]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: VMX: call ept_sync_global() with enable_ept only
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
c207aee4 36#include <linux/frame.h>
5fdbf976 37#include "kvm_cache_regs.h"
35920a35 38#include "x86.h"
e495606d 39
28b835d6 40#include <asm/cpu.h>
6aa8b732 41#include <asm/io.h>
3b3be0d1 42#include <asm/desc.h>
13673a90 43#include <asm/vmx.h>
6210e37b 44#include <asm/virtext.h>
a0861c02 45#include <asm/mce.h>
952f07ec 46#include <asm/fpu/internal.h>
d7cd9796 47#include <asm/perf_event.h>
81908bf4 48#include <asm/debugreg.h>
8f536b76 49#include <asm/kexec.h>
dab2087d 50#include <asm/apic.h>
efc64404 51#include <asm/irq_remapping.h>
d6e41f11 52#include <asm/mmu_context.h>
6aa8b732 53
229456fc 54#include "trace.h"
25462f7f 55#include "pmu.h"
229456fc 56
4ecac3fd 57#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
58#define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 60
6aa8b732
AK
61MODULE_AUTHOR("Qumranet");
62MODULE_LICENSE("GPL");
63
e9bda3b3
JT
64static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67};
68MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
476bc001 70static bool __read_mostly enable_vpid = 1;
736caefe 71module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 72
476bc001 73static bool __read_mostly flexpriority_enabled = 1;
736caefe 74module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 75
476bc001 76static bool __read_mostly enable_ept = 1;
736caefe 77module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 78
476bc001 79static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
80module_param_named(unrestricted_guest,
81 enable_unrestricted_guest, bool, S_IRUGO);
82
83c3a331
XH
83static bool __read_mostly enable_ept_ad_bits = 1;
84module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
a27685c3 86static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 87module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 88
476bc001 89static bool __read_mostly fasteoi = 1;
58fbbf26
KT
90module_param(fasteoi, bool, S_IRUGO);
91
5a71785d 92static bool __read_mostly enable_apicv = 1;
01e439be 93module_param(enable_apicv, bool, S_IRUGO);
83d4c286 94
abc4fc58
AG
95static bool __read_mostly enable_shadow_vmcs = 1;
96module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
97/*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
476bc001 102static bool __read_mostly nested = 0;
801d3424
NHE
103module_param(nested, bool, S_IRUGO);
104
20300099
WL
105static u64 __read_mostly host_xss;
106
843e4330
KH
107static bool __read_mostly enable_pml = 1;
108module_param_named(pml, enable_pml, bool, S_IRUGO);
109
64903d61
HZ
110#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
111
64672c95
YJ
112/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
113static int __read_mostly cpu_preemption_timer_multi;
114static bool __read_mostly enable_preemption_timer = 1;
115#ifdef CONFIG_X86_64
116module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117#endif
118
5037878e
GN
119#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
121#define KVM_VM_CR0_ALWAYS_ON \
122 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
123#define KVM_CR4_GUEST_OWNED_BITS \
124 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
fd8cb433 125 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
4c38609a 126
cdc0e244
AK
127#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
78ac8b47
AK
130#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
f4124500
JK
132#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
16c2aec6
JD
134/*
135 * Hyper-V requires all of these, so mark them as supported even though
136 * they are just treated the same as all-context.
137 */
138#define VMX_VPID_EXTENT_SUPPORTED_MASK \
139 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
140 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
141 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
4b8d54f9
ZE
144/*
145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146 * ple_gap: upper bound on the amount of time between two successive
147 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 148 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
149 * ple_window: upper bound on the amount of time a guest is allowed to execute
150 * in a PAUSE loop. Tests indicate that most spinlocks are held for
151 * less than 2^12 cycles
152 * Time is measured based on a counter that runs at the same rate as the TSC,
153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
154 */
b4a2d31d
RK
155#define KVM_VMX_DEFAULT_PLE_GAP 128
156#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
157#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
158#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
160 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
4b8d54f9
ZE
162static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163module_param(ple_gap, int, S_IRUGO);
164
165static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166module_param(ple_window, int, S_IRUGO);
167
b4a2d31d
RK
168/* Default doubles per-vcpu window every exit. */
169static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170module_param(ple_window_grow, int, S_IRUGO);
171
172/* Default resets per-vcpu window every exit to ple_window. */
173static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174module_param(ple_window_shrink, int, S_IRUGO);
175
176/* Default is to compute the maximum so we can never overflow. */
177static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179module_param(ple_window_max, int, S_IRUGO);
180
83287ea4
AK
181extern const ulong vmx_return;
182
8bf00a52 183#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 184#define VMCS02_POOL_SIZE 1
61d2ef2c 185
a2fa3e9f
GH
186struct vmcs {
187 u32 revision_id;
188 u32 abort;
189 char data[0];
190};
191
d462b819
NHE
192/*
193 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195 * loaded on this CPU (so we can clear them if the CPU goes down).
196 */
197struct loaded_vmcs {
198 struct vmcs *vmcs;
355f4fb1 199 struct vmcs *shadow_vmcs;
d462b819 200 int cpu;
4c4a6f79
PB
201 bool launched;
202 bool nmi_known_unmasked;
44889942
LP
203 unsigned long vmcs_host_cr3; /* May not match real cr3 */
204 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d462b819
NHE
205 struct list_head loaded_vmcss_on_cpu_link;
206};
207
26bb0981
AK
208struct shared_msr_entry {
209 unsigned index;
210 u64 data;
d5696725 211 u64 mask;
26bb0981
AK
212};
213
a9d30f33
NHE
214/*
215 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
216 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
217 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
218 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
219 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
220 * More than one of these structures may exist, if L1 runs multiple L2 guests.
221 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
222 * underlying hardware which will be used to run L2.
223 * This structure is packed to ensure that its layout is identical across
224 * machines (necessary for live migration).
225 * If there are changes in this struct, VMCS12_REVISION must be changed.
226 */
22bd0358 227typedef u64 natural_width;
a9d30f33
NHE
228struct __packed vmcs12 {
229 /* According to the Intel spec, a VMCS region must start with the
230 * following two fields. Then follow implementation-specific data.
231 */
232 u32 revision_id;
233 u32 abort;
22bd0358 234
27d6c865
NHE
235 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
236 u32 padding[7]; /* room for future expansion */
237
22bd0358
NHE
238 u64 io_bitmap_a;
239 u64 io_bitmap_b;
240 u64 msr_bitmap;
241 u64 vm_exit_msr_store_addr;
242 u64 vm_exit_msr_load_addr;
243 u64 vm_entry_msr_load_addr;
244 u64 tsc_offset;
245 u64 virtual_apic_page_addr;
246 u64 apic_access_addr;
705699a1 247 u64 posted_intr_desc_addr;
27c42a1b 248 u64 vm_function_control;
22bd0358 249 u64 ept_pointer;
608406e2
WV
250 u64 eoi_exit_bitmap0;
251 u64 eoi_exit_bitmap1;
252 u64 eoi_exit_bitmap2;
253 u64 eoi_exit_bitmap3;
41ab9372 254 u64 eptp_list_address;
81dc01f7 255 u64 xss_exit_bitmap;
22bd0358
NHE
256 u64 guest_physical_address;
257 u64 vmcs_link_pointer;
c5f983f6 258 u64 pml_address;
22bd0358
NHE
259 u64 guest_ia32_debugctl;
260 u64 guest_ia32_pat;
261 u64 guest_ia32_efer;
262 u64 guest_ia32_perf_global_ctrl;
263 u64 guest_pdptr0;
264 u64 guest_pdptr1;
265 u64 guest_pdptr2;
266 u64 guest_pdptr3;
36be0b9d 267 u64 guest_bndcfgs;
22bd0358
NHE
268 u64 host_ia32_pat;
269 u64 host_ia32_efer;
270 u64 host_ia32_perf_global_ctrl;
271 u64 padding64[8]; /* room for future expansion */
272 /*
273 * To allow migration of L1 (complete with its L2 guests) between
274 * machines of different natural widths (32 or 64 bit), we cannot have
275 * unsigned long fields with no explict size. We use u64 (aliased
276 * natural_width) instead. Luckily, x86 is little-endian.
277 */
278 natural_width cr0_guest_host_mask;
279 natural_width cr4_guest_host_mask;
280 natural_width cr0_read_shadow;
281 natural_width cr4_read_shadow;
282 natural_width cr3_target_value0;
283 natural_width cr3_target_value1;
284 natural_width cr3_target_value2;
285 natural_width cr3_target_value3;
286 natural_width exit_qualification;
287 natural_width guest_linear_address;
288 natural_width guest_cr0;
289 natural_width guest_cr3;
290 natural_width guest_cr4;
291 natural_width guest_es_base;
292 natural_width guest_cs_base;
293 natural_width guest_ss_base;
294 natural_width guest_ds_base;
295 natural_width guest_fs_base;
296 natural_width guest_gs_base;
297 natural_width guest_ldtr_base;
298 natural_width guest_tr_base;
299 natural_width guest_gdtr_base;
300 natural_width guest_idtr_base;
301 natural_width guest_dr7;
302 natural_width guest_rsp;
303 natural_width guest_rip;
304 natural_width guest_rflags;
305 natural_width guest_pending_dbg_exceptions;
306 natural_width guest_sysenter_esp;
307 natural_width guest_sysenter_eip;
308 natural_width host_cr0;
309 natural_width host_cr3;
310 natural_width host_cr4;
311 natural_width host_fs_base;
312 natural_width host_gs_base;
313 natural_width host_tr_base;
314 natural_width host_gdtr_base;
315 natural_width host_idtr_base;
316 natural_width host_ia32_sysenter_esp;
317 natural_width host_ia32_sysenter_eip;
318 natural_width host_rsp;
319 natural_width host_rip;
320 natural_width paddingl[8]; /* room for future expansion */
321 u32 pin_based_vm_exec_control;
322 u32 cpu_based_vm_exec_control;
323 u32 exception_bitmap;
324 u32 page_fault_error_code_mask;
325 u32 page_fault_error_code_match;
326 u32 cr3_target_count;
327 u32 vm_exit_controls;
328 u32 vm_exit_msr_store_count;
329 u32 vm_exit_msr_load_count;
330 u32 vm_entry_controls;
331 u32 vm_entry_msr_load_count;
332 u32 vm_entry_intr_info_field;
333 u32 vm_entry_exception_error_code;
334 u32 vm_entry_instruction_len;
335 u32 tpr_threshold;
336 u32 secondary_vm_exec_control;
337 u32 vm_instruction_error;
338 u32 vm_exit_reason;
339 u32 vm_exit_intr_info;
340 u32 vm_exit_intr_error_code;
341 u32 idt_vectoring_info_field;
342 u32 idt_vectoring_error_code;
343 u32 vm_exit_instruction_len;
344 u32 vmx_instruction_info;
345 u32 guest_es_limit;
346 u32 guest_cs_limit;
347 u32 guest_ss_limit;
348 u32 guest_ds_limit;
349 u32 guest_fs_limit;
350 u32 guest_gs_limit;
351 u32 guest_ldtr_limit;
352 u32 guest_tr_limit;
353 u32 guest_gdtr_limit;
354 u32 guest_idtr_limit;
355 u32 guest_es_ar_bytes;
356 u32 guest_cs_ar_bytes;
357 u32 guest_ss_ar_bytes;
358 u32 guest_ds_ar_bytes;
359 u32 guest_fs_ar_bytes;
360 u32 guest_gs_ar_bytes;
361 u32 guest_ldtr_ar_bytes;
362 u32 guest_tr_ar_bytes;
363 u32 guest_interruptibility_info;
364 u32 guest_activity_state;
365 u32 guest_sysenter_cs;
366 u32 host_ia32_sysenter_cs;
0238ea91
JK
367 u32 vmx_preemption_timer_value;
368 u32 padding32[7]; /* room for future expansion */
22bd0358 369 u16 virtual_processor_id;
705699a1 370 u16 posted_intr_nv;
22bd0358
NHE
371 u16 guest_es_selector;
372 u16 guest_cs_selector;
373 u16 guest_ss_selector;
374 u16 guest_ds_selector;
375 u16 guest_fs_selector;
376 u16 guest_gs_selector;
377 u16 guest_ldtr_selector;
378 u16 guest_tr_selector;
608406e2 379 u16 guest_intr_status;
c5f983f6 380 u16 guest_pml_index;
22bd0358
NHE
381 u16 host_es_selector;
382 u16 host_cs_selector;
383 u16 host_ss_selector;
384 u16 host_ds_selector;
385 u16 host_fs_selector;
386 u16 host_gs_selector;
387 u16 host_tr_selector;
a9d30f33
NHE
388};
389
390/*
391 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
392 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
393 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
394 */
395#define VMCS12_REVISION 0x11e57ed0
396
397/*
398 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
399 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
400 * current implementation, 4K are reserved to avoid future complications.
401 */
402#define VMCS12_SIZE 0x1000
403
ff2f6fe9
NHE
404/* Used to remember the last vmcs02 used for some recently used vmcs12s */
405struct vmcs02_list {
406 struct list_head list;
407 gpa_t vmptr;
408 struct loaded_vmcs vmcs02;
409};
410
ec378aee
NHE
411/*
412 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
413 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
414 */
415struct nested_vmx {
416 /* Has the level1 guest done vmxon? */
417 bool vmxon;
3573e22c 418 gpa_t vmxon_ptr;
c5f983f6 419 bool pml_full;
a9d30f33
NHE
420
421 /* The guest-physical address of the current VMCS L1 keeps for L2 */
422 gpa_t current_vmptr;
4f2777bc
DM
423 /*
424 * Cache of the guest's VMCS, existing outside of guest memory.
425 * Loaded from guest memory during VMPTRLD. Flushed to guest
8ca44e88 426 * memory during VMCLEAR and VMPTRLD.
4f2777bc
DM
427 */
428 struct vmcs12 *cached_vmcs12;
012f83cb
AG
429 /*
430 * Indicates if the shadow vmcs must be updated with the
431 * data hold by vmcs12
432 */
433 bool sync_shadow_vmcs;
ff2f6fe9
NHE
434
435 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
436 struct list_head vmcs02_pool;
437 int vmcs02_num;
dccbfcf5 438 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
439 /* L2 must run next, and mustn't decide to exit to L1. */
440 bool nested_run_pending;
fe3ef05c
NHE
441 /*
442 * Guest pages referred to in vmcs02 with host-physical pointers, so
443 * we must keep them pinned while L2 runs.
444 */
445 struct page *apic_access_page;
a7c0b07d 446 struct page *virtual_apic_page;
705699a1
WV
447 struct page *pi_desc_page;
448 struct pi_desc *pi_desc;
449 bool pi_pending;
450 u16 posted_intr_nv;
f4124500 451
d048c098
RK
452 unsigned long *msr_bitmap;
453
f4124500
JK
454 struct hrtimer preemption_timer;
455 bool preemption_timer_expired;
2996fca0
JK
456
457 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
458 u64 vmcs01_debugctl;
b9c237bb 459
5c614b35
WL
460 u16 vpid02;
461 u16 last_vpid;
462
0115f9cb
DM
463 /*
464 * We only store the "true" versions of the VMX capability MSRs. We
465 * generate the "non-true" versions by setting the must-be-1 bits
466 * according to the SDM.
467 */
b9c237bb
WV
468 u32 nested_vmx_procbased_ctls_low;
469 u32 nested_vmx_procbased_ctls_high;
b9c237bb
WV
470 u32 nested_vmx_secondary_ctls_low;
471 u32 nested_vmx_secondary_ctls_high;
472 u32 nested_vmx_pinbased_ctls_low;
473 u32 nested_vmx_pinbased_ctls_high;
474 u32 nested_vmx_exit_ctls_low;
475 u32 nested_vmx_exit_ctls_high;
b9c237bb
WV
476 u32 nested_vmx_entry_ctls_low;
477 u32 nested_vmx_entry_ctls_high;
b9c237bb
WV
478 u32 nested_vmx_misc_low;
479 u32 nested_vmx_misc_high;
480 u32 nested_vmx_ept_caps;
99b83ac8 481 u32 nested_vmx_vpid_caps;
62cc6b9d
DM
482 u64 nested_vmx_basic;
483 u64 nested_vmx_cr0_fixed0;
484 u64 nested_vmx_cr0_fixed1;
485 u64 nested_vmx_cr4_fixed0;
486 u64 nested_vmx_cr4_fixed1;
487 u64 nested_vmx_vmcs_enum;
27c42a1b 488 u64 nested_vmx_vmfunc_controls;
ec378aee
NHE
489};
490
01e439be 491#define POSTED_INTR_ON 0
ebbfc765
FW
492#define POSTED_INTR_SN 1
493
01e439be
YZ
494/* Posted-Interrupt Descriptor */
495struct pi_desc {
496 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
497 union {
498 struct {
499 /* bit 256 - Outstanding Notification */
500 u16 on : 1,
501 /* bit 257 - Suppress Notification */
502 sn : 1,
503 /* bit 271:258 - Reserved */
504 rsvd_1 : 14;
505 /* bit 279:272 - Notification Vector */
506 u8 nv;
507 /* bit 287:280 - Reserved */
508 u8 rsvd_2;
509 /* bit 319:288 - Notification Destination */
510 u32 ndst;
511 };
512 u64 control;
513 };
514 u32 rsvd[6];
01e439be
YZ
515} __aligned(64);
516
a20ed54d
YZ
517static bool pi_test_and_set_on(struct pi_desc *pi_desc)
518{
519 return test_and_set_bit(POSTED_INTR_ON,
520 (unsigned long *)&pi_desc->control);
521}
522
523static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
524{
525 return test_and_clear_bit(POSTED_INTR_ON,
526 (unsigned long *)&pi_desc->control);
527}
528
529static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
530{
531 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
532}
533
ebbfc765
FW
534static inline void pi_clear_sn(struct pi_desc *pi_desc)
535{
536 return clear_bit(POSTED_INTR_SN,
537 (unsigned long *)&pi_desc->control);
538}
539
540static inline void pi_set_sn(struct pi_desc *pi_desc)
541{
542 return set_bit(POSTED_INTR_SN,
543 (unsigned long *)&pi_desc->control);
544}
545
ad361091
PB
546static inline void pi_clear_on(struct pi_desc *pi_desc)
547{
548 clear_bit(POSTED_INTR_ON,
549 (unsigned long *)&pi_desc->control);
550}
551
ebbfc765
FW
552static inline int pi_test_on(struct pi_desc *pi_desc)
553{
554 return test_bit(POSTED_INTR_ON,
555 (unsigned long *)&pi_desc->control);
556}
557
558static inline int pi_test_sn(struct pi_desc *pi_desc)
559{
560 return test_bit(POSTED_INTR_SN,
561 (unsigned long *)&pi_desc->control);
562}
563
a2fa3e9f 564struct vcpu_vmx {
fb3f0f51 565 struct kvm_vcpu vcpu;
313dbd49 566 unsigned long host_rsp;
29bd8a78 567 u8 fail;
51aa01d1 568 u32 exit_intr_info;
1155f76a 569 u32 idt_vectoring_info;
6de12732 570 ulong rflags;
26bb0981 571 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
572 int nmsrs;
573 int save_nmsrs;
a547c6db 574 unsigned long host_idt_base;
a2fa3e9f 575#ifdef CONFIG_X86_64
44ea2b17
AK
576 u64 msr_host_kernel_gs_base;
577 u64 msr_guest_kernel_gs_base;
a2fa3e9f 578#endif
2961e876
GN
579 u32 vm_entry_controls_shadow;
580 u32 vm_exit_controls_shadow;
80154d77
PB
581 u32 secondary_exec_control;
582
d462b819
NHE
583 /*
584 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
585 * non-nested (L1) guest, it always points to vmcs01. For a nested
586 * guest (L2), it points to a different VMCS.
587 */
588 struct loaded_vmcs vmcs01;
589 struct loaded_vmcs *loaded_vmcs;
590 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
591 struct msr_autoload {
592 unsigned nr;
593 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
594 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
595 } msr_autoload;
a2fa3e9f
GH
596 struct {
597 int loaded;
598 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
599#ifdef CONFIG_X86_64
600 u16 ds_sel, es_sel;
601#endif
152d3f2f
LV
602 int gs_ldt_reload_needed;
603 int fs_reload_needed;
da8999d3 604 u64 msr_host_bndcfgs;
d77c26fc 605 } host_state;
9c8cba37 606 struct {
7ffd92c5 607 int vm86_active;
78ac8b47 608 ulong save_rflags;
f5f7b2fe
AK
609 struct kvm_segment segs[8];
610 } rmode;
611 struct {
612 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
613 struct kvm_save_segment {
614 u16 selector;
615 unsigned long base;
616 u32 limit;
617 u32 ar;
f5f7b2fe 618 } seg[8];
2fb92db1 619 } segment_cache;
2384d2b3 620 int vpid;
04fa4d32 621 bool emulation_required;
3b86cd99 622
a0861c02 623 u32 exit_reason;
4e47c7a6 624
01e439be
YZ
625 /* Posted interrupt descriptor */
626 struct pi_desc pi_desc;
627
ec378aee
NHE
628 /* Support for a guest hypervisor (nested VMX) */
629 struct nested_vmx nested;
a7653ecd
RK
630
631 /* Dynamic PLE window. */
632 int ple_window;
633 bool ple_window_dirty;
843e4330
KH
634
635 /* Support for PML */
636#define PML_ENTITY_NUM 512
637 struct page *pml_pg;
2680d6da 638
64672c95
YJ
639 /* apic deadline value in host tsc */
640 u64 hv_deadline_tsc;
641
2680d6da 642 u64 current_tsc_ratio;
1be0e61c 643
1be0e61c 644 u32 host_pkru;
3b84080b 645
37e4c997
HZ
646 /*
647 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
648 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
649 * in msr_ia32_feature_control_valid_bits.
650 */
3b84080b 651 u64 msr_ia32_feature_control;
37e4c997 652 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
653};
654
2fb92db1
AK
655enum segment_cache_field {
656 SEG_FIELD_SEL = 0,
657 SEG_FIELD_BASE = 1,
658 SEG_FIELD_LIMIT = 2,
659 SEG_FIELD_AR = 3,
660
661 SEG_FIELD_NR = 4
662};
663
a2fa3e9f
GH
664static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
665{
fb3f0f51 666 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
667}
668
efc64404
FW
669static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
670{
671 return &(to_vmx(vcpu)->pi_desc);
672}
673
22bd0358
NHE
674#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
675#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
676#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
677 [number##_HIGH] = VMCS12_OFFSET(name)+4
678
4607c2d7 679
fe2b201b 680static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
681 /*
682 * We do NOT shadow fields that are modified when L0
683 * traps and emulates any vmx instruction (e.g. VMPTRLD,
684 * VMXON...) executed by L1.
685 * For example, VM_INSTRUCTION_ERROR is read
686 * by L1 if a vmx instruction fails (part of the error path).
687 * Note the code assumes this logic. If for some reason
688 * we start shadowing these fields then we need to
689 * force a shadow sync when L0 emulates vmx instructions
690 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
691 * by nested_vmx_failValid)
692 */
693 VM_EXIT_REASON,
694 VM_EXIT_INTR_INFO,
695 VM_EXIT_INSTRUCTION_LEN,
696 IDT_VECTORING_INFO_FIELD,
697 IDT_VECTORING_ERROR_CODE,
698 VM_EXIT_INTR_ERROR_CODE,
699 EXIT_QUALIFICATION,
700 GUEST_LINEAR_ADDRESS,
701 GUEST_PHYSICAL_ADDRESS
702};
fe2b201b 703static int max_shadow_read_only_fields =
4607c2d7
AG
704 ARRAY_SIZE(shadow_read_only_fields);
705
fe2b201b 706static unsigned long shadow_read_write_fields[] = {
a7c0b07d 707 TPR_THRESHOLD,
4607c2d7
AG
708 GUEST_RIP,
709 GUEST_RSP,
710 GUEST_CR0,
711 GUEST_CR3,
712 GUEST_CR4,
713 GUEST_INTERRUPTIBILITY_INFO,
714 GUEST_RFLAGS,
715 GUEST_CS_SELECTOR,
716 GUEST_CS_AR_BYTES,
717 GUEST_CS_LIMIT,
718 GUEST_CS_BASE,
719 GUEST_ES_BASE,
36be0b9d 720 GUEST_BNDCFGS,
4607c2d7
AG
721 CR0_GUEST_HOST_MASK,
722 CR0_READ_SHADOW,
723 CR4_READ_SHADOW,
724 TSC_OFFSET,
725 EXCEPTION_BITMAP,
726 CPU_BASED_VM_EXEC_CONTROL,
727 VM_ENTRY_EXCEPTION_ERROR_CODE,
728 VM_ENTRY_INTR_INFO_FIELD,
729 VM_ENTRY_INSTRUCTION_LEN,
730 VM_ENTRY_EXCEPTION_ERROR_CODE,
731 HOST_FS_BASE,
732 HOST_GS_BASE,
733 HOST_FS_SELECTOR,
734 HOST_GS_SELECTOR
735};
fe2b201b 736static int max_shadow_read_write_fields =
4607c2d7
AG
737 ARRAY_SIZE(shadow_read_write_fields);
738
772e0318 739static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 740 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 741 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
742 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
743 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
744 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
745 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
746 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
747 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
748 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
749 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 750 FIELD(GUEST_INTR_STATUS, guest_intr_status),
c5f983f6 751 FIELD(GUEST_PML_INDEX, guest_pml_index),
22bd0358
NHE
752 FIELD(HOST_ES_SELECTOR, host_es_selector),
753 FIELD(HOST_CS_SELECTOR, host_cs_selector),
754 FIELD(HOST_SS_SELECTOR, host_ss_selector),
755 FIELD(HOST_DS_SELECTOR, host_ds_selector),
756 FIELD(HOST_FS_SELECTOR, host_fs_selector),
757 FIELD(HOST_GS_SELECTOR, host_gs_selector),
758 FIELD(HOST_TR_SELECTOR, host_tr_selector),
759 FIELD64(IO_BITMAP_A, io_bitmap_a),
760 FIELD64(IO_BITMAP_B, io_bitmap_b),
761 FIELD64(MSR_BITMAP, msr_bitmap),
762 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765 FIELD64(TSC_OFFSET, tsc_offset),
766 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 768 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
27c42a1b 769 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
22bd0358 770 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
771 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
772 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
773 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
774 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
41ab9372 775 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
81dc01f7 776 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
777 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
778 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
c5f983f6 779 FIELD64(PML_ADDRESS, pml_address),
22bd0358
NHE
780 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
781 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
782 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
783 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
784 FIELD64(GUEST_PDPTR0, guest_pdptr0),
785 FIELD64(GUEST_PDPTR1, guest_pdptr1),
786 FIELD64(GUEST_PDPTR2, guest_pdptr2),
787 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 788 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
789 FIELD64(HOST_IA32_PAT, host_ia32_pat),
790 FIELD64(HOST_IA32_EFER, host_ia32_efer),
791 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
792 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
793 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
794 FIELD(EXCEPTION_BITMAP, exception_bitmap),
795 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
796 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
797 FIELD(CR3_TARGET_COUNT, cr3_target_count),
798 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
799 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
800 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
801 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
802 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
803 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
804 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
805 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
806 FIELD(TPR_THRESHOLD, tpr_threshold),
807 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
808 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
809 FIELD(VM_EXIT_REASON, vm_exit_reason),
810 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
811 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
812 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
813 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
814 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
815 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
816 FIELD(GUEST_ES_LIMIT, guest_es_limit),
817 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
818 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
819 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
820 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
821 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
822 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
823 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
824 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
825 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
826 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
827 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
828 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
829 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
830 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
831 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
832 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
833 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
834 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
835 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
836 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
837 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 838 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
839 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
840 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
841 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
842 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
843 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
844 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
845 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
846 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
847 FIELD(EXIT_QUALIFICATION, exit_qualification),
848 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
849 FIELD(GUEST_CR0, guest_cr0),
850 FIELD(GUEST_CR3, guest_cr3),
851 FIELD(GUEST_CR4, guest_cr4),
852 FIELD(GUEST_ES_BASE, guest_es_base),
853 FIELD(GUEST_CS_BASE, guest_cs_base),
854 FIELD(GUEST_SS_BASE, guest_ss_base),
855 FIELD(GUEST_DS_BASE, guest_ds_base),
856 FIELD(GUEST_FS_BASE, guest_fs_base),
857 FIELD(GUEST_GS_BASE, guest_gs_base),
858 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
859 FIELD(GUEST_TR_BASE, guest_tr_base),
860 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
861 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
862 FIELD(GUEST_DR7, guest_dr7),
863 FIELD(GUEST_RSP, guest_rsp),
864 FIELD(GUEST_RIP, guest_rip),
865 FIELD(GUEST_RFLAGS, guest_rflags),
866 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
867 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
868 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
869 FIELD(HOST_CR0, host_cr0),
870 FIELD(HOST_CR3, host_cr3),
871 FIELD(HOST_CR4, host_cr4),
872 FIELD(HOST_FS_BASE, host_fs_base),
873 FIELD(HOST_GS_BASE, host_gs_base),
874 FIELD(HOST_TR_BASE, host_tr_base),
875 FIELD(HOST_GDTR_BASE, host_gdtr_base),
876 FIELD(HOST_IDTR_BASE, host_idtr_base),
877 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
878 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
879 FIELD(HOST_RSP, host_rsp),
880 FIELD(HOST_RIP, host_rip),
881};
22bd0358
NHE
882
883static inline short vmcs_field_to_offset(unsigned long field)
884{
a2ae9df7
PB
885 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
886
887 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
888 vmcs_field_to_offset_table[field] == 0)
889 return -ENOENT;
890
22bd0358
NHE
891 return vmcs_field_to_offset_table[field];
892}
893
a9d30f33
NHE
894static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
895{
4f2777bc 896 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
897}
898
995f00a6 899static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
bfd0a56b 900static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
995f00a6 901static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
f53cd63c 902static bool vmx_xsaves_supported(void);
776e58ea 903static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
904static void vmx_set_segment(struct kvm_vcpu *vcpu,
905 struct kvm_segment *var, int seg);
906static void vmx_get_segment(struct kvm_vcpu *vcpu,
907 struct kvm_segment *var, int seg);
d99e4152
GN
908static bool guest_state_valid(struct kvm_vcpu *vcpu);
909static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 910static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 911static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 912static int alloc_identity_pagetable(struct kvm *kvm);
b96fb439
PB
913static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
914static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
915static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
916 u16 error_code);
75880a01 917
6aa8b732
AK
918static DEFINE_PER_CPU(struct vmcs *, vmxarea);
919static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
920/*
921 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
922 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
923 */
924static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
6aa8b732 925
bf9f6ac8
FW
926/*
927 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
928 * can find which vCPU should be waken up.
929 */
930static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
931static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
932
23611332
RK
933enum {
934 VMX_IO_BITMAP_A,
935 VMX_IO_BITMAP_B,
936 VMX_MSR_BITMAP_LEGACY,
937 VMX_MSR_BITMAP_LONGMODE,
938 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
939 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
940 VMX_MSR_BITMAP_LEGACY_X2APIC,
941 VMX_MSR_BITMAP_LONGMODE_X2APIC,
942 VMX_VMREAD_BITMAP,
943 VMX_VMWRITE_BITMAP,
944 VMX_BITMAP_NR
945};
946
947static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
948
949#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
950#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
951#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
952#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
953#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
954#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
955#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
956#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
957#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
958#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 959
110312c8 960static bool cpu_has_load_ia32_efer;
8bf00a52 961static bool cpu_has_load_perf_global_ctrl;
110312c8 962
2384d2b3
SY
963static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
964static DEFINE_SPINLOCK(vmx_vpid_lock);
965
1c3d14fe 966static struct vmcs_config {
6aa8b732
AK
967 int size;
968 int order;
9ac7e3e8 969 u32 basic_cap;
6aa8b732 970 u32 revision_id;
1c3d14fe
YS
971 u32 pin_based_exec_ctrl;
972 u32 cpu_based_exec_ctrl;
f78e0e2e 973 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
974 u32 vmexit_ctrl;
975 u32 vmentry_ctrl;
976} vmcs_config;
6aa8b732 977
efff9e53 978static struct vmx_capability {
d56f546d
SY
979 u32 ept;
980 u32 vpid;
981} vmx_capability;
982
6aa8b732
AK
983#define VMX_SEGMENT_FIELD(seg) \
984 [VCPU_SREG_##seg] = { \
985 .selector = GUEST_##seg##_SELECTOR, \
986 .base = GUEST_##seg##_BASE, \
987 .limit = GUEST_##seg##_LIMIT, \
988 .ar_bytes = GUEST_##seg##_AR_BYTES, \
989 }
990
772e0318 991static const struct kvm_vmx_segment_field {
6aa8b732
AK
992 unsigned selector;
993 unsigned base;
994 unsigned limit;
995 unsigned ar_bytes;
996} kvm_vmx_segment_fields[] = {
997 VMX_SEGMENT_FIELD(CS),
998 VMX_SEGMENT_FIELD(DS),
999 VMX_SEGMENT_FIELD(ES),
1000 VMX_SEGMENT_FIELD(FS),
1001 VMX_SEGMENT_FIELD(GS),
1002 VMX_SEGMENT_FIELD(SS),
1003 VMX_SEGMENT_FIELD(TR),
1004 VMX_SEGMENT_FIELD(LDTR),
1005};
1006
26bb0981
AK
1007static u64 host_efer;
1008
6de4f3ad
AK
1009static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1010
4d56c8a7 1011/*
8c06585d 1012 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1013 * away by decrementing the array size.
1014 */
6aa8b732 1015static const u32 vmx_msr_index[] = {
05b3e0c2 1016#ifdef CONFIG_X86_64
44ea2b17 1017 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1018#endif
8c06585d 1019 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1020};
6aa8b732 1021
5bb16016 1022static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1023{
1024 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1025 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1026 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1027}
1028
6f05485d
JK
1029static inline bool is_debug(u32 intr_info)
1030{
1031 return is_exception_n(intr_info, DB_VECTOR);
1032}
1033
1034static inline bool is_breakpoint(u32 intr_info)
1035{
1036 return is_exception_n(intr_info, BP_VECTOR);
1037}
1038
5bb16016
JK
1039static inline bool is_page_fault(u32 intr_info)
1040{
1041 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1042}
1043
31299944 1044static inline bool is_no_device(u32 intr_info)
2ab455cc 1045{
5bb16016 1046 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1047}
1048
31299944 1049static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1050{
5bb16016 1051 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1052}
1053
31299944 1054static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1055{
1056 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1057 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1058}
1059
31299944 1060static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1061{
1062 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1063 INTR_INFO_VALID_MASK)) ==
1064 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1065}
1066
31299944 1067static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1068{
04547156 1069 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1070}
1071
31299944 1072static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1073{
04547156 1074 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1075}
1076
35754c98 1077static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1078{
35754c98 1079 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1080}
1081
31299944 1082static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1083{
04547156
SY
1084 return vmcs_config.cpu_based_exec_ctrl &
1085 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1086}
1087
774ead3a 1088static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1089{
04547156
SY
1090 return vmcs_config.cpu_based_2nd_exec_ctrl &
1091 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1092}
1093
8d14695f
YZ
1094static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1095{
1096 return vmcs_config.cpu_based_2nd_exec_ctrl &
1097 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1098}
1099
83d4c286
YZ
1100static inline bool cpu_has_vmx_apic_register_virt(void)
1101{
1102 return vmcs_config.cpu_based_2nd_exec_ctrl &
1103 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1104}
1105
c7c9c56c
YZ
1106static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1107{
1108 return vmcs_config.cpu_based_2nd_exec_ctrl &
1109 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1110}
1111
64672c95
YJ
1112/*
1113 * Comment's format: document - errata name - stepping - processor name.
1114 * Refer from
1115 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1116 */
1117static u32 vmx_preemption_cpu_tfms[] = {
1118/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
11190x000206E6,
1120/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1121/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1122/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11230x00020652,
1124/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11250x00020655,
1126/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1127/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1128/*
1129 * 320767.pdf - AAP86 - B1 -
1130 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1131 */
11320x000106E5,
1133/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11340x000106A0,
1135/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11360x000106A1,
1137/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11380x000106A4,
1139 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1140 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1141 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11420x000106A5,
1143};
1144
1145static inline bool cpu_has_broken_vmx_preemption_timer(void)
1146{
1147 u32 eax = cpuid_eax(0x00000001), i;
1148
1149 /* Clear the reserved bits */
1150 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1151 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1152 if (eax == vmx_preemption_cpu_tfms[i])
1153 return true;
1154
1155 return false;
1156}
1157
1158static inline bool cpu_has_vmx_preemption_timer(void)
1159{
64672c95
YJ
1160 return vmcs_config.pin_based_exec_ctrl &
1161 PIN_BASED_VMX_PREEMPTION_TIMER;
1162}
1163
01e439be
YZ
1164static inline bool cpu_has_vmx_posted_intr(void)
1165{
d6a858d1
PB
1166 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1167 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1168}
1169
1170static inline bool cpu_has_vmx_apicv(void)
1171{
1172 return cpu_has_vmx_apic_register_virt() &&
1173 cpu_has_vmx_virtual_intr_delivery() &&
1174 cpu_has_vmx_posted_intr();
1175}
1176
04547156
SY
1177static inline bool cpu_has_vmx_flexpriority(void)
1178{
1179 return cpu_has_vmx_tpr_shadow() &&
1180 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1181}
1182
e799794e
MT
1183static inline bool cpu_has_vmx_ept_execute_only(void)
1184{
31299944 1185 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1186}
1187
e799794e
MT
1188static inline bool cpu_has_vmx_ept_2m_page(void)
1189{
31299944 1190 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1191}
1192
878403b7
SY
1193static inline bool cpu_has_vmx_ept_1g_page(void)
1194{
31299944 1195 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1196}
1197
4bc9b982
SY
1198static inline bool cpu_has_vmx_ept_4levels(void)
1199{
1200 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1201}
1202
42aa53b4
DH
1203static inline bool cpu_has_vmx_ept_mt_wb(void)
1204{
1205 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1206}
1207
855feb67
YZ
1208static inline bool cpu_has_vmx_ept_5levels(void)
1209{
1210 return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1211}
1212
83c3a331
XH
1213static inline bool cpu_has_vmx_ept_ad_bits(void)
1214{
1215 return vmx_capability.ept & VMX_EPT_AD_BIT;
1216}
1217
31299944 1218static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1219{
31299944 1220 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1221}
1222
31299944 1223static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1224{
31299944 1225 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1226}
1227
518c8aee
GJ
1228static inline bool cpu_has_vmx_invvpid_single(void)
1229{
1230 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1231}
1232
b9d762fa
GJ
1233static inline bool cpu_has_vmx_invvpid_global(void)
1234{
1235 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1236}
1237
08d839c4
WL
1238static inline bool cpu_has_vmx_invvpid(void)
1239{
1240 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1241}
1242
31299944 1243static inline bool cpu_has_vmx_ept(void)
d56f546d 1244{
04547156
SY
1245 return vmcs_config.cpu_based_2nd_exec_ctrl &
1246 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1247}
1248
31299944 1249static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1250{
1251 return vmcs_config.cpu_based_2nd_exec_ctrl &
1252 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1253}
1254
31299944 1255static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1256{
1257 return vmcs_config.cpu_based_2nd_exec_ctrl &
1258 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1259}
1260
9ac7e3e8
JD
1261static inline bool cpu_has_vmx_basic_inout(void)
1262{
1263 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1264}
1265
35754c98 1266static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1267{
35754c98 1268 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1269}
1270
31299944 1271static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1272{
04547156
SY
1273 return vmcs_config.cpu_based_2nd_exec_ctrl &
1274 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1275}
1276
31299944 1277static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1278{
1279 return vmcs_config.cpu_based_2nd_exec_ctrl &
1280 SECONDARY_EXEC_RDTSCP;
1281}
1282
ad756a16
MJ
1283static inline bool cpu_has_vmx_invpcid(void)
1284{
1285 return vmcs_config.cpu_based_2nd_exec_ctrl &
1286 SECONDARY_EXEC_ENABLE_INVPCID;
1287}
1288
f5f48ee1
SY
1289static inline bool cpu_has_vmx_wbinvd_exit(void)
1290{
1291 return vmcs_config.cpu_based_2nd_exec_ctrl &
1292 SECONDARY_EXEC_WBINVD_EXITING;
1293}
1294
abc4fc58
AG
1295static inline bool cpu_has_vmx_shadow_vmcs(void)
1296{
1297 u64 vmx_msr;
1298 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1299 /* check if the cpu supports writing r/o exit information fields */
1300 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1301 return false;
1302
1303 return vmcs_config.cpu_based_2nd_exec_ctrl &
1304 SECONDARY_EXEC_SHADOW_VMCS;
1305}
1306
843e4330
KH
1307static inline bool cpu_has_vmx_pml(void)
1308{
1309 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1310}
1311
64903d61
HZ
1312static inline bool cpu_has_vmx_tsc_scaling(void)
1313{
1314 return vmcs_config.cpu_based_2nd_exec_ctrl &
1315 SECONDARY_EXEC_TSC_SCALING;
1316}
1317
2a499e49
BD
1318static inline bool cpu_has_vmx_vmfunc(void)
1319{
1320 return vmcs_config.cpu_based_2nd_exec_ctrl &
1321 SECONDARY_EXEC_ENABLE_VMFUNC;
1322}
1323
04547156
SY
1324static inline bool report_flexpriority(void)
1325{
1326 return flexpriority_enabled;
1327}
1328
c7c2c709
JM
1329static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1330{
1331 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1332}
1333
fe3ef05c
NHE
1334static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1335{
1336 return vmcs12->cpu_based_vm_exec_control & bit;
1337}
1338
1339static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1340{
1341 return (vmcs12->cpu_based_vm_exec_control &
1342 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1343 (vmcs12->secondary_vm_exec_control & bit);
1344}
1345
f5c4368f 1346static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1347{
1348 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1349}
1350
f4124500
JK
1351static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1352{
1353 return vmcs12->pin_based_vm_exec_control &
1354 PIN_BASED_VMX_PREEMPTION_TIMER;
1355}
1356
155a97a3
NHE
1357static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1358{
1359 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1360}
1361
81dc01f7
WL
1362static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1363{
3db13480 1364 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
81dc01f7
WL
1365}
1366
c5f983f6
BD
1367static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1368{
1369 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1370}
1371
f2b93280
WV
1372static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1373{
1374 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1375}
1376
5c614b35
WL
1377static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1378{
1379 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1380}
1381
82f0dd4b
WV
1382static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1383{
1384 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1385}
1386
608406e2
WV
1387static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1388{
1389 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1390}
1391
705699a1
WV
1392static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1393{
1394 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1395}
1396
27c42a1b
BD
1397static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1398{
1399 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1400}
1401
41ab9372
BD
1402static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1403{
1404 return nested_cpu_has_vmfunc(vmcs12) &&
1405 (vmcs12->vm_function_control &
1406 VMX_VMFUNC_EPTP_SWITCHING);
1407}
1408
ef85b673 1409static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1410{
1411 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1412 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1413}
1414
533558bc
JK
1415static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1416 u32 exit_intr_info,
1417 unsigned long exit_qualification);
7c177938
NHE
1418static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1419 struct vmcs12 *vmcs12,
1420 u32 reason, unsigned long qualification);
1421
8b9cf98c 1422static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1423{
1424 int i;
1425
a2fa3e9f 1426 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1427 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1428 return i;
1429 return -1;
1430}
1431
2384d2b3
SY
1432static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1433{
1434 struct {
1435 u64 vpid : 16;
1436 u64 rsvd : 48;
1437 u64 gva;
1438 } operand = { vpid, 0, gva };
1439
4ecac3fd 1440 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1441 /* CF==1 or ZF==1 --> rc = -1 */
1442 "; ja 1f ; ud2 ; 1:"
1443 : : "a"(&operand), "c"(ext) : "cc", "memory");
1444}
1445
1439442c
SY
1446static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1447{
1448 struct {
1449 u64 eptp, gpa;
1450 } operand = {eptp, gpa};
1451
4ecac3fd 1452 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1453 /* CF==1 or ZF==1 --> rc = -1 */
1454 "; ja 1f ; ud2 ; 1:\n"
1455 : : "a" (&operand), "c" (ext) : "cc", "memory");
1456}
1457
26bb0981 1458static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1459{
1460 int i;
1461
8b9cf98c 1462 i = __find_msr_index(vmx, msr);
a75beee6 1463 if (i >= 0)
a2fa3e9f 1464 return &vmx->guest_msrs[i];
8b6d44c7 1465 return NULL;
7725f0ba
AK
1466}
1467
6aa8b732
AK
1468static void vmcs_clear(struct vmcs *vmcs)
1469{
1470 u64 phys_addr = __pa(vmcs);
1471 u8 error;
1472
4ecac3fd 1473 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1474 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1475 : "cc", "memory");
1476 if (error)
1477 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1478 vmcs, phys_addr);
1479}
1480
d462b819
NHE
1481static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1482{
1483 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1484 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1485 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1486 loaded_vmcs->cpu = -1;
1487 loaded_vmcs->launched = 0;
1488}
1489
7725b894
DX
1490static void vmcs_load(struct vmcs *vmcs)
1491{
1492 u64 phys_addr = __pa(vmcs);
1493 u8 error;
1494
1495 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1496 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1497 : "cc", "memory");
1498 if (error)
2844d849 1499 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1500 vmcs, phys_addr);
1501}
1502
2965faa5 1503#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1504/*
1505 * This bitmap is used to indicate whether the vmclear
1506 * operation is enabled on all cpus. All disabled by
1507 * default.
