]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: Use pointer to backing_dev_info from request_queue
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
bd166ef1 42#include "blk-mq-sched.h"
87760e5e 43#include "blk-wbt.h"
8324aa91 44
d07335e5 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 48EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 49EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 50
a73f730d
TH
51DEFINE_IDA(blk_queue_ida);
52
1da177e4
LT
53/*
54 * For the allocated request tables
55 */
d674d414 56struct kmem_cache *request_cachep;
1da177e4
LT
57
58/*
59 * For queue allocation
60 */
6728cb0e 61struct kmem_cache *blk_requestq_cachep;
1da177e4 62
1da177e4
LT
63/*
64 * Controlling structure to kblockd
65 */
ff856bad 66static struct workqueue_struct *kblockd_workqueue;
1da177e4 67
d40f75a0
TH
68static void blk_clear_congested(struct request_list *rl, int sync)
69{
d40f75a0
TH
70#ifdef CONFIG_CGROUP_WRITEBACK
71 clear_wb_congested(rl->blkg->wb_congested, sync);
72#else
482cf79c
TH
73 /*
74 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
75 * flip its congestion state for events on other blkcgs.
76 */
77 if (rl == &rl->q->root_rl)
dc3b17cc 78 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
79#endif
80}
81
82static void blk_set_congested(struct request_list *rl, int sync)
83{
d40f75a0
TH
84#ifdef CONFIG_CGROUP_WRITEBACK
85 set_wb_congested(rl->blkg->wb_congested, sync);
86#else
482cf79c
TH
87 /* see blk_clear_congested() */
88 if (rl == &rl->q->root_rl)
dc3b17cc 89 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
90#endif
91}
92
8324aa91 93void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
94{
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106}
107
1da177e4
LT
108/**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
113 * backing_dev_info. This function can only be called if @bdev is opened
114 * and the return value is never NULL.
1da177e4
LT
115 */
116struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117{
165125e1 118 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 119
dc3b17cc 120 return q->backing_dev_info;
1da177e4 121}
1da177e4
LT
122EXPORT_SYMBOL(blk_get_backing_dev_info);
123
2a4aa30c 124void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 125{
1afb20f3
FT
126 memset(rq, 0, sizeof(*rq));
127
1da177e4 128 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 129 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 130 rq->cpu = -1;
63a71386 131 rq->q = q;
a2dec7b3 132 rq->__sector = (sector_t) -1;
2e662b65
JA
133 INIT_HLIST_NODE(&rq->hash);
134 RB_CLEAR_NODE(&rq->rb_node);
63a71386 135 rq->tag = -1;
bd166ef1 136 rq->internal_tag = -1;
b243ddcb 137 rq->start_time = jiffies;
9195291e 138 set_start_time_ns(rq);
09e099d4 139 rq->part = NULL;
1da177e4 140}
2a4aa30c 141EXPORT_SYMBOL(blk_rq_init);
1da177e4 142
5bb23a68
N
143static void req_bio_endio(struct request *rq, struct bio *bio,
144 unsigned int nbytes, int error)
1da177e4 145{
78d8e58a 146 if (error)
4246a0b6 147 bio->bi_error = error;
797e7dbb 148
e8064021 149 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 150 bio_set_flag(bio, BIO_QUIET);
08bafc03 151
f79ea416 152 bio_advance(bio, nbytes);
7ba1ba12 153
143a87f4 154 /* don't actually finish bio if it's part of flush sequence */
e8064021 155 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 156 bio_endio(bio);
1da177e4 157}
1da177e4 158
1da177e4
LT
159void blk_dump_rq_flags(struct request *rq, char *msg)
160{
aebf526b
CH
161 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
162 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 163 (unsigned long long) rq->cmd_flags);
1da177e4 164
83096ebf
TH
165 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
166 (unsigned long long)blk_rq_pos(rq),
167 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
168 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
169 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 170}
1da177e4
LT
171EXPORT_SYMBOL(blk_dump_rq_flags);
172
3cca6dc1 173static void blk_delay_work(struct work_struct *work)
1da177e4 174{
3cca6dc1 175 struct request_queue *q;
1da177e4 176
3cca6dc1
JA
177 q = container_of(work, struct request_queue, delay_work.work);
178 spin_lock_irq(q->queue_lock);
24ecfbe2 179 __blk_run_queue(q);
3cca6dc1 180 spin_unlock_irq(q->queue_lock);
1da177e4 181}
1da177e4
LT
182
183/**
3cca6dc1
JA
184 * blk_delay_queue - restart queueing after defined interval
185 * @q: The &struct request_queue in question
186 * @msecs: Delay in msecs
1da177e4
LT
187 *
188 * Description:
3cca6dc1
JA
189 * Sometimes queueing needs to be postponed for a little while, to allow
190 * resources to come back. This function will make sure that queueing is
70460571 191 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
192 */
193void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 194{
70460571
BVA
195 if (likely(!blk_queue_dead(q)))
196 queue_delayed_work(kblockd_workqueue, &q->delay_work,
197 msecs_to_jiffies(msecs));
2ad8b1ef 198}
3cca6dc1 199EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 200
21491412
JA
201/**
202 * blk_start_queue_async - asynchronously restart a previously stopped queue
203 * @q: The &struct request_queue in question
204 *
205 * Description:
206 * blk_start_queue_async() will clear the stop flag on the queue, and
207 * ensure that the request_fn for the queue is run from an async
208 * context.
209 **/
210void blk_start_queue_async(struct request_queue *q)
211{
212 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
213 blk_run_queue_async(q);
214}
215EXPORT_SYMBOL(blk_start_queue_async);
216
1da177e4
LT
217/**
218 * blk_start_queue - restart a previously stopped queue
165125e1 219 * @q: The &struct request_queue in question
1da177e4
LT
220 *
221 * Description:
222 * blk_start_queue() will clear the stop flag on the queue, and call
223 * the request_fn for the queue if it was in a stopped state when
224 * entered. Also see blk_stop_queue(). Queue lock must be held.
225 **/
165125e1 226void blk_start_queue(struct request_queue *q)
1da177e4 227{
a038e253
PBG
228 WARN_ON(!irqs_disabled());
229
75ad23bc 230 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 231 __blk_run_queue(q);
1da177e4 232}
1da177e4
LT
233EXPORT_SYMBOL(blk_start_queue);
234
235/**
236 * blk_stop_queue - stop a queue
165125e1 237 * @q: The &struct request_queue in question
1da177e4
LT
238 *
239 * Description:
240 * The Linux block layer assumes that a block driver will consume all
241 * entries on the request queue when the request_fn strategy is called.
242 * Often this will not happen, because of hardware limitations (queue
243 * depth settings). If a device driver gets a 'queue full' response,
244 * or if it simply chooses not to queue more I/O at one point, it can
245 * call this function to prevent the request_fn from being called until
246 * the driver has signalled it's ready to go again. This happens by calling
247 * blk_start_queue() to restart queue operations. Queue lock must be held.
248 **/
165125e1 249void blk_stop_queue(struct request_queue *q)
1da177e4 250{
136b5721 251 cancel_delayed_work(&q->delay_work);
75ad23bc 252 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
253}
254EXPORT_SYMBOL(blk_stop_queue);
255
256/**
257 * blk_sync_queue - cancel any pending callbacks on a queue
258 * @q: the queue
259 *
260 * Description:
261 * The block layer may perform asynchronous callback activity
262 * on a queue, such as calling the unplug function after a timeout.
263 * A block device may call blk_sync_queue to ensure that any
264 * such activity is cancelled, thus allowing it to release resources
59c51591 265 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
266 * that its ->make_request_fn will not re-add plugging prior to calling
267 * this function.
268 *
da527770 269 * This function does not cancel any asynchronous activity arising
da3dae54 270 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 271 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 272 *
1da177e4
LT
273 */
274void blk_sync_queue(struct request_queue *q)
275{
70ed28b9 276 del_timer_sync(&q->timeout);
f04c1fe7
ML
277
278 if (q->mq_ops) {
279 struct blk_mq_hw_ctx *hctx;
280 int i;
281
70f4db63 282 queue_for_each_hw_ctx(q, hctx, i) {
27489a3c 283 cancel_work_sync(&hctx->run_work);
70f4db63
CH
284 cancel_delayed_work_sync(&hctx->delay_work);
285 }
f04c1fe7
ML
286 } else {
287 cancel_delayed_work_sync(&q->delay_work);
288 }
1da177e4
LT
289}
290EXPORT_SYMBOL(blk_sync_queue);
291
c246e80d
BVA
292/**
293 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
294 * @q: The queue to run
295 *
296 * Description:
297 * Invoke request handling on a queue if there are any pending requests.
298 * May be used to restart request handling after a request has completed.
299 * This variant runs the queue whether or not the queue has been
300 * stopped. Must be called with the queue lock held and interrupts
301 * disabled. See also @blk_run_queue.
302 */
303inline void __blk_run_queue_uncond(struct request_queue *q)
304{
305 if (unlikely(blk_queue_dead(q)))
306 return;
307
24faf6f6
BVA
308 /*
309 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
310 * the queue lock internally. As a result multiple threads may be
311 * running such a request function concurrently. Keep track of the
312 * number of active request_fn invocations such that blk_drain_queue()
313 * can wait until all these request_fn calls have finished.
314 */
315 q->request_fn_active++;
c246e80d 316 q->request_fn(q);
24faf6f6 317 q->request_fn_active--;
c246e80d 318}
a7928c15 319EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 320
1da177e4 321/**
80a4b58e 322 * __blk_run_queue - run a single device queue
1da177e4 323 * @q: The queue to run
80a4b58e
JA
324 *
325 * Description:
326 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 327 * held and interrupts disabled.
1da177e4 328 */
24ecfbe2 329void __blk_run_queue(struct request_queue *q)
1da177e4 330{
a538cd03
TH
331 if (unlikely(blk_queue_stopped(q)))
332 return;
333
c246e80d 334 __blk_run_queue_uncond(q);
75ad23bc
NP
335}
336EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 337
24ecfbe2
CH
338/**
339 * blk_run_queue_async - run a single device queue in workqueue context
340 * @q: The queue to run
341 *
342 * Description:
343 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 344 * of us. The caller must hold the queue lock.
24ecfbe2
CH
345 */
346void blk_run_queue_async(struct request_queue *q)
347{
70460571 348 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 349 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 350}
c21e6beb 351EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 352
75ad23bc
NP
353/**
354 * blk_run_queue - run a single device queue
355 * @q: The queue to run
80a4b58e
JA
356 *
357 * Description:
358 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 359 * May be used to restart queueing when a request has completed.
75ad23bc
NP
360 */
361void blk_run_queue(struct request_queue *q)
362{
363 unsigned long flags;
364
365 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 366 __blk_run_queue(q);
1da177e4
LT
367 spin_unlock_irqrestore(q->queue_lock, flags);
368}
369EXPORT_SYMBOL(blk_run_queue);
370
165125e1 371void blk_put_queue(struct request_queue *q)
483f4afc
AV
372{
373 kobject_put(&q->kobj);
374}
d86e0e83 375EXPORT_SYMBOL(blk_put_queue);
483f4afc 376
e3c78ca5 377/**
807592a4 378 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 379 * @q: queue to drain
c9a929dd 380 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 381 *
c9a929dd
TH
382 * Drain requests from @q. If @drain_all is set, all requests are drained.
383 * If not, only ELVPRIV requests are drained. The caller is responsible
384 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 385 */
807592a4
BVA
386static void __blk_drain_queue(struct request_queue *q, bool drain_all)
387 __releases(q->queue_lock)
388 __acquires(q->queue_lock)
e3c78ca5 389{
458f27a9
AH
390 int i;
391
807592a4
BVA
392 lockdep_assert_held(q->queue_lock);
393
e3c78ca5 394 while (true) {
481a7d64 395 bool drain = false;
e3c78ca5 396
b855b04a
TH
397 /*
398 * The caller might be trying to drain @q before its
399 * elevator is initialized.
400 */
401 if (q->elevator)
402 elv_drain_elevator(q);
403
5efd6113 404 blkcg_drain_queue(q);
e3c78ca5 405
4eabc941
TH
406 /*
407 * This function might be called on a queue which failed
b855b04a
TH
408 * driver init after queue creation or is not yet fully
409 * active yet. Some drivers (e.g. fd and loop) get unhappy
410 * in such cases. Kick queue iff dispatch queue has
411 * something on it and @q has request_fn set.
4eabc941 412 */
b855b04a 413 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 414 __blk_run_queue(q);
c9a929dd 415
8a5ecdd4 416 drain |= q->nr_rqs_elvpriv;
24faf6f6 417 drain |= q->request_fn_active;
481a7d64
TH
418
419 /*
420 * Unfortunately, requests are queued at and tracked from
421 * multiple places and there's no single counter which can
422 * be drained. Check all the queues and counters.
423 */
424 if (drain_all) {
e97c293c 425 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
426 drain |= !list_empty(&q->queue_head);
427 for (i = 0; i < 2; i++) {
8a5ecdd4 428 drain |= q->nr_rqs[i];
481a7d64 429 drain |= q->in_flight[i];
7c94e1c1
ML
430 if (fq)
431 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
432 }
433 }
e3c78ca5 434
481a7d64 435 if (!drain)
e3c78ca5 436 break;
807592a4
BVA
437
438 spin_unlock_irq(q->queue_lock);
439
e3c78ca5 440 msleep(10);
807592a4
BVA
441
442 spin_lock_irq(q->queue_lock);
e3c78ca5 443 }
458f27a9
AH
444
445 /*
446 * With queue marked dead, any woken up waiter will fail the
447 * allocation path, so the wakeup chaining is lost and we're
448 * left with hung waiters. We need to wake up those waiters.
