]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: add a read barrier in blk_queue_enter()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
5bb23a68
N
132static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
1da177e4 134{
78d8e58a 135 if (error)
4246a0b6 136 bio->bi_error = error;
797e7dbb 137
e8064021 138 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 139 bio_set_flag(bio, BIO_QUIET);
08bafc03 140
f79ea416 141 bio_advance(bio, nbytes);
7ba1ba12 142
143a87f4 143 /* don't actually finish bio if it's part of flush sequence */
e8064021 144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 145 bio_endio(bio);
1da177e4 146}
1da177e4 147
1da177e4
LT
148void blk_dump_rq_flags(struct request *rq, char *msg)
149{
aebf526b
CH
150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 152 (unsigned long long) rq->cmd_flags);
1da177e4 153
83096ebf
TH
154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
155 (unsigned long long)blk_rq_pos(rq),
156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
157 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
158 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 159}
1da177e4
LT
160EXPORT_SYMBOL(blk_dump_rq_flags);
161
3cca6dc1 162static void blk_delay_work(struct work_struct *work)
1da177e4 163{
3cca6dc1 164 struct request_queue *q;
1da177e4 165
3cca6dc1
JA
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
24ecfbe2 168 __blk_run_queue(q);
3cca6dc1 169 spin_unlock_irq(q->queue_lock);
1da177e4 170}
1da177e4
LT
171
172/**
3cca6dc1
JA
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
1da177e4
LT
176 *
177 * Description:
3cca6dc1
JA
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
70460571 180 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
181 */
182void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 183{
70460571
BVA
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
2ad8b1ef 187}
3cca6dc1 188EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 189
21491412
JA
190/**
191 * blk_start_queue_async - asynchronously restart a previously stopped queue
192 * @q: The &struct request_queue in question
193 *
194 * Description:
195 * blk_start_queue_async() will clear the stop flag on the queue, and
196 * ensure that the request_fn for the queue is run from an async
197 * context.
198 **/
199void blk_start_queue_async(struct request_queue *q)
200{
201 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 blk_run_queue_async(q);
203}
204EXPORT_SYMBOL(blk_start_queue_async);
205
1da177e4
LT
206/**
207 * blk_start_queue - restart a previously stopped queue
165125e1 208 * @q: The &struct request_queue in question
1da177e4
LT
209 *
210 * Description:
211 * blk_start_queue() will clear the stop flag on the queue, and call
212 * the request_fn for the queue if it was in a stopped state when
213 * entered. Also see blk_stop_queue(). Queue lock must be held.
214 **/
165125e1 215void blk_start_queue(struct request_queue *q)
1da177e4 216{
a038e253
PBG
217 WARN_ON(!irqs_disabled());
218
75ad23bc 219 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 220 __blk_run_queue(q);
1da177e4 221}
1da177e4
LT
222EXPORT_SYMBOL(blk_start_queue);
223
224/**
225 * blk_stop_queue - stop a queue
165125e1 226 * @q: The &struct request_queue in question
1da177e4
LT
227 *
228 * Description:
229 * The Linux block layer assumes that a block driver will consume all
230 * entries on the request queue when the request_fn strategy is called.
231 * Often this will not happen, because of hardware limitations (queue
232 * depth settings). If a device driver gets a 'queue full' response,
233 * or if it simply chooses not to queue more I/O at one point, it can
234 * call this function to prevent the request_fn from being called until
235 * the driver has signalled it's ready to go again. This happens by calling
236 * blk_start_queue() to restart queue operations. Queue lock must be held.
237 **/
165125e1 238void blk_stop_queue(struct request_queue *q)
1da177e4 239{
136b5721 240 cancel_delayed_work(&q->delay_work);
75ad23bc 241 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
242}
243EXPORT_SYMBOL(blk_stop_queue);
244
245/**
246 * blk_sync_queue - cancel any pending callbacks on a queue
247 * @q: the queue
248 *
249 * Description:
250 * The block layer may perform asynchronous callback activity
251 * on a queue, such as calling the unplug function after a timeout.
252 * A block device may call blk_sync_queue to ensure that any
253 * such activity is cancelled, thus allowing it to release resources
59c51591 254 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
255 * that its ->make_request_fn will not re-add plugging prior to calling
256 * this function.
257 *
da527770 258 * This function does not cancel any asynchronous activity arising
da3dae54 259 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 260 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 261 *
1da177e4
LT
262 */
263void blk_sync_queue(struct request_queue *q)
264{
70ed28b9 265 del_timer_sync(&q->timeout);
f04c1fe7
ML
266
267 if (q->mq_ops) {
268 struct blk_mq_hw_ctx *hctx;
269 int i;
270
70f4db63 271 queue_for_each_hw_ctx(q, hctx, i) {
27489a3c 272 cancel_work_sync(&hctx->run_work);
70f4db63
CH
273 cancel_delayed_work_sync(&hctx->delay_work);
274 }
f04c1fe7
ML
275 } else {
276 cancel_delayed_work_sync(&q->delay_work);
277 }
1da177e4
LT
278}
279EXPORT_SYMBOL(blk_sync_queue);
280
c246e80d
BVA
281/**
282 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
283 * @q: The queue to run
284 *
285 * Description:
286 * Invoke request handling on a queue if there are any pending requests.
287 * May be used to restart request handling after a request has completed.
288 * This variant runs the queue whether or not the queue has been
289 * stopped. Must be called with the queue lock held and interrupts
290 * disabled. See also @blk_run_queue.
291 */
292inline void __blk_run_queue_uncond(struct request_queue *q)
293{
294 if (unlikely(blk_queue_dead(q)))
295 return;
296
24faf6f6
BVA
297 /*
298 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
299 * the queue lock internally. As a result multiple threads may be
300 * running such a request function concurrently. Keep track of the
301 * number of active request_fn invocations such that blk_drain_queue()
302 * can wait until all these request_fn calls have finished.
303 */
304 q->request_fn_active++;
c246e80d 305 q->request_fn(q);
24faf6f6 306 q->request_fn_active--;
c246e80d 307}
a7928c15 308EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 309
1da177e4 310/**
80a4b58e 311 * __blk_run_queue - run a single device queue
1da177e4 312 * @q: The queue to run
80a4b58e
JA
313 *
314 * Description:
315 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 316 * held and interrupts disabled.
1da177e4 317 */
24ecfbe2 318void __blk_run_queue(struct request_queue *q)
1da177e4 319{
a538cd03
TH
320 if (unlikely(blk_queue_stopped(q)))
321 return;
322
c246e80d 323 __blk_run_queue_uncond(q);
75ad23bc
NP
324}
325EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 326
24ecfbe2
CH
327/**
328 * blk_run_queue_async - run a single device queue in workqueue context
329 * @q: The queue to run
330 *
331 * Description:
332 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 333 * of us. The caller must hold the queue lock.
24ecfbe2
CH
334 */
335void blk_run_queue_async(struct request_queue *q)
336{
70460571 337 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 338 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 339}
c21e6beb 340EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 341
75ad23bc
NP
342/**
343 * blk_run_queue - run a single device queue
344 * @q: The queue to run
80a4b58e
JA
345 *
346 * Description:
347 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 348 * May be used to restart queueing when a request has completed.
75ad23bc
NP
349 */
350void blk_run_queue(struct request_queue *q)
351{
352 unsigned long flags;
353
354 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 355 __blk_run_queue(q);
1da177e4
LT
356 spin_unlock_irqrestore(q->queue_lock, flags);
357}
358EXPORT_SYMBOL(blk_run_queue);
359
165125e1 360void blk_put_queue(struct request_queue *q)
483f4afc
AV
361{
362 kobject_put(&q->kobj);
363}
d86e0e83 364EXPORT_SYMBOL(blk_put_queue);
483f4afc 365
e3c78ca5 366/**
807592a4 367 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 368 * @q: queue to drain
c9a929dd 369 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 370 *
c9a929dd
TH
371 * Drain requests from @q. If @drain_all is set, all requests are drained.
372 * If not, only ELVPRIV requests are drained. The caller is responsible
373 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 374 */
807592a4
BVA
375static void __blk_drain_queue(struct request_queue *q, bool drain_all)
376 __releases(q->queue_lock)
377 __acquires(q->queue_lock)
e3c78ca5 378{
458f27a9
AH
379 int i;
380
807592a4
BVA
381 lockdep_assert_held(q->queue_lock);
382
e3c78ca5 383 while (true) {
481a7d64 384 bool drain = false;
e3c78ca5 385
b855b04a
TH
386 /*
387 * The caller might be trying to drain @q before its
388 * elevator is initialized.
389 */
390 if (q->elevator)
391 elv_drain_elevator(q);
392
5efd6113 393 blkcg_drain_queue(q);
e3c78ca5 394
4eabc941
TH
395 /*
396 * This function might be called on a queue which failed
b855b04a
TH
397 * driver init after queue creation or is not yet fully
398 * active yet. Some drivers (e.g. fd and loop) get unhappy
399 * in such cases. Kick queue iff dispatch queue has
400 * something on it and @q has request_fn set.
4eabc941 401 */
b855b04a 402 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 403 __blk_run_queue(q);
c9a929dd 404
8a5ecdd4 405 drain |= q->nr_rqs_elvpriv;
24faf6f6 406 drain |= q->request_fn_active;
481a7d64
TH
407
408 /*
409 * Unfortunately, requests are queued at and tracked from
410 * multiple places and there's no single counter which can
411 * be drained. Check all the queues and counters.
412 */
413 if (drain_all) {
e97c293c 414 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
415 drain |= !list_empty(&q->queue_head);
416 for (i = 0; i < 2; i++) {
8a5ecdd4 417 drain |= q->nr_rqs[i];
481a7d64 418 drain |= q->in_flight[i];
7c94e1c1
ML
419 if (fq)
420 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
421 }
422 }
e3c78ca5 423
481a7d64 424 if (!drain)
e3c78ca5 425 break;
807592a4
BVA
426
427 spin_unlock_irq(q->queue_lock);
428
e3c78ca5 429 msleep(10);
807592a4
BVA
430
431 spin_lock_irq(q->queue_lock);
e3c78ca5 432 }
458f27a9
AH
433
434 /*
435 * With queue marked dead, any woken up waiter will fail the
436 * allocation path, so the wakeup chaining is lost and we're
437 * left with hung waiters. We need to wake up those waiters.
438 */
439 if (q->request_fn) {
a051661c
TH
440 struct request_list *rl;
441
a051661c
TH
442 blk_queue_for_each_rl(rl, q)
443 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
444 wake_up_all(&rl->wait[i]);
458f27a9 445 }
e3c78ca5
TH
446}
447
d732580b
TH
448/**
449 * blk_queue_bypass_start - enter queue bypass mode
450 * @q: queue of interest
451 *
452 * In bypass mode, only the dispatch FIFO queue of @q is used. This
453 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 454 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
455 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
456 * inside queue or RCU read lock.
d732580b
TH
457 */
458void blk_queue_bypass_start(struct request_queue *q)
459{
460 spin_lock_irq(q->queue_lock);
776687bc 461 q->bypass_depth++;
d732580b
TH
462 queue_flag_set(QUEUE_FLAG_BYPASS, q);
463 spin_unlock_irq(q->queue_lock);
464
776687bc
TH
465 /*
466 * Queues start drained. Skip actual draining till init is
467 * complete. This avoids lenghty delays during queue init which
468 * can happen many times during boot.
469 */
470 if (blk_queue_init_done(q)) {
807592a4
BVA
471 spin_lock_irq(q->queue_lock);
472 __blk_drain_queue(q, false);
473 spin_unlock_irq(q->queue_lock);
474
b82d4b19
TH
475 /* ensure blk_queue_bypass() is %true inside RCU read lock */
476 synchronize_rcu();
477 }
d732580b
TH
478}
479EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
480
481/**
482 * blk_queue_bypass_end - leave queue bypass mode
483 * @q: queue of interest
484 *
485 * Leave bypass mode and restore the normal queueing behavior.
486 */
487void blk_queue_bypass_end(struct request_queue *q)
488{
489 spin_lock_irq(q->queue_lock);
490 if (!--q->bypass_depth)
491 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
492 WARN_ON_ONCE(q->bypass_depth < 0);
493 spin_unlock_irq(q->queue_lock);
494}
495EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
496
aed3ea94
JA
497void blk_set_queue_dying(struct request_queue *q)
498{
1b856086
BVA
499 spin_lock_irq(q->queue_lock);
500 queue_flag_set(QUEUE_FLAG_DYING, q);
501 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
502
503 if (q->mq_ops)
504 blk_mq_wake_waiters(q);
505 else {
506 struct request_list *rl;
507
bbfc3c5d 508 spin_lock_irq(q->queue_lock);
aed3ea94
JA
509 blk_queue_for_each_rl(rl, q) {
510 if (rl->rq_pool) {
511 wake_up(&rl->wait[BLK_RW_SYNC]);
512 wake_up(&rl->wait[BLK_RW_ASYNC]);
513 }
514 }
bbfc3c5d 515 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
516 }
517}
518EXPORT_SYMBOL_GPL(blk_set_queue_dying);
519
c9a929dd
TH
520/**
521 * blk_cleanup_queue - shutdown a request queue
522 * @q: request queue to shutdown
523 *
c246e80d
BVA
524 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
525 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 526 */
6728cb0e 527void blk_cleanup_queue(struct request_queue *q)
483f4afc 528{
c9a929dd 529 spinlock_t *lock = q->queue_lock;
e3335de9 530
3f3299d5 531 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 532 mutex_lock(&q->sysfs_lock);
aed3ea94 533 blk_set_queue_dying(q);
c9a929dd 534 spin_lock_irq(lock);
6ecf23af 535
80fd9979 536 /*
3f3299d5 537 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
538 * that, unlike blk_queue_bypass_start(), we aren't performing
539 * synchronize_rcu() after entering bypass mode to avoid the delay
540 * as some drivers create and destroy a lot of queues while
541 * probing. This is still safe because blk_release_queue() will be
542 * called only after the queue refcnt drops to zero and nothing,
543 * RCU or not, would be traversing the queue by then.
