]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
nvme: move namespace scanning to common code
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
8de05535 15#include <linux/bitops.h>
b60503ba 16#include <linux/blkdev.h>
a4aea562 17#include <linux/blk-mq.h>
42f61420 18#include <linux/cpu.h>
fd63e9ce 19#include <linux/delay.h>
b60503ba
MW
20#include <linux/errno.h>
21#include <linux/fs.h>
22#include <linux/genhd.h>
4cc09e2d 23#include <linux/hdreg.h>
5aff9382 24#include <linux/idr.h>
b60503ba
MW
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
1fa6aead 29#include <linux/kthread.h>
b60503ba
MW
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
34#include <linux/pci.h>
be7b6275 35#include <linux/poison.h>
c3bfe717 36#include <linux/ptrace.h>
b60503ba
MW
37#include <linux/sched.h>
38#include <linux/slab.h>
e1e5e564 39#include <linux/t10-pi.h>
b60503ba 40#include <linux/types.h>
1d277a63 41#include <linux/pr.h>
5d0f6131 42#include <scsi/sg.h>
2f8e2c87 43#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 44#include <asm/unaligned.h>
797a796a 45
9d99a8dd 46#include <uapi/linux/nvme_ioctl.h>
f11bb3e2
CH
47#include "nvme.h"
48
b3fffdef 49#define NVME_MINORS (1U << MINORBITS)
9d43cf64 50#define NVME_Q_DEPTH 1024
d31af0a3 51#define NVME_AQ_DEPTH 256
b60503ba
MW
52#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
53#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
9d43cf64 54
21d34711 55unsigned char admin_timeout = 60;
9d43cf64
KB
56module_param(admin_timeout, byte, 0644);
57MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 58
bd67608a
MW
59unsigned char nvme_io_timeout = 30;
60module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 61MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 62
5fd4ce1b 63unsigned char shutdown_timeout = 5;
2484f407
DM
64module_param(shutdown_timeout, byte, 0644);
65MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
66
b3fffdef
KB
67static int nvme_char_major;
68module_param(nvme_char_major, int, 0);
69
58ffacb5
MW
70static int use_threaded_interrupts;
71module_param(use_threaded_interrupts, int, 0);
72
8ffaadf7
JD
73static bool use_cmb_sqes = true;
74module_param(use_cmb_sqes, bool, 0644);
75MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
76
1fa6aead
MW
77static LIST_HEAD(dev_list);
78static struct task_struct *nvme_thread;
9a6b9458 79static struct workqueue_struct *nvme_workq;
b9afca3e 80static wait_queue_head_t nvme_kthread_wait;
1fa6aead 81
b3fffdef
KB
82static struct class *nvme_class;
83
1c63dc66
CH
84struct nvme_dev;
85struct nvme_queue;
d4f6c3ab 86struct nvme_iod;
1c63dc66 87
90667892 88static int __nvme_reset(struct nvme_dev *dev);
4cc06521 89static int nvme_reset(struct nvme_dev *dev);
a0fa9647 90static void nvme_process_cq(struct nvme_queue *nvmeq);
d4f6c3ab 91static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
3cf519b5 92static void nvme_dead_ctrl(struct nvme_dev *dev);
d4b4ff8e 93
4d115420
KB
94struct async_cmd_info {
95 struct kthread_work work;
96 struct kthread_worker *worker;
a4aea562 97 struct request *req;
4d115420
KB
98 u32 result;
99 int status;
100 void *ctx;
101};
1fa6aead 102
1c63dc66
CH
103/*
104 * Represents an NVM Express device. Each nvme_dev is a PCI function.
105 */
106struct nvme_dev {
107 struct list_head node;
108 struct nvme_queue **queues;
109 struct blk_mq_tag_set tagset;
110 struct blk_mq_tag_set admin_tagset;
111 u32 __iomem *dbs;
112 struct device *dev;
113 struct dma_pool *prp_page_pool;
114 struct dma_pool *prp_small_pool;
115 unsigned queue_count;
116 unsigned online_queues;
117 unsigned max_qid;
118 int q_depth;
119 u32 db_stride;
1c63dc66
CH
120 struct msix_entry *entry;
121 void __iomem *bar;
1c63dc66
CH
122 struct work_struct reset_work;
123 struct work_struct probe_work;
124 struct work_struct scan_work;
125 bool subsystem;
1c63dc66
CH
126 void __iomem *cmb;
127 dma_addr_t cmb_dma_addr;
128 u64 cmb_size;
129 u32 cmbsz;
130
131 struct nvme_ctrl ctrl;
132};
133
134static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
135{
136 return container_of(ctrl, struct nvme_dev, ctrl);
137}
138
b60503ba
MW
139/*
140 * An NVM Express queue. Each device has at least two (one for admin
141 * commands and one for I/O commands).
142 */
143struct nvme_queue {
144 struct device *q_dmadev;
091b6092 145 struct nvme_dev *dev;
3193f07b 146 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
147 spinlock_t q_lock;
148 struct nvme_command *sq_cmds;
8ffaadf7 149 struct nvme_command __iomem *sq_cmds_io;
b60503ba 150 volatile struct nvme_completion *cqes;
42483228 151 struct blk_mq_tags **tags;
b60503ba
MW
152 dma_addr_t sq_dma_addr;
153 dma_addr_t cq_dma_addr;
b60503ba
MW
154 u32 __iomem *q_db;
155 u16 q_depth;
6222d172 156 s16 cq_vector;
b60503ba
MW
157 u16 sq_head;
158 u16 sq_tail;
159 u16 cq_head;
c30341dc 160 u16 qid;
e9539f47
MW
161 u8 cq_phase;
162 u8 cqe_seen;
4d115420 163 struct async_cmd_info cmdinfo;
b60503ba
MW
164};
165
71bd150c
CH
166/*
167 * The nvme_iod describes the data in an I/O, including the list of PRP
168 * entries. You can't see it in this data structure because C doesn't let
169 * me express that. Use nvme_alloc_iod to ensure there's enough space
170 * allocated to store the PRP list.
171 */
172struct nvme_iod {
173 unsigned long private; /* For the use of the submitter of the I/O */
174 int npages; /* In the PRP list. 0 means small pool in use */
175 int offset; /* Of PRP list */
176 int nents; /* Used in scatterlist */
177 int length; /* Of data, in bytes */
178 dma_addr_t first_dma;
179 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
180 struct scatterlist sg[0];
181};
182
b60503ba
MW
183/*
184 * Check we didin't inadvertently grow the command struct
185 */
186static inline void _nvme_check_size(void)
187{
188 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
190 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
191 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
192 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 193 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 194 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
195 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
197 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
198 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 199 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
200}
201
edd10d33 202typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
c2f5b650
MW
203 struct nvme_completion *);
204
e85248e5 205struct nvme_cmd_info {
c2f5b650
MW
206 nvme_completion_fn fn;
207 void *ctx;
c30341dc 208 int aborted;
a4aea562 209 struct nvme_queue *nvmeq;
ac3dd5bd 210 struct nvme_iod iod[0];
e85248e5
MW
211};
212
ac3dd5bd
JA
213/*
214 * Max size of iod being embedded in the request payload
215 */
216#define NVME_INT_PAGES 2
5fd4ce1b 217#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
fda631ff 218#define NVME_INT_MASK 0x01
ac3dd5bd
JA
219
220/*
221 * Will slightly overestimate the number of pages needed. This is OK
222 * as it only leads to a small amount of wasted memory for the lifetime of
223 * the I/O.
224 */
225static int nvme_npages(unsigned size, struct nvme_dev *dev)
226{
5fd4ce1b
CH
227 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
228 dev->ctrl.page_size);
ac3dd5bd
JA
229 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
230}
231
232static unsigned int nvme_cmd_size(struct nvme_dev *dev)
233{
234 unsigned int ret = sizeof(struct nvme_cmd_info);
235
236 ret += sizeof(struct nvme_iod);
237 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
238 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
239
240 return ret;
241}
242
a4aea562
MB
243static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
244 unsigned int hctx_idx)
e85248e5 245{
a4aea562
MB
246 struct nvme_dev *dev = data;
247 struct nvme_queue *nvmeq = dev->queues[0];
248
42483228
KB
249 WARN_ON(hctx_idx != 0);
250 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
251 WARN_ON(nvmeq->tags);
252
a4aea562 253 hctx->driver_data = nvmeq;
42483228 254 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 255 return 0;
e85248e5
MW
256}
257
4af0e21c
KB
258static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
259{
260 struct nvme_queue *nvmeq = hctx->driver_data;
261
262 nvmeq->tags = NULL;
263}
264
a4aea562
MB
265static int nvme_admin_init_request(void *data, struct request *req,
266 unsigned int hctx_idx, unsigned int rq_idx,
267 unsigned int numa_node)
22404274 268{
a4aea562
MB
269 struct nvme_dev *dev = data;
270 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
271 struct nvme_queue *nvmeq = dev->queues[0];
272
273 BUG_ON(!nvmeq);
274 cmd->nvmeq = nvmeq;
275 return 0;
22404274
KB
276}
277
a4aea562
MB
278static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
279 unsigned int hctx_idx)
b60503ba 280{
a4aea562 281 struct nvme_dev *dev = data;
42483228 282 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 283
42483228
KB
284 if (!nvmeq->tags)
285 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 286
42483228 287 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
288 hctx->driver_data = nvmeq;
289 return 0;
b60503ba
MW
290}
291
a4aea562
MB
292static int nvme_init_request(void *data, struct request *req,
293 unsigned int hctx_idx, unsigned int rq_idx,
294 unsigned int numa_node)
b60503ba 295{
a4aea562
MB
296 struct nvme_dev *dev = data;
297 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
298 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
299
300 BUG_ON(!nvmeq);
301 cmd->nvmeq = nvmeq;
302 return 0;
303}
304
305static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
306 nvme_completion_fn handler)
307{
308 cmd->fn = handler;
309 cmd->ctx = ctx;
310 cmd->aborted = 0;
c917dfe5 311 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
b60503ba
MW
312}
313
ac3dd5bd
JA
314static void *iod_get_private(struct nvme_iod *iod)
315{
316 return (void *) (iod->private & ~0x1UL);
317}
318
319/*
320 * If bit 0 is set, the iod is embedded in the request payload.
