]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
vfs: Merge check_submounts_and_drop and d_invalidate
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
99d263d4 109 return dentry_hashtable + hash_32(hash, d_hash_shift);
ceb5bdc2
NP
110}
111
1da177e4
LT
112/* Statistics gathering. */
113struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115};
116
3942c07c 117static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 118static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
119
120#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
121
122/*
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
126 *
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
130 *
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
133 */
3942c07c 134static long get_nr_dentry(void)
3e880fb5
NP
135{
136 int i;
3942c07c 137 long sum = 0;
3e880fb5
NP
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
141}
142
62d36c77
DC
143static long get_nr_dentry_unused(void)
144{
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
150}
151
1f7e0616 152int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
153 size_t *lenp, loff_t *ppos)
154{
3e880fb5 155 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 156 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
158}
159#endif
160
5483f18e
LT
161/*
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
164 */
e419b4cc
LT
165#ifdef CONFIG_DCACHE_WORD_ACCESS
166
167#include <asm/word-at-a-time.h>
168/*
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
173 *
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
176 */
94753db5 177static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 178{
bfcfaa77 179 unsigned long a,b,mask;
bfcfaa77
LT
180
181 for (;;) {
12f8ad4b 182 a = *(unsigned long *)cs;
e419b4cc 183 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
193 }
a5c21dce 194 mask = bytemask_from_count(tcount);
bfcfaa77 195 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
196}
197
bfcfaa77 198#else
e419b4cc 199
94753db5 200static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 201{
5483f18e
LT
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
210}
211
e419b4cc
LT
212#endif
213
94753db5
LT
214static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215{
6326c71f 216 const unsigned char *cs;
94753db5
LT
217 /*
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
220 *
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
228 *
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
232 */
6326c71f
LT
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
236}
237
8d85b484
AV
238struct external_name {
239 union {
240 atomic_t count;
241 struct rcu_head head;
242 } u;
243 unsigned char name[];
244};
245
246static inline struct external_name *external_name(struct dentry *dentry)
247{
248 return container_of(dentry->d_name.name, struct external_name, name[0]);
249}
250
9c82ab9c 251static void __d_free(struct rcu_head *head)
1da177e4 252{
9c82ab9c
CH
253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254
b3d9b7a3 255 WARN_ON(!hlist_unhashed(&dentry->d_alias));
8d85b484
AV
256 kmem_cache_free(dentry_cache, dentry);
257}
258
259static void __d_free_external(struct rcu_head *head)
260{
261 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
262 WARN_ON(!hlist_unhashed(&dentry->d_alias));
263 kfree(external_name(dentry));
1da177e4
LT
264 kmem_cache_free(dentry_cache, dentry);
265}
266
b4f0354e
AV
267static void dentry_free(struct dentry *dentry)
268{
8d85b484
AV
269 if (unlikely(dname_external(dentry))) {
270 struct external_name *p = external_name(dentry);
271 if (likely(atomic_dec_and_test(&p->u.count))) {
272 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
273 return;
274 }
275 }
b4f0354e
AV
276 /* if dentry was never visible to RCU, immediate free is OK */
277 if (!(dentry->d_flags & DCACHE_RCUACCESS))
278 __d_free(&dentry->d_u.d_rcu);
279 else
280 call_rcu(&dentry->d_u.d_rcu, __d_free);
281}
282
31e6b01f
NP
283/**
284 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 285 * @dentry: the target dentry
31e6b01f
NP
286 * After this call, in-progress rcu-walk path lookup will fail. This
287 * should be called after unhashing, and after changing d_inode (if
288 * the dentry has not already been unhashed).
289 */
290static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
291{
292 assert_spin_locked(&dentry->d_lock);
293 /* Go through a barrier */
294 write_seqcount_barrier(&dentry->d_seq);
295}
296
1da177e4
LT
297/*
298 * Release the dentry's inode, using the filesystem
31e6b01f
NP
299 * d_iput() operation if defined. Dentry has no refcount
300 * and is unhashed.
1da177e4 301 */
858119e1 302static void dentry_iput(struct dentry * dentry)
31f3e0b3 303 __releases(dentry->d_lock)
873feea0 304 __releases(dentry->d_inode->i_lock)
1da177e4
LT
305{
306 struct inode *inode = dentry->d_inode;
307 if (inode) {
308 dentry->d_inode = NULL;
b3d9b7a3 309 hlist_del_init(&dentry->d_alias);
1da177e4 310 spin_unlock(&dentry->d_lock);
873feea0 311 spin_unlock(&inode->i_lock);
f805fbda
LT
312 if (!inode->i_nlink)
313 fsnotify_inoderemove(inode);
1da177e4
LT
314 if (dentry->d_op && dentry->d_op->d_iput)
315 dentry->d_op->d_iput(dentry, inode);
316 else
317 iput(inode);
318 } else {
319 spin_unlock(&dentry->d_lock);
1da177e4
LT
320 }
321}
322
31e6b01f
NP
323/*
324 * Release the dentry's inode, using the filesystem
325 * d_iput() operation if defined. dentry remains in-use.
326 */
327static void dentry_unlink_inode(struct dentry * dentry)
328 __releases(dentry->d_lock)
873feea0 329 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
330{
331 struct inode *inode = dentry->d_inode;
b18825a7 332 __d_clear_type(dentry);
31e6b01f 333 dentry->d_inode = NULL;
b3d9b7a3 334 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
335 dentry_rcuwalk_barrier(dentry);
336 spin_unlock(&dentry->d_lock);
873feea0 337 spin_unlock(&inode->i_lock);
31e6b01f
NP
338 if (!inode->i_nlink)
339 fsnotify_inoderemove(inode);
340 if (dentry->d_op && dentry->d_op->d_iput)
341 dentry->d_op->d_iput(dentry, inode);
342 else
343 iput(inode);
344}
345
89dc77bc
LT
346/*
347 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348 * is in use - which includes both the "real" per-superblock
349 * LRU list _and_ the DCACHE_SHRINK_LIST use.
350 *
351 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352 * on the shrink list (ie not on the superblock LRU list).
353 *
354 * The per-cpu "nr_dentry_unused" counters are updated with
355 * the DCACHE_LRU_LIST bit.
356 *
357 * These helper functions make sure we always follow the
358 * rules. d_lock must be held by the caller.
359 */
360#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361static void d_lru_add(struct dentry *dentry)
362{
363 D_FLAG_VERIFY(dentry, 0);
364 dentry->d_flags |= DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
367}
368
369static void d_lru_del(struct dentry *dentry)
370{
371 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 dentry->d_flags &= ~DCACHE_LRU_LIST;
373 this_cpu_dec(nr_dentry_unused);
374 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
375}
376
377static void d_shrink_del(struct dentry *dentry)
378{
379 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 list_del_init(&dentry->d_lru);
381 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 this_cpu_dec(nr_dentry_unused);
383}
384
385static void d_shrink_add(struct dentry *dentry, struct list_head *list)
386{
387 D_FLAG_VERIFY(dentry, 0);
388 list_add(&dentry->d_lru, list);
389 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 this_cpu_inc(nr_dentry_unused);
391}
392
393/*
394 * These can only be called under the global LRU lock, ie during the
395 * callback for freeing the LRU list. "isolate" removes it from the
396 * LRU lists entirely, while shrink_move moves it to the indicated
397 * private list.
398 */
399static void d_lru_isolate(struct dentry *dentry)
400{
401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 dentry->d_flags &= ~DCACHE_LRU_LIST;
403 this_cpu_dec(nr_dentry_unused);
404 list_del_init(&dentry->d_lru);
405}
406
407static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
408{
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags |= DCACHE_SHRINK_LIST;
411 list_move_tail(&dentry->d_lru, list);
412}
413
da3bbdd4 414/*
f6041567 415 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
416 */
417static void dentry_lru_add(struct dentry *dentry)
418{
89dc77bc
LT
419 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
420 d_lru_add(dentry);
da3bbdd4
KM
421}
422
789680d1
NP
423/**
424 * d_drop - drop a dentry
425 * @dentry: dentry to drop
426 *
427 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
428 * be found through a VFS lookup any more. Note that this is different from
429 * deleting the dentry - d_delete will try to mark the dentry negative if
430 * possible, giving a successful _negative_ lookup, while d_drop will
431 * just make the cache lookup fail.
432 *
433 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
434 * reason (NFS timeouts or autofs deletes).
435 *
436 * __d_drop requires dentry->d_lock.
437 */
438void __d_drop(struct dentry *dentry)
439{
dea3667b 440 if (!d_unhashed(dentry)) {
b61625d2 441 struct hlist_bl_head *b;
7632e465
BF
442 /*
443 * Hashed dentries are normally on the dentry hashtable,
444 * with the exception of those newly allocated by
445 * d_obtain_alias, which are always IS_ROOT:
446 */
447 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
448 b = &dentry->d_sb->s_anon;
449 else
450 b = d_hash(dentry->d_parent, dentry->d_name.hash);
451
452 hlist_bl_lock(b);
453 __hlist_bl_del(&dentry->d_hash);
454 dentry->d_hash.pprev = NULL;
455 hlist_bl_unlock(b);
dea3667b 456 dentry_rcuwalk_barrier(dentry);
789680d1
NP
457 }
458}
459EXPORT_SYMBOL(__d_drop);
460
461void d_drop(struct dentry *dentry)
462{
789680d1
NP
463 spin_lock(&dentry->d_lock);
464 __d_drop(dentry);
465 spin_unlock(&dentry->d_lock);
789680d1
NP
466}
467EXPORT_SYMBOL(d_drop);
468
e55fd011 469static void __dentry_kill(struct dentry *dentry)
77812a1e 470{
41edf278
AV
471 struct dentry *parent = NULL;
472 bool can_free = true;
41edf278 473 if (!IS_ROOT(dentry))
77812a1e 474 parent = dentry->d_parent;
31e6b01f 475
0d98439e
LT
476 /*
477 * The dentry is now unrecoverably dead to the world.
478 */
479 lockref_mark_dead(&dentry->d_lockref);
480
f0023bc6 481 /*
f0023bc6
SW
482 * inform the fs via d_prune that this dentry is about to be
483 * unhashed and destroyed.
484 */
590fb51f 485 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
486 dentry->d_op->d_prune(dentry);
487
01b60351
AV
488 if (dentry->d_flags & DCACHE_LRU_LIST) {
489 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
490 d_lru_del(dentry);
01b60351 491 }
77812a1e
NP
492 /* if it was on the hash then remove it */
493 __d_drop(dentry);
03b3b889
AV
494 list_del(&dentry->d_u.d_child);
495 /*
496 * Inform d_walk() that we are no longer attached to the
497 * dentry tree
498 */
499 dentry->d_flags |= DCACHE_DENTRY_KILLED;
500 if (parent)
501 spin_unlock(&parent->d_lock);
502 dentry_iput(dentry);
503 /*
504 * dentry_iput drops the locks, at which point nobody (except
505 * transient RCU lookups) can reach this dentry.
506 */
507 BUG_ON((int)dentry->d_lockref.count > 0);
508 this_cpu_dec(nr_dentry);
509 if (dentry->d_op && dentry->d_op->d_release)
510 dentry->d_op->d_release(dentry);
511
41edf278
AV
512 spin_lock(&dentry->d_lock);
513 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
514 dentry->d_flags |= DCACHE_MAY_FREE;
515 can_free = false;
516 }
517 spin_unlock(&dentry->d_lock);
41edf278
AV
518 if (likely(can_free))
519 dentry_free(dentry);
e55fd011
AV
520}
521
522/*
523 * Finish off a dentry we've decided to kill.
524 * dentry->d_lock must be held, returns with it unlocked.
525 * If ref is non-zero, then decrement the refcount too.
526 * Returns dentry requiring refcount drop, or NULL if we're done.
527 */
8cbf74da 528static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
529 __releases(dentry->d_lock)
530{
531 struct inode *inode = dentry->d_inode;
532 struct dentry *parent = NULL;
533
534 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
535 goto failed;
536
537 if (!IS_ROOT(dentry)) {
538 parent = dentry->d_parent;
539 if (unlikely(!spin_trylock(&parent->d_lock))) {
540 if (inode)
541 spin_unlock(&inode->i_lock);
542 goto failed;
543 }
544 }
545
546 __dentry_kill(dentry);
03b3b889 547 return parent;
e55fd011
AV
548
549failed:
8cbf74da
AV
550 spin_unlock(&dentry->d_lock);
551 cpu_relax();
e55fd011 552 return dentry; /* try again with same dentry */
77812a1e
NP
553}
554
046b961b
AV
555static inline struct dentry *lock_parent(struct dentry *dentry)
556{
557 struct dentry *parent = dentry->d_parent;
558 if (IS_ROOT(dentry))
559 return NULL;
c2338f2d
AV
560 if (unlikely((int)dentry->d_lockref.count < 0))
561 return NULL;
046b961b
AV
562 if (likely(spin_trylock(&parent->d_lock)))
563 return parent;
046b961b 564 rcu_read_lock();
c2338f2d 565 spin_unlock(&dentry->d_lock);
046b961b
AV
566again:
567 parent = ACCESS_ONCE(dentry->d_parent);
568 spin_lock(&parent->d_lock);
569 /*
570 * We can't blindly lock dentry until we are sure
571 * that we won't violate the locking order.
572 * Any changes of dentry->d_parent must have
573 * been done with parent->d_lock held, so
574 * spin_lock() above is enough of a barrier
575 * for checking if it's still our child.
576 */
577 if (unlikely(parent != dentry->d_parent)) {
578 spin_unlock(&parent->d_lock);
579 goto again;
580 }
581 rcu_read_unlock();
582 if (parent != dentry)
9f12600f 583 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
584 else
585 parent = NULL;
586 return parent;
587}
588
1da177e4
LT
589/*
590 * This is dput
591 *
592 * This is complicated by the fact that we do not want to put
593 * dentries that are no longer on any hash chain on the unused
594 * list: we'd much rather just get rid of them immediately.