449 */
450 if (q->request_fn) {
a051661c
TH
451 struct request_list *rl;
452
a051661c
TH
453 blk_queue_for_each_rl(rl, q)
454 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
455 wake_up_all(&rl->wait[i]);
458f27a9 456 }
e3c78ca5
TH
457}
458
d732580b
TH
459/**
460 * blk_queue_bypass_start - enter queue bypass mode
461 * @q: queue of interest
462 *
463 * In bypass mode, only the dispatch FIFO queue of @q is used. This
464 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 465 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
466 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
467 * inside queue or RCU read lock.
d732580b
TH
468 */
469void blk_queue_bypass_start(struct request_queue *q)
470{
471 spin_lock_irq(q->queue_lock);
776687bc 472 q->bypass_depth++;
d732580b
TH
473 queue_flag_set(QUEUE_FLAG_BYPASS, q);
474 spin_unlock_irq(q->queue_lock);
475
776687bc
TH
476 /*
477 * Queues start drained. Skip actual draining till init is
478 * complete. This avoids lenghty delays during queue init which
479 * can happen many times during boot.
480 */
481 if (blk_queue_init_done(q)) {
807592a4
BVA
482 spin_lock_irq(q->queue_lock);
483 __blk_drain_queue(q, false);
484 spin_unlock_irq(q->queue_lock);
485
b82d4b19
TH
486 /* ensure blk_queue_bypass() is %true inside RCU read lock */
487 synchronize_rcu();
488 }
d732580b
TH
489}
490EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
491
492/**
493 * blk_queue_bypass_end - leave queue bypass mode
494 * @q: queue of interest
495 *
496 * Leave bypass mode and restore the normal queueing behavior.
497 */
498void blk_queue_bypass_end(struct request_queue *q)
499{
500 spin_lock_irq(q->queue_lock);
501 if (!--q->bypass_depth)
502 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
503 WARN_ON_ONCE(q->bypass_depth < 0);
504 spin_unlock_irq(q->queue_lock);
505}
506EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
507
aed3ea94
JA
508void blk_set_queue_dying(struct request_queue *q)
509{
1b856086
BVA
510 spin_lock_irq(q->queue_lock);
511 queue_flag_set(QUEUE_FLAG_DYING, q);
512 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
513
514 if (q->mq_ops)
515 blk_mq_wake_waiters(q);
516 else {
517 struct request_list *rl;
518
519 blk_queue_for_each_rl(rl, q) {
520 if (rl->rq_pool) {
521 wake_up(&rl->wait[BLK_RW_SYNC]);
522 wake_up(&rl->wait[BLK_RW_ASYNC]);
523 }
524 }
525 }
526}
527EXPORT_SYMBOL_GPL(blk_set_queue_dying);
528
c9a929dd
TH
529/**
530 * blk_cleanup_queue - shutdown a request queue
531 * @q: request queue to shutdown
532 *
c246e80d
BVA
533 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
534 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 535 */
6728cb0e 536void blk_cleanup_queue(struct request_queue *q)
483f4afc 537{
c9a929dd 538 spinlock_t *lock = q->queue_lock;
e3335de9 539
3f3299d5 540 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 541 mutex_lock(&q->sysfs_lock);
aed3ea94 542 blk_set_queue_dying(q);
c9a929dd 543 spin_lock_irq(lock);
6ecf23af 544
80fd9979 545 /*
3f3299d5 546 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
547 * that, unlike blk_queue_bypass_start(), we aren't performing
548 * synchronize_rcu() after entering bypass mode to avoid the delay
549 * as some drivers create and destroy a lot of queues while
550 * probing. This is still safe because blk_release_queue() will be
551 * called only after the queue refcnt drops to zero and nothing,
552 * RCU or not, would be traversing the queue by then.
553 */
6ecf23af
TH
554 q->bypass_depth++;
555 queue_flag_set(QUEUE_FLAG_BYPASS, q);
556
c9a929dd
TH
557 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
558 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 559 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
560 spin_unlock_irq(lock);
561 mutex_unlock(&q->sysfs_lock);
562
c246e80d
BVA
563 /*
564 * Drain all requests queued before DYING marking. Set DEAD flag to
565 * prevent that q->request_fn() gets invoked after draining finished.
566 */
3ef28e83
DW
567 blk_freeze_queue(q);
568 spin_lock_irq(lock);
569 if (!q->mq_ops)
43a5e4e2 570 __blk_drain_queue(q, true);
c246e80d 571 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 572 spin_unlock_irq(lock);
c9a929dd 573
5a48fc14
DW
574 /* for synchronous bio-based driver finish in-flight integrity i/o */
575 blk_flush_integrity();
576
c9a929dd 577 /* @q won't process any more request, flush async actions */
dc3b17cc 578 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
579 blk_sync_queue(q);
580
45a9c9d9
BVA
581 if (q->mq_ops)
582 blk_mq_free_queue(q);
3ef28e83 583 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 584
5e5cfac0
AH
585 spin_lock_irq(lock);
586 if (q->queue_lock != &q->__queue_lock)
587 q->queue_lock = &q->__queue_lock;
588 spin_unlock_irq(lock);
589
dc3b17cc 590 bdi_unregister(q->backing_dev_info);
6cd18e71 591
c9a929dd 592 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
593 blk_put_queue(q);
594}
1da177e4
LT
595EXPORT_SYMBOL(blk_cleanup_queue);
596
271508db 597/* Allocate memory local to the request queue */
6d247d7f 598static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 599{
6d247d7f
CH
600 struct request_queue *q = data;
601
602 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
603}
604
6d247d7f 605static void free_request_simple(void *element, void *data)
271508db
DR
606{
607 kmem_cache_free(request_cachep, element);
608}
609
6d247d7f
CH
610static void *alloc_request_size(gfp_t gfp_mask, void *data)
611{
612 struct request_queue *q = data;
613 struct request *rq;
614
615 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
616 q->node);
617 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
618 kfree(rq);
619 rq = NULL;
620 }
621 return rq;
622}
623
624static void free_request_size(void *element, void *data)
625{
626 struct request_queue *q = data;
627
628 if (q->exit_rq_fn)
629 q->exit_rq_fn(q, element);
630 kfree(element);
631}
632
5b788ce3
TH
633int blk_init_rl(struct request_list *rl, struct request_queue *q,
634 gfp_t gfp_mask)
1da177e4 635{
1abec4fd
MS
636 if (unlikely(rl->rq_pool))
637 return 0;
638
5b788ce3 639 rl->q = q;
1faa16d2
JA
640 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
641 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
642 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
643 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 644
6d247d7f
CH
645 if (q->cmd_size) {
646 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
647 alloc_request_size, free_request_size,
648 q, gfp_mask, q->node);
649 } else {
650 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
651 alloc_request_simple, free_request_simple,
652 q, gfp_mask, q->node);
653 }
1da177e4
LT
654 if (!rl->rq_pool)
655 return -ENOMEM;
656
657 return 0;
658}
659
5b788ce3
TH
660void blk_exit_rl(struct request_list *rl)
661{
662 if (rl->rq_pool)
663 mempool_destroy(rl->rq_pool);
664}
665
165125e1 666struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 667{
c304a51b 668 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
669}
670EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 671
6f3b0e8b 672int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
673{
674 while (true) {
675 int ret;
676
677 if (percpu_ref_tryget_live(&q->q_usage_counter))
678 return 0;
679
6f3b0e8b 680 if (nowait)
3ef28e83
DW
681 return -EBUSY;
682
683 ret = wait_event_interruptible(q->mq_freeze_wq,
684 !atomic_read(&q->mq_freeze_depth) ||
685 blk_queue_dying(q));
686 if (blk_queue_dying(q))
687 return -ENODEV;
688 if (ret)
689 return ret;
690 }
691}
692
693void blk_queue_exit(struct request_queue *q)
694{
695 percpu_ref_put(&q->q_usage_counter);
696}
697
698static void blk_queue_usage_counter_release(struct percpu_ref *ref)
699{
700 struct request_queue *q =
701 container_of(ref, struct request_queue, q_usage_counter);
702
703 wake_up_all(&q->mq_freeze_wq);
704}
705
287922eb
CH
706static void blk_rq_timed_out_timer(unsigned long data)
707{
708 struct request_queue *q = (struct request_queue *)data;
709
710 kblockd_schedule_work(&q->timeout_work);
711}
712
165125e1 713struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 714{
165125e1 715 struct request_queue *q;
e0bf68dd 716 int err;
1946089a 717
8324aa91 718 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 719 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
720 if (!q)
721 return NULL;
722
00380a40 723 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 724 if (q->id < 0)
3d2936f4 725 goto fail_q;
a73f730d 726
54efd50b
KO
727 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
728 if (!q->bio_split)
729 goto fail_id;
730
dc3b17cc
JK
731 q->backing_dev_info = &q->_backing_dev_info;
732 q->backing_dev_info->ra_pages =
09cbfeaf 733 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
734 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
735 q->backing_dev_info->name = "block";
5151412d 736 q->node = node_id;
0989a025 737
dc3b17cc 738 err = bdi_init(q->backing_dev_info);
a73f730d 739 if (err)
54efd50b 740 goto fail_split;
e0bf68dd 741
dc3b17cc 742 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 743 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 744 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 745 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 746 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 747 INIT_LIST_HEAD(&q->icq_list);
4eef3049 748#ifdef CONFIG_BLK_CGROUP
e8989fae 749 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 750#endif
3cca6dc1 751 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 752
8324aa91 753 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 754
483f4afc 755 mutex_init(&q->sysfs_lock);
e7e72bf6 756 spin_lock_init(&q->__queue_lock);
483f4afc 757
c94a96ac
VG
758 /*
759 * By default initialize queue_lock to internal lock and driver can
760 * override it later if need be.
761 */
762 q->queue_lock = &q->__queue_lock;
763
b82d4b19
TH
764 /*
765 * A queue starts its life with bypass turned on to avoid
766 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
767 * init. The initial bypass will be finished when the queue is
768 * registered by blk_register_queue().
b82d4b19
TH
769 */
770 q->bypass_depth = 1;
771 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
772
320ae51f
JA
773 init_waitqueue_head(&q->mq_freeze_wq);
774
3ef28e83
DW
775 /*
776 * Init percpu_ref in atomic mode so that it's faster to shutdown.
777 * See blk_register_queue() for details.
778 */
779 if (percpu_ref_init(&q->q_usage_counter,
780 blk_queue_usage_counter_release,
781 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 782 goto fail_bdi;
f51b802c 783
3ef28e83
DW
784 if (blkcg_init_queue(q))
785 goto fail_ref;
786
1da177e4 787 return q;
a73f730d 788
3ef28e83
DW
789fail_ref:
790 percpu_ref_exit(&q->q_usage_counter);
fff4996b 791fail_bdi:
dc3b17cc 792 bdi_destroy(q->backing_dev_info);
54efd50b
KO
793fail_split:
794 bioset_free(q->bio_split);
a73f730d
TH
795fail_id:
796 ida_simple_remove(&blk_queue_ida, q->id);
797fail_q:
798 kmem_cache_free(blk_requestq_cachep, q);
799 return NULL;
1da177e4 800}
1946089a 801EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
802
803/**
804 * blk_init_queue - prepare a request queue for use with a block device
805 * @rfn: The function to be called to process requests that have been
806 * placed on the queue.
807 * @lock: Request queue spin lock
808 *
809 * Description:
810 * If a block device wishes to use the standard request handling procedures,
811 * which sorts requests and coalesces adjacent requests, then it must
812 * call blk_init_queue(). The function @rfn will be called when there
813 * are requests on the queue that need to be processed. If the device
814 * supports plugging, then @rfn may not be called immediately when requests
815 * are available on the queue, but may be called at some time later instead.
816 * Plugged queues are generally unplugged when a buffer belonging to one
817 * of the requests on the queue is needed, or due to memory pressure.
818 *
819 * @rfn is not required, or even expected, to remove all requests off the
820 * queue, but only as many as it can handle at a time. If it does leave
821 * requests on the queue, it is responsible for arranging that the requests
822 * get dealt with eventually.
823 *
824 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
825 * request queue; this lock will be taken also from interrupt context, so irq
826 * disabling is needed for it.
1da177e4 827 *
710027a4 828 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
829 * it didn't succeed.
830 *
831 * Note:
832 * blk_init_queue() must be paired with a blk_cleanup_queue() call
833 * when the block device is deactivated (such as at module unload).
834 **/
1946089a 835
165125e1 836struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 837{
c304a51b 838 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
839}
840EXPORT_SYMBOL(blk_init_queue);
841
165125e1 842struct request_queue *
1946089a
CL
843blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
844{
5ea708d1 845 struct request_queue *q;
1da177e4 846
5ea708d1
CH
847 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
848 if (!q)
c86d1b8a
MS
849 return NULL;
850
5ea708d1
CH
851 q->request_fn = rfn;
852 if (lock)
853 q->queue_lock = lock;
854 if (blk_init_allocated_queue(q) < 0) {
855 blk_cleanup_queue(q);
856 return NULL;
857 }
18741986 858
7982e90c 859 return q;
01effb0d
MS
860}
861EXPORT_SYMBOL(blk_init_queue_node);
862
dece1635 863static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 864
1da177e4 865
5ea708d1
CH
866int blk_init_allocated_queue(struct request_queue *q)
867{
6d247d7f 868 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 869 if (!q->fq)
5ea708d1 870 return -ENOMEM;
7982e90c 871
6d247d7f
CH
872 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
873 goto out_free_flush_queue;
874
a051661c 875 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 876 goto out_exit_flush_rq;
1da177e4 877
287922eb 878 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 879 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 880
f3b144aa
JA
881 /*
882 * This also sets hw/phys segments, boundary and size
883 */
c20e8de2 884 blk_queue_make_request(q, blk_queue_bio);
1da177e4 885
44ec9542
AS
886 q->sg_reserved_size = INT_MAX;
887
eb1c160b
TS
888 /* Protect q->elevator from elevator_change */
889 mutex_lock(&q->sysfs_lock);
890
b82d4b19 891 /* init elevator */
eb1c160b
TS
892 if (elevator_init(q, NULL)) {
893 mutex_unlock(&q->sysfs_lock);
6d247d7f 894 goto out_exit_flush_rq;
eb1c160b
TS
895 }
896
897 mutex_unlock(&q->sysfs_lock);
5ea708d1 898 return 0;
708f04d2 899
6d247d7f
CH
900out_exit_flush_rq:
901 if (q->exit_rq_fn)
902 q->exit_rq_fn(q, q->fq->flush_rq);
903out_free_flush_queue:
ba483388 904 blk_free_flush_queue(q->fq);
87760e5e 905 wbt_exit(q);
5ea708d1 906 return -ENOMEM;
1da177e4 907}
5151412d 908EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 909
09ac46c4 910bool blk_get_queue(struct request_queue *q)
1da177e4 911{
3f3299d5 912 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
913 __blk_get_queue(q);
914 return true;
1da177e4
LT
915 }
916
09ac46c4 917 return false;
1da177e4 918}
d86e0e83 919EXPORT_SYMBOL(blk_get_queue);
1da177e4 920
5b788ce3 921static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 922{
e8064021 923 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 924 elv_put_request(rl->q, rq);
f1f8cc94 925 if (rq->elv.icq)
11a3122f 926 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
927 }
928
5b788ce3 929 mempool_free(rq, rl->rq_pool);
1da177e4
LT
930}
931
1da177e4
LT
932/*
933 * ioc_batching returns true if the ioc is a valid batching request and
934 * should be given priority access to a request.
