]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/namespace.c
mnt: Fix the error check in __detach_mounts
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
87b95ce0
AV
193static void drop_mountpoint(struct fs_pin *p)
194{
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199}
200
b105e270 201static struct mount *alloc_vfsmnt(const char *name)
1da177e4 202{
c63181e6
AV
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
73cd49ec
MS
205 int err;
206
c63181e6 207 err = mnt_alloc_id(mnt);
88b38782
LZ
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
fcc139ae 212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 213 if (!mnt->mnt_devname)
88b38782 214 goto out_free_id;
73cd49ec
MS
215 }
216
b3e19d92 217#ifdef CONFIG_SMP
c63181e6
AV
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
b3e19d92
NP
220 goto out_free_devname;
221
c63181e6 222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 223#else
c63181e6
AV
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
b3e19d92
NP
226#endif
227
38129a13 228 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
237#ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 239#endif
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73 244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73 290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73 304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73 312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
1e75529e 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e 394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e 413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e 420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e 423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e 429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440int mnt_want_write_file(struct file *file)
441{
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449}
96029c4e 450EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
8366025e 452/**
eb04c282 453 * __mnt_drop_write - give up write access to a mount
8366025e
DH
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
eb04c282 458 * __mnt_want_write() call above.
8366025e 459 */
eb04c282 460void __mnt_drop_write(struct vfsmount *mnt)
8366025e 461{
d3ef3d73 462 preempt_disable();
83adc753 463 mnt_dec_writers(real_mount(mnt));
d3ef3d73 464 preempt_enable();
8366025e 465}
eb04c282
JK
466
467/**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475void mnt_drop_write(struct vfsmount *mnt)
476{
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479}
8366025e
DH
480EXPORT_SYMBOL_GPL(mnt_drop_write);
481
eb04c282
JK
482void __mnt_drop_write_file(struct file *file)
483{
484 __mnt_drop_write(file->f_path.mnt);
485}
486
2a79f17e
AV
487void mnt_drop_write_file(struct file *file)
488{
489 mnt_drop_write(file->f_path.mnt);
490}
491EXPORT_SYMBOL(mnt_drop_write_file);
492
83adc753 493static int mnt_make_readonly(struct mount *mnt)
8366025e 494{
3d733633
DH
495 int ret = 0;
496
719ea2fb 497 lock_mount_hash();
83adc753 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 499 /*
d3ef3d73 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
3d733633 502 */
d3ef3d73 503 smp_mb();
504
3d733633 505 /*
d3ef3d73 506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
3d733633 520 */
c6653a83 521 if (mnt_get_writers(mnt) > 0)
d3ef3d73 522 ret = -EBUSY;
523 else
83adc753 524 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
83adc753 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 531 unlock_mount_hash();
3d733633 532 return ret;
8366025e 533}
8366025e 534
83adc753 535static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 536{
719ea2fb 537 lock_mount_hash();
83adc753 538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 539 unlock_mount_hash();
2e4b7fcd
DH
540}
541
4ed5e82f
MS
542int sb_prepare_remount_readonly(struct super_block *sb)
543{
544 struct mount *mnt;
545 int err = 0;
546
8e8b8796
MS
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
719ea2fb 551 lock_mount_hash();
4ed5e82f
MS
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
8e8b8796
MS
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
4ed5e82f
MS
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
719ea2fb 573 unlock_mount_hash();
4ed5e82f
MS
574
575 return err;
576}
577
b105e270 578static void free_vfsmnt(struct mount *mnt)
1da177e4 579{
fcc139ae 580 kfree_const(mnt->mnt_devname);
d3ef3d73 581#ifdef CONFIG_SMP
68e8a9fe 582 free_percpu(mnt->mnt_pcp);
d3ef3d73 583#endif
b105e270 584 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
585}
586
8ffcb32e
DH
587static void delayed_free_vfsmnt(struct rcu_head *head)
588{
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590}
591
48a066e7
AV
592/* call under rcu_read_lock */
593bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594{
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return false;
598 if (bastard == NULL)
599 return true;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return true;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return false;
607 }
608 rcu_read_unlock();
609 mntput(bastard);
610 rcu_read_lock();
611 return false;
612}
613
1da177e4 614/*
474279dc 615 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 616 * call under rcu_read_lock()
1da177e4 617 */
474279dc 618struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 619{
38129a13 620 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
621 struct mount *p;
622
38129a13 623 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625 return p;
626 return NULL;
627}
628
629/*
630 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 631 * mount_lock must be held.
474279dc
AV
632 */
633struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
634{
411a938b
EB
635 struct mount *p, *res = NULL;
636 p = __lookup_mnt(mnt, dentry);
38129a13
AV
637 if (!p)
638 goto out;
411a938b
EB
639 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
640 res = p;
38129a13 641 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
642 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
643 break;
411a938b
EB
644 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
645 res = p;
1d6a32ac 646 }
38129a13 647out:
1d6a32ac 648 return res;
1da177e4
LT
649}
650
a05964f3 651/*
f015f126
DH
652 * lookup_mnt - Return the first child mount mounted at path
653 *
654 * "First" means first mounted chronologically. If you create the
655 * following mounts:
656 *
657 * mount /dev/sda1 /mnt
658 * mount /dev/sda2 /mnt
659 * mount /dev/sda3 /mnt
660 *
661 * Then lookup_mnt() on the base /mnt dentry in the root mount will
662 * return successively the root dentry and vfsmount of /dev/sda1, then
663 * /dev/sda2, then /dev/sda3, then NULL.
664 *
665 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 666 */
1c755af4 667struct vfsmount *lookup_mnt(struct path *path)
a05964f3 668{
c7105365 669 struct mount *child_mnt;
48a066e7
AV
670 struct vfsmount *m;
671 unsigned seq;
99b7db7b 672
48a066e7
AV
673 rcu_read_lock();
674 do {
675 seq = read_seqbegin(&mount_lock);
676 child_mnt = __lookup_mnt(path->mnt, path->dentry);
677 m = child_mnt ? &child_mnt->mnt : NULL;
678 } while (!legitimize_mnt(m, seq));
679 rcu_read_unlock();
680 return m;
a05964f3
RP
681}
682
7af1364f
EB
683/*
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
686 *
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
691 * is a mountpoint.
692 *
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
696 * parent mount.
697 */
698bool __is_local_mountpoint(struct dentry *dentry)
699{
700 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 struct mount *mnt;
702 bool is_covered = false;
703
704 if (!d_mountpoint(dentry))
705 goto out;
706
707 down_read(&namespace_sem);
708 list_for_each_entry(mnt, &ns->list, mnt_list) {
709 is_covered = (mnt->mnt_mountpoint == dentry);
710 if (is_covered)
711 break;
712 }
713 up_read(&namespace_sem);
714out:
715 return is_covered;
716}
717
e2dfa935 718static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 719{
0818bf27 720 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
721 struct mountpoint *mp;
722
0818bf27 723 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
724 if (mp->m_dentry == dentry) {
725 /* might be worth a WARN_ON() */
726 if (d_unlinked(dentry))
727 return ERR_PTR(-ENOENT);
728 mp->m_count++;
729 return mp;
730 }
731 }
e2dfa935
EB
732 return NULL;
733}
734
735static struct mountpoint *new_mountpoint(struct dentry *dentry)
736{
737 struct hlist_head *chain = mp_hash(dentry);
738 struct mountpoint *mp;
739 int ret;
84d17192
AV
740
741 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
742 if (!mp)
743 return ERR_PTR(-ENOMEM);
744
eed81007
MS
745 ret = d_set_mounted(dentry);
746 if (ret) {
84d17192 747 kfree(mp);
eed81007 748 return ERR_PTR(ret);
84d17192 749 }
eed81007 750
84d17192
AV
751 mp->m_dentry = dentry;
752 mp->m_count = 1;
0818bf27 753 hlist_add_head(&mp->m_hash, chain);
0a5eb7c8 754 INIT_HLIST_HEAD(&mp->m_list);
84d17192
AV
755 return mp;
756}
757
758static void put_mountpoint(struct mountpoint *mp)
759{
760 if (!--mp->m_count) {
761 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 762 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
763 spin_lock(&dentry->d_lock);
764 dentry->d_flags &= ~DCACHE_MOUNTED;
765 spin_unlock(&dentry->d_lock);
0818bf27 766 hlist_del(&mp->m_hash);
84d17192
AV
767 kfree(mp);
768 }
769}
770
143c8c91 771static inline int check_mnt(struct mount *mnt)
1da177e4 772{
6b3286ed 773 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
774}
775
99b7db7b
NP
776/*
777 * vfsmount lock must be held for write
778 */
6b3286ed 779static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
780{
781 if (ns) {
782 ns->event = ++event;
783 wake_up_interruptible(&ns->poll);
784 }
785}
786
99b7db7b
NP
787/*
788 * vfsmount lock must be held for write
789 */
6b3286ed 790static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
791{
792 if (ns && ns->event != event) {
793 ns->event = event;
794 wake_up_interruptible(&ns->poll);
795 }
796}
797
99b7db7b
NP
798/*
799 * vfsmount lock must be held for write
800 */
7bdb11de 801static void unhash_mnt(struct mount *mnt)
419148da 802{
0714a533 803 mnt->mnt_parent = mnt;
a73324da 804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 805 list_del_init(&mnt->mnt_child);
38129a13 806 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 807 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
808 put_mountpoint(mnt->mnt_mp);
809 mnt->mnt_mp = NULL;
1da177e4
LT
810}
811
7bdb11de
EB
812/*
813 * vfsmount lock must be held for write
814 */
815static void detach_mnt(struct mount *mnt, struct path *old_path)
816{
817 old_path->dentry = mnt->mnt_mountpoint;
818 old_path->mnt = &mnt->mnt_parent->mnt;
819 unhash_mnt(mnt);
820}
821
6a46c573
EB
822/*
823 * vfsmount lock must be held for write
824 */
825static void umount_mnt(struct mount *mnt)
826{
827 /* old mountpoint will be dropped when we can do that */
828 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
829 unhash_mnt(mnt);
830}
831
99b7db7b
NP
832/*
833 * vfsmount lock must be held for write
834 */
84d17192
AV
835void mnt_set_mountpoint(struct mount *mnt,
836 struct mountpoint *mp,
