 natural_width guest_rip;
299 natural_width guest_rflags;
300 natural_width guest_pending_dbg_exceptions;
301 natural_width guest_sysenter_esp;
302 natural_width guest_sysenter_eip;
303 natural_width host_cr0;
304 natural_width host_cr3;
305 natural_width host_cr4;
306 natural_width host_fs_base;
307 natural_width host_gs_base;
308 natural_width host_tr_base;
309 natural_width host_gdtr_base;
310 natural_width host_idtr_base;
311 natural_width host_ia32_sysenter_esp;
312 natural_width host_ia32_sysenter_eip;
313 natural_width host_rsp;
314 natural_width host_rip;
315 natural_width paddingl[8]; /* room for future expansion */
316 u32 pin_based_vm_exec_control;
317 u32 cpu_based_vm_exec_control;
318 u32 exception_bitmap;
319 u32 page_fault_error_code_mask;
320 u32 page_fault_error_code_match;
321 u32 cr3_target_count;
322 u32 vm_exit_controls;
323 u32 vm_exit_msr_store_count;
324 u32 vm_exit_msr_load_count;
325 u32 vm_entry_controls;
326 u32 vm_entry_msr_load_count;
327 u32 vm_entry_intr_info_field;
328 u32 vm_entry_exception_error_code;
329 u32 vm_entry_instruction_len;
330 u32 tpr_threshold;
331 u32 secondary_vm_exec_control;
332 u32 vm_instruction_error;
333 u32 vm_exit_reason;
334 u32 vm_exit_intr_info;
335 u32 vm_exit_intr_error_code;
336 u32 idt_vectoring_info_field;
337 u32 idt_vectoring_error_code;
338 u32 vm_exit_instruction_len;
339 u32 vmx_instruction_info;
340 u32 guest_es_limit;
341 u32 guest_cs_limit;
342 u32 guest_ss_limit;
343 u32 guest_ds_limit;
344 u32 guest_fs_limit;
345 u32 guest_gs_limit;
346 u32 guest_ldtr_limit;
347 u32 guest_tr_limit;
348 u32 guest_gdtr_limit;
349 u32 guest_idtr_limit;
350 u32 guest_es_ar_bytes;
351 u32 guest_cs_ar_bytes;
352 u32 guest_ss_ar_bytes;
353 u32 guest_ds_ar_bytes;
354 u32 guest_fs_ar_bytes;
355 u32 guest_gs_ar_bytes;
356 u32 guest_ldtr_ar_bytes;
357 u32 guest_tr_ar_bytes;
358 u32 guest_interruptibility_info;
359 u32 guest_activity_state;
360 u32 guest_sysenter_cs;
361 u32 host_ia32_sysenter_cs;
0238ea91
JK
362 u32 vmx_preemption_timer_value;
363 u32 padding32[7]; /* room for future expansion */
22bd0358 364 u16 virtual_processor_id;
705699a1 365 u16 posted_intr_nv;
22bd0358
NHE
366 u16 guest_es_selector;
367 u16 guest_cs_selector;
368 u16 guest_ss_selector;
369 u16 guest_ds_selector;
370 u16 guest_fs_selector;
371 u16 guest_gs_selector;
372 u16 guest_ldtr_selector;
373 u16 guest_tr_selector;
608406e2 374 u16 guest_intr_status;
22bd0358
NHE
375 u16 host_es_selector;
376 u16 host_cs_selector;
377 u16 host_ss_selector;
378 u16 host_ds_selector;
379 u16 host_fs_selector;
380 u16 host_gs_selector;
381 u16 host_tr_selector;
a9d30f33
NHE
382};
383
384/*
385 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
386 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
387 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
388 */
389#define VMCS12_REVISION 0x11e57ed0
390
391/*
392 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
393 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
394 * current implementation, 4K are reserved to avoid future complications.
395 */
396#define VMCS12_SIZE 0x1000
397
ff2f6fe9
NHE
398/* Used to remember the last vmcs02 used for some recently used vmcs12s */
399struct vmcs02_list {
400 struct list_head list;
401 gpa_t vmptr;
402 struct loaded_vmcs vmcs02;
403};
404
ec378aee
NHE
405/*
406 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
407 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
408 */
409struct nested_vmx {
410 /* Has the level1 guest done vmxon? */
411 bool vmxon;
3573e22c 412 gpa_t vmxon_ptr;
a9d30f33
NHE
413
414 /* The guest-physical address of the current VMCS L1 keeps for L2 */
415 gpa_t current_vmptr;
416 /* The host-usable pointer to the above */
417 struct page *current_vmcs12_page;
418 struct vmcs12 *current_vmcs12;
4f2777bc
DM
419 /*
420 * Cache of the guest's VMCS, existing outside of guest memory.
421 * Loaded from guest memory during VMPTRLD. Flushed to guest
422 * memory during VMXOFF, VMCLEAR, VMPTRLD.
423 */
424 struct vmcs12 *cached_vmcs12;
012f83cb
AG
425 /*
426 * Indicates if the shadow vmcs must be updated with the
427 * data hold by vmcs12
428 */
429 bool sync_shadow_vmcs;
ff2f6fe9
NHE
430
431 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
432 struct list_head vmcs02_pool;
433 int vmcs02_num;
dccbfcf5 434 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
435 /* L2 must run next, and mustn't decide to exit to L1. */
436 bool nested_run_pending;
fe3ef05c
NHE
437 /*
438 * Guest pages referred to in vmcs02 with host-physical pointers, so
439 * we must keep them pinned while L2 runs.
440 */
441 struct page *apic_access_page;
a7c0b07d 442 struct page *virtual_apic_page;
705699a1
WV
443 struct page *pi_desc_page;
444 struct pi_desc *pi_desc;
445 bool pi_pending;
446 u16 posted_intr_nv;
f4124500 447
d048c098
RK
448 unsigned long *msr_bitmap;
449
f4124500
JK
450 struct hrtimer preemption_timer;
451 bool preemption_timer_expired;
2996fca0
JK
452
453 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
454 u64 vmcs01_debugctl;
b9c237bb 455
5c614b35
WL
456 u16 vpid02;
457 u16 last_vpid;
458
0115f9cb
DM
459 /*
460 * We only store the "true" versions of the VMX capability MSRs. We
461 * generate the "non-true" versions by setting the must-be-1 bits
462 * according to the SDM.
463 */
b9c237bb
WV
464 u32 nested_vmx_procbased_ctls_low;
465 u32 nested_vmx_procbased_ctls_high;
b9c237bb
WV
466 u32 nested_vmx_secondary_ctls_low;
467 u32 nested_vmx_secondary_ctls_high;
468 u32 nested_vmx_pinbased_ctls_low;
469 u32 nested_vmx_pinbased_ctls_high;
470 u32 nested_vmx_exit_ctls_low;
471 u32 nested_vmx_exit_ctls_high;
b9c237bb
WV
472 u32 nested_vmx_entry_ctls_low;
473 u32 nested_vmx_entry_ctls_high;
b9c237bb
WV
474 u32 nested_vmx_misc_low;
475 u32 nested_vmx_misc_high;
476 u32 nested_vmx_ept_caps;
99b83ac8 477 u32 nested_vmx_vpid_caps;
62cc6b9d
DM
478 u64 nested_vmx_basic;
479 u64 nested_vmx_cr0_fixed0;
480 u64 nested_vmx_cr0_fixed1;
481 u64 nested_vmx_cr4_fixed0;
482 u64 nested_vmx_cr4_fixed1;
483 u64 nested_vmx_vmcs_enum;
ec378aee
NHE
484};
485
01e439be 486#define POSTED_INTR_ON 0
ebbfc765
FW
487#define POSTED_INTR_SN 1
488
01e439be
YZ
489/* Posted-Interrupt Descriptor */
490struct pi_desc {
491 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
492 union {
493 struct {
494 /* bit 256 - Outstanding Notification */
495 u16 on : 1,
496 /* bit 257 - Suppress Notification */
497 sn : 1,
498 /* bit 271:258 - Reserved */
499 rsvd_1 : 14;
500 /* bit 279:272 - Notification Vector */
501 u8 nv;
502 /* bit 287:280 - Reserved */
503 u8 rsvd_2;
504 /* bit 319:288 - Notification Destination */
505 u32 ndst;
506 };
507 u64 control;
508 };
509 u32 rsvd[6];
01e439be
YZ
510} __aligned(64);
511
a20ed54d
YZ
512static bool pi_test_and_set_on(struct pi_desc *pi_desc)
513{
514 return test_and_set_bit(POSTED_INTR_ON,
515 (unsigned long *)&pi_desc->control);
516}
517
518static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
519{
520 return test_and_clear_bit(POSTED_INTR_ON,
521 (unsigned long *)&pi_desc->control);
522}
523
524static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
525{
526 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
527}
528
ebbfc765
FW
529static inline void pi_clear_sn(struct pi_desc *pi_desc)
530{
531 return clear_bit(POSTED_INTR_SN,
532 (unsigned long *)&pi_desc->control);
533}
534
535static inline void pi_set_sn(struct pi_desc *pi_desc)
536{
537 return set_bit(POSTED_INTR_SN,
538 (unsigned long *)&pi_desc->control);
539}
540
ad361091
PB
541static inline void pi_clear_on(struct pi_desc *pi_desc)
542{
543 clear_bit(POSTED_INTR_ON,
544 (unsigned long *)&pi_desc->control);
545}
546
ebbfc765
FW
547static inline int pi_test_on(struct pi_desc *pi_desc)
548{
549 return test_bit(POSTED_INTR_ON,
550 (unsigned long *)&pi_desc->control);
551}
552
553static inline int pi_test_sn(struct pi_desc *pi_desc)
554{
555 return test_bit(POSTED_INTR_SN,
556 (unsigned long *)&pi_desc->control);
557}
558
a2fa3e9f 559struct vcpu_vmx {
fb3f0f51 560 struct kvm_vcpu vcpu;
313dbd49 561 unsigned long host_rsp;
29bd8a78 562 u8 fail;
9d58b931 563 bool nmi_known_unmasked;
51aa01d1 564 u32 exit_intr_info;
1155f76a 565 u32 idt_vectoring_info;
6de12732 566 ulong rflags;
26bb0981 567 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
568 int nmsrs;
569 int save_nmsrs;
a547c6db 570 unsigned long host_idt_base;
a2fa3e9f 571#ifdef CONFIG_X86_64
44ea2b17
AK
572 u64 msr_host_kernel_gs_base;
573 u64 msr_guest_kernel_gs_base;
a2fa3e9f 574#endif
2961e876
GN
575 u32 vm_entry_controls_shadow;
576 u32 vm_exit_controls_shadow;
d462b819
NHE
577 /*
578 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
579 * non-nested (L1) guest, it always points to vmcs01. For a nested
580 * guest (L2), it points to a different VMCS.
581 */
582 struct loaded_vmcs vmcs01;
583 struct loaded_vmcs *loaded_vmcs;
584 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
585 struct msr_autoload {
586 unsigned nr;
587 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
588 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
589 } msr_autoload;
a2fa3e9f
GH
590 struct {
591 int loaded;
592 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
593#ifdef CONFIG_X86_64
594 u16 ds_sel, es_sel;
595#endif
152d3f2f
LV
596 int gs_ldt_reload_needed;
597 int fs_reload_needed;
da8999d3 598 u64 msr_host_bndcfgs;
d974baa3 599 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 600 } host_state;
9c8cba37 601 struct {
7ffd92c5 602 int vm86_active;
78ac8b47 603 ulong save_rflags;
f5f7b2fe
AK
604 struct kvm_segment segs[8];
605 } rmode;
606 struct {
607 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
608 struct kvm_save_segment {
609 u16 selector;
610 unsigned long base;
611 u32 limit;
612 u32 ar;
f5f7b2fe 613 } seg[8];
2fb92db1 614 } segment_cache;
2384d2b3 615 int vpid;
04fa4d32 616 bool emulation_required;
3b86cd99
JK
617
618 /* Support for vnmi-less CPUs */
619 int soft_vnmi_blocked;
620 ktime_t entry_time;
621 s64 vnmi_blocked_time;
a0861c02 622 u32 exit_reason;
4e47c7a6 623
01e439be
YZ
624 /* Posted interrupt descriptor */
625 struct pi_desc pi_desc;
626
ec378aee
NHE
627 /* Support for a guest hypervisor (nested VMX) */
628 struct nested_vmx nested;
a7653ecd
RK
629
630 /* Dynamic PLE window. */
631 int ple_window;
632 bool ple_window_dirty;
843e4330
KH
633
634 /* Support for PML */
635#define PML_ENTITY_NUM 512
636 struct page *pml_pg;
2680d6da 637
64672c95
YJ
638 /* apic deadline value in host tsc */
639 u64 hv_deadline_tsc;
640
2680d6da 641 u64 current_tsc_ratio;
1be0e61c
XG
642
643 bool guest_pkru_valid;
644 u32 guest_pkru;
645 u32 host_pkru;
3b84080b 646
37e4c997
HZ
647 /*
648 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
649 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
650 * in msr_ia32_feature_control_valid_bits.
651 */
3b84080b 652 u64 msr_ia32_feature_control;
37e4c997 653 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
654};
655
2fb92db1
AK
656enum segment_cache_field {
657 SEG_FIELD_SEL = 0,
658 SEG_FIELD_BASE = 1,
659 SEG_FIELD_LIMIT = 2,
660 SEG_FIELD_AR = 3,
661
662 SEG_FIELD_NR = 4
663};
664
a2fa3e9f
GH
665static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
666{
fb3f0f51 667 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
668}
669
efc64404
FW
670static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
671{
672 return &(to_vmx(vcpu)->pi_desc);
673}
674
22bd0358
NHE
675#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
676#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
677#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
678 [number##_HIGH] = VMCS12_OFFSET(name)+4
679
4607c2d7 680
fe2b201b 681static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
682 /*
683 * We do NOT shadow fields that are modified when L0
684 * traps and emulates any vmx instruction (e.g. VMPTRLD,
685 * VMXON...) executed by L1.
686 * For example, VM_INSTRUCTION_ERROR is read
687 * by L1 if a vmx instruction fails (part of the error path).
688 * Note the code assumes this logic. If for some reason
689 * we start shadowing these fields then we need to
690 * force a shadow sync when L0 emulates vmx instructions
691 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
692 * by nested_vmx_failValid)
693 */
694 VM_EXIT_REASON,
695 VM_EXIT_INTR_INFO,
696 VM_EXIT_INSTRUCTION_LEN,
697 IDT_VECTORING_INFO_FIELD,
698 IDT_VECTORING_ERROR_CODE,
699 VM_EXIT_INTR_ERROR_CODE,
700 EXIT_QUALIFICATION,
701 GUEST_LINEAR_ADDRESS,
702 GUEST_PHYSICAL_ADDRESS
703};
fe2b201b 704static int max_shadow_read_only_fields =
4607c2d7
AG
705 ARRAY_SIZE(shadow_read_only_fields);
706
fe2b201b 707static unsigned long shadow_read_write_fields[] = {
a7c0b07d 708 TPR_THRESHOLD,
4607c2d7
AG
709 GUEST_RIP,
710 GUEST_RSP,
711 GUEST_CR0,
712 GUEST_CR3,
713 GUEST_CR4,
714 GUEST_INTERRUPTIBILITY_INFO,
715 GUEST_RFLAGS,
716 GUEST_CS_SELECTOR,
717 GUEST_CS_AR_BYTES,
718 GUEST_CS_LIMIT,
719 GUEST_CS_BASE,
720 GUEST_ES_BASE,
36be0b9d 721 GUEST_BNDCFGS,
4607c2d7
AG
722 CR0_GUEST_HOST_MASK,
723 CR0_READ_SHADOW,
724 CR4_READ_SHADOW,
725 TSC_OFFSET,
726 EXCEPTION_BITMAP,
727 CPU_BASED_VM_EXEC_CONTROL,
728 VM_ENTRY_EXCEPTION_ERROR_CODE,
729 VM_ENTRY_INTR_INFO_FIELD,
730 VM_ENTRY_INSTRUCTION_LEN,
731 VM_ENTRY_EXCEPTION_ERROR_CODE,
732 HOST_FS_BASE,
733 HOST_GS_BASE,
734 HOST_FS_SELECTOR,
735 HOST_GS_SELECTOR
736};
fe2b201b 737static int max_shadow_read_write_fields =
4607c2d7
AG
738 ARRAY_SIZE(shadow_read_write_fields);
739
772e0318 740static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 741 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 742 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
743 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
744 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
745 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
746 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
747 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
748 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
749 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
750 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 751 FIELD(GUEST_INTR_STATUS, guest_intr_status),
22bd0358
NHE
752 FIELD(HOST_ES_SELECTOR, host_es_selector),
753 FIELD(HOST_CS_SELECTOR, host_cs_selector),
754 FIELD(HOST_SS_SELECTOR, host_ss_selector),
755 FIELD(HOST_DS_SELECTOR, host_ds_selector),
756 FIELD(HOST_FS_SELECTOR, host_fs_selector),
757 FIELD(HOST_GS_SELECTOR, host_gs_selector),
758 FIELD(HOST_TR_SELECTOR, host_tr_selector),
759 FIELD64(IO_BITMAP_A, io_bitmap_a),
760 FIELD64(IO_BITMAP_B, io_bitmap_b),
761 FIELD64(MSR_BITMAP, msr_bitmap),
762 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765 FIELD64(TSC_OFFSET, tsc_offset),
766 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 768 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
22bd0358 769 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
770 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
771 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
772 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
773 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
81dc01f7 774 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
775 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
776 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
777 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
778 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
779 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
780 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
781 FIELD64(GUEST_PDPTR0, guest_pdptr0),
782 FIELD64(GUEST_PDPTR1, guest_pdptr1),
783 FIELD64(GUEST_PDPTR2, guest_pdptr2),
784 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 785 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
786 FIELD64(HOST_IA32_PAT, host_ia32_pat),
787 FIELD64(HOST_IA32_EFER, host_ia32_efer),
788 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
789 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
790 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
791 FIELD(EXCEPTION_BITMAP, exception_bitmap),
792 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
793 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
794 FIELD(CR3_TARGET_COUNT, cr3_target_count),
795 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
796 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
797 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
798 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
799 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
800 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
801 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
802 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
803 FIELD(TPR_THRESHOLD, tpr_threshold),
804 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
805 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
806 FIELD(VM_EXIT_REASON, vm_exit_reason),
807 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
808 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
809 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
810 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
811 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
812 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
813 FIELD(GUEST_ES_LIMIT, guest_es_limit),
814 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
815 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
816 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
817 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
818 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
819 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
820 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
821 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
822 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
823 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
824 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
825 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
826 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
827 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
828 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
829 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
830 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
831 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
832 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
833 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
834 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 835 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
836 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
837 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
838 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
839 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
840 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
841 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
842 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
843 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
844 FIELD(EXIT_QUALIFICATION, exit_qualification),
845 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
846 FIELD(GUEST_CR0, guest_cr0),
847 FIELD(GUEST_CR3, guest_cr3),
848 FIELD(GUEST_CR4, guest_cr4),
849 FIELD(GUEST_ES_BASE, guest_es_base),
850 FIELD(GUEST_CS_BASE, guest_cs_base),
851 FIELD(GUEST_SS_BASE, guest_ss_base),
852 FIELD(GUEST_DS_BASE, guest_ds_base),
853 FIELD(GUEST_FS_BASE, guest_fs_base),
854 FIELD(GUEST_GS_BASE, guest_gs_base),
855 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
856 FIELD(GUEST_TR_BASE, guest_tr_base),
857 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
858 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
859 FIELD(GUEST_DR7, guest_dr7),
860 FIELD(GUEST_RSP, guest_rsp),
861 FIELD(GUEST_RIP, guest_rip),
862 FIELD(GUEST_RFLAGS, guest_rflags),
863 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
864 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
865 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
866 FIELD(HOST_CR0, host_cr0),
867 FIELD(HOST_CR3, host_cr3),
868 FIELD(HOST_CR4, host_cr4),
869 FIELD(HOST_FS_BASE, host_fs_base),
870 FIELD(HOST_GS_BASE, host_gs_base),
871 FIELD(HOST_TR_BASE, host_tr_base),
872 FIELD(HOST_GDTR_BASE, host_gdtr_base),
873 FIELD(HOST_IDTR_BASE, host_idtr_base),
874 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
875 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
876 FIELD(HOST_RSP, host_rsp),
877 FIELD(HOST_RIP, host_rip),
878};
22bd0358
NHE
879
880static inline short vmcs_field_to_offset(unsigned long field)
881{
a2ae9df7
PB
882 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
883
884 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
885 vmcs_field_to_offset_table[field] == 0)
886 return -ENOENT;
887
22bd0358
NHE
888 return vmcs_field_to_offset_table[field];
889}
890
a9d30f33
NHE
891static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
892{
4f2777bc 893 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
894}
895
896static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
897{
54bf36aa 898 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
32cad84f 899 if (is_error_page(page))
a9d30f33 900 return NULL;
32cad84f 901
a9d30f33
NHE
902 return page;
903}
904
905static void nested_release_page(struct page *page)
906{
907 kvm_release_page_dirty(page);
908}
909
910static void nested_release_page_clean(struct page *page)
911{
912 kvm_release_page_clean(page);
913}
914
bfd0a56b 915static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 916static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
917static void kvm_cpu_vmxon(u64 addr);
918static void kvm_cpu_vmxoff(void);
f53cd63c 919static bool vmx_xsaves_supported(void);
776e58ea 920static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
921static void vmx_set_segment(struct kvm_vcpu *vcpu,
922 struct kvm_segment *var, int seg);
923static void vmx_get_segment(struct kvm_vcpu *vcpu,
924 struct kvm_segment *var, int seg);
d99e4152
GN
925static bool guest_state_valid(struct kvm_vcpu *vcpu);
926static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 927static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 928static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 929static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 930
6aa8b732
AK
931static DEFINE_PER_CPU(struct vmcs *, vmxarea);
932static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
933/*
934 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
935 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
936 */
937static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 938static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 939
bf9f6ac8
FW
940/*
941 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
942 * can find which vCPU should be waken up.
943 */
944static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
945static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
946
23611332
RK
947enum {
948 VMX_IO_BITMAP_A,
949 VMX_IO_BITMAP_B,
950 VMX_MSR_BITMAP_LEGACY,
951 VMX_MSR_BITMAP_LONGMODE,
952 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
953 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
954 VMX_MSR_BITMAP_LEGACY_X2APIC,
955 VMX_MSR_BITMAP_LONGMODE_X2APIC,
956 VMX_VMREAD_BITMAP,
957 VMX_VMWRITE_BITMAP,
958 VMX_BITMAP_NR
959};
960
961static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
962
963#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
964#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
965#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
966#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
967#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
968#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
969#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
970#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
971#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
972#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 973
110312c8 974static bool cpu_has_load_ia32_efer;
8bf00a52 975static bool cpu_has_load_perf_global_ctrl;
110312c8 976
2384d2b3
SY
977static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
978static DEFINE_SPINLOCK(vmx_vpid_lock);
979
1c3d14fe 980static struct vmcs_config {
6aa8b732
AK
981 int size;
982 int order;
9ac7e3e8 983 u32 basic_cap;
6aa8b732 984 u32 revision_id;
1c3d14fe
YS
985 u32 pin_based_exec_ctrl;
986 u32 cpu_based_exec_ctrl;
f78e0e2e 987 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
988 u32 vmexit_ctrl;
989 u32 vmentry_ctrl;
990} vmcs_config;
6aa8b732 991
efff9e53 992static struct vmx_capability {
d56f546d
SY
993 u32 ept;
994 u32 vpid;
995} vmx_capability;
996
6aa8b732
AK
997#define VMX_SEGMENT_FIELD(seg) \
998 [VCPU_SREG_##seg] = { \
999 .selector = GUEST_##seg##_SELECTOR, \
1000 .base = GUEST_##seg##_BASE, \
1001 .limit = GUEST_##seg##_LIMIT, \
1002 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1003 }
1004
772e0318 1005static const struct kvm_vmx_segment_field {
6aa8b732
AK
1006 unsigned selector;
1007 unsigned base;
1008 unsigned limit;
1009 unsigned ar_bytes;
1010} kvm_vmx_segment_fields[] = {
1011 VMX_SEGMENT_FIELD(CS),
1012 VMX_SEGMENT_FIELD(DS),
1013 VMX_SEGMENT_FIELD(ES),
1014 VMX_SEGMENT_FIELD(FS),
1015 VMX_SEGMENT_FIELD(GS),
1016 VMX_SEGMENT_FIELD(SS),
1017 VMX_SEGMENT_FIELD(TR),
1018 VMX_SEGMENT_FIELD(LDTR),
1019};
1020
26bb0981
AK
1021static u64 host_efer;
1022
6de4f3ad
AK
1023static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1024
4d56c8a7 1025/*
8c06585d 1026 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1027 * away by decrementing the array size.
1028 */
6aa8b732 1029static const u32 vmx_msr_index[] = {
05b3e0c2 1030#ifdef CONFIG_X86_64
44ea2b17 1031 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1032#endif
8c06585d 1033 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1034};
6aa8b732 1035
5bb16016 1036static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1037{
1038 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1039 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1040 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1041}
1042
6f05485d
JK
1043static inline bool is_debug(u32 intr_info)
1044{
1045 return is_exception_n(intr_info, DB_VECTOR);
1046}
1047
1048static inline bool is_breakpoint(u32 intr_info)
1049{
1050 return is_exception_n(intr_info, BP_VECTOR);
1051}
1052
5bb16016
JK
1053static inline bool is_page_fault(u32 intr_info)
1054{
1055 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1056}
1057
31299944 1058static inline bool is_no_device(u32 intr_info)
2ab455cc 1059{
5bb16016 1060 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1061}
1062
31299944 1063static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1064{
5bb16016 1065 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1066}
1067
31299944 1068static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1069{
1070 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1071 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1072}
1073
31299944 1074static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1075{
1076 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1077 INTR_INFO_VALID_MASK)) ==
1078 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1079}
1080
31299944 1081static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1082{
04547156 1083 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1084}
1085
31299944 1086static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1087{
04547156 1088 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1089}
1090
35754c98 1091static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1092{
35754c98 1093 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1094}
1095
31299944 1096static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1097{
04547156
SY
1098 return vmcs_config.cpu_based_exec_ctrl &
1099 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1100}
1101
774ead3a 1102static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1103{
04547156
SY
1104 return vmcs_config.cpu_based_2nd_exec_ctrl &
1105 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1106}
1107
8d14695f
YZ
1108static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1109{
1110 return vmcs_config.cpu_based_2nd_exec_ctrl &
1111 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1112}
1113
83d4c286
YZ
1114static inline bool cpu_has_vmx_apic_register_virt(void)
1115{
1116 return vmcs_config.cpu_based_2nd_exec_ctrl &
1117 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1118}
1119
c7c9c56c
YZ
1120static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1121{
1122 return vmcs_config.cpu_based_2nd_exec_ctrl &
1123 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1124}
1125
64672c95
YJ
1126/*
1127 * Comment's format: document - errata name - stepping - processor name.
1128 * Refer from
1129 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1130 */
1131static u32 vmx_preemption_cpu_tfms[] = {
1132/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
11330x000206E6,
1134/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1135/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1136/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11370x00020652,
1138/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11390x00020655,
1140/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1141/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1142/*
1143 * 320767.pdf - AAP86 - B1 -
1144 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1145 */
11460x000106E5,
1147/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11480x000106A0,
1149/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11500x000106A1,
1151/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11520x000106A4,
1153 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1154 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1155 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11560x000106A5,
1157};
1158
1159static inline bool cpu_has_broken_vmx_preemption_timer(void)
1160{
1161 u32 eax = cpuid_eax(0x00000001), i;
1162
1163 /* Clear the reserved bits */
1164 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1165 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1166 if (eax == vmx_preemption_cpu_tfms[i])
1167 return true;
1168
1169 return false;
1170}
1171
1172static inline bool cpu_has_vmx_preemption_timer(void)
1173{
64672c95
YJ
1174 return vmcs_config.pin_based_exec_ctrl &
1175 PIN_BASED_VMX_PREEMPTION_TIMER;
1176}
1177
01e439be
YZ
1178static inline bool cpu_has_vmx_posted_intr(void)
1179{
d6a858d1
PB
1180 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1181 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1182}
1183
1184static inline bool cpu_has_vmx_apicv(void)
1185{
1186 return cpu_has_vmx_apic_register_virt() &&
1187 cpu_has_vmx_virtual_intr_delivery() &&
1188 cpu_has_vmx_posted_intr();
1189}
1190
04547156
SY
1191static inline bool cpu_has_vmx_flexpriority(void)
1192{
1193 return cpu_has_vmx_tpr_shadow() &&
1194 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1195}
1196
e799794e
MT
1197static inline bool cpu_has_vmx_ept_execute_only(void)
1198{
31299944 1199 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1200}
1201
e799794e
MT
1202static inline bool cpu_has_vmx_ept_2m_page(void)
1203{
31299944 1204 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1205}
1206
878403b7
SY
1207static inline bool cpu_has_vmx_ept_1g_page(void)
1208{
31299944 1209 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1210}
1211
4bc9b982
SY
1212static inline bool cpu_has_vmx_ept_4levels(void)
1213{
1214 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1215}
1216
83c3a331
XH
1217static inline bool cpu_has_vmx_ept_ad_bits(void)
1218{
1219 return vmx_capability.ept & VMX_EPT_AD_BIT;
1220}
1221
31299944 1222static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1223{
31299944 1224 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1225}
1226
31299944 1227static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1228{
31299944 1229 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1230}
1231
518c8aee
GJ
1232static inline bool cpu_has_vmx_invvpid_single(void)
1233{
1234 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1235}
1236
b9d762fa
GJ
1237static inline bool cpu_has_vmx_invvpid_global(void)
1238{
1239 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1240}
1241
31299944 1242static inline bool cpu_has_vmx_ept(void)
d56f546d 1243{
04547156
SY
1244 return vmcs_config.cpu_based_2nd_exec_ctrl &
1245 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1246}
1247
31299944 1248static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1249{
1250 return vmcs_config.cpu_based_2nd_exec_ctrl &
1251 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1252}
1253
31299944 1254static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1255{
1256 return vmcs_config.cpu_based_2nd_exec_ctrl &
1257 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1258}
1259
9ac7e3e8
JD
1260static inline bool cpu_has_vmx_basic_inout(void)
1261{
1262 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1263}
1264
35754c98 1265static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1266{
35754c98 1267 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1268}
1269
31299944 1270static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1271{
04547156
SY
1272 return vmcs_config.cpu_based_2nd_exec_ctrl &
1273 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1274}
1275
31299944 1276static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1277{
1278 return vmcs_config.cpu_based_2nd_exec_ctrl &
1279 SECONDARY_EXEC_RDTSCP;
1280}
1281
ad756a16
MJ
1282static inline bool cpu_has_vmx_invpcid(void)
1283{
1284 return vmcs_config.cpu_based_2nd_exec_ctrl &
1285 SECONDARY_EXEC_ENABLE_INVPCID;
1286}
1287
31299944 1288static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1289{
1290 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1291}
1292
f5f48ee1
SY
1293static inline bool cpu_has_vmx_wbinvd_exit(void)
1294{
1295 return vmcs_config.cpu_based_2nd_exec_ctrl &
1296 SECONDARY_EXEC_WBINVD_EXITING;
1297}
1298
abc4fc58
AG
1299static inline bool cpu_has_vmx_shadow_vmcs(void)
1300{
1301 u64 vmx_msr;
1302 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1303 /* check if the cpu supports writing r/o exit information fields */
1304 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1305 return false;
1306
1307 return vmcs_config.cpu_based_2nd_exec_ctrl &
1308 SECONDARY_EXEC_SHADOW_VMCS;
1309}
1310
843e4330
KH
1311static inline bool cpu_has_vmx_pml(void)
1312{
1313 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1314}
1315
64903d61
HZ
1316static inline bool cpu_has_vmx_tsc_scaling(void)
1317{
1318 return vmcs_config.cpu_based_2nd_exec_ctrl &
1319 SECONDARY_EXEC_TSC_SCALING;
1320}
1321
04547156
SY
1322static inline bool report_flexpriority(void)
1323{
1324 return flexpriority_enabled;
1325}
1326
fe3ef05c
NHE
1327static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1328{
1329 return vmcs12->cpu_based_vm_exec_control & bit;
1330}
1331
1332static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1333{
1334 return (vmcs12->cpu_based_vm_exec_control &
1335 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1336 (vmcs12->secondary_vm_exec_control & bit);
1337}
1338
f5c4368f 1339static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1340{
1341 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1342}
1343
f4124500
JK
1344static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1345{
1346 return vmcs12->pin_based_vm_exec_control &
1347 PIN_BASED_VMX_PREEMPTION_TIMER;
1348}
1349
155a97a3
NHE
1350static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1351{
1352 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1353}
1354
81dc01f7
WL
1355static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1356{
1357 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1358 vmx_xsaves_supported();
1359}
1360
f2b93280
WV
1361static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1362{
1363 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1364}
1365
5c614b35
WL
1366static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1367{
1368 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1369}
1370
82f0dd4b
WV
1371static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1372{
1373 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1374}
1375
608406e2
WV
1376static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1377{
1378 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1379}
1380
705699a1
WV
1381static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1382{
1383 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1384}
1385
ef85b673 1386static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1387{
1388 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1389 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1390}
1391
533558bc
JK
1392static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1393 u32 exit_intr_info,
1394 unsigned long exit_qualification);
7c177938
NHE
1395static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1396 struct vmcs12 *vmcs12,
1397 u32 reason, unsigned long qualification);
1398
8b9cf98c 1399static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1400{
1401 int i;
1402
a2fa3e9f 1403 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1404 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1405 return i;
1406 return -1;
1407}
1408
2384d2b3
SY
1409static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1410{
1411 struct {
1412 u64 vpid : 16;
1413 u64 rsvd : 48;
1414 u64 gva;
1415 } operand = { vpid, 0, gva };
1416
4ecac3fd 1417 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1418 /* CF==1 or ZF==1 --> rc = -1 */
1419 "; ja 1f ; ud2 ; 1:"
1420 : : "a"(&operand), "c"(ext) : "cc", "memory");
1421}
1422
1439442c
SY
1423static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1424{
1425 struct {
1426 u64 eptp, gpa;
1427 } operand = {eptp, gpa};
1428
4ecac3fd 1429 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1430 /* CF==1 or ZF==1 --> rc = -1 */
1431 "; ja 1f ; ud2 ; 1:\n"
1432 : : "a" (&operand), "c" (ext) : "cc", "memory");
1433}
1434
26bb0981 1435static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1436{
1437 int i;
1438
8b9cf98c 1439 i = __find_msr_index(vmx, msr);
a75beee6 1440 if (i >= 0)
a2fa3e9f 1441 return &vmx->guest_msrs[i];
8b6d44c7 1442 return NULL;
7725f0ba
AK
1443}
1444
6aa8b732
AK
1445static void vmcs_clear(struct vmcs *vmcs)
1446{
1447 u64 phys_addr = __pa(vmcs);
1448 u8 error;
1449
4ecac3fd 1450 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1451 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1452 : "cc", "memory");
1453 if (error)
1454 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1455 vmcs, phys_addr);
1456}
1457
d462b819
NHE
1458static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1459{
1460 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1461 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1462 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1463 loaded_vmcs->cpu = -1;
1464 loaded_vmcs->launched = 0;
1465}
1466
7725b894
DX
1467static void vmcs_load(struct vmcs *vmcs)
1468{
1469 u64 phys_addr = __pa(vmcs);
1470 u8 error;
1471
1472 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1473 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1474 : "cc", "memory");
1475 if (error)
2844d849 1476 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1477 vmcs, phys_addr);
1478}
1479
2965faa5 1480#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1481/*
1482 * This bitmap is used to indicate whether the vmclear
1483 * operation is enabled on all cpus. All disabled by
1484 * default.
1485 */
1486static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1487
1488static inline void crash_enable_local_vmclear(int cpu)
1489{
1490 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1491}
1492
1493static inline void crash_disable_local_vmclear(int cpu)
1494{
1495 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1496}
1497
1498static inline int crash_local_vmclear_enabled(int cpu)
1499{
1500 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1501}
1502
1503static void crash_vmclear_local_loaded_vmcss(void)
1504{
1505 int cpu = raw_smp_processor_id();
1506 struct loaded_vmcs *v;
1507
1508 if (!crash_local_vmclear_enabled(cpu))
1509 return;
1510
1511 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1512 loaded_vmcss_on_cpu_link)
1513 vmcs_clear(v->vmcs);
1514}
1515#else
1516static inline void crash_enable_local_vmclear(int cpu) { }
1517static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1518#endif /* CONFIG_KEXEC_CORE */
8f536b76 1519
d462b819 1520static void __loaded_vmcs_clear(void *arg)
6aa8b732 1521{
d462b819 1522 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1523 int cpu = raw_smp_processor_id();
6aa8b732 1524
d462b819
NHE
1525 if (loaded_vmcs->cpu != cpu)
1526 return; /* vcpu migration can race with cpu offline */
1527 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1528 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1529 crash_disable_local_vmclear(cpu);
d462b819 1530 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1531
1532 /*
1533 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1534 * is before setting loaded_vmcs->vcpu to -1 which is done in
1535 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1536 * then adds the vmcs into percpu list before it is deleted.
1537 */
1538 smp_wmb();
1539
d462b819 1540 loaded_vmcs_init(loaded_vmcs);
8f536b76 1541 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1542}
1543
d462b819 1544static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1545{
e6c7d321
XG
1546 int cpu = loaded_vmcs->cpu;
1547
1548 if (cpu != -1)
1549 smp_call_function_single(cpu,
1550 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1551}
1552
dd5f5341 1553static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1554{
dd5f5341 1555 if (vpid == 0)
2384d2b3
SY
1556 return;
1557
518c8aee 1558 if (cpu_has_vmx_invvpid_single())
dd5f5341 1559 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1560}
1561
b9d762fa
GJ
1562static inline void vpid_sync_vcpu_global(void)
1563{
1564 if (cpu_has_vmx_invvpid_global())
1565 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1566}
1567
dd5f5341 1568static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1569{
1570 if (cpu_has_vmx_invvpid_single())
dd5f5341 1571 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1572 else
1573 vpid_sync_vcpu_global();
1574}
1575
1439442c
SY
1576static inline void ept_sync_global(void)
1577{
1578 if (cpu_has_vmx_invept_global())
1579 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1580}
1581
1582static inline void ept_sync_context(u64 eptp)
1583{
089d034e 1584 if (enable_ept) {
1439442c
SY
1585 if (cpu_has_vmx_invept_context())
1586 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1587 else
1588 ept_sync_global();
1589 }
1590}
1591
8a86aea9
PB
1592static __always_inline void vmcs_check16(unsigned long field)
1593{
1594 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1595 "16-bit accessor invalid for 64-bit field");
1596 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1597 "16-bit accessor invalid for 64-bit high field");
1598 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1599 "16-bit accessor invalid for 32-bit high field");
1600 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1601 "16-bit accessor invalid for natural width field");
1602}
1603
1604static __always_inline void vmcs_check32(unsigned long field)
1605{
1606 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1607 "32-bit accessor invalid for 16-bit field");
1608 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1609 "32-bit accessor invalid for natural width field");
1610}
1611
1612static __always_inline void vmcs_check64(unsigned long field)
1613{
1614 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1615 "64-bit accessor invalid for 16-bit field");
1616 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1617 "64-bit accessor invalid for 64-bit high field");
1618 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1619 "64-bit accessor invalid for 32-bit field");
1620 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1621 "64-bit accessor invalid for natural width field");
1622}
1623
1624static __always_inline void vmcs_checkl(unsigned long field)
1625{
1626 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1627 "Natural width accessor invalid for 16-bit field");
1628 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1629 "Natural width accessor invalid for 64-bit field");
1630 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1631 "Natural width accessor invalid for 64-bit high field");
1632 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1633 "Natural width accessor invalid for 32-bit field");
1634}
1635
1636static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1637{
5e520e62 1638 unsigned long value;
6aa8b732 1639
5e520e62
AK
1640 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1641 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1642 return value;
1643}
1644
96304217 1645static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1646{
8a86aea9
PB
1647 vmcs_check16(field);
1648 return __vmcs_readl(field);
6aa8b732
AK
1649}
1650
96304217 1651static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1652{
8a86aea9
PB
1653 vmcs_check32(field);
1654 return __vmcs_readl(field);
6aa8b732
AK
1655}
1656
96304217 1657static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1658{
8a86aea9 1659 vmcs_check64(field);
05b3e0c2 1660#ifdef CONFIG_X86_64
8a86aea9 1661 return __vmcs_readl(field);
6aa8b732 1662#else
8a86aea9 1663 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1664#endif
1665}
1666
8a86aea9
PB
1667static __always_inline unsigned long vmcs_readl(unsigned long field)
1668{
1669 vmcs_checkl(field);
1670 return __vmcs_readl(field);
1671}
1672
e52de1b8
AK
1673static noinline void vmwrite_error(unsigned long field, unsigned long value)
1674{
1675 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1676 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1677 dump_stack();
1678}
1679
8a86aea9 1680static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1681{
1682 u8 error;
1683
4ecac3fd 1684 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1685 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1686 if (unlikely(error))
1687 vmwrite_error(field, value);
6aa8b732
AK
1688}
1689
8a86aea9 1690static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1691{
8a86aea9
PB
1692 vmcs_check16(field);
1693 __vmcs_writel(field, value);
6aa8b732
AK
1694}
1695
8a86aea9 1696static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1697{
8a86aea9
PB
1698 vmcs_check32(field);
1699 __vmcs_writel(field, value);
6aa8b732
AK
1700}
1701
8a86aea9 1702static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1703{
8a86aea9
PB
1704 vmcs_check64(field);
1705 __vmcs_writel(field, value);
7682f2d0 1706#ifndef CONFIG_X86_64
6aa8b732 1707 asm volatile ("");
8a86aea9 1708 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1709#endif
1710}
1711
8a86aea9 1712static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1713{
8a86aea9
PB
1714 vmcs_checkl(field);
1715 __vmcs_writel(field, value);
2ab455cc
AL
1716}
1717
8a86aea9 1718static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1719{
8a86aea9
PB
1720 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1721 "vmcs_clear_bits does not support 64-bit fields");
1722 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1723}
1724
8a86aea9 1725static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1726{
8a86aea9
PB
1727 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1728 "vmcs_set_bits does not support 64-bit fields");
1729 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1730}
1731
8391ce44
PB
1732static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1733{
1734 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1735}
1736
2961e876
GN
1737static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1738{
1739 vmcs_write32(VM_ENTRY_CONTROLS, val);
1740 vmx->vm_entry_controls_shadow = val;
1741}
1742
1743static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1744{
1745 if (vmx->vm_entry_controls_shadow != val)
1746 vm_entry_controls_init(vmx, val);
1747}
1748
1749static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1750{
1751 return vmx->vm_entry_controls_shadow;
1752}
1753
1754
1755static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1756{
1757 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1758}
1759
1760static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1761{
1762 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1763}
1764
8391ce44
PB
1765static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1766{
1767 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1768}
1769
2961e876
GN
1770static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1771{
1772 vmcs_write32(VM_EXIT_CONTROLS, val);
1773 vmx->vm_exit_controls_shadow = val;
1774}
1775
1776static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1777{
1778 if (vmx->vm_exit_controls_shadow != val)
1779 vm_exit_controls_init(vmx, val);
1780}
1781
1782static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1783{
1784 return vmx->vm_exit_controls_shadow;
1785}
1786
1787
1788static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1789{
1790 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1791}
1792
1793static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1794{
1795 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1796}
1797
2fb92db1
AK
1798static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1799{
1800 vmx->segment_cache.bitmask = 0;
1801}
1802
1803static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1804 unsigned field)
1805{
1806 bool ret;
1807 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1808
1809 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1810 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1811 vmx->segment_cache.bitmask = 0;
1812 }
1813 ret = vmx->segment_cache.bitmask & mask;
1814 vmx->segment_cache.bitmask |= mask;
1815 return ret;
1816}
1817
1818static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1819{
1820 u16 *p = &vmx->segment_cache.seg[seg].selector;
1821
1822 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1823 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1824 return *p;
1825}
1826
1827static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1828{
1829 ulong *p = &vmx->segment_cache.seg[seg].base;
1830
1831 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1832 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1833 return *p;
1834}
1835
1836static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1837{
1838 u32 *p = &vmx->segment_cache.seg[seg].limit;
1839
1840 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1841 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1842 return *p;
1843}
1844
1845static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1846{
1847 u32 *p = &vmx->segment_cache.seg[seg].ar;
1848
1849 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1850 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1851 return *p;
1852}
1853
abd3f2d6
AK
1854static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1855{
1856 u32 eb;
1857
fd7373cc 1858 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 1859 (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1860 if ((vcpu->guest_debug &
1861 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1862 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1863 eb |= 1u << BP_VECTOR;
7ffd92c5 1864 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1865 eb = ~0;
089d034e 1866 if (enable_ept)
1439442c 1867 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
1868
1869 /* When we are running a nested L2 guest and L1 specified for it a
1870 * certain exception bitmap, we must trap the same exceptions and pass
1871 * them to L1. When running L2, we will only handle the exceptions
1872 * specified above if L1 did not want them.