935 */
165125e1 936static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
937{
938 if (!ioc)
939 return 0;
940
941 /*
942 * Make sure the process is able to allocate at least 1 request
943 * even if the batch times out, otherwise we could theoretically
944 * lose wakeups.
945 */
946 return ioc->nr_batch_requests == q->nr_batching ||
947 (ioc->nr_batch_requests > 0
948 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
949}
950
951/*
952 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
953 * will cause the process to be a "batcher" on all queues in the system. This
954 * is the behaviour we want though - once it gets a wakeup it should be given
955 * a nice run.
956 */
165125e1 957static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
958{
959 if (!ioc || ioc_batching(q, ioc))
960 return;
961
962 ioc->nr_batch_requests = q->nr_batching;
963 ioc->last_waited = jiffies;
964}
965
5b788ce3 966static void __freed_request(struct request_list *rl, int sync)
1da177e4 967{
5b788ce3 968 struct request_queue *q = rl->q;
1da177e4 969
d40f75a0
TH
970 if (rl->count[sync] < queue_congestion_off_threshold(q))
971 blk_clear_congested(rl, sync);
1da177e4 972
1faa16d2
JA
973 if (rl->count[sync] + 1 <= q->nr_requests) {
974 if (waitqueue_active(&rl->wait[sync]))
975 wake_up(&rl->wait[sync]);
1da177e4 976
5b788ce3 977 blk_clear_rl_full(rl, sync);
1da177e4
LT
978 }
979}
980
981/*
982 * A request has just been released. Account for it, update the full and
983 * congestion status, wake up any waiters. Called under q->queue_lock.
984 */
e8064021
CH
985static void freed_request(struct request_list *rl, bool sync,
986 req_flags_t rq_flags)
1da177e4 987{
5b788ce3 988 struct request_queue *q = rl->q;
1da177e4 989
8a5ecdd4 990 q->nr_rqs[sync]--;
1faa16d2 991 rl->count[sync]--;
e8064021 992 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 993 q->nr_rqs_elvpriv--;
1da177e4 994
5b788ce3 995 __freed_request(rl, sync);
1da177e4 996
1faa16d2 997 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 998 __freed_request(rl, sync ^ 1);
1da177e4
LT
999}
1000
e3a2b3f9
JA
1001int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1002{
1003 struct request_list *rl;
d40f75a0 1004 int on_thresh, off_thresh;
e3a2b3f9
JA
1005
1006 spin_lock_irq(q->queue_lock);
1007 q->nr_requests = nr;
1008 blk_queue_congestion_threshold(q);
d40f75a0
TH
1009 on_thresh = queue_congestion_on_threshold(q);
1010 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1011
d40f75a0
TH
1012 blk_queue_for_each_rl(rl, q) {
1013 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1014 blk_set_congested(rl, BLK_RW_SYNC);
1015 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1016 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1017
d40f75a0
TH
1018 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1019 blk_set_congested(rl, BLK_RW_ASYNC);
1020 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1021 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1022
e3a2b3f9
JA
1023 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1024 blk_set_rl_full(rl, BLK_RW_SYNC);
1025 } else {
1026 blk_clear_rl_full(rl, BLK_RW_SYNC);
1027 wake_up(&rl->wait[BLK_RW_SYNC]);
1028 }
1029
1030 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1031 blk_set_rl_full(rl, BLK_RW_ASYNC);
1032 } else {
1033 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1034 wake_up(&rl->wait[BLK_RW_ASYNC]);
1035 }
1036 }
1037
1038 spin_unlock_irq(q->queue_lock);
1039 return 0;
1040}
1041
da8303c6 1042/**
a06e05e6 1043 * __get_request - get a free request
5b788ce3 1044 * @rl: request list to allocate from
ef295ecf 1045 * @op: operation and flags
da8303c6
TH
1046 * @bio: bio to allocate request for (can be %NULL)
1047 * @gfp_mask: allocation mask
1048 *
1049 * Get a free request from @q. This function may fail under memory
1050 * pressure or if @q is dead.
1051 *
da3dae54 1052 * Must be called with @q->queue_lock held and,
a492f075
JL
1053 * Returns ERR_PTR on failure, with @q->queue_lock held.
1054 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1055 */
ef295ecf
CH
1056static struct request *__get_request(struct request_list *rl, unsigned int op,
1057 struct bio *bio, gfp_t gfp_mask)
1da177e4 1058{
5b788ce3 1059 struct request_queue *q = rl->q;
b679281a 1060 struct request *rq;
7f4b35d1
TH
1061 struct elevator_type *et = q->elevator->type;
1062 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1063 struct io_cq *icq = NULL;
ef295ecf 1064 const bool is_sync = op_is_sync(op);
75eb6c37 1065 int may_queue;
e8064021 1066 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1067
3f3299d5 1068 if (unlikely(blk_queue_dying(q)))
a492f075 1069 return ERR_PTR(-ENODEV);
da8303c6 1070
ef295ecf 1071 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1072 if (may_queue == ELV_MQUEUE_NO)
1073 goto rq_starved;
1074
1faa16d2
JA
1075 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1076 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1077 /*
1078 * The queue will fill after this allocation, so set
1079 * it as full, and mark this process as "batching".
1080 * This process will be allowed to complete a batch of
1081 * requests, others will be blocked.
1082 */
5b788ce3 1083 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1084 ioc_set_batching(q, ioc);
5b788ce3 1085 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1086 } else {
1087 if (may_queue != ELV_MQUEUE_MUST
1088 && !ioc_batching(q, ioc)) {
1089 /*
1090 * The queue is full and the allocating
1091 * process is not a "batcher", and not
1092 * exempted by the IO scheduler
1093 */
a492f075 1094 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1095 }
1096 }
1da177e4 1097 }
d40f75a0 1098 blk_set_congested(rl, is_sync);
1da177e4
LT
1099 }
1100
082cf69e
JA
1101 /*
1102 * Only allow batching queuers to allocate up to 50% over the defined
1103 * limit of requests, otherwise we could have thousands of requests
1104 * allocated with any setting of ->nr_requests
1105 */
1faa16d2 1106 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1107 return ERR_PTR(-ENOMEM);
fd782a4a 1108
8a5ecdd4 1109 q->nr_rqs[is_sync]++;
1faa16d2
JA
1110 rl->count[is_sync]++;
1111 rl->starved[is_sync] = 0;
cb98fc8b 1112
f1f8cc94
TH
1113 /*
1114 * Decide whether the new request will be managed by elevator. If
e8064021 1115 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1116 * prevent the current elevator from being destroyed until the new
1117 * request is freed. This guarantees icq's won't be destroyed and
1118 * makes creating new ones safe.
1119 *
e6f7f93d
CH
1120 * Flush requests do not use the elevator so skip initialization.
1121 * This allows a request to share the flush and elevator data.
1122 *
f1f8cc94
TH
1123 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1124 * it will be created after releasing queue_lock.
1125 */
e6f7f93d 1126 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1127 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1128 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1129 if (et->icq_cache && ioc)
1130 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1131 }
cb98fc8b 1132
f253b86b 1133 if (blk_queue_io_stat(q))
e8064021 1134 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1135 spin_unlock_irq(q->queue_lock);
1136
29e2b09a 1137 /* allocate and init request */
5b788ce3 1138 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1139 if (!rq)
b679281a 1140 goto fail_alloc;
1da177e4 1141
29e2b09a 1142 blk_rq_init(q, rq);
a051661c 1143 blk_rq_set_rl(rq, rl);
5dc8b362 1144 blk_rq_set_prio(rq, ioc);
ef295ecf 1145 rq->cmd_flags = op;
e8064021 1146 rq->rq_flags = rq_flags;
29e2b09a 1147
aaf7c680 1148 /* init elvpriv */
e8064021 1149 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1150 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1151 if (ioc)
1152 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1153 if (!icq)
1154 goto fail_elvpriv;
29e2b09a 1155 }
aaf7c680
TH
1156
1157 rq->elv.icq = icq;
1158 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1159 goto fail_elvpriv;
1160
1161 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1162 if (icq)
1163 get_io_context(icq->ioc);
1164 }
aaf7c680 1165out:
88ee5ef1
JA
1166 /*
1167 * ioc may be NULL here, and ioc_batching will be false. That's
1168 * OK, if the queue is under the request limit then requests need
1169 * not count toward the nr_batch_requests limit. There will always
1170 * be some limit enforced by BLK_BATCH_TIME.
1171 */
1da177e4
LT
1172 if (ioc_batching(q, ioc))
1173 ioc->nr_batch_requests--;
6728cb0e 1174
e6a40b09 1175 trace_block_getrq(q, bio, op);
1da177e4 1176 return rq;
b679281a 1177
aaf7c680
TH
1178fail_elvpriv:
1179 /*
1180 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1181 * and may fail indefinitely under memory pressure and thus
1182 * shouldn't stall IO. Treat this request as !elvpriv. This will
1183 * disturb iosched and blkcg but weird is bettern than dead.
1184 */
7b2b10e0 1185 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1186 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1187
e8064021 1188 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1189 rq->elv.icq = NULL;
1190
1191 spin_lock_irq(q->queue_lock);
8a5ecdd4 1192 q->nr_rqs_elvpriv--;
aaf7c680
TH
1193 spin_unlock_irq(q->queue_lock);
1194 goto out;
1195
b679281a
TH
1196fail_alloc:
1197 /*
1198 * Allocation failed presumably due to memory. Undo anything we
1199 * might have messed up.
1200 *
1201 * Allocating task should really be put onto the front of the wait
1202 * queue, but this is pretty rare.
1203 */
1204 spin_lock_irq(q->queue_lock);
e8064021 1205 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1206
1207 /*
1208 * in the very unlikely event that allocation failed and no
1209 * requests for this direction was pending, mark us starved so that
1210 * freeing of a request in the other direction will notice
1211 * us. another possible fix would be to split the rq mempool into
1212 * READ and WRITE
1213 */
1214rq_starved:
1215 if (unlikely(rl->count[is_sync] == 0))
1216 rl->starved[is_sync] = 1;
a492f075 1217 return ERR_PTR(-ENOMEM);
1da177e4
LT
1218}
1219
da8303c6 1220/**
a06e05e6 1221 * get_request - get a free request
da8303c6 1222 * @q: request_queue to allocate request from
ef295ecf 1223 * @op: operation and flags
da8303c6 1224 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1225 * @gfp_mask: allocation mask
da8303c6 1226 *
d0164adc
MG
1227 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1228 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1229 *
da3dae54 1230 * Must be called with @q->queue_lock held and,
a492f075
JL
1231 * Returns ERR_PTR on failure, with @q->queue_lock held.
1232 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1233 */
ef295ecf
CH
1234static struct request *get_request(struct request_queue *q, unsigned int op,
1235 struct bio *bio, gfp_t gfp_mask)
1da177e4 1236{
ef295ecf 1237 const bool is_sync = op_is_sync(op);
a06e05e6 1238 DEFINE_WAIT(wait);
a051661c 1239 struct request_list *rl;
1da177e4 1240 struct request *rq;
a051661c
TH
1241
1242 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1243retry:
ef295ecf 1244 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1245 if (!IS_ERR(rq))
a06e05e6 1246 return rq;
1da177e4 1247
d0164adc 1248 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1249 blk_put_rl(rl);
a492f075 1250 return rq;
a051661c 1251 }
1da177e4 1252
a06e05e6
TH
1253 /* wait on @rl and retry */
1254 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1255 TASK_UNINTERRUPTIBLE);
1da177e4 1256
e6a40b09 1257 trace_block_sleeprq(q, bio, op);
1da177e4 1258
a06e05e6
TH
1259 spin_unlock_irq(q->queue_lock);
1260 io_schedule();
d6344532 1261
a06e05e6
TH
1262 /*
1263 * After sleeping, we become a "batching" process and will be able
1264 * to allocate at least one request, and up to a big batch of them
1265 * for a small period time. See ioc_batching, ioc_set_batching
1266 */
a06e05e6 1267 ioc_set_batching(q, current->io_context);
05caf8db 1268
a06e05e6
TH
1269 spin_lock_irq(q->queue_lock);
1270 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1271
a06e05e6 1272 goto retry;
1da177e4
LT
1273}
1274
320ae51f
JA
1275static struct request *blk_old_get_request(struct request_queue *q, int rw,
1276 gfp_t gfp_mask)
1da177e4
LT
1277{
1278 struct request *rq;
1279
7f4b35d1
TH
1280 /* create ioc upfront */
1281 create_io_context(gfp_mask, q->node);
1282
d6344532 1283 spin_lock_irq(q->queue_lock);
ef295ecf 1284 rq = get_request(q, rw, NULL, gfp_mask);
0c4de0f3 1285 if (IS_ERR(rq)) {
da8303c6 1286 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1287 return rq;
1288 }
1da177e4 1289
0c4de0f3
CH
1290 /* q->queue_lock is unlocked at this point */
1291 rq->__data_len = 0;
1292 rq->__sector = (sector_t) -1;
1293 rq->bio = rq->biotail = NULL;
1da177e4
LT
1294 return rq;
1295}
320ae51f
JA
1296
1297struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1298{
1299 if (q->mq_ops)
6f3b0e8b
CH
1300 return blk_mq_alloc_request(q, rw,
1301 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1302 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1303 else
1304 return blk_old_get_request(q, rw, gfp_mask);
1305}
1da177e4
LT
1306EXPORT_SYMBOL(blk_get_request);
1307
1308/**
1309 * blk_requeue_request - put a request back on queue
1310 * @q: request queue where request should be inserted
1311 * @rq: request to be inserted
1312 *
1313 * Description:
1314 * Drivers often keep queueing requests until the hardware cannot accept
1315 * more, when that condition happens we need to put the request back
1316 * on the queue. Must be called with queue lock held.