44d964d6 837 struct mount *child_mnt)
b90fa9ae 838{
84d17192 839 mp->m_count++;
3a2393d7 840 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 841 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 842 child_mnt->mnt_parent = mnt;
84d17192 843 child_mnt->mnt_mp = mp;
0a5eb7c8 844 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
845}
846
99b7db7b
NP
847/*
848 * vfsmount lock must be held for write
849 */
84d17192
AV
850static void attach_mnt(struct mount *mnt,
851 struct mount *parent,
852 struct mountpoint *mp)
1da177e4 853{
84d17192 854 mnt_set_mountpoint(parent, mp, mnt);
38129a13 855 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 856 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
857}
858
12a5b529
AV
859static void attach_shadowed(struct mount *mnt,
860 struct mount *parent,
861 struct mount *shadows)
862{
863 if (shadows) {
f6f99332 864 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
865 list_add(&mnt->mnt_child, &shadows->mnt_child);
866 } else {
867 hlist_add_head_rcu(&mnt->mnt_hash,
868 m_hash(&parent->mnt, mnt->mnt_mountpoint));
869 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
870 }
871}
872
b90fa9ae 873/*
99b7db7b 874 * vfsmount lock must be held for write
b90fa9ae 875 */
1d6a32ac 876static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 877{
0714a533 878 struct mount *parent = mnt->mnt_parent;
83adc753 879 struct mount *m;
b90fa9ae 880 LIST_HEAD(head);
143c8c91 881 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 882
0714a533 883 BUG_ON(parent == mnt);
b90fa9ae 884
1a4eeaf2 885 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 886 list_for_each_entry(m, &head, mnt_list)
143c8c91 887 m->mnt_ns = n;
f03c6599 888
b90fa9ae
RP
889 list_splice(&head, n->list.prev);
890
12a5b529 891 attach_shadowed(mnt, parent, shadows);
6b3286ed 892 touch_mnt_namespace(n);
1da177e4
LT
893}
894
909b0a88 895static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 896{
6b41d536
AV
897 struct list_head *next = p->mnt_mounts.next;
898 if (next == &p->mnt_mounts) {
1da177e4 899 while (1) {
909b0a88 900 if (p == root)
1da177e4 901 return NULL;
6b41d536
AV
902 next = p->mnt_child.next;
903 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 904 break;
0714a533 905 p = p->mnt_parent;
1da177e4
LT
906 }
907 }
6b41d536 908 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
909}
910
315fc83e 911static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 912{
6b41d536
AV
913 struct list_head *prev = p->mnt_mounts.prev;
914 while (prev != &p->mnt_mounts) {
915 p = list_entry(prev, struct mount, mnt_child);
916 prev = p->mnt_mounts.prev;
9676f0c6
RP
917 }
918 return p;
919}
920
9d412a43
AV
921struct vfsmount *
922vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
923{
b105e270 924 struct mount *mnt;
9d412a43
AV
925 struct dentry *root;
926
927 if (!type)
928 return ERR_PTR(-ENODEV);
929
930 mnt = alloc_vfsmnt(name);
931 if (!mnt)
932 return ERR_PTR(-ENOMEM);
933
934 if (flags & MS_KERNMOUNT)
b105e270 935 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
936
937 root = mount_fs(type, flags, name, data);
938 if (IS_ERR(root)) {
8ffcb32e 939 mnt_free_id(mnt);
9d412a43
AV
940 free_vfsmnt(mnt);
941 return ERR_CAST(root);
942 }
943
b105e270
AV
944 mnt->mnt.mnt_root = root;
945 mnt->mnt.mnt_sb = root->d_sb;
a73324da 946 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 947 mnt->mnt_parent = mnt;
719ea2fb 948 lock_mount_hash();
39f7c4db 949 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 950 unlock_mount_hash();
b105e270 951 return &mnt->mnt;
9d412a43
AV
952}
953EXPORT_SYMBOL_GPL(vfs_kern_mount);
954
87129cc0 955static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 956 int flag)
1da177e4 957{
87129cc0 958 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
959 struct mount *mnt;
960 int err;
1da177e4 961
be34d1a3
DH
962 mnt = alloc_vfsmnt(old->mnt_devname);
963 if (!mnt)
964 return ERR_PTR(-ENOMEM);
719f5d7f 965
7a472ef4 966 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
967 mnt->mnt_group_id = 0; /* not a peer of original */
968 else
969 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 970
be34d1a3
DH
971 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
972 err = mnt_alloc_group_id(mnt);
973 if (err)
974 goto out_free;
1da177e4 975 }
be34d1a3 976
f2ebb3a9 977 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 978 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
979 if (flag & CL_UNPRIVILEGED) {
980 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
981
982 if (mnt->mnt.mnt_flags & MNT_READONLY)
983 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
984
985 if (mnt->mnt.mnt_flags & MNT_NODEV)
986 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
987
988 if (mnt->mnt.mnt_flags & MNT_NOSUID)
989 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
990
991 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
992 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
993 }
132c94e3 994
5ff9d8a6 995 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
996 if ((flag & CL_UNPRIVILEGED) &&
997 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
998 mnt->mnt.mnt_flags |= MNT_LOCKED;
999
be34d1a3
DH
1000 atomic_inc(&sb->s_active);
1001 mnt->mnt.mnt_sb = sb;
1002 mnt->mnt.mnt_root = dget(root);
1003 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1004 mnt->mnt_parent = mnt;
719ea2fb 1005 lock_mount_hash();
be34d1a3 1006 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1007 unlock_mount_hash();
be34d1a3 1008
7a472ef4
EB
1009 if ((flag & CL_SLAVE) ||
1010 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1011 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1012 mnt->mnt_master = old;
1013 CLEAR_MNT_SHARED(mnt);
1014 } else if (!(flag & CL_PRIVATE)) {
1015 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1016 list_add(&mnt->mnt_share, &old->mnt_share);
1017 if (IS_MNT_SLAVE(old))
1018 list_add(&mnt->mnt_slave, &old->mnt_slave);
1019 mnt->mnt_master = old->mnt_master;
1020 }
1021 if (flag & CL_MAKE_SHARED)
1022 set_mnt_shared(mnt);
1023
1024 /* stick the duplicate mount on the same expiry list
1025 * as the original if that was on one */
1026 if (flag & CL_EXPIRE) {
1027 if (!list_empty(&old->mnt_expire))
1028 list_add(&mnt->mnt_expire, &old->mnt_expire);
1029 }
1030
cb338d06 1031 return mnt;
719f5d7f
MS
1032
1033 out_free:
8ffcb32e 1034 mnt_free_id(mnt);
719f5d7f 1035 free_vfsmnt(mnt);
be34d1a3 1036 return ERR_PTR(err);
1da177e4
LT
1037}
1038
9ea459e1
AV
1039static void cleanup_mnt(struct mount *mnt)
1040{
1041 /*
1042 * This probably indicates that somebody messed
1043 * up a mnt_want/drop_write() pair. If this
1044 * happens, the filesystem was probably unable
1045 * to make r/w->r/o transitions.
1046 */
1047 /*
1048 * The locking used to deal with mnt_count decrement provides barriers,
1049 * so mnt_get_writers() below is safe.
1050 */
1051 WARN_ON(mnt_get_writers(mnt));
1052 if (unlikely(mnt->mnt_pins.first))
1053 mnt_pin_kill(mnt);
1054 fsnotify_vfsmount_delete(&mnt->mnt);
1055 dput(mnt->mnt.mnt_root);
1056 deactivate_super(mnt->mnt.mnt_sb);
1057 mnt_free_id(mnt);
1058 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1059}
1060
1061static void __cleanup_mnt(struct rcu_head *head)
1062{
1063 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1064}
1065
1066static LLIST_HEAD(delayed_mntput_list);
1067static void delayed_mntput(struct work_struct *unused)
1068{
1069 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1070 struct llist_node *next;
1071
1072 for (; node; node = next) {
1073 next = llist_next(node);
1074 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1075 }
1076}
1077static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1078
900148dc 1079static void mntput_no_expire(struct mount *mnt)
b3e19d92 1080{
48a066e7
AV
1081 rcu_read_lock();
1082 mnt_add_count(mnt, -1);
1083 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1084 rcu_read_unlock();
f03c6599 1085 return;
b3e19d92 1086 }
719ea2fb 1087 lock_mount_hash();
b3e19d92 1088 if (mnt_get_count(mnt)) {
48a066e7 1089 rcu_read_unlock();
719ea2fb 1090 unlock_mount_hash();
99b7db7b
NP
1091 return;
1092 }
48a066e7
AV
1093 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1094 rcu_read_unlock();
1095 unlock_mount_hash();
1096 return;
1097 }
1098 mnt->mnt.mnt_flags |= MNT_DOOMED;
1099 rcu_read_unlock();
962830df 1100
39f7c4db 1101 list_del(&mnt->mnt_instance);
ce07d891
EB
1102
1103 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1104 struct mount *p, *tmp;
1105 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1106 umount_mnt(p);
1107 }
1108 }
719ea2fb 1109 unlock_mount_hash();
649a795a 1110
9ea459e1
AV
1111 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1112 struct task_struct *task = current;
1113 if (likely(!(task->flags & PF_KTHREAD))) {
1114 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1115 if (!task_work_add(task, &mnt->mnt_rcu, true))
1116 return;
1117 }
1118 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1119 schedule_delayed_work(&delayed_mntput_work, 1);
1120 return;
1121 }
1122 cleanup_mnt(mnt);
b3e19d92 1123}
b3e19d92
NP
1124
1125void mntput(struct vfsmount *mnt)
1126{
1127 if (mnt) {
863d684f 1128 struct mount *m = real_mount(mnt);
b3e19d92 1129 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1130 if (unlikely(m->mnt_expiry_mark))
1131 m->mnt_expiry_mark = 0;
1132 mntput_no_expire(m);
b3e19d92
NP
1133 }
1134}
1135EXPORT_SYMBOL(mntput);
1136
1137struct vfsmount *mntget(struct vfsmount *mnt)
1138{
1139 if (mnt)
83adc753 1140 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1141 return mnt;
1142}
1143EXPORT_SYMBOL(mntget);
1144
3064c356 1145struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1146{
3064c356
AV
1147 struct mount *p;
1148 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1149 if (IS_ERR(p))
1150 return ERR_CAST(p);
1151 p->mnt.mnt_flags |= MNT_INTERNAL;
1152 return &p->mnt;
7b7b1ace 1153}
1da177e4 1154
b3b304a2
MS
1155static inline void mangle(struct seq_file *m, const char *s)
1156{
1157 seq_escape(m, s, " \t\n\\");
1158}
1159
1160/*
1161 * Simple .show_options callback for filesystems which don't want to
1162 * implement more complex mount option showing.
1163 *
1164 * See also save_mount_options().
1165 */
34c80b1d 1166int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1167{
2a32cebd
AV
1168 const char *options;
1169
1170 rcu_read_lock();
34c80b1d 1171 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1172
1173 if (options != NULL && options[0]) {
1174 seq_putc(m, ',');
1175 mangle(m, options);
1176 }
2a32cebd 1177 rcu_read_unlock();
b3b304a2
MS
1178
1179 return 0;
1180}
1181EXPORT_SYMBOL(generic_show_options);
1182
1183/*
1184 * If filesystem uses generic_show_options(), this function should be
1185 * called from the fill_super() callback.
1186 *
1187 * The .remount_fs callback usually needs to be handled in a special
1188 * way, to make sure, that previous options are not overwritten if the
1189 * remount fails.
1190 *
1191 * Also note, that if the filesystem's .remount_fs function doesn't
1192 * reset all options to their default value, but changes only newly
1193 * given options, then the displayed options will not reflect reality
1194 * any more.