595 *
596 * However, that implies that we have to traverse the dentry
597 * tree upwards to the parents which might _also_ now be
598 * scheduled for deletion (it may have been only waiting for
599 * its last child to go away).
600 *
601 * This tail recursion is done by hand as we don't want to depend
602 * on the compiler to always get this right (gcc generally doesn't).
603 * Real recursion would eat up our stack space.
604 */
605
606/*
607 * dput - release a dentry
608 * @dentry: dentry to release
609 *
610 * Release a dentry. This will drop the usage count and if appropriate
611 * call the dentry unlink method as well as removing it from the queues and
612 * releasing its resources. If the parent dentries were scheduled for release
613 * they too may now get deleted.
1da177e4 614 */
1da177e4
LT
615void dput(struct dentry *dentry)
616{
8aab6a27 617 if (unlikely(!dentry))
1da177e4
LT
618 return;
619
620repeat:
98474236 621 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 622 return;
1da177e4 623
8aab6a27
LT
624 /* Unreachable? Get rid of it */
625 if (unlikely(d_unhashed(dentry)))
626 goto kill_it;
627
628 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 629 if (dentry->d_op->d_delete(dentry))
61f3dee4 630 goto kill_it;
1da177e4 631 }
265ac902 632
358eec18
LT
633 if (!(dentry->d_flags & DCACHE_REFERENCED))
634 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 635 dentry_lru_add(dentry);
265ac902 636
98474236 637 dentry->d_lockref.count--;
61f3dee4 638 spin_unlock(&dentry->d_lock);
1da177e4
LT
639 return;
640
d52b9086 641kill_it:
8cbf74da 642 dentry = dentry_kill(dentry);
d52b9086
MS
643 if (dentry)
644 goto repeat;
1da177e4 645}
ec4f8605 646EXPORT_SYMBOL(dput);
1da177e4 647
1da177e4 648
b5c84bf6 649/* This must be called with d_lock held */
dc0474be 650static inline void __dget_dlock(struct dentry *dentry)
23044507 651{
98474236 652 dentry->d_lockref.count++;
23044507
NP
653}
654
dc0474be 655static inline void __dget(struct dentry *dentry)
1da177e4 656{
98474236 657 lockref_get(&dentry->d_lockref);
1da177e4
LT
658}
659
b7ab39f6
NP
660struct dentry *dget_parent(struct dentry *dentry)
661{
df3d0bbc 662 int gotref;
b7ab39f6
NP
663 struct dentry *ret;
664
df3d0bbc
WL
665 /*
666 * Do optimistic parent lookup without any
667 * locking.
668 */
669 rcu_read_lock();
670 ret = ACCESS_ONCE(dentry->d_parent);
671 gotref = lockref_get_not_zero(&ret->d_lockref);
672 rcu_read_unlock();
673 if (likely(gotref)) {
674 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
675 return ret;
676 dput(ret);
677 }
678
b7ab39f6 679repeat:
a734eb45
NP
680 /*
681 * Don't need rcu_dereference because we re-check it was correct under
682 * the lock.
683 */
684 rcu_read_lock();
b7ab39f6 685 ret = dentry->d_parent;
a734eb45
NP
686 spin_lock(&ret->d_lock);
687 if (unlikely(ret != dentry->d_parent)) {
688 spin_unlock(&ret->d_lock);
689 rcu_read_unlock();
b7ab39f6
NP
690 goto repeat;
691 }
a734eb45 692 rcu_read_unlock();
98474236
WL
693 BUG_ON(!ret->d_lockref.count);
694 ret->d_lockref.count++;
b7ab39f6 695 spin_unlock(&ret->d_lock);
b7ab39f6
NP
696 return ret;
697}
698EXPORT_SYMBOL(dget_parent);
699
1da177e4
LT
700/**
701 * d_find_alias - grab a hashed alias of inode
702 * @inode: inode in question
1da177e4
LT
703 *
704 * If inode has a hashed alias, or is a directory and has any alias,
705 * acquire the reference to alias and return it. Otherwise return NULL.
706 * Notice that if inode is a directory there can be only one alias and
707 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
708 * of a filesystem, or if the directory was renamed and d_revalidate
709 * was the first vfs operation to notice.
1da177e4 710 *
21c0d8fd 711 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 712 * any other hashed alias over that one.
1da177e4 713 */
52ed46f0 714static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 715{
da502956 716 struct dentry *alias, *discon_alias;
1da177e4 717
da502956
NP
718again:
719 discon_alias = NULL;
b67bfe0d 720 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 721 spin_lock(&alias->d_lock);
1da177e4 722 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 723 if (IS_ROOT(alias) &&
da502956 724 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 725 discon_alias = alias;
52ed46f0 726 } else {
dc0474be 727 __dget_dlock(alias);
da502956
NP
728 spin_unlock(&alias->d_lock);
729 return alias;
730 }
731 }
732 spin_unlock(&alias->d_lock);
733 }
734 if (discon_alias) {
735 alias = discon_alias;
736 spin_lock(&alias->d_lock);
737 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
738 __dget_dlock(alias);
739 spin_unlock(&alias->d_lock);
740 return alias;
1da177e4 741 }
da502956
NP
742 spin_unlock(&alias->d_lock);
743 goto again;
1da177e4 744 }
da502956 745 return NULL;
1da177e4
LT
746}
747
da502956 748struct dentry *d_find_alias(struct inode *inode)
1da177e4 749{
214fda1f
DH
750 struct dentry *de = NULL;
751
b3d9b7a3 752 if (!hlist_empty(&inode->i_dentry)) {
873feea0 753 spin_lock(&inode->i_lock);
52ed46f0 754 de = __d_find_alias(inode);
873feea0 755 spin_unlock(&inode->i_lock);
214fda1f 756 }
1da177e4
LT
757 return de;
758}
ec4f8605 759EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
760
761/*
762 * Try to kill dentries associated with this inode.
763 * WARNING: you must own a reference to inode.
764 */
765void d_prune_aliases(struct inode *inode)
766{
0cdca3f9 767 struct dentry *dentry;
1da177e4 768restart:
873feea0 769 spin_lock(&inode->i_lock);
b67bfe0d 770 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 771 spin_lock(&dentry->d_lock);
98474236 772 if (!dentry->d_lockref.count) {
590fb51f
YZ
773 /*
774 * inform the fs via d_prune that this dentry
775 * is about to be unhashed and destroyed.
776 */
777 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
778 !d_unhashed(dentry))
779 dentry->d_op->d_prune(dentry);
780
dc0474be 781 __dget_dlock(dentry);
1da177e4
LT
782 __d_drop(dentry);
783 spin_unlock(&dentry->d_lock);
873feea0 784 spin_unlock(&inode->i_lock);
1da177e4
LT
785 dput(dentry);
786 goto restart;
787 }
788 spin_unlock(&dentry->d_lock);
789 }
873feea0 790 spin_unlock(&inode->i_lock);
1da177e4 791}
ec4f8605 792EXPORT_SYMBOL(d_prune_aliases);
1da177e4 793
3049cfe2 794static void shrink_dentry_list(struct list_head *list)
1da177e4 795{
5c47e6d0 796 struct dentry *dentry, *parent;
da3bbdd4 797
60942f2f 798 while (!list_empty(list)) {
ff2fde99 799 struct inode *inode;
60942f2f 800 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 801 spin_lock(&dentry->d_lock);
046b961b
AV
802 parent = lock_parent(dentry);
803
dd1f6b2e
DC
804 /*
805 * The dispose list is isolated and dentries are not accounted
806 * to the LRU here, so we can simply remove it from the list
807 * here regardless of whether it is referenced or not.
808 */
89dc77bc 809 d_shrink_del(dentry);
dd1f6b2e 810
1da177e4
LT
811 /*
812 * We found an inuse dentry which was not removed from
dd1f6b2e 813 * the LRU because of laziness during lookup. Do not free it.
1da177e4 814 */
41edf278 815 if ((int)dentry->d_lockref.count > 0) {
da3bbdd4 816 spin_unlock(&dentry->d_lock);
046b961b
AV
817 if (parent)
818 spin_unlock(&parent->d_lock);
1da177e4
LT
819 continue;
820 }
77812a1e 821
64fd72e0
AV
822
823 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
824 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
825 spin_unlock(&dentry->d_lock);
046b961b
AV
826 if (parent)
827 spin_unlock(&parent->d_lock);
64fd72e0
AV
828 if (can_free)
829 dentry_free(dentry);
830 continue;
831 }
832
ff2fde99
AV
833 inode = dentry->d_inode;
834 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 835 d_shrink_add(dentry, list);
dd1f6b2e 836 spin_unlock(&dentry->d_lock);
046b961b
AV
837 if (parent)
838 spin_unlock(&parent->d_lock);
5c47e6d0 839 continue;
dd1f6b2e 840 }
ff2fde99 841
ff2fde99 842 __dentry_kill(dentry);
046b961b 843
5c47e6d0
AV
844 /*
845 * We need to prune ancestors too. This is necessary to prevent
846 * quadratic behavior of shrink_dcache_parent(), but is also
847 * expected to be beneficial in reducing dentry cache
848 * fragmentation.
849 */
850 dentry = parent;
b2b80195
AV
851 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
852 parent = lock_parent(dentry);
853 if (dentry->d_lockref.count != 1) {
854 dentry->d_lockref.count--;
855 spin_unlock(&dentry->d_lock);
856 if (parent)
857 spin_unlock(&parent->d_lock);
858 break;
859 }
860 inode = dentry->d_inode; /* can't be NULL */
861 if (unlikely(!spin_trylock(&inode->i_lock))) {
862 spin_unlock(&dentry->d_lock);
863 if (parent)
864 spin_unlock(&parent->d_lock);
865 cpu_relax();
866 continue;
867 }
868 __dentry_kill(dentry);
869 dentry = parent;
870 }
da3bbdd4 871 }
3049cfe2
CH
872}
873
f6041567
DC
874static enum lru_status
875dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
876{
877 struct list_head *freeable = arg;
878 struct dentry *dentry = container_of(item, struct dentry, d_lru);
879
880
881 /*
882 * we are inverting the lru lock/dentry->d_lock here,
883 * so use a trylock. If we fail to get the lock, just skip
884 * it
885 */
886 if (!spin_trylock(&dentry->d_lock))
887 return LRU_SKIP;
888
889 /*
890 * Referenced dentries are still in use. If they have active
891 * counts, just remove them from the LRU. Otherwise give them
892 * another pass through the LRU.
893 */
894 if (dentry->d_lockref.count) {
89dc77bc 895 d_lru_isolate(dentry);
f6041567
DC
896 spin_unlock(&dentry->d_lock);
897 return LRU_REMOVED;
898 }
899
900 if (dentry->d_flags & DCACHE_REFERENCED) {
901 dentry->d_flags &= ~DCACHE_REFERENCED;
902 spin_unlock(&dentry->d_lock);
903
904 /*
905 * The list move itself will be made by the common LRU code. At
906 * this point, we've dropped the dentry->d_lock but keep the
907 * lru lock. This is safe to do, since every list movement is
908 * protected by the lru lock even if both locks are held.
909 *
910 * This is guaranteed by the fact that all LRU management
911 * functions are intermediated by the LRU API calls like
912 * list_lru_add and list_lru_del. List movement in this file
913 * only ever occur through this functions or through callbacks
914 * like this one, that are called from the LRU API.
915 *
916 * The only exceptions to this are functions like
917 * shrink_dentry_list, and code that first checks for the
918 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
919 * operating only with stack provided lists after they are
920 * properly isolated from the main list. It is thus, always a
921 * local access.
922 */
923 return LRU_ROTATE;
924 }
925
89dc77bc 926 d_lru_shrink_move(dentry, freeable);
f6041567
DC
927 spin_unlock(&dentry->d_lock);
928
929 return LRU_REMOVED;
930}
931
3049cfe2 932/**
b48f03b3
DC
933 * prune_dcache_sb - shrink the dcache
934 * @sb: superblock
f6041567 935 * @nr_to_scan : number of entries to try to free
9b17c623 936 * @nid: which node to scan for freeable entities
b48f03b3 937 *
f6041567 938 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
939 * done when we need more memory an called from the superblock shrinker
940 * function.
3049cfe2 941 *
b48f03b3
DC
942 * This function may fail to free any resources if all the dentries are in
943 * use.
3049cfe2 944 */
9b17c623
DC
945long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
946 int nid)
3049cfe2 947{
f6041567
DC
948 LIST_HEAD(dispose);
949 long freed;
3049cfe2 950
9b17c623
DC
951 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
952 &dispose, &nr_to_scan);
f6041567 953 shrink_dentry_list(&dispose);
0a234c6d 954 return freed;
da3bbdd4 955}
23044507 956
4e717f5c
GC
957static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
958 spinlock_t *lru_lock, void *arg)
dd1f6b2e 959{
4e717f5c
GC
960 struct list_head *freeable = arg;
961 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 962
4e717f5c
GC
963 /*
964 * we are inverting the lru lock/dentry->d_lock here,
965 * so use a trylock. If we fail to get the lock, just skip
966 * it
967 */
968 if (!spin_trylock(&dentry->d_lock))
969 return LRU_SKIP;
970
89dc77bc 971 d_lru_shrink_move(dentry, freeable);
4e717f5c 972 spin_unlock(&dentry->d_lock);
ec33679d 973
4e717f5c 974 return LRU_REMOVED;
da3bbdd4
KM
975}
976
4e717f5c 977
1da177e4
LT
978/**
979 * shrink_dcache_sb - shrink dcache for a superblock
980 * @sb: superblock
981 *
3049cfe2
CH
982 * Shrink the dcache for the specified super block. This is used to free
983 * the dcache before unmounting a file system.