544 */
6ecf23af
TH
545 q->bypass_depth++;
546 queue_flag_set(QUEUE_FLAG_BYPASS, q);
547
c9a929dd
TH
548 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
549 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 550 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
551 spin_unlock_irq(lock);
552 mutex_unlock(&q->sysfs_lock);
553
c246e80d
BVA
554 /*
555 * Drain all requests queued before DYING marking. Set DEAD flag to
556 * prevent that q->request_fn() gets invoked after draining finished.
557 */
3ef28e83
DW
558 blk_freeze_queue(q);
559 spin_lock_irq(lock);
560 if (!q->mq_ops)
43a5e4e2 561 __blk_drain_queue(q, true);
c246e80d 562 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 563 spin_unlock_irq(lock);
c9a929dd 564
5a48fc14
DW
565 /* for synchronous bio-based driver finish in-flight integrity i/o */
566 blk_flush_integrity();
567
c9a929dd 568 /* @q won't process any more request, flush async actions */
dc3b17cc 569 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
570 blk_sync_queue(q);
571
45a9c9d9
BVA
572 if (q->mq_ops)
573 blk_mq_free_queue(q);
3ef28e83 574 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 575
5e5cfac0
AH
576 spin_lock_irq(lock);
577 if (q->queue_lock != &q->__queue_lock)
578 q->queue_lock = &q->__queue_lock;
579 spin_unlock_irq(lock);
580
c9a929dd 581 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
582 blk_put_queue(q);
583}
1da177e4
LT
584EXPORT_SYMBOL(blk_cleanup_queue);
585
271508db 586/* Allocate memory local to the request queue */
6d247d7f 587static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 588{
6d247d7f
CH
589 struct request_queue *q = data;
590
591 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
592}
593
6d247d7f 594static void free_request_simple(void *element, void *data)
271508db
DR
595{
596 kmem_cache_free(request_cachep, element);
597}
598
6d247d7f
CH
599static void *alloc_request_size(gfp_t gfp_mask, void *data)
600{
601 struct request_queue *q = data;
602 struct request *rq;
603
604 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
605 q->node);
606 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
607 kfree(rq);
608 rq = NULL;
609 }
610 return rq;
611}
612
613static void free_request_size(void *element, void *data)
614{
615 struct request_queue *q = data;
616
617 if (q->exit_rq_fn)
618 q->exit_rq_fn(q, element);
619 kfree(element);
620}
621
5b788ce3
TH
622int blk_init_rl(struct request_list *rl, struct request_queue *q,
623 gfp_t gfp_mask)
1da177e4 624{
1abec4fd
MS
625 if (unlikely(rl->rq_pool))
626 return 0;
627
5b788ce3 628 rl->q = q;
1faa16d2
JA
629 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
630 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
631 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
632 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 633
6d247d7f
CH
634 if (q->cmd_size) {
635 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
636 alloc_request_size, free_request_size,
637 q, gfp_mask, q->node);
638 } else {
639 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
640 alloc_request_simple, free_request_simple,
641 q, gfp_mask, q->node);
642 }
1da177e4
LT
643 if (!rl->rq_pool)
644 return -ENOMEM;
645
646 return 0;
647}
648
5b788ce3
TH
649void blk_exit_rl(struct request_list *rl)
650{
651 if (rl->rq_pool)
652 mempool_destroy(rl->rq_pool);
653}
654
165125e1 655struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 656{
c304a51b 657 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
658}
659EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 660
6f3b0e8b 661int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
662{
663 while (true) {
664 int ret;
665
666 if (percpu_ref_tryget_live(&q->q_usage_counter))
667 return 0;
668
6f3b0e8b 669 if (nowait)
3ef28e83
DW
670 return -EBUSY;
671
5ed61d3f
ML
672 /*
673 * read pair of barrier in blk_mq_freeze_queue_start(),
674 * we need to order reading __PERCPU_REF_DEAD flag of
675 * .q_usage_counter and reading .mq_freeze_depth,
676 * otherwise the following wait may never return if the
677 * two reads are reordered.
678 */
679 smp_rmb();
680
3ef28e83
DW
681 ret = wait_event_interruptible(q->mq_freeze_wq,
682 !atomic_read(&q->mq_freeze_depth) ||
683 blk_queue_dying(q));
684 if (blk_queue_dying(q))
685 return -ENODEV;
686 if (ret)
687 return ret;
688 }
689}
690
691void blk_queue_exit(struct request_queue *q)
692{
693 percpu_ref_put(&q->q_usage_counter);
694}
695
696static void blk_queue_usage_counter_release(struct percpu_ref *ref)
697{
698 struct request_queue *q =
699 container_of(ref, struct request_queue, q_usage_counter);
700
701 wake_up_all(&q->mq_freeze_wq);
702}
703
287922eb
CH
704static void blk_rq_timed_out_timer(unsigned long data)
705{
706 struct request_queue *q = (struct request_queue *)data;
707
708 kblockd_schedule_work(&q->timeout_work);
709}
710
165125e1 711struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 712{
165125e1 713 struct request_queue *q;
1946089a 714
8324aa91 715 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 716 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
717 if (!q)
718 return NULL;
719
00380a40 720 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 721 if (q->id < 0)
3d2936f4 722 goto fail_q;
a73f730d 723
54efd50b
KO
724 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
725 if (!q->bio_split)
726 goto fail_id;
727
d03f6cdc
JK
728 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
729 if (!q->backing_dev_info)
730 goto fail_split;
731
a83b576c
JA
732 q->stats = blk_alloc_queue_stats();
733 if (!q->stats)
734 goto fail_stats;
735
dc3b17cc 736 q->backing_dev_info->ra_pages =
09cbfeaf 737 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
738 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
739 q->backing_dev_info->name = "block";
5151412d 740 q->node = node_id;
0989a025 741
dc3b17cc 742 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 743 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 744 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 745 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 746 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 747 INIT_LIST_HEAD(&q->icq_list);
4eef3049 748#ifdef CONFIG_BLK_CGROUP
e8989fae 749 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 750#endif
3cca6dc1 751 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 752
8324aa91 753 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 754
483f4afc 755 mutex_init(&q->sysfs_lock);
e7e72bf6 756 spin_lock_init(&q->__queue_lock);
483f4afc 757
c94a96ac
VG
758 /*
759 * By default initialize queue_lock to internal lock and driver can
760 * override it later if need be.
761 */
762 q->queue_lock = &q->__queue_lock;
763
b82d4b19
TH
764 /*
765 * A queue starts its life with bypass turned on to avoid
766 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
767 * init. The initial bypass will be finished when the queue is
768 * registered by blk_register_queue().
b82d4b19
TH
769 */
770 q->bypass_depth = 1;
771 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
772
320ae51f
JA
773 init_waitqueue_head(&q->mq_freeze_wq);
774
3ef28e83
DW
775 /*
776 * Init percpu_ref in atomic mode so that it's faster to shutdown.
777 * See blk_register_queue() for details.
778 */
779 if (percpu_ref_init(&q->q_usage_counter,
780 blk_queue_usage_counter_release,
781 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 782 goto fail_bdi;
f51b802c 783
3ef28e83
DW
784 if (blkcg_init_queue(q))
785 goto fail_ref;
786
1da177e4 787 return q;
a73f730d 788
3ef28e83
DW
789fail_ref:
790 percpu_ref_exit(&q->q_usage_counter);
fff4996b 791fail_bdi:
a83b576c
JA
792 blk_free_queue_stats(q->stats);
793fail_stats:
d03f6cdc 794 bdi_put(q->backing_dev_info);
54efd50b
KO
795fail_split:
796 bioset_free(q->bio_split);
a73f730d
TH
797fail_id:
798 ida_simple_remove(&blk_queue_ida, q->id);
799fail_q:
800 kmem_cache_free(blk_requestq_cachep, q);
801 return NULL;
1da177e4 802}
1946089a 803EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
804
805/**
806 * blk_init_queue - prepare a request queue for use with a block device
807 * @rfn: The function to be called to process requests that have been
808 * placed on the queue.
809 * @lock: Request queue spin lock
810 *
811 * Description:
812 * If a block device wishes to use the standard request handling procedures,
813 * which sorts requests and coalesces adjacent requests, then it must
814 * call blk_init_queue(). The function @rfn will be called when there
815 * are requests on the queue that need to be processed. If the device
816 * supports plugging, then @rfn may not be called immediately when requests
817 * are available on the queue, but may be called at some time later instead.
818 * Plugged queues are generally unplugged when a buffer belonging to one
819 * of the requests on the queue is needed, or due to memory pressure.
820 *
821 * @rfn is not required, or even expected, to remove all requests off the
822 * queue, but only as many as it can handle at a time. If it does leave
823 * requests on the queue, it is responsible for arranging that the requests
824 * get dealt with eventually.
825 *
826 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
827 * request queue; this lock will be taken also from interrupt context, so irq
828 * disabling is needed for it.
1da177e4 829 *
710027a4 830 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
831 * it didn't succeed.
832 *
833 * Note:
834 * blk_init_queue() must be paired with a blk_cleanup_queue() call
835 * when the block device is deactivated (such as at module unload).
836 **/
1946089a 837
165125e1 838struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 839{
c304a51b 840 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
841}
842EXPORT_SYMBOL(blk_init_queue);
843
165125e1 844struct request_queue *
1946089a
CL
845blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
846{
5ea708d1 847 struct request_queue *q;
1da177e4 848
5ea708d1
CH
849 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
850 if (!q)
c86d1b8a
MS
851 return NULL;
852
5ea708d1
CH
853 q->request_fn = rfn;
854 if (lock)
855 q->queue_lock = lock;
856 if (blk_init_allocated_queue(q) < 0) {
857 blk_cleanup_queue(q);
858 return NULL;
859 }
18741986 860
7982e90c 861 return q;
01effb0d
MS
862}
863EXPORT_SYMBOL(blk_init_queue_node);
864
dece1635 865static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 866
1da177e4 867
5ea708d1
CH
868int blk_init_allocated_queue(struct request_queue *q)
869{
6d247d7f 870 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 871 if (!q->fq)
5ea708d1 872 return -ENOMEM;
7982e90c 873
6d247d7f
CH
874 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
875 goto out_free_flush_queue;
7982e90c 876
a051661c 877 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 878 goto out_exit_flush_rq;
1da177e4 879
287922eb 880 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 881 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 882
f3b144aa
JA
883 /*
884 * This also sets hw/phys segments, boundary and size
885 */
c20e8de2 886 blk_queue_make_request(q, blk_queue_bio);
1da177e4 887
44ec9542
AS
888 q->sg_reserved_size = INT_MAX;
889
eb1c160b
TS
890 /* Protect q->elevator from elevator_change */
891 mutex_lock(&q->sysfs_lock);
892
b82d4b19 893 /* init elevator */
eb1c160b
TS
894 if (elevator_init(q, NULL)) {
895 mutex_unlock(&q->sysfs_lock);
6d247d7f 896 goto out_exit_flush_rq;
eb1c160b
TS
897 }
898
899 mutex_unlock(&q->sysfs_lock);
5ea708d1 900 return 0;
eb1c160b 901
6d247d7f
CH
902out_exit_flush_rq:
903 if (q->exit_rq_fn)
904 q->exit_rq_fn(q, q->fq->flush_rq);
905out_free_flush_queue:
ba483388 906 blk_free_flush_queue(q->fq);
5ea708d1 907 return -ENOMEM;
1da177e4 908}
5151412d 909EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 910
09ac46c4 911bool blk_get_queue(struct request_queue *q)
1da177e4 912{
3f3299d5 913 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
914 __blk_get_queue(q);
915 return true;
1da177e4
LT
916 }
917
09ac46c4 918 return false;
1da177e4 919}
d86e0e83 920EXPORT_SYMBOL(blk_get_queue);
1da177e4 921
5b788ce3 922static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 923{
e8064021 924 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 925 elv_put_request(rl->q, rq);
f1f8cc94 926 if (rq->elv.icq)
11a3122f 927 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
928 }
929
5b788ce3 930 mempool_free(rq, rl->rq_pool);
1da177e4
LT
931}
932
1da177e4
LT
933/*
934 * ioc_batching returns true if the ioc is a valid batching request and
935 * should be given priority access to a request.
936 */
165125e1 937static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
938{
939 if (!ioc)
940 return 0;
941
942 /*
943 * Make sure the process is able to allocate at least 1 request
944 * even if the batch times out, otherwise we could theoretically
945 * lose wakeups.
946 */
947 return ioc->nr_batch_requests == q->nr_batching ||
948 (ioc->nr_batch_requests > 0
949 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
950}
951
952/*
953 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
954 * will cause the process to be a "batcher" on all queues in the system. This
955 * is the behaviour we want though - once it gets a wakeup it should be given
956 * a nice run.
957 */
165125e1 958static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
959{
960 if (!ioc || ioc_batching(q, ioc))
961 return;
962
963 ioc->nr_batch_requests = q->nr_batching;
964 ioc->last_waited = jiffies;
965}
966
5b788ce3 967static void __freed_request(struct request_list *rl, int sync)
1da177e4 968{
5b788ce3 969 struct request_queue *q = rl->q;
1da177e4 970
d40f75a0
TH
971 if (rl->count[sync] < queue_congestion_off_threshold(q))
972 blk_clear_congested(rl, sync);
1da177e4 973
1faa16d2
JA
974 if (rl->count[sync] + 1 <= q->nr_requests) {
975 if (waitqueue_active(&rl->wait[sync]))
976 wake_up(&rl->wait[sync]);
1da177e4 977
5b788ce3 978 blk_clear_rl_full(rl, sync);
1da177e4
LT
979 }
980}
981
982/*
983 * A request has just been released. Account for it, update the full and
984 * congestion status, wake up any waiters. Called under q->queue_lock.