1195 */
1196void save_mount_options(struct super_block *sb, char *options)
1197{
2a32cebd
AV
1198 BUG_ON(sb->s_options);
1199 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1200}
1201EXPORT_SYMBOL(save_mount_options);
1202
2a32cebd
AV
1203void replace_mount_options(struct super_block *sb, char *options)
1204{
1205 char *old = sb->s_options;
1206 rcu_assign_pointer(sb->s_options, options);
1207 if (old) {
1208 synchronize_rcu();
1209 kfree(old);
1210 }
1211}
1212EXPORT_SYMBOL(replace_mount_options);
1213
a1a2c409 1214#ifdef CONFIG_PROC_FS
0226f492 1215/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1216static void *m_start(struct seq_file *m, loff_t *pos)
1217{
6ce6e24e 1218 struct proc_mounts *p = proc_mounts(m);
1da177e4 1219
390c6843 1220 down_read(&namespace_sem);
c7999c36
AV
1221 if (p->cached_event == p->ns->event) {
1222 void *v = p->cached_mount;
1223 if (*pos == p->cached_index)
1224 return v;
1225 if (*pos == p->cached_index + 1) {
1226 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1227 return p->cached_mount = v;
1228 }
1229 }
1230
1231 p->cached_event = p->ns->event;
1232 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1233 p->cached_index = *pos;
1234 return p->cached_mount;
1da177e4
LT
1235}
1236
1237static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1238{
6ce6e24e 1239 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1240
c7999c36
AV
1241 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1242 p->cached_index = *pos;
1243 return p->cached_mount;
1da177e4
LT
1244}
1245
1246static void m_stop(struct seq_file *m, void *v)
1247{
390c6843 1248 up_read(&namespace_sem);
1da177e4
LT
1249}
1250
0226f492 1251static int m_show(struct seq_file *m, void *v)
2d4d4864 1252{
6ce6e24e 1253 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1254 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1255 return p->show(m, &r->mnt);
1da177e4
LT
1256}
1257
a1a2c409 1258const struct seq_operations mounts_op = {
1da177e4
LT
1259 .start = m_start,
1260 .next = m_next,
1261 .stop = m_stop,
0226f492 1262 .show = m_show,
b4629fe2 1263};
a1a2c409 1264#endif /* CONFIG_PROC_FS */
b4629fe2 1265
1da177e4
LT
1266/**
1267 * may_umount_tree - check if a mount tree is busy
1268 * @mnt: root of mount tree
1269 *
1270 * This is called to check if a tree of mounts has any
1271 * open files, pwds, chroots or sub mounts that are
1272 * busy.
1273 */
909b0a88 1274int may_umount_tree(struct vfsmount *m)
1da177e4 1275{
909b0a88 1276 struct mount *mnt = real_mount(m);
36341f64
RP
1277 int actual_refs = 0;
1278 int minimum_refs = 0;
315fc83e 1279 struct mount *p;
909b0a88 1280 BUG_ON(!m);
1da177e4 1281
b3e19d92 1282 /* write lock needed for mnt_get_count */
719ea2fb 1283 lock_mount_hash();
909b0a88 1284 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1285 actual_refs += mnt_get_count(p);
1da177e4 1286 minimum_refs += 2;
1da177e4 1287 }
719ea2fb 1288 unlock_mount_hash();
1da177e4
LT
1289
1290 if (actual_refs > minimum_refs)
e3474a8e 1291 return 0;
1da177e4 1292
e3474a8e 1293 return 1;
1da177e4
LT
1294}
1295
1296EXPORT_SYMBOL(may_umount_tree);
1297
1298/**
1299 * may_umount - check if a mount point is busy
1300 * @mnt: root of mount
1301 *
1302 * This is called to check if a mount point has any
1303 * open files, pwds, chroots or sub mounts. If the
1304 * mount has sub mounts this will return busy
1305 * regardless of whether the sub mounts are busy.
1306 *
1307 * Doesn't take quota and stuff into account. IOW, in some cases it will
1308 * give false negatives. The main reason why it's here is that we need
1309 * a non-destructive way to look for easily umountable filesystems.
1310 */
1311int may_umount(struct vfsmount *mnt)
1312{
e3474a8e 1313 int ret = 1;
8ad08d8a 1314 down_read(&namespace_sem);
719ea2fb 1315 lock_mount_hash();
1ab59738 1316 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1317 ret = 0;
719ea2fb 1318 unlock_mount_hash();
8ad08d8a 1319 up_read(&namespace_sem);
a05964f3 1320 return ret;
1da177e4
LT
1321}
1322
1323EXPORT_SYMBOL(may_umount);
1324
38129a13 1325static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1326
97216be0 1327static void namespace_unlock(void)
70fbcdf4 1328{
a3b3c562 1329 struct hlist_head head;
97216be0 1330
a3b3c562 1331 hlist_move_list(&unmounted, &head);
97216be0 1332
97216be0
AV
1333 up_write(&namespace_sem);
1334
a3b3c562
EB
1335 if (likely(hlist_empty(&head)))
1336 return;
1337
48a066e7
AV
1338 synchronize_rcu();
1339
87b95ce0 1340 group_pin_kill(&head);
70fbcdf4
RP
1341}
1342
97216be0 1343static inline void namespace_lock(void)
e3197d83 1344{
97216be0 1345 down_write(&namespace_sem);
e3197d83
AV
1346}
1347
e819f152
EB
1348enum umount_tree_flags {
1349 UMOUNT_SYNC = 1,
1350 UMOUNT_PROPAGATE = 2,
1351};
99b7db7b 1352/*
48a066e7 1353 * mount_lock must be held
99b7db7b
NP
1354 * namespace_sem must be held for write
1355 */
e819f152 1356static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1357{
c003b26f 1358 LIST_HEAD(tmp_list);
315fc83e 1359 struct mount *p;
1da177e4 1360
5d88457e
EB
1361 if (how & UMOUNT_PROPAGATE)
1362 propagate_mount_unlock(mnt);
1363
c003b26f 1364 /* Gather the mounts to umount */
590ce4bc
EB
1365 for (p = mnt; p; p = next_mnt(p, mnt)) {
1366 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1367 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1368 }
1da177e4 1369
411a938b 1370 /* Hide the mounts from mnt_mounts */
c003b26f 1371 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1372 list_del_init(&p->mnt_child);
c003b26f 1373 }
88b368f2 1374
c003b26f 1375 /* Add propogated mounts to the tmp_list */
e819f152 1376 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1377 propagate_umount(&tmp_list);
a05964f3 1378
c003b26f 1379 while (!list_empty(&tmp_list)) {
ce07d891 1380 bool disconnect;
c003b26f 1381 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1382 list_del_init(&p->mnt_expire);
1a4eeaf2 1383 list_del_init(&p->mnt_list);
143c8c91
AV
1384 __touch_mnt_namespace(p->mnt_ns);
1385 p->mnt_ns = NULL;
e819f152 1386 if (how & UMOUNT_SYNC)
48a066e7 1387 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1388
ce07d891
EB
1389 disconnect = !IS_MNT_LOCKED_AND_LAZY(p);
1390
1391 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1392 disconnect ? &unmounted : NULL);
676da58d 1393 if (mnt_has_parent(p)) {
81b6b061 1394 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1395 if (!disconnect) {
1396 /* Don't forget about p */
1397 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1398 } else {
1399 umount_mnt(p);
1400 }
7c4b93d8 1401 }
0f0afb1d 1402 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1403 }
1404}
1405
b54b9be7 1406static void shrink_submounts(struct mount *mnt);
c35038be 1407
1ab59738 1408static int do_umount(struct mount *mnt, int flags)
1da177e4 1409{
1ab59738 1410 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1411 int retval;
1412
1ab59738 1413 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1414 if (retval)
1415 return retval;
1416
1417 /*
1418 * Allow userspace to request a mountpoint be expired rather than
1419 * unmounting unconditionally. Unmount only happens if:
1420 * (1) the mark is already set (the mark is cleared by mntput())
1421 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1422 */
1423 if (flags & MNT_EXPIRE) {
1ab59738 1424 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1425 flags & (MNT_FORCE | MNT_DETACH))
1426 return -EINVAL;
1427
b3e19d92
NP
1428 /*
1429 * probably don't strictly need the lock here if we examined
1430 * all race cases, but it's a slowpath.
1431 */
719ea2fb 1432 lock_mount_hash();
83adc753 1433 if (mnt_get_count(mnt) != 2) {
719ea2fb 1434 unlock_mount_hash();
1da177e4 1435 return -EBUSY;
b3e19d92 1436 }
719ea2fb 1437 unlock_mount_hash();
1da177e4 1438
863d684f 1439 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1440 return -EAGAIN;
1441 }
1442
1443 /*
1444 * If we may have to abort operations to get out of this
1445 * mount, and they will themselves hold resources we must
1446 * allow the fs to do things. In the Unix tradition of
1447 * 'Gee thats tricky lets do it in userspace' the umount_begin
1448 * might fail to complete on the first run through as other tasks
1449 * must return, and the like. Thats for the mount program to worry
1450 * about for the moment.
1451 */
1452
42faad99 1453 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1454 sb->s_op->umount_begin(sb);
42faad99 1455 }
1da177e4
LT
1456
1457 /*
1458 * No sense to grab the lock for this test, but test itself looks
1459 * somewhat bogus. Suggestions for better replacement?
1460 * Ho-hum... In principle, we might treat that as umount + switch
1461 * to rootfs. GC would eventually take care of the old vfsmount.
1462 * Actually it makes sense, especially if rootfs would contain a
1463 * /reboot - static binary that would close all descriptors and
1464 * call reboot(9). Then init(8) could umount root and exec /reboot.
1465 */
1ab59738 1466 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1467 /*
1468 * Special case for "unmounting" root ...
1469 * we just try to remount it readonly.
1470 */
a1480dcc
AL
1471 if (!capable(CAP_SYS_ADMIN))
1472 return -EPERM;
1da177e4 1473 down_write(&sb->s_umount);
4aa98cf7 1474 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1475 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1476 up_write(&sb->s_umount);
1477 return retval;
1478 }
1479
97216be0 1480 namespace_lock();
719ea2fb 1481 lock_mount_hash();
5addc5dd 1482 event++;
1da177e4 1483
48a066e7 1484 if (flags & MNT_DETACH) {
1a4eeaf2 1485 if (!list_empty(&mnt->mnt_list))
e819f152 1486 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1487 retval = 0;
48a066e7
AV
1488 } else {
1489 shrink_submounts(mnt);
1490 retval = -EBUSY;
1491 if (!propagate_mount_busy(mnt, 2)) {
1492 if (!list_empty(&mnt->mnt_list))
e819f152 1493 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1494 retval = 0;
1495 }
1da177e4 1496 }
719ea2fb 1497 unlock_mount_hash();
e3197d83 1498 namespace_unlock();
1da177e4
LT
1499 return retval;
1500}
1501
80b5dce8
EB
1502/*
1503 * __detach_mounts - lazily unmount all mounts on the specified dentry
1504 *
1505 * During unlink, rmdir, and d_drop it is possible to loose the path
1506 * to an existing mountpoint, and wind up leaking the mount.
1507 * detach_mounts allows lazily unmounting those mounts instead of
1508 * leaking them.
1509 *
1510 * The caller may hold dentry->d_inode->i_mutex.
1511 */
1512void __detach_mounts(struct dentry *dentry)
1513{
1514 struct mountpoint *mp;
1515 struct mount *mnt;
1516
1517 namespace_lock();
1518 mp = lookup_mountpoint(dentry);
f53e5797 1519 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1520 goto out_unlock;
1521
1522 lock_mount_hash();
1523 while (!hlist_empty(&mp->m_list)) {
1524 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891
EB
1525 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1526 struct mount *p, *tmp;
1527 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1528 hlist_add_head(&p->mnt_umount.s_list, &unmounted);
1529 umount_mnt(p);
1530 }
1531 }
1532 else umount_tree(mnt, 0);
80b5dce8
EB
1533 }
1534 unlock_mount_hash();
1535 put_mountpoint(mp);
1536out_unlock:
1537 namespace_unlock();
1538}
1539
9b40bc90
AV
1540/*
1541 * Is the caller allowed to modify his namespace?
