]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
nvme: simplify resets
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
8de05535 15#include <linux/bitops.h>
b60503ba 16#include <linux/blkdev.h>
a4aea562 17#include <linux/blk-mq.h>
42f61420 18#include <linux/cpu.h>
fd63e9ce 19#include <linux/delay.h>
b60503ba
MW
20#include <linux/errno.h>
21#include <linux/fs.h>
22#include <linux/genhd.h>
4cc09e2d 23#include <linux/hdreg.h>
5aff9382 24#include <linux/idr.h>
b60503ba
MW
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
1fa6aead 29#include <linux/kthread.h>
b60503ba
MW
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
77bf25ea 34#include <linux/mutex.h>
b60503ba 35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
b60503ba 41#include <linux/types.h>
2f8e2c87 42#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 43#include <asm/unaligned.h>
797a796a 44
f11bb3e2
CH
45#include "nvme.h"
46
9d43cf64 47#define NVME_Q_DEPTH 1024
d31af0a3 48#define NVME_AQ_DEPTH 256
b60503ba
MW
49#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
50#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
9d43cf64 51
21d34711 52unsigned char admin_timeout = 60;
9d43cf64
KB
53module_param(admin_timeout, byte, 0644);
54MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 55
bd67608a
MW
56unsigned char nvme_io_timeout = 30;
57module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 58MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 59
5fd4ce1b 60unsigned char shutdown_timeout = 5;
2484f407
DM
61module_param(shutdown_timeout, byte, 0644);
62MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
63
58ffacb5
MW
64static int use_threaded_interrupts;
65module_param(use_threaded_interrupts, int, 0);
66
8ffaadf7
JD
67static bool use_cmb_sqes = true;
68module_param(use_cmb_sqes, bool, 0644);
69MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
70
1fa6aead
MW
71static LIST_HEAD(dev_list);
72static struct task_struct *nvme_thread;
9a6b9458 73static struct workqueue_struct *nvme_workq;
b9afca3e 74static wait_queue_head_t nvme_kthread_wait;
1fa6aead 75
1c63dc66
CH
76struct nvme_dev;
77struct nvme_queue;
d4f6c3ab 78struct nvme_iod;
1c63dc66 79
4cc06521 80static int nvme_reset(struct nvme_dev *dev);
a0fa9647 81static void nvme_process_cq(struct nvme_queue *nvmeq);
d4f6c3ab 82static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
3cf519b5 83static void nvme_dead_ctrl(struct nvme_dev *dev);
d4b4ff8e 84
4d115420
KB
85struct async_cmd_info {
86 struct kthread_work work;
87 struct kthread_worker *worker;
a4aea562 88 struct request *req;
4d115420
KB
89 u32 result;
90 int status;
91 void *ctx;
92};
1fa6aead 93
1c63dc66
CH
94/*
95 * Represents an NVM Express device. Each nvme_dev is a PCI function.
96 */
97struct nvme_dev {
98 struct list_head node;
99 struct nvme_queue **queues;
100 struct blk_mq_tag_set tagset;
101 struct blk_mq_tag_set admin_tagset;
102 u32 __iomem *dbs;
103 struct device *dev;
104 struct dma_pool *prp_page_pool;
105 struct dma_pool *prp_small_pool;
106 unsigned queue_count;
107 unsigned online_queues;
108 unsigned max_qid;
109 int q_depth;
110 u32 db_stride;
1c63dc66
CH
111 struct msix_entry *entry;
112 void __iomem *bar;
1c63dc66
CH
113 struct work_struct reset_work;
114 struct work_struct probe_work;
115 struct work_struct scan_work;
77bf25ea 116 struct mutex shutdown_lock;
1c63dc66 117 bool subsystem;
1c63dc66
CH
118 void __iomem *cmb;
119 dma_addr_t cmb_dma_addr;
120 u64 cmb_size;
121 u32 cmbsz;
122
123 struct nvme_ctrl ctrl;
124};
125
126static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
127{
128 return container_of(ctrl, struct nvme_dev, ctrl);
129}
130
b60503ba
MW
131/*
132 * An NVM Express queue. Each device has at least two (one for admin
133 * commands and one for I/O commands).
134 */
135struct nvme_queue {
136 struct device *q_dmadev;
091b6092 137 struct nvme_dev *dev;
3193f07b 138 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
139 spinlock_t q_lock;
140 struct nvme_command *sq_cmds;
8ffaadf7 141 struct nvme_command __iomem *sq_cmds_io;
b60503ba 142 volatile struct nvme_completion *cqes;
42483228 143 struct blk_mq_tags **tags;
b60503ba
MW
144 dma_addr_t sq_dma_addr;
145 dma_addr_t cq_dma_addr;
b60503ba
MW
146 u32 __iomem *q_db;
147 u16 q_depth;
6222d172 148 s16 cq_vector;
b60503ba
MW
149 u16 sq_head;
150 u16 sq_tail;
151 u16 cq_head;
c30341dc 152 u16 qid;
e9539f47
MW
153 u8 cq_phase;
154 u8 cqe_seen;
4d115420 155 struct async_cmd_info cmdinfo;
b60503ba
MW
156};
157
71bd150c
CH
158/*
159 * The nvme_iod describes the data in an I/O, including the list of PRP
160 * entries. You can't see it in this data structure because C doesn't let
161 * me express that. Use nvme_alloc_iod to ensure there's enough space
162 * allocated to store the PRP list.
163 */
164struct nvme_iod {
165 unsigned long private; /* For the use of the submitter of the I/O */
166 int npages; /* In the PRP list. 0 means small pool in use */
167 int offset; /* Of PRP list */
168 int nents; /* Used in scatterlist */
169 int length; /* Of data, in bytes */
170 dma_addr_t first_dma;
171 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
172 struct scatterlist sg[0];
173};
174
b60503ba
MW
175/*
176 * Check we didin't inadvertently grow the command struct
177 */
178static inline void _nvme_check_size(void)
179{
180 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
181 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
182 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
183 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 185 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 186 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
187 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
188 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
189 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
190 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 191 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
192}
193
edd10d33 194typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
c2f5b650
MW
195 struct nvme_completion *);
196
e85248e5 197struct nvme_cmd_info {
c2f5b650
MW
198 nvme_completion_fn fn;
199 void *ctx;
c30341dc 200 int aborted;
a4aea562 201 struct nvme_queue *nvmeq;
ac3dd5bd 202 struct nvme_iod iod[0];
e85248e5
MW
203};
204
ac3dd5bd
JA
205/*
206 * Max size of iod being embedded in the request payload
207 */
208#define NVME_INT_PAGES 2
5fd4ce1b 209#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
fda631ff 210#define NVME_INT_MASK 0x01
ac3dd5bd
JA
211
212/*
213 * Will slightly overestimate the number of pages needed. This is OK
214 * as it only leads to a small amount of wasted memory for the lifetime of
215 * the I/O.