985 */
e8064021
CH
986static void freed_request(struct request_list *rl, bool sync,
987 req_flags_t rq_flags)
1da177e4 988{
5b788ce3 989 struct request_queue *q = rl->q;
1da177e4 990
8a5ecdd4 991 q->nr_rqs[sync]--;
1faa16d2 992 rl->count[sync]--;
e8064021 993 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 994 q->nr_rqs_elvpriv--;
1da177e4 995
5b788ce3 996 __freed_request(rl, sync);
1da177e4 997
1faa16d2 998 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 999 __freed_request(rl, sync ^ 1);
1da177e4
LT
1000}
1001
e3a2b3f9
JA
1002int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1003{
1004 struct request_list *rl;
d40f75a0 1005 int on_thresh, off_thresh;
e3a2b3f9
JA
1006
1007 spin_lock_irq(q->queue_lock);
1008 q->nr_requests = nr;
1009 blk_queue_congestion_threshold(q);
d40f75a0
TH
1010 on_thresh = queue_congestion_on_threshold(q);
1011 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1012
d40f75a0
TH
1013 blk_queue_for_each_rl(rl, q) {
1014 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1015 blk_set_congested(rl, BLK_RW_SYNC);
1016 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1017 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1018
d40f75a0
TH
1019 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1020 blk_set_congested(rl, BLK_RW_ASYNC);
1021 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1022 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1023
e3a2b3f9
JA
1024 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1025 blk_set_rl_full(rl, BLK_RW_SYNC);
1026 } else {
1027 blk_clear_rl_full(rl, BLK_RW_SYNC);
1028 wake_up(&rl->wait[BLK_RW_SYNC]);
1029 }
1030
1031 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1032 blk_set_rl_full(rl, BLK_RW_ASYNC);
1033 } else {
1034 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1035 wake_up(&rl->wait[BLK_RW_ASYNC]);
1036 }
1037 }
1038
1039 spin_unlock_irq(q->queue_lock);
1040 return 0;
1041}
1042
da8303c6 1043/**
a06e05e6 1044 * __get_request - get a free request
5b788ce3 1045 * @rl: request list to allocate from
ef295ecf 1046 * @op: operation and flags
da8303c6
TH
1047 * @bio: bio to allocate request for (can be %NULL)
1048 * @gfp_mask: allocation mask
1049 *
1050 * Get a free request from @q. This function may fail under memory
1051 * pressure or if @q is dead.
1052 *
da3dae54 1053 * Must be called with @q->queue_lock held and,
a492f075
JL
1054 * Returns ERR_PTR on failure, with @q->queue_lock held.
1055 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1056 */
ef295ecf
CH
1057static struct request *__get_request(struct request_list *rl, unsigned int op,
1058 struct bio *bio, gfp_t gfp_mask)
1da177e4 1059{
5b788ce3 1060 struct request_queue *q = rl->q;
b679281a 1061 struct request *rq;
7f4b35d1
TH
1062 struct elevator_type *et = q->elevator->type;
1063 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1064 struct io_cq *icq = NULL;
ef295ecf 1065 const bool is_sync = op_is_sync(op);
75eb6c37 1066 int may_queue;
e8064021 1067 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1068
3f3299d5 1069 if (unlikely(blk_queue_dying(q)))
a492f075 1070 return ERR_PTR(-ENODEV);
da8303c6 1071
ef295ecf 1072 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1073 if (may_queue == ELV_MQUEUE_NO)
1074 goto rq_starved;
1075
1faa16d2
JA
1076 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1077 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1078 /*
1079 * The queue will fill after this allocation, so set
1080 * it as full, and mark this process as "batching".
1081 * This process will be allowed to complete a batch of
1082 * requests, others will be blocked.
1083 */
5b788ce3 1084 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1085 ioc_set_batching(q, ioc);
5b788ce3 1086 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1087 } else {
1088 if (may_queue != ELV_MQUEUE_MUST
1089 && !ioc_batching(q, ioc)) {
1090 /*
1091 * The queue is full and the allocating
1092 * process is not a "batcher", and not
1093 * exempted by the IO scheduler
1094 */
a492f075 1095 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1096 }
1097 }
1da177e4 1098 }
d40f75a0 1099 blk_set_congested(rl, is_sync);
1da177e4
LT
1100 }
1101
082cf69e
JA
1102 /*
1103 * Only allow batching queuers to allocate up to 50% over the defined
1104 * limit of requests, otherwise we could have thousands of requests
1105 * allocated with any setting of ->nr_requests
1106 */
1faa16d2 1107 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1108 return ERR_PTR(-ENOMEM);
fd782a4a 1109
8a5ecdd4 1110 q->nr_rqs[is_sync]++;
1faa16d2
JA
1111 rl->count[is_sync]++;
1112 rl->starved[is_sync] = 0;
cb98fc8b 1113
f1f8cc94
TH
1114 /*
1115 * Decide whether the new request will be managed by elevator. If
e8064021 1116 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1117 * prevent the current elevator from being destroyed until the new
1118 * request is freed. This guarantees icq's won't be destroyed and
1119 * makes creating new ones safe.
1120 *
e6f7f93d
CH
1121 * Flush requests do not use the elevator so skip initialization.
1122 * This allows a request to share the flush and elevator data.
1123 *
f1f8cc94
TH
1124 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1125 * it will be created after releasing queue_lock.
1126 */
e6f7f93d 1127 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1128 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1129 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1130 if (et->icq_cache && ioc)
1131 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1132 }
cb98fc8b 1133
f253b86b 1134 if (blk_queue_io_stat(q))
e8064021 1135 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1136 spin_unlock_irq(q->queue_lock);
1137
29e2b09a 1138 /* allocate and init request */
5b788ce3 1139 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1140 if (!rq)
b679281a 1141 goto fail_alloc;
1da177e4 1142
29e2b09a 1143 blk_rq_init(q, rq);
a051661c 1144 blk_rq_set_rl(rq, rl);
5dc8b362 1145 blk_rq_set_prio(rq, ioc);
ef295ecf 1146 rq->cmd_flags = op;
e8064021 1147 rq->rq_flags = rq_flags;
29e2b09a 1148
aaf7c680 1149 /* init elvpriv */
e8064021 1150 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1151 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1152 if (ioc)
1153 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1154 if (!icq)
1155 goto fail_elvpriv;
29e2b09a 1156 }
aaf7c680
TH
1157
1158 rq->elv.icq = icq;
1159 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1160 goto fail_elvpriv;
1161
1162 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1163 if (icq)
1164 get_io_context(icq->ioc);
1165 }
aaf7c680 1166out:
88ee5ef1
JA
1167 /*
1168 * ioc may be NULL here, and ioc_batching will be false. That's
1169 * OK, if the queue is under the request limit then requests need
1170 * not count toward the nr_batch_requests limit. There will always
1171 * be some limit enforced by BLK_BATCH_TIME.
1172 */
1da177e4
LT
1173 if (ioc_batching(q, ioc))
1174 ioc->nr_batch_requests--;
6728cb0e 1175
e6a40b09 1176 trace_block_getrq(q, bio, op);
1da177e4 1177 return rq;
b679281a 1178
aaf7c680
TH
1179fail_elvpriv:
1180 /*
1181 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1182 * and may fail indefinitely under memory pressure and thus
1183 * shouldn't stall IO. Treat this request as !elvpriv. This will
1184 * disturb iosched and blkcg but weird is bettern than dead.
1185 */
7b2b10e0 1186 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1187 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1188
e8064021 1189 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1190 rq->elv.icq = NULL;
1191
1192 spin_lock_irq(q->queue_lock);
8a5ecdd4 1193 q->nr_rqs_elvpriv--;
aaf7c680
TH
1194 spin_unlock_irq(q->queue_lock);
1195 goto out;
1196
b679281a
TH
1197fail_alloc:
1198 /*
1199 * Allocation failed presumably due to memory. Undo anything we
1200 * might have messed up.
1201 *
1202 * Allocating task should really be put onto the front of the wait
1203 * queue, but this is pretty rare.
1204 */
1205 spin_lock_irq(q->queue_lock);
e8064021 1206 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1207
1208 /*
1209 * in the very unlikely event that allocation failed and no
1210 * requests for this direction was pending, mark us starved so that
1211 * freeing of a request in the other direction will notice
1212 * us. another possible fix would be to split the rq mempool into
1213 * READ and WRITE
1214 */
1215rq_starved:
1216 if (unlikely(rl->count[is_sync] == 0))
1217 rl->starved[is_sync] = 1;
a492f075 1218 return ERR_PTR(-ENOMEM);
1da177e4
LT
1219}
1220
da8303c6 1221/**
a06e05e6 1222 * get_request - get a free request
da8303c6 1223 * @q: request_queue to allocate request from
ef295ecf 1224 * @op: operation and flags
da8303c6 1225 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1226 * @gfp_mask: allocation mask
da8303c6 1227 *
d0164adc
MG
1228 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1229 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1230 *
da3dae54 1231 * Must be called with @q->queue_lock held and,
a492f075
JL
1232 * Returns ERR_PTR on failure, with @q->queue_lock held.
1233 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1234 */
ef295ecf
CH
1235static struct request *get_request(struct request_queue *q, unsigned int op,
1236 struct bio *bio, gfp_t gfp_mask)
1da177e4 1237{
ef295ecf 1238 const bool is_sync = op_is_sync(op);
a06e05e6 1239 DEFINE_WAIT(wait);
a051661c 1240 struct request_list *rl;
1da177e4 1241 struct request *rq;
a051661c
TH
1242
1243 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1244retry:
ef295ecf 1245 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1246 if (!IS_ERR(rq))
a06e05e6 1247 return rq;
1da177e4 1248
d0164adc 1249 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1250 blk_put_rl(rl);
a492f075 1251 return rq;
a051661c 1252 }
1da177e4 1253
a06e05e6
TH
1254 /* wait on @rl and retry */
1255 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1256 TASK_UNINTERRUPTIBLE);
1da177e4 1257
e6a40b09 1258 trace_block_sleeprq(q, bio, op);
1da177e4 1259
a06e05e6
TH
1260 spin_unlock_irq(q->queue_lock);
1261 io_schedule();
d6344532 1262
a06e05e6
TH
1263 /*
1264 * After sleeping, we become a "batching" process and will be able
1265 * to allocate at least one request, and up to a big batch of them
1266 * for a small period time. See ioc_batching, ioc_set_batching
1267 */
a06e05e6 1268 ioc_set_batching(q, current->io_context);
05caf8db 1269
a06e05e6
TH
1270 spin_lock_irq(q->queue_lock);
1271 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1272
a06e05e6 1273 goto retry;
1da177e4
LT
1274}
1275
320ae51f
JA
1276static struct request *blk_old_get_request(struct request_queue *q, int rw,
1277 gfp_t gfp_mask)
1da177e4
LT
1278{
1279 struct request *rq;
1280
7f4b35d1
TH
1281 /* create ioc upfront */
1282 create_io_context(gfp_mask, q->node);
1283
d6344532 1284 spin_lock_irq(q->queue_lock);
ef295ecf 1285 rq = get_request(q, rw, NULL, gfp_mask);
0c4de0f3 1286 if (IS_ERR(rq)) {
da8303c6 1287 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1288 return rq;
1289 }
1da177e4 1290
0c4de0f3
CH
1291 /* q->queue_lock is unlocked at this point */
1292 rq->__data_len = 0;
1293 rq->__sector = (sector_t) -1;
1294 rq->bio = rq->biotail = NULL;
1da177e4
LT
1295 return rq;
1296}
320ae51f
JA
1297
1298struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1299{
1300 if (q->mq_ops)
6f3b0e8b
CH
1301 return blk_mq_alloc_request(q, rw,
1302 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1303 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1304 else
1305 return blk_old_get_request(q, rw, gfp_mask);
1306}
1da177e4
LT
1307EXPORT_SYMBOL(blk_get_request);
1308
1309/**
1310 * blk_requeue_request - put a request back on queue
1311 * @q: request queue where request should be inserted
1312 * @rq: request to be inserted
1313 *
1314 * Description:
1315 * Drivers often keep queueing requests until the hardware cannot accept
1316 * more, when that condition happens we need to put the request back
1317 * on the queue. Must be called with queue lock held.
1318 */
165125e1 1319void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1320{
242f9dcb
JA
1321 blk_delete_timer(rq);
1322 blk_clear_rq_complete(rq);
5f3ea37c 1323 trace_block_rq_requeue(q, rq);
87760e5e 1324 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1325
e8064021 1326 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1327 blk_queue_end_tag(q, rq);
1328
ba396a6c
JB
1329 BUG_ON(blk_queued_rq(rq));
1330
1da177e4
LT
1331 elv_requeue_request(q, rq);
1332}
1da177e4
LT
1333EXPORT_SYMBOL(blk_requeue_request);
1334
73c10101
JA
1335static void add_acct_request(struct request_queue *q, struct request *rq,
1336 int where)
1337{
320ae51f 1338 blk_account_io_start(rq, true);
7eaceacc 1339 __elv_add_request(q, rq, where);
73c10101
JA
1340}
1341
074a7aca
TH
1342static void part_round_stats_single(int cpu, struct hd_struct *part,
1343 unsigned long now)
1344{
7276d02e
JA
1345 int inflight;
1346
074a7aca
TH
1347 if (now == part->stamp)
1348 return;
1349
7276d02e
JA
1350 inflight = part_in_flight(part);
1351 if (inflight) {
074a7aca 1352 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1353 inflight * (now - part->stamp));
074a7aca
TH
1354 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1355 }
1356 part->stamp = now;
1357}
1358
1359/**
496aa8a9
RD
1360 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1361 * @cpu: cpu number for stats access
1362 * @part: target partition
1da177e4
LT
1363 *
1364 * The average IO queue length and utilisation statistics are maintained
1365 * by observing the current state of the queue length and the amount of
1366 * time it has been in this state for.
1367 *
1368 * Normally, that accounting is done on IO completion, but that can result
1369 * in more than a second's worth of IO being accounted for within any one
1370 * second, leading to >100% utilisation. To deal with that, we call this
1371 * function to do a round-off before returning the results when reading
1372 * /proc/diskstats. This accounts immediately for all queue usage up to
1373 * the current jiffies and restarts the counters again.