1542 */
1543static inline bool may_mount(void)
1544{
1545 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1546}
1547
1da177e4
LT
1548/*
1549 * Now umount can handle mount points as well as block devices.
1550 * This is important for filesystems which use unnamed block devices.
1551 *
1552 * We now support a flag for forced unmount like the other 'big iron'
1553 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1554 */
1555
bdc480e3 1556SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1557{
2d8f3038 1558 struct path path;
900148dc 1559 struct mount *mnt;
1da177e4 1560 int retval;
db1f05bb 1561 int lookup_flags = 0;
1da177e4 1562
db1f05bb
MS
1563 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1564 return -EINVAL;
1565
9b40bc90
AV
1566 if (!may_mount())
1567 return -EPERM;
1568
db1f05bb
MS
1569 if (!(flags & UMOUNT_NOFOLLOW))
1570 lookup_flags |= LOOKUP_FOLLOW;
1571
197df04c 1572 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1573 if (retval)
1574 goto out;
900148dc 1575 mnt = real_mount(path.mnt);
1da177e4 1576 retval = -EINVAL;
2d8f3038 1577 if (path.dentry != path.mnt->mnt_root)
1da177e4 1578 goto dput_and_out;
143c8c91 1579 if (!check_mnt(mnt))
1da177e4 1580 goto dput_and_out;
5ff9d8a6
EB
1581 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1582 goto dput_and_out;
b2f5d4dc
EB
1583 retval = -EPERM;
1584 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1585 goto dput_and_out;
1da177e4 1586
900148dc 1587 retval = do_umount(mnt, flags);
1da177e4 1588dput_and_out:
429731b1 1589 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1590 dput(path.dentry);
900148dc 1591 mntput_no_expire(mnt);
1da177e4
LT
1592out:
1593 return retval;
1594}
1595
1596#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1597
1598/*
b58fed8b 1599 * The 2.0 compatible umount. No flags.
1da177e4 1600 */
bdc480e3 1601SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1602{
b58fed8b 1603 return sys_umount(name, 0);
1da177e4
LT
1604}
1605
1606#endif
1607
4ce5d2b1 1608static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1609{
4ce5d2b1 1610 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1611 return dentry->d_op == &ns_dentry_operations &&
1612 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1613}
1614
58be2825
AV
1615struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1616{
1617 return container_of(ns, struct mnt_namespace, ns);
1618}
1619
4ce5d2b1
EB
1620static bool mnt_ns_loop(struct dentry *dentry)
1621{
1622 /* Could bind mounting the mount namespace inode cause a
1623 * mount namespace loop?
1624 */
1625 struct mnt_namespace *mnt_ns;
1626 if (!is_mnt_ns_file(dentry))
1627 return false;
1628
f77c8014 1629 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1630 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1631}
1632
87129cc0 1633struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1634 int flag)
1da177e4 1635{
84d17192 1636 struct mount *res, *p, *q, *r, *parent;
1da177e4 1637
4ce5d2b1
EB
1638 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1639 return ERR_PTR(-EINVAL);
1640
1641 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1642 return ERR_PTR(-EINVAL);
9676f0c6 1643
36341f64 1644 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1645 if (IS_ERR(q))
1646 return q;
1647
a73324da 1648 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1649
1650 p = mnt;
6b41d536 1651 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1652 struct mount *s;
7ec02ef1 1653 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1654 continue;
1655
909b0a88 1656 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1657 struct mount *t = NULL;
4ce5d2b1
EB
1658 if (!(flag & CL_COPY_UNBINDABLE) &&
1659 IS_MNT_UNBINDABLE(s)) {
1660 s = skip_mnt_tree(s);
1661 continue;
1662 }
1663 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1664 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1665 s = skip_mnt_tree(s);
1666 continue;
1667 }
0714a533
AV
1668 while (p != s->mnt_parent) {
1669 p = p->mnt_parent;
1670 q = q->mnt_parent;
1da177e4 1671 }
87129cc0 1672 p = s;
84d17192 1673 parent = q;
87129cc0 1674 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1675 if (IS_ERR(q))
1676 goto out;
719ea2fb 1677 lock_mount_hash();
1a4eeaf2 1678 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1679 mnt_set_mountpoint(parent, p->mnt_mp, q);
1680 if (!list_empty(&parent->mnt_mounts)) {
1681 t = list_last_entry(&parent->mnt_mounts,
1682 struct mount, mnt_child);
1683 if (t->mnt_mp != p->mnt_mp)
1684 t = NULL;
1685 }
1686 attach_shadowed(q, parent, t);
719ea2fb 1687 unlock_mount_hash();
1da177e4
LT
1688 }
1689 }
1690 return res;
be34d1a3 1691out:
1da177e4 1692 if (res) {
719ea2fb 1693 lock_mount_hash();
e819f152 1694 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1695 unlock_mount_hash();
1da177e4 1696 }
be34d1a3 1697 return q;
1da177e4
LT
1698}
1699
be34d1a3
DH
1700/* Caller should check returned pointer for errors */
1701
589ff870 1702struct vfsmount *collect_mounts(struct path *path)
8aec0809 1703{
cb338d06 1704 struct mount *tree;
97216be0 1705 namespace_lock();
cd4a4017
EB
1706 if (!check_mnt(real_mount(path->mnt)))
1707 tree = ERR_PTR(-EINVAL);
1708 else
1709 tree = copy_tree(real_mount(path->mnt), path->dentry,
1710 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1711 namespace_unlock();
be34d1a3 1712 if (IS_ERR(tree))
52e220d3 1713 return ERR_CAST(tree);
be34d1a3 1714 return &tree->mnt;
8aec0809
AV
1715}
1716
1717void drop_collected_mounts(struct vfsmount *mnt)
1718{
97216be0 1719 namespace_lock();
719ea2fb 1720 lock_mount_hash();
e819f152 1721 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1722 unlock_mount_hash();
3ab6abee 1723 namespace_unlock();
8aec0809
AV
1724}
1725
c771d683
MS
1726/**
1727 * clone_private_mount - create a private clone of a path
1728 *
1729 * This creates a new vfsmount, which will be the clone of @path. The new will
1730 * not be attached anywhere in the namespace and will be private (i.e. changes
1731 * to the originating mount won't be propagated into this).
1732 *
1733 * Release with mntput().
1734 */
1735struct vfsmount *clone_private_mount(struct path *path)
1736{
1737 struct mount *old_mnt = real_mount(path->mnt);
1738 struct mount *new_mnt;
1739
1740 if (IS_MNT_UNBINDABLE(old_mnt))
1741 return ERR_PTR(-EINVAL);
1742
1743 down_read(&namespace_sem);
1744 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1745 up_read(&namespace_sem);
1746 if (IS_ERR(new_mnt))
1747 return ERR_CAST(new_mnt);
1748
1749 return &new_mnt->mnt;
1750}
1751EXPORT_SYMBOL_GPL(clone_private_mount);
1752
1f707137
AV
1753int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1754 struct vfsmount *root)
1755{
1a4eeaf2 1756 struct mount *mnt;
1f707137
AV
1757 int res = f(root, arg);
1758 if (res)
1759 return res;
1a4eeaf2
AV
1760 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1761 res = f(&mnt->mnt, arg);
1f707137
AV
1762 if (res)
1763 return res;
1764 }
1765 return 0;
1766}
1767
4b8b21f4 1768static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1769{
315fc83e 1770 struct mount *p;
719f5d7f 1771
909b0a88 1772 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1773 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1774 mnt_release_group_id(p);
719f5d7f
MS
1775 }
1776}
1777
4b8b21f4 1778static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1779{
315fc83e 1780 struct mount *p;
719f5d7f 1781
909b0a88 1782 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1783 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1784 int err = mnt_alloc_group_id(p);
719f5d7f 1785 if (err) {
4b8b21f4 1786 cleanup_group_ids(mnt, p);
719f5d7f
MS
1787 return err;
1788 }
1789 }
1790 }
1791
1792 return 0;
1793}
1794
b90fa9ae
RP
1795/*
1796 * @source_mnt : mount tree to be attached
21444403
RP
1797 * @nd : place the mount tree @source_mnt is attached
1798 * @parent_nd : if non-null, detach the source_mnt from its parent and
1799 * store the parent mount and mountpoint dentry.
1800 * (done when source_mnt is moved)
b90fa9ae
RP
1801 *
1802 * NOTE: in the table below explains the semantics when a source mount
1803 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1804 * ---------------------------------------------------------------------------
1805 * | BIND MOUNT OPERATION |
1806 * |**************************************************************************
1807 * | source-->| shared | private | slave | unbindable |
1808 * | dest | | | | |
1809 * | | | | | | |
1810 * | v | | | | |
1811 * |**************************************************************************
1812 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1813 * | | | | | |
1814 * |non-shared| shared (+) | private | slave (*) | invalid |
1815 * ***************************************************************************
b90fa9ae
RP
1816 * A bind operation clones the source mount and mounts the clone on the
1817 * destination mount.
1818 *
1819 * (++) the cloned mount is propagated to all the mounts in the propagation
1820 * tree of the destination mount and the cloned mount is added to
1821 * the peer group of the source mount.
1822 * (+) the cloned mount is created under the destination mount and is marked
1823 * as shared. The cloned mount is added to the peer group of the source
1824 * mount.
5afe0022
RP
1825 * (+++) the mount is propagated to all the mounts in the propagation tree
1826 * of the destination mount and the cloned mount is made slave
1827 * of the same master as that of the source mount. The cloned mount
1828 * is marked as 'shared and slave'.
1829 * (*) the cloned mount is made a slave of the same master as that of the
1830 * source mount.
1831 *
9676f0c6
RP
1832 * ---------------------------------------------------------------------------
1833 * | MOVE MOUNT OPERATION |
1834 * |**************************************************************************
1835 * | source-->| shared | private | slave | unbindable |
1836 * | dest | | | | |
1837 * | | | | | | |
1838 * | v | | | | |
1839 * |**************************************************************************
1840 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1841 * | | | | | |
1842 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1843 * ***************************************************************************
5afe0022
RP
1844 *
1845 * (+) the mount is moved to the destination. And is then propagated to
1846 * all the mounts in the propagation tree of the destination mount.
21444403 1847 * (+*) the mount is moved to the destination.
5afe0022
RP
1848 * (+++) the mount is moved to the destination and is then propagated to
1849 * all the mounts belonging to the destination mount's propagation tree.
1850 * the mount is marked as 'shared and slave'.
1851 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1852 *
1853 * if the source mount is a tree, the operations explained above is
1854 * applied to each mount in the tree.
1855 * Must be called without spinlocks held, since this function can sleep
1856 * in allocations.