1da177e4 984 */
3049cfe2 985void shrink_dcache_sb(struct super_block *sb)
1da177e4 986{
4e717f5c
GC
987 long freed;
988
989 do {
990 LIST_HEAD(dispose);
991
992 freed = list_lru_walk(&sb->s_dentry_lru,
993 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 994
4e717f5c
GC
995 this_cpu_sub(nr_dentry_unused, freed);
996 shrink_dentry_list(&dispose);
997 } while (freed > 0);
1da177e4 998}
ec4f8605 999EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1000
db14fc3a
MS
1001/**
1002 * enum d_walk_ret - action to talke during tree walk
1003 * @D_WALK_CONTINUE: contrinue walk
1004 * @D_WALK_QUIT: quit walk
1005 * @D_WALK_NORETRY: quit when retry is needed
1006 * @D_WALK_SKIP: skip this dentry and its children
1007 */
1008enum d_walk_ret {
1009 D_WALK_CONTINUE,
1010 D_WALK_QUIT,
1011 D_WALK_NORETRY,
1012 D_WALK_SKIP,
1013};
c826cb7d 1014
1da177e4 1015/**
db14fc3a
MS
1016 * d_walk - walk the dentry tree
1017 * @parent: start of walk
1018 * @data: data passed to @enter() and @finish()
1019 * @enter: callback when first entering the dentry
1020 * @finish: callback when successfully finished the walk
1da177e4 1021 *
db14fc3a 1022 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1023 */
db14fc3a
MS
1024static void d_walk(struct dentry *parent, void *data,
1025 enum d_walk_ret (*enter)(void *, struct dentry *),
1026 void (*finish)(void *))
1da177e4 1027{
949854d0 1028 struct dentry *this_parent;
1da177e4 1029 struct list_head *next;
48f5ec21 1030 unsigned seq = 0;
db14fc3a
MS
1031 enum d_walk_ret ret;
1032 bool retry = true;
949854d0 1033
58db63d0 1034again:
48f5ec21 1035 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1036 this_parent = parent;
2fd6b7f5 1037 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1038
1039 ret = enter(data, this_parent);
1040 switch (ret) {
1041 case D_WALK_CONTINUE:
1042 break;
1043 case D_WALK_QUIT:
1044 case D_WALK_SKIP:
1045 goto out_unlock;
1046 case D_WALK_NORETRY:
1047 retry = false;
1048 break;
1049 }
1da177e4
LT
1050repeat:
1051 next = this_parent->d_subdirs.next;
1052resume:
1053 while (next != &this_parent->d_subdirs) {
1054 struct list_head *tmp = next;
5160ee6f 1055 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1056 next = tmp->next;
2fd6b7f5
NP
1057
1058 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1059
1060 ret = enter(data, dentry);
1061 switch (ret) {
1062 case D_WALK_CONTINUE:
1063 break;
1064 case D_WALK_QUIT:
2fd6b7f5 1065 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1066 goto out_unlock;
1067 case D_WALK_NORETRY:
1068 retry = false;
1069 break;
1070 case D_WALK_SKIP:
1071 spin_unlock(&dentry->d_lock);
1072 continue;
2fd6b7f5 1073 }
db14fc3a 1074
1da177e4 1075 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1076 spin_unlock(&this_parent->d_lock);
1077 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1078 this_parent = dentry;
2fd6b7f5 1079 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1080 goto repeat;
1081 }
2fd6b7f5 1082 spin_unlock(&dentry->d_lock);
1da177e4
LT
1083 }
1084 /*
1085 * All done at this level ... ascend and resume the search.
1086 */
1087 if (this_parent != parent) {
c826cb7d 1088 struct dentry *child = this_parent;
31dec132
AV
1089 this_parent = child->d_parent;
1090
1091 rcu_read_lock();
1092 spin_unlock(&child->d_lock);
1093 spin_lock(&this_parent->d_lock);
1094
1095 /*
1096 * might go back up the wrong parent if we have had a rename
1097 * or deletion
1098 */
1099 if (this_parent != child->d_parent ||
1100 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1101 need_seqretry(&rename_lock, seq)) {
1102 spin_unlock(&this_parent->d_lock);
1103 rcu_read_unlock();
949854d0 1104 goto rename_retry;
31dec132
AV
1105 }
1106 rcu_read_unlock();
949854d0 1107 next = child->d_u.d_child.next;
1da177e4
LT
1108 goto resume;
1109 }
48f5ec21 1110 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1111 spin_unlock(&this_parent->d_lock);
949854d0 1112 goto rename_retry;
db14fc3a
MS
1113 }
1114 if (finish)
1115 finish(data);
1116
1117out_unlock:
1118 spin_unlock(&this_parent->d_lock);
48f5ec21 1119 done_seqretry(&rename_lock, seq);
db14fc3a 1120 return;
58db63d0
NP
1121
1122rename_retry:
db14fc3a
MS
1123 if (!retry)
1124 return;
48f5ec21 1125 seq = 1;
58db63d0 1126 goto again;
1da177e4 1127}
db14fc3a
MS
1128
1129/*
1130 * Search for at least 1 mount point in the dentry's subdirs.
1131 * We descend to the next level whenever the d_subdirs
1132 * list is non-empty and continue searching.
1133 */
1134
db14fc3a
MS
1135static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1136{
1137 int *ret = data;
1138 if (d_mountpoint(dentry)) {
1139 *ret = 1;
1140 return D_WALK_QUIT;
1141 }
1142 return D_WALK_CONTINUE;
1143}
1144
69c88dc7
RD
1145/**
1146 * have_submounts - check for mounts over a dentry
1147 * @parent: dentry to check.
1148 *
1149 * Return true if the parent or its subdirectories contain
1150 * a mount point
1151 */
db14fc3a
MS
1152int have_submounts(struct dentry *parent)
1153{
1154 int ret = 0;
1155
1156 d_walk(parent, &ret, check_mount, NULL);
1157
1158 return ret;
1159}
ec4f8605 1160EXPORT_SYMBOL(have_submounts);
1da177e4 1161
eed81007
MS
1162/*
1163 * Called by mount code to set a mountpoint and check if the mountpoint is
1164 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1165 * subtree can become unreachable).
1166 *
1ffe46d1 1167 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1168 * this reason take rename_lock and d_lock on dentry and ancestors.
1169 */
1170int d_set_mounted(struct dentry *dentry)
1171{
1172 struct dentry *p;
1173 int ret = -ENOENT;
1174 write_seqlock(&rename_lock);
1175 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1176 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1177 spin_lock(&p->d_lock);
1178 if (unlikely(d_unhashed(p))) {
1179 spin_unlock(&p->d_lock);
1180 goto out;
1181 }
1182 spin_unlock(&p->d_lock);
1183 }
1184 spin_lock(&dentry->d_lock);
1185 if (!d_unlinked(dentry)) {
1186 dentry->d_flags |= DCACHE_MOUNTED;
1187 ret = 0;
1188 }
1189 spin_unlock(&dentry->d_lock);
1190out:
1191 write_sequnlock(&rename_lock);
1192 return ret;
1193}
1194
1da177e4 1195/*
fd517909 1196 * Search the dentry child list of the specified parent,
1da177e4
LT
1197 * and move any unused dentries to the end of the unused
1198 * list for prune_dcache(). We descend to the next level
1199 * whenever the d_subdirs list is non-empty and continue
1200 * searching.
1201 *
1202 * It returns zero iff there are no unused children,
1203 * otherwise it returns the number of children moved to
1204 * the end of the unused list. This may not be the total
1205 * number of unused children, because select_parent can
1206 * drop the lock and return early due to latency
1207 * constraints.
1208 */
1da177e4 1209
db14fc3a
MS
1210struct select_data {
1211 struct dentry *start;
1212 struct list_head dispose;
1213 int found;
1214};
23044507 1215
db14fc3a
MS
1216static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1217{
1218 struct select_data *data = _data;
1219 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1220
db14fc3a
MS
1221 if (data->start == dentry)
1222 goto out;
2fd6b7f5 1223
fe91522a 1224 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1225 data->found++;
fe91522a
AV
1226 } else {
1227 if (dentry->d_flags & DCACHE_LRU_LIST)
1228 d_lru_del(dentry);
1229 if (!dentry->d_lockref.count) {
1230 d_shrink_add(dentry, &data->dispose);
1231 data->found++;
1232 }
1da177e4 1233 }
db14fc3a
MS
1234 /*
1235 * We can return to the caller if we have found some (this
1236 * ensures forward progress). We'll be coming back to find
1237 * the rest.
1238 */
fe91522a
AV
1239 if (!list_empty(&data->dispose))
1240 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1241out:
db14fc3a 1242 return ret;
1da177e4
LT
1243}
1244
1245/**
1246 * shrink_dcache_parent - prune dcache
1247 * @parent: parent of entries to prune
1248 *
1249 * Prune the dcache to remove unused children of the parent dentry.
1250 */
db14fc3a 1251void shrink_dcache_parent(struct dentry *parent)
1da177e4 1252{
db14fc3a
MS
1253 for (;;) {
1254 struct select_data data;
1da177e4 1255
db14fc3a
MS
1256 INIT_LIST_HEAD(&data.dispose);
1257 data.start = parent;
1258 data.found = 0;
1259
1260 d_walk(parent, &data, select_collect, NULL);
1261 if (!data.found)
1262 break;
1263
1264 shrink_dentry_list(&data.dispose);
421348f1
GT
1265 cond_resched();
1266 }
1da177e4 1267}
ec4f8605 1268EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1269
9c8c10e2 1270static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1271{
9c8c10e2
AV
1272 /* it has busy descendents; complain about those instead */
1273 if (!list_empty(&dentry->d_subdirs))
1274 return D_WALK_CONTINUE;
42c32608 1275
9c8c10e2
AV
1276 /* root with refcount 1 is fine */
1277 if (dentry == _data && dentry->d_lockref.count == 1)
1278 return D_WALK_CONTINUE;
1279
1280 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1281 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1282 dentry,
1283 dentry->d_inode ?
1284 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1285 dentry,
42c32608
AV
1286 dentry->d_lockref.count,
1287 dentry->d_sb->s_type->name,
1288 dentry->d_sb->s_id);
9c8c10e2
AV
1289 WARN_ON(1);
1290 return D_WALK_CONTINUE;
1291}
1292
1293static void do_one_tree(struct dentry *dentry)
1294{
1295 shrink_dcache_parent(dentry);
1296 d_walk(dentry, dentry, umount_check, NULL);
1297 d_drop(dentry);
1298 dput(dentry);
42c32608
AV
1299}
1300
1301/*
1302 * destroy the dentries attached to a superblock on unmounting
1303 */
1304void shrink_dcache_for_umount(struct super_block *sb)
1305{
1306 struct dentry *dentry;
1307
9c8c10e2 1308 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1309
1310 dentry = sb->s_root;
1311 sb->s_root = NULL;
9c8c10e2 1312 do_one_tree(dentry);
42c32608
AV
1313
1314 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1315 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1316 do_one_tree(dentry);
42c32608
AV
1317 }
1318}
1319
8ed936b5
EB
1320struct detach_data {
1321 struct select_data select;
1322 struct dentry *mountpoint;
1323};
1324static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1325{
8ed936b5 1326 struct detach_data *data = _data;
848ac114
MS
1327
1328 if (d_mountpoint(dentry)) {
8ed936b5
EB
1329 __dget_dlock(dentry);
1330 data->mountpoint = dentry;
848ac114
MS
1331 return D_WALK_QUIT;
1332 }
1333
8ed936b5 1334 return select_collect(&data->select, dentry);
848ac114
MS
1335}
1336
1337static void check_and_drop(void *_data)
1338{
8ed936b5 1339 struct detach_data *data = _data;
848ac114 1340
8ed936b5
EB
1341 if (!data->mountpoint && !data->select.found)
1342 __d_drop(data->select.start);
848ac114
MS
1343}
1344
1345/**
1ffe46d1
EB
1346 * d_invalidate - detach submounts, prune dcache, and drop
1347 * @dentry: dentry to invalidate (aka detach, prune and drop)
1348 *
1349 * Try to invalidate the dentry if it turns out to be
1350 * possible. If there are reasons not to delete it
1351 * return -EBUSY. On success return 0.
1352 *
1353 * no dcache lock.
848ac114 1354 *
8ed936b5
EB
1355 * The final d_drop is done as an atomic operation relative to
1356 * rename_lock ensuring there are no races with d_set_mounted. This
1357 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1358 */
1ffe46d1 1359int d_invalidate(struct dentry *dentry)
848ac114
MS
1360{
1361 int ret = 0;
1362
1ffe46d1
EB
1363 /*
1364 * If it's already been dropped, return OK.
1365 */
1366 spin_lock(&dentry->d_lock);
1367 if (d_unhashed(dentry)) {
1368 spin_unlock(&dentry->d_lock);
1369 return 0;
1370 }
1371 spin_unlock(&dentry->d_lock);
1372
848ac114
MS
1373 /* Negative dentries can be dropped without further checks */
1374 if (!dentry->d_inode) {
1375 d_drop(dentry);
1376 goto out;
1377 }
1378
1379 for (;;) {
8ed936b5 1380 struct detach_data data;
848ac114 1381
8ed936b5
EB
1382 data.mountpoint = NULL;
1383 INIT_LIST_HEAD(&data.select.dispose);
1384 data.select.start = dentry;
1385 data.select.found = 0;
1386
1387 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1388
8ed936b5
EB
1389 if (data.select.found)
1390 shrink_dentry_list(&data.select.dispose);
848ac114 1391
8ed936b5
EB
1392 if (data.mountpoint) {
1393 detach_mounts(data.mountpoint);
1394 dput(data.mountpoint);
1395 }
848ac114 1396
8ed936b5 1397 if (!data.mountpoint && !data.select.found)
848ac114
MS
1398 break;
1399
1400 cond_resched();
1401 }
1402
1403out:
1404 return ret;
1405}
1ffe46d1 1406EXPORT_SYMBOL(d_invalidate);
848ac114 1407
1da177e4 1408/**
a4464dbc
AV
1409 * __d_alloc - allocate a dcache entry
1410 * @sb: filesystem it will belong to
1da177e4
LT
1411 * @name: qstr of the name
1412 *
1413 * Allocates a dentry. It returns %NULL if there is insufficient memory
1414 * available. On a success the dentry is returned. The name passed in is
1415 * copied and the copy passed in may be reused after this call.