1873 */
1874 if (is_guest_mode(vcpu))
1875 eb |= get_vmcs12(vcpu)->exception_bitmap;
1876
abd3f2d6
AK
1877 vmcs_write32(EXCEPTION_BITMAP, eb);
1878}
1879
2961e876
GN
1880static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1881 unsigned long entry, unsigned long exit)
8bf00a52 1882{
2961e876
GN
1883 vm_entry_controls_clearbit(vmx, entry);
1884 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1885}
1886
61d2ef2c
AK
1887static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1888{
1889 unsigned i;
1890 struct msr_autoload *m = &vmx->msr_autoload;
1891
8bf00a52
GN
1892 switch (msr) {
1893 case MSR_EFER:
1894 if (cpu_has_load_ia32_efer) {
2961e876
GN
1895 clear_atomic_switch_msr_special(vmx,
1896 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1897 VM_EXIT_LOAD_IA32_EFER);
1898 return;
1899 }
1900 break;
1901 case MSR_CORE_PERF_GLOBAL_CTRL:
1902 if (cpu_has_load_perf_global_ctrl) {
2961e876 1903 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1904 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1905 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1906 return;
1907 }
1908 break;
110312c8
AK
1909 }
1910
61d2ef2c
AK
1911 for (i = 0; i < m->nr; ++i)
1912 if (m->guest[i].index == msr)
1913 break;
1914
1915 if (i == m->nr)
1916 return;
1917 --m->nr;
1918 m->guest[i] = m->guest[m->nr];
1919 m->host[i] = m->host[m->nr];
1920 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1921 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1922}
1923
2961e876
GN
1924static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1925 unsigned long entry, unsigned long exit,
1926 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1927 u64 guest_val, u64 host_val)
8bf00a52
GN
1928{
1929 vmcs_write64(guest_val_vmcs, guest_val);
1930 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1931 vm_entry_controls_setbit(vmx, entry);
1932 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1933}
1934
61d2ef2c
AK
1935static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1936 u64 guest_val, u64 host_val)
1937{
1938 unsigned i;
1939 struct msr_autoload *m = &vmx->msr_autoload;
1940
8bf00a52
GN
1941 switch (msr) {
1942 case MSR_EFER:
1943 if (cpu_has_load_ia32_efer) {
2961e876
GN
1944 add_atomic_switch_msr_special(vmx,
1945 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1946 VM_EXIT_LOAD_IA32_EFER,
1947 GUEST_IA32_EFER,
1948 HOST_IA32_EFER,
1949 guest_val, host_val);
1950 return;
1951 }
1952 break;
1953 case MSR_CORE_PERF_GLOBAL_CTRL:
1954 if (cpu_has_load_perf_global_ctrl) {
2961e876 1955 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1956 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1957 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1958 GUEST_IA32_PERF_GLOBAL_CTRL,
1959 HOST_IA32_PERF_GLOBAL_CTRL,
1960 guest_val, host_val);
1961 return;
1962 }
1963 break;
7099e2e1
RK
1964 case MSR_IA32_PEBS_ENABLE:
1965 /* PEBS needs a quiescent period after being disabled (to write
1966 * a record). Disabling PEBS through VMX MSR swapping doesn't
1967 * provide that period, so a CPU could write host's record into
1968 * guest's memory.
1969 */
1970 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1971 }
1972
61d2ef2c
AK
1973 for (i = 0; i < m->nr; ++i)
1974 if (m->guest[i].index == msr)
1975 break;
1976
e7fc6f93 1977 if (i == NR_AUTOLOAD_MSRS) {
60266204 1978 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1979 "Can't add msr %x\n", msr);
1980 return;
1981 } else if (i == m->nr) {
61d2ef2c
AK
1982 ++m->nr;
1983 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1984 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1985 }
1986
1987 m->guest[i].index = msr;
1988 m->guest[i].value = guest_val;
1989 m->host[i].index = msr;
1990 m->host[i].value = host_val;
1991}
1992
33ed6329
AK
1993static void reload_tss(void)
1994{
33ed6329
AK
1995 /*
1996 * VT restores TR but not its size. Useless.
1997 */
89cbc767 1998 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
a5f61300 1999 struct desc_struct *descs;
33ed6329 2000
d359192f 2001 descs = (void *)gdt->address;
33ed6329
AK
2002 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
2003 load_TR_desc();
33ed6329
AK
2004}
2005
92c0d900 2006static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2007{
844a5fe2
PB
2008 u64 guest_efer = vmx->vcpu.arch.efer;
2009 u64 ignore_bits = 0;
2010
2011 if (!enable_ept) {
2012 /*
2013 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2014 * host CPUID is more efficient than testing guest CPUID
2015 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2016 */
2017 if (boot_cpu_has(X86_FEATURE_SMEP))
2018 guest_efer |= EFER_NX;
2019 else if (!(guest_efer & EFER_NX))
2020 ignore_bits |= EFER_NX;
2021 }
3a34a881 2022
51c6cf66 2023 /*
844a5fe2 2024 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2025 */
844a5fe2 2026 ignore_bits |= EFER_SCE;
51c6cf66
AK
2027#ifdef CONFIG_X86_64
2028 ignore_bits |= EFER_LMA | EFER_LME;
2029 /* SCE is meaningful only in long mode on Intel */
2030 if (guest_efer & EFER_LMA)
2031 ignore_bits &= ~(u64)EFER_SCE;
2032#endif
84ad33ef
AK
2033
2034 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2035
2036 /*
2037 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2038 * On CPUs that support "load IA32_EFER", always switch EFER
2039 * atomically, since it's faster than switching it manually.
2040 */
2041 if (cpu_has_load_ia32_efer ||
2042 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2043 if (!(guest_efer & EFER_LMA))
2044 guest_efer &= ~EFER_LME;
54b98bff
AL
2045 if (guest_efer != host_efer)
2046 add_atomic_switch_msr(vmx, MSR_EFER,
2047 guest_efer, host_efer);
84ad33ef 2048 return false;
844a5fe2
PB
2049 } else {
2050 guest_efer &= ~ignore_bits;
2051 guest_efer |= host_efer & ignore_bits;
2052
2053 vmx->guest_msrs[efer_offset].data = guest_efer;
2054 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2055
844a5fe2
PB
2056 return true;
2057 }
51c6cf66
AK
2058}
2059
e28baead
AL
2060#ifdef CONFIG_X86_32
2061/*
2062 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2063 * VMCS rather than the segment table. KVM uses this helper to figure
2064 * out the current bases to poke them into the VMCS before entry.
2065 */
2d49ec72
GN
2066static unsigned long segment_base(u16 selector)
2067{
89cbc767 2068 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2d49ec72
GN
2069 struct desc_struct *d;
2070 unsigned long table_base;
2071 unsigned long v;
2072
2073 if (!(selector & ~3))
2074 return 0;
2075
d359192f 2076 table_base = gdt->address;
2d49ec72
GN
2077
2078 if (selector & 4) { /* from ldt */
2079 u16 ldt_selector = kvm_read_ldt();
2080
2081 if (!(ldt_selector & ~3))
2082 return 0;
2083
2084 table_base = segment_base(ldt_selector);
2085 }
2086 d = (struct desc_struct *)(table_base + (selector & ~7));
2087 v = get_desc_base(d);
2d49ec72
GN
2088 return v;
2089}
e28baead 2090#endif
2d49ec72 2091
04d2cc77 2092static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2093{
04d2cc77 2094 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2095 int i;
04d2cc77 2096
a2fa3e9f 2097 if (vmx->host_state.loaded)
33ed6329
AK
2098 return;
2099
a2fa3e9f 2100 vmx->host_state.loaded = 1;
33ed6329
AK
2101 /*
2102 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2103 * allow segment selectors with cpl > 0 or ti == 1.
2104 */
d6e88aec 2105 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2106 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2107 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2108 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2109 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2110 vmx->host_state.fs_reload_needed = 0;
2111 } else {
33ed6329 2112 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2113 vmx->host_state.fs_reload_needed = 1;
33ed6329 2114 }
9581d442 2115 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2116 if (!(vmx->host_state.gs_sel & 7))
2117 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2118 else {
2119 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2120 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2121 }
2122
b2da15ac
AK
2123#ifdef CONFIG_X86_64
2124 savesegment(ds, vmx->host_state.ds_sel);
2125 savesegment(es, vmx->host_state.es_sel);
2126#endif
2127
33ed6329
AK
2128#ifdef CONFIG_X86_64
2129 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2130 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2131#else
a2fa3e9f
GH
2132 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2133 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2134#endif
707c0874
AK
2135
2136#ifdef CONFIG_X86_64
c8770e7b
AK
2137 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2138 if (is_long_mode(&vmx->vcpu))
44ea2b17 2139 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2140#endif
da8999d3
LJ
2141 if (boot_cpu_has(X86_FEATURE_MPX))
2142 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2143 for (i = 0; i < vmx->save_nmsrs; ++i)
2144 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2145 vmx->guest_msrs[i].data,
2146 vmx->guest_msrs[i].mask);
33ed6329
AK
2147}
2148
a9b21b62 2149static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2150{
a2fa3e9f 2151 if (!vmx->host_state.loaded)
33ed6329
AK
2152 return;
2153
e1beb1d3 2154 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2155 vmx->host_state.loaded = 0;
c8770e7b
AK
2156#ifdef CONFIG_X86_64
2157 if (is_long_mode(&vmx->vcpu))
2158 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2159#endif
152d3f2f 2160 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2161 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2162#ifdef CONFIG_X86_64
9581d442 2163 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2164#else
2165 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2166#endif
33ed6329 2167 }
0a77fe4c
AK
2168 if (vmx->host_state.fs_reload_needed)
2169 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2170#ifdef CONFIG_X86_64
2171 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2172 loadsegment(ds, vmx->host_state.ds_sel);
2173 loadsegment(es, vmx->host_state.es_sel);
2174 }
b2da15ac 2175#endif
152d3f2f 2176 reload_tss();
44ea2b17 2177#ifdef CONFIG_X86_64
c8770e7b 2178 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2179#endif
da8999d3
LJ
2180 if (vmx->host_state.msr_host_bndcfgs)
2181 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
89cbc767 2182 load_gdt(this_cpu_ptr(&host_gdt));
33ed6329
AK
2183}
2184
a9b21b62
AK
2185static void vmx_load_host_state(struct vcpu_vmx *vmx)
2186{
2187 preempt_disable();
2188 __vmx_load_host_state(vmx);
2189 preempt_enable();
2190}
2191
28b835d6
FW
2192static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2193{
2194 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2195 struct pi_desc old, new;
2196 unsigned int dest;
2197
2198 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2199 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2200 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2201 return;
2202
2203 do {
2204 old.control = new.control = pi_desc->control;
2205
2206 /*
2207 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2208 * are two possible cases:
2209 * 1. After running 'pre_block', context switch
2210 * happened. For this case, 'sn' was set in
2211 * vmx_vcpu_put(), so we need to clear it here.
2212 * 2. After running 'pre_block', we were blocked,
2213 * and woken up by some other guy. For this case,
2214 * we don't need to do anything, 'pi_post_block'
2215 * will do everything for us. However, we cannot
2216 * check whether it is case #1 or case #2 here
2217 * (maybe, not needed), so we also clear sn here,
2218 * I think it is not a big deal.
2219 */
2220 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2221 if (vcpu->cpu != cpu) {
2222 dest = cpu_physical_id(cpu);
2223
2224 if (x2apic_enabled())
2225 new.ndst = dest;
2226 else
2227 new.ndst = (dest << 8) & 0xFF00;
2228 }
2229
2230 /* set 'NV' to 'notification vector' */
2231 new.nv = POSTED_INTR_VECTOR;
2232 }
2233
2234 /* Allow posting non-urgent interrupts */
2235 new.sn = 0;
2236 } while (cmpxchg(&pi_desc->control, old.control,
2237 new.control) != old.control);
2238}
1be0e61c 2239
c95ba92a
PF
2240static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2241{
2242 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2243 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2244}
2245
6aa8b732
AK
2246/*
2247 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2248 * vcpu mutex is already taken.
2249 */
15ad7146 2250static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2251{
a2fa3e9f 2252 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 2253 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
b80c76ec 2254 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2255
4610c9cc
DX
2256 if (!vmm_exclusive)
2257 kvm_cpu_vmxon(phys_addr);
b80c76ec 2258 else if (!already_loaded)
d462b819 2259 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 2260
b80c76ec 2261 if (!already_loaded) {
92fe13be 2262 local_irq_disable();
8f536b76 2263 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2264
2265 /*
2266 * Read loaded_vmcs->cpu should be before fetching
2267 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2268 * See the comments in __loaded_vmcs_clear().
2269 */
2270 smp_rmb();
2271
d462b819
NHE
2272 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2273 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2274 crash_enable_local_vmclear(cpu);
92fe13be 2275 local_irq_enable();
b80c76ec
JM
2276 }
2277
2278 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2279 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2280 vmcs_load(vmx->loaded_vmcs->vmcs);
2281 }
2282
2283 if (!already_loaded) {
2284 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2285 unsigned long sysenter_esp;
2286
2287 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2288
6aa8b732
AK
2289 /*
2290 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2291 * processors. See 22.2.4.
6aa8b732 2292 */
e0c23063
AL
2293 vmcs_writel(HOST_TR_BASE,
2294 (unsigned long)this_cpu_ptr(&cpu_tss));
2295 vmcs_writel(HOST_GDTR_BASE, gdt->address);
6aa8b732
AK
2296
2297 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2298 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2299
d462b819 2300 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2301 }
28b835d6 2302
2680d6da
OH
2303 /* Setup TSC multiplier */
2304 if (kvm_has_tsc_control &&
c95ba92a
PF
2305 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2306 decache_tsc_multiplier(vmx);
2680d6da 2307
28b835d6 2308 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2309 vmx->host_pkru = read_pkru();
28b835d6
FW
2310}
2311
2312static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2313{
2314 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2315
2316 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2317 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2318 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2319 return;
2320
2321 /* Set SN when the vCPU is preempted */
2322 if (vcpu->preempted)
2323 pi_set_sn(pi_desc);
6aa8b732
AK
2324}
2325
2326static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2327{
28b835d6
FW
2328 vmx_vcpu_pi_put(vcpu);
2329
a9b21b62 2330 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 2331 if (!vmm_exclusive) {
d462b819
NHE
2332 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2333 vcpu->cpu = -1;
4610c9cc
DX
2334 kvm_cpu_vmxoff();
2335 }
6aa8b732
AK
2336}
2337
edcafe3c
AK
2338static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2339
fe3ef05c
NHE
2340/*
2341 * Return the cr0 value that a nested guest would read. This is a combination
2342 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2343 * its hypervisor (cr0_read_shadow).
2344 */
2345static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2346{
2347 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2348 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2349}
2350static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2351{
2352 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2353 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2354}
2355
6aa8b732
AK
2356static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2357{
78ac8b47 2358 unsigned long rflags, save_rflags;
345dcaa8 2359
6de12732
AK
2360 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2361 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2362 rflags = vmcs_readl(GUEST_RFLAGS);
2363 if (to_vmx(vcpu)->rmode.vm86_active) {
2364 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2365 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2366 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2367 }
2368 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2369 }
6de12732 2370 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2371}
2372
2373static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2374{
6de12732
AK
2375 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2376 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2377 if (to_vmx(vcpu)->rmode.vm86_active) {
2378 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2379 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2380 }
6aa8b732
AK
2381 vmcs_writel(GUEST_RFLAGS, rflags);
2382}
2383
be94f6b7
HH
2384static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2385{
2386 return to_vmx(vcpu)->guest_pkru;
2387}
2388
37ccdcbe 2389static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2390{
2391 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2392 int ret = 0;
2393
2394 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2395 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2396 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2397 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2398
37ccdcbe 2399 return ret;
2809f5d2
GC
2400}
2401
2402static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2403{
2404 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2405 u32 interruptibility = interruptibility_old;
2406
2407 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2408
48005f64 2409 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2410 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2411 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2412 interruptibility |= GUEST_INTR_STATE_STI;
2413
2414 if ((interruptibility != interruptibility_old))
2415 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2416}
2417
6aa8b732
AK
2418static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2419{
2420 unsigned long rip;
6aa8b732 2421
5fdbf976 2422 rip = kvm_rip_read(vcpu);
6aa8b732 2423 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2424 kvm_rip_write(vcpu, rip);
6aa8b732 2425
2809f5d2
GC
2426 /* skipping an emulated instruction also counts */
2427 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2428}
2429
0b6ac343
NHE
2430/*
2431 * KVM wants to inject page-faults which it got to the guest. This function
2432 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2433 */
e011c663 2434static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2435{
2436 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2437
e011c663 2438 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2439 return 0;
2440
533558bc
JK
2441 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2442 vmcs_read32(VM_EXIT_INTR_INFO),
2443 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2444 return 1;
2445}
2446
298101da 2447static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2448 bool has_error_code, u32 error_code,
2449 bool reinject)
298101da 2450{
77ab6db0 2451 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2452 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2453
e011c663
GN
2454 if (!reinject && is_guest_mode(vcpu) &&
2455 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2456 return;
2457
8ab2d2e2 2458 if (has_error_code) {
77ab6db0 2459 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2460 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2461 }
77ab6db0 2462
7ffd92c5 2463 if (vmx->rmode.vm86_active) {
71f9833b
SH
2464 int inc_eip = 0;
2465 if (kvm_exception_is_soft(nr))
2466 inc_eip = vcpu->arch.event_exit_inst_len;
2467 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2468 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2469 return;
2470 }
2471
66fd3f7f
GN
2472 if (kvm_exception_is_soft(nr)) {
2473 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2474 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2475 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2476 } else
2477 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2478
2479 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2480}
2481
4e47c7a6
SY
2482static bool vmx_rdtscp_supported(void)
2483{
2484 return cpu_has_vmx_rdtscp();
2485}
2486
ad756a16
MJ
2487static bool vmx_invpcid_supported(void)
2488{
2489 return cpu_has_vmx_invpcid() && enable_ept;
2490}
2491
a75beee6
ED
2492/*
2493 * Swap MSR entry in host/guest MSR entry array.
2494 */
8b9cf98c 2495static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2496{
26bb0981 2497 struct shared_msr_entry tmp;
a2fa3e9f
GH
2498
2499 tmp = vmx->guest_msrs[to];
2500 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2501 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2502}
2503
8d14695f
YZ
2504static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2505{
2506 unsigned long *msr_bitmap;
2507
670125bd 2508 if (is_guest_mode(vcpu))
d048c098 2509 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
3ce424e4
RK
2510 else if (cpu_has_secondary_exec_ctrls() &&
2511 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2512 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
f6e90f9e
WL
2513 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2514 if (is_long_mode(vcpu))
c63e4563 2515 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
f6e90f9e 2516 else
c63e4563 2517 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
f6e90f9e
WL
2518 } else {
2519 if (is_long_mode(vcpu))
c63e4563 2520 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
f6e90f9e 2521 else
c63e4563 2522 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
f6e90f9e 2523 }
8d14695f
YZ
2524 } else {
2525 if (is_long_mode(vcpu))
2526 msr_bitmap = vmx_msr_bitmap_longmode;
2527 else
2528 msr_bitmap = vmx_msr_bitmap_legacy;
2529 }
2530
2531 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2532}
2533
e38aea3e
AK
2534/*
2535 * Set up the vmcs to automatically save and restore system
2536 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2537 * mode, as fiddling with msrs is very expensive.
2538 */
8b9cf98c 2539static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2540{
26bb0981 2541 int save_nmsrs, index;
e38aea3e 2542
a75beee6
ED
2543 save_nmsrs = 0;
2544#ifdef CONFIG_X86_64
8b9cf98c 2545 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2546 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2547 if (index >= 0)
8b9cf98c
RR
2548 move_msr_up(vmx, index, save_nmsrs++);
2549 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2550 if (index >= 0)
8b9cf98c
RR
2551 move_msr_up(vmx, index, save_nmsrs++);
2552 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2553 if (index >= 0)
8b9cf98c 2554 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2555 index = __find_msr_index(vmx, MSR_TSC_AUX);
1cea0ce6 2556 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
4e47c7a6 2557 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2558 /*
8c06585d 2559 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2560 * if efer.sce is enabled.
2561 */
8c06585d 2562 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2563 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2564 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2565 }
2566#endif
92c0d900
AK
2567 index = __find_msr_index(vmx, MSR_EFER);
2568 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2569 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2570
26bb0981 2571 vmx->save_nmsrs = save_nmsrs;
5897297b 2572
8d14695f
YZ
2573 if (cpu_has_vmx_msr_bitmap())
2574 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2575}
2576
6aa8b732
AK
2577/*
2578 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2579 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2580 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2581 */
be7b263e 2582static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2583{
2584 u64 host_tsc, tsc_offset;
2585
4ea1636b 2586 host_tsc = rdtsc();
6aa8b732 2587 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2588 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2589}
2590
2591/*
99e3e30a 2592 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2593 */
99e3e30a 2594static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2595{
27fc51b2 2596 if (is_guest_mode(vcpu)) {
7991825b 2597 /*
27fc51b2
NHE
2598 * We're here if L1 chose not to trap WRMSR to TSC. According
2599 * to the spec, this should set L1's TSC; The offset that L1
2600 * set for L2 remains unchanged, and still needs to be added
2601 * to the newly set TSC to get L2's TSC.
7991825b 2602 */
27fc51b2 2603 struct vmcs12 *vmcs12;
27fc51b2
NHE
2604 /* recalculate vmcs02.TSC_OFFSET: */
2605 vmcs12 = get_vmcs12(vcpu);
2606 vmcs_write64(TSC_OFFSET, offset +
2607 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2608 vmcs12->tsc_offset : 0));
2609 } else {
489223ed
YY
2610 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2611 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2612 vmcs_write64(TSC_OFFSET, offset);
2613 }
6aa8b732
AK
2614}
2615
801d3424
NHE
2616static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2617{
2618 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2619 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2620}
2621
2622/*
2623 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2624 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2625 * all guests if the "nested" module option is off, and can also be disabled
2626 * for a single guest by disabling its VMX cpuid bit.
2627 */
2628static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2629{
2630 return nested && guest_cpuid_has_vmx(vcpu);
2631}
2632
b87a51ae
NHE
2633/*
2634 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2635 * returned for the various VMX controls MSRs when nested VMX is enabled.
2636 * The same values should also be used to verify that vmcs12 control fields are
2637 * valid during nested entry from L1 to L2.
2638 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2639 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2640 * bit in the high half is on if the corresponding bit in the control field
2641 * may be on. See also vmx_control_verify().
b87a51ae 2642 */
b9c237bb 2643static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2644{
2645 /*
2646 * Note that as a general rule, the high half of the MSRs (bits in
2647 * the control fields which may be 1) should be initialized by the
2648 * intersection of the underlying hardware's MSR (i.e., features which
2649 * can be supported) and the list of features we want to expose -
2650 * because they are known to be properly supported in our code.
2651 * Also, usually, the low half of the MSRs (bits which must be 1) can
2652 * be set to 0, meaning that L1 may turn off any of these bits. The
2653 * reason is that if one of these bits is necessary, it will appear
2654 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2655 * fields of vmcs01 and vmcs02, will turn these bits off - and
2656 * nested_vmx_exit_handled() will not pass related exits to L1.
2657 * These rules have exceptions below.
2658 */
2659
2660 /* pin-based controls */
eabeaacc 2661 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2662 vmx->nested.nested_vmx_pinbased_ctls_low,
2663 vmx->nested.nested_vmx_pinbased_ctls_high);
2664 vmx->nested.nested_vmx_pinbased_ctls_low |=
2665 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2666 vmx->nested.nested_vmx_pinbased_ctls_high &=
2667 PIN_BASED_EXT_INTR_MASK |
2668 PIN_BASED_NMI_EXITING |
2669 PIN_BASED_VIRTUAL_NMIS;
2670 vmx->nested.nested_vmx_pinbased_ctls_high |=
2671 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2672 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2673 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2674 vmx->nested.nested_vmx_pinbased_ctls_high |=
2675 PIN_BASED_POSTED_INTR;
b87a51ae 2676
3dbcd8da 2677 /* exit controls */
c0dfee58 2678 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2679 vmx->nested.nested_vmx_exit_ctls_low,
2680 vmx->nested.nested_vmx_exit_ctls_high);
2681 vmx->nested.nested_vmx_exit_ctls_low =
2682 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2683
b9c237bb 2684 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2685#ifdef CONFIG_X86_64
c0dfee58 2686 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2687#endif
f4124500 2688 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2689 vmx->nested.nested_vmx_exit_ctls_high |=
2690 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2691 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2692 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2693
a87036ad 2694 if (kvm_mpx_supported())
b9c237bb 2695 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2696
2996fca0 2697 /* We support free control of debug control saving. */
0115f9cb 2698 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2699
b87a51ae
NHE
2700 /* entry controls */
2701 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2702 vmx->nested.nested_vmx_entry_ctls_low,
2703 vmx->nested.nested_vmx_entry_ctls_high);
2704 vmx->nested.nested_vmx_entry_ctls_low =
2705 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2706 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2707#ifdef CONFIG_X86_64
2708 VM_ENTRY_IA32E_MODE |
2709#endif
2710 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2711 vmx->nested.nested_vmx_entry_ctls_high |=
2712 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2713 if (kvm_mpx_supported())
b9c237bb 2714 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2715
2996fca0 2716 /* We support free control of debug control loading. */
0115f9cb 2717 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 2718
b87a51ae
NHE
2719 /* cpu-based controls */
2720 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2721 vmx->nested.nested_vmx_procbased_ctls_low,
2722 vmx->nested.nested_vmx_procbased_ctls_high);
2723 vmx->nested.nested_vmx_procbased_ctls_low =
2724 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2725 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2726 CPU_BASED_VIRTUAL_INTR_PENDING |
2727 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2728 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2729 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2730 CPU_BASED_CR3_STORE_EXITING |
2731#ifdef CONFIG_X86_64
2732 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2733#endif
2734 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2735 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2736 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2737 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2738 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2739 /*
2740 * We can allow some features even when not supported by the
2741 * hardware. For example, L1 can specify an MSR bitmap - and we
2742 * can use it to avoid exits to L1 - even when L0 runs L2
2743 * without MSR bitmaps.
2744 */
b9c237bb
WV
2745 vmx->nested.nested_vmx_procbased_ctls_high |=
2746 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2747 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2748
3dcdf3ec 2749 /* We support free control of CR3 access interception. */
0115f9cb 2750 vmx->nested.nested_vmx_procbased_ctls_low &=
3dcdf3ec
JK
2751 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2752
b87a51ae
NHE
2753 /* secondary cpu-based controls */
2754 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2755 vmx->nested.nested_vmx_secondary_ctls_low,
2756 vmx->nested.nested_vmx_secondary_ctls_high);
2757 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2758 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2759 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2760 SECONDARY_EXEC_RDTSCP |
1b07304c 2761 SECONDARY_EXEC_DESC |
f2b93280 2762 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5c614b35 2763 SECONDARY_EXEC_ENABLE_VPID |
82f0dd4b 2764 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2765 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7 2766 SECONDARY_EXEC_WBINVD_EXITING |
dfa169bb 2767 SECONDARY_EXEC_XSAVES;
c18911a2 2768
afa61f75
NHE
2769 if (enable_ept) {
2770 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2771 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2772 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2773 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
d3134dbf
JK
2774 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2775 VMX_EPT_INVEPT_BIT;
02120c45
BD
2776 if (cpu_has_vmx_ept_execute_only())
2777 vmx->nested.nested_vmx_ept_caps |=
2778 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2779 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817
BD
2780 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2781 VMX_EPT_EXTENT_CONTEXT_BIT;
afa61f75 2782 } else
b9c237bb 2783 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2784
ef697a71
PB
2785 /*
2786 * Old versions of KVM use the single-context version without
2787 * checking for support, so declare that it is supported even
2788 * though it is treated as global context. The alternative is
2789 * not failing the single-context invvpid, and it is worse.
2790 */
089d7b6e
WL
2791 if (enable_vpid)
2792 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 2793 VMX_VPID_EXTENT_SUPPORTED_MASK;
089d7b6e
WL
2794 else
2795 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2796
0790ec17
RK
2797 if (enable_unrestricted_guest)
2798 vmx->nested.nested_vmx_secondary_ctls_high |=
2799 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2800
c18911a2 2801 /* miscellaneous data */
b9c237bb
WV
2802 rdmsr(MSR_IA32_VMX_MISC,
2803 vmx->nested.nested_vmx_misc_low,
2804 vmx->nested.nested_vmx_misc_high);
2805 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2806 vmx->nested.nested_vmx_misc_low |=
2807 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2808 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2809 vmx->nested.nested_vmx_misc_high = 0;
62cc6b9d
DM
2810
2811 /*
2812 * This MSR reports some information about VMX support. We
2813 * should return information about the VMX we emulate for the
2814 * guest, and the VMCS structure we give it - not about the
2815 * VMX support of the underlying hardware.
2816 */
2817 vmx->nested.nested_vmx_basic =
2818 VMCS12_REVISION |
2819 VMX_BASIC_TRUE_CTLS |
2820 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2821 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2822
2823 if (cpu_has_vmx_basic_inout())
2824 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2825
2826 /*
8322ebbb 2827 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
2828 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2829 * We picked the standard core2 setting.
2830 */
2831#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2832#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2833 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
62cc6b9d 2834 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
2835
2836 /* These MSRs specify bits which the guest must keep fixed off. */
2837 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2838 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
62cc6b9d
DM
2839
2840 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2841 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
b87a51ae
NHE
2842}
2843
3899152c
DM
2844/*
2845 * if fixed0[i] == 1: val[i] must be 1
2846 * if fixed1[i] == 0: val[i] must be 0
2847 */
2848static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2849{
2850 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
2851}
2852
2853static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2854{
3899152c 2855 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
2856}
2857
2858static inline u64 vmx_control_msr(u32 low, u32 high)
2859{
2860 return low | ((u64)high << 32);
2861}
2862
62cc6b9d
DM
2863static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2864{
2865 superset &= mask;
2866 subset &= mask;
2867
2868 return (superset | subset) == superset;
2869}
2870
2871static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2872{
2873 const u64 feature_and_reserved =
2874 /* feature (except bit 48; see below) */
2875 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2876 /* reserved */
2877 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2878 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2879
2880 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2881 return -EINVAL;
2882
2883 /*
2884 * KVM does not emulate a version of VMX that constrains physical
2885 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2886 */
2887 if (data & BIT_ULL(48))
2888 return -EINVAL;
2889
2890 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2891 vmx_basic_vmcs_revision_id(data))
2892 return -EINVAL;
2893
2894 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2895 return -EINVAL;
2896
2897 vmx->nested.nested_vmx_basic = data;
2898 return 0;
2899}
2900
2901static int
2902vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2903{
2904 u64 supported;
2905 u32 *lowp, *highp;
2906
2907 switch (msr_index) {
2908 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2909 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2910 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2911 break;
2912 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2913 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2914 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2915 break;
2916 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2917 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2918 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2919 break;
2920 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2921 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2922 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2923 break;
2924 case MSR_IA32_VMX_PROCBASED_CTLS2:
2925 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2926 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2927 break;
2928 default:
2929 BUG();
2930 }
2931
2932 supported = vmx_control_msr(*lowp, *highp);
2933
2934 /* Check must-be-1 bits are still 1. */
2935 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2936 return -EINVAL;
2937
2938 /* Check must-be-0 bits are still 0. */
2939 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2940 return -EINVAL;
2941
2942 *lowp = data;
2943 *highp = data >> 32;
2944 return 0;
2945}
2946
2947static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2948{
2949 const u64 feature_and_reserved_bits =
2950 /* feature */
2951 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
2952 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
2953 /* reserved */
2954 GENMASK_ULL(13, 9) | BIT_ULL(31);
2955 u64 vmx_misc;
2956
2957 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
2958 vmx->nested.nested_vmx_misc_high);
2959
2960 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
2961 return -EINVAL;
2962
2963 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
2964 PIN_BASED_VMX_PREEMPTION_TIMER) &&
2965 vmx_misc_preemption_timer_rate(data) !=
2966 vmx_misc_preemption_timer_rate(vmx_misc))
2967 return -EINVAL;
2968
2969 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
2970 return -EINVAL;
2971
2972 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
2973 return -EINVAL;
2974
2975 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
2976 return -EINVAL;
2977
2978 vmx->nested.nested_vmx_misc_low = data;
2979 vmx->nested.nested_vmx_misc_high = data >> 32;
2980 return 0;
2981}
2982
2983static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
2984{
2985 u64 vmx_ept_vpid_cap;
2986
2987 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
2988 vmx->nested.nested_vmx_vpid_caps);
2989
2990 /* Every bit is either reserved or a feature bit. */
2991 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
2992 return -EINVAL;
2993
2994 vmx->nested.nested_vmx_ept_caps = data;
2995 vmx->nested.nested_vmx_vpid_caps = data >> 32;
2996 return 0;
2997}
2998
2999static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3000{
3001 u64 *msr;
3002
3003 switch (msr_index) {
3004 case MSR_IA32_VMX_CR0_FIXED0:
3005 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3006 break;
3007 case MSR_IA32_VMX_CR4_FIXED0:
3008 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3009 break;
3010 default:
3011 BUG();
3012 }
3013
3014 /*
3015 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3016 * must be 1 in the restored value.
3017 */
3018 if (!is_bitwise_subset(data, *msr, -1ULL))
3019 return -EINVAL;
3020
3021 *msr = data;
3022 return 0;
3023}
3024
3025/*
3026 * Called when userspace is restoring VMX MSRs.
3027 *
3028 * Returns 0 on success, non-0 otherwise.
3029 */
3030static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3031{
b9c237bb
WV
3032 struct vcpu_vmx *vmx = to_vmx(vcpu);
3033
b87a51ae 3034 switch (msr_index) {
b87a51ae 3035 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3036 return vmx_restore_vmx_basic(vmx, data);
3037 case MSR_IA32_VMX_PINBASED_CTLS:
3038 case MSR_IA32_VMX_PROCBASED_CTLS:
3039 case MSR_IA32_VMX_EXIT_CTLS:
3040 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3041 /*
62cc6b9d
DM
3042 * The "non-true" VMX capability MSRs are generated from the
3043 * "true" MSRs, so we do not support restoring them directly.
3044 *
3045 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3046 * should restore the "true" MSRs with the must-be-1 bits
3047 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3048 * DEFAULT SETTINGS".
b87a51ae 3049 */
62cc6b9d
DM
3050 return -EINVAL;
3051 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3052 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3053 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3054 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3055 case MSR_IA32_VMX_PROCBASED_CTLS2:
3056 return vmx_restore_control_msr(vmx, msr_index, data);
3057 case MSR_IA32_VMX_MISC:
3058 return vmx_restore_vmx_misc(vmx, data);
3059 case MSR_IA32_VMX_CR0_FIXED0:
3060 case MSR_IA32_VMX_CR4_FIXED0:
3061 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3062 case MSR_IA32_VMX_CR0_FIXED1:
3063 case MSR_IA32_VMX_CR4_FIXED1:
3064 /*
3065 * These MSRs are generated based on the vCPU's CPUID, so we
3066 * do not support restoring them directly.
3067 */
3068 return -EINVAL;
3069 case MSR_IA32_VMX_EPT_VPID_CAP:
3070 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3071 case MSR_IA32_VMX_VMCS_ENUM:
3072 vmx->nested.nested_vmx_vmcs_enum = data;
3073 return 0;
3074 default:
b87a51ae 3075 /*
62cc6b9d 3076 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3077 */
62cc6b9d
DM
3078 return -EINVAL;
3079 }
3080}
3081
3082/* Returns 0 on success, non-0 otherwise. */
3083static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3084{
3085 struct vcpu_vmx *vmx = to_vmx(vcpu);
3086
3087 switch (msr_index) {
3088 case MSR_IA32_VMX_BASIC:
3089 *pdata = vmx->nested.nested_vmx_basic;
b87a51ae
NHE
3090 break;
3091 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3092 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
3093 *pdata = vmx_control_msr(
3094 vmx->nested.nested_vmx_pinbased_ctls_low,
3095 vmx->nested.nested_vmx_pinbased_ctls_high);
0115f9cb
DM
3096 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3097 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3098 break;
3099 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3100 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
3101 *pdata = vmx_control_msr(
3102 vmx->nested.nested_vmx_procbased_ctls_low,
3103 vmx->nested.nested_vmx_procbased_ctls_high);
0115f9cb
DM
3104 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3105 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3106 break;
3107 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3108 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
3109 *pdata = vmx_control_msr(
3110 vmx->nested.nested_vmx_exit_ctls_low,
3111 vmx->nested.nested_vmx_exit_ctls_high);
0115f9cb
DM
3112 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3113 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3114 break;
3115 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3116 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
3117 *pdata = vmx_control_msr(
3118 vmx->nested.nested_vmx_entry_ctls_low,
3119 vmx->nested.nested_vmx_entry_ctls_high);
0115f9cb
DM
3120 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3121 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3122 break;
3123 case MSR_IA32_VMX_MISC:
b9c237bb
WV
3124 *pdata = vmx_control_msr(
3125 vmx->nested.nested_vmx_misc_low,
3126 vmx->nested.nested_vmx_misc_high);
b87a51ae 3127 break;
b87a51ae 3128 case MSR_IA32_VMX_CR0_FIXED0:
62cc6b9d 3129 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
b87a51ae
NHE
3130 break;
3131 case MSR_IA32_VMX_CR0_FIXED1:
62cc6b9d 3132 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
b87a51ae
NHE
3133 break;
3134 case MSR_IA32_VMX_CR4_FIXED0:
62cc6b9d 3135 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
b87a51ae
NHE
3136 break;
3137 case MSR_IA32_VMX_CR4_FIXED1:
62cc6b9d 3138 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
b87a51ae
NHE
3139 break;
3140 case MSR_IA32_VMX_VMCS_ENUM:
62cc6b9d 3141 *pdata = vmx->nested.nested_vmx_vmcs_enum;
b87a51ae
NHE
3142 break;
3143 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
3144 *pdata = vmx_control_msr(
3145 vmx->nested.nested_vmx_secondary_ctls_low,
3146 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
3147 break;
3148 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
3149 *pdata = vmx->nested.nested_vmx_ept_caps |
3150 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae
NHE
3151 break;
3152 default:
b87a51ae 3153 return 1;
b3897a49
NHE
3154 }
3155
b87a51ae
NHE
3156 return 0;
3157}
3158
37e4c997
HZ
3159static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3160 uint64_t val)
3161{
3162 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3163
3164 return !(val & ~valid_bits);
3165}
3166
6aa8b732
AK
3167/*
3168 * Reads an msr value (of 'msr_index') into 'pdata'.