1857 */
0fb54e50 1858static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1859 struct mount *dest_mnt,
1860 struct mountpoint *dest_mp,
1861 struct path *parent_path)
b90fa9ae 1862{
38129a13 1863 HLIST_HEAD(tree_list);
315fc83e 1864 struct mount *child, *p;
38129a13 1865 struct hlist_node *n;
719f5d7f 1866 int err;
b90fa9ae 1867
fc7be130 1868 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1869 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1870 if (err)
1871 goto out;
0b1b901b 1872 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1873 lock_mount_hash();
0b1b901b
AV
1874 if (err)
1875 goto out_cleanup_ids;
909b0a88 1876 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1877 set_mnt_shared(p);
0b1b901b
AV
1878 } else {
1879 lock_mount_hash();
b90fa9ae 1880 }
1a390689 1881 if (parent_path) {
0fb54e50 1882 detach_mnt(source_mnt, parent_path);
84d17192 1883 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1884 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1885 } else {
84d17192 1886 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1887 commit_tree(source_mnt, NULL);
21444403 1888 }
b90fa9ae 1889
38129a13 1890 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1891 struct mount *q;
38129a13 1892 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1893 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1894 child->mnt_mountpoint);
1895 commit_tree(child, q);
b90fa9ae 1896 }
719ea2fb 1897 unlock_mount_hash();
99b7db7b 1898
b90fa9ae 1899 return 0;
719f5d7f
MS
1900
1901 out_cleanup_ids:
f2ebb3a9
AV
1902 while (!hlist_empty(&tree_list)) {
1903 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
e819f152 1904 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
1905 }
1906 unlock_mount_hash();
0b1b901b 1907 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1908 out:
1909 return err;
b90fa9ae
RP
1910}
1911
84d17192 1912static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1913{
1914 struct vfsmount *mnt;
84d17192 1915 struct dentry *dentry = path->dentry;
b12cea91 1916retry:
84d17192
AV
1917 mutex_lock(&dentry->d_inode->i_mutex);
1918 if (unlikely(cant_mount(dentry))) {
1919 mutex_unlock(&dentry->d_inode->i_mutex);
1920 return ERR_PTR(-ENOENT);
b12cea91 1921 }
97216be0 1922 namespace_lock();
b12cea91 1923 mnt = lookup_mnt(path);
84d17192 1924 if (likely(!mnt)) {
e2dfa935
EB
1925 struct mountpoint *mp = lookup_mountpoint(dentry);
1926 if (!mp)
1927 mp = new_mountpoint(dentry);
84d17192 1928 if (IS_ERR(mp)) {
97216be0 1929 namespace_unlock();
84d17192
AV
1930 mutex_unlock(&dentry->d_inode->i_mutex);
1931 return mp;
1932 }
1933 return mp;
1934 }
97216be0 1935 namespace_unlock();
b12cea91
AV
1936 mutex_unlock(&path->dentry->d_inode->i_mutex);
1937 path_put(path);
1938 path->mnt = mnt;
84d17192 1939 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1940 goto retry;
1941}
1942
84d17192 1943static void unlock_mount(struct mountpoint *where)
b12cea91 1944{
84d17192
AV
1945 struct dentry *dentry = where->m_dentry;
1946 put_mountpoint(where);
328e6d90 1947 namespace_unlock();
84d17192 1948 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1949}
1950
84d17192 1951static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1952{
95bc5f25 1953 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1954 return -EINVAL;
1955
e36cb0b8
DH
1956 if (d_is_dir(mp->m_dentry) !=
1957 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
1958 return -ENOTDIR;
1959
84d17192 1960 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1961}
1962
7a2e8a8f
VA
1963/*
1964 * Sanity check the flags to change_mnt_propagation.
1965 */
1966
1967static int flags_to_propagation_type(int flags)
1968{
7c6e984d 1969 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1970
1971 /* Fail if any non-propagation flags are set */
1972 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1973 return 0;
1974 /* Only one propagation flag should be set */
1975 if (!is_power_of_2(type))
1976 return 0;
1977 return type;
1978}
1979
07b20889
RP
1980/*
1981 * recursively change the type of the mountpoint.
1982 */
0a0d8a46 1983static int do_change_type(struct path *path, int flag)
07b20889 1984{
315fc83e 1985 struct mount *m;
4b8b21f4 1986 struct mount *mnt = real_mount(path->mnt);
07b20889 1987 int recurse = flag & MS_REC;
7a2e8a8f 1988 int type;
719f5d7f 1989 int err = 0;
07b20889 1990
2d92ab3c 1991 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1992 return -EINVAL;
1993
7a2e8a8f
VA
1994 type = flags_to_propagation_type(flag);
1995 if (!type)
1996 return -EINVAL;
1997
97216be0 1998 namespace_lock();
719f5d7f
MS
1999 if (type == MS_SHARED) {
2000 err = invent_group_ids(mnt, recurse);
2001 if (err)
2002 goto out_unlock;
2003 }
2004
719ea2fb 2005 lock_mount_hash();
909b0a88 2006 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2007 change_mnt_propagation(m, type);
719ea2fb 2008 unlock_mount_hash();
719f5d7f
MS
2009
2010 out_unlock:
97216be0 2011 namespace_unlock();
719f5d7f 2012 return err;
07b20889
RP
2013}
2014
5ff9d8a6
EB
2015static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2016{
2017 struct mount *child;
2018 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2019 if (!is_subdir(child->mnt_mountpoint, dentry))
2020 continue;
2021
2022 if (child->mnt.mnt_flags & MNT_LOCKED)
2023 return true;
2024 }
2025 return false;
2026}
2027
1da177e4
LT
2028/*
2029 * do loopback mount.
2030 */
808d4e3c 2031static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2032 int recurse)
1da177e4 2033{
2d92ab3c 2034 struct path old_path;
84d17192
AV
2035 struct mount *mnt = NULL, *old, *parent;
2036 struct mountpoint *mp;
57eccb83 2037 int err;
1da177e4
LT
2038 if (!old_name || !*old_name)
2039 return -EINVAL;
815d405c 2040 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2041 if (err)
2042 return err;
2043
8823c079 2044 err = -EINVAL;
4ce5d2b1 2045 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
2046 goto out;
2047
84d17192
AV
2048 mp = lock_mount(path);
2049 err = PTR_ERR(mp);
2050 if (IS_ERR(mp))
b12cea91
AV
2051 goto out;
2052
87129cc0 2053 old = real_mount(old_path.mnt);
84d17192 2054 parent = real_mount(path->mnt);
87129cc0 2055
1da177e4 2056 err = -EINVAL;
fc7be130 2057 if (IS_MNT_UNBINDABLE(old))
b12cea91 2058 goto out2;
9676f0c6 2059
e149ed2b
AV
2060 if (!check_mnt(parent))
2061 goto out2;
2062
2063 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2064 goto out2;
1da177e4 2065
5ff9d8a6
EB
2066 if (!recurse && has_locked_children(old, old_path.dentry))
2067 goto out2;
2068
ccd48bc7 2069 if (recurse)
4ce5d2b1 2070 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2071 else
87129cc0 2072 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2073
be34d1a3
DH
2074 if (IS_ERR(mnt)) {
2075 err = PTR_ERR(mnt);
e9c5d8a5 2076 goto out2;
be34d1a3 2077 }
ccd48bc7 2078
5ff9d8a6
EB
2079 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2080
84d17192 2081 err = graft_tree(mnt, parent, mp);
ccd48bc7 2082 if (err) {
719ea2fb 2083 lock_mount_hash();
e819f152 2084 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2085 unlock_mount_hash();
5b83d2c5 2086 }
b12cea91 2087out2:
84d17192 2088 unlock_mount(mp);
ccd48bc7 2089out:
2d92ab3c 2090 path_put(&old_path);
1da177e4
LT
2091 return err;
2092}
2093
2e4b7fcd
DH
2094static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2095{
2096 int error = 0;
2097 int readonly_request = 0;
2098
2099 if (ms_flags & MS_RDONLY)
2100 readonly_request = 1;
2101 if (readonly_request == __mnt_is_readonly(mnt))
2102 return 0;
2103
2104 if (readonly_request)
83adc753 2105 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2106 else
83adc753 2107 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2108 return error;
2109}
2110
1da177e4
LT
2111/*
2112 * change filesystem flags. dir should be a physical root of filesystem.
2113 * If you've mounted a non-root directory somewhere and want to do remount
2114 * on it - tough luck.
2115 */
0a0d8a46 2116static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2117 void *data)
2118{
2119 int err;
2d92ab3c 2120 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2121 struct mount *mnt = real_mount(path->mnt);
1da177e4 2122
143c8c91 2123 if (!check_mnt(mnt))
1da177e4
LT
2124 return -EINVAL;
2125
2d92ab3c 2126 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2127 return -EINVAL;
2128
07b64558
EB
2129 /* Don't allow changing of locked mnt flags.
2130 *
2131 * No locks need to be held here while testing the various
2132 * MNT_LOCK flags because those flags can never be cleared
2133 * once they are set.
2134 */
2135 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2136 !(mnt_flags & MNT_READONLY)) {
2137 return -EPERM;
2138 }
9566d674
EB
2139 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2140 !(mnt_flags & MNT_NODEV)) {
3e186641
EB
2141 /* Was the nodev implicitly added in mount? */
2142 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2143 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2144 mnt_flags |= MNT_NODEV;
2145 } else {
2146 return -EPERM;
2147 }
9566d674
EB
2148 }
2149 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2150 !(mnt_flags & MNT_NOSUID)) {
2151 return -EPERM;
2152 }
2153 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2154 !(mnt_flags & MNT_NOEXEC)) {
2155 return -EPERM;
2156 }
2157 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2158 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2159 return -EPERM;
2160 }
2161
ff36fe2c
EP
2162 err = security_sb_remount(sb, data);
2163 if (err)
2164 return err;
2165
1da177e4 2166 down_write(&sb->s_umount);
2e4b7fcd 2167 if (flags & MS_BIND)
2d92ab3c 2168 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2169 else if (!capable(CAP_SYS_ADMIN))
2170 err = -EPERM;
4aa98cf7 2171 else
2e4b7fcd 2172 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2173 if (!err) {
719ea2fb 2174 lock_mount_hash();
a6138db8 2175 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2176 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2177 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2178 unlock_mount_hash();
0e55a7cc 2179 }
6339dab8 2180 up_write(&sb->s_umount);
1da177e4
LT
2181 return err;
2182}
2183
cbbe362c 2184static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2185{
315fc83e 2186 struct mount *p;
909b0a88 2187 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2188 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2189 return 1;
2190 }
2191 return 0;
2192}
2193
808d4e3c 2194static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2195{
2d92ab3c 2196 struct path old_path, parent_path;
676da58d 2197 struct mount *p;
0fb54e50 2198 struct mount *old;
84d17192 2199 struct mountpoint *mp;
57eccb83 2200 int err;
1da177e4
LT
2201 if (!old_name || !*old_name)
2202 return -EINVAL;
2d92ab3c 2203 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2204 if (err)
2205 return err;
2206
84d17192
AV
2207 mp = lock_mount(path);
2208 err = PTR_ERR(mp);
2209 if (IS_ERR(mp))
cc53ce53
DH
2210 goto out;
2211
143c8c91 2212 old = real_mount(old_path.mnt);
fc7be130 2213 p = real_mount(path->mnt);
143c8c91 2214
1da177e4 2215 err = -EINVAL;
fc7be130 2216 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2217 goto out1;
2218
5ff9d8a6
EB
2219 if (old->mnt.mnt_flags & MNT_LOCKED)
2220 goto out1;
2221
1da177e4 2222 err = -EINVAL;
2d92ab3c 2223 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2224 goto out1;
1da177e4 2225
676da58d 2226 if (!mnt_has_parent(old))
21444403 2227 goto out1;
1da177e4 2228
e36cb0b8
DH
2229 if (d_is_dir(path->dentry) !=
2230 d_is_dir(old_path.dentry))
21444403
RP
2231 goto out1;
2232 /*
2233 * Don't move a mount residing in a shared parent.