1317 */
165125e1 1318void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1319{
242f9dcb
JA
1320 blk_delete_timer(rq);
1321 blk_clear_rq_complete(rq);
5f3ea37c 1322 trace_block_rq_requeue(q, rq);
87760e5e 1323 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1324
e8064021 1325 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1326 blk_queue_end_tag(q, rq);
1327
ba396a6c
JB
1328 BUG_ON(blk_queued_rq(rq));
1329
1da177e4
LT
1330 elv_requeue_request(q, rq);
1331}
1da177e4
LT
1332EXPORT_SYMBOL(blk_requeue_request);
1333
73c10101
JA
1334static void add_acct_request(struct request_queue *q, struct request *rq,
1335 int where)
1336{
320ae51f 1337 blk_account_io_start(rq, true);
7eaceacc 1338 __elv_add_request(q, rq, where);
73c10101
JA
1339}
1340
074a7aca
TH
1341static void part_round_stats_single(int cpu, struct hd_struct *part,
1342 unsigned long now)
1343{
7276d02e
JA
1344 int inflight;
1345
074a7aca
TH
1346 if (now == part->stamp)
1347 return;
1348
7276d02e
JA
1349 inflight = part_in_flight(part);
1350 if (inflight) {
074a7aca 1351 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1352 inflight * (now - part->stamp));
074a7aca
TH
1353 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1354 }
1355 part->stamp = now;
1356}
1357
1358/**
496aa8a9
RD
1359 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1360 * @cpu: cpu number for stats access
1361 * @part: target partition
1da177e4
LT
1362 *
1363 * The average IO queue length and utilisation statistics are maintained
1364 * by observing the current state of the queue length and the amount of
1365 * time it has been in this state for.
1366 *
1367 * Normally, that accounting is done on IO completion, but that can result
1368 * in more than a second's worth of IO being accounted for within any one
1369 * second, leading to >100% utilisation. To deal with that, we call this
1370 * function to do a round-off before returning the results when reading
1371 * /proc/diskstats. This accounts immediately for all queue usage up to
1372 * the current jiffies and restarts the counters again.
1373 */
c9959059 1374void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1375{
1376 unsigned long now = jiffies;
1377
074a7aca
TH
1378 if (part->partno)
1379 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1380 part_round_stats_single(cpu, part, now);
6f2576af 1381}
074a7aca 1382EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1383
47fafbc7 1384#ifdef CONFIG_PM
c8158819
LM
1385static void blk_pm_put_request(struct request *rq)
1386{
e8064021 1387 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1388 pm_runtime_mark_last_busy(rq->q->dev);
1389}
1390#else
1391static inline void blk_pm_put_request(struct request *rq) {}
1392#endif
1393
1da177e4
LT
1394/*
1395 * queue lock must be held
1396 */
165125e1 1397void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1398{
e8064021
CH
1399 req_flags_t rq_flags = req->rq_flags;
1400
1da177e4
LT
1401 if (unlikely(!q))
1402 return;
1da177e4 1403
6f5ba581
CH
1404 if (q->mq_ops) {
1405 blk_mq_free_request(req);
1406 return;
1407 }
1408
c8158819
LM
1409 blk_pm_put_request(req);
1410
8922e16c
TH
1411 elv_completed_request(q, req);
1412
1cd96c24
BH
1413 /* this is a bio leak */
1414 WARN_ON(req->bio != NULL);
1415
87760e5e
JA
1416 wbt_done(q->rq_wb, &req->issue_stat);
1417
1da177e4
LT
1418 /*
1419 * Request may not have originated from ll_rw_blk. if not,
1420 * it didn't come out of our reserved rq pools
1421 */
e8064021 1422 if (rq_flags & RQF_ALLOCED) {
a051661c 1423 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1424 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1425
1da177e4 1426 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1427 BUG_ON(ELV_ON_HASH(req));
1da177e4 1428
a051661c 1429 blk_free_request(rl, req);
e8064021 1430 freed_request(rl, sync, rq_flags);
a051661c 1431 blk_put_rl(rl);
1da177e4
LT
1432 }
1433}
6e39b69e
MC
1434EXPORT_SYMBOL_GPL(__blk_put_request);
1435
1da177e4
LT
1436void blk_put_request(struct request *req)
1437{
165125e1 1438 struct request_queue *q = req->q;
8922e16c 1439
320ae51f
JA
1440 if (q->mq_ops)
1441 blk_mq_free_request(req);
1442 else {
1443 unsigned long flags;
1444
1445 spin_lock_irqsave(q->queue_lock, flags);
1446 __blk_put_request(q, req);
1447 spin_unlock_irqrestore(q->queue_lock, flags);
1448 }
1da177e4 1449}
1da177e4
LT
1450EXPORT_SYMBOL(blk_put_request);
1451
320ae51f
JA
1452bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1453 struct bio *bio)
73c10101 1454{
1eff9d32 1455 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1456
73c10101
JA
1457 if (!ll_back_merge_fn(q, req, bio))
1458 return false;
1459
8c1cf6bb 1460 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1461
1462 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1463 blk_rq_set_mixed_merge(req);
1464
1465 req->biotail->bi_next = bio;
1466 req->biotail = bio;
4f024f37 1467 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1468 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1469
320ae51f 1470 blk_account_io_start(req, false);
73c10101
JA
1471 return true;
1472}
1473
320ae51f
JA
1474bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1475 struct bio *bio)
73c10101 1476{
1eff9d32 1477 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1478
73c10101
JA
1479 if (!ll_front_merge_fn(q, req, bio))
1480 return false;
1481
8c1cf6bb 1482 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1483
1484 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1485 blk_rq_set_mixed_merge(req);
1486
73c10101
JA
1487 bio->bi_next = req->bio;
1488 req->bio = bio;
1489
4f024f37
KO
1490 req->__sector = bio->bi_iter.bi_sector;
1491 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1492 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1493
320ae51f 1494 blk_account_io_start(req, false);
73c10101
JA
1495 return true;
1496}
1497
bd87b589 1498/**
320ae51f 1499 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1500 * @q: request_queue new bio is being queued at
1501 * @bio: new bio being queued
1502 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1503 * @same_queue_rq: pointer to &struct request that gets filled in when
1504 * another request associated with @q is found on the plug list
1505 * (optional, may be %NULL)
bd87b589
TH
1506 *
1507 * Determine whether @bio being queued on @q can be merged with a request
1508 * on %current's plugged list. Returns %true if merge was successful,
1509 * otherwise %false.
1510 *
07c2bd37
TH
1511 * Plugging coalesces IOs from the same issuer for the same purpose without
1512 * going through @q->queue_lock. As such it's more of an issuing mechanism
1513 * than scheduling, and the request, while may have elvpriv data, is not
1514 * added on the elevator at this point. In addition, we don't have
1515 * reliable access to the elevator outside queue lock. Only check basic
1516 * merging parameters without querying the elevator.
da41a589
RE
1517 *
1518 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1519 */
320ae51f 1520bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1521 unsigned int *request_count,
1522 struct request **same_queue_rq)
73c10101
JA
1523{
1524 struct blk_plug *plug;
1525 struct request *rq;
1526 bool ret = false;
92f399c7 1527 struct list_head *plug_list;
73c10101 1528
bd87b589 1529 plug = current->plug;
73c10101
JA
1530 if (!plug)
1531 goto out;
56ebdaf2 1532 *request_count = 0;
73c10101 1533
92f399c7
SL
1534 if (q->mq_ops)
1535 plug_list = &plug->mq_list;
1536 else
1537 plug_list = &plug->list;
1538
1539 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1540 int el_ret;
1541
5b3f341f 1542 if (rq->q == q) {
1b2e19f1 1543 (*request_count)++;
5b3f341f
SL
1544 /*
1545 * Only blk-mq multiple hardware queues case checks the
1546 * rq in the same queue, there should be only one such
1547 * rq in a queue
1548 **/
1549 if (same_queue_rq)
1550 *same_queue_rq = rq;
1551 }
56ebdaf2 1552
07c2bd37 1553 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1554 continue;
1555
050c8ea8 1556 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1557 if (el_ret == ELEVATOR_BACK_MERGE) {
1558 ret = bio_attempt_back_merge(q, rq, bio);
1559 if (ret)
1560 break;
1561 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1562 ret = bio_attempt_front_merge(q, rq, bio);
1563 if (ret)
1564 break;
1565 }
1566 }
1567out:
1568 return ret;
1569}
1570
0809e3ac
JM
1571unsigned int blk_plug_queued_count(struct request_queue *q)
1572{
1573 struct blk_plug *plug;
1574 struct request *rq;
1575 struct list_head *plug_list;
1576 unsigned int ret = 0;
1577
1578 plug = current->plug;
1579 if (!plug)
1580 goto out;
1581
1582 if (q->mq_ops)
1583 plug_list = &plug->mq_list;
1584 else
1585 plug_list = &plug->list;
1586
1587 list_for_each_entry(rq, plug_list, queuelist) {
1588 if (rq->q == q)
1589 ret++;
1590 }
1591out:
1592 return ret;
1593}
1594
86db1e29 1595void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1596{
1eff9d32 1597 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1598 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1599
52d9e675 1600 req->errors = 0;
4f024f37 1601 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1602 if (ioprio_valid(bio_prio(bio)))
1603 req->ioprio = bio_prio(bio);
bc1c56fd 1604 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1605}
1606
dece1635 1607static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1608{
73c10101 1609 struct blk_plug *plug;
ef295ecf 1610 int el_ret, where = ELEVATOR_INSERT_SORT;
73c10101 1611 struct request *req;
56ebdaf2 1612 unsigned int request_count = 0;
87760e5e 1613 unsigned int wb_acct;
1da177e4 1614
1da177e4
LT
1615 /*
1616 * low level driver can indicate that it wants pages above a
1617 * certain limit bounced to low memory (ie for highmem, or even
1618 * ISA dma in theory)
1619 */
1620 blk_queue_bounce(q, &bio);
1621
23688bf4
JN
1622 blk_queue_split(q, &bio, q->bio_split);
1623
ffecfd1a 1624 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1625 bio->bi_error = -EIO;
1626 bio_endio(bio);
dece1635 1627 return BLK_QC_T_NONE;
ffecfd1a
DW
1628 }
1629
f73f44eb 1630 if (op_is_flush(bio->bi_opf)) {
73c10101 1631 spin_lock_irq(q->queue_lock);
ae1b1539 1632 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1633 goto get_rq;
1634 }
1635
73c10101
JA
1636 /*
1637 * Check if we can merge with the plugged list before grabbing
1638 * any locks.
1639 */
0809e3ac
JM
1640 if (!blk_queue_nomerges(q)) {
1641 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1642 return BLK_QC_T_NONE;
0809e3ac
JM
1643 } else
1644 request_count = blk_plug_queued_count(q);
1da177e4 1645
73c10101 1646 spin_lock_irq(q->queue_lock);
2056a782 1647
73c10101
JA
1648 el_ret = elv_merge(q, &req, bio);
1649 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1650 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1651 elv_bio_merged(q, req, bio);
73c10101
JA
1652 if (!attempt_back_merge(q, req))
1653 elv_merged_request(q, req, el_ret);
1654 goto out_unlock;
1655 }
1656 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1657 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1658 elv_bio_merged(q, req, bio);
73c10101
JA
1659 if (!attempt_front_merge(q, req))
1660 elv_merged_request(q, req, el_ret);
1661 goto out_unlock;
80a761fd 1662 }
1da177e4
LT
1663 }
1664
450991bc 1665get_rq:
87760e5e
JA
1666 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1667
1da177e4 1668 /*
450991bc 1669 * Grab a free request. This is might sleep but can not fail.
d6344532 1670 * Returns with the queue unlocked.
450991bc 1671 */
ef295ecf 1672 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1673 if (IS_ERR(req)) {
87760e5e 1674 __wbt_done(q->rq_wb, wb_acct);
4246a0b6
CH
1675 bio->bi_error = PTR_ERR(req);
1676 bio_endio(bio);
da8303c6
TH
1677 goto out_unlock;
1678 }
d6344532 1679
87760e5e
JA
1680 wbt_track(&req->issue_stat, wb_acct);
1681
450991bc
NP
1682 /*
1683 * After dropping the lock and possibly sleeping here, our request
1684 * may now be mergeable after it had proven unmergeable (above).
1685 * We don't worry about that case for efficiency. It won't happen
1686 * often, and the elevators are able to handle it.
1da177e4 1687 */
52d9e675 1688 init_request_from_bio(req, bio);
1da177e4 1689
9562ad9a 1690 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1691 req->cpu = raw_smp_processor_id();
73c10101
JA
1692
1693 plug = current->plug;
721a9602 1694 if (plug) {
dc6d36c9
JA
1695 /*
1696 * If this is the first request added after a plug, fire
7aef2e78 1697 * of a plug trace.
0a6219a9
ML
1698 *
1699 * @request_count may become stale because of schedule
1700 * out, so check plug list again.
dc6d36c9 1701 */
0a6219a9 1702 if (!request_count || list_empty(&plug->list))
dc6d36c9 1703 trace_block_plug(q);
3540d5e8 1704 else {
50d24c34
SL
1705 struct request *last = list_entry_rq(plug->list.prev);
1706 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1707 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1708 blk_flush_plug_list(plug, false);
019ceb7d
SL
1709 trace_block_plug(q);
1710 }
73c10101 1711 }
73c10101 1712 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1713 blk_account_io_start(req, true);
73c10101
JA
1714 } else {
1715 spin_lock_irq(q->queue_lock);
1716 add_acct_request(q, req, where);
24ecfbe2 1717 __blk_run_queue(q);
73c10101
JA
1718out_unlock:
1719 spin_unlock_irq(q->queue_lock);
1720 }
dece1635
JA
1721
1722 return BLK_QC_T_NONE;
1da177e4
LT
1723}
1724
1725/*
1726 * If bio->bi_dev is a partition, remap the location
1727 */
1728static inline void blk_partition_remap(struct bio *bio)
1729{
1730 struct block_device *bdev = bio->bi_bdev;
1731
778889d8
ST
1732 /*
1733 * Zone reset does not include bi_size so bio_sectors() is always 0.