216 */
217static int nvme_npages(unsigned size, struct nvme_dev *dev)
218{
5fd4ce1b
CH
219 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
220 dev->ctrl.page_size);
ac3dd5bd
JA
221 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
222}
223
224static unsigned int nvme_cmd_size(struct nvme_dev *dev)
225{
226 unsigned int ret = sizeof(struct nvme_cmd_info);
227
228 ret += sizeof(struct nvme_iod);
229 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
230 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
231
232 return ret;
233}
234
a4aea562
MB
235static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
236 unsigned int hctx_idx)
e85248e5 237{
a4aea562
MB
238 struct nvme_dev *dev = data;
239 struct nvme_queue *nvmeq = dev->queues[0];
240
42483228
KB
241 WARN_ON(hctx_idx != 0);
242 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
243 WARN_ON(nvmeq->tags);
244
a4aea562 245 hctx->driver_data = nvmeq;
42483228 246 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 247 return 0;
e85248e5
MW
248}
249
4af0e21c
KB
250static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
251{
252 struct nvme_queue *nvmeq = hctx->driver_data;
253
254 nvmeq->tags = NULL;
255}
256
a4aea562
MB
257static int nvme_admin_init_request(void *data, struct request *req,
258 unsigned int hctx_idx, unsigned int rq_idx,
259 unsigned int numa_node)
22404274 260{
a4aea562
MB
261 struct nvme_dev *dev = data;
262 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
263 struct nvme_queue *nvmeq = dev->queues[0];
264
265 BUG_ON(!nvmeq);
266 cmd->nvmeq = nvmeq;
267 return 0;
22404274
KB
268}
269
a4aea562
MB
270static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
271 unsigned int hctx_idx)
b60503ba 272{
a4aea562 273 struct nvme_dev *dev = data;
42483228 274 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 275
42483228
KB
276 if (!nvmeq->tags)
277 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 278
42483228 279 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
280 hctx->driver_data = nvmeq;
281 return 0;
b60503ba
MW
282}
283
a4aea562
MB
284static int nvme_init_request(void *data, struct request *req,
285 unsigned int hctx_idx, unsigned int rq_idx,
286 unsigned int numa_node)
b60503ba 287{
a4aea562
MB
288 struct nvme_dev *dev = data;
289 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
290 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
291
292 BUG_ON(!nvmeq);
293 cmd->nvmeq = nvmeq;
294 return 0;
295}
296
297static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
298 nvme_completion_fn handler)
299{
300 cmd->fn = handler;
301 cmd->ctx = ctx;
302 cmd->aborted = 0;
c917dfe5 303 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
b60503ba
MW
304}
305
ac3dd5bd
JA
306static void *iod_get_private(struct nvme_iod *iod)
307{
308 return (void *) (iod->private & ~0x1UL);
309}
310
311/*
312 * If bit 0 is set, the iod is embedded in the request payload.
313 */
314static bool iod_should_kfree(struct nvme_iod *iod)
315{
fda631ff 316 return (iod->private & NVME_INT_MASK) == 0;
ac3dd5bd
JA
317}
318
c2f5b650
MW
319/* Special values must be less than 0x1000 */
320#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
321#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
322#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
323#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 324
edd10d33 325static void special_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
326 struct nvme_completion *cqe)
327{
328 if (ctx == CMD_CTX_CANCELLED)
329 return;
c2f5b650 330 if (ctx == CMD_CTX_COMPLETED) {
edd10d33 331 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
332 "completed id %d twice on queue %d\n",
333 cqe->command_id, le16_to_cpup(&cqe->sq_id));
334 return;
335 }
336 if (ctx == CMD_CTX_INVALID) {
edd10d33 337 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
338 "invalid id %d completed on queue %d\n",
339 cqe->command_id, le16_to_cpup(&cqe->sq_id));
340 return;
341 }
edd10d33 342 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
343}
344
a4aea562 345static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
b60503ba 346{
c2f5b650 347 void *ctx;
b60503ba 348
859361a2 349 if (fn)
a4aea562
MB
350 *fn = cmd->fn;
351 ctx = cmd->ctx;
352 cmd->fn = special_completion;
353 cmd->ctx = CMD_CTX_CANCELLED;
c2f5b650 354 return ctx;
b60503ba
MW
355}
356
a4aea562
MB
357static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
358 struct nvme_completion *cqe)
3c0cf138 359{
a4aea562
MB
360 u32 result = le32_to_cpup(&cqe->result);
361 u16 status = le16_to_cpup(&cqe->status) >> 1;
362
363 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
1c63dc66 364 ++nvmeq->dev->ctrl.event_limit;
a5768aa8
KB
365 if (status != NVME_SC_SUCCESS)
366 return;
367
368 switch (result & 0xff07) {
369 case NVME_AER_NOTICE_NS_CHANGED:
370 dev_info(nvmeq->q_dmadev, "rescanning\n");
371 schedule_work(&nvmeq->dev->scan_work);
372 default:
373 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
374 }
b60503ba
MW
375}
376
a4aea562
MB
377static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
378 struct nvme_completion *cqe)
5a92e700 379{
a4aea562
MB
380 struct request *req = ctx;
381
382 u16 status = le16_to_cpup(&cqe->status) >> 1;
383 u32 result = le32_to_cpup(&cqe->result);
a51afb54 384
42483228 385 blk_mq_free_request(req);
a51afb54 386
a4aea562 387 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
1c63dc66 388 ++nvmeq->dev->ctrl.abort_limit;
5a92e700
KB
389}
390
a4aea562
MB
391static void async_completion(struct nvme_queue *nvmeq, void *ctx,
392 struct nvme_completion *cqe)
b60503ba 393{
a4aea562
MB
394 struct async_cmd_info *cmdinfo = ctx;
395 cmdinfo->result = le32_to_cpup(&cqe->result);
396 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
397 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
42483228 398 blk_mq_free_request(cmdinfo->req);
b60503ba
MW
399}
400
a4aea562
MB
401static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
402 unsigned int tag)
b60503ba 403{
42483228 404 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
a51afb54 405
a4aea562 406 return blk_mq_rq_to_pdu(req);
4f5099af
KB
407}
408
a4aea562
MB
409/*
410 * Called with local interrupts disabled and the q_lock held. May not sleep.
411 */
412static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
413 nvme_completion_fn *fn)
4f5099af 414{
a4aea562
MB
415 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
416 void *ctx;
417 if (tag >= nvmeq->q_depth) {
418 *fn = special_completion;
419 return CMD_CTX_INVALID;
420 }
421 if (fn)
422 *fn = cmd->fn;
423 ctx = cmd->ctx;
424 cmd->fn = special_completion;
425 cmd->ctx = CMD_CTX_COMPLETED;
426 return ctx;
b60503ba
MW
427}
428
429/**
714a7a22 430 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
431 * @nvmeq: The queue to use
432 * @cmd: The command to send
433 *
434 * Safe to use from interrupt context
435 */
e3f879bf
SB
436static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
437 struct nvme_command *cmd)
b60503ba 438{
a4aea562
MB
439 u16 tail = nvmeq->sq_tail;
440
8ffaadf7
JD
441 if (nvmeq->sq_cmds_io)
442 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
443 else
444 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
445
b60503ba
MW
446 if (++tail == nvmeq->q_depth)
447 tail = 0;
7547881d 448 writel(tail, nvmeq->q_db);
b60503ba 449 nvmeq->sq_tail = tail;
b60503ba
MW
450}
451
e3f879bf 452static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
a4aea562
MB
453{
454 unsigned long flags;
a4aea562 455 spin_lock_irqsave(&nvmeq->q_lock, flags);
e3f879bf 456 __nvme_submit_cmd(nvmeq, cmd);
a4aea562 457 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a4aea562
MB
458}
459
eca18b23 460static __le64 **iod_list(struct nvme_iod *iod)
e025344c 461{
eca18b23 462 return ((void *)iod) + iod->offset;
e025344c
SMM
463}
464
ac3dd5bd
JA
465static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
466 unsigned nseg, unsigned long private)
eca18b23 467{
ac3dd5bd
JA
468 iod->private = private;
469 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
470 iod->npages = -1;
471 iod->length = nbytes;
472 iod->nents = 0;
eca18b23 473}
b60503ba 474
eca18b23 475static struct nvme_iod *
ac3dd5bd
JA
476__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
477 unsigned long priv, gfp_t gfp)
b60503ba 478{
eca18b23 479 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
ac3dd5bd 480 sizeof(__le64 *) * nvme_npages(bytes, dev) +
eca18b23
MW
481 sizeof(struct scatterlist) * nseg, gfp);
482
ac3dd5bd
JA
483 if (iod)
484 iod_init(iod, bytes, nseg, priv);
eca18b23
MW
485
486 return iod;
b60503ba
MW
487}
488
ac3dd5bd
JA
489static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
490 gfp_t gfp)
491{
492 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
493 sizeof(struct nvme_dsm_range);
ac3dd5bd
JA
494 struct nvme_iod *iod;
495
496 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
497 size <= NVME_INT_BYTES(dev)) {
498 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
499
500 iod = cmd->iod;
ac3dd5bd 501 iod_init(iod, size, rq->nr_phys_segments,
fda631ff 502 (unsigned long) rq | NVME_INT_MASK);
ac3dd5bd
JA
503 return iod;
504 }
505
506 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
507 (unsigned long) rq, gfp);
508}
509
d29ec824 510static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 511{
5fd4ce1b 512 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23
MW
513 int i;
514 __le64 **list = iod_list(iod);
515 dma_addr_t prp_dma = iod->first_dma;
516
517 if (iod->npages == 0)
518 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
519 for (i = 0; i < iod->npages; i++) {
520 __le64 *prp_list = list[i];
521 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
522 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
523 prp_dma = next_prp_dma;
524 }
ac3dd5bd
JA
525
526 if (iod_should_kfree(iod))
527 kfree(iod);
b60503ba
MW
528}
529
52b68d7e 530#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
531static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
532{
533 if (be32_to_cpu(pi->ref_tag) == v)
534 pi->ref_tag = cpu_to_be32(p);
535}
536
537static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
538{
539 if (be32_to_cpu(pi->ref_tag) == p)
540 pi->ref_tag = cpu_to_be32(v);
541}
542
543/**
544 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
545 *
546 * The virtual start sector is the one that was originally submitted by the
547 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
548 * start sector may be different. Remap protection information to match the
549 * physical LBA on writes, and back to the original seed on reads.