1508 */
1509static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1510
1511static inline void crash_enable_local_vmclear(int cpu)
1512{
1513 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1514}
1515
1516static inline void crash_disable_local_vmclear(int cpu)
1517{
1518 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1519}
1520
1521static inline int crash_local_vmclear_enabled(int cpu)
1522{
1523 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1524}
1525
1526static void crash_vmclear_local_loaded_vmcss(void)
1527{
1528 int cpu = raw_smp_processor_id();
1529 struct loaded_vmcs *v;
1530
1531 if (!crash_local_vmclear_enabled(cpu))
1532 return;
1533
1534 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1535 loaded_vmcss_on_cpu_link)
1536 vmcs_clear(v->vmcs);
1537}
1538#else
1539static inline void crash_enable_local_vmclear(int cpu) { }
1540static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1541#endif /* CONFIG_KEXEC_CORE */
8f536b76 1542
d462b819 1543static void __loaded_vmcs_clear(void *arg)
6aa8b732 1544{
d462b819 1545 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1546 int cpu = raw_smp_processor_id();
6aa8b732 1547
d462b819
NHE
1548 if (loaded_vmcs->cpu != cpu)
1549 return; /* vcpu migration can race with cpu offline */
1550 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1551 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1552 crash_disable_local_vmclear(cpu);
d462b819 1553 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1554
1555 /*
1556 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1557 * is before setting loaded_vmcs->vcpu to -1 which is done in
1558 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1559 * then adds the vmcs into percpu list before it is deleted.
1560 */
1561 smp_wmb();
1562
d462b819 1563 loaded_vmcs_init(loaded_vmcs);
8f536b76 1564 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1565}
1566
d462b819 1567static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1568{
e6c7d321
XG
1569 int cpu = loaded_vmcs->cpu;
1570
1571 if (cpu != -1)
1572 smp_call_function_single(cpu,
1573 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1574}
1575
dd5f5341 1576static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1577{
dd5f5341 1578 if (vpid == 0)
2384d2b3
SY
1579 return;
1580
518c8aee 1581 if (cpu_has_vmx_invvpid_single())
dd5f5341 1582 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1583}
1584
b9d762fa
GJ
1585static inline void vpid_sync_vcpu_global(void)
1586{
1587 if (cpu_has_vmx_invvpid_global())
1588 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1589}
1590
dd5f5341 1591static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1592{
1593 if (cpu_has_vmx_invvpid_single())
dd5f5341 1594 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1595 else
1596 vpid_sync_vcpu_global();
1597}
1598
1439442c
SY
1599static inline void ept_sync_global(void)
1600{
1601 if (cpu_has_vmx_invept_global())
1602 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1603}
1604
1605static inline void ept_sync_context(u64 eptp)
1606{
0e1252dc
DH
1607 if (cpu_has_vmx_invept_context())
1608 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1609 else
1610 ept_sync_global();
1439442c
SY
1611}
1612
8a86aea9
PB
1613static __always_inline void vmcs_check16(unsigned long field)
1614{
1615 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1616 "16-bit accessor invalid for 64-bit field");
1617 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1618 "16-bit accessor invalid for 64-bit high field");
1619 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1620 "16-bit accessor invalid for 32-bit high field");
1621 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1622 "16-bit accessor invalid for natural width field");
1623}
1624
1625static __always_inline void vmcs_check32(unsigned long field)
1626{
1627 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1628 "32-bit accessor invalid for 16-bit field");
1629 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1630 "32-bit accessor invalid for natural width field");
1631}
1632
1633static __always_inline void vmcs_check64(unsigned long field)
1634{
1635 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1636 "64-bit accessor invalid for 16-bit field");
1637 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1638 "64-bit accessor invalid for 64-bit high field");
1639 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1640 "64-bit accessor invalid for 32-bit field");
1641 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1642 "64-bit accessor invalid for natural width field");
1643}
1644
1645static __always_inline void vmcs_checkl(unsigned long field)
1646{
1647 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1648 "Natural width accessor invalid for 16-bit field");
1649 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1650 "Natural width accessor invalid for 64-bit field");
1651 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1652 "Natural width accessor invalid for 64-bit high field");
1653 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1654 "Natural width accessor invalid for 32-bit field");
1655}
1656
1657static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1658{
5e520e62 1659 unsigned long value;
6aa8b732 1660
5e520e62
AK
1661 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1662 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1663 return value;
1664}
1665
96304217 1666static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1667{
8a86aea9
PB
1668 vmcs_check16(field);
1669 return __vmcs_readl(field);
6aa8b732
AK
1670}
1671
96304217 1672static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1673{
8a86aea9
PB
1674 vmcs_check32(field);
1675 return __vmcs_readl(field);
6aa8b732
AK
1676}
1677
96304217 1678static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1679{
8a86aea9 1680 vmcs_check64(field);
05b3e0c2 1681#ifdef CONFIG_X86_64
8a86aea9 1682 return __vmcs_readl(field);
6aa8b732 1683#else
8a86aea9 1684 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1685#endif
1686}
1687
8a86aea9
PB
1688static __always_inline unsigned long vmcs_readl(unsigned long field)
1689{
1690 vmcs_checkl(field);
1691 return __vmcs_readl(field);
1692}
1693
e52de1b8
AK
1694static noinline void vmwrite_error(unsigned long field, unsigned long value)
1695{
1696 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1697 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1698 dump_stack();
1699}
1700
8a86aea9 1701static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1702{
1703 u8 error;
1704
4ecac3fd 1705 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1706 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1707 if (unlikely(error))
1708 vmwrite_error(field, value);
6aa8b732
AK
1709}
1710
8a86aea9 1711static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1712{
8a86aea9
PB
1713 vmcs_check16(field);
1714 __vmcs_writel(field, value);
6aa8b732
AK
1715}
1716
8a86aea9 1717static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1718{
8a86aea9
PB
1719 vmcs_check32(field);
1720 __vmcs_writel(field, value);
6aa8b732
AK
1721}
1722
8a86aea9 1723static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1724{
8a86aea9
PB
1725 vmcs_check64(field);
1726 __vmcs_writel(field, value);
7682f2d0 1727#ifndef CONFIG_X86_64
6aa8b732 1728 asm volatile ("");
8a86aea9 1729 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1730#endif
1731}
1732
8a86aea9 1733static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1734{
8a86aea9
PB
1735 vmcs_checkl(field);
1736 __vmcs_writel(field, value);
2ab455cc
AL
1737}
1738
8a86aea9 1739static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1740{
8a86aea9
PB
1741 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1742 "vmcs_clear_bits does not support 64-bit fields");
1743 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1744}
1745
8a86aea9 1746static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1747{
8a86aea9
PB
1748 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1749 "vmcs_set_bits does not support 64-bit fields");
1750 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1751}
1752
8391ce44
PB
1753static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1754{
1755 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1756}
1757
2961e876
GN
1758static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1759{
1760 vmcs_write32(VM_ENTRY_CONTROLS, val);
1761 vmx->vm_entry_controls_shadow = val;
1762}
1763
1764static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1765{
1766 if (vmx->vm_entry_controls_shadow != val)
1767 vm_entry_controls_init(vmx, val);
1768}
1769
1770static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1771{
1772 return vmx->vm_entry_controls_shadow;
1773}
1774
1775
1776static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1777{
1778 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1779}
1780
1781static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1782{
1783 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1784}
1785
8391ce44
PB
1786static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1787{
1788 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1789}
1790
2961e876
GN
1791static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1792{
1793 vmcs_write32(VM_EXIT_CONTROLS, val);
1794 vmx->vm_exit_controls_shadow = val;
1795}
1796
1797static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1798{
1799 if (vmx->vm_exit_controls_shadow != val)
1800 vm_exit_controls_init(vmx, val);
1801}
1802
1803static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1804{
1805 return vmx->vm_exit_controls_shadow;
1806}
1807
1808
1809static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1810{
1811 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1812}
1813
1814static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1815{
1816 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1817}
1818
2fb92db1
AK
1819static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1820{
1821 vmx->segment_cache.bitmask = 0;
1822}
1823
1824static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1825 unsigned field)
1826{
1827 bool ret;
1828 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1829
1830 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1831 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1832 vmx->segment_cache.bitmask = 0;
1833 }
1834 ret = vmx->segment_cache.bitmask & mask;
1835 vmx->segment_cache.bitmask |= mask;
1836 return ret;
1837}
1838
1839static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1840{
1841 u16 *p = &vmx->segment_cache.seg[seg].selector;
1842
1843 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1844 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1845 return *p;
1846}
1847
1848static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1849{
1850 ulong *p = &vmx->segment_cache.seg[seg].base;
1851
1852 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1853 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1854 return *p;
1855}
1856
1857static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1858{
1859 u32 *p = &vmx->segment_cache.seg[seg].limit;
1860
1861 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1862 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1863 return *p;
1864}
1865
1866static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1867{
1868 u32 *p = &vmx->segment_cache.seg[seg].ar;
1869
1870 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1871 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1872 return *p;
1873}
1874
abd3f2d6
AK
1875static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1876{
1877 u32 eb;
1878
fd7373cc 1879 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 1880 (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1881 if ((vcpu->guest_debug &
1882 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1883 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1884 eb |= 1u << BP_VECTOR;
7ffd92c5 1885 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1886 eb = ~0;
089d034e 1887 if (enable_ept)
1439442c 1888 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
1889
1890 /* When we are running a nested L2 guest and L1 specified for it a
1891 * certain exception bitmap, we must trap the same exceptions and pass
1892 * them to L1. When running L2, we will only handle the exceptions
1893 * specified above if L1 did not want them.
1894 */
1895 if (is_guest_mode(vcpu))
1896 eb |= get_vmcs12(vcpu)->exception_bitmap;
1897
abd3f2d6
AK
1898 vmcs_write32(EXCEPTION_BITMAP, eb);
1899}
1900
2961e876
GN
1901static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1902 unsigned long entry, unsigned long exit)
8bf00a52 1903{
2961e876
GN
1904 vm_entry_controls_clearbit(vmx, entry);
1905 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1906}
1907
61d2ef2c
AK
1908static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1909{
1910 unsigned i;
1911 struct msr_autoload *m = &vmx->msr_autoload;
1912
8bf00a52
GN
1913 switch (msr) {
1914 case MSR_EFER:
1915 if (cpu_has_load_ia32_efer) {
2961e876
GN
1916 clear_atomic_switch_msr_special(vmx,
1917 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1918 VM_EXIT_LOAD_IA32_EFER);
1919 return;
1920 }
1921 break;
1922 case MSR_CORE_PERF_GLOBAL_CTRL:
1923 if (cpu_has_load_perf_global_ctrl) {
2961e876 1924 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1925 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1926 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1927 return;
1928 }
1929 break;
110312c8
AK
1930 }
1931
61d2ef2c
AK
1932 for (i = 0; i < m->nr; ++i)
1933 if (m->guest[i].index == msr)
1934 break;
1935
1936 if (i == m->nr)
1937 return;
1938 --m->nr;
1939 m->guest[i] = m->guest[m->nr];
1940 m->host[i] = m->host[m->nr];
1941 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1942 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1943}
1944
2961e876
GN
1945static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1946 unsigned long entry, unsigned long exit,
1947 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1948 u64 guest_val, u64 host_val)
8bf00a52
GN
1949{
1950 vmcs_write64(guest_val_vmcs, guest_val);
1951 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1952 vm_entry_controls_setbit(vmx, entry);
1953 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1954}
1955
61d2ef2c
AK
1956static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1957 u64 guest_val, u64 host_val)
1958{
1959 unsigned i;
1960 struct msr_autoload *m = &vmx->msr_autoload;
1961
8bf00a52
GN
1962 switch (msr) {
1963 case MSR_EFER:
1964 if (cpu_has_load_ia32_efer) {
2961e876
GN
1965 add_atomic_switch_msr_special(vmx,
1966 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1967 VM_EXIT_LOAD_IA32_EFER,
1968 GUEST_IA32_EFER,
1969 HOST_IA32_EFER,
1970 guest_val, host_val);
1971 return;
1972 }
1973 break;
1974 case MSR_CORE_PERF_GLOBAL_CTRL:
1975 if (cpu_has_load_perf_global_ctrl) {
2961e876 1976 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1977 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1978 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1979 GUEST_IA32_PERF_GLOBAL_CTRL,
1980 HOST_IA32_PERF_GLOBAL_CTRL,
1981 guest_val, host_val);
1982 return;
1983 }
1984 break;
7099e2e1
RK
1985 case MSR_IA32_PEBS_ENABLE:
1986 /* PEBS needs a quiescent period after being disabled (to write
1987 * a record). Disabling PEBS through VMX MSR swapping doesn't
1988 * provide that period, so a CPU could write host's record into
1989 * guest's memory.
1990 */
1991 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1992 }
1993
61d2ef2c
AK
1994 for (i = 0; i < m->nr; ++i)
1995 if (m->guest[i].index == msr)
1996 break;
1997
e7fc6f93 1998 if (i == NR_AUTOLOAD_MSRS) {
60266204 1999 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
2000 "Can't add msr %x\n", msr);
2001 return;
2002 } else if (i == m->nr) {
61d2ef2c
AK
2003 ++m->nr;
2004 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2005 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2006 }
2007
2008 m->guest[i].index = msr;
2009 m->guest[i].value = guest_val;
2010 m->host[i].index = msr;
2011 m->host[i].value = host_val;
2012}
2013
92c0d900 2014static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2015{
844a5fe2
PB
2016 u64 guest_efer = vmx->vcpu.arch.efer;
2017 u64 ignore_bits = 0;
2018
2019 if (!enable_ept) {
2020 /*
2021 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2022 * host CPUID is more efficient than testing guest CPUID
2023 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2024 */
2025 if (boot_cpu_has(X86_FEATURE_SMEP))
2026 guest_efer |= EFER_NX;
2027 else if (!(guest_efer & EFER_NX))
2028 ignore_bits |= EFER_NX;
2029 }
3a34a881 2030
51c6cf66 2031 /*
844a5fe2 2032 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2033 */
844a5fe2 2034 ignore_bits |= EFER_SCE;
51c6cf66
AK
2035#ifdef CONFIG_X86_64
2036 ignore_bits |= EFER_LMA | EFER_LME;
2037 /* SCE is meaningful only in long mode on Intel */
2038 if (guest_efer & EFER_LMA)
2039 ignore_bits &= ~(u64)EFER_SCE;
2040#endif
84ad33ef
AK
2041
2042 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2043
2044 /*
2045 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2046 * On CPUs that support "load IA32_EFER", always switch EFER
2047 * atomically, since it's faster than switching it manually.
2048 */
2049 if (cpu_has_load_ia32_efer ||
2050 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2051 if (!(guest_efer & EFER_LMA))
2052 guest_efer &= ~EFER_LME;
54b98bff
AL
2053 if (guest_efer != host_efer)
2054 add_atomic_switch_msr(vmx, MSR_EFER,
2055 guest_efer, host_efer);
84ad33ef 2056 return false;
844a5fe2
PB
2057 } else {
2058 guest_efer &= ~ignore_bits;
2059 guest_efer |= host_efer & ignore_bits;
2060
2061 vmx->guest_msrs[efer_offset].data = guest_efer;
2062 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2063
844a5fe2
PB
2064 return true;
2065 }
51c6cf66
AK
2066}
2067
e28baead
AL
2068#ifdef CONFIG_X86_32
2069/*
2070 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2071 * VMCS rather than the segment table. KVM uses this helper to figure
2072 * out the current bases to poke them into the VMCS before entry.
2073 */
2d49ec72
GN
2074static unsigned long segment_base(u16 selector)
2075{
8c2e41f7 2076 struct desc_struct *table;
2d49ec72
GN
2077 unsigned long v;
2078
8c2e41f7 2079 if (!(selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2080 return 0;
2081
45fc8757 2082 table = get_current_gdt_ro();
2d49ec72 2083
8c2e41f7 2084 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2d49ec72
GN
2085 u16 ldt_selector = kvm_read_ldt();
2086
8c2e41f7 2087 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2088 return 0;
2089
8c2e41f7 2090 table = (struct desc_struct *)segment_base(ldt_selector);
2d49ec72 2091 }
8c2e41f7 2092 v = get_desc_base(&table[selector >> 3]);
2d49ec72
GN
2093 return v;
2094}
e28baead 2095#endif
2d49ec72 2096
04d2cc77 2097static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2098{
04d2cc77 2099 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2100 int i;
04d2cc77 2101
a2fa3e9f 2102 if (vmx->host_state.loaded)
33ed6329
AK
2103 return;
2104
a2fa3e9f 2105 vmx->host_state.loaded = 1;
33ed6329
AK
2106 /*
2107 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2108 * allow segment selectors with cpl > 0 or ti == 1.
2109 */
d6e88aec 2110 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2111 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2112 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2113 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2114 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2115 vmx->host_state.fs_reload_needed = 0;
2116 } else {
33ed6329 2117 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2118 vmx->host_state.fs_reload_needed = 1;
33ed6329 2119 }
9581d442 2120 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2121 if (!(vmx->host_state.gs_sel & 7))
2122 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2123 else {
2124 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2125 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2126 }
2127
b2da15ac
AK
2128#ifdef CONFIG_X86_64
2129 savesegment(ds, vmx->host_state.ds_sel);
2130 savesegment(es, vmx->host_state.es_sel);
2131#endif
2132
33ed6329
AK
2133#ifdef CONFIG_X86_64
2134 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2135 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2136#else
a2fa3e9f
GH
2137 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2138 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2139#endif
707c0874
AK
2140
2141#ifdef CONFIG_X86_64
c8770e7b
AK
2142 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2143 if (is_long_mode(&vmx->vcpu))
44ea2b17 2144 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2145#endif
da8999d3
LJ
2146 if (boot_cpu_has(X86_FEATURE_MPX))
2147 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2148 for (i = 0; i < vmx->save_nmsrs; ++i)
2149 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2150 vmx->guest_msrs[i].data,
2151 vmx->guest_msrs[i].mask);
33ed6329
AK
2152}
2153
a9b21b62 2154static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2155{
a2fa3e9f 2156 if (!vmx->host_state.loaded)
33ed6329
AK
2157 return;
2158
e1beb1d3 2159 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2160 vmx->host_state.loaded = 0;
c8770e7b
AK
2161#ifdef CONFIG_X86_64
2162 if (is_long_mode(&vmx->vcpu))
2163 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2164#endif
152d3f2f 2165 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2166 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2167#ifdef CONFIG_X86_64
9581d442 2168 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2169#else
2170 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2171#endif
33ed6329 2172 }
0a77fe4c
AK
2173 if (vmx->host_state.fs_reload_needed)
2174 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2175#ifdef CONFIG_X86_64
2176 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2177 loadsegment(ds, vmx->host_state.ds_sel);
2178 loadsegment(es, vmx->host_state.es_sel);
2179 }
b2da15ac 2180#endif
b7ffc44d 2181 invalidate_tss_limit();
44ea2b17 2182#ifdef CONFIG_X86_64
c8770e7b 2183 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2184#endif
da8999d3
LJ
2185 if (vmx->host_state.msr_host_bndcfgs)
2186 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
45fc8757 2187 load_fixmap_gdt(raw_smp_processor_id());
33ed6329
AK
2188}
2189
a9b21b62
AK
2190static void vmx_load_host_state(struct vcpu_vmx *vmx)
2191{
2192 preempt_disable();
2193 __vmx_load_host_state(vmx);
2194 preempt_enable();
2195}
2196
28b835d6
FW
2197static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2198{
2199 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2200 struct pi_desc old, new;
2201 unsigned int dest;
2202
31afb2ea
PB
2203 /*
2204 * In case of hot-plug or hot-unplug, we may have to undo
2205 * vmx_vcpu_pi_put even if there is no assigned device. And we
2206 * always keep PI.NDST up to date for simplicity: it makes the
2207 * code easier, and CPU migration is not a fast path.
2208 */
2209 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
28b835d6
FW
2210 return;
2211
31afb2ea
PB
2212 /*
2213 * First handle the simple case where no cmpxchg is necessary; just
2214 * allow posting non-urgent interrupts.
2215 *
2216 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2217 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2218 * expects the VCPU to be on the blocked_vcpu_list that matches
2219 * PI.NDST.
2220 */
2221 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2222 vcpu->cpu == cpu) {
2223 pi_clear_sn(pi_desc);
28b835d6 2224 return;
31afb2ea 2225 }
28b835d6 2226
31afb2ea 2227 /* The full case. */
28b835d6
FW
2228 do {
2229 old.control = new.control = pi_desc->control;
2230
31afb2ea 2231 dest = cpu_physical_id(cpu);
28b835d6 2232
31afb2ea
PB
2233 if (x2apic_enabled())
2234 new.ndst = dest;
2235 else
2236 new.ndst = (dest << 8) & 0xFF00;
28b835d6 2237
28b835d6 2238 new.sn = 0;
c0a1666b
PB
2239 } while (cmpxchg64(&pi_desc->control, old.control,
2240 new.control) != old.control);
28b835d6 2241}
1be0e61c 2242
c95ba92a
PF
2243static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2244{
2245 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2246 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2247}
2248
6aa8b732
AK
2249/*
2250 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2251 * vcpu mutex is already taken.
2252 */
15ad7146 2253static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2254{
a2fa3e9f 2255 struct vcpu_vmx *vmx = to_vmx(vcpu);
b80c76ec 2256 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2257
b80c76ec 2258 if (!already_loaded) {
fe0e80be 2259 loaded_vmcs_clear(vmx->loaded_vmcs);
92fe13be 2260 local_irq_disable();
8f536b76 2261 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2262
2263 /*
2264 * Read loaded_vmcs->cpu should be before fetching
2265 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2266 * See the comments in __loaded_vmcs_clear().
2267 */
2268 smp_rmb();
2269
d462b819
NHE
2270 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2271 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2272 crash_enable_local_vmclear(cpu);
92fe13be 2273 local_irq_enable();
b80c76ec
JM
2274 }
2275
2276 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2277 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2278 vmcs_load(vmx->loaded_vmcs->vmcs);
2279 }
2280
2281 if (!already_loaded) {
59c58ceb 2282 void *gdt = get_current_gdt_ro();
b80c76ec
JM
2283 unsigned long sysenter_esp;
2284
2285 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2286
6aa8b732
AK
2287 /*
2288 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2289 * processors. See 22.2.4.
6aa8b732 2290 */
e0c23063
AL
2291 vmcs_writel(HOST_TR_BASE,
2292 (unsigned long)this_cpu_ptr(&cpu_tss));
59c58ceb 2293 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
6aa8b732 2294
b7ffc44d
AL
2295 /*
2296 * VM exits change the host TR limit to 0x67 after a VM
2297 * exit. This is okay, since 0x67 covers everything except
2298 * the IO bitmap and have have code to handle the IO bitmap
2299 * being lost after a VM exit.
2300 */
2301 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2302
6aa8b732
AK
2303 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2304 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2305
d462b819 2306 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2307 }
28b835d6 2308
2680d6da
OH
2309 /* Setup TSC multiplier */
2310 if (kvm_has_tsc_control &&
c95ba92a
PF
2311 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2312 decache_tsc_multiplier(vmx);
2680d6da 2313
28b835d6 2314 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2315 vmx->host_pkru = read_pkru();
28b835d6
FW
2316}
2317
2318static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2319{
2320 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2321
2322 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2323 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2324 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2325 return;
2326
2327 /* Set SN when the vCPU is preempted */
2328 if (vcpu->preempted)
2329 pi_set_sn(pi_desc);
6aa8b732
AK
2330}
2331
2332static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2333{
28b835d6
FW
2334 vmx_vcpu_pi_put(vcpu);
2335
a9b21b62 2336 __vmx_load_host_state(to_vmx(vcpu));
6aa8b732
AK
2337}
2338
f244deed
WL
2339static bool emulation_required(struct kvm_vcpu *vcpu)
2340{
2341 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2342}
2343
edcafe3c
AK
2344static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2345
fe3ef05c
NHE
2346/*
2347 * Return the cr0 value that a nested guest would read. This is a combination
2348 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2349 * its hypervisor (cr0_read_shadow).
2350 */
2351static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2352{
2353 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2354 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2355}
2356static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2357{
2358 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2359 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2360}
2361
6aa8b732
AK
2362static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2363{
78ac8b47 2364 unsigned long rflags, save_rflags;
345dcaa8 2365
6de12732
AK
2366 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2367 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2368 rflags = vmcs_readl(GUEST_RFLAGS);
2369 if (to_vmx(vcpu)->rmode.vm86_active) {
2370 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2371 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2372 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2373 }
2374 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2375 }
6de12732 2376 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2377}
2378
2379static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2380{
f244deed
WL
2381 unsigned long old_rflags = vmx_get_rflags(vcpu);
2382
6de12732
AK
2383 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2384 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2385 if (to_vmx(vcpu)->rmode.vm86_active) {
2386 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2387 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2388 }
6aa8b732 2389 vmcs_writel(GUEST_RFLAGS, rflags);
f244deed
WL
2390
2391 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2392 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
6aa8b732
AK
2393}
2394
37ccdcbe 2395static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2396{
2397 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2398 int ret = 0;
2399
2400 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2401 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2402 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2403 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2404
37ccdcbe 2405 return ret;
2809f5d2
GC
2406}
2407
2408static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2409{
2410 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2411 u32 interruptibility = interruptibility_old;
2412
2413 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2414
48005f64 2415 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2416 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2417 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2418 interruptibility |= GUEST_INTR_STATE_STI;
2419
2420 if ((interruptibility != interruptibility_old))
2421 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2422}
2423
6aa8b732
AK
2424static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2425{
2426 unsigned long rip;
6aa8b732 2427
5fdbf976 2428 rip = kvm_rip_read(vcpu);
6aa8b732 2429 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2430 kvm_rip_write(vcpu, rip);
6aa8b732 2431
2809f5d2
GC
2432 /* skipping an emulated instruction also counts */
2433 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2434}
2435
b96fb439
PB
2436static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2437 unsigned long exit_qual)
2438{
2439 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2440 unsigned int nr = vcpu->arch.exception.nr;
2441 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2442
2443 if (vcpu->arch.exception.has_error_code) {
2444 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2445 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2446 }
2447
2448 if (kvm_exception_is_soft(nr))
2449 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2450 else
2451 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2452
2453 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2454 vmx_get_nmi_mask(vcpu))
2455 intr_info |= INTR_INFO_UNBLOCK_NMI;
2456
2457 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2458}
2459
0b6ac343
NHE
2460/*
2461 * KVM wants to inject page-faults which it got to the guest. This function
2462 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2463 */
bfcf83b1 2464static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
0b6ac343
NHE
2465{
2466 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
adfe20fb 2467 unsigned int nr = vcpu->arch.exception.nr;
0b6ac343 2468
b96fb439
PB
2469 if (nr == PF_VECTOR) {
2470 if (vcpu->arch.exception.nested_apf) {
bfcf83b1 2471 *exit_qual = vcpu->arch.apf.nested_apf_token;
b96fb439
PB
2472 return 1;
2473 }
2474 /*
2475 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2476 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2477 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2478 * can be written only when inject_pending_event runs. This should be
2479 * conditional on a new capability---if the capability is disabled,
2480 * kvm_multiple_exception would write the ancillary information to
2481 * CR2 or DR6, for backwards ABI-compatibility.
2482 */
2483 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2484 vcpu->arch.exception.error_code)) {
bfcf83b1 2485 *exit_qual = vcpu->arch.cr2;
b96fb439
PB
2486 return 1;
2487 }
2488 } else {
b96fb439 2489 if (vmcs12->exception_bitmap & (1u << nr)) {
bfcf83b1
WL
2490 if (nr == DB_VECTOR)
2491 *exit_qual = vcpu->arch.dr6;
2492 else
2493 *exit_qual = 0;
b96fb439
PB
2494 return 1;
2495 }
adfe20fb
WL
2496 }
2497
b96fb439 2498 return 0;
0b6ac343
NHE
2499}
2500
cfcd20e5 2501static void vmx_queue_exception(struct kvm_vcpu *vcpu)
298101da 2502{
77ab6db0 2503 struct vcpu_vmx *vmx = to_vmx(vcpu);
cfcd20e5
WL
2504 unsigned nr = vcpu->arch.exception.nr;
2505 bool has_error_code = vcpu->arch.exception.has_error_code;
cfcd20e5 2506 u32 error_code = vcpu->arch.exception.error_code;
8ab2d2e2 2507 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2508
8ab2d2e2 2509 if (has_error_code) {
77ab6db0 2510 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2511 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2512 }
77ab6db0 2513
7ffd92c5 2514 if (vmx->rmode.vm86_active) {
71f9833b
SH
2515 int inc_eip = 0;
2516 if (kvm_exception_is_soft(nr))
2517 inc_eip = vcpu->arch.event_exit_inst_len;
2518 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2519 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2520 return;
2521 }
2522
66fd3f7f
GN
2523 if (kvm_exception_is_soft(nr)) {
2524 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2525 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2526 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2527 } else
2528 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2529
2530 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2531}
2532
4e47c7a6
SY
2533static bool vmx_rdtscp_supported(void)
2534{
2535 return cpu_has_vmx_rdtscp();
2536}
2537
ad756a16
MJ
2538static bool vmx_invpcid_supported(void)
2539{
2540 return cpu_has_vmx_invpcid() && enable_ept;
2541}
2542
a75beee6
ED
2543/*
2544 * Swap MSR entry in host/guest MSR entry array.
2545 */
8b9cf98c 2546static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2547{
26bb0981 2548 struct shared_msr_entry tmp;
a2fa3e9f
GH
2549
2550 tmp = vmx->guest_msrs[to];
2551 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2552 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2553}
2554
8d14695f
YZ
2555static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2556{
2557 unsigned long *msr_bitmap;
2558
670125bd 2559 if (is_guest_mode(vcpu))
d048c098 2560 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
3ce424e4
RK
2561 else if (cpu_has_secondary_exec_ctrls() &&
2562 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2563 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
f6e90f9e
WL
2564 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2565 if (is_long_mode(vcpu))
c63e4563 2566 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
f6e90f9e 2567 else
c63e4563 2568 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
f6e90f9e
WL
2569 } else {
2570 if (is_long_mode(vcpu))
c63e4563 2571 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
f6e90f9e 2572 else
c63e4563 2573 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
f6e90f9e 2574 }
8d14695f
YZ
2575 } else {
2576 if (is_long_mode(vcpu))
2577 msr_bitmap = vmx_msr_bitmap_longmode;
2578 else
2579 msr_bitmap = vmx_msr_bitmap_legacy;
2580 }
2581
2582 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2583}
2584
e38aea3e
AK
2585/*
2586 * Set up the vmcs to automatically save and restore system
2587 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2588 * mode, as fiddling with msrs is very expensive.
2589 */
8b9cf98c 2590static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2591{
26bb0981 2592 int save_nmsrs, index;
e38aea3e 2593
a75beee6
ED
2594 save_nmsrs = 0;
2595#ifdef CONFIG_X86_64
8b9cf98c 2596 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2597 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2598 if (index >= 0)
8b9cf98c
RR
2599 move_msr_up(vmx, index, save_nmsrs++);
2600 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2601 if (index >= 0)
8b9cf98c
RR
2602 move_msr_up(vmx, index, save_nmsrs++);
2603 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2604 if (index >= 0)
8b9cf98c 2605 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2606 index = __find_msr_index(vmx, MSR_TSC_AUX);
d6321d49 2607 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
4e47c7a6 2608 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2609 /*
8c06585d 2610 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2611 * if efer.sce is enabled.
2612 */
8c06585d 2613 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2614 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2615 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2616 }
2617#endif
92c0d900
AK
2618 index = __find_msr_index(vmx, MSR_EFER);
2619 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2620 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2621
26bb0981 2622 vmx->save_nmsrs = save_nmsrs;
5897297b 2623
8d14695f
YZ
2624 if (cpu_has_vmx_msr_bitmap())
2625 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2626}
2627
6aa8b732
AK
2628/*
2629 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2630 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2631 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2632 */
be7b263e 2633static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2634{
2635 u64 host_tsc, tsc_offset;
2636
4ea1636b 2637 host_tsc = rdtsc();
6aa8b732 2638 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2639 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2640}
2641
2642/*
99e3e30a 2643 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2644 */
99e3e30a 2645static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2646{
27fc51b2 2647 if (is_guest_mode(vcpu)) {
7991825b 2648 /*
27fc51b2
NHE
2649 * We're here if L1 chose not to trap WRMSR to TSC. According
2650 * to the spec, this should set L1's TSC; The offset that L1
2651 * set for L2 remains unchanged, and still needs to be added
2652 * to the newly set TSC to get L2's TSC.
7991825b 2653 */
27fc51b2 2654 struct vmcs12 *vmcs12;
27fc51b2
NHE
2655 /* recalculate vmcs02.TSC_OFFSET: */
2656 vmcs12 = get_vmcs12(vcpu);
2657 vmcs_write64(TSC_OFFSET, offset +
2658 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2659 vmcs12->tsc_offset : 0));
2660 } else {
489223ed
YY
2661 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2662 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2663 vmcs_write64(TSC_OFFSET, offset);
2664 }
6aa8b732
AK
2665}
2666
801d3424
NHE
2667/*
2668 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2669 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2670 * all guests if the "nested" module option is off, and can also be disabled
2671 * for a single guest by disabling its VMX cpuid bit.
2672 */
2673static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2674{
d6321d49 2675 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
801d3424
NHE
2676}
2677
b87a51ae
NHE
2678/*
2679 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2680 * returned for the various VMX controls MSRs when nested VMX is enabled.
2681 * The same values should also be used to verify that vmcs12 control fields are
2682 * valid during nested entry from L1 to L2.
2683 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2684 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2685 * bit in the high half is on if the corresponding bit in the control field
2686 * may be on. See also vmx_control_verify().
b87a51ae 2687 */
b9c237bb 2688static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2689{
2690 /*
2691 * Note that as a general rule, the high half of the MSRs (bits in
2692 * the control fields which may be 1) should be initialized by the
2693 * intersection of the underlying hardware's MSR (i.e., features which
2694 * can be supported) and the list of features we want to expose -
2695 * because they are known to be properly supported in our code.
2696 * Also, usually, the low half of the MSRs (bits which must be 1) can
2697 * be set to 0, meaning that L1 may turn off any of these bits. The
2698 * reason is that if one of these bits is necessary, it will appear
2699 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2700 * fields of vmcs01 and vmcs02, will turn these bits off - and
7313c698 2701 * nested_vmx_exit_reflected() will not pass related exits to L1.
b87a51ae
NHE
2702 * These rules have exceptions below.
2703 */
2704
2705 /* pin-based controls */
eabeaacc 2706 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2707 vmx->nested.nested_vmx_pinbased_ctls_low,
2708 vmx->nested.nested_vmx_pinbased_ctls_high);
2709 vmx->nested.nested_vmx_pinbased_ctls_low |=
2710 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2711 vmx->nested.nested_vmx_pinbased_ctls_high &=
2712 PIN_BASED_EXT_INTR_MASK |
2713 PIN_BASED_NMI_EXITING |
2714 PIN_BASED_VIRTUAL_NMIS;
2715 vmx->nested.nested_vmx_pinbased_ctls_high |=
2716 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2717 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2718 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2719 vmx->nested.nested_vmx_pinbased_ctls_high |=
2720 PIN_BASED_POSTED_INTR;
b87a51ae 2721
3dbcd8da 2722 /* exit controls */
c0dfee58 2723 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2724 vmx->nested.nested_vmx_exit_ctls_low,
2725 vmx->nested.nested_vmx_exit_ctls_high);
2726 vmx->nested.nested_vmx_exit_ctls_low =
2727 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2728
b9c237bb 2729 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2730#ifdef CONFIG_X86_64
c0dfee58 2731 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2732#endif
f4124500 2733 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2734 vmx->nested.nested_vmx_exit_ctls_high |=
2735 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2736 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2737 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2738
a87036ad 2739 if (kvm_mpx_supported())
b9c237bb 2740 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2741
2996fca0 2742 /* We support free control of debug control saving. */
0115f9cb 2743 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2744
b87a51ae
NHE
2745 /* entry controls */
2746 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2747 vmx->nested.nested_vmx_entry_ctls_low,
2748 vmx->nested.nested_vmx_entry_ctls_high);
2749 vmx->nested.nested_vmx_entry_ctls_low =
2750 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2751 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2752#ifdef CONFIG_X86_64
2753 VM_ENTRY_IA32E_MODE |
2754#endif
2755 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2756 vmx->nested.nested_vmx_entry_ctls_high |=
2757 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2758 if (kvm_mpx_supported())
b9c237bb 2759 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2760
2996fca0 2761 /* We support free control of debug control loading. */
0115f9cb 2762 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 2763
b87a51ae
NHE
2764 /* cpu-based controls */
2765 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2766 vmx->nested.nested_vmx_procbased_ctls_low,
2767 vmx->nested.nested_vmx_procbased_ctls_high);
2768 vmx->nested.nested_vmx_procbased_ctls_low =
2769 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2770 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2771 CPU_BASED_VIRTUAL_INTR_PENDING |
2772 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2773 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2774 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2775 CPU_BASED_CR3_STORE_EXITING |
2776#ifdef CONFIG_X86_64
2777 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2778#endif
2779 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2780 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2781 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2782 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2783 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2784 /*
2785 * We can allow some features even when not supported by the
2786 * hardware. For example, L1 can specify an MSR bitmap - and we
2787 * can use it to avoid exits to L1 - even when L0 runs L2
2788 * without MSR bitmaps.
2789 */
b9c237bb
WV
2790 vmx->nested.nested_vmx_procbased_ctls_high |=
2791 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2792 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2793
3dcdf3ec 2794 /* We support free control of CR3 access interception. */
0115f9cb 2795 vmx->nested.nested_vmx_procbased_ctls_low &=
3dcdf3ec
JK
2796 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2797
80154d77
PB
2798 /*
2799 * secondary cpu-based controls. Do not include those that
2800 * depend on CPUID bits, they are added later by vmx_cpuid_update.
2801 */
b87a51ae 2802 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2803 vmx->nested.nested_vmx_secondary_ctls_low,
2804 vmx->nested.nested_vmx_secondary_ctls_high);
2805 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2806 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2807 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1b07304c 2808 SECONDARY_EXEC_DESC |
f2b93280 2809 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 2810 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2811 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3db13480 2812 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2 2813
afa61f75
NHE
2814 if (enable_ept) {
2815 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2816 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2817 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2818 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
7db74265 2819 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
02120c45
BD
2820 if (cpu_has_vmx_ept_execute_only())
2821 vmx->nested.nested_vmx_ept_caps |=
2822 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2823 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817 2824 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7db74265
PB
2825 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2826 VMX_EPT_1GB_PAGE_BIT;
03efce6f
BD
2827 if (enable_ept_ad_bits) {
2828 vmx->nested.nested_vmx_secondary_ctls_high |=
2829 SECONDARY_EXEC_ENABLE_PML;
7461fbc4 2830 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
03efce6f 2831 }
afa61f75 2832 } else
b9c237bb 2833 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2834
27c42a1b
BD
2835 if (cpu_has_vmx_vmfunc()) {
2836 vmx->nested.nested_vmx_secondary_ctls_high |=
2837 SECONDARY_EXEC_ENABLE_VMFUNC;
41ab9372
BD
2838 /*
2839 * Advertise EPTP switching unconditionally
2840 * since we emulate it
2841 */
2842 vmx->nested.nested_vmx_vmfunc_controls =
2843 VMX_VMFUNC_EPTP_SWITCHING;
27c42a1b
BD
2844 }
2845
ef697a71
PB
2846 /*
2847 * Old versions of KVM use the single-context version without
2848 * checking for support, so declare that it is supported even
2849 * though it is treated as global context. The alternative is
2850 * not failing the single-context invvpid, and it is worse.
2851 */
63cb6d5f
WL
2852 if (enable_vpid) {
2853 vmx->nested.nested_vmx_secondary_ctls_high |=
2854 SECONDARY_EXEC_ENABLE_VPID;
089d7b6e 2855 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 2856 VMX_VPID_EXTENT_SUPPORTED_MASK;
63cb6d5f 2857 } else
089d7b6e 2858 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2859
0790ec17
RK
2860 if (enable_unrestricted_guest)
2861 vmx->nested.nested_vmx_secondary_ctls_high |=
2862 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2863
c18911a2 2864 /* miscellaneous data */
b9c237bb
WV
2865 rdmsr(MSR_IA32_VMX_MISC,
2866 vmx->nested.nested_vmx_misc_low,
2867 vmx->nested.nested_vmx_misc_high);
2868 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2869 vmx->nested.nested_vmx_misc_low |=
2870 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2871 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2872 vmx->nested.nested_vmx_misc_high = 0;
62cc6b9d
DM
2873
2874 /*
2875 * This MSR reports some information about VMX support. We
2876 * should return information about the VMX we emulate for the
2877 * guest, and the VMCS structure we give it - not about the
2878 * VMX support of the underlying hardware.
2879 */
2880 vmx->nested.nested_vmx_basic =
2881 VMCS12_REVISION |
2882 VMX_BASIC_TRUE_CTLS |
2883 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2884 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2885
2886 if (cpu_has_vmx_basic_inout())
2887 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2888
2889 /*
8322ebbb 2890 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
2891 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2892 * We picked the standard core2 setting.
2893 */
2894#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2895#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2896 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
62cc6b9d 2897 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
2898
2899 /* These MSRs specify bits which the guest must keep fixed off. */
2900 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2901 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
62cc6b9d
DM
2902
2903 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2904 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
b87a51ae
NHE
2905}
2906
3899152c
DM
2907/*
2908 * if fixed0[i] == 1: val[i] must be 1
2909 * if fixed1[i] == 0: val[i] must be 0
2910 */
2911static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2912{
2913 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
2914}
2915
2916static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2917{
3899152c 2918 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
2919}
2920
2921static inline u64 vmx_control_msr(u32 low, u32 high)
2922{
2923 return low | ((u64)high << 32);
2924}
2925
62cc6b9d
DM
2926static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2927{
2928 superset &= mask;
2929 subset &= mask;
2930
2931 return (superset | subset) == superset;
2932}
2933
2934static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2935{
2936 const u64 feature_and_reserved =
2937 /* feature (except bit 48; see below) */
2938 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2939 /* reserved */
2940 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2941 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2942
2943 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2944 return -EINVAL;
2945
2946 /*
2947 * KVM does not emulate a version of VMX that constrains physical
2948 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2949 */
2950 if (data & BIT_ULL(48))
2951 return -EINVAL;
2952
2953 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2954 vmx_basic_vmcs_revision_id(data))
2955 return -EINVAL;
2956
2957 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2958 return -EINVAL;
2959
2960 vmx->nested.nested_vmx_basic = data;
2961 return 0;
2962}
2963
2964static int
2965vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2966{
2967 u64 supported;
2968 u32 *lowp, *highp;
2969
2970 switch (msr_index) {
2971 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2972 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2973 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2974 break;
2975 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2976 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2977 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2978 break;
2979 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2980 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2981 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2982 break;
2983 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2984 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2985 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2986 break;
2987 case MSR_IA32_VMX_PROCBASED_CTLS2:
2988 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2989 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2990 break;
2991 default:
2992 BUG();
2993 }
2994
2995 supported = vmx_control_msr(*lowp, *highp);
2996
2997 /* Check must-be-1 bits are still 1. */
2998 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2999 return -EINVAL;
3000
3001 /* Check must-be-0 bits are still 0. */
3002 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3003 return -EINVAL;
3004
3005 *lowp = data;
3006 *highp = data >> 32;
3007 return 0;
3008}
3009
3010static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3011{
3012 const u64 feature_and_reserved_bits =
3013 /* feature */
3014 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3015 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3016 /* reserved */
3017 GENMASK_ULL(13, 9) | BIT_ULL(31);
3018 u64 vmx_misc;
3019
3020 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3021 vmx->nested.nested_vmx_misc_high);
3022
3023 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3024 return -EINVAL;
3025
3026 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3027 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3028 vmx_misc_preemption_timer_rate(data) !=
3029 vmx_misc_preemption_timer_rate(vmx_misc))
3030 return -EINVAL;
3031
3032 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3033 return -EINVAL;
3034
3035 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3036 return -EINVAL;
3037
3038 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3039 return -EINVAL;
3040
3041 vmx->nested.nested_vmx_misc_low = data;
3042 vmx->nested.nested_vmx_misc_high = data >> 32;
3043 return 0;
3044}
3045
3046static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3047{
3048 u64 vmx_ept_vpid_cap;
3049
3050 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3051 vmx->nested.nested_vmx_vpid_caps);
3052
3053 /* Every bit is either reserved or a feature bit. */
3054 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3055 return -EINVAL;
3056
3057 vmx->nested.nested_vmx_ept_caps = data;
3058 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3059 return 0;
3060}
3061
3062static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3063{
3064 u64 *msr;
3065
3066 switch (msr_index) {
3067 case MSR_IA32_VMX_CR0_FIXED0:
3068 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3069 break;
3070 case MSR_IA32_VMX_CR4_FIXED0:
3071 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3072 break;
3073 default:
3074 BUG();
3075 }
3076
3077 /*
3078 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3079 * must be 1 in the restored value.