1734 * Include a test for the reset op code and perform the remap if needed.
1735 */
1736 if (bdev != bdev->bd_contains &&
1737 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1738 struct hd_struct *p = bdev->bd_part;
1739
4f024f37 1740 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1741 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1742
d07335e5
MS
1743 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1744 bdev->bd_dev,
4f024f37 1745 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1746 }
1747}
1748
1da177e4
LT
1749static void handle_bad_sector(struct bio *bio)
1750{
1751 char b[BDEVNAME_SIZE];
1752
1753 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1754 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1755 bdevname(bio->bi_bdev, b),
1eff9d32 1756 bio->bi_opf,
f73a1c7d 1757 (unsigned long long)bio_end_sector(bio),
77304d2a 1758 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1759}
1760
c17bb495
AM
1761#ifdef CONFIG_FAIL_MAKE_REQUEST
1762
1763static DECLARE_FAULT_ATTR(fail_make_request);
1764
1765static int __init setup_fail_make_request(char *str)
1766{
1767 return setup_fault_attr(&fail_make_request, str);
1768}
1769__setup("fail_make_request=", setup_fail_make_request);
1770
b2c9cd37 1771static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1772{
b2c9cd37 1773 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1774}
1775
1776static int __init fail_make_request_debugfs(void)
1777{
dd48c085
AM
1778 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1779 NULL, &fail_make_request);
1780
21f9fcd8 1781 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1782}
1783
1784late_initcall(fail_make_request_debugfs);
1785
1786#else /* CONFIG_FAIL_MAKE_REQUEST */
1787
b2c9cd37
AM
1788static inline bool should_fail_request(struct hd_struct *part,
1789 unsigned int bytes)
c17bb495 1790{
b2c9cd37 1791 return false;
c17bb495
AM
1792}
1793
1794#endif /* CONFIG_FAIL_MAKE_REQUEST */
1795
c07e2b41
JA
1796/*
1797 * Check whether this bio extends beyond the end of the device.
1798 */
1799static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1800{
1801 sector_t maxsector;
1802
1803 if (!nr_sectors)
1804 return 0;
1805
1806 /* Test device or partition size, when known. */
77304d2a 1807 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1808 if (maxsector) {
4f024f37 1809 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1810
1811 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1812 /*
1813 * This may well happen - the kernel calls bread()
1814 * without checking the size of the device, e.g., when
1815 * mounting a device.
1816 */
1817 handle_bad_sector(bio);
1818 return 1;
1819 }
1820 }
1821
1822 return 0;
1823}
1824
27a84d54
CH
1825static noinline_for_stack bool
1826generic_make_request_checks(struct bio *bio)
1da177e4 1827{
165125e1 1828 struct request_queue *q;
5a7bbad2 1829 int nr_sectors = bio_sectors(bio);
51fd77bd 1830 int err = -EIO;
5a7bbad2
CH
1831 char b[BDEVNAME_SIZE];
1832 struct hd_struct *part;
1da177e4
LT
1833
1834 might_sleep();
1da177e4 1835
c07e2b41
JA
1836 if (bio_check_eod(bio, nr_sectors))
1837 goto end_io;
1da177e4 1838
5a7bbad2
CH
1839 q = bdev_get_queue(bio->bi_bdev);
1840 if (unlikely(!q)) {
1841 printk(KERN_ERR
1842 "generic_make_request: Trying to access "
1843 "nonexistent block-device %s (%Lu)\n",
1844 bdevname(bio->bi_bdev, b),
4f024f37 1845 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1846 goto end_io;
1847 }
c17bb495 1848
5a7bbad2 1849 part = bio->bi_bdev->bd_part;
4f024f37 1850 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1851 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1852 bio->bi_iter.bi_size))
5a7bbad2 1853 goto end_io;
2056a782 1854
5a7bbad2
CH
1855 /*
1856 * If this device has partitions, remap block n
1857 * of partition p to block n+start(p) of the disk.
1858 */
1859 blk_partition_remap(bio);
2056a782 1860
5a7bbad2
CH
1861 if (bio_check_eod(bio, nr_sectors))
1862 goto end_io;
1e87901e 1863
5a7bbad2
CH
1864 /*
1865 * Filter flush bio's early so that make_request based
1866 * drivers without flush support don't have to worry
1867 * about them.
1868 */
f3a8ab7d 1869 if (op_is_flush(bio->bi_opf) &&
c888a8f9 1870 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 1871 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2
CH
1872 if (!nr_sectors) {
1873 err = 0;
51fd77bd
JA
1874 goto end_io;
1875 }
5a7bbad2 1876 }
5ddfe969 1877
288dab8a
CH
1878 switch (bio_op(bio)) {
1879 case REQ_OP_DISCARD:
1880 if (!blk_queue_discard(q))
1881 goto not_supported;
1882 break;
1883 case REQ_OP_SECURE_ERASE:
1884 if (!blk_queue_secure_erase(q))
1885 goto not_supported;
1886 break;
1887 case REQ_OP_WRITE_SAME:
1888 if (!bdev_write_same(bio->bi_bdev))
1889 goto not_supported;
58886785 1890 break;
2d253440
ST
1891 case REQ_OP_ZONE_REPORT:
1892 case REQ_OP_ZONE_RESET:
1893 if (!bdev_is_zoned(bio->bi_bdev))
1894 goto not_supported;
288dab8a 1895 break;
a6f0788e
CK
1896 case REQ_OP_WRITE_ZEROES:
1897 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1898 goto not_supported;
1899 break;
288dab8a
CH
1900 default:
1901 break;
5a7bbad2 1902 }
01edede4 1903
7f4b35d1
TH
1904 /*
1905 * Various block parts want %current->io_context and lazy ioc
1906 * allocation ends up trading a lot of pain for a small amount of
1907 * memory. Just allocate it upfront. This may fail and block
1908 * layer knows how to live with it.
1909 */
1910 create_io_context(GFP_ATOMIC, q->node);
1911
ae118896
TH
1912 if (!blkcg_bio_issue_check(q, bio))
1913 return false;
27a84d54 1914
5a7bbad2 1915 trace_block_bio_queue(q, bio);
27a84d54 1916 return true;
a7384677 1917
288dab8a
CH
1918not_supported:
1919 err = -EOPNOTSUPP;
a7384677 1920end_io:
4246a0b6
CH
1921 bio->bi_error = err;
1922 bio_endio(bio);
27a84d54 1923 return false;
1da177e4
LT
1924}
1925
27a84d54
CH
1926/**
1927 * generic_make_request - hand a buffer to its device driver for I/O
1928 * @bio: The bio describing the location in memory and on the device.
1929 *
1930 * generic_make_request() is used to make I/O requests of block
1931 * devices. It is passed a &struct bio, which describes the I/O that needs
1932 * to be done.
1933 *
1934 * generic_make_request() does not return any status. The
1935 * success/failure status of the request, along with notification of
1936 * completion, is delivered asynchronously through the bio->bi_end_io
1937 * function described (one day) else where.
1938 *
1939 * The caller of generic_make_request must make sure that bi_io_vec
1940 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1941 * set to describe the device address, and the
1942 * bi_end_io and optionally bi_private are set to describe how
1943 * completion notification should be signaled.
1944 *
1945 * generic_make_request and the drivers it calls may use bi_next if this
1946 * bio happens to be merged with someone else, and may resubmit the bio to
1947 * a lower device by calling into generic_make_request recursively, which
1948 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1949 */
dece1635 1950blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1951{
bddd87c7 1952 struct bio_list bio_list_on_stack;
dece1635 1953 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1954
27a84d54 1955 if (!generic_make_request_checks(bio))
dece1635 1956 goto out;
27a84d54
CH
1957
1958 /*
1959 * We only want one ->make_request_fn to be active at a time, else
1960 * stack usage with stacked devices could be a problem. So use
1961 * current->bio_list to keep a list of requests submited by a
1962 * make_request_fn function. current->bio_list is also used as a
1963 * flag to say if generic_make_request is currently active in this
1964 * task or not. If it is NULL, then no make_request is active. If
1965 * it is non-NULL, then a make_request is active, and new requests
1966 * should be added at the tail
1967 */
bddd87c7 1968 if (current->bio_list) {
bddd87c7 1969 bio_list_add(current->bio_list, bio);
dece1635 1970 goto out;
d89d8796 1971 }
27a84d54 1972
d89d8796
NB
1973 /* following loop may be a bit non-obvious, and so deserves some
1974 * explanation.
1975 * Before entering the loop, bio->bi_next is NULL (as all callers
1976 * ensure that) so we have a list with a single bio.
1977 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1978 * we assign bio_list to a pointer to the bio_list_on_stack,
1979 * thus initialising the bio_list of new bios to be
27a84d54 1980 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1981 * through a recursive call to generic_make_request. If it
1982 * did, we find a non-NULL value in bio_list and re-enter the loop
1983 * from the top. In this case we really did just take the bio
bddd87c7 1984 * of the top of the list (no pretending) and so remove it from
27a84d54 1985 * bio_list, and call into ->make_request() again.
d89d8796
NB
1986 */
1987 BUG_ON(bio->bi_next);
bddd87c7
AM
1988 bio_list_init(&bio_list_on_stack);
1989 current->bio_list = &bio_list_on_stack;
d89d8796 1990 do {
27a84d54
CH
1991 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1992
6f3b0e8b 1993 if (likely(blk_queue_enter(q, false) == 0)) {
dece1635 1994 ret = q->make_request_fn(q, bio);
3ef28e83
DW
1995
1996 blk_queue_exit(q);
27a84d54 1997
3ef28e83
DW
1998 bio = bio_list_pop(current->bio_list);
1999 } else {
2000 struct bio *bio_next = bio_list_pop(current->bio_list);
2001
2002 bio_io_error(bio);
2003 bio = bio_next;
2004 }
d89d8796 2005 } while (bio);
bddd87c7 2006 current->bio_list = NULL; /* deactivate */
dece1635
JA
2007
2008out:
2009 return ret;
d89d8796 2010}
1da177e4
LT
2011EXPORT_SYMBOL(generic_make_request);
2012
2013/**
710027a4 2014 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2015 * @bio: The &struct bio which describes the I/O
2016 *
2017 * submit_bio() is very similar in purpose to generic_make_request(), and
2018 * uses that function to do most of the work. Both are fairly rough
710027a4 2019 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2020 *
2021 */
4e49ea4a 2022blk_qc_t submit_bio(struct bio *bio)
1da177e4 2023{
bf2de6f5
JA
2024 /*
2025 * If it's a regular read/write or a barrier with data attached,
2026 * go through the normal accounting stuff before submission.
2027 */
e2a60da7 2028 if (bio_has_data(bio)) {
4363ac7c
MP
2029 unsigned int count;
2030
95fe6c1a 2031 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2032 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2033 else
2034 count = bio_sectors(bio);
2035
a8ebb056 2036 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2037 count_vm_events(PGPGOUT, count);
2038 } else {
4f024f37 2039 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2040 count_vm_events(PGPGIN, count);
2041 }
2042
2043 if (unlikely(block_dump)) {
2044 char b[BDEVNAME_SIZE];
8dcbdc74 2045 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2046 current->comm, task_pid_nr(current),
a8ebb056 2047 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2048 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2049 bdevname(bio->bi_bdev, b),
2050 count);
bf2de6f5 2051 }
1da177e4
LT
2052 }
2053
dece1635 2054 return generic_make_request(bio);
1da177e4 2055}
1da177e4
LT
2056EXPORT_SYMBOL(submit_bio);
2057
82124d60 2058/**
bf4e6b4e
HR
2059 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2060 * for new the queue limits
82124d60
KU
2061 * @q: the queue
2062 * @rq: the request being checked
2063 *
2064 * Description:
2065 * @rq may have been made based on weaker limitations of upper-level queues
2066 * in request stacking drivers, and it may violate the limitation of @q.
2067 * Since the block layer and the underlying device driver trust @rq
2068 * after it is inserted to @q, it should be checked against @q before
2069 * the insertion using this generic function.
2070 *
82124d60 2071 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2072 * limits when retrying requests on other queues. Those requests need
2073 * to be checked against the new queue limits again during dispatch.
82124d60 2074 */
bf4e6b4e
HR
2075static int blk_cloned_rq_check_limits(struct request_queue *q,
2076 struct request *rq)
82124d60 2077{
8fe0d473 2078 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2079 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2080 return -EIO;
2081 }
2082
2083 /*
2084 * queue's settings related to segment counting like q->bounce_pfn
2085 * may differ from that of other stacking queues.
2086 * Recalculate it to check the request correctly on this queue's
2087 * limitation.
2088 */
2089 blk_recalc_rq_segments(rq);
8a78362c 2090 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2091 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2092 return -EIO;
2093 }
2094
2095 return 0;
2096}
82124d60
KU
2097
2098/**
2099 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2100 * @q: the queue to submit the request
2101 * @rq: the request being queued
2102 */
2103int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2104{
2105 unsigned long flags;
4853abaa 2106 int where = ELEVATOR_INSERT_BACK;
82124d60 2107
bf4e6b4e 2108 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2109 return -EIO;
2110
b2c9cd37
AM
2111 if (rq->rq_disk &&
2112 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2113 return -EIO;
82124d60 2114
7fb4898e
KB
2115 if (q->mq_ops) {
2116 if (blk_queue_io_stat(q))
2117 blk_account_io_start(rq, true);
bd6737f1 2118 blk_mq_sched_insert_request(rq, false, true, false, false);
7fb4898e
KB
2119 return 0;
2120 }
2121
82124d60 2122 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2123 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2124 spin_unlock_irqrestore(q->queue_lock, flags);
2125 return -ENODEV;
2126 }
82124d60
KU
2127
2128 /*
2129 * Submitting request must be dequeued before calling this function
2130 * because it will be linked to another request_queue
2131 */
2132 BUG_ON(blk_queued_rq(rq));
2133
f73f44eb 2134 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2135 where = ELEVATOR_INSERT_FLUSH;
2136
2137 add_acct_request(q, rq, where);
e67b77c7
JM
2138 if (where == ELEVATOR_INSERT_FLUSH)
2139 __blk_run_queue(q);
82124d60
KU
2140 spin_unlock_irqrestore(q->queue_lock, flags);
2141
2142 return 0;
2143}
2144EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2145
80a761fd
TH
2146/**
2147 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2148 * @rq: request to examine
2149 *
2150 * Description:
2151 * A request could be merge of IOs which require different failure
2152 * handling. This function determines the number of bytes which
2153 * can be failed from the beginning of the request without
2154 * crossing into area which need to be retried further.