3169 * Returns 0 on success, non-0 otherwise.
3170 * Assumes vcpu_load() was already called.
3171 */
609e36d3 3172static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3173{
26bb0981 3174 struct shared_msr_entry *msr;
6aa8b732 3175
609e36d3 3176 switch (msr_info->index) {
05b3e0c2 3177#ifdef CONFIG_X86_64
6aa8b732 3178 case MSR_FS_BASE:
609e36d3 3179 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3180 break;
3181 case MSR_GS_BASE:
609e36d3 3182 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3183 break;
44ea2b17
AK
3184 case MSR_KERNEL_GS_BASE:
3185 vmx_load_host_state(to_vmx(vcpu));
609e36d3 3186 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3187 break;
26bb0981 3188#endif
6aa8b732 3189 case MSR_EFER:
609e36d3 3190 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3191 case MSR_IA32_TSC:
be7b263e 3192 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
3193 break;
3194 case MSR_IA32_SYSENTER_CS:
609e36d3 3195 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3196 break;
3197 case MSR_IA32_SYSENTER_EIP:
609e36d3 3198 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3199 break;
3200 case MSR_IA32_SYSENTER_ESP:
609e36d3 3201 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3202 break;
0dd376e7 3203 case MSR_IA32_BNDCFGS:
a87036ad 3204 if (!kvm_mpx_supported())
93c4adc7 3205 return 1;
609e36d3 3206 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3207 break;
c45dcc71
AR
3208 case MSR_IA32_MCG_EXT_CTL:
3209 if (!msr_info->host_initiated &&
3210 !(to_vmx(vcpu)->msr_ia32_feature_control &
3211 FEATURE_CONTROL_LMCE))
cae50139 3212 return 1;
c45dcc71
AR
3213 msr_info->data = vcpu->arch.mcg_ext_ctl;
3214 break;
cae50139 3215 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3216 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3217 break;
3218 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3219 if (!nested_vmx_allowed(vcpu))
3220 return 1;
609e36d3 3221 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3222 case MSR_IA32_XSS:
3223 if (!vmx_xsaves_supported())
3224 return 1;
609e36d3 3225 msr_info->data = vcpu->arch.ia32_xss;
20300099 3226 break;
4e47c7a6 3227 case MSR_TSC_AUX:
81b1b9ca 3228 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3229 return 1;
3230 /* Otherwise falls through */
6aa8b732 3231 default:
609e36d3 3232 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3233 if (msr) {
609e36d3 3234 msr_info->data = msr->data;
3bab1f5d 3235 break;
6aa8b732 3236 }
609e36d3 3237 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3238 }
3239
6aa8b732
AK
3240 return 0;
3241}
3242
cae50139
JK
3243static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3244
6aa8b732
AK
3245/*
3246 * Writes msr value into into the appropriate "register".
3247 * Returns 0 on success, non-0 otherwise.
3248 * Assumes vcpu_load() was already called.
3249 */
8fe8ab46 3250static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3251{
a2fa3e9f 3252 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3253 struct shared_msr_entry *msr;
2cc51560 3254 int ret = 0;
8fe8ab46
WA
3255 u32 msr_index = msr_info->index;
3256 u64 data = msr_info->data;
2cc51560 3257
6aa8b732 3258 switch (msr_index) {
3bab1f5d 3259 case MSR_EFER:
8fe8ab46 3260 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3261 break;
16175a79 3262#ifdef CONFIG_X86_64
6aa8b732 3263 case MSR_FS_BASE:
2fb92db1 3264 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3265 vmcs_writel(GUEST_FS_BASE, data);
3266 break;
3267 case MSR_GS_BASE:
2fb92db1 3268 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3269 vmcs_writel(GUEST_GS_BASE, data);
3270 break;
44ea2b17
AK
3271 case MSR_KERNEL_GS_BASE:
3272 vmx_load_host_state(vmx);
3273 vmx->msr_guest_kernel_gs_base = data;
3274 break;
6aa8b732
AK
3275#endif
3276 case MSR_IA32_SYSENTER_CS:
3277 vmcs_write32(GUEST_SYSENTER_CS, data);
3278 break;
3279 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3280 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3281 break;
3282 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3283 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3284 break;
0dd376e7 3285 case MSR_IA32_BNDCFGS:
a87036ad 3286 if (!kvm_mpx_supported())
93c4adc7 3287 return 1;
0dd376e7
LJ
3288 vmcs_write64(GUEST_BNDCFGS, data);
3289 break;
af24a4e4 3290 case MSR_IA32_TSC:
8fe8ab46 3291 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3292 break;
468d472f
SY
3293 case MSR_IA32_CR_PAT:
3294 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3295 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3296 return 1;
468d472f
SY
3297 vmcs_write64(GUEST_IA32_PAT, data);
3298 vcpu->arch.pat = data;
3299 break;
3300 }
8fe8ab46 3301 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3302 break;
ba904635
WA
3303 case MSR_IA32_TSC_ADJUST:
3304 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3305 break;
c45dcc71
AR
3306 case MSR_IA32_MCG_EXT_CTL:
3307 if ((!msr_info->host_initiated &&
3308 !(to_vmx(vcpu)->msr_ia32_feature_control &
3309 FEATURE_CONTROL_LMCE)) ||
3310 (data & ~MCG_EXT_CTL_LMCE_EN))
3311 return 1;
3312 vcpu->arch.mcg_ext_ctl = data;
3313 break;
cae50139 3314 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3315 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3316 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3317 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3318 return 1;
3b84080b 3319 vmx->msr_ia32_feature_control = data;
cae50139
JK
3320 if (msr_info->host_initiated && data == 0)
3321 vmx_leave_nested(vcpu);
3322 break;
3323 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3324 if (!msr_info->host_initiated)
3325 return 1; /* they are read-only */
3326 if (!nested_vmx_allowed(vcpu))
3327 return 1;
3328 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3329 case MSR_IA32_XSS:
3330 if (!vmx_xsaves_supported())
3331 return 1;
3332 /*
3333 * The only supported bit as of Skylake is bit 8, but
3334 * it is not supported on KVM.
3335 */
3336 if (data != 0)
3337 return 1;
3338 vcpu->arch.ia32_xss = data;
3339 if (vcpu->arch.ia32_xss != host_xss)
3340 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3341 vcpu->arch.ia32_xss, host_xss);
3342 else
3343 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3344 break;
4e47c7a6 3345 case MSR_TSC_AUX:
81b1b9ca 3346 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3347 return 1;
3348 /* Check reserved bit, higher 32 bits should be zero */
3349 if ((data >> 32) != 0)
3350 return 1;
3351 /* Otherwise falls through */
6aa8b732 3352 default:
8b9cf98c 3353 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3354 if (msr) {
8b3c3104 3355 u64 old_msr_data = msr->data;
3bab1f5d 3356 msr->data = data;
2225fd56
AK
3357 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3358 preempt_disable();
8b3c3104
AH
3359 ret = kvm_set_shared_msr(msr->index, msr->data,
3360 msr->mask);
2225fd56 3361 preempt_enable();
8b3c3104
AH
3362 if (ret)
3363 msr->data = old_msr_data;
2225fd56 3364 }
3bab1f5d 3365 break;
6aa8b732 3366 }
8fe8ab46 3367 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3368 }
3369
2cc51560 3370 return ret;
6aa8b732
AK
3371}
3372
5fdbf976 3373static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3374{
5fdbf976
MT
3375 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3376 switch (reg) {
3377 case VCPU_REGS_RSP:
3378 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3379 break;
3380 case VCPU_REGS_RIP:
3381 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3382 break;
6de4f3ad
AK
3383 case VCPU_EXREG_PDPTR:
3384 if (enable_ept)
3385 ept_save_pdptrs(vcpu);
3386 break;
5fdbf976
MT
3387 default:
3388 break;
3389 }
6aa8b732
AK
3390}
3391
6aa8b732
AK
3392static __init int cpu_has_kvm_support(void)
3393{
6210e37b 3394 return cpu_has_vmx();
6aa8b732
AK
3395}
3396
3397static __init int vmx_disabled_by_bios(void)
3398{
3399 u64 msr;
3400
3401 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3402 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3403 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3404 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3405 && tboot_enabled())
3406 return 1;
23f3e991 3407 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3408 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3409 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3410 && !tboot_enabled()) {
3411 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3412 "activate TXT before enabling KVM\n");
cafd6659 3413 return 1;
f9335afe 3414 }
23f3e991
JC
3415 /* launched w/o TXT and VMX disabled */
3416 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3417 && !tboot_enabled())
3418 return 1;
cafd6659
SW
3419 }
3420
3421 return 0;
6aa8b732
AK
3422}
3423
7725b894
DX
3424static void kvm_cpu_vmxon(u64 addr)
3425{
1c5ac21a
AS
3426 intel_pt_handle_vmx(1);
3427
7725b894
DX
3428 asm volatile (ASM_VMX_VMXON_RAX
3429 : : "a"(&addr), "m"(addr)
3430 : "memory", "cc");
3431}
3432
13a34e06 3433static int hardware_enable(void)
6aa8b732
AK
3434{
3435 int cpu = raw_smp_processor_id();
3436 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3437 u64 old, test_bits;
6aa8b732 3438
1e02ce4c 3439 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3440 return -EBUSY;
3441
d462b819 3442 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3443 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3444 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3445
3446 /*
3447 * Now we can enable the vmclear operation in kdump
3448 * since the loaded_vmcss_on_cpu list on this cpu
3449 * has been initialized.
3450 *
3451 * Though the cpu is not in VMX operation now, there
3452 * is no problem to enable the vmclear operation
3453 * for the loaded_vmcss_on_cpu list is empty!
3454 */
3455 crash_enable_local_vmclear(cpu);
3456
6aa8b732 3457 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3458
3459 test_bits = FEATURE_CONTROL_LOCKED;
3460 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3461 if (tboot_enabled())
3462 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3463
3464 if ((old & test_bits) != test_bits) {
6aa8b732 3465 /* enable and lock */
cafd6659
SW
3466 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3467 }
375074cc 3468 cr4_set_bits(X86_CR4_VMXE);
10474ae8 3469
4610c9cc
DX
3470 if (vmm_exclusive) {
3471 kvm_cpu_vmxon(phys_addr);
3472 ept_sync_global();
3473 }
10474ae8 3474
89cbc767 3475 native_store_gdt(this_cpu_ptr(&host_gdt));
3444d7da 3476
10474ae8 3477 return 0;
6aa8b732
AK
3478}
3479
d462b819 3480static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3481{
3482 int cpu = raw_smp_processor_id();
d462b819 3483 struct loaded_vmcs *v, *n;
543e4243 3484
d462b819
NHE
3485 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3486 loaded_vmcss_on_cpu_link)
3487 __loaded_vmcs_clear(v);
543e4243
AK
3488}
3489
710ff4a8
EH
3490
3491/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3492 * tricks.
3493 */
3494static void kvm_cpu_vmxoff(void)
6aa8b732 3495{
4ecac3fd 3496 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3497
3498 intel_pt_handle_vmx(0);
6aa8b732
AK
3499}
3500
13a34e06 3501static void hardware_disable(void)
710ff4a8 3502{
4610c9cc 3503 if (vmm_exclusive) {
d462b819 3504 vmclear_local_loaded_vmcss();
4610c9cc
DX
3505 kvm_cpu_vmxoff();
3506 }
375074cc 3507 cr4_clear_bits(X86_CR4_VMXE);
710ff4a8
EH
3508}
3509
1c3d14fe 3510static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3511 u32 msr, u32 *result)
1c3d14fe
YS
3512{
3513 u32 vmx_msr_low, vmx_msr_high;
3514 u32 ctl = ctl_min | ctl_opt;
3515
3516 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3517
3518 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3519 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3520
3521 /* Ensure minimum (required) set of control bits are supported. */
3522 if (ctl_min & ~ctl)
002c7f7c 3523 return -EIO;
1c3d14fe
YS
3524
3525 *result = ctl;
3526 return 0;
3527}
3528
110312c8
AK
3529static __init bool allow_1_setting(u32 msr, u32 ctl)
3530{
3531 u32 vmx_msr_low, vmx_msr_high;
3532
3533 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3534 return vmx_msr_high & ctl;
3535}
3536
002c7f7c 3537static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3538{
3539 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3540 u32 min, opt, min2, opt2;
1c3d14fe
YS
3541 u32 _pin_based_exec_control = 0;
3542 u32 _cpu_based_exec_control = 0;
f78e0e2e 3543 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3544 u32 _vmexit_control = 0;
3545 u32 _vmentry_control = 0;
3546
10166744 3547 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3548#ifdef CONFIG_X86_64
3549 CPU_BASED_CR8_LOAD_EXITING |
3550 CPU_BASED_CR8_STORE_EXITING |
3551#endif
d56f546d
SY
3552 CPU_BASED_CR3_LOAD_EXITING |
3553 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3554 CPU_BASED_USE_IO_BITMAPS |
3555 CPU_BASED_MOV_DR_EXITING |
a7052897 3556 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
3557 CPU_BASED_MWAIT_EXITING |
3558 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
3559 CPU_BASED_INVLPG_EXITING |
3560 CPU_BASED_RDPMC_EXITING;
443381a8 3561
f78e0e2e 3562 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3563 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3564 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3565 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3566 &_cpu_based_exec_control) < 0)
002c7f7c 3567 return -EIO;
6e5d865c
YS
3568#ifdef CONFIG_X86_64
3569 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3570 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3571 ~CPU_BASED_CR8_STORE_EXITING;
3572#endif
f78e0e2e 3573 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3574 min2 = 0;
3575 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3576 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3577 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3578 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3579 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3580 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3581 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3582 SECONDARY_EXEC_RDTSCP |
83d4c286 3583 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3584 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3585 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3586 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3587 SECONDARY_EXEC_XSAVES |
8b3e34e4 3588 SECONDARY_EXEC_ENABLE_PML |
64903d61 3589 SECONDARY_EXEC_TSC_SCALING;
d56f546d
SY
3590 if (adjust_vmx_controls(min2, opt2,
3591 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3592 &_cpu_based_2nd_exec_control) < 0)
3593 return -EIO;
3594 }
3595#ifndef CONFIG_X86_64
3596 if (!(_cpu_based_2nd_exec_control &
3597 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3598 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3599#endif
83d4c286
YZ
3600
3601 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3602 _cpu_based_2nd_exec_control &= ~(
8d14695f 3603 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3604 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3605 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3606
d56f546d 3607 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3608 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3609 enabled */
5fff7d27
GN
3610 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3611 CPU_BASED_CR3_STORE_EXITING |
3612 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3613 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3614 vmx_capability.ept, vmx_capability.vpid);
3615 }
1c3d14fe 3616
91fa0f8e 3617 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3618#ifdef CONFIG_X86_64
3619 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3620#endif
a547c6db 3621 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3622 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3623 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3624 &_vmexit_control) < 0)
002c7f7c 3625 return -EIO;
1c3d14fe 3626
01e439be 3627 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
64672c95
YJ
3628 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3629 PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3630 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3631 &_pin_based_exec_control) < 0)
3632 return -EIO;
3633
1c17c3e6
PB
3634 if (cpu_has_broken_vmx_preemption_timer())
3635 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3636 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3637 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3638 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3639
c845f9c6 3640 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3641 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3642 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3643 &_vmentry_control) < 0)
002c7f7c 3644 return -EIO;
6aa8b732 3645
c68876fd 3646 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3647
3648 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3649 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3650 return -EIO;
1c3d14fe
YS
3651
3652#ifdef CONFIG_X86_64
3653 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3654 if (vmx_msr_high & (1u<<16))
002c7f7c 3655 return -EIO;
1c3d14fe
YS
3656#endif
3657
3658 /* Require Write-Back (WB) memory type for VMCS accesses. */
3659 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3660 return -EIO;
1c3d14fe 3661
002c7f7c 3662 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3663 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3664 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3665 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3666
002c7f7c
YS
3667 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3668 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3669 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3670 vmcs_conf->vmexit_ctrl = _vmexit_control;
3671 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3672
110312c8
AK
3673 cpu_has_load_ia32_efer =
3674 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3675 VM_ENTRY_LOAD_IA32_EFER)
3676 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3677 VM_EXIT_LOAD_IA32_EFER);
3678
8bf00a52
GN
3679 cpu_has_load_perf_global_ctrl =
3680 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3681 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3682 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3683 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3684
3685 /*
3686 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3687 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3688 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3689 *
3690 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3691 *
3692 * AAK155 (model 26)
3693 * AAP115 (model 30)
3694 * AAT100 (model 37)
3695 * BC86,AAY89,BD102 (model 44)
3696 * BA97 (model 46)
3697 *
3698 */
3699 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3700 switch (boot_cpu_data.x86_model) {
3701 case 26:
3702 case 30:
3703 case 37:
3704 case 44:
3705 case 46:
3706 cpu_has_load_perf_global_ctrl = false;
3707 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3708 "does not work properly. Using workaround\n");
3709 break;
3710 default:
3711 break;
3712 }
3713 }
3714
782511b0 3715 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3716 rdmsrl(MSR_IA32_XSS, host_xss);
3717
1c3d14fe 3718 return 0;
c68876fd 3719}
6aa8b732
AK
3720
3721static struct vmcs *alloc_vmcs_cpu(int cpu)
3722{
3723 int node = cpu_to_node(cpu);
3724 struct page *pages;
3725 struct vmcs *vmcs;
3726
96db800f 3727 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3728 if (!pages)
3729 return NULL;
3730 vmcs = page_address(pages);
1c3d14fe
YS
3731 memset(vmcs, 0, vmcs_config.size);
3732 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3733 return vmcs;
3734}
3735
3736static struct vmcs *alloc_vmcs(void)
3737{
d3b2c338 3738 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3739}
3740
3741static void free_vmcs(struct vmcs *vmcs)
3742{
1c3d14fe 3743 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3744}
3745
d462b819
NHE
3746/*
3747 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3748 */
3749static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3750{
3751 if (!loaded_vmcs->vmcs)
3752 return;
3753 loaded_vmcs_clear(loaded_vmcs);
3754 free_vmcs(loaded_vmcs->vmcs);
3755 loaded_vmcs->vmcs = NULL;
355f4fb1 3756 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
3757}
3758
39959588 3759static void free_kvm_area(void)
6aa8b732
AK
3760{
3761 int cpu;
3762
3230bb47 3763 for_each_possible_cpu(cpu) {
6aa8b732 3764 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3765 per_cpu(vmxarea, cpu) = NULL;
3766 }
6aa8b732
AK
3767}
3768
fe2b201b
BD
3769static void init_vmcs_shadow_fields(void)
3770{
3771 int i, j;
3772
3773 /* No checks for read only fields yet */
3774
3775 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3776 switch (shadow_read_write_fields[i]) {
3777 case GUEST_BNDCFGS:
a87036ad 3778 if (!kvm_mpx_supported())
fe2b201b
BD
3779 continue;
3780 break;
3781 default:
3782 break;
3783 }
3784
3785 if (j < i)
3786 shadow_read_write_fields[j] =
3787 shadow_read_write_fields[i];
3788 j++;
3789 }
3790 max_shadow_read_write_fields = j;
3791
3792 /* shadowed fields guest access without vmexit */
3793 for (i = 0; i < max_shadow_read_write_fields; i++) {
3794 clear_bit(shadow_read_write_fields[i],
3795 vmx_vmwrite_bitmap);
3796 clear_bit(shadow_read_write_fields[i],
3797 vmx_vmread_bitmap);
3798 }
3799 for (i = 0; i < max_shadow_read_only_fields; i++)
3800 clear_bit(shadow_read_only_fields[i],
3801 vmx_vmread_bitmap);
3802}
3803
6aa8b732
AK
3804static __init int alloc_kvm_area(void)
3805{
3806 int cpu;
3807
3230bb47 3808 for_each_possible_cpu(cpu) {
6aa8b732
AK
3809 struct vmcs *vmcs;
3810
3811 vmcs = alloc_vmcs_cpu(cpu);
3812 if (!vmcs) {
3813 free_kvm_area();
3814 return -ENOMEM;
3815 }
3816
3817 per_cpu(vmxarea, cpu) = vmcs;
3818 }
3819 return 0;
3820}
3821
14168786
GN
3822static bool emulation_required(struct kvm_vcpu *vcpu)
3823{
3824 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3825}
3826
91b0aa2c 3827static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3828 struct kvm_segment *save)
6aa8b732 3829{
d99e4152
GN
3830 if (!emulate_invalid_guest_state) {
3831 /*
3832 * CS and SS RPL should be equal during guest entry according
3833 * to VMX spec, but in reality it is not always so. Since vcpu
3834 * is in the middle of the transition from real mode to
3835 * protected mode it is safe to assume that RPL 0 is a good
3836 * default value.
3837 */
3838 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3839 save->selector &= ~SEGMENT_RPL_MASK;
3840 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3841 save->s = 1;
6aa8b732 3842 }
d99e4152 3843 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3844}
3845
3846static void enter_pmode(struct kvm_vcpu *vcpu)
3847{
3848 unsigned long flags;
a89a8fb9 3849 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3850
d99e4152
GN
3851 /*
3852 * Update real mode segment cache. It may be not up-to-date if sement
3853 * register was written while vcpu was in a guest mode.
3854 */
3855 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3856 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3857 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3858 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3859 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3860 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3861
7ffd92c5 3862 vmx->rmode.vm86_active = 0;
6aa8b732 3863
2fb92db1
AK
3864 vmx_segment_cache_clear(vmx);
3865
f5f7b2fe 3866 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3867
3868 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3869 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3870 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3871 vmcs_writel(GUEST_RFLAGS, flags);
3872
66aee91a
RR
3873 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3874 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3875
3876 update_exception_bitmap(vcpu);
3877
91b0aa2c
GN
3878 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3879 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3880 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3881 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3882 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3883 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3884}
3885
f5f7b2fe 3886static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3887{
772e0318 3888 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3889 struct kvm_segment var = *save;
3890
3891 var.dpl = 0x3;
3892 if (seg == VCPU_SREG_CS)
3893 var.type = 0x3;
3894
3895 if (!emulate_invalid_guest_state) {
3896 var.selector = var.base >> 4;
3897 var.base = var.base & 0xffff0;
3898 var.limit = 0xffff;
3899 var.g = 0;
3900 var.db = 0;
3901 var.present = 1;
3902 var.s = 1;
3903 var.l = 0;
3904 var.unusable = 0;
3905 var.type = 0x3;
3906 var.avl = 0;
3907 if (save->base & 0xf)
3908 printk_once(KERN_WARNING "kvm: segment base is not "
3909 "paragraph aligned when entering "
3910 "protected mode (seg=%d)", seg);
3911 }
6aa8b732 3912
d99e4152
GN
3913 vmcs_write16(sf->selector, var.selector);
3914 vmcs_write32(sf->base, var.base);
3915 vmcs_write32(sf->limit, var.limit);
3916 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3917}
3918
3919static void enter_rmode(struct kvm_vcpu *vcpu)
3920{
3921 unsigned long flags;
a89a8fb9 3922 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3923
f5f7b2fe
AK
3924 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3925 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3926 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3927 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3928 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3929 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3930 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3931
7ffd92c5 3932 vmx->rmode.vm86_active = 1;
6aa8b732 3933
776e58ea
GN
3934 /*
3935 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3936 * vcpu. Warn the user that an update is overdue.
776e58ea 3937 */
4918c6ca 3938 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3939 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3940 "called before entering vcpu\n");
776e58ea 3941
2fb92db1
AK
3942 vmx_segment_cache_clear(vmx);
3943
4918c6ca 3944 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3945 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3946 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3947
3948 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3949 vmx->rmode.save_rflags = flags;
6aa8b732 3950
053de044 3951 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3952
3953 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3954 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3955 update_exception_bitmap(vcpu);
3956
d99e4152
GN
3957 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3958 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3959 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3960 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3961 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3962 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3963
8668a3c4 3964 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3965}
3966
401d10de
AS
3967static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3968{
3969 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3970 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3971
3972 if (!msr)
3973 return;
401d10de 3974
44ea2b17
AK
3975 /*
3976 * Force kernel_gs_base reloading before EFER changes, as control
3977 * of this msr depends on is_long_mode().
3978 */
3979 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3980 vcpu->arch.efer = efer;
401d10de 3981 if (efer & EFER_LMA) {
2961e876 3982 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3983 msr->data = efer;
3984 } else {
2961e876 3985 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3986
3987 msr->data = efer & ~EFER_LME;
3988 }
3989 setup_msrs(vmx);
3990}
3991
05b3e0c2 3992#ifdef CONFIG_X86_64
6aa8b732
AK
3993
3994static void enter_lmode(struct kvm_vcpu *vcpu)
3995{
3996 u32 guest_tr_ar;
3997
2fb92db1
AK
3998 vmx_segment_cache_clear(to_vmx(vcpu));
3999
6aa8b732 4000 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 4001 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
4002 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4003 __func__);
6aa8b732 4004 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
4005 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4006 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4007 }
da38f438 4008 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4009}
4010
4011static void exit_lmode(struct kvm_vcpu *vcpu)
4012{
2961e876 4013 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4014 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4015}
4016
4017#endif
4018
dd5f5341 4019static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 4020{
dd5f5341 4021 vpid_sync_context(vpid);
dd180b3e
XG
4022 if (enable_ept) {
4023 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4024 return;
4e1096d2 4025 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 4026 }
2384d2b3
SY
4027}
4028
dd5f5341
WL
4029static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4030{
4031 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4032}
4033
e8467fda
AK
4034static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4035{
4036 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4037
4038 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4039 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4040}
4041
aff48baa
AK
4042static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4043{
4044 if (enable_ept && is_paging(vcpu))
4045 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4046 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4047}
4048
25c4c276 4049static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4050{
fc78f519
AK
4051 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4052
4053 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4054 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4055}
4056
1439442c
SY
4057static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4058{
d0d538b9
GN
4059 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4060
6de4f3ad
AK
4061 if (!test_bit(VCPU_EXREG_PDPTR,
4062 (unsigned long *)&vcpu->arch.regs_dirty))
4063 return;
4064
1439442c 4065 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4066 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4067 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4068 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4069 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4070 }
4071}
4072
8f5d549f
AK
4073static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4074{
d0d538b9
GN
4075 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4076
8f5d549f 4077 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4078 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4079 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4080 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4081 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4082 }
6de4f3ad
AK
4083
4084 __set_bit(VCPU_EXREG_PDPTR,
4085 (unsigned long *)&vcpu->arch.regs_avail);
4086 __set_bit(VCPU_EXREG_PDPTR,
4087 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4088}
4089
3899152c
DM
4090static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4091{
4092 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4093 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4094 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4095
4096 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4097 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4098 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4099 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4100
4101 return fixed_bits_valid(val, fixed0, fixed1);
4102}
4103
4104static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4105{
4106 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4107 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4108
4109 return fixed_bits_valid(val, fixed0, fixed1);
4110}
4111
4112static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4113{
4114 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4115 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4116
4117 return fixed_bits_valid(val, fixed0, fixed1);
4118}
4119
4120/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4121#define nested_guest_cr4_valid nested_cr4_valid
4122#define nested_host_cr4_valid nested_cr4_valid
4123
5e1746d6 4124static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4125
4126static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4127 unsigned long cr0,
4128 struct kvm_vcpu *vcpu)
4129{
5233dd51
MT
4130 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4131 vmx_decache_cr3(vcpu);
1439442c
SY
4132 if (!(cr0 & X86_CR0_PG)) {
4133 /* From paging/starting to nonpaging */
4134 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4135 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4136 (CPU_BASED_CR3_LOAD_EXITING |
4137 CPU_BASED_CR3_STORE_EXITING));
4138 vcpu->arch.cr0 = cr0;
fc78f519 4139 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4140 } else if (!is_paging(vcpu)) {
4141 /* From nonpaging to paging */
4142 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4143 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4144 ~(CPU_BASED_CR3_LOAD_EXITING |
4145 CPU_BASED_CR3_STORE_EXITING));
4146 vcpu->arch.cr0 = cr0;
fc78f519 4147 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4148 }
95eb84a7
SY
4149
4150 if (!(cr0 & X86_CR0_WP))
4151 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4152}
4153
6aa8b732
AK
4154static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4155{
7ffd92c5 4156 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4157 unsigned long hw_cr0;
4158
5037878e 4159 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4160 if (enable_unrestricted_guest)
5037878e 4161 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4162 else {
5037878e 4163 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4164
218e763f
GN
4165 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4166 enter_pmode(vcpu);
6aa8b732 4167
218e763f
GN
4168 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4169 enter_rmode(vcpu);
4170 }
6aa8b732 4171
05b3e0c2 4172#ifdef CONFIG_X86_64
f6801dff 4173 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4174 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4175 enter_lmode(vcpu);
707d92fa 4176 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4177 exit_lmode(vcpu);
4178 }
4179#endif
4180
089d034e 4181 if (enable_ept)
1439442c
SY
4182 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4183
6aa8b732 4184 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4185 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4186 vcpu->arch.cr0 = cr0;
14168786
GN
4187
4188 /* depends on vcpu->arch.cr0 to be set to a new value */
4189 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4190}
4191
1439442c
SY
4192static u64 construct_eptp(unsigned long root_hpa)
4193{
4194 u64 eptp;
4195
4196 /* TODO write the value reading from MSR */
4197 eptp = VMX_EPT_DEFAULT_MT |
4198 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
4199 if (enable_ept_ad_bits)
4200 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
4201 eptp |= (root_hpa & PAGE_MASK);
4202
4203 return eptp;
4204}
4205
6aa8b732
AK
4206static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4207{
1439442c
SY
4208 unsigned long guest_cr3;
4209 u64 eptp;
4210
4211 guest_cr3 = cr3;
089d034e 4212 if (enable_ept) {
1439442c
SY
4213 eptp = construct_eptp(cr3);
4214 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
4215 if (is_paging(vcpu) || is_guest_mode(vcpu))
4216 guest_cr3 = kvm_read_cr3(vcpu);
4217 else
4218 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 4219 ept_load_pdptrs(vcpu);
1439442c
SY
4220 }
4221
2384d2b3 4222 vmx_flush_tlb(vcpu);
1439442c 4223 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4224}
4225
5e1746d6 4226static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4227{
085e68ee
BS
4228 /*
4229 * Pass through host's Machine Check Enable value to hw_cr4, which
4230 * is in force while we are in guest mode. Do not let guests control
4231 * this bit, even if host CR4.MCE == 0.
4232 */
4233 unsigned long hw_cr4 =
4234 (cr4_read_shadow() & X86_CR4_MCE) |
4235 (cr4 & ~X86_CR4_MCE) |
4236 (to_vmx(vcpu)->rmode.vm86_active ?
4237 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4238
5e1746d6
NHE
4239 if (cr4 & X86_CR4_VMXE) {
4240 /*
4241 * To use VMXON (and later other VMX instructions), a guest
4242 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4243 * So basically the check on whether to allow nested VMX
4244 * is here.
4245 */
4246 if (!nested_vmx_allowed(vcpu))
4247 return 1;
1a0d74e6 4248 }
3899152c
DM
4249
4250 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4251 return 1;
4252
ad312c7c 4253 vcpu->arch.cr4 = cr4;
bc23008b
AK
4254 if (enable_ept) {
4255 if (!is_paging(vcpu)) {
4256 hw_cr4 &= ~X86_CR4_PAE;
4257 hw_cr4 |= X86_CR4_PSE;
4258 } else if (!(cr4 & X86_CR4_PAE)) {
4259 hw_cr4 &= ~X86_CR4_PAE;
4260 }
4261 }
1439442c 4262
656ec4a4
RK
4263 if (!enable_unrestricted_guest && !is_paging(vcpu))
4264 /*
ddba2628
HH
4265 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4266 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4267 * to be manually disabled when guest switches to non-paging
4268 * mode.
4269 *
4270 * If !enable_unrestricted_guest, the CPU is always running
4271 * with CR0.PG=1 and CR4 needs to be modified.
4272 * If enable_unrestricted_guest, the CPU automatically
4273 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4274 */
ddba2628 4275 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4276
1439442c
SY
4277 vmcs_writel(CR4_READ_SHADOW, cr4);
4278 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4279 return 0;
6aa8b732
AK
4280}
4281
6aa8b732
AK
4282static void vmx_get_segment(struct kvm_vcpu *vcpu,
4283 struct kvm_segment *var, int seg)
4284{
a9179499 4285 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4286 u32 ar;
4287
c6ad1153 4288 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4289 *var = vmx->rmode.segs[seg];
a9179499 4290 if (seg == VCPU_SREG_TR
2fb92db1 4291 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4292 return;
1390a28b
AK
4293 var->base = vmx_read_guest_seg_base(vmx, seg);
4294 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4295 return;
a9179499 4296 }
2fb92db1
AK
4297 var->base = vmx_read_guest_seg_base(vmx, seg);
4298 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4299 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4300 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4301 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4302 var->type = ar & 15;
4303 var->s = (ar >> 4) & 1;
4304 var->dpl = (ar >> 5) & 3;
03617c18
GN
4305 /*
4306 * Some userspaces do not preserve unusable property. Since usable
4307 * segment has to be present according to VMX spec we can use present
4308 * property to amend userspace bug by making unusable segment always
4309 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4310 * segment as unusable.
4311 */
4312 var->present = !var->unusable;
6aa8b732
AK
4313 var->avl = (ar >> 12) & 1;
4314 var->l = (ar >> 13) & 1;
4315 var->db = (ar >> 14) & 1;
4316 var->g = (ar >> 15) & 1;
6aa8b732
AK
4317}
4318
a9179499
AK
4319static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4320{
a9179499
AK
4321 struct kvm_segment s;
4322
4323 if (to_vmx(vcpu)->rmode.vm86_active) {
4324 vmx_get_segment(vcpu, &s, seg);
4325 return s.base;
4326 }
2fb92db1 4327 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4328}
4329
b09408d0 4330static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4331{
b09408d0
MT
4332 struct vcpu_vmx *vmx = to_vmx(vcpu);
4333
ae9fedc7 4334 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4335 return 0;
ae9fedc7
PB
4336 else {
4337 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4338 return VMX_AR_DPL(ar);
69c73028 4339 }
69c73028
AK
4340}
4341
653e3108 4342static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4343{
6aa8b732
AK
4344 u32 ar;
4345
f0495f9b 4346 if (var->unusable || !var->present)
6aa8b732
AK
4347 ar = 1 << 16;
4348 else {
4349 ar = var->type & 15;
4350 ar |= (var->s & 1) << 4;
4351 ar |= (var->dpl & 3) << 5;
4352 ar |= (var->present & 1) << 7;
4353 ar |= (var->avl & 1) << 12;
4354 ar |= (var->l & 1) << 13;
4355 ar |= (var->db & 1) << 14;
4356 ar |= (var->g & 1) << 15;
4357 }
653e3108
AK
4358
4359 return ar;
4360}
4361
4362static void vmx_set_segment(struct kvm_vcpu *vcpu,
4363 struct kvm_segment *var, int seg)
4364{
7ffd92c5 4365 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4366 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4367
2fb92db1
AK
4368 vmx_segment_cache_clear(vmx);
4369
1ecd50a9
GN
4370 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4371 vmx->rmode.segs[seg] = *var;
4372 if (seg == VCPU_SREG_TR)
4373 vmcs_write16(sf->selector, var->selector);
4374 else if (var->s)
4375 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4376 goto out;
653e3108 4377 }
1ecd50a9 4378
653e3108
AK
4379 vmcs_writel(sf->base, var->base);
4380 vmcs_write32(sf->limit, var->limit);
4381 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4382
4383 /*
4384 * Fix the "Accessed" bit in AR field of segment registers for older
4385 * qemu binaries.
4386 * IA32 arch specifies that at the time of processor reset the
4387 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4388 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4389 * state vmexit when "unrestricted guest" mode is turned on.
4390 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4391 * tree. Newer qemu binaries with that qemu fix would not need this
4392 * kvm hack.
4393 */
4394 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4395 var->type |= 0x1; /* Accessed */
3a624e29 4396
f924d66d 4397 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4398
4399out:
98eb2f8b 4400 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4401}
4402
6aa8b732
AK
4403static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4404{
2fb92db1 4405 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4406
4407 *db = (ar >> 14) & 1;
4408 *l = (ar >> 13) & 1;
4409}
4410
89a27f4d 4411static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4412{
89a27f4d
GN
4413 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4414 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4415}
4416
89a27f4d 4417static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4418{
89a27f4d
GN
4419 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4420 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4421}
4422
89a27f4d 4423static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4424{
89a27f4d
GN
4425 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4426 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4427}
4428
89a27f4d 4429static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4430{
89a27f4d
GN
4431 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4432 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4433}
4434
648dfaa7
MG
4435static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4436{
4437 struct kvm_segment var;
4438 u32 ar;
4439
4440 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4441 var.dpl = 0x3;
0647f4aa
GN
4442 if (seg == VCPU_SREG_CS)
4443 var.type = 0x3;
648dfaa7
MG
4444 ar = vmx_segment_access_rights(&var);
4445
4446 if (var.base != (var.selector << 4))
4447 return false;
89efbed0 4448 if (var.limit != 0xffff)
648dfaa7 4449 return false;
07f42f5f 4450 if (ar != 0xf3)
648dfaa7
MG
4451 return false;
4452
4453 return true;
4454}
4455
4456static bool code_segment_valid(struct kvm_vcpu *vcpu)
4457{
4458 struct kvm_segment cs;
4459 unsigned int cs_rpl;
4460
4461 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4462 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4463
1872a3f4
AK
4464 if (cs.unusable)
4465 return false;
4d283ec9 4466 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4467 return false;
4468 if (!cs.s)
4469 return false;
4d283ec9 4470 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4471 if (cs.dpl > cs_rpl)
4472 return false;
1872a3f4 4473 } else {
648dfaa7
MG
4474 if (cs.dpl != cs_rpl)
4475 return false;
4476 }
4477 if (!cs.present)
4478 return false;
4479
4480 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4481 return true;
4482}
4483
4484static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4485{
4486 struct kvm_segment ss;
4487 unsigned int ss_rpl;
4488
4489 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4490 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4491
1872a3f4
AK
4492 if (ss.unusable)
4493 return true;
4494 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4495 return false;
4496 if (!ss.s)
4497 return false;
4498 if (ss.dpl != ss_rpl) /* DPL != RPL */
4499 return false;
4500 if (!ss.present)
4501 return false;
4502
4503 return true;
4504}
4505
4506static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4507{
4508 struct kvm_segment var;
4509 unsigned int rpl;
4510
4511 vmx_get_segment(vcpu, &var, seg);
b32a9918 4512 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4513
1872a3f4
AK
4514 if (var.unusable)
4515 return true;
648dfaa7
MG
4516 if (!var.s)
4517 return false;
4518 if (!var.present)
4519 return false;
4d283ec9 4520 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4521 if (var.dpl < rpl) /* DPL < RPL */
4522 return false;
4523 }
4524
4525 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4526 * rights flags
4527 */
4528 return true;
4529}
4530
4531static bool tr_valid(struct kvm_vcpu *vcpu)
4532{
4533 struct kvm_segment tr;
4534
4535 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4536
1872a3f4
AK
4537 if (tr.unusable)
4538 return false;
b32a9918 4539 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4540 return false;
1872a3f4 4541 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4542 return false;
4543 if (!tr.present)
4544 return false;
4545
4546 return true;
4547}
4548
4549static bool ldtr_valid(struct kvm_vcpu *vcpu)
4550{
4551 struct kvm_segment ldtr;
4552
4553 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4554
1872a3f4
AK
4555 if (ldtr.unusable)
4556 return true;
b32a9918 4557 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4558 return false;
4559 if (ldtr.type != 2)
4560 return false;
4561 if (!ldtr.present)
4562 return false;
4563
4564 return true;
4565}
4566
4567static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4568{
4569 struct kvm_segment cs, ss;
4570
4571 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4572 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4573
b32a9918
NA
4574 return ((cs.selector & SEGMENT_RPL_MASK) ==
4575 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4576}
4577
4578/*
4579 * Check if guest state is valid. Returns true if valid, false if
4580 * not.