1416 */
1417
a4464dbc 1418struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1419{
1420 struct dentry *dentry;
1421 char *dname;
1422
e12ba74d 1423 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1424 if (!dentry)
1425 return NULL;
1426
6326c71f
LT
1427 /*
1428 * We guarantee that the inline name is always NUL-terminated.
1429 * This way the memcpy() done by the name switching in rename
1430 * will still always have a NUL at the end, even if we might
1431 * be overwriting an internal NUL character
1432 */
1433 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4 1434 if (name->len > DNAME_INLINE_LEN-1) {
8d85b484
AV
1435 size_t size = offsetof(struct external_name, name[1]);
1436 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1437 if (!p) {
1da177e4
LT
1438 kmem_cache_free(dentry_cache, dentry);
1439 return NULL;
1440 }
8d85b484
AV
1441 atomic_set(&p->u.count, 1);
1442 dname = p->name;
1da177e4
LT
1443 } else {
1444 dname = dentry->d_iname;
1445 }
1da177e4
LT
1446
1447 dentry->d_name.len = name->len;
1448 dentry->d_name.hash = name->hash;
1449 memcpy(dname, name->name, name->len);
1450 dname[name->len] = 0;
1451
6326c71f
LT
1452 /* Make sure we always see the terminating NUL character */
1453 smp_wmb();
1454 dentry->d_name.name = dname;
1455
98474236 1456 dentry->d_lockref.count = 1;
dea3667b 1457 dentry->d_flags = 0;
1da177e4 1458 spin_lock_init(&dentry->d_lock);
31e6b01f 1459 seqcount_init(&dentry->d_seq);
1da177e4 1460 dentry->d_inode = NULL;
a4464dbc
AV
1461 dentry->d_parent = dentry;
1462 dentry->d_sb = sb;
1da177e4
LT
1463 dentry->d_op = NULL;
1464 dentry->d_fsdata = NULL;
ceb5bdc2 1465 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1466 INIT_LIST_HEAD(&dentry->d_lru);
1467 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1468 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1469 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1470 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1471
3e880fb5 1472 this_cpu_inc(nr_dentry);
312d3ca8 1473
1da177e4
LT
1474 return dentry;
1475}
a4464dbc
AV
1476
1477/**
1478 * d_alloc - allocate a dcache entry
1479 * @parent: parent of entry to allocate
1480 * @name: qstr of the name
1481 *
1482 * Allocates a dentry. It returns %NULL if there is insufficient memory
1483 * available. On a success the dentry is returned. The name passed in is
1484 * copied and the copy passed in may be reused after this call.
1485 */
1486struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1487{
1488 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1489 if (!dentry)
1490 return NULL;
1491
1492 spin_lock(&parent->d_lock);
1493 /*
1494 * don't need child lock because it is not subject
1495 * to concurrency here
1496 */
1497 __dget_dlock(parent);
1498 dentry->d_parent = parent;
1499 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1500 spin_unlock(&parent->d_lock);
1501
1502 return dentry;
1503}
ec4f8605 1504EXPORT_SYMBOL(d_alloc);
1da177e4 1505
e1a24bb0
BF
1506/**
1507 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1508 * @sb: the superblock
1509 * @name: qstr of the name
1510 *
1511 * For a filesystem that just pins its dentries in memory and never
1512 * performs lookups at all, return an unhashed IS_ROOT dentry.
1513 */
4b936885
NP
1514struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1515{
e1a24bb0 1516 return __d_alloc(sb, name);
4b936885
NP
1517}
1518EXPORT_SYMBOL(d_alloc_pseudo);
1519
1da177e4
LT
1520struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1521{
1522 struct qstr q;
1523
1524 q.name = name;
1525 q.len = strlen(name);
1526 q.hash = full_name_hash(q.name, q.len);
1527 return d_alloc(parent, &q);
1528}
ef26ca97 1529EXPORT_SYMBOL(d_alloc_name);
1da177e4 1530
fb045adb
NP
1531void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1532{
6f7f7caa
LT
1533 WARN_ON_ONCE(dentry->d_op);
1534 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1535 DCACHE_OP_COMPARE |
1536 DCACHE_OP_REVALIDATE |
ecf3d1f1 1537 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1538 DCACHE_OP_DELETE ));
1539 dentry->d_op = op;
1540 if (!op)
1541 return;
1542 if (op->d_hash)
1543 dentry->d_flags |= DCACHE_OP_HASH;
1544 if (op->d_compare)
1545 dentry->d_flags |= DCACHE_OP_COMPARE;
1546 if (op->d_revalidate)
1547 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1548 if (op->d_weak_revalidate)
1549 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1550 if (op->d_delete)
1551 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1552 if (op->d_prune)
1553 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1554
1555}
1556EXPORT_SYMBOL(d_set_d_op);
1557
b18825a7
DH
1558static unsigned d_flags_for_inode(struct inode *inode)
1559{
1560 unsigned add_flags = DCACHE_FILE_TYPE;
1561
1562 if (!inode)
1563 return DCACHE_MISS_TYPE;
1564
1565 if (S_ISDIR(inode->i_mode)) {
1566 add_flags = DCACHE_DIRECTORY_TYPE;
1567 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1568 if (unlikely(!inode->i_op->lookup))
1569 add_flags = DCACHE_AUTODIR_TYPE;
1570 else
1571 inode->i_opflags |= IOP_LOOKUP;
1572 }
1573 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1574 if (unlikely(inode->i_op->follow_link))
1575 add_flags = DCACHE_SYMLINK_TYPE;
1576 else
1577 inode->i_opflags |= IOP_NOFOLLOW;
1578 }
1579
1580 if (unlikely(IS_AUTOMOUNT(inode)))
1581 add_flags |= DCACHE_NEED_AUTOMOUNT;
1582 return add_flags;
1583}
1584
360da900
OH
1585static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1586{
b18825a7
DH
1587 unsigned add_flags = d_flags_for_inode(inode);
1588
b23fb0a6 1589 spin_lock(&dentry->d_lock);
22213318 1590 __d_set_type(dentry, add_flags);
b18825a7 1591 if (inode)
b3d9b7a3 1592 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1593 dentry->d_inode = inode;
31e6b01f 1594 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1595 spin_unlock(&dentry->d_lock);
360da900
OH
1596 fsnotify_d_instantiate(dentry, inode);
1597}
1598
1da177e4
LT
1599/**
1600 * d_instantiate - fill in inode information for a dentry
1601 * @entry: dentry to complete
1602 * @inode: inode to attach to this dentry
1603 *
1604 * Fill in inode information in the entry.
1605 *
1606 * This turns negative dentries into productive full members
1607 * of society.
1608 *
1609 * NOTE! This assumes that the inode count has been incremented
1610 * (or otherwise set) by the caller to indicate that it is now
1611 * in use by the dcache.
1612 */
1613
1614void d_instantiate(struct dentry *entry, struct inode * inode)
1615{
b3d9b7a3 1616 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1617 if (inode)
1618 spin_lock(&inode->i_lock);
360da900 1619 __d_instantiate(entry, inode);
873feea0
NP
1620 if (inode)
1621 spin_unlock(&inode->i_lock);
1da177e4
LT
1622 security_d_instantiate(entry, inode);
1623}
ec4f8605 1624EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1625
1626/**
1627 * d_instantiate_unique - instantiate a non-aliased dentry
1628 * @entry: dentry to instantiate
1629 * @inode: inode to attach to this dentry
1630 *
1631 * Fill in inode information in the entry. On success, it returns NULL.
1632 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1633 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1634 *
1635 * Note that in order to avoid conflicts with rename() etc, the caller
1636 * had better be holding the parent directory semaphore.
e866cfa9
OD
1637 *
1638 * This also assumes that the inode count has been incremented
1639 * (or otherwise set) by the caller to indicate that it is now
1640 * in use by the dcache.
1da177e4 1641 */
770bfad8
DH
1642static struct dentry *__d_instantiate_unique(struct dentry *entry,
1643 struct inode *inode)
1da177e4
LT
1644{
1645 struct dentry *alias;
1646 int len = entry->d_name.len;
1647 const char *name = entry->d_name.name;
1648 unsigned int hash = entry->d_name.hash;
1649
770bfad8 1650 if (!inode) {
360da900 1651 __d_instantiate(entry, NULL);
770bfad8
DH
1652 return NULL;
1653 }
1654
b67bfe0d 1655 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1656 /*
1657 * Don't need alias->d_lock here, because aliases with
1658 * d_parent == entry->d_parent are not subject to name or
1659 * parent changes, because the parent inode i_mutex is held.
1660 */
12f8ad4b 1661 if (alias->d_name.hash != hash)
1da177e4
LT
1662 continue;
1663 if (alias->d_parent != entry->d_parent)
1664 continue;
ee983e89
LT
1665 if (alias->d_name.len != len)
1666 continue;
12f8ad4b 1667 if (dentry_cmp(alias, name, len))
1da177e4 1668 continue;
dc0474be 1669 __dget(alias);
1da177e4
LT
1670 return alias;
1671 }
770bfad8 1672
360da900 1673 __d_instantiate(entry, inode);
1da177e4
LT
1674 return NULL;
1675}
770bfad8
DH
1676
1677struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1678{
1679 struct dentry *result;
1680
b3d9b7a3 1681 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1682
873feea0
NP
1683 if (inode)
1684 spin_lock(&inode->i_lock);
770bfad8 1685 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1686 if (inode)
1687 spin_unlock(&inode->i_lock);
770bfad8
DH
1688
1689 if (!result) {
1690 security_d_instantiate(entry, inode);
1691 return NULL;
1692 }
1693
1694 BUG_ON(!d_unhashed(result));
1695 iput(inode);
1696 return result;
1697}
1698
1da177e4
LT
1699EXPORT_SYMBOL(d_instantiate_unique);
1700
b70a80e7
MS
1701/**
1702 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1703 * @entry: dentry to complete
1704 * @inode: inode to attach to this dentry
1705 *
1706 * Fill in inode information in the entry. If a directory alias is found, then
1707 * return an error (and drop inode). Together with d_materialise_unique() this
1708 * guarantees that a directory inode may never have more than one alias.
1709 */
1710int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1711{
1712 BUG_ON(!hlist_unhashed(&entry->d_alias));
1713
1714 spin_lock(&inode->i_lock);
1715 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1716 spin_unlock(&inode->i_lock);
1717 iput(inode);
1718 return -EBUSY;
1719 }
1720 __d_instantiate(entry, inode);
1721 spin_unlock(&inode->i_lock);
1722 security_d_instantiate(entry, inode);
1723
1724 return 0;
1725}
1726EXPORT_SYMBOL(d_instantiate_no_diralias);
1727
adc0e91a
AV
1728struct dentry *d_make_root(struct inode *root_inode)
1729{
1730 struct dentry *res = NULL;
1731
1732 if (root_inode) {
26fe5750 1733 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1734
1735 res = __d_alloc(root_inode->i_sb, &name);
1736 if (res)
1737 d_instantiate(res, root_inode);
1738 else
1739 iput(root_inode);
1740 }
1741 return res;
1742}
1743EXPORT_SYMBOL(d_make_root);
1744
d891eedb
BF
1745static struct dentry * __d_find_any_alias(struct inode *inode)
1746{
1747 struct dentry *alias;
1748
b3d9b7a3 1749 if (hlist_empty(&inode->i_dentry))
d891eedb 1750 return NULL;
b3d9b7a3 1751 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1752 __dget(alias);
1753 return alias;
1754}
1755
46f72b34
SW
1756/**
1757 * d_find_any_alias - find any alias for a given inode
1758 * @inode: inode to find an alias for
1759 *
1760 * If any aliases exist for the given inode, take and return a
1761 * reference for one of them. If no aliases exist, return %NULL.
1762 */
1763struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1764{
1765 struct dentry *de;
1766
1767 spin_lock(&inode->i_lock);
1768 de = __d_find_any_alias(inode);
1769 spin_unlock(&inode->i_lock);
1770 return de;
1771}
46f72b34 1772EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1773
49c7dd28 1774static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1775{
b911a6bd 1776 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1777 struct dentry *tmp;
1778 struct dentry *res;
b18825a7 1779 unsigned add_flags;
4ea3ada2
CH
1780
1781 if (!inode)
44003728 1782 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1783 if (IS_ERR(inode))
1784 return ERR_CAST(inode);
1785
d891eedb 1786 res = d_find_any_alias(inode);
9308a612
CH
1787 if (res)
1788 goto out_iput;
1789
a4464dbc 1790 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1791 if (!tmp) {
1792 res = ERR_PTR(-ENOMEM);
1793 goto out_iput;
4ea3ada2 1794 }
b5c84bf6 1795
873feea0 1796 spin_lock(&inode->i_lock);
d891eedb 1797 res = __d_find_any_alias(inode);
9308a612 1798 if (res) {
873feea0 1799 spin_unlock(&inode->i_lock);
9308a612
CH
1800 dput(tmp);
1801 goto out_iput;
1802 }
1803
1804 /* attach a disconnected dentry */
1a0a397e
BF
1805 add_flags = d_flags_for_inode(inode);
1806
1807 if (disconnected)
1808 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1809
9308a612 1810 spin_lock(&tmp->d_lock);
9308a612 1811 tmp->d_inode = inode;
b18825a7 1812 tmp->d_flags |= add_flags;
b3d9b7a3 1813 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1814 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1815 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1816 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1817 spin_unlock(&tmp->d_lock);
873feea0 1818 spin_unlock(&inode->i_lock);
24ff6663 1819 security_d_instantiate(tmp, inode);
9308a612 1820
9308a612
CH
1821 return tmp;
1822
1823 out_iput:
24ff6663
JB
1824 if (res && !IS_ERR(res))
1825 security_d_instantiate(res, inode);
9308a612
CH
1826 iput(inode);
1827 return res;
4ea3ada2 1828}
1a0a397e
BF
1829
1830/**
1831 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1832 * @inode: inode to allocate the dentry for
1833 *
1834 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1835 * similar open by handle operations. The returned dentry may be anonymous,
1836 * or may have a full name (if the inode was already in the cache).