2234 */
fc7be130 2235 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2236 goto out1;
9676f0c6
RP
2237 /*
2238 * Don't move a mount tree containing unbindable mounts to a destination
2239 * mount which is shared.
2240 */
fc7be130 2241 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2242 goto out1;
1da177e4 2243 err = -ELOOP;
fc7be130 2244 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2245 if (p == old)
21444403 2246 goto out1;
1da177e4 2247
84d17192 2248 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2249 if (err)
21444403 2250 goto out1;
1da177e4
LT
2251
2252 /* if the mount is moved, it should no longer be expire
2253 * automatically */
6776db3d 2254 list_del_init(&old->mnt_expire);
1da177e4 2255out1:
84d17192 2256 unlock_mount(mp);
1da177e4 2257out:
1da177e4 2258 if (!err)
1a390689 2259 path_put(&parent_path);
2d92ab3c 2260 path_put(&old_path);
1da177e4
LT
2261 return err;
2262}
2263
9d412a43
AV
2264static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2265{
2266 int err;
2267 const char *subtype = strchr(fstype, '.');
2268 if (subtype) {
2269 subtype++;
2270 err = -EINVAL;
2271 if (!subtype[0])
2272 goto err;
2273 } else
2274 subtype = "";
2275
2276 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2277 err = -ENOMEM;
2278 if (!mnt->mnt_sb->s_subtype)
2279 goto err;
2280 return mnt;
2281
2282 err:
2283 mntput(mnt);
2284 return ERR_PTR(err);
2285}
2286
9d412a43
AV
2287/*
2288 * add a mount into a namespace's mount tree
2289 */
95bc5f25 2290static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2291{
84d17192
AV
2292 struct mountpoint *mp;
2293 struct mount *parent;
9d412a43
AV
2294 int err;
2295
f2ebb3a9 2296 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2297
84d17192
AV
2298 mp = lock_mount(path);
2299 if (IS_ERR(mp))
2300 return PTR_ERR(mp);
9d412a43 2301
84d17192 2302 parent = real_mount(path->mnt);
9d412a43 2303 err = -EINVAL;
84d17192 2304 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2305 /* that's acceptable only for automounts done in private ns */
2306 if (!(mnt_flags & MNT_SHRINKABLE))
2307 goto unlock;
2308 /* ... and for those we'd better have mountpoint still alive */
84d17192 2309 if (!parent->mnt_ns)
156cacb1
AV
2310 goto unlock;
2311 }
9d412a43
AV
2312
2313 /* Refuse the same filesystem on the same mount point */
2314 err = -EBUSY;
95bc5f25 2315 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2316 path->mnt->mnt_root == path->dentry)
2317 goto unlock;
2318
2319 err = -EINVAL;
e36cb0b8 2320 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2321 goto unlock;
2322
95bc5f25 2323 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2324 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2325
2326unlock:
84d17192 2327 unlock_mount(mp);
9d412a43
AV
2328 return err;
2329}
b1e75df4 2330
1da177e4
LT
2331/*
2332 * create a new mount for userspace and request it to be added into the
2333 * namespace's tree
2334 */
0c55cfc4 2335static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2336 int mnt_flags, const char *name, void *data)
1da177e4 2337{
0c55cfc4 2338 struct file_system_type *type;
9b40bc90 2339 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2340 struct vfsmount *mnt;
15f9a3f3 2341 int err;
1da177e4 2342
0c55cfc4 2343 if (!fstype)
1da177e4
LT
2344 return -EINVAL;
2345
0c55cfc4
EB
2346 type = get_fs_type(fstype);
2347 if (!type)
2348 return -ENODEV;
2349
2350 if (user_ns != &init_user_ns) {
2351 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2352 put_filesystem(type);
2353 return -EPERM;
2354 }
2355 /* Only in special cases allow devices from mounts
2356 * created outside the initial user namespace.
2357 */
2358 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2359 flags |= MS_NODEV;
9566d674 2360 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4
EB
2361 }
2362 }
2363
2364 mnt = vfs_kern_mount(type, flags, name, data);
2365 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2366 !mnt->mnt_sb->s_subtype)
2367 mnt = fs_set_subtype(mnt, fstype);
2368
2369 put_filesystem(type);
1da177e4
LT
2370 if (IS_ERR(mnt))
2371 return PTR_ERR(mnt);
2372
95bc5f25 2373 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2374 if (err)
2375 mntput(mnt);
2376 return err;
1da177e4
LT
2377}
2378
19a167af
AV
2379int finish_automount(struct vfsmount *m, struct path *path)
2380{
6776db3d 2381 struct mount *mnt = real_mount(m);
19a167af
AV
2382 int err;
2383 /* The new mount record should have at least 2 refs to prevent it being
2384 * expired before we get a chance to add it
2385 */
6776db3d 2386 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2387
2388 if (m->mnt_sb == path->mnt->mnt_sb &&
2389 m->mnt_root == path->dentry) {
b1e75df4
AV
2390 err = -ELOOP;
2391 goto fail;
19a167af
AV
2392 }
2393
95bc5f25 2394 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2395 if (!err)
2396 return 0;
2397fail:
2398 /* remove m from any expiration list it may be on */
6776db3d 2399 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2400 namespace_lock();
6776db3d 2401 list_del_init(&mnt->mnt_expire);
97216be0 2402 namespace_unlock();
19a167af 2403 }
b1e75df4
AV
2404 mntput(m);
2405 mntput(m);
19a167af
AV
2406 return err;
2407}
2408
ea5b778a
DH
2409/**
2410 * mnt_set_expiry - Put a mount on an expiration list
2411 * @mnt: The mount to list.
2412 * @expiry_list: The list to add the mount to.
2413 */
2414void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2415{
97216be0 2416 namespace_lock();
ea5b778a 2417
6776db3d 2418 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2419
97216be0 2420 namespace_unlock();
ea5b778a
DH
2421}
2422EXPORT_SYMBOL(mnt_set_expiry);
2423
1da177e4
LT
2424/*
2425 * process a list of expirable mountpoints with the intent of discarding any
2426 * mountpoints that aren't in use and haven't been touched since last we came
2427 * here
2428 */
2429void mark_mounts_for_expiry(struct list_head *mounts)
2430{
761d5c38 2431 struct mount *mnt, *next;
1da177e4
LT
2432 LIST_HEAD(graveyard);
2433
2434 if (list_empty(mounts))
2435 return;
2436
97216be0 2437 namespace_lock();
719ea2fb 2438 lock_mount_hash();
1da177e4
LT
2439
2440 /* extract from the expiration list every vfsmount that matches the
2441 * following criteria:
2442 * - only referenced by its parent vfsmount
2443 * - still marked for expiry (marked on the last call here; marks are
2444 * cleared by mntput())
2445 */
6776db3d 2446 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2447 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2448 propagate_mount_busy(mnt, 1))
1da177e4 2449 continue;
6776db3d 2450 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2451 }
bcc5c7d2 2452 while (!list_empty(&graveyard)) {
6776db3d 2453 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2454 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2455 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2456 }
719ea2fb 2457 unlock_mount_hash();
3ab6abee 2458 namespace_unlock();
5528f911
TM
2459}
2460
2461EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2462
2463/*
2464 * Ripoff of 'select_parent()'
2465 *
2466 * search the list of submounts for a given mountpoint, and move any
2467 * shrinkable submounts to the 'graveyard' list.
2468 */
692afc31 2469static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2470{
692afc31 2471 struct mount *this_parent = parent;
5528f911
TM
2472 struct list_head *next;
2473 int found = 0;
2474
2475repeat:
6b41d536 2476 next = this_parent->mnt_mounts.next;
5528f911 2477resume:
6b41d536 2478 while (next != &this_parent->mnt_mounts) {
5528f911 2479 struct list_head *tmp = next;
6b41d536 2480 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2481
2482 next = tmp->next;
692afc31 2483 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2484 continue;
5528f911
TM
2485 /*
2486 * Descend a level if the d_mounts list is non-empty.
2487 */
6b41d536 2488 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2489 this_parent = mnt;
2490 goto repeat;
2491 }
1da177e4 2492
1ab59738 2493 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2494 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2495 found++;
2496 }
1da177e4 2497 }
5528f911
TM
2498 /*
2499 * All done at this level ... ascend and resume the search
2500 */
2501 if (this_parent != parent) {
6b41d536 2502 next = this_parent->mnt_child.next;
0714a533 2503 this_parent = this_parent->mnt_parent;
5528f911
TM
2504 goto resume;
2505 }
2506 return found;
2507}
2508
2509/*
2510 * process a list of expirable mountpoints with the intent of discarding any
2511 * submounts of a specific parent mountpoint
99b7db7b 2512 *
48a066e7 2513 * mount_lock must be held for write
5528f911 2514 */
b54b9be7 2515static void shrink_submounts(struct mount *mnt)
5528f911
TM
2516{
2517 LIST_HEAD(graveyard);
761d5c38 2518 struct mount *m;
5528f911 2519
5528f911 2520 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2521 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2522 while (!list_empty(&graveyard)) {
761d5c38 2523 m = list_first_entry(&graveyard, struct mount,
6776db3d 2524 mnt_expire);
143c8c91 2525 touch_mnt_namespace(m->mnt_ns);
e819f152 2526 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2527 }
2528 }
1da177e4
LT
2529}
2530
1da177e4
LT
2531/*
2532 * Some copy_from_user() implementations do not return the exact number of
2533 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2534 * Note that this function differs from copy_from_user() in that it will oops
2535 * on bad values of `to', rather than returning a short copy.
2536 */
b58fed8b
RP
2537static long exact_copy_from_user(void *to, const void __user * from,
2538 unsigned long n)
1da177e4
LT
2539{
2540 char *t = to;
2541 const char __user *f = from;
2542 char c;
2543
2544 if (!access_ok(VERIFY_READ, from, n))
2545 return n;
2546
2547 while (n) {
2548 if (__get_user(c, f)) {
2549 memset(t, 0, n);
2550 break;
2551 }
2552 *t++ = c;
2553 f++;
2554 n--;
2555 }
2556 return n;
2557}
2558
b58fed8b 2559int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2560{
2561 int i;
2562 unsigned long page;
2563 unsigned long size;
b58fed8b 2564
1da177e4
LT
2565 *where = 0;
2566 if (!data)
2567 return 0;
2568
2569 if (!(page = __get_free_page(GFP_KERNEL)))
2570 return -ENOMEM;
2571
2572 /* We only care that *some* data at the address the user
2573 * gave us is valid. Just in case, we'll zero
2574 * the remainder of the page.