550 *
551 * Type 0 and 3 do not have a ref tag, so no remapping required.
552 */
553static void nvme_dif_remap(struct request *req,
554 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
555{
556 struct nvme_ns *ns = req->rq_disk->private_data;
557 struct bio_integrity_payload *bip;
558 struct t10_pi_tuple *pi;
559 void *p, *pmap;
560 u32 i, nlb, ts, phys, virt;
561
562 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
563 return;
564
565 bip = bio_integrity(req->bio);
566 if (!bip)
567 return;
568
569 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
570
571 p = pmap;
572 virt = bip_get_seed(bip);
573 phys = nvme_block_nr(ns, blk_rq_pos(req));
574 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 575 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
576
577 for (i = 0; i < nlb; i++, virt++, phys++) {
578 pi = (struct t10_pi_tuple *)p;
579 dif_swap(phys, virt, pi);
580 p += ts;
581 }
582 kunmap_atomic(pmap);
583}
52b68d7e
KB
584#else /* CONFIG_BLK_DEV_INTEGRITY */
585static void nvme_dif_remap(struct request *req,
586 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
587{
588}
589static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
590{
591}
592static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
593{
594}
52b68d7e
KB
595#endif
596
a4aea562 597static void req_completion(struct nvme_queue *nvmeq, void *ctx,
b60503ba
MW
598 struct nvme_completion *cqe)
599{
eca18b23 600 struct nvme_iod *iod = ctx;
ac3dd5bd 601 struct request *req = iod_get_private(iod);
a4aea562 602 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
b60503ba 603 u16 status = le16_to_cpup(&cqe->status) >> 1;
81c04b94 604 int error = 0;
b60503ba 605
edd10d33 606 if (unlikely(status)) {
a4aea562
MB
607 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
608 && (jiffies - req->start_time) < req->timeout) {
c9d3bf88
KB
609 unsigned long flags;
610
d4f6c3ab
CH
611 nvme_unmap_data(nvmeq->dev, iod);
612
a4aea562 613 blk_mq_requeue_request(req);
c9d3bf88
KB
614 spin_lock_irqsave(req->q->queue_lock, flags);
615 if (!blk_queue_stopped(req->q))
616 blk_mq_kick_requeue_list(req->q);
617 spin_unlock_irqrestore(req->q->queue_lock, flags);
d4f6c3ab 618 return;
edd10d33 619 }
f4829a9b 620
d29ec824 621 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
17188bb4 622 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
297465c8 623 error = NVME_SC_CANCELLED;
81c04b94
CH
624 else
625 error = status;
d29ec824 626 } else {
81c04b94 627 error = nvme_error_status(status);
d29ec824 628 }
f4829a9b
CH
629 }
630
a0a931d6
KB
631 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
632 u32 result = le32_to_cpup(&cqe->result);
633 req->special = (void *)(uintptr_t)result;
634 }
a4aea562
MB
635
636 if (cmd_rq->aborted)
e75ec752 637 dev_warn(nvmeq->dev->dev,
a4aea562 638 "completing aborted command with status:%04x\n",
81c04b94 639 error);
a4aea562 640
d4f6c3ab
CH
641 nvme_unmap_data(nvmeq->dev, iod);
642 blk_mq_complete_request(req, error);
b60503ba
MW
643}
644
69d2b571
CH
645static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
646 int total_len)
ff22b54f 647{
99802a7a 648 struct dma_pool *pool;
eca18b23
MW
649 int length = total_len;
650 struct scatterlist *sg = iod->sg;
ff22b54f
MW
651 int dma_len = sg_dma_len(sg);
652 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 653 u32 page_size = dev->ctrl.page_size;
f137e0f1 654 int offset = dma_addr & (page_size - 1);
e025344c 655 __le64 *prp_list;
eca18b23 656 __le64 **list = iod_list(iod);
e025344c 657 dma_addr_t prp_dma;
eca18b23 658 int nprps, i;
ff22b54f 659
1d090624 660 length -= (page_size - offset);
ff22b54f 661 if (length <= 0)
69d2b571 662 return true;
ff22b54f 663
1d090624 664 dma_len -= (page_size - offset);
ff22b54f 665 if (dma_len) {
1d090624 666 dma_addr += (page_size - offset);
ff22b54f
MW
667 } else {
668 sg = sg_next(sg);
669 dma_addr = sg_dma_address(sg);
670 dma_len = sg_dma_len(sg);
671 }
672
1d090624 673 if (length <= page_size) {
edd10d33 674 iod->first_dma = dma_addr;
69d2b571 675 return true;
e025344c
SMM
676 }
677
1d090624 678 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
679 if (nprps <= (256 / 8)) {
680 pool = dev->prp_small_pool;
eca18b23 681 iod->npages = 0;
99802a7a
MW
682 } else {
683 pool = dev->prp_page_pool;
eca18b23 684 iod->npages = 1;
99802a7a
MW
685 }
686
69d2b571 687 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 688 if (!prp_list) {
edd10d33 689 iod->first_dma = dma_addr;
eca18b23 690 iod->npages = -1;
69d2b571 691 return false;
b77954cb 692 }
eca18b23
MW
693 list[0] = prp_list;
694 iod->first_dma = prp_dma;
e025344c
SMM
695 i = 0;
696 for (;;) {
1d090624 697 if (i == page_size >> 3) {
e025344c 698 __le64 *old_prp_list = prp_list;
69d2b571 699 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 700 if (!prp_list)
69d2b571 701 return false;
eca18b23 702 list[iod->npages++] = prp_list;
7523d834
MW
703 prp_list[0] = old_prp_list[i - 1];
704 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
705 i = 1;
e025344c
SMM
706 }
707 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
708 dma_len -= page_size;
709 dma_addr += page_size;
710 length -= page_size;
e025344c
SMM
711 if (length <= 0)
712 break;
713 if (dma_len > 0)
714 continue;
715 BUG_ON(dma_len < 0);
716 sg = sg_next(sg);
717 dma_addr = sg_dma_address(sg);
718 dma_len = sg_dma_len(sg);
ff22b54f
MW
719 }
720
69d2b571 721 return true;
ff22b54f
MW
722}
723
ba1ca37e
CH
724static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
725 struct nvme_command *cmnd)
d29ec824 726{
ba1ca37e
CH
727 struct request *req = iod_get_private(iod);
728 struct request_queue *q = req->q;
729 enum dma_data_direction dma_dir = rq_data_dir(req) ?
730 DMA_TO_DEVICE : DMA_FROM_DEVICE;
731 int ret = BLK_MQ_RQ_QUEUE_ERROR;
732
733 sg_init_table(iod->sg, req->nr_phys_segments);
734 iod->nents = blk_rq_map_sg(q, req, iod->sg);
735 if (!iod->nents)
736 goto out;
737
738 ret = BLK_MQ_RQ_QUEUE_BUSY;
739 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
740 goto out;
741
742 if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
743 goto out_unmap;
744
745 ret = BLK_MQ_RQ_QUEUE_ERROR;
746 if (blk_integrity_rq(req)) {
747 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
748 goto out_unmap;
749
750 sg_init_table(iod->meta_sg, 1);
751 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
752 goto out_unmap;
d29ec824 753
ba1ca37e
CH
754 if (rq_data_dir(req))
755 nvme_dif_remap(req, nvme_dif_prep);
756
757 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
758 goto out_unmap;
d29ec824
CH
759 }
760
ba1ca37e
CH
761 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
762 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
763 if (blk_integrity_rq(req))
764 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
765 return BLK_MQ_RQ_QUEUE_OK;
766
767out_unmap:
768 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
769out:
770 return ret;
d29ec824
CH
771}
772
d4f6c3ab
CH
773static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
774{
775 struct request *req = iod_get_private(iod);
776 enum dma_data_direction dma_dir = rq_data_dir(req) ?