4581 * We assume that registers are always usable
4582 */
4583static bool guest_state_valid(struct kvm_vcpu *vcpu)
4584{
c5e97c80
GN
4585 if (enable_unrestricted_guest)
4586 return true;
4587
648dfaa7 4588 /* real mode guest state checks */
f13882d8 4589 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4590 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4591 return false;
4592 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4593 return false;
4594 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4595 return false;
4596 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4597 return false;
4598 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4599 return false;
4600 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4601 return false;
4602 } else {
4603 /* protected mode guest state checks */
4604 if (!cs_ss_rpl_check(vcpu))
4605 return false;
4606 if (!code_segment_valid(vcpu))
4607 return false;
4608 if (!stack_segment_valid(vcpu))
4609 return false;
4610 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4611 return false;
4612 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4613 return false;
4614 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4615 return false;
4616 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4617 return false;
4618 if (!tr_valid(vcpu))
4619 return false;
4620 if (!ldtr_valid(vcpu))
4621 return false;
4622 }
4623 /* TODO:
4624 * - Add checks on RIP
4625 * - Add checks on RFLAGS
4626 */
4627
4628 return true;
4629}
4630
d77c26fc 4631static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4632{
40dcaa9f 4633 gfn_t fn;
195aefde 4634 u16 data = 0;
1f755a82 4635 int idx, r;
6aa8b732 4636
40dcaa9f 4637 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4638 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4639 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4640 if (r < 0)
10589a46 4641 goto out;
195aefde 4642 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4643 r = kvm_write_guest_page(kvm, fn++, &data,
4644 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4645 if (r < 0)
10589a46 4646 goto out;
195aefde
IE
4647 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4648 if (r < 0)
10589a46 4649 goto out;
195aefde
IE
4650 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4651 if (r < 0)
10589a46 4652 goto out;
195aefde 4653 data = ~0;
10589a46
MT
4654 r = kvm_write_guest_page(kvm, fn, &data,
4655 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4656 sizeof(u8));
10589a46 4657out:
40dcaa9f 4658 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4659 return r;
6aa8b732
AK
4660}
4661
b7ebfb05
SY
4662static int init_rmode_identity_map(struct kvm *kvm)
4663{
f51770ed 4664 int i, idx, r = 0;
ba049e93 4665 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4666 u32 tmp;
4667
089d034e 4668 if (!enable_ept)
f51770ed 4669 return 0;
a255d479
TC
4670
4671 /* Protect kvm->arch.ept_identity_pagetable_done. */
4672 mutex_lock(&kvm->slots_lock);
4673
f51770ed 4674 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4675 goto out2;
a255d479 4676
b927a3ce 4677 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4678
4679 r = alloc_identity_pagetable(kvm);
f51770ed 4680 if (r < 0)
a255d479
TC
4681 goto out2;
4682
40dcaa9f 4683 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4684 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4685 if (r < 0)
4686 goto out;
4687 /* Set up identity-mapping pagetable for EPT in real mode */
4688 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4689 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4690 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4691 r = kvm_write_guest_page(kvm, identity_map_pfn,
4692 &tmp, i * sizeof(tmp), sizeof(tmp));
4693 if (r < 0)
4694 goto out;
4695 }
4696 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4697
b7ebfb05 4698out:
40dcaa9f 4699 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4700
4701out2:
4702 mutex_unlock(&kvm->slots_lock);
f51770ed 4703 return r;
b7ebfb05
SY
4704}
4705
6aa8b732
AK
4706static void seg_setup(int seg)
4707{
772e0318 4708 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4709 unsigned int ar;
6aa8b732
AK
4710
4711 vmcs_write16(sf->selector, 0);
4712 vmcs_writel(sf->base, 0);
4713 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4714 ar = 0x93;
4715 if (seg == VCPU_SREG_CS)
4716 ar |= 0x08; /* code segment */
3a624e29
NK
4717
4718 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4719}
4720
f78e0e2e
SY
4721static int alloc_apic_access_page(struct kvm *kvm)
4722{
4484141a 4723 struct page *page;
f78e0e2e
SY
4724 int r = 0;
4725
79fac95e 4726 mutex_lock(&kvm->slots_lock);
c24ae0dc 4727 if (kvm->arch.apic_access_page_done)
f78e0e2e 4728 goto out;
1d8007bd
PB
4729 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4730 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4731 if (r)
4732 goto out;
72dc67a6 4733
73a6d941 4734 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4735 if (is_error_page(page)) {
4736 r = -EFAULT;
4737 goto out;
4738 }
4739
c24ae0dc
TC
4740 /*
4741 * Do not pin the page in memory, so that memory hot-unplug
4742 * is able to migrate it.
4743 */
4744 put_page(page);
4745 kvm->arch.apic_access_page_done = true;
f78e0e2e 4746out:
79fac95e 4747 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4748 return r;
4749}
4750
b7ebfb05
SY
4751static int alloc_identity_pagetable(struct kvm *kvm)
4752{
a255d479
TC
4753 /* Called with kvm->slots_lock held. */
4754
b7ebfb05
SY
4755 int r = 0;
4756
a255d479
TC
4757 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4758
1d8007bd
PB
4759 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4760 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4761
b7ebfb05
SY
4762 return r;
4763}
4764
991e7a0e 4765static int allocate_vpid(void)
2384d2b3
SY
4766{
4767 int vpid;
4768
919818ab 4769 if (!enable_vpid)
991e7a0e 4770 return 0;
2384d2b3
SY
4771 spin_lock(&vmx_vpid_lock);
4772 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4773 if (vpid < VMX_NR_VPIDS)
2384d2b3 4774 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4775 else
4776 vpid = 0;
2384d2b3 4777 spin_unlock(&vmx_vpid_lock);
991e7a0e 4778 return vpid;
2384d2b3
SY
4779}
4780
991e7a0e 4781static void free_vpid(int vpid)
cdbecfc3 4782{
991e7a0e 4783 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4784 return;
4785 spin_lock(&vmx_vpid_lock);
991e7a0e 4786 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4787 spin_unlock(&vmx_vpid_lock);
4788}
4789
8d14695f
YZ
4790#define MSR_TYPE_R 1
4791#define MSR_TYPE_W 2
4792static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4793 u32 msr, int type)
25c5f225 4794{
3e7c73e9 4795 int f = sizeof(unsigned long);
25c5f225
SY
4796
4797 if (!cpu_has_vmx_msr_bitmap())
4798 return;
4799
4800 /*
4801 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4802 * have the write-low and read-high bitmap offsets the wrong way round.
4803 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4804 */
25c5f225 4805 if (msr <= 0x1fff) {
8d14695f
YZ
4806 if (type & MSR_TYPE_R)
4807 /* read-low */
4808 __clear_bit(msr, msr_bitmap + 0x000 / f);
4809
4810 if (type & MSR_TYPE_W)
4811 /* write-low */
4812 __clear_bit(msr, msr_bitmap + 0x800 / f);
4813
25c5f225
SY
4814 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4815 msr &= 0x1fff;
8d14695f
YZ
4816 if (type & MSR_TYPE_R)
4817 /* read-high */
4818 __clear_bit(msr, msr_bitmap + 0x400 / f);
4819
4820 if (type & MSR_TYPE_W)
4821 /* write-high */
4822 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4823
4824 }
4825}
4826
f2b93280
WV
4827/*
4828 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4829 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4830 */
4831static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4832 unsigned long *msr_bitmap_nested,
4833 u32 msr, int type)
4834{
4835 int f = sizeof(unsigned long);
4836
4837 if (!cpu_has_vmx_msr_bitmap()) {
4838 WARN_ON(1);
4839 return;
4840 }
4841
4842 /*
4843 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4844 * have the write-low and read-high bitmap offsets the wrong way round.
4845 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4846 */
4847 if (msr <= 0x1fff) {
4848 if (type & MSR_TYPE_R &&
4849 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4850 /* read-low */
4851 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4852
4853 if (type & MSR_TYPE_W &&
4854 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4855 /* write-low */
4856 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4857
4858 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4859 msr &= 0x1fff;
4860 if (type & MSR_TYPE_R &&
4861 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4862 /* read-high */
4863 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4864
4865 if (type & MSR_TYPE_W &&
4866 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4867 /* write-high */
4868 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4869
4870 }
4871}
4872
5897297b
AK
4873static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4874{
4875 if (!longmode_only)
8d14695f
YZ
4876 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4877 msr, MSR_TYPE_R | MSR_TYPE_W);
4878 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4879 msr, MSR_TYPE_R | MSR_TYPE_W);
4880}
4881
2e69f865 4882static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
8d14695f 4883{
f6e90f9e 4884 if (apicv_active) {
c63e4563 4885 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
2e69f865 4886 msr, type);
c63e4563 4887 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
2e69f865 4888 msr, type);
f6e90f9e 4889 } else {
f6e90f9e 4890 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
2e69f865 4891 msr, type);
f6e90f9e 4892 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
2e69f865 4893 msr, type);
f6e90f9e 4894 }
5897297b
AK
4895}
4896
d62caabb 4897static bool vmx_get_enable_apicv(void)
d50ab6c1 4898{
d62caabb 4899 return enable_apicv;
d50ab6c1
PB
4900}
4901
6342c50a 4902static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
4903{
4904 struct vcpu_vmx *vmx = to_vmx(vcpu);
4905 int max_irr;
4906 void *vapic_page;
4907 u16 status;
4908
4909 if (vmx->nested.pi_desc &&
4910 vmx->nested.pi_pending) {
4911 vmx->nested.pi_pending = false;
4912 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
6342c50a 4913 return;
705699a1
WV
4914
4915 max_irr = find_last_bit(
4916 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4917
4918 if (max_irr == 256)
6342c50a 4919 return;
705699a1
WV
4920
4921 vapic_page = kmap(vmx->nested.virtual_apic_page);
705699a1
WV
4922 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4923 kunmap(vmx->nested.virtual_apic_page);
4924
4925 status = vmcs_read16(GUEST_INTR_STATUS);
4926 if ((u8)max_irr > ((u8)status & 0xff)) {
4927 status &= ~0xff;
4928 status |= (u8)max_irr;
4929 vmcs_write16(GUEST_INTR_STATUS, status);
4930 }
4931 }
705699a1
WV
4932}
4933
21bc8dc5
RK
4934static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4935{
4936#ifdef CONFIG_SMP
4937 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6
FW
4938 struct vcpu_vmx *vmx = to_vmx(vcpu);
4939
4940 /*
4941 * Currently, we don't support urgent interrupt,
4942 * all interrupts are recognized as non-urgent
4943 * interrupt, so we cannot post interrupts when
4944 * 'SN' is set.
4945 *
4946 * If the vcpu is in guest mode, it means it is
4947 * running instead of being scheduled out and
4948 * waiting in the run queue, and that's the only
4949 * case when 'SN' is set currently, warning if
4950 * 'SN' is set.
4951 */
4952 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4953
21bc8dc5
RK
4954 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4955 POSTED_INTR_VECTOR);
4956 return true;
4957 }
4958#endif
4959 return false;
4960}
4961
705699a1
WV
4962static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4963 int vector)
4964{
4965 struct vcpu_vmx *vmx = to_vmx(vcpu);
4966
4967 if (is_guest_mode(vcpu) &&
4968 vector == vmx->nested.posted_intr_nv) {
4969 /* the PIR and ON have been set by L1. */
21bc8dc5 4970 kvm_vcpu_trigger_posted_interrupt(vcpu);
705699a1
WV
4971 /*
4972 * If a posted intr is not recognized by hardware,
4973 * we will accomplish it in the next vmentry.
4974 */
4975 vmx->nested.pi_pending = true;
4976 kvm_make_request(KVM_REQ_EVENT, vcpu);
4977 return 0;
4978 }
4979 return -1;
4980}
a20ed54d
YZ
4981/*
4982 * Send interrupt to vcpu via posted interrupt way.
4983 * 1. If target vcpu is running(non-root mode), send posted interrupt
4984 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4985 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4986 * interrupt from PIR in next vmentry.
4987 */
4988static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4989{
4990 struct vcpu_vmx *vmx = to_vmx(vcpu);
4991 int r;
4992
705699a1
WV
4993 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4994 if (!r)
4995 return;
4996
a20ed54d
YZ
4997 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4998 return;
4999
b95234c8
PB
5000 /* If a previous notification has sent the IPI, nothing to do. */
5001 if (pi_test_and_set_on(&vmx->pi_desc))
5002 return;
5003
5004 if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
a20ed54d
YZ
5005 kvm_vcpu_kick(vcpu);
5006}
5007
a3a8ff8e
NHE
5008/*
5009 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5010 * will not change in the lifetime of the guest.
5011 * Note that host-state that does change is set elsewhere. E.g., host-state
5012 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5013 */
a547c6db 5014static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5015{
5016 u32 low32, high32;
5017 unsigned long tmpl;
5018 struct desc_ptr dt;
04ac88ab 5019 unsigned long cr0, cr4;
a3a8ff8e 5020
04ac88ab
AL
5021 cr0 = read_cr0();
5022 WARN_ON(cr0 & X86_CR0_TS);
5023 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
a3a8ff8e
NHE
5024 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
5025
d974baa3 5026 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5027 cr4 = cr4_read_shadow();
d974baa3
AL
5028 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5029 vmx->host_state.vmcs_host_cr4 = cr4;
5030
a3a8ff8e 5031 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5032#ifdef CONFIG_X86_64
5033 /*
5034 * Load null selectors, so we can avoid reloading them in
5035 * __vmx_load_host_state(), in case userspace uses the null selectors
5036 * too (the expected case).
5037 */
5038 vmcs_write16(HOST_DS_SELECTOR, 0);
5039 vmcs_write16(HOST_ES_SELECTOR, 0);
5040#else
a3a8ff8e
NHE
5041 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5042 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5043#endif
a3a8ff8e
NHE
5044 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5045 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5046
5047 native_store_idt(&dt);
5048 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5049 vmx->host_idt_base = dt.address;
a3a8ff8e 5050
83287ea4 5051 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5052
5053 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5054 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5055 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5056 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5057
5058 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5059 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5060 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5061 }
5062}
5063
bf8179a0
NHE
5064static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5065{
5066 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5067 if (enable_ept)
5068 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5069 if (is_guest_mode(&vmx->vcpu))
5070 vmx->vcpu.arch.cr4_guest_owned_bits &=
5071 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5072 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5073}
5074
01e439be
YZ
5075static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5076{
5077 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5078
d62caabb 5079 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5080 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
64672c95
YJ
5081 /* Enable the preemption timer dynamically */
5082 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5083 return pin_based_exec_ctrl;
5084}
5085
d62caabb
AS
5086static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5087{
5088 struct vcpu_vmx *vmx = to_vmx(vcpu);
5089
5090 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5091 if (cpu_has_secondary_exec_ctrls()) {
5092 if (kvm_vcpu_apicv_active(vcpu))
5093 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5094 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5095 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5096 else
5097 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5098 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5099 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5100 }
5101
5102 if (cpu_has_vmx_msr_bitmap())
5103 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
5104}
5105
bf8179a0
NHE
5106static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5107{
5108 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5109
5110 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5111 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5112
35754c98 5113 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5114 exec_control &= ~CPU_BASED_TPR_SHADOW;
5115#ifdef CONFIG_X86_64
5116 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5117 CPU_BASED_CR8_LOAD_EXITING;
5118#endif
5119 }
5120 if (!enable_ept)
5121 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5122 CPU_BASED_CR3_LOAD_EXITING |
5123 CPU_BASED_INVLPG_EXITING;
5124 return exec_control;
5125}
5126
5127static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5128{
5129 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
35754c98 5130 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
bf8179a0
NHE
5131 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5132 if (vmx->vpid == 0)
5133 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5134 if (!enable_ept) {
5135 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5136 enable_unrestricted_guest = 0;
ad756a16
MJ
5137 /* Enable INVPCID for non-ept guests may cause performance regression. */
5138 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5139 }
5140 if (!enable_unrestricted_guest)
5141 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5142 if (!ple_gap)
5143 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
d62caabb 5144 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
c7c9c56c
YZ
5145 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5146 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5147 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5148 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5149 (handle_vmptrld).
5150 We can NOT enable shadow_vmcs here because we don't have yet
5151 a current VMCS12
5152 */
5153 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5154
5155 if (!enable_pml)
5156 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5157
bf8179a0
NHE
5158 return exec_control;
5159}
5160
ce88decf
XG
5161static void ept_set_mmio_spte_mask(void)
5162{
5163 /*
5164 * EPT Misconfigurations can be generated if the value of bits 2:0
5165 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5166 */
312b616b 5167 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5168}
5169
f53cd63c 5170#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5171/*
5172 * Sets up the vmcs for emulated real mode.
5173 */
8b9cf98c 5174static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5175{
2e4ce7f5 5176#ifdef CONFIG_X86_64
6aa8b732 5177 unsigned long a;
2e4ce7f5 5178#endif
6aa8b732 5179 int i;
6aa8b732 5180
6aa8b732 5181 /* I/O */
3e7c73e9
AK
5182 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5183 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5184
4607c2d7
AG
5185 if (enable_shadow_vmcs) {
5186 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5187 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5188 }
25c5f225 5189 if (cpu_has_vmx_msr_bitmap())
5897297b 5190 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 5191
6aa8b732
AK
5192 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5193
6aa8b732 5194 /* Control */
01e439be 5195 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5196 vmx->hv_deadline_tsc = -1;
6e5d865c 5197
bf8179a0 5198 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5199
dfa169bb 5200 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
5201 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5202 vmx_secondary_exec_control(vmx));
dfa169bb 5203 }
f78e0e2e 5204
d62caabb 5205 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5206 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5207 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5208 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5209 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5210
5211 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5212
0bcf261c 5213 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5214 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5215 }
5216
4b8d54f9
ZE
5217 if (ple_gap) {
5218 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5219 vmx->ple_window = ple_window;
5220 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5221 }
5222
c3707958
XG
5223 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5224 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5225 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5226
9581d442
AK
5227 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5228 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5229 vmx_set_constant_host_state(vmx);
05b3e0c2 5230#ifdef CONFIG_X86_64
6aa8b732
AK
5231 rdmsrl(MSR_FS_BASE, a);
5232 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5233 rdmsrl(MSR_GS_BASE, a);
5234 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5235#else
5236 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5237 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5238#endif
5239
2cc51560
ED
5240 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5241 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5242 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5243 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5244 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5245
74545705
RK
5246 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5247 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5248
03916db9 5249 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5250 u32 index = vmx_msr_index[i];
5251 u32 data_low, data_high;
a2fa3e9f 5252 int j = vmx->nmsrs;
6aa8b732
AK
5253
5254 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5255 continue;
432bd6cb
AK
5256 if (wrmsr_safe(index, data_low, data_high) < 0)
5257 continue;
26bb0981
AK
5258 vmx->guest_msrs[j].index = i;
5259 vmx->guest_msrs[j].data = 0;
d5696725 5260 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5261 ++vmx->nmsrs;
6aa8b732 5262 }
6aa8b732 5263
2961e876
GN
5264
5265 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5266
5267 /* 22.2.1, 20.8.1 */
2961e876 5268 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5269
bd7e5b08
PB
5270 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5271 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5272
bf8179a0 5273 set_cr4_guest_host_mask(vmx);
e00c8cf2 5274
f53cd63c
WL
5275 if (vmx_xsaves_supported())
5276 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5277
4e59516a
PF
5278 if (enable_pml) {
5279 ASSERT(vmx->pml_pg);
5280 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5281 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5282 }
5283
e00c8cf2
AK
5284 return 0;
5285}
5286
d28bc9dd 5287static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5288{
5289 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5290 struct msr_data apic_base_msr;
d28bc9dd 5291 u64 cr0;
e00c8cf2 5292
7ffd92c5 5293 vmx->rmode.vm86_active = 0;
e00c8cf2 5294
3b86cd99
JK
5295 vmx->soft_vnmi_blocked = 0;
5296
ad312c7c 5297 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5298 kvm_set_cr8(vcpu, 0);
5299
5300 if (!init_event) {
5301 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5302 MSR_IA32_APICBASE_ENABLE;
5303 if (kvm_vcpu_is_reset_bsp(vcpu))
5304 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5305 apic_base_msr.host_initiated = true;
5306 kvm_set_apic_base(vcpu, &apic_base_msr);
5307 }
e00c8cf2 5308
2fb92db1
AK
5309 vmx_segment_cache_clear(vmx);
5310
5706be0d 5311 seg_setup(VCPU_SREG_CS);
66450a21 5312 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5313 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5314
5315 seg_setup(VCPU_SREG_DS);
5316 seg_setup(VCPU_SREG_ES);
5317 seg_setup(VCPU_SREG_FS);
5318 seg_setup(VCPU_SREG_GS);
5319 seg_setup(VCPU_SREG_SS);
5320
5321 vmcs_write16(GUEST_TR_SELECTOR, 0);
5322 vmcs_writel(GUEST_TR_BASE, 0);
5323 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5324 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5325
5326 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5327 vmcs_writel(GUEST_LDTR_BASE, 0);
5328 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5329 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5330
d28bc9dd
NA
5331 if (!init_event) {
5332 vmcs_write32(GUEST_SYSENTER_CS, 0);
5333 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5334 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5335 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5336 }
e00c8cf2
AK
5337
5338 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5339 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5340
e00c8cf2
AK
5341 vmcs_writel(GUEST_GDTR_BASE, 0);
5342 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5343
5344 vmcs_writel(GUEST_IDTR_BASE, 0);
5345 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5346
443381a8 5347 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5348 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5349 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5350
e00c8cf2
AK
5351 setup_msrs(vmx);
5352
6aa8b732
AK
5353 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5354
d28bc9dd 5355 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5356 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5357 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5358 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5359 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5360 vmcs_write32(TPR_THRESHOLD, 0);
5361 }
5362
a73896cb 5363 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5364
d62caabb 5365 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5366 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5367
2384d2b3
SY
5368 if (vmx->vpid != 0)
5369 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5370
d28bc9dd 5371 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5372 vmx->vcpu.arch.cr0 = cr0;
f2463247 5373 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5374 vmx_set_cr4(vcpu, 0);
5690891b 5375 vmx_set_efer(vcpu, 0);
bd7e5b08 5376
d28bc9dd 5377 update_exception_bitmap(vcpu);
6aa8b732 5378
dd5f5341 5379 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5380}
5381
b6f1250e
NHE
5382/*
5383 * In nested virtualization, check if L1 asked to exit on external interrupts.
5384 * For most existing hypervisors, this will always return true.
5385 */
5386static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5387{
5388 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5389 PIN_BASED_EXT_INTR_MASK;
5390}
5391
77b0f5d6
BD
5392/*
5393 * In nested virtualization, check if L1 has set
5394 * VM_EXIT_ACK_INTR_ON_EXIT
5395 */
5396static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5397{
5398 return get_vmcs12(vcpu)->vm_exit_controls &
5399 VM_EXIT_ACK_INTR_ON_EXIT;
5400}
5401
ea8ceb83
JK
5402static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5403{
5404 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5405 PIN_BASED_NMI_EXITING;
5406}
5407
c9a7953f 5408static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 5409{
47c0152e
PB
5410 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5411 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
5412}
5413
c9a7953f 5414static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 5415{
c9a7953f
JK
5416 if (!cpu_has_virtual_nmis() ||
5417 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5418 enable_irq_window(vcpu);
5419 return;
5420 }
3b86cd99 5421
47c0152e
PB
5422 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5423 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
5424}
5425
66fd3f7f 5426static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5427{
9c8cba37 5428 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5429 uint32_t intr;
5430 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5431
229456fc 5432 trace_kvm_inj_virq(irq);
2714d1d3 5433
fa89a817 5434 ++vcpu->stat.irq_injections;
7ffd92c5 5435 if (vmx->rmode.vm86_active) {
71f9833b
SH
5436 int inc_eip = 0;
5437 if (vcpu->arch.interrupt.soft)
5438 inc_eip = vcpu->arch.event_exit_inst_len;
5439 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5440 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5441 return;
5442 }
66fd3f7f
GN
5443 intr = irq | INTR_INFO_VALID_MASK;
5444 if (vcpu->arch.interrupt.soft) {
5445 intr |= INTR_TYPE_SOFT_INTR;
5446 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5447 vmx->vcpu.arch.event_exit_inst_len);
5448 } else
5449 intr |= INTR_TYPE_EXT_INTR;
5450 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5451}
5452
f08864b4
SY
5453static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5454{
66a5a347
JK
5455 struct vcpu_vmx *vmx = to_vmx(vcpu);
5456
c5a6d5f7
WL
5457 if (!is_guest_mode(vcpu)) {
5458 if (!cpu_has_virtual_nmis()) {
5459 /*
5460 * Tracking the NMI-blocked state in software is built upon
5461 * finding the next open IRQ window. This, in turn, depends on
5462 * well-behaving guests: They have to keep IRQs disabled at
5463 * least as long as the NMI handler runs. Otherwise we may
5464 * cause NMI nesting, maybe breaking the guest. But as this is
5465 * highly unlikely, we can live with the residual risk.
5466 */
5467 vmx->soft_vnmi_blocked = 1;
5468 vmx->vnmi_blocked_time = 0;
5469 }
0b6ac343 5470
c5a6d5f7
WL
5471 ++vcpu->stat.nmi_injections;
5472 vmx->nmi_known_unmasked = false;
3b86cd99
JK
5473 }
5474
7ffd92c5 5475 if (vmx->rmode.vm86_active) {
71f9833b 5476 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5477 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5478 return;
5479 }
c5a6d5f7 5480
f08864b4
SY
5481 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5482 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5483}
5484
3cfc3092
JK
5485static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5486{
5487 if (!cpu_has_virtual_nmis())
5488 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
5489 if (to_vmx(vcpu)->nmi_known_unmasked)
5490 return false;
c332c83a 5491 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
5492}
5493
5494static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5495{
5496 struct vcpu_vmx *vmx = to_vmx(vcpu);
5497
5498 if (!cpu_has_virtual_nmis()) {
5499 if (vmx->soft_vnmi_blocked != masked) {
5500 vmx->soft_vnmi_blocked = masked;
5501 vmx->vnmi_blocked_time = 0;
5502 }
5503 } else {
9d58b931 5504 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
5505 if (masked)
5506 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5507 GUEST_INTR_STATE_NMI);
5508 else
5509 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5510 GUEST_INTR_STATE_NMI);
5511 }
5512}
5513
2505dc9f
JK
5514static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5515{
b6b8a145
JK
5516 if (to_vmx(vcpu)->nested.nested_run_pending)
5517 return 0;
ea8ceb83 5518
2505dc9f
JK
5519 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5520 return 0;
5521
5522 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5523 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5524 | GUEST_INTR_STATE_NMI));
5525}
5526
78646121
GN
5527static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5528{
b6b8a145
JK
5529 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5530 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5531 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5532 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5533}
5534
cbc94022
IE
5535static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5536{
5537 int ret;
cbc94022 5538
1d8007bd
PB
5539 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5540 PAGE_SIZE * 3);
cbc94022
IE
5541 if (ret)
5542 return ret;
bfc6d222 5543 kvm->arch.tss_addr = addr;
1f755a82 5544 return init_rmode_tss(kvm);
cbc94022
IE
5545}
5546
0ca1b4f4 5547static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5548{
77ab6db0 5549 switch (vec) {
77ab6db0 5550 case BP_VECTOR:
c573cd22
JK
5551 /*
5552 * Update instruction length as we may reinject the exception
5553 * from user space while in guest debugging mode.
5554 */
5555 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5556 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5557 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5558 return false;
5559 /* fall through */
5560 case DB_VECTOR:
5561 if (vcpu->guest_debug &
5562 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5563 return false;
d0bfb940
JK
5564 /* fall through */
5565 case DE_VECTOR:
77ab6db0
JK
5566 case OF_VECTOR:
5567 case BR_VECTOR:
5568 case UD_VECTOR:
5569 case DF_VECTOR:
5570 case SS_VECTOR:
5571 case GP_VECTOR:
5572 case MF_VECTOR:
0ca1b4f4
GN
5573 return true;
5574 break;
77ab6db0 5575 }
0ca1b4f4
GN
5576 return false;
5577}
5578
5579static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5580 int vec, u32 err_code)
5581{
5582 /*
5583 * Instruction with address size override prefix opcode 0x67
5584 * Cause the #SS fault with 0 error code in VM86 mode.
5585 */
5586 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5587 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5588 if (vcpu->arch.halt_request) {
5589 vcpu->arch.halt_request = 0;
5cb56059 5590 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5591 }
5592 return 1;
5593 }
5594 return 0;
5595 }
5596
5597 /*
5598 * Forward all other exceptions that are valid in real mode.
5599 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5600 * the required debugging infrastructure rework.
5601 */
5602 kvm_queue_exception(vcpu, vec);
5603 return 1;
6aa8b732
AK
5604}
5605
a0861c02
AK
5606/*
5607 * Trigger machine check on the host. We assume all the MSRs are already set up
5608 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5609 * We pass a fake environment to the machine check handler because we want
5610 * the guest to be always treated like user space, no matter what context
5611 * it used internally.
5612 */
5613static void kvm_machine_check(void)
5614{
5615#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5616 struct pt_regs regs = {
5617 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5618 .flags = X86_EFLAGS_IF,
5619 };
5620
5621 do_machine_check(&regs, 0);
5622#endif
5623}
5624
851ba692 5625static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5626{
5627 /* already handled by vcpu_run */
5628 return 1;
5629}
5630
851ba692 5631static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5632{
1155f76a 5633 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5634 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5635 u32 intr_info, ex_no, error_code;
42dbaa5a 5636 unsigned long cr2, rip, dr6;
6aa8b732
AK
5637 u32 vect_info;
5638 enum emulation_result er;
5639
1155f76a 5640 vect_info = vmx->idt_vectoring_info;
88786475 5641 intr_info = vmx->exit_intr_info;
6aa8b732 5642
a0861c02 5643 if (is_machine_check(intr_info))
851ba692 5644 return handle_machine_check(vcpu);
a0861c02 5645
ef85b673 5646 if (is_nmi(intr_info))
1b6269db 5647 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 5648
7aa81cc0 5649 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5650 if (is_guest_mode(vcpu)) {
5651 kvm_queue_exception(vcpu, UD_VECTOR);
5652 return 1;
5653 }
51d8b661 5654 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5655 if (er != EMULATE_DONE)
7ee5d940 5656 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5657 return 1;
5658 }
5659
6aa8b732 5660 error_code = 0;
2e11384c 5661 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5662 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5663
5664 /*
5665 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5666 * MMIO, it is better to report an internal error.
5667 * See the comments in vmx_handle_exit.
5668 */
5669 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5670 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5671 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5672 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5673 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5674 vcpu->run->internal.data[0] = vect_info;
5675 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5676 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5677 return 0;
5678 }
5679
6aa8b732 5680 if (is_page_fault(intr_info)) {
1439442c 5681 /* EPT won't cause page fault directly */
cf3ace79 5682 BUG_ON(enable_ept);
6aa8b732 5683 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
5684 trace_kvm_page_fault(cr2, error_code);
5685
3298b75c 5686 if (kvm_event_needs_reinjection(vcpu))
577bdc49 5687 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 5688 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
5689 }
5690
d0bfb940 5691 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5692
5693 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5694 return handle_rmode_exception(vcpu, ex_no, error_code);
5695
42dbaa5a 5696 switch (ex_no) {
54a20552
EN
5697 case AC_VECTOR:
5698 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5699 return 1;
42dbaa5a
JK
5700 case DB_VECTOR:
5701 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5702 if (!(vcpu->guest_debug &
5703 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5704 vcpu->arch.dr6 &= ~15;
6f43ed01 5705 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5706 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5707 skip_emulated_instruction(vcpu);
5708
42dbaa5a
JK
5709 kvm_queue_exception(vcpu, DB_VECTOR);
5710 return 1;
5711 }
5712 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5713 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5714 /* fall through */
5715 case BP_VECTOR:
c573cd22
JK
5716 /*
5717 * Update instruction length as we may reinject #BP from
5718 * user space while in guest debugging mode. Reading it for
5719 * #DB as well causes no harm, it is not used in that case.
5720 */
5721 vmx->vcpu.arch.event_exit_inst_len =
5722 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5723 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5724 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5725 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5726 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5727 break;
5728 default:
d0bfb940
JK
5729 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5730 kvm_run->ex.exception = ex_no;
5731 kvm_run->ex.error_code = error_code;
42dbaa5a 5732 break;
6aa8b732 5733 }
6aa8b732
AK
5734 return 0;
5735}
5736
851ba692 5737static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5738{
1165f5fe 5739 ++vcpu->stat.irq_exits;
6aa8b732
AK
5740 return 1;
5741}
5742
851ba692 5743static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5744{
851ba692 5745 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
5746 return 0;
5747}
6aa8b732 5748
851ba692 5749static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5750{
bfdaab09 5751 unsigned long exit_qualification;
6affcbed 5752 int size, in, string, ret;
039576c0 5753 unsigned port;
6aa8b732 5754
bfdaab09 5755 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5756 string = (exit_qualification & 16) != 0;
cf8f70bf 5757 in = (exit_qualification & 8) != 0;
e70669ab 5758
cf8f70bf 5759 ++vcpu->stat.io_exits;
e70669ab 5760
cf8f70bf 5761 if (string || in)
51d8b661 5762 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5763
cf8f70bf
GN
5764 port = exit_qualification >> 16;
5765 size = (exit_qualification & 7) + 1;
cf8f70bf 5766
6affcbed
KH
5767 ret = kvm_skip_emulated_instruction(vcpu);
5768
5769 /*
5770 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5771 * KVM_EXIT_DEBUG here.
5772 */
5773 return kvm_fast_pio_out(vcpu, size, port) && ret;
6aa8b732
AK
5774}
5775
102d8325
IM
5776static void
5777vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5778{
5779 /*
5780 * Patch in the VMCALL instruction:
5781 */
5782 hypercall[0] = 0x0f;
5783 hypercall[1] = 0x01;
5784 hypercall[2] = 0xc1;
102d8325
IM
5785}
5786
0fa06071 5787/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5788static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5789{
eeadf9e7 5790 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5791 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5792 unsigned long orig_val = val;
5793
eeadf9e7
NHE
5794 /*
5795 * We get here when L2 changed cr0 in a way that did not change
5796 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5797 * but did change L0 shadowed bits. So we first calculate the
5798 * effective cr0 value that L1 would like to write into the
5799 * hardware. It consists of the L2-owned bits from the new
5800 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5801 */
1a0d74e6
JK
5802 val = (val & ~vmcs12->cr0_guest_host_mask) |
5803 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5804
3899152c 5805 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 5806 return 1;
1a0d74e6
JK
5807
5808 if (kvm_set_cr0(vcpu, val))
5809 return 1;
5810 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5811 return 0;
1a0d74e6
JK
5812 } else {
5813 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 5814 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 5815 return 1;
3899152c 5816
eeadf9e7 5817 return kvm_set_cr0(vcpu, val);
1a0d74e6 5818 }
eeadf9e7
NHE
5819}
5820
5821static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5822{
5823 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5824 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5825 unsigned long orig_val = val;
5826
5827 /* analogously to handle_set_cr0 */
5828 val = (val & ~vmcs12->cr4_guest_host_mask) |
5829 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5830 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5831 return 1;
1a0d74e6 5832 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5833 return 0;
5834 } else
5835 return kvm_set_cr4(vcpu, val);
5836}
5837
851ba692 5838static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5839{
229456fc 5840 unsigned long exit_qualification, val;
6aa8b732
AK
5841 int cr;
5842 int reg;
49a9b07e 5843 int err;
6affcbed 5844 int ret;
6aa8b732 5845
bfdaab09 5846 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5847 cr = exit_qualification & 15;
5848 reg = (exit_qualification >> 8) & 15;
5849 switch ((exit_qualification >> 4) & 3) {
5850 case 0: /* mov to cr */
1e32c079 5851 val = kvm_register_readl(vcpu, reg);
229456fc 5852 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5853 switch (cr) {
5854 case 0:
eeadf9e7 5855 err = handle_set_cr0(vcpu, val);
6affcbed 5856 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 5857 case 3:
2390218b 5858 err = kvm_set_cr3(vcpu, val);
6affcbed 5859 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 5860 case 4:
eeadf9e7 5861 err = handle_set_cr4(vcpu, val);
6affcbed 5862 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
5863 case 8: {
5864 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5865 u8 cr8 = (u8)val;
eea1cff9 5866 err = kvm_set_cr8(vcpu, cr8);
6affcbed 5867 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 5868 if (lapic_in_kernel(vcpu))
6affcbed 5869 return ret;
0a5fff19 5870 if (cr8_prev <= cr8)
6affcbed
KH
5871 return ret;
5872 /*
5873 * TODO: we might be squashing a
5874 * KVM_GUESTDBG_SINGLESTEP-triggered
5875 * KVM_EXIT_DEBUG here.
5876 */
851ba692 5877 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5878 return 0;
5879 }
4b8073e4 5880 }
6aa8b732 5881 break;
25c4c276 5882 case 2: /* clts */
bd7e5b08
PB
5883 WARN_ONCE(1, "Guest should always own CR0.TS");
5884 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 5885 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 5886 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5887 case 1: /*mov from cr*/
5888 switch (cr) {
5889 case 3:
9f8fe504
AK
5890 val = kvm_read_cr3(vcpu);
5891 kvm_register_write(vcpu, reg, val);
5892 trace_kvm_cr_read(cr, val);
6affcbed 5893 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 5894 case 8:
229456fc
MT
5895 val = kvm_get_cr8(vcpu);
5896 kvm_register_write(vcpu, reg, val);
5897 trace_kvm_cr_read(cr, val);
6affcbed 5898 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5899 }
5900 break;
5901 case 3: /* lmsw */
a1f83a74 5902 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5903 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5904 kvm_lmsw(vcpu, val);
6aa8b732 5905
6affcbed 5906 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5907 default:
5908 break;
5909 }
851ba692 5910 vcpu->run->exit_reason = 0;
a737f256 5911 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5912 (int)(exit_qualification >> 4) & 3, cr);
5913 return 0;
5914}
5915
851ba692 5916static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5917{
bfdaab09 5918 unsigned long exit_qualification;
16f8a6f9
NA
5919 int dr, dr7, reg;
5920
5921 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5922 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5923
5924 /* First, if DR does not exist, trigger UD */
5925 if (!kvm_require_dr(vcpu, dr))
5926 return 1;
6aa8b732 5927
f2483415 5928 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5929 if (!kvm_require_cpl(vcpu, 0))
5930 return 1;
16f8a6f9
NA
5931 dr7 = vmcs_readl(GUEST_DR7);
5932 if (dr7 & DR7_GD) {
42dbaa5a
JK
5933 /*
5934 * As the vm-exit takes precedence over the debug trap, we
5935 * need to emulate the latter, either for the host or the
5936 * guest debugging itself.
5937 */
5938 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 5939 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 5940 vcpu->run->debug.arch.dr7 = dr7;
82b32774 5941 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
5942 vcpu->run->debug.arch.exception = DB_VECTOR;
5943 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5944 return 0;
5945 } else {
7305eb5d 5946 vcpu->arch.dr6 &= ~15;
6f43ed01 5947 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
5948 kvm_queue_exception(vcpu, DB_VECTOR);
5949 return 1;
5950 }
5951 }
5952
81908bf4 5953 if (vcpu->guest_debug == 0) {
8f22372f
PB
5954 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5955 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
5956
5957 /*
5958 * No more DR vmexits; force a reload of the debug registers
5959 * and reenter on this instruction. The next vmexit will
5960 * retrieve the full state of the debug registers.
5961 */
5962 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5963 return 1;
5964 }
5965
42dbaa5a
JK
5966 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5967 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5968 unsigned long val;
4c4d563b
JK
5969
5970 if (kvm_get_dr(vcpu, dr, &val))
5971 return 1;
5972 kvm_register_write(vcpu, reg, val);
020df079 5973 } else
5777392e 5974 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
5975 return 1;
5976
6affcbed 5977 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5978}
5979
73aaf249
JK
5980static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5981{
5982 return vcpu->arch.dr6;
5983}
5984
5985static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5986{
5987}
5988
81908bf4
PB
5989static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5990{
81908bf4
PB
5991 get_debugreg(vcpu->arch.db[0], 0);
5992 get_debugreg(vcpu->arch.db[1], 1);
5993 get_debugreg(vcpu->arch.db[2], 2);
5994 get_debugreg(vcpu->arch.db[3], 3);
5995 get_debugreg(vcpu->arch.dr6, 6);
5996 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5997
5998 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 5999 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6000}
6001
020df079
GN
6002static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6003{
6004 vmcs_writel(GUEST_DR7, val);
6005}
6006
851ba692 6007static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 6008{
6a908b62 6009 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
6010}
6011
851ba692 6012static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 6013{
ad312c7c 6014 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 6015 struct msr_data msr_info;
6aa8b732 6016
609e36d3
PB
6017 msr_info.index = ecx;
6018 msr_info.host_initiated = false;
6019 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 6020 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 6021 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6022 return 1;
6023 }
6024
609e36d3 6025 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6026
6aa8b732 6027 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6028 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6029 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6030 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6031}
6032
851ba692 6033static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6034{
8fe8ab46 6035 struct msr_data msr;
ad312c7c
ZX
6036 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6037 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6038 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6039
8fe8ab46
WA
6040 msr.data = data;
6041 msr.index = ecx;
6042 msr.host_initiated = false;
854e8bb1 6043 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6044 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6045 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6046 return 1;
6047 }
6048
59200273 6049 trace_kvm_msr_write(ecx, data);
6affcbed 6050 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6051}
6052
851ba692 6053static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6054{
eb90f341 6055 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6056 return 1;
6057}
6058
851ba692 6059static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6060{
47c0152e
PB
6061 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6062 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6063
3842d135
AK
6064 kvm_make_request(KVM_REQ_EVENT, vcpu);
6065
a26bf12a 6066 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6067 return 1;
6068}
6069
851ba692 6070static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6071{
d3bef15f 6072 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6073}
6074
851ba692 6075static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6076{
0d9c055e 6077 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6078}
6079
ec25d5e6
GN
6080static int handle_invd(struct kvm_vcpu *vcpu)
6081{
51d8b661 6082 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6083}
6084
851ba692 6085static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6086{
f9c617f6 6087 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6088
6089 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6090 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6091}
6092
fee84b07
AK
6093static int handle_rdpmc(struct kvm_vcpu *vcpu)
6094{
6095 int err;
6096
6097 err = kvm_rdpmc(vcpu);
6affcbed 6098 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6099}
6100
851ba692 6101static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6102{
6affcbed 6103 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6104}
6105
2acf923e
DC
6106static int handle_xsetbv(struct kvm_vcpu *vcpu)
6107{
6108 u64 new_bv = kvm_read_edx_eax(vcpu);
6109 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6110
6111 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6112 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6113 return 1;
6114}
6115
f53cd63c
WL
6116static int handle_xsaves(struct kvm_vcpu *vcpu)
6117{
6affcbed 6118 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6119 WARN(1, "this should never happen\n");
6120 return 1;
6121}
6122
6123static int handle_xrstors(struct kvm_vcpu *vcpu)
6124{
6affcbed 6125 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6126 WARN(1, "this should never happen\n");
6127 return 1;
6128}
6129
851ba692 6130static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6131{
58fbbf26
KT
6132 if (likely(fasteoi)) {
6133 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6134 int access_type, offset;
6135
6136 access_type = exit_qualification & APIC_ACCESS_TYPE;
6137 offset = exit_qualification & APIC_ACCESS_OFFSET;
6138 /*
6139 * Sane guest uses MOV to write EOI, with written value
6140 * not cared. So make a short-circuit here by avoiding
6141 * heavy instruction emulation.