2155 *
2156 * Return:
2157 * The number of bytes to fail.
2158 *
2159 * Context:
2160 * queue_lock must be held.
2161 */
2162unsigned int blk_rq_err_bytes(const struct request *rq)
2163{
2164 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2165 unsigned int bytes = 0;
2166 struct bio *bio;
2167
e8064021 2168 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2169 return blk_rq_bytes(rq);
2170
2171 /*
2172 * Currently the only 'mixing' which can happen is between
2173 * different fastfail types. We can safely fail portions
2174 * which have all the failfast bits that the first one has -
2175 * the ones which are at least as eager to fail as the first
2176 * one.
2177 */
2178 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2179 if ((bio->bi_opf & ff) != ff)
80a761fd 2180 break;
4f024f37 2181 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2182 }
2183
2184 /* this could lead to infinite loop */
2185 BUG_ON(blk_rq_bytes(rq) && !bytes);
2186 return bytes;
2187}
2188EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2189
320ae51f 2190void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2191{
c2553b58 2192 if (blk_do_io_stat(req)) {
bc58ba94
JA
2193 const int rw = rq_data_dir(req);
2194 struct hd_struct *part;
2195 int cpu;
2196
2197 cpu = part_stat_lock();
09e099d4 2198 part = req->part;
bc58ba94
JA
2199 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2200 part_stat_unlock();
2201 }
2202}
2203
320ae51f 2204void blk_account_io_done(struct request *req)
bc58ba94 2205{
bc58ba94 2206 /*
dd4c133f
TH
2207 * Account IO completion. flush_rq isn't accounted as a
2208 * normal IO on queueing nor completion. Accounting the
2209 * containing request is enough.
bc58ba94 2210 */
e8064021 2211 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2212 unsigned long duration = jiffies - req->start_time;
2213 const int rw = rq_data_dir(req);
2214 struct hd_struct *part;
2215 int cpu;
2216
2217 cpu = part_stat_lock();
09e099d4 2218 part = req->part;
bc58ba94
JA
2219
2220 part_stat_inc(cpu, part, ios[rw]);
2221 part_stat_add(cpu, part, ticks[rw], duration);
2222 part_round_stats(cpu, part);
316d315b 2223 part_dec_in_flight(part, rw);
bc58ba94 2224
6c23a968 2225 hd_struct_put(part);
bc58ba94
JA
2226 part_stat_unlock();
2227 }
2228}
2229
47fafbc7 2230#ifdef CONFIG_PM
c8158819
LM
2231/*
2232 * Don't process normal requests when queue is suspended
2233 * or in the process of suspending/resuming
2234 */
2235static struct request *blk_pm_peek_request(struct request_queue *q,
2236 struct request *rq)
2237{
2238 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2239 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2240 return NULL;
2241 else
2242 return rq;
2243}
2244#else
2245static inline struct request *blk_pm_peek_request(struct request_queue *q,
2246 struct request *rq)
2247{
2248 return rq;
2249}
2250#endif
2251
320ae51f
JA
2252void blk_account_io_start(struct request *rq, bool new_io)
2253{
2254 struct hd_struct *part;
2255 int rw = rq_data_dir(rq);
2256 int cpu;
2257
2258 if (!blk_do_io_stat(rq))
2259 return;
2260
2261 cpu = part_stat_lock();
2262
2263 if (!new_io) {
2264 part = rq->part;
2265 part_stat_inc(cpu, part, merges[rw]);
2266 } else {
2267 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2268 if (!hd_struct_try_get(part)) {
2269 /*
2270 * The partition is already being removed,
2271 * the request will be accounted on the disk only
2272 *
2273 * We take a reference on disk->part0 although that
2274 * partition will never be deleted, so we can treat
2275 * it as any other partition.
2276 */
2277 part = &rq->rq_disk->part0;
2278 hd_struct_get(part);
2279 }
2280 part_round_stats(cpu, part);
2281 part_inc_in_flight(part, rw);
2282 rq->part = part;
2283 }
2284
2285 part_stat_unlock();
2286}
2287
3bcddeac 2288/**
9934c8c0
TH
2289 * blk_peek_request - peek at the top of a request queue
2290 * @q: request queue to peek at
2291 *
2292 * Description:
2293 * Return the request at the top of @q. The returned request
2294 * should be started using blk_start_request() before LLD starts
2295 * processing it.
2296 *
2297 * Return:
2298 * Pointer to the request at the top of @q if available. Null
2299 * otherwise.
2300 *
2301 * Context:
2302 * queue_lock must be held.
2303 */
2304struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2305{
2306 struct request *rq;
2307 int ret;
2308
2309 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2310
2311 rq = blk_pm_peek_request(q, rq);
2312 if (!rq)
2313 break;
2314
e8064021 2315 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2316 /*
2317 * This is the first time the device driver
2318 * sees this request (possibly after
2319 * requeueing). Notify IO scheduler.
2320 */
e8064021 2321 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2322 elv_activate_rq(q, rq);
2323
2324 /*
2325 * just mark as started even if we don't start
2326 * it, a request that has been delayed should
2327 * not be passed by new incoming requests
2328 */
e8064021 2329 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2330 trace_block_rq_issue(q, rq);
2331 }
2332
2333 if (!q->boundary_rq || q->boundary_rq == rq) {
2334 q->end_sector = rq_end_sector(rq);
2335 q->boundary_rq = NULL;
2336 }
2337
e8064021 2338 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2339 break;
2340
2e46e8b2 2341 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2342 /*
2343 * make sure space for the drain appears we
2344 * know we can do this because max_hw_segments
2345 * has been adjusted to be one fewer than the
2346 * device can handle
2347 */
2348 rq->nr_phys_segments++;
2349 }
2350
2351 if (!q->prep_rq_fn)
2352 break;
2353
2354 ret = q->prep_rq_fn(q, rq);
2355 if (ret == BLKPREP_OK) {
2356 break;
2357 } else if (ret == BLKPREP_DEFER) {
2358 /*
2359 * the request may have been (partially) prepped.
2360 * we need to keep this request in the front to
e8064021 2361 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2362 * prevent other fs requests from passing this one.
2363 */
2e46e8b2 2364 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2365 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2366 /*
2367 * remove the space for the drain we added
2368 * so that we don't add it again
2369 */
2370 --rq->nr_phys_segments;
2371 }
2372
2373 rq = NULL;
2374 break;
0fb5b1fb
MP
2375 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2376 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2377
e8064021 2378 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2379 /*
2380 * Mark this request as started so we don't trigger
2381 * any debug logic in the end I/O path.
2382 */
2383 blk_start_request(rq);
0fb5b1fb 2384 __blk_end_request_all(rq, err);
158dbda0
TH
2385 } else {
2386 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2387 break;
2388 }
2389 }
2390
2391 return rq;
2392}
9934c8c0 2393EXPORT_SYMBOL(blk_peek_request);
158dbda0 2394
9934c8c0 2395void blk_dequeue_request(struct request *rq)
158dbda0 2396{
9934c8c0
TH
2397 struct request_queue *q = rq->q;
2398
158dbda0
TH
2399 BUG_ON(list_empty(&rq->queuelist));
2400 BUG_ON(ELV_ON_HASH(rq));
2401
2402 list_del_init(&rq->queuelist);
2403
2404 /*
2405 * the time frame between a request being removed from the lists
2406 * and to it is freed is accounted as io that is in progress at
2407 * the driver side.
2408 */
9195291e 2409 if (blk_account_rq(rq)) {
0a7ae2ff 2410 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2411 set_io_start_time_ns(rq);
2412 }
158dbda0
TH
2413}
2414
9934c8c0
TH
2415/**
2416 * blk_start_request - start request processing on the driver
2417 * @req: request to dequeue
2418 *
2419 * Description:
2420 * Dequeue @req and start timeout timer on it. This hands off the
2421 * request to the driver.
2422 *
2423 * Block internal functions which don't want to start timer should
2424 * call blk_dequeue_request().
2425 *
2426 * Context:
2427 * queue_lock must be held.
2428 */
2429void blk_start_request(struct request *req)
2430{
2431 blk_dequeue_request(req);
2432
cf43e6be
JA
2433 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2434 blk_stat_set_issue_time(&req->issue_stat);
2435 req->rq_flags |= RQF_STATS;
87760e5e 2436 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2437 }
2438
4912aa6c 2439 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2440 blk_add_timer(req);
2441}
2442EXPORT_SYMBOL(blk_start_request);
2443
2444/**
2445 * blk_fetch_request - fetch a request from a request queue
2446 * @q: request queue to fetch a request from
2447 *
2448 * Description:
2449 * Return the request at the top of @q. The request is started on
2450 * return and LLD can start processing it immediately.
2451 *
2452 * Return:
2453 * Pointer to the request at the top of @q if available. Null
2454 * otherwise.
2455 *
2456 * Context:
2457 * queue_lock must be held.
2458 */
2459struct request *blk_fetch_request(struct request_queue *q)
2460{
2461 struct request *rq;
2462
2463 rq = blk_peek_request(q);
2464 if (rq)
2465 blk_start_request(rq);
2466 return rq;
2467}
2468EXPORT_SYMBOL(blk_fetch_request);
2469
3bcddeac 2470/**
2e60e022 2471 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2472 * @req: the request being processed
710027a4 2473 * @error: %0 for success, < %0 for error
8ebf9756 2474 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2475 *
2476 * Description:
8ebf9756
RD
2477 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2478 * the request structure even if @req doesn't have leftover.
2479 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2480 *
2481 * This special helper function is only for request stacking drivers
2482 * (e.g. request-based dm) so that they can handle partial completion.
2483 * Actual device drivers should use blk_end_request instead.
2484 *
2485 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2486 * %false return from this function.
3bcddeac
KU
2487 *
2488 * Return:
2e60e022
TH
2489 * %false - this request doesn't have any more data
2490 * %true - this request has more data
3bcddeac 2491 **/
2e60e022 2492bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2493{
f79ea416 2494 int total_bytes;
1da177e4 2495
4a0efdc9
HR
2496 trace_block_rq_complete(req->q, req, nr_bytes);
2497
2e60e022
TH
2498 if (!req->bio)
2499 return false;
2500
1da177e4 2501 /*
6f41469c
TH
2502 * For fs requests, rq is just carrier of independent bio's
2503 * and each partial completion should be handled separately.
2504 * Reset per-request error on each partial completion.
2505 *
2506 * TODO: tj: This is too subtle. It would be better to let
2507 * low level drivers do what they see fit.
1da177e4 2508 */
57292b58 2509 if (!blk_rq_is_passthrough(req))
1da177e4
LT
2510 req->errors = 0;
2511
57292b58 2512 if (error && !blk_rq_is_passthrough(req) &&
e8064021 2513 !(req->rq_flags & RQF_QUIET)) {
79775567
HR
2514 char *error_type;
2515
2516 switch (error) {
2517 case -ENOLINK:
2518 error_type = "recoverable transport";
2519 break;
2520 case -EREMOTEIO:
2521 error_type = "critical target";
2522 break;
2523 case -EBADE:
2524 error_type = "critical nexus";
2525 break;
d1ffc1f8
HR
2526 case -ETIMEDOUT:
2527 error_type = "timeout";
2528 break;
a9d6ceb8
HR
2529 case -ENOSPC:
2530 error_type = "critical space allocation";
2531 break;
7e782af5
HR
2532 case -ENODATA:
2533 error_type = "critical medium";
2534 break;
79775567
HR
2535 case -EIO:
2536 default:
2537 error_type = "I/O";
2538 break;
2539 }
ef3ecb66
RE
2540 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2541 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2542 req->rq_disk->disk_name : "?",
2543 (unsigned long long)blk_rq_pos(req));
2544
1da177e4
LT
2545 }
2546
bc58ba94 2547 blk_account_io_completion(req, nr_bytes);
d72d904a 2548
f79ea416
KO
2549 total_bytes = 0;
2550 while (req->bio) {
2551 struct bio *bio = req->bio;
4f024f37 2552 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2553
4f024f37 2554 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2555 req->bio = bio->bi_next;
1da177e4 2556
f79ea416 2557 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2558
f79ea416
KO
2559 total_bytes += bio_bytes;
2560 nr_bytes -= bio_bytes;
1da177e4 2561
f79ea416
KO
2562 if (!nr_bytes)
2563 break;
1da177e4
LT
2564 }
2565
2566 /*
2567 * completely done
2568 */
2e60e022
TH
2569 if (!req->bio) {
2570 /*
2571 * Reset counters so that the request stacking driver
2572 * can find how many bytes remain in the request
2573 * later.
2574 */
a2dec7b3 2575 req->__data_len = 0;
2e60e022
TH
2576 return false;
2577 }
1da177e4 2578
f9d03f96
CH
2579 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2580
a2dec7b3 2581 req->__data_len -= total_bytes;
2e46e8b2
TH
2582
2583 /* update sector only for requests with clear definition of sector */
57292b58 2584 if (!blk_rq_is_passthrough(req))
a2dec7b3 2585 req->__sector += total_bytes >> 9;
2e46e8b2 2586
80a761fd 2587 /* mixed attributes always follow the first bio */
e8064021 2588 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2589 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2590 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2591 }
2592
2e46e8b2
TH
2593 /*
2594 * If total number of sectors is less than the first segment
2595 * size, something has gone terribly wrong.