777 DMA_TO_DEVICE : DMA_FROM_DEVICE;
778
779 if (iod->nents) {
780 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
781 if (blk_integrity_rq(req)) {
782 if (!rq_data_dir(req))
783 nvme_dif_remap(req, nvme_dif_complete);
784 dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
785 }
786 }
787
788 nvme_free_iod(dev, iod);
789}
790
a4aea562
MB
791/*
792 * We reuse the small pool to allocate the 16-byte range here as it is not
793 * worth having a special pool for these or additional cases to handle freeing
794 * the iod.
795 */
ba1ca37e
CH
796static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
797 struct nvme_iod *iod, struct nvme_command *cmnd)
0e5e4f0e 798{
ba1ca37e
CH
799 struct request *req = iod_get_private(iod);
800 struct nvme_dsm_range *range;
801
802 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
803 &iod->first_dma);
804 if (!range)
805 return BLK_MQ_RQ_QUEUE_BUSY;
806 iod_list(iod)[0] = (__le64 *)range;
807 iod->npages = 0;
0e5e4f0e 808
0e5e4f0e 809 range->cattr = cpu_to_le32(0);
a4aea562
MB
810 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
811 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 812
ba1ca37e
CH
813 memset(cmnd, 0, sizeof(*cmnd));
814 cmnd->dsm.opcode = nvme_cmd_dsm;
815 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
816 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
817 cmnd->dsm.nr = 0;
818 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
819 return BLK_MQ_RQ_QUEUE_OK;
0e5e4f0e
KB
820}
821
d29ec824
CH
822/*
823 * NOTE: ns is NULL when called on the admin queue.
824 */
a4aea562
MB
825static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
826 const struct blk_mq_queue_data *bd)
edd10d33 827{
a4aea562
MB
828 struct nvme_ns *ns = hctx->queue->queuedata;
829 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 830 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
831 struct request *req = bd->rq;
832 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
edd10d33 833 struct nvme_iod *iod;
ba1ca37e
CH
834 struct nvme_command cmnd;
835 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 836
e1e5e564
KB
837 /*
838 * If formated with metadata, require the block layer provide a buffer
839 * unless this namespace is formated such that the metadata can be
840 * stripped/generated by the controller with PRACT=1.
841 */
d29ec824 842 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
843 if (!(ns->pi_type && ns->ms == 8) &&
844 req->cmd_type != REQ_TYPE_DRV_PRIV) {
f4829a9b 845 blk_mq_complete_request(req, -EFAULT);
e1e5e564
KB
846 return BLK_MQ_RQ_QUEUE_OK;
847 }
848 }
849
d29ec824 850 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
edd10d33 851 if (!iod)
fe54303e 852 return BLK_MQ_RQ_QUEUE_BUSY;
a4aea562 853
a4aea562 854 if (req->cmd_flags & REQ_DISCARD) {
ba1ca37e
CH
855 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
856 } else {
857 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
858 memcpy(&cmnd, req->cmd, sizeof(cmnd));
859 else if (req->cmd_flags & REQ_FLUSH)
860 nvme_setup_flush(ns, &cmnd);
861 else
862 nvme_setup_rw(ns, req, &cmnd);
a4aea562 863
ba1ca37e
CH
864 if (req->nr_phys_segments)
865 ret = nvme_map_data(dev, iod, &cmnd);
edd10d33 866 }
1974b1ae 867
ba1ca37e
CH
868 if (ret)
869 goto out;
870
871 cmnd.common.command_id = req->tag;
9af8785a 872 nvme_set_info(cmd, iod, req_completion);
a4aea562 873
ba1ca37e
CH
874 spin_lock_irq(&nvmeq->q_lock);
875 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
876 nvme_process_cq(nvmeq);
877 spin_unlock_irq(&nvmeq->q_lock);
878 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 879out:
d29ec824 880 nvme_free_iod(dev, iod);
ba1ca37e 881 return ret;
b60503ba
MW
882}
883
a0fa9647 884static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 885{
82123460 886 u16 head, phase;
b60503ba 887
b60503ba 888 head = nvmeq->cq_head;
82123460 889 phase = nvmeq->cq_phase;
b60503ba
MW
890
891 for (;;) {
c2f5b650
MW
892 void *ctx;
893 nvme_completion_fn fn;
b60503ba 894 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 895 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
896 break;
897 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
898 if (++head == nvmeq->q_depth) {
899 head = 0;
82123460 900 phase = !phase;
b60503ba 901 }
a0fa9647
JA
902 if (tag && *tag == cqe.command_id)
903 *tag = -1;
a4aea562 904 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
edd10d33 905 fn(nvmeq, ctx, &cqe);
b60503ba
MW
906 }
907
908 /* If the controller ignores the cq head doorbell and continuously
909 * writes to the queue, it is theoretically possible to wrap around
910 * the queue twice and mistakenly return IRQ_NONE. Linux only
911 * requires that 0.1% of your interrupts are handled, so this isn't
912 * a big problem.
913 */
82123460 914 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 915 return;
b60503ba 916
604e8c8d
KB
917 if (likely(nvmeq->cq_vector >= 0))
918 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 919 nvmeq->cq_head = head;
82123460 920 nvmeq->cq_phase = phase;
b60503ba 921
e9539f47 922 nvmeq->cqe_seen = 1;
a0fa9647
JA
923}
924
925static void nvme_process_cq(struct nvme_queue *nvmeq)
926{
927 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
928}
929
930static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
931{
932 irqreturn_t result;
933 struct nvme_queue *nvmeq = data;
934 spin_lock(&nvmeq->q_lock);
e9539f47
MW
935 nvme_process_cq(nvmeq);
936 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
937 nvmeq->cqe_seen = 0;
58ffacb5
MW
938 spin_unlock(&nvmeq->q_lock);
939 return result;
940}
941
942static irqreturn_t nvme_irq_check(int irq, void *data)
943{
944 struct nvme_queue *nvmeq = data;
945 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
946 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
947 return IRQ_NONE;
948 return IRQ_WAKE_THREAD;
949}
950
a0fa9647
JA
951static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
952{
953 struct nvme_queue *nvmeq = hctx->driver_data;
954
955 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
956 nvmeq->cq_phase) {
957 spin_lock_irq(&nvmeq->q_lock);
958 __nvme_process_cq(nvmeq, &tag);
959 spin_unlock_irq(&nvmeq->q_lock);
960
961 if (tag == -1)
962 return 1;
963 }
964
965 return 0;
966}
967
a4aea562
MB
968static int nvme_submit_async_admin_req(struct nvme_dev *dev)
969{
970 struct nvme_queue *nvmeq = dev->queues[0];
971 struct nvme_command c;
972 struct nvme_cmd_info *cmd_info;
973 struct request *req;
974
1c63dc66 975 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 976 BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
9f173b33
DC
977 if (IS_ERR(req))
978 return PTR_ERR(req);
a4aea562 979
c917dfe5 980 req->cmd_flags |= REQ_NO_TIMEOUT;
a4aea562 981 cmd_info = blk_mq_rq_to_pdu(req);
1efccc9d 982 nvme_set_info(cmd_info, NULL, async_req_completion);
a4aea562
MB
983
984 memset(&c, 0, sizeof(c));
985 c.common.opcode = nvme_admin_async_event;
986 c.common.command_id = req->tag;
987
42483228 988 blk_mq_free_request(req);
e3f879bf
SB
989 __nvme_submit_cmd(nvmeq, &c);
990 return 0;
a4aea562
MB
991}
992
993static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
4d115420
KB
994 struct nvme_command *cmd,
995 struct async_cmd_info *cmdinfo, unsigned timeout)
996{
a4aea562
MB
997 struct nvme_queue *nvmeq = dev->queues[0];
998 struct request *req;
999 struct nvme_cmd_info *cmd_rq;
4d115420 1000
1c63dc66 1001 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
9f173b33
DC
1002 if (IS_ERR(req))
1003 return PTR_ERR(req);
a4aea562
MB
1004
1005 req->timeout = timeout;
1006 cmd_rq = blk_mq_rq_to_pdu(req);
1007 cmdinfo->req = req;
1008 nvme_set_info(cmd_rq, cmdinfo, async_completion);
4d115420 1009 cmdinfo->status = -EINTR;
a4aea562
MB
1010
1011 cmd->common.command_id = req->tag;
1012
e3f879bf
SB
1013 nvme_submit_cmd(nvmeq, cmd);
1014 return 0;
4d115420
KB
1015}
1016
b60503ba
MW
1017static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1018{
b60503ba
MW
1019 struct nvme_command c;
1020
1021 memset(&c, 0, sizeof(c));
1022 c.delete_queue.opcode = opcode;
1023 c.delete_queue.qid = cpu_to_le16(id);
1024
1c63dc66 1025 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1026}
1027
1028static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1029 struct nvme_queue *nvmeq)
1030{
b60503ba
MW
1031 struct nvme_command c;
1032 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1033
d29ec824
CH
1034 /*
1035 * Note: we (ab)use the fact the the prp fields survive if no data
1036 * is attached to the request.