321 */
322static bool iod_should_kfree(struct nvme_iod *iod)
323{
fda631ff 324 return (iod->private & NVME_INT_MASK) == 0;
ac3dd5bd
JA
325}
326
c2f5b650
MW
327/* Special values must be less than 0x1000 */
328#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
329#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
330#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
331#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 332
edd10d33 333static void special_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
334 struct nvme_completion *cqe)
335{
336 if (ctx == CMD_CTX_CANCELLED)
337 return;
c2f5b650 338 if (ctx == CMD_CTX_COMPLETED) {
edd10d33 339 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
340 "completed id %d twice on queue %d\n",
341 cqe->command_id, le16_to_cpup(&cqe->sq_id));
342 return;
343 }
344 if (ctx == CMD_CTX_INVALID) {
edd10d33 345 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
346 "invalid id %d completed on queue %d\n",
347 cqe->command_id, le16_to_cpup(&cqe->sq_id));
348 return;
349 }
edd10d33 350 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
351}
352
a4aea562 353static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
b60503ba 354{
c2f5b650 355 void *ctx;
b60503ba 356
859361a2 357 if (fn)
a4aea562
MB
358 *fn = cmd->fn;
359 ctx = cmd->ctx;
360 cmd->fn = special_completion;
361 cmd->ctx = CMD_CTX_CANCELLED;
c2f5b650 362 return ctx;
b60503ba
MW
363}
364
a4aea562
MB
365static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
366 struct nvme_completion *cqe)
3c0cf138 367{
a4aea562
MB
368 u32 result = le32_to_cpup(&cqe->result);
369 u16 status = le16_to_cpup(&cqe->status) >> 1;
370
371 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
1c63dc66 372 ++nvmeq->dev->ctrl.event_limit;
a5768aa8
KB
373 if (status != NVME_SC_SUCCESS)
374 return;
375
376 switch (result & 0xff07) {
377 case NVME_AER_NOTICE_NS_CHANGED:
378 dev_info(nvmeq->q_dmadev, "rescanning\n");
379 schedule_work(&nvmeq->dev->scan_work);
380 default:
381 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
382 }
b60503ba
MW
383}
384
a4aea562
MB
385static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
386 struct nvme_completion *cqe)
5a92e700 387{
a4aea562
MB
388 struct request *req = ctx;
389
390 u16 status = le16_to_cpup(&cqe->status) >> 1;
391 u32 result = le32_to_cpup(&cqe->result);
a51afb54 392
42483228 393 blk_mq_free_request(req);
a51afb54 394
a4aea562 395 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
1c63dc66 396 ++nvmeq->dev->ctrl.abort_limit;
5a92e700
KB
397}
398
a4aea562
MB
399static void async_completion(struct nvme_queue *nvmeq, void *ctx,
400 struct nvme_completion *cqe)
b60503ba 401{
a4aea562
MB
402 struct async_cmd_info *cmdinfo = ctx;
403 cmdinfo->result = le32_to_cpup(&cqe->result);
404 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
405 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
42483228 406 blk_mq_free_request(cmdinfo->req);
b60503ba
MW
407}
408
a4aea562
MB
409static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
410 unsigned int tag)
b60503ba 411{
42483228 412 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
a51afb54 413
a4aea562 414 return blk_mq_rq_to_pdu(req);
4f5099af
KB
415}
416
a4aea562
MB
417/*
418 * Called with local interrupts disabled and the q_lock held. May not sleep.
419 */
420static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
421 nvme_completion_fn *fn)
4f5099af 422{
a4aea562
MB
423 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
424 void *ctx;
425 if (tag >= nvmeq->q_depth) {
426 *fn = special_completion;
427 return CMD_CTX_INVALID;
428 }
429 if (fn)
430 *fn = cmd->fn;
431 ctx = cmd->ctx;
432 cmd->fn = special_completion;
433 cmd->ctx = CMD_CTX_COMPLETED;
434 return ctx;
b60503ba
MW
435}
436
437/**
714a7a22 438 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
439 * @nvmeq: The queue to use
440 * @cmd: The command to send
441 *
442 * Safe to use from interrupt context
443 */
e3f879bf
SB
444static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
445 struct nvme_command *cmd)
b60503ba 446{
a4aea562
MB
447 u16 tail = nvmeq->sq_tail;
448
8ffaadf7
JD
449 if (nvmeq->sq_cmds_io)
450 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
451 else
452 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
453
b60503ba
MW
454 if (++tail == nvmeq->q_depth)
455 tail = 0;
7547881d 456 writel(tail, nvmeq->q_db);
b60503ba 457 nvmeq->sq_tail = tail;
b60503ba
MW
458}
459
e3f879bf 460static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
a4aea562
MB
461{
462 unsigned long flags;
a4aea562 463 spin_lock_irqsave(&nvmeq->q_lock, flags);
e3f879bf 464 __nvme_submit_cmd(nvmeq, cmd);
a4aea562 465 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a4aea562
MB
466}
467
eca18b23 468static __le64 **iod_list(struct nvme_iod *iod)
e025344c 469{
eca18b23 470 return ((void *)iod) + iod->offset;
e025344c
SMM
471}
472
ac3dd5bd
JA
473static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
474 unsigned nseg, unsigned long private)
eca18b23 475{
ac3dd5bd
JA
476 iod->private = private;
477 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
478 iod->npages = -1;
479 iod->length = nbytes;
480 iod->nents = 0;
eca18b23 481}
b60503ba 482
eca18b23 483static struct nvme_iod *
ac3dd5bd
JA
484__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
485 unsigned long priv, gfp_t gfp)
b60503ba 486{
eca18b23 487 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
ac3dd5bd 488 sizeof(__le64 *) * nvme_npages(bytes, dev) +
eca18b23
MW
489 sizeof(struct scatterlist) * nseg, gfp);
490
ac3dd5bd
JA
491 if (iod)
492 iod_init(iod, bytes, nseg, priv);
eca18b23
MW
493
494 return iod;
b60503ba
MW
495}
496
ac3dd5bd
JA
497static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
498 gfp_t gfp)
499{
500 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
501 sizeof(struct nvme_dsm_range);
ac3dd5bd
JA
502 struct nvme_iod *iod;
503
504 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
505 size <= NVME_INT_BYTES(dev)) {
506 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
507
508 iod = cmd->iod;
ac3dd5bd 509 iod_init(iod, size, rq->nr_phys_segments,
fda631ff 510 (unsigned long) rq | NVME_INT_MASK);
ac3dd5bd
JA
511 return iod;
512 }
513
514 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
515 (unsigned long) rq, gfp);
516}
517
d29ec824 518static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 519{
5fd4ce1b 520 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23
MW
521 int i;
522 __le64 **list = iod_list(iod);
523 dma_addr_t prp_dma = iod->first_dma;
524
525 if (iod->npages == 0)
526 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
527 for (i = 0; i < iod->npages; i++) {
528 __le64 *prp_list = list[i];
529 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
530 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
531 prp_dma = next_prp_dma;
532 }
ac3dd5bd
JA
533
534 if (iod_should_kfree(iod))
535 kfree(iod);
b60503ba
MW
536}
537
52b68d7e 538#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
539static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
540{
541 if (be32_to_cpu(pi->ref_tag) == v)
542 pi->ref_tag = cpu_to_be32(p);
543}
544
545static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
546{
547 if (be32_to_cpu(pi->ref_tag) == p)
548 pi->ref_tag = cpu_to_be32(v);
549}
550
551/**
552 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
553 *
554 * The virtual start sector is the one that was originally submitted by the
555 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
556 * start sector may be different. Remap protection information to match the
557 * physical LBA on writes, and back to the original seed on reads.
558 *
559 * Type 0 and 3 do not have a ref tag, so no remapping required.
560 */
561static void nvme_dif_remap(struct request *req,
562 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
563{
564 struct nvme_ns *ns = req->rq_disk->private_data;
565 struct bio_integrity_payload *bip;
566 struct t10_pi_tuple *pi;
567 void *p, *pmap;
568 u32 i, nlb, ts, phys, virt;
569
570 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
571 return;
572
573 bip = bio_integrity(req->bio);
574 if (!bip)
575 return;
576
577 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
578
579 p = pmap;
580 virt = bip_get_seed(bip);
581 phys = nvme_block_nr(ns, blk_rq_pos(req));
582 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 583 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
584
585 for (i = 0; i < nlb; i++, virt++, phys++) {
586 pi = (struct t10_pi_tuple *)p;
587 dif_swap(phys, virt, pi);
588 p += ts;
589 }
590 kunmap_atomic(pmap);
591}
52b68d7e
KB
592#else /* CONFIG_BLK_DEV_INTEGRITY */
593static void nvme_dif_remap(struct request *req,
594 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
595{
596}
597static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
598{
599}
600static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
601{
602}
52b68d7e
KB
603#endif
604
a4aea562 605static void req_completion(struct nvme_queue *nvmeq, void *ctx,
b60503ba
MW
606 struct nvme_completion *cqe)
607{
eca18b23 608 struct nvme_iod *iod = ctx;
ac3dd5bd 609 struct request *req = iod_get_private(iod);
a4aea562 610 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
b60503ba 611 u16 status = le16_to_cpup(&cqe->status) >> 1;
81c04b94 612 int error = 0;
b60503ba 613
edd10d33 614 if (unlikely(status)) {
a4aea562
MB
615 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
616 && (jiffies - req->start_time) < req->timeout) {
c9d3bf88
KB
617 unsigned long flags;
618
d4f6c3ab
CH
619 nvme_unmap_data(nvmeq->dev, iod);
620
a4aea562 621 blk_mq_requeue_request(req);
c9d3bf88
KB
622 spin_lock_irqsave(req->q->queue_lock, flags);
623 if (!blk_queue_stopped(req->q))
624 blk_mq_kick_requeue_list(req->q);
625 spin_unlock_irqrestore(req->q->queue_lock, flags);
d4f6c3ab 626 return;
edd10d33 627 }
f4829a9b 628
d29ec824 629 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
17188bb4 630 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
81c04b94
CH
631 error = -EINTR;
632 else
633 error = status;
d29ec824 634 } else {
81c04b94 635 error = nvme_error_status(status);
d29ec824 636 }
f4829a9b
CH
637 }
638
a0a931d6
KB
639 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
640 u32 result = le32_to_cpup(&cqe->result);
641 req->special = (void *)(uintptr_t)result;
642 }
a4aea562
MB
643
644 if (cmd_rq->aborted)
e75ec752 645 dev_warn(nvmeq->dev->dev,
a4aea562 646 "completing aborted command with status:%04x\n",
81c04b94 647 error);
a4aea562 648
d4f6c3ab
CH
649 nvme_unmap_data(nvmeq->dev, iod);
650 blk_mq_complete_request(req, error);
b60503ba
MW
651}
652
69d2b571
CH
653static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
654 int total_len)
ff22b54f 655{
99802a7a 656 struct dma_pool *pool;
eca18b23
MW
657 int length = total_len;
658 struct scatterlist *sg = iod->sg;
ff22b54f
MW
659 int dma_len = sg_dma_len(sg);
660 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 661 u32 page_size = dev->ctrl.page_size;
f137e0f1 662 int offset = dma_addr & (page_size - 1);
e025344c 663 __le64 *prp_list;
eca18b23 664 __le64 **list = iod_list(iod);
e025344c 665 dma_addr_t prp_dma;
eca18b23 666 int nprps, i;
ff22b54f 667
1d090624 668 length -= (page_size - offset);
ff22b54f 669 if (length <= 0)
69d2b571 670 return true;
ff22b54f 671
1d090624 672 dma_len -= (page_size - offset);
ff22b54f 673 if (dma_len) {
1d090624 674 dma_addr += (page_size - offset);
ff22b54f
MW
675 } else {
676 sg = sg_next(sg);
677 dma_addr = sg_dma_address(sg);
678 dma_len = sg_dma_len(sg);
679 }
680
1d090624 681 if (length <= page_size) {
edd10d33 682 iod->first_dma = dma_addr;
69d2b571 683 return true;
e025344c
SMM
684 }
685
1d090624 686 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
687 if (nprps <= (256 / 8)) {
688 pool = dev->prp_small_pool;
eca18b23 689 iod->npages = 0;
99802a7a
MW
690 } else {
691 pool = dev->prp_page_pool;
eca18b23 692 iod->npages = 1;
99802a7a
MW
693 }
694
69d2b571 695 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 696 if (!prp_list) {
edd10d33 697 iod->first_dma = dma_addr;
eca18b23 698 iod->npages = -1;
69d2b571 699 return false;
b77954cb 700 }
eca18b23
MW
701 list[0] = prp_list;
702 iod->first_dma = prp_dma;
e025344c
SMM
703 i = 0;
704 for (;;) {
1d090624 705 if (i == page_size >> 3) {
e025344c 706 __le64 *old_prp_list = prp_list;
69d2b571 707 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 708 if (!prp_list)
69d2b571 709 return false;
eca18b23 710 list[iod->npages++] = prp_list;
7523d834
MW
711 prp_list[0] = old_prp_list[i - 1];
712 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
713 i = 1;
e025344c
SMM
714 }
715 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
716 dma_len -= page_size;
717 dma_addr += page_size;
718 length -= page_size;
e025344c
SMM
719 if (length <= 0)
720 break;
721 if (dma_len > 0)
722 continue;
723 BUG_ON(dma_len < 0);
724 sg = sg_next(sg);
725 dma_addr = sg_dma_address(sg);
726 dma_len = sg_dma_len(sg);
ff22b54f
MW
727 }
728
69d2b571 729 return true;
ff22b54f
MW
730}
731
ba1ca37e
CH
732static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
733 struct nvme_command *cmnd)
d29ec824 734{
ba1ca37e
CH
735 struct request *req = iod_get_private(iod);
736 struct request_queue *q = req->q;
737 enum dma_data_direction dma_dir = rq_data_dir(req) ?