1837 *
1838 * When called on a directory inode, we must ensure that the inode only ever
1839 * has one dentry. If a dentry is found, that is returned instead of
1840 * allocating a new one.
1841 *
1842 * On successful return, the reference to the inode has been transferred
1843 * to the dentry. In case of an error the reference on the inode is released.
1844 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1845 * be passed in and the error will be propagated to the return value,
1846 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1847 */
1848struct dentry *d_obtain_alias(struct inode *inode)
1849{
1850 return __d_obtain_alias(inode, 1);
1851}
adc48720 1852EXPORT_SYMBOL(d_obtain_alias);
1da177e4 1853
1a0a397e
BF
1854/**
1855 * d_obtain_root - find or allocate a dentry for a given inode
1856 * @inode: inode to allocate the dentry for
1857 *
1858 * Obtain an IS_ROOT dentry for the root of a filesystem.
1859 *
1860 * We must ensure that directory inodes only ever have one dentry. If a
1861 * dentry is found, that is returned instead of allocating a new one.
1862 *
1863 * On successful return, the reference to the inode has been transferred
1864 * to the dentry. In case of an error the reference on the inode is
1865 * released. A %NULL or IS_ERR inode may be passed in and will be the
1866 * error will be propagate to the return value, with a %NULL @inode
1867 * replaced by ERR_PTR(-ESTALE).
1868 */
1869struct dentry *d_obtain_root(struct inode *inode)
1870{
1871 return __d_obtain_alias(inode, 0);
1872}
1873EXPORT_SYMBOL(d_obtain_root);
1874
9403540c
BN
1875/**
1876 * d_add_ci - lookup or allocate new dentry with case-exact name
1877 * @inode: the inode case-insensitive lookup has found
1878 * @dentry: the negative dentry that was passed to the parent's lookup func
1879 * @name: the case-exact name to be associated with the returned dentry
1880 *
1881 * This is to avoid filling the dcache with case-insensitive names to the
1882 * same inode, only the actual correct case is stored in the dcache for
1883 * case-insensitive filesystems.
1884 *
1885 * For a case-insensitive lookup match and if the the case-exact dentry
1886 * already exists in in the dcache, use it and return it.
1887 *
1888 * If no entry exists with the exact case name, allocate new dentry with
1889 * the exact case, and return the spliced entry.
1890 */
e45b590b 1891struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1892 struct qstr *name)
1893{
9403540c
BN
1894 struct dentry *found;
1895 struct dentry *new;
1896
b6520c81
CH
1897 /*
1898 * First check if a dentry matching the name already exists,
1899 * if not go ahead and create it now.
1900 */
9403540c 1901 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1902 if (unlikely(IS_ERR(found)))
1903 goto err_out;
9403540c
BN
1904 if (!found) {
1905 new = d_alloc(dentry->d_parent, name);
1906 if (!new) {
4f522a24 1907 found = ERR_PTR(-ENOMEM);
9403540c
BN
1908 goto err_out;
1909 }
b6520c81 1910
9403540c
BN
1911 found = d_splice_alias(inode, new);
1912 if (found) {
1913 dput(new);
1914 return found;
1915 }
1916 return new;
1917 }
b6520c81
CH
1918
1919 /*
1920 * If a matching dentry exists, and it's not negative use it.
1921 *
1922 * Decrement the reference count to balance the iget() done
1923 * earlier on.
1924 */
9403540c
BN
1925 if (found->d_inode) {
1926 if (unlikely(found->d_inode != inode)) {
1927 /* This can't happen because bad inodes are unhashed. */
1928 BUG_ON(!is_bad_inode(inode));
1929 BUG_ON(!is_bad_inode(found->d_inode));
1930 }
9403540c
BN
1931 iput(inode);
1932 return found;
1933 }
b6520c81 1934
9403540c 1935 /*
9403540c 1936 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1937 * already has a dentry.
9403540c 1938 */
4513d899
AV
1939 new = d_splice_alias(inode, found);
1940 if (new) {
1941 dput(found);
1942 found = new;
9403540c 1943 }
4513d899 1944 return found;
9403540c
BN
1945
1946err_out:
1947 iput(inode);
4f522a24 1948 return found;
9403540c 1949}
ec4f8605 1950EXPORT_SYMBOL(d_add_ci);
1da177e4 1951
12f8ad4b
LT
1952/*
1953 * Do the slow-case of the dentry name compare.
1954 *
1955 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1956 * load the name and length information, so that the
12f8ad4b
LT
1957 * filesystem can rely on them, and can use the 'name' and
1958 * 'len' information without worrying about walking off the
1959 * end of memory etc.
1960 *
1961 * Thus the read_seqcount_retry() and the "duplicate" info
1962 * in arguments (the low-level filesystem should not look
1963 * at the dentry inode or name contents directly, since
1964 * rename can change them while we're in RCU mode).
1965 */
1966enum slow_d_compare {
1967 D_COMP_OK,
1968 D_COMP_NOMATCH,
1969 D_COMP_SEQRETRY,
1970};
1971
1972static noinline enum slow_d_compare slow_dentry_cmp(
1973 const struct dentry *parent,
12f8ad4b
LT
1974 struct dentry *dentry,
1975 unsigned int seq,
1976 const struct qstr *name)
1977{
1978 int tlen = dentry->d_name.len;
1979 const char *tname = dentry->d_name.name;
12f8ad4b
LT
1980
1981 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1982 cpu_relax();
1983 return D_COMP_SEQRETRY;
1984 }
da53be12 1985 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
1986 return D_COMP_NOMATCH;
1987 return D_COMP_OK;
1988}
1989
31e6b01f
NP
1990/**
1991 * __d_lookup_rcu - search for a dentry (racy, store-free)
1992 * @parent: parent dentry
1993 * @name: qstr of name we wish to find
1f1e6e52 1994 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1995 * Returns: dentry, or NULL
1996 *
1997 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1998 * resolution (store-free path walking) design described in
1999 * Documentation/filesystems/path-lookup.txt.
2000 *
2001 * This is not to be used outside core vfs.
2002 *
2003 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2004 * held, and rcu_read_lock held. The returned dentry must not be stored into
2005 * without taking d_lock and checking d_seq sequence count against @seq
2006 * returned here.
2007 *
15570086 2008 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2009 * function.
2010 *
2011 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2012 * the returned dentry, so long as its parent's seqlock is checked after the
2013 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2014 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2015 *
2016 * NOTE! The caller *has* to check the resulting dentry against the sequence
2017 * number we've returned before using any of the resulting dentry state!
31e6b01f 2018 */
8966be90
LT
2019struct dentry *__d_lookup_rcu(const struct dentry *parent,
2020 const struct qstr *name,
da53be12 2021 unsigned *seqp)
31e6b01f 2022{
26fe5750 2023 u64 hashlen = name->hash_len;
31e6b01f 2024 const unsigned char *str = name->name;
26fe5750 2025 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2026 struct hlist_bl_node *node;
31e6b01f
NP
2027 struct dentry *dentry;
2028
2029 /*
2030 * Note: There is significant duplication with __d_lookup_rcu which is
2031 * required to prevent single threaded performance regressions
2032 * especially on architectures where smp_rmb (in seqcounts) are costly.
2033 * Keep the two functions in sync.
2034 */
2035
2036 /*
2037 * The hash list is protected using RCU.
2038 *
2039 * Carefully use d_seq when comparing a candidate dentry, to avoid
2040 * races with d_move().
2041 *
2042 * It is possible that concurrent renames can mess up our list
2043 * walk here and result in missing our dentry, resulting in the
2044 * false-negative result. d_lookup() protects against concurrent
2045 * renames using rename_lock seqlock.
2046 *
b0a4bb83 2047 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2048 */
b07ad996 2049 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2050 unsigned seq;
31e6b01f 2051
31e6b01f 2052seqretry:
12f8ad4b
LT
2053 /*
2054 * The dentry sequence count protects us from concurrent
da53be12 2055 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2056 *
2057 * The caller must perform a seqcount check in order
da53be12 2058 * to do anything useful with the returned dentry.
12f8ad4b
LT
2059 *
2060 * NOTE! We do a "raw" seqcount_begin here. That means that
2061 * we don't wait for the sequence count to stabilize if it
2062 * is in the middle of a sequence change. If we do the slow
2063 * dentry compare, we will do seqretries until it is stable,
2064 * and if we end up with a successful lookup, we actually
2065 * want to exit RCU lookup anyway.
2066 */
2067 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2068 if (dentry->d_parent != parent)
2069 continue;
2e321806
LT
2070 if (d_unhashed(dentry))
2071 continue;
12f8ad4b 2072
830c0f0e 2073 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2074 if (dentry->d_name.hash != hashlen_hash(hashlen))
2075 continue;
da53be12
LT
2076 *seqp = seq;
2077 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2078 case D_COMP_OK:
2079 return dentry;
2080 case D_COMP_NOMATCH:
31e6b01f 2081 continue;
12f8ad4b
LT
2082 default:
2083 goto seqretry;
2084 }
31e6b01f 2085 }
12f8ad4b 2086
26fe5750 2087 if (dentry->d_name.hash_len != hashlen)
ee983e89 2088 continue;
da53be12 2089 *seqp = seq;
26fe5750 2090 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2091 return dentry;
31e6b01f
NP
2092 }
2093 return NULL;
2094}
2095
1da177e4
LT
2096/**
2097 * d_lookup - search for a dentry
2098 * @parent: parent dentry
2099 * @name: qstr of name we wish to find
b04f784e 2100 * Returns: dentry, or NULL
1da177e4 2101 *
b04f784e
NP
2102 * d_lookup searches the children of the parent dentry for the name in
2103 * question. If the dentry is found its reference count is incremented and the
2104 * dentry is returned. The caller must use dput to free the entry when it has
2105 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2106 */
da2d8455 2107struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2108{
31e6b01f 2109 struct dentry *dentry;
949854d0 2110 unsigned seq;
1da177e4
LT
2111
2112 do {
2113 seq = read_seqbegin(&rename_lock);
2114 dentry = __d_lookup(parent, name);
2115 if (dentry)
2116 break;
2117 } while (read_seqretry(&rename_lock, seq));
2118 return dentry;
2119}
ec4f8605 2120EXPORT_SYMBOL(d_lookup);
1da177e4 2121
31e6b01f 2122/**
b04f784e
NP
2123 * __d_lookup - search for a dentry (racy)
2124 * @parent: parent dentry
2125 * @name: qstr of name we wish to find
2126 * Returns: dentry, or NULL
2127 *
2128 * __d_lookup is like d_lookup, however it may (rarely) return a
2129 * false-negative result due to unrelated rename activity.
2130 *
2131 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2132 * however it must be used carefully, eg. with a following d_lookup in
2133 * the case of failure.
2134 *
2135 * __d_lookup callers must be commented.
2136 */
a713ca2a 2137struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2138{
2139 unsigned int len = name->len;
2140 unsigned int hash = name->hash;
2141 const unsigned char *str = name->name;
b07ad996 2142 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2143 struct hlist_bl_node *node;
31e6b01f 2144 struct dentry *found = NULL;
665a7583 2145 struct dentry *dentry;
1da177e4 2146
31e6b01f
NP
2147 /*
2148 * Note: There is significant duplication with __d_lookup_rcu which is
2149 * required to prevent single threaded performance regressions
2150 * especially on architectures where smp_rmb (in seqcounts) are costly.
2151 * Keep the two functions in sync.
2152 */
2153
b04f784e
NP
2154 /*
2155 * The hash list is protected using RCU.
2156 *
2157 * Take d_lock when comparing a candidate dentry, to avoid races
2158 * with d_move().
2159 *
2160 * It is possible that concurrent renames can mess up our list
2161 * walk here and result in missing our dentry, resulting in the
2162 * false-negative result. d_lookup() protects against concurrent
2163 * renames using rename_lock seqlock.
2164 *
b0a4bb83 2165 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2166 */
1da177e4
LT
2167 rcu_read_lock();
2168
b07ad996 2169 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2170
1da177e4
LT
2171 if (dentry->d_name.hash != hash)
2172 continue;
1da177e4
LT
2173
2174 spin_lock(&dentry->d_lock);
1da177e4
LT
2175 if (dentry->d_parent != parent)
2176 goto next;
d0185c08
LT
2177 if (d_unhashed(dentry))
2178 goto next;
2179
1da177e4
LT
2180 /*
2181 * It is safe to compare names since d_move() cannot
2182 * change the qstr (protected by d_lock).
2183 */
fb045adb 2184 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2185 int tlen = dentry->d_name.len;
2186 const char *tname = dentry->d_name.name;
da53be12 2187 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2188 goto next;
2189 } else {
ee983e89
LT
2190 if (dentry->d_name.len != len)
2191 goto next;
12f8ad4b 2192 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2193 goto next;
2194 }
2195
98474236 2196 dentry->d_lockref.count++;
d0185c08 2197 found = dentry;
1da177e4
LT
2198 spin_unlock(&dentry->d_lock);
2199 break;
2200next:
2201 spin_unlock(&dentry->d_lock);
2202 }
2203 rcu_read_unlock();
2204
2205 return found;
2206}
2207
3e7e241f
EB
2208/**
2209 * d_hash_and_lookup - hash the qstr then search for a dentry
2210 * @dir: Directory to search in
2211 * @name: qstr of name we wish to find
2212 *
4f522a24 2213 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2214 */
2215struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2216{
3e7e241f
EB
2217 /*
2218 * Check for a fs-specific hash function. Note that we must
2219 * calculate the standard hash first, as the d_op->d_hash()
2220 * routine may choose to leave the hash value unchanged.