3080 */
3081 if (!is_bitwise_subset(data, *msr, -1ULL))
3082 return -EINVAL;
3083
3084 *msr = data;
3085 return 0;
3086}
3087
3088/*
3089 * Called when userspace is restoring VMX MSRs.
3090 *
3091 * Returns 0 on success, non-0 otherwise.
3092 */
3093static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3094{
b9c237bb
WV
3095 struct vcpu_vmx *vmx = to_vmx(vcpu);
3096
b87a51ae 3097 switch (msr_index) {
b87a51ae 3098 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3099 return vmx_restore_vmx_basic(vmx, data);
3100 case MSR_IA32_VMX_PINBASED_CTLS:
3101 case MSR_IA32_VMX_PROCBASED_CTLS:
3102 case MSR_IA32_VMX_EXIT_CTLS:
3103 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3104 /*
62cc6b9d
DM
3105 * The "non-true" VMX capability MSRs are generated from the
3106 * "true" MSRs, so we do not support restoring them directly.
3107 *
3108 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3109 * should restore the "true" MSRs with the must-be-1 bits
3110 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3111 * DEFAULT SETTINGS".
b87a51ae 3112 */
62cc6b9d
DM
3113 return -EINVAL;
3114 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3115 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3116 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3117 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3118 case MSR_IA32_VMX_PROCBASED_CTLS2:
3119 return vmx_restore_control_msr(vmx, msr_index, data);
3120 case MSR_IA32_VMX_MISC:
3121 return vmx_restore_vmx_misc(vmx, data);
3122 case MSR_IA32_VMX_CR0_FIXED0:
3123 case MSR_IA32_VMX_CR4_FIXED0:
3124 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3125 case MSR_IA32_VMX_CR0_FIXED1:
3126 case MSR_IA32_VMX_CR4_FIXED1:
3127 /*
3128 * These MSRs are generated based on the vCPU's CPUID, so we
3129 * do not support restoring them directly.
3130 */
3131 return -EINVAL;
3132 case MSR_IA32_VMX_EPT_VPID_CAP:
3133 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3134 case MSR_IA32_VMX_VMCS_ENUM:
3135 vmx->nested.nested_vmx_vmcs_enum = data;
3136 return 0;
3137 default:
b87a51ae 3138 /*
62cc6b9d 3139 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3140 */
62cc6b9d
DM
3141 return -EINVAL;
3142 }
3143}
3144
3145/* Returns 0 on success, non-0 otherwise. */
3146static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3147{
3148 struct vcpu_vmx *vmx = to_vmx(vcpu);
3149
3150 switch (msr_index) {
3151 case MSR_IA32_VMX_BASIC:
3152 *pdata = vmx->nested.nested_vmx_basic;
b87a51ae
NHE
3153 break;
3154 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3155 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
3156 *pdata = vmx_control_msr(
3157 vmx->nested.nested_vmx_pinbased_ctls_low,
3158 vmx->nested.nested_vmx_pinbased_ctls_high);
0115f9cb
DM
3159 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3160 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3161 break;
3162 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3163 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
3164 *pdata = vmx_control_msr(
3165 vmx->nested.nested_vmx_procbased_ctls_low,
3166 vmx->nested.nested_vmx_procbased_ctls_high);
0115f9cb
DM
3167 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3168 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3169 break;
3170 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3171 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
3172 *pdata = vmx_control_msr(
3173 vmx->nested.nested_vmx_exit_ctls_low,
3174 vmx->nested.nested_vmx_exit_ctls_high);
0115f9cb
DM
3175 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3176 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3177 break;
3178 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3179 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
3180 *pdata = vmx_control_msr(
3181 vmx->nested.nested_vmx_entry_ctls_low,
3182 vmx->nested.nested_vmx_entry_ctls_high);
0115f9cb
DM
3183 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3184 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3185 break;
3186 case MSR_IA32_VMX_MISC:
b9c237bb
WV
3187 *pdata = vmx_control_msr(
3188 vmx->nested.nested_vmx_misc_low,
3189 vmx->nested.nested_vmx_misc_high);
b87a51ae 3190 break;
b87a51ae 3191 case MSR_IA32_VMX_CR0_FIXED0:
62cc6b9d 3192 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
b87a51ae
NHE
3193 break;
3194 case MSR_IA32_VMX_CR0_FIXED1:
62cc6b9d 3195 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
b87a51ae
NHE
3196 break;
3197 case MSR_IA32_VMX_CR4_FIXED0:
62cc6b9d 3198 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
b87a51ae
NHE
3199 break;
3200 case MSR_IA32_VMX_CR4_FIXED1:
62cc6b9d 3201 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
b87a51ae
NHE
3202 break;
3203 case MSR_IA32_VMX_VMCS_ENUM:
62cc6b9d 3204 *pdata = vmx->nested.nested_vmx_vmcs_enum;
b87a51ae
NHE
3205 break;
3206 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
3207 *pdata = vmx_control_msr(
3208 vmx->nested.nested_vmx_secondary_ctls_low,
3209 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
3210 break;
3211 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
3212 *pdata = vmx->nested.nested_vmx_ept_caps |
3213 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae 3214 break;
27c42a1b
BD
3215 case MSR_IA32_VMX_VMFUNC:
3216 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3217 break;
b87a51ae 3218 default:
b87a51ae 3219 return 1;
b3897a49
NHE
3220 }
3221
b87a51ae
NHE
3222 return 0;
3223}
3224
37e4c997
HZ
3225static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3226 uint64_t val)
3227{
3228 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3229
3230 return !(val & ~valid_bits);
3231}
3232
6aa8b732
AK
3233/*
3234 * Reads an msr value (of 'msr_index') into 'pdata'.
3235 * Returns 0 on success, non-0 otherwise.
3236 * Assumes vcpu_load() was already called.
3237 */
609e36d3 3238static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3239{
26bb0981 3240 struct shared_msr_entry *msr;
6aa8b732 3241
609e36d3 3242 switch (msr_info->index) {
05b3e0c2 3243#ifdef CONFIG_X86_64
6aa8b732 3244 case MSR_FS_BASE:
609e36d3 3245 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3246 break;
3247 case MSR_GS_BASE:
609e36d3 3248 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3249 break;
44ea2b17
AK
3250 case MSR_KERNEL_GS_BASE:
3251 vmx_load_host_state(to_vmx(vcpu));
609e36d3 3252 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3253 break;
26bb0981 3254#endif
6aa8b732 3255 case MSR_EFER:
609e36d3 3256 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3257 case MSR_IA32_TSC:
be7b263e 3258 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
3259 break;
3260 case MSR_IA32_SYSENTER_CS:
609e36d3 3261 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3262 break;
3263 case MSR_IA32_SYSENTER_EIP:
609e36d3 3264 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3265 break;
3266 case MSR_IA32_SYSENTER_ESP:
609e36d3 3267 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3268 break;
0dd376e7 3269 case MSR_IA32_BNDCFGS:
691bd434 3270 if (!kvm_mpx_supported() ||
d6321d49
RK
3271 (!msr_info->host_initiated &&
3272 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3273 return 1;
609e36d3 3274 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3275 break;
c45dcc71
AR
3276 case MSR_IA32_MCG_EXT_CTL:
3277 if (!msr_info->host_initiated &&
3278 !(to_vmx(vcpu)->msr_ia32_feature_control &
3279 FEATURE_CONTROL_LMCE))
cae50139 3280 return 1;
c45dcc71
AR
3281 msr_info->data = vcpu->arch.mcg_ext_ctl;
3282 break;
cae50139 3283 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3284 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3285 break;
3286 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3287 if (!nested_vmx_allowed(vcpu))
3288 return 1;
609e36d3 3289 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3290 case MSR_IA32_XSS:
3291 if (!vmx_xsaves_supported())
3292 return 1;
609e36d3 3293 msr_info->data = vcpu->arch.ia32_xss;
20300099 3294 break;
4e47c7a6 3295 case MSR_TSC_AUX:
d6321d49
RK
3296 if (!msr_info->host_initiated &&
3297 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3298 return 1;
3299 /* Otherwise falls through */
6aa8b732 3300 default:
609e36d3 3301 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3302 if (msr) {
609e36d3 3303 msr_info->data = msr->data;
3bab1f5d 3304 break;
6aa8b732 3305 }
609e36d3 3306 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3307 }
3308
6aa8b732
AK
3309 return 0;
3310}
3311
cae50139
JK
3312static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3313
6aa8b732
AK
3314/*
3315 * Writes msr value into into the appropriate "register".
3316 * Returns 0 on success, non-0 otherwise.
3317 * Assumes vcpu_load() was already called.
3318 */
8fe8ab46 3319static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3320{
a2fa3e9f 3321 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3322 struct shared_msr_entry *msr;
2cc51560 3323 int ret = 0;
8fe8ab46
WA
3324 u32 msr_index = msr_info->index;
3325 u64 data = msr_info->data;
2cc51560 3326
6aa8b732 3327 switch (msr_index) {
3bab1f5d 3328 case MSR_EFER:
8fe8ab46 3329 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3330 break;
16175a79 3331#ifdef CONFIG_X86_64
6aa8b732 3332 case MSR_FS_BASE:
2fb92db1 3333 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3334 vmcs_writel(GUEST_FS_BASE, data);
3335 break;
3336 case MSR_GS_BASE:
2fb92db1 3337 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3338 vmcs_writel(GUEST_GS_BASE, data);
3339 break;
44ea2b17
AK
3340 case MSR_KERNEL_GS_BASE:
3341 vmx_load_host_state(vmx);
3342 vmx->msr_guest_kernel_gs_base = data;
3343 break;
6aa8b732
AK
3344#endif
3345 case MSR_IA32_SYSENTER_CS:
3346 vmcs_write32(GUEST_SYSENTER_CS, data);
3347 break;
3348 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3349 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3350 break;
3351 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3352 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3353 break;
0dd376e7 3354 case MSR_IA32_BNDCFGS:
691bd434 3355 if (!kvm_mpx_supported() ||
d6321d49
RK
3356 (!msr_info->host_initiated &&
3357 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3358 return 1;
fd8cb433 3359 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
4531662d 3360 (data & MSR_IA32_BNDCFGS_RSVD))
93c4adc7 3361 return 1;
0dd376e7
LJ
3362 vmcs_write64(GUEST_BNDCFGS, data);
3363 break;
af24a4e4 3364 case MSR_IA32_TSC:
8fe8ab46 3365 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3366 break;
468d472f
SY
3367 case MSR_IA32_CR_PAT:
3368 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3369 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3370 return 1;
468d472f
SY
3371 vmcs_write64(GUEST_IA32_PAT, data);
3372 vcpu->arch.pat = data;
3373 break;
3374 }
8fe8ab46 3375 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3376 break;
ba904635
WA
3377 case MSR_IA32_TSC_ADJUST:
3378 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3379 break;
c45dcc71
AR
3380 case MSR_IA32_MCG_EXT_CTL:
3381 if ((!msr_info->host_initiated &&
3382 !(to_vmx(vcpu)->msr_ia32_feature_control &
3383 FEATURE_CONTROL_LMCE)) ||
3384 (data & ~MCG_EXT_CTL_LMCE_EN))
3385 return 1;
3386 vcpu->arch.mcg_ext_ctl = data;
3387 break;
cae50139 3388 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3389 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3390 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3391 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3392 return 1;
3b84080b 3393 vmx->msr_ia32_feature_control = data;
cae50139
JK
3394 if (msr_info->host_initiated && data == 0)
3395 vmx_leave_nested(vcpu);
3396 break;
3397 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3398 if (!msr_info->host_initiated)
3399 return 1; /* they are read-only */
3400 if (!nested_vmx_allowed(vcpu))
3401 return 1;
3402 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3403 case MSR_IA32_XSS:
3404 if (!vmx_xsaves_supported())
3405 return 1;
3406 /*
3407 * The only supported bit as of Skylake is bit 8, but
3408 * it is not supported on KVM.
3409 */
3410 if (data != 0)
3411 return 1;
3412 vcpu->arch.ia32_xss = data;
3413 if (vcpu->arch.ia32_xss != host_xss)
3414 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3415 vcpu->arch.ia32_xss, host_xss);
3416 else
3417 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3418 break;
4e47c7a6 3419 case MSR_TSC_AUX:
d6321d49
RK
3420 if (!msr_info->host_initiated &&
3421 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3422 return 1;
3423 /* Check reserved bit, higher 32 bits should be zero */
3424 if ((data >> 32) != 0)
3425 return 1;
3426 /* Otherwise falls through */
6aa8b732 3427 default:
8b9cf98c 3428 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3429 if (msr) {
8b3c3104 3430 u64 old_msr_data = msr->data;
3bab1f5d 3431 msr->data = data;
2225fd56
AK
3432 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3433 preempt_disable();
8b3c3104
AH
3434 ret = kvm_set_shared_msr(msr->index, msr->data,
3435 msr->mask);
2225fd56 3436 preempt_enable();
8b3c3104
AH
3437 if (ret)
3438 msr->data = old_msr_data;
2225fd56 3439 }
3bab1f5d 3440 break;
6aa8b732 3441 }
8fe8ab46 3442 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3443 }
3444
2cc51560 3445 return ret;
6aa8b732
AK
3446}
3447
5fdbf976 3448static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3449{
5fdbf976
MT
3450 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3451 switch (reg) {
3452 case VCPU_REGS_RSP:
3453 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3454 break;
3455 case VCPU_REGS_RIP:
3456 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3457 break;
6de4f3ad
AK
3458 case VCPU_EXREG_PDPTR:
3459 if (enable_ept)
3460 ept_save_pdptrs(vcpu);
3461 break;
5fdbf976
MT
3462 default:
3463 break;
3464 }
6aa8b732
AK
3465}
3466
6aa8b732
AK
3467static __init int cpu_has_kvm_support(void)
3468{
6210e37b 3469 return cpu_has_vmx();
6aa8b732
AK
3470}
3471
3472static __init int vmx_disabled_by_bios(void)
3473{
3474 u64 msr;
3475
3476 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3477 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3478 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3479 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3480 && tboot_enabled())
3481 return 1;
23f3e991 3482 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3483 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3484 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3485 && !tboot_enabled()) {
3486 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3487 "activate TXT before enabling KVM\n");
cafd6659 3488 return 1;
f9335afe 3489 }
23f3e991
JC
3490 /* launched w/o TXT and VMX disabled */
3491 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3492 && !tboot_enabled())
3493 return 1;
cafd6659
SW
3494 }
3495
3496 return 0;
6aa8b732
AK
3497}
3498
7725b894
DX
3499static void kvm_cpu_vmxon(u64 addr)
3500{
fe0e80be 3501 cr4_set_bits(X86_CR4_VMXE);
1c5ac21a
AS
3502 intel_pt_handle_vmx(1);
3503
7725b894
DX
3504 asm volatile (ASM_VMX_VMXON_RAX
3505 : : "a"(&addr), "m"(addr)
3506 : "memory", "cc");
3507}
3508
13a34e06 3509static int hardware_enable(void)
6aa8b732
AK
3510{
3511 int cpu = raw_smp_processor_id();
3512 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3513 u64 old, test_bits;
6aa8b732 3514
1e02ce4c 3515 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3516 return -EBUSY;
3517
d462b819 3518 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3519 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3520 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3521
3522 /*
3523 * Now we can enable the vmclear operation in kdump
3524 * since the loaded_vmcss_on_cpu list on this cpu
3525 * has been initialized.
3526 *
3527 * Though the cpu is not in VMX operation now, there
3528 * is no problem to enable the vmclear operation
3529 * for the loaded_vmcss_on_cpu list is empty!
3530 */
3531 crash_enable_local_vmclear(cpu);
3532
6aa8b732 3533 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3534
3535 test_bits = FEATURE_CONTROL_LOCKED;
3536 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3537 if (tboot_enabled())
3538 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3539
3540 if ((old & test_bits) != test_bits) {
6aa8b732 3541 /* enable and lock */
cafd6659
SW
3542 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3543 }
fe0e80be 3544 kvm_cpu_vmxon(phys_addr);
fdf288bf
DH
3545 if (enable_ept)
3546 ept_sync_global();
10474ae8
AG
3547
3548 return 0;
6aa8b732
AK
3549}
3550
d462b819 3551static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3552{
3553 int cpu = raw_smp_processor_id();
d462b819 3554 struct loaded_vmcs *v, *n;
543e4243 3555
d462b819
NHE
3556 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3557 loaded_vmcss_on_cpu_link)
3558 __loaded_vmcs_clear(v);
543e4243
AK
3559}
3560
710ff4a8
EH
3561
3562/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3563 * tricks.
3564 */
3565static void kvm_cpu_vmxoff(void)
6aa8b732 3566{
4ecac3fd 3567 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3568
3569 intel_pt_handle_vmx(0);
fe0e80be 3570 cr4_clear_bits(X86_CR4_VMXE);
6aa8b732
AK
3571}
3572
13a34e06 3573static void hardware_disable(void)
710ff4a8 3574{
fe0e80be
DH
3575 vmclear_local_loaded_vmcss();
3576 kvm_cpu_vmxoff();
710ff4a8
EH
3577}
3578
1c3d14fe 3579static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3580 u32 msr, u32 *result)
1c3d14fe
YS
3581{
3582 u32 vmx_msr_low, vmx_msr_high;
3583 u32 ctl = ctl_min | ctl_opt;
3584
3585 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3586
3587 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3588 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3589
3590 /* Ensure minimum (required) set of control bits are supported. */
3591 if (ctl_min & ~ctl)
002c7f7c 3592 return -EIO;
1c3d14fe
YS
3593
3594 *result = ctl;
3595 return 0;
3596}
3597
110312c8
AK
3598static __init bool allow_1_setting(u32 msr, u32 ctl)
3599{
3600 u32 vmx_msr_low, vmx_msr_high;
3601
3602 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3603 return vmx_msr_high & ctl;
3604}
3605
002c7f7c 3606static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3607{
3608 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3609 u32 min, opt, min2, opt2;
1c3d14fe
YS
3610 u32 _pin_based_exec_control = 0;
3611 u32 _cpu_based_exec_control = 0;
f78e0e2e 3612 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3613 u32 _vmexit_control = 0;
3614 u32 _vmentry_control = 0;
3615
10166744 3616 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3617#ifdef CONFIG_X86_64
3618 CPU_BASED_CR8_LOAD_EXITING |
3619 CPU_BASED_CR8_STORE_EXITING |
3620#endif
d56f546d
SY
3621 CPU_BASED_CR3_LOAD_EXITING |
3622 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3623 CPU_BASED_USE_IO_BITMAPS |
3624 CPU_BASED_MOV_DR_EXITING |
a7052897 3625 CPU_BASED_USE_TSC_OFFSETING |
fee84b07
AK
3626 CPU_BASED_INVLPG_EXITING |
3627 CPU_BASED_RDPMC_EXITING;
443381a8 3628
668fffa3
MT
3629 if (!kvm_mwait_in_guest())
3630 min |= CPU_BASED_MWAIT_EXITING |
3631 CPU_BASED_MONITOR_EXITING;
3632
f78e0e2e 3633 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3634 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3635 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3636 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3637 &_cpu_based_exec_control) < 0)
002c7f7c 3638 return -EIO;
6e5d865c
YS
3639#ifdef CONFIG_X86_64
3640 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3641 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3642 ~CPU_BASED_CR8_STORE_EXITING;
3643#endif
f78e0e2e 3644 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3645 min2 = 0;
3646 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3647 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3648 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3649 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3650 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3651 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3652 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3653 SECONDARY_EXEC_RDTSCP |
83d4c286 3654 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3655 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3656 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3657 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3658 SECONDARY_EXEC_XSAVES |
75f4fc8d 3659 SECONDARY_EXEC_RDSEED |
45ec368c 3660 SECONDARY_EXEC_RDRAND |
8b3e34e4 3661 SECONDARY_EXEC_ENABLE_PML |
2a499e49
BD
3662 SECONDARY_EXEC_TSC_SCALING |
3663 SECONDARY_EXEC_ENABLE_VMFUNC;
d56f546d
SY
3664 if (adjust_vmx_controls(min2, opt2,
3665 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3666 &_cpu_based_2nd_exec_control) < 0)
3667 return -EIO;
3668 }
3669#ifndef CONFIG_X86_64
3670 if (!(_cpu_based_2nd_exec_control &
3671 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3672 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3673#endif
83d4c286
YZ
3674
3675 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3676 _cpu_based_2nd_exec_control &= ~(
8d14695f 3677 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3678 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3679 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3680
d56f546d 3681 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3682 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3683 enabled */
5fff7d27
GN
3684 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3685 CPU_BASED_CR3_STORE_EXITING |
3686 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3687 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3688 vmx_capability.ept, vmx_capability.vpid);
3689 }
1c3d14fe 3690
91fa0f8e 3691 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3692#ifdef CONFIG_X86_64
3693 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3694#endif
a547c6db 3695 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3696 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3697 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3698 &_vmexit_control) < 0)
002c7f7c 3699 return -EIO;
1c3d14fe 3700
2c82878b
PB
3701 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3702 PIN_BASED_VIRTUAL_NMIS;
3703 opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3704 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3705 &_pin_based_exec_control) < 0)
3706 return -EIO;
3707
1c17c3e6
PB
3708 if (cpu_has_broken_vmx_preemption_timer())
3709 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3710 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3711 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3712 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3713
c845f9c6 3714 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3715 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3716 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3717 &_vmentry_control) < 0)
002c7f7c 3718 return -EIO;
6aa8b732 3719
c68876fd 3720 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3721
3722 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3723 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3724 return -EIO;
1c3d14fe
YS
3725
3726#ifdef CONFIG_X86_64
3727 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3728 if (vmx_msr_high & (1u<<16))
002c7f7c 3729 return -EIO;
1c3d14fe
YS
3730#endif
3731
3732 /* Require Write-Back (WB) memory type for VMCS accesses. */
3733 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3734 return -EIO;
1c3d14fe 3735
002c7f7c 3736 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3737 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3738 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3739 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3740
002c7f7c
YS
3741 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3742 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3743 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3744 vmcs_conf->vmexit_ctrl = _vmexit_control;
3745 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3746
110312c8
AK
3747 cpu_has_load_ia32_efer =
3748 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3749 VM_ENTRY_LOAD_IA32_EFER)
3750 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3751 VM_EXIT_LOAD_IA32_EFER);
3752
8bf00a52
GN
3753 cpu_has_load_perf_global_ctrl =
3754 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3755 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3756 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3757 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3758
3759 /*
3760 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3761 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3762 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3763 *
3764 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3765 *
3766 * AAK155 (model 26)
3767 * AAP115 (model 30)
3768 * AAT100 (model 37)
3769 * BC86,AAY89,BD102 (model 44)
3770 * BA97 (model 46)
3771 *
3772 */
3773 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3774 switch (boot_cpu_data.x86_model) {
3775 case 26:
3776 case 30:
3777 case 37:
3778 case 44:
3779 case 46:
3780 cpu_has_load_perf_global_ctrl = false;
3781 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3782 "does not work properly. Using workaround\n");
3783 break;
3784 default:
3785 break;
3786 }
3787 }
3788
782511b0 3789 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3790 rdmsrl(MSR_IA32_XSS, host_xss);
3791
1c3d14fe 3792 return 0;
c68876fd 3793}
6aa8b732
AK
3794
3795static struct vmcs *alloc_vmcs_cpu(int cpu)
3796{
3797 int node = cpu_to_node(cpu);
3798 struct page *pages;
3799 struct vmcs *vmcs;
3800
96db800f 3801 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3802 if (!pages)
3803 return NULL;
3804 vmcs = page_address(pages);
1c3d14fe
YS
3805 memset(vmcs, 0, vmcs_config.size);
3806 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3807 return vmcs;
3808}
3809
3810static struct vmcs *alloc_vmcs(void)
3811{
d3b2c338 3812 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3813}
3814
3815static void free_vmcs(struct vmcs *vmcs)
3816{
1c3d14fe 3817 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3818}
3819
d462b819
NHE
3820/*
3821 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3822 */
3823static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3824{
3825 if (!loaded_vmcs->vmcs)
3826 return;
3827 loaded_vmcs_clear(loaded_vmcs);
3828 free_vmcs(loaded_vmcs->vmcs);
3829 loaded_vmcs->vmcs = NULL;
355f4fb1 3830 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
3831}
3832
39959588 3833static void free_kvm_area(void)
6aa8b732
AK
3834{
3835 int cpu;
3836
3230bb47 3837 for_each_possible_cpu(cpu) {
6aa8b732 3838 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3839 per_cpu(vmxarea, cpu) = NULL;
3840 }
6aa8b732
AK
3841}
3842
85fd514e
JM
3843enum vmcs_field_type {
3844 VMCS_FIELD_TYPE_U16 = 0,
3845 VMCS_FIELD_TYPE_U64 = 1,
3846 VMCS_FIELD_TYPE_U32 = 2,
3847 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3848};
3849
3850static inline int vmcs_field_type(unsigned long field)
3851{
3852 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
3853 return VMCS_FIELD_TYPE_U32;
3854 return (field >> 13) & 0x3 ;
3855}
3856
3857static inline int vmcs_field_readonly(unsigned long field)
3858{
3859 return (((field >> 10) & 0x3) == 1);
3860}
3861
fe2b201b
BD
3862static void init_vmcs_shadow_fields(void)
3863{
3864 int i, j;
3865
3866 /* No checks for read only fields yet */
3867
3868 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3869 switch (shadow_read_write_fields[i]) {
3870 case GUEST_BNDCFGS:
a87036ad 3871 if (!kvm_mpx_supported())
fe2b201b
BD
3872 continue;
3873 break;
3874 default:
3875 break;
3876 }
3877
3878 if (j < i)
3879 shadow_read_write_fields[j] =
3880 shadow_read_write_fields[i];
3881 j++;
3882 }
3883 max_shadow_read_write_fields = j;
3884
3885 /* shadowed fields guest access without vmexit */
3886 for (i = 0; i < max_shadow_read_write_fields; i++) {
85fd514e
JM
3887 unsigned long field = shadow_read_write_fields[i];
3888
3889 clear_bit(field, vmx_vmwrite_bitmap);
3890 clear_bit(field, vmx_vmread_bitmap);
3891 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3892 clear_bit(field + 1, vmx_vmwrite_bitmap);
3893 clear_bit(field + 1, vmx_vmread_bitmap);
3894 }
3895 }
3896 for (i = 0; i < max_shadow_read_only_fields; i++) {
3897 unsigned long field = shadow_read_only_fields[i];
3898
3899 clear_bit(field, vmx_vmread_bitmap);
3900 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3901 clear_bit(field + 1, vmx_vmread_bitmap);
fe2b201b 3902 }
fe2b201b
BD
3903}
3904
6aa8b732
AK
3905static __init int alloc_kvm_area(void)
3906{
3907 int cpu;
3908
3230bb47 3909 for_each_possible_cpu(cpu) {
6aa8b732
AK
3910 struct vmcs *vmcs;
3911
3912 vmcs = alloc_vmcs_cpu(cpu);
3913 if (!vmcs) {
3914 free_kvm_area();
3915 return -ENOMEM;
3916 }
3917
3918 per_cpu(vmxarea, cpu) = vmcs;
3919 }
3920 return 0;
3921}
3922
91b0aa2c 3923static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3924 struct kvm_segment *save)
6aa8b732 3925{
d99e4152
GN
3926 if (!emulate_invalid_guest_state) {
3927 /*
3928 * CS and SS RPL should be equal during guest entry according
3929 * to VMX spec, but in reality it is not always so. Since vcpu
3930 * is in the middle of the transition from real mode to
3931 * protected mode it is safe to assume that RPL 0 is a good
3932 * default value.
3933 */
3934 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3935 save->selector &= ~SEGMENT_RPL_MASK;
3936 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3937 save->s = 1;
6aa8b732 3938 }
d99e4152 3939 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3940}
3941
3942static void enter_pmode(struct kvm_vcpu *vcpu)
3943{
3944 unsigned long flags;
a89a8fb9 3945 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3946
d99e4152
GN
3947 /*
3948 * Update real mode segment cache. It may be not up-to-date if sement
3949 * register was written while vcpu was in a guest mode.
3950 */
3951 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3952 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3953 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3954 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3955 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3956 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3957
7ffd92c5 3958 vmx->rmode.vm86_active = 0;
6aa8b732 3959
2fb92db1
AK
3960 vmx_segment_cache_clear(vmx);
3961
f5f7b2fe 3962 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3963
3964 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3965 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3966 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3967 vmcs_writel(GUEST_RFLAGS, flags);
3968
66aee91a
RR
3969 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3970 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3971
3972 update_exception_bitmap(vcpu);
3973
91b0aa2c
GN
3974 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3975 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3976 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3977 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3978 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3979 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3980}
3981
f5f7b2fe 3982static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3983{
772e0318 3984 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3985 struct kvm_segment var = *save;
3986
3987 var.dpl = 0x3;
3988 if (seg == VCPU_SREG_CS)
3989 var.type = 0x3;
3990
3991 if (!emulate_invalid_guest_state) {
3992 var.selector = var.base >> 4;
3993 var.base = var.base & 0xffff0;
3994 var.limit = 0xffff;
3995 var.g = 0;
3996 var.db = 0;
3997 var.present = 1;
3998 var.s = 1;
3999 var.l = 0;
4000 var.unusable = 0;
4001 var.type = 0x3;
4002 var.avl = 0;
4003 if (save->base & 0xf)
4004 printk_once(KERN_WARNING "kvm: segment base is not "
4005 "paragraph aligned when entering "
4006 "protected mode (seg=%d)", seg);
4007 }
6aa8b732 4008
d99e4152 4009 vmcs_write16(sf->selector, var.selector);
96794e4e 4010 vmcs_writel(sf->base, var.base);
d99e4152
GN
4011 vmcs_write32(sf->limit, var.limit);
4012 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
4013}
4014
4015static void enter_rmode(struct kvm_vcpu *vcpu)
4016{
4017 unsigned long flags;
a89a8fb9 4018 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 4019
f5f7b2fe
AK
4020 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4021 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4022 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4023 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4024 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
4025 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4026 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 4027
7ffd92c5 4028 vmx->rmode.vm86_active = 1;
6aa8b732 4029
776e58ea
GN
4030 /*
4031 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 4032 * vcpu. Warn the user that an update is overdue.
776e58ea 4033 */
4918c6ca 4034 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
4035 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4036 "called before entering vcpu\n");
776e58ea 4037
2fb92db1
AK
4038 vmx_segment_cache_clear(vmx);
4039
4918c6ca 4040 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 4041 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
4042 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4043
4044 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 4045 vmx->rmode.save_rflags = flags;
6aa8b732 4046
053de044 4047 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
4048
4049 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 4050 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
4051 update_exception_bitmap(vcpu);
4052
d99e4152
GN
4053 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4054 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4055 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4056 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4057 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4058 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 4059
8668a3c4 4060 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
4061}
4062
401d10de
AS
4063static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4064{
4065 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
4066 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4067
4068 if (!msr)
4069 return;
401d10de 4070
44ea2b17
AK
4071 /*
4072 * Force kernel_gs_base reloading before EFER changes, as control
4073 * of this msr depends on is_long_mode().
4074 */
4075 vmx_load_host_state(to_vmx(vcpu));
f6801dff 4076 vcpu->arch.efer = efer;
401d10de 4077 if (efer & EFER_LMA) {
2961e876 4078 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4079 msr->data = efer;
4080 } else {
2961e876 4081 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4082
4083 msr->data = efer & ~EFER_LME;
4084 }
4085 setup_msrs(vmx);
4086}
4087
05b3e0c2 4088#ifdef CONFIG_X86_64
6aa8b732
AK
4089
4090static void enter_lmode(struct kvm_vcpu *vcpu)
4091{
4092 u32 guest_tr_ar;
4093
2fb92db1
AK
4094 vmx_segment_cache_clear(to_vmx(vcpu));
4095
6aa8b732 4096 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 4097 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
4098 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4099 __func__);
6aa8b732 4100 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
4101 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4102 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4103 }
da38f438 4104 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4105}
4106
4107static void exit_lmode(struct kvm_vcpu *vcpu)
4108{
2961e876 4109 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4110 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4111}
4112
4113#endif
4114
dd5f5341 4115static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 4116{
dd180b3e
XG
4117 if (enable_ept) {
4118 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4119 return;
995f00a6 4120 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
f0b98c02
JM
4121 } else {
4122 vpid_sync_context(vpid);
dd180b3e 4123 }
2384d2b3
SY
4124}
4125
dd5f5341
WL
4126static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4127{
4128 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4129}
4130
fb6c8198
JM
4131static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4132{
4133 if (enable_ept)
4134 vmx_flush_tlb(vcpu);
4135}
4136
e8467fda
AK
4137static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4138{
4139 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4140
4141 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4142 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4143}
4144
aff48baa
AK
4145static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4146{
4147 if (enable_ept && is_paging(vcpu))
4148 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4149 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4150}
4151
25c4c276 4152static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4153{
fc78f519
AK
4154 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4155
4156 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4157 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4158}
4159
1439442c
SY
4160static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4161{
d0d538b9
GN
4162 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4163
6de4f3ad
AK
4164 if (!test_bit(VCPU_EXREG_PDPTR,
4165 (unsigned long *)&vcpu->arch.regs_dirty))
4166 return;
4167
1439442c 4168 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4169 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4170 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4171 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4172 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4173 }
4174}
4175
8f5d549f
AK
4176static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4177{
d0d538b9
GN
4178 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4179
8f5d549f 4180 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4181 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4182 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4183 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4184 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4185 }
6de4f3ad
AK
4186
4187 __set_bit(VCPU_EXREG_PDPTR,
4188 (unsigned long *)&vcpu->arch.regs_avail);
4189 __set_bit(VCPU_EXREG_PDPTR,
4190 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4191}
4192
3899152c
DM
4193static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4194{
4195 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4196 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4197 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4198
4199 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4200 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4201 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4202 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4203
4204 return fixed_bits_valid(val, fixed0, fixed1);
4205}
4206
4207static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4208{
4209 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4210 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4211
4212 return fixed_bits_valid(val, fixed0, fixed1);
4213}
4214
4215static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4216{
4217 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4218 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4219
4220 return fixed_bits_valid(val, fixed0, fixed1);
4221}
4222
4223/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4224#define nested_guest_cr4_valid nested_cr4_valid
4225#define nested_host_cr4_valid nested_cr4_valid
4226
5e1746d6 4227static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4228
4229static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4230 unsigned long cr0,
4231 struct kvm_vcpu *vcpu)
4232{
5233dd51
MT
4233 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4234 vmx_decache_cr3(vcpu);
1439442c
SY
4235 if (!(cr0 & X86_CR0_PG)) {
4236 /* From paging/starting to nonpaging */
4237 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4238 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4239 (CPU_BASED_CR3_LOAD_EXITING |
4240 CPU_BASED_CR3_STORE_EXITING));
4241 vcpu->arch.cr0 = cr0;
fc78f519 4242 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4243 } else if (!is_paging(vcpu)) {
4244 /* From nonpaging to paging */
4245 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4246 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4247 ~(CPU_BASED_CR3_LOAD_EXITING |
4248 CPU_BASED_CR3_STORE_EXITING));
4249 vcpu->arch.cr0 = cr0;
fc78f519 4250 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4251 }
95eb84a7
SY
4252
4253 if (!(cr0 & X86_CR0_WP))
4254 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4255}
4256
6aa8b732
AK
4257static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4258{
7ffd92c5 4259 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4260 unsigned long hw_cr0;
4261
5037878e 4262 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4263 if (enable_unrestricted_guest)
5037878e 4264 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4265 else {
5037878e 4266 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4267
218e763f
GN
4268 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4269 enter_pmode(vcpu);
6aa8b732 4270
218e763f
GN
4271 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4272 enter_rmode(vcpu);
4273 }
6aa8b732 4274
05b3e0c2 4275#ifdef CONFIG_X86_64
f6801dff 4276 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4277 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4278 enter_lmode(vcpu);
707d92fa 4279 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4280 exit_lmode(vcpu);
4281 }
4282#endif
4283
089d034e 4284 if (enable_ept)
1439442c
SY
4285 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4286
6aa8b732 4287 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4288 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4289 vcpu->arch.cr0 = cr0;
14168786
GN
4290
4291 /* depends on vcpu->arch.cr0 to be set to a new value */
4292 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4293}
4294
855feb67
YZ
4295static int get_ept_level(struct kvm_vcpu *vcpu)
4296{
4297 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4298 return 5;
4299 return 4;
4300}
4301
995f00a6 4302static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
1439442c 4303{
855feb67
YZ
4304 u64 eptp = VMX_EPTP_MT_WB;
4305
4306 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
1439442c 4307
995f00a6
PF
4308 if (enable_ept_ad_bits &&
4309 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
bb97a016 4310 eptp |= VMX_EPTP_AD_ENABLE_BIT;
1439442c
SY
4311 eptp |= (root_hpa & PAGE_MASK);
4312
4313 return eptp;
4314}
4315
6aa8b732
AK
4316static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4317{
1439442c
SY
4318 unsigned long guest_cr3;
4319 u64 eptp;
4320
4321 guest_cr3 = cr3;
089d034e 4322 if (enable_ept) {
995f00a6 4323 eptp = construct_eptp(vcpu, cr3);
1439442c 4324 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
4325 if (is_paging(vcpu) || is_guest_mode(vcpu))
4326 guest_cr3 = kvm_read_cr3(vcpu);
4327 else
4328 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 4329 ept_load_pdptrs(vcpu);
1439442c
SY
4330 }
4331
2384d2b3 4332 vmx_flush_tlb(vcpu);
1439442c 4333 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4334}
4335
5e1746d6 4336static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4337{
085e68ee
BS
4338 /*
4339 * Pass through host's Machine Check Enable value to hw_cr4, which
4340 * is in force while we are in guest mode. Do not let guests control
4341 * this bit, even if host CR4.MCE == 0.
4342 */
4343 unsigned long hw_cr4 =
4344 (cr4_read_shadow() & X86_CR4_MCE) |
4345 (cr4 & ~X86_CR4_MCE) |
4346 (to_vmx(vcpu)->rmode.vm86_active ?
4347 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4348
5e1746d6
NHE
4349 if (cr4 & X86_CR4_VMXE) {
4350 /*
4351 * To use VMXON (and later other VMX instructions), a guest
4352 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4353 * So basically the check on whether to allow nested VMX
4354 * is here.
4355 */
4356 if (!nested_vmx_allowed(vcpu))
4357 return 1;
1a0d74e6 4358 }
3899152c
DM
4359
4360 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4361 return 1;
4362
ad312c7c 4363 vcpu->arch.cr4 = cr4;
bc23008b
AK
4364 if (enable_ept) {
4365 if (!is_paging(vcpu)) {
4366 hw_cr4 &= ~X86_CR4_PAE;
4367 hw_cr4 |= X86_CR4_PSE;
4368 } else if (!(cr4 & X86_CR4_PAE)) {
4369 hw_cr4 &= ~X86_CR4_PAE;
4370 }
4371 }
1439442c 4372
656ec4a4
RK
4373 if (!enable_unrestricted_guest && !is_paging(vcpu))
4374 /*
ddba2628
HH
4375 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4376 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4377 * to be manually disabled when guest switches to non-paging
4378 * mode.
4379 *
4380 * If !enable_unrestricted_guest, the CPU is always running
4381 * with CR0.PG=1 and CR4 needs to be modified.
4382 * If enable_unrestricted_guest, the CPU automatically
4383 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4384 */
ddba2628 4385 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4386
1439442c
SY
4387 vmcs_writel(CR4_READ_SHADOW, cr4);
4388 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4389 return 0;
6aa8b732
AK
4390}
4391
6aa8b732
AK
4392static void vmx_get_segment(struct kvm_vcpu *vcpu,
4393 struct kvm_segment *var, int seg)
4394{
a9179499 4395 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4396 u32 ar;
4397
c6ad1153 4398 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4399 *var = vmx->rmode.segs[seg];
a9179499 4400 if (seg == VCPU_SREG_TR
2fb92db1 4401 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4402 return;
1390a28b
AK
4403 var->base = vmx_read_guest_seg_base(vmx, seg);
4404 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4405 return;
a9179499 4406 }
2fb92db1
AK
4407 var->base = vmx_read_guest_seg_base(vmx, seg);
4408 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4409 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4410 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4411 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4412 var->type = ar & 15;
4413 var->s = (ar >> 4) & 1;
4414 var->dpl = (ar >> 5) & 3;
03617c18
GN
4415 /*
4416 * Some userspaces do not preserve unusable property. Since usable
4417 * segment has to be present according to VMX spec we can use present
4418 * property to amend userspace bug by making unusable segment always
4419 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4420 * segment as unusable.
4421 */
4422 var->present = !var->unusable;
6aa8b732
AK
4423 var->avl = (ar >> 12) & 1;
4424 var->l = (ar >> 13) & 1;
4425 var->db = (ar >> 14) & 1;
4426 var->g = (ar >> 15) & 1;
6aa8b732
AK
4427}
4428
a9179499
AK
4429static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4430{
a9179499
AK
4431 struct kvm_segment s;
4432
4433 if (to_vmx(vcpu)->rmode.vm86_active) {
4434 vmx_get_segment(vcpu, &s, seg);
4435 return s.base;
4436 }
2fb92db1 4437 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4438}
4439
b09408d0 4440static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4441{
b09408d0
MT
4442 struct vcpu_vmx *vmx = to_vmx(vcpu);
4443
ae9fedc7 4444 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4445 return 0;
ae9fedc7
PB
4446 else {
4447 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4448 return VMX_AR_DPL(ar);
69c73028 4449 }
69c73028
AK
4450}
4451
653e3108 4452static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4453{
6aa8b732
AK
4454 u32 ar;
4455
f0495f9b 4456 if (var->unusable || !var->present)
6aa8b732
AK
4457 ar = 1 << 16;
4458 else {
4459 ar = var->type & 15;
4460 ar |= (var->s & 1) << 4;
4461 ar |= (var->dpl & 3) << 5;
4462 ar |= (var->present & 1) << 7;
4463 ar |= (var->avl & 1) << 12;
4464 ar |= (var->l & 1) << 13;
4465 ar |= (var->db & 1) << 14;
4466 ar |= (var->g & 1) << 15;
4467 }
653e3108
AK
4468
4469 return ar;
4470}
4471
4472static void vmx_set_segment(struct kvm_vcpu *vcpu,
4473 struct kvm_segment *var, int seg)
4474{
7ffd92c5 4475 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4476 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4477
2fb92db1
AK
4478 vmx_segment_cache_clear(vmx);
4479
1ecd50a9
GN
4480 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4481 vmx->rmode.segs[seg] = *var;
4482 if (seg == VCPU_SREG_TR)
4483 vmcs_write16(sf->selector, var->selector);
4484 else if (var->s)
4485 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4486 goto out;
653e3108 4487 }
1ecd50a9 4488
653e3108
AK
4489 vmcs_writel(sf->base, var->base);
4490 vmcs_write32(sf->limit, var->limit);
4491 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4492
4493 /*
4494 * Fix the "Accessed" bit in AR field of segment registers for older
4495 * qemu binaries.
4496 * IA32 arch specifies that at the time of processor reset the
4497 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4498 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4499 * state vmexit when "unrestricted guest" mode is turned on.
4500 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4501 * tree. Newer qemu binaries with that qemu fix would not need this
4502 * kvm hack.