738 DMA_TO_DEVICE : DMA_FROM_DEVICE;
739 int ret = BLK_MQ_RQ_QUEUE_ERROR;
740
741 sg_init_table(iod->sg, req->nr_phys_segments);
742 iod->nents = blk_rq_map_sg(q, req, iod->sg);
743 if (!iod->nents)
744 goto out;
745
746 ret = BLK_MQ_RQ_QUEUE_BUSY;
747 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
748 goto out;
749
750 if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
751 goto out_unmap;
752
753 ret = BLK_MQ_RQ_QUEUE_ERROR;
754 if (blk_integrity_rq(req)) {
755 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
756 goto out_unmap;
757
758 sg_init_table(iod->meta_sg, 1);
759 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
760 goto out_unmap;
d29ec824 761
ba1ca37e
CH
762 if (rq_data_dir(req))
763 nvme_dif_remap(req, nvme_dif_prep);
764
765 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
766 goto out_unmap;
d29ec824
CH
767 }
768
ba1ca37e
CH
769 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
770 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
771 if (blk_integrity_rq(req))
772 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
773 return BLK_MQ_RQ_QUEUE_OK;
774
775out_unmap:
776 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
777out:
778 return ret;
d29ec824
CH
779}
780
d4f6c3ab
CH
781static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
782{
783 struct request *req = iod_get_private(iod);
784 enum dma_data_direction dma_dir = rq_data_dir(req) ?
785 DMA_TO_DEVICE : DMA_FROM_DEVICE;
786
787 if (iod->nents) {
788 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
789 if (blk_integrity_rq(req)) {
790 if (!rq_data_dir(req))
791 nvme_dif_remap(req, nvme_dif_complete);
792 dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
793 }
794 }
795
796 nvme_free_iod(dev, iod);
797}
798
a4aea562
MB
799/*
800 * We reuse the small pool to allocate the 16-byte range here as it is not
801 * worth having a special pool for these or additional cases to handle freeing
802 * the iod.
803 */
ba1ca37e
CH
804static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
805 struct nvme_iod *iod, struct nvme_command *cmnd)
0e5e4f0e 806{
ba1ca37e
CH
807 struct request *req = iod_get_private(iod);
808 struct nvme_dsm_range *range;
809
810 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
811 &iod->first_dma);
812 if (!range)
813 return BLK_MQ_RQ_QUEUE_BUSY;
814 iod_list(iod)[0] = (__le64 *)range;
815 iod->npages = 0;
0e5e4f0e 816
0e5e4f0e 817 range->cattr = cpu_to_le32(0);
a4aea562
MB
818 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
819 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 820
ba1ca37e
CH
821 memset(cmnd, 0, sizeof(*cmnd));
822 cmnd->dsm.opcode = nvme_cmd_dsm;
823 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
824 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
825 cmnd->dsm.nr = 0;
826 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
827 return BLK_MQ_RQ_QUEUE_OK;
0e5e4f0e
KB
828}
829
d29ec824
CH
830/*
831 * NOTE: ns is NULL when called on the admin queue.
832 */
a4aea562
MB
833static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
834 const struct blk_mq_queue_data *bd)
edd10d33 835{
a4aea562
MB
836 struct nvme_ns *ns = hctx->queue->queuedata;
837 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 838 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
839 struct request *req = bd->rq;
840 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
edd10d33 841 struct nvme_iod *iod;
ba1ca37e
CH
842 struct nvme_command cmnd;
843 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 844
e1e5e564
KB
845 /*
846 * If formated with metadata, require the block layer provide a buffer
847 * unless this namespace is formated such that the metadata can be
848 * stripped/generated by the controller with PRACT=1.
849 */
d29ec824 850 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
851 if (!(ns->pi_type && ns->ms == 8) &&
852 req->cmd_type != REQ_TYPE_DRV_PRIV) {
f4829a9b 853 blk_mq_complete_request(req, -EFAULT);
e1e5e564
KB
854 return BLK_MQ_RQ_QUEUE_OK;
855 }
856 }
857
d29ec824 858 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
edd10d33 859 if (!iod)
fe54303e 860 return BLK_MQ_RQ_QUEUE_BUSY;
a4aea562 861
a4aea562 862 if (req->cmd_flags & REQ_DISCARD) {
ba1ca37e
CH
863 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
864 } else {
865 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
866 memcpy(&cmnd, req->cmd, sizeof(cmnd));
867 else if (req->cmd_flags & REQ_FLUSH)
868 nvme_setup_flush(ns, &cmnd);
869 else
870 nvme_setup_rw(ns, req, &cmnd);
a4aea562 871
ba1ca37e
CH
872 if (req->nr_phys_segments)
873 ret = nvme_map_data(dev, iod, &cmnd);
edd10d33 874 }
1974b1ae 875
ba1ca37e
CH
876 if (ret)
877 goto out;
878
879 cmnd.common.command_id = req->tag;
9af8785a 880 nvme_set_info(cmd, iod, req_completion);
a4aea562 881
ba1ca37e
CH
882 spin_lock_irq(&nvmeq->q_lock);
883 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
884 nvme_process_cq(nvmeq);
885 spin_unlock_irq(&nvmeq->q_lock);
886 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 887out:
d29ec824 888 nvme_free_iod(dev, iod);
ba1ca37e 889 return ret;
b60503ba
MW
890}
891
a0fa9647 892static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 893{
82123460 894 u16 head, phase;
b60503ba 895
b60503ba 896 head = nvmeq->cq_head;
82123460 897 phase = nvmeq->cq_phase;
b60503ba
MW
898
899 for (;;) {
c2f5b650
MW
900 void *ctx;
901 nvme_completion_fn fn;
b60503ba 902 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 903 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
904 break;
905 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
906 if (++head == nvmeq->q_depth) {
907 head = 0;
82123460 908 phase = !phase;
b60503ba 909 }
a0fa9647
JA
910 if (tag && *tag == cqe.command_id)
911 *tag = -1;
a4aea562 912 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
edd10d33 913 fn(nvmeq, ctx, &cqe);
b60503ba
MW
914 }
915
916 /* If the controller ignores the cq head doorbell and continuously
917 * writes to the queue, it is theoretically possible to wrap around
918 * the queue twice and mistakenly return IRQ_NONE. Linux only
919 * requires that 0.1% of your interrupts are handled, so this isn't
920 * a big problem.
921 */
82123460 922 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 923 return;
b60503ba 924
604e8c8d
KB
925 if (likely(nvmeq->cq_vector >= 0))
926 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 927 nvmeq->cq_head = head;
82123460 928 nvmeq->cq_phase = phase;
b60503ba 929
e9539f47 930 nvmeq->cqe_seen = 1;
a0fa9647
JA
931}
932
933static void nvme_process_cq(struct nvme_queue *nvmeq)
934{
935 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
936}
937
938static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
939{
940 irqreturn_t result;
941 struct nvme_queue *nvmeq = data;
942 spin_lock(&nvmeq->q_lock);
e9539f47
MW
943 nvme_process_cq(nvmeq);
944 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
945 nvmeq->cqe_seen = 0;
58ffacb5
MW
946 spin_unlock(&nvmeq->q_lock);
947 return result;
948}
949
950static irqreturn_t nvme_irq_check(int irq, void *data)
951{
952 struct nvme_queue *nvmeq = data;
953 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
954 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
955 return IRQ_NONE;
956 return IRQ_WAKE_THREAD;
957}
958
a0fa9647
JA
959static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
960{
961 struct nvme_queue *nvmeq = hctx->driver_data;
962
963 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
964 nvmeq->cq_phase) {
965 spin_lock_irq(&nvmeq->q_lock);
966 __nvme_process_cq(nvmeq, &tag);
967 spin_unlock_irq(&nvmeq->q_lock);
968
969 if (tag == -1)
970 return 1;
971 }
972
973 return 0;
974}
975
a4aea562
MB
976static int nvme_submit_async_admin_req(struct nvme_dev *dev)
977{
978 struct nvme_queue *nvmeq = dev->queues[0];
979 struct nvme_command c;
980 struct nvme_cmd_info *cmd_info;
981 struct request *req;
982
1c63dc66 983 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 984 BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
9f173b33
DC
985 if (IS_ERR(req))
986 return PTR_ERR(req);
a4aea562 987
c917dfe5 988 req->cmd_flags |= REQ_NO_TIMEOUT;
a4aea562 989 cmd_info = blk_mq_rq_to_pdu(req);
1efccc9d 990 nvme_set_info(cmd_info, NULL, async_req_completion);
a4aea562
MB
991
992 memset(&c, 0, sizeof(c));
993 c.common.opcode = nvme_admin_async_event;
994 c.common.command_id = req->tag;
995
42483228 996 blk_mq_free_request(req);
e3f879bf
SB
997 __nvme_submit_cmd(nvmeq, &c);
998 return 0;
a4aea562
MB
999}
1000
1001static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
4d115420
KB
1002 struct nvme_command *cmd,
1003 struct async_cmd_info *cmdinfo, unsigned timeout)
1004{
a4aea562
MB
1005 struct nvme_queue *nvmeq = dev->queues[0];
1006 struct request *req;
1007 struct nvme_cmd_info *cmd_rq;
4d115420 1008
1c63dc66 1009 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
9f173b33
DC
1010 if (IS_ERR(req))
1011 return PTR_ERR(req);
a4aea562
MB
1012
1013 req->timeout = timeout;
1014 cmd_rq = blk_mq_rq_to_pdu(req);
1015 cmdinfo->req = req;
1016 nvme_set_info(cmd_rq, cmdinfo, async_completion);
4d115420 1017 cmdinfo->status = -EINTR;
a4aea562
MB
1018
1019 cmd->common.command_id = req->tag;
1020
e3f879bf
SB
1021 nvme_submit_cmd(nvmeq, cmd);
1022 return 0;
4d115420
KB
1023}
1024
b60503ba
MW
1025static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1026{
b60503ba
MW
1027 struct nvme_command c;
1028
1029 memset(&c, 0, sizeof(c));
1030 c.delete_queue.opcode = opcode;
1031 c.delete_queue.qid = cpu_to_le16(id);
1032
1c63dc66 1033 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1034}
1035
1036static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1037 struct nvme_queue *nvmeq)
1038{
b60503ba
MW
1039 struct nvme_command c;
1040 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1041
d29ec824
CH
1042 /*
1043 * Note: we (ab)use the fact the the prp fields survive if no data
1044 * is attached to the request.