1374 */
c9959059 1375void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1376{
1377 unsigned long now = jiffies;
1378
074a7aca
TH
1379 if (part->partno)
1380 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1381 part_round_stats_single(cpu, part, now);
6f2576af 1382}
074a7aca 1383EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1384
47fafbc7 1385#ifdef CONFIG_PM
c8158819
LM
1386static void blk_pm_put_request(struct request *rq)
1387{
e8064021 1388 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1389 pm_runtime_mark_last_busy(rq->q->dev);
1390}
1391#else
1392static inline void blk_pm_put_request(struct request *rq) {}
1393#endif
1394
1da177e4
LT
1395/*
1396 * queue lock must be held
1397 */
165125e1 1398void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1399{
e8064021
CH
1400 req_flags_t rq_flags = req->rq_flags;
1401
1da177e4
LT
1402 if (unlikely(!q))
1403 return;
1da177e4 1404
6f5ba581
CH
1405 if (q->mq_ops) {
1406 blk_mq_free_request(req);
1407 return;
1408 }
1409
c8158819
LM
1410 blk_pm_put_request(req);
1411
8922e16c
TH
1412 elv_completed_request(q, req);
1413
1cd96c24
BH
1414 /* this is a bio leak */
1415 WARN_ON(req->bio != NULL);
1416
87760e5e
JA
1417 wbt_done(q->rq_wb, &req->issue_stat);
1418
1da177e4
LT
1419 /*
1420 * Request may not have originated from ll_rw_blk. if not,
1421 * it didn't come out of our reserved rq pools
1422 */
e8064021 1423 if (rq_flags & RQF_ALLOCED) {
a051661c 1424 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1425 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1426
1da177e4 1427 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1428 BUG_ON(ELV_ON_HASH(req));
1da177e4 1429
a051661c 1430 blk_free_request(rl, req);
e8064021 1431 freed_request(rl, sync, rq_flags);
a051661c 1432 blk_put_rl(rl);
1da177e4
LT
1433 }
1434}
6e39b69e
MC
1435EXPORT_SYMBOL_GPL(__blk_put_request);
1436
1da177e4
LT
1437void blk_put_request(struct request *req)
1438{
165125e1 1439 struct request_queue *q = req->q;
8922e16c 1440
320ae51f
JA
1441 if (q->mq_ops)
1442 blk_mq_free_request(req);
1443 else {
1444 unsigned long flags;
1445
1446 spin_lock_irqsave(q->queue_lock, flags);
1447 __blk_put_request(q, req);
1448 spin_unlock_irqrestore(q->queue_lock, flags);
1449 }
1da177e4 1450}
1da177e4
LT
1451EXPORT_SYMBOL(blk_put_request);
1452
320ae51f
JA
1453bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1454 struct bio *bio)
73c10101 1455{
1eff9d32 1456 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1457
73c10101
JA
1458 if (!ll_back_merge_fn(q, req, bio))
1459 return false;
1460
8c1cf6bb 1461 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1462
1463 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1464 blk_rq_set_mixed_merge(req);
1465
1466 req->biotail->bi_next = bio;
1467 req->biotail = bio;
4f024f37 1468 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1469 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1470
320ae51f 1471 blk_account_io_start(req, false);
73c10101
JA
1472 return true;
1473}
1474
320ae51f
JA
1475bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1476 struct bio *bio)
73c10101 1477{
1eff9d32 1478 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1479
73c10101
JA
1480 if (!ll_front_merge_fn(q, req, bio))
1481 return false;
1482
8c1cf6bb 1483 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1484
1485 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1486 blk_rq_set_mixed_merge(req);
1487
73c10101
JA
1488 bio->bi_next = req->bio;
1489 req->bio = bio;
1490
4f024f37
KO
1491 req->__sector = bio->bi_iter.bi_sector;
1492 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1493 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1494
320ae51f 1495 blk_account_io_start(req, false);
73c10101
JA
1496 return true;
1497}
1498
1e739730
CH
1499bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1500 struct bio *bio)
1501{
1502 unsigned short segments = blk_rq_nr_discard_segments(req);
1503
1504 if (segments >= queue_max_discard_segments(q))
1505 goto no_merge;
1506 if (blk_rq_sectors(req) + bio_sectors(bio) >
1507 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1508 goto no_merge;
1509
1510 req->biotail->bi_next = bio;
1511 req->biotail = bio;
1512 req->__data_len += bio->bi_iter.bi_size;
1513 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1514 req->nr_phys_segments = segments + 1;
1515
1516 blk_account_io_start(req, false);
1517 return true;
1518no_merge:
1519 req_set_nomerge(q, req);
1520 return false;
1521}
1522
bd87b589 1523/**
320ae51f 1524 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1525 * @q: request_queue new bio is being queued at
1526 * @bio: new bio being queued
1527 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1528 * @same_queue_rq: pointer to &struct request that gets filled in when
1529 * another request associated with @q is found on the plug list
1530 * (optional, may be %NULL)
bd87b589
TH
1531 *
1532 * Determine whether @bio being queued on @q can be merged with a request
1533 * on %current's plugged list. Returns %true if merge was successful,
1534 * otherwise %false.
1535 *
07c2bd37
TH
1536 * Plugging coalesces IOs from the same issuer for the same purpose without
1537 * going through @q->queue_lock. As such it's more of an issuing mechanism
1538 * than scheduling, and the request, while may have elvpriv data, is not
1539 * added on the elevator at this point. In addition, we don't have
1540 * reliable access to the elevator outside queue lock. Only check basic
1541 * merging parameters without querying the elevator.
da41a589
RE
1542 *
1543 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1544 */
320ae51f 1545bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1546 unsigned int *request_count,
1547 struct request **same_queue_rq)
73c10101
JA
1548{
1549 struct blk_plug *plug;
1550 struct request *rq;
92f399c7 1551 struct list_head *plug_list;
73c10101 1552
bd87b589 1553 plug = current->plug;
73c10101 1554 if (!plug)
34fe7c05 1555 return false;
56ebdaf2 1556 *request_count = 0;
73c10101 1557
92f399c7
SL
1558 if (q->mq_ops)
1559 plug_list = &plug->mq_list;
1560 else
1561 plug_list = &plug->list;
1562
1563 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1564 bool merged = false;
73c10101 1565
5b3f341f 1566 if (rq->q == q) {
1b2e19f1 1567 (*request_count)++;
5b3f341f
SL
1568 /*
1569 * Only blk-mq multiple hardware queues case checks the
1570 * rq in the same queue, there should be only one such
1571 * rq in a queue
1572 **/
1573 if (same_queue_rq)
1574 *same_queue_rq = rq;
1575 }
56ebdaf2 1576
07c2bd37 1577 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1578 continue;
1579
34fe7c05
CH
1580 switch (blk_try_merge(rq, bio)) {
1581 case ELEVATOR_BACK_MERGE:
1582 merged = bio_attempt_back_merge(q, rq, bio);
1583 break;
1584 case ELEVATOR_FRONT_MERGE:
1585 merged = bio_attempt_front_merge(q, rq, bio);
1586 break;
1e739730
CH
1587 case ELEVATOR_DISCARD_MERGE:
1588 merged = bio_attempt_discard_merge(q, rq, bio);
1589 break;
34fe7c05
CH
1590 default:
1591 break;
73c10101 1592 }
34fe7c05
CH
1593
1594 if (merged)
1595 return true;
73c10101 1596 }
34fe7c05
CH
1597
1598 return false;
73c10101
JA
1599}
1600
0809e3ac
JM
1601unsigned int blk_plug_queued_count(struct request_queue *q)
1602{
1603 struct blk_plug *plug;
1604 struct request *rq;
1605 struct list_head *plug_list;
1606 unsigned int ret = 0;
1607
1608 plug = current->plug;
1609 if (!plug)
1610 goto out;
1611
1612 if (q->mq_ops)
1613 plug_list = &plug->mq_list;
1614 else
1615 plug_list = &plug->list;
1616
1617 list_for_each_entry(rq, plug_list, queuelist) {
1618 if (rq->q == q)
1619 ret++;
1620 }
1621out:
1622 return ret;
1623}
1624
86db1e29 1625void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1626{
1eff9d32 1627 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1628 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1629
52d9e675 1630 req->errors = 0;
4f024f37 1631 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1632 if (ioprio_valid(bio_prio(bio)))
1633 req->ioprio = bio_prio(bio);
bc1c56fd 1634 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1635}
1636
dece1635 1637static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1638{
73c10101 1639 struct blk_plug *plug;
34fe7c05 1640 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1641 struct request *req, *free;
56ebdaf2 1642 unsigned int request_count = 0;
87760e5e 1643 unsigned int wb_acct;
1da177e4 1644
1da177e4
LT
1645 /*
1646 * low level driver can indicate that it wants pages above a
1647 * certain limit bounced to low memory (ie for highmem, or even
1648 * ISA dma in theory)
1649 */
1650 blk_queue_bounce(q, &bio);
1651
23688bf4
JN
1652 blk_queue_split(q, &bio, q->bio_split);
1653
ffecfd1a 1654 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1655 bio->bi_error = -EIO;
1656 bio_endio(bio);
dece1635 1657 return BLK_QC_T_NONE;
ffecfd1a
DW
1658 }
1659
f73f44eb 1660 if (op_is_flush(bio->bi_opf)) {
73c10101 1661 spin_lock_irq(q->queue_lock);
ae1b1539 1662 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1663 goto get_rq;
1664 }
1665
73c10101
JA
1666 /*
1667 * Check if we can merge with the plugged list before grabbing
1668 * any locks.
1669 */
0809e3ac
JM
1670 if (!blk_queue_nomerges(q)) {
1671 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1672 return BLK_QC_T_NONE;
0809e3ac
JM
1673 } else
1674 request_count = blk_plug_queued_count(q);
1da177e4 1675
73c10101 1676 spin_lock_irq(q->queue_lock);
2056a782 1677
34fe7c05
CH
1678 switch (elv_merge(q, &req, bio)) {
1679 case ELEVATOR_BACK_MERGE:
1680 if (!bio_attempt_back_merge(q, req, bio))
1681 break;
1682 elv_bio_merged(q, req, bio);
1683 free = attempt_back_merge(q, req);
1684 if (free)
1685 __blk_put_request(q, free);
1686 else
1687 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1688 goto out_unlock;
1689 case ELEVATOR_FRONT_MERGE:
1690 if (!bio_attempt_front_merge(q, req, bio))
1691 break;
1692 elv_bio_merged(q, req, bio);
1693 free = attempt_front_merge(q, req);
1694 if (free)
1695 __blk_put_request(q, free);
1696 else
1697 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1698 goto out_unlock;
1699 default:
1700 break;
1da177e4
LT
1701 }
1702
450991bc 1703get_rq:
87760e5e
JA
1704 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1705
1da177e4 1706 /*
450991bc 1707 * Grab a free request. This is might sleep but can not fail.
d6344532 1708 * Returns with the queue unlocked.
450991bc 1709 */
ef295ecf 1710 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1711 if (IS_ERR(req)) {
87760e5e 1712 __wbt_done(q->rq_wb, wb_acct);
4246a0b6
CH
1713 bio->bi_error = PTR_ERR(req);
1714 bio_endio(bio);
da8303c6
TH
1715 goto out_unlock;
1716 }
d6344532 1717
87760e5e
JA
1718 wbt_track(&req->issue_stat, wb_acct);
1719
450991bc
NP
1720 /*
1721 * After dropping the lock and possibly sleeping here, our request
1722 * may now be mergeable after it had proven unmergeable (above).
1723 * We don't worry about that case for efficiency. It won't happen
1724 * often, and the elevators are able to handle it.
1da177e4 1725 */
52d9e675 1726 init_request_from_bio(req, bio);
1da177e4 1727
9562ad9a 1728 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1729 req->cpu = raw_smp_processor_id();
73c10101
JA
1730
1731 plug = current->plug;
721a9602 1732 if (plug) {
dc6d36c9
JA
1733 /*
1734 * If this is the first request added after a plug, fire
7aef2e78 1735 * of a plug trace.
0a6219a9
ML
1736 *
1737 * @request_count may become stale because of schedule
1738 * out, so check plug list again.
dc6d36c9 1739 */
0a6219a9 1740 if (!request_count || list_empty(&plug->list))
dc6d36c9 1741 trace_block_plug(q);
3540d5e8 1742 else {
50d24c34
SL
1743 struct request *last = list_entry_rq(plug->list.prev);
1744 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1745 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1746 blk_flush_plug_list(plug, false);
019ceb7d
SL
1747 trace_block_plug(q);
1748 }
73c10101 1749 }
73c10101 1750 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1751 blk_account_io_start(req, true);
73c10101
JA
1752 } else {
1753 spin_lock_irq(q->queue_lock);
1754 add_acct_request(q, req, where);
24ecfbe2 1755 __blk_run_queue(q);
73c10101
JA
1756out_unlock:
1757 spin_unlock_irq(q->queue_lock);
1758 }
dece1635
JA
1759
1760 return BLK_QC_T_NONE;
1da177e4
LT
1761}
1762
1763/*
1764 * If bio->bi_dev is a partition, remap the location
1765 */
1766static inline void blk_partition_remap(struct bio *bio)
1767{
1768 struct block_device *bdev = bio->bi_bdev;
1769
778889d8
ST
1770 /*
1771 * Zone reset does not include bi_size so bio_sectors() is always 0.
1772 * Include a test for the reset op code and perform the remap if needed.