4503 */
4504 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4505 var->type |= 0x1; /* Accessed */
3a624e29 4506
f924d66d 4507 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4508
4509out:
98eb2f8b 4510 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4511}
4512
6aa8b732
AK
4513static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4514{
2fb92db1 4515 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4516
4517 *db = (ar >> 14) & 1;
4518 *l = (ar >> 13) & 1;
4519}
4520
89a27f4d 4521static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4522{
89a27f4d
GN
4523 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4524 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4525}
4526
89a27f4d 4527static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4528{
89a27f4d
GN
4529 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4530 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4531}
4532
89a27f4d 4533static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4534{
89a27f4d
GN
4535 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4536 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4537}
4538
89a27f4d 4539static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4540{
89a27f4d
GN
4541 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4542 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4543}
4544
648dfaa7
MG
4545static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4546{
4547 struct kvm_segment var;
4548 u32 ar;
4549
4550 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4551 var.dpl = 0x3;
0647f4aa
GN
4552 if (seg == VCPU_SREG_CS)
4553 var.type = 0x3;
648dfaa7
MG
4554 ar = vmx_segment_access_rights(&var);
4555
4556 if (var.base != (var.selector << 4))
4557 return false;
89efbed0 4558 if (var.limit != 0xffff)
648dfaa7 4559 return false;
07f42f5f 4560 if (ar != 0xf3)
648dfaa7
MG
4561 return false;
4562
4563 return true;
4564}
4565
4566static bool code_segment_valid(struct kvm_vcpu *vcpu)
4567{
4568 struct kvm_segment cs;
4569 unsigned int cs_rpl;
4570
4571 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4572 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4573
1872a3f4
AK
4574 if (cs.unusable)
4575 return false;
4d283ec9 4576 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4577 return false;
4578 if (!cs.s)
4579 return false;
4d283ec9 4580 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4581 if (cs.dpl > cs_rpl)
4582 return false;
1872a3f4 4583 } else {
648dfaa7
MG
4584 if (cs.dpl != cs_rpl)
4585 return false;
4586 }
4587 if (!cs.present)
4588 return false;
4589
4590 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4591 return true;
4592}
4593
4594static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4595{
4596 struct kvm_segment ss;
4597 unsigned int ss_rpl;
4598
4599 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4600 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4601
1872a3f4
AK
4602 if (ss.unusable)
4603 return true;
4604 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4605 return false;
4606 if (!ss.s)
4607 return false;
4608 if (ss.dpl != ss_rpl) /* DPL != RPL */
4609 return false;
4610 if (!ss.present)
4611 return false;
4612
4613 return true;
4614}
4615
4616static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4617{
4618 struct kvm_segment var;
4619 unsigned int rpl;
4620
4621 vmx_get_segment(vcpu, &var, seg);
b32a9918 4622 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4623
1872a3f4
AK
4624 if (var.unusable)
4625 return true;
648dfaa7
MG
4626 if (!var.s)
4627 return false;
4628 if (!var.present)
4629 return false;
4d283ec9 4630 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4631 if (var.dpl < rpl) /* DPL < RPL */
4632 return false;
4633 }
4634
4635 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4636 * rights flags
4637 */
4638 return true;
4639}
4640
4641static bool tr_valid(struct kvm_vcpu *vcpu)
4642{
4643 struct kvm_segment tr;
4644
4645 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4646
1872a3f4
AK
4647 if (tr.unusable)
4648 return false;
b32a9918 4649 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4650 return false;
1872a3f4 4651 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4652 return false;
4653 if (!tr.present)
4654 return false;
4655
4656 return true;
4657}
4658
4659static bool ldtr_valid(struct kvm_vcpu *vcpu)
4660{
4661 struct kvm_segment ldtr;
4662
4663 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4664
1872a3f4
AK
4665 if (ldtr.unusable)
4666 return true;
b32a9918 4667 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4668 return false;
4669 if (ldtr.type != 2)
4670 return false;
4671 if (!ldtr.present)
4672 return false;
4673
4674 return true;
4675}
4676
4677static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4678{
4679 struct kvm_segment cs, ss;
4680
4681 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4682 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4683
b32a9918
NA
4684 return ((cs.selector & SEGMENT_RPL_MASK) ==
4685 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4686}
4687
4688/*
4689 * Check if guest state is valid. Returns true if valid, false if
4690 * not.
4691 * We assume that registers are always usable
4692 */
4693static bool guest_state_valid(struct kvm_vcpu *vcpu)
4694{
c5e97c80
GN
4695 if (enable_unrestricted_guest)
4696 return true;
4697
648dfaa7 4698 /* real mode guest state checks */
f13882d8 4699 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4700 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4701 return false;
4702 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4703 return false;
4704 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4705 return false;
4706 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4707 return false;
4708 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4709 return false;
4710 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4711 return false;
4712 } else {
4713 /* protected mode guest state checks */
4714 if (!cs_ss_rpl_check(vcpu))
4715 return false;
4716 if (!code_segment_valid(vcpu))
4717 return false;
4718 if (!stack_segment_valid(vcpu))
4719 return false;
4720 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4721 return false;
4722 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4723 return false;
4724 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4725 return false;
4726 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4727 return false;
4728 if (!tr_valid(vcpu))
4729 return false;
4730 if (!ldtr_valid(vcpu))
4731 return false;
4732 }
4733 /* TODO:
4734 * - Add checks on RIP
4735 * - Add checks on RFLAGS
4736 */
4737
4738 return true;
4739}
4740
5fa99cbe
JM
4741static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4742{
4743 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4744}
4745
d77c26fc 4746static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4747{
40dcaa9f 4748 gfn_t fn;
195aefde 4749 u16 data = 0;
1f755a82 4750 int idx, r;
6aa8b732 4751
40dcaa9f 4752 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4753 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4754 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4755 if (r < 0)
10589a46 4756 goto out;
195aefde 4757 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4758 r = kvm_write_guest_page(kvm, fn++, &data,
4759 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4760 if (r < 0)
10589a46 4761 goto out;
195aefde
IE
4762 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4763 if (r < 0)
10589a46 4764 goto out;
195aefde
IE
4765 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4766 if (r < 0)
10589a46 4767 goto out;
195aefde 4768 data = ~0;
10589a46
MT
4769 r = kvm_write_guest_page(kvm, fn, &data,
4770 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4771 sizeof(u8));
10589a46 4772out:
40dcaa9f 4773 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4774 return r;
6aa8b732
AK
4775}
4776
b7ebfb05
SY
4777static int init_rmode_identity_map(struct kvm *kvm)
4778{
f51770ed 4779 int i, idx, r = 0;
ba049e93 4780 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4781 u32 tmp;
4782
089d034e 4783 if (!enable_ept)
f51770ed 4784 return 0;
a255d479
TC
4785
4786 /* Protect kvm->arch.ept_identity_pagetable_done. */
4787 mutex_lock(&kvm->slots_lock);
4788
f51770ed 4789 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4790 goto out2;
a255d479 4791
b927a3ce 4792 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4793
4794 r = alloc_identity_pagetable(kvm);
f51770ed 4795 if (r < 0)
a255d479
TC
4796 goto out2;
4797
40dcaa9f 4798 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4799 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4800 if (r < 0)
4801 goto out;
4802 /* Set up identity-mapping pagetable for EPT in real mode */
4803 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4804 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4805 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4806 r = kvm_write_guest_page(kvm, identity_map_pfn,
4807 &tmp, i * sizeof(tmp), sizeof(tmp));
4808 if (r < 0)
4809 goto out;
4810 }
4811 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4812
b7ebfb05 4813out:
40dcaa9f 4814 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4815
4816out2:
4817 mutex_unlock(&kvm->slots_lock);
f51770ed 4818 return r;
b7ebfb05
SY
4819}
4820
6aa8b732
AK
4821static void seg_setup(int seg)
4822{
772e0318 4823 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4824 unsigned int ar;
6aa8b732
AK
4825
4826 vmcs_write16(sf->selector, 0);
4827 vmcs_writel(sf->base, 0);
4828 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4829 ar = 0x93;
4830 if (seg == VCPU_SREG_CS)
4831 ar |= 0x08; /* code segment */
3a624e29
NK
4832
4833 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4834}
4835
f78e0e2e
SY
4836static int alloc_apic_access_page(struct kvm *kvm)
4837{
4484141a 4838 struct page *page;
f78e0e2e
SY
4839 int r = 0;
4840
79fac95e 4841 mutex_lock(&kvm->slots_lock);
c24ae0dc 4842 if (kvm->arch.apic_access_page_done)
f78e0e2e 4843 goto out;
1d8007bd
PB
4844 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4845 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4846 if (r)
4847 goto out;
72dc67a6 4848
73a6d941 4849 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4850 if (is_error_page(page)) {
4851 r = -EFAULT;
4852 goto out;
4853 }
4854
c24ae0dc
TC
4855 /*
4856 * Do not pin the page in memory, so that memory hot-unplug
4857 * is able to migrate it.
4858 */
4859 put_page(page);
4860 kvm->arch.apic_access_page_done = true;
f78e0e2e 4861out:
79fac95e 4862 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4863 return r;
4864}
4865
b7ebfb05
SY
4866static int alloc_identity_pagetable(struct kvm *kvm)
4867{
a255d479
TC
4868 /* Called with kvm->slots_lock held. */
4869
b7ebfb05
SY
4870 int r = 0;
4871
a255d479
TC
4872 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4873
1d8007bd
PB
4874 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4875 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4876
b7ebfb05
SY
4877 return r;
4878}
4879
991e7a0e 4880static int allocate_vpid(void)
2384d2b3
SY
4881{
4882 int vpid;
4883
919818ab 4884 if (!enable_vpid)
991e7a0e 4885 return 0;
2384d2b3
SY
4886 spin_lock(&vmx_vpid_lock);
4887 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4888 if (vpid < VMX_NR_VPIDS)
2384d2b3 4889 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4890 else
4891 vpid = 0;
2384d2b3 4892 spin_unlock(&vmx_vpid_lock);
991e7a0e 4893 return vpid;
2384d2b3
SY
4894}
4895
991e7a0e 4896static void free_vpid(int vpid)
cdbecfc3 4897{
991e7a0e 4898 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4899 return;
4900 spin_lock(&vmx_vpid_lock);
991e7a0e 4901 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4902 spin_unlock(&vmx_vpid_lock);
4903}
4904
8d14695f
YZ
4905#define MSR_TYPE_R 1
4906#define MSR_TYPE_W 2
4907static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4908 u32 msr, int type)
25c5f225 4909{
3e7c73e9 4910 int f = sizeof(unsigned long);
25c5f225
SY
4911
4912 if (!cpu_has_vmx_msr_bitmap())
4913 return;
4914
4915 /*
4916 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4917 * have the write-low and read-high bitmap offsets the wrong way round.
4918 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4919 */
25c5f225 4920 if (msr <= 0x1fff) {
8d14695f
YZ
4921 if (type & MSR_TYPE_R)
4922 /* read-low */
4923 __clear_bit(msr, msr_bitmap + 0x000 / f);
4924
4925 if (type & MSR_TYPE_W)
4926 /* write-low */
4927 __clear_bit(msr, msr_bitmap + 0x800 / f);
4928
25c5f225
SY
4929 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4930 msr &= 0x1fff;
8d14695f
YZ
4931 if (type & MSR_TYPE_R)
4932 /* read-high */
4933 __clear_bit(msr, msr_bitmap + 0x400 / f);
4934
4935 if (type & MSR_TYPE_W)
4936 /* write-high */
4937 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4938
4939 }
4940}
4941
f2b93280
WV
4942/*
4943 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4944 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4945 */
4946static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4947 unsigned long *msr_bitmap_nested,
4948 u32 msr, int type)
4949{
4950 int f = sizeof(unsigned long);
4951
4952 if (!cpu_has_vmx_msr_bitmap()) {
4953 WARN_ON(1);
4954 return;
4955 }
4956
4957 /*
4958 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4959 * have the write-low and read-high bitmap offsets the wrong way round.
4960 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4961 */
4962 if (msr <= 0x1fff) {
4963 if (type & MSR_TYPE_R &&
4964 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4965 /* read-low */
4966 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4967
4968 if (type & MSR_TYPE_W &&
4969 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4970 /* write-low */
4971 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4972
4973 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4974 msr &= 0x1fff;
4975 if (type & MSR_TYPE_R &&
4976 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4977 /* read-high */
4978 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4979
4980 if (type & MSR_TYPE_W &&
4981 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4982 /* write-high */
4983 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4984
4985 }
4986}
4987
5897297b
AK
4988static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4989{
4990 if (!longmode_only)
8d14695f
YZ
4991 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4992 msr, MSR_TYPE_R | MSR_TYPE_W);
4993 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4994 msr, MSR_TYPE_R | MSR_TYPE_W);
4995}
4996
2e69f865 4997static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
8d14695f 4998{
f6e90f9e 4999 if (apicv_active) {
c63e4563 5000 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
2e69f865 5001 msr, type);
c63e4563 5002 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
2e69f865 5003 msr, type);
f6e90f9e 5004 } else {
f6e90f9e 5005 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
2e69f865 5006 msr, type);
f6e90f9e 5007 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
2e69f865 5008 msr, type);
f6e90f9e 5009 }
5897297b
AK
5010}
5011
b2a05fef 5012static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
d50ab6c1 5013{
d62caabb 5014 return enable_apicv;
d50ab6c1
PB
5015}
5016
c9f04407
DM
5017static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5018{
5019 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5020 gfn_t gfn;
5021
5022 /*
5023 * Don't need to mark the APIC access page dirty; it is never
5024 * written to by the CPU during APIC virtualization.
5025 */
5026
5027 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5028 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5029 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5030 }
5031
5032 if (nested_cpu_has_posted_intr(vmcs12)) {
5033 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5034 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5035 }
5036}
5037
5038
6342c50a 5039static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
5040{
5041 struct vcpu_vmx *vmx = to_vmx(vcpu);
5042 int max_irr;
5043 void *vapic_page;
5044 u16 status;
5045
c9f04407
DM
5046 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5047 return;
705699a1 5048
c9f04407
DM
5049 vmx->nested.pi_pending = false;
5050 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5051 return;
705699a1 5052
c9f04407
DM
5053 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5054 if (max_irr != 256) {
705699a1 5055 vapic_page = kmap(vmx->nested.virtual_apic_page);
705699a1
WV
5056 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5057 kunmap(vmx->nested.virtual_apic_page);
5058
5059 status = vmcs_read16(GUEST_INTR_STATUS);
5060 if ((u8)max_irr > ((u8)status & 0xff)) {
5061 status &= ~0xff;
5062 status |= (u8)max_irr;
5063 vmcs_write16(GUEST_INTR_STATUS, status);
5064 }
5065 }
c9f04407
DM
5066
5067 nested_mark_vmcs12_pages_dirty(vcpu);
705699a1
WV
5068}
5069
06a5524f
WV
5070static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5071 bool nested)
21bc8dc5
RK
5072{
5073#ifdef CONFIG_SMP
06a5524f
WV
5074 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5075
21bc8dc5 5076 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6 5077 /*
5753743f
HZ
5078 * The vector of interrupt to be delivered to vcpu had
5079 * been set in PIR before this function.
5080 *
5081 * Following cases will be reached in this block, and
5082 * we always send a notification event in all cases as
5083 * explained below.
5084 *
5085 * Case 1: vcpu keeps in non-root mode. Sending a
5086 * notification event posts the interrupt to vcpu.
5087 *
5088 * Case 2: vcpu exits to root mode and is still
5089 * runnable. PIR will be synced to vIRR before the
5090 * next vcpu entry. Sending a notification event in
5091 * this case has no effect, as vcpu is not in root
5092 * mode.
28b835d6 5093 *
5753743f
HZ
5094 * Case 3: vcpu exits to root mode and is blocked.
5095 * vcpu_block() has already synced PIR to vIRR and
5096 * never blocks vcpu if vIRR is not cleared. Therefore,
5097 * a blocked vcpu here does not wait for any requested
5098 * interrupts in PIR, and sending a notification event
5099 * which has no effect is safe here.
28b835d6 5100 */
28b835d6 5101
06a5524f 5102 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
21bc8dc5
RK
5103 return true;
5104 }
5105#endif
5106 return false;
5107}
5108
705699a1
WV
5109static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5110 int vector)
5111{
5112 struct vcpu_vmx *vmx = to_vmx(vcpu);
5113
5114 if (is_guest_mode(vcpu) &&
5115 vector == vmx->nested.posted_intr_nv) {
5116 /* the PIR and ON have been set by L1. */
06a5524f 5117 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
705699a1
WV
5118 /*
5119 * If a posted intr is not recognized by hardware,
5120 * we will accomplish it in the next vmentry.
5121 */
5122 vmx->nested.pi_pending = true;
5123 kvm_make_request(KVM_REQ_EVENT, vcpu);
5124 return 0;
5125 }
5126 return -1;
5127}
a20ed54d
YZ
5128/*
5129 * Send interrupt to vcpu via posted interrupt way.
5130 * 1. If target vcpu is running(non-root mode), send posted interrupt
5131 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5132 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5133 * interrupt from PIR in next vmentry.
5134 */
5135static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5136{
5137 struct vcpu_vmx *vmx = to_vmx(vcpu);
5138 int r;
5139
705699a1
WV
5140 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5141 if (!r)
5142 return;
5143
a20ed54d
YZ
5144 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5145 return;
5146
b95234c8
PB
5147 /* If a previous notification has sent the IPI, nothing to do. */
5148 if (pi_test_and_set_on(&vmx->pi_desc))
5149 return;
5150
06a5524f 5151 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
a20ed54d
YZ
5152 kvm_vcpu_kick(vcpu);
5153}
5154
a3a8ff8e
NHE
5155/*
5156 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5157 * will not change in the lifetime of the guest.
5158 * Note that host-state that does change is set elsewhere. E.g., host-state
5159 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5160 */
a547c6db 5161static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5162{
5163 u32 low32, high32;
5164 unsigned long tmpl;
5165 struct desc_ptr dt;
d6e41f11 5166 unsigned long cr0, cr3, cr4;
a3a8ff8e 5167
04ac88ab
AL
5168 cr0 = read_cr0();
5169 WARN_ON(cr0 & X86_CR0_TS);
5170 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
d6e41f11
AL
5171
5172 /*
5173 * Save the most likely value for this task's CR3 in the VMCS.
5174 * We can't use __get_current_cr3_fast() because we're not atomic.
5175 */
6c690ee1 5176 cr3 = __read_cr3();
d6e41f11 5177 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
44889942 5178 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
a3a8ff8e 5179
d974baa3 5180 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5181 cr4 = cr4_read_shadow();
d974baa3 5182 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
44889942 5183 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3 5184
a3a8ff8e 5185 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5186#ifdef CONFIG_X86_64
5187 /*
5188 * Load null selectors, so we can avoid reloading them in
5189 * __vmx_load_host_state(), in case userspace uses the null selectors
5190 * too (the expected case).
5191 */
5192 vmcs_write16(HOST_DS_SELECTOR, 0);
5193 vmcs_write16(HOST_ES_SELECTOR, 0);
5194#else
a3a8ff8e
NHE
5195 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5196 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5197#endif
a3a8ff8e
NHE
5198 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5199 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5200
87930019 5201 store_idt(&dt);
a3a8ff8e 5202 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5203 vmx->host_idt_base = dt.address;
a3a8ff8e 5204
83287ea4 5205 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5206
5207 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5208 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5209 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5210 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5211
5212 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5213 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5214 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5215 }
5216}
5217
bf8179a0
NHE
5218static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5219{
5220 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5221 if (enable_ept)
5222 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5223 if (is_guest_mode(&vmx->vcpu))
5224 vmx->vcpu.arch.cr4_guest_owned_bits &=
5225 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5226 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5227}
5228
01e439be
YZ
5229static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5230{
5231 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5232
d62caabb 5233 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5234 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
64672c95
YJ
5235 /* Enable the preemption timer dynamically */
5236 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5237 return pin_based_exec_ctrl;
5238}
5239
d62caabb
AS
5240static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5241{
5242 struct vcpu_vmx *vmx = to_vmx(vcpu);
5243
5244 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5245 if (cpu_has_secondary_exec_ctrls()) {
5246 if (kvm_vcpu_apicv_active(vcpu))
5247 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5248 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5249 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5250 else
5251 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5252 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5253 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5254 }
5255
5256 if (cpu_has_vmx_msr_bitmap())
5257 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
5258}
5259
bf8179a0
NHE
5260static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5261{
5262 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5263
5264 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5265 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5266
35754c98 5267 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5268 exec_control &= ~CPU_BASED_TPR_SHADOW;
5269#ifdef CONFIG_X86_64
5270 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5271 CPU_BASED_CR8_LOAD_EXITING;
5272#endif
5273 }
5274 if (!enable_ept)
5275 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5276 CPU_BASED_CR3_LOAD_EXITING |
5277 CPU_BASED_INVLPG_EXITING;
5278 return exec_control;
5279}
5280
45ec368c 5281static bool vmx_rdrand_supported(void)
bf8179a0 5282{
45ec368c
JM
5283 return vmcs_config.cpu_based_2nd_exec_ctrl &
5284 SECONDARY_EXEC_RDRAND;
5285}
5286
75f4fc8d
JM
5287static bool vmx_rdseed_supported(void)
5288{
5289 return vmcs_config.cpu_based_2nd_exec_ctrl &
5290 SECONDARY_EXEC_RDSEED;
5291}
5292
80154d77 5293static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
bf8179a0 5294{
80154d77
PB
5295 struct kvm_vcpu *vcpu = &vmx->vcpu;
5296
bf8179a0 5297 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
80154d77 5298 if (!cpu_need_virtualize_apic_accesses(vcpu))
bf8179a0
NHE
5299 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5300 if (vmx->vpid == 0)
5301 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5302 if (!enable_ept) {
5303 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5304 enable_unrestricted_guest = 0;
ad756a16
MJ
5305 /* Enable INVPCID for non-ept guests may cause performance regression. */
5306 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5307 }
5308 if (!enable_unrestricted_guest)
5309 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5310 if (!ple_gap)
5311 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
80154d77 5312 if (!kvm_vcpu_apicv_active(vcpu))
c7c9c56c
YZ
5313 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5314 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5315 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5316 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5317 (handle_vmptrld).
5318 We can NOT enable shadow_vmcs here because we don't have yet
5319 a current VMCS12
5320 */
5321 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5322
5323 if (!enable_pml)
5324 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5325
3db13480
PB
5326 if (vmx_xsaves_supported()) {
5327 /* Exposing XSAVES only when XSAVE is exposed */
5328 bool xsaves_enabled =
5329 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5330 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5331
5332 if (!xsaves_enabled)
5333 exec_control &= ~SECONDARY_EXEC_XSAVES;
5334
5335 if (nested) {
5336 if (xsaves_enabled)
5337 vmx->nested.nested_vmx_secondary_ctls_high |=
5338 SECONDARY_EXEC_XSAVES;
5339 else
5340 vmx->nested.nested_vmx_secondary_ctls_high &=
5341 ~SECONDARY_EXEC_XSAVES;
5342 }
5343 }
5344
80154d77
PB
5345 if (vmx_rdtscp_supported()) {
5346 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5347 if (!rdtscp_enabled)
5348 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5349
5350 if (nested) {
5351 if (rdtscp_enabled)
5352 vmx->nested.nested_vmx_secondary_ctls_high |=
5353 SECONDARY_EXEC_RDTSCP;
5354 else
5355 vmx->nested.nested_vmx_secondary_ctls_high &=
5356 ~SECONDARY_EXEC_RDTSCP;
5357 }
5358 }
5359
5360 if (vmx_invpcid_supported()) {
5361 /* Exposing INVPCID only when PCID is exposed */
5362 bool invpcid_enabled =
5363 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5364 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5365
5366 if (!invpcid_enabled) {
5367 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5368 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5369 }
5370
5371 if (nested) {
5372 if (invpcid_enabled)
5373 vmx->nested.nested_vmx_secondary_ctls_high |=
5374 SECONDARY_EXEC_ENABLE_INVPCID;
5375 else
5376 vmx->nested.nested_vmx_secondary_ctls_high &=
5377 ~SECONDARY_EXEC_ENABLE_INVPCID;
5378 }
5379 }
5380
45ec368c
JM
5381 if (vmx_rdrand_supported()) {
5382 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5383 if (rdrand_enabled)
5384 exec_control &= ~SECONDARY_EXEC_RDRAND;
5385
5386 if (nested) {
5387 if (rdrand_enabled)
5388 vmx->nested.nested_vmx_secondary_ctls_high |=
5389 SECONDARY_EXEC_RDRAND;
5390 else
5391 vmx->nested.nested_vmx_secondary_ctls_high &=
5392 ~SECONDARY_EXEC_RDRAND;
5393 }
5394 }
5395
75f4fc8d
JM
5396 if (vmx_rdseed_supported()) {
5397 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5398 if (rdseed_enabled)
5399 exec_control &= ~SECONDARY_EXEC_RDSEED;
5400
5401 if (nested) {
5402 if (rdseed_enabled)
5403 vmx->nested.nested_vmx_secondary_ctls_high |=
5404 SECONDARY_EXEC_RDSEED;
5405 else
5406 vmx->nested.nested_vmx_secondary_ctls_high &=
5407 ~SECONDARY_EXEC_RDSEED;
5408 }
5409 }
5410
80154d77 5411 vmx->secondary_exec_control = exec_control;
bf8179a0
NHE
5412}
5413
ce88decf
XG
5414static void ept_set_mmio_spte_mask(void)
5415{
5416 /*
5417 * EPT Misconfigurations can be generated if the value of bits 2:0
5418 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5419 */
dcdca5fe
PF
5420 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5421 VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5422}
5423
f53cd63c 5424#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5425/*
5426 * Sets up the vmcs for emulated real mode.
5427 */
12d79917 5428static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5429{
2e4ce7f5 5430#ifdef CONFIG_X86_64
6aa8b732 5431 unsigned long a;
2e4ce7f5 5432#endif
6aa8b732 5433 int i;
6aa8b732 5434
6aa8b732 5435 /* I/O */
3e7c73e9
AK
5436 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5437 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5438
4607c2d7
AG
5439 if (enable_shadow_vmcs) {
5440 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5441 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5442 }
25c5f225 5443 if (cpu_has_vmx_msr_bitmap())
5897297b 5444 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 5445
6aa8b732
AK
5446 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5447
6aa8b732 5448 /* Control */
01e439be 5449 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5450 vmx->hv_deadline_tsc = -1;
6e5d865c 5451
bf8179a0 5452 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5453
dfa169bb 5454 if (cpu_has_secondary_exec_ctrls()) {
80154d77 5455 vmx_compute_secondary_exec_control(vmx);
bf8179a0 5456 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
80154d77 5457 vmx->secondary_exec_control);
dfa169bb 5458 }
f78e0e2e 5459
d62caabb 5460 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5461 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5462 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5463 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5464 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5465
5466 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5467
0bcf261c 5468 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5469 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5470 }
5471
4b8d54f9
ZE
5472 if (ple_gap) {
5473 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5474 vmx->ple_window = ple_window;
5475 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5476 }
5477
c3707958
XG
5478 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5479 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5480 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5481
9581d442
AK
5482 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5483 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5484 vmx_set_constant_host_state(vmx);
05b3e0c2 5485#ifdef CONFIG_X86_64
6aa8b732
AK
5486 rdmsrl(MSR_FS_BASE, a);
5487 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5488 rdmsrl(MSR_GS_BASE, a);
5489 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5490#else
5491 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5492 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5493#endif
5494
2a499e49
BD
5495 if (cpu_has_vmx_vmfunc())
5496 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5497
2cc51560
ED
5498 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5499 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5500 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5501 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5502 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5503
74545705
RK
5504 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5505 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5506
03916db9 5507 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5508 u32 index = vmx_msr_index[i];
5509 u32 data_low, data_high;
a2fa3e9f 5510 int j = vmx->nmsrs;
6aa8b732
AK
5511
5512 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5513 continue;
432bd6cb
AK
5514 if (wrmsr_safe(index, data_low, data_high) < 0)
5515 continue;
26bb0981
AK
5516 vmx->guest_msrs[j].index = i;
5517 vmx->guest_msrs[j].data = 0;
d5696725 5518 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5519 ++vmx->nmsrs;
6aa8b732 5520 }
6aa8b732 5521
2961e876
GN
5522
5523 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5524
5525 /* 22.2.1, 20.8.1 */
2961e876 5526 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5527
bd7e5b08
PB
5528 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5529 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5530
bf8179a0 5531 set_cr4_guest_host_mask(vmx);
e00c8cf2 5532
f53cd63c
WL
5533 if (vmx_xsaves_supported())
5534 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5535
4e59516a
PF
5536 if (enable_pml) {
5537 ASSERT(vmx->pml_pg);
5538 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5539 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5540 }
e00c8cf2
AK
5541}
5542
d28bc9dd 5543static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5544{
5545 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5546 struct msr_data apic_base_msr;
d28bc9dd 5547 u64 cr0;
e00c8cf2 5548
7ffd92c5 5549 vmx->rmode.vm86_active = 0;
e00c8cf2 5550
ad312c7c 5551 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5552 kvm_set_cr8(vcpu, 0);
5553
5554 if (!init_event) {
5555 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5556 MSR_IA32_APICBASE_ENABLE;
5557 if (kvm_vcpu_is_reset_bsp(vcpu))
5558 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5559 apic_base_msr.host_initiated = true;
5560 kvm_set_apic_base(vcpu, &apic_base_msr);
5561 }
e00c8cf2 5562
2fb92db1
AK
5563 vmx_segment_cache_clear(vmx);
5564
5706be0d 5565 seg_setup(VCPU_SREG_CS);
66450a21 5566 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5567 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5568
5569 seg_setup(VCPU_SREG_DS);
5570 seg_setup(VCPU_SREG_ES);
5571 seg_setup(VCPU_SREG_FS);
5572 seg_setup(VCPU_SREG_GS);
5573 seg_setup(VCPU_SREG_SS);
5574
5575 vmcs_write16(GUEST_TR_SELECTOR, 0);
5576 vmcs_writel(GUEST_TR_BASE, 0);
5577 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5578 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5579
5580 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5581 vmcs_writel(GUEST_LDTR_BASE, 0);
5582 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5583 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5584
d28bc9dd
NA
5585 if (!init_event) {
5586 vmcs_write32(GUEST_SYSENTER_CS, 0);
5587 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5588 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5589 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5590 }
e00c8cf2
AK
5591
5592 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5593 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5594
e00c8cf2
AK
5595 vmcs_writel(GUEST_GDTR_BASE, 0);
5596 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5597
5598 vmcs_writel(GUEST_IDTR_BASE, 0);
5599 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5600
443381a8 5601 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5602 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5603 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5604
e00c8cf2
AK
5605 setup_msrs(vmx);
5606
6aa8b732
AK
5607 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5608
d28bc9dd 5609 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5610 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5611 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5612 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5613 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5614 vmcs_write32(TPR_THRESHOLD, 0);
5615 }
5616
a73896cb 5617 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5618
d62caabb 5619 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5620 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5621
2384d2b3
SY
5622 if (vmx->vpid != 0)
5623 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5624
d28bc9dd 5625 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5626 vmx->vcpu.arch.cr0 = cr0;
f2463247 5627 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5628 vmx_set_cr4(vcpu, 0);
5690891b 5629 vmx_set_efer(vcpu, 0);
bd7e5b08 5630
d28bc9dd 5631 update_exception_bitmap(vcpu);
6aa8b732 5632
dd5f5341 5633 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5634}
5635
b6f1250e
NHE
5636/*
5637 * In nested virtualization, check if L1 asked to exit on external interrupts.
5638 * For most existing hypervisors, this will always return true.
5639 */
5640static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5641{
5642 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5643 PIN_BASED_EXT_INTR_MASK;
5644}
5645
77b0f5d6
BD
5646/*
5647 * In nested virtualization, check if L1 has set
5648 * VM_EXIT_ACK_INTR_ON_EXIT
5649 */
5650static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5651{
5652 return get_vmcs12(vcpu)->vm_exit_controls &
5653 VM_EXIT_ACK_INTR_ON_EXIT;
5654}
5655
ea8ceb83
JK
5656static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5657{
5658 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5659 PIN_BASED_NMI_EXITING;
5660}
5661
c9a7953f 5662static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 5663{
47c0152e
PB
5664 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5665 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
5666}
5667
c9a7953f 5668static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 5669{
2c82878b 5670 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
c9a7953f
JK
5671 enable_irq_window(vcpu);
5672 return;
5673 }
3b86cd99 5674
47c0152e
PB
5675 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5676 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
5677}
5678
66fd3f7f 5679static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5680{
9c8cba37 5681 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5682 uint32_t intr;
5683 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5684
229456fc 5685 trace_kvm_inj_virq(irq);
2714d1d3 5686
fa89a817 5687 ++vcpu->stat.irq_injections;
7ffd92c5 5688 if (vmx->rmode.vm86_active) {
71f9833b
SH
5689 int inc_eip = 0;
5690 if (vcpu->arch.interrupt.soft)
5691 inc_eip = vcpu->arch.event_exit_inst_len;
5692 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5693 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5694 return;
5695 }
66fd3f7f
GN
5696 intr = irq | INTR_INFO_VALID_MASK;
5697 if (vcpu->arch.interrupt.soft) {
5698 intr |= INTR_TYPE_SOFT_INTR;
5699 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5700 vmx->vcpu.arch.event_exit_inst_len);
5701 } else
5702 intr |= INTR_TYPE_EXT_INTR;
5703 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5704}
5705
f08864b4
SY
5706static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5707{
66a5a347
JK
5708 struct vcpu_vmx *vmx = to_vmx(vcpu);
5709
4c4a6f79
PB
5710 ++vcpu->stat.nmi_injections;
5711 vmx->loaded_vmcs->nmi_known_unmasked = false;
3b86cd99 5712
7ffd92c5 5713 if (vmx->rmode.vm86_active) {
71f9833b 5714 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5715 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5716 return;
5717 }
c5a6d5f7 5718
f08864b4
SY
5719 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5720 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5721}
5722
3cfc3092
JK
5723static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5724{
4c4a6f79
PB
5725 struct vcpu_vmx *vmx = to_vmx(vcpu);
5726 bool masked;
5727
5728 if (vmx->loaded_vmcs->nmi_known_unmasked)
9d58b931 5729 return false;
4c4a6f79
PB
5730 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5731 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5732 return masked;
3cfc3092
JK
5733}
5734
5735static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5736{
5737 struct vcpu_vmx *vmx = to_vmx(vcpu);
5738
4c4a6f79 5739 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
2c82878b
PB
5740 if (masked)
5741 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5742 GUEST_INTR_STATE_NMI);
5743 else
5744 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5745 GUEST_INTR_STATE_NMI);
3cfc3092
JK
5746}
5747
2505dc9f
JK
5748static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5749{
b6b8a145
JK
5750 if (to_vmx(vcpu)->nested.nested_run_pending)
5751 return 0;
ea8ceb83 5752
2505dc9f
JK
5753 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5754 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5755 | GUEST_INTR_STATE_NMI));
5756}
5757
78646121
GN
5758static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5759{
b6b8a145
JK
5760 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5761 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5762 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5763 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5764}
5765
cbc94022
IE
5766static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5767{
5768 int ret;
cbc94022 5769
1d8007bd
PB
5770 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5771 PAGE_SIZE * 3);
cbc94022
IE
5772 if (ret)
5773 return ret;
bfc6d222 5774 kvm->arch.tss_addr = addr;
1f755a82 5775 return init_rmode_tss(kvm);
cbc94022
IE
5776}
5777
0ca1b4f4 5778static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5779{
77ab6db0 5780 switch (vec) {
77ab6db0 5781 case BP_VECTOR:
c573cd22
JK
5782 /*
5783 * Update instruction length as we may reinject the exception
5784 * from user space while in guest debugging mode.
5785 */
5786 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5787 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5788 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5789 return false;
5790 /* fall through */
5791 case DB_VECTOR:
5792 if (vcpu->guest_debug &
5793 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5794 return false;
d0bfb940
JK
5795 /* fall through */
5796 case DE_VECTOR:
77ab6db0
JK
5797 case OF_VECTOR:
5798 case BR_VECTOR:
5799 case UD_VECTOR:
5800 case DF_VECTOR:
5801 case SS_VECTOR:
5802 case GP_VECTOR:
5803 case MF_VECTOR:
0ca1b4f4
GN
5804 return true;
5805 break;
77ab6db0 5806 }
0ca1b4f4
GN
5807 return false;
5808}
5809
5810static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5811 int vec, u32 err_code)
5812{
5813 /*
5814 * Instruction with address size override prefix opcode 0x67
5815 * Cause the #SS fault with 0 error code in VM86 mode.
5816 */
5817 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5818 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5819 if (vcpu->arch.halt_request) {
5820 vcpu->arch.halt_request = 0;
5cb56059 5821 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5822 }
5823 return 1;
5824 }
5825 return 0;
5826 }
5827
5828 /*
5829 * Forward all other exceptions that are valid in real mode.
5830 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5831 * the required debugging infrastructure rework.
5832 */
5833 kvm_queue_exception(vcpu, vec);
5834 return 1;
6aa8b732
AK
5835}
5836
a0861c02
AK
5837/*
5838 * Trigger machine check on the host. We assume all the MSRs are already set up
5839 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5840 * We pass a fake environment to the machine check handler because we want
5841 * the guest to be always treated like user space, no matter what context
5842 * it used internally.
5843 */
5844static void kvm_machine_check(void)
5845{
5846#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5847 struct pt_regs regs = {
5848 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5849 .flags = X86_EFLAGS_IF,
5850 };
5851
5852 do_machine_check(&regs, 0);
5853#endif
5854}
5855
851ba692 5856static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5857{
5858 /* already handled by vcpu_run */
5859 return 1;
5860}
5861
851ba692 5862static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5863{
1155f76a 5864 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5865 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5866 u32 intr_info, ex_no, error_code;
42dbaa5a 5867 unsigned long cr2, rip, dr6;
6aa8b732
AK
5868 u32 vect_info;
5869 enum emulation_result er;
5870
1155f76a 5871 vect_info = vmx->idt_vectoring_info;
88786475 5872 intr_info = vmx->exit_intr_info;
6aa8b732 5873
a0861c02 5874 if (is_machine_check(intr_info))
851ba692 5875 return handle_machine_check(vcpu);
a0861c02 5876
ef85b673 5877 if (is_nmi(intr_info))
1b6269db 5878 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 5879
7aa81cc0 5880 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5881 if (is_guest_mode(vcpu)) {
5882 kvm_queue_exception(vcpu, UD_VECTOR);
5883 return 1;
5884 }
51d8b661 5885 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5886 if (er != EMULATE_DONE)
7ee5d940 5887 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5888 return 1;
5889 }
5890
6aa8b732 5891 error_code = 0;
2e11384c 5892 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5893 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5894
5895 /*
5896 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5897 * MMIO, it is better to report an internal error.
5898 * See the comments in vmx_handle_exit.
5899 */
5900 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5901 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5902 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5903 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5904 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5905 vcpu->run->internal.data[0] = vect_info;
5906 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5907 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5908 return 0;
5909 }
5910
6aa8b732
AK
5911 if (is_page_fault(intr_info)) {
5912 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1261bfa3
WL
5913 /* EPT won't cause page fault directly */
5914 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5915 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5916 true);
6aa8b732
AK
5917 }
5918
d0bfb940 5919 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5920
5921 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5922 return handle_rmode_exception(vcpu, ex_no, error_code);
5923
42dbaa5a 5924 switch (ex_no) {
54a20552
EN
5925 case AC_VECTOR:
5926 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5927 return 1;
42dbaa5a
JK
5928 case DB_VECTOR:
5929 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5930 if (!(vcpu->guest_debug &
5931 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5932 vcpu->arch.dr6 &= ~15;
6f43ed01 5933 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5934 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5935 skip_emulated_instruction(vcpu);
5936
42dbaa5a
JK
5937 kvm_queue_exception(vcpu, DB_VECTOR);
5938 return 1;
5939 }
5940 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5941 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5942 /* fall through */
5943 case BP_VECTOR:
c573cd22
JK
5944 /*
5945 * Update instruction length as we may reinject #BP from
5946 * user space while in guest debugging mode. Reading it for
5947 * #DB as well causes no harm, it is not used in that case.
5948 */
5949 vmx->vcpu.arch.event_exit_inst_len =
5950 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5951 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5952 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5953 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5954 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5955 break;
5956 default:
d0bfb940
JK
5957 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5958 kvm_run->ex.exception = ex_no;
5959 kvm_run->ex.error_code = error_code;
42dbaa5a 5960 break;
6aa8b732 5961 }
6aa8b732
AK
5962 return 0;
5963}
5964
851ba692 5965static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5966{
1165f5fe 5967 ++vcpu->stat.irq_exits;
6aa8b732
AK
5968 return 1;
5969}
5970
851ba692 5971static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5972{
851ba692 5973 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
bbeac283 5974 vcpu->mmio_needed = 0;
988ad74f
AK
5975 return 0;
5976}
6aa8b732 5977
851ba692 5978static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5979{
bfdaab09 5980 unsigned long exit_qualification;
6affcbed 5981 int size, in, string, ret;
039576c0 5982 unsigned port;
6aa8b732 5983
bfdaab09 5984 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5985 string = (exit_qualification & 16) != 0;
cf8f70bf 5986 in = (exit_qualification & 8) != 0;
e70669ab 5987
cf8f70bf 5988 ++vcpu->stat.io_exits;
e70669ab 5989
cf8f70bf 5990 if (string || in)
51d8b661 5991 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5992
cf8f70bf
GN
5993 port = exit_qualification >> 16;
5994 size = (exit_qualification & 7) + 1;
cf8f70bf 5995
6affcbed
KH
5996 ret = kvm_skip_emulated_instruction(vcpu);
5997
5998 /*
5999 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6000 * KVM_EXIT_DEBUG here.
6001 */
6002 return kvm_fast_pio_out(vcpu, size, port) && ret;
6aa8b732
AK
6003}
6004
102d8325
IM
6005static void
6006vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6007{
6008 /*
6009 * Patch in the VMCALL instruction:
6010 */
6011 hypercall[0] = 0x0f;
6012 hypercall[1] = 0x01;
6013 hypercall[2] = 0xc1;
102d8325
IM
6014}
6015
0fa06071 6016/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
6017static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6018{
eeadf9e7 6019 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6020 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6021 unsigned long orig_val = val;
6022
eeadf9e7
NHE
6023 /*
6024 * We get here when L2 changed cr0 in a way that did not change
6025 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
6026 * but did change L0 shadowed bits. So we first calculate the
6027 * effective cr0 value that L1 would like to write into the
6028 * hardware. It consists of the L2-owned bits from the new
6029 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 6030 */
1a0d74e6
JK
6031 val = (val & ~vmcs12->cr0_guest_host_mask) |
6032 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6033
3899152c 6034 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 6035 return 1;
1a0d74e6
JK
6036
6037 if (kvm_set_cr0(vcpu, val))
6038 return 1;
6039 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 6040 return 0;
1a0d74e6
JK
6041 } else {
6042 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 6043 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 6044 return 1;
3899152c 6045
eeadf9e7 6046 return kvm_set_cr0(vcpu, val);
1a0d74e6 6047 }
eeadf9e7
NHE
6048}
6049
6050static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6051{
6052 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6053 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6054 unsigned long orig_val = val;
6055
6056 /* analogously to handle_set_cr0 */
6057 val = (val & ~vmcs12->cr4_guest_host_mask) |
6058 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6059 if (kvm_set_cr4(vcpu, val))
eeadf9e7 6060 return 1;
1a0d74e6 6061 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
6062 return 0;
6063 } else
6064 return kvm_set_cr4(vcpu, val);
6065}
6066
851ba692 6067static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 6068{
229456fc 6069 unsigned long exit_qualification, val;
6aa8b732
AK
6070 int cr;
6071 int reg;
49a9b07e 6072 int err;
6affcbed 6073 int ret;
6aa8b732 6074
bfdaab09 6075 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
6076 cr = exit_qualification & 15;
6077 reg = (exit_qualification >> 8) & 15;
6078 switch ((exit_qualification >> 4) & 3) {
6079 case 0: /* mov to cr */
1e32c079 6080 val = kvm_register_readl(vcpu, reg);
229456fc 6081 trace_kvm_cr_write(cr, val);
6aa8b732
AK
6082 switch (cr) {
6083 case 0:
eeadf9e7 6084 err = handle_set_cr0(vcpu, val);
6affcbed 6085 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6086 case 3:
2390218b 6087 err = kvm_set_cr3(vcpu, val);
6affcbed 6088 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6089 case 4:
eeadf9e7 6090 err = handle_set_cr4(vcpu, val);
6affcbed 6091 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
6092 case 8: {
6093 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 6094 u8 cr8 = (u8)val;
eea1cff9 6095 err = kvm_set_cr8(vcpu, cr8);
6affcbed 6096 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 6097 if (lapic_in_kernel(vcpu))
6affcbed 6098 return ret;
0a5fff19 6099 if (cr8_prev <= cr8)
6affcbed
KH
6100 return ret;
6101 /*
6102 * TODO: we might be squashing a
6103 * KVM_GUESTDBG_SINGLESTEP-triggered
6104 * KVM_EXIT_DEBUG here.
6105 */
851ba692 6106 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
6107 return 0;
6108 }
4b8073e4 6109 }
6aa8b732 6110 break;
25c4c276 6111 case 2: /* clts */
bd7e5b08
PB
6112 WARN_ONCE(1, "Guest should always own CR0.TS");
6113 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 6114 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 6115 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6116 case 1: /*mov from cr*/
6117 switch (cr) {
6118 case 3:
9f8fe504
AK
6119 val = kvm_read_cr3(vcpu);
6120 kvm_register_write(vcpu, reg, val);
6121 trace_kvm_cr_read(cr, val);
6affcbed 6122 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 6123 case 8:
229456fc
MT
6124 val = kvm_get_cr8(vcpu);
6125 kvm_register_write(vcpu, reg, val);
6126 trace_kvm_cr_read(cr, val);
6affcbed 6127 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6128 }
6129 break;
6130 case 3: /* lmsw */
a1f83a74 6131 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 6132 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 6133 kvm_lmsw(vcpu, val);
6aa8b732 6134
6affcbed 6135 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6136 default:
6137 break;
6138 }
851ba692 6139 vcpu->run->exit_reason = 0;
a737f256 6140 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
6141 (int)(exit_qualification >> 4) & 3, cr);
6142 return 0;
6143}
6144
851ba692 6145static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 6146{
bfdaab09 6147 unsigned long exit_qualification;
16f8a6f9
NA
6148 int dr, dr7, reg;
6149
6150 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6151 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6152
6153 /* First, if DR does not exist, trigger UD */
6154 if (!kvm_require_dr(vcpu, dr))
6155 return 1;
6aa8b732 6156
f2483415 6157 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
6158 if (!kvm_require_cpl(vcpu, 0))
6159 return 1;
16f8a6f9
NA
6160 dr7 = vmcs_readl(GUEST_DR7);
6161 if (dr7 & DR7_GD) {
42dbaa5a
JK
6162 /*
6163 * As the vm-exit takes precedence over the debug trap, we
6164 * need to emulate the latter, either for the host or the
6165 * guest debugging itself.