1037 */
b60503ba
MW
1038 memset(&c, 0, sizeof(c));
1039 c.create_cq.opcode = nvme_admin_create_cq;
1040 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1041 c.create_cq.cqid = cpu_to_le16(qid);
1042 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1043 c.create_cq.cq_flags = cpu_to_le16(flags);
1044 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1045
1c63dc66 1046 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1047}
1048
1049static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1050 struct nvme_queue *nvmeq)
1051{
b60503ba
MW
1052 struct nvme_command c;
1053 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1054
d29ec824
CH
1055 /*
1056 * Note: we (ab)use the fact the the prp fields survive if no data
1057 * is attached to the request.
1058 */
b60503ba
MW
1059 memset(&c, 0, sizeof(c));
1060 c.create_sq.opcode = nvme_admin_create_sq;
1061 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1062 c.create_sq.sqid = cpu_to_le16(qid);
1063 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1064 c.create_sq.sq_flags = cpu_to_le16(flags);
1065 c.create_sq.cqid = cpu_to_le16(qid);
1066
1c63dc66 1067 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1068}
1069
1070static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1071{
1072 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1073}
1074
1075static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1076{
1077 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1078}
1079
31c7c7d2 1080static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 1081{
a4aea562
MB
1082 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1083 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
c30341dc 1084 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
1085 struct request *abort_req;
1086 struct nvme_cmd_info *abort_cmd;
1087 struct nvme_command cmd;
c30341dc 1088
31c7c7d2
CH
1089 /*
1090 * Schedule controller reset if the command was already aborted once
1091 * before and still hasn't been returned to the driver, or if this is
1092 * the admin queue.
1093 */
a4aea562 1094 if (!nvmeq->qid || cmd_rq->aborted) {
846cc05f 1095 if (queue_work(nvme_workq, &dev->reset_work)) {
90667892
CH
1096 dev_warn(dev->dev,
1097 "I/O %d QID %d timeout, reset controller\n",
1098 req->tag, nvmeq->qid);
1099 }
31c7c7d2 1100 return BLK_EH_RESET_TIMER;
c30341dc
KB
1101 }
1102
1c63dc66 1103 if (!dev->ctrl.abort_limit)
31c7c7d2 1104 return BLK_EH_RESET_TIMER;
c30341dc 1105
1c63dc66 1106 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 1107 BLK_MQ_REQ_NOWAIT);
9f173b33 1108 if (IS_ERR(abort_req))
31c7c7d2 1109 return BLK_EH_RESET_TIMER;
c30341dc 1110
a4aea562
MB
1111 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1112 nvme_set_info(abort_cmd, abort_req, abort_completion);
1113
c30341dc
KB
1114 memset(&cmd, 0, sizeof(cmd));
1115 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1116 cmd.abort.cid = req->tag;
c30341dc 1117 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
a4aea562 1118 cmd.abort.command_id = abort_req->tag;
c30341dc 1119
1c63dc66 1120 --dev->ctrl.abort_limit;
a4aea562 1121 cmd_rq->aborted = 1;
c30341dc 1122
31c7c7d2
CH
1123 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
1124 req->tag, nvmeq->qid);
e3f879bf 1125 nvme_submit_cmd(dev->queues[0], &cmd);
31c7c7d2
CH
1126
1127 /*
1128 * The aborted req will be completed on receiving the abort req.
1129 * We enable the timer again. If hit twice, it'll cause a device reset,
1130 * as the device then is in a faulty state.
1131 */
1132 return BLK_EH_RESET_TIMER;
c30341dc
KB
1133}
1134
42483228 1135static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1136{
a4aea562
MB
1137 struct nvme_queue *nvmeq = data;
1138 void *ctx;
1139 nvme_completion_fn fn;
1140 struct nvme_cmd_info *cmd;
cef6a948
KB
1141 struct nvme_completion cqe;
1142
1143 if (!blk_mq_request_started(req))
1144 return;
a09115b2 1145
a4aea562 1146 cmd = blk_mq_rq_to_pdu(req);
a09115b2 1147
a4aea562
MB
1148 if (cmd->ctx == CMD_CTX_CANCELLED)
1149 return;
1150
cef6a948
KB
1151 if (blk_queue_dying(req->q))
1152 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1153 else
1154 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1155
1156
a4aea562
MB
1157 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1158 req->tag, nvmeq->qid);
1159 ctx = cancel_cmd_info(cmd, &fn);
1160 fn(nvmeq, ctx, &cqe);
a09115b2
MW
1161}
1162
a4aea562
MB
1163static void nvme_free_queue(struct nvme_queue *nvmeq)
1164{
9e866774
MW
1165 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1166 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1167 if (nvmeq->sq_cmds)
1168 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1169 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1170 kfree(nvmeq);
1171}
1172
a1a5ef99 1173static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1174{
1175 int i;
1176
a1a5ef99 1177 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1178 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1179 dev->queue_count--;
a4aea562 1180 dev->queues[i] = NULL;
f435c282 1181 nvme_free_queue(nvmeq);
121c7ad4 1182 }
22404274
KB
1183}
1184
4d115420
KB
1185/**
1186 * nvme_suspend_queue - put queue into suspended state
1187 * @nvmeq - queue to suspend
4d115420
KB
1188 */
1189static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1190{
2b25d981 1191 int vector;
b60503ba 1192
a09115b2 1193 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1194 if (nvmeq->cq_vector == -1) {
1195 spin_unlock_irq(&nvmeq->q_lock);
1196 return 1;
1197 }
1198 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1199 nvmeq->dev->online_queues--;
2b25d981 1200 nvmeq->cq_vector = -1;
a09115b2
MW
1201 spin_unlock_irq(&nvmeq->q_lock);
1202
1c63dc66
CH
1203 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1204 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1205
aba2080f
MW
1206 irq_set_affinity_hint(vector, NULL);
1207 free_irq(vector, nvmeq);
b60503ba 1208
4d115420
KB
1209 return 0;
1210}
b60503ba 1211
4d115420
KB
1212static void nvme_clear_queue(struct nvme_queue *nvmeq)
1213{
22404274 1214 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1215 if (nvmeq->tags && *nvmeq->tags)
1216 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1217 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1218}
1219
4d115420
KB
1220static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1221{
a4aea562 1222 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1223
1224 if (!nvmeq)
1225 return;
1226 if (nvme_suspend_queue(nvmeq))
1227 return;
1228
0e53d180
KB
1229 /* Don't tell the adapter to delete the admin queue.