1773 */
1774 if (bdev != bdev->bd_contains &&
1775 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1776 struct hd_struct *p = bdev->bd_part;
1777
4f024f37 1778 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1779 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1780
d07335e5
MS
1781 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1782 bdev->bd_dev,
4f024f37 1783 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1784 }
1785}
1786
1da177e4
LT
1787static void handle_bad_sector(struct bio *bio)
1788{
1789 char b[BDEVNAME_SIZE];
1790
1791 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1792 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1793 bdevname(bio->bi_bdev, b),
1eff9d32 1794 bio->bi_opf,
f73a1c7d 1795 (unsigned long long)bio_end_sector(bio),
77304d2a 1796 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1797}
1798
c17bb495
AM
1799#ifdef CONFIG_FAIL_MAKE_REQUEST
1800
1801static DECLARE_FAULT_ATTR(fail_make_request);
1802
1803static int __init setup_fail_make_request(char *str)
1804{
1805 return setup_fault_attr(&fail_make_request, str);
1806}
1807__setup("fail_make_request=", setup_fail_make_request);
1808
b2c9cd37 1809static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1810{
b2c9cd37 1811 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1812}
1813
1814static int __init fail_make_request_debugfs(void)
1815{
dd48c085
AM
1816 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1817 NULL, &fail_make_request);
1818
21f9fcd8 1819 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1820}
1821
1822late_initcall(fail_make_request_debugfs);
1823
1824#else /* CONFIG_FAIL_MAKE_REQUEST */
1825
b2c9cd37
AM
1826static inline bool should_fail_request(struct hd_struct *part,
1827 unsigned int bytes)
c17bb495 1828{
b2c9cd37 1829 return false;
c17bb495
AM
1830}
1831
1832#endif /* CONFIG_FAIL_MAKE_REQUEST */
1833
c07e2b41
JA
1834/*
1835 * Check whether this bio extends beyond the end of the device.
1836 */
1837static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1838{
1839 sector_t maxsector;
1840
1841 if (!nr_sectors)
1842 return 0;
1843
1844 /* Test device or partition size, when known. */
77304d2a 1845 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1846 if (maxsector) {
4f024f37 1847 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1848
1849 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1850 /*
1851 * This may well happen - the kernel calls bread()
1852 * without checking the size of the device, e.g., when
1853 * mounting a device.
1854 */
1855 handle_bad_sector(bio);
1856 return 1;
1857 }
1858 }
1859
1860 return 0;
1861}
1862
27a84d54
CH
1863static noinline_for_stack bool
1864generic_make_request_checks(struct bio *bio)
1da177e4 1865{
165125e1 1866 struct request_queue *q;
5a7bbad2 1867 int nr_sectors = bio_sectors(bio);
51fd77bd 1868 int err = -EIO;
5a7bbad2
CH
1869 char b[BDEVNAME_SIZE];
1870 struct hd_struct *part;
1da177e4
LT
1871
1872 might_sleep();
1da177e4 1873
c07e2b41
JA
1874 if (bio_check_eod(bio, nr_sectors))
1875 goto end_io;
1da177e4 1876
5a7bbad2
CH
1877 q = bdev_get_queue(bio->bi_bdev);
1878 if (unlikely(!q)) {
1879 printk(KERN_ERR
1880 "generic_make_request: Trying to access "
1881 "nonexistent block-device %s (%Lu)\n",
1882 bdevname(bio->bi_bdev, b),
4f024f37 1883 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1884 goto end_io;
1885 }
c17bb495 1886
5a7bbad2 1887 part = bio->bi_bdev->bd_part;
4f024f37 1888 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1889 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1890 bio->bi_iter.bi_size))
5a7bbad2 1891 goto end_io;
2056a782 1892
5a7bbad2
CH
1893 /*
1894 * If this device has partitions, remap block n
1895 * of partition p to block n+start(p) of the disk.
1896 */
1897 blk_partition_remap(bio);
2056a782 1898
5a7bbad2
CH
1899 if (bio_check_eod(bio, nr_sectors))
1900 goto end_io;
1e87901e 1901
5a7bbad2
CH
1902 /*
1903 * Filter flush bio's early so that make_request based
1904 * drivers without flush support don't have to worry
1905 * about them.
1906 */
f3a8ab7d 1907 if (op_is_flush(bio->bi_opf) &&
c888a8f9 1908 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 1909 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2
CH
1910 if (!nr_sectors) {
1911 err = 0;
51fd77bd
JA
1912 goto end_io;
1913 }
5a7bbad2 1914 }
5ddfe969 1915
288dab8a
CH
1916 switch (bio_op(bio)) {
1917 case REQ_OP_DISCARD:
1918 if (!blk_queue_discard(q))
1919 goto not_supported;
1920 break;
1921 case REQ_OP_SECURE_ERASE:
1922 if (!blk_queue_secure_erase(q))
1923 goto not_supported;
1924 break;
1925 case REQ_OP_WRITE_SAME:
1926 if (!bdev_write_same(bio->bi_bdev))
1927 goto not_supported;
58886785 1928 break;
2d253440
ST
1929 case REQ_OP_ZONE_REPORT:
1930 case REQ_OP_ZONE_RESET:
1931 if (!bdev_is_zoned(bio->bi_bdev))
1932 goto not_supported;
288dab8a 1933 break;
a6f0788e
CK
1934 case REQ_OP_WRITE_ZEROES:
1935 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1936 goto not_supported;
1937 break;
288dab8a
CH
1938 default:
1939 break;
5a7bbad2 1940 }
01edede4 1941
7f4b35d1
TH
1942 /*
1943 * Various block parts want %current->io_context and lazy ioc
1944 * allocation ends up trading a lot of pain for a small amount of
1945 * memory. Just allocate it upfront. This may fail and block
1946 * layer knows how to live with it.
1947 */
1948 create_io_context(GFP_ATOMIC, q->node);
1949
ae118896
TH
1950 if (!blkcg_bio_issue_check(q, bio))
1951 return false;
27a84d54 1952
5a7bbad2 1953 trace_block_bio_queue(q, bio);
27a84d54 1954 return true;
a7384677 1955
288dab8a
CH
1956not_supported:
1957 err = -EOPNOTSUPP;
a7384677 1958end_io:
4246a0b6
CH
1959 bio->bi_error = err;
1960 bio_endio(bio);
27a84d54 1961 return false;
1da177e4
LT
1962}
1963
27a84d54
CH
1964/**
1965 * generic_make_request - hand a buffer to its device driver for I/O
1966 * @bio: The bio describing the location in memory and on the device.
1967 *
1968 * generic_make_request() is used to make I/O requests of block
1969 * devices. It is passed a &struct bio, which describes the I/O that needs
1970 * to be done.
1971 *
1972 * generic_make_request() does not return any status. The
1973 * success/failure status of the request, along with notification of
1974 * completion, is delivered asynchronously through the bio->bi_end_io
1975 * function described (one day) else where.
1976 *
1977 * The caller of generic_make_request must make sure that bi_io_vec
1978 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1979 * set to describe the device address, and the
1980 * bi_end_io and optionally bi_private are set to describe how
1981 * completion notification should be signaled.
1982 *
1983 * generic_make_request and the drivers it calls may use bi_next if this
1984 * bio happens to be merged with someone else, and may resubmit the bio to
1985 * a lower device by calling into generic_make_request recursively, which
1986 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1987 */
dece1635 1988blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1989{
f5fe1b51
N
1990 /*
1991 * bio_list_on_stack[0] contains bios submitted by the current
1992 * make_request_fn.
1993 * bio_list_on_stack[1] contains bios that were submitted before
1994 * the current make_request_fn, but that haven't been processed
1995 * yet.
1996 */
1997 struct bio_list bio_list_on_stack[2];
dece1635 1998 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1999
27a84d54 2000 if (!generic_make_request_checks(bio))
dece1635 2001 goto out;
27a84d54
CH
2002
2003 /*
2004 * We only want one ->make_request_fn to be active at a time, else
2005 * stack usage with stacked devices could be a problem. So use
2006 * current->bio_list to keep a list of requests submited by a
2007 * make_request_fn function. current->bio_list is also used as a
2008 * flag to say if generic_make_request is currently active in this
2009 * task or not. If it is NULL, then no make_request is active. If
2010 * it is non-NULL, then a make_request is active, and new requests
2011 * should be added at the tail
2012 */
bddd87c7 2013 if (current->bio_list) {
f5fe1b51 2014 bio_list_add(&current->bio_list[0], bio);
dece1635 2015 goto out;
d89d8796 2016 }
27a84d54 2017
d89d8796
NB
2018 /* following loop may be a bit non-obvious, and so deserves some
2019 * explanation.
2020 * Before entering the loop, bio->bi_next is NULL (as all callers
2021 * ensure that) so we have a list with a single bio.
2022 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2023 * we assign bio_list to a pointer to the bio_list_on_stack,
2024 * thus initialising the bio_list of new bios to be
27a84d54 2025 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2026 * through a recursive call to generic_make_request. If it
2027 * did, we find a non-NULL value in bio_list and re-enter the loop
2028 * from the top. In this case we really did just take the bio
bddd87c7 2029 * of the top of the list (no pretending) and so remove it from
27a84d54 2030 * bio_list, and call into ->make_request() again.
d89d8796
NB
2031 */
2032 BUG_ON(bio->bi_next);
f5fe1b51
N
2033 bio_list_init(&bio_list_on_stack[0]);
2034 current->bio_list = bio_list_on_stack;
d89d8796 2035 do {
27a84d54
CH
2036 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2037
6f3b0e8b 2038 if (likely(blk_queue_enter(q, false) == 0)) {
79bd9959
N
2039 struct bio_list lower, same;
2040
2041 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2042 bio_list_on_stack[1] = bio_list_on_stack[0];
2043 bio_list_init(&bio_list_on_stack[0]);
dece1635 2044 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2045
2046 blk_queue_exit(q);
27a84d54 2047
79bd9959
N
2048 /* sort new bios into those for a lower level
2049 * and those for the same level
2050 */
2051 bio_list_init(&lower);
2052 bio_list_init(&same);
f5fe1b51 2053 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
79bd9959
N
2054 if (q == bdev_get_queue(bio->bi_bdev))
2055 bio_list_add(&same, bio);
2056 else
2057 bio_list_add(&lower, bio);
2058 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2059 bio_list_merge(&bio_list_on_stack[0], &lower);
2060 bio_list_merge(&bio_list_on_stack[0], &same);
2061 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2062 } else {
3ef28e83 2063 bio_io_error(bio);
3ef28e83 2064 }
f5fe1b51 2065 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2066 } while (bio);
bddd87c7 2067 current->bio_list = NULL; /* deactivate */
dece1635
JA
2068
2069out:
2070 return ret;
d89d8796 2071}
1da177e4
LT
2072EXPORT_SYMBOL(generic_make_request);
2073
2074/**
710027a4 2075 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2076 * @bio: The &struct bio which describes the I/O
2077 *
2078 * submit_bio() is very similar in purpose to generic_make_request(), and
2079 * uses that function to do most of the work. Both are fairly rough
710027a4 2080 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2081 *
2082 */
4e49ea4a 2083blk_qc_t submit_bio(struct bio *bio)
1da177e4 2084{
bf2de6f5
JA
2085 /*
2086 * If it's a regular read/write or a barrier with data attached,
2087 * go through the normal accounting stuff before submission.
2088 */
e2a60da7 2089 if (bio_has_data(bio)) {
4363ac7c
MP
2090 unsigned int count;
2091
95fe6c1a 2092 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2093 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2094 else
2095 count = bio_sectors(bio);
2096
a8ebb056 2097 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2098 count_vm_events(PGPGOUT, count);
2099 } else {
4f024f37 2100 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2101 count_vm_events(PGPGIN, count);
2102 }
2103
2104 if (unlikely(block_dump)) {
2105 char b[BDEVNAME_SIZE];
8dcbdc74 2106 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2107 current->comm, task_pid_nr(current),
a8ebb056 2108 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2109 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2110 bdevname(bio->bi_bdev, b),
2111 count);
bf2de6f5 2112 }
1da177e4
LT
2113 }
2114
dece1635 2115 return generic_make_request(bio);
1da177e4 2116}
1da177e4
LT
2117EXPORT_SYMBOL(submit_bio);
2118
82124d60 2119/**
bf4e6b4e
HR
2120 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2121 * for new the queue limits
82124d60
KU
2122 * @q: the queue
2123 * @rq: the request being checked
2124 *
2125 * Description:
2126 * @rq may have been made based on weaker limitations of upper-level queues
2127 * in request stacking drivers, and it may violate the limitation of @q.
2128 * Since the block layer and the underlying device driver trust @rq
2129 * after it is inserted to @q, it should be checked against @q before
2130 * the insertion using this generic function.
2131 *
82124d60 2132 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2133 * limits when retrying requests on other queues. Those requests need
2134 * to be checked against the new queue limits again during dispatch.
82124d60 2135 */
bf4e6b4e
HR
2136static int blk_cloned_rq_check_limits(struct request_queue *q,
2137 struct request *rq)
82124d60 2138{
8fe0d473 2139 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2140 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2141 return -EIO;
2142 }
2143
2144 /*
2145 * queue's settings related to segment counting like q->bounce_pfn
2146 * may differ from that of other stacking queues.
2147 * Recalculate it to check the request correctly on this queue's
2148 * limitation.
2149 */
2150 blk_recalc_rq_segments(rq);
8a78362c 2151 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2152 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2153 return -EIO;
2154 }
2155
2156 return 0;
2157}
82124d60
KU
2158
2159/**
2160 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2161 * @q: the queue to submit the request
2162 * @rq: the request being queued
2163 */
2164int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2165{
2166 unsigned long flags;
4853abaa 2167 int where = ELEVATOR_INSERT_BACK;
82124d60 2168
bf4e6b4e 2169 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2170 return -EIO;
2171
b2c9cd37
AM
2172 if (rq->rq_disk &&
2173 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2174 return -EIO;
82124d60 2175
7fb4898e
KB
2176 if (q->mq_ops) {
2177 if (blk_queue_io_stat(q))
2178 blk_account_io_start(rq, true);
bd6737f1 2179 blk_mq_sched_insert_request(rq, false, true, false, false);
7fb4898e
KB
2180 return 0;
2181 }
2182
82124d60 2183 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2184 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2185 spin_unlock_irqrestore(q->queue_lock, flags);
2186 return -ENODEV;
2187 }
82124d60
KU
2188
2189 /*
2190 * Submitting request must be dequeued before calling this function
2191 * because it will be linked to another request_queue
2192 */
2193 BUG_ON(blk_queued_rq(rq));
2194
f73f44eb 2195 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2196 where = ELEVATOR_INSERT_FLUSH;
2197
2198 add_acct_request(q, rq, where);
e67b77c7
JM
2199 if (where == ELEVATOR_INSERT_FLUSH)
2200 __blk_run_queue(q);
82124d60
KU
2201 spin_unlock_irqrestore(q->queue_lock, flags);
2202
2203 return 0;
2204}
2205EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2206
80a761fd
TH
2207/**
2208 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2209 * @rq: request to examine
2210 *
2211 * Description:
2212 * A request could be merge of IOs which require different failure
2213 * handling. This function determines the number of bytes which
2214 * can be failed from the beginning of the request without
2215 * crossing into area which need to be retried further.