1045 */
b60503ba
MW
1046 memset(&c, 0, sizeof(c));
1047 c.create_cq.opcode = nvme_admin_create_cq;
1048 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1049 c.create_cq.cqid = cpu_to_le16(qid);
1050 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1051 c.create_cq.cq_flags = cpu_to_le16(flags);
1052 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1053
1c63dc66 1054 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1055}
1056
1057static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1058 struct nvme_queue *nvmeq)
1059{
b60503ba
MW
1060 struct nvme_command c;
1061 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1062
d29ec824
CH
1063 /*
1064 * Note: we (ab)use the fact the the prp fields survive if no data
1065 * is attached to the request.
1066 */
b60503ba
MW
1067 memset(&c, 0, sizeof(c));
1068 c.create_sq.opcode = nvme_admin_create_sq;
1069 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1070 c.create_sq.sqid = cpu_to_le16(qid);
1071 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1072 c.create_sq.sq_flags = cpu_to_le16(flags);
1073 c.create_sq.cqid = cpu_to_le16(qid);
1074
1c63dc66 1075 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1076}
1077
1078static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1079{
1080 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1081}
1082
1083static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1084{
1085 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1086}
1087
c30341dc 1088/**
a4aea562 1089 * nvme_abort_req - Attempt aborting a request
c30341dc
KB
1090 *
1091 * Schedule controller reset if the command was already aborted once before and
1092 * still hasn't been returned to the driver, or if this is the admin queue.
1093 */
a4aea562 1094static void nvme_abort_req(struct request *req)
c30341dc 1095{
a4aea562
MB
1096 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1097 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
c30341dc 1098 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
1099 struct request *abort_req;
1100 struct nvme_cmd_info *abort_cmd;
1101 struct nvme_command cmd;
c30341dc 1102
a4aea562 1103 if (!nvmeq->qid || cmd_rq->aborted) {
90667892
CH
1104 spin_lock(&dev_list_lock);
1105 if (!__nvme_reset(dev)) {
1106 dev_warn(dev->dev,
1107 "I/O %d QID %d timeout, reset controller\n",
1108 req->tag, nvmeq->qid);
1109 }
1110 spin_unlock(&dev_list_lock);
c30341dc
KB
1111 return;
1112 }
1113
1c63dc66 1114 if (!dev->ctrl.abort_limit)
c30341dc
KB
1115 return;
1116
1c63dc66 1117 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 1118 BLK_MQ_REQ_NOWAIT);
9f173b33 1119 if (IS_ERR(abort_req))
c30341dc
KB
1120 return;
1121
a4aea562
MB
1122 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1123 nvme_set_info(abort_cmd, abort_req, abort_completion);
1124
c30341dc
KB
1125 memset(&cmd, 0, sizeof(cmd));
1126 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1127 cmd.abort.cid = req->tag;
c30341dc 1128 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
a4aea562 1129 cmd.abort.command_id = abort_req->tag;
c30341dc 1130
1c63dc66 1131 --dev->ctrl.abort_limit;
a4aea562 1132 cmd_rq->aborted = 1;
c30341dc 1133
a4aea562 1134 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
c30341dc 1135 nvmeq->qid);
e3f879bf 1136 nvme_submit_cmd(dev->queues[0], &cmd);
c30341dc
KB
1137}
1138
42483228 1139static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1140{
a4aea562
MB
1141 struct nvme_queue *nvmeq = data;
1142 void *ctx;
1143 nvme_completion_fn fn;
1144 struct nvme_cmd_info *cmd;
cef6a948
KB
1145 struct nvme_completion cqe;
1146
1147 if (!blk_mq_request_started(req))
1148 return;
a09115b2 1149
a4aea562 1150 cmd = blk_mq_rq_to_pdu(req);
a09115b2 1151
a4aea562
MB
1152 if (cmd->ctx == CMD_CTX_CANCELLED)
1153 return;
1154
cef6a948
KB
1155 if (blk_queue_dying(req->q))
1156 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1157 else
1158 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1159
1160
a4aea562
MB
1161 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1162 req->tag, nvmeq->qid);
1163 ctx = cancel_cmd_info(cmd, &fn);
1164 fn(nvmeq, ctx, &cqe);
a09115b2
MW
1165}
1166
a4aea562 1167static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
9e866774 1168{
a4aea562
MB
1169 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1170 struct nvme_queue *nvmeq = cmd->nvmeq;
1171
1172 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1173 nvmeq->qid);
7a509a6b 1174 spin_lock_irq(&nvmeq->q_lock);
07836e65 1175 nvme_abort_req(req);
7a509a6b 1176 spin_unlock_irq(&nvmeq->q_lock);
a4aea562 1177
07836e65
KB
1178 /*
1179 * The aborted req will be completed on receiving the abort req.
1180 * We enable the timer again. If hit twice, it'll cause a device reset,
1181 * as the device then is in a faulty state.
1182 */
1183 return BLK_EH_RESET_TIMER;
a4aea562 1184}
22404274 1185
a4aea562
MB
1186static void nvme_free_queue(struct nvme_queue *nvmeq)
1187{
9e866774
MW
1188 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1189 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1190 if (nvmeq->sq_cmds)
1191 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1192 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1193 kfree(nvmeq);
1194}
1195
a1a5ef99 1196static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1197{
1198 int i;
1199
a1a5ef99 1200 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1201 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1202 dev->queue_count--;
a4aea562 1203 dev->queues[i] = NULL;
f435c282 1204 nvme_free_queue(nvmeq);
121c7ad4 1205 }
22404274
KB
1206}
1207
4d115420
KB
1208/**
1209 * nvme_suspend_queue - put queue into suspended state
1210 * @nvmeq - queue to suspend
4d115420
KB
1211 */
1212static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1213{
2b25d981 1214 int vector;
b60503ba 1215
a09115b2 1216 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1217 if (nvmeq->cq_vector == -1) {
1218 spin_unlock_irq(&nvmeq->q_lock);
1219 return 1;
1220 }
1221 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1222 nvmeq->dev->online_queues--;
2b25d981 1223 nvmeq->cq_vector = -1;
a09115b2
MW
1224 spin_unlock_irq(&nvmeq->q_lock);
1225
1c63dc66
CH
1226 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1227 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1228
aba2080f
MW
1229 irq_set_affinity_hint(vector, NULL);
1230 free_irq(vector, nvmeq);
b60503ba 1231
4d115420
KB
1232 return 0;
1233}
b60503ba 1234
4d115420
KB
1235static void nvme_clear_queue(struct nvme_queue *nvmeq)
1236{
22404274 1237 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1238 if (nvmeq->tags && *nvmeq->tags)
1239 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1240 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1241}
1242
4d115420
KB
1243static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1244{
a4aea562 1245 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1246
1247 if (!nvmeq)
1248 return;
1249 if (nvme_suspend_queue(nvmeq))
1250 return;
1251
0e53d180
KB
1252 /* Don't tell the adapter to delete the admin queue.
1253 * Don't tell a removed adapter to delete IO queues. */
7a67cbea 1254 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
b60503ba
MW
1255 adapter_delete_sq(dev, qid);
1256 adapter_delete_cq(dev, qid);
1257 }
07836e65
KB
1258
1259 spin_lock_irq(&nvmeq->q_lock);
1260 nvme_process_cq(nvmeq);
1261 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1262}
1263
8ffaadf7
JD
1264static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1265 int entry_size)
1266{
1267 int q_depth = dev->q_depth;
5fd4ce1b
CH
1268 unsigned q_size_aligned = roundup(q_depth * entry_size,
1269 dev->ctrl.page_size);
8ffaadf7
JD
1270
1271 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1272 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1273 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1274 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1275
1276 /*
1277 * Ensure the reduced q_depth is above some threshold where it
1278 * would be better to map queues in system memory with the
1279 * original depth
1280 */
1281 if (q_depth < 64)
1282 return -ENOMEM;
1283 }
1284
1285 return q_depth;
1286}
1287
1288static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1289 int qid, int depth)
1290{
1291 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1292 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1293 dev->ctrl.page_size);
8ffaadf7
JD
1294 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1295 nvmeq->sq_cmds_io = dev->cmb + offset;
1296 } else {
1297 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1298 &nvmeq->sq_dma_addr, GFP_KERNEL);
1299 if (!nvmeq->sq_cmds)
1300 return -ENOMEM;
1301 }
1302
1303 return 0;
1304}
1305
b60503ba 1306static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1307 int depth)
b60503ba 1308{
a4aea562 1309 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1310 if (!nvmeq)
1311 return NULL;
1312
e75ec752 1313 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1314 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1315 if (!nvmeq->cqes)
1316 goto free_nvmeq;
b60503ba 1317
8ffaadf7 1318 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1319 goto free_cqdma;
1320
e75ec752 1321 nvmeq->q_dmadev = dev->dev;
091b6092 1322 nvmeq->dev = dev;
3193f07b 1323 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1324 dev->ctrl.instance, qid);
b60503ba
MW
1325 spin_lock_init(&nvmeq->q_lock);
1326 nvmeq->cq_head = 0;
82123460 1327 nvmeq->cq_phase = 1;
b80d5ccc 1328 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1329 nvmeq->q_depth = depth;
c30341dc 1330 nvmeq->qid = qid;
758dd7fd 1331 nvmeq->cq_vector = -1;
a4aea562 1332 dev->queues[qid] = nvmeq;
b60503ba 1333
36a7e993
JD
1334 /* make sure queue descriptor is set before queue count, for kthread */
1335 mb();
1336 dev->queue_count++;
1337
b60503ba
MW
1338 return nvmeq;
1339
1340 free_cqdma:
e75ec752 1341 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1342 nvmeq->cq_dma_addr);
1343 free_nvmeq:
1344 kfree(nvmeq);
1345 return NULL;
1346}
1347
3001082c
MW
1348static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1349 const char *name)
1350{
58ffacb5
MW
1351 if (use_threaded_interrupts)
1352 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1353 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1354 name, nvmeq);
3001082c 1355 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1356 IRQF_SHARED, name, nvmeq);
3001082c
MW
1357}
1358
22404274 1359static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1360{
22404274 1361 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1362
7be50e93 1363 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1364 nvmeq->sq_tail = 0;
1365 nvmeq->cq_head = 0;
1366 nvmeq->cq_phase = 1;
b80d5ccc 1367 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1368 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1369 dev->online_queues++;
7be50e93 1370 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1371}
1372
1373static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1374{