6166 */
6167 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 6168 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 6169 vcpu->run->debug.arch.dr7 = dr7;
82b32774 6170 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
6171 vcpu->run->debug.arch.exception = DB_VECTOR;
6172 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
6173 return 0;
6174 } else {
7305eb5d 6175 vcpu->arch.dr6 &= ~15;
6f43ed01 6176 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
6177 kvm_queue_exception(vcpu, DB_VECTOR);
6178 return 1;
6179 }
6180 }
6181
81908bf4 6182 if (vcpu->guest_debug == 0) {
8f22372f
PB
6183 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6184 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6185
6186 /*
6187 * No more DR vmexits; force a reload of the debug registers
6188 * and reenter on this instruction. The next vmexit will
6189 * retrieve the full state of the debug registers.
6190 */
6191 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6192 return 1;
6193 }
6194
42dbaa5a
JK
6195 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6196 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 6197 unsigned long val;
4c4d563b
JK
6198
6199 if (kvm_get_dr(vcpu, dr, &val))
6200 return 1;
6201 kvm_register_write(vcpu, reg, val);
020df079 6202 } else
5777392e 6203 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
6204 return 1;
6205
6affcbed 6206 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6207}
6208
73aaf249
JK
6209static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6210{
6211 return vcpu->arch.dr6;
6212}
6213
6214static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6215{
6216}
6217
81908bf4
PB
6218static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6219{
81908bf4
PB
6220 get_debugreg(vcpu->arch.db[0], 0);
6221 get_debugreg(vcpu->arch.db[1], 1);
6222 get_debugreg(vcpu->arch.db[2], 2);
6223 get_debugreg(vcpu->arch.db[3], 3);
6224 get_debugreg(vcpu->arch.dr6, 6);
6225 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6226
6227 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 6228 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6229}
6230
020df079
GN
6231static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6232{
6233 vmcs_writel(GUEST_DR7, val);
6234}
6235
851ba692 6236static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 6237{
6a908b62 6238 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
6239}
6240
851ba692 6241static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 6242{
ad312c7c 6243 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 6244 struct msr_data msr_info;
6aa8b732 6245
609e36d3
PB
6246 msr_info.index = ecx;
6247 msr_info.host_initiated = false;
6248 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 6249 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 6250 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6251 return 1;
6252 }
6253
609e36d3 6254 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6255
6aa8b732 6256 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6257 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6258 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6259 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6260}
6261
851ba692 6262static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6263{
8fe8ab46 6264 struct msr_data msr;
ad312c7c
ZX
6265 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6266 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6267 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6268
8fe8ab46
WA
6269 msr.data = data;
6270 msr.index = ecx;
6271 msr.host_initiated = false;
854e8bb1 6272 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6273 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6274 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6275 return 1;
6276 }
6277
59200273 6278 trace_kvm_msr_write(ecx, data);
6affcbed 6279 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6280}
6281
851ba692 6282static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6283{
eb90f341 6284 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6285 return 1;
6286}
6287
851ba692 6288static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6289{
47c0152e
PB
6290 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6291 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6292
3842d135
AK
6293 kvm_make_request(KVM_REQ_EVENT, vcpu);
6294
a26bf12a 6295 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6296 return 1;
6297}
6298
851ba692 6299static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6300{
d3bef15f 6301 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6302}
6303
851ba692 6304static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6305{
0d9c055e 6306 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6307}
6308
ec25d5e6
GN
6309static int handle_invd(struct kvm_vcpu *vcpu)
6310{
51d8b661 6311 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6312}
6313
851ba692 6314static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6315{
f9c617f6 6316 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6317
6318 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6319 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6320}
6321
fee84b07
AK
6322static int handle_rdpmc(struct kvm_vcpu *vcpu)
6323{
6324 int err;
6325
6326 err = kvm_rdpmc(vcpu);
6affcbed 6327 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6328}
6329
851ba692 6330static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6331{
6affcbed 6332 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6333}
6334
2acf923e
DC
6335static int handle_xsetbv(struct kvm_vcpu *vcpu)
6336{
6337 u64 new_bv = kvm_read_edx_eax(vcpu);
6338 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6339
6340 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6341 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6342 return 1;
6343}
6344
f53cd63c
WL
6345static int handle_xsaves(struct kvm_vcpu *vcpu)
6346{
6affcbed 6347 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6348 WARN(1, "this should never happen\n");
6349 return 1;
6350}
6351
6352static int handle_xrstors(struct kvm_vcpu *vcpu)
6353{
6affcbed 6354 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6355 WARN(1, "this should never happen\n");
6356 return 1;
6357}
6358
851ba692 6359static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6360{
58fbbf26
KT
6361 if (likely(fasteoi)) {
6362 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6363 int access_type, offset;
6364
6365 access_type = exit_qualification & APIC_ACCESS_TYPE;
6366 offset = exit_qualification & APIC_ACCESS_OFFSET;
6367 /*
6368 * Sane guest uses MOV to write EOI, with written value
6369 * not cared. So make a short-circuit here by avoiding
6370 * heavy instruction emulation.
6371 */
6372 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6373 (offset == APIC_EOI)) {
6374 kvm_lapic_set_eoi(vcpu);
6affcbed 6375 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6376 }
6377 }
51d8b661 6378 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6379}
6380
c7c9c56c
YZ
6381static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6382{
6383 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6384 int vector = exit_qualification & 0xff;
6385
6386 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6387 kvm_apic_set_eoi_accelerated(vcpu, vector);
6388 return 1;
6389}
6390
83d4c286
YZ
6391static int handle_apic_write(struct kvm_vcpu *vcpu)
6392{
6393 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6394 u32 offset = exit_qualification & 0xfff;
6395
6396 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6397 kvm_apic_write_nodecode(vcpu, offset);
6398 return 1;
6399}
6400
851ba692 6401static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6402{
60637aac 6403 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6404 unsigned long exit_qualification;
e269fb21
JK
6405 bool has_error_code = false;
6406 u32 error_code = 0;
37817f29 6407 u16 tss_selector;
7f3d35fd 6408 int reason, type, idt_v, idt_index;
64a7ec06
GN
6409
6410 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6411 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6412 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6413
6414 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6415
6416 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6417 if (reason == TASK_SWITCH_GATE && idt_v) {
6418 switch (type) {
6419 case INTR_TYPE_NMI_INTR:
6420 vcpu->arch.nmi_injected = false;
654f06fc 6421 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6422 break;
6423 case INTR_TYPE_EXT_INTR:
66fd3f7f 6424 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6425 kvm_clear_interrupt_queue(vcpu);
6426 break;
6427 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6428 if (vmx->idt_vectoring_info &
6429 VECTORING_INFO_DELIVER_CODE_MASK) {
6430 has_error_code = true;
6431 error_code =
6432 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6433 }
6434 /* fall through */
64a7ec06
GN
6435 case INTR_TYPE_SOFT_EXCEPTION:
6436 kvm_clear_exception_queue(vcpu);
6437 break;
6438 default:
6439 break;
6440 }
60637aac 6441 }
37817f29
IE
6442 tss_selector = exit_qualification;
6443
64a7ec06
GN
6444 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6445 type != INTR_TYPE_EXT_INTR &&
6446 type != INTR_TYPE_NMI_INTR))
6447 skip_emulated_instruction(vcpu);
6448
7f3d35fd
KW
6449 if (kvm_task_switch(vcpu, tss_selector,
6450 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6451 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6452 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6453 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6454 vcpu->run->internal.ndata = 0;
42dbaa5a 6455 return 0;
acb54517 6456 }
42dbaa5a 6457
42dbaa5a
JK
6458 /*
6459 * TODO: What about debug traps on tss switch?
6460 * Are we supposed to inject them and update dr6?
6461 */
6462
6463 return 1;
37817f29
IE
6464}
6465
851ba692 6466static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6467{
f9c617f6 6468 unsigned long exit_qualification;
1439442c 6469 gpa_t gpa;
eebed243 6470 u64 error_code;
1439442c 6471
f9c617f6 6472 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6473
0be9c7a8
GN
6474 /*
6475 * EPT violation happened while executing iret from NMI,
6476 * "blocked by NMI" bit has to be set before next VM entry.
6477 * There are errata that may cause this bit to not be set:
6478 * AAK134, BY25.
6479 */
bcd1c294 6480 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
bcd1c294 6481 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6482 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6483
1439442c 6484 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6485 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6486
27959a44 6487 /* Is it a read fault? */
ab22a473 6488 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
6489 ? PFERR_USER_MASK : 0;
6490 /* Is it a write fault? */
ab22a473 6491 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
6492 ? PFERR_WRITE_MASK : 0;
6493 /* Is it a fetch fault? */
ab22a473 6494 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
6495 ? PFERR_FETCH_MASK : 0;
6496 /* ept page table entry is present? */
6497 error_code |= (exit_qualification &
6498 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6499 EPT_VIOLATION_EXECUTABLE))
6500 ? PFERR_PRESENT_MASK : 0;
4f5982a5 6501
eebed243
PB
6502 error_code |= (exit_qualification & 0x100) != 0 ?
6503 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
25d92081 6504
25d92081 6505 vcpu->arch.exit_qualification = exit_qualification;
4f5982a5 6506 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6507}
6508
851ba692 6509static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6510{
f735d4af 6511 int ret;
68f89400
MT
6512 gpa_t gpa;
6513
9034e6e8
PB
6514 /*
6515 * A nested guest cannot optimize MMIO vmexits, because we have an
6516 * nGPA here instead of the required GPA.
6517 */
68f89400 6518 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
9034e6e8
PB
6519 if (!is_guest_mode(vcpu) &&
6520 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 6521 trace_kvm_fast_mmio(gpa);
6affcbed 6522 return kvm_skip_emulated_instruction(vcpu);
68c3b4d1 6523 }
68f89400 6524
e08d26f0
PB
6525 ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6526 if (ret >= 0)
6527 return ret;
ce88decf
XG
6528
6529 /* It is the real ept misconfig */
f735d4af 6530 WARN_ON(1);
68f89400 6531
851ba692
AK
6532 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6533 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6534
6535 return 0;
6536}
6537
851ba692 6538static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 6539{
47c0152e
PB
6540 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6541 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 6542 ++vcpu->stat.nmi_window_exits;
3842d135 6543 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6544
6545 return 1;
6546}
6547
80ced186 6548static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6549{
8b3079a5
AK
6550 struct vcpu_vmx *vmx = to_vmx(vcpu);
6551 enum emulation_result err = EMULATE_DONE;
80ced186 6552 int ret = 1;
49e9d557
AK
6553 u32 cpu_exec_ctrl;
6554 bool intr_window_requested;
b8405c18 6555 unsigned count = 130;
49e9d557
AK
6556
6557 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6558 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6559
98eb2f8b 6560 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6561 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6562 return handle_interrupt_window(&vmx->vcpu);
6563
72875d8a 6564 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
de87dcdd
AK
6565 return 1;
6566
991eebf9 6567 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6568
ac0a48c3 6569 if (err == EMULATE_USER_EXIT) {
94452b9e 6570 ++vcpu->stat.mmio_exits;
80ced186
MG
6571 ret = 0;
6572 goto out;
6573 }
1d5a4d9b 6574
de5f70e0
AK
6575 if (err != EMULATE_DONE) {
6576 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6577 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6578 vcpu->run->internal.ndata = 0;
6d77dbfc 6579 return 0;
de5f70e0 6580 }
ea953ef0 6581
8d76c49e
GN
6582 if (vcpu->arch.halt_request) {
6583 vcpu->arch.halt_request = 0;
5cb56059 6584 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6585 goto out;
6586 }
6587
ea953ef0 6588 if (signal_pending(current))
80ced186 6589 goto out;
ea953ef0
MG
6590 if (need_resched())
6591 schedule();
6592 }
6593
80ced186
MG
6594out:
6595 return ret;
ea953ef0
MG
6596}
6597
b4a2d31d
RK
6598static int __grow_ple_window(int val)
6599{
6600 if (ple_window_grow < 1)
6601 return ple_window;
6602
6603 val = min(val, ple_window_actual_max);
6604
6605 if (ple_window_grow < ple_window)
6606 val *= ple_window_grow;
6607 else
6608 val += ple_window_grow;
6609
6610 return val;
6611}
6612
6613static int __shrink_ple_window(int val, int modifier, int minimum)
6614{
6615 if (modifier < 1)
6616 return ple_window;
6617
6618 if (modifier < ple_window)
6619 val /= modifier;
6620 else
6621 val -= modifier;
6622
6623 return max(val, minimum);
6624}
6625
6626static void grow_ple_window(struct kvm_vcpu *vcpu)
6627{
6628 struct vcpu_vmx *vmx = to_vmx(vcpu);
6629 int old = vmx->ple_window;
6630
6631 vmx->ple_window = __grow_ple_window(old);
6632
6633 if (vmx->ple_window != old)
6634 vmx->ple_window_dirty = true;
7b46268d
RK
6635
6636 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6637}
6638
6639static void shrink_ple_window(struct kvm_vcpu *vcpu)
6640{
6641 struct vcpu_vmx *vmx = to_vmx(vcpu);
6642 int old = vmx->ple_window;
6643
6644 vmx->ple_window = __shrink_ple_window(old,
6645 ple_window_shrink, ple_window);
6646
6647 if (vmx->ple_window != old)
6648 vmx->ple_window_dirty = true;
7b46268d
RK
6649
6650 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6651}
6652
6653/*
6654 * ple_window_actual_max is computed to be one grow_ple_window() below
6655 * ple_window_max. (See __grow_ple_window for the reason.)
6656 * This prevents overflows, because ple_window_max is int.
6657 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6658 * this process.
6659 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6660 */
6661static void update_ple_window_actual_max(void)
6662{
6663 ple_window_actual_max =
6664 __shrink_ple_window(max(ple_window_max, ple_window),
6665 ple_window_grow, INT_MIN);
6666}
6667
bf9f6ac8
FW
6668/*
6669 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6670 */
6671static void wakeup_handler(void)
6672{
6673 struct kvm_vcpu *vcpu;
6674 int cpu = smp_processor_id();
6675
6676 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6677 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6678 blocked_vcpu_list) {
6679 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6680
6681 if (pi_test_on(pi_desc) == 1)
6682 kvm_vcpu_kick(vcpu);
6683 }
6684 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6685}
6686
f160c7b7
JS
6687void vmx_enable_tdp(void)
6688{
6689 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6690 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6691 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6692 0ull, VMX_EPT_EXECUTABLE_MASK,
6693 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
d0ec49d4 6694 VMX_EPT_RWX_MASK, 0ull);
f160c7b7
JS
6695
6696 ept_set_mmio_spte_mask();
6697 kvm_enable_tdp();
6698}
6699
f2c7648d
TC
6700static __init int hardware_setup(void)
6701{
34a1cd60
TC
6702 int r = -ENOMEM, i, msr;
6703
6704 rdmsrl_safe(MSR_EFER, &host_efer);
6705
6706 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6707 kvm_define_shared_msr(i, vmx_msr_index[i]);
6708
23611332
RK
6709 for (i = 0; i < VMX_BITMAP_NR; i++) {
6710 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6711 if (!vmx_bitmap[i])
6712 goto out;
6713 }
34a1cd60
TC
6714
6715 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
34a1cd60
TC
6716 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6717 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6718
6719 /*
6720 * Allow direct access to the PC debug port (it is often used for I/O
6721 * delays, but the vmexits simply slow things down).
6722 */
6723 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6724 clear_bit(0x80, vmx_io_bitmap_a);
6725
6726 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6727
6728 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6729 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6730
34a1cd60
TC
6731 if (setup_vmcs_config(&vmcs_config) < 0) {
6732 r = -EIO;
23611332 6733 goto out;
baa03522 6734 }
f2c7648d
TC
6735
6736 if (boot_cpu_has(X86_FEATURE_NX))
6737 kvm_enable_efer_bits(EFER_NX);
6738
08d839c4
WL
6739 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6740 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
f2c7648d 6741 enable_vpid = 0;
08d839c4 6742
f2c7648d
TC
6743 if (!cpu_has_vmx_shadow_vmcs())
6744 enable_shadow_vmcs = 0;
6745 if (enable_shadow_vmcs)
6746 init_vmcs_shadow_fields();
6747
6748 if (!cpu_has_vmx_ept() ||
42aa53b4
DH
6749 !cpu_has_vmx_ept_4levels() ||
6750 !cpu_has_vmx_ept_mt_wb()) {
f2c7648d
TC
6751 enable_ept = 0;
6752 enable_unrestricted_guest = 0;
6753 enable_ept_ad_bits = 0;
6754 }
6755
fce6ac4c 6756 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
f2c7648d
TC
6757 enable_ept_ad_bits = 0;
6758
6759 if (!cpu_has_vmx_unrestricted_guest())
6760 enable_unrestricted_guest = 0;
6761
ad15a296 6762 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6763 flexpriority_enabled = 0;
6764
ad15a296
PB
6765 /*
6766 * set_apic_access_page_addr() is used to reload apic access
6767 * page upon invalidation. No need to do anything if not
6768 * using the APIC_ACCESS_ADDR VMCS field.
6769 */
6770 if (!flexpriority_enabled)
f2c7648d 6771 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6772
6773 if (!cpu_has_vmx_tpr_shadow())
6774 kvm_x86_ops->update_cr8_intercept = NULL;
6775
6776 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6777 kvm_disable_largepages();
6778
0f107682 6779 if (!cpu_has_vmx_ple()) {
f2c7648d 6780 ple_gap = 0;
0f107682
WL
6781 ple_window = 0;
6782 ple_window_grow = 0;
6783 ple_window_max = 0;
6784 ple_window_shrink = 0;
6785 }
f2c7648d 6786
76dfafd5 6787 if (!cpu_has_vmx_apicv()) {
f2c7648d 6788 enable_apicv = 0;
76dfafd5
PB
6789 kvm_x86_ops->sync_pir_to_irr = NULL;
6790 }
f2c7648d 6791
64903d61
HZ
6792 if (cpu_has_vmx_tsc_scaling()) {
6793 kvm_has_tsc_control = true;
6794 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6795 kvm_tsc_scaling_ratio_frac_bits = 48;
6796 }
6797
baa03522
TC
6798 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6799 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6800 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6801 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6802 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6803 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
baa03522 6804
c63e4563 6805 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
baa03522 6806 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6807 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
baa03522 6808 vmx_msr_bitmap_longmode, PAGE_SIZE);
c63e4563 6809 memcpy(vmx_msr_bitmap_legacy_x2apic,
f6e90f9e 6810 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6811 memcpy(vmx_msr_bitmap_longmode_x2apic,
f6e90f9e 6812 vmx_msr_bitmap_longmode, PAGE_SIZE);
baa03522 6813
04bb92e4
WL
6814 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6815
40d8338d
RK
6816 for (msr = 0x800; msr <= 0x8ff; msr++) {
6817 if (msr == 0x839 /* TMCCT */)
6818 continue;
2e69f865 6819 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
40d8338d 6820 }
3ce424e4 6821
f6e90f9e 6822 /*
2e69f865
RK
6823 * TPR reads and writes can be virtualized even if virtual interrupt
6824 * delivery is not in use.
f6e90f9e 6825 */
2e69f865
RK
6826 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6827 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
3ce424e4 6828
3ce424e4 6829 /* EOI */
2e69f865 6830 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
3ce424e4 6831 /* SELF-IPI */
2e69f865 6832 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
baa03522 6833
f160c7b7
JS
6834 if (enable_ept)
6835 vmx_enable_tdp();
6836 else
baa03522
TC
6837 kvm_disable_tdp();
6838
6839 update_ple_window_actual_max();
6840
843e4330
KH
6841 /*
6842 * Only enable PML when hardware supports PML feature, and both EPT
6843 * and EPT A/D bit features are enabled -- PML depends on them to work.
6844 */
6845 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6846 enable_pml = 0;
6847
6848 if (!enable_pml) {
6849 kvm_x86_ops->slot_enable_log_dirty = NULL;
6850 kvm_x86_ops->slot_disable_log_dirty = NULL;
6851 kvm_x86_ops->flush_log_dirty = NULL;
6852 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6853 }
6854
64672c95
YJ
6855 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6856 u64 vmx_msr;
6857
6858 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6859 cpu_preemption_timer_multi =
6860 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6861 } else {
6862 kvm_x86_ops->set_hv_timer = NULL;
6863 kvm_x86_ops->cancel_hv_timer = NULL;
6864 }
6865
bf9f6ac8
FW
6866 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6867
c45dcc71
AR
6868 kvm_mce_cap_supported |= MCG_LMCE_P;
6869
f2c7648d 6870 return alloc_kvm_area();
34a1cd60 6871
34a1cd60 6872out:
23611332
RK
6873 for (i = 0; i < VMX_BITMAP_NR; i++)
6874 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
6875
6876 return r;
f2c7648d
TC
6877}
6878
6879static __exit void hardware_unsetup(void)
6880{
23611332
RK
6881 int i;
6882
6883 for (i = 0; i < VMX_BITMAP_NR; i++)
6884 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 6885
f2c7648d
TC
6886 free_kvm_area();
6887}
6888
4b8d54f9
ZE
6889/*
6890 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6891 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6892 */
9fb41ba8 6893static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6894{
b4a2d31d
RK
6895 if (ple_gap)
6896 grow_ple_window(vcpu);
6897
de63ad4c
LM
6898 /*
6899 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6900 * VM-execution control is ignored if CPL > 0. OTOH, KVM
6901 * never set PAUSE_EXITING and just set PLE if supported,
6902 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6903 */
6904 kvm_vcpu_on_spin(vcpu, true);
6affcbed 6905 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
6906}
6907
87c00572 6908static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6909{
6affcbed 6910 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
6911}
6912
87c00572
GS
6913static int handle_mwait(struct kvm_vcpu *vcpu)
6914{
6915 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6916 return handle_nop(vcpu);
6917}
6918
45ec368c
JM
6919static int handle_invalid_op(struct kvm_vcpu *vcpu)
6920{
6921 kvm_queue_exception(vcpu, UD_VECTOR);
6922 return 1;
6923}
6924
5f3d45e7
MD
6925static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6926{
6927 return 1;
6928}
6929
87c00572
GS
6930static int handle_monitor(struct kvm_vcpu *vcpu)
6931{
6932 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6933 return handle_nop(vcpu);
6934}
6935
ff2f6fe9
NHE
6936/*
6937 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6938 * We could reuse a single VMCS for all the L2 guests, but we also want the
6939 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6940 * allows keeping them loaded on the processor, and in the future will allow
6941 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6942 * every entry if they never change.
6943 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6944 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6945 *
6946 * The following functions allocate and free a vmcs02 in this pool.
6947 */
6948
6949/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6950static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6951{
6952 struct vmcs02_list *item;
6953 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6954 if (item->vmptr == vmx->nested.current_vmptr) {
6955 list_move(&item->list, &vmx->nested.vmcs02_pool);
6956 return &item->vmcs02;
6957 }
6958
6959 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6960 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6961 item = list_last_entry(&vmx->nested.vmcs02_pool,
6962 struct vmcs02_list, list);
ff2f6fe9
NHE
6963 item->vmptr = vmx->nested.current_vmptr;
6964 list_move(&item->list, &vmx->nested.vmcs02_pool);
6965 return &item->vmcs02;
6966 }
6967
6968 /* Create a new VMCS */
0fa24ce3 6969 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6970 if (!item)
6971 return NULL;
6972 item->vmcs02.vmcs = alloc_vmcs();
355f4fb1 6973 item->vmcs02.shadow_vmcs = NULL;
ff2f6fe9
NHE
6974 if (!item->vmcs02.vmcs) {
6975 kfree(item);
6976 return NULL;
6977 }
6978 loaded_vmcs_init(&item->vmcs02);
6979 item->vmptr = vmx->nested.current_vmptr;
6980 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6981 vmx->nested.vmcs02_num++;
6982 return &item->vmcs02;
6983}
6984
6985/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6986static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6987{
6988 struct vmcs02_list *item;
6989 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6990 if (item->vmptr == vmptr) {
6991 free_loaded_vmcs(&item->vmcs02);
6992 list_del(&item->list);
6993 kfree(item);
6994 vmx->nested.vmcs02_num--;
6995 return;
6996 }
6997}
6998
6999/*
7000 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
7001 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
7002 * must be &vmx->vmcs01.
ff2f6fe9
NHE
7003 */
7004static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
7005{
7006 struct vmcs02_list *item, *n;
4fa7734c
PB
7007
7008 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 7009 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
7010 /*
7011 * Something will leak if the above WARN triggers. Better than
7012 * a use-after-free.
7013 */
7014 if (vmx->loaded_vmcs == &item->vmcs02)
7015 continue;
7016
7017 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
7018 list_del(&item->list);
7019 kfree(item);
4fa7734c 7020 vmx->nested.vmcs02_num--;
ff2f6fe9 7021 }
ff2f6fe9
NHE
7022}
7023
0658fbaa
ACL
7024/*
7025 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7026 * set the success or error code of an emulated VMX instruction, as specified
7027 * by Vol 2B, VMX Instruction Reference, "Conventions".
7028 */
7029static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7030{
7031 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7032 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7033 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7034}
7035
7036static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7037{
7038 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7039 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7040 X86_EFLAGS_SF | X86_EFLAGS_OF))
7041 | X86_EFLAGS_CF);
7042}
7043
145c28dd 7044static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
7045 u32 vm_instruction_error)
7046{
7047 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7048 /*
7049 * failValid writes the error number to the current VMCS, which
7050 * can't be done there isn't a current VMCS.
7051 */
7052 nested_vmx_failInvalid(vcpu);
7053 return;
7054 }
7055 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7056 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7057 X86_EFLAGS_SF | X86_EFLAGS_OF))
7058 | X86_EFLAGS_ZF);
7059 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7060 /*
7061 * We don't need to force a shadow sync because
7062 * VM_INSTRUCTION_ERROR is not shadowed
7063 */
7064}
145c28dd 7065
ff651cb6
WV
7066static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7067{
7068 /* TODO: not to reset guest simply here. */
7069 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 7070 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
7071}
7072
f4124500
JK
7073static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7074{
7075 struct vcpu_vmx *vmx =
7076 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7077
7078 vmx->nested.preemption_timer_expired = true;
7079 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7080 kvm_vcpu_kick(&vmx->vcpu);
7081
7082 return HRTIMER_NORESTART;
7083}
7084
19677e32
BD
7085/*
7086 * Decode the memory-address operand of a vmx instruction, as recorded on an
7087 * exit caused by such an instruction (run by a guest hypervisor).
7088 * On success, returns 0. When the operand is invalid, returns 1 and throws
7089 * #UD or #GP.
7090 */
7091static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7092 unsigned long exit_qualification,
f9eb4af6 7093 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 7094{
f9eb4af6
EK
7095 gva_t off;
7096 bool exn;
7097 struct kvm_segment s;
7098
19677e32
BD
7099 /*
7100 * According to Vol. 3B, "Information for VM Exits Due to Instruction
7101 * Execution", on an exit, vmx_instruction_info holds most of the
7102 * addressing components of the operand. Only the displacement part
7103 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7104 * For how an actual address is calculated from all these components,
7105 * refer to Vol. 1, "Operand Addressing".
7106 */
7107 int scaling = vmx_instruction_info & 3;
7108 int addr_size = (vmx_instruction_info >> 7) & 7;
7109 bool is_reg = vmx_instruction_info & (1u << 10);
7110 int seg_reg = (vmx_instruction_info >> 15) & 7;
7111 int index_reg = (vmx_instruction_info >> 18) & 0xf;
7112 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7113 int base_reg = (vmx_instruction_info >> 23) & 0xf;
7114 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
7115
7116 if (is_reg) {
7117 kvm_queue_exception(vcpu, UD_VECTOR);
7118 return 1;
7119 }
7120
7121 /* Addr = segment_base + offset */
7122 /* offset = base + [index * scale] + displacement */
f9eb4af6 7123 off = exit_qualification; /* holds the displacement */
19677e32 7124 if (base_is_valid)
f9eb4af6 7125 off += kvm_register_read(vcpu, base_reg);
19677e32 7126 if (index_is_valid)
f9eb4af6
EK
7127 off += kvm_register_read(vcpu, index_reg)<<scaling;
7128 vmx_get_segment(vcpu, &s, seg_reg);
7129 *ret = s.base + off;
19677e32
BD
7130
7131 if (addr_size == 1) /* 32 bit */
7132 *ret &= 0xffffffff;
7133
f9eb4af6
EK
7134 /* Checks for #GP/#SS exceptions. */
7135 exn = false;
ff30ef40
QC
7136 if (is_long_mode(vcpu)) {
7137 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7138 * non-canonical form. This is the only check on the memory
7139 * destination for long mode!
7140 */
fd8cb433 7141 exn = is_noncanonical_address(*ret, vcpu);
ff30ef40 7142 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
7143 /* Protected mode: apply checks for segment validity in the
7144 * following order:
7145 * - segment type check (#GP(0) may be thrown)
7146 * - usability check (#GP(0)/#SS(0))
7147 * - limit check (#GP(0)/#SS(0))
7148 */
7149 if (wr)
7150 /* #GP(0) if the destination operand is located in a
7151 * read-only data segment or any code segment.
7152 */
7153 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7154 else
7155 /* #GP(0) if the source operand is located in an
7156 * execute-only code segment
7157 */
7158 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
7159 if (exn) {
7160 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7161 return 1;
7162 }
f9eb4af6
EK
7163 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7164 */
7165 exn = (s.unusable != 0);
7166 /* Protected mode: #GP(0)/#SS(0) if the memory
7167 * operand is outside the segment limit.
7168 */
7169 exn = exn || (off + sizeof(u64) > s.limit);
7170 }
7171 if (exn) {
7172 kvm_queue_exception_e(vcpu,
7173 seg_reg == VCPU_SREG_SS ?
7174 SS_VECTOR : GP_VECTOR,
7175 0);
7176 return 1;
7177 }
7178
19677e32
BD
7179 return 0;
7180}
7181
cbf71279 7182static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
3573e22c
BD
7183{
7184 gva_t gva;
3573e22c 7185 struct x86_exception e;
3573e22c
BD
7186
7187 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7188 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
7189 return 1;
7190
cbf71279
RK
7191 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7192 sizeof(*vmpointer), &e)) {
3573e22c
BD
7193 kvm_inject_page_fault(vcpu, &e);
7194 return 1;
7195 }
7196
3573e22c
BD
7197 return 0;
7198}
7199
e29acc55
JM
7200static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7201{
7202 struct vcpu_vmx *vmx = to_vmx(vcpu);
7203 struct vmcs *shadow_vmcs;
7204
7205 if (cpu_has_vmx_msr_bitmap()) {
7206 vmx->nested.msr_bitmap =
7207 (unsigned long *)__get_free_page(GFP_KERNEL);
7208 if (!vmx->nested.msr_bitmap)
7209 goto out_msr_bitmap;
7210 }
7211
7212 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7213 if (!vmx->nested.cached_vmcs12)
7214 goto out_cached_vmcs12;
7215
7216 if (enable_shadow_vmcs) {
7217 shadow_vmcs = alloc_vmcs();
7218 if (!shadow_vmcs)
7219 goto out_shadow_vmcs;
7220 /* mark vmcs as shadow */
7221 shadow_vmcs->revision_id |= (1u << 31);
7222 /* init shadow vmcs */
7223 vmcs_clear(shadow_vmcs);
7224 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7225 }
7226
7227 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7228 vmx->nested.vmcs02_num = 0;
7229
7230 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7231 HRTIMER_MODE_REL_PINNED);
7232 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7233
7234 vmx->nested.vmxon = true;
7235 return 0;
7236
7237out_shadow_vmcs:
7238 kfree(vmx->nested.cached_vmcs12);
7239
7240out_cached_vmcs12:
7241 free_page((unsigned long)vmx->nested.msr_bitmap);
7242
7243out_msr_bitmap:
7244 return -ENOMEM;
7245}
7246
ec378aee
NHE
7247/*
7248 * Emulate the VMXON instruction.
7249 * Currently, we just remember that VMX is active, and do not save or even
7250 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7251 * do not currently need to store anything in that guest-allocated memory
7252 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7253 * argument is different from the VMXON pointer (which the spec says they do).
7254 */
7255static int handle_vmon(struct kvm_vcpu *vcpu)
7256{
e29acc55 7257 int ret;
cbf71279
RK
7258 gpa_t vmptr;
7259 struct page *page;
ec378aee 7260 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
7261 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7262 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee 7263
70f3aac9
JM
7264 /*
7265 * The Intel VMX Instruction Reference lists a bunch of bits that are
7266 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7267 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7268 * Otherwise, we should fail with #UD. But most faulting conditions
7269 * have already been checked by hardware, prior to the VM-exit for
7270 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7271 * that bit set to 1 in non-root mode.
ec378aee 7272 */
70f3aac9 7273 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
ec378aee
NHE
7274 kvm_queue_exception(vcpu, UD_VECTOR);
7275 return 1;
7276 }
7277
145c28dd
AG
7278 if (vmx->nested.vmxon) {
7279 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7280 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7281 }
b3897a49 7282
3b84080b 7283 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7284 != VMXON_NEEDED_FEATURES) {
7285 kvm_inject_gp(vcpu, 0);
7286 return 1;
7287 }
7288
cbf71279 7289 if (nested_vmx_get_vmptr(vcpu, &vmptr))
21e7fbe7 7290 return 1;
cbf71279
RK
7291
7292 /*
7293 * SDM 3: 24.11.5
7294 * The first 4 bytes of VMXON region contain the supported
7295 * VMCS revision identifier
7296 *
7297 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7298 * which replaces physical address width with 32
7299 */
7300 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7301 nested_vmx_failInvalid(vcpu);
7302 return kvm_skip_emulated_instruction(vcpu);
7303 }
7304
5e2f30b7
DH
7305 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7306 if (is_error_page(page)) {
cbf71279
RK
7307 nested_vmx_failInvalid(vcpu);
7308 return kvm_skip_emulated_instruction(vcpu);
7309 }
7310 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7311 kunmap(page);
53a70daf 7312 kvm_release_page_clean(page);
cbf71279
RK
7313 nested_vmx_failInvalid(vcpu);
7314 return kvm_skip_emulated_instruction(vcpu);
7315 }
7316 kunmap(page);
53a70daf 7317 kvm_release_page_clean(page);
cbf71279
RK
7318
7319 vmx->nested.vmxon_ptr = vmptr;
e29acc55
JM
7320 ret = enter_vmx_operation(vcpu);
7321 if (ret)
7322 return ret;
ec378aee 7323
a25eb114 7324 nested_vmx_succeed(vcpu);
6affcbed 7325 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7326}
7327
7328/*
7329 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7330 * for running VMX instructions (except VMXON, whose prerequisites are
7331 * slightly different). It also specifies what exception to inject otherwise.
70f3aac9
JM
7332 * Note that many of these exceptions have priority over VM exits, so they
7333 * don't have to be checked again here.
ec378aee
NHE
7334 */
7335static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7336{
70f3aac9 7337 if (!to_vmx(vcpu)->nested.vmxon) {
ec378aee
NHE
7338 kvm_queue_exception(vcpu, UD_VECTOR);
7339 return 0;
7340 }
ec378aee
NHE
7341 return 1;
7342}
7343
8ca44e88
DM
7344static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7345{
7346 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7347 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7348}
7349
e7953d7f
AG
7350static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7351{
9a2a05b9
PB
7352 if (vmx->nested.current_vmptr == -1ull)
7353 return;
7354
012f83cb 7355 if (enable_shadow_vmcs) {
9a2a05b9
PB
7356 /* copy to memory all shadowed fields in case
7357 they were modified */
7358 copy_shadow_to_vmcs12(vmx);
7359 vmx->nested.sync_shadow_vmcs = false;
8ca44e88 7360 vmx_disable_shadow_vmcs(vmx);
012f83cb 7361 }
705699a1 7362 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7363
7364 /* Flush VMCS12 to guest memory */
9f744c59
PB
7365 kvm_vcpu_write_guest_page(&vmx->vcpu,
7366 vmx->nested.current_vmptr >> PAGE_SHIFT,
7367 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4f2777bc 7368
9a2a05b9 7369 vmx->nested.current_vmptr = -1ull;
e7953d7f
AG
7370}
7371
ec378aee
NHE
7372/*
7373 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7374 * just stops using VMX.
7375 */
7376static void free_nested(struct vcpu_vmx *vmx)
7377{
7378 if (!vmx->nested.vmxon)
7379 return;
9a2a05b9 7380
ec378aee 7381 vmx->nested.vmxon = false;
5c614b35 7382 free_vpid(vmx->nested.vpid02);
8ca44e88
DM
7383 vmx->nested.posted_intr_nv = -1;
7384 vmx->nested.current_vmptr = -1ull;
d048c098
RK
7385 if (vmx->nested.msr_bitmap) {
7386 free_page((unsigned long)vmx->nested.msr_bitmap);
7387 vmx->nested.msr_bitmap = NULL;
7388 }
355f4fb1 7389 if (enable_shadow_vmcs) {
8ca44e88 7390 vmx_disable_shadow_vmcs(vmx);
355f4fb1
JM
7391 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7392 free_vmcs(vmx->vmcs01.shadow_vmcs);
7393 vmx->vmcs01.shadow_vmcs = NULL;
7394 }
4f2777bc 7395 kfree(vmx->nested.cached_vmcs12);
fe3ef05c
NHE
7396 /* Unpin physical memory we referred to in current vmcs02 */
7397 if (vmx->nested.apic_access_page) {
53a70daf 7398 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 7399 vmx->nested.apic_access_page = NULL;
fe3ef05c 7400 }
a7c0b07d 7401 if (vmx->nested.virtual_apic_page) {
53a70daf 7402 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 7403 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7404 }
705699a1
WV
7405 if (vmx->nested.pi_desc_page) {
7406 kunmap(vmx->nested.pi_desc_page);
53a70daf 7407 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
7408 vmx->nested.pi_desc_page = NULL;
7409 vmx->nested.pi_desc = NULL;
7410 }
ff2f6fe9
NHE
7411
7412 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
7413}
7414
7415/* Emulate the VMXOFF instruction */
7416static int handle_vmoff(struct kvm_vcpu *vcpu)
7417{
7418 if (!nested_vmx_check_permission(vcpu))
7419 return 1;
7420 free_nested(to_vmx(vcpu));
a25eb114 7421 nested_vmx_succeed(vcpu);
6affcbed 7422 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7423}
7424
27d6c865
NHE
7425/* Emulate the VMCLEAR instruction */
7426static int handle_vmclear(struct kvm_vcpu *vcpu)
7427{
7428 struct vcpu_vmx *vmx = to_vmx(vcpu);
587d7e72 7429 u32 zero = 0;
27d6c865 7430 gpa_t vmptr;
27d6c865
NHE
7431
7432 if (!nested_vmx_check_permission(vcpu))
7433 return 1;
7434
cbf71279 7435 if (nested_vmx_get_vmptr(vcpu, &vmptr))
27d6c865 7436 return 1;
27d6c865 7437
cbf71279
RK
7438 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7439 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7440 return kvm_skip_emulated_instruction(vcpu);
7441 }
7442
7443 if (vmptr == vmx->nested.vmxon_ptr) {
7444 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7445 return kvm_skip_emulated_instruction(vcpu);
7446 }
7447
9a2a05b9 7448 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7449 nested_release_vmcs12(vmx);
27d6c865 7450
587d7e72
JM
7451 kvm_vcpu_write_guest(vcpu,
7452 vmptr + offsetof(struct vmcs12, launch_state),
7453 &zero, sizeof(zero));
27d6c865
NHE
7454
7455 nested_free_vmcs02(vmx, vmptr);
7456
27d6c865 7457 nested_vmx_succeed(vcpu);
6affcbed 7458 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7459}
7460
cd232ad0
NHE
7461static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7462
7463/* Emulate the VMLAUNCH instruction */
7464static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7465{
7466 return nested_vmx_run(vcpu, true);
7467}
7468
7469/* Emulate the VMRESUME instruction */
7470static int handle_vmresume(struct kvm_vcpu *vcpu)
7471{
7472
7473 return nested_vmx_run(vcpu, false);
7474}
7475
49f705c5
NHE
7476/*
7477 * Read a vmcs12 field. Since these can have varying lengths and we return
7478 * one type, we chose the biggest type (u64) and zero-extend the return value
7479 * to that size. Note that the caller, handle_vmread, might need to use only
7480 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7481 * 64-bit fields are to be returned).
7482 */
a2ae9df7
PB
7483static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7484 unsigned long field, u64 *ret)
49f705c5
NHE
7485{
7486 short offset = vmcs_field_to_offset(field);
7487 char *p;
7488
7489 if (offset < 0)
a2ae9df7 7490 return offset;
49f705c5
NHE
7491
7492 p = ((char *)(get_vmcs12(vcpu))) + offset;
7493
7494 switch (vmcs_field_type(field)) {
7495 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7496 *ret = *((natural_width *)p);
a2ae9df7 7497 return 0;
49f705c5
NHE
7498 case VMCS_FIELD_TYPE_U16:
7499 *ret = *((u16 *)p);
a2ae9df7 7500 return 0;
49f705c5
NHE
7501 case VMCS_FIELD_TYPE_U32:
7502 *ret = *((u32 *)p);
a2ae9df7 7503 return 0;
49f705c5
NHE
7504 case VMCS_FIELD_TYPE_U64:
7505 *ret = *((u64 *)p);
a2ae9df7 7506 return 0;
49f705c5 7507 default:
a2ae9df7
PB
7508 WARN_ON(1);
7509 return -ENOENT;
49f705c5
NHE
7510 }
7511}
7512
20b97fea 7513
a2ae9df7
PB
7514static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7515 unsigned long field, u64 field_value){
20b97fea
AG
7516 short offset = vmcs_field_to_offset(field);
7517 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7518 if (offset < 0)
a2ae9df7 7519 return offset;
20b97fea
AG
7520
7521 switch (vmcs_field_type(field)) {
7522 case VMCS_FIELD_TYPE_U16:
7523 *(u16 *)p = field_value;
a2ae9df7 7524 return 0;
20b97fea
AG
7525 case VMCS_FIELD_TYPE_U32:
7526 *(u32 *)p = field_value;
a2ae9df7 7527 return 0;
20b97fea
AG
7528 case VMCS_FIELD_TYPE_U64:
7529 *(u64 *)p = field_value;
a2ae9df7 7530 return 0;
20b97fea
AG
7531 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7532 *(natural_width *)p = field_value;
a2ae9df7 7533 return 0;
20b97fea 7534 default:
a2ae9df7
PB
7535 WARN_ON(1);
7536 return -ENOENT;
20b97fea
AG
7537 }
7538
7539}
7540
16f5b903
AG
7541static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7542{
7543 int i;
7544 unsigned long field;
7545 u64 field_value;
355f4fb1 7546 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c2bae893
MK
7547 const unsigned long *fields = shadow_read_write_fields;
7548 const int num_fields = max_shadow_read_write_fields;
16f5b903 7549
282da870
JK
7550 preempt_disable();
7551
16f5b903
AG
7552 vmcs_load(shadow_vmcs);
7553
7554 for (i = 0; i < num_fields; i++) {
7555 field = fields[i];
7556 switch (vmcs_field_type(field)) {
7557 case VMCS_FIELD_TYPE_U16:
7558 field_value = vmcs_read16(field);
7559 break;
7560 case VMCS_FIELD_TYPE_U32:
7561 field_value = vmcs_read32(field);
7562 break;
7563 case VMCS_FIELD_TYPE_U64:
7564 field_value = vmcs_read64(field);
7565 break;
7566 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7567 field_value = vmcs_readl(field);
7568 break;
a2ae9df7
PB
7569 default:
7570 WARN_ON(1);
7571 continue;
16f5b903
AG
7572 }
7573 vmcs12_write_any(&vmx->vcpu, field, field_value);
7574 }
7575
7576 vmcs_clear(shadow_vmcs);
7577 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7578
7579 preempt_enable();
16f5b903
AG
7580}
7581
c3114420
AG
7582static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7583{
c2bae893
MK
7584 const unsigned long *fields[] = {
7585 shadow_read_write_fields,
7586 shadow_read_only_fields
c3114420 7587 };
c2bae893 7588 const int max_fields[] = {
c3114420
AG
7589 max_shadow_read_write_fields,
7590 max_shadow_read_only_fields
7591 };
7592 int i, q;
7593 unsigned long field;
7594 u64 field_value = 0;
355f4fb1 7595 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7596
7597 vmcs_load(shadow_vmcs);
7598
c2bae893 7599 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7600 for (i = 0; i < max_fields[q]; i++) {
7601 field = fields[q][i];
7602 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7603
7604 switch (vmcs_field_type(field)) {
7605 case VMCS_FIELD_TYPE_U16:
7606 vmcs_write16(field, (u16)field_value);
7607 break;
7608 case VMCS_FIELD_TYPE_U32:
7609 vmcs_write32(field, (u32)field_value);
7610 break;
7611 case VMCS_FIELD_TYPE_U64:
7612 vmcs_write64(field, (u64)field_value);
7613 break;
7614 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7615 vmcs_writel(field, (long)field_value);
7616 break;
a2ae9df7
PB
7617 default:
7618 WARN_ON(1);
7619 break;
c3114420
AG
7620 }
7621 }
7622 }
7623
7624 vmcs_clear(shadow_vmcs);
7625 vmcs_load(vmx->loaded_vmcs->vmcs);
7626}
7627
49f705c5
NHE
7628/*
7629 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7630 * used before) all generate the same failure when it is missing.