1230 * Don't tell a removed adapter to delete IO queues. */
7a67cbea 1231 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
b60503ba
MW
1232 adapter_delete_sq(dev, qid);
1233 adapter_delete_cq(dev, qid);
1234 }
07836e65
KB
1235
1236 spin_lock_irq(&nvmeq->q_lock);
1237 nvme_process_cq(nvmeq);
1238 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1239}
1240
8ffaadf7
JD
1241static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1242 int entry_size)
1243{
1244 int q_depth = dev->q_depth;
5fd4ce1b
CH
1245 unsigned q_size_aligned = roundup(q_depth * entry_size,
1246 dev->ctrl.page_size);
8ffaadf7
JD
1247
1248 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1249 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1250 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1251 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1252
1253 /*
1254 * Ensure the reduced q_depth is above some threshold where it
1255 * would be better to map queues in system memory with the
1256 * original depth
1257 */
1258 if (q_depth < 64)
1259 return -ENOMEM;
1260 }
1261
1262 return q_depth;
1263}
1264
1265static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1266 int qid, int depth)
1267{
1268 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1269 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1270 dev->ctrl.page_size);
8ffaadf7
JD
1271 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1272 nvmeq->sq_cmds_io = dev->cmb + offset;
1273 } else {
1274 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1275 &nvmeq->sq_dma_addr, GFP_KERNEL);
1276 if (!nvmeq->sq_cmds)
1277 return -ENOMEM;
1278 }
1279
1280 return 0;
1281}
1282
b60503ba 1283static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1284 int depth)
b60503ba 1285{
a4aea562 1286 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1287 if (!nvmeq)
1288 return NULL;
1289
e75ec752 1290 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1291 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1292 if (!nvmeq->cqes)
1293 goto free_nvmeq;
b60503ba 1294
8ffaadf7 1295 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1296 goto free_cqdma;
1297
e75ec752 1298 nvmeq->q_dmadev = dev->dev;
091b6092 1299 nvmeq->dev = dev;
3193f07b 1300 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1301 dev->ctrl.instance, qid);
b60503ba
MW
1302 spin_lock_init(&nvmeq->q_lock);
1303 nvmeq->cq_head = 0;
82123460 1304 nvmeq->cq_phase = 1;
b80d5ccc 1305 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1306 nvmeq->q_depth = depth;
c30341dc 1307 nvmeq->qid = qid;
758dd7fd 1308 nvmeq->cq_vector = -1;
a4aea562 1309 dev->queues[qid] = nvmeq;
b60503ba 1310
36a7e993
JD
1311 /* make sure queue descriptor is set before queue count, for kthread */
1312 mb();
1313 dev->queue_count++;
1314
b60503ba
MW
1315 return nvmeq;
1316
1317 free_cqdma:
e75ec752 1318 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1319 nvmeq->cq_dma_addr);
1320 free_nvmeq:
1321 kfree(nvmeq);
1322 return NULL;
1323}
1324
3001082c
MW
1325static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1326 const char *name)
1327{
58ffacb5
MW
1328 if (use_threaded_interrupts)
1329 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1330 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1331 name, nvmeq);
3001082c 1332 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1333 IRQF_SHARED, name, nvmeq);
3001082c
MW
1334}
1335
22404274 1336static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1337{
22404274 1338 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1339
7be50e93 1340 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1341 nvmeq->sq_tail = 0;
1342 nvmeq->cq_head = 0;
1343 nvmeq->cq_phase = 1;
b80d5ccc 1344 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1345 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1346 dev->online_queues++;
7be50e93 1347 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1348}
1349
1350static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1351{
1352 struct nvme_dev *dev = nvmeq->dev;
1353 int result;
3f85d50b 1354
2b25d981 1355 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1356 result = adapter_alloc_cq(dev, qid, nvmeq);
1357 if (result < 0)
22404274 1358 return result;
b60503ba
MW
1359
1360 result = adapter_alloc_sq(dev, qid, nvmeq);
1361 if (result < 0)
1362 goto release_cq;
1363
3193f07b 1364 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1365 if (result < 0)
1366 goto release_sq;
1367
22404274 1368 nvme_init_queue(nvmeq, qid);
22404274 1369 return result;
b60503ba
MW
1370
1371 release_sq:
1372 adapter_delete_sq(dev, qid);
1373 release_cq:
1374 adapter_delete_cq(dev, qid);
22404274 1375 return result;
b60503ba
MW
1376}
1377
a4aea562 1378static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1379 .queue_rq = nvme_queue_rq,
a4aea562
MB
1380 .map_queue = blk_mq_map_queue,
1381 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1382 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1383 .init_request = nvme_admin_init_request,
1384 .timeout = nvme_timeout,
1385};
1386
1387static struct blk_mq_ops nvme_mq_ops = {
1388 .queue_rq = nvme_queue_rq,
1389 .map_queue = blk_mq_map_queue,
1390 .init_hctx = nvme_init_hctx,
1391 .init_request = nvme_init_request,
1392 .timeout = nvme_timeout,
a0fa9647 1393 .poll = nvme_poll,
a4aea562
MB
1394};
1395
ea191d2f
KB
1396static void nvme_dev_remove_admin(struct nvme_dev *dev)
1397{
1c63dc66
CH
1398 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1399 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1400 blk_mq_free_tag_set(&dev->admin_tagset);
1401 }
1402}
1403
a4aea562
MB
1404static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1405{
1c63dc66 1406 if (!dev->ctrl.admin_q) {
a4aea562
MB
1407 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1408 dev->admin_tagset.nr_hw_queues = 1;
1409 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1efccc9d 1410 dev->admin_tagset.reserved_tags = 1;
a4aea562 1411 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1412 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1413 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1414 dev->admin_tagset.driver_data = dev;
1415
1416 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1417 return -ENOMEM;
1418
1c63dc66
CH
1419 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1420 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1421 blk_mq_free_tag_set(&dev->admin_tagset);
1422 return -ENOMEM;
1423 }
1c63dc66 1424 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1425 nvme_dev_remove_admin(dev);
1c63dc66 1426 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1427 return -ENODEV;
1428 }
0fb59cbc 1429 } else
1c63dc66 1430 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
a4aea562
MB
1431
1432 return 0;
1433}
1434
8d85fce7 1435static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1436{
ba47e386 1437 int result;
b60503ba 1438 u32 aqa;
7a67cbea 1439 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1440 struct nvme_queue *nvmeq;
1441
7a67cbea 1442 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1443 NVME_CAP_NSSRC(cap) : 0;
1444
7a67cbea
CH
1445 if (dev->subsystem &&
1446 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1447 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1448
5fd4ce1b 1449 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1450 if (result < 0)
1451 return result;
b60503ba 1452
a4aea562 1453 nvmeq = dev->queues[0];
cd638946 1454 if (!nvmeq) {
2b25d981 1455 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1456 if (!nvmeq)
1457 return -ENOMEM;
cd638946 1458 }
b60503ba
MW
1459
1460 aqa = nvmeq->q_depth - 1;
1461 aqa |= aqa << 16;
1462
7a67cbea
CH
1463 writel(aqa, dev->bar + NVME_REG_AQA);
1464 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1465 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1466
5fd4ce1b 1467 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1468 if (result)
a4aea562
MB
1469 goto free_nvmeq;
1470
2b25d981 1471 nvmeq->cq_vector = 0;
3193f07b 1472 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1473 if (result) {
1474 nvmeq->cq_vector = -1;
0fb59cbc 1475 goto free_nvmeq;
758dd7fd 1476 }
025c557a 1477
b60503ba 1478 return result;
a4aea562 1479
a4aea562
MB
1480 free_nvmeq:
1481 nvme_free_queues(dev, 0);
1482 return result;
b60503ba
MW
1483}
1484
1fa6aead
MW
1485static int nvme_kthread(void *data)
1486{
d4b4ff8e 1487 struct nvme_dev *dev, *next;
1fa6aead
MW
1488
1489 while (!kthread_should_stop()) {
564a232c 1490 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 1491 spin_lock(&dev_list_lock);
d4b4ff8e 1492 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 1493 int i;
7a67cbea 1494 u32 csts = readl(dev->bar + NVME_REG_CSTS);
dfbac8c7 1495
846cc05f
CH
1496 /*
1497 * Skip controllers currently under reset.