2575 */
2576 /* copy_from_user cannot cross TASK_SIZE ! */
2577 size = TASK_SIZE - (unsigned long)data;
2578 if (size > PAGE_SIZE)
2579 size = PAGE_SIZE;
2580
2581 i = size - exact_copy_from_user((void *)page, data, size);
2582 if (!i) {
b58fed8b 2583 free_page(page);
1da177e4
LT
2584 return -EFAULT;
2585 }
2586 if (i != PAGE_SIZE)
2587 memset((char *)page + i, 0, PAGE_SIZE - i);
2588 *where = page;
2589 return 0;
2590}
2591
b8850d1f 2592char *copy_mount_string(const void __user *data)
eca6f534 2593{
b8850d1f 2594 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2595}
2596
1da177e4
LT
2597/*
2598 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2599 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2600 *
2601 * data is a (void *) that can point to any structure up to
2602 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2603 * information (or be NULL).
2604 *
2605 * Pre-0.97 versions of mount() didn't have a flags word.
2606 * When the flags word was introduced its top half was required
2607 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2608 * Therefore, if this magic number is present, it carries no information
2609 * and must be discarded.
2610 */
5e6123f3 2611long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2612 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2613{
2d92ab3c 2614 struct path path;
1da177e4
LT
2615 int retval = 0;
2616 int mnt_flags = 0;
2617
2618 /* Discard magic */
2619 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2620 flags &= ~MS_MGC_MSK;
2621
2622 /* Basic sanity checks */
1da177e4
LT
2623 if (data_page)
2624 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2625
a27ab9f2 2626 /* ... and get the mountpoint */
5e6123f3 2627 retval = user_path(dir_name, &path);
a27ab9f2
TH
2628 if (retval)
2629 return retval;
2630
2631 retval = security_sb_mount(dev_name, &path,
2632 type_page, flags, data_page);
0d5cadb8
AV
2633 if (!retval && !may_mount())
2634 retval = -EPERM;
a27ab9f2
TH
2635 if (retval)
2636 goto dput_out;
2637
613cbe3d
AK
2638 /* Default to relatime unless overriden */
2639 if (!(flags & MS_NOATIME))
2640 mnt_flags |= MNT_RELATIME;
0a1c01c9 2641
1da177e4
LT
2642 /* Separate the per-mountpoint flags */
2643 if (flags & MS_NOSUID)
2644 mnt_flags |= MNT_NOSUID;
2645 if (flags & MS_NODEV)
2646 mnt_flags |= MNT_NODEV;
2647 if (flags & MS_NOEXEC)
2648 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2649 if (flags & MS_NOATIME)
2650 mnt_flags |= MNT_NOATIME;
2651 if (flags & MS_NODIRATIME)
2652 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2653 if (flags & MS_STRICTATIME)
2654 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2655 if (flags & MS_RDONLY)
2656 mnt_flags |= MNT_READONLY;
fc33a7bb 2657
ffbc6f0e
EB
2658 /* The default atime for remount is preservation */
2659 if ((flags & MS_REMOUNT) &&
2660 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2661 MS_STRICTATIME)) == 0)) {
2662 mnt_flags &= ~MNT_ATIME_MASK;
2663 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2664 }
2665
7a4dec53 2666 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2667 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2668 MS_STRICTATIME);
1da177e4 2669
1da177e4 2670 if (flags & MS_REMOUNT)
2d92ab3c 2671 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2672 data_page);
2673 else if (flags & MS_BIND)
2d92ab3c 2674 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2675 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2676 retval = do_change_type(&path, flags);
1da177e4 2677 else if (flags & MS_MOVE)
2d92ab3c 2678 retval = do_move_mount(&path, dev_name);
1da177e4 2679 else
2d92ab3c 2680 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2681 dev_name, data_page);
2682dput_out:
2d92ab3c 2683 path_put(&path);
1da177e4
LT
2684 return retval;
2685}
2686
771b1371
EB
2687static void free_mnt_ns(struct mnt_namespace *ns)
2688{
6344c433 2689 ns_free_inum(&ns->ns);
771b1371
EB
2690 put_user_ns(ns->user_ns);
2691 kfree(ns);
2692}
2693
8823c079
EB
2694/*
2695 * Assign a sequence number so we can detect when we attempt to bind
2696 * mount a reference to an older mount namespace into the current
2697 * mount namespace, preventing reference counting loops. A 64bit
2698 * number incrementing at 10Ghz will take 12,427 years to wrap which
2699 * is effectively never, so we can ignore the possibility.
2700 */
2701static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2702
771b1371 2703static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2704{
2705 struct mnt_namespace *new_ns;
98f842e6 2706 int ret;
cf8d2c11
TM
2707
2708 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2709 if (!new_ns)
2710 return ERR_PTR(-ENOMEM);
6344c433 2711 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2712 if (ret) {
2713 kfree(new_ns);
2714 return ERR_PTR(ret);
2715 }
33c42940 2716 new_ns->ns.ops = &mntns_operations;
8823c079 2717 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2718 atomic_set(&new_ns->count, 1);
2719 new_ns->root = NULL;
2720 INIT_LIST_HEAD(&new_ns->list);
2721 init_waitqueue_head(&new_ns->poll);
2722 new_ns->event = 0;
771b1371 2723 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2724 return new_ns;
2725}
2726
9559f689
AV
2727struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2728 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2729{
6b3286ed 2730 struct mnt_namespace *new_ns;
7f2da1e7 2731 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2732 struct mount *p, *q;
9559f689 2733 struct mount *old;
cb338d06 2734 struct mount *new;
7a472ef4 2735 int copy_flags;
1da177e4 2736
9559f689
AV
2737 BUG_ON(!ns);
2738
2739 if (likely(!(flags & CLONE_NEWNS))) {
2740 get_mnt_ns(ns);
2741 return ns;
2742 }
2743
2744 old = ns->root;
2745
771b1371 2746 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2747 if (IS_ERR(new_ns))
2748 return new_ns;
1da177e4 2749
97216be0 2750 namespace_lock();
1da177e4 2751 /* First pass: copy the tree topology */
4ce5d2b1 2752 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2753 if (user_ns != ns->user_ns)
132c94e3 2754 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2755 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2756 if (IS_ERR(new)) {
328e6d90 2757 namespace_unlock();
771b1371 2758 free_mnt_ns(new_ns);
be34d1a3 2759 return ERR_CAST(new);
1da177e4 2760 }
be08d6d2 2761 new_ns->root = new;
1a4eeaf2 2762 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2763
2764 /*
2765 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2766 * as belonging to new namespace. We have already acquired a private
2767 * fs_struct, so tsk->fs->lock is not needed.
2768 */
909b0a88 2769 p = old;
cb338d06 2770 q = new;
1da177e4 2771 while (p) {
143c8c91 2772 q->mnt_ns = new_ns;
9559f689
AV
2773 if (new_fs) {
2774 if (&p->mnt == new_fs->root.mnt) {
2775 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2776 rootmnt = &p->mnt;
1da177e4 2777 }
9559f689
AV
2778 if (&p->mnt == new_fs->pwd.mnt) {
2779 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2780 pwdmnt = &p->mnt;
1da177e4 2781 }
1da177e4 2782 }
909b0a88
AV
2783 p = next_mnt(p, old);
2784 q = next_mnt(q, new);
4ce5d2b1
EB
2785 if (!q)
2786 break;
2787 while (p->mnt.mnt_root != q->mnt.mnt_root)
2788 p = next_mnt(p, old);
1da177e4 2789 }
328e6d90 2790 namespace_unlock();
1da177e4 2791
1da177e4 2792 if (rootmnt)
f03c6599 2793 mntput(rootmnt);
1da177e4 2794 if (pwdmnt)
f03c6599 2795 mntput(pwdmnt);
1da177e4 2796
741a2951 2797 return new_ns;
1da177e4
LT
2798}
2799
cf8d2c11
TM
2800/**
2801 * create_mnt_ns - creates a private namespace and adds a root filesystem
2802 * @mnt: pointer to the new root filesystem mountpoint
2803 */
1a4eeaf2 2804static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2805{
771b1371 2806 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2807 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2808 struct mount *mnt = real_mount(m);
2809 mnt->mnt_ns = new_ns;
be08d6d2 2810 new_ns->root = mnt;
b1983cd8 2811 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2812 } else {
1a4eeaf2 2813 mntput(m);
cf8d2c11
TM
2814 }
2815 return new_ns;
2816}
cf8d2c11 2817
ea441d11
AV
2818struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2819{
2820 struct mnt_namespace *ns;
d31da0f0 2821 struct super_block *s;
ea441d11
AV
2822 struct path path;
2823 int err;
2824
2825 ns = create_mnt_ns(mnt);
2826 if (IS_ERR(ns))
2827 return ERR_CAST(ns);
2828
2829 err = vfs_path_lookup(mnt->mnt_root, mnt,
2830 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2831
2832 put_mnt_ns(ns);
2833
2834 if (err)
2835 return ERR_PTR(err);
2836
2837 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2838 s = path.mnt->mnt_sb;
2839 atomic_inc(&s->s_active);
ea441d11
AV
2840 mntput(path.mnt);
2841 /* lock the sucker */
d31da0f0 2842 down_write(&s->s_umount);
ea441d11
AV
2843 /* ... and return the root of (sub)tree on it */
2844 return path.dentry;
2845}
2846EXPORT_SYMBOL(mount_subtree);
2847
bdc480e3
HC
2848SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2849 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2850{
eca6f534
VN
2851 int ret;
2852 char *kernel_type;
eca6f534 2853 char *kernel_dev;
1da177e4 2854 unsigned long data_page;
1da177e4 2855
b8850d1f
TG
2856 kernel_type = copy_mount_string(type);
2857 ret = PTR_ERR(kernel_type);
2858 if (IS_ERR(kernel_type))
eca6f534 2859 goto out_type;
1da177e4 2860
b8850d1f
TG
2861 kernel_dev = copy_mount_string(dev_name);
2862 ret = PTR_ERR(kernel_dev);
2863 if (IS_ERR(kernel_dev))
eca6f534 2864 goto out_dev;
1da177e4 2865
eca6f534
VN
2866 ret = copy_mount_options(data, &data_page);
2867 if (ret < 0)
2868 goto out_data;
1da177e4 2869
5e6123f3 2870 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
eca6f534 2871 (void *) data_page);
1da177e4 2872
eca6f534
VN
2873 free_page(data_page);
2874out_data:
2875 kfree(kernel_dev);
2876out_dev:
eca6f534
VN
2877 kfree(kernel_type);
2878out_type:
2879 return ret;
1da177e4
LT
2880}
2881
afac7cba
AV
2882/*
2883 * Return true if path is reachable from root
2884 *
48a066e7 2885 * namespace_sem or mount_lock is held
afac7cba 2886 */
643822b4 2887bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2888 const struct path *root)
2889{
643822b4 2890 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2891 dentry = mnt->mnt_mountpoint;
0714a533 2892 mnt = mnt->mnt_parent;
afac7cba 2893 }
643822b4 2894 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2895}
2896
2897int path_is_under(struct path *path1, struct path *path2)
2898{
2899 int res;
48a066e7 2900 read_seqlock_excl(&mount_lock);
643822b4 2901 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2902 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2903 return res;
2904}
2905EXPORT_SYMBOL(path_is_under);
2906
1da177e4
LT
2907/*
2908 * pivot_root Semantics:
2909 * Moves the root file system of the current process to the directory put_old,
2910 * makes new_root as the new root file system of the current process, and sets
2911 * root/cwd of all processes which had them on the current root to new_root.