7631 */
7632static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7633{
7634 struct vcpu_vmx *vmx = to_vmx(vcpu);
7635 if (vmx->nested.current_vmptr == -1ull) {
7636 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7637 return 0;
7638 }
7639 return 1;
7640}
7641
7642static int handle_vmread(struct kvm_vcpu *vcpu)
7643{
7644 unsigned long field;
7645 u64 field_value;
7646 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7647 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7648 gva_t gva = 0;
7649
eb277562 7650 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7651 return 1;
7652
6affcbed
KH
7653 if (!nested_vmx_check_vmcs12(vcpu))
7654 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7655
7656 /* Decode instruction info and find the field to read */
27e6fb5d 7657 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7658 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7659 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 7660 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7661 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7662 }
7663 /*
7664 * Now copy part of this value to register or memory, as requested.
7665 * Note that the number of bits actually copied is 32 or 64 depending
7666 * on the guest's mode (32 or 64 bit), not on the given field's length.
7667 */
7668 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7669 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7670 field_value);
7671 } else {
7672 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7673 vmx_instruction_info, true, &gva))
49f705c5 7674 return 1;
70f3aac9 7675 /* _system ok, as hardware has verified cpl=0 */
49f705c5
NHE
7676 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7677 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7678 }
7679
7680 nested_vmx_succeed(vcpu);
6affcbed 7681 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7682}
7683
7684
7685static int handle_vmwrite(struct kvm_vcpu *vcpu)
7686{
7687 unsigned long field;
7688 gva_t gva;
7689 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7690 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7691 /* The value to write might be 32 or 64 bits, depending on L1's long
7692 * mode, and eventually we need to write that into a field of several
7693 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7694 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7695 * bits into the vmcs12 field.
7696 */
7697 u64 field_value = 0;
7698 struct x86_exception e;
7699
eb277562 7700 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7701 return 1;
7702
6affcbed
KH
7703 if (!nested_vmx_check_vmcs12(vcpu))
7704 return kvm_skip_emulated_instruction(vcpu);
eb277562 7705
49f705c5 7706 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7707 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7708 (((vmx_instruction_info) >> 3) & 0xf));
7709 else {
7710 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7711 vmx_instruction_info, false, &gva))
49f705c5
NHE
7712 return 1;
7713 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7714 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7715 kvm_inject_page_fault(vcpu, &e);
7716 return 1;
7717 }
7718 }
7719
7720
27e6fb5d 7721 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7722 if (vmcs_field_readonly(field)) {
7723 nested_vmx_failValid(vcpu,
7724 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 7725 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7726 }
7727
a2ae9df7 7728 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 7729 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7730 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7731 }
7732
7733 nested_vmx_succeed(vcpu);
6affcbed 7734 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7735}
7736
a8bc284e
JM
7737static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7738{
7739 vmx->nested.current_vmptr = vmptr;
7740 if (enable_shadow_vmcs) {
7741 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7742 SECONDARY_EXEC_SHADOW_VMCS);
7743 vmcs_write64(VMCS_LINK_POINTER,
7744 __pa(vmx->vmcs01.shadow_vmcs));
7745 vmx->nested.sync_shadow_vmcs = true;
7746 }
7747}
7748
63846663
NHE
7749/* Emulate the VMPTRLD instruction */
7750static int handle_vmptrld(struct kvm_vcpu *vcpu)
7751{
7752 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7753 gpa_t vmptr;
63846663
NHE
7754
7755 if (!nested_vmx_check_permission(vcpu))
7756 return 1;
7757
cbf71279 7758 if (nested_vmx_get_vmptr(vcpu, &vmptr))
63846663 7759 return 1;
63846663 7760
cbf71279
RK
7761 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7762 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7763 return kvm_skip_emulated_instruction(vcpu);
7764 }
7765
7766 if (vmptr == vmx->nested.vmxon_ptr) {
7767 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7768 return kvm_skip_emulated_instruction(vcpu);
7769 }
7770
63846663
NHE
7771 if (vmx->nested.current_vmptr != vmptr) {
7772 struct vmcs12 *new_vmcs12;
7773 struct page *page;
5e2f30b7
DH
7774 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7775 if (is_error_page(page)) {
63846663 7776 nested_vmx_failInvalid(vcpu);
6affcbed 7777 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7778 }
7779 new_vmcs12 = kmap(page);
7780 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7781 kunmap(page);
53a70daf 7782 kvm_release_page_clean(page);
63846663
NHE
7783 nested_vmx_failValid(vcpu,
7784 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 7785 return kvm_skip_emulated_instruction(vcpu);
63846663 7786 }
63846663 7787
9a2a05b9 7788 nested_release_vmcs12(vmx);
4f2777bc
DM
7789 /*
7790 * Load VMCS12 from guest memory since it is not already
7791 * cached.
7792 */
9f744c59
PB
7793 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7794 kunmap(page);
53a70daf 7795 kvm_release_page_clean(page);
9f744c59 7796
a8bc284e 7797 set_current_vmptr(vmx, vmptr);
63846663
NHE
7798 }
7799
7800 nested_vmx_succeed(vcpu);
6affcbed 7801 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7802}
7803
6a4d7550
NHE
7804/* Emulate the VMPTRST instruction */
7805static int handle_vmptrst(struct kvm_vcpu *vcpu)
7806{
7807 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7808 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7809 gva_t vmcs_gva;
7810 struct x86_exception e;
7811
7812 if (!nested_vmx_check_permission(vcpu))
7813 return 1;
7814
7815 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7816 vmx_instruction_info, true, &vmcs_gva))
6a4d7550 7817 return 1;
70f3aac9 7818 /* ok to use *_system, as hardware has verified cpl=0 */
6a4d7550
NHE
7819 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7820 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7821 sizeof(u64), &e)) {
7822 kvm_inject_page_fault(vcpu, &e);
7823 return 1;
7824 }
7825 nested_vmx_succeed(vcpu);
6affcbed 7826 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
7827}
7828
bfd0a56b
NHE
7829/* Emulate the INVEPT instruction */
7830static int handle_invept(struct kvm_vcpu *vcpu)
7831{
b9c237bb 7832 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7833 u32 vmx_instruction_info, types;
7834 unsigned long type;
7835 gva_t gva;
7836 struct x86_exception e;
7837 struct {
7838 u64 eptp, gpa;
7839 } operand;
bfd0a56b 7840
b9c237bb
WV
7841 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7842 SECONDARY_EXEC_ENABLE_EPT) ||
7843 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7844 kvm_queue_exception(vcpu, UD_VECTOR);
7845 return 1;
7846 }
7847
7848 if (!nested_vmx_check_permission(vcpu))
7849 return 1;
7850
bfd0a56b 7851 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7852 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7853
b9c237bb 7854 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 7855
85c856b3 7856 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
7857 nested_vmx_failValid(vcpu,
7858 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7859 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7860 }
7861
7862 /* According to the Intel VMX instruction reference, the memory
7863 * operand is read even if it isn't needed (e.g., for type==global)
7864 */
7865 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7866 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7867 return 1;
7868 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7869 sizeof(operand), &e)) {
7870 kvm_inject_page_fault(vcpu, &e);
7871 return 1;
7872 }
7873
7874 switch (type) {
bfd0a56b 7875 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7876 /*
7877 * TODO: track mappings and invalidate
7878 * single context requests appropriately
7879 */
7880 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7881 kvm_mmu_sync_roots(vcpu);
77c3913b 7882 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7883 nested_vmx_succeed(vcpu);
7884 break;
7885 default:
7886 BUG_ON(1);
7887 break;
7888 }
7889
6affcbed 7890 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7891}
7892
a642fc30
PM
7893static int handle_invvpid(struct kvm_vcpu *vcpu)
7894{
99b83ac8
WL
7895 struct vcpu_vmx *vmx = to_vmx(vcpu);
7896 u32 vmx_instruction_info;
7897 unsigned long type, types;
7898 gva_t gva;
7899 struct x86_exception e;
40352605
JM
7900 struct {
7901 u64 vpid;
7902 u64 gla;
7903 } operand;
99b83ac8
WL
7904
7905 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7906 SECONDARY_EXEC_ENABLE_VPID) ||
7907 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7908 kvm_queue_exception(vcpu, UD_VECTOR);
7909 return 1;
7910 }
7911
7912 if (!nested_vmx_check_permission(vcpu))
7913 return 1;
7914
7915 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7916 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7917
bcdde302
JD
7918 types = (vmx->nested.nested_vmx_vpid_caps &
7919 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 7920
85c856b3 7921 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
7922 nested_vmx_failValid(vcpu,
7923 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7924 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7925 }
7926
7927 /* according to the intel vmx instruction reference, the memory
7928 * operand is read even if it isn't needed (e.g., for type==global)
7929 */
7930 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7931 vmx_instruction_info, false, &gva))
7932 return 1;
40352605
JM
7933 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7934 sizeof(operand), &e)) {
99b83ac8
WL
7935 kvm_inject_page_fault(vcpu, &e);
7936 return 1;
7937 }
40352605
JM
7938 if (operand.vpid >> 16) {
7939 nested_vmx_failValid(vcpu,
7940 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7941 return kvm_skip_emulated_instruction(vcpu);
7942 }
99b83ac8
WL
7943
7944 switch (type) {
bcdde302 7945 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
fd8cb433 7946 if (is_noncanonical_address(operand.gla, vcpu)) {
40352605
JM
7947 nested_vmx_failValid(vcpu,
7948 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7949 return kvm_skip_emulated_instruction(vcpu);
7950 }
7951 /* fall through */
ef697a71 7952 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302 7953 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
40352605 7954 if (!operand.vpid) {
bcdde302
JD
7955 nested_vmx_failValid(vcpu,
7956 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7957 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
7958 }
7959 break;
99b83ac8 7960 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
7961 break;
7962 default:
bcdde302 7963 WARN_ON_ONCE(1);
6affcbed 7964 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7965 }
7966
bcdde302
JD
7967 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7968 nested_vmx_succeed(vcpu);
7969
6affcbed 7970 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
7971}
7972
843e4330
KH
7973static int handle_pml_full(struct kvm_vcpu *vcpu)
7974{
7975 unsigned long exit_qualification;
7976
7977 trace_kvm_pml_full(vcpu->vcpu_id);
7978
7979 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7980
7981 /*
7982 * PML buffer FULL happened while executing iret from NMI,
7983 * "blocked by NMI" bit has to be set before next VM entry.
7984 */
7985 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
843e4330
KH
7986 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7987 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7988 GUEST_INTR_STATE_NMI);
7989
7990 /*
7991 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7992 * here.., and there's no userspace involvement needed for PML.
7993 */
7994 return 1;
7995}
7996
64672c95
YJ
7997static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7998{
7999 kvm_lapic_expired_hv_timer(vcpu);
8000 return 1;
8001}
8002
41ab9372
BD
8003static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8004{
8005 struct vcpu_vmx *vmx = to_vmx(vcpu);
41ab9372
BD
8006 int maxphyaddr = cpuid_maxphyaddr(vcpu);
8007
8008 /* Check for memory type validity */
bb97a016
DH
8009 switch (address & VMX_EPTP_MT_MASK) {
8010 case VMX_EPTP_MT_UC:
41ab9372
BD
8011 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8012 return false;
8013 break;
bb97a016 8014 case VMX_EPTP_MT_WB:
41ab9372
BD
8015 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8016 return false;
8017 break;
8018 default:
8019 return false;
8020 }
8021
bb97a016
DH
8022 /* only 4 levels page-walk length are valid */
8023 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
41ab9372
BD
8024 return false;
8025
8026 /* Reserved bits should not be set */
8027 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8028 return false;
8029
8030 /* AD, if set, should be supported */
bb97a016 8031 if (address & VMX_EPTP_AD_ENABLE_BIT) {
41ab9372
BD
8032 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8033 return false;
8034 }
8035
8036 return true;
8037}
8038
8039static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8040 struct vmcs12 *vmcs12)
8041{
8042 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8043 u64 address;
8044 bool accessed_dirty;
8045 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8046
8047 if (!nested_cpu_has_eptp_switching(vmcs12) ||
8048 !nested_cpu_has_ept(vmcs12))
8049 return 1;
8050
8051 if (index >= VMFUNC_EPTP_ENTRIES)
8052 return 1;
8053
8054
8055 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8056 &address, index * 8, 8))
8057 return 1;
8058
bb97a016 8059 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
41ab9372
BD
8060
8061 /*
8062 * If the (L2) guest does a vmfunc to the currently
8063 * active ept pointer, we don't have to do anything else
8064 */
8065 if (vmcs12->ept_pointer != address) {
8066 if (!valid_ept_address(vcpu, address))
8067 return 1;
8068
8069 kvm_mmu_unload(vcpu);
8070 mmu->ept_ad = accessed_dirty;
8071 mmu->base_role.ad_disabled = !accessed_dirty;
8072 vmcs12->ept_pointer = address;
8073 /*
8074 * TODO: Check what's the correct approach in case
8075 * mmu reload fails. Currently, we just let the next
8076 * reload potentially fail
8077 */
8078 kvm_mmu_reload(vcpu);
8079 }
8080
8081 return 0;
8082}
8083
2a499e49
BD
8084static int handle_vmfunc(struct kvm_vcpu *vcpu)
8085{
27c42a1b
BD
8086 struct vcpu_vmx *vmx = to_vmx(vcpu);
8087 struct vmcs12 *vmcs12;
8088 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8089
8090 /*
8091 * VMFUNC is only supported for nested guests, but we always enable the
8092 * secondary control for simplicity; for non-nested mode, fake that we
8093 * didn't by injecting #UD.
8094 */
8095 if (!is_guest_mode(vcpu)) {
8096 kvm_queue_exception(vcpu, UD_VECTOR);
8097 return 1;
8098 }
8099
8100 vmcs12 = get_vmcs12(vcpu);
8101 if ((vmcs12->vm_function_control & (1 << function)) == 0)
8102 goto fail;
41ab9372
BD
8103
8104 switch (function) {
8105 case 0:
8106 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8107 goto fail;
8108 break;
8109 default:
8110 goto fail;
8111 }
8112 return kvm_skip_emulated_instruction(vcpu);
27c42a1b
BD
8113
8114fail:
8115 nested_vmx_vmexit(vcpu, vmx->exit_reason,
8116 vmcs_read32(VM_EXIT_INTR_INFO),
8117 vmcs_readl(EXIT_QUALIFICATION));
2a499e49
BD
8118 return 1;
8119}
8120
6aa8b732
AK
8121/*
8122 * The exit handlers return 1 if the exit was handled fully and guest execution
8123 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8124 * to be done to userspace and return 0.
8125 */
772e0318 8126static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
8127 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8128 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 8129 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 8130 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 8131 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
8132 [EXIT_REASON_CR_ACCESS] = handle_cr,
8133 [EXIT_REASON_DR_ACCESS] = handle_dr,
8134 [EXIT_REASON_CPUID] = handle_cpuid,
8135 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8136 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8137 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8138 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 8139 [EXIT_REASON_INVD] = handle_invd,
a7052897 8140 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 8141 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 8142 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 8143 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 8144 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 8145 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 8146 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 8147 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 8148 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 8149 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
8150 [EXIT_REASON_VMOFF] = handle_vmoff,
8151 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
8152 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8153 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 8154 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 8155 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 8156 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 8157 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 8158 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 8159 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
8160 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8161 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 8162 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 8163 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 8164 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 8165 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 8166 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 8167 [EXIT_REASON_INVVPID] = handle_invvpid,
45ec368c 8168 [EXIT_REASON_RDRAND] = handle_invalid_op,
75f4fc8d 8169 [EXIT_REASON_RDSEED] = handle_invalid_op,
f53cd63c
WL
8170 [EXIT_REASON_XSAVES] = handle_xsaves,
8171 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 8172 [EXIT_REASON_PML_FULL] = handle_pml_full,
2a499e49 8173 [EXIT_REASON_VMFUNC] = handle_vmfunc,
64672c95 8174 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
8175};
8176
8177static const int kvm_vmx_max_exit_handlers =
50a3485c 8178 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 8179
908a7bdd
JK
8180static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8181 struct vmcs12 *vmcs12)
8182{
8183 unsigned long exit_qualification;
8184 gpa_t bitmap, last_bitmap;
8185 unsigned int port;
8186 int size;
8187 u8 b;
8188
908a7bdd 8189 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 8190 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
8191
8192 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8193
8194 port = exit_qualification >> 16;
8195 size = (exit_qualification & 7) + 1;
8196
8197 last_bitmap = (gpa_t)-1;
8198 b = -1;
8199
8200 while (size > 0) {
8201 if (port < 0x8000)
8202 bitmap = vmcs12->io_bitmap_a;
8203 else if (port < 0x10000)
8204 bitmap = vmcs12->io_bitmap_b;
8205 else
1d804d07 8206 return true;
908a7bdd
JK
8207 bitmap += (port & 0x7fff) / 8;
8208
8209 if (last_bitmap != bitmap)
54bf36aa 8210 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 8211 return true;
908a7bdd 8212 if (b & (1 << (port & 7)))
1d804d07 8213 return true;
908a7bdd
JK
8214
8215 port++;
8216 size--;
8217 last_bitmap = bitmap;
8218 }
8219
1d804d07 8220 return false;
908a7bdd
JK
8221}
8222
644d711a
NHE
8223/*
8224 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8225 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8226 * disinterest in the current event (read or write a specific MSR) by using an
8227 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8228 */
8229static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8230 struct vmcs12 *vmcs12, u32 exit_reason)
8231{
8232 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8233 gpa_t bitmap;
8234
cbd29cb6 8235 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 8236 return true;
644d711a
NHE
8237
8238 /*
8239 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8240 * for the four combinations of read/write and low/high MSR numbers.
8241 * First we need to figure out which of the four to use:
8242 */
8243 bitmap = vmcs12->msr_bitmap;
8244 if (exit_reason == EXIT_REASON_MSR_WRITE)
8245 bitmap += 2048;
8246 if (msr_index >= 0xc0000000) {
8247 msr_index -= 0xc0000000;
8248 bitmap += 1024;
8249 }
8250
8251 /* Then read the msr_index'th bit from this bitmap: */
8252 if (msr_index < 1024*8) {
8253 unsigned char b;
54bf36aa 8254 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 8255 return true;
644d711a
NHE
8256 return 1 & (b >> (msr_index & 7));
8257 } else
1d804d07 8258 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
8259}
8260
8261/*
8262 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8263 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8264 * intercept (via guest_host_mask etc.) the current event.
8265 */
8266static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8267 struct vmcs12 *vmcs12)
8268{
8269 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8270 int cr = exit_qualification & 15;
e1d39b17
JS
8271 int reg;
8272 unsigned long val;
644d711a
NHE
8273
8274 switch ((exit_qualification >> 4) & 3) {
8275 case 0: /* mov to cr */
e1d39b17
JS
8276 reg = (exit_qualification >> 8) & 15;
8277 val = kvm_register_readl(vcpu, reg);
644d711a
NHE
8278 switch (cr) {
8279 case 0:
8280 if (vmcs12->cr0_guest_host_mask &
8281 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8282 return true;
644d711a
NHE
8283 break;
8284 case 3:
8285 if ((vmcs12->cr3_target_count >= 1 &&
8286 vmcs12->cr3_target_value0 == val) ||
8287 (vmcs12->cr3_target_count >= 2 &&
8288 vmcs12->cr3_target_value1 == val) ||
8289 (vmcs12->cr3_target_count >= 3 &&
8290 vmcs12->cr3_target_value2 == val) ||
8291 (vmcs12->cr3_target_count >= 4 &&
8292 vmcs12->cr3_target_value3 == val))
1d804d07 8293 return false;
644d711a 8294 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 8295 return true;
644d711a
NHE
8296 break;
8297 case 4:
8298 if (vmcs12->cr4_guest_host_mask &
8299 (vmcs12->cr4_read_shadow ^ val))
1d804d07 8300 return true;
644d711a
NHE
8301 break;
8302 case 8:
8303 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 8304 return true;
644d711a
NHE
8305 break;
8306 }
8307 break;
8308 case 2: /* clts */
8309 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8310 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 8311 return true;
644d711a
NHE
8312 break;
8313 case 1: /* mov from cr */
8314 switch (cr) {
8315 case 3:
8316 if (vmcs12->cpu_based_vm_exec_control &
8317 CPU_BASED_CR3_STORE_EXITING)
1d804d07 8318 return true;
644d711a
NHE
8319 break;
8320 case 8:
8321 if (vmcs12->cpu_based_vm_exec_control &
8322 CPU_BASED_CR8_STORE_EXITING)
1d804d07 8323 return true;
644d711a
NHE
8324 break;
8325 }
8326 break;
8327 case 3: /* lmsw */
8328 /*
8329 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8330 * cr0. Other attempted changes are ignored, with no exit.
8331 */
e1d39b17 8332 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
644d711a
NHE
8333 if (vmcs12->cr0_guest_host_mask & 0xe &
8334 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8335 return true;
644d711a
NHE
8336 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8337 !(vmcs12->cr0_read_shadow & 0x1) &&
8338 (val & 0x1))
1d804d07 8339 return true;
644d711a
NHE
8340 break;
8341 }
1d804d07 8342 return false;
644d711a
NHE
8343}
8344
8345/*
8346 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8347 * should handle it ourselves in L0 (and then continue L2). Only call this
8348 * when in is_guest_mode (L2).
8349 */
7313c698 8350static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
644d711a 8351{
644d711a
NHE
8352 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8353 struct vcpu_vmx *vmx = to_vmx(vcpu);
8354 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8355
4f350c6d
JM
8356 if (vmx->nested.nested_run_pending)
8357 return false;
8358
8359 if (unlikely(vmx->fail)) {
8360 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8361 vmcs_read32(VM_INSTRUCTION_ERROR));
8362 return true;
8363 }
542060ea 8364
c9f04407
DM
8365 /*
8366 * The host physical addresses of some pages of guest memory
8367 * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8368 * may write to these pages via their host physical address while
8369 * L2 is running, bypassing any address-translation-based dirty
8370 * tracking (e.g. EPT write protection).
8371 *
8372 * Mark them dirty on every exit from L2 to prevent them from
8373 * getting out of sync with dirty tracking.
8374 */
8375 nested_mark_vmcs12_pages_dirty(vcpu);
8376
4f350c6d
JM
8377 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8378 vmcs_readl(EXIT_QUALIFICATION),
8379 vmx->idt_vectoring_info,
8380 intr_info,
8381 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8382 KVM_ISA_VMX);
644d711a
NHE
8383
8384 switch (exit_reason) {
8385 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8386 if (is_nmi(intr_info))
1d804d07 8387 return false;
644d711a 8388 else if (is_page_fault(intr_info))
52a5c155 8389 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
e504c909 8390 else if (is_no_device(intr_info) &&
ccf9844e 8391 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8392 return false;
6f05485d
JK
8393 else if (is_debug(intr_info) &&
8394 vcpu->guest_debug &
8395 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8396 return false;
8397 else if (is_breakpoint(intr_info) &&
8398 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8399 return false;
644d711a
NHE
8400 return vmcs12->exception_bitmap &
8401 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8402 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8403 return false;
644d711a 8404 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8405 return true;
644d711a 8406 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8407 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8408 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8409 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8410 case EXIT_REASON_TASK_SWITCH:
1d804d07 8411 return true;
644d711a 8412 case EXIT_REASON_CPUID:
1d804d07 8413 return true;
644d711a
NHE
8414 case EXIT_REASON_HLT:
8415 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8416 case EXIT_REASON_INVD:
1d804d07 8417 return true;
644d711a
NHE
8418 case EXIT_REASON_INVLPG:
8419 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8420 case EXIT_REASON_RDPMC:
8421 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
a5f46457
PB
8422 case EXIT_REASON_RDRAND:
8423 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8424 case EXIT_REASON_RDSEED:
8425 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
b3a2a907 8426 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8427 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8428 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8429 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8430 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8431 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8432 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8433 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8434 /*
8435 * VMX instructions trap unconditionally. This allows L1 to
8436 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8437 */
1d804d07 8438 return true;
644d711a
NHE
8439 case EXIT_REASON_CR_ACCESS:
8440 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8441 case EXIT_REASON_DR_ACCESS:
8442 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8443 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8444 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8445 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8446 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8447 case EXIT_REASON_MSR_READ:
8448 case EXIT_REASON_MSR_WRITE:
8449 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8450 case EXIT_REASON_INVALID_STATE:
1d804d07 8451 return true;
644d711a
NHE
8452 case EXIT_REASON_MWAIT_INSTRUCTION:
8453 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8454 case EXIT_REASON_MONITOR_TRAP_FLAG:
8455 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8456 case EXIT_REASON_MONITOR_INSTRUCTION:
8457 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8458 case EXIT_REASON_PAUSE_INSTRUCTION:
8459 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8460 nested_cpu_has2(vmcs12,
8461 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8462 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8463 return false;
644d711a 8464 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8465 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8466 case EXIT_REASON_APIC_ACCESS:
8467 return nested_cpu_has2(vmcs12,
8468 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8469 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8470 case EXIT_REASON_EOI_INDUCED:
8471 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8472 return true;
644d711a 8473 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8474 /*
8475 * L0 always deals with the EPT violation. If nested EPT is
8476 * used, and the nested mmu code discovers that the address is
8477 * missing in the guest EPT table (EPT12), the EPT violation
8478 * will be injected with nested_ept_inject_page_fault()
8479 */
1d804d07 8480 return false;
644d711a 8481 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8482 /*
8483 * L2 never uses directly L1's EPT, but rather L0's own EPT
8484 * table (shadow on EPT) or a merged EPT table that L0 built
8485 * (EPT on EPT). So any problems with the structure of the
8486 * table is L0's fault.
8487 */
1d804d07 8488 return false;
90a2db6d
PB
8489 case EXIT_REASON_INVPCID:
8490 return
8491 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8492 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
644d711a
NHE
8493 case EXIT_REASON_WBINVD:
8494 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8495 case EXIT_REASON_XSETBV:
1d804d07 8496 return true;
81dc01f7
WL
8497 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8498 /*
8499 * This should never happen, since it is not possible to
8500 * set XSS to a non-zero value---neither in L1 nor in L2.
8501 * If if it were, XSS would have to be checked against
8502 * the XSS exit bitmap in vmcs12.
8503 */
8504 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8505 case EXIT_REASON_PREEMPTION_TIMER:
8506 return false;
ab007cc9 8507 case EXIT_REASON_PML_FULL:
03efce6f 8508 /* We emulate PML support to L1. */
ab007cc9 8509 return false;
2a499e49
BD
8510 case EXIT_REASON_VMFUNC:
8511 /* VM functions are emulated through L2->L0 vmexits. */
8512 return false;
644d711a 8513 default:
1d804d07 8514 return true;
644d711a
NHE
8515 }
8516}
8517
7313c698
PB
8518static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8519{
8520 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8521
8522 /*
8523 * At this point, the exit interruption info in exit_intr_info
8524 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8525 * we need to query the in-kernel LAPIC.
8526 */
8527 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8528 if ((exit_intr_info &
8529 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8530 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8531 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8532 vmcs12->vm_exit_intr_error_code =
8533 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8534 }
8535
8536 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8537 vmcs_readl(EXIT_QUALIFICATION));
8538 return 1;
8539}
8540
586f9607
AK
8541static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8542{
8543 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8544 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8545}
8546
a3eaa864 8547static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8548{
a3eaa864
KH
8549 if (vmx->pml_pg) {
8550 __free_page(vmx->pml_pg);
8551 vmx->pml_pg = NULL;
8552 }
843e4330
KH
8553}
8554
54bf36aa 8555static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8556{
54bf36aa 8557 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8558 u64 *pml_buf;
8559 u16 pml_idx;
8560
8561 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8562
8563 /* Do nothing if PML buffer is empty */
8564 if (pml_idx == (PML_ENTITY_NUM - 1))
8565 return;
8566
8567 /* PML index always points to next available PML buffer entity */
8568 if (pml_idx >= PML_ENTITY_NUM)
8569 pml_idx = 0;
8570 else
8571 pml_idx++;
8572
8573 pml_buf = page_address(vmx->pml_pg);
8574 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8575 u64 gpa;
8576
8577 gpa = pml_buf[pml_idx];
8578 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8579 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8580 }
8581
8582 /* reset PML index */
8583 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8584}
8585
8586/*
8587 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8588 * Called before reporting dirty_bitmap to userspace.
8589 */
8590static void kvm_flush_pml_buffers(struct kvm *kvm)
8591{
8592 int i;
8593 struct kvm_vcpu *vcpu;
8594 /*
8595 * We only need to kick vcpu out of guest mode here, as PML buffer
8596 * is flushed at beginning of all VMEXITs, and it's obvious that only
8597 * vcpus running in guest are possible to have unflushed GPAs in PML
8598 * buffer.
8599 */
8600 kvm_for_each_vcpu(i, vcpu, kvm)
8601 kvm_vcpu_kick(vcpu);
8602}
8603
4eb64dce
PB
8604static void vmx_dump_sel(char *name, uint32_t sel)
8605{
8606 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
96794e4e 8607 name, vmcs_read16(sel),
4eb64dce
PB
8608 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8609 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8610 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8611}
8612
8613static void vmx_dump_dtsel(char *name, uint32_t limit)
8614{
8615 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8616 name, vmcs_read32(limit),
8617 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8618}
8619
8620static void dump_vmcs(void)
8621{
8622 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8623 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8624 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8625 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8626 u32 secondary_exec_control = 0;
8627 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8628 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8629 int i, n;
8630
8631 if (cpu_has_secondary_exec_ctrls())
8632 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8633
8634 pr_err("*** Guest State ***\n");
8635 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8636 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8637 vmcs_readl(CR0_GUEST_HOST_MASK));
8638 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8639 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8640 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8641 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8642 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8643 {
845c5b40
PB
8644 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8645 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8646 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8647 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8648 }
8649 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8650 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8651 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8652 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8653 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8654 vmcs_readl(GUEST_SYSENTER_ESP),
8655 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8656 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8657 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8658 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8659 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8660 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8661 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8662 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8663 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8664 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8665 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8666 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8667 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8668 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8669 efer, vmcs_read64(GUEST_IA32_PAT));
8670 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8671 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8672 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8673 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8674 pr_err("PerfGlobCtl = 0x%016llx\n",
8675 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8676 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8677 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8678 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8679 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8680 vmcs_read32(GUEST_ACTIVITY_STATE));
8681 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8682 pr_err("InterruptStatus = %04x\n",
8683 vmcs_read16(GUEST_INTR_STATUS));
8684
8685 pr_err("*** Host State ***\n");
8686 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8687 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8688 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8689 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8690 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8691 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8692 vmcs_read16(HOST_TR_SELECTOR));
8693 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8694 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8695 vmcs_readl(HOST_TR_BASE));
8696 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8697 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8698 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8699 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8700 vmcs_readl(HOST_CR4));
8701 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8702 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8703 vmcs_read32(HOST_IA32_SYSENTER_CS),
8704 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8705 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8706 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8707 vmcs_read64(HOST_IA32_EFER),
8708 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8709 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8710 pr_err("PerfGlobCtl = 0x%016llx\n",
8711 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8712
8713 pr_err("*** Control State ***\n");
8714 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8715 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8716 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8717 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8718 vmcs_read32(EXCEPTION_BITMAP),
8719 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8720 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8721 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8722 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8723 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8724 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8725 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8726 vmcs_read32(VM_EXIT_INTR_INFO),
8727 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8728 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8729 pr_err(" reason=%08x qualification=%016lx\n",
8730 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8731 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8732 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8733 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8734 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8735 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8736 pr_err("TSC Multiplier = 0x%016llx\n",
8737 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8738 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8739 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8740 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8741 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8742 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8743 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8744 n = vmcs_read32(CR3_TARGET_COUNT);
8745 for (i = 0; i + 1 < n; i += 4)
8746 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8747 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8748 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8749 if (i < n)
8750 pr_err("CR3 target%u=%016lx\n",
8751 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8752 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8753 pr_err("PLE Gap=%08x Window=%08x\n",
8754 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8755 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8756 pr_err("Virtual processor ID = 0x%04x\n",
8757 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8758}
8759
6aa8b732
AK
8760/*
8761 * The guest has exited. See if we can fix it or if we need userspace
8762 * assistance.
8763 */
851ba692 8764static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8765{
29bd8a78 8766 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8767 u32 exit_reason = vmx->exit_reason;
1155f76a 8768 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8769
8b89fe1f
PB
8770 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8771
843e4330
KH
8772 /*
8773 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8774 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8775 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8776 * mode as if vcpus is in root mode, the PML buffer must has been
8777 * flushed already.
8778 */
8779 if (enable_pml)
54bf36aa 8780 vmx_flush_pml_buffer(vcpu);
843e4330 8781
80ced186 8782 /* If guest state is invalid, start emulating */
14168786 8783 if (vmx->emulation_required)
80ced186 8784 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8785
7313c698
PB
8786 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8787 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
644d711a 8788
5120702e 8789 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8790 dump_vmcs();
5120702e
MG
8791 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8792 vcpu->run->fail_entry.hardware_entry_failure_reason
8793 = exit_reason;
8794 return 0;
8795 }
8796
29bd8a78 8797 if (unlikely(vmx->fail)) {
851ba692
AK
8798 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8799 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8800 = vmcs_read32(VM_INSTRUCTION_ERROR);
8801 return 0;
8802 }
6aa8b732 8803
b9bf6882
XG
8804 /*
8805 * Note:
8806 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8807 * delivery event since it indicates guest is accessing MMIO.
8808 * The vm-exit can be triggered again after return to guest that
8809 * will cause infinite loop.
8810 */
d77c26fc 8811 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8812 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8813 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8814 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8815 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8816 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8817 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
70bcd708 8818 vcpu->run->internal.ndata = 3;
b9bf6882
XG
8819 vcpu->run->internal.data[0] = vectoring_info;
8820 vcpu->run->internal.data[1] = exit_reason;
70bcd708
PB
8821 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8822 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8823 vcpu->run->internal.ndata++;
8824 vcpu->run->internal.data[3] =
8825 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8826 }
b9bf6882
XG
8827 return 0;
8828 }
3b86cd99 8829
6aa8b732
AK
8830 if (exit_reason < kvm_vmx_max_exit_handlers
8831 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8832 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8833 else {
6c6c5e03
RK
8834 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8835 exit_reason);
2bc19dc3
MT
8836 kvm_queue_exception(vcpu, UD_VECTOR);
8837 return 1;
6aa8b732 8838 }
6aa8b732
AK
8839}
8840
95ba8273 8841static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8842{
a7c0b07d
WL
8843 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8844
8845 if (is_guest_mode(vcpu) &&
8846 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8847 return;
8848
95ba8273 8849 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8850 vmcs_write32(TPR_THRESHOLD, 0);
8851 return;
8852 }
8853
95ba8273 8854 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8855}
8856
8d14695f
YZ
8857static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8858{
8859 u32 sec_exec_control;
8860
dccbfcf5
RK
8861 /* Postpone execution until vmcs01 is the current VMCS. */
8862 if (is_guest_mode(vcpu)) {
8863 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8864 return;
8865 }
8866
f6e90f9e 8867 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8868 return;
8869
35754c98 8870 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8871 return;
8872
8873 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8874
8875 if (set) {
8876 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8877 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8878 } else {
8879 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8880 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
fb6c8198 8881 vmx_flush_tlb_ept_only(vcpu);
8d14695f
YZ
8882 }
8883 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8884
8885 vmx_set_msr_bitmap(vcpu);
8886}
8887
38b99173
TC
8888static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8889{
8890 struct vcpu_vmx *vmx = to_vmx(vcpu);
8891
8892 /*
8893 * Currently we do not handle the nested case where L2 has an
8894 * APIC access page of its own; that page is still pinned.
8895 * Hence, we skip the case where the VCPU is in guest mode _and_
8896 * L1 prepared an APIC access page for L2.
8897 *
8898 * For the case where L1 and L2 share the same APIC access page
8899 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8900 * in the vmcs12), this function will only update either the vmcs01
8901 * or the vmcs02. If the former, the vmcs02 will be updated by
8902 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8903 * the next L2->L1 exit.
8904 */
8905 if (!is_guest_mode(vcpu) ||
4f2777bc 8906 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
fb6c8198 8907 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
38b99173 8908 vmcs_write64(APIC_ACCESS_ADDR, hpa);
fb6c8198
JM
8909 vmx_flush_tlb_ept_only(vcpu);
8910 }
38b99173
TC
8911}
8912
67c9dddc 8913static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8914{
8915 u16 status;
8916 u8 old;
8917
67c9dddc
PB
8918 if (max_isr == -1)
8919 max_isr = 0;
c7c9c56c
YZ
8920
8921 status = vmcs_read16(GUEST_INTR_STATUS);
8922 old = status >> 8;
67c9dddc 8923 if (max_isr != old) {
c7c9c56c 8924 status &= 0xff;
67c9dddc 8925 status |= max_isr << 8;
c7c9c56c
YZ
8926 vmcs_write16(GUEST_INTR_STATUS, status);
8927 }
8928}
8929
8930static void vmx_set_rvi(int vector)
8931{
8932 u16 status;
8933 u8 old;
8934
4114c27d
WW
8935 if (vector == -1)
8936 vector = 0;
8937
c7c9c56c
YZ
8938 status = vmcs_read16(GUEST_INTR_STATUS);
8939 old = (u8)status & 0xff;
8940 if ((u8)vector != old) {
8941 status &= ~0xff;
8942 status |= (u8)vector;
8943 vmcs_write16(GUEST_INTR_STATUS, status);
8944 }
8945}
8946
8947static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8948{
4114c27d
WW
8949 if (!is_guest_mode(vcpu)) {
8950 vmx_set_rvi(max_irr);
8951 return;
8952 }
8953
c7c9c56c
YZ
8954 if (max_irr == -1)
8955 return;
8956
963fee16 8957 /*
4114c27d
WW
8958 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8959 * handles it.
963fee16 8960 */
4114c27d 8961 if (nested_exit_on_intr(vcpu))
963fee16
WL
8962 return;
8963
963fee16 8964 /*
4114c27d 8965 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8966 * is run without virtual interrupt delivery.
8967 */
8968 if (!kvm_event_needs_reinjection(vcpu) &&
8969 vmx_interrupt_allowed(vcpu)) {
8970 kvm_queue_interrupt(vcpu, max_irr, false);
8971 vmx_inject_irq(vcpu);
8972 }
c7c9c56c
YZ
8973}
8974
76dfafd5 8975static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
8976{
8977 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 8978 int max_irr;
810e6def 8979
76dfafd5
PB
8980 WARN_ON(!vcpu->arch.apicv_active);
8981 if (pi_test_on(&vmx->pi_desc)) {
8982 pi_clear_on(&vmx->pi_desc);
8983 /*
8984 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8985 * But on x86 this is just a compiler barrier anyway.
8986 */
8987 smp_mb__after_atomic();
8988 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8989 } else {
8990 max_irr = kvm_lapic_find_highest_irr(vcpu);
8991 }
8992 vmx_hwapic_irr_update(vcpu, max_irr);
8993 return max_irr;
810e6def
PB
8994}
8995
6308630b 8996static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8997{
d62caabb 8998 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8999 return;
9000
c7c9c56c
YZ
9001 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9002 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9003 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9004 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9005}
9006
967235d3
PB
9007static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9008{
9009 struct vcpu_vmx *vmx = to_vmx(vcpu);
9010
9011 pi_clear_on(&vmx->pi_desc);
9012 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9013}
9014
51aa01d1 9015static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 9016{
48ae0fb4
JM
9017 u32 exit_intr_info = 0;
9018 u16 basic_exit_reason = (u16)vmx->exit_reason;
00eba012 9019
48ae0fb4
JM
9020 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9021 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
00eba012
AK
9022 return;
9023
48ae0fb4
JM
9024 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9025 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9026 vmx->exit_intr_info = exit_intr_info;
a0861c02 9027
1261bfa3
WL
9028 /* if exit due to PF check for async PF */
9029 if (is_page_fault(exit_intr_info))
9030 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9031
a0861c02 9032 /* Handle machine checks before interrupts are enabled */
48ae0fb4
JM
9033 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9034 is_machine_check(exit_intr_info))
a0861c02
AK
9035 kvm_machine_check();
9036
20f65983 9037 /* We need to handle NMIs before interrupts are enabled */
ef85b673 9038 if (is_nmi(exit_intr_info)) {
ff9d07a0 9039 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 9040 asm("int $2");
ff9d07a0
ZY
9041 kvm_after_handle_nmi(&vmx->vcpu);
9042 }
51aa01d1 9043}
20f65983 9044
a547c6db
YZ
9045static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9046{
9047 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9048
a547c6db
YZ
9049 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9050 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9051 unsigned int vector;
9052 unsigned long entry;
9053 gate_desc *desc;
9054 struct vcpu_vmx *vmx = to_vmx(vcpu);
9055#ifdef CONFIG_X86_64
9056 unsigned long tmp;
9057#endif
9058
9059 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9060 desc = (gate_desc *)vmx->host_idt_base + vector;
64b163fa 9061 entry = gate_offset(desc);
a547c6db
YZ
9062 asm volatile(
9063#ifdef CONFIG_X86_64
9064 "mov %%" _ASM_SP ", %[sp]\n\t"
9065 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9066 "push $%c[ss]\n\t"
9067 "push %[sp]\n\t"
9068#endif
9069 "pushf\n\t"
a547c6db
YZ
9070 __ASM_SIZE(push) " $%c[cs]\n\t"
9071 "call *%[entry]\n\t"
9072 :
9073#ifdef CONFIG_X86_64
3f62de5f 9074 [sp]"=&r"(tmp),
a547c6db 9075#endif
f5caf621 9076 ASM_CALL_CONSTRAINT
a547c6db
YZ
9077 :
9078 [entry]"r"(entry),
9079 [ss]"i"(__KERNEL_DS),
9080 [cs]"i"(__KERNEL_CS)
9081 );
f2485b3e 9082 }
a547c6db 9083}
c207aee4 9084STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
a547c6db 9085
6d396b55
PB
9086static bool vmx_has_high_real_mode_segbase(void)
9087{
9088 return enable_unrestricted_guest || emulate_invalid_guest_state;
9089}
9090
da8999d3
LJ
9091static bool vmx_mpx_supported(void)
9092{
9093 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9094 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9095}
9096
55412b2e
WL
9097static bool vmx_xsaves_supported(void)
9098{
9099 return vmcs_config.cpu_based_2nd_exec_ctrl &
9100 SECONDARY_EXEC_XSAVES;
9101}
9102
51aa01d1
AK
9103static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9104{
c5ca8e57 9105 u32 exit_intr_info;
51aa01d1
AK
9106 bool unblock_nmi;
9107 u8 vector;
9108 bool idtv_info_valid;
9109
9110 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 9111
4c4a6f79 9112 if (vmx->loaded_vmcs->nmi_known_unmasked)
2c82878b
PB
9113 return;
9114 /*
9115 * Can't use vmx->exit_intr_info since we're not sure what
9116 * the exit reason is.
9117 */
9118 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9119 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9120 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9121 /*
9122 * SDM 3: 27.7.1.2 (September 2008)
9123 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9124 * a guest IRET fault.
9125 * SDM 3: 23.2.2 (September 2008)
9126 * Bit 12 is undefined in any of the following cases:
9127 * If the VM exit sets the valid bit in the IDT-vectoring
9128 * information field.
9129 * If the VM exit is due to a double fault.