6142 */
6143 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6144 (offset == APIC_EOI)) {
6145 kvm_lapic_set_eoi(vcpu);
6affcbed 6146 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6147 }
6148 }
51d8b661 6149 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6150}
6151
c7c9c56c
YZ
6152static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6153{
6154 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6155 int vector = exit_qualification & 0xff;
6156
6157 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6158 kvm_apic_set_eoi_accelerated(vcpu, vector);
6159 return 1;
6160}
6161
83d4c286
YZ
6162static int handle_apic_write(struct kvm_vcpu *vcpu)
6163{
6164 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6165 u32 offset = exit_qualification & 0xfff;
6166
6167 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6168 kvm_apic_write_nodecode(vcpu, offset);
6169 return 1;
6170}
6171
851ba692 6172static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6173{
60637aac 6174 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6175 unsigned long exit_qualification;
e269fb21
JK
6176 bool has_error_code = false;
6177 u32 error_code = 0;
37817f29 6178 u16 tss_selector;
7f3d35fd 6179 int reason, type, idt_v, idt_index;
64a7ec06
GN
6180
6181 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6182 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6183 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6184
6185 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6186
6187 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6188 if (reason == TASK_SWITCH_GATE && idt_v) {
6189 switch (type) {
6190 case INTR_TYPE_NMI_INTR:
6191 vcpu->arch.nmi_injected = false;
654f06fc 6192 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6193 break;
6194 case INTR_TYPE_EXT_INTR:
66fd3f7f 6195 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6196 kvm_clear_interrupt_queue(vcpu);
6197 break;
6198 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6199 if (vmx->idt_vectoring_info &
6200 VECTORING_INFO_DELIVER_CODE_MASK) {
6201 has_error_code = true;
6202 error_code =
6203 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6204 }
6205 /* fall through */
64a7ec06
GN
6206 case INTR_TYPE_SOFT_EXCEPTION:
6207 kvm_clear_exception_queue(vcpu);
6208 break;
6209 default:
6210 break;
6211 }
60637aac 6212 }
37817f29
IE
6213 tss_selector = exit_qualification;
6214
64a7ec06
GN
6215 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6216 type != INTR_TYPE_EXT_INTR &&
6217 type != INTR_TYPE_NMI_INTR))
6218 skip_emulated_instruction(vcpu);
6219
7f3d35fd
KW
6220 if (kvm_task_switch(vcpu, tss_selector,
6221 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6222 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6223 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6224 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6225 vcpu->run->internal.ndata = 0;
42dbaa5a 6226 return 0;
acb54517 6227 }
42dbaa5a 6228
42dbaa5a
JK
6229 /*
6230 * TODO: What about debug traps on tss switch?
6231 * Are we supposed to inject them and update dr6?
6232 */
6233
6234 return 1;
37817f29
IE
6235}
6236
851ba692 6237static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6238{
f9c617f6 6239 unsigned long exit_qualification;
1439442c 6240 gpa_t gpa;
4f5982a5 6241 u32 error_code;
1439442c 6242 int gla_validity;
1439442c 6243
f9c617f6 6244 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6245
1439442c 6246 gla_validity = (exit_qualification >> 7) & 0x3;
72e0ae58 6247 if (gla_validity == 0x2) {
1439442c
SY
6248 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
6249 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
6250 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 6251 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
6252 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
6253 (long unsigned int)exit_qualification);
851ba692
AK
6254 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6255 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 6256 return 0;
1439442c
SY
6257 }
6258
0be9c7a8
GN
6259 /*
6260 * EPT violation happened while executing iret from NMI,
6261 * "blocked by NMI" bit has to be set before next VM entry.
6262 * There are errata that may cause this bit to not be set:
6263 * AAK134, BY25.
6264 */
bcd1c294
GN
6265 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6266 cpu_has_virtual_nmis() &&
6267 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6268 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6269
1439442c 6270 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6271 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6272
27959a44 6273 /* Is it a read fault? */
ab22a473 6274 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
6275 ? PFERR_USER_MASK : 0;
6276 /* Is it a write fault? */
ab22a473 6277 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
6278 ? PFERR_WRITE_MASK : 0;
6279 /* Is it a fetch fault? */
ab22a473 6280 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
6281 ? PFERR_FETCH_MASK : 0;
6282 /* ept page table entry is present? */
6283 error_code |= (exit_qualification &
6284 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6285 EPT_VIOLATION_EXECUTABLE))
6286 ? PFERR_PRESENT_MASK : 0;
4f5982a5 6287
db1c056c 6288 vcpu->arch.gpa_available = true;
25d92081
YZ
6289 vcpu->arch.exit_qualification = exit_qualification;
6290
4f5982a5 6291 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6292}
6293
851ba692 6294static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6295{
f735d4af 6296 int ret;
68f89400
MT
6297 gpa_t gpa;
6298
6299 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
e32edf4f 6300 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 6301 trace_kvm_fast_mmio(gpa);
6affcbed 6302 return kvm_skip_emulated_instruction(vcpu);
68c3b4d1 6303 }
68f89400 6304
450869d6 6305 ret = handle_mmio_page_fault(vcpu, gpa, true);
db1c056c 6306 vcpu->arch.gpa_available = true;
b37fbea6 6307 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
6308 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6309 EMULATE_DONE;
f8f55942
XG
6310
6311 if (unlikely(ret == RET_MMIO_PF_INVALID))
6312 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6313
b37fbea6 6314 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
6315 return 1;
6316
6317 /* It is the real ept misconfig */
f735d4af 6318 WARN_ON(1);
68f89400 6319
851ba692
AK
6320 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6321 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6322
6323 return 0;
6324}
6325
851ba692 6326static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 6327{
47c0152e
PB
6328 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6329 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 6330 ++vcpu->stat.nmi_window_exits;
3842d135 6331 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6332
6333 return 1;
6334}
6335
80ced186 6336static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6337{
8b3079a5
AK
6338 struct vcpu_vmx *vmx = to_vmx(vcpu);
6339 enum emulation_result err = EMULATE_DONE;
80ced186 6340 int ret = 1;
49e9d557
AK
6341 u32 cpu_exec_ctrl;
6342 bool intr_window_requested;
b8405c18 6343 unsigned count = 130;
49e9d557
AK
6344
6345 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6346 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6347
98eb2f8b 6348 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6349 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6350 return handle_interrupt_window(&vmx->vcpu);
6351
de87dcdd
AK
6352 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6353 return 1;
6354
991eebf9 6355 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6356
ac0a48c3 6357 if (err == EMULATE_USER_EXIT) {
94452b9e 6358 ++vcpu->stat.mmio_exits;
80ced186
MG
6359 ret = 0;
6360 goto out;
6361 }
1d5a4d9b 6362
de5f70e0
AK
6363 if (err != EMULATE_DONE) {
6364 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6365 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6366 vcpu->run->internal.ndata = 0;
6d77dbfc 6367 return 0;
de5f70e0 6368 }
ea953ef0 6369
8d76c49e
GN
6370 if (vcpu->arch.halt_request) {
6371 vcpu->arch.halt_request = 0;
5cb56059 6372 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6373 goto out;
6374 }
6375
ea953ef0 6376 if (signal_pending(current))
80ced186 6377 goto out;
ea953ef0
MG
6378 if (need_resched())
6379 schedule();
6380 }
6381
80ced186
MG
6382out:
6383 return ret;
ea953ef0
MG
6384}
6385
b4a2d31d
RK
6386static int __grow_ple_window(int val)
6387{
6388 if (ple_window_grow < 1)
6389 return ple_window;
6390
6391 val = min(val, ple_window_actual_max);
6392
6393 if (ple_window_grow < ple_window)
6394 val *= ple_window_grow;
6395 else
6396 val += ple_window_grow;
6397
6398 return val;
6399}
6400
6401static int __shrink_ple_window(int val, int modifier, int minimum)
6402{
6403 if (modifier < 1)
6404 return ple_window;
6405
6406 if (modifier < ple_window)
6407 val /= modifier;
6408 else
6409 val -= modifier;
6410
6411 return max(val, minimum);
6412}
6413
6414static void grow_ple_window(struct kvm_vcpu *vcpu)
6415{
6416 struct vcpu_vmx *vmx = to_vmx(vcpu);
6417 int old = vmx->ple_window;
6418
6419 vmx->ple_window = __grow_ple_window(old);
6420
6421 if (vmx->ple_window != old)
6422 vmx->ple_window_dirty = true;
7b46268d
RK
6423
6424 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6425}
6426
6427static void shrink_ple_window(struct kvm_vcpu *vcpu)
6428{
6429 struct vcpu_vmx *vmx = to_vmx(vcpu);
6430 int old = vmx->ple_window;
6431
6432 vmx->ple_window = __shrink_ple_window(old,
6433 ple_window_shrink, ple_window);
6434
6435 if (vmx->ple_window != old)
6436 vmx->ple_window_dirty = true;
7b46268d
RK
6437
6438 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6439}
6440
6441/*
6442 * ple_window_actual_max is computed to be one grow_ple_window() below
6443 * ple_window_max. (See __grow_ple_window for the reason.)
6444 * This prevents overflows, because ple_window_max is int.
6445 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6446 * this process.
6447 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6448 */
6449static void update_ple_window_actual_max(void)
6450{
6451 ple_window_actual_max =
6452 __shrink_ple_window(max(ple_window_max, ple_window),
6453 ple_window_grow, INT_MIN);
6454}
6455
bf9f6ac8
FW
6456/*
6457 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6458 */
6459static void wakeup_handler(void)
6460{
6461 struct kvm_vcpu *vcpu;
6462 int cpu = smp_processor_id();
6463
6464 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6465 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6466 blocked_vcpu_list) {
6467 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6468
6469 if (pi_test_on(pi_desc) == 1)
6470 kvm_vcpu_kick(vcpu);
6471 }
6472 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6473}
6474
f160c7b7
JS
6475void vmx_enable_tdp(void)
6476{
6477 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6478 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6479 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6480 0ull, VMX_EPT_EXECUTABLE_MASK,
6481 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
312b616b 6482 enable_ept_ad_bits ? 0ull : VMX_EPT_RWX_MASK);
f160c7b7
JS
6483
6484 ept_set_mmio_spte_mask();
6485 kvm_enable_tdp();
6486}
6487
f2c7648d
TC
6488static __init int hardware_setup(void)
6489{
34a1cd60
TC
6490 int r = -ENOMEM, i, msr;
6491
6492 rdmsrl_safe(MSR_EFER, &host_efer);
6493
6494 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6495 kvm_define_shared_msr(i, vmx_msr_index[i]);
6496
23611332
RK
6497 for (i = 0; i < VMX_BITMAP_NR; i++) {
6498 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6499 if (!vmx_bitmap[i])
6500 goto out;
6501 }
34a1cd60
TC
6502
6503 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
34a1cd60
TC
6504 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6505 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6506
6507 /*
6508 * Allow direct access to the PC debug port (it is often used for I/O
6509 * delays, but the vmexits simply slow things down).
6510 */
6511 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6512 clear_bit(0x80, vmx_io_bitmap_a);
6513
6514 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6515
6516 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6517 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6518
34a1cd60
TC
6519 if (setup_vmcs_config(&vmcs_config) < 0) {
6520 r = -EIO;
23611332 6521 goto out;
baa03522 6522 }
f2c7648d
TC
6523
6524 if (boot_cpu_has(X86_FEATURE_NX))
6525 kvm_enable_efer_bits(EFER_NX);
6526
6527 if (!cpu_has_vmx_vpid())
6528 enable_vpid = 0;
6529 if (!cpu_has_vmx_shadow_vmcs())
6530 enable_shadow_vmcs = 0;
6531 if (enable_shadow_vmcs)
6532 init_vmcs_shadow_fields();
6533
6534 if (!cpu_has_vmx_ept() ||
6535 !cpu_has_vmx_ept_4levels()) {
6536 enable_ept = 0;
6537 enable_unrestricted_guest = 0;
6538 enable_ept_ad_bits = 0;
6539 }
6540
6541 if (!cpu_has_vmx_ept_ad_bits())
6542 enable_ept_ad_bits = 0;
6543
6544 if (!cpu_has_vmx_unrestricted_guest())
6545 enable_unrestricted_guest = 0;
6546
ad15a296 6547 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6548 flexpriority_enabled = 0;
6549
ad15a296
PB
6550 /*
6551 * set_apic_access_page_addr() is used to reload apic access
6552 * page upon invalidation. No need to do anything if not
6553 * using the APIC_ACCESS_ADDR VMCS field.
6554 */
6555 if (!flexpriority_enabled)
f2c7648d 6556 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6557
6558 if (!cpu_has_vmx_tpr_shadow())
6559 kvm_x86_ops->update_cr8_intercept = NULL;
6560
6561 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6562 kvm_disable_largepages();
6563
6564 if (!cpu_has_vmx_ple())
6565 ple_gap = 0;
6566
76dfafd5 6567 if (!cpu_has_vmx_apicv()) {
f2c7648d 6568 enable_apicv = 0;
76dfafd5
PB
6569 kvm_x86_ops->sync_pir_to_irr = NULL;
6570 }
f2c7648d 6571
64903d61
HZ
6572 if (cpu_has_vmx_tsc_scaling()) {
6573 kvm_has_tsc_control = true;
6574 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6575 kvm_tsc_scaling_ratio_frac_bits = 48;
6576 }
6577
baa03522
TC
6578 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6579 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6580 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6581 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6582 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6583 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6584 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6585
c63e4563 6586 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
baa03522 6587 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6588 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
baa03522 6589 vmx_msr_bitmap_longmode, PAGE_SIZE);
c63e4563 6590 memcpy(vmx_msr_bitmap_legacy_x2apic,
f6e90f9e 6591 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6592 memcpy(vmx_msr_bitmap_longmode_x2apic,
f6e90f9e 6593 vmx_msr_bitmap_longmode, PAGE_SIZE);
baa03522 6594
04bb92e4
WL
6595 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6596
40d8338d
RK
6597 for (msr = 0x800; msr <= 0x8ff; msr++) {
6598 if (msr == 0x839 /* TMCCT */)
6599 continue;
2e69f865 6600 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
40d8338d 6601 }
3ce424e4 6602
f6e90f9e 6603 /*
2e69f865
RK
6604 * TPR reads and writes can be virtualized even if virtual interrupt
6605 * delivery is not in use.
f6e90f9e 6606 */
2e69f865
RK
6607 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6608 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
3ce424e4 6609
3ce424e4 6610 /* EOI */
2e69f865 6611 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
3ce424e4 6612 /* SELF-IPI */
2e69f865 6613 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
baa03522 6614
f160c7b7
JS
6615 if (enable_ept)
6616 vmx_enable_tdp();
6617 else
baa03522
TC
6618 kvm_disable_tdp();
6619
6620 update_ple_window_actual_max();
6621
843e4330
KH
6622 /*
6623 * Only enable PML when hardware supports PML feature, and both EPT
6624 * and EPT A/D bit features are enabled -- PML depends on them to work.
6625 */
6626 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6627 enable_pml = 0;
6628
6629 if (!enable_pml) {
6630 kvm_x86_ops->slot_enable_log_dirty = NULL;
6631 kvm_x86_ops->slot_disable_log_dirty = NULL;
6632 kvm_x86_ops->flush_log_dirty = NULL;
6633 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6634 }
6635
64672c95
YJ
6636 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6637 u64 vmx_msr;
6638
6639 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6640 cpu_preemption_timer_multi =
6641 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6642 } else {
6643 kvm_x86_ops->set_hv_timer = NULL;
6644 kvm_x86_ops->cancel_hv_timer = NULL;
6645 }
6646
bf9f6ac8
FW
6647 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6648
c45dcc71
AR
6649 kvm_mce_cap_supported |= MCG_LMCE_P;
6650
f2c7648d 6651 return alloc_kvm_area();
34a1cd60 6652
34a1cd60 6653out:
23611332
RK
6654 for (i = 0; i < VMX_BITMAP_NR; i++)
6655 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
6656
6657 return r;
f2c7648d
TC
6658}
6659
6660static __exit void hardware_unsetup(void)
6661{
23611332
RK
6662 int i;
6663
6664 for (i = 0; i < VMX_BITMAP_NR; i++)
6665 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 6666
f2c7648d
TC
6667 free_kvm_area();
6668}
6669
4b8d54f9
ZE
6670/*
6671 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6672 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6673 */
9fb41ba8 6674static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6675{
b4a2d31d
RK
6676 if (ple_gap)
6677 grow_ple_window(vcpu);
6678
4b8d54f9 6679 kvm_vcpu_on_spin(vcpu);
6affcbed 6680 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
6681}
6682
87c00572 6683static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6684{
6affcbed 6685 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
6686}
6687
87c00572
GS
6688static int handle_mwait(struct kvm_vcpu *vcpu)
6689{
6690 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6691 return handle_nop(vcpu);
6692}
6693
5f3d45e7
MD
6694static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6695{
6696 return 1;
6697}
6698
87c00572
GS
6699static int handle_monitor(struct kvm_vcpu *vcpu)
6700{
6701 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6702 return handle_nop(vcpu);
6703}
6704
ff2f6fe9
NHE
6705/*
6706 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6707 * We could reuse a single VMCS for all the L2 guests, but we also want the
6708 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6709 * allows keeping them loaded on the processor, and in the future will allow
6710 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6711 * every entry if they never change.
6712 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6713 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6714 *
6715 * The following functions allocate and free a vmcs02 in this pool.
6716 */
6717
6718/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6719static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6720{
6721 struct vmcs02_list *item;
6722 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6723 if (item->vmptr == vmx->nested.current_vmptr) {
6724 list_move(&item->list, &vmx->nested.vmcs02_pool);
6725 return &item->vmcs02;
6726 }
6727
6728 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6729 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6730 item = list_last_entry(&vmx->nested.vmcs02_pool,
6731 struct vmcs02_list, list);
ff2f6fe9
NHE
6732 item->vmptr = vmx->nested.current_vmptr;
6733 list_move(&item->list, &vmx->nested.vmcs02_pool);
6734 return &item->vmcs02;
6735 }
6736
6737 /* Create a new VMCS */
0fa24ce3 6738 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6739 if (!item)
6740 return NULL;
6741 item->vmcs02.vmcs = alloc_vmcs();
355f4fb1 6742 item->vmcs02.shadow_vmcs = NULL;
ff2f6fe9
NHE
6743 if (!item->vmcs02.vmcs) {
6744 kfree(item);
6745 return NULL;
6746 }
6747 loaded_vmcs_init(&item->vmcs02);
6748 item->vmptr = vmx->nested.current_vmptr;
6749 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6750 vmx->nested.vmcs02_num++;
6751 return &item->vmcs02;
6752}
6753
6754/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6755static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6756{
6757 struct vmcs02_list *item;
6758 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6759 if (item->vmptr == vmptr) {
6760 free_loaded_vmcs(&item->vmcs02);
6761 list_del(&item->list);
6762 kfree(item);
6763 vmx->nested.vmcs02_num--;
6764 return;
6765 }
6766}
6767
6768/*
6769 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6770 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6771 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6772 */
6773static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6774{
6775 struct vmcs02_list *item, *n;
4fa7734c
PB
6776
6777 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6778 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6779 /*
6780 * Something will leak if the above WARN triggers. Better than
6781 * a use-after-free.
6782 */
6783 if (vmx->loaded_vmcs == &item->vmcs02)
6784 continue;
6785
6786 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6787 list_del(&item->list);
6788 kfree(item);
4fa7734c 6789 vmx->nested.vmcs02_num--;
ff2f6fe9 6790 }
ff2f6fe9
NHE
6791}
6792
0658fbaa
ACL
6793/*
6794 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6795 * set the success or error code of an emulated VMX instruction, as specified
6796 * by Vol 2B, VMX Instruction Reference, "Conventions".
6797 */
6798static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6799{
6800 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6801 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6802 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6803}
6804
6805static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6806{
6807 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6808 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6809 X86_EFLAGS_SF | X86_EFLAGS_OF))
6810 | X86_EFLAGS_CF);
6811}
6812
145c28dd 6813static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6814 u32 vm_instruction_error)
6815{
6816 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6817 /*
6818 * failValid writes the error number to the current VMCS, which
6819 * can't be done there isn't a current VMCS.
6820 */
6821 nested_vmx_failInvalid(vcpu);
6822 return;
6823 }
6824 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6825 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6826 X86_EFLAGS_SF | X86_EFLAGS_OF))
6827 | X86_EFLAGS_ZF);
6828 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6829 /*
6830 * We don't need to force a shadow sync because
6831 * VM_INSTRUCTION_ERROR is not shadowed
6832 */
6833}
145c28dd 6834
ff651cb6
WV
6835static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6836{
6837 /* TODO: not to reset guest simply here. */
6838 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 6839 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
6840}
6841
f4124500
JK
6842static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6843{
6844 struct vcpu_vmx *vmx =
6845 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6846
6847 vmx->nested.preemption_timer_expired = true;
6848 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6849 kvm_vcpu_kick(&vmx->vcpu);
6850
6851 return HRTIMER_NORESTART;
6852}
6853
19677e32
BD
6854/*
6855 * Decode the memory-address operand of a vmx instruction, as recorded on an
6856 * exit caused by such an instruction (run by a guest hypervisor).
6857 * On success, returns 0. When the operand is invalid, returns 1 and throws
6858 * #UD or #GP.
6859 */
6860static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6861 unsigned long exit_qualification,
f9eb4af6 6862 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 6863{
f9eb4af6
EK
6864 gva_t off;
6865 bool exn;
6866 struct kvm_segment s;
6867
19677e32
BD
6868 /*
6869 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6870 * Execution", on an exit, vmx_instruction_info holds most of the
6871 * addressing components of the operand. Only the displacement part
6872 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6873 * For how an actual address is calculated from all these components,
6874 * refer to Vol. 1, "Operand Addressing".
6875 */
6876 int scaling = vmx_instruction_info & 3;
6877 int addr_size = (vmx_instruction_info >> 7) & 7;
6878 bool is_reg = vmx_instruction_info & (1u << 10);
6879 int seg_reg = (vmx_instruction_info >> 15) & 7;
6880 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6881 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6882 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6883 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6884
6885 if (is_reg) {
6886 kvm_queue_exception(vcpu, UD_VECTOR);
6887 return 1;
6888 }
6889
6890 /* Addr = segment_base + offset */
6891 /* offset = base + [index * scale] + displacement */
f9eb4af6 6892 off = exit_qualification; /* holds the displacement */
19677e32 6893 if (base_is_valid)
f9eb4af6 6894 off += kvm_register_read(vcpu, base_reg);
19677e32 6895 if (index_is_valid)
f9eb4af6
EK
6896 off += kvm_register_read(vcpu, index_reg)<<scaling;
6897 vmx_get_segment(vcpu, &s, seg_reg);
6898 *ret = s.base + off;
19677e32
BD
6899
6900 if (addr_size == 1) /* 32 bit */
6901 *ret &= 0xffffffff;
6902
f9eb4af6
EK
6903 /* Checks for #GP/#SS exceptions. */
6904 exn = false;
ff30ef40
QC
6905 if (is_long_mode(vcpu)) {
6906 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6907 * non-canonical form. This is the only check on the memory
6908 * destination for long mode!
6909 */
6910 exn = is_noncanonical_address(*ret);
6911 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
6912 /* Protected mode: apply checks for segment validity in the
6913 * following order:
6914 * - segment type check (#GP(0) may be thrown)
6915 * - usability check (#GP(0)/#SS(0))
6916 * - limit check (#GP(0)/#SS(0))
6917 */
6918 if (wr)
6919 /* #GP(0) if the destination operand is located in a
6920 * read-only data segment or any code segment.
6921 */
6922 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6923 else
6924 /* #GP(0) if the source operand is located in an
6925 * execute-only code segment
6926 */
6927 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
6928 if (exn) {
6929 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6930 return 1;
6931 }
f9eb4af6
EK
6932 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6933 */
6934 exn = (s.unusable != 0);
6935 /* Protected mode: #GP(0)/#SS(0) if the memory
6936 * operand is outside the segment limit.
6937 */
6938 exn = exn || (off + sizeof(u64) > s.limit);
6939 }
6940 if (exn) {
6941 kvm_queue_exception_e(vcpu,
6942 seg_reg == VCPU_SREG_SS ?
6943 SS_VECTOR : GP_VECTOR,
6944 0);
6945 return 1;
6946 }
6947
19677e32
BD
6948 return 0;
6949}
6950
3573e22c
BD
6951/*
6952 * This function performs the various checks including
6953 * - if it's 4KB aligned
6954 * - No bits beyond the physical address width are set
6955 * - Returns 0 on success or else 1
4291b588 6956 * (Intel SDM Section 30.3)
3573e22c 6957 */
4291b588
BD
6958static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6959 gpa_t *vmpointer)
3573e22c
BD
6960{
6961 gva_t gva;
6962 gpa_t vmptr;
6963 struct x86_exception e;
6964 struct page *page;
6965 struct vcpu_vmx *vmx = to_vmx(vcpu);
6966 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6967
6968 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 6969 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
6970 return 1;
6971
6972 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6973 sizeof(vmptr), &e)) {
6974 kvm_inject_page_fault(vcpu, &e);
6975 return 1;
6976 }
6977
6978 switch (exit_reason) {
6979 case EXIT_REASON_VMON:
6980 /*
6981 * SDM 3: 24.11.5
6982 * The first 4 bytes of VMXON region contain the supported
6983 * VMCS revision identifier
6984 *
6985 * Note - IA32_VMX_BASIC[48] will never be 1
6986 * for the nested case;
6987 * which replaces physical address width with 32
6988 *
6989 */
bc39c4db 6990 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
3573e22c 6991 nested_vmx_failInvalid(vcpu);
6affcbed 6992 return kvm_skip_emulated_instruction(vcpu);
3573e22c
BD
6993 }
6994
6995 page = nested_get_page(vcpu, vmptr);
06ce521a 6996 if (page == NULL) {
3573e22c 6997 nested_vmx_failInvalid(vcpu);
06ce521a
PB
6998 return kvm_skip_emulated_instruction(vcpu);
6999 }
7000 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
3573e22c 7001 kunmap(page);
06ce521a
PB
7002 nested_release_page_clean(page);
7003 nested_vmx_failInvalid(vcpu);
6affcbed 7004 return kvm_skip_emulated_instruction(vcpu);
3573e22c
BD
7005 }
7006 kunmap(page);
06ce521a 7007 nested_release_page_clean(page);
3573e22c
BD
7008 vmx->nested.vmxon_ptr = vmptr;
7009 break;
4291b588 7010 case EXIT_REASON_VMCLEAR:
bc39c4db 7011 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
7012 nested_vmx_failValid(vcpu,
7013 VMXERR_VMCLEAR_INVALID_ADDRESS);
6affcbed 7014 return kvm_skip_emulated_instruction(vcpu);
4291b588
BD
7015 }
7016
7017 if (vmptr == vmx->nested.vmxon_ptr) {
7018 nested_vmx_failValid(vcpu,
7019 VMXERR_VMCLEAR_VMXON_POINTER);
6affcbed 7020 return kvm_skip_emulated_instruction(vcpu);
4291b588
BD
7021 }
7022 break;
7023 case EXIT_REASON_VMPTRLD:
bc39c4db 7024 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
7025 nested_vmx_failValid(vcpu,
7026 VMXERR_VMPTRLD_INVALID_ADDRESS);
6affcbed 7027 return kvm_skip_emulated_instruction(vcpu);
4291b588 7028 }
3573e22c 7029
4291b588
BD
7030 if (vmptr == vmx->nested.vmxon_ptr) {
7031 nested_vmx_failValid(vcpu,
37b9a671 7032 VMXERR_VMPTRLD_VMXON_POINTER);
6affcbed 7033 return kvm_skip_emulated_instruction(vcpu);
4291b588
BD
7034 }
7035 break;
3573e22c
BD
7036 default:
7037 return 1; /* shouldn't happen */
7038 }
7039
4291b588
BD
7040 if (vmpointer)
7041 *vmpointer = vmptr;
3573e22c
BD
7042 return 0;
7043}
7044
e29acc55
JM
7045static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7046{
7047 struct vcpu_vmx *vmx = to_vmx(vcpu);
7048 struct vmcs *shadow_vmcs;
7049
7050 if (cpu_has_vmx_msr_bitmap()) {
7051 vmx->nested.msr_bitmap =
7052 (unsigned long *)__get_free_page(GFP_KERNEL);
7053 if (!vmx->nested.msr_bitmap)
7054 goto out_msr_bitmap;
7055 }
7056
7057 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7058 if (!vmx->nested.cached_vmcs12)
7059 goto out_cached_vmcs12;
7060
7061 if (enable_shadow_vmcs) {
7062 shadow_vmcs = alloc_vmcs();
7063 if (!shadow_vmcs)
7064 goto out_shadow_vmcs;
7065 /* mark vmcs as shadow */
7066 shadow_vmcs->revision_id |= (1u << 31);
7067 /* init shadow vmcs */
7068 vmcs_clear(shadow_vmcs);
7069 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7070 }
7071
7072 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7073 vmx->nested.vmcs02_num = 0;
7074
7075 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7076 HRTIMER_MODE_REL_PINNED);
7077 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7078
7079 vmx->nested.vmxon = true;
7080 return 0;
7081
7082out_shadow_vmcs:
7083 kfree(vmx->nested.cached_vmcs12);
7084
7085out_cached_vmcs12:
7086 free_page((unsigned long)vmx->nested.msr_bitmap);
7087
7088out_msr_bitmap:
7089 return -ENOMEM;
7090}
7091
ec378aee
NHE
7092/*
7093 * Emulate the VMXON instruction.
7094 * Currently, we just remember that VMX is active, and do not save or even
7095 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7096 * do not currently need to store anything in that guest-allocated memory
7097 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7098 * argument is different from the VMXON pointer (which the spec says they do).
7099 */
7100static int handle_vmon(struct kvm_vcpu *vcpu)
7101{
e29acc55 7102 int ret;
ec378aee
NHE
7103 struct kvm_segment cs;
7104 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
7105 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7106 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
7107
7108 /* The Intel VMX Instruction Reference lists a bunch of bits that
7109 * are prerequisite to running VMXON, most notably cr4.VMXE must be
7110 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
7111 * Otherwise, we should fail with #UD. We test these now:
7112 */
7113 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
7114 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
7115 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
7116 kvm_queue_exception(vcpu, UD_VECTOR);
7117 return 1;
7118 }
7119
7120 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7121 if (is_long_mode(vcpu) && !cs.l) {
7122 kvm_queue_exception(vcpu, UD_VECTOR);
7123 return 1;
7124 }
7125
7126 if (vmx_get_cpl(vcpu)) {
7127 kvm_inject_gp(vcpu, 0);
7128 return 1;
7129 }
3573e22c 7130
145c28dd
AG
7131 if (vmx->nested.vmxon) {
7132 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7133 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7134 }
b3897a49 7135
3b84080b 7136 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7137 != VMXON_NEEDED_FEATURES) {
7138 kvm_inject_gp(vcpu, 0);
7139 return 1;
7140 }
7141
21e7fbe7
JM
7142 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
7143 return 1;
e29acc55
JM
7144
7145 ret = enter_vmx_operation(vcpu);
7146 if (ret)
7147 return ret;
ec378aee 7148
a25eb114 7149 nested_vmx_succeed(vcpu);
6affcbed 7150 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7151}
7152
7153/*
7154 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7155 * for running VMX instructions (except VMXON, whose prerequisites are
7156 * slightly different). It also specifies what exception to inject otherwise.
7157 */
7158static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7159{
7160 struct kvm_segment cs;
7161 struct vcpu_vmx *vmx = to_vmx(vcpu);
7162
7163 if (!vmx->nested.vmxon) {
7164 kvm_queue_exception(vcpu, UD_VECTOR);
7165 return 0;
7166 }
7167
7168 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7169 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
7170 (is_long_mode(vcpu) && !cs.l)) {
7171 kvm_queue_exception(vcpu, UD_VECTOR);
7172 return 0;
7173 }
7174
7175 if (vmx_get_cpl(vcpu)) {
7176 kvm_inject_gp(vcpu, 0);
7177 return 0;
7178 }
7179
7180 return 1;
7181}
7182
e7953d7f
AG
7183static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7184{
9a2a05b9
PB
7185 if (vmx->nested.current_vmptr == -1ull)
7186 return;
7187
7188 /* current_vmptr and current_vmcs12 are always set/reset together */
7189 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7190 return;
7191
012f83cb 7192 if (enable_shadow_vmcs) {
9a2a05b9
PB
7193 /* copy to memory all shadowed fields in case
7194 they were modified */
7195 copy_shadow_to_vmcs12(vmx);
7196 vmx->nested.sync_shadow_vmcs = false;
7ec36296
XG
7197 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7198 SECONDARY_EXEC_SHADOW_VMCS);
9a2a05b9 7199 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 7200 }
705699a1 7201 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7202
7203 /* Flush VMCS12 to guest memory */
7204 memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7205 VMCS12_SIZE);
7206
e7953d7f
AG
7207 kunmap(vmx->nested.current_vmcs12_page);
7208 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
7209 vmx->nested.current_vmptr = -1ull;
7210 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
7211}
7212
ec378aee
NHE
7213/*
7214 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7215 * just stops using VMX.
7216 */
7217static void free_nested(struct vcpu_vmx *vmx)
7218{
7219 if (!vmx->nested.vmxon)
7220 return;
9a2a05b9 7221
ec378aee 7222 vmx->nested.vmxon = false;
5c614b35 7223 free_vpid(vmx->nested.vpid02);
9a2a05b9 7224 nested_release_vmcs12(vmx);
d048c098
RK
7225 if (vmx->nested.msr_bitmap) {
7226 free_page((unsigned long)vmx->nested.msr_bitmap);
7227 vmx->nested.msr_bitmap = NULL;
7228 }
355f4fb1
JM
7229 if (enable_shadow_vmcs) {
7230 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7231 free_vmcs(vmx->vmcs01.shadow_vmcs);
7232 vmx->vmcs01.shadow_vmcs = NULL;
7233 }
4f2777bc 7234 kfree(vmx->nested.cached_vmcs12);
fe3ef05c
NHE
7235 /* Unpin physical memory we referred to in current vmcs02 */
7236 if (vmx->nested.apic_access_page) {
7237 nested_release_page(vmx->nested.apic_access_page);
48d89b92 7238 vmx->nested.apic_access_page = NULL;
fe3ef05c 7239 }
a7c0b07d
WL
7240 if (vmx->nested.virtual_apic_page) {
7241 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 7242 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7243 }
705699a1
WV
7244 if (vmx->nested.pi_desc_page) {
7245 kunmap(vmx->nested.pi_desc_page);
7246 nested_release_page(vmx->nested.pi_desc_page);
7247 vmx->nested.pi_desc_page = NULL;
7248 vmx->nested.pi_desc = NULL;
7249 }
ff2f6fe9
NHE
7250
7251 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
7252}
7253
7254/* Emulate the VMXOFF instruction */
7255static int handle_vmoff(struct kvm_vcpu *vcpu)
7256{
7257 if (!nested_vmx_check_permission(vcpu))
7258 return 1;
7259 free_nested(to_vmx(vcpu));
a25eb114 7260 nested_vmx_succeed(vcpu);
6affcbed 7261 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7262}
7263
27d6c865
NHE
7264/* Emulate the VMCLEAR instruction */
7265static int handle_vmclear(struct kvm_vcpu *vcpu)
7266{
7267 struct vcpu_vmx *vmx = to_vmx(vcpu);
27d6c865
NHE
7268 gpa_t vmptr;
7269 struct vmcs12 *vmcs12;
7270 struct page *page;
27d6c865
NHE
7271
7272 if (!nested_vmx_check_permission(vcpu))
7273 return 1;
7274
4291b588 7275 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
27d6c865 7276 return 1;
27d6c865 7277
9a2a05b9 7278 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7279 nested_release_vmcs12(vmx);
27d6c865
NHE
7280
7281 page = nested_get_page(vcpu, vmptr);
7282 if (page == NULL) {
7283 /*
7284 * For accurate processor emulation, VMCLEAR beyond available
7285 * physical memory should do nothing at all. However, it is
7286 * possible that a nested vmx bug, not a guest hypervisor bug,
7287 * resulted in this case, so let's shut down before doing any
7288 * more damage:
7289 */
7290 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7291 return 1;
7292 }
7293 vmcs12 = kmap(page);
7294 vmcs12->launch_state = 0;
7295 kunmap(page);
7296 nested_release_page(page);
7297
7298 nested_free_vmcs02(vmx, vmptr);
7299
27d6c865 7300 nested_vmx_succeed(vcpu);
6affcbed 7301 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7302}
7303
cd232ad0
NHE
7304static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7305
7306/* Emulate the VMLAUNCH instruction */
7307static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7308{
7309 return nested_vmx_run(vcpu, true);
7310}
7311
7312/* Emulate the VMRESUME instruction */
7313static int handle_vmresume(struct kvm_vcpu *vcpu)
7314{
7315
7316 return nested_vmx_run(vcpu, false);
7317}
7318
49f705c5
NHE
7319enum vmcs_field_type {
7320 VMCS_FIELD_TYPE_U16 = 0,
7321 VMCS_FIELD_TYPE_U64 = 1,
7322 VMCS_FIELD_TYPE_U32 = 2,
7323 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7324};
7325
7326static inline int vmcs_field_type(unsigned long field)
7327{
7328 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7329 return VMCS_FIELD_TYPE_U32;
7330 return (field >> 13) & 0x3 ;
7331}
7332
7333static inline int vmcs_field_readonly(unsigned long field)
7334{
7335 return (((field >> 10) & 0x3) == 1);
7336}
7337
7338/*
7339 * Read a vmcs12 field. Since these can have varying lengths and we return
7340 * one type, we chose the biggest type (u64) and zero-extend the return value
7341 * to that size. Note that the caller, handle_vmread, might need to use only
7342 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7343 * 64-bit fields are to be returned).