1498 */
1499 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1500 continue;
1501
dfbac8c7
KB
1502 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1503 csts & NVME_CSTS_CFS) {
846cc05f 1504 if (queue_work(nvme_workq, &dev->reset_work)) {
90667892
CH
1505 dev_warn(dev->dev,
1506 "Failed status: %x, reset controller\n",
7a67cbea 1507 readl(dev->bar + NVME_REG_CSTS));
90667892 1508 }
d4b4ff8e
KB
1509 continue;
1510 }
1fa6aead 1511 for (i = 0; i < dev->queue_count; i++) {
a4aea562 1512 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1513 if (!nvmeq)
1514 continue;
1fa6aead 1515 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 1516 nvme_process_cq(nvmeq);
6fccf938 1517
1c63dc66 1518 while (i == 0 && dev->ctrl.event_limit > 0) {
a4aea562 1519 if (nvme_submit_async_admin_req(dev))
6fccf938 1520 break;
1c63dc66 1521 dev->ctrl.event_limit--;
6fccf938 1522 }
1fa6aead
MW
1523 spin_unlock_irq(&nvmeq->q_lock);
1524 }
1525 }
1526 spin_unlock(&dev_list_lock);
acb7aa0d 1527 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
1528 }
1529 return 0;
1530}
1531
749941f2 1532static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1533{
a4aea562 1534 unsigned i;
749941f2 1535 int ret = 0;
42f61420 1536
749941f2
CH
1537 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1538 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1539 ret = -ENOMEM;
42f61420 1540 break;
749941f2
CH
1541 }
1542 }
42f61420 1543
749941f2
CH
1544 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1545 ret = nvme_create_queue(dev->queues[i], i);
1546 if (ret) {
2659e57b 1547 nvme_free_queues(dev, i);
42f61420 1548 break;
2659e57b 1549 }
749941f2
CH
1550 }
1551
1552 /*
1553 * Ignore failing Create SQ/CQ commands, we can continue with less
1554 * than the desired aount of queues, and even a controller without
1555 * I/O queues an still be used to issue admin commands. This might
1556 * be useful to upgrade a buggy firmware for example.
1557 */
1558 return ret >= 0 ? 0 : ret;
42f61420
KB
1559}
1560
8ffaadf7
JD
1561static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1562{
1563 u64 szu, size, offset;
1564 u32 cmbloc;
1565 resource_size_t bar_size;
1566 struct pci_dev *pdev = to_pci_dev(dev->dev);
1567 void __iomem *cmb;
1568 dma_addr_t dma_addr;
1569
1570 if (!use_cmb_sqes)
1571 return NULL;
1572
7a67cbea 1573 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1574 if (!(NVME_CMB_SZ(dev->cmbsz)))
1575 return NULL;
1576
7a67cbea 1577 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1578
1579 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1580 size = szu * NVME_CMB_SZ(dev->cmbsz);
1581 offset = szu * NVME_CMB_OFST(cmbloc);
1582 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1583
1584 if (offset > bar_size)
1585 return NULL;
1586
1587 /*
1588 * Controllers may support a CMB size larger than their BAR,
1589 * for example, due to being behind a bridge. Reduce the CMB to
1590 * the reported size of the BAR
1591 */
1592 if (size > bar_size - offset)
1593 size = bar_size - offset;
1594
1595 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1596 cmb = ioremap_wc(dma_addr, size);
1597 if (!cmb)
1598 return NULL;
1599
1600 dev->cmb_dma_addr = dma_addr;
1601 dev->cmb_size = size;
1602 return cmb;
1603}
1604
1605static inline void nvme_release_cmb(struct nvme_dev *dev)
1606{
1607 if (dev->cmb) {
1608 iounmap(dev->cmb);
1609 dev->cmb = NULL;
1610 }
1611}
1612
9d713c2b
KB
1613static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1614{
b80d5ccc 1615 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1616}
1617
8d85fce7 1618static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1619{
a4aea562 1620 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1621 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1622 int result, i, vecs, nr_io_queues, size;
b60503ba 1623
42f61420 1624 nr_io_queues = num_possible_cpus();
9a0be7ab
CH
1625 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1626 if (result < 0)
1b23484b 1627 return result;
9a0be7ab
CH
1628
1629 /*
1630 * Degraded controllers might return an error when setting the queue
1631 * count. We still want to be able to bring them online and offer
1632 * access to the admin queue, as that might be only way to fix them up.
1633 */
1634 if (result > 0) {
1635 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1636 nr_io_queues = 0;
1637 result = 0;
1638 }
b60503ba 1639
8ffaadf7
JD
1640 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1641 result = nvme_cmb_qdepth(dev, nr_io_queues,
1642 sizeof(struct nvme_command));
1643 if (result > 0)
1644 dev->q_depth = result;
1645 else
1646 nvme_release_cmb(dev);
1647 }
1648
9d713c2b
KB
1649 size = db_bar_size(dev, nr_io_queues);
1650 if (size > 8192) {
f1938f6e 1651 iounmap(dev->bar);
9d713c2b
KB
1652 do {
1653 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1654 if (dev->bar)
1655 break;
1656 if (!--nr_io_queues)
1657 return -ENOMEM;
1658 size = db_bar_size(dev, nr_io_queues);
1659 } while (1);
7a67cbea 1660 dev->dbs = dev->bar + 4096;
5a92e700 1661 adminq->q_db = dev->dbs;
f1938f6e
MW
1662 }
1663
9d713c2b 1664 /* Deregister the admin queue's interrupt */
3193f07b 1665 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1666
e32efbfc
JA
1667 /*
1668 * If we enable msix early due to not intx, disable it again before
1669 * setting up the full range we need.
1670 */
1671 if (!pdev->irq)
1672 pci_disable_msix(pdev);
1673
be577fab 1674 for (i = 0; i < nr_io_queues; i++)
1b23484b 1675 dev->entry[i].entry = i;
be577fab
AG
1676 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1677 if (vecs < 0) {
1678 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1679 if (vecs < 0) {
1680 vecs = 1;
1681 } else {
1682 for (i = 0; i < vecs; i++)
1683 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1684 }
1685 }
1686
063a8096
MW
1687 /*
1688 * Should investigate if there's a performance win from allocating
1689 * more queues than interrupt vectors; it might allow the submission
1690 * path to scale better, even if the receive path is limited by the
1691 * number of interrupts.
1692 */
1693 nr_io_queues = vecs;
42f61420 1694 dev->max_qid = nr_io_queues;
063a8096 1695
3193f07b 1696 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1697 if (result) {
1698 adminq->cq_vector = -1;
22404274 1699 goto free_queues;
758dd7fd 1700 }
1b23484b 1701
cd638946 1702 /* Free previously allocated queues that are no longer usable */
42f61420 1703 nvme_free_queues(dev, nr_io_queues + 1);
749941f2 1704 return nvme_create_io_queues(dev);
b60503ba 1705
22404274 1706 free_queues:
a1a5ef99 1707 nvme_free_queues(dev, 1);
22404274 1708 return result;
b60503ba
MW
1709}
1710
bda4e0fb
KB
1711static void nvme_set_irq_hints(struct nvme_dev *dev)
1712{
1713 struct nvme_queue *nvmeq;
1714 int i;
1715
1716 for (i = 0; i < dev->online_queues; i++) {
1717 nvmeq = dev->queues[i];
1718
1719 if (!nvmeq->tags || !(*nvmeq->tags))
1720 continue;
1721
1722 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1723 blk_mq_tags_cpumask(*nvmeq->tags));
1724 }
1725}
1726
a5768aa8
KB
1727static void nvme_dev_scan(struct work_struct *work)
1728{
1729 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
a5768aa8
KB
1730
1731 if (!dev->tagset.tags)
1732 return;
5bae7f73 1733 nvme_scan_namespaces(&dev->ctrl);
bda4e0fb 1734 nvme_set_irq_hints(dev);
a5768aa8
KB
1735}
1736
422ef0c7
MW
1737/*
1738 * Return: error value if an error occurred setting up the queues or calling
1739 * Identify Device. 0 if these succeeded, even if adding some of the
1740 * namespaces failed. At the moment, these failures are silent. TBD which
1741 * failures should be reported.