9130 */
9131 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9132 vector != DF_VECTOR && !idtv_info_valid)
9133 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9134 GUEST_INTR_STATE_NMI);
9135 else
4c4a6f79 9136 vmx->loaded_vmcs->nmi_known_unmasked =
2c82878b
PB
9137 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9138 & GUEST_INTR_STATE_NMI);
51aa01d1
AK
9139}
9140
3ab66e8a 9141static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
9142 u32 idt_vectoring_info,
9143 int instr_len_field,
9144 int error_code_field)
51aa01d1 9145{
51aa01d1
AK
9146 u8 vector;
9147 int type;
9148 bool idtv_info_valid;
9149
9150 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 9151
3ab66e8a
JK
9152 vcpu->arch.nmi_injected = false;
9153 kvm_clear_exception_queue(vcpu);
9154 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
9155
9156 if (!idtv_info_valid)
9157 return;
9158
3ab66e8a 9159 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 9160
668f612f
AK
9161 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9162 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 9163
64a7ec06 9164 switch (type) {
37b96e98 9165 case INTR_TYPE_NMI_INTR:
3ab66e8a 9166 vcpu->arch.nmi_injected = true;
668f612f 9167 /*
7b4a25cb 9168 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
9169 * Clear bit "block by NMI" before VM entry if a NMI
9170 * delivery faulted.
668f612f 9171 */
3ab66e8a 9172 vmx_set_nmi_mask(vcpu, false);
37b96e98 9173 break;
37b96e98 9174 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 9175 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
9176 /* fall through */
9177 case INTR_TYPE_HARD_EXCEPTION:
35920a35 9178 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 9179 u32 err = vmcs_read32(error_code_field);
851eb667 9180 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 9181 } else
851eb667 9182 kvm_requeue_exception(vcpu, vector);
37b96e98 9183 break;
66fd3f7f 9184 case INTR_TYPE_SOFT_INTR:
3ab66e8a 9185 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 9186 /* fall through */
37b96e98 9187 case INTR_TYPE_EXT_INTR:
3ab66e8a 9188 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
9189 break;
9190 default:
9191 break;
f7d9238f 9192 }
cf393f75
AK
9193}
9194
83422e17
AK
9195static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9196{
3ab66e8a 9197 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
9198 VM_EXIT_INSTRUCTION_LEN,
9199 IDT_VECTORING_ERROR_CODE);
9200}
9201
b463a6f7
AK
9202static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9203{
3ab66e8a 9204 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
9205 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9206 VM_ENTRY_INSTRUCTION_LEN,
9207 VM_ENTRY_EXCEPTION_ERROR_CODE);
9208
9209 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9210}
9211
d7cd9796
GN
9212static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9213{
9214 int i, nr_msrs;
9215 struct perf_guest_switch_msr *msrs;
9216
9217 msrs = perf_guest_get_msrs(&nr_msrs);
9218
9219 if (!msrs)
9220 return;
9221
9222 for (i = 0; i < nr_msrs; i++)
9223 if (msrs[i].host == msrs[i].guest)
9224 clear_atomic_switch_msr(vmx, msrs[i].msr);
9225 else
9226 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9227 msrs[i].host);
9228}
9229
33365e7a 9230static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
9231{
9232 struct vcpu_vmx *vmx = to_vmx(vcpu);
9233 u64 tscl;
9234 u32 delta_tsc;
9235
9236 if (vmx->hv_deadline_tsc == -1)
9237 return;
9238
9239 tscl = rdtsc();
9240 if (vmx->hv_deadline_tsc > tscl)
9241 /* sure to be 32 bit only because checked on set_hv_timer */
9242 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9243 cpu_preemption_timer_multi);
9244 else
9245 delta_tsc = 0;
9246
9247 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9248}
9249
a3b5ba49 9250static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 9251{
a2fa3e9f 9252 struct vcpu_vmx *vmx = to_vmx(vcpu);
d6e41f11 9253 unsigned long debugctlmsr, cr3, cr4;
104f226b 9254
104f226b
AK
9255 /* Don't enter VMX if guest state is invalid, let the exit handler
9256 start emulation until we arrive back to a valid state */
14168786 9257 if (vmx->emulation_required)
104f226b
AK
9258 return;
9259
a7653ecd
RK
9260 if (vmx->ple_window_dirty) {
9261 vmx->ple_window_dirty = false;
9262 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9263 }
9264
012f83cb
AG
9265 if (vmx->nested.sync_shadow_vmcs) {
9266 copy_vmcs12_to_shadow(vmx);
9267 vmx->nested.sync_shadow_vmcs = false;
9268 }
9269
104f226b
AK
9270 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9271 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9272 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9273 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9274
d6e41f11 9275 cr3 = __get_current_cr3_fast();
44889942 9276 if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
d6e41f11 9277 vmcs_writel(HOST_CR3, cr3);
44889942 9278 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
d6e41f11
AL
9279 }
9280
1e02ce4c 9281 cr4 = cr4_read_shadow();
44889942 9282 if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
d974baa3 9283 vmcs_writel(HOST_CR4, cr4);
44889942 9284 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3
AL
9285 }
9286
104f226b
AK
9287 /* When single-stepping over STI and MOV SS, we must clear the
9288 * corresponding interruptibility bits in the guest state. Otherwise
9289 * vmentry fails as it then expects bit 14 (BS) in pending debug
9290 * exceptions being set, but that's not correct for the guest debugging
9291 * case. */
9292 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9293 vmx_set_interrupt_shadow(vcpu, 0);
9294
b9dd21e1
PB
9295 if (static_cpu_has(X86_FEATURE_PKU) &&
9296 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9297 vcpu->arch.pkru != vmx->host_pkru)
9298 __write_pkru(vcpu->arch.pkru);
1be0e61c 9299
d7cd9796 9300 atomic_switch_perf_msrs(vmx);
2a7921b7 9301 debugctlmsr = get_debugctlmsr();
d7cd9796 9302
64672c95
YJ
9303 vmx_arm_hv_timer(vcpu);
9304
d462b819 9305 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 9306 asm(
6aa8b732 9307 /* Store host registers */
b188c81f
AK
9308 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9309 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9310 "push %%" _ASM_CX " \n\t"
9311 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 9312 "je 1f \n\t"
b188c81f 9313 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 9314 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 9315 "1: \n\t"
d3edefc0 9316 /* Reload cr2 if changed */
b188c81f
AK
9317 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9318 "mov %%cr2, %%" _ASM_DX " \n\t"
9319 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 9320 "je 2f \n\t"
b188c81f 9321 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 9322 "2: \n\t"
6aa8b732 9323 /* Check if vmlaunch of vmresume is needed */
e08aa78a 9324 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 9325 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
9326 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9327 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9328 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9329 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9330 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9331 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 9332#ifdef CONFIG_X86_64
e08aa78a
AK
9333 "mov %c[r8](%0), %%r8 \n\t"
9334 "mov %c[r9](%0), %%r9 \n\t"
9335 "mov %c[r10](%0), %%r10 \n\t"
9336 "mov %c[r11](%0), %%r11 \n\t"
9337 "mov %c[r12](%0), %%r12 \n\t"
9338 "mov %c[r13](%0), %%r13 \n\t"
9339 "mov %c[r14](%0), %%r14 \n\t"
9340 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 9341#endif
b188c81f 9342 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 9343
6aa8b732 9344 /* Enter guest mode */
83287ea4 9345 "jne 1f \n\t"
4ecac3fd 9346 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
9347 "jmp 2f \n\t"
9348 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9349 "2: "
6aa8b732 9350 /* Save guest registers, load host registers, keep flags */
b188c81f 9351 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 9352 "pop %0 \n\t"
b188c81f
AK
9353 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9354 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9355 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9356 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9357 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9358 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9359 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 9360#ifdef CONFIG_X86_64
e08aa78a
AK
9361 "mov %%r8, %c[r8](%0) \n\t"
9362 "mov %%r9, %c[r9](%0) \n\t"
9363 "mov %%r10, %c[r10](%0) \n\t"
9364 "mov %%r11, %c[r11](%0) \n\t"
9365 "mov %%r12, %c[r12](%0) \n\t"
9366 "mov %%r13, %c[r13](%0) \n\t"
9367 "mov %%r14, %c[r14](%0) \n\t"
9368 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 9369#endif
b188c81f
AK
9370 "mov %%cr2, %%" _ASM_AX " \n\t"
9371 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 9372
b188c81f 9373 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 9374 "setbe %c[fail](%0) \n\t"
83287ea4
AK
9375 ".pushsection .rodata \n\t"
9376 ".global vmx_return \n\t"
9377 "vmx_return: " _ASM_PTR " 2b \n\t"
9378 ".popsection"
e08aa78a 9379 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 9380 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 9381 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 9382 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
9383 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9384 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9385 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9386 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9387 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9388 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9389 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 9390#ifdef CONFIG_X86_64
ad312c7c
ZX
9391 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9392 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9393 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9394 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9395 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9396 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9397 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9398 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9399#endif
40712fae
AK
9400 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9401 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9402 : "cc", "memory"
9403#ifdef CONFIG_X86_64
b188c81f 9404 , "rax", "rbx", "rdi", "rsi"
c2036300 9405 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
9406#else
9407 , "eax", "ebx", "edi", "esi"
c2036300
LV
9408#endif
9409 );
6aa8b732 9410
2a7921b7
GN
9411 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9412 if (debugctlmsr)
9413 update_debugctlmsr(debugctlmsr);
9414
aa67f609
AK
9415#ifndef CONFIG_X86_64
9416 /*
9417 * The sysexit path does not restore ds/es, so we must set them to
9418 * a reasonable value ourselves.
9419 *
9420 * We can't defer this to vmx_load_host_state() since that function
9421 * may be executed in interrupt context, which saves and restore segments
9422 * around it, nullifying its effect.
9423 */
9424 loadsegment(ds, __USER_DS);
9425 loadsegment(es, __USER_DS);
9426#endif
9427
6de4f3ad 9428 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9429 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9430 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9431 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9432 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9433 vcpu->arch.regs_dirty = 0;
9434
1be0e61c
XG
9435 /*
9436 * eager fpu is enabled if PKEY is supported and CR4 is switched
9437 * back on host, so it is safe to read guest PKRU from current
9438 * XSAVE.
9439 */
b9dd21e1
PB
9440 if (static_cpu_has(X86_FEATURE_PKU) &&
9441 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9442 vcpu->arch.pkru = __read_pkru();
9443 if (vcpu->arch.pkru != vmx->host_pkru)
1be0e61c 9444 __write_pkru(vmx->host_pkru);
1be0e61c
XG
9445 }
9446
e0b890d3
GN
9447 /*
9448 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9449 * we did not inject a still-pending event to L1 now because of
9450 * nested_run_pending, we need to re-enable this bit.
9451 */
9452 if (vmx->nested.nested_run_pending)
9453 kvm_make_request(KVM_REQ_EVENT, vcpu);
9454
9455 vmx->nested.nested_run_pending = 0;
b060ca3b
JM
9456 vmx->idt_vectoring_info = 0;
9457
9458 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9459 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9460 return;
9461
9462 vmx->loaded_vmcs->launched = 1;
9463 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
e0b890d3 9464
51aa01d1
AK
9465 vmx_complete_atomic_exit(vmx);
9466 vmx_recover_nmi_blocking(vmx);
cf393f75 9467 vmx_complete_interrupts(vmx);
6aa8b732 9468}
c207aee4 9469STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
6aa8b732 9470
1279a6b1 9471static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
4fa7734c
PB
9472{
9473 struct vcpu_vmx *vmx = to_vmx(vcpu);
9474 int cpu;
9475
1279a6b1 9476 if (vmx->loaded_vmcs == vmcs)
4fa7734c
PB
9477 return;
9478
9479 cpu = get_cpu();
1279a6b1 9480 vmx->loaded_vmcs = vmcs;
4fa7734c
PB
9481 vmx_vcpu_put(vcpu);
9482 vmx_vcpu_load(vcpu, cpu);
9483 vcpu->cpu = cpu;
9484 put_cpu();
9485}
9486
2f1fe811
JM
9487/*
9488 * Ensure that the current vmcs of the logical processor is the
9489 * vmcs01 of the vcpu before calling free_nested().
9490 */
9491static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9492{
9493 struct vcpu_vmx *vmx = to_vmx(vcpu);
9494 int r;
9495
9496 r = vcpu_load(vcpu);
9497 BUG_ON(r);
1279a6b1 9498 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2f1fe811
JM
9499 free_nested(vmx);
9500 vcpu_put(vcpu);
9501}
9502
6aa8b732
AK
9503static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9504{
fb3f0f51
RR
9505 struct vcpu_vmx *vmx = to_vmx(vcpu);
9506
843e4330 9507 if (enable_pml)
a3eaa864 9508 vmx_destroy_pml_buffer(vmx);
991e7a0e 9509 free_vpid(vmx->vpid);
4fa7734c 9510 leave_guest_mode(vcpu);
2f1fe811 9511 vmx_free_vcpu_nested(vcpu);
4fa7734c 9512 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9513 kfree(vmx->guest_msrs);
9514 kvm_vcpu_uninit(vcpu);
a4770347 9515 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9516}
9517
fb3f0f51 9518static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9519{
fb3f0f51 9520 int err;
c16f862d 9521 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 9522 int cpu;
6aa8b732 9523
a2fa3e9f 9524 if (!vmx)
fb3f0f51
RR
9525 return ERR_PTR(-ENOMEM);
9526
991e7a0e 9527 vmx->vpid = allocate_vpid();
2384d2b3 9528
fb3f0f51
RR
9529 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9530 if (err)
9531 goto free_vcpu;
965b58a5 9532
4e59516a
PF
9533 err = -ENOMEM;
9534
9535 /*
9536 * If PML is turned on, failure on enabling PML just results in failure
9537 * of creating the vcpu, therefore we can simplify PML logic (by
9538 * avoiding dealing with cases, such as enabling PML partially on vcpus
9539 * for the guest, etc.
9540 */
9541 if (enable_pml) {
9542 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9543 if (!vmx->pml_pg)
9544 goto uninit_vcpu;
9545 }
9546
a2fa3e9f 9547 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9548 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9549 > PAGE_SIZE);
0123be42 9550
4e59516a
PF
9551 if (!vmx->guest_msrs)
9552 goto free_pml;
965b58a5 9553
d462b819
NHE
9554 vmx->loaded_vmcs = &vmx->vmcs01;
9555 vmx->loaded_vmcs->vmcs = alloc_vmcs();
355f4fb1 9556 vmx->loaded_vmcs->shadow_vmcs = NULL;
d462b819 9557 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 9558 goto free_msrs;
d462b819 9559 loaded_vmcs_init(vmx->loaded_vmcs);
a2fa3e9f 9560
15ad7146
AK
9561 cpu = get_cpu();
9562 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9563 vmx->vcpu.cpu = cpu;
12d79917 9564 vmx_vcpu_setup(vmx);
fb3f0f51 9565 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9566 put_cpu();
35754c98 9567 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9568 err = alloc_apic_access_page(kvm);
9569 if (err)
5e4a0b3c 9570 goto free_vmcs;
a63cb560 9571 }
fb3f0f51 9572
b927a3ce
SY
9573 if (enable_ept) {
9574 if (!kvm->arch.ept_identity_map_addr)
9575 kvm->arch.ept_identity_map_addr =
9576 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
9577 err = init_rmode_identity_map(kvm);
9578 if (err)
93ea5388 9579 goto free_vmcs;
b927a3ce 9580 }
b7ebfb05 9581
5c614b35 9582 if (nested) {
b9c237bb 9583 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9584 vmx->nested.vpid02 = allocate_vpid();
9585 }
b9c237bb 9586
705699a1 9587 vmx->nested.posted_intr_nv = -1;
a9d30f33 9588 vmx->nested.current_vmptr = -1ull;
a9d30f33 9589
37e4c997
HZ
9590 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9591
31afb2ea
PB
9592 /*
9593 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9594 * or POSTED_INTR_WAKEUP_VECTOR.
9595 */
9596 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
9597 vmx->pi_desc.sn = 1;
9598
fb3f0f51
RR
9599 return &vmx->vcpu;
9600
9601free_vmcs:
5c614b35 9602 free_vpid(vmx->nested.vpid02);
5f3fbc34 9603 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9604free_msrs:
fb3f0f51 9605 kfree(vmx->guest_msrs);
4e59516a
PF
9606free_pml:
9607 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9608uninit_vcpu:
9609 kvm_vcpu_uninit(&vmx->vcpu);
9610free_vcpu:
991e7a0e 9611 free_vpid(vmx->vpid);
a4770347 9612 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9613 return ERR_PTR(err);
6aa8b732
AK
9614}
9615
002c7f7c
YS
9616static void __init vmx_check_processor_compat(void *rtn)
9617{
9618 struct vmcs_config vmcs_conf;
9619
9620 *(int *)rtn = 0;
9621 if (setup_vmcs_config(&vmcs_conf) < 0)
9622 *(int *)rtn = -EIO;
9623 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9624 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9625 smp_processor_id());
9626 *(int *)rtn = -EIO;
9627 }
9628}
9629
4b12f0de 9630static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9631{
b18d5431
XG
9632 u8 cache;
9633 u64 ipat = 0;
4b12f0de 9634
522c68c4 9635 /* For VT-d and EPT combination
606decd6 9636 * 1. MMIO: always map as UC
522c68c4
SY
9637 * 2. EPT with VT-d:
9638 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9639 * result, try to trust guest.
522c68c4
SY
9640 * b. VT-d with snooping control feature: snooping control feature of
9641 * VT-d engine can guarantee the cache correctness. Just set it
9642 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9643 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9644 * consistent with host MTRR
9645 */
606decd6
PB
9646 if (is_mmio) {
9647 cache = MTRR_TYPE_UNCACHABLE;
9648 goto exit;
9649 }
9650
9651 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9652 ipat = VMX_EPT_IPAT_BIT;
9653 cache = MTRR_TYPE_WRBACK;
9654 goto exit;
9655 }
9656
9657 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9658 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9659 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9660 cache = MTRR_TYPE_WRBACK;
9661 else
9662 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9663 goto exit;
9664 }
9665
ff53604b 9666 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9667
9668exit:
9669 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9670}
9671
17cc3935 9672static int vmx_get_lpage_level(void)
344f414f 9673{
878403b7
SY
9674 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9675 return PT_DIRECTORY_LEVEL;
9676 else
9677 /* For shadow and EPT supported 1GB page */
9678 return PT_PDPE_LEVEL;
344f414f
JR
9679}
9680
feda805f
XG
9681static void vmcs_set_secondary_exec_control(u32 new_ctl)
9682{
9683 /*
9684 * These bits in the secondary execution controls field
9685 * are dynamic, the others are mostly based on the hypervisor
9686 * architecture and the guest's CPUID. Do not touch the
9687 * dynamic bits.
9688 */
9689 u32 mask =
9690 SECONDARY_EXEC_SHADOW_VMCS |
9691 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9692 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9693
9694 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9695
9696 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9697 (new_ctl & ~mask) | (cur_ctl & mask));
9698}
9699
8322ebbb
DM
9700/*
9701 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9702 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9703 */
9704static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9705{
9706 struct vcpu_vmx *vmx = to_vmx(vcpu);
9707 struct kvm_cpuid_entry2 *entry;
9708
9709 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9710 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9711
9712#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9713 if (entry && (entry->_reg & (_cpuid_mask))) \
9714 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9715} while (0)
9716
9717 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9718 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9719 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9720 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9721 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9722 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9723 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9724 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9725 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9726 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9727 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9728 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9729 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9730 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9731 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9732
9733 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9734 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9735 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9736 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9737 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9738 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9739 cr4_fixed1_update(bit(11), ecx, bit(2));
9740
9741#undef cr4_fixed1_update
9742}
9743
0e851880
SY
9744static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9745{
4e47c7a6 9746 struct vcpu_vmx *vmx = to_vmx(vcpu);
4e47c7a6 9747
80154d77
PB
9748 if (cpu_has_secondary_exec_ctrls()) {
9749 vmx_compute_secondary_exec_control(vmx);
9750 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
ad756a16 9751 }
8b3e34e4 9752
37e4c997
HZ
9753 if (nested_vmx_allowed(vcpu))
9754 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9755 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9756 else
9757 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9758 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
9759
9760 if (nested_vmx_allowed(vcpu))
9761 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
9762}
9763
d4330ef2
JR
9764static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9765{
7b8050f5
NHE
9766 if (func == 1 && nested)
9767 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9768}
9769
25d92081
YZ
9770static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9771 struct x86_exception *fault)
9772{
533558bc 9773 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
c5f983f6 9774 struct vcpu_vmx *vmx = to_vmx(vcpu);
533558bc 9775 u32 exit_reason;
c5f983f6 9776 unsigned long exit_qualification = vcpu->arch.exit_qualification;
25d92081 9777
c5f983f6
BD
9778 if (vmx->nested.pml_full) {
9779 exit_reason = EXIT_REASON_PML_FULL;
9780 vmx->nested.pml_full = false;
9781 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9782 } else if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9783 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9784 else
533558bc 9785 exit_reason = EXIT_REASON_EPT_VIOLATION;
c5f983f6
BD
9786
9787 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
25d92081
YZ
9788 vmcs12->guest_physical_address = fault->address;
9789}
9790
995f00a6
PF
9791static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9792{
bb97a016 9793 return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
995f00a6
PF
9794}
9795
155a97a3
NHE
9796/* Callbacks for nested_ept_init_mmu_context: */
9797
9798static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9799{
9800 /* return the page table to be shadowed - in our case, EPT12 */
9801 return get_vmcs12(vcpu)->ept_pointer;
9802}
9803
ae1e2d10 9804static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9805{
ad896af0 9806 WARN_ON(mmu_is_nested(vcpu));
a057e0e2 9807 if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
ae1e2d10
PB
9808 return 1;
9809
9810 kvm_mmu_unload(vcpu);
ad896af0 9811 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb 9812 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
ae1e2d10 9813 VMX_EPT_EXECUTE_ONLY_BIT,
a057e0e2 9814 nested_ept_ad_enabled(vcpu));
155a97a3
NHE
9815 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9816 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9817 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9818
9819 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
ae1e2d10 9820 return 0;
155a97a3
NHE
9821}
9822
9823static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9824{
9825 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9826}
9827
19d5f10b
EK
9828static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9829 u16 error_code)
9830{
9831 bool inequality, bit;
9832
9833 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9834 inequality =
9835 (error_code & vmcs12->page_fault_error_code_mask) !=
9836 vmcs12->page_fault_error_code_match;
9837 return inequality ^ bit;
9838}
9839
feaf0c7d
GN
9840static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9841 struct x86_exception *fault)
9842{
9843 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9844
9845 WARN_ON(!is_guest_mode(vcpu));
9846
305d0ab4
WL
9847 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
9848 !to_vmx(vcpu)->nested.nested_run_pending) {
b96fb439
PB
9849 vmcs12->vm_exit_intr_error_code = fault->error_code;
9850 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9851 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9852 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9853 fault->address);
7313c698 9854 } else {
feaf0c7d 9855 kvm_inject_page_fault(vcpu, fault);
7313c698 9856 }
feaf0c7d
GN
9857}
9858
6beb7bd5
JM
9859static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9860 struct vmcs12 *vmcs12);
9861
9862static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
9863 struct vmcs12 *vmcs12)
9864{
9865 struct vcpu_vmx *vmx = to_vmx(vcpu);
5e2f30b7 9866 struct page *page;
6beb7bd5 9867 u64 hpa;
a2bcba50
WL
9868
9869 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
9870 /*
9871 * Translate L1 physical address to host physical
9872 * address for vmcs02. Keep the page pinned, so this
9873 * physical address remains valid. We keep a reference
9874 * to it so we can release it later.
9875 */
5e2f30b7 9876 if (vmx->nested.apic_access_page) { /* shouldn't happen */
53a70daf 9877 kvm_release_page_dirty(vmx->nested.apic_access_page);
5e2f30b7
DH
9878 vmx->nested.apic_access_page = NULL;
9879 }
9880 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
9881 /*
9882 * If translation failed, no matter: This feature asks
9883 * to exit when accessing the given address, and if it
9884 * can never be accessed, this feature won't do
9885 * anything anyway.
9886 */
5e2f30b7
DH
9887 if (!is_error_page(page)) {
9888 vmx->nested.apic_access_page = page;
6beb7bd5
JM
9889 hpa = page_to_phys(vmx->nested.apic_access_page);
9890 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9891 } else {
9892 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9893 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9894 }
9895 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9896 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9897 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9898 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9899 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 9900 }
a7c0b07d
WL
9901
9902 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5e2f30b7 9903 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
53a70daf 9904 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
5e2f30b7
DH
9905 vmx->nested.virtual_apic_page = NULL;
9906 }
9907 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
a7c0b07d
WL
9908
9909 /*
6beb7bd5
JM
9910 * If translation failed, VM entry will fail because
9911 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9912 * Failing the vm entry is _not_ what the processor
9913 * does but it's basically the only possibility we
9914 * have. We could still enter the guest if CR8 load
9915 * exits are enabled, CR8 store exits are enabled, and
9916 * virtualize APIC access is disabled; in this case
9917 * the processor would never use the TPR shadow and we
9918 * could simply clear the bit from the execution
9919 * control. But such a configuration is useless, so
9920 * let's keep the code simple.
a7c0b07d 9921 */
5e2f30b7
DH
9922 if (!is_error_page(page)) {
9923 vmx->nested.virtual_apic_page = page;
6beb7bd5
JM
9924 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9925 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9926 }
a7c0b07d
WL
9927 }
9928
705699a1 9929 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
9930 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9931 kunmap(vmx->nested.pi_desc_page);
53a70daf 9932 kvm_release_page_dirty(vmx->nested.pi_desc_page);
5e2f30b7 9933 vmx->nested.pi_desc_page = NULL;
705699a1 9934 }
5e2f30b7
DH
9935 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
9936 if (is_error_page(page))
6beb7bd5 9937 return;
5e2f30b7
DH
9938 vmx->nested.pi_desc_page = page;
9939 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
705699a1
WV
9940 vmx->nested.pi_desc =
9941 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9942 (unsigned long)(vmcs12->posted_intr_desc_addr &
9943 (PAGE_SIZE - 1)));
6beb7bd5
JM
9944 vmcs_write64(POSTED_INTR_DESC_ADDR,
9945 page_to_phys(vmx->nested.pi_desc_page) +
9946 (unsigned long)(vmcs12->posted_intr_desc_addr &
9947 (PAGE_SIZE - 1)));
705699a1 9948 }
6beb7bd5
JM
9949 if (cpu_has_vmx_msr_bitmap() &&
9950 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9951 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9952 ;
9953 else
9954 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9955 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
9956}
9957
f4124500
JK
9958static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9959{
9960 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9961 struct vcpu_vmx *vmx = to_vmx(vcpu);
9962
9963 if (vcpu->arch.virtual_tsc_khz == 0)
9964 return;
9965
9966 /* Make sure short timeouts reliably trigger an immediate vmexit.
9967 * hrtimer_start does not guarantee this. */
9968 if (preemption_timeout <= 1) {
9969 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9970 return;
9971 }
9972
9973 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9974 preemption_timeout *= 1000000;
9975 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9976 hrtimer_start(&vmx->nested.preemption_timer,
9977 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9978}
9979
56a20510
JM
9980static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9981 struct vmcs12 *vmcs12)
9982{
9983 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9984 return 0;
9985
9986 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9987 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9988 return -EINVAL;
9989
9990 return 0;
9991}
9992
3af18d9c
WV
9993static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9994 struct vmcs12 *vmcs12)
9995{
3af18d9c
WV
9996 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9997 return 0;
9998
5fa99cbe 9999 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
3af18d9c
WV
10000 return -EINVAL;
10001
10002 return 0;
10003}
10004
712b12d7
JM
10005static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10006 struct vmcs12 *vmcs12)
10007{
10008 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10009 return 0;
10010
10011 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10012 return -EINVAL;
10013
10014 return 0;
10015}
10016
3af18d9c
WV
10017/*
10018 * Merge L0's and L1's MSR bitmap, return false to indicate that
10019 * we do not use the hardware.
10020 */
10021static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10022 struct vmcs12 *vmcs12)
10023{
82f0dd4b 10024 int msr;
f2b93280 10025 struct page *page;
d048c098
RK
10026 unsigned long *msr_bitmap_l1;
10027 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
f2b93280 10028
d048c098 10029 /* This shortcut is ok because we support only x2APIC MSRs so far. */
f2b93280
WV
10030 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
10031 return false;
10032
5e2f30b7
DH
10033 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10034 if (is_error_page(page))
f2b93280 10035 return false;
d048c098 10036 msr_bitmap_l1 = (unsigned long *)kmap(page);
f2b93280 10037
d048c098
RK
10038 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10039
f2b93280 10040 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
10041 if (nested_cpu_has_apic_reg_virt(vmcs12))
10042 for (msr = 0x800; msr <= 0x8ff; msr++)
10043 nested_vmx_disable_intercept_for_msr(
d048c098 10044 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 10045 msr, MSR_TYPE_R);
d048c098
RK
10046
10047 nested_vmx_disable_intercept_for_msr(
10048 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
10049 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10050 MSR_TYPE_R | MSR_TYPE_W);
d048c098 10051
608406e2 10052 if (nested_cpu_has_vid(vmcs12)) {
608406e2 10053 nested_vmx_disable_intercept_for_msr(
d048c098 10054 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10055 APIC_BASE_MSR + (APIC_EOI >> 4),
10056 MSR_TYPE_W);
10057 nested_vmx_disable_intercept_for_msr(
d048c098 10058 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10059 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10060 MSR_TYPE_W);
10061 }
82f0dd4b 10062 }
f2b93280 10063 kunmap(page);
53a70daf 10064 kvm_release_page_clean(page);
f2b93280
WV
10065
10066 return true;
10067}
10068
10069static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10070 struct vmcs12 *vmcs12)
10071{
82f0dd4b 10072 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 10073 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
10074 !nested_cpu_has_vid(vmcs12) &&
10075 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
10076 return 0;
10077
10078 /*
10079 * If virtualize x2apic mode is enabled,
10080 * virtualize apic access must be disabled.
10081 */
82f0dd4b
WV
10082 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10083 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
10084 return -EINVAL;
10085
608406e2
WV
10086 /*
10087 * If virtual interrupt delivery is enabled,
10088 * we must exit on external interrupts.
10089 */
10090 if (nested_cpu_has_vid(vmcs12) &&
10091 !nested_exit_on_intr(vcpu))
10092 return -EINVAL;
10093
705699a1
WV
10094 /*
10095 * bits 15:8 should be zero in posted_intr_nv,
10096 * the descriptor address has been already checked
10097 * in nested_get_vmcs12_pages.
10098 */
10099 if (nested_cpu_has_posted_intr(vmcs12) &&
10100 (!nested_cpu_has_vid(vmcs12) ||
10101 !nested_exit_intr_ack_set(vcpu) ||
10102 vmcs12->posted_intr_nv & 0xff00))
10103 return -EINVAL;
10104
f2b93280
WV
10105 /* tpr shadow is needed by all apicv features. */
10106 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10107 return -EINVAL;
10108
10109 return 0;
3af18d9c
WV
10110}
10111
e9ac033e
EK
10112static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10113 unsigned long count_field,
92d71bc6 10114 unsigned long addr_field)
ff651cb6 10115{
92d71bc6 10116 int maxphyaddr;
e9ac033e
EK
10117 u64 count, addr;
10118
10119 if (vmcs12_read_any(vcpu, count_field, &count) ||
10120 vmcs12_read_any(vcpu, addr_field, &addr)) {
10121 WARN_ON(1);
10122 return -EINVAL;
10123 }
10124 if (count == 0)
10125 return 0;
92d71bc6 10126 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
10127 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10128 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 10129 pr_debug_ratelimited(
e9ac033e
EK
10130 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10131 addr_field, maxphyaddr, count, addr);
10132 return -EINVAL;
10133 }
10134 return 0;
10135}
10136
10137static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10138 struct vmcs12 *vmcs12)
10139{
e9ac033e
EK
10140 if (vmcs12->vm_exit_msr_load_count == 0 &&
10141 vmcs12->vm_exit_msr_store_count == 0 &&
10142 vmcs12->vm_entry_msr_load_count == 0)
10143 return 0; /* Fast path */
e9ac033e 10144 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 10145 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 10146 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 10147 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 10148 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 10149 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
10150 return -EINVAL;
10151 return 0;
10152}
10153
c5f983f6
BD
10154static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10155 struct vmcs12 *vmcs12)
10156{
10157 u64 address = vmcs12->pml_address;
10158 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10159
10160 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10161 if (!nested_cpu_has_ept(vmcs12) ||
10162 !IS_ALIGNED(address, 4096) ||
10163 address >> maxphyaddr)
10164 return -EINVAL;
10165 }
10166
10167 return 0;
10168}
10169
e9ac033e
EK
10170static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10171 struct vmx_msr_entry *e)
10172{
10173 /* x2APIC MSR accesses are not allowed */
8a9781f7 10174 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
10175 return -EINVAL;
10176 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10177 e->index == MSR_IA32_UCODE_REV)
10178 return -EINVAL;
10179 if (e->reserved != 0)
ff651cb6
WV
10180 return -EINVAL;
10181 return 0;
10182}
10183
e9ac033e
EK
10184static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10185 struct vmx_msr_entry *e)
ff651cb6
WV
10186{
10187 if (e->index == MSR_FS_BASE ||
10188 e->index == MSR_GS_BASE ||
e9ac033e
EK
10189 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10190 nested_vmx_msr_check_common(vcpu, e))
10191 return -EINVAL;
10192 return 0;
10193}
10194
10195static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10196 struct vmx_msr_entry *e)
10197{
10198 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10199 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
10200 return -EINVAL;
10201 return 0;
10202}
10203
10204/*
10205 * Load guest's/host's msr at nested entry/exit.
10206 * return 0 for success, entry index for failure.
10207 */
10208static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10209{
10210 u32 i;
10211 struct vmx_msr_entry e;
10212 struct msr_data msr;
10213
10214 msr.host_initiated = false;
10215 for (i = 0; i < count; i++) {
54bf36aa
PB
10216 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10217 &e, sizeof(e))) {
bbe41b95 10218 pr_debug_ratelimited(
e9ac033e
EK
10219 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10220 __func__, i, gpa + i * sizeof(e));
ff651cb6 10221 goto fail;
e9ac033e
EK
10222 }
10223 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 10224 pr_debug_ratelimited(
e9ac033e
EK
10225 "%s check failed (%u, 0x%x, 0x%x)\n",
10226 __func__, i, e.index, e.reserved);
10227 goto fail;
10228 }
ff651cb6
WV
10229 msr.index = e.index;
10230 msr.data = e.value;
e9ac033e 10231 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 10232 pr_debug_ratelimited(
e9ac033e
EK
10233 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10234 __func__, i, e.index, e.value);
ff651cb6 10235 goto fail;
e9ac033e 10236 }
ff651cb6
WV
10237 }
10238 return 0;
10239fail:
10240 return i + 1;
10241}
10242
10243static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10244{
10245 u32 i;
10246 struct vmx_msr_entry e;
10247
10248 for (i = 0; i < count; i++) {
609e36d3 10249 struct msr_data msr_info;
54bf36aa
PB
10250 if (kvm_vcpu_read_guest(vcpu,
10251 gpa + i * sizeof(e),
10252 &e, 2 * sizeof(u32))) {
bbe41b95 10253 pr_debug_ratelimited(
e9ac033e
EK
10254 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10255 __func__, i, gpa + i * sizeof(e));
ff651cb6 10256 return -EINVAL;
e9ac033e
EK
10257 }
10258 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 10259 pr_debug_ratelimited(
e9ac033e
EK
10260 "%s check failed (%u, 0x%x, 0x%x)\n",
10261 __func__, i, e.index, e.reserved);
ff651cb6 10262 return -EINVAL;
e9ac033e 10263 }
609e36d3
PB
10264 msr_info.host_initiated = false;
10265 msr_info.index = e.index;
10266 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 10267 pr_debug_ratelimited(
e9ac033e
EK
10268 "%s cannot read MSR (%u, 0x%x)\n",
10269 __func__, i, e.index);
10270 return -EINVAL;
10271 }
54bf36aa
PB
10272 if (kvm_vcpu_write_guest(vcpu,
10273 gpa + i * sizeof(e) +
10274 offsetof(struct vmx_msr_entry, value),
10275 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 10276 pr_debug_ratelimited(
e9ac033e 10277 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 10278 __func__, i, e.index, msr_info.data);
e9ac033e
EK
10279 return -EINVAL;
10280 }
ff651cb6
WV
10281 }
10282 return 0;
10283}
10284
1dc35dac
LP
10285static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10286{
10287 unsigned long invalid_mask;
10288
10289 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10290 return (val & invalid_mask) == 0;
10291}
10292
9ed38ffa
LP
10293/*
10294 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10295 * emulating VM entry into a guest with EPT enabled.
10296 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10297 * is assigned to entry_failure_code on failure.
10298 */
10299static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 10300 u32 *entry_failure_code)
9ed38ffa 10301{
9ed38ffa 10302 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 10303 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
10304 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10305 return 1;
10306 }
10307
10308 /*
10309 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10310 * must not be dereferenced.
10311 */
10312 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10313 !nested_ept) {
10314 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10315 *entry_failure_code = ENTRY_FAIL_PDPTE;
10316 return 1;
10317 }
10318 }
10319
10320 vcpu->arch.cr3 = cr3;
10321 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10322 }
10323
10324 kvm_mmu_reset_context(vcpu);
10325 return 0;
10326}
10327
fe3ef05c
NHE
10328/*
10329 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10330 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 10331 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
10332 * guest in a way that will both be appropriate to L1's requests, and our
10333 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10334 * function also has additional necessary side-effects, like setting various
10335 * vcpu->arch fields.
ee146c1c
LP
10336 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10337 * is assigned to entry_failure_code on failure.
fe3ef05c 10338 */
ee146c1c 10339static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
ca0bde28 10340 bool from_vmentry, u32 *entry_failure_code)
fe3ef05c
NHE
10341{
10342 struct vcpu_vmx *vmx = to_vmx(vcpu);
03efce6f 10343 u32 exec_control, vmcs12_exec_ctrl;
fe3ef05c
NHE
10344
10345 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10346 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10347 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10348 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10349 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10350 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10351 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10352 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10353 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10354 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10355 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10356 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10357 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10358 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10359 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10360 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10361 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10362 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10363 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10364 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10365 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10366 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10367 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10368 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10369 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10370 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10371 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10372 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10373 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10374 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10375 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10376 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10377 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10378 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10379 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10380 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10381
cf8b84f4
JM
10382 if (from_vmentry &&
10383 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
10384 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10385 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10386 } else {
10387 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10388 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10389 }
cf8b84f4
JM
10390 if (from_vmentry) {
10391 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10392 vmcs12->vm_entry_intr_info_field);
10393 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10394 vmcs12->vm_entry_exception_error_code);
10395 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10396 vmcs12->vm_entry_instruction_len);
10397 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10398 vmcs12->guest_interruptibility_info);
2d6144e3
WL
10399 vmx->loaded_vmcs->nmi_known_unmasked =
10400 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
cf8b84f4
JM
10401 } else {
10402 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10403 }
fe3ef05c 10404 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 10405 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
10406 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10407 vmcs12->guest_pending_dbg_exceptions);
10408 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10409 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10410
81dc01f7
WL
10411 if (nested_cpu_has_xsaves(vmcs12))
10412 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
10413 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10414
f4124500 10415 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
10416
10417 /* Preemption timer setting is only taken from vmcs01. */
705699a1 10418 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
10419 exec_control |= vmcs_config.pin_based_exec_ctrl;
10420 if (vmx->hv_deadline_tsc == -1)
10421 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 10422
9314006d 10423 /* Posted interrupts setting is only taken from vmcs12. */
705699a1 10424 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
10425 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10426 vmx->nested.pi_pending = false;
06a5524f 10427 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
6beb7bd5 10428 } else {
705699a1 10429 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 10430 }
705699a1 10431
f4124500 10432 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 10433
f4124500
JK
10434 vmx->nested.preemption_timer_expired = false;
10435 if (nested_cpu_has_preemption_timer(vmcs12))
10436 vmx_start_preemption_timer(vcpu);
0238ea91 10437
fe3ef05c
NHE
10438 /*
10439 * Whether page-faults are trapped is determined by a combination of
10440 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10441 * If enable_ept, L0 doesn't care about page faults and we should
10442 * set all of these to L1's desires. However, if !enable_ept, L0 does
10443 * care about (at least some) page faults, and because it is not easy
10444 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10445 * to exit on each and every L2 page fault. This is done by setting
10446 * MASK=MATCH=0 and (see below) EB.PF=1.
10447 * Note that below we don't need special code to set EB.PF beyond the
10448 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10449 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10450 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
fe3ef05c
NHE
10451 */
10452 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10453 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10454 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10455 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10456
10457 if (cpu_has_secondary_exec_ctrls()) {
80154d77 10458 exec_control = vmx->secondary_exec_control;
e2821620 10459
fe3ef05c 10460 /* Take the following fields only from vmcs12 */
696dfd95 10461 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
90a2db6d 10462 SECONDARY_EXEC_ENABLE_INVPCID |
b3a2a907 10463 SECONDARY_EXEC_RDTSCP |
3db13480 10464 SECONDARY_EXEC_XSAVES |
696dfd95 10465 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
27c42a1b
BD
10466 SECONDARY_EXEC_APIC_REGISTER_VIRT |
10467 SECONDARY_EXEC_ENABLE_VMFUNC);
fe3ef05c 10468 if (nested_cpu_has(vmcs12,
03efce6f
BD
10469 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10470 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10471 ~SECONDARY_EXEC_ENABLE_PML;
10472 exec_control |= vmcs12_exec_ctrl;
10473 }
fe3ef05c 10474
27c42a1b
BD
10475 /* All VMFUNCs are currently emulated through L0 vmexits. */
10476 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10477 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10478
608406e2
WV
10479 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10480 vmcs_write64(EOI_EXIT_BITMAP0,
10481 vmcs12->eoi_exit_bitmap0);
10482 vmcs_write64(EOI_EXIT_BITMAP1,
10483 vmcs12->eoi_exit_bitmap1);
10484 vmcs_write64(EOI_EXIT_BITMAP2,
10485 vmcs12->eoi_exit_bitmap2);
10486 vmcs_write64(EOI_EXIT_BITMAP3,
10487 vmcs12->eoi_exit_bitmap3);
10488 vmcs_write16(GUEST_INTR_STATUS,
10489 vmcs12->guest_intr_status);
10490 }
10491
6beb7bd5
JM
10492 /*
10493 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10494 * nested_get_vmcs12_pages will either fix it up or
10495 * remove the VM execution control.
10496 */
10497 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10498 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10499
fe3ef05c
NHE
10500 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10501 }
10502
10503
10504 /*
10505 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10506 * Some constant fields are set here by vmx_set_constant_host_state().
10507 * Other fields are different per CPU, and will be set later when
10508 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10509 */
a547c6db 10510 vmx_set_constant_host_state(vmx);
fe3ef05c 10511
83bafef1
JM
10512 /*
10513 * Set the MSR load/store lists to match L0's settings.
10514 */
10515 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10516 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10517 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10518 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10519 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10520
fe3ef05c
NHE
10521 /*
10522 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10523 * entry, but only if the current (host) sp changed from the value
10524 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10525 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10526 * here we just force the write to happen on entry.
10527 */
10528 vmx->host_rsp = 0;
10529
10530 exec_control = vmx_exec_control(vmx); /* L0's desires */
10531 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10532 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10533 exec_control &= ~CPU_BASED_TPR_SHADOW;
10534 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 10535
6beb7bd5
JM
10536 /*
10537 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10538 * nested_get_vmcs12_pages can't fix it up, the illegal value
10539 * will result in a VM entry failure.
10540 */
a7c0b07d 10541 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 10542 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d 10543 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
51aa68e7
JM
10544 } else {
10545#ifdef CONFIG_X86_64
10546 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
10547 CPU_BASED_CR8_STORE_EXITING;
10548#endif
a7c0b07d
WL
10549 }
10550
fe3ef05c 10551 /*
3af18d9c 10552 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10553 * Rather, exit every time.
10554 */
fe3ef05c
NHE
10555 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10556 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10557
10558 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10559
10560 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10561 * bitwise-or of what L1 wants to trap for L2, and what we want to
10562 * trap. Note that CR0.TS also needs updating - we do this later.
10563 */
10564 update_exception_bitmap(vcpu);
10565 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10566 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10567
8049d651
NHE
10568 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10569 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10570 * bits are further modified by vmx_set_efer() below.
10571 */
f4124500 10572 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10573
10574 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10575 * emulated by vmx_set_efer(), below.
10576 */
2961e876 10577 vm_entry_controls_init(vmx,
8049d651
NHE
10578 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10579 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10580 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10581
cf8b84f4
JM
10582 if (from_vmentry &&
10583 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 10584 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 10585 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 10586 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10587 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 10588 }
fe3ef05c
NHE
10589
10590 set_cr4_guest_host_mask(vmx);
10591
cf8b84f4
JM
10592 if (from_vmentry &&
10593 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
36be0b9d
PB
10594 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10595
27fc51b2
NHE
10596 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10597 vmcs_write64(TSC_OFFSET,
ea26e4ec 10598 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
27fc51b2 10599 else
ea26e4ec 10600 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
c95ba92a
PF
10601 if (kvm_has_tsc_control)
10602 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
10603
10604 if (enable_vpid) {
10605 /*
5c614b35
WL
10606 * There is no direct mapping between vpid02 and vpid12, the
10607 * vpid02 is per-vCPU for L0 and reused while the value of
10608 * vpid12 is changed w/ one invvpid during nested vmentry.