7344 */
a2ae9df7
PB
7345static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7346 unsigned long field, u64 *ret)
49f705c5
NHE
7347{
7348 short offset = vmcs_field_to_offset(field);
7349 char *p;
7350
7351 if (offset < 0)
a2ae9df7 7352 return offset;
49f705c5
NHE
7353
7354 p = ((char *)(get_vmcs12(vcpu))) + offset;
7355
7356 switch (vmcs_field_type(field)) {
7357 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7358 *ret = *((natural_width *)p);
a2ae9df7 7359 return 0;
49f705c5
NHE
7360 case VMCS_FIELD_TYPE_U16:
7361 *ret = *((u16 *)p);
a2ae9df7 7362 return 0;
49f705c5
NHE
7363 case VMCS_FIELD_TYPE_U32:
7364 *ret = *((u32 *)p);
a2ae9df7 7365 return 0;
49f705c5
NHE
7366 case VMCS_FIELD_TYPE_U64:
7367 *ret = *((u64 *)p);
a2ae9df7 7368 return 0;
49f705c5 7369 default:
a2ae9df7
PB
7370 WARN_ON(1);
7371 return -ENOENT;
49f705c5
NHE
7372 }
7373}
7374
20b97fea 7375
a2ae9df7
PB
7376static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7377 unsigned long field, u64 field_value){
20b97fea
AG
7378 short offset = vmcs_field_to_offset(field);
7379 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7380 if (offset < 0)
a2ae9df7 7381 return offset;
20b97fea
AG
7382
7383 switch (vmcs_field_type(field)) {
7384 case VMCS_FIELD_TYPE_U16:
7385 *(u16 *)p = field_value;
a2ae9df7 7386 return 0;
20b97fea
AG
7387 case VMCS_FIELD_TYPE_U32:
7388 *(u32 *)p = field_value;
a2ae9df7 7389 return 0;
20b97fea
AG
7390 case VMCS_FIELD_TYPE_U64:
7391 *(u64 *)p = field_value;
a2ae9df7 7392 return 0;
20b97fea
AG
7393 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7394 *(natural_width *)p = field_value;
a2ae9df7 7395 return 0;
20b97fea 7396 default:
a2ae9df7
PB
7397 WARN_ON(1);
7398 return -ENOENT;
20b97fea
AG
7399 }
7400
7401}
7402
16f5b903
AG
7403static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7404{
7405 int i;
7406 unsigned long field;
7407 u64 field_value;
355f4fb1 7408 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c2bae893
MK
7409 const unsigned long *fields = shadow_read_write_fields;
7410 const int num_fields = max_shadow_read_write_fields;
16f5b903 7411
282da870
JK
7412 preempt_disable();
7413
16f5b903
AG
7414 vmcs_load(shadow_vmcs);
7415
7416 for (i = 0; i < num_fields; i++) {
7417 field = fields[i];
7418 switch (vmcs_field_type(field)) {
7419 case VMCS_FIELD_TYPE_U16:
7420 field_value = vmcs_read16(field);
7421 break;
7422 case VMCS_FIELD_TYPE_U32:
7423 field_value = vmcs_read32(field);
7424 break;
7425 case VMCS_FIELD_TYPE_U64:
7426 field_value = vmcs_read64(field);
7427 break;
7428 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7429 field_value = vmcs_readl(field);
7430 break;
a2ae9df7
PB
7431 default:
7432 WARN_ON(1);
7433 continue;
16f5b903
AG
7434 }
7435 vmcs12_write_any(&vmx->vcpu, field, field_value);
7436 }
7437
7438 vmcs_clear(shadow_vmcs);
7439 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7440
7441 preempt_enable();
16f5b903
AG
7442}
7443
c3114420
AG
7444static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7445{
c2bae893
MK
7446 const unsigned long *fields[] = {
7447 shadow_read_write_fields,
7448 shadow_read_only_fields
c3114420 7449 };
c2bae893 7450 const int max_fields[] = {
c3114420
AG
7451 max_shadow_read_write_fields,
7452 max_shadow_read_only_fields
7453 };
7454 int i, q;
7455 unsigned long field;
7456 u64 field_value = 0;
355f4fb1 7457 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7458
7459 vmcs_load(shadow_vmcs);
7460
c2bae893 7461 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7462 for (i = 0; i < max_fields[q]; i++) {
7463 field = fields[q][i];
7464 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7465
7466 switch (vmcs_field_type(field)) {
7467 case VMCS_FIELD_TYPE_U16:
7468 vmcs_write16(field, (u16)field_value);
7469 break;
7470 case VMCS_FIELD_TYPE_U32:
7471 vmcs_write32(field, (u32)field_value);
7472 break;
7473 case VMCS_FIELD_TYPE_U64:
7474 vmcs_write64(field, (u64)field_value);
7475 break;
7476 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7477 vmcs_writel(field, (long)field_value);
7478 break;
a2ae9df7
PB
7479 default:
7480 WARN_ON(1);
7481 break;
c3114420
AG
7482 }
7483 }
7484 }
7485
7486 vmcs_clear(shadow_vmcs);
7487 vmcs_load(vmx->loaded_vmcs->vmcs);
7488}
7489
49f705c5
NHE
7490/*
7491 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7492 * used before) all generate the same failure when it is missing.
7493 */
7494static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7495{
7496 struct vcpu_vmx *vmx = to_vmx(vcpu);
7497 if (vmx->nested.current_vmptr == -1ull) {
7498 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7499 return 0;
7500 }
7501 return 1;
7502}
7503
7504static int handle_vmread(struct kvm_vcpu *vcpu)
7505{
7506 unsigned long field;
7507 u64 field_value;
7508 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7509 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7510 gva_t gva = 0;
7511
eb277562 7512 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7513 return 1;
7514
6affcbed
KH
7515 if (!nested_vmx_check_vmcs12(vcpu))
7516 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7517
7518 /* Decode instruction info and find the field to read */
27e6fb5d 7519 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7520 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7521 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 7522 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7523 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7524 }
7525 /*
7526 * Now copy part of this value to register or memory, as requested.
7527 * Note that the number of bits actually copied is 32 or 64 depending
7528 * on the guest's mode (32 or 64 bit), not on the given field's length.
7529 */
7530 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7531 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7532 field_value);
7533 } else {
7534 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7535 vmx_instruction_info, true, &gva))
49f705c5
NHE
7536 return 1;
7537 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7538 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7539 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7540 }
7541
7542 nested_vmx_succeed(vcpu);
6affcbed 7543 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7544}
7545
7546
7547static int handle_vmwrite(struct kvm_vcpu *vcpu)
7548{
7549 unsigned long field;
7550 gva_t gva;
7551 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7552 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7553 /* The value to write might be 32 or 64 bits, depending on L1's long
7554 * mode, and eventually we need to write that into a field of several
7555 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7556 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7557 * bits into the vmcs12 field.
7558 */
7559 u64 field_value = 0;
7560 struct x86_exception e;
7561
eb277562 7562 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7563 return 1;
7564
6affcbed
KH
7565 if (!nested_vmx_check_vmcs12(vcpu))
7566 return kvm_skip_emulated_instruction(vcpu);
eb277562 7567
49f705c5 7568 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7569 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7570 (((vmx_instruction_info) >> 3) & 0xf));
7571 else {
7572 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7573 vmx_instruction_info, false, &gva))
49f705c5
NHE
7574 return 1;
7575 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7576 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7577 kvm_inject_page_fault(vcpu, &e);
7578 return 1;
7579 }
7580 }
7581
7582
27e6fb5d 7583 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7584 if (vmcs_field_readonly(field)) {
7585 nested_vmx_failValid(vcpu,
7586 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 7587 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7588 }
7589
a2ae9df7 7590 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 7591 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7592 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7593 }
7594
7595 nested_vmx_succeed(vcpu);
6affcbed 7596 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7597}
7598
a8bc284e
JM
7599static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7600{
7601 vmx->nested.current_vmptr = vmptr;
7602 if (enable_shadow_vmcs) {
7603 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7604 SECONDARY_EXEC_SHADOW_VMCS);
7605 vmcs_write64(VMCS_LINK_POINTER,
7606 __pa(vmx->vmcs01.shadow_vmcs));
7607 vmx->nested.sync_shadow_vmcs = true;
7608 }
7609}
7610
63846663
NHE
7611/* Emulate the VMPTRLD instruction */
7612static int handle_vmptrld(struct kvm_vcpu *vcpu)
7613{
7614 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7615 gpa_t vmptr;
63846663
NHE
7616
7617 if (!nested_vmx_check_permission(vcpu))
7618 return 1;
7619
4291b588 7620 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
63846663 7621 return 1;
63846663
NHE
7622
7623 if (vmx->nested.current_vmptr != vmptr) {
7624 struct vmcs12 *new_vmcs12;
7625 struct page *page;
7626 page = nested_get_page(vcpu, vmptr);
7627 if (page == NULL) {
7628 nested_vmx_failInvalid(vcpu);
6affcbed 7629 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7630 }
7631 new_vmcs12 = kmap(page);
7632 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7633 kunmap(page);
7634 nested_release_page_clean(page);
7635 nested_vmx_failValid(vcpu,
7636 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 7637 return kvm_skip_emulated_instruction(vcpu);
63846663 7638 }
63846663 7639
9a2a05b9 7640 nested_release_vmcs12(vmx);
63846663
NHE
7641 vmx->nested.current_vmcs12 = new_vmcs12;
7642 vmx->nested.current_vmcs12_page = page;
4f2777bc
DM
7643 /*
7644 * Load VMCS12 from guest memory since it is not already
7645 * cached.
7646 */
7647 memcpy(vmx->nested.cached_vmcs12,
7648 vmx->nested.current_vmcs12, VMCS12_SIZE);
a8bc284e 7649 set_current_vmptr(vmx, vmptr);
63846663
NHE
7650 }
7651
7652 nested_vmx_succeed(vcpu);
6affcbed 7653 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7654}
7655
6a4d7550
NHE
7656/* Emulate the VMPTRST instruction */
7657static int handle_vmptrst(struct kvm_vcpu *vcpu)
7658{
7659 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7660 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7661 gva_t vmcs_gva;
7662 struct x86_exception e;
7663
7664 if (!nested_vmx_check_permission(vcpu))
7665 return 1;
7666
7667 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7668 vmx_instruction_info, true, &vmcs_gva))
6a4d7550
NHE
7669 return 1;
7670 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7671 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7672 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7673 sizeof(u64), &e)) {
7674 kvm_inject_page_fault(vcpu, &e);
7675 return 1;
7676 }
7677 nested_vmx_succeed(vcpu);
6affcbed 7678 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
7679}
7680
bfd0a56b
NHE
7681/* Emulate the INVEPT instruction */
7682static int handle_invept(struct kvm_vcpu *vcpu)
7683{
b9c237bb 7684 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7685 u32 vmx_instruction_info, types;
7686 unsigned long type;
7687 gva_t gva;
7688 struct x86_exception e;
7689 struct {
7690 u64 eptp, gpa;
7691 } operand;
bfd0a56b 7692
b9c237bb
WV
7693 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7694 SECONDARY_EXEC_ENABLE_EPT) ||
7695 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7696 kvm_queue_exception(vcpu, UD_VECTOR);
7697 return 1;
7698 }
7699
7700 if (!nested_vmx_check_permission(vcpu))
7701 return 1;
7702
7703 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7704 kvm_queue_exception(vcpu, UD_VECTOR);
7705 return 1;
7706 }
7707
7708 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7709 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7710
b9c237bb 7711 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 7712
85c856b3 7713 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
7714 nested_vmx_failValid(vcpu,
7715 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7716 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7717 }
7718
7719 /* According to the Intel VMX instruction reference, the memory
7720 * operand is read even if it isn't needed (e.g., for type==global)
7721 */
7722 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7723 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7724 return 1;
7725 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7726 sizeof(operand), &e)) {
7727 kvm_inject_page_fault(vcpu, &e);
7728 return 1;
7729 }
7730
7731 switch (type) {
bfd0a56b 7732 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7733 /*
7734 * TODO: track mappings and invalidate
7735 * single context requests appropriately
7736 */
7737 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7738 kvm_mmu_sync_roots(vcpu);
77c3913b 7739 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7740 nested_vmx_succeed(vcpu);
7741 break;
7742 default:
7743 BUG_ON(1);
7744 break;
7745 }
7746
6affcbed 7747 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7748}
7749
a642fc30
PM
7750static int handle_invvpid(struct kvm_vcpu *vcpu)
7751{
99b83ac8
WL
7752 struct vcpu_vmx *vmx = to_vmx(vcpu);
7753 u32 vmx_instruction_info;
7754 unsigned long type, types;
7755 gva_t gva;
7756 struct x86_exception e;
7757 int vpid;
7758
7759 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7760 SECONDARY_EXEC_ENABLE_VPID) ||
7761 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7762 kvm_queue_exception(vcpu, UD_VECTOR);
7763 return 1;
7764 }
7765
7766 if (!nested_vmx_check_permission(vcpu))
7767 return 1;
7768
7769 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7770 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7771
bcdde302
JD
7772 types = (vmx->nested.nested_vmx_vpid_caps &
7773 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 7774
85c856b3 7775 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
7776 nested_vmx_failValid(vcpu,
7777 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7778 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7779 }
7780
7781 /* according to the intel vmx instruction reference, the memory
7782 * operand is read even if it isn't needed (e.g., for type==global)
7783 */
7784 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7785 vmx_instruction_info, false, &gva))
7786 return 1;
7787 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7788 sizeof(u32), &e)) {
7789 kvm_inject_page_fault(vcpu, &e);
7790 return 1;
7791 }
7792
7793 switch (type) {
bcdde302 7794 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
ef697a71 7795 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302
JD
7796 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7797 if (!vpid) {
7798 nested_vmx_failValid(vcpu,
7799 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7800 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
7801 }
7802 break;
99b83ac8 7803 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
7804 break;
7805 default:
bcdde302 7806 WARN_ON_ONCE(1);
6affcbed 7807 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7808 }
7809
bcdde302
JD
7810 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7811 nested_vmx_succeed(vcpu);
7812
6affcbed 7813 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
7814}
7815
843e4330
KH
7816static int handle_pml_full(struct kvm_vcpu *vcpu)
7817{
7818 unsigned long exit_qualification;
7819
7820 trace_kvm_pml_full(vcpu->vcpu_id);
7821
7822 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7823
7824 /*
7825 * PML buffer FULL happened while executing iret from NMI,
7826 * "blocked by NMI" bit has to be set before next VM entry.
7827 */
7828 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7829 cpu_has_virtual_nmis() &&
7830 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7831 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7832 GUEST_INTR_STATE_NMI);
7833
7834 /*
7835 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7836 * here.., and there's no userspace involvement needed for PML.
7837 */
7838 return 1;
7839}
7840
64672c95
YJ
7841static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7842{
7843 kvm_lapic_expired_hv_timer(vcpu);
7844 return 1;
7845}
7846
6aa8b732
AK
7847/*
7848 * The exit handlers return 1 if the exit was handled fully and guest execution
7849 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7850 * to be done to userspace and return 0.
7851 */
772e0318 7852static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
7853 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7854 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 7855 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 7856 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 7857 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
7858 [EXIT_REASON_CR_ACCESS] = handle_cr,
7859 [EXIT_REASON_DR_ACCESS] = handle_dr,
7860 [EXIT_REASON_CPUID] = handle_cpuid,
7861 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7862 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7863 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7864 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 7865 [EXIT_REASON_INVD] = handle_invd,
a7052897 7866 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 7867 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 7868 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 7869 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 7870 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 7871 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 7872 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 7873 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 7874 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 7875 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
7876 [EXIT_REASON_VMOFF] = handle_vmoff,
7877 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
7878 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7879 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 7880 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 7881 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 7882 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 7883 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 7884 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 7885 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
7886 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7887 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 7888 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 7889 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 7890 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 7891 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 7892 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 7893 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
7894 [EXIT_REASON_XSAVES] = handle_xsaves,
7895 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 7896 [EXIT_REASON_PML_FULL] = handle_pml_full,
64672c95 7897 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
7898};
7899
7900static const int kvm_vmx_max_exit_handlers =
50a3485c 7901 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 7902
908a7bdd
JK
7903static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7904 struct vmcs12 *vmcs12)
7905{
7906 unsigned long exit_qualification;
7907 gpa_t bitmap, last_bitmap;
7908 unsigned int port;
7909 int size;
7910 u8 b;
7911
908a7bdd 7912 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 7913 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
7914
7915 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7916
7917 port = exit_qualification >> 16;
7918 size = (exit_qualification & 7) + 1;
7919
7920 last_bitmap = (gpa_t)-1;
7921 b = -1;
7922
7923 while (size > 0) {
7924 if (port < 0x8000)
7925 bitmap = vmcs12->io_bitmap_a;
7926 else if (port < 0x10000)
7927 bitmap = vmcs12->io_bitmap_b;
7928 else
1d804d07 7929 return true;
908a7bdd
JK
7930 bitmap += (port & 0x7fff) / 8;
7931
7932 if (last_bitmap != bitmap)
54bf36aa 7933 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 7934 return true;
908a7bdd 7935 if (b & (1 << (port & 7)))
1d804d07 7936 return true;
908a7bdd
JK
7937
7938 port++;
7939 size--;
7940 last_bitmap = bitmap;
7941 }
7942
1d804d07 7943 return false;
908a7bdd
JK
7944}
7945
644d711a
NHE
7946/*
7947 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7948 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7949 * disinterest in the current event (read or write a specific MSR) by using an
7950 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7951 */
7952static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7953 struct vmcs12 *vmcs12, u32 exit_reason)
7954{
7955 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7956 gpa_t bitmap;
7957
cbd29cb6 7958 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 7959 return true;
644d711a
NHE
7960
7961 /*
7962 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7963 * for the four combinations of read/write and low/high MSR numbers.
7964 * First we need to figure out which of the four to use:
7965 */
7966 bitmap = vmcs12->msr_bitmap;
7967 if (exit_reason == EXIT_REASON_MSR_WRITE)
7968 bitmap += 2048;
7969 if (msr_index >= 0xc0000000) {
7970 msr_index -= 0xc0000000;
7971 bitmap += 1024;
7972 }
7973
7974 /* Then read the msr_index'th bit from this bitmap: */
7975 if (msr_index < 1024*8) {
7976 unsigned char b;
54bf36aa 7977 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 7978 return true;
644d711a
NHE
7979 return 1 & (b >> (msr_index & 7));
7980 } else
1d804d07 7981 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
7982}
7983
7984/*
7985 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7986 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7987 * intercept (via guest_host_mask etc.) the current event.
7988 */
7989static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7990 struct vmcs12 *vmcs12)
7991{
7992 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7993 int cr = exit_qualification & 15;
7994 int reg = (exit_qualification >> 8) & 15;
1e32c079 7995 unsigned long val = kvm_register_readl(vcpu, reg);
644d711a
NHE
7996
7997 switch ((exit_qualification >> 4) & 3) {
7998 case 0: /* mov to cr */
7999 switch (cr) {
8000 case 0:
8001 if (vmcs12->cr0_guest_host_mask &
8002 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8003 return true;
644d711a
NHE
8004 break;
8005 case 3:
8006 if ((vmcs12->cr3_target_count >= 1 &&
8007 vmcs12->cr3_target_value0 == val) ||
8008 (vmcs12->cr3_target_count >= 2 &&
8009 vmcs12->cr3_target_value1 == val) ||
8010 (vmcs12->cr3_target_count >= 3 &&
8011 vmcs12->cr3_target_value2 == val) ||
8012 (vmcs12->cr3_target_count >= 4 &&
8013 vmcs12->cr3_target_value3 == val))
1d804d07 8014 return false;
644d711a 8015 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 8016 return true;
644d711a
NHE
8017 break;
8018 case 4:
8019 if (vmcs12->cr4_guest_host_mask &
8020 (vmcs12->cr4_read_shadow ^ val))
1d804d07 8021 return true;
644d711a
NHE
8022 break;
8023 case 8:
8024 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 8025 return true;
644d711a
NHE
8026 break;
8027 }
8028 break;
8029 case 2: /* clts */
8030 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8031 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 8032 return true;
644d711a
NHE
8033 break;
8034 case 1: /* mov from cr */
8035 switch (cr) {
8036 case 3:
8037 if (vmcs12->cpu_based_vm_exec_control &
8038 CPU_BASED_CR3_STORE_EXITING)
1d804d07 8039 return true;
644d711a
NHE
8040 break;
8041 case 8:
8042 if (vmcs12->cpu_based_vm_exec_control &
8043 CPU_BASED_CR8_STORE_EXITING)
1d804d07 8044 return true;
644d711a
NHE
8045 break;
8046 }
8047 break;
8048 case 3: /* lmsw */
8049 /*
8050 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8051 * cr0. Other attempted changes are ignored, with no exit.
8052 */
8053 if (vmcs12->cr0_guest_host_mask & 0xe &
8054 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8055 return true;
644d711a
NHE
8056 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8057 !(vmcs12->cr0_read_shadow & 0x1) &&
8058 (val & 0x1))
1d804d07 8059 return true;
644d711a
NHE
8060 break;
8061 }
1d804d07 8062 return false;
644d711a
NHE
8063}
8064
8065/*
8066 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8067 * should handle it ourselves in L0 (and then continue L2). Only call this
8068 * when in is_guest_mode (L2).
8069 */
8070static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
8071{
644d711a
NHE
8072 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8073 struct vcpu_vmx *vmx = to_vmx(vcpu);
8074 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 8075 u32 exit_reason = vmx->exit_reason;
644d711a 8076
542060ea
JK
8077 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8078 vmcs_readl(EXIT_QUALIFICATION),
8079 vmx->idt_vectoring_info,
8080 intr_info,
8081 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8082 KVM_ISA_VMX);
8083
644d711a 8084 if (vmx->nested.nested_run_pending)
1d804d07 8085 return false;
644d711a
NHE
8086
8087 if (unlikely(vmx->fail)) {
bd80158a
JK
8088 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8089 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 8090 return true;
644d711a
NHE
8091 }
8092
8093 switch (exit_reason) {
8094 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8095 if (is_nmi(intr_info))
1d804d07 8096 return false;
644d711a
NHE
8097 else if (is_page_fault(intr_info))
8098 return enable_ept;
e504c909 8099 else if (is_no_device(intr_info) &&
ccf9844e 8100 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8101 return false;
6f05485d
JK
8102 else if (is_debug(intr_info) &&
8103 vcpu->guest_debug &
8104 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8105 return false;
8106 else if (is_breakpoint(intr_info) &&
8107 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8108 return false;
644d711a
NHE
8109 return vmcs12->exception_bitmap &
8110 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8111 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8112 return false;
644d711a 8113 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8114 return true;
644d711a 8115 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8116 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8117 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8118 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8119 case EXIT_REASON_TASK_SWITCH:
1d804d07 8120 return true;
644d711a 8121 case EXIT_REASON_CPUID:
1d804d07 8122 return true;
644d711a
NHE
8123 case EXIT_REASON_HLT:
8124 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8125 case EXIT_REASON_INVD:
1d804d07 8126 return true;
644d711a
NHE
8127 case EXIT_REASON_INVLPG:
8128 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8129 case EXIT_REASON_RDPMC:
8130 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
b3a2a907 8131 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8132 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8133 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8134 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8135 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8136 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8137 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8138 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8139 /*
8140 * VMX instructions trap unconditionally. This allows L1 to
8141 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8142 */
1d804d07 8143 return true;
644d711a
NHE
8144 case EXIT_REASON_CR_ACCESS:
8145 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8146 case EXIT_REASON_DR_ACCESS:
8147 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8148 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8149 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8150 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8151 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8152 case EXIT_REASON_MSR_READ:
8153 case EXIT_REASON_MSR_WRITE:
8154 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8155 case EXIT_REASON_INVALID_STATE:
1d804d07 8156 return true;
644d711a
NHE
8157 case EXIT_REASON_MWAIT_INSTRUCTION:
8158 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8159 case EXIT_REASON_MONITOR_TRAP_FLAG:
8160 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8161 case EXIT_REASON_MONITOR_INSTRUCTION:
8162 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8163 case EXIT_REASON_PAUSE_INSTRUCTION:
8164 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8165 nested_cpu_has2(vmcs12,
8166 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8167 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8168 return false;
644d711a 8169 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8170 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8171 case EXIT_REASON_APIC_ACCESS:
8172 return nested_cpu_has2(vmcs12,
8173 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8174 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8175 case EXIT_REASON_EOI_INDUCED:
8176 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8177 return true;
644d711a 8178 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8179 /*
8180 * L0 always deals with the EPT violation. If nested EPT is
8181 * used, and the nested mmu code discovers that the address is
8182 * missing in the guest EPT table (EPT12), the EPT violation
8183 * will be injected with nested_ept_inject_page_fault()
8184 */
1d804d07 8185 return false;
644d711a 8186 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8187 /*
8188 * L2 never uses directly L1's EPT, but rather L0's own EPT
8189 * table (shadow on EPT) or a merged EPT table that L0 built
8190 * (EPT on EPT). So any problems with the structure of the
8191 * table is L0's fault.
8192 */
1d804d07 8193 return false;
644d711a
NHE
8194 case EXIT_REASON_WBINVD:
8195 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8196 case EXIT_REASON_XSETBV:
1d804d07 8197 return true;
81dc01f7
WL
8198 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8199 /*
8200 * This should never happen, since it is not possible to
8201 * set XSS to a non-zero value---neither in L1 nor in L2.
8202 * If if it were, XSS would have to be checked against
8203 * the XSS exit bitmap in vmcs12.
8204 */
8205 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8206 case EXIT_REASON_PREEMPTION_TIMER:
8207 return false;
644d711a 8208 default:
1d804d07 8209 return true;
644d711a
NHE
8210 }
8211}
8212
586f9607
AK
8213static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8214{
8215 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8216 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8217}
8218
a3eaa864 8219static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8220{
a3eaa864
KH
8221 if (vmx->pml_pg) {
8222 __free_page(vmx->pml_pg);
8223 vmx->pml_pg = NULL;
8224 }
843e4330
KH
8225}
8226
54bf36aa 8227static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8228{
54bf36aa 8229 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8230 u64 *pml_buf;
8231 u16 pml_idx;
8232
8233 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8234
8235 /* Do nothing if PML buffer is empty */
8236 if (pml_idx == (PML_ENTITY_NUM - 1))
8237 return;
8238
8239 /* PML index always points to next available PML buffer entity */
8240 if (pml_idx >= PML_ENTITY_NUM)
8241 pml_idx = 0;
8242 else
8243 pml_idx++;
8244
8245 pml_buf = page_address(vmx->pml_pg);
8246 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8247 u64 gpa;
8248
8249 gpa = pml_buf[pml_idx];
8250 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8251 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8252 }
8253
8254 /* reset PML index */
8255 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8256}
8257
8258/*
8259 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8260 * Called before reporting dirty_bitmap to userspace.
8261 */
8262static void kvm_flush_pml_buffers(struct kvm *kvm)
8263{
8264 int i;
8265 struct kvm_vcpu *vcpu;
8266 /*
8267 * We only need to kick vcpu out of guest mode here, as PML buffer
8268 * is flushed at beginning of all VMEXITs, and it's obvious that only
8269 * vcpus running in guest are possible to have unflushed GPAs in PML
8270 * buffer.
8271 */
8272 kvm_for_each_vcpu(i, vcpu, kvm)
8273 kvm_vcpu_kick(vcpu);
8274}
8275
4eb64dce
PB
8276static void vmx_dump_sel(char *name, uint32_t sel)
8277{
8278 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8279 name, vmcs_read32(sel),
8280 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8281 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8282 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8283}
8284
8285static void vmx_dump_dtsel(char *name, uint32_t limit)
8286{
8287 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8288 name, vmcs_read32(limit),
8289 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8290}
8291
8292static void dump_vmcs(void)
8293{
8294 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8295 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8296 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8297 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8298 u32 secondary_exec_control = 0;
8299 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8300 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8301 int i, n;
8302
8303 if (cpu_has_secondary_exec_ctrls())
8304 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8305
8306 pr_err("*** Guest State ***\n");
8307 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8308 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8309 vmcs_readl(CR0_GUEST_HOST_MASK));
8310 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8311 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8312 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8313 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8314 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8315 {
845c5b40
PB
8316 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8317 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8318 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8319 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8320 }
8321 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8322 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8323 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8324 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8325 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8326 vmcs_readl(GUEST_SYSENTER_ESP),
8327 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8328 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8329 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8330 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8331 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8332 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8333 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8334 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8335 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8336 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8337 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8338 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8339 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8340 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8341 efer, vmcs_read64(GUEST_IA32_PAT));
8342 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8343 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8344 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8345 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8346 pr_err("PerfGlobCtl = 0x%016llx\n",
8347 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8348 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8349 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8350 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8351 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8352 vmcs_read32(GUEST_ACTIVITY_STATE));
8353 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8354 pr_err("InterruptStatus = %04x\n",
8355 vmcs_read16(GUEST_INTR_STATUS));
8356
8357 pr_err("*** Host State ***\n");
8358 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8359 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8360 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8361 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8362 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8363 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8364 vmcs_read16(HOST_TR_SELECTOR));
8365 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8366 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8367 vmcs_readl(HOST_TR_BASE));
8368 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8369 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8370 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8371 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8372 vmcs_readl(HOST_CR4));
8373 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8374 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8375 vmcs_read32(HOST_IA32_SYSENTER_CS),
8376 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8377 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8378 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8379 vmcs_read64(HOST_IA32_EFER),
8380 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8381 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8382 pr_err("PerfGlobCtl = 0x%016llx\n",
8383 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8384
8385 pr_err("*** Control State ***\n");
8386 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8387 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8388 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8389 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8390 vmcs_read32(EXCEPTION_BITMAP),
8391 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8392 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8393 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8394 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8395 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8396 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8397 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8398 vmcs_read32(VM_EXIT_INTR_INFO),
8399 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8400 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8401 pr_err(" reason=%08x qualification=%016lx\n",
8402 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8403 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8404 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8405 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8406 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8407 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8408 pr_err("TSC Multiplier = 0x%016llx\n",
8409 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8410 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8411 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8412 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8413 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8414 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8415 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8416 n = vmcs_read32(CR3_TARGET_COUNT);
8417 for (i = 0; i + 1 < n; i += 4)
8418 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8419 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8420 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8421 if (i < n)
8422 pr_err("CR3 target%u=%016lx\n",
8423 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8424 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8425 pr_err("PLE Gap=%08x Window=%08x\n",
8426 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8427 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8428 pr_err("Virtual processor ID = 0x%04x\n",
8429 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8430}
8431
6aa8b732
AK
8432/*
8433 * The guest has exited. See if we can fix it or if we need userspace
8434 * assistance.
8435 */
851ba692 8436static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8437{
29bd8a78 8438 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8439 u32 exit_reason = vmx->exit_reason;
1155f76a 8440 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8441
8b89fe1f 8442 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
db1c056c 8443 vcpu->arch.gpa_available = false;
8b89fe1f 8444
843e4330
KH
8445 /*
8446 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8447 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8448 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8449 * mode as if vcpus is in root mode, the PML buffer must has been
8450 * flushed already.
8451 */
8452 if (enable_pml)
54bf36aa 8453 vmx_flush_pml_buffer(vcpu);
843e4330 8454
80ced186 8455 /* If guest state is invalid, start emulating */
14168786 8456 if (vmx->emulation_required)
80ced186 8457 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8458
644d711a 8459 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
8460 nested_vmx_vmexit(vcpu, exit_reason,
8461 vmcs_read32(VM_EXIT_INTR_INFO),
8462 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
8463 return 1;
8464 }
8465
5120702e 8466 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8467 dump_vmcs();
5120702e
MG
8468 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8469 vcpu->run->fail_entry.hardware_entry_failure_reason
8470 = exit_reason;
8471 return 0;
8472 }
8473
29bd8a78 8474 if (unlikely(vmx->fail)) {
851ba692
AK
8475 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8476 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8477 = vmcs_read32(VM_INSTRUCTION_ERROR);
8478 return 0;
8479 }
6aa8b732 8480
b9bf6882
XG
8481 /*
8482 * Note:
8483 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8484 * delivery event since it indicates guest is accessing MMIO.
8485 * The vm-exit can be triggered again after return to guest that
8486 * will cause infinite loop.
8487 */
d77c26fc 8488 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8489 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8490 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8491 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8492 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8493 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8494 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8495 vcpu->run->internal.ndata = 2;
8496 vcpu->run->internal.data[0] = vectoring_info;
8497 vcpu->run->internal.data[1] = exit_reason;
8498 return 0;
8499 }
3b86cd99 8500
644d711a
NHE
8501 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8502 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
f5c4368f 8503 get_vmcs12(vcpu))))) {
c4282df9 8504 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 8505 vmx->soft_vnmi_blocked = 0;
3b86cd99 8506 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 8507 vcpu->arch.nmi_pending) {
3b86cd99
JK
8508 /*
8509 * This CPU don't support us in finding the end of an
8510 * NMI-blocked window if the guest runs with IRQs
8511 * disabled. So we pull the trigger after 1 s of
8512 * futile waiting, but inform the user about this.
8513 */
8514 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8515 "state on VCPU %d after 1 s timeout\n",
8516 __func__, vcpu->vcpu_id);
8517 vmx->soft_vnmi_blocked = 0;
3b86cd99 8518 }
3b86cd99
JK
8519 }
8520
6aa8b732
AK
8521 if (exit_reason < kvm_vmx_max_exit_handlers
8522 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8523 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8524 else {
2bc19dc3
MT
8525 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8526 kvm_queue_exception(vcpu, UD_VECTOR);
8527 return 1;
6aa8b732 8528 }
6aa8b732
AK
8529}
8530
95ba8273 8531static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8532{
a7c0b07d
WL
8533 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8534
8535 if (is_guest_mode(vcpu) &&
8536 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8537 return;
8538
95ba8273 8539 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8540 vmcs_write32(TPR_THRESHOLD, 0);
8541 return;
8542 }
8543
95ba8273 8544 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8545}
8546
8d14695f
YZ
8547static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8548{
8549 u32 sec_exec_control;
8550
dccbfcf5
RK
8551 /* Postpone execution until vmcs01 is the current VMCS. */
8552 if (is_guest_mode(vcpu)) {
8553 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8554 return;
8555 }
8556
f6e90f9e 8557 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8558 return;
8559
35754c98 8560 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8561 return;
8562
8563 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8564
8565 if (set) {
8566 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8567 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8568 } else {
8569 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8570 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8571 }
8572 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8573
8574 vmx_set_msr_bitmap(vcpu);
8575}
8576
38b99173
TC
8577static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8578{
8579 struct vcpu_vmx *vmx = to_vmx(vcpu);
8580
8581 /*
8582 * Currently we do not handle the nested case where L2 has an
8583 * APIC access page of its own; that page is still pinned.
8584 * Hence, we skip the case where the VCPU is in guest mode _and_
8585 * L1 prepared an APIC access page for L2.
8586 *
8587 * For the case where L1 and L2 share the same APIC access page
8588 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8589 * in the vmcs12), this function will only update either the vmcs01
8590 * or the vmcs02. If the former, the vmcs02 will be updated by
8591 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8592 * the next L2->L1 exit.
8593 */
8594 if (!is_guest_mode(vcpu) ||
4f2777bc 8595 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
38b99173
TC
8596 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8597 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8598}
8599
67c9dddc 8600static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8601{
8602 u16 status;
8603 u8 old;
8604
67c9dddc
PB
8605 if (max_isr == -1)
8606 max_isr = 0;
c7c9c56c
YZ
8607
8608 status = vmcs_read16(GUEST_INTR_STATUS);
8609 old = status >> 8;
67c9dddc 8610 if (max_isr != old) {
c7c9c56c 8611 status &= 0xff;
67c9dddc 8612 status |= max_isr << 8;
c7c9c56c
YZ
8613 vmcs_write16(GUEST_INTR_STATUS, status);
8614 }
8615}
8616
8617static void vmx_set_rvi(int vector)
8618{
8619 u16 status;
8620 u8 old;
8621
4114c27d
WW
8622 if (vector == -1)
8623 vector = 0;
8624
c7c9c56c
YZ
8625 status = vmcs_read16(GUEST_INTR_STATUS);
8626 old = (u8)status & 0xff;
8627 if ((u8)vector != old) {
8628 status &= ~0xff;
8629 status |= (u8)vector;
8630 vmcs_write16(GUEST_INTR_STATUS, status);
8631 }
8632}
8633
8634static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8635{
4114c27d
WW
8636 if (!is_guest_mode(vcpu)) {
8637 vmx_set_rvi(max_irr);
8638 return;
8639 }
8640
c7c9c56c
YZ
8641 if (max_irr == -1)
8642 return;
8643
963fee16 8644 /*
4114c27d
WW
8645 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8646 * handles it.
963fee16 8647 */
4114c27d 8648 if (nested_exit_on_intr(vcpu))
963fee16
WL
8649 return;
8650
963fee16 8651 /*
4114c27d 8652 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8653 * is run without virtual interrupt delivery.
8654 */
8655 if (!kvm_event_needs_reinjection(vcpu) &&
8656 vmx_interrupt_allowed(vcpu)) {
8657 kvm_queue_interrupt(vcpu, max_irr, false);
8658 vmx_inject_irq(vcpu);
8659 }
c7c9c56c
YZ
8660}
8661
76dfafd5 8662static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
8663{
8664 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 8665 int max_irr;
810e6def 8666
76dfafd5
PB
8667 WARN_ON(!vcpu->arch.apicv_active);
8668 if (pi_test_on(&vmx->pi_desc)) {
8669 pi_clear_on(&vmx->pi_desc);
8670 /*
8671 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8672 * But on x86 this is just a compiler barrier anyway.
8673 */
8674 smp_mb__after_atomic();
8675 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8676 } else {
8677 max_irr = kvm_lapic_find_highest_irr(vcpu);
8678 }
8679 vmx_hwapic_irr_update(vcpu, max_irr);
8680 return max_irr;
810e6def
PB
8681}
8682
6308630b 8683static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8684{
d62caabb 8685 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8686 return;
8687
c7c9c56c
YZ
8688 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8689 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8690 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8691 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8692}
8693
967235d3
PB
8694static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8695{
8696 struct vcpu_vmx *vmx = to_vmx(vcpu);
8697
8698 pi_clear_on(&vmx->pi_desc);
8699 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8700}
8701
51aa01d1 8702static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8703{
00eba012
AK
8704 u32 exit_intr_info;
8705
8706 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8707 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8708 return;
8709
c5ca8e57 8710 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 8711 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
8712
8713 /* Handle machine checks before interrupts are enabled */
00eba012 8714 if (is_machine_check(exit_intr_info))
a0861c02
AK
8715 kvm_machine_check();
8716
20f65983 8717 /* We need to handle NMIs before interrupts are enabled */
ef85b673 8718 if (is_nmi(exit_intr_info)) {
ff9d07a0 8719 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 8720 asm("int $2");
ff9d07a0
ZY
8721 kvm_after_handle_nmi(&vmx->vcpu);
8722 }
51aa01d1 8723}
20f65983 8724
a547c6db
YZ
8725static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8726{
8727 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3f62de5f 8728 register void *__sp asm(_ASM_SP);
a547c6db 8729
a547c6db
YZ
8730 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8731 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8732 unsigned int vector;
8733 unsigned long entry;
8734 gate_desc *desc;
8735 struct vcpu_vmx *vmx = to_vmx(vcpu);
8736#ifdef CONFIG_X86_64
8737 unsigned long tmp;
8738#endif
8739
8740 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8741 desc = (gate_desc *)vmx->host_idt_base + vector;
8742 entry = gate_offset(*desc);
8743 asm volatile(
8744#ifdef CONFIG_X86_64
8745 "mov %%" _ASM_SP ", %[sp]\n\t"
8746 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8747 "push $%c[ss]\n\t"
8748 "push %[sp]\n\t"
8749#endif
8750 "pushf\n\t"
a547c6db
YZ
8751 __ASM_SIZE(push) " $%c[cs]\n\t"
8752 "call *%[entry]\n\t"
8753 :
8754#ifdef CONFIG_X86_64
3f62de5f 8755 [sp]"=&r"(tmp),
a547c6db 8756#endif
3f62de5f 8757 "+r"(__sp)
a547c6db
YZ
8758 :
8759 [entry]"r"(entry),
8760 [ss]"i"(__KERNEL_DS),
8761 [cs]"i"(__KERNEL_CS)
8762 );
f2485b3e 8763 }
a547c6db
YZ
8764}
8765
6d396b55
PB
8766static bool vmx_has_high_real_mode_segbase(void)
8767{
8768 return enable_unrestricted_guest || emulate_invalid_guest_state;
8769}
8770
da8999d3
LJ
8771static bool vmx_mpx_supported(void)
8772{
8773 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8774 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8775}
8776
55412b2e
WL
8777static bool vmx_xsaves_supported(void)
8778{
8779 return vmcs_config.cpu_based_2nd_exec_ctrl &
8780 SECONDARY_EXEC_XSAVES;
8781}
8782
51aa01d1
AK
8783static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8784{
c5ca8e57 8785 u32 exit_intr_info;
51aa01d1
AK
8786 bool unblock_nmi;
8787 u8 vector;
8788 bool idtv_info_valid;
8789
8790 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8791
cf393f75 8792 if (cpu_has_virtual_nmis()) {
9d58b931
AK
8793 if (vmx->nmi_known_unmasked)
8794 return;
c5ca8e57
AK
8795 /*
8796 * Can't use vmx->exit_intr_info since we're not sure what
8797 * the exit reason is.
8798 */
8799 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
8800 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8801 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8802 /*
7b4a25cb 8803 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
8804 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8805 * a guest IRET fault.
7b4a25cb
GN
8806 * SDM 3: 23.2.2 (September 2008)
8807 * Bit 12 is undefined in any of the following cases:
8808 * If the VM exit sets the valid bit in the IDT-vectoring
8809 * information field.
8810 * If the VM exit is due to a double fault.
cf393f75 8811 */
7b4a25cb
GN
8812 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8813 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
8814 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8815 GUEST_INTR_STATE_NMI);
9d58b931
AK
8816 else
8817 vmx->nmi_known_unmasked =
8818 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8819 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
8820 } else if (unlikely(vmx->soft_vnmi_blocked))
8821 vmx->vnmi_blocked_time +=
8822 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
8823}
8824
3ab66e8a 8825static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
8826 u32 idt_vectoring_info,
8827 int instr_len_field,
8828 int error_code_field)
51aa01d1 8829{
51aa01d1
AK
8830 u8 vector;
8831 int type;
8832 bool idtv_info_valid;
8833
8834 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 8835
3ab66e8a
JK
8836 vcpu->arch.nmi_injected = false;
8837 kvm_clear_exception_queue(vcpu);
8838 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
8839
8840 if (!idtv_info_valid)
8841 return;
8842
3ab66e8a 8843 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 8844
668f612f
AK
8845 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8846 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 8847
64a7ec06 8848 switch (type) {
37b96e98 8849 case INTR_TYPE_NMI_INTR:
3ab66e8a 8850 vcpu->arch.nmi_injected = true;
668f612f 8851 /*
7b4a25cb 8852 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
8853 * Clear bit "block by NMI" before VM entry if a NMI
8854 * delivery faulted.