2216 *
2217 * Return:
2218 * The number of bytes to fail.
2219 *
2220 * Context:
2221 * queue_lock must be held.
2222 */
2223unsigned int blk_rq_err_bytes(const struct request *rq)
2224{
2225 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2226 unsigned int bytes = 0;
2227 struct bio *bio;
2228
e8064021 2229 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2230 return blk_rq_bytes(rq);
2231
2232 /*
2233 * Currently the only 'mixing' which can happen is between
2234 * different fastfail types. We can safely fail portions
2235 * which have all the failfast bits that the first one has -
2236 * the ones which are at least as eager to fail as the first
2237 * one.
2238 */
2239 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2240 if ((bio->bi_opf & ff) != ff)
80a761fd 2241 break;
4f024f37 2242 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2243 }
2244
2245 /* this could lead to infinite loop */
2246 BUG_ON(blk_rq_bytes(rq) && !bytes);
2247 return bytes;
2248}
2249EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2250
320ae51f 2251void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2252{
c2553b58 2253 if (blk_do_io_stat(req)) {
bc58ba94
JA
2254 const int rw = rq_data_dir(req);
2255 struct hd_struct *part;
2256 int cpu;
2257
2258 cpu = part_stat_lock();
09e099d4 2259 part = req->part;
bc58ba94
JA
2260 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2261 part_stat_unlock();
2262 }
2263}
2264
320ae51f 2265void blk_account_io_done(struct request *req)
bc58ba94 2266{
bc58ba94 2267 /*
dd4c133f
TH
2268 * Account IO completion. flush_rq isn't accounted as a
2269 * normal IO on queueing nor completion. Accounting the
2270 * containing request is enough.
bc58ba94 2271 */
e8064021 2272 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2273 unsigned long duration = jiffies - req->start_time;
2274 const int rw = rq_data_dir(req);
2275 struct hd_struct *part;
2276 int cpu;
2277
2278 cpu = part_stat_lock();
09e099d4 2279 part = req->part;
bc58ba94
JA
2280
2281 part_stat_inc(cpu, part, ios[rw]);
2282 part_stat_add(cpu, part, ticks[rw], duration);
2283 part_round_stats(cpu, part);
316d315b 2284 part_dec_in_flight(part, rw);
bc58ba94 2285
6c23a968 2286 hd_struct_put(part);
bc58ba94
JA
2287 part_stat_unlock();
2288 }
2289}
2290
47fafbc7 2291#ifdef CONFIG_PM
c8158819
LM
2292/*
2293 * Don't process normal requests when queue is suspended
2294 * or in the process of suspending/resuming
2295 */
2296static struct request *blk_pm_peek_request(struct request_queue *q,
2297 struct request *rq)
2298{
2299 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2300 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2301 return NULL;
2302 else
2303 return rq;
2304}
2305#else
2306static inline struct request *blk_pm_peek_request(struct request_queue *q,
2307 struct request *rq)
2308{
2309 return rq;
2310}
2311#endif
2312
320ae51f
JA
2313void blk_account_io_start(struct request *rq, bool new_io)
2314{
2315 struct hd_struct *part;
2316 int rw = rq_data_dir(rq);
2317 int cpu;
2318
2319 if (!blk_do_io_stat(rq))
2320 return;
2321
2322 cpu = part_stat_lock();
2323
2324 if (!new_io) {
2325 part = rq->part;
2326 part_stat_inc(cpu, part, merges[rw]);
2327 } else {
2328 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2329 if (!hd_struct_try_get(part)) {
2330 /*
2331 * The partition is already being removed,
2332 * the request will be accounted on the disk only
2333 *
2334 * We take a reference on disk->part0 although that
2335 * partition will never be deleted, so we can treat
2336 * it as any other partition.
2337 */
2338 part = &rq->rq_disk->part0;
2339 hd_struct_get(part);
2340 }
2341 part_round_stats(cpu, part);
2342 part_inc_in_flight(part, rw);
2343 rq->part = part;
2344 }
2345
2346 part_stat_unlock();
2347}
2348
3bcddeac 2349/**
9934c8c0
TH
2350 * blk_peek_request - peek at the top of a request queue
2351 * @q: request queue to peek at
2352 *
2353 * Description:
2354 * Return the request at the top of @q. The returned request
2355 * should be started using blk_start_request() before LLD starts
2356 * processing it.
2357 *
2358 * Return:
2359 * Pointer to the request at the top of @q if available. Null
2360 * otherwise.
2361 *
2362 * Context:
2363 * queue_lock must be held.
2364 */
2365struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2366{
2367 struct request *rq;
2368 int ret;
2369
2370 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2371
2372 rq = blk_pm_peek_request(q, rq);
2373 if (!rq)
2374 break;
2375
e8064021 2376 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2377 /*
2378 * This is the first time the device driver
2379 * sees this request (possibly after
2380 * requeueing). Notify IO scheduler.
2381 */
e8064021 2382 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2383 elv_activate_rq(q, rq);
2384
2385 /*
2386 * just mark as started even if we don't start
2387 * it, a request that has been delayed should
2388 * not be passed by new incoming requests
2389 */
e8064021 2390 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2391 trace_block_rq_issue(q, rq);
2392 }
2393
2394 if (!q->boundary_rq || q->boundary_rq == rq) {
2395 q->end_sector = rq_end_sector(rq);
2396 q->boundary_rq = NULL;
2397 }
2398
e8064021 2399 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2400 break;
2401
2e46e8b2 2402 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2403 /*
2404 * make sure space for the drain appears we
2405 * know we can do this because max_hw_segments
2406 * has been adjusted to be one fewer than the
2407 * device can handle
2408 */
2409 rq->nr_phys_segments++;
2410 }
2411
2412 if (!q->prep_rq_fn)
2413 break;
2414
2415 ret = q->prep_rq_fn(q, rq);
2416 if (ret == BLKPREP_OK) {
2417 break;
2418 } else if (ret == BLKPREP_DEFER) {
2419 /*
2420 * the request may have been (partially) prepped.
2421 * we need to keep this request in the front to
e8064021 2422 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2423 * prevent other fs requests from passing this one.
2424 */
2e46e8b2 2425 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2426 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2427 /*
2428 * remove the space for the drain we added
2429 * so that we don't add it again
2430 */
2431 --rq->nr_phys_segments;
2432 }
2433
2434 rq = NULL;
2435 break;
0fb5b1fb
MP
2436 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2437 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2438
e8064021 2439 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2440 /*
2441 * Mark this request as started so we don't trigger
2442 * any debug logic in the end I/O path.
2443 */
2444 blk_start_request(rq);
0fb5b1fb 2445 __blk_end_request_all(rq, err);
158dbda0
TH
2446 } else {
2447 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2448 break;
2449 }
2450 }
2451
2452 return rq;
2453}
9934c8c0 2454EXPORT_SYMBOL(blk_peek_request);
158dbda0 2455
9934c8c0 2456void blk_dequeue_request(struct request *rq)
158dbda0 2457{
9934c8c0
TH
2458 struct request_queue *q = rq->q;
2459
158dbda0
TH
2460 BUG_ON(list_empty(&rq->queuelist));
2461 BUG_ON(ELV_ON_HASH(rq));
2462
2463 list_del_init(&rq->queuelist);
2464
2465 /*
2466 * the time frame between a request being removed from the lists
2467 * and to it is freed is accounted as io that is in progress at
2468 * the driver side.
2469 */
9195291e 2470 if (blk_account_rq(rq)) {
0a7ae2ff 2471 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2472 set_io_start_time_ns(rq);
2473 }
158dbda0
TH
2474}
2475
9934c8c0
TH
2476/**
2477 * blk_start_request - start request processing on the driver
2478 * @req: request to dequeue
2479 *
2480 * Description:
2481 * Dequeue @req and start timeout timer on it. This hands off the
2482 * request to the driver.
2483 *
2484 * Block internal functions which don't want to start timer should
2485 * call blk_dequeue_request().
2486 *
2487 * Context:
2488 * queue_lock must be held.
2489 */
2490void blk_start_request(struct request *req)
2491{
2492 blk_dequeue_request(req);
2493
cf43e6be 2494 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2495 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2496 req->rq_flags |= RQF_STATS;
87760e5e 2497 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2498 }
2499
4912aa6c 2500 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2501 blk_add_timer(req);
2502}
2503EXPORT_SYMBOL(blk_start_request);
2504
2505/**
2506 * blk_fetch_request - fetch a request from a request queue
2507 * @q: request queue to fetch a request from
2508 *
2509 * Description:
2510 * Return the request at the top of @q. The request is started on
2511 * return and LLD can start processing it immediately.
2512 *
2513 * Return:
2514 * Pointer to the request at the top of @q if available. Null
2515 * otherwise.
2516 *
2517 * Context:
2518 * queue_lock must be held.
2519 */
2520struct request *blk_fetch_request(struct request_queue *q)
2521{
2522 struct request *rq;
2523
2524 rq = blk_peek_request(q);
2525 if (rq)
2526 blk_start_request(rq);
2527 return rq;
2528}
2529EXPORT_SYMBOL(blk_fetch_request);
2530
3bcddeac 2531/**
2e60e022 2532 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2533 * @req: the request being processed
710027a4 2534 * @error: %0 for success, < %0 for error
8ebf9756 2535 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2536 *
2537 * Description:
8ebf9756
RD
2538 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2539 * the request structure even if @req doesn't have leftover.
2540 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2541 *
2542 * This special helper function is only for request stacking drivers
2543 * (e.g. request-based dm) so that they can handle partial completion.
2544 * Actual device drivers should use blk_end_request instead.
2545 *
2546 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2547 * %false return from this function.
3bcddeac
KU
2548 *
2549 * Return:
2e60e022
TH
2550 * %false - this request doesn't have any more data
2551 * %true - this request has more data
3bcddeac 2552 **/
2e60e022 2553bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2554{
f79ea416 2555 int total_bytes;
1da177e4 2556
4a0efdc9
HR
2557 trace_block_rq_complete(req->q, req, nr_bytes);
2558
2e60e022
TH
2559 if (!req->bio)
2560 return false;
2561
1da177e4 2562 /*
6f41469c
TH
2563 * For fs requests, rq is just carrier of independent bio's
2564 * and each partial completion should be handled separately.
2565 * Reset per-request error on each partial completion.
2566 *
2567 * TODO: tj: This is too subtle. It would be better to let
2568 * low level drivers do what they see fit.
1da177e4 2569 */
57292b58 2570 if (!blk_rq_is_passthrough(req))
1da177e4
LT
2571 req->errors = 0;
2572
57292b58 2573 if (error && !blk_rq_is_passthrough(req) &&
e8064021 2574 !(req->rq_flags & RQF_QUIET)) {
79775567
HR
2575 char *error_type;
2576
2577 switch (error) {
2578 case -ENOLINK:
2579 error_type = "recoverable transport";
2580 break;
2581 case -EREMOTEIO:
2582 error_type = "critical target";
2583 break;
2584 case -EBADE:
2585 error_type = "critical nexus";
2586 break;
d1ffc1f8
HR
2587 case -ETIMEDOUT:
2588 error_type = "timeout";
2589 break;
a9d6ceb8
HR
2590 case -ENOSPC:
2591 error_type = "critical space allocation";
2592 break;
7e782af5
HR
2593 case -ENODATA:
2594 error_type = "critical medium";
2595 break;
79775567
HR
2596 case -EIO:
2597 default:
2598 error_type = "I/O";
2599 break;
2600 }
ef3ecb66
RE
2601 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2602 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2603 req->rq_disk->disk_name : "?",
2604 (unsigned long long)blk_rq_pos(req));
2605
1da177e4
LT
2606 }
2607
bc58ba94 2608 blk_account_io_completion(req, nr_bytes);
d72d904a 2609
f79ea416
KO
2610 total_bytes = 0;
2611 while (req->bio) {
2612 struct bio *bio = req->bio;
4f024f37 2613 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2614
4f024f37 2615 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2616 req->bio = bio->bi_next;
1da177e4 2617
f79ea416 2618 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2619
f79ea416
KO
2620 total_bytes += bio_bytes;
2621 nr_bytes -= bio_bytes;
1da177e4 2622
f79ea416
KO
2623 if (!nr_bytes)
2624 break;
1da177e4
LT
2625 }
2626
2627 /*
2628 * completely done
2629 */
2e60e022
TH
2630 if (!req->bio) {
2631 /*
2632 * Reset counters so that the request stacking driver
2633 * can find how many bytes remain in the request
2634 * later.
2635 */
a2dec7b3 2636 req->__data_len = 0;
2e60e022
TH
2637 return false;
2638 }
1da177e4 2639
f9d03f96
CH
2640 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2641
a2dec7b3 2642 req->__data_len -= total_bytes;
2e46e8b2
TH
2643
2644 /* update sector only for requests with clear definition of sector */
57292b58 2645 if (!blk_rq_is_passthrough(req))
a2dec7b3 2646 req->__sector += total_bytes >> 9;
2e46e8b2 2647
80a761fd 2648 /* mixed attributes always follow the first bio */
e8064021 2649 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2650 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2651 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2652 }
2653
2e46e8b2
TH
2654 /*
2655 * If total number of sectors is less than the first segment
2656 * size, something has gone terribly wrong.