2596 */
2597 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2598 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2599 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2600 }
2601
2602 /* recalculate the number of segments */
1da177e4 2603 blk_recalc_rq_segments(req);
2e46e8b2 2604
2e60e022 2605 return true;
1da177e4 2606}
2e60e022 2607EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2608
2e60e022
TH
2609static bool blk_update_bidi_request(struct request *rq, int error,
2610 unsigned int nr_bytes,
2611 unsigned int bidi_bytes)
5efccd17 2612{
2e60e022
TH
2613 if (blk_update_request(rq, error, nr_bytes))
2614 return true;
5efccd17 2615
2e60e022
TH
2616 /* Bidi request must be completed as a whole */
2617 if (unlikely(blk_bidi_rq(rq)) &&
2618 blk_update_request(rq->next_rq, error, bidi_bytes))
2619 return true;
5efccd17 2620
e2e1a148
JA
2621 if (blk_queue_add_random(rq->q))
2622 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2623
2624 return false;
1da177e4
LT
2625}
2626
28018c24
JB
2627/**
2628 * blk_unprep_request - unprepare a request
2629 * @req: the request
2630 *
2631 * This function makes a request ready for complete resubmission (or
2632 * completion). It happens only after all error handling is complete,
2633 * so represents the appropriate moment to deallocate any resources
2634 * that were allocated to the request in the prep_rq_fn. The queue
2635 * lock is held when calling this.
2636 */
2637void blk_unprep_request(struct request *req)
2638{
2639 struct request_queue *q = req->q;
2640
e8064021 2641 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2642 if (q->unprep_rq_fn)
2643 q->unprep_rq_fn(q, req);
2644}
2645EXPORT_SYMBOL_GPL(blk_unprep_request);
2646
1da177e4
LT
2647/*
2648 * queue lock must be held
2649 */
12120077 2650void blk_finish_request(struct request *req, int error)
1da177e4 2651{
cf43e6be
JA
2652 struct request_queue *q = req->q;
2653
2654 if (req->rq_flags & RQF_STATS)
2655 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2656
e8064021 2657 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2658 blk_queue_end_tag(q, req);
b8286239 2659
ba396a6c 2660 BUG_ON(blk_queued_rq(req));
1da177e4 2661
57292b58 2662 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2663 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2664
e78042e5
MA
2665 blk_delete_timer(req);
2666
e8064021 2667 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2668 blk_unprep_request(req);
2669
bc58ba94 2670 blk_account_io_done(req);
b8286239 2671
87760e5e
JA
2672 if (req->end_io) {
2673 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2674 req->end_io(req, error);
87760e5e 2675 } else {
b8286239
KU
2676 if (blk_bidi_rq(req))
2677 __blk_put_request(req->next_rq->q, req->next_rq);
2678
cf43e6be 2679 __blk_put_request(q, req);
b8286239 2680 }
1da177e4 2681}
12120077 2682EXPORT_SYMBOL(blk_finish_request);
1da177e4 2683
3b11313a 2684/**
2e60e022
TH
2685 * blk_end_bidi_request - Complete a bidi request
2686 * @rq: the request to complete
2687 * @error: %0 for success, < %0 for error
2688 * @nr_bytes: number of bytes to complete @rq
2689 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2690 *
2691 * Description:
e3a04fe3 2692 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2693 * Drivers that supports bidi can safely call this member for any
2694 * type of request, bidi or uni. In the later case @bidi_bytes is
2695 * just ignored.
336cdb40
KU
2696 *
2697 * Return:
2e60e022
TH
2698 * %false - we are done with this request
2699 * %true - still buffers pending for this request
a0cd1285 2700 **/
b1f74493 2701static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2702 unsigned int nr_bytes, unsigned int bidi_bytes)
2703{
336cdb40 2704 struct request_queue *q = rq->q;
2e60e022 2705 unsigned long flags;
32fab448 2706
2e60e022
TH
2707 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2708 return true;
32fab448 2709
336cdb40 2710 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2711 blk_finish_request(rq, error);
336cdb40
KU
2712 spin_unlock_irqrestore(q->queue_lock, flags);
2713
2e60e022 2714 return false;
32fab448
KU
2715}
2716
336cdb40 2717/**
2e60e022
TH
2718 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2719 * @rq: the request to complete
710027a4 2720 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2721 * @nr_bytes: number of bytes to complete @rq
2722 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2723 *
2724 * Description:
2e60e022
TH
2725 * Identical to blk_end_bidi_request() except that queue lock is
2726 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2727 *
2728 * Return:
2e60e022
TH
2729 * %false - we are done with this request
2730 * %true - still buffers pending for this request
336cdb40 2731 **/
4853abaa 2732bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2733 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2734{
2e60e022
TH
2735 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2736 return true;
336cdb40 2737
2e60e022 2738 blk_finish_request(rq, error);
336cdb40 2739
2e60e022 2740 return false;
336cdb40 2741}
e19a3ab0
KU
2742
2743/**
2744 * blk_end_request - Helper function for drivers to complete the request.
2745 * @rq: the request being processed
710027a4 2746 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2747 * @nr_bytes: number of bytes to complete
2748 *
2749 * Description:
2750 * Ends I/O on a number of bytes attached to @rq.
2751 * If @rq has leftover, sets it up for the next range of segments.
2752 *
2753 * Return:
b1f74493
FT
2754 * %false - we are done with this request
2755 * %true - still buffers pending for this request
e19a3ab0 2756 **/
b1f74493 2757bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2758{
b1f74493 2759 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2760}
56ad1740 2761EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2762
2763/**
b1f74493
FT
2764 * blk_end_request_all - Helper function for drives to finish the request.
2765 * @rq: the request to finish
8ebf9756 2766 * @error: %0 for success, < %0 for error
336cdb40
KU
2767 *
2768 * Description:
b1f74493
FT
2769 * Completely finish @rq.
2770 */
2771void blk_end_request_all(struct request *rq, int error)
336cdb40 2772{
b1f74493
FT
2773 bool pending;
2774 unsigned int bidi_bytes = 0;
336cdb40 2775
b1f74493
FT
2776 if (unlikely(blk_bidi_rq(rq)))
2777 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2778
b1f74493
FT
2779 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2780 BUG_ON(pending);
2781}
56ad1740 2782EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2783
b1f74493
FT
2784/**
2785 * blk_end_request_cur - Helper function to finish the current request chunk.
2786 * @rq: the request to finish the current chunk for
8ebf9756 2787 * @error: %0 for success, < %0 for error
b1f74493
FT
2788 *
2789 * Description:
2790 * Complete the current consecutively mapped chunk from @rq.
2791 *
2792 * Return:
2793 * %false - we are done with this request
2794 * %true - still buffers pending for this request
2795 */
2796bool blk_end_request_cur(struct request *rq, int error)
2797{
2798 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2799}
56ad1740 2800EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2801
80a761fd
TH
2802/**
2803 * blk_end_request_err - Finish a request till the next failure boundary.
2804 * @rq: the request to finish till the next failure boundary for
2805 * @error: must be negative errno
2806 *
2807 * Description:
2808 * Complete @rq till the next failure boundary.
2809 *
2810 * Return:
2811 * %false - we are done with this request
2812 * %true - still buffers pending for this request
2813 */
2814bool blk_end_request_err(struct request *rq, int error)
2815{
2816 WARN_ON(error >= 0);
2817 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2818}
2819EXPORT_SYMBOL_GPL(blk_end_request_err);
2820
e3a04fe3 2821/**
b1f74493
FT
2822 * __blk_end_request - Helper function for drivers to complete the request.
2823 * @rq: the request being processed
2824 * @error: %0 for success, < %0 for error
2825 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2826 *
2827 * Description:
b1f74493 2828 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2829 *
2830 * Return:
b1f74493
FT
2831 * %false - we are done with this request
2832 * %true - still buffers pending for this request
e3a04fe3 2833 **/
b1f74493 2834bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2835{
b1f74493 2836 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2837}
56ad1740 2838EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2839
32fab448 2840/**
b1f74493
FT
2841 * __blk_end_request_all - Helper function for drives to finish the request.
2842 * @rq: the request to finish
8ebf9756 2843 * @error: %0 for success, < %0 for error
32fab448
KU
2844 *
2845 * Description:
b1f74493 2846 * Completely finish @rq. Must be called with queue lock held.
32fab448 2847 */
b1f74493 2848void __blk_end_request_all(struct request *rq, int error)
32fab448 2849{
b1f74493
FT
2850 bool pending;
2851 unsigned int bidi_bytes = 0;
2852
2853 if (unlikely(blk_bidi_rq(rq)))
2854 bidi_bytes = blk_rq_bytes(rq->next_rq);
2855
2856 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2857 BUG_ON(pending);
32fab448 2858}
56ad1740 2859EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2860
e19a3ab0 2861/**
b1f74493
FT
2862 * __blk_end_request_cur - Helper function to finish the current request chunk.
2863 * @rq: the request to finish the current chunk for
8ebf9756 2864 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2865 *
2866 * Description:
b1f74493
FT
2867 * Complete the current consecutively mapped chunk from @rq. Must
2868 * be called with queue lock held.
e19a3ab0
KU
2869 *
2870 * Return:
b1f74493
FT
2871 * %false - we are done with this request
2872 * %true - still buffers pending for this request
2873 */
2874bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2875{
b1f74493 2876 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2877}
56ad1740 2878EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2879
80a761fd
TH
2880/**
2881 * __blk_end_request_err - Finish a request till the next failure boundary.
2882 * @rq: the request to finish till the next failure boundary for
2883 * @error: must be negative errno
2884 *
2885 * Description:
2886 * Complete @rq till the next failure boundary. Must be called
2887 * with queue lock held.
2888 *
2889 * Return:
2890 * %false - we are done with this request
2891 * %true - still buffers pending for this request
2892 */
2893bool __blk_end_request_err(struct request *rq, int error)
2894{
2895 WARN_ON(error >= 0);
2896 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2897}
2898EXPORT_SYMBOL_GPL(__blk_end_request_err);
2899
86db1e29
JA
2900void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2901 struct bio *bio)
1da177e4 2902{
b4f42e28 2903 if (bio_has_data(bio))
fb2dce86 2904 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2905
4f024f37 2906 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2907 rq->bio = rq->biotail = bio;
1da177e4 2908
66846572
N
2909 if (bio->bi_bdev)
2910 rq->rq_disk = bio->bi_bdev->bd_disk;
2911}
1da177e4 2912
2d4dc890
IL
2913#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2914/**
2915 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2916 * @rq: the request to be flushed
2917 *
2918 * Description:
2919 * Flush all pages in @rq.
2920 */
2921void rq_flush_dcache_pages(struct request *rq)
2922{
2923 struct req_iterator iter;
7988613b 2924 struct bio_vec bvec;
2d4dc890
IL
2925
2926 rq_for_each_segment(bvec, rq, iter)
7988613b 2927 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2928}
2929EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2930#endif
2931
ef9e3fac
KU
2932/**
2933 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2934 * @q : the queue of the device being checked
2935 *
2936 * Description:
2937 * Check if underlying low-level drivers of a device are busy.
2938 * If the drivers want to export their busy state, they must set own
2939 * exporting function using blk_queue_lld_busy() first.
2940 *
2941 * Basically, this function is used only by request stacking drivers
2942 * to stop dispatching requests to underlying devices when underlying
2943 * devices are busy. This behavior helps more I/O merging on the queue
2944 * of the request stacking driver and prevents I/O throughput regression
2945 * on burst I/O load.
2946 *
2947 * Return:
2948 * 0 - Not busy (The request stacking driver should dispatch request)
2949 * 1 - Busy (The request stacking driver should stop dispatching request)
2950 */
2951int blk_lld_busy(struct request_queue *q)
2952{
2953 if (q->lld_busy_fn)
2954 return q->lld_busy_fn(q);
2955
2956 return 0;
2957}
2958EXPORT_SYMBOL_GPL(blk_lld_busy);
2959
78d8e58a
MS
2960/**
2961 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2962 * @rq: the clone request to be cleaned up
2963 *
2964 * Description:
2965 * Free all bios in @rq for a cloned request.
2966 */
2967void blk_rq_unprep_clone(struct request *rq)
2968{
2969 struct bio *bio;
2970
2971 while ((bio = rq->bio) != NULL) {
2972 rq->bio = bio->bi_next;
2973
2974 bio_put(bio);
2975 }
2976}
2977EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2978
2979/*
2980 * Copy attributes of the original request to the clone request.
2981 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2982 */
2983static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
2984{
2985 dst->cpu = src->cpu;
b0fd271d
KU
2986 dst->__sector = blk_rq_pos(src);
2987 dst->__data_len = blk_rq_bytes(src);
2988 dst->nr_phys_segments = src->nr_phys_segments;
2989 dst->ioprio = src->ioprio;
2990 dst->extra_len = src->extra_len;
78d8e58a
MS
2991}
2992
2993/**
2994 * blk_rq_prep_clone - Helper function to setup clone request
2995 * @rq: the request to be setup
2996 * @rq_src: original request to be cloned
2997 * @bs: bio_set that bios for clone are allocated from
2998 * @gfp_mask: memory allocation mask for bio
2999 * @bio_ctr: setup function to be called for each clone bio.
3000 * Returns %0 for success, non %0 for failure.
3001 * @data: private data to be passed to @bio_ctr
3002 *
3003 * Description:
3004 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3005 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3006 * are not copied, and copying such parts is the caller's responsibility.
3007 * Also, pages which the original bios are pointing to are not copied
3008 * and the cloned bios just point same pages.
3009 * So cloned bios must be completed before original bios, which means
3010 * the caller must complete @rq before @rq_src.