1375 struct nvme_dev *dev = nvmeq->dev;
1376 int result;
3f85d50b 1377
2b25d981 1378 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1379 result = adapter_alloc_cq(dev, qid, nvmeq);
1380 if (result < 0)
22404274 1381 return result;
b60503ba
MW
1382
1383 result = adapter_alloc_sq(dev, qid, nvmeq);
1384 if (result < 0)
1385 goto release_cq;
1386
3193f07b 1387 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1388 if (result < 0)
1389 goto release_sq;
1390
22404274 1391 nvme_init_queue(nvmeq, qid);
22404274 1392 return result;
b60503ba
MW
1393
1394 release_sq:
1395 adapter_delete_sq(dev, qid);
1396 release_cq:
1397 adapter_delete_cq(dev, qid);
22404274 1398 return result;
b60503ba
MW
1399}
1400
a4aea562 1401static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1402 .queue_rq = nvme_queue_rq,
a4aea562
MB
1403 .map_queue = blk_mq_map_queue,
1404 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1405 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1406 .init_request = nvme_admin_init_request,
1407 .timeout = nvme_timeout,
1408};
1409
1410static struct blk_mq_ops nvme_mq_ops = {
1411 .queue_rq = nvme_queue_rq,
1412 .map_queue = blk_mq_map_queue,
1413 .init_hctx = nvme_init_hctx,
1414 .init_request = nvme_init_request,
1415 .timeout = nvme_timeout,
a0fa9647 1416 .poll = nvme_poll,
a4aea562
MB
1417};
1418
ea191d2f
KB
1419static void nvme_dev_remove_admin(struct nvme_dev *dev)
1420{
1c63dc66
CH
1421 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1422 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1423 blk_mq_free_tag_set(&dev->admin_tagset);
1424 }
1425}
1426
a4aea562
MB
1427static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1428{
1c63dc66 1429 if (!dev->ctrl.admin_q) {
a4aea562
MB
1430 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1431 dev->admin_tagset.nr_hw_queues = 1;
1432 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1efccc9d 1433 dev->admin_tagset.reserved_tags = 1;
a4aea562 1434 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1435 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1436 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1437 dev->admin_tagset.driver_data = dev;
1438
1439 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1440 return -ENOMEM;
1441
1c63dc66
CH
1442 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1443 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1444 blk_mq_free_tag_set(&dev->admin_tagset);
1445 return -ENOMEM;
1446 }
1c63dc66 1447 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1448 nvme_dev_remove_admin(dev);
1c63dc66 1449 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1450 return -ENODEV;
1451 }
0fb59cbc 1452 } else
1c63dc66 1453 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
a4aea562
MB
1454
1455 return 0;
1456}
1457
8d85fce7 1458static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1459{
ba47e386 1460 int result;
b60503ba 1461 u32 aqa;
7a67cbea 1462 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1463 struct nvme_queue *nvmeq;
1464
7a67cbea 1465 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1466 NVME_CAP_NSSRC(cap) : 0;
1467
7a67cbea
CH
1468 if (dev->subsystem &&
1469 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1470 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1471
5fd4ce1b 1472 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1473 if (result < 0)
1474 return result;
b60503ba 1475
a4aea562 1476 nvmeq = dev->queues[0];
cd638946 1477 if (!nvmeq) {
2b25d981 1478 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1479 if (!nvmeq)
1480 return -ENOMEM;
cd638946 1481 }
b60503ba
MW
1482
1483 aqa = nvmeq->q_depth - 1;
1484 aqa |= aqa << 16;
1485
7a67cbea
CH
1486 writel(aqa, dev->bar + NVME_REG_AQA);
1487 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1488 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1489
5fd4ce1b 1490 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1491 if (result)
a4aea562
MB
1492 goto free_nvmeq;
1493
2b25d981 1494 nvmeq->cq_vector = 0;
3193f07b 1495 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1496 if (result) {
1497 nvmeq->cq_vector = -1;
0fb59cbc 1498 goto free_nvmeq;
758dd7fd 1499 }
025c557a 1500
b60503ba 1501 return result;
a4aea562 1502
a4aea562
MB
1503 free_nvmeq:
1504 nvme_free_queues(dev, 0);
1505 return result;
b60503ba
MW
1506}
1507
81f03fed
JD
1508static int nvme_subsys_reset(struct nvme_dev *dev)
1509{
1510 if (!dev->subsystem)
1511 return -ENOTTY;
1512
7a67cbea 1513 writel(0x4E564D65, dev->bar + NVME_REG_NSSR); /* "NVMe" */
81f03fed
JD
1514 return 0;
1515}
1516
1fa6aead
MW
1517static int nvme_kthread(void *data)
1518{
d4b4ff8e 1519 struct nvme_dev *dev, *next;
1fa6aead
MW
1520
1521 while (!kthread_should_stop()) {
564a232c 1522 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 1523 spin_lock(&dev_list_lock);
d4b4ff8e 1524 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 1525 int i;
7a67cbea 1526 u32 csts = readl(dev->bar + NVME_REG_CSTS);
dfbac8c7
KB
1527
1528 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1529 csts & NVME_CSTS_CFS) {
90667892
CH
1530 if (!__nvme_reset(dev)) {
1531 dev_warn(dev->dev,
1532 "Failed status: %x, reset controller\n",
7a67cbea 1533 readl(dev->bar + NVME_REG_CSTS));
90667892 1534 }
d4b4ff8e
KB
1535 continue;
1536 }
1fa6aead 1537 for (i = 0; i < dev->queue_count; i++) {
a4aea562 1538 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1539 if (!nvmeq)
1540 continue;
1fa6aead 1541 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 1542 nvme_process_cq(nvmeq);
6fccf938 1543
1c63dc66 1544 while (i == 0 && dev->ctrl.event_limit > 0) {
a4aea562 1545 if (nvme_submit_async_admin_req(dev))
6fccf938 1546 break;
1c63dc66 1547 dev->ctrl.event_limit--;
6fccf938 1548 }
1fa6aead
MW
1549 spin_unlock_irq(&nvmeq->q_lock);
1550 }
1551 }
1552 spin_unlock(&dev_list_lock);
acb7aa0d 1553 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
1554 }
1555 return 0;
1556}
1557
2659e57b
CH
1558/*
1559 * Create I/O queues. Failing to create an I/O queue is not an issue,
1560 * we can continue with less than the desired amount of queues, and
1561 * even a controller without I/O queues an still be used to issue
1562 * admin commands. This might be useful to upgrade a buggy firmware
1563 * for example.
1564 */
42f61420
KB
1565static void nvme_create_io_queues(struct nvme_dev *dev)
1566{
a4aea562 1567 unsigned i;
42f61420 1568
a4aea562 1569 for (i = dev->queue_count; i <= dev->max_qid; i++)
2b25d981 1570 if (!nvme_alloc_queue(dev, i, dev->q_depth))
42f61420
KB
1571 break;
1572
a4aea562 1573 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2659e57b
CH
1574 if (nvme_create_queue(dev->queues[i], i)) {
1575 nvme_free_queues(dev, i);
42f61420 1576 break;
2659e57b 1577 }
42f61420
KB
1578}
1579
b3b06812 1580static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1581{
1582 int status;
1583 u32 result;
b3b06812 1584 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 1585
1c63dc66 1586 status = nvme_set_features(&dev->ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 1587 &result);
27e8166c
MW
1588 if (status < 0)
1589 return status;
1590 if (status > 0) {
e75ec752 1591 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
badc34d4 1592 return 0;
27e8166c 1593 }
b60503ba
MW
1594 return min(result & 0xffff, result >> 16) + 1;
1595}
1596
8ffaadf7
JD
1597static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1598{
1599 u64 szu, size, offset;
1600 u32 cmbloc;
1601 resource_size_t bar_size;
1602 struct pci_dev *pdev = to_pci_dev(dev->dev);
1603 void __iomem *cmb;
1604 dma_addr_t dma_addr;
1605
1606 if (!use_cmb_sqes)
1607 return NULL;
1608
7a67cbea 1609 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1610 if (!(NVME_CMB_SZ(dev->cmbsz)))
1611 return NULL;
1612
7a67cbea 1613 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1614
1615 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1616 size = szu * NVME_CMB_SZ(dev->cmbsz);
1617 offset = szu * NVME_CMB_OFST(cmbloc);
1618 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1619
1620 if (offset > bar_size)
1621 return NULL;
1622
1623 /*
1624 * Controllers may support a CMB size larger than their BAR,
1625 * for example, due to being behind a bridge. Reduce the CMB to
1626 * the reported size of the BAR
1627 */
1628 if (size > bar_size - offset)
1629 size = bar_size - offset;
1630
1631 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1632 cmb = ioremap_wc(dma_addr, size);
1633 if (!cmb)
1634 return NULL;
1635
1636 dev->cmb_dma_addr = dma_addr;
1637 dev->cmb_size = size;
1638 return cmb;
1639}
1640
1641static inline void nvme_release_cmb(struct nvme_dev *dev)
1642{
1643 if (dev->cmb) {
1644 iounmap(dev->cmb);
1645 dev->cmb = NULL;
1646 }
1647}
1648
9d713c2b
KB
1649static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1650{
b80d5ccc 1651 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1652}
1653
8d85fce7 1654static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1655{
a4aea562 1656 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1657 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1658 int result, i, vecs, nr_io_queues, size;
b60503ba 1659
42f61420 1660 nr_io_queues = num_possible_cpus();
b348b7d5 1661 result = set_queue_count(dev, nr_io_queues);
badc34d4 1662 if (result <= 0)
1b23484b 1663 return result;
b348b7d5
MW
1664 if (result < nr_io_queues)
1665 nr_io_queues = result;
b60503ba 1666
8ffaadf7
JD
1667 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1668 result = nvme_cmb_qdepth(dev, nr_io_queues,
1669 sizeof(struct nvme_command));
1670 if (result > 0)
1671 dev->q_depth = result;
1672 else
1673 nvme_release_cmb(dev);
1674 }
1675
9d713c2b
KB
1676 size = db_bar_size(dev, nr_io_queues);
1677 if (size > 8192) {
f1938f6e 1678 iounmap(dev->bar);
9d713c2b
KB
1679 do {
1680 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1681 if (dev->bar)
1682 break;
1683 if (!--nr_io_queues)
1684 return -ENOMEM;
1685 size = db_bar_size(dev, nr_io_queues);
1686 } while (1);
7a67cbea 1687 dev->dbs = dev->bar + 4096;
5a92e700 1688 adminq->q_db = dev->dbs;
f1938f6e
MW
1689 }
1690
9d713c2b 1691 /* Deregister the admin queue's interrupt */
3193f07b 1692 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1693
e32efbfc
JA
1694 /*
1695 * If we enable msix early due to not intx, disable it again before
1696 * setting up the full range we need.
1697 */
1698 if (!pdev->irq)
1699 pci_disable_msix(pdev);
1700
be577fab 1701 for (i = 0; i < nr_io_queues; i++)
1b23484b 1702 dev->entry[i].entry = i;
be577fab
AG
1703 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1704 if (vecs < 0) {
1705 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1706 if (vecs < 0) {
1707 vecs = 1;
1708 } else {
1709 for (i = 0; i < vecs; i++)
1710 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1711 }
1712 }
1713
063a8096
MW
1714 /*
1715 * Should investigate if there's a performance win from allocating
1716 * more queues than interrupt vectors; it might allow the submission
1717 * path to scale better, even if the receive path is limited by the
1718 * number of interrupts.