2657 */
2658 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2659 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2660 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2661 }
2662
2663 /* recalculate the number of segments */
1da177e4 2664 blk_recalc_rq_segments(req);
2e46e8b2 2665
2e60e022 2666 return true;
1da177e4 2667}
2e60e022 2668EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2669
2e60e022
TH
2670static bool blk_update_bidi_request(struct request *rq, int error,
2671 unsigned int nr_bytes,
2672 unsigned int bidi_bytes)
5efccd17 2673{
2e60e022
TH
2674 if (blk_update_request(rq, error, nr_bytes))
2675 return true;
5efccd17 2676
2e60e022
TH
2677 /* Bidi request must be completed as a whole */
2678 if (unlikely(blk_bidi_rq(rq)) &&
2679 blk_update_request(rq->next_rq, error, bidi_bytes))
2680 return true;
5efccd17 2681
e2e1a148
JA
2682 if (blk_queue_add_random(rq->q))
2683 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2684
2685 return false;
1da177e4
LT
2686}
2687
28018c24
JB
2688/**
2689 * blk_unprep_request - unprepare a request
2690 * @req: the request
2691 *
2692 * This function makes a request ready for complete resubmission (or
2693 * completion). It happens only after all error handling is complete,
2694 * so represents the appropriate moment to deallocate any resources
2695 * that were allocated to the request in the prep_rq_fn. The queue
2696 * lock is held when calling this.
2697 */
2698void blk_unprep_request(struct request *req)
2699{
2700 struct request_queue *q = req->q;
2701
e8064021 2702 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2703 if (q->unprep_rq_fn)
2704 q->unprep_rq_fn(q, req);
2705}
2706EXPORT_SYMBOL_GPL(blk_unprep_request);
2707
1da177e4
LT
2708/*
2709 * queue lock must be held
2710 */
12120077 2711void blk_finish_request(struct request *req, int error)
1da177e4 2712{
cf43e6be
JA
2713 struct request_queue *q = req->q;
2714
2715 if (req->rq_flags & RQF_STATS)
34dbad5d 2716 blk_stat_add(req);
cf43e6be 2717
e8064021 2718 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2719 blk_queue_end_tag(q, req);
b8286239 2720
ba396a6c 2721 BUG_ON(blk_queued_rq(req));
1da177e4 2722
57292b58 2723 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2724 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2725
e78042e5
MA
2726 blk_delete_timer(req);
2727
e8064021 2728 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2729 blk_unprep_request(req);
2730
bc58ba94 2731 blk_account_io_done(req);
b8286239 2732
87760e5e
JA
2733 if (req->end_io) {
2734 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2735 req->end_io(req, error);
87760e5e 2736 } else {
b8286239
KU
2737 if (blk_bidi_rq(req))
2738 __blk_put_request(req->next_rq->q, req->next_rq);
2739
cf43e6be 2740 __blk_put_request(q, req);
b8286239 2741 }
1da177e4 2742}
12120077 2743EXPORT_SYMBOL(blk_finish_request);
1da177e4 2744
3b11313a 2745/**
2e60e022
TH
2746 * blk_end_bidi_request - Complete a bidi request
2747 * @rq: the request to complete
2748 * @error: %0 for success, < %0 for error
2749 * @nr_bytes: number of bytes to complete @rq
2750 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2751 *
2752 * Description:
e3a04fe3 2753 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2754 * Drivers that supports bidi can safely call this member for any
2755 * type of request, bidi or uni. In the later case @bidi_bytes is
2756 * just ignored.
336cdb40
KU
2757 *
2758 * Return:
2e60e022
TH
2759 * %false - we are done with this request
2760 * %true - still buffers pending for this request
a0cd1285 2761 **/
b1f74493 2762static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2763 unsigned int nr_bytes, unsigned int bidi_bytes)
2764{
336cdb40 2765 struct request_queue *q = rq->q;
2e60e022 2766 unsigned long flags;
32fab448 2767
2e60e022
TH
2768 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2769 return true;
32fab448 2770
336cdb40 2771 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2772 blk_finish_request(rq, error);
336cdb40
KU
2773 spin_unlock_irqrestore(q->queue_lock, flags);
2774
2e60e022 2775 return false;
32fab448
KU
2776}
2777
336cdb40 2778/**
2e60e022
TH
2779 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2780 * @rq: the request to complete
710027a4 2781 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2782 * @nr_bytes: number of bytes to complete @rq
2783 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2784 *
2785 * Description:
2e60e022
TH
2786 * Identical to blk_end_bidi_request() except that queue lock is
2787 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2788 *
2789 * Return:
2e60e022
TH
2790 * %false - we are done with this request
2791 * %true - still buffers pending for this request
336cdb40 2792 **/
4853abaa 2793bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2794 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2795{
2e60e022
TH
2796 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2797 return true;
336cdb40 2798
2e60e022 2799 blk_finish_request(rq, error);
336cdb40 2800
2e60e022 2801 return false;
336cdb40 2802}
e19a3ab0
KU
2803
2804/**
2805 * blk_end_request - Helper function for drivers to complete the request.
2806 * @rq: the request being processed
710027a4 2807 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2808 * @nr_bytes: number of bytes to complete
2809 *
2810 * Description:
2811 * Ends I/O on a number of bytes attached to @rq.
2812 * If @rq has leftover, sets it up for the next range of segments.
2813 *
2814 * Return:
b1f74493
FT
2815 * %false - we are done with this request
2816 * %true - still buffers pending for this request
e19a3ab0 2817 **/
b1f74493 2818bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2819{
b1f74493 2820 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2821}
56ad1740 2822EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2823
2824/**
b1f74493
FT
2825 * blk_end_request_all - Helper function for drives to finish the request.
2826 * @rq: the request to finish
8ebf9756 2827 * @error: %0 for success, < %0 for error
336cdb40
KU
2828 *
2829 * Description:
b1f74493
FT
2830 * Completely finish @rq.
2831 */
2832void blk_end_request_all(struct request *rq, int error)
336cdb40 2833{
b1f74493
FT
2834 bool pending;
2835 unsigned int bidi_bytes = 0;
336cdb40 2836
b1f74493
FT
2837 if (unlikely(blk_bidi_rq(rq)))
2838 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2839
b1f74493
FT
2840 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2841 BUG_ON(pending);
2842}
56ad1740 2843EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2844
b1f74493
FT
2845/**
2846 * blk_end_request_cur - Helper function to finish the current request chunk.
2847 * @rq: the request to finish the current chunk for
8ebf9756 2848 * @error: %0 for success, < %0 for error
b1f74493
FT
2849 *
2850 * Description:
2851 * Complete the current consecutively mapped chunk from @rq.
2852 *
2853 * Return:
2854 * %false - we are done with this request
2855 * %true - still buffers pending for this request
2856 */
2857bool blk_end_request_cur(struct request *rq, int error)
2858{
2859 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2860}
56ad1740 2861EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2862
80a761fd
TH
2863/**
2864 * blk_end_request_err - Finish a request till the next failure boundary.
2865 * @rq: the request to finish till the next failure boundary for
2866 * @error: must be negative errno
2867 *
2868 * Description:
2869 * Complete @rq till the next failure boundary.
2870 *
2871 * Return:
2872 * %false - we are done with this request
2873 * %true - still buffers pending for this request
2874 */
2875bool blk_end_request_err(struct request *rq, int error)
2876{
2877 WARN_ON(error >= 0);
2878 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2879}
2880EXPORT_SYMBOL_GPL(blk_end_request_err);
2881
e3a04fe3 2882/**
b1f74493
FT
2883 * __blk_end_request - Helper function for drivers to complete the request.
2884 * @rq: the request being processed
2885 * @error: %0 for success, < %0 for error
2886 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2887 *
2888 * Description:
b1f74493 2889 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2890 *
2891 * Return:
b1f74493
FT
2892 * %false - we are done with this request
2893 * %true - still buffers pending for this request
e3a04fe3 2894 **/
b1f74493 2895bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2896{
b1f74493 2897 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2898}
56ad1740 2899EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2900
32fab448 2901/**
b1f74493
FT
2902 * __blk_end_request_all - Helper function for drives to finish the request.
2903 * @rq: the request to finish
8ebf9756 2904 * @error: %0 for success, < %0 for error
32fab448
KU
2905 *
2906 * Description:
b1f74493 2907 * Completely finish @rq. Must be called with queue lock held.
32fab448 2908 */
b1f74493 2909void __blk_end_request_all(struct request *rq, int error)
32fab448 2910{
b1f74493
FT
2911 bool pending;
2912 unsigned int bidi_bytes = 0;
2913
2914 if (unlikely(blk_bidi_rq(rq)))
2915 bidi_bytes = blk_rq_bytes(rq->next_rq);
2916
2917 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2918 BUG_ON(pending);
32fab448 2919}
56ad1740 2920EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2921
e19a3ab0 2922/**
b1f74493
FT
2923 * __blk_end_request_cur - Helper function to finish the current request chunk.
2924 * @rq: the request to finish the current chunk for
8ebf9756 2925 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2926 *
2927 * Description:
b1f74493
FT
2928 * Complete the current consecutively mapped chunk from @rq. Must
2929 * be called with queue lock held.
e19a3ab0
KU
2930 *
2931 * Return:
b1f74493
FT
2932 * %false - we are done with this request
2933 * %true - still buffers pending for this request
2934 */
2935bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2936{
b1f74493 2937 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2938}
56ad1740 2939EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2940
80a761fd
TH
2941/**
2942 * __blk_end_request_err - Finish a request till the next failure boundary.
2943 * @rq: the request to finish till the next failure boundary for
2944 * @error: must be negative errno
2945 *
2946 * Description:
2947 * Complete @rq till the next failure boundary. Must be called
2948 * with queue lock held.
2949 *
2950 * Return:
2951 * %false - we are done with this request
2952 * %true - still buffers pending for this request
2953 */
2954bool __blk_end_request_err(struct request *rq, int error)
2955{
2956 WARN_ON(error >= 0);
2957 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2958}
2959EXPORT_SYMBOL_GPL(__blk_end_request_err);
2960
86db1e29
JA
2961void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2962 struct bio *bio)
1da177e4 2963{
b4f42e28 2964 if (bio_has_data(bio))
fb2dce86 2965 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2966
4f024f37 2967 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2968 rq->bio = rq->biotail = bio;
1da177e4 2969
66846572
N
2970 if (bio->bi_bdev)
2971 rq->rq_disk = bio->bi_bdev->bd_disk;
2972}
1da177e4 2973
2d4dc890
IL
2974#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2975/**
2976 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2977 * @rq: the request to be flushed
2978 *
2979 * Description:
2980 * Flush all pages in @rq.
2981 */
2982void rq_flush_dcache_pages(struct request *rq)
2983{
2984 struct req_iterator iter;
7988613b 2985 struct bio_vec bvec;
2d4dc890
IL
2986
2987 rq_for_each_segment(bvec, rq, iter)
7988613b 2988 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2989}
2990EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2991#endif
2992
ef9e3fac
KU
2993/**
2994 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2995 * @q : the queue of the device being checked
2996 *
2997 * Description:
2998 * Check if underlying low-level drivers of a device are busy.
2999 * If the drivers want to export their busy state, they must set own
3000 * exporting function using blk_queue_lld_busy() first.
3001 *
3002 * Basically, this function is used only by request stacking drivers
3003 * to stop dispatching requests to underlying devices when underlying
3004 * devices are busy. This behavior helps more I/O merging on the queue
3005 * of the request stacking driver and prevents I/O throughput regression
3006 * on burst I/O load.
3007 *
3008 * Return:
3009 * 0 - Not busy (The request stacking driver should dispatch request)
3010 * 1 - Busy (The request stacking driver should stop dispatching request)
3011 */
3012int blk_lld_busy(struct request_queue *q)
3013{
3014 if (q->lld_busy_fn)
3015 return q->lld_busy_fn(q);
3016
3017 return 0;
3018}
3019EXPORT_SYMBOL_GPL(blk_lld_busy);
3020
78d8e58a
MS
3021/**
3022 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3023 * @rq: the clone request to be cleaned up
3024 *
3025 * Description:
3026 * Free all bios in @rq for a cloned request.
3027 */
3028void blk_rq_unprep_clone(struct request *rq)
3029{
3030 struct bio *bio;
3031
3032 while ((bio = rq->bio) != NULL) {
3033 rq->bio = bio->bi_next;
3034
3035 bio_put(bio);
3036 }
3037}
3038EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3039
3040/*
3041 * Copy attributes of the original request to the clone request.
3042 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3043 */
3044static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3045{
3046 dst->cpu = src->cpu;
b0fd271d
KU
3047 dst->__sector = blk_rq_pos(src);
3048 dst->__data_len = blk_rq_bytes(src);
3049 dst->nr_phys_segments = src->nr_phys_segments;
3050 dst->ioprio = src->ioprio;
3051 dst->extra_len = src->extra_len;
78d8e58a
MS
3052}
3053
3054/**
3055 * blk_rq_prep_clone - Helper function to setup clone request
3056 * @rq: the request to be setup
3057 * @rq_src: original request to be cloned
3058 * @bs: bio_set that bios for clone are allocated from
3059 * @gfp_mask: memory allocation mask for bio
3060 * @bio_ctr: setup function to be called for each clone bio.
3061 * Returns %0 for success, non %0 for failure.
3062 * @data: private data to be passed to @bio_ctr
3063 *
3064 * Description:
3065 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3066 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3067 * are not copied, and copying such parts is the caller's responsibility.
3068 * Also, pages which the original bios are pointing to are not copied
3069 * and the cloned bios just point same pages.
3070 * So cloned bios must be completed before original bios, which means
3071 * the caller must complete @rq before @rq_src.