2912 *
2913 * Restrictions:
2914 * The new_root and put_old must be directories, and must not be on the
2915 * same file system as the current process root. The put_old must be
2916 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2917 * pointed to by put_old must yield the same directory as new_root. No other
2918 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2919 *
4a0d11fa
NB
2920 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2921 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2922 * in this situation.
2923 *
1da177e4
LT
2924 * Notes:
2925 * - we don't move root/cwd if they are not at the root (reason: if something
2926 * cared enough to change them, it's probably wrong to force them elsewhere)
2927 * - it's okay to pick a root that isn't the root of a file system, e.g.
2928 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2929 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2930 * first.
2931 */
3480b257
HC
2932SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2933 const char __user *, put_old)
1da177e4 2934{
2d8f3038 2935 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2936 struct mount *new_mnt, *root_mnt, *old_mnt;
2937 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2938 int error;
2939
9b40bc90 2940 if (!may_mount())
1da177e4
LT
2941 return -EPERM;
2942
2d8f3038 2943 error = user_path_dir(new_root, &new);
1da177e4
LT
2944 if (error)
2945 goto out0;
1da177e4 2946
2d8f3038 2947 error = user_path_dir(put_old, &old);
1da177e4
LT
2948 if (error)
2949 goto out1;
2950
2d8f3038 2951 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2952 if (error)
2953 goto out2;
1da177e4 2954
f7ad3c6b 2955 get_fs_root(current->fs, &root);
84d17192
AV
2956 old_mp = lock_mount(&old);
2957 error = PTR_ERR(old_mp);
2958 if (IS_ERR(old_mp))
b12cea91
AV
2959 goto out3;
2960
1da177e4 2961 error = -EINVAL;
419148da
AV
2962 new_mnt = real_mount(new.mnt);
2963 root_mnt = real_mount(root.mnt);
84d17192
AV
2964 old_mnt = real_mount(old.mnt);
2965 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2966 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2967 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2968 goto out4;
143c8c91 2969 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2970 goto out4;
5ff9d8a6
EB
2971 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2972 goto out4;
1da177e4 2973 error = -ENOENT;
f3da392e 2974 if (d_unlinked(new.dentry))
b12cea91 2975 goto out4;
1da177e4 2976 error = -EBUSY;
84d17192 2977 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2978 goto out4; /* loop, on the same file system */
1da177e4 2979 error = -EINVAL;
8c3ee42e 2980 if (root.mnt->mnt_root != root.dentry)
b12cea91 2981 goto out4; /* not a mountpoint */
676da58d 2982 if (!mnt_has_parent(root_mnt))
b12cea91 2983 goto out4; /* not attached */
84d17192 2984 root_mp = root_mnt->mnt_mp;
2d8f3038 2985 if (new.mnt->mnt_root != new.dentry)
b12cea91 2986 goto out4; /* not a mountpoint */
676da58d 2987 if (!mnt_has_parent(new_mnt))
b12cea91 2988 goto out4; /* not attached */
4ac91378 2989 /* make sure we can reach put_old from new_root */
84d17192 2990 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2991 goto out4;
0d082601
EB
2992 /* make certain new is below the root */
2993 if (!is_path_reachable(new_mnt, new.dentry, &root))
2994 goto out4;
84d17192 2995 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2996 lock_mount_hash();
419148da
AV
2997 detach_mnt(new_mnt, &parent_path);
2998 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2999 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3000 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3001 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3002 }
4ac91378 3003 /* mount old root on put_old */
84d17192 3004 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3005 /* mount new_root on / */
84d17192 3006 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3007 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3008 /* A moved mount should not expire automatically */
3009 list_del_init(&new_mnt->mnt_expire);
719ea2fb 3010 unlock_mount_hash();
2d8f3038 3011 chroot_fs_refs(&root, &new);
84d17192 3012 put_mountpoint(root_mp);
1da177e4 3013 error = 0;
b12cea91 3014out4:
84d17192 3015 unlock_mount(old_mp);
b12cea91
AV
3016 if (!error) {
3017 path_put(&root_parent);
3018 path_put(&parent_path);
3019 }
3020out3:
8c3ee42e 3021 path_put(&root);
b12cea91 3022out2:
2d8f3038 3023 path_put(&old);
1da177e4 3024out1:
2d8f3038 3025 path_put(&new);
1da177e4 3026out0:
1da177e4 3027 return error;
1da177e4
LT
3028}
3029
3030static void __init init_mount_tree(void)
3031{
3032 struct vfsmount *mnt;
6b3286ed 3033 struct mnt_namespace *ns;
ac748a09 3034 struct path root;
0c55cfc4 3035 struct file_system_type *type;
1da177e4 3036
0c55cfc4
EB
3037 type = get_fs_type("rootfs");
3038 if (!type)
3039 panic("Can't find rootfs type");
3040 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3041 put_filesystem(type);
1da177e4
LT
3042 if (IS_ERR(mnt))
3043 panic("Can't create rootfs");
b3e19d92 3044
3b22edc5
TM
3045 ns = create_mnt_ns(mnt);
3046 if (IS_ERR(ns))
1da177e4 3047 panic("Can't allocate initial namespace");
6b3286ed
KK
3048
3049 init_task.nsproxy->mnt_ns = ns;
3050 get_mnt_ns(ns);
3051
be08d6d2
AV
3052 root.mnt = mnt;
3053 root.dentry = mnt->mnt_root;
da362b09 3054 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3055
3056 set_fs_pwd(current->fs, &root);
3057 set_fs_root(current->fs, &root);
1da177e4
LT
3058}
3059
74bf17cf 3060void __init mnt_init(void)
1da177e4 3061{
13f14b4d 3062 unsigned u;
15a67dd8 3063 int err;
1da177e4 3064
7d6fec45 3065 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3066 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3067
0818bf27 3068 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3069 sizeof(struct hlist_head),
0818bf27
AV
3070 mhash_entries, 19,
3071 0,
3072 &m_hash_shift, &m_hash_mask, 0, 0);
3073 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3074 sizeof(struct hlist_head),
3075 mphash_entries, 19,
3076 0,
3077 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3078
84d17192 3079 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3080 panic("Failed to allocate mount hash table\n");
3081
0818bf27 3082 for (u = 0; u <= m_hash_mask; u++)
38129a13 3083 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3084 for (u = 0; u <= mp_hash_mask; u++)
3085 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3086
4b93dc9b
TH
3087 kernfs_init();
3088
15a67dd8
RD
3089 err = sysfs_init();
3090 if (err)
3091 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3092 __func__, err);
00d26666
GKH
3093 fs_kobj = kobject_create_and_add("fs", NULL);
3094 if (!fs_kobj)
8e24eea7 3095 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3096 init_rootfs();
3097 init_mount_tree();
3098}
3099
616511d0 3100void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3101{
d498b25a 3102 if (!atomic_dec_and_test(&ns->count))
616511d0 3103 return;
7b00ed6f 3104 drop_collected_mounts(&ns->root->mnt);
771b1371 3105 free_mnt_ns(ns);
1da177e4 3106}
9d412a43
AV
3107
3108struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3109{
423e0ab0
TC
3110 struct vfsmount *mnt;
3111 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3112 if (!IS_ERR(mnt)) {
3113 /*
3114 * it is a longterm mount, don't release mnt until
3115 * we unmount before file sys is unregistered
3116 */
f7a99c5b 3117 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3118 }
3119 return mnt;
9d412a43
AV
3120}
3121EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3122
3123void kern_unmount(struct vfsmount *mnt)
3124{
3125 /* release long term mount so mount point can be released */
3126 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3127 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3128 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3129 mntput(mnt);
3130 }
3131}
3132EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3133
3134bool our_mnt(struct vfsmount *mnt)
3135{
143c8c91 3136 return check_mnt(real_mount(mnt));
02125a82 3137}
8823c079 3138
3151527e
EB
3139bool current_chrooted(void)
3140{
3141 /* Does the current process have a non-standard root */
3142 struct path ns_root;
3143 struct path fs_root;
3144 bool chrooted;
3145
3146 /* Find the namespace root */
3147 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3148 ns_root.dentry = ns_root.mnt->mnt_root;
3149 path_get(&ns_root);
3150 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3151 ;
3152
3153 get_fs_root(current->fs, &fs_root);
3154
3155 chrooted = !path_equal(&fs_root, &ns_root);
3156
3157 path_put(&fs_root);
3158 path_put(&ns_root);
3159
3160 return chrooted;
3161}
3162
e51db735 3163bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
3164{
3165 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3166 struct mount *mnt;
e51db735 3167 bool visible = false;
87a8ebd6 3168
e51db735
EB
3169 if (unlikely(!ns))
3170 return false;
3171
44bb4385 3172 down_read(&namespace_sem);
87a8ebd6 3173 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
3174 struct mount *child;
3175 if (mnt->mnt.mnt_sb->s_type != type)
3176 continue;
3177
3178 /* This mount is not fully visible if there are any child mounts
3179 * that cover anything except for empty directories.
3180 */
3181 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3182 struct inode *inode = child->mnt_mountpoint->d_inode;
3183 if (!S_ISDIR(inode->i_mode))
3184 goto next;
41301ae7 3185 if (inode->i_nlink > 2)
e51db735 3186 goto next;
87a8ebd6 3187 }
e51db735
EB
3188 visible = true;
3189 goto found;
3190 next: ;
87a8ebd6 3191 }
e51db735 3192found:
44bb4385 3193 up_read(&namespace_sem);
e51db735 3194 return visible;
87a8ebd6
EB
3195}
3196
64964528 3197static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3198{
58be2825 3199 struct ns_common *ns = NULL;
8823c079
EB
3200 struct nsproxy *nsproxy;
3201
728dba3a
EB
3202 task_lock(task);
3203 nsproxy = task->nsproxy;
8823c079 3204 if (nsproxy) {
58be2825
AV
3205 ns = &nsproxy->mnt_ns->ns;
3206 get_mnt_ns(to_mnt_ns(ns));
8823c079 3207 }
728dba3a 3208 task_unlock(task);
8823c079
EB
3209
3210 return ns;
3211}
3212
64964528 3213static void mntns_put(struct ns_common *ns)
8823c079 3214{
58be2825 3215 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3216}
3217
64964528 3218static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3219{
3220 struct fs_struct *fs = current->fs;
58be2825 3221 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3222 struct path root;
3223
0c55cfc4 3224 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3225 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3226 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3227 return -EPERM;
8823c079
EB
3228
3229 if (fs->users != 1)
3230 return -EINVAL;
3231
3232 get_mnt_ns(mnt_ns);
3233 put_mnt_ns(nsproxy->mnt_ns);
3234 nsproxy->mnt_ns = mnt_ns;
3235
3236 /* Find the root */
3237 root.mnt = &mnt_ns->root->mnt;
3238 root.dentry = mnt_ns->root->mnt.mnt_root;
3239 path_get(&root);
3240 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3241 ;
3242
3243 /* Update the pwd and root */
3244 set_fs_pwd(fs, &root);
3245 set_fs_root(fs, &root);
3246
3247 path_put(&root);
3248 return 0;
3249}
3250
3251const struct proc_ns_operations mntns_operations = {
3252 .name = "mnt",
3253 .type = CLONE_NEWNS,
3254 .get = mntns_get,
3255 .put = mntns_put,
3256 .install = mntns_install,
3257};