1719 */
1720 nr_io_queues = vecs;
42f61420 1721 dev->max_qid = nr_io_queues;
063a8096 1722
3193f07b 1723 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1724 if (result) {
1725 adminq->cq_vector = -1;
22404274 1726 goto free_queues;
758dd7fd 1727 }
1b23484b 1728
cd638946 1729 /* Free previously allocated queues that are no longer usable */
42f61420 1730 nvme_free_queues(dev, nr_io_queues + 1);
a4aea562 1731 nvme_create_io_queues(dev);
9ecdc946 1732
22404274 1733 return 0;
b60503ba 1734
22404274 1735 free_queues:
a1a5ef99 1736 nvme_free_queues(dev, 1);
22404274 1737 return result;
b60503ba
MW
1738}
1739
bda4e0fb
KB
1740static void nvme_set_irq_hints(struct nvme_dev *dev)
1741{
1742 struct nvme_queue *nvmeq;
1743 int i;
1744
1745 for (i = 0; i < dev->online_queues; i++) {
1746 nvmeq = dev->queues[i];
1747
1748 if (!nvmeq->tags || !(*nvmeq->tags))
1749 continue;
1750
1751 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1752 blk_mq_tags_cpumask(*nvmeq->tags));
1753 }
1754}
1755
a5768aa8
KB
1756static void nvme_dev_scan(struct work_struct *work)
1757{
1758 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
a5768aa8
KB
1759
1760 if (!dev->tagset.tags)
1761 return;
5bae7f73 1762 nvme_scan_namespaces(&dev->ctrl);
bda4e0fb 1763 nvme_set_irq_hints(dev);
a5768aa8
KB
1764}
1765
422ef0c7
MW
1766/*
1767 * Return: error value if an error occurred setting up the queues or calling
1768 * Identify Device. 0 if these succeeded, even if adding some of the
1769 * namespaces failed. At the moment, these failures are silent. TBD which
1770 * failures should be reported.
1771 */
8d85fce7 1772static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1773{
5bae7f73 1774 if (!dev->ctrl.tagset) {
ffe7704d
KB
1775 dev->tagset.ops = &nvme_mq_ops;
1776 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1777 dev->tagset.timeout = NVME_IO_TIMEOUT;
1778 dev->tagset.numa_node = dev_to_node(dev->dev);
1779 dev->tagset.queue_depth =
a4aea562 1780 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1781 dev->tagset.cmd_size = nvme_cmd_size(dev);
1782 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1783 dev->tagset.driver_data = dev;
b60503ba 1784
ffe7704d
KB
1785 if (blk_mq_alloc_tag_set(&dev->tagset))
1786 return 0;
5bae7f73 1787 dev->ctrl.tagset = &dev->tagset;
ffe7704d 1788 }
a5768aa8 1789 schedule_work(&dev->scan_work);
e1e5e564 1790 return 0;
b60503ba
MW
1791}
1792
0877cb0d
KB
1793static int nvme_dev_map(struct nvme_dev *dev)
1794{
42f61420 1795 u64 cap;
0877cb0d 1796 int bars, result = -ENOMEM;
e75ec752 1797 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1798
1799 if (pci_enable_device_mem(pdev))
1800 return result;
1801
1802 dev->entry[0].vector = pdev->irq;
1803 pci_set_master(pdev);
1804 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
1805 if (!bars)
1806 goto disable_pci;
1807
0877cb0d
KB
1808 if (pci_request_selected_regions(pdev, bars, "nvme"))
1809 goto disable_pci;
1810
e75ec752
CH
1811 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1812 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1813 goto disable;
0877cb0d 1814
0877cb0d
KB
1815 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1816 if (!dev->bar)
1817 goto disable;
e32efbfc 1818
7a67cbea 1819 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180
KB
1820 result = -ENODEV;
1821 goto unmap;
1822 }
e32efbfc
JA
1823
1824 /*
1825 * Some devices don't advertse INTx interrupts, pre-enable a single
1826 * MSIX vec for setup. We'll adjust this later.
1827 */
1828 if (!pdev->irq) {
1829 result = pci_enable_msix(pdev, dev->entry, 1);
1830 if (result < 0)
1831 goto unmap;
1832 }
1833
7a67cbea
CH
1834 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1835
42f61420
KB
1836 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1837 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea
CH
1838 dev->dbs = dev->bar + 4096;
1839 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1840 dev->cmb = nvme_map_cmb(dev);
0877cb0d
KB
1841
1842 return 0;
1843
0e53d180
KB
1844 unmap:
1845 iounmap(dev->bar);
1846 dev->bar = NULL;
0877cb0d
KB
1847 disable:
1848 pci_release_regions(pdev);
1849 disable_pci:
1850 pci_disable_device(pdev);
1851 return result;
1852}
1853
1854static void nvme_dev_unmap(struct nvme_dev *dev)
1855{
e75ec752
CH
1856 struct pci_dev *pdev = to_pci_dev(dev->dev);
1857
1858 if (pdev->msi_enabled)
1859 pci_disable_msi(pdev);
1860 else if (pdev->msix_enabled)
1861 pci_disable_msix(pdev);
0877cb0d
KB
1862
1863 if (dev->bar) {
1864 iounmap(dev->bar);
1865 dev->bar = NULL;
e75ec752 1866 pci_release_regions(pdev);
0877cb0d
KB
1867 }
1868
e75ec752
CH
1869 if (pci_is_enabled(pdev))
1870 pci_disable_device(pdev);
0877cb0d
KB
1871}
1872
4d115420
KB
1873struct nvme_delq_ctx {
1874 struct task_struct *waiter;
1875 struct kthread_worker *worker;
1876 atomic_t refcount;
1877};
1878
1879static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1880{
1881 dq->waiter = current;
1882 mb();
1883
1884 for (;;) {
1885 set_current_state(TASK_KILLABLE);
1886 if (!atomic_read(&dq->refcount))
1887 break;
1888 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1889 fatal_signal_pending(current)) {
0fb59cbc
KB
1890 /*
1891 * Disable the controller first since we can't trust it
1892 * at this point, but leave the admin queue enabled
1893 * until all queue deletion requests are flushed.
1894 * FIXME: This may take a while if there are more h/w
1895 * queues than admin tags.
1896 */
4d115420 1897 set_current_state(TASK_RUNNING);
5fd4ce1b 1898 nvme_disable_ctrl(&dev->ctrl,
7a67cbea 1899 lo_hi_readq(dev->bar + NVME_REG_CAP));
0fb59cbc 1900 nvme_clear_queue(dev->queues[0]);
4d115420 1901 flush_kthread_worker(dq->worker);
0fb59cbc 1902 nvme_disable_queue(dev, 0);
4d115420
KB
1903 return;
1904 }
1905 }
1906 set_current_state(TASK_RUNNING);
1907}
1908
1909static void nvme_put_dq(struct nvme_delq_ctx *dq)
1910{
1911 atomic_dec(&dq->refcount);
1912 if (dq->waiter)
1913 wake_up_process(dq->waiter);
1914}
1915
1916static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1917{
1918 atomic_inc(&dq->refcount);
1919 return dq;
1920}
1921
1922static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1923{
1924 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420 1925 nvme_put_dq(dq);
604e8c8d
KB
1926
1927 spin_lock_irq(&nvmeq->q_lock);
1928 nvme_process_cq(nvmeq);
1929 spin_unlock_irq(&nvmeq->q_lock);
4d115420
KB
1930}
1931
1932static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1933 kthread_work_func_t fn)
1934{
1935 struct nvme_command c;
1936
1937 memset(&c, 0, sizeof(c));
1938 c.delete_queue.opcode = opcode;
1939 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1940
1941 init_kthread_work(&nvmeq->cmdinfo.work, fn);
a4aea562
MB
1942 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
1943 ADMIN_TIMEOUT);
4d115420
KB
1944}
1945
1946static void nvme_del_cq_work_handler(struct kthread_work *work)
1947{
1948 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1949 cmdinfo.work);
1950 nvme_del_queue_end(nvmeq);
1951}
1952
1953static int nvme_delete_cq(struct nvme_queue *nvmeq)
1954{
1955 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1956 nvme_del_cq_work_handler);
1957}
1958
1959static void nvme_del_sq_work_handler(struct kthread_work *work)
1960{
1961 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1962 cmdinfo.work);
1963 int status = nvmeq->cmdinfo.status;
1964
1965 if (!status)
1966 status = nvme_delete_cq(nvmeq);
1967 if (status)
1968 nvme_del_queue_end(nvmeq);
1969}
1970
1971static int nvme_delete_sq(struct nvme_queue *nvmeq)
1972{
1973 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1974 nvme_del_sq_work_handler);
1975}
1976
1977static void nvme_del_queue_start(struct kthread_work *work)
1978{
1979 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1980 cmdinfo.work);
4d115420
KB
1981 if (nvme_delete_sq(nvmeq))
1982 nvme_del_queue_end(nvmeq);
1983}
1984
1985static void nvme_disable_io_queues(struct nvme_dev *dev)
1986{
1987 int i;
1988 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1989 struct nvme_delq_ctx dq;
1990 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1c63dc66 1991 &worker, "nvme%d", dev->ctrl.instance);
4d115420
KB
1992
1993 if (IS_ERR(kworker_task)) {
e75ec752 1994 dev_err(dev->dev,
4d115420
KB
1995 "Failed to create queue del task\n");
1996 for (i = dev->queue_count - 1; i > 0; i--)
1997 nvme_disable_queue(dev, i);
1998 return;
1999 }
2000
2001 dq.waiter = NULL;
2002 atomic_set(&dq.refcount, 0);
2003 dq.worker = &worker;
2004 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 2005 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
2006
2007 if (nvme_suspend_queue(nvmeq))
2008 continue;
2009 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2010 nvmeq->cmdinfo.worker = dq.worker;
2011 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2012 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2013 }
2014 nvme_wait_dq(&dq, dev);
2015 kthread_stop(kworker_task);
2016}
2017
b9afca3e
DM
2018/*
2019* Remove the node from the device list and check
2020* for whether or not we need to stop the nvme_thread.