3072 */
3073int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3074 struct bio_set *bs, gfp_t gfp_mask,
3075 int (*bio_ctr)(struct bio *, struct bio *, void *),
3076 void *data)
3077{
3078 struct bio *bio, *bio_src;
3079
3080 if (!bs)
3081 bs = fs_bio_set;
3082
3083 __rq_for_each_bio(bio_src, rq_src) {
3084 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3085 if (!bio)
3086 goto free_and_out;
3087
3088 if (bio_ctr && bio_ctr(bio, bio_src, data))
3089 goto free_and_out;
3090
3091 if (rq->bio) {
3092 rq->biotail->bi_next = bio;
3093 rq->biotail = bio;
3094 } else
3095 rq->bio = rq->biotail = bio;
3096 }
3097
3098 __blk_rq_prep_clone(rq, rq_src);
3099
3100 return 0;
3101
3102free_and_out:
3103 if (bio)
3104 bio_put(bio);
3105 blk_rq_unprep_clone(rq);
3106
3107 return -ENOMEM;
b0fd271d
KU
3108}
3109EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3110
59c3d45e 3111int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3112{
3113 return queue_work(kblockd_workqueue, work);
3114}
1da177e4
LT
3115EXPORT_SYMBOL(kblockd_schedule_work);
3116
ee63cfa7
JA
3117int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3118{
3119 return queue_work_on(cpu, kblockd_workqueue, work);
3120}
3121EXPORT_SYMBOL(kblockd_schedule_work_on);
3122
59c3d45e
JA
3123int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3124 unsigned long delay)
e43473b7
VG
3125{
3126 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3127}
3128EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3129
8ab14595
JA
3130int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3131 unsigned long delay)
3132{
3133 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3134}
3135EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3136
75df7136
SJ
3137/**
3138 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3139 * @plug: The &struct blk_plug that needs to be initialized
3140 *
3141 * Description:
3142 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3143 * pending I/O should the task end up blocking between blk_start_plug() and
3144 * blk_finish_plug(). This is important from a performance perspective, but
3145 * also ensures that we don't deadlock. For instance, if the task is blocking
3146 * for a memory allocation, memory reclaim could end up wanting to free a
3147 * page belonging to that request that is currently residing in our private
3148 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3149 * this kind of deadlock.
3150 */
73c10101
JA
3151void blk_start_plug(struct blk_plug *plug)
3152{
3153 struct task_struct *tsk = current;
3154
dd6cf3e1
SL
3155 /*
3156 * If this is a nested plug, don't actually assign it.
3157 */
3158 if (tsk->plug)
3159 return;
3160
73c10101 3161 INIT_LIST_HEAD(&plug->list);
320ae51f 3162 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3163 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3164 /*
dd6cf3e1
SL
3165 * Store ordering should not be needed here, since a potential
3166 * preempt will imply a full memory barrier
73c10101 3167 */
dd6cf3e1 3168 tsk->plug = plug;
73c10101
JA
3169}
3170EXPORT_SYMBOL(blk_start_plug);
3171
3172static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3173{
3174 struct request *rqa = container_of(a, struct request, queuelist);
3175 struct request *rqb = container_of(b, struct request, queuelist);
3176
975927b9
JM
3177 return !(rqa->q < rqb->q ||
3178 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3179}
3180
49cac01e
JA
3181/*
3182 * If 'from_schedule' is true, then postpone the dispatch of requests
3183 * until a safe kblockd context. We due this to avoid accidental big
3184 * additional stack usage in driver dispatch, in places where the originally
3185 * plugger did not intend it.
3186 */
f6603783 3187static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3188 bool from_schedule)
99e22598 3189 __releases(q->queue_lock)
94b5eb28 3190{
49cac01e 3191 trace_block_unplug(q, depth, !from_schedule);
99e22598 3192
70460571 3193 if (from_schedule)
24ecfbe2 3194 blk_run_queue_async(q);
70460571 3195 else
24ecfbe2 3196 __blk_run_queue(q);
70460571 3197 spin_unlock(q->queue_lock);
94b5eb28
JA
3198}
3199
74018dc3 3200static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3201{
3202 LIST_HEAD(callbacks);
3203
2a7d5559
SL
3204 while (!list_empty(&plug->cb_list)) {
3205 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3206
2a7d5559
SL
3207 while (!list_empty(&callbacks)) {
3208 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3209 struct blk_plug_cb,
3210 list);
2a7d5559 3211 list_del(&cb->list);
74018dc3 3212 cb->callback(cb, from_schedule);
2a7d5559 3213 }
048c9374
N
3214 }
3215}
3216
9cbb1750
N
3217struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3218 int size)
3219{
3220 struct blk_plug *plug = current->plug;
3221 struct blk_plug_cb *cb;
3222
3223 if (!plug)
3224 return NULL;
3225
3226 list_for_each_entry(cb, &plug->cb_list, list)
3227 if (cb->callback == unplug && cb->data == data)
3228 return cb;
3229
3230 /* Not currently on the callback list */
3231 BUG_ON(size < sizeof(*cb));
3232 cb = kzalloc(size, GFP_ATOMIC);
3233 if (cb) {
3234 cb->data = data;
3235 cb->callback = unplug;
3236 list_add(&cb->list, &plug->cb_list);
3237 }
3238 return cb;
3239}
3240EXPORT_SYMBOL(blk_check_plugged);
3241
49cac01e 3242void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3243{
3244 struct request_queue *q;
3245 unsigned long flags;
3246 struct request *rq;
109b8129 3247 LIST_HEAD(list);
94b5eb28 3248 unsigned int depth;
73c10101 3249
74018dc3 3250 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3251
3252 if (!list_empty(&plug->mq_list))
3253 blk_mq_flush_plug_list(plug, from_schedule);
3254
73c10101
JA
3255 if (list_empty(&plug->list))
3256 return;
3257
109b8129
N
3258 list_splice_init(&plug->list, &list);
3259
422765c2 3260 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3261
3262 q = NULL;
94b5eb28 3263 depth = 0;
18811272
JA
3264
3265 /*
3266 * Save and disable interrupts here, to avoid doing it for every
3267 * queue lock we have to take.
3268 */
73c10101 3269 local_irq_save(flags);
109b8129
N
3270 while (!list_empty(&list)) {
3271 rq = list_entry_rq(list.next);
73c10101 3272 list_del_init(&rq->queuelist);
73c10101
JA
3273 BUG_ON(!rq->q);
3274 if (rq->q != q) {
99e22598
JA
3275 /*
3276 * This drops the queue lock
3277 */
3278 if (q)
49cac01e 3279 queue_unplugged(q, depth, from_schedule);
73c10101 3280 q = rq->q;
94b5eb28 3281 depth = 0;
73c10101
JA
3282 spin_lock(q->queue_lock);
3283 }
8ba61435
TH
3284
3285 /*
3286 * Short-circuit if @q is dead
3287 */
3f3299d5 3288 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3289 __blk_end_request_all(rq, -ENODEV);
3290 continue;
3291 }
3292
73c10101
JA
3293 /*
3294 * rq is already accounted, so use raw insert
3295 */
f73f44eb 3296 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3297 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3298 else
3299 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3300
3301 depth++;
73c10101
JA
3302 }
3303
99e22598
JA
3304 /*
3305 * This drops the queue lock
3306 */
3307 if (q)
49cac01e 3308 queue_unplugged(q, depth, from_schedule);
73c10101 3309
73c10101
JA
3310 local_irq_restore(flags);
3311}
73c10101
JA
3312
3313void blk_finish_plug(struct blk_plug *plug)
3314{
dd6cf3e1
SL
3315 if (plug != current->plug)
3316 return;
f6603783 3317 blk_flush_plug_list(plug, false);
73c10101 3318
dd6cf3e1 3319 current->plug = NULL;
73c10101 3320}
88b996cd 3321EXPORT_SYMBOL(blk_finish_plug);
73c10101 3322
47fafbc7 3323#ifdef CONFIG_PM
6c954667
LM
3324/**
3325 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3326 * @q: the queue of the device
3327 * @dev: the device the queue belongs to
3328 *
3329 * Description:
3330 * Initialize runtime-PM-related fields for @q and start auto suspend for
3331 * @dev. Drivers that want to take advantage of request-based runtime PM
3332 * should call this function after @dev has been initialized, and its
3333 * request queue @q has been allocated, and runtime PM for it can not happen
3334 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3335 * cases, driver should call this function before any I/O has taken place.
3336 *
3337 * This function takes care of setting up using auto suspend for the device,
3338 * the autosuspend delay is set to -1 to make runtime suspend impossible
3339 * until an updated value is either set by user or by driver. Drivers do
3340 * not need to touch other autosuspend settings.
3341 *
3342 * The block layer runtime PM is request based, so only works for drivers
3343 * that use request as their IO unit instead of those directly use bio's.
3344 */
3345void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3346{
3347 q->dev = dev;
3348 q->rpm_status = RPM_ACTIVE;
3349 pm_runtime_set_autosuspend_delay(q->dev, -1);
3350 pm_runtime_use_autosuspend(q->dev);
3351}
3352EXPORT_SYMBOL(blk_pm_runtime_init);
3353
3354/**
3355 * blk_pre_runtime_suspend - Pre runtime suspend check
3356 * @q: the queue of the device
3357 *
3358 * Description:
3359 * This function will check if runtime suspend is allowed for the device
3360 * by examining if there are any requests pending in the queue. If there
3361 * are requests pending, the device can not be runtime suspended; otherwise,
3362 * the queue's status will be updated to SUSPENDING and the driver can
3363 * proceed to suspend the device.
3364 *
3365 * For the not allowed case, we mark last busy for the device so that
3366 * runtime PM core will try to autosuspend it some time later.
3367 *
3368 * This function should be called near the start of the device's
3369 * runtime_suspend callback.
3370 *
3371 * Return:
3372 * 0 - OK to runtime suspend the device
3373 * -EBUSY - Device should not be runtime suspended
3374 */
3375int blk_pre_runtime_suspend(struct request_queue *q)
3376{
3377 int ret = 0;
3378
4fd41a85
KX
3379 if (!q->dev)
3380 return ret;
3381
6c954667
LM
3382 spin_lock_irq(q->queue_lock);
3383 if (q->nr_pending) {
3384 ret = -EBUSY;
3385 pm_runtime_mark_last_busy(q->dev);
3386 } else {
3387 q->rpm_status = RPM_SUSPENDING;
3388 }
3389 spin_unlock_irq(q->queue_lock);
3390 return ret;
3391}
3392EXPORT_SYMBOL(blk_pre_runtime_suspend);
3393
3394/**
3395 * blk_post_runtime_suspend - Post runtime suspend processing
3396 * @q: the queue of the device
3397 * @err: return value of the device's runtime_suspend function
3398 *
3399 * Description:
3400 * Update the queue's runtime status according to the return value of the
3401 * device's runtime suspend function and mark last busy for the device so
3402 * that PM core will try to auto suspend the device at a later time.
3403 *
3404 * This function should be called near the end of the device's
3405 * runtime_suspend callback.
3406 */
3407void blk_post_runtime_suspend(struct request_queue *q, int err)
3408{
4fd41a85
KX
3409 if (!q->dev)
3410 return;
3411
6c954667
LM
3412 spin_lock_irq(q->queue_lock);
3413 if (!err) {
3414 q->rpm_status = RPM_SUSPENDED;
3415 } else {
3416 q->rpm_status = RPM_ACTIVE;
3417 pm_runtime_mark_last_busy(q->dev);
3418 }
3419 spin_unlock_irq(q->queue_lock);
3420}
3421EXPORT_SYMBOL(blk_post_runtime_suspend);
3422
3423/**
3424 * blk_pre_runtime_resume - Pre runtime resume processing
3425 * @q: the queue of the device
3426 *
3427 * Description:
3428 * Update the queue's runtime status to RESUMING in preparation for the
3429 * runtime resume of the device.
3430 *
3431 * This function should be called near the start of the device's
3432 * runtime_resume callback.
3433 */
3434void blk_pre_runtime_resume(struct request_queue *q)
3435{
4fd41a85
KX
3436 if (!q->dev)
3437 return;
3438
6c954667
LM
3439 spin_lock_irq(q->queue_lock);
3440 q->rpm_status = RPM_RESUMING;
3441 spin_unlock_irq(q->queue_lock);
3442}
3443EXPORT_SYMBOL(blk_pre_runtime_resume);
3444
3445/**
3446 * blk_post_runtime_resume - Post runtime resume processing
3447 * @q: the queue of the device
3448 * @err: return value of the device's runtime_resume function
3449 *
3450 * Description:
3451 * Update the queue's runtime status according to the return value of the
3452 * device's runtime_resume function. If it is successfully resumed, process
3453 * the requests that are queued into the device's queue when it is resuming
3454 * and then mark last busy and initiate autosuspend for it.
3455 *
3456 * This function should be called near the end of the device's
3457 * runtime_resume callback.
3458 */
3459void blk_post_runtime_resume(struct request_queue *q, int err)
3460{
4fd41a85
KX
3461 if (!q->dev)
3462 return;
3463
6c954667
LM
3464 spin_lock_irq(q->queue_lock);
3465 if (!err) {
3466 q->rpm_status = RPM_ACTIVE;
3467 __blk_run_queue(q);
3468 pm_runtime_mark_last_busy(q->dev);
c60855cd 3469 pm_request_autosuspend(q->dev);
6c954667
LM
3470 } else {
3471 q->rpm_status = RPM_SUSPENDED;
3472 }
3473 spin_unlock_irq(q->queue_lock);
3474}
3475EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3476
3477/**
3478 * blk_set_runtime_active - Force runtime status of the queue to be active
3479 * @q: the queue of the device
3480 *
3481 * If the device is left runtime suspended during system suspend the resume
3482 * hook typically resumes the device and corrects runtime status
3483 * accordingly. However, that does not affect the queue runtime PM status
3484 * which is still "suspended". This prevents processing requests from the
3485 * queue.
3486 *
3487 * This function can be used in driver's resume hook to correct queue
3488 * runtime PM status and re-enable peeking requests from the queue. It
3489 * should be called before first request is added to the queue.
3490 */
3491void blk_set_runtime_active(struct request_queue *q)
3492{
3493 spin_lock_irq(q->queue_lock);
3494 q->rpm_status = RPM_ACTIVE;
3495 pm_runtime_mark_last_busy(q->dev);
3496 pm_request_autosuspend(q->dev);
3497 spin_unlock_irq(q->queue_lock);
3498}
3499EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3500#endif
3501
1da177e4
LT
3502int __init blk_dev_init(void)
3503{
ef295ecf
CH
3504 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3505 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3506 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3507 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3508 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3509
89b90be2
TH
3510 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3511 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3512 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3513 if (!kblockd_workqueue)
3514 panic("Failed to create kblockd\n");
3515
3516 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3517 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3518
c2789bd4 3519 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3520 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3521
18fbda91
OS
3522#ifdef CONFIG_DEBUG_FS
3523 blk_debugfs_root = debugfs_create_dir("block", NULL);
3524#endif
3525
d38ecf93 3526 return 0;
1da177e4 3527}