668f612f 8855 */
3ab66e8a 8856 vmx_set_nmi_mask(vcpu, false);
37b96e98 8857 break;
37b96e98 8858 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 8859 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
8860 /* fall through */
8861 case INTR_TYPE_HARD_EXCEPTION:
35920a35 8862 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 8863 u32 err = vmcs_read32(error_code_field);
851eb667 8864 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 8865 } else
851eb667 8866 kvm_requeue_exception(vcpu, vector);
37b96e98 8867 break;
66fd3f7f 8868 case INTR_TYPE_SOFT_INTR:
3ab66e8a 8869 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 8870 /* fall through */
37b96e98 8871 case INTR_TYPE_EXT_INTR:
3ab66e8a 8872 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
8873 break;
8874 default:
8875 break;
f7d9238f 8876 }
cf393f75
AK
8877}
8878
83422e17
AK
8879static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8880{
3ab66e8a 8881 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
8882 VM_EXIT_INSTRUCTION_LEN,
8883 IDT_VECTORING_ERROR_CODE);
8884}
8885
b463a6f7
AK
8886static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8887{
3ab66e8a 8888 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
8889 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8890 VM_ENTRY_INSTRUCTION_LEN,
8891 VM_ENTRY_EXCEPTION_ERROR_CODE);
8892
8893 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8894}
8895
d7cd9796
GN
8896static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8897{
8898 int i, nr_msrs;
8899 struct perf_guest_switch_msr *msrs;
8900
8901 msrs = perf_guest_get_msrs(&nr_msrs);
8902
8903 if (!msrs)
8904 return;
8905
8906 for (i = 0; i < nr_msrs; i++)
8907 if (msrs[i].host == msrs[i].guest)
8908 clear_atomic_switch_msr(vmx, msrs[i].msr);
8909 else
8910 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8911 msrs[i].host);
8912}
8913
33365e7a 8914static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
8915{
8916 struct vcpu_vmx *vmx = to_vmx(vcpu);
8917 u64 tscl;
8918 u32 delta_tsc;
8919
8920 if (vmx->hv_deadline_tsc == -1)
8921 return;
8922
8923 tscl = rdtsc();
8924 if (vmx->hv_deadline_tsc > tscl)
8925 /* sure to be 32 bit only because checked on set_hv_timer */
8926 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8927 cpu_preemption_timer_multi);
8928 else
8929 delta_tsc = 0;
8930
8931 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8932}
8933
a3b5ba49 8934static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 8935{
a2fa3e9f 8936 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 8937 unsigned long debugctlmsr, cr4;
104f226b
AK
8938
8939 /* Record the guest's net vcpu time for enforced NMI injections. */
8940 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8941 vmx->entry_time = ktime_get();
8942
8943 /* Don't enter VMX if guest state is invalid, let the exit handler
8944 start emulation until we arrive back to a valid state */
14168786 8945 if (vmx->emulation_required)
104f226b
AK
8946 return;
8947
a7653ecd
RK
8948 if (vmx->ple_window_dirty) {
8949 vmx->ple_window_dirty = false;
8950 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8951 }
8952
012f83cb
AG
8953 if (vmx->nested.sync_shadow_vmcs) {
8954 copy_vmcs12_to_shadow(vmx);
8955 vmx->nested.sync_shadow_vmcs = false;
8956 }
8957
104f226b
AK
8958 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8959 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8960 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8961 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8962
1e02ce4c 8963 cr4 = cr4_read_shadow();
d974baa3
AL
8964 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8965 vmcs_writel(HOST_CR4, cr4);
8966 vmx->host_state.vmcs_host_cr4 = cr4;
8967 }
8968
104f226b
AK
8969 /* When single-stepping over STI and MOV SS, we must clear the
8970 * corresponding interruptibility bits in the guest state. Otherwise
8971 * vmentry fails as it then expects bit 14 (BS) in pending debug
8972 * exceptions being set, but that's not correct for the guest debugging
8973 * case. */
8974 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8975 vmx_set_interrupt_shadow(vcpu, 0);
8976
1be0e61c
XG
8977 if (vmx->guest_pkru_valid)
8978 __write_pkru(vmx->guest_pkru);
8979
d7cd9796 8980 atomic_switch_perf_msrs(vmx);
2a7921b7 8981 debugctlmsr = get_debugctlmsr();
d7cd9796 8982
64672c95
YJ
8983 vmx_arm_hv_timer(vcpu);
8984
d462b819 8985 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 8986 asm(
6aa8b732 8987 /* Store host registers */
b188c81f
AK
8988 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8989 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8990 "push %%" _ASM_CX " \n\t"
8991 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 8992 "je 1f \n\t"
b188c81f 8993 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 8994 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 8995 "1: \n\t"
d3edefc0 8996 /* Reload cr2 if changed */
b188c81f
AK
8997 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8998 "mov %%cr2, %%" _ASM_DX " \n\t"
8999 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 9000 "je 2f \n\t"
b188c81f 9001 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 9002 "2: \n\t"
6aa8b732 9003 /* Check if vmlaunch of vmresume is needed */
e08aa78a 9004 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 9005 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
9006 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9007 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9008 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9009 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9010 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9011 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 9012#ifdef CONFIG_X86_64
e08aa78a
AK
9013 "mov %c[r8](%0), %%r8 \n\t"
9014 "mov %c[r9](%0), %%r9 \n\t"
9015 "mov %c[r10](%0), %%r10 \n\t"
9016 "mov %c[r11](%0), %%r11 \n\t"
9017 "mov %c[r12](%0), %%r12 \n\t"
9018 "mov %c[r13](%0), %%r13 \n\t"
9019 "mov %c[r14](%0), %%r14 \n\t"
9020 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 9021#endif
b188c81f 9022 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 9023
6aa8b732 9024 /* Enter guest mode */
83287ea4 9025 "jne 1f \n\t"
4ecac3fd 9026 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
9027 "jmp 2f \n\t"
9028 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9029 "2: "
6aa8b732 9030 /* Save guest registers, load host registers, keep flags */
b188c81f 9031 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 9032 "pop %0 \n\t"
b188c81f
AK
9033 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9034 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9035 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9036 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9037 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9038 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9039 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 9040#ifdef CONFIG_X86_64
e08aa78a
AK
9041 "mov %%r8, %c[r8](%0) \n\t"
9042 "mov %%r9, %c[r9](%0) \n\t"
9043 "mov %%r10, %c[r10](%0) \n\t"
9044 "mov %%r11, %c[r11](%0) \n\t"
9045 "mov %%r12, %c[r12](%0) \n\t"
9046 "mov %%r13, %c[r13](%0) \n\t"
9047 "mov %%r14, %c[r14](%0) \n\t"
9048 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 9049#endif
b188c81f
AK
9050 "mov %%cr2, %%" _ASM_AX " \n\t"
9051 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 9052
b188c81f 9053 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 9054 "setbe %c[fail](%0) \n\t"
83287ea4
AK
9055 ".pushsection .rodata \n\t"
9056 ".global vmx_return \n\t"
9057 "vmx_return: " _ASM_PTR " 2b \n\t"
9058 ".popsection"
e08aa78a 9059 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 9060 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 9061 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 9062 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
9063 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9064 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9065 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9066 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9067 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9068 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9069 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 9070#ifdef CONFIG_X86_64
ad312c7c
ZX
9071 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9072 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9073 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9074 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9075 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9076 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9077 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9078 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9079#endif
40712fae
AK
9080 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9081 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9082 : "cc", "memory"
9083#ifdef CONFIG_X86_64
b188c81f 9084 , "rax", "rbx", "rdi", "rsi"
c2036300 9085 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
9086#else
9087 , "eax", "ebx", "edi", "esi"
c2036300
LV
9088#endif
9089 );
6aa8b732 9090
2a7921b7
GN
9091 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9092 if (debugctlmsr)
9093 update_debugctlmsr(debugctlmsr);
9094
aa67f609
AK
9095#ifndef CONFIG_X86_64
9096 /*
9097 * The sysexit path does not restore ds/es, so we must set them to
9098 * a reasonable value ourselves.
9099 *
9100 * We can't defer this to vmx_load_host_state() since that function
9101 * may be executed in interrupt context, which saves and restore segments
9102 * around it, nullifying its effect.
9103 */
9104 loadsegment(ds, __USER_DS);
9105 loadsegment(es, __USER_DS);
9106#endif
9107
6de4f3ad 9108 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9109 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9110 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9111 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9112 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9113 vcpu->arch.regs_dirty = 0;
9114
1155f76a
AK
9115 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9116
d462b819 9117 vmx->loaded_vmcs->launched = 1;
1b6269db 9118
51aa01d1 9119 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
51aa01d1 9120
1be0e61c
XG
9121 /*
9122 * eager fpu is enabled if PKEY is supported and CR4 is switched
9123 * back on host, so it is safe to read guest PKRU from current
9124 * XSAVE.
9125 */
9126 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9127 vmx->guest_pkru = __read_pkru();
9128 if (vmx->guest_pkru != vmx->host_pkru) {
9129 vmx->guest_pkru_valid = true;
9130 __write_pkru(vmx->host_pkru);
9131 } else
9132 vmx->guest_pkru_valid = false;
9133 }
9134
e0b890d3
GN
9135 /*
9136 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9137 * we did not inject a still-pending event to L1 now because of
9138 * nested_run_pending, we need to re-enable this bit.
9139 */
9140 if (vmx->nested.nested_run_pending)
9141 kvm_make_request(KVM_REQ_EVENT, vcpu);
9142
9143 vmx->nested.nested_run_pending = 0;
9144
51aa01d1
AK
9145 vmx_complete_atomic_exit(vmx);
9146 vmx_recover_nmi_blocking(vmx);
cf393f75 9147 vmx_complete_interrupts(vmx);
6aa8b732
AK
9148}
9149
4fa7734c
PB
9150static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
9151{
9152 struct vcpu_vmx *vmx = to_vmx(vcpu);
9153 int cpu;
9154
9155 if (vmx->loaded_vmcs == &vmx->vmcs01)
9156 return;
9157
9158 cpu = get_cpu();
9159 vmx->loaded_vmcs = &vmx->vmcs01;
9160 vmx_vcpu_put(vcpu);
9161 vmx_vcpu_load(vcpu, cpu);
9162 vcpu->cpu = cpu;
9163 put_cpu();
9164}
9165
2f1fe811
JM
9166/*
9167 * Ensure that the current vmcs of the logical processor is the
9168 * vmcs01 of the vcpu before calling free_nested().
9169 */
9170static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9171{
9172 struct vcpu_vmx *vmx = to_vmx(vcpu);
9173 int r;
9174
9175 r = vcpu_load(vcpu);
9176 BUG_ON(r);
9177 vmx_load_vmcs01(vcpu);
9178 free_nested(vmx);
9179 vcpu_put(vcpu);
9180}
9181
6aa8b732
AK
9182static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9183{
fb3f0f51
RR
9184 struct vcpu_vmx *vmx = to_vmx(vcpu);
9185
843e4330 9186 if (enable_pml)
a3eaa864 9187 vmx_destroy_pml_buffer(vmx);
991e7a0e 9188 free_vpid(vmx->vpid);
4fa7734c 9189 leave_guest_mode(vcpu);
2f1fe811 9190 vmx_free_vcpu_nested(vcpu);
4fa7734c 9191 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9192 kfree(vmx->guest_msrs);
9193 kvm_vcpu_uninit(vcpu);
a4770347 9194 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9195}
9196
fb3f0f51 9197static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9198{
fb3f0f51 9199 int err;
c16f862d 9200 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 9201 int cpu;
6aa8b732 9202
a2fa3e9f 9203 if (!vmx)
fb3f0f51
RR
9204 return ERR_PTR(-ENOMEM);
9205
991e7a0e 9206 vmx->vpid = allocate_vpid();
2384d2b3 9207
fb3f0f51
RR
9208 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9209 if (err)
9210 goto free_vcpu;
965b58a5 9211
4e59516a
PF
9212 err = -ENOMEM;
9213
9214 /*
9215 * If PML is turned on, failure on enabling PML just results in failure
9216 * of creating the vcpu, therefore we can simplify PML logic (by
9217 * avoiding dealing with cases, such as enabling PML partially on vcpus
9218 * for the guest, etc.
9219 */
9220 if (enable_pml) {
9221 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9222 if (!vmx->pml_pg)
9223 goto uninit_vcpu;
9224 }
9225
a2fa3e9f 9226 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9227 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9228 > PAGE_SIZE);
0123be42 9229
4e59516a
PF
9230 if (!vmx->guest_msrs)
9231 goto free_pml;
965b58a5 9232
d462b819
NHE
9233 vmx->loaded_vmcs = &vmx->vmcs01;
9234 vmx->loaded_vmcs->vmcs = alloc_vmcs();
355f4fb1 9235 vmx->loaded_vmcs->shadow_vmcs = NULL;
d462b819 9236 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 9237 goto free_msrs;
d462b819
NHE
9238 if (!vmm_exclusive)
9239 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
9240 loaded_vmcs_init(vmx->loaded_vmcs);
9241 if (!vmm_exclusive)
9242 kvm_cpu_vmxoff();
a2fa3e9f 9243
15ad7146
AK
9244 cpu = get_cpu();
9245 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9246 vmx->vcpu.cpu = cpu;
8b9cf98c 9247 err = vmx_vcpu_setup(vmx);
fb3f0f51 9248 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9249 put_cpu();
fb3f0f51
RR
9250 if (err)
9251 goto free_vmcs;
35754c98 9252 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9253 err = alloc_apic_access_page(kvm);
9254 if (err)
5e4a0b3c 9255 goto free_vmcs;
a63cb560 9256 }
fb3f0f51 9257
b927a3ce
SY
9258 if (enable_ept) {
9259 if (!kvm->arch.ept_identity_map_addr)
9260 kvm->arch.ept_identity_map_addr =
9261 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
9262 err = init_rmode_identity_map(kvm);
9263 if (err)
93ea5388 9264 goto free_vmcs;
b927a3ce 9265 }
b7ebfb05 9266
5c614b35 9267 if (nested) {
b9c237bb 9268 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9269 vmx->nested.vpid02 = allocate_vpid();
9270 }
b9c237bb 9271
705699a1 9272 vmx->nested.posted_intr_nv = -1;
a9d30f33
NHE
9273 vmx->nested.current_vmptr = -1ull;
9274 vmx->nested.current_vmcs12 = NULL;
9275
37e4c997
HZ
9276 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9277
fb3f0f51
RR
9278 return &vmx->vcpu;
9279
9280free_vmcs:
5c614b35 9281 free_vpid(vmx->nested.vpid02);
5f3fbc34 9282 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9283free_msrs:
fb3f0f51 9284 kfree(vmx->guest_msrs);
4e59516a
PF
9285free_pml:
9286 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9287uninit_vcpu:
9288 kvm_vcpu_uninit(&vmx->vcpu);
9289free_vcpu:
991e7a0e 9290 free_vpid(vmx->vpid);
a4770347 9291 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9292 return ERR_PTR(err);
6aa8b732
AK
9293}
9294
002c7f7c
YS
9295static void __init vmx_check_processor_compat(void *rtn)
9296{
9297 struct vmcs_config vmcs_conf;
9298
9299 *(int *)rtn = 0;
9300 if (setup_vmcs_config(&vmcs_conf) < 0)
9301 *(int *)rtn = -EIO;
9302 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9303 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9304 smp_processor_id());
9305 *(int *)rtn = -EIO;
9306 }
9307}
9308
67253af5
SY
9309static int get_ept_level(void)
9310{
9311 return VMX_EPT_DEFAULT_GAW + 1;
9312}
9313
4b12f0de 9314static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9315{
b18d5431
XG
9316 u8 cache;
9317 u64 ipat = 0;
4b12f0de 9318
522c68c4 9319 /* For VT-d and EPT combination
606decd6 9320 * 1. MMIO: always map as UC
522c68c4
SY
9321 * 2. EPT with VT-d:
9322 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9323 * result, try to trust guest.
522c68c4
SY
9324 * b. VT-d with snooping control feature: snooping control feature of
9325 * VT-d engine can guarantee the cache correctness. Just set it
9326 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9327 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9328 * consistent with host MTRR
9329 */
606decd6
PB
9330 if (is_mmio) {
9331 cache = MTRR_TYPE_UNCACHABLE;
9332 goto exit;
9333 }
9334
9335 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9336 ipat = VMX_EPT_IPAT_BIT;
9337 cache = MTRR_TYPE_WRBACK;
9338 goto exit;
9339 }
9340
9341 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9342 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9343 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9344 cache = MTRR_TYPE_WRBACK;
9345 else
9346 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9347 goto exit;
9348 }
9349
ff53604b 9350 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9351
9352exit:
9353 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9354}
9355
17cc3935 9356static int vmx_get_lpage_level(void)
344f414f 9357{
878403b7
SY
9358 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9359 return PT_DIRECTORY_LEVEL;
9360 else
9361 /* For shadow and EPT supported 1GB page */
9362 return PT_PDPE_LEVEL;
344f414f
JR
9363}
9364
feda805f
XG
9365static void vmcs_set_secondary_exec_control(u32 new_ctl)
9366{
9367 /*
9368 * These bits in the secondary execution controls field
9369 * are dynamic, the others are mostly based on the hypervisor
9370 * architecture and the guest's CPUID. Do not touch the
9371 * dynamic bits.
9372 */
9373 u32 mask =
9374 SECONDARY_EXEC_SHADOW_VMCS |
9375 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9376 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9377
9378 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9379
9380 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9381 (new_ctl & ~mask) | (cur_ctl & mask));
9382}
9383
8322ebbb
DM
9384/*
9385 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9386 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9387 */
9388static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9389{
9390 struct vcpu_vmx *vmx = to_vmx(vcpu);
9391 struct kvm_cpuid_entry2 *entry;
9392
9393 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9394 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9395
9396#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9397 if (entry && (entry->_reg & (_cpuid_mask))) \
9398 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9399} while (0)
9400
9401 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9402 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9403 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9404 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9405 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9406 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9407 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9408 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9409 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9410 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9411 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9412 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9413 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9414 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9415 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9416
9417 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9418 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9419 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9420 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9421 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9422 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9423 cr4_fixed1_update(bit(11), ecx, bit(2));
9424
9425#undef cr4_fixed1_update
9426}
9427
0e851880
SY
9428static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9429{
4e47c7a6
SY
9430 struct kvm_cpuid_entry2 *best;
9431 struct vcpu_vmx *vmx = to_vmx(vcpu);
feda805f 9432 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
4e47c7a6 9433
4e47c7a6 9434 if (vmx_rdtscp_supported()) {
1cea0ce6
XG
9435 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9436 if (!rdtscp_enabled)
feda805f 9437 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
f36201e5 9438
8b97265a 9439 if (nested) {
1cea0ce6 9440 if (rdtscp_enabled)
8b97265a
PB
9441 vmx->nested.nested_vmx_secondary_ctls_high |=
9442 SECONDARY_EXEC_RDTSCP;
9443 else
9444 vmx->nested.nested_vmx_secondary_ctls_high &=
9445 ~SECONDARY_EXEC_RDTSCP;
9446 }
4e47c7a6 9447 }
ad756a16 9448
ad756a16
MJ
9449 /* Exposing INVPCID only when PCID is exposed */
9450 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9451 if (vmx_invpcid_supported() &&
29541bb8
XG
9452 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9453 !guest_cpuid_has_pcid(vcpu))) {
feda805f 9454 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
29541bb8 9455
ad756a16 9456 if (best)
4f977045 9457 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 9458 }
8b3e34e4 9459
45bdbcfd
HH
9460 if (cpu_has_secondary_exec_ctrls())
9461 vmcs_set_secondary_exec_control(secondary_exec_ctl);
feda805f 9462
37e4c997
HZ
9463 if (nested_vmx_allowed(vcpu))
9464 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9465 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9466 else
9467 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9468 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
9469
9470 if (nested_vmx_allowed(vcpu))
9471 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
9472}
9473
d4330ef2
JR
9474static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9475{
7b8050f5
NHE
9476 if (func == 1 && nested)
9477 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9478}
9479
25d92081
YZ
9480static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9481 struct x86_exception *fault)
9482{
533558bc
JK
9483 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9484 u32 exit_reason;
25d92081
YZ
9485
9486 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9487 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9488 else
533558bc
JK
9489 exit_reason = EXIT_REASON_EPT_VIOLATION;
9490 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
9491 vmcs12->guest_physical_address = fault->address;
9492}
9493
155a97a3
NHE
9494/* Callbacks for nested_ept_init_mmu_context: */
9495
9496static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9497{
9498 /* return the page table to be shadowed - in our case, EPT12 */
9499 return get_vmcs12(vcpu)->ept_pointer;
9500}
9501
8a3c1a33 9502static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9503{
ad896af0
PB
9504 WARN_ON(mmu_is_nested(vcpu));
9505 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb
WV
9506 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9507 VMX_EPT_EXECUTE_ONLY_BIT);
155a97a3
NHE
9508 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9509 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9510 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9511
9512 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
155a97a3
NHE
9513}
9514
9515static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9516{
9517 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9518}
9519
19d5f10b
EK
9520static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9521 u16 error_code)
9522{
9523 bool inequality, bit;
9524
9525 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9526 inequality =
9527 (error_code & vmcs12->page_fault_error_code_mask) !=
9528 vmcs12->page_fault_error_code_match;
9529 return inequality ^ bit;
9530}
9531
feaf0c7d
GN
9532static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9533 struct x86_exception *fault)
9534{
9535 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9536
9537 WARN_ON(!is_guest_mode(vcpu));
9538
19d5f10b 9539 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
533558bc
JK
9540 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9541 vmcs_read32(VM_EXIT_INTR_INFO),
9542 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
9543 else
9544 kvm_inject_page_fault(vcpu, fault);
9545}
9546
6beb7bd5
JM
9547static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9548 struct vmcs12 *vmcs12);
9549
9550static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
9551 struct vmcs12 *vmcs12)
9552{
9553 struct vcpu_vmx *vmx = to_vmx(vcpu);
6beb7bd5 9554 u64 hpa;
a2bcba50
WL
9555
9556 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
9557 /*
9558 * Translate L1 physical address to host physical
9559 * address for vmcs02. Keep the page pinned, so this
9560 * physical address remains valid. We keep a reference
9561 * to it so we can release it later.
9562 */
9563 if (vmx->nested.apic_access_page) /* shouldn't happen */
9564 nested_release_page(vmx->nested.apic_access_page);
9565 vmx->nested.apic_access_page =
9566 nested_get_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
9567 /*
9568 * If translation failed, no matter: This feature asks
9569 * to exit when accessing the given address, and if it
9570 * can never be accessed, this feature won't do
9571 * anything anyway.
9572 */
9573 if (vmx->nested.apic_access_page) {
9574 hpa = page_to_phys(vmx->nested.apic_access_page);
9575 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9576 } else {
9577 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9578 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9579 }
9580 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9581 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9582 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9583 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9584 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 9585 }
a7c0b07d
WL
9586
9587 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
a7c0b07d
WL
9588 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9589 nested_release_page(vmx->nested.virtual_apic_page);
9590 vmx->nested.virtual_apic_page =
9591 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9592
9593 /*
6beb7bd5
JM
9594 * If translation failed, VM entry will fail because
9595 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9596 * Failing the vm entry is _not_ what the processor
9597 * does but it's basically the only possibility we
9598 * have. We could still enter the guest if CR8 load
9599 * exits are enabled, CR8 store exits are enabled, and
9600 * virtualize APIC access is disabled; in this case
9601 * the processor would never use the TPR shadow and we
9602 * could simply clear the bit from the execution
9603 * control. But such a configuration is useless, so
9604 * let's keep the code simple.
a7c0b07d 9605 */
6beb7bd5
JM
9606 if (vmx->nested.virtual_apic_page) {
9607 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9608 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9609 }
a7c0b07d
WL
9610 }
9611
705699a1 9612 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
9613 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9614 kunmap(vmx->nested.pi_desc_page);
9615 nested_release_page(vmx->nested.pi_desc_page);
9616 }
9617 vmx->nested.pi_desc_page =
9618 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
705699a1
WV
9619 vmx->nested.pi_desc =
9620 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9621 if (!vmx->nested.pi_desc) {
9622 nested_release_page_clean(vmx->nested.pi_desc_page);
6beb7bd5 9623 return;
705699a1
WV
9624 }
9625 vmx->nested.pi_desc =
9626 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9627 (unsigned long)(vmcs12->posted_intr_desc_addr &
9628 (PAGE_SIZE - 1)));
6beb7bd5
JM
9629 vmcs_write64(POSTED_INTR_DESC_ADDR,
9630 page_to_phys(vmx->nested.pi_desc_page) +
9631 (unsigned long)(vmcs12->posted_intr_desc_addr &
9632 (PAGE_SIZE - 1)));
705699a1 9633 }
6beb7bd5
JM
9634 if (cpu_has_vmx_msr_bitmap() &&
9635 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9636 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9637 ;
9638 else
9639 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9640 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
9641}
9642
f4124500
JK
9643static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9644{
9645 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9646 struct vcpu_vmx *vmx = to_vmx(vcpu);
9647
9648 if (vcpu->arch.virtual_tsc_khz == 0)
9649 return;
9650
9651 /* Make sure short timeouts reliably trigger an immediate vmexit.
9652 * hrtimer_start does not guarantee this. */
9653 if (preemption_timeout <= 1) {
9654 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9655 return;
9656 }
9657
9658 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9659 preemption_timeout *= 1000000;
9660 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9661 hrtimer_start(&vmx->nested.preemption_timer,
9662 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9663}
9664
3af18d9c
WV
9665static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9666 struct vmcs12 *vmcs12)
9667{
9668 int maxphyaddr;
9669 u64 addr;
9670
9671 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9672 return 0;
9673
9674 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9675 WARN_ON(1);
9676 return -EINVAL;
9677 }
9678 maxphyaddr = cpuid_maxphyaddr(vcpu);
9679
9680 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9681 ((addr + PAGE_SIZE) >> maxphyaddr))
9682 return -EINVAL;
9683
9684 return 0;
9685}
9686
9687/*
9688 * Merge L0's and L1's MSR bitmap, return false to indicate that
9689 * we do not use the hardware.
9690 */
9691static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9692 struct vmcs12 *vmcs12)
9693{
82f0dd4b 9694 int msr;
f2b93280 9695 struct page *page;
d048c098
RK
9696 unsigned long *msr_bitmap_l1;
9697 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
f2b93280 9698
d048c098 9699 /* This shortcut is ok because we support only x2APIC MSRs so far. */
f2b93280
WV
9700 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9701 return false;
9702
9703 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9704 if (!page) {
9705 WARN_ON(1);
9706 return false;
9707 }
d048c098 9708 msr_bitmap_l1 = (unsigned long *)kmap(page);
f2b93280 9709
d048c098
RK
9710 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9711
f2b93280 9712 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
9713 if (nested_cpu_has_apic_reg_virt(vmcs12))
9714 for (msr = 0x800; msr <= 0x8ff; msr++)
9715 nested_vmx_disable_intercept_for_msr(
d048c098 9716 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 9717 msr, MSR_TYPE_R);
d048c098
RK
9718
9719 nested_vmx_disable_intercept_for_msr(
9720 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
9721 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9722 MSR_TYPE_R | MSR_TYPE_W);
d048c098 9723
608406e2 9724 if (nested_cpu_has_vid(vmcs12)) {
608406e2 9725 nested_vmx_disable_intercept_for_msr(
d048c098 9726 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9727 APIC_BASE_MSR + (APIC_EOI >> 4),
9728 MSR_TYPE_W);
9729 nested_vmx_disable_intercept_for_msr(
d048c098 9730 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9731 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9732 MSR_TYPE_W);
9733 }
82f0dd4b 9734 }
f2b93280
WV
9735 kunmap(page);
9736 nested_release_page_clean(page);
9737
9738 return true;
9739}
9740
9741static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9742 struct vmcs12 *vmcs12)
9743{
82f0dd4b 9744 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 9745 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
9746 !nested_cpu_has_vid(vmcs12) &&
9747 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
9748 return 0;
9749
9750 /*
9751 * If virtualize x2apic mode is enabled,
9752 * virtualize apic access must be disabled.
9753 */
82f0dd4b
WV
9754 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9755 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
9756 return -EINVAL;
9757
608406e2
WV
9758 /*
9759 * If virtual interrupt delivery is enabled,
9760 * we must exit on external interrupts.
9761 */
9762 if (nested_cpu_has_vid(vmcs12) &&
9763 !nested_exit_on_intr(vcpu))
9764 return -EINVAL;
9765
705699a1
WV
9766 /*
9767 * bits 15:8 should be zero in posted_intr_nv,
9768 * the descriptor address has been already checked
9769 * in nested_get_vmcs12_pages.
9770 */
9771 if (nested_cpu_has_posted_intr(vmcs12) &&
9772 (!nested_cpu_has_vid(vmcs12) ||
9773 !nested_exit_intr_ack_set(vcpu) ||
9774 vmcs12->posted_intr_nv & 0xff00))
9775 return -EINVAL;
9776
f2b93280
WV
9777 /* tpr shadow is needed by all apicv features. */
9778 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9779 return -EINVAL;
9780
9781 return 0;
3af18d9c
WV
9782}
9783
e9ac033e
EK
9784static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9785 unsigned long count_field,
92d71bc6 9786 unsigned long addr_field)
ff651cb6 9787{
92d71bc6 9788 int maxphyaddr;
e9ac033e
EK
9789 u64 count, addr;
9790
9791 if (vmcs12_read_any(vcpu, count_field, &count) ||
9792 vmcs12_read_any(vcpu, addr_field, &addr)) {
9793 WARN_ON(1);
9794 return -EINVAL;
9795 }
9796 if (count == 0)
9797 return 0;
92d71bc6 9798 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
9799 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9800 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 9801 pr_debug_ratelimited(
e9ac033e
EK
9802 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9803 addr_field, maxphyaddr, count, addr);
9804 return -EINVAL;
9805 }
9806 return 0;
9807}
9808
9809static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9810 struct vmcs12 *vmcs12)
9811{
e9ac033e
EK
9812 if (vmcs12->vm_exit_msr_load_count == 0 &&
9813 vmcs12->vm_exit_msr_store_count == 0 &&
9814 vmcs12->vm_entry_msr_load_count == 0)
9815 return 0; /* Fast path */
e9ac033e 9816 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 9817 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 9818 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 9819 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 9820 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 9821 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
9822 return -EINVAL;
9823 return 0;
9824}
9825
9826static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9827 struct vmx_msr_entry *e)
9828{
9829 /* x2APIC MSR accesses are not allowed */
8a9781f7 9830 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
9831 return -EINVAL;
9832 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9833 e->index == MSR_IA32_UCODE_REV)
9834 return -EINVAL;
9835 if (e->reserved != 0)
ff651cb6
WV
9836 return -EINVAL;
9837 return 0;
9838}
9839
e9ac033e
EK
9840static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9841 struct vmx_msr_entry *e)
ff651cb6
WV
9842{
9843 if (e->index == MSR_FS_BASE ||
9844 e->index == MSR_GS_BASE ||
e9ac033e
EK
9845 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9846 nested_vmx_msr_check_common(vcpu, e))
9847 return -EINVAL;
9848 return 0;
9849}
9850
9851static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9852 struct vmx_msr_entry *e)
9853{
9854 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9855 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
9856 return -EINVAL;
9857 return 0;
9858}
9859
9860/*
9861 * Load guest's/host's msr at nested entry/exit.
9862 * return 0 for success, entry index for failure.
9863 */
9864static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9865{
9866 u32 i;
9867 struct vmx_msr_entry e;
9868 struct msr_data msr;
9869
9870 msr.host_initiated = false;
9871 for (i = 0; i < count; i++) {
54bf36aa
PB
9872 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9873 &e, sizeof(e))) {
bbe41b95 9874 pr_debug_ratelimited(
e9ac033e
EK
9875 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9876 __func__, i, gpa + i * sizeof(e));
ff651cb6 9877 goto fail;
e9ac033e
EK
9878 }
9879 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 9880 pr_debug_ratelimited(
e9ac033e
EK
9881 "%s check failed (%u, 0x%x, 0x%x)\n",
9882 __func__, i, e.index, e.reserved);
9883 goto fail;
9884 }
ff651cb6
WV
9885 msr.index = e.index;
9886 msr.data = e.value;
e9ac033e 9887 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 9888 pr_debug_ratelimited(
e9ac033e
EK
9889 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9890 __func__, i, e.index, e.value);
ff651cb6 9891 goto fail;
e9ac033e 9892 }
ff651cb6
WV
9893 }
9894 return 0;
9895fail:
9896 return i + 1;
9897}
9898
9899static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9900{
9901 u32 i;
9902 struct vmx_msr_entry e;
9903
9904 for (i = 0; i < count; i++) {
609e36d3 9905 struct msr_data msr_info;
54bf36aa
PB
9906 if (kvm_vcpu_read_guest(vcpu,
9907 gpa + i * sizeof(e),
9908 &e, 2 * sizeof(u32))) {
bbe41b95 9909 pr_debug_ratelimited(
e9ac033e
EK
9910 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9911 __func__, i, gpa + i * sizeof(e));
ff651cb6 9912 return -EINVAL;
e9ac033e
EK
9913 }
9914 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 9915 pr_debug_ratelimited(
e9ac033e
EK
9916 "%s check failed (%u, 0x%x, 0x%x)\n",
9917 __func__, i, e.index, e.reserved);
ff651cb6 9918 return -EINVAL;
e9ac033e 9919 }
609e36d3
PB
9920 msr_info.host_initiated = false;
9921 msr_info.index = e.index;
9922 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 9923 pr_debug_ratelimited(
e9ac033e
EK
9924 "%s cannot read MSR (%u, 0x%x)\n",
9925 __func__, i, e.index);
9926 return -EINVAL;
9927 }
54bf36aa
PB
9928 if (kvm_vcpu_write_guest(vcpu,
9929 gpa + i * sizeof(e) +
9930 offsetof(struct vmx_msr_entry, value),
9931 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 9932 pr_debug_ratelimited(
e9ac033e 9933 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 9934 __func__, i, e.index, msr_info.data);
e9ac033e
EK
9935 return -EINVAL;
9936 }
ff651cb6
WV
9937 }
9938 return 0;
9939}
9940
1dc35dac
LP
9941static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
9942{
9943 unsigned long invalid_mask;
9944
9945 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
9946 return (val & invalid_mask) == 0;
9947}
9948
9ed38ffa
LP
9949/*
9950 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
9951 * emulating VM entry into a guest with EPT enabled.
9952 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9953 * is assigned to entry_failure_code on failure.
9954 */
9955static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 9956 u32 *entry_failure_code)
9ed38ffa 9957{
9ed38ffa 9958 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 9959 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
9960 *entry_failure_code = ENTRY_FAIL_DEFAULT;
9961 return 1;
9962 }
9963
9964 /*
9965 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
9966 * must not be dereferenced.
9967 */
9968 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
9969 !nested_ept) {
9970 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
9971 *entry_failure_code = ENTRY_FAIL_PDPTE;
9972 return 1;
9973 }
9974 }
9975
9976 vcpu->arch.cr3 = cr3;
9977 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
9978 }
9979
9980 kvm_mmu_reset_context(vcpu);
9981 return 0;
9982}
9983
fe3ef05c
NHE
9984/*
9985 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9986 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 9987 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
9988 * guest in a way that will both be appropriate to L1's requests, and our
9989 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9990 * function also has additional necessary side-effects, like setting various
9991 * vcpu->arch fields.
ee146c1c
LP
9992 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9993 * is assigned to entry_failure_code on failure.
fe3ef05c 9994 */
ee146c1c 9995static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
ca0bde28 9996 bool from_vmentry, u32 *entry_failure_code)
fe3ef05c
NHE
9997{
9998 struct vcpu_vmx *vmx = to_vmx(vcpu);
9999 u32 exec_control;
7ca29de2 10000 bool nested_ept_enabled = false;
fe3ef05c
NHE
10001
10002 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10003 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10004 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10005 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10006 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10007 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10008 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10009 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10010 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10011 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10012 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10013 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10014 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10015 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10016 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10017 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10018 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10019 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10020 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10021 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10022 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10023 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10024 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10025 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10026 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10027 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10028 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10029 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10030 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10031 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10032 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10033 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10034 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10035 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10036 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10037 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10038
cf8b84f4
JM
10039 if (from_vmentry &&
10040 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
10041 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10042 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10043 } else {
10044 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10045 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10046 }
cf8b84f4
JM
10047 if (from_vmentry) {
10048 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10049 vmcs12->vm_entry_intr_info_field);
10050 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10051 vmcs12->vm_entry_exception_error_code);
10052 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10053 vmcs12->vm_entry_instruction_len);
10054 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10055 vmcs12->guest_interruptibility_info);
10056 } else {
10057 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10058 }
fe3ef05c 10059 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 10060 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
10061 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10062 vmcs12->guest_pending_dbg_exceptions);
10063 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10064 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10065
81dc01f7
WL
10066 if (nested_cpu_has_xsaves(vmcs12))
10067 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
10068 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10069
f4124500 10070 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
10071
10072 /* Preemption timer setting is only taken from vmcs01. */
705699a1 10073 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
10074 exec_control |= vmcs_config.pin_based_exec_ctrl;
10075 if (vmx->hv_deadline_tsc == -1)
10076 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 10077
9314006d 10078 /* Posted interrupts setting is only taken from vmcs12. */
705699a1
WV
10079 if (nested_cpu_has_posted_intr(vmcs12)) {
10080 /*
10081 * Note that we use L0's vector here and in
10082 * vmx_deliver_nested_posted_interrupt.
10083 */
10084 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10085 vmx->nested.pi_pending = false;
0bcf261c 10086 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
6beb7bd5 10087 } else {
705699a1 10088 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 10089 }
705699a1 10090
f4124500 10091 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 10092
f4124500
JK
10093 vmx->nested.preemption_timer_expired = false;
10094 if (nested_cpu_has_preemption_timer(vmcs12))
10095 vmx_start_preemption_timer(vcpu);
0238ea91 10096
fe3ef05c
NHE
10097 /*
10098 * Whether page-faults are trapped is determined by a combination of
10099 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10100 * If enable_ept, L0 doesn't care about page faults and we should
10101 * set all of these to L1's desires. However, if !enable_ept, L0 does
10102 * care about (at least some) page faults, and because it is not easy
10103 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10104 * to exit on each and every L2 page fault. This is done by setting
10105 * MASK=MATCH=0 and (see below) EB.PF=1.
10106 * Note that below we don't need special code to set EB.PF beyond the
10107 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10108 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10109 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10110 *
10111 * A problem with this approach (when !enable_ept) is that L1 may be
10112 * injected with more page faults than it asked for. This could have
10113 * caused problems, but in practice existing hypervisors don't care.
10114 * To fix this, we will need to emulate the PFEC checking (on the L1
10115 * page tables), using walk_addr(), when injecting PFs to L1.
10116 */
10117 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10118 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10119 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10120 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10121
10122 if (cpu_has_secondary_exec_ctrls()) {
f4124500 10123 exec_control = vmx_secondary_exec_control(vmx);
e2821620 10124
fe3ef05c 10125 /* Take the following fields only from vmcs12 */
696dfd95 10126 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 10127 SECONDARY_EXEC_RDTSCP |
696dfd95 10128 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
dfa169bb 10129 SECONDARY_EXEC_APIC_REGISTER_VIRT);
fe3ef05c
NHE
10130 if (nested_cpu_has(vmcs12,
10131 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
10132 exec_control |= vmcs12->secondary_vm_exec_control;
10133
608406e2
WV
10134 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10135 vmcs_write64(EOI_EXIT_BITMAP0,
10136 vmcs12->eoi_exit_bitmap0);
10137 vmcs_write64(EOI_EXIT_BITMAP1,
10138 vmcs12->eoi_exit_bitmap1);
10139 vmcs_write64(EOI_EXIT_BITMAP2,
10140 vmcs12->eoi_exit_bitmap2);
10141 vmcs_write64(EOI_EXIT_BITMAP3,
10142 vmcs12->eoi_exit_bitmap3);
10143 vmcs_write16(GUEST_INTR_STATUS,
10144 vmcs12->guest_intr_status);
10145 }
10146
7ca29de2 10147 nested_ept_enabled = (exec_control & SECONDARY_EXEC_ENABLE_EPT) != 0;
6beb7bd5
JM
10148
10149 /*
10150 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10151 * nested_get_vmcs12_pages will either fix it up or
10152 * remove the VM execution control.
10153 */
10154 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10155 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10156
fe3ef05c
NHE
10157 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10158 }
10159
10160
10161 /*
10162 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10163 * Some constant fields are set here by vmx_set_constant_host_state().
10164 * Other fields are different per CPU, and will be set later when
10165 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10166 */
a547c6db 10167 vmx_set_constant_host_state(vmx);
fe3ef05c 10168
83bafef1
JM
10169 /*
10170 * Set the MSR load/store lists to match L0's settings.
10171 */
10172 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10173 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10174 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10175 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10176 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10177
fe3ef05c
NHE
10178 /*
10179 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10180 * entry, but only if the current (host) sp changed from the value
10181 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10182 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10183 * here we just force the write to happen on entry.
10184 */
10185 vmx->host_rsp = 0;
10186
10187 exec_control = vmx_exec_control(vmx); /* L0's desires */
10188 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10189 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10190 exec_control &= ~CPU_BASED_TPR_SHADOW;
10191 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 10192
6beb7bd5
JM
10193 /*
10194 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10195 * nested_get_vmcs12_pages can't fix it up, the illegal value
10196 * will result in a VM entry failure.
10197 */
a7c0b07d 10198 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 10199 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d
WL
10200 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10201 }
10202
fe3ef05c 10203 /*
3af18d9c 10204 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10205 * Rather, exit every time.
10206 */
fe3ef05c
NHE
10207 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10208 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10209
10210 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10211
10212 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10213 * bitwise-or of what L1 wants to trap for L2, and what we want to
10214 * trap. Note that CR0.TS also needs updating - we do this later.
10215 */
10216 update_exception_bitmap(vcpu);
10217 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10218 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10219
8049d651
NHE
10220 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10221 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10222 * bits are further modified by vmx_set_efer() below.
10223 */
f4124500 10224 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10225
10226 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10227 * emulated by vmx_set_efer(), below.