2021*/
2022static void nvme_dev_list_remove(struct nvme_dev *dev)
2023{
2024 struct task_struct *tmp = NULL;
2025
2026 spin_lock(&dev_list_lock);
2027 list_del_init(&dev->node);
2028 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2029 tmp = nvme_thread;
2030 nvme_thread = NULL;
2031 }
2032 spin_unlock(&dev_list_lock);
2033
2034 if (tmp)
2035 kthread_stop(tmp);
2036}
2037
c9d3bf88
KB
2038static void nvme_freeze_queues(struct nvme_dev *dev)
2039{
2040 struct nvme_ns *ns;
2041
5bae7f73 2042 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
c9d3bf88
KB
2043 blk_mq_freeze_queue_start(ns->queue);
2044
cddcd72b 2045 spin_lock_irq(ns->queue->queue_lock);
c9d3bf88 2046 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
cddcd72b 2047 spin_unlock_irq(ns->queue->queue_lock);
c9d3bf88
KB
2048
2049 blk_mq_cancel_requeue_work(ns->queue);
2050 blk_mq_stop_hw_queues(ns->queue);
2051 }
2052}
2053
2054static void nvme_unfreeze_queues(struct nvme_dev *dev)
2055{
2056 struct nvme_ns *ns;
2057
5bae7f73 2058 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
c9d3bf88
KB
2059 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2060 blk_mq_unfreeze_queue(ns->queue);
2061 blk_mq_start_stopped_hw_queues(ns->queue, true);
2062 blk_mq_kick_requeue_list(ns->queue);
2063 }
2064}
2065
f0b50732 2066static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 2067{
22404274 2068 int i;
7c1b2450 2069 u32 csts = -1;
22404274 2070
b9afca3e 2071 nvme_dev_list_remove(dev);
1fa6aead 2072
c9d3bf88
KB
2073 if (dev->bar) {
2074 nvme_freeze_queues(dev);
7a67cbea 2075 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 2076 }
7c1b2450 2077 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 2078 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 2079 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 2080 nvme_suspend_queue(nvmeq);
4d115420
KB
2081 }
2082 } else {
2083 nvme_disable_io_queues(dev);
5fd4ce1b 2084 nvme_shutdown_ctrl(&dev->ctrl);
4d115420
KB
2085 nvme_disable_queue(dev, 0);
2086 }
f0b50732 2087 nvme_dev_unmap(dev);
07836e65
KB
2088
2089 for (i = dev->queue_count - 1; i >= 0; i--)
2090 nvme_clear_queue(dev->queues[i]);
f0b50732
KB
2091}
2092
091b6092
MW
2093static int nvme_setup_prp_pools(struct nvme_dev *dev)
2094{
e75ec752 2095 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2096 PAGE_SIZE, PAGE_SIZE, 0);
2097 if (!dev->prp_page_pool)
2098 return -ENOMEM;
2099
99802a7a 2100 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2101 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2102 256, 256, 0);
2103 if (!dev->prp_small_pool) {
2104 dma_pool_destroy(dev->prp_page_pool);
2105 return -ENOMEM;
2106 }
091b6092
MW
2107 return 0;
2108}
2109
2110static void nvme_release_prp_pools(struct nvme_dev *dev)
2111{
2112 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2113 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2114}
2115
cd58ad7d
QSA
2116static DEFINE_IDA(nvme_instance_ida);
2117
2118static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 2119{
cd58ad7d
QSA
2120 int instance, error;
2121
2122 do {
2123 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2124 return -ENODEV;
2125
2126 spin_lock(&dev_list_lock);
2127 error = ida_get_new(&nvme_instance_ida, &instance);
2128 spin_unlock(&dev_list_lock);
2129 } while (error == -EAGAIN);
2130
2131 if (error)
2132 return -ENODEV;
2133
1c63dc66 2134 dev->ctrl.instance = instance;
cd58ad7d 2135 return 0;
b60503ba
MW
2136}
2137
2138static void nvme_release_instance(struct nvme_dev *dev)
2139{
cd58ad7d 2140 spin_lock(&dev_list_lock);
1c63dc66 2141 ida_remove(&nvme_instance_ida, dev->ctrl.instance);
cd58ad7d 2142 spin_unlock(&dev_list_lock);
b60503ba
MW
2143}
2144
1673f1f0 2145static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2146{
1673f1f0 2147 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2148
e75ec752 2149 put_device(dev->dev);
5bae7f73 2150 put_device(ctrl->device);
285dffc9 2151 nvme_release_instance(dev);
4af0e21c
KB
2152 if (dev->tagset.tags)
2153 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2154 if (dev->ctrl.admin_q)
2155 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
2156 kfree(dev->queues);
2157 kfree(dev->entry);
2158 kfree(dev);
2159}
2160
2161static int nvme_dev_open(struct inode *inode, struct file *f)
2162{
b3fffdef
KB
2163 struct nvme_dev *dev;
2164 int instance = iminor(inode);
2165 int ret = -ENODEV;
2166
2167 spin_lock(&dev_list_lock);
2168 list_for_each_entry(dev, &dev_list, node) {
1c63dc66
CH
2169 if (dev->ctrl.instance == instance) {
2170 if (!dev->ctrl.admin_q) {
2e1d8448
KB
2171 ret = -EWOULDBLOCK;
2172 break;
2173 }
1673f1f0 2174 if (!kref_get_unless_zero(&dev->ctrl.kref))
b3fffdef
KB
2175 break;
2176 f->private_data = dev;
2177 ret = 0;
2178 break;
2179 }
2180 }
2181 spin_unlock(&dev_list_lock);
2182
2183 return ret;
5e82e952
KB
2184}
2185
2186static int nvme_dev_release(struct inode *inode, struct file *f)
2187{
2188 struct nvme_dev *dev = f->private_data;
1673f1f0 2189 nvme_put_ctrl(&dev->ctrl);
5e82e952
KB
2190 return 0;
2191}
2192
2193static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2194{
2195 struct nvme_dev *dev = f->private_data;
a4aea562
MB
2196 struct nvme_ns *ns;
2197
5e82e952
KB
2198 switch (cmd) {
2199 case NVME_IOCTL_ADMIN_CMD:
1c63dc66 2200 return nvme_user_cmd(&dev->ctrl, NULL, (void __user *)arg);
7963e521 2201 case NVME_IOCTL_IO_CMD:
5bae7f73 2202 if (list_empty(&dev->ctrl.namespaces))
a4aea562 2203 return -ENOTTY;
5bae7f73 2204 ns = list_first_entry(&dev->ctrl.namespaces, struct nvme_ns, list);
1c63dc66 2205 return nvme_user_cmd(&dev->ctrl, ns, (void __user *)arg);
4cc06521
KB
2206 case NVME_IOCTL_RESET:
2207 dev_warn(dev->dev, "resetting controller\n");
2208 return nvme_reset(dev);
81f03fed
JD
2209 case NVME_IOCTL_SUBSYS_RESET:
2210 return nvme_subsys_reset(dev);
5e82e952
KB
2211 default:
2212 return -ENOTTY;
2213 }
2214}
2215
2216static const struct file_operations nvme_dev_fops = {
2217 .owner = THIS_MODULE,
2218 .open = nvme_dev_open,
2219 .release = nvme_dev_release,
2220 .unlocked_ioctl = nvme_dev_ioctl,
2221 .compat_ioctl = nvme_dev_ioctl,
2222};
2223
3cf519b5 2224static void nvme_probe_work(struct work_struct *work)
f0b50732 2225{
3cf519b5 2226 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
b9afca3e 2227 bool start_thread = false;
3cf519b5 2228 int result;
f0b50732
KB
2229
2230 result = nvme_dev_map(dev);
2231 if (result)
3cf519b5 2232 goto out;
f0b50732
KB
2233
2234 result = nvme_configure_admin_queue(dev);
2235 if (result)
2236 goto unmap;
2237
2238 spin_lock(&dev_list_lock);
b9afca3e
DM
2239 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2240 start_thread = true;
2241 nvme_thread = NULL;
2242 }
f0b50732
KB
2243 list_add(&dev->node, &dev_list);
2244 spin_unlock(&dev_list_lock);
2245
b9afca3e
DM
2246 if (start_thread) {
2247 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
387caa5a 2248 wake_up_all(&nvme_kthread_wait);
b9afca3e
DM
2249 } else
2250 wait_event_killable(nvme_kthread_wait, nvme_thread);
2251
2252 if (IS_ERR_OR_NULL(nvme_thread)) {
2253 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2254 goto disable;
2255 }
a4aea562
MB
2256
2257 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2258 result = nvme_alloc_admin_tags(dev);
2259 if (result)
2260 goto disable;
b9afca3e 2261
ce4541f4
CH
2262 result = nvme_init_identify(&dev->ctrl);
2263 if (result)
2264 goto free_tags;
2265
f0b50732 2266 result = nvme_setup_io_queues(dev);
badc34d4 2267 if (result)
0fb59cbc 2268 goto free_tags;
f0b50732 2269
1c63dc66 2270 dev->ctrl.event_limit = 1;
3cf519b5 2271
2659e57b
CH
2272 /*
2273 * Keep the controller around but remove all namespaces if we don't have
2274 * any working I/O queue.
2275 */
3cf519b5
CH
2276 if (dev->online_queues < 2) {
2277 dev_warn(dev->dev, "IO queues not created\n");
5bae7f73 2278 nvme_remove_namespaces(&dev->ctrl);
3cf519b5
CH
2279 } else {
2280 nvme_unfreeze_queues(dev);
2281 nvme_dev_add(dev);
2282 }
2283
2284 return;
f0b50732 2285
0fb59cbc
KB
2286 free_tags:
2287 nvme_dev_remove_admin(dev);
1c63dc66
CH
2288 blk_put_queue(dev->ctrl.admin_q);
2289 dev->ctrl.admin_q = NULL;
4af0e21c 2290 dev->queues[0]->tags = NULL;
f0b50732 2291 disable:
a1a5ef99 2292 nvme_disable_queue(dev, 0);
b9afca3e 2293 nvme_dev_list_remove(dev);
f0b50732
KB
2294 unmap:
2295 nvme_dev_unmap(dev);
3cf519b5
CH
2296 out:
2297 if (!work_busy(&dev->reset_work))
2298 nvme_dead_ctrl(dev);
f0b50732
KB
2299}
2300
9a6b9458
KB
2301static int nvme_remove_dead_ctrl(void *arg)
2302{
2303 struct nvme_dev *dev = (struct nvme_dev *)arg;
e75ec752 2304 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2305
2306 if (pci_get_drvdata(pdev))
c81f4975 2307 pci_stop_and_remove_bus_device_locked(pdev);
1673f1f0 2308 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2309 return 0;
2310}
2311
de3eff2b
KB
2312static void nvme_dead_ctrl(struct nvme_dev *dev)
2313{
2314 dev_warn(dev->dev, "Device failed to resume\n");
1673f1f0 2315 kref_get(&dev->ctrl.kref);
de3eff2b 2316 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
1c63dc66 2317 dev->ctrl.instance))) {
de3eff2b
KB
2318 dev_err(dev->dev,
2319 "Failed to start controller remove task\n");
1673f1f0 2320 nvme_put_ctrl(&dev->ctrl);
de3eff2b
KB
2321 }
2322}
2323
77b50d9e 2324static void nvme_reset_work(struct work_struct *ws)
9a6b9458 2325{
77b50d9e 2326 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
ffe7704d
KB
2327 bool in_probe = work_busy(&dev->probe_work);
2328
9a6b9458 2329 nvme_dev_shutdown(dev);
ffe7704d
KB
2330
2331 /* Synchronize with device probe so that work will see failure status
2332 * and exit gracefully without trying to schedule another reset */
2333 flush_work(&dev->probe_work);
2334
2335 /* Fail this device if reset occured during probe to avoid
2336 * infinite initialization loops. */
2337 if (in_probe) {
de3eff2b 2338 nvme_dead_ctrl(dev);
ffe7704d 2339 return;
9a6b9458 2340 }
ffe7704d
KB
2341 /* Schedule device resume asynchronously so the reset work is available