2221 */
2222 name->hash = full_name_hash(name->name, name->len);
fb045adb 2223 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2224 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2225 if (unlikely(err < 0))
2226 return ERR_PTR(err);
3e7e241f 2227 }
4f522a24 2228 return d_lookup(dir, name);
3e7e241f 2229}
4f522a24 2230EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2231
1da177e4 2232/**
786a5e15 2233 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2234 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2235 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2236 *
2237 * An insecure source has sent us a dentry, here we verify it and dget() it.
2238 * This is used by ncpfs in its readdir implementation.
2239 * Zero is returned in the dentry is invalid.
786a5e15
NP
2240 *
2241 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2242 */
d3a23e16 2243int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2244{
786a5e15 2245 struct dentry *child;
d3a23e16 2246
2fd6b7f5 2247 spin_lock(&dparent->d_lock);
786a5e15
NP
2248 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2249 if (dentry == child) {
2fd6b7f5 2250 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2251 __dget_dlock(dentry);
2fd6b7f5
NP
2252 spin_unlock(&dentry->d_lock);
2253 spin_unlock(&dparent->d_lock);
1da177e4
LT
2254 return 1;
2255 }
2256 }
2fd6b7f5 2257 spin_unlock(&dparent->d_lock);
786a5e15 2258
1da177e4
LT
2259 return 0;
2260}
ec4f8605 2261EXPORT_SYMBOL(d_validate);
1da177e4
LT
2262
2263/*
2264 * When a file is deleted, we have two options:
2265 * - turn this dentry into a negative dentry
2266 * - unhash this dentry and free it.
2267 *
2268 * Usually, we want to just turn this into
2269 * a negative dentry, but if anybody else is
2270 * currently using the dentry or the inode
2271 * we can't do that and we fall back on removing
2272 * it from the hash queues and waiting for
2273 * it to be deleted later when it has no users
2274 */
2275
2276/**
2277 * d_delete - delete a dentry
2278 * @dentry: The dentry to delete
2279 *
2280 * Turn the dentry into a negative dentry if possible, otherwise
2281 * remove it from the hash queues so it can be deleted later
2282 */
2283
2284void d_delete(struct dentry * dentry)
2285{
873feea0 2286 struct inode *inode;
7a91bf7f 2287 int isdir = 0;
1da177e4
LT
2288 /*
2289 * Are we the only user?
2290 */
357f8e65 2291again:
1da177e4 2292 spin_lock(&dentry->d_lock);
873feea0
NP
2293 inode = dentry->d_inode;
2294 isdir = S_ISDIR(inode->i_mode);
98474236 2295 if (dentry->d_lockref.count == 1) {
1fe0c023 2296 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2297 spin_unlock(&dentry->d_lock);
2298 cpu_relax();
2299 goto again;
2300 }
13e3c5e5 2301 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2302 dentry_unlink_inode(dentry);
7a91bf7f 2303 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2304 return;
2305 }
2306
2307 if (!d_unhashed(dentry))
2308 __d_drop(dentry);
2309
2310 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2311
2312 fsnotify_nameremove(dentry, isdir);
1da177e4 2313}
ec4f8605 2314EXPORT_SYMBOL(d_delete);
1da177e4 2315
b07ad996 2316static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2317{
ceb5bdc2 2318 BUG_ON(!d_unhashed(entry));
1879fd6a 2319 hlist_bl_lock(b);
dea3667b 2320 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2321 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2322 hlist_bl_unlock(b);
1da177e4
LT
2323}
2324
770bfad8
DH
2325static void _d_rehash(struct dentry * entry)
2326{
2327 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2328}
2329
1da177e4
LT
2330/**
2331 * d_rehash - add an entry back to the hash
2332 * @entry: dentry to add to the hash
2333 *
2334 * Adds a dentry to the hash according to its name.
2335 */
2336
2337void d_rehash(struct dentry * entry)
2338{
1da177e4 2339 spin_lock(&entry->d_lock);
770bfad8 2340 _d_rehash(entry);
1da177e4 2341 spin_unlock(&entry->d_lock);
1da177e4 2342}
ec4f8605 2343EXPORT_SYMBOL(d_rehash);
1da177e4 2344
fb2d5b86
NP
2345/**
2346 * dentry_update_name_case - update case insensitive dentry with a new name
2347 * @dentry: dentry to be updated
2348 * @name: new name
2349 *
2350 * Update a case insensitive dentry with new case of name.
2351 *
2352 * dentry must have been returned by d_lookup with name @name. Old and new
2353 * name lengths must match (ie. no d_compare which allows mismatched name
2354 * lengths).
2355 *
2356 * Parent inode i_mutex must be held over d_lookup and into this call (to
2357 * keep renames and concurrent inserts, and readdir(2) away).
2358 */
2359void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2360{
7ebfa57f 2361 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2362 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2363
fb2d5b86 2364 spin_lock(&dentry->d_lock);
31e6b01f 2365 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2366 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2367 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2368 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2369}
2370EXPORT_SYMBOL(dentry_update_name_case);
2371
8d85b484 2372static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2373{
8d85b484
AV
2374 if (unlikely(dname_external(target))) {
2375 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2376 /*
2377 * Both external: swap the pointers
2378 */
9a8d5bb4 2379 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2380 } else {
2381 /*
2382 * dentry:internal, target:external. Steal target's
2383 * storage and make target internal.
2384 */
321bcf92
BF
2385 memcpy(target->d_iname, dentry->d_name.name,
2386 dentry->d_name.len + 1);
1da177e4
LT
2387 dentry->d_name.name = target->d_name.name;
2388 target->d_name.name = target->d_iname;
2389 }
2390 } else {
8d85b484 2391 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2392 /*
2393 * dentry:external, target:internal. Give dentry's
2394 * storage to target and make dentry internal
2395 */
2396 memcpy(dentry->d_iname, target->d_name.name,
2397 target->d_name.len + 1);
2398 target->d_name.name = dentry->d_name.name;
2399 dentry->d_name.name = dentry->d_iname;
2400 } else {
2401 /*
da1ce067 2402 * Both are internal.
1da177e4 2403 */
da1ce067
MS
2404 unsigned int i;
2405 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2406 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2407 swap(((long *) &dentry->d_iname)[i],
2408 ((long *) &target->d_iname)[i]);
2409 }
1da177e4
LT
2410 }
2411 }
a28ddb87 2412 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2413}
2414
8d85b484
AV
2415static void copy_name(struct dentry *dentry, struct dentry *target)
2416{
2417 struct external_name *old_name = NULL;
2418 if (unlikely(dname_external(dentry)))
2419 old_name = external_name(dentry);
2420 if (unlikely(dname_external(target))) {
2421 atomic_inc(&external_name(target)->u.count);
2422 dentry->d_name = target->d_name;
2423 } else {
2424 memcpy(dentry->d_iname, target->d_name.name,
2425 target->d_name.len + 1);
2426 dentry->d_name.name = dentry->d_iname;
2427 dentry->d_name.hash_len = target->d_name.hash_len;
2428 }
2429 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2430 kfree_rcu(old_name, u.head);
2431}
2432
2fd6b7f5
NP
2433static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2434{
2435 /*
2436 * XXXX: do we really need to take target->d_lock?
2437 */
2438 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2439 spin_lock(&target->d_parent->d_lock);
2440 else {
2441 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2442 spin_lock(&dentry->d_parent->d_lock);
2443 spin_lock_nested(&target->d_parent->d_lock,
2444 DENTRY_D_LOCK_NESTED);
2445 } else {
2446 spin_lock(&target->d_parent->d_lock);
2447 spin_lock_nested(&dentry->d_parent->d_lock,
2448 DENTRY_D_LOCK_NESTED);
2449 }
2450 }
2451 if (target < dentry) {
2452 spin_lock_nested(&target->d_lock, 2);
2453 spin_lock_nested(&dentry->d_lock, 3);
2454 } else {
2455 spin_lock_nested(&dentry->d_lock, 2);
2456 spin_lock_nested(&target->d_lock, 3);
2457 }
2458}
2459
986c0194 2460static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2461{
2462 if (target->d_parent != dentry->d_parent)
2463 spin_unlock(&dentry->d_parent->d_lock);
2464 if (target->d_parent != target)
2465 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2466 spin_unlock(&target->d_lock);
2467 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2468}
2469
1da177e4 2470/*
2fd6b7f5
NP
2471 * When switching names, the actual string doesn't strictly have to
2472 * be preserved in the target - because we're dropping the target
2473 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2474 * the new name before we switch, unless we are going to rehash
2475 * it. Note that if we *do* unhash the target, we are not allowed
2476 * to rehash it without giving it a new name/hash key - whether
2477 * we swap or overwrite the names here, resulting name won't match
2478 * the reality in filesystem; it's only there for d_path() purposes.
2479 * Note that all of this is happening under rename_lock, so the
2480 * any hash lookup seeing it in the middle of manipulations will
2481 * be discarded anyway. So we do not care what happens to the hash
2482 * key in that case.
1da177e4 2483 */
9eaef27b 2484/*
18367501 2485 * __d_move - move a dentry
1da177e4
LT
2486 * @dentry: entry to move
2487 * @target: new dentry
da1ce067 2488 * @exchange: exchange the two dentries
1da177e4
LT
2489 *
2490 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2491 * dcache entries should not be moved in this way. Caller must hold
2492 * rename_lock, the i_mutex of the source and target directories,
2493 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2494 */
da1ce067
MS
2495static void __d_move(struct dentry *dentry, struct dentry *target,
2496 bool exchange)
1da177e4 2497{
1da177e4
LT
2498 if (!dentry->d_inode)
2499 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2500
2fd6b7f5
NP
2501 BUG_ON(d_ancestor(dentry, target));
2502 BUG_ON(d_ancestor(target, dentry));
2503
2fd6b7f5 2504 dentry_lock_for_move(dentry, target);
1da177e4 2505
31e6b01f 2506 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2507 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2508
ceb5bdc2
NP
2509 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2510
2511 /*
2512 * Move the dentry to the target hash queue. Don't bother checking
2513 * for the same hash queue because of how unlikely it is.
2514 */
2515 __d_drop(dentry);
789680d1 2516 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2517
da1ce067
MS
2518 /*
2519 * Unhash the target (d_delete() is not usable here). If exchanging
2520 * the two dentries, then rehash onto the other's hash queue.
2521 */
1da177e4 2522 __d_drop(target);
da1ce067
MS
2523 if (exchange) {
2524 __d_rehash(target,
2525 d_hash(dentry->d_parent, dentry->d_name.hash));
2526 }
1da177e4 2527
1da177e4 2528 /* Switch the names.. */
8d85b484
AV
2529 if (exchange)
2530 swap_names(dentry, target);
2531 else
2532 copy_name(dentry, target);
1da177e4 2533
63cf427a 2534 /* ... and switch them in the tree */
1da177e4 2535 if (IS_ROOT(dentry)) {
63cf427a 2536 /* splicing a tree */
1da177e4
LT
2537 dentry->d_parent = target->d_parent;
2538 target->d_parent = target;
9d8cd306 2539 list_del_init(&target->d_u.d_child);
63cf427a 2540 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1da177e4 2541 } else {
63cf427a 2542 /* swapping two dentries */
9a8d5bb4 2543 swap(dentry->d_parent, target->d_parent);
9d8cd306 2544 list_move(&target->d_u.d_child, &target->d_parent->d_subdirs);
63cf427a
AV
2545 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2546 if (exchange)
2547 fsnotify_d_move(target);
2548 fsnotify_d_move(dentry);
1da177e4
LT
2549 }
2550
31e6b01f
NP
2551 write_seqcount_end(&target->d_seq);
2552 write_seqcount_end(&dentry->d_seq);
2553
986c0194 2554 dentry_unlock_for_move(dentry, target);
18367501
AV
2555}
2556
2557/*
2558 * d_move - move a dentry
2559 * @dentry: entry to move
2560 * @target: new dentry
2561 *
2562 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2563 * dcache entries should not be moved in this way. See the locking
2564 * requirements for __d_move.
18367501
AV
2565 */
2566void d_move(struct dentry *dentry, struct dentry *target)
2567{
2568 write_seqlock(&rename_lock);
da1ce067 2569 __d_move(dentry, target, false);
1da177e4 2570 write_sequnlock(&rename_lock);
9eaef27b 2571}
ec4f8605 2572EXPORT_SYMBOL(d_move);
1da177e4 2573
da1ce067
MS
2574/*
2575 * d_exchange - exchange two dentries
2576 * @dentry1: first dentry
2577 * @dentry2: second dentry
2578 */
2579void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2580{
2581 write_seqlock(&rename_lock);
2582
2583 WARN_ON(!dentry1->d_inode);
2584 WARN_ON(!dentry2->d_inode);
2585 WARN_ON(IS_ROOT(dentry1));
2586 WARN_ON(IS_ROOT(dentry2));
2587
2588 __d_move(dentry1, dentry2, true);
2589
2590 write_sequnlock(&rename_lock);
2591}
2592
e2761a11
OH
2593/**
2594 * d_ancestor - search for an ancestor
2595 * @p1: ancestor dentry
2596 * @p2: child dentry
2597 *
2598 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2599 * an ancestor of p2, else NULL.
9eaef27b 2600 */
e2761a11 2601struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2602{
2603 struct dentry *p;
2604
871c0067 2605 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2606 if (p->d_parent == p1)
e2761a11 2607 return p;
9eaef27b 2608 }
e2761a11 2609 return NULL;
9eaef27b
TM
2610}
2611
2612/*
2613 * This helper attempts to cope with remotely renamed directories
2614 *
2615 * It assumes that the caller is already holding
18367501 2616 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2617 *
2618 * Note: If ever the locking in lock_rename() changes, then please
2619 * remember to update this too...