10228 */
2961e876 10229 vm_entry_controls_init(vmx,
8049d651
NHE
10230 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10231 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10232 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10233
cf8b84f4
JM
10234 if (from_vmentry &&
10235 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 10236 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 10237 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 10238 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10239 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 10240 }
fe3ef05c
NHE
10241
10242 set_cr4_guest_host_mask(vmx);
10243
cf8b84f4
JM
10244 if (from_vmentry &&
10245 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
36be0b9d
PB
10246 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10247
27fc51b2
NHE
10248 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10249 vmcs_write64(TSC_OFFSET,
ea26e4ec 10250 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
27fc51b2 10251 else
ea26e4ec 10252 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
c95ba92a
PF
10253 if (kvm_has_tsc_control)
10254 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
10255
10256 if (enable_vpid) {
10257 /*
5c614b35
WL
10258 * There is no direct mapping between vpid02 and vpid12, the
10259 * vpid02 is per-vCPU for L0 and reused while the value of
10260 * vpid12 is changed w/ one invvpid during nested vmentry.
10261 * The vpid12 is allocated by L1 for L2, so it will not
10262 * influence global bitmap(for vpid01 and vpid02 allocation)
10263 * even if spawn a lot of nested vCPUs.
fe3ef05c 10264 */
5c614b35
WL
10265 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10266 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10267 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10268 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10269 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10270 }
10271 } else {
10272 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10273 vmx_flush_tlb(vcpu);
10274 }
10275
fe3ef05c
NHE
10276 }
10277
155a97a3
NHE
10278 if (nested_cpu_has_ept(vmcs12)) {
10279 kvm_mmu_unload(vcpu);
10280 nested_ept_init_mmu_context(vcpu);
10281 }
10282
fe3ef05c 10283 /*
bd7e5b08
PB
10284 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10285 * bits which we consider mandatory enabled.
fe3ef05c
NHE
10286 * The CR0_READ_SHADOW is what L2 should have expected to read given
10287 * the specifications by L1; It's not enough to take
10288 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10289 * have more bits than L1 expected.
10290 */
10291 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10292 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10293
10294 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10295 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10296
cf8b84f4
JM
10297 if (from_vmentry &&
10298 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
10299 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10300 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10301 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10302 else
10303 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10304 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10305 vmx_set_efer(vcpu, vcpu->arch.efer);
10306
9ed38ffa
LP
10307 /* Shadow page tables on either EPT or shadow page tables. */
10308 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_ept_enabled,
10309 entry_failure_code))
10310 return 1;
7ca29de2 10311
fe3ef05c
NHE
10312 kvm_mmu_reset_context(vcpu);
10313
feaf0c7d
GN
10314 if (!enable_ept)
10315 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10316
3633cfc3
NHE
10317 /*
10318 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10319 */
10320 if (enable_ept) {
10321 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10322 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10323 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10324 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10325 }
10326
fe3ef05c
NHE
10327 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10328 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 10329 return 0;
fe3ef05c
NHE
10330}
10331
ca0bde28 10332static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 10333{
cd232ad0 10334 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 10335
6dfacadd 10336 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
10337 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10338 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 10339
ca0bde28
JM
10340 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10341 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10342
ca0bde28
JM
10343 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10344 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 10345
ca0bde28
JM
10346 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10347 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 10348
7c177938 10349 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
0115f9cb 10350 vmx->nested.nested_vmx_procbased_ctls_low,
b9c237bb 10351 vmx->nested.nested_vmx_procbased_ctls_high) ||
7c177938 10352 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
b9c237bb
WV
10353 vmx->nested.nested_vmx_secondary_ctls_low,
10354 vmx->nested.nested_vmx_secondary_ctls_high) ||
7c177938 10355 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10356 vmx->nested.nested_vmx_pinbased_ctls_low,
10357 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10358 !vmx_control_verify(vmcs12->vm_exit_controls,
0115f9cb 10359 vmx->nested.nested_vmx_exit_ctls_low,
b9c237bb 10360 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10361 !vmx_control_verify(vmcs12->vm_entry_controls,
0115f9cb 10362 vmx->nested.nested_vmx_entry_ctls_low,
b9c237bb 10363 vmx->nested.nested_vmx_entry_ctls_high))
ca0bde28 10364 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10365
3899152c 10366 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 10367 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
10368 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10369 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10370
10371 return 0;
10372}
10373
10374static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10375 u32 *exit_qual)
10376{
10377 bool ia32e;
10378
10379 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 10380
3899152c 10381 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 10382 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 10383 return 1;
ca0bde28
JM
10384
10385 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10386 vmcs12->vmcs_link_pointer != -1ull) {
10387 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 10388 return 1;
7c177938
NHE
10389 }
10390
384bb783 10391 /*
cb0c8cda 10392 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10393 * are performed on the field for the IA32_EFER MSR:
10394 * - Bits reserved in the IA32_EFER MSR must be 0.
10395 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10396 * the IA-32e mode guest VM-exit control. It must also be identical
10397 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10398 * CR0.PG) is 1.
10399 */
ca0bde28
JM
10400 if (to_vmx(vcpu)->nested.nested_run_pending &&
10401 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
10402 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10403 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10404 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10405 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 10406 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 10407 return 1;
384bb783
JK
10408 }
10409
10410 /*
10411 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10412 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10413 * the values of the LMA and LME bits in the field must each be that of
10414 * the host address-space size VM-exit control.
10415 */
10416 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10417 ia32e = (vmcs12->vm_exit_controls &
10418 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10419 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10420 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 10421 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 10422 return 1;
ca0bde28
JM
10423 }
10424
10425 return 0;
10426}
10427
858e25c0
JM
10428static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10429{
10430 struct vcpu_vmx *vmx = to_vmx(vcpu);
10431 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10432 struct loaded_vmcs *vmcs02;
10433 int cpu;
10434 u32 msr_entry_idx;
10435 u32 exit_qual;
10436
10437 vmcs02 = nested_get_current_vmcs02(vmx);
10438 if (!vmcs02)
10439 return -ENOMEM;
10440
10441 enter_guest_mode(vcpu);
10442
10443 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10444 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10445
10446 cpu = get_cpu();
10447 vmx->loaded_vmcs = vmcs02;
10448 vmx_vcpu_put(vcpu);
10449 vmx_vcpu_load(vcpu, cpu);
10450 vcpu->cpu = cpu;
10451 put_cpu();
10452
10453 vmx_segment_cache_clear(vmx);
10454
10455 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10456 leave_guest_mode(vcpu);
10457 vmx_load_vmcs01(vcpu);
10458 nested_vmx_entry_failure(vcpu, vmcs12,
10459 EXIT_REASON_INVALID_STATE, exit_qual);
10460 return 1;
10461 }
10462
10463 nested_get_vmcs12_pages(vcpu, vmcs12);
10464
10465 msr_entry_idx = nested_vmx_load_msr(vcpu,
10466 vmcs12->vm_entry_msr_load_addr,
10467 vmcs12->vm_entry_msr_load_count);
10468 if (msr_entry_idx) {
10469 leave_guest_mode(vcpu);
10470 vmx_load_vmcs01(vcpu);
10471 nested_vmx_entry_failure(vcpu, vmcs12,
10472 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10473 return 1;
10474 }
10475
10476 vmcs12->launch_state = 1;
10477
10478 /*
10479 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10480 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10481 * returned as far as L1 is concerned. It will only return (and set
10482 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10483 */
10484 return 0;
10485}
10486
ca0bde28
JM
10487/*
10488 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10489 * for running an L2 nested guest.
10490 */
10491static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10492{
10493 struct vmcs12 *vmcs12;
10494 struct vcpu_vmx *vmx = to_vmx(vcpu);
ca0bde28
JM
10495 u32 exit_qual;
10496 int ret;
10497
10498 if (!nested_vmx_check_permission(vcpu))
10499 return 1;
10500
10501 if (!nested_vmx_check_vmcs12(vcpu))
10502 goto out;
10503
10504 vmcs12 = get_vmcs12(vcpu);
10505
10506 if (enable_shadow_vmcs)
10507 copy_shadow_to_vmcs12(vmx);
10508
10509 /*
10510 * The nested entry process starts with enforcing various prerequisites
10511 * on vmcs12 as required by the Intel SDM, and act appropriately when
10512 * they fail: As the SDM explains, some conditions should cause the
10513 * instruction to fail, while others will cause the instruction to seem
10514 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10515 * To speed up the normal (success) code path, we should avoid checking
10516 * for misconfigurations which will anyway be caught by the processor
10517 * when using the merged vmcs02.
10518 */
10519 if (vmcs12->launch_state == launch) {
10520 nested_vmx_failValid(vcpu,
10521 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10522 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10523 goto out;
10524 }
10525
10526 ret = check_vmentry_prereqs(vcpu, vmcs12);
10527 if (ret) {
10528 nested_vmx_failValid(vcpu, ret);
10529 goto out;
10530 }
10531
10532 /*
10533 * After this point, the trap flag no longer triggers a singlestep trap
10534 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10535 * This is not 100% correct; for performance reasons, we delegate most
10536 * of the checks on host state to the processor. If those fail,
10537 * the singlestep trap is missed.
10538 */
10539 skip_emulated_instruction(vcpu);
10540
10541 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10542 if (ret) {
10543 nested_vmx_entry_failure(vcpu, vmcs12,
10544 EXIT_REASON_INVALID_STATE, exit_qual);
10545 return 1;
384bb783
JK
10546 }
10547
7c177938
NHE
10548 /*
10549 * We're finally done with prerequisite checking, and can start with
10550 * the nested entry.
10551 */
10552
858e25c0
JM
10553 ret = enter_vmx_non_root_mode(vcpu, true);
10554 if (ret)
10555 return ret;
ff651cb6 10556
6dfacadd 10557 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10558 return kvm_vcpu_halt(vcpu);
6dfacadd 10559
7af40ad3
JK
10560 vmx->nested.nested_run_pending = 1;
10561
cd232ad0 10562 return 1;
eb277562
KH
10563
10564out:
6affcbed 10565 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
10566}
10567
4704d0be
NHE
10568/*
10569 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10570 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10571 * This function returns the new value we should put in vmcs12.guest_cr0.
10572 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10573 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10574 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10575 * didn't trap the bit, because if L1 did, so would L0).
10576 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10577 * been modified by L2, and L1 knows it. So just leave the old value of
10578 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10579 * isn't relevant, because if L0 traps this bit it can set it to anything.
10580 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10581 * changed these bits, and therefore they need to be updated, but L0
10582 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10583 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10584 */
10585static inline unsigned long
10586vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10587{
10588 return
10589 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10590 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10591 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10592 vcpu->arch.cr0_guest_owned_bits));
10593}
10594
10595static inline unsigned long
10596vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10597{
10598 return
10599 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10600 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10601 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10602 vcpu->arch.cr4_guest_owned_bits));
10603}
10604
5f3d5799
JK
10605static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10606 struct vmcs12 *vmcs12)
10607{
10608 u32 idt_vectoring;
10609 unsigned int nr;
10610
851eb667 10611 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
10612 nr = vcpu->arch.exception.nr;
10613 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10614
10615 if (kvm_exception_is_soft(nr)) {
10616 vmcs12->vm_exit_instruction_len =
10617 vcpu->arch.event_exit_inst_len;
10618 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10619 } else
10620 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10621
10622 if (vcpu->arch.exception.has_error_code) {
10623 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10624 vmcs12->idt_vectoring_error_code =
10625 vcpu->arch.exception.error_code;
10626 }
10627
10628 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10629 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10630 vmcs12->idt_vectoring_info_field =
10631 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10632 } else if (vcpu->arch.interrupt.pending) {
10633 nr = vcpu->arch.interrupt.nr;
10634 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10635
10636 if (vcpu->arch.interrupt.soft) {
10637 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10638 vmcs12->vm_entry_instruction_len =
10639 vcpu->arch.event_exit_inst_len;
10640 } else
10641 idt_vectoring |= INTR_TYPE_EXT_INTR;
10642
10643 vmcs12->idt_vectoring_info_field = idt_vectoring;
10644 }
10645}
10646
b6b8a145
JK
10647static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10648{
10649 struct vcpu_vmx *vmx = to_vmx(vcpu);
10650
f4124500
JK
10651 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10652 vmx->nested.preemption_timer_expired) {
10653 if (vmx->nested.nested_run_pending)
10654 return -EBUSY;
10655 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10656 return 0;
10657 }
10658
b6b8a145 10659 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
220c5672
JK
10660 if (vmx->nested.nested_run_pending ||
10661 vcpu->arch.interrupt.pending)
b6b8a145
JK
10662 return -EBUSY;
10663 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10664 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10665 INTR_INFO_VALID_MASK, 0);
10666 /*
10667 * The NMI-triggered VM exit counts as injection:
10668 * clear this one and block further NMIs.
10669 */
10670 vcpu->arch.nmi_pending = 0;
10671 vmx_set_nmi_mask(vcpu, true);
10672 return 0;
10673 }
10674
10675 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10676 nested_exit_on_intr(vcpu)) {
10677 if (vmx->nested.nested_run_pending)
10678 return -EBUSY;
10679 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 10680 return 0;
b6b8a145
JK
10681 }
10682
6342c50a
DH
10683 vmx_complete_nested_posted_interrupt(vcpu);
10684 return 0;
b6b8a145
JK
10685}
10686
f4124500
JK
10687static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10688{
10689 ktime_t remaining =
10690 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10691 u64 value;
10692
10693 if (ktime_to_ns(remaining) <= 0)
10694 return 0;
10695
10696 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10697 do_div(value, 1000000);
10698 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10699}
10700
4704d0be 10701/*
cf8b84f4
JM
10702 * Update the guest state fields of vmcs12 to reflect changes that
10703 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10704 * VM-entry controls is also updated, since this is really a guest
10705 * state bit.)
4704d0be 10706 */
cf8b84f4 10707static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 10708{
4704d0be
NHE
10709 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10710 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10711
4704d0be
NHE
10712 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10713 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10714 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10715
10716 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10717 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10718 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10719 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10720 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10721 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10722 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10723 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10724 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10725 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10726 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10727 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10728 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10729 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10730 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10731 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10732 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10733 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10734 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10735 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10736 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10737 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10738 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10739 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10740 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10741 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10742 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10743 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10744 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10745 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10746 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10747 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10748 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10749 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10750 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10751 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10752
4704d0be
NHE
10753 vmcs12->guest_interruptibility_info =
10754 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10755 vmcs12->guest_pending_dbg_exceptions =
10756 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
10757 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10758 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10759 else
10760 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 10761
f4124500
JK
10762 if (nested_cpu_has_preemption_timer(vmcs12)) {
10763 if (vmcs12->vm_exit_controls &
10764 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10765 vmcs12->vmx_preemption_timer_value =
10766 vmx_get_preemption_timer_value(vcpu);
10767 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10768 }
7854cbca 10769
3633cfc3
NHE
10770 /*
10771 * In some cases (usually, nested EPT), L2 is allowed to change its
10772 * own CR3 without exiting. If it has changed it, we must keep it.
10773 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10774 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10775 *
10776 * Additionally, restore L2's PDPTR to vmcs12.
10777 */
10778 if (enable_ept) {
f3531054 10779 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
10780 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10781 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10782 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10783 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10784 }
10785
119a9c01
JD
10786 if (nested_cpu_has_ept(vmcs12))
10787 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10788
608406e2
WV
10789 if (nested_cpu_has_vid(vmcs12))
10790 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10791
c18911a2
JK
10792 vmcs12->vm_entry_controls =
10793 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 10794 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 10795
2996fca0
JK
10796 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10797 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10798 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10799 }
10800
4704d0be
NHE
10801 /* TODO: These cannot have changed unless we have MSR bitmaps and
10802 * the relevant bit asks not to trap the change */
b8c07d55 10803 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 10804 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
10805 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10806 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
10807 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10808 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10809 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 10810 if (kvm_mpx_supported())
36be0b9d 10811 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
81dc01f7
WL
10812 if (nested_cpu_has_xsaves(vmcs12))
10813 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
cf8b84f4
JM
10814}
10815
10816/*
10817 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10818 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10819 * and this function updates it to reflect the changes to the guest state while
10820 * L2 was running (and perhaps made some exits which were handled directly by L0
10821 * without going back to L1), and to reflect the exit reason.
10822 * Note that we do not have to copy here all VMCS fields, just those that
10823 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10824 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10825 * which already writes to vmcs12 directly.
10826 */
10827static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10828 u32 exit_reason, u32 exit_intr_info,
10829 unsigned long exit_qualification)
10830{
10831 /* update guest state fields: */
10832 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
10833
10834 /* update exit information fields: */
10835
533558bc
JK
10836 vmcs12->vm_exit_reason = exit_reason;
10837 vmcs12->exit_qualification = exit_qualification;
4704d0be 10838
533558bc 10839 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
10840 if ((vmcs12->vm_exit_intr_info &
10841 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10842 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10843 vmcs12->vm_exit_intr_error_code =
10844 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 10845 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
10846 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10847 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10848
5f3d5799
JK
10849 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10850 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10851 * instead of reading the real value. */
4704d0be 10852 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
10853
10854 /*
10855 * Transfer the event that L0 or L1 may wanted to inject into
10856 * L2 to IDT_VECTORING_INFO_FIELD.
10857 */
10858 vmcs12_save_pending_event(vcpu, vmcs12);
10859 }
10860
10861 /*
10862 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10863 * preserved above and would only end up incorrectly in L1.
10864 */
10865 vcpu->arch.nmi_injected = false;
10866 kvm_clear_exception_queue(vcpu);
10867 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
10868}
10869
10870/*
10871 * A part of what we need to when the nested L2 guest exits and we want to
10872 * run its L1 parent, is to reset L1's guest state to the host state specified
10873 * in vmcs12.
10874 * This function is to be called not only on normal nested exit, but also on
10875 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10876 * Failures During or After Loading Guest State").
10877 * This function should be called when the active VMCS is L1's (vmcs01).
10878 */
733568f9
JK
10879static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10880 struct vmcs12 *vmcs12)
4704d0be 10881{
21feb4eb 10882 struct kvm_segment seg;
ca0bde28 10883 u32 entry_failure_code;
21feb4eb 10884
4704d0be
NHE
10885 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10886 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 10887 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
10888 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10889 else
10890 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10891 vmx_set_efer(vcpu, vcpu->arch.efer);
10892
10893 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10894 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 10895 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
10896 /*
10897 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
10898 * actually changed, because vmx_set_cr0 refers to efer set above.
10899 *
10900 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
10901 * (KVM doesn't change it);
4704d0be 10902 */
bd7e5b08 10903 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 10904 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 10905
bd7e5b08 10906 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be
NHE
10907 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10908 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10909
29bf08f1 10910 nested_ept_uninit_mmu_context(vcpu);
155a97a3 10911
1dc35dac
LP
10912 /*
10913 * Only PDPTE load can fail as the value of cr3 was checked on entry and
10914 * couldn't have changed.
10915 */
10916 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
10917 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4704d0be 10918
feaf0c7d
GN
10919 if (!enable_ept)
10920 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10921
4704d0be
NHE
10922 if (enable_vpid) {
10923 /*
10924 * Trivially support vpid by letting L2s share their parent
10925 * L1's vpid. TODO: move to a more elaborate solution, giving
10926 * each L2 its own vpid and exposing the vpid feature to L1.
10927 */
10928 vmx_flush_tlb(vcpu);
10929 }
10930
10931
10932 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10933 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10934 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10935 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10936 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 10937
36be0b9d
PB
10938 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10939 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10940 vmcs_write64(GUEST_BNDCFGS, 0);
10941
44811c02 10942 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 10943 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
10944 vcpu->arch.pat = vmcs12->host_ia32_pat;
10945 }
4704d0be
NHE
10946 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10947 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10948 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 10949
21feb4eb
ACL
10950 /* Set L1 segment info according to Intel SDM
10951 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10952 seg = (struct kvm_segment) {
10953 .base = 0,
10954 .limit = 0xFFFFFFFF,
10955 .selector = vmcs12->host_cs_selector,
10956 .type = 11,
10957 .present = 1,
10958 .s = 1,
10959 .g = 1
10960 };
10961 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10962 seg.l = 1;
10963 else
10964 seg.db = 1;
10965 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10966 seg = (struct kvm_segment) {
10967 .base = 0,
10968 .limit = 0xFFFFFFFF,
10969 .type = 3,
10970 .present = 1,
10971 .s = 1,
10972 .db = 1,
10973 .g = 1
10974 };
10975 seg.selector = vmcs12->host_ds_selector;
10976 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10977 seg.selector = vmcs12->host_es_selector;
10978 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10979 seg.selector = vmcs12->host_ss_selector;
10980 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10981 seg.selector = vmcs12->host_fs_selector;
10982 seg.base = vmcs12->host_fs_base;
10983 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10984 seg.selector = vmcs12->host_gs_selector;
10985 seg.base = vmcs12->host_gs_base;
10986 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10987 seg = (struct kvm_segment) {
205befd9 10988 .base = vmcs12->host_tr_base,
21feb4eb
ACL
10989 .limit = 0x67,
10990 .selector = vmcs12->host_tr_selector,
10991 .type = 11,
10992 .present = 1
10993 };
10994 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10995
503cd0c5
JK
10996 kvm_set_dr(vcpu, 7, 0x400);
10997 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 10998
3af18d9c
WV
10999 if (cpu_has_vmx_msr_bitmap())
11000 vmx_set_msr_bitmap(vcpu);
11001
ff651cb6
WV
11002 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11003 vmcs12->vm_exit_msr_load_count))
11004 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
11005}
11006
11007/*
11008 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11009 * and modify vmcs12 to make it see what it would expect to see there if
11010 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11011 */
533558bc
JK
11012static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11013 u32 exit_intr_info,
11014 unsigned long exit_qualification)
4704d0be
NHE
11015{
11016 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be 11017 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
cf3215d9 11018 u32 vm_inst_error = 0;
4704d0be 11019
5f3d5799
JK
11020 /* trying to cancel vmlaunch/vmresume is a bug */
11021 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11022
4704d0be 11023 leave_guest_mode(vcpu);
533558bc
JK
11024 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11025 exit_qualification);
4704d0be 11026
ff651cb6
WV
11027 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11028 vmcs12->vm_exit_msr_store_count))
11029 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11030
cf3215d9
JM
11031 if (unlikely(vmx->fail))
11032 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
11033
f3380ca5
WL
11034 vmx_load_vmcs01(vcpu);
11035
77b0f5d6
BD
11036 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
11037 && nested_exit_intr_ack_set(vcpu)) {
11038 int irq = kvm_cpu_get_interrupt(vcpu);
11039 WARN_ON(irq < 0);
11040 vmcs12->vm_exit_intr_info = irq |
11041 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11042 }
11043
542060ea
JK
11044 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11045 vmcs12->exit_qualification,
11046 vmcs12->idt_vectoring_info_field,
11047 vmcs12->vm_exit_intr_info,
11048 vmcs12->vm_exit_intr_error_code,
11049 KVM_ISA_VMX);
4704d0be 11050
8391ce44
PB
11051 vm_entry_controls_reset_shadow(vmx);
11052 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
11053 vmx_segment_cache_clear(vmx);
11054
4704d0be
NHE
11055 /* if no vmcs02 cache requested, remove the one we used */
11056 if (VMCS02_POOL_SIZE == 0)
11057 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11058
11059 load_vmcs12_host_state(vcpu, vmcs12);
11060
9314006d 11061 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
11062 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11063 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 11064 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
11065 if (vmx->hv_deadline_tsc == -1)
11066 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11067 PIN_BASED_VMX_PREEMPTION_TIMER);
11068 else
11069 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11070 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
11071 if (kvm_has_tsc_control)
11072 decache_tsc_multiplier(vmx);
4704d0be 11073
dccbfcf5
RK
11074 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11075 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11076 vmx_set_virtual_x2apic_mode(vcpu,
11077 vcpu->arch.apic_base & X2APIC_ENABLE);
11078 }
4704d0be
NHE
11079
11080 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11081 vmx->host_rsp = 0;
11082
11083 /* Unpin physical memory we referred to in vmcs02 */
11084 if (vmx->nested.apic_access_page) {
11085 nested_release_page(vmx->nested.apic_access_page);
48d89b92 11086 vmx->nested.apic_access_page = NULL;
4704d0be 11087 }
a7c0b07d
WL
11088 if (vmx->nested.virtual_apic_page) {
11089 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 11090 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 11091 }
705699a1
WV
11092 if (vmx->nested.pi_desc_page) {
11093 kunmap(vmx->nested.pi_desc_page);
11094 nested_release_page(vmx->nested.pi_desc_page);
11095 vmx->nested.pi_desc_page = NULL;
11096 vmx->nested.pi_desc = NULL;
11097 }
4704d0be 11098
38b99173
TC
11099 /*
11100 * We are now running in L2, mmu_notifier will force to reload the
11101 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11102 */
c83b6d15 11103 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 11104
4704d0be
NHE
11105 /*
11106 * Exiting from L2 to L1, we're now back to L1 which thinks it just
11107 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11108 * success or failure flag accordingly.
11109 */
11110 if (unlikely(vmx->fail)) {
11111 vmx->fail = 0;
cf3215d9 11112 nested_vmx_failValid(vcpu, vm_inst_error);
4704d0be
NHE
11113 } else
11114 nested_vmx_succeed(vcpu);
012f83cb
AG
11115 if (enable_shadow_vmcs)
11116 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
11117
11118 /* in case we halted in L2 */
11119 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
11120}
11121
42124925
JK
11122/*
11123 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11124 */
11125static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11126{
11127 if (is_guest_mode(vcpu))
533558bc 11128 nested_vmx_vmexit(vcpu, -1, 0, 0);
42124925
JK
11129 free_nested(to_vmx(vcpu));
11130}
11131
7c177938
NHE
11132/*
11133 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11134 * 23.7 "VM-entry failures during or after loading guest state" (this also
11135 * lists the acceptable exit-reason and exit-qualification parameters).
11136 * It should only be called before L2 actually succeeded to run, and when
11137 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11138 */
11139static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11140 struct vmcs12 *vmcs12,
11141 u32 reason, unsigned long qualification)
11142{
11143 load_vmcs12_host_state(vcpu, vmcs12);
11144 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11145 vmcs12->exit_qualification = qualification;
11146 nested_vmx_succeed(vcpu);
012f83cb
AG
11147 if (enable_shadow_vmcs)
11148 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
11149}
11150
8a76d7f2
JR
11151static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11152 struct x86_instruction_info *info,
11153 enum x86_intercept_stage stage)
11154{
11155 return X86EMUL_CONTINUE;
11156}
11157
64672c95
YJ
11158#ifdef CONFIG_X86_64
11159/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11160static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11161 u64 divisor, u64 *result)
11162{
11163 u64 low = a << shift, high = a >> (64 - shift);
11164
11165 /* To avoid the overflow on divq */
11166 if (high >= divisor)
11167 return 1;
11168
11169 /* Low hold the result, high hold rem which is discarded */
11170 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11171 "rm" (divisor), "0" (low), "1" (high));
11172 *result = low;
11173
11174 return 0;
11175}
11176
11177static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11178{
11179 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
11180 u64 tscl = rdtsc();
11181 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11182 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
11183
11184 /* Convert to host delta tsc if tsc scaling is enabled */
11185 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11186 u64_shl_div_u64(delta_tsc,
11187 kvm_tsc_scaling_ratio_frac_bits,
11188 vcpu->arch.tsc_scaling_ratio,
11189 &delta_tsc))
11190 return -ERANGE;
11191
11192 /*
11193 * If the delta tsc can't fit in the 32 bit after the multi shift,
11194 * we can't use the preemption timer.
11195 * It's possible that it fits on later vmentries, but checking
11196 * on every vmentry is costly so we just use an hrtimer.
11197 */
11198 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11199 return -ERANGE;
11200
11201 vmx->hv_deadline_tsc = tscl + delta_tsc;
11202 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11203 PIN_BASED_VMX_PREEMPTION_TIMER);
11204 return 0;
11205}
11206
11207static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11208{
11209 struct vcpu_vmx *vmx = to_vmx(vcpu);
11210 vmx->hv_deadline_tsc = -1;
11211 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11212 PIN_BASED_VMX_PREEMPTION_TIMER);
11213}
11214#endif
11215
48d89b92 11216static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 11217{
b4a2d31d
RK
11218 if (ple_gap)
11219 shrink_ple_window(vcpu);
ae97a3b8
RK
11220}
11221
843e4330
KH
11222static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11223 struct kvm_memory_slot *slot)
11224{
11225 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11226 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11227}
11228
11229static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11230 struct kvm_memory_slot *slot)
11231{
11232 kvm_mmu_slot_set_dirty(kvm, slot);
11233}
11234
11235static void vmx_flush_log_dirty(struct kvm *kvm)
11236{
11237 kvm_flush_pml_buffers(kvm);
11238}
11239
11240static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11241 struct kvm_memory_slot *memslot,
11242 gfn_t offset, unsigned long mask)
11243{
11244 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11245}
11246
bf9f6ac8
FW
11247/*
11248 * This routine does the following things for vCPU which is going
11249 * to be blocked if VT-d PI is enabled.
11250 * - Store the vCPU to the wakeup list, so when interrupts happen
11251 * we can find the right vCPU to wake up.
11252 * - Change the Posted-interrupt descriptor as below:
11253 * 'NDST' <-- vcpu->pre_pcpu
11254 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11255 * - If 'ON' is set during this process, which means at least one
11256 * interrupt is posted for this vCPU, we cannot block it, in
11257 * this case, return 1, otherwise, return 0.
11258 *
11259 */
bc22512b 11260static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11261{
11262 unsigned long flags;
11263 unsigned int dest;
11264 struct pi_desc old, new;
11265 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11266
11267 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11268 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11269 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11270 return 0;
11271
11272 vcpu->pre_pcpu = vcpu->cpu;
11273 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11274 vcpu->pre_pcpu), flags);
11275 list_add_tail(&vcpu->blocked_vcpu_list,
11276 &per_cpu(blocked_vcpu_on_cpu,
11277 vcpu->pre_pcpu));
11278 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11279 vcpu->pre_pcpu), flags);
11280
11281 do {
11282 old.control = new.control = pi_desc->control;
11283
11284 /*
11285 * We should not block the vCPU if
11286 * an interrupt is posted for it.
11287 */
11288 if (pi_test_on(pi_desc) == 1) {
11289 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11290 vcpu->pre_pcpu), flags);
11291 list_del(&vcpu->blocked_vcpu_list);
11292 spin_unlock_irqrestore(
11293 &per_cpu(blocked_vcpu_on_cpu_lock,
11294 vcpu->pre_pcpu), flags);
11295 vcpu->pre_pcpu = -1;
11296
11297 return 1;
11298 }
11299
11300 WARN((pi_desc->sn == 1),
11301 "Warning: SN field of posted-interrupts "
11302 "is set before blocking\n");
11303
11304 /*
11305 * Since vCPU can be preempted during this process,
11306 * vcpu->cpu could be different with pre_pcpu, we
11307 * need to set pre_pcpu as the destination of wakeup
11308 * notification event, then we can find the right vCPU
11309 * to wakeup in wakeup handler if interrupts happen
11310 * when the vCPU is in blocked state.
11311 */
11312 dest = cpu_physical_id(vcpu->pre_pcpu);
11313
11314 if (x2apic_enabled())
11315 new.ndst = dest;
11316 else
11317 new.ndst = (dest << 8) & 0xFF00;
11318
11319 /* set 'NV' to 'wakeup vector' */
11320 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11321 } while (cmpxchg(&pi_desc->control, old.control,
11322 new.control) != old.control);
11323
11324 return 0;
11325}
11326
bc22512b
YJ
11327static int vmx_pre_block(struct kvm_vcpu *vcpu)
11328{
11329 if (pi_pre_block(vcpu))
11330 return 1;
11331
64672c95
YJ
11332 if (kvm_lapic_hv_timer_in_use(vcpu))
11333 kvm_lapic_switch_to_sw_timer(vcpu);
11334
bc22512b
YJ
11335 return 0;
11336}
11337
11338static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11339{
11340 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11341 struct pi_desc old, new;
11342 unsigned int dest;
11343 unsigned long flags;
11344
11345 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11346 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11347 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11348 return;
11349
11350 do {
11351 old.control = new.control = pi_desc->control;
11352
11353 dest = cpu_physical_id(vcpu->cpu);
11354
11355 if (x2apic_enabled())
11356 new.ndst = dest;
11357 else
11358 new.ndst = (dest << 8) & 0xFF00;
11359
11360 /* Allow posting non-urgent interrupts */
11361 new.sn = 0;
11362
11363 /* set 'NV' to 'notification vector' */
11364 new.nv = POSTED_INTR_VECTOR;
11365 } while (cmpxchg(&pi_desc->control, old.control,
11366 new.control) != old.control);
11367
11368 if(vcpu->pre_pcpu != -1) {
11369 spin_lock_irqsave(
11370 &per_cpu(blocked_vcpu_on_cpu_lock,
11371 vcpu->pre_pcpu), flags);
11372 list_del(&vcpu->blocked_vcpu_list);
11373 spin_unlock_irqrestore(
11374 &per_cpu(blocked_vcpu_on_cpu_lock,
11375 vcpu->pre_pcpu), flags);
11376 vcpu->pre_pcpu = -1;
11377 }
11378}
11379
bc22512b
YJ
11380static void vmx_post_block(struct kvm_vcpu *vcpu)
11381{
64672c95
YJ
11382 if (kvm_x86_ops->set_hv_timer)
11383 kvm_lapic_switch_to_hv_timer(vcpu);
11384
bc22512b
YJ
11385 pi_post_block(vcpu);
11386}
11387
efc64404
FW
11388/*
11389 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11390 *
11391 * @kvm: kvm
11392 * @host_irq: host irq of the interrupt
11393 * @guest_irq: gsi of the interrupt
11394 * @set: set or unset PI
11395 * returns 0 on success, < 0 on failure
11396 */
11397static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11398 uint32_t guest_irq, bool set)
11399{
11400 struct kvm_kernel_irq_routing_entry *e;
11401 struct kvm_irq_routing_table *irq_rt;
11402 struct kvm_lapic_irq irq;
11403 struct kvm_vcpu *vcpu;
11404 struct vcpu_data vcpu_info;
11405 int idx, ret = -EINVAL;
11406
11407 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
11408 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11409 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
11410 return 0;
11411
11412 idx = srcu_read_lock(&kvm->irq_srcu);
11413 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11414 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11415
11416 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11417 if (e->type != KVM_IRQ_ROUTING_MSI)
11418 continue;
11419 /*
11420 * VT-d PI cannot support posting multicast/broadcast
11421 * interrupts to a vCPU, we still use interrupt remapping
11422 * for these kind of interrupts.
11423 *
11424 * For lowest-priority interrupts, we only support
11425 * those with single CPU as the destination, e.g. user
11426 * configures the interrupts via /proc/irq or uses
11427 * irqbalance to make the interrupts single-CPU.
11428 *
11429 * We will support full lowest-priority interrupt later.
11430 */
11431
37131313 11432 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
11433 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11434 /*
11435 * Make sure the IRTE is in remapped mode if
11436 * we don't handle it in posted mode.
11437 */
11438 ret = irq_set_vcpu_affinity(host_irq, NULL);
11439 if (ret < 0) {
11440 printk(KERN_INFO
11441 "failed to back to remapped mode, irq: %u\n",
11442 host_irq);
11443 goto out;
11444 }
11445
efc64404 11446 continue;
23a1c257 11447 }
efc64404
FW
11448
11449 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11450 vcpu_info.vector = irq.vector;
11451
b6ce9780 11452 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
11453 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11454
11455 if (set)
11456 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11457 else {
11458 /* suppress notification event before unposting */
11459 pi_set_sn(vcpu_to_pi_desc(vcpu));
11460 ret = irq_set_vcpu_affinity(host_irq, NULL);
11461 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11462 }
11463
11464 if (ret < 0) {
11465 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11466 __func__);
11467 goto out;
11468 }
11469 }
11470
11471 ret = 0;
11472out:
11473 srcu_read_unlock(&kvm->irq_srcu, idx);
11474 return ret;
11475}
11476
c45dcc71
AR
11477static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11478{
11479 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11480 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11481 FEATURE_CONTROL_LMCE;
11482 else
11483 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11484 ~FEATURE_CONTROL_LMCE;
11485}
11486
404f6aac 11487static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
11488 .cpu_has_kvm_support = cpu_has_kvm_support,
11489 .disabled_by_bios = vmx_disabled_by_bios,
11490 .hardware_setup = hardware_setup,
11491 .hardware_unsetup = hardware_unsetup,
002c7f7c 11492 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
11493 .hardware_enable = hardware_enable,
11494 .hardware_disable = hardware_disable,
04547156 11495 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 11496 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
11497
11498 .vcpu_create = vmx_create_vcpu,
11499 .vcpu_free = vmx_free_vcpu,
04d2cc77 11500 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 11501
04d2cc77 11502 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
11503 .vcpu_load = vmx_vcpu_load,
11504 .vcpu_put = vmx_vcpu_put,
11505
a96036b8 11506 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
11507 .get_msr = vmx_get_msr,
11508 .set_msr = vmx_set_msr,
11509 .get_segment_base = vmx_get_segment_base,
11510 .get_segment = vmx_get_segment,
11511 .set_segment = vmx_set_segment,
2e4d2653 11512 .get_cpl = vmx_get_cpl,
6aa8b732 11513 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 11514 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 11515 .decache_cr3 = vmx_decache_cr3,
25c4c276 11516 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 11517 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
11518 .set_cr3 = vmx_set_cr3,
11519 .set_cr4 = vmx_set_cr4,
6aa8b732 11520 .set_efer = vmx_set_efer,
6aa8b732
AK
11521 .get_idt = vmx_get_idt,
11522 .set_idt = vmx_set_idt,
11523 .get_gdt = vmx_get_gdt,
11524 .set_gdt = vmx_set_gdt,
73aaf249
JK
11525 .get_dr6 = vmx_get_dr6,
11526 .set_dr6 = vmx_set_dr6,
020df079 11527 .set_dr7 = vmx_set_dr7,
81908bf4 11528 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 11529 .cache_reg = vmx_cache_reg,
6aa8b732
AK
11530 .get_rflags = vmx_get_rflags,
11531 .set_rflags = vmx_set_rflags,
be94f6b7
HH
11532
11533 .get_pkru = vmx_get_pkru,
11534
6aa8b732 11535 .tlb_flush = vmx_flush_tlb,
6aa8b732 11536
6aa8b732 11537 .run = vmx_vcpu_run,
6062d012 11538 .handle_exit = vmx_handle_exit,
6aa8b732 11539 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
11540 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11541 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 11542 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 11543 .set_irq = vmx_inject_irq,
95ba8273 11544 .set_nmi = vmx_inject_nmi,
298101da 11545 .queue_exception = vmx_queue_exception,
b463a6f7 11546 .cancel_injection = vmx_cancel_injection,
78646121 11547 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 11548 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
11549 .get_nmi_mask = vmx_get_nmi_mask,
11550 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
11551 .enable_nmi_window = enable_nmi_window,
11552 .enable_irq_window = enable_irq_window,
11553 .update_cr8_intercept = update_cr8_intercept,
8d14695f 11554 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 11555 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
11556 .get_enable_apicv = vmx_get_enable_apicv,
11557 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 11558 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 11559 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
11560 .hwapic_irr_update = vmx_hwapic_irr_update,
11561 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
11562 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11563 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 11564
cbc94022 11565 .set_tss_addr = vmx_set_tss_addr,
67253af5 11566 .get_tdp_level = get_ept_level,
4b12f0de 11567 .get_mt_mask = vmx_get_mt_mask,
229456fc 11568
586f9607 11569 .get_exit_info = vmx_get_exit_info,
586f9607 11570
17cc3935 11571 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
11572
11573 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
11574
11575 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 11576 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
11577
11578 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
11579
11580 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
11581
11582 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
11583
11584 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
11585
11586 .check_intercept = vmx_check_intercept,
a547c6db 11587 .handle_external_intr = vmx_handle_external_intr,
da8999d3 11588 .mpx_supported = vmx_mpx_supported,
55412b2e 11589 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
11590
11591 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
11592
11593 .sched_in = vmx_sched_in,
843e4330
KH
11594
11595 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11596 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11597 .flush_log_dirty = vmx_flush_log_dirty,
11598 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
25462f7f 11599
bf9f6ac8
FW
11600 .pre_block = vmx_pre_block,
11601 .post_block = vmx_post_block,
11602
25462f7f 11603 .pmu_ops = &intel_pmu_ops,
efc64404
FW
11604
11605 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
11606
11607#ifdef CONFIG_X86_64
11608 .set_hv_timer = vmx_set_hv_timer,
11609 .cancel_hv_timer = vmx_cancel_hv_timer,
11610#endif
c45dcc71
AR
11611
11612 .setup_mce = vmx_setup_mce,
6aa8b732
AK
11613};
11614
11615static int __init vmx_init(void)
11616{
34a1cd60
TC
11617 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11618 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 11619 if (r)
34a1cd60 11620 return r;
25c5f225 11621
2965faa5 11622#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
11623 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11624 crash_vmclear_local_loaded_vmcss);
11625#endif
11626
fdef3ad1 11627 return 0;
6aa8b732
AK
11628}
11629
11630static void __exit vmx_exit(void)
11631{
2965faa5 11632#ifdef CONFIG_KEXEC_CORE
3b63a43f 11633 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
11634 synchronize_rcu();
11635#endif
11636
cb498ea2 11637 kvm_exit();
6aa8b732
AK
11638}
11639
11640module_init(vmx_init)
11641module_exit(vmx_exit)