3011 */
3012int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3013 struct bio_set *bs, gfp_t gfp_mask,
3014 int (*bio_ctr)(struct bio *, struct bio *, void *),
3015 void *data)
3016{
3017 struct bio *bio, *bio_src;
3018
3019 if (!bs)
3020 bs = fs_bio_set;
3021
3022 __rq_for_each_bio(bio_src, rq_src) {
3023 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3024 if (!bio)
3025 goto free_and_out;
3026
3027 if (bio_ctr && bio_ctr(bio, bio_src, data))
3028 goto free_and_out;
3029
3030 if (rq->bio) {
3031 rq->biotail->bi_next = bio;
3032 rq->biotail = bio;
3033 } else
3034 rq->bio = rq->biotail = bio;
3035 }
3036
3037 __blk_rq_prep_clone(rq, rq_src);
3038
3039 return 0;
3040
3041free_and_out:
3042 if (bio)
3043 bio_put(bio);
3044 blk_rq_unprep_clone(rq);
3045
3046 return -ENOMEM;
b0fd271d
KU
3047}
3048EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3049
59c3d45e 3050int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3051{
3052 return queue_work(kblockd_workqueue, work);
3053}
1da177e4
LT
3054EXPORT_SYMBOL(kblockd_schedule_work);
3055
ee63cfa7
JA
3056int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3057{
3058 return queue_work_on(cpu, kblockd_workqueue, work);
3059}
3060EXPORT_SYMBOL(kblockd_schedule_work_on);
3061
59c3d45e
JA
3062int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3063 unsigned long delay)
e43473b7
VG
3064{
3065 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3066}
3067EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3068
8ab14595
JA
3069int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3070 unsigned long delay)
3071{
3072 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3073}
3074EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3075
75df7136
SJ
3076/**
3077 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3078 * @plug: The &struct blk_plug that needs to be initialized
3079 *
3080 * Description:
3081 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3082 * pending I/O should the task end up blocking between blk_start_plug() and
3083 * blk_finish_plug(). This is important from a performance perspective, but
3084 * also ensures that we don't deadlock. For instance, if the task is blocking
3085 * for a memory allocation, memory reclaim could end up wanting to free a
3086 * page belonging to that request that is currently residing in our private
3087 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3088 * this kind of deadlock.
3089 */
73c10101
JA
3090void blk_start_plug(struct blk_plug *plug)
3091{
3092 struct task_struct *tsk = current;
3093
dd6cf3e1
SL
3094 /*
3095 * If this is a nested plug, don't actually assign it.
3096 */
3097 if (tsk->plug)
3098 return;
3099
73c10101 3100 INIT_LIST_HEAD(&plug->list);
320ae51f 3101 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3102 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3103 /*
dd6cf3e1
SL
3104 * Store ordering should not be needed here, since a potential
3105 * preempt will imply a full memory barrier
73c10101 3106 */
dd6cf3e1 3107 tsk->plug = plug;
73c10101
JA
3108}
3109EXPORT_SYMBOL(blk_start_plug);
3110
3111static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3112{
3113 struct request *rqa = container_of(a, struct request, queuelist);
3114 struct request *rqb = container_of(b, struct request, queuelist);
3115
975927b9
JM
3116 return !(rqa->q < rqb->q ||
3117 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3118}
3119
49cac01e
JA
3120/*
3121 * If 'from_schedule' is true, then postpone the dispatch of requests
3122 * until a safe kblockd context. We due this to avoid accidental big
3123 * additional stack usage in driver dispatch, in places where the originally
3124 * plugger did not intend it.
3125 */
f6603783 3126static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3127 bool from_schedule)
99e22598 3128 __releases(q->queue_lock)
94b5eb28 3129{
49cac01e 3130 trace_block_unplug(q, depth, !from_schedule);
99e22598 3131
70460571 3132 if (from_schedule)
24ecfbe2 3133 blk_run_queue_async(q);
70460571 3134 else
24ecfbe2 3135 __blk_run_queue(q);
70460571 3136 spin_unlock(q->queue_lock);
94b5eb28
JA
3137}
3138
74018dc3 3139static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3140{
3141 LIST_HEAD(callbacks);
3142
2a7d5559
SL
3143 while (!list_empty(&plug->cb_list)) {
3144 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3145
2a7d5559
SL
3146 while (!list_empty(&callbacks)) {
3147 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3148 struct blk_plug_cb,
3149 list);
2a7d5559 3150 list_del(&cb->list);
74018dc3 3151 cb->callback(cb, from_schedule);
2a7d5559 3152 }
048c9374
N
3153 }
3154}
3155
9cbb1750
N
3156struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3157 int size)
3158{
3159 struct blk_plug *plug = current->plug;
3160 struct blk_plug_cb *cb;
3161
3162 if (!plug)
3163 return NULL;
3164
3165 list_for_each_entry(cb, &plug->cb_list, list)
3166 if (cb->callback == unplug && cb->data == data)
3167 return cb;
3168
3169 /* Not currently on the callback list */
3170 BUG_ON(size < sizeof(*cb));
3171 cb = kzalloc(size, GFP_ATOMIC);
3172 if (cb) {
3173 cb->data = data;
3174 cb->callback = unplug;
3175 list_add(&cb->list, &plug->cb_list);
3176 }
3177 return cb;
3178}
3179EXPORT_SYMBOL(blk_check_plugged);
3180
49cac01e 3181void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3182{
3183 struct request_queue *q;
3184 unsigned long flags;
3185 struct request *rq;
109b8129 3186 LIST_HEAD(list);
94b5eb28 3187 unsigned int depth;
73c10101 3188
74018dc3 3189 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3190
3191 if (!list_empty(&plug->mq_list))
3192 blk_mq_flush_plug_list(plug, from_schedule);
3193
73c10101
JA
3194 if (list_empty(&plug->list))
3195 return;
3196
109b8129
N
3197 list_splice_init(&plug->list, &list);
3198
422765c2 3199 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3200
3201 q = NULL;
94b5eb28 3202 depth = 0;
18811272
JA
3203
3204 /*
3205 * Save and disable interrupts here, to avoid doing it for every
3206 * queue lock we have to take.
3207 */
73c10101 3208 local_irq_save(flags);
109b8129
N
3209 while (!list_empty(&list)) {
3210 rq = list_entry_rq(list.next);
73c10101 3211 list_del_init(&rq->queuelist);
73c10101
JA
3212 BUG_ON(!rq->q);
3213 if (rq->q != q) {
99e22598
JA
3214 /*
3215 * This drops the queue lock
3216 */
3217 if (q)
49cac01e 3218 queue_unplugged(q, depth, from_schedule);
73c10101 3219 q = rq->q;
94b5eb28 3220 depth = 0;
73c10101
JA
3221 spin_lock(q->queue_lock);
3222 }
8ba61435
TH
3223
3224 /*
3225 * Short-circuit if @q is dead
3226 */
3f3299d5 3227 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3228 __blk_end_request_all(rq, -ENODEV);
3229 continue;
3230 }
3231
73c10101
JA
3232 /*
3233 * rq is already accounted, so use raw insert
3234 */
f73f44eb 3235 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3236 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3237 else
3238 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3239
3240 depth++;
73c10101
JA
3241 }
3242
99e22598
JA
3243 /*
3244 * This drops the queue lock
3245 */
3246 if (q)
49cac01e 3247 queue_unplugged(q, depth, from_schedule);
73c10101 3248
73c10101
JA
3249 local_irq_restore(flags);
3250}
73c10101
JA
3251
3252void blk_finish_plug(struct blk_plug *plug)
3253{
dd6cf3e1
SL
3254 if (plug != current->plug)
3255 return;
f6603783 3256 blk_flush_plug_list(plug, false);
73c10101 3257
dd6cf3e1 3258 current->plug = NULL;
73c10101 3259}
88b996cd 3260EXPORT_SYMBOL(blk_finish_plug);
73c10101 3261
47fafbc7 3262#ifdef CONFIG_PM
6c954667
LM
3263/**
3264 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3265 * @q: the queue of the device
3266 * @dev: the device the queue belongs to
3267 *
3268 * Description:
3269 * Initialize runtime-PM-related fields for @q and start auto suspend for
3270 * @dev. Drivers that want to take advantage of request-based runtime PM
3271 * should call this function after @dev has been initialized, and its
3272 * request queue @q has been allocated, and runtime PM for it can not happen
3273 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3274 * cases, driver should call this function before any I/O has taken place.
3275 *
3276 * This function takes care of setting up using auto suspend for the device,
3277 * the autosuspend delay is set to -1 to make runtime suspend impossible
3278 * until an updated value is either set by user or by driver. Drivers do
3279 * not need to touch other autosuspend settings.
3280 *
3281 * The block layer runtime PM is request based, so only works for drivers
3282 * that use request as their IO unit instead of those directly use bio's.
3283 */
3284void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3285{
3286 q->dev = dev;
3287 q->rpm_status = RPM_ACTIVE;
3288 pm_runtime_set_autosuspend_delay(q->dev, -1);
3289 pm_runtime_use_autosuspend(q->dev);
3290}
3291EXPORT_SYMBOL(blk_pm_runtime_init);
3292
3293/**
3294 * blk_pre_runtime_suspend - Pre runtime suspend check
3295 * @q: the queue of the device
3296 *
3297 * Description:
3298 * This function will check if runtime suspend is allowed for the device
3299 * by examining if there are any requests pending in the queue. If there
3300 * are requests pending, the device can not be runtime suspended; otherwise,
3301 * the queue's status will be updated to SUSPENDING and the driver can
3302 * proceed to suspend the device.
3303 *
3304 * For the not allowed case, we mark last busy for the device so that
3305 * runtime PM core will try to autosuspend it some time later.
3306 *
3307 * This function should be called near the start of the device's
3308 * runtime_suspend callback.
3309 *
3310 * Return:
3311 * 0 - OK to runtime suspend the device
3312 * -EBUSY - Device should not be runtime suspended
3313 */
3314int blk_pre_runtime_suspend(struct request_queue *q)
3315{
3316 int ret = 0;
3317
4fd41a85
KX
3318 if (!q->dev)
3319 return ret;
3320
6c954667
LM
3321 spin_lock_irq(q->queue_lock);
3322 if (q->nr_pending) {
3323 ret = -EBUSY;
3324 pm_runtime_mark_last_busy(q->dev);
3325 } else {
3326 q->rpm_status = RPM_SUSPENDING;
3327 }
3328 spin_unlock_irq(q->queue_lock);
3329 return ret;
3330}
3331EXPORT_SYMBOL(blk_pre_runtime_suspend);
3332
3333/**
3334 * blk_post_runtime_suspend - Post runtime suspend processing
3335 * @q: the queue of the device
3336 * @err: return value of the device's runtime_suspend function
3337 *
3338 * Description:
3339 * Update the queue's runtime status according to the return value of the
3340 * device's runtime suspend function and mark last busy for the device so
3341 * that PM core will try to auto suspend the device at a later time.
3342 *
3343 * This function should be called near the end of the device's
3344 * runtime_suspend callback.
3345 */
3346void blk_post_runtime_suspend(struct request_queue *q, int err)
3347{
4fd41a85
KX
3348 if (!q->dev)
3349 return;
3350
6c954667
LM
3351 spin_lock_irq(q->queue_lock);
3352 if (!err) {
3353 q->rpm_status = RPM_SUSPENDED;
3354 } else {
3355 q->rpm_status = RPM_ACTIVE;
3356 pm_runtime_mark_last_busy(q->dev);
3357 }
3358 spin_unlock_irq(q->queue_lock);
3359}
3360EXPORT_SYMBOL(blk_post_runtime_suspend);
3361
3362/**
3363 * blk_pre_runtime_resume - Pre runtime resume processing
3364 * @q: the queue of the device
3365 *
3366 * Description:
3367 * Update the queue's runtime status to RESUMING in preparation for the
3368 * runtime resume of the device.
3369 *
3370 * This function should be called near the start of the device's
3371 * runtime_resume callback.
3372 */
3373void blk_pre_runtime_resume(struct request_queue *q)
3374{
4fd41a85
KX
3375 if (!q->dev)
3376 return;
3377
6c954667
LM
3378 spin_lock_irq(q->queue_lock);
3379 q->rpm_status = RPM_RESUMING;
3380 spin_unlock_irq(q->queue_lock);
3381}
3382EXPORT_SYMBOL(blk_pre_runtime_resume);
3383
3384/**
3385 * blk_post_runtime_resume - Post runtime resume processing
3386 * @q: the queue of the device
3387 * @err: return value of the device's runtime_resume function
3388 *
3389 * Description:
3390 * Update the queue's runtime status according to the return value of the
3391 * device's runtime_resume function. If it is successfully resumed, process
3392 * the requests that are queued into the device's queue when it is resuming
3393 * and then mark last busy and initiate autosuspend for it.
3394 *
3395 * This function should be called near the end of the device's
3396 * runtime_resume callback.
3397 */
3398void blk_post_runtime_resume(struct request_queue *q, int err)
3399{
4fd41a85
KX
3400 if (!q->dev)
3401 return;
3402
6c954667
LM
3403 spin_lock_irq(q->queue_lock);
3404 if (!err) {
3405 q->rpm_status = RPM_ACTIVE;
3406 __blk_run_queue(q);
3407 pm_runtime_mark_last_busy(q->dev);
c60855cd 3408 pm_request_autosuspend(q->dev);
6c954667
LM
3409 } else {
3410 q->rpm_status = RPM_SUSPENDED;
3411 }
3412 spin_unlock_irq(q->queue_lock);
3413}
3414EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3415
3416/**
3417 * blk_set_runtime_active - Force runtime status of the queue to be active
3418 * @q: the queue of the device
3419 *
3420 * If the device is left runtime suspended during system suspend the resume
3421 * hook typically resumes the device and corrects runtime status
3422 * accordingly. However, that does not affect the queue runtime PM status
3423 * which is still "suspended". This prevents processing requests from the
3424 * queue.
3425 *
3426 * This function can be used in driver's resume hook to correct queue
3427 * runtime PM status and re-enable peeking requests from the queue. It
3428 * should be called before first request is added to the queue.
3429 */
3430void blk_set_runtime_active(struct request_queue *q)
3431{
3432 spin_lock_irq(q->queue_lock);
3433 q->rpm_status = RPM_ACTIVE;
3434 pm_runtime_mark_last_busy(q->dev);
3435 pm_request_autosuspend(q->dev);
3436 spin_unlock_irq(q->queue_lock);
3437}
3438EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3439#endif
3440
1da177e4
LT
3441int __init blk_dev_init(void)
3442{
ef295ecf
CH
3443 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3444 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3445 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3446 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3447 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3448
89b90be2
TH
3449 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3450 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3451 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3452 if (!kblockd_workqueue)
3453 panic("Failed to create kblockd\n");
3454
3455 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3456 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3457
c2789bd4 3458 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3459 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3460
d38ecf93 3461 return 0;
1da177e4 3462}