2342 * to cleanup errors that may occur during reinitialization */
2343 schedule_work(&dev->probe_work);
9a6b9458
KB
2344}
2345
90667892 2346static int __nvme_reset(struct nvme_dev *dev)
9ca97374 2347{
90667892
CH
2348 if (work_pending(&dev->reset_work))
2349 return -EBUSY;
2350 list_del_init(&dev->node);
2351 queue_work(nvme_workq, &dev->reset_work);
2352 return 0;
9ca97374
TH
2353}
2354
4cc06521
KB
2355static int nvme_reset(struct nvme_dev *dev)
2356{
90667892 2357 int ret;
4cc06521 2358
1c63dc66 2359 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521
KB
2360 return -ENODEV;
2361
2362 spin_lock(&dev_list_lock);
90667892 2363 ret = __nvme_reset(dev);
4cc06521
KB
2364 spin_unlock(&dev_list_lock);
2365
2366 if (!ret) {
2367 flush_work(&dev->reset_work);
ffe7704d 2368 flush_work(&dev->probe_work);
4cc06521
KB
2369 return 0;
2370 }
2371
2372 return ret;
2373}
2374
2375static ssize_t nvme_sysfs_reset(struct device *dev,
2376 struct device_attribute *attr, const char *buf,
2377 size_t count)
2378{
2379 struct nvme_dev *ndev = dev_get_drvdata(dev);
2380 int ret;
2381
2382 ret = nvme_reset(ndev);
2383 if (ret < 0)
2384 return ret;
2385
2386 return count;
2387}
2388static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2389
1c63dc66
CH
2390static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2391{
2392 *val = readl(to_nvme_dev(ctrl)->bar + off);
2393 return 0;
2394}
2395
5fd4ce1b
CH
2396static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2397{
2398 writel(val, to_nvme_dev(ctrl)->bar + off);
2399 return 0;
2400}
2401
7fd8930f
CH
2402static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2403{
2404 *val = readq(to_nvme_dev(ctrl)->bar + off);
2405 return 0;
2406}
2407
5bae7f73
CH
2408static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2409{
2410 struct nvme_dev *dev = to_nvme_dev(ctrl);
2411
2412 return !dev->bar || dev->online_queues < 2;
2413}
2414
1c63dc66
CH
2415static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2416 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2417 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2418 .reg_read64 = nvme_pci_reg_read64,
5bae7f73 2419 .io_incapable = nvme_pci_io_incapable,
1673f1f0 2420 .free_ctrl = nvme_pci_free_ctrl,
1c63dc66
CH
2421};
2422
8d85fce7 2423static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2424{
a4aea562 2425 int node, result = -ENOMEM;
b60503ba
MW
2426 struct nvme_dev *dev;
2427
a4aea562
MB
2428 node = dev_to_node(&pdev->dev);
2429 if (node == NUMA_NO_NODE)
2430 set_dev_node(&pdev->dev, 0);
2431
2432 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2433 if (!dev)
2434 return -ENOMEM;
a4aea562
MB
2435 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2436 GFP_KERNEL, node);
b60503ba
MW
2437 if (!dev->entry)
2438 goto free;
a4aea562
MB
2439 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2440 GFP_KERNEL, node);
b60503ba
MW
2441 if (!dev->queues)
2442 goto free;
2443
5bae7f73 2444 INIT_LIST_HEAD(&dev->ctrl.namespaces);
77b50d9e 2445 INIT_WORK(&dev->reset_work, nvme_reset_work);
e75ec752 2446 dev->dev = get_device(&pdev->dev);
9a6b9458 2447 pci_set_drvdata(pdev, dev);
1c63dc66
CH
2448
2449 dev->ctrl.ops = &nvme_pci_ctrl_ops;
2450 dev->ctrl.dev = dev->dev;
106198ed 2451 dev->ctrl.quirks = id->driver_data;
1c63dc66 2452
cd58ad7d
QSA
2453 result = nvme_set_instance(dev);
2454 if (result)
a96d4f5c 2455 goto put_pci;
b60503ba 2456
091b6092
MW
2457 result = nvme_setup_prp_pools(dev);
2458 if (result)
0877cb0d 2459 goto release;
091b6092 2460
1673f1f0 2461 kref_init(&dev->ctrl.kref);
5bae7f73 2462 dev->ctrl.device = device_create(nvme_class, &pdev->dev,
1c63dc66
CH
2463 MKDEV(nvme_char_major, dev->ctrl.instance),
2464 dev, "nvme%d", dev->ctrl.instance);
5bae7f73
CH
2465 if (IS_ERR(dev->ctrl.device)) {
2466 result = PTR_ERR(dev->ctrl.device);
2e1d8448 2467 goto release_pools;
b3fffdef 2468 }
5bae7f73
CH
2469 get_device(dev->ctrl.device);
2470 dev_set_drvdata(dev->ctrl.device, dev);
4cc06521 2471
5bae7f73 2472 result = device_create_file(dev->ctrl.device, &dev_attr_reset_controller);
4cc06521
KB
2473 if (result)
2474 goto put_dev;
740216fc 2475
e6e96d73 2476 INIT_LIST_HEAD(&dev->node);
a5768aa8 2477 INIT_WORK(&dev->scan_work, nvme_dev_scan);
3cf519b5 2478 INIT_WORK(&dev->probe_work, nvme_probe_work);
2e1d8448 2479 schedule_work(&dev->probe_work);
b60503ba
MW
2480 return 0;
2481
4cc06521 2482 put_dev:
1c63dc66 2483 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
5bae7f73 2484 put_device(dev->ctrl.device);
0877cb0d 2485 release_pools:
091b6092 2486 nvme_release_prp_pools(dev);
0877cb0d
KB
2487 release:
2488 nvme_release_instance(dev);
a96d4f5c 2489 put_pci:
e75ec752 2490 put_device(dev->dev);
b60503ba
MW
2491 free:
2492 kfree(dev->queues);
2493 kfree(dev->entry);
2494 kfree(dev);
2495 return result;
2496}
2497
f0d54a54
KB
2498static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2499{
a6739479 2500 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2501
a6739479
KB
2502 if (prepare)
2503 nvme_dev_shutdown(dev);
2504 else
0a7385ad 2505 schedule_work(&dev->probe_work);
f0d54a54
KB
2506}
2507
09ece142
KB
2508static void nvme_shutdown(struct pci_dev *pdev)
2509{
2510 struct nvme_dev *dev = pci_get_drvdata(pdev);
2511 nvme_dev_shutdown(dev);
2512}
2513
8d85fce7 2514static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2515{
2516 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
2517
2518 spin_lock(&dev_list_lock);
2519 list_del_init(&dev->node);
2520 spin_unlock(&dev_list_lock);
2521
2522 pci_set_drvdata(pdev, NULL);
2e1d8448 2523 flush_work(&dev->probe_work);
9a6b9458 2524 flush_work(&dev->reset_work);
a5768aa8 2525 flush_work(&dev->scan_work);
5bae7f73
CH
2526 device_remove_file(dev->ctrl.device, &dev_attr_reset_controller);
2527 nvme_remove_namespaces(&dev->ctrl);
3399a3f7 2528 nvme_dev_shutdown(dev);
a4aea562 2529 nvme_dev_remove_admin(dev);
1c63dc66 2530 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
a1a5ef99 2531 nvme_free_queues(dev, 0);
8ffaadf7 2532 nvme_release_cmb(dev);
9a6b9458 2533 nvme_release_prp_pools(dev);
1673f1f0 2534 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2535}
2536
2537/* These functions are yet to be implemented */
2538#define nvme_error_detected NULL
2539#define nvme_dump_registers NULL
2540#define nvme_link_reset NULL
2541#define nvme_slot_reset NULL
2542#define nvme_error_resume NULL
cd638946 2543
671a6018 2544#ifdef CONFIG_PM_SLEEP
cd638946
KB
2545static int nvme_suspend(struct device *dev)
2546{
2547 struct pci_dev *pdev = to_pci_dev(dev);
2548 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2549
2550 nvme_dev_shutdown(ndev);
2551 return 0;
2552}
2553
2554static int nvme_resume(struct device *dev)
2555{
2556 struct pci_dev *pdev = to_pci_dev(dev);
2557 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2558
0a7385ad 2559 schedule_work(&ndev->probe_work);
9a6b9458 2560 return 0;
cd638946 2561}
671a6018 2562#endif
cd638946
KB
2563
2564static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2565
1d352035 2566static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
2567 .error_detected = nvme_error_detected,
2568 .mmio_enabled = nvme_dump_registers,
2569 .link_reset = nvme_link_reset,
2570 .slot_reset = nvme_slot_reset,
2571 .resume = nvme_error_resume,
f0d54a54 2572 .reset_notify = nvme_reset_notify,
b60503ba
MW
2573};
2574
2575/* Move to pci_ids.h later */
2576#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2577
6eb0d698 2578static const struct pci_device_id nvme_id_table[] = {
106198ed
CH
2579 { PCI_VDEVICE(INTEL, 0x0953),
2580 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
b60503ba 2581 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2582 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2583 { 0, }
2584};
2585MODULE_DEVICE_TABLE(pci, nvme_id_table);
2586
2587static struct pci_driver nvme_driver = {
2588 .name = "nvme",
2589 .id_table = nvme_id_table,
2590 .probe = nvme_probe,
8d85fce7 2591 .remove = nvme_remove,
09ece142 2592 .shutdown = nvme_shutdown,
cd638946
KB
2593 .driver = {
2594 .pm = &nvme_dev_pm_ops,
2595 },
b60503ba
MW
2596 .err_handler = &nvme_err_handler,
2597};
2598
2599static int __init nvme_init(void)
2600{
0ac13140 2601 int result;
1fa6aead 2602
b9afca3e 2603 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 2604
9a6b9458
KB
2605 nvme_workq = create_singlethread_workqueue("nvme");
2606 if (!nvme_workq)
b9afca3e 2607 return -ENOMEM;
9a6b9458 2608
5bae7f73 2609 result = nvme_core_init();
5c42ea16 2610 if (result < 0)
9a6b9458 2611 goto kill_workq;
b60503ba 2612
b3fffdef
KB
2613 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2614 &nvme_dev_fops);
2615 if (result < 0)
2616 goto unregister_blkdev;
2617 else if (result > 0)
2618 nvme_char_major = result;
2619
2620 nvme_class = class_create(THIS_MODULE, "nvme");
c727040b
AK
2621 if (IS_ERR(nvme_class)) {
2622 result = PTR_ERR(nvme_class);
b3fffdef 2623 goto unregister_chrdev;
c727040b 2624 }
b3fffdef 2625
f3db22fe
KB
2626 result = pci_register_driver(&nvme_driver);
2627 if (result)
b3fffdef 2628 goto destroy_class;
1fa6aead 2629 return 0;
b60503ba 2630
b3fffdef
KB
2631 destroy_class:
2632 class_destroy(nvme_class);
2633 unregister_chrdev:
2634 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1fa6aead 2635 unregister_blkdev:
5bae7f73 2636 nvme_core_exit();
9a6b9458
KB
2637 kill_workq:
2638 destroy_workqueue(nvme_workq);
b60503ba
MW
2639 return result;
2640}
2641
2642static void __exit nvme_exit(void)
2643{
2644 pci_unregister_driver(&nvme_driver);
5bae7f73 2645 nvme_core_exit();
9a6b9458 2646 destroy_workqueue(nvme_workq);
b3fffdef
KB
2647 class_destroy(nvme_class);
2648 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
b9afca3e 2649 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 2650 _nvme_check_size();
b60503ba
MW
2651}
2652
2653MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2654MODULE_LICENSE("GPL");
c78b4713 2655MODULE_VERSION("1.0");
b60503ba
MW
2656module_init(nvme_init);
2657module_exit(nvme_exit);