10609 * The vpid12 is allocated by L1 for L2, so it will not
10610 * influence global bitmap(for vpid01 and vpid02 allocation)
10611 * even if spawn a lot of nested vCPUs.
fe3ef05c 10612 */
5c614b35
WL
10613 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10614 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10615 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10616 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10617 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10618 }
10619 } else {
10620 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10621 vmx_flush_tlb(vcpu);
10622 }
10623
fe3ef05c
NHE
10624 }
10625
1fb883bb
LP
10626 if (enable_pml) {
10627 /*
10628 * Conceptually we want to copy the PML address and index from
10629 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10630 * since we always flush the log on each vmexit, this happens
10631 * to be equivalent to simply resetting the fields in vmcs02.
10632 */
10633 ASSERT(vmx->pml_pg);
10634 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10635 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10636 }
10637
155a97a3 10638 if (nested_cpu_has_ept(vmcs12)) {
ae1e2d10
PB
10639 if (nested_ept_init_mmu_context(vcpu)) {
10640 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10641 return 1;
10642 }
fb6c8198
JM
10643 } else if (nested_cpu_has2(vmcs12,
10644 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10645 vmx_flush_tlb_ept_only(vcpu);
155a97a3
NHE
10646 }
10647
fe3ef05c 10648 /*
bd7e5b08
PB
10649 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10650 * bits which we consider mandatory enabled.
fe3ef05c
NHE
10651 * The CR0_READ_SHADOW is what L2 should have expected to read given
10652 * the specifications by L1; It's not enough to take
10653 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10654 * have more bits than L1 expected.
10655 */
10656 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10657 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10658
10659 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10660 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10661
cf8b84f4
JM
10662 if (from_vmentry &&
10663 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
10664 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10665 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10666 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10667 else
10668 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10669 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10670 vmx_set_efer(vcpu, vcpu->arch.efer);
10671
9ed38ffa 10672 /* Shadow page tables on either EPT or shadow page tables. */
7ad658b6 10673 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
9ed38ffa
LP
10674 entry_failure_code))
10675 return 1;
7ca29de2 10676
feaf0c7d
GN
10677 if (!enable_ept)
10678 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10679
3633cfc3
NHE
10680 /*
10681 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10682 */
10683 if (enable_ept) {
10684 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10685 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10686 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10687 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10688 }
10689
fe3ef05c
NHE
10690 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10691 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 10692 return 0;
fe3ef05c
NHE
10693}
10694
ca0bde28 10695static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 10696{
cd232ad0 10697 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 10698
6dfacadd 10699 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
10700 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10701 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 10702
56a20510
JM
10703 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10704 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10705
ca0bde28
JM
10706 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10707 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10708
712b12d7
JM
10709 if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
10710 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10711
ca0bde28
JM
10712 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10713 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 10714
ca0bde28
JM
10715 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10716 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 10717
c5f983f6
BD
10718 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10719 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10720
7c177938 10721 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
0115f9cb 10722 vmx->nested.nested_vmx_procbased_ctls_low,
b9c237bb 10723 vmx->nested.nested_vmx_procbased_ctls_high) ||
2e5b0bd9
JM
10724 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10725 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10726 vmx->nested.nested_vmx_secondary_ctls_low,
10727 vmx->nested.nested_vmx_secondary_ctls_high)) ||
7c177938 10728 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10729 vmx->nested.nested_vmx_pinbased_ctls_low,
10730 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10731 !vmx_control_verify(vmcs12->vm_exit_controls,
0115f9cb 10732 vmx->nested.nested_vmx_exit_ctls_low,
b9c237bb 10733 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10734 !vmx_control_verify(vmcs12->vm_entry_controls,
0115f9cb 10735 vmx->nested.nested_vmx_entry_ctls_low,
b9c237bb 10736 vmx->nested.nested_vmx_entry_ctls_high))
ca0bde28 10737 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10738
41ab9372
BD
10739 if (nested_cpu_has_vmfunc(vmcs12)) {
10740 if (vmcs12->vm_function_control &
10741 ~vmx->nested.nested_vmx_vmfunc_controls)
10742 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10743
10744 if (nested_cpu_has_eptp_switching(vmcs12)) {
10745 if (!nested_cpu_has_ept(vmcs12) ||
10746 !page_address_valid(vcpu, vmcs12->eptp_list_address))
10747 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10748 }
10749 }
27c42a1b 10750
c7c2c709
JM
10751 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10752 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10753
3899152c 10754 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 10755 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
10756 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10757 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10758
10759 return 0;
10760}
10761
10762static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10763 u32 *exit_qual)
10764{
10765 bool ia32e;
10766
10767 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 10768
3899152c 10769 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 10770 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 10771 return 1;
ca0bde28
JM
10772
10773 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10774 vmcs12->vmcs_link_pointer != -1ull) {
10775 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 10776 return 1;
7c177938
NHE
10777 }
10778
384bb783 10779 /*
cb0c8cda 10780 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10781 * are performed on the field for the IA32_EFER MSR:
10782 * - Bits reserved in the IA32_EFER MSR must be 0.
10783 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10784 * the IA-32e mode guest VM-exit control. It must also be identical
10785 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10786 * CR0.PG) is 1.
10787 */
ca0bde28
JM
10788 if (to_vmx(vcpu)->nested.nested_run_pending &&
10789 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
10790 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10791 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10792 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10793 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 10794 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 10795 return 1;
384bb783
JK
10796 }
10797
10798 /*
10799 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10800 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10801 * the values of the LMA and LME bits in the field must each be that of
10802 * the host address-space size VM-exit control.
10803 */
10804 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10805 ia32e = (vmcs12->vm_exit_controls &
10806 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10807 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10808 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 10809 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 10810 return 1;
ca0bde28
JM
10811 }
10812
10813 return 0;
10814}
10815
858e25c0
JM
10816static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10817{
10818 struct vcpu_vmx *vmx = to_vmx(vcpu);
10819 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10820 struct loaded_vmcs *vmcs02;
858e25c0
JM
10821 u32 msr_entry_idx;
10822 u32 exit_qual;
10823
10824 vmcs02 = nested_get_current_vmcs02(vmx);
10825 if (!vmcs02)
10826 return -ENOMEM;
10827
10828 enter_guest_mode(vcpu);
10829
10830 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10831 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10832
1279a6b1 10833 vmx_switch_vmcs(vcpu, vmcs02);
858e25c0
JM
10834 vmx_segment_cache_clear(vmx);
10835
10836 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10837 leave_guest_mode(vcpu);
1279a6b1 10838 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10839 nested_vmx_entry_failure(vcpu, vmcs12,
10840 EXIT_REASON_INVALID_STATE, exit_qual);
10841 return 1;
10842 }
10843
10844 nested_get_vmcs12_pages(vcpu, vmcs12);
10845
10846 msr_entry_idx = nested_vmx_load_msr(vcpu,
10847 vmcs12->vm_entry_msr_load_addr,
10848 vmcs12->vm_entry_msr_load_count);
10849 if (msr_entry_idx) {
10850 leave_guest_mode(vcpu);
1279a6b1 10851 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10852 nested_vmx_entry_failure(vcpu, vmcs12,
10853 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10854 return 1;
10855 }
10856
858e25c0
JM
10857 /*
10858 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10859 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10860 * returned as far as L1 is concerned. It will only return (and set
10861 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10862 */
10863 return 0;
10864}
10865
ca0bde28
JM
10866/*
10867 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10868 * for running an L2 nested guest.
10869 */
10870static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10871{
10872 struct vmcs12 *vmcs12;
10873 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3f1dfb6 10874 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
ca0bde28
JM
10875 u32 exit_qual;
10876 int ret;
10877
10878 if (!nested_vmx_check_permission(vcpu))
10879 return 1;
10880
10881 if (!nested_vmx_check_vmcs12(vcpu))
10882 goto out;
10883
10884 vmcs12 = get_vmcs12(vcpu);
10885
10886 if (enable_shadow_vmcs)
10887 copy_shadow_to_vmcs12(vmx);
10888
10889 /*
10890 * The nested entry process starts with enforcing various prerequisites
10891 * on vmcs12 as required by the Intel SDM, and act appropriately when
10892 * they fail: As the SDM explains, some conditions should cause the
10893 * instruction to fail, while others will cause the instruction to seem
10894 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10895 * To speed up the normal (success) code path, we should avoid checking
10896 * for misconfigurations which will anyway be caught by the processor
10897 * when using the merged vmcs02.
10898 */
b3f1dfb6
JM
10899 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10900 nested_vmx_failValid(vcpu,
10901 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10902 goto out;
10903 }
10904
ca0bde28
JM
10905 if (vmcs12->launch_state == launch) {
10906 nested_vmx_failValid(vcpu,
10907 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10908 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10909 goto out;
10910 }
10911
10912 ret = check_vmentry_prereqs(vcpu, vmcs12);
10913 if (ret) {
10914 nested_vmx_failValid(vcpu, ret);
10915 goto out;
10916 }
10917
10918 /*
10919 * After this point, the trap flag no longer triggers a singlestep trap
10920 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10921 * This is not 100% correct; for performance reasons, we delegate most
10922 * of the checks on host state to the processor. If those fail,
10923 * the singlestep trap is missed.
10924 */
10925 skip_emulated_instruction(vcpu);
10926
10927 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10928 if (ret) {
10929 nested_vmx_entry_failure(vcpu, vmcs12,
10930 EXIT_REASON_INVALID_STATE, exit_qual);
10931 return 1;
384bb783
JK
10932 }
10933
7c177938
NHE
10934 /*
10935 * We're finally done with prerequisite checking, and can start with
10936 * the nested entry.
10937 */
10938
858e25c0
JM
10939 ret = enter_vmx_non_root_mode(vcpu, true);
10940 if (ret)
10941 return ret;
ff651cb6 10942
6dfacadd 10943 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10944 return kvm_vcpu_halt(vcpu);
6dfacadd 10945
7af40ad3
JK
10946 vmx->nested.nested_run_pending = 1;
10947
cd232ad0 10948 return 1;
eb277562
KH
10949
10950out:
6affcbed 10951 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
10952}
10953
4704d0be
NHE
10954/*
10955 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10956 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10957 * This function returns the new value we should put in vmcs12.guest_cr0.
10958 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10959 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10960 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10961 * didn't trap the bit, because if L1 did, so would L0).
10962 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10963 * been modified by L2, and L1 knows it. So just leave the old value of
10964 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10965 * isn't relevant, because if L0 traps this bit it can set it to anything.
10966 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10967 * changed these bits, and therefore they need to be updated, but L0
10968 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10969 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10970 */
10971static inline unsigned long
10972vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10973{
10974 return
10975 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10976 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10977 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10978 vcpu->arch.cr0_guest_owned_bits));
10979}
10980
10981static inline unsigned long
10982vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10983{
10984 return
10985 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10986 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10987 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10988 vcpu->arch.cr4_guest_owned_bits));
10989}
10990
5f3d5799
JK
10991static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10992 struct vmcs12 *vmcs12)
10993{
10994 u32 idt_vectoring;
10995 unsigned int nr;
10996
664f8e26 10997 if (vcpu->arch.exception.injected) {
5f3d5799
JK
10998 nr = vcpu->arch.exception.nr;
10999 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11000
11001 if (kvm_exception_is_soft(nr)) {
11002 vmcs12->vm_exit_instruction_len =
11003 vcpu->arch.event_exit_inst_len;
11004 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11005 } else
11006 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11007
11008 if (vcpu->arch.exception.has_error_code) {
11009 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11010 vmcs12->idt_vectoring_error_code =
11011 vcpu->arch.exception.error_code;
11012 }
11013
11014 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 11015 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
11016 vmcs12->idt_vectoring_info_field =
11017 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
11018 } else if (vcpu->arch.interrupt.pending) {
11019 nr = vcpu->arch.interrupt.nr;
11020 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11021
11022 if (vcpu->arch.interrupt.soft) {
11023 idt_vectoring |= INTR_TYPE_SOFT_INTR;
11024 vmcs12->vm_entry_instruction_len =
11025 vcpu->arch.event_exit_inst_len;
11026 } else
11027 idt_vectoring |= INTR_TYPE_EXT_INTR;
11028
11029 vmcs12->idt_vectoring_info_field = idt_vectoring;
11030 }
11031}
11032
b6b8a145
JK
11033static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11034{
11035 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfcf83b1 11036 unsigned long exit_qual;
b6b8a145 11037
274bba52 11038 if (kvm_event_needs_reinjection(vcpu))
acc9ab60
WL
11039 return -EBUSY;
11040
bfcf83b1
WL
11041 if (vcpu->arch.exception.pending &&
11042 nested_vmx_check_exception(vcpu, &exit_qual)) {
11043 if (vmx->nested.nested_run_pending)
11044 return -EBUSY;
11045 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11046 vcpu->arch.exception.pending = false;
11047 return 0;
11048 }
11049
f4124500
JK
11050 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11051 vmx->nested.preemption_timer_expired) {
11052 if (vmx->nested.nested_run_pending)
11053 return -EBUSY;
11054 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11055 return 0;
11056 }
11057
b6b8a145 11058 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
acc9ab60 11059 if (vmx->nested.nested_run_pending)
b6b8a145
JK
11060 return -EBUSY;
11061 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11062 NMI_VECTOR | INTR_TYPE_NMI_INTR |
11063 INTR_INFO_VALID_MASK, 0);
11064 /*
11065 * The NMI-triggered VM exit counts as injection:
11066 * clear this one and block further NMIs.
11067 */
11068 vcpu->arch.nmi_pending = 0;
11069 vmx_set_nmi_mask(vcpu, true);
11070 return 0;
11071 }
11072
11073 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11074 nested_exit_on_intr(vcpu)) {
11075 if (vmx->nested.nested_run_pending)
11076 return -EBUSY;
11077 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 11078 return 0;
b6b8a145
JK
11079 }
11080
6342c50a
DH
11081 vmx_complete_nested_posted_interrupt(vcpu);
11082 return 0;
b6b8a145
JK
11083}
11084
f4124500
JK
11085static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11086{
11087 ktime_t remaining =
11088 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11089 u64 value;
11090
11091 if (ktime_to_ns(remaining) <= 0)
11092 return 0;
11093
11094 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11095 do_div(value, 1000000);
11096 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11097}
11098
4704d0be 11099/*
cf8b84f4
JM
11100 * Update the guest state fields of vmcs12 to reflect changes that
11101 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11102 * VM-entry controls is also updated, since this is really a guest
11103 * state bit.)
4704d0be 11104 */
cf8b84f4 11105static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 11106{
4704d0be
NHE
11107 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11108 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11109
4704d0be
NHE
11110 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11111 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11112 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11113
11114 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11115 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11116 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11117 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11118 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11119 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11120 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11121 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11122 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11123 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11124 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11125 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11126 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11127 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11128 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11129 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11130 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11131 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11132 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11133 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11134 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11135 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11136 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11137 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11138 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11139 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11140 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11141 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11142 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11143 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11144 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11145 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11146 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11147 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11148 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11149 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11150
4704d0be
NHE
11151 vmcs12->guest_interruptibility_info =
11152 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11153 vmcs12->guest_pending_dbg_exceptions =
11154 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
11155 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11156 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11157 else
11158 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 11159
f4124500
JK
11160 if (nested_cpu_has_preemption_timer(vmcs12)) {
11161 if (vmcs12->vm_exit_controls &
11162 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11163 vmcs12->vmx_preemption_timer_value =
11164 vmx_get_preemption_timer_value(vcpu);
11165 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11166 }
7854cbca 11167
3633cfc3
NHE
11168 /*
11169 * In some cases (usually, nested EPT), L2 is allowed to change its
11170 * own CR3 without exiting. If it has changed it, we must keep it.
11171 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11172 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11173 *
11174 * Additionally, restore L2's PDPTR to vmcs12.
11175 */
11176 if (enable_ept) {
f3531054 11177 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
11178 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11179 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11180 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11181 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11182 }
11183
d281e13b 11184 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
119a9c01 11185
608406e2
WV
11186 if (nested_cpu_has_vid(vmcs12))
11187 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11188
c18911a2
JK
11189 vmcs12->vm_entry_controls =
11190 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 11191 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 11192
2996fca0
JK
11193 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11194 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11195 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11196 }
11197
4704d0be
NHE
11198 /* TODO: These cannot have changed unless we have MSR bitmaps and
11199 * the relevant bit asks not to trap the change */
b8c07d55 11200 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 11201 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
11202 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11203 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
11204 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11205 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11206 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 11207 if (kvm_mpx_supported())
36be0b9d 11208 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
cf8b84f4
JM
11209}
11210
11211/*
11212 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11213 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11214 * and this function updates it to reflect the changes to the guest state while
11215 * L2 was running (and perhaps made some exits which were handled directly by L0
11216 * without going back to L1), and to reflect the exit reason.
11217 * Note that we do not have to copy here all VMCS fields, just those that
11218 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11219 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11220 * which already writes to vmcs12 directly.
11221 */
11222static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11223 u32 exit_reason, u32 exit_intr_info,
11224 unsigned long exit_qualification)
11225{
11226 /* update guest state fields: */
11227 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
11228
11229 /* update exit information fields: */
11230
533558bc
JK
11231 vmcs12->vm_exit_reason = exit_reason;
11232 vmcs12->exit_qualification = exit_qualification;
533558bc 11233 vmcs12->vm_exit_intr_info = exit_intr_info;
7313c698 11234
5f3d5799 11235 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
11236 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11237 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11238
5f3d5799 11239 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7cdc2d62
JM
11240 vmcs12->launch_state = 1;
11241
5f3d5799
JK
11242 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11243 * instead of reading the real value. */
4704d0be 11244 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
11245
11246 /*
11247 * Transfer the event that L0 or L1 may wanted to inject into
11248 * L2 to IDT_VECTORING_INFO_FIELD.
11249 */
11250 vmcs12_save_pending_event(vcpu, vmcs12);
11251 }
11252
11253 /*
11254 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11255 * preserved above and would only end up incorrectly in L1.
11256 */
11257 vcpu->arch.nmi_injected = false;
11258 kvm_clear_exception_queue(vcpu);
11259 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
11260}
11261
11262/*
11263 * A part of what we need to when the nested L2 guest exits and we want to
11264 * run its L1 parent, is to reset L1's guest state to the host state specified
11265 * in vmcs12.
11266 * This function is to be called not only on normal nested exit, but also on
11267 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11268 * Failures During or After Loading Guest State").
11269 * This function should be called when the active VMCS is L1's (vmcs01).
11270 */
733568f9
JK
11271static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11272 struct vmcs12 *vmcs12)
4704d0be 11273{
21feb4eb 11274 struct kvm_segment seg;
ca0bde28 11275 u32 entry_failure_code;
21feb4eb 11276
4704d0be
NHE
11277 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11278 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 11279 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
11280 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11281 else
11282 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11283 vmx_set_efer(vcpu, vcpu->arch.efer);
11284
11285 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11286 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 11287 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
11288 /*
11289 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
11290 * actually changed, because vmx_set_cr0 refers to efer set above.
11291 *
11292 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11293 * (KVM doesn't change it);
4704d0be 11294 */
bd7e5b08 11295 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 11296 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 11297
bd7e5b08 11298 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be 11299 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8eb3f87d 11300 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4704d0be 11301
29bf08f1 11302 nested_ept_uninit_mmu_context(vcpu);
155a97a3 11303
1dc35dac
LP
11304 /*
11305 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11306 * couldn't have changed.
11307 */
11308 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11309 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4704d0be 11310
feaf0c7d
GN
11311 if (!enable_ept)
11312 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11313
4704d0be
NHE
11314 if (enable_vpid) {
11315 /*
11316 * Trivially support vpid by letting L2s share their parent
11317 * L1's vpid. TODO: move to a more elaborate solution, giving
11318 * each L2 its own vpid and exposing the vpid feature to L1.
11319 */
11320 vmx_flush_tlb(vcpu);
11321 }
06a5524f
WV
11322 /* Restore posted intr vector. */
11323 if (nested_cpu_has_posted_intr(vmcs12))
11324 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4704d0be
NHE
11325
11326 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11327 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11328 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11329 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11330 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 11331
36be0b9d
PB
11332 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11333 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11334 vmcs_write64(GUEST_BNDCFGS, 0);
11335
44811c02 11336 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 11337 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
11338 vcpu->arch.pat = vmcs12->host_ia32_pat;
11339 }
4704d0be
NHE
11340 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11341 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11342 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 11343
21feb4eb
ACL
11344 /* Set L1 segment info according to Intel SDM
11345 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11346 seg = (struct kvm_segment) {
11347 .base = 0,
11348 .limit = 0xFFFFFFFF,
11349 .selector = vmcs12->host_cs_selector,
11350 .type = 11,
11351 .present = 1,
11352 .s = 1,
11353 .g = 1
11354 };
11355 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11356 seg.l = 1;
11357 else
11358 seg.db = 1;
11359 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11360 seg = (struct kvm_segment) {
11361 .base = 0,
11362 .limit = 0xFFFFFFFF,
11363 .type = 3,
11364 .present = 1,
11365 .s = 1,
11366 .db = 1,
11367 .g = 1
11368 };
11369 seg.selector = vmcs12->host_ds_selector;
11370 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11371 seg.selector = vmcs12->host_es_selector;
11372 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11373 seg.selector = vmcs12->host_ss_selector;
11374 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11375 seg.selector = vmcs12->host_fs_selector;
11376 seg.base = vmcs12->host_fs_base;
11377 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11378 seg.selector = vmcs12->host_gs_selector;
11379 seg.base = vmcs12->host_gs_base;
11380 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11381 seg = (struct kvm_segment) {
205befd9 11382 .base = vmcs12->host_tr_base,
21feb4eb
ACL
11383 .limit = 0x67,
11384 .selector = vmcs12->host_tr_selector,
11385 .type = 11,
11386 .present = 1
11387 };
11388 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11389
503cd0c5
JK
11390 kvm_set_dr(vcpu, 7, 0x400);
11391 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 11392
3af18d9c
WV
11393 if (cpu_has_vmx_msr_bitmap())
11394 vmx_set_msr_bitmap(vcpu);
11395
ff651cb6
WV
11396 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11397 vmcs12->vm_exit_msr_load_count))
11398 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
11399}
11400
11401/*
11402 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11403 * and modify vmcs12 to make it see what it would expect to see there if
11404 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11405 */
533558bc
JK
11406static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11407 u32 exit_intr_info,
11408 unsigned long exit_qualification)
4704d0be
NHE
11409{
11410 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
11411 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11412
5f3d5799
JK
11413 /* trying to cancel vmlaunch/vmresume is a bug */
11414 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11415
4f350c6d
JM
11416 /*
11417 * The only expected VM-instruction error is "VM entry with
11418 * invalid control field(s)." Anything else indicates a
11419 * problem with L0.
11420 */
11421 WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
11422 VMXERR_ENTRY_INVALID_CONTROL_FIELD));
11423
4704d0be 11424 leave_guest_mode(vcpu);
4704d0be 11425
4f350c6d
JM
11426 if (likely(!vmx->fail)) {
11427 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11428 exit_qualification);
ff651cb6 11429
4f350c6d
JM
11430 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11431 vmcs12->vm_exit_msr_store_count))
11432 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11433 }
cf3215d9 11434
1279a6b1 11435 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
8391ce44
PB
11436 vm_entry_controls_reset_shadow(vmx);
11437 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
11438 vmx_segment_cache_clear(vmx);
11439
4704d0be
NHE
11440 /* if no vmcs02 cache requested, remove the one we used */
11441 if (VMCS02_POOL_SIZE == 0)
11442 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11443
9314006d 11444 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
11445 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11446 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 11447 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
11448 if (vmx->hv_deadline_tsc == -1)
11449 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11450 PIN_BASED_VMX_PREEMPTION_TIMER);
11451 else
11452 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11453 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
11454 if (kvm_has_tsc_control)
11455 decache_tsc_multiplier(vmx);
4704d0be 11456
dccbfcf5
RK
11457 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11458 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11459 vmx_set_virtual_x2apic_mode(vcpu,
11460 vcpu->arch.apic_base & X2APIC_ENABLE);
fb6c8198
JM
11461 } else if (!nested_cpu_has_ept(vmcs12) &&
11462 nested_cpu_has2(vmcs12,
11463 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11464 vmx_flush_tlb_ept_only(vcpu);
dccbfcf5 11465 }
4704d0be
NHE
11466
11467 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11468 vmx->host_rsp = 0;
11469
11470 /* Unpin physical memory we referred to in vmcs02 */
11471 if (vmx->nested.apic_access_page) {
53a70daf 11472 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 11473 vmx->nested.apic_access_page = NULL;
4704d0be 11474 }
a7c0b07d 11475 if (vmx->nested.virtual_apic_page) {
53a70daf 11476 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 11477 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 11478 }
705699a1
WV
11479 if (vmx->nested.pi_desc_page) {
11480 kunmap(vmx->nested.pi_desc_page);
53a70daf 11481 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
11482 vmx->nested.pi_desc_page = NULL;
11483 vmx->nested.pi_desc = NULL;
11484 }
4704d0be 11485
38b99173
TC
11486 /*
11487 * We are now running in L2, mmu_notifier will force to reload the
11488 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11489 */
c83b6d15 11490 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 11491
012f83cb
AG
11492 if (enable_shadow_vmcs)
11493 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
11494
11495 /* in case we halted in L2 */
11496 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4f350c6d
JM
11497
11498 if (likely(!vmx->fail)) {
11499 /*
11500 * TODO: SDM says that with acknowledge interrupt on
11501 * exit, bit 31 of the VM-exit interrupt information
11502 * (valid interrupt) is always set to 1 on
11503 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
11504 * need kvm_cpu_has_interrupt(). See the commit
11505 * message for details.
11506 */
11507 if (nested_exit_intr_ack_set(vcpu) &&
11508 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11509 kvm_cpu_has_interrupt(vcpu)) {
11510 int irq = kvm_cpu_get_interrupt(vcpu);
11511 WARN_ON(irq < 0);
11512 vmcs12->vm_exit_intr_info = irq |
11513 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11514 }
11515
11516 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11517 vmcs12->exit_qualification,
11518 vmcs12->idt_vectoring_info_field,
11519 vmcs12->vm_exit_intr_info,
11520 vmcs12->vm_exit_intr_error_code,
11521 KVM_ISA_VMX);
11522
11523 load_vmcs12_host_state(vcpu, vmcs12);
11524
11525 return;
11526 }
11527
11528 /*
11529 * After an early L2 VM-entry failure, we're now back
11530 * in L1 which thinks it just finished a VMLAUNCH or
11531 * VMRESUME instruction, so we need to set the failure
11532 * flag and the VM-instruction error field of the VMCS
11533 * accordingly.
11534 */
11535 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
11536 /*
11537 * The emulated instruction was already skipped in
11538 * nested_vmx_run, but the updated RIP was never
11539 * written back to the vmcs01.
11540 */
11541 skip_emulated_instruction(vcpu);
11542 vmx->fail = 0;
4704d0be
NHE
11543}
11544
42124925
JK
11545/*
11546 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11547 */
11548static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11549{
2f707d97
WL
11550 if (is_guest_mode(vcpu)) {
11551 to_vmx(vcpu)->nested.nested_run_pending = 0;
533558bc 11552 nested_vmx_vmexit(vcpu, -1, 0, 0);
2f707d97 11553 }
42124925
JK
11554 free_nested(to_vmx(vcpu));
11555}
11556
7c177938
NHE
11557/*
11558 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11559 * 23.7 "VM-entry failures during or after loading guest state" (this also
11560 * lists the acceptable exit-reason and exit-qualification parameters).
11561 * It should only be called before L2 actually succeeded to run, and when
11562 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11563 */
11564static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11565 struct vmcs12 *vmcs12,
11566 u32 reason, unsigned long qualification)
11567{
11568 load_vmcs12_host_state(vcpu, vmcs12);
11569 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11570 vmcs12->exit_qualification = qualification;
11571 nested_vmx_succeed(vcpu);
012f83cb
AG
11572 if (enable_shadow_vmcs)
11573 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
11574}
11575
8a76d7f2
JR
11576static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11577 struct x86_instruction_info *info,
11578 enum x86_intercept_stage stage)
11579{
11580 return X86EMUL_CONTINUE;
11581}
11582
64672c95
YJ
11583#ifdef CONFIG_X86_64
11584/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11585static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11586 u64 divisor, u64 *result)
11587{
11588 u64 low = a << shift, high = a >> (64 - shift);
11589
11590 /* To avoid the overflow on divq */
11591 if (high >= divisor)
11592 return 1;
11593
11594 /* Low hold the result, high hold rem which is discarded */
11595 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11596 "rm" (divisor), "0" (low), "1" (high));
11597 *result = low;
11598
11599 return 0;
11600}
11601
11602static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11603{
11604 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
11605 u64 tscl = rdtsc();
11606 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11607 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
11608
11609 /* Convert to host delta tsc if tsc scaling is enabled */
11610 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11611 u64_shl_div_u64(delta_tsc,
11612 kvm_tsc_scaling_ratio_frac_bits,
11613 vcpu->arch.tsc_scaling_ratio,
11614 &delta_tsc))
11615 return -ERANGE;
11616
11617 /*
11618 * If the delta tsc can't fit in the 32 bit after the multi shift,
11619 * we can't use the preemption timer.
11620 * It's possible that it fits on later vmentries, but checking
11621 * on every vmentry is costly so we just use an hrtimer.
11622 */
11623 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11624 return -ERANGE;
11625
11626 vmx->hv_deadline_tsc = tscl + delta_tsc;
11627 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11628 PIN_BASED_VMX_PREEMPTION_TIMER);
c8533544
WL
11629
11630 return delta_tsc == 0;
64672c95
YJ
11631}
11632
11633static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11634{
11635 struct vcpu_vmx *vmx = to_vmx(vcpu);
11636 vmx->hv_deadline_tsc = -1;
11637 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11638 PIN_BASED_VMX_PREEMPTION_TIMER);
11639}
11640#endif
11641
48d89b92 11642static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 11643{
b4a2d31d
RK
11644 if (ple_gap)
11645 shrink_ple_window(vcpu);
ae97a3b8
RK
11646}
11647
843e4330
KH
11648static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11649 struct kvm_memory_slot *slot)
11650{
11651 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11652 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11653}
11654
11655static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11656 struct kvm_memory_slot *slot)
11657{
11658 kvm_mmu_slot_set_dirty(kvm, slot);
11659}
11660
11661static void vmx_flush_log_dirty(struct kvm *kvm)
11662{
11663 kvm_flush_pml_buffers(kvm);
11664}
11665
c5f983f6
BD
11666static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11667{
11668 struct vmcs12 *vmcs12;
11669 struct vcpu_vmx *vmx = to_vmx(vcpu);
11670 gpa_t gpa;
11671 struct page *page = NULL;
11672 u64 *pml_address;
11673
11674 if (is_guest_mode(vcpu)) {
11675 WARN_ON_ONCE(vmx->nested.pml_full);
11676
11677 /*
11678 * Check if PML is enabled for the nested guest.
11679 * Whether eptp bit 6 is set is already checked
11680 * as part of A/D emulation.
11681 */
11682 vmcs12 = get_vmcs12(vcpu);
11683 if (!nested_cpu_has_pml(vmcs12))
11684 return 0;
11685
4769886b 11686 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
c5f983f6
BD
11687 vmx->nested.pml_full = true;
11688 return 1;
11689 }
11690
11691 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11692
5e2f30b7
DH
11693 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11694 if (is_error_page(page))
c5f983f6
BD
11695 return 0;
11696
11697 pml_address = kmap(page);
11698 pml_address[vmcs12->guest_pml_index--] = gpa;
11699 kunmap(page);
53a70daf 11700 kvm_release_page_clean(page);
c5f983f6
BD
11701 }
11702
11703 return 0;
11704}
11705
843e4330
KH
11706static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11707 struct kvm_memory_slot *memslot,
11708 gfn_t offset, unsigned long mask)
11709{
11710 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11711}
11712
cd39e117
PB
11713static void __pi_post_block(struct kvm_vcpu *vcpu)
11714{
11715 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11716 struct pi_desc old, new;
11717 unsigned int dest;
cd39e117
PB
11718
11719 do {
11720 old.control = new.control = pi_desc->control;
8b306e2f
PB
11721 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
11722 "Wakeup handler not enabled while the VCPU is blocked\n");
cd39e117
PB
11723
11724 dest = cpu_physical_id(vcpu->cpu);
11725
11726 if (x2apic_enabled())
11727 new.ndst = dest;
11728 else
11729 new.ndst = (dest << 8) & 0xFF00;
11730
cd39e117
PB
11731 /* set 'NV' to 'notification vector' */
11732 new.nv = POSTED_INTR_VECTOR;
c0a1666b
PB
11733 } while (cmpxchg64(&pi_desc->control, old.control,
11734 new.control) != old.control);
cd39e117 11735
8b306e2f
PB
11736 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
11737 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117 11738 list_del(&vcpu->blocked_vcpu_list);
8b306e2f 11739 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117
PB
11740 vcpu->pre_pcpu = -1;
11741 }
11742}
11743
bf9f6ac8
FW
11744/*
11745 * This routine does the following things for vCPU which is going
11746 * to be blocked if VT-d PI is enabled.
11747 * - Store the vCPU to the wakeup list, so when interrupts happen
11748 * we can find the right vCPU to wake up.
11749 * - Change the Posted-interrupt descriptor as below:
11750 * 'NDST' <-- vcpu->pre_pcpu
11751 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11752 * - If 'ON' is set during this process, which means at least one
11753 * interrupt is posted for this vCPU, we cannot block it, in
11754 * this case, return 1, otherwise, return 0.
11755 *
11756 */
bc22512b 11757static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8 11758{
bf9f6ac8
FW
11759 unsigned int dest;
11760 struct pi_desc old, new;
11761 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11762
11763 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11764 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11765 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11766 return 0;
11767
8b306e2f
PB
11768 WARN_ON(irqs_disabled());
11769 local_irq_disable();
11770 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
11771 vcpu->pre_pcpu = vcpu->cpu;
11772 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11773 list_add_tail(&vcpu->blocked_vcpu_list,
11774 &per_cpu(blocked_vcpu_on_cpu,
11775 vcpu->pre_pcpu));
11776 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11777 }
bf9f6ac8
FW
11778
11779 do {
11780 old.control = new.control = pi_desc->control;
11781
bf9f6ac8
FW
11782 WARN((pi_desc->sn == 1),
11783 "Warning: SN field of posted-interrupts "
11784 "is set before blocking\n");
11785
11786 /*
11787 * Since vCPU can be preempted during this process,
11788 * vcpu->cpu could be different with pre_pcpu, we
11789 * need to set pre_pcpu as the destination of wakeup
11790 * notification event, then we can find the right vCPU
11791 * to wakeup in wakeup handler if interrupts happen
11792 * when the vCPU is in blocked state.
11793 */
11794 dest = cpu_physical_id(vcpu->pre_pcpu);
11795
11796 if (x2apic_enabled())
11797 new.ndst = dest;
11798 else
11799 new.ndst = (dest << 8) & 0xFF00;
11800
11801 /* set 'NV' to 'wakeup vector' */
11802 new.nv = POSTED_INTR_WAKEUP_VECTOR;
c0a1666b
PB
11803 } while (cmpxchg64(&pi_desc->control, old.control,
11804 new.control) != old.control);
bf9f6ac8 11805
8b306e2f
PB
11806 /* We should not block the vCPU if an interrupt is posted for it. */
11807 if (pi_test_on(pi_desc) == 1)
11808 __pi_post_block(vcpu);
11809
11810 local_irq_enable();
11811 return (vcpu->pre_pcpu == -1);
bf9f6ac8
FW
11812}
11813
bc22512b
YJ
11814static int vmx_pre_block(struct kvm_vcpu *vcpu)
11815{
11816 if (pi_pre_block(vcpu))
11817 return 1;
11818
64672c95
YJ
11819 if (kvm_lapic_hv_timer_in_use(vcpu))
11820 kvm_lapic_switch_to_sw_timer(vcpu);
11821
bc22512b
YJ
11822 return 0;
11823}
11824
11825static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8 11826{
8b306e2f 11827 if (vcpu->pre_pcpu == -1)
bf9f6ac8
FW
11828 return;
11829
8b306e2f
PB
11830 WARN_ON(irqs_disabled());
11831 local_irq_disable();
cd39e117 11832 __pi_post_block(vcpu);
8b306e2f 11833 local_irq_enable();
bf9f6ac8
FW
11834}
11835
bc22512b
YJ
11836static void vmx_post_block(struct kvm_vcpu *vcpu)
11837{
64672c95
YJ
11838 if (kvm_x86_ops->set_hv_timer)
11839 kvm_lapic_switch_to_hv_timer(vcpu);
11840
bc22512b
YJ
11841 pi_post_block(vcpu);
11842}
11843
efc64404
FW
11844/*
11845 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11846 *
11847 * @kvm: kvm
11848 * @host_irq: host irq of the interrupt
11849 * @guest_irq: gsi of the interrupt
11850 * @set: set or unset PI
11851 * returns 0 on success, < 0 on failure
11852 */
11853static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11854 uint32_t guest_irq, bool set)
11855{
11856 struct kvm_kernel_irq_routing_entry *e;
11857 struct kvm_irq_routing_table *irq_rt;
11858 struct kvm_lapic_irq irq;
11859 struct kvm_vcpu *vcpu;
11860 struct vcpu_data vcpu_info;
3a8b0677 11861 int idx, ret = 0;
efc64404
FW
11862
11863 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
11864 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11865 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
11866 return 0;
11867
11868 idx = srcu_read_lock(&kvm->irq_srcu);
11869 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
3a8b0677
JS
11870 if (guest_irq >= irq_rt->nr_rt_entries ||
11871 hlist_empty(&irq_rt->map[guest_irq])) {
11872 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11873 guest_irq, irq_rt->nr_rt_entries);
11874 goto out;
11875 }
efc64404
FW
11876
11877 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11878 if (e->type != KVM_IRQ_ROUTING_MSI)
11879 continue;
11880 /*
11881 * VT-d PI cannot support posting multicast/broadcast
11882 * interrupts to a vCPU, we still use interrupt remapping
11883 * for these kind of interrupts.
11884 *
11885 * For lowest-priority interrupts, we only support
11886 * those with single CPU as the destination, e.g. user
11887 * configures the interrupts via /proc/irq or uses
11888 * irqbalance to make the interrupts single-CPU.
11889 *
11890 * We will support full lowest-priority interrupt later.
11891 */
11892
37131313 11893 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
11894 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11895 /*
11896 * Make sure the IRTE is in remapped mode if
11897 * we don't handle it in posted mode.
11898 */
11899 ret = irq_set_vcpu_affinity(host_irq, NULL);
11900 if (ret < 0) {
11901 printk(KERN_INFO
11902 "failed to back to remapped mode, irq: %u\n",
11903 host_irq);
11904 goto out;
11905 }
11906
efc64404 11907 continue;
23a1c257 11908 }
efc64404
FW
11909
11910 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11911 vcpu_info.vector = irq.vector;
11912
b6ce9780 11913 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
11914 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11915
11916 if (set)
11917 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
dc91f2eb 11918 else
efc64404 11919 ret = irq_set_vcpu_affinity(host_irq, NULL);
efc64404
FW
11920
11921 if (ret < 0) {
11922 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11923 __func__);
11924 goto out;
11925 }
11926 }
11927
11928 ret = 0;
11929out:
11930 srcu_read_unlock(&kvm->irq_srcu, idx);
11931 return ret;
11932}
11933
c45dcc71
AR
11934static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11935{
11936 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11937 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11938 FEATURE_CONTROL_LMCE;
11939 else
11940 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11941 ~FEATURE_CONTROL_LMCE;
11942}
11943
404f6aac 11944static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
11945 .cpu_has_kvm_support = cpu_has_kvm_support,
11946 .disabled_by_bios = vmx_disabled_by_bios,
11947 .hardware_setup = hardware_setup,
11948 .hardware_unsetup = hardware_unsetup,
002c7f7c 11949 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
11950 .hardware_enable = hardware_enable,
11951 .hardware_disable = hardware_disable,
04547156 11952 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 11953 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
11954
11955 .vcpu_create = vmx_create_vcpu,
11956 .vcpu_free = vmx_free_vcpu,
04d2cc77 11957 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 11958
04d2cc77 11959 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
11960 .vcpu_load = vmx_vcpu_load,
11961 .vcpu_put = vmx_vcpu_put,
11962
a96036b8 11963 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
11964 .get_msr = vmx_get_msr,
11965 .set_msr = vmx_set_msr,
11966 .get_segment_base = vmx_get_segment_base,
11967 .get_segment = vmx_get_segment,
11968 .set_segment = vmx_set_segment,
2e4d2653 11969 .get_cpl = vmx_get_cpl,
6aa8b732 11970 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 11971 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 11972 .decache_cr3 = vmx_decache_cr3,
25c4c276 11973 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 11974 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
11975 .set_cr3 = vmx_set_cr3,
11976 .set_cr4 = vmx_set_cr4,
6aa8b732 11977 .set_efer = vmx_set_efer,
6aa8b732
AK
11978 .get_idt = vmx_get_idt,
11979 .set_idt = vmx_set_idt,
11980 .get_gdt = vmx_get_gdt,
11981 .set_gdt = vmx_set_gdt,
73aaf249
JK
11982 .get_dr6 = vmx_get_dr6,
11983 .set_dr6 = vmx_set_dr6,
020df079 11984 .set_dr7 = vmx_set_dr7,
81908bf4 11985 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 11986 .cache_reg = vmx_cache_reg,
6aa8b732
AK
11987 .get_rflags = vmx_get_rflags,
11988 .set_rflags = vmx_set_rflags,
be94f6b7 11989
6aa8b732 11990 .tlb_flush = vmx_flush_tlb,
6aa8b732 11991
6aa8b732 11992 .run = vmx_vcpu_run,
6062d012 11993 .handle_exit = vmx_handle_exit,
6aa8b732 11994 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
11995 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11996 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 11997 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 11998 .set_irq = vmx_inject_irq,
95ba8273 11999 .set_nmi = vmx_inject_nmi,
298101da 12000 .queue_exception = vmx_queue_exception,
b463a6f7 12001 .cancel_injection = vmx_cancel_injection,
78646121 12002 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 12003 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
12004 .get_nmi_mask = vmx_get_nmi_mask,
12005 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
12006 .enable_nmi_window = enable_nmi_window,
12007 .enable_irq_window = enable_irq_window,
12008 .update_cr8_intercept = update_cr8_intercept,
8d14695f 12009 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 12010 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
12011 .get_enable_apicv = vmx_get_enable_apicv,
12012 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 12013 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 12014 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
12015 .hwapic_irr_update = vmx_hwapic_irr_update,
12016 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
12017 .sync_pir_to_irr = vmx_sync_pir_to_irr,
12018 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 12019
cbc94022 12020 .set_tss_addr = vmx_set_tss_addr,
67253af5 12021 .get_tdp_level = get_ept_level,
4b12f0de 12022 .get_mt_mask = vmx_get_mt_mask,
229456fc 12023
586f9607 12024 .get_exit_info = vmx_get_exit_info,
586f9607 12025
17cc3935 12026 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
12027
12028 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
12029
12030 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 12031 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
12032
12033 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
12034
12035 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
12036
12037 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
12038
12039 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
12040
12041 .check_intercept = vmx_check_intercept,
a547c6db 12042 .handle_external_intr = vmx_handle_external_intr,
da8999d3 12043 .mpx_supported = vmx_mpx_supported,
55412b2e 12044 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
12045
12046 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
12047
12048 .sched_in = vmx_sched_in,
843e4330
KH
12049
12050 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12051 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12052 .flush_log_dirty = vmx_flush_log_dirty,
12053 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
c5f983f6 12054 .write_log_dirty = vmx_write_pml_buffer,
25462f7f 12055
bf9f6ac8
FW
12056 .pre_block = vmx_pre_block,
12057 .post_block = vmx_post_block,
12058
25462f7f 12059 .pmu_ops = &intel_pmu_ops,
efc64404
FW
12060
12061 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
12062
12063#ifdef CONFIG_X86_64
12064 .set_hv_timer = vmx_set_hv_timer,
12065 .cancel_hv_timer = vmx_cancel_hv_timer,
12066#endif
c45dcc71
AR
12067
12068 .setup_mce = vmx_setup_mce,
6aa8b732
AK
12069};
12070
12071static int __init vmx_init(void)
12072{
34a1cd60
TC
12073 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12074 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 12075 if (r)
34a1cd60 12076 return r;
25c5f225 12077
2965faa5 12078#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
12079 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12080 crash_vmclear_local_loaded_vmcss);
12081#endif
12082
fdef3ad1 12083 return 0;
6aa8b732
AK
12084}
12085
12086static void __exit vmx_exit(void)
12087{
2965faa5 12088#ifdef CONFIG_KEXEC_CORE
3b63a43f 12089 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
12090 synchronize_rcu();
12091#endif
12092
cb498ea2 12093 kvm_exit();
6aa8b732
AK
12094}
12095
12096module_init(vmx_init)
12097module_exit(vmx_exit)