9eaef27b 2620 */
873feea0
NP
2621static struct dentry *__d_unalias(struct inode *inode,
2622 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2623{
2624 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2625 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2626
2627 /* If alias and dentry share a parent, then no extra locks required */
2628 if (alias->d_parent == dentry->d_parent)
2629 goto out_unalias;
2630
9eaef27b 2631 /* See lock_rename() */
9eaef27b
TM
2632 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2633 goto out_err;
2634 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2635 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2636 goto out_err;
2637 m2 = &alias->d_parent->d_inode->i_mutex;
2638out_unalias:
8ed936b5
EB
2639 __d_move(alias, dentry, false);
2640 ret = alias;
9eaef27b 2641out_err:
873feea0 2642 spin_unlock(&inode->i_lock);
9eaef27b
TM
2643 if (m2)
2644 mutex_unlock(m2);
2645 if (m1)
2646 mutex_unlock(m1);
2647 return ret;
2648}
2649
3f70bd51
BF
2650/**
2651 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2652 * @inode: the inode which may have a disconnected dentry
2653 * @dentry: a negative dentry which we want to point to the inode.
2654 *
da093a9b
BF
2655 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2656 * place of the given dentry and return it, else simply d_add the inode
2657 * to the dentry and return NULL.
3f70bd51 2658 *
908790fa
BF
2659 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2660 * we should error out: directories can't have multiple aliases.
2661 *
3f70bd51
BF
2662 * This is needed in the lookup routine of any filesystem that is exportable
2663 * (via knfsd) so that we can build dcache paths to directories effectively.
2664 *
2665 * If a dentry was found and moved, then it is returned. Otherwise NULL
2666 * is returned. This matches the expected return value of ->lookup.
2667 *
2668 * Cluster filesystems may call this function with a negative, hashed dentry.
2669 * In that case, we know that the inode will be a regular file, and also this
2670 * will only occur during atomic_open. So we need to check for the dentry
2671 * being already hashed only in the final case.
2672 */
2673struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2674{
2675 struct dentry *new = NULL;
2676
2677 if (IS_ERR(inode))
2678 return ERR_CAST(inode);
2679
2680 if (inode && S_ISDIR(inode->i_mode)) {
2681 spin_lock(&inode->i_lock);
908790fa 2682 new = __d_find_any_alias(inode);
3f70bd51 2683 if (new) {
da093a9b 2684 if (!IS_ROOT(new)) {
908790fa
BF
2685 spin_unlock(&inode->i_lock);
2686 dput(new);
2687 return ERR_PTR(-EIO);
2688 }
95ad5c29
BF
2689 if (d_ancestor(new, dentry)) {
2690 spin_unlock(&inode->i_lock);
2691 dput(new);
2692 return ERR_PTR(-EIO);
2693 }
75a2352d 2694 write_seqlock(&rename_lock);
63cf427a 2695 __d_move(new, dentry, false);
75a2352d 2696 write_sequnlock(&rename_lock);
3f70bd51
BF
2697 spin_unlock(&inode->i_lock);
2698 security_d_instantiate(new, inode);
3f70bd51
BF
2699 iput(inode);
2700 } else {
2701 /* already taking inode->i_lock, so d_add() by hand */
2702 __d_instantiate(dentry, inode);
2703 spin_unlock(&inode->i_lock);
2704 security_d_instantiate(dentry, inode);
2705 d_rehash(dentry);
2706 }
2707 } else {
2708 d_instantiate(dentry, inode);
2709 if (d_unhashed(dentry))
2710 d_rehash(dentry);
2711 }
2712 return new;
2713}
2714EXPORT_SYMBOL(d_splice_alias);
2715
770bfad8
DH
2716/**
2717 * d_materialise_unique - introduce an inode into the tree
2718 * @dentry: candidate dentry
2719 * @inode: inode to bind to the dentry, to which aliases may be attached
2720 *
2721 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2722 * root directory alias in its place if there is one. Caller must hold the
2723 * i_mutex of the parent directory.
770bfad8
DH
2724 */
2725struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2726{
9eaef27b 2727 struct dentry *actual;
770bfad8
DH
2728
2729 BUG_ON(!d_unhashed(dentry));
2730
770bfad8
DH
2731 if (!inode) {
2732 actual = dentry;
360da900 2733 __d_instantiate(dentry, NULL);
357f8e65
NP
2734 d_rehash(actual);
2735 goto out_nolock;
770bfad8
DH
2736 }
2737
873feea0 2738 spin_lock(&inode->i_lock);
357f8e65 2739
9eaef27b
TM
2740 if (S_ISDIR(inode->i_mode)) {
2741 struct dentry *alias;
2742
2743 /* Does an aliased dentry already exist? */
52ed46f0 2744 alias = __d_find_alias(inode);
9eaef27b
TM
2745 if (alias) {
2746 actual = alias;
18367501
AV
2747 write_seqlock(&rename_lock);
2748
2749 if (d_ancestor(alias, dentry)) {
2750 /* Check for loops */
2751 actual = ERR_PTR(-ELOOP);
b18dafc8 2752 spin_unlock(&inode->i_lock);
18367501
AV
2753 } else if (IS_ROOT(alias)) {
2754 /* Is this an anonymous mountpoint that we
2755 * could splice into our tree? */
63cf427a 2756 __d_move(alias, dentry, false);
18367501 2757 write_sequnlock(&rename_lock);
9eaef27b 2758 goto found;
18367501
AV
2759 } else {
2760 /* Nope, but we must(!) avoid directory
b18dafc8 2761 * aliasing. This drops inode->i_lock */
18367501 2762 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2763 }
18367501 2764 write_sequnlock(&rename_lock);
dd179946
DH
2765 if (IS_ERR(actual)) {
2766 if (PTR_ERR(actual) == -ELOOP)
2767 pr_warn_ratelimited(
2768 "VFS: Lookup of '%s' in %s %s"
2769 " would have caused loop\n",
2770 dentry->d_name.name,
2771 inode->i_sb->s_type->name,
2772 inode->i_sb->s_id);
9eaef27b 2773 dput(alias);
dd179946 2774 }
9eaef27b
TM
2775 goto out_nolock;
2776 }
770bfad8
DH
2777 }
2778
2779 /* Add a unique reference */
2780 actual = __d_instantiate_unique(dentry, inode);
2781 if (!actual)
2782 actual = dentry;
770bfad8 2783
8527dd71 2784 d_rehash(actual);
5cc3821b 2785found:
873feea0 2786 spin_unlock(&inode->i_lock);
9eaef27b 2787out_nolock:
770bfad8
DH
2788 if (actual == dentry) {
2789 security_d_instantiate(dentry, inode);
2790 return NULL;
2791 }
2792
2793 iput(inode);
2794 return actual;
770bfad8 2795}
ec4f8605 2796EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2797
cdd16d02 2798static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2799{
2800 *buflen -= namelen;
2801 if (*buflen < 0)
2802 return -ENAMETOOLONG;
2803 *buffer -= namelen;
2804 memcpy(*buffer, str, namelen);
2805 return 0;
2806}
2807
232d2d60
WL
2808/**
2809 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2810 * @buffer: buffer pointer
2811 * @buflen: allocated length of the buffer
2812 * @name: name string and length qstr structure
232d2d60
WL
2813 *
2814 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2815 * make sure that either the old or the new name pointer and length are
2816 * fetched. However, there may be mismatch between length and pointer.
2817 * The length cannot be trusted, we need to copy it byte-by-byte until
2818 * the length is reached or a null byte is found. It also prepends "/" at
2819 * the beginning of the name. The sequence number check at the caller will
2820 * retry it again when a d_move() does happen. So any garbage in the buffer
2821 * due to mismatched pointer and length will be discarded.
6d13f694
AV
2822 *
2823 * Data dependency barrier is needed to make sure that we see that terminating
2824 * NUL. Alpha strikes again, film at 11...
232d2d60 2825 */
cdd16d02
MS
2826static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2827{
232d2d60
WL
2828 const char *dname = ACCESS_ONCE(name->name);
2829 u32 dlen = ACCESS_ONCE(name->len);
2830 char *p;
2831
6d13f694
AV
2832 smp_read_barrier_depends();
2833
232d2d60 2834 *buflen -= dlen + 1;
e825196d
AV
2835 if (*buflen < 0)
2836 return -ENAMETOOLONG;
232d2d60
WL
2837 p = *buffer -= dlen + 1;
2838 *p++ = '/';
2839 while (dlen--) {
2840 char c = *dname++;
2841 if (!c)
2842 break;
2843 *p++ = c;
2844 }
2845 return 0;
cdd16d02
MS
2846}
2847
1da177e4 2848/**
208898c1 2849 * prepend_path - Prepend path string to a buffer
9d1bc601 2850 * @path: the dentry/vfsmount to report
02125a82 2851 * @root: root vfsmnt/dentry
f2eb6575
MS
2852 * @buffer: pointer to the end of the buffer
2853 * @buflen: pointer to buffer length
552ce544 2854 *
18129977
WL
2855 * The function will first try to write out the pathname without taking any
2856 * lock other than the RCU read lock to make sure that dentries won't go away.
2857 * It only checks the sequence number of the global rename_lock as any change
2858 * in the dentry's d_seq will be preceded by changes in the rename_lock
2859 * sequence number. If the sequence number had been changed, it will restart
2860 * the whole pathname back-tracing sequence again by taking the rename_lock.
2861 * In this case, there is no need to take the RCU read lock as the recursive
2862 * parent pointer references will keep the dentry chain alive as long as no
2863 * rename operation is performed.
1da177e4 2864 */
02125a82
AV
2865static int prepend_path(const struct path *path,
2866 const struct path *root,
f2eb6575 2867 char **buffer, int *buflen)
1da177e4 2868{
ede4cebc
AV
2869 struct dentry *dentry;
2870 struct vfsmount *vfsmnt;
2871 struct mount *mnt;
f2eb6575 2872 int error = 0;
48a066e7 2873 unsigned seq, m_seq = 0;
232d2d60
WL
2874 char *bptr;
2875 int blen;
6092d048 2876
48f5ec21 2877 rcu_read_lock();
48a066e7
AV
2878restart_mnt:
2879 read_seqbegin_or_lock(&mount_lock, &m_seq);
2880 seq = 0;
4ec6c2ae 2881 rcu_read_lock();
232d2d60
WL
2882restart:
2883 bptr = *buffer;
2884 blen = *buflen;
48a066e7 2885 error = 0;
ede4cebc
AV
2886 dentry = path->dentry;
2887 vfsmnt = path->mnt;
2888 mnt = real_mount(vfsmnt);
232d2d60 2889 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2890 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2891 struct dentry * parent;
2892
1da177e4 2893 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2894 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2895 /* Global root? */
48a066e7
AV
2896 if (mnt != parent) {
2897 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2898 mnt = parent;
232d2d60
WL
2899 vfsmnt = &mnt->mnt;
2900 continue;
2901 }
2902 /*
2903 * Filesystems needing to implement special "root names"
2904 * should do so with ->d_dname()
2905 */
2906 if (IS_ROOT(dentry) &&
2907 (dentry->d_name.len != 1 ||
2908 dentry->d_name.name[0] != '/')) {
2909 WARN(1, "Root dentry has weird name <%.*s>\n",
2910 (int) dentry->d_name.len,
2911 dentry->d_name.name);
2912 }
2913 if (!error)
2914 error = is_mounted(vfsmnt) ? 1 : 2;
2915 break;
1da177e4
LT
2916 }
2917 parent = dentry->d_parent;
2918 prefetch(parent);
232d2d60 2919 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2920 if (error)
2921 break;
2922
1da177e4
LT
2923 dentry = parent;
2924 }
48f5ec21
AV
2925 if (!(seq & 1))
2926 rcu_read_unlock();
2927 if (need_seqretry(&rename_lock, seq)) {
2928 seq = 1;
232d2d60 2929 goto restart;
48f5ec21
AV
2930 }
2931 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2932
2933 if (!(m_seq & 1))
2934 rcu_read_unlock();
48a066e7
AV
2935 if (need_seqretry(&mount_lock, m_seq)) {
2936 m_seq = 1;
2937 goto restart_mnt;
2938 }
2939 done_seqretry(&mount_lock, m_seq);
1da177e4 2940
232d2d60
WL
2941 if (error >= 0 && bptr == *buffer) {
2942 if (--blen < 0)
2943 error = -ENAMETOOLONG;
2944 else
2945 *--bptr = '/';
2946 }
2947 *buffer = bptr;
2948 *buflen = blen;
7ea600b5 2949 return error;
f2eb6575 2950}
be285c71 2951
f2eb6575
MS
2952/**
2953 * __d_path - return the path of a dentry
2954 * @path: the dentry/vfsmount to report
02125a82 2955 * @root: root vfsmnt/dentry
cd956a1c 2956 * @buf: buffer to return value in
f2eb6575
MS
2957 * @buflen: buffer length
2958 *
ffd1f4ed 2959 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2960 *
2961 * Returns a pointer into the buffer or an error code if the
2962 * path was too long.
2963 *
be148247 2964 * "buflen" should be positive.
f2eb6575 2965 *
02125a82 2966 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2967 */
02125a82
AV
2968char *__d_path(const struct path *path,
2969 const struct path *root,
f2eb6575
MS
2970 char *buf, int buflen)
2971{
2972 char *res = buf + buflen;
2973 int error;
2974
2975 prepend(&res, &buflen, "\0", 1);
f2eb6575 2976 error = prepend_path(path, root, &res, &buflen);
be148247 2977
02125a82
AV
2978 if (error < 0)
2979 return ERR_PTR(error);
2980 if (error > 0)
2981 return NULL;
2982 return res;
2983}
2984
2985char *d_absolute_path(const struct path *path,
2986 char *buf, int buflen)
2987{
2988 struct path root = {};
2989 char *res = buf + buflen;
2990 int error;
2991
2992 prepend(&res, &buflen, "\0", 1);
02125a82 2993 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
2994
2995 if (error > 1)
2996 error = -EINVAL;
2997 if (error < 0)
f2eb6575 2998 return ERR_PTR(error);
f2eb6575 2999 return res;
1da177e4
LT
3000}
3001
ffd1f4ed
MS
3002/*
3003 * same as __d_path but appends "(deleted)" for unlinked files.
3004 */
02125a82
AV
3005static int path_with_deleted(const struct path *path,
3006 const struct path *root,
3007 char **buf, int *buflen)
ffd1f4ed
MS
3008{
3009 prepend(buf, buflen, "\0", 1);
3010 if (d_unlinked(path->dentry)) {
3011 int error = prepend(buf, buflen, " (deleted)", 10);
3012 if (error)
3013 return error;
3014 }
3015
3016 return prepend_path(path, root, buf, buflen);
3017}
3018
8df9d1a4
MS
3019static int prepend_unreachable(char **buffer, int *buflen)
3020{
3021 return prepend(buffer, buflen, "(unreachable)", 13);
3022}
3023
68f0d9d9
LT
3024static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3025{
3026 unsigned seq;
3027
3028 do {
3029 seq = read_seqcount_begin(&fs->seq);
3030 *root = fs->root;
3031 } while (read_seqcount_retry(&fs->seq, seq));
3032}
3033
a03a8a70
JB
3034/**
3035 * d_path - return the path of a dentry
cf28b486 3036 * @path: path to report
a03a8a70
JB
3037 * @buf: buffer to return value in
3038 * @buflen: buffer length
3039 *
3040 * Convert a dentry into an ASCII path name. If the entry has been deleted
3041 * the string " (deleted)" is appended. Note that this is ambiguous.
3042 *
52afeefb
AV
3043 * Returns a pointer into the buffer or an error code if the path was
3044 * too long. Note: Callers should use the returned pointer, not the passed
3045 * in buffer, to use the name! The implementation often starts at an offset
3046 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3047 *
31f3e0b3 3048 * "buflen" should be positive.
a03a8a70 3049 */
20d4fdc1 3050char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3051{
ffd1f4ed 3052 char *res = buf + buflen;
6ac08c39 3053 struct path root;
ffd1f4ed 3054 int error;
1da177e4 3055
c23fbb6b
ED
3056 /*
3057 * We have various synthetic filesystems that never get mounted. On
3058 * these filesystems dentries are never used for lookup purposes, and
3059 * thus don't need to be hashed. They also don't need a name until a
3060 * user wants to identify the object in /proc/pid/fd/. The little hack
3061 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3062 *
3063 * Some pseudo inodes are mountable. When they are mounted
3064 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3065 * and instead have d_path return the mounted path.
c23fbb6b 3066 */
f48cfddc
EB
3067 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3068 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3069 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3070
68f0d9d9
LT
3071 rcu_read_lock();
3072 get_fs_root_rcu(current->fs, &root);
02125a82 3073 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3074 rcu_read_unlock();
3075
02125a82 3076 if (error < 0)
ffd1f4ed 3077 res = ERR_PTR(error);
1da177e4
LT
3078 return res;
3079}
ec4f8605 3080EXPORT_SYMBOL(d_path);
1da177e4 3081
c23fbb6b
ED
3082/*
3083 * Helper function for dentry_operations.d_dname() members
3084 */
3085char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3086 const char *fmt, ...)
3087{
3088 va_list args;
3089 char temp[64];
3090 int sz;
3091
3092 va_start(args, fmt);
3093 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3094 va_end(args);
3095
3096 if (sz > sizeof(temp) || sz > buflen)
3097 return ERR_PTR(-ENAMETOOLONG);
3098
3099 buffer += buflen - sz;
3100 return memcpy(buffer, temp, sz);
3101}
3102
118b2302
AV
3103char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3104{
3105 char *end = buffer + buflen;
3106 /* these dentries are never renamed, so d_lock is not needed */
3107 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3108 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3109 prepend(&end, &buflen, "/", 1))
3110 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3111 return end;
118b2302 3112}
31bbe16f 3113EXPORT_SYMBOL(simple_dname);
118b2302 3114
6092d048
RP
3115/*
3116 * Write full pathname from the root of the filesystem into the buffer.
3117 */
f6500801 3118static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3119{
f6500801 3120 struct dentry *dentry;
232d2d60
WL
3121 char *end, *retval;
3122 int len, seq = 0;
3123 int error = 0;
6092d048 3124
f6500801
AV
3125 if (buflen < 2)
3126 goto Elong;
3127
48f5ec21 3128 rcu_read_lock();
232d2d60 3129restart:
f6500801 3130 dentry = d;
232d2d60
WL
3131 end = buf + buflen;
3132 len = buflen;
3133 prepend(&end, &len, "\0", 1);
6092d048
RP
3134 /* Get '/' right */
3135 retval = end-1;
3136 *retval = '/';
232d2d60 3137 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3138 while (!IS_ROOT(dentry)) {
3139 struct dentry *parent = dentry->d_parent;
6092d048 3140
6092d048 3141 prefetch(parent);
232d2d60
WL
3142 error = prepend_name(&end, &len, &dentry->d_name);
3143 if (error)
3144 break;
6092d048
RP
3145
3146 retval = end;
3147 dentry = parent;
3148 }
48f5ec21
AV
3149 if (!(seq & 1))
3150 rcu_read_unlock();
3151 if (need_seqretry(&rename_lock, seq)) {
3152 seq = 1;
232d2d60 3153 goto restart;
48f5ec21
AV
3154 }
3155 done_seqretry(&rename_lock, seq);
232d2d60
WL
3156 if (error)
3157 goto Elong;
c103135c
AV
3158 return retval;
3159Elong:
3160 return ERR_PTR(-ENAMETOOLONG);
3161}
ec2447c2
NP
3162
3163char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3164{
232d2d60 3165 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3166}
3167EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3168
3169char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3170{
3171 char *p = NULL;
3172 char *retval;
3173
c103135c
AV
3174 if (d_unlinked(dentry)) {
3175 p = buf + buflen;
3176 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3177 goto Elong;
3178 buflen++;
3179 }
3180 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3181 if (!IS_ERR(retval) && p)
3182 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3183 return retval;
3184Elong:
6092d048
RP
3185 return ERR_PTR(-ENAMETOOLONG);
3186}
3187
8b19e341
LT
3188static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3189 struct path *pwd)
5762482f 3190{
8b19e341
LT
3191 unsigned seq;
3192
3193 do {
3194 seq = read_seqcount_begin(&fs->seq);
3195 *root = fs->root;
3196 *pwd = fs->pwd;
3197 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3198}
3199
1da177e4
LT
3200/*
3201 * NOTE! The user-level library version returns a
3202 * character pointer. The kernel system call just
3203 * returns the length of the buffer filled (which
3204 * includes the ending '\0' character), or a negative
3205 * error value. So libc would do something like
3206 *
3207 * char *getcwd(char * buf, size_t size)
3208 * {
3209 * int retval;
3210 *
3211 * retval = sys_getcwd(buf, size);
3212 * if (retval >= 0)
3213 * return buf;
3214 * errno = -retval;
3215 * return NULL;
3216 * }
3217 */
3cdad428 3218SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3219{
552ce544 3220 int error;
6ac08c39 3221 struct path pwd, root;
3272c544 3222 char *page = __getname();
1da177e4
LT
3223
3224 if (!page)
3225 return -ENOMEM;
3226
8b19e341
LT
3227 rcu_read_lock();
3228 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3229
552ce544 3230 error = -ENOENT;
f3da392e 3231 if (!d_unlinked(pwd.dentry)) {
552ce544 3232 unsigned long len;
3272c544
LT
3233 char *cwd = page + PATH_MAX;
3234 int buflen = PATH_MAX;
1da177e4 3235
8df9d1a4 3236 prepend(&cwd, &buflen, "\0", 1);
02125a82 3237 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3238 rcu_read_unlock();
552ce544 3239
02125a82 3240 if (error < 0)
552ce544
LT
3241 goto out;
3242
8df9d1a4 3243 /* Unreachable from current root */
02125a82 3244 if (error > 0) {
8df9d1a4
MS
3245 error = prepend_unreachable(&cwd, &buflen);
3246 if (error)
3247 goto out;
3248 }
3249
552ce544 3250 error = -ERANGE;
3272c544 3251 len = PATH_MAX + page - cwd;
552ce544
LT
3252 if (len <= size) {
3253 error = len;
3254 if (copy_to_user(buf, cwd, len))
3255 error = -EFAULT;
3256 }
949854d0 3257 } else {
ff812d72 3258 rcu_read_unlock();
949854d0 3259 }
1da177e4
LT
3260
3261out:
3272c544 3262 __putname(page);
1da177e4
LT
3263 return error;
3264}
3265
3266/*
3267 * Test whether new_dentry is a subdirectory of old_dentry.
3268 *
3269 * Trivially implemented using the dcache structure
3270 */
3271
3272/**
3273 * is_subdir - is new dentry a subdirectory of old_dentry
3274 * @new_dentry: new dentry
3275 * @old_dentry: old dentry
3276 *
3277 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3278 * Returns 0 otherwise.
3279 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3280 */
3281
e2761a11 3282int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3283{
3284 int result;
949854d0 3285 unsigned seq;
1da177e4 3286
e2761a11
OH
3287 if (new_dentry == old_dentry)
3288 return 1;
3289
e2761a11 3290 do {
1da177e4 3291 /* for restarting inner loop in case of seq retry */
1da177e4 3292 seq = read_seqbegin(&rename_lock);
949854d0
NP
3293 /*
3294 * Need rcu_readlock to protect against the d_parent trashing
3295 * due to d_move
3296 */
3297 rcu_read_lock();
e2761a11 3298 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3299 result = 1;
e2761a11
OH
3300 else
3301 result = 0;
949854d0 3302 rcu_read_unlock();
1da177e4 3303 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3304
3305 return result;
3306}
3307
db14fc3a 3308static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3309{
db14fc3a
MS
3310 struct dentry *root = data;
3311 if (dentry != root) {
3312 if (d_unhashed(dentry) || !dentry->d_inode)
3313 return D_WALK_SKIP;
1da177e4 3314
01ddc4ed
MS
3315 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3316 dentry->d_flags |= DCACHE_GENOCIDE;
3317 dentry->d_lockref.count--;
3318 }
1da177e4 3319 }
db14fc3a
MS
3320 return D_WALK_CONTINUE;
3321}
58db63d0 3322
db14fc3a
MS
3323void d_genocide(struct dentry *parent)
3324{
3325 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3326}
3327
60545d0d 3328void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3329{
60545d0d
AV
3330 inode_dec_link_count(inode);
3331 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3332 !hlist_unhashed(&dentry->d_alias) ||
3333 !d_unlinked(dentry));
3334 spin_lock(&dentry->d_parent->d_lock);
3335 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3336 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3337 (unsigned long long)inode->i_ino);
3338 spin_unlock(&dentry->d_lock);
3339 spin_unlock(&dentry->d_parent->d_lock);
3340 d_instantiate(dentry, inode);
1da177e4 3341}
60545d0d 3342EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3343
3344static __initdata unsigned long dhash_entries;
3345static int __init set_dhash_entries(char *str)
3346{
3347 if (!str)
3348 return 0;
3349 dhash_entries = simple_strtoul(str, &str, 0);
3350 return 1;
3351}
3352__setup("dhash_entries=", set_dhash_entries);
3353
3354static void __init dcache_init_early(void)
3355{
074b8517 3356 unsigned int loop;
1da177e4
LT
3357
3358 /* If hashes are distributed across NUMA nodes, defer
3359 * hash allocation until vmalloc space is available.
3360 */
3361 if (hashdist)
3362 return;
3363
3364 dentry_hashtable =
3365 alloc_large_system_hash("Dentry cache",
b07ad996 3366 sizeof(struct hlist_bl_head),
1da177e4
LT
3367 dhash_entries,
3368 13,
3369 HASH_EARLY,
3370 &d_hash_shift,
3371 &d_hash_mask,
31fe62b9 3372 0,
1da177e4
LT
3373 0);
3374
074b8517 3375 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3376 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3377}
3378
74bf17cf 3379static void __init dcache_init(void)
1da177e4 3380{
074b8517 3381 unsigned int loop;
1da177e4
LT
3382
3383 /*
3384 * A constructor could be added for stable state like the lists,
3385 * but it is probably not worth it because of the cache nature
3386 * of the dcache.
3387 */
0a31bd5f
CL
3388 dentry_cache = KMEM_CACHE(dentry,
3389 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3390
3391 /* Hash may have been set up in dcache_init_early */
3392 if (!hashdist)
3393 return;
3394
3395 dentry_hashtable =
3396 alloc_large_system_hash("Dentry cache",
b07ad996 3397 sizeof(struct hlist_bl_head),
1da177e4
LT
3398 dhash_entries,
3399 13,
3400 0,
3401 &d_hash_shift,
3402 &d_hash_mask,
31fe62b9 3403 0,
1da177e4
LT
3404 0);
3405
074b8517 3406 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3407 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3408}
3409
3410/* SLAB cache for __getname() consumers */
e18b890b 3411struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3412EXPORT_SYMBOL(names_cachep);
1da177e4 3413
1da177e4
LT
3414EXPORT_SYMBOL(d_genocide);
3415
1da177e4
LT
3416void __init vfs_caches_init_early(void)
3417{
3418 dcache_init_early();
3419 inode_init_early();
3420}
3421
3422void __init vfs_caches_init(unsigned long mempages)
3423{
3424 unsigned long reserve;
3425
3426 /* Base hash sizes on available memory, with a reserve equal to
3427 150% of current kernel size */
3428
3429 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3430 mempages -= reserve;
3431
3432 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3433 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3434
74bf17cf
DC
3435 dcache_init();
3436 inode_init();
1da177e4 3437 files_init(mempages);
74bf17cf 3438 mnt_init();
1da177e4
LT
3439 bdev_cache_init();
3440 chrdev_init();
3441}