1742 */
8d85fce7 1743static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1744{
5bae7f73 1745 if (!dev->ctrl.tagset) {
ffe7704d
KB
1746 dev->tagset.ops = &nvme_mq_ops;
1747 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1748 dev->tagset.timeout = NVME_IO_TIMEOUT;
1749 dev->tagset.numa_node = dev_to_node(dev->dev);
1750 dev->tagset.queue_depth =
a4aea562 1751 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1752 dev->tagset.cmd_size = nvme_cmd_size(dev);
1753 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1754 dev->tagset.driver_data = dev;
b60503ba 1755
ffe7704d
KB
1756 if (blk_mq_alloc_tag_set(&dev->tagset))
1757 return 0;
5bae7f73 1758 dev->ctrl.tagset = &dev->tagset;
ffe7704d 1759 }
a5768aa8 1760 schedule_work(&dev->scan_work);
e1e5e564 1761 return 0;
b60503ba
MW
1762}
1763
0877cb0d
KB
1764static int nvme_dev_map(struct nvme_dev *dev)
1765{
42f61420 1766 u64 cap;
0877cb0d 1767 int bars, result = -ENOMEM;
e75ec752 1768 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1769
1770 if (pci_enable_device_mem(pdev))
1771 return result;
1772
1773 dev->entry[0].vector = pdev->irq;
1774 pci_set_master(pdev);
1775 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
1776 if (!bars)
1777 goto disable_pci;
1778
0877cb0d
KB
1779 if (pci_request_selected_regions(pdev, bars, "nvme"))
1780 goto disable_pci;
1781
e75ec752
CH
1782 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1783 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1784 goto disable;
0877cb0d 1785
0877cb0d
KB
1786 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1787 if (!dev->bar)
1788 goto disable;
e32efbfc 1789
7a67cbea 1790 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180
KB
1791 result = -ENODEV;
1792 goto unmap;
1793 }
e32efbfc
JA
1794
1795 /*
1796 * Some devices don't advertse INTx interrupts, pre-enable a single
1797 * MSIX vec for setup. We'll adjust this later.
1798 */
1799 if (!pdev->irq) {
1800 result = pci_enable_msix(pdev, dev->entry, 1);
1801 if (result < 0)
1802 goto unmap;
1803 }
1804
7a67cbea
CH
1805 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1806
42f61420
KB
1807 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1808 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea
CH
1809 dev->dbs = dev->bar + 4096;
1810 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1811 dev->cmb = nvme_map_cmb(dev);
0877cb0d
KB
1812
1813 return 0;
1814
0e53d180
KB
1815 unmap:
1816 iounmap(dev->bar);
1817 dev->bar = NULL;
0877cb0d
KB
1818 disable:
1819 pci_release_regions(pdev);
1820 disable_pci:
1821 pci_disable_device(pdev);
1822 return result;
1823}
1824
1825static void nvme_dev_unmap(struct nvme_dev *dev)
1826{
e75ec752
CH
1827 struct pci_dev *pdev = to_pci_dev(dev->dev);
1828
1829 if (pdev->msi_enabled)
1830 pci_disable_msi(pdev);
1831 else if (pdev->msix_enabled)
1832 pci_disable_msix(pdev);
0877cb0d
KB
1833
1834 if (dev->bar) {
1835 iounmap(dev->bar);
1836 dev->bar = NULL;
e75ec752 1837 pci_release_regions(pdev);
0877cb0d
KB
1838 }
1839
e75ec752
CH
1840 if (pci_is_enabled(pdev))
1841 pci_disable_device(pdev);
0877cb0d
KB
1842}
1843
4d115420
KB
1844struct nvme_delq_ctx {
1845 struct task_struct *waiter;
1846 struct kthread_worker *worker;
1847 atomic_t refcount;
1848};
1849
1850static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1851{
1852 dq->waiter = current;
1853 mb();
1854
1855 for (;;) {
1856 set_current_state(TASK_KILLABLE);
1857 if (!atomic_read(&dq->refcount))
1858 break;
1859 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1860 fatal_signal_pending(current)) {
0fb59cbc
KB
1861 /*
1862 * Disable the controller first since we can't trust it
1863 * at this point, but leave the admin queue enabled
1864 * until all queue deletion requests are flushed.
1865 * FIXME: This may take a while if there are more h/w
1866 * queues than admin tags.
1867 */
4d115420 1868 set_current_state(TASK_RUNNING);
5fd4ce1b 1869 nvme_disable_ctrl(&dev->ctrl,
7a67cbea 1870 lo_hi_readq(dev->bar + NVME_REG_CAP));
0fb59cbc 1871 nvme_clear_queue(dev->queues[0]);
4d115420 1872 flush_kthread_worker(dq->worker);
0fb59cbc 1873 nvme_disable_queue(dev, 0);
4d115420
KB
1874 return;
1875 }
1876 }
1877 set_current_state(TASK_RUNNING);
1878}
1879
1880static void nvme_put_dq(struct nvme_delq_ctx *dq)
1881{
1882 atomic_dec(&dq->refcount);
1883 if (dq->waiter)
1884 wake_up_process(dq->waiter);
1885}
1886
1887static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1888{
1889 atomic_inc(&dq->refcount);
1890 return dq;
1891}
1892
1893static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1894{
1895 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420 1896 nvme_put_dq(dq);
604e8c8d
KB
1897
1898 spin_lock_irq(&nvmeq->q_lock);
1899 nvme_process_cq(nvmeq);
1900 spin_unlock_irq(&nvmeq->q_lock);
4d115420
KB
1901}
1902
1903static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1904 kthread_work_func_t fn)
1905{
1906 struct nvme_command c;
1907
1908 memset(&c, 0, sizeof(c));
1909 c.delete_queue.opcode = opcode;
1910 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1911
1912 init_kthread_work(&nvmeq->cmdinfo.work, fn);
a4aea562
MB
1913 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
1914 ADMIN_TIMEOUT);
4d115420
KB
1915}
1916
1917static void nvme_del_cq_work_handler(struct kthread_work *work)
1918{
1919 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1920 cmdinfo.work);
1921 nvme_del_queue_end(nvmeq);
1922}
1923
1924static int nvme_delete_cq(struct nvme_queue *nvmeq)
1925{
1926 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1927 nvme_del_cq_work_handler);
1928}
1929
1930static void nvme_del_sq_work_handler(struct kthread_work *work)
1931{
1932 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1933 cmdinfo.work);
1934 int status = nvmeq->cmdinfo.status;
1935
1936 if (!status)
1937 status = nvme_delete_cq(nvmeq);
1938 if (status)
1939 nvme_del_queue_end(nvmeq);
1940}
1941
1942static int nvme_delete_sq(struct nvme_queue *nvmeq)
1943{
1944 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1945 nvme_del_sq_work_handler);
1946}
1947
1948static void nvme_del_queue_start(struct kthread_work *work)
1949{
1950 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1951 cmdinfo.work);
4d115420
KB
1952 if (nvme_delete_sq(nvmeq))
1953 nvme_del_queue_end(nvmeq);
1954}
1955
1956static void nvme_disable_io_queues(struct nvme_dev *dev)
1957{
1958 int i;
1959 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1960 struct nvme_delq_ctx dq;
1961 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1c63dc66 1962 &worker, "nvme%d", dev->ctrl.instance);
4d115420
KB
1963
1964 if (IS_ERR(kworker_task)) {
e75ec752 1965 dev_err(dev->dev,
4d115420
KB
1966 "Failed to create queue del task\n");
1967 for (i = dev->queue_count - 1; i > 0; i--)
1968 nvme_disable_queue(dev, i);
1969 return;
1970 }
1971
1972 dq.waiter = NULL;
1973 atomic_set(&dq.refcount, 0);
1974 dq.worker = &worker;
1975 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 1976 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
1977
1978 if (nvme_suspend_queue(nvmeq))
1979 continue;
1980 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
1981 nvmeq->cmdinfo.worker = dq.worker;
1982 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
1983 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
1984 }
1985 nvme_wait_dq(&dq, dev);
1986 kthread_stop(kworker_task);
1987}
1988
7385014c
CH
1989static int nvme_dev_list_add(struct nvme_dev *dev)
1990{
1991 bool start_thread = false;
1992
1993 spin_lock(&dev_list_lock);
1994 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1995 start_thread = true;
1996 nvme_thread = NULL;
1997 }
1998 list_add(&dev->node, &dev_list);
1999 spin_unlock(&dev_list_lock);
2000
2001 if (start_thread) {
2002 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2003 wake_up_all(&nvme_kthread_wait);
2004 } else
2005 wait_event_killable(nvme_kthread_wait, nvme_thread);
2006
2007 if (IS_ERR_OR_NULL(nvme_thread))
2008 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2009
2010 return 0;
2011}
2012
b9afca3e
DM
2013/*
2014* Remove the node from the device list and check
2015* for whether or not we need to stop the nvme_thread.
2016*/
2017static void nvme_dev_list_remove(struct nvme_dev *dev)
2018{
2019 struct task_struct *tmp = NULL;
2020
2021 spin_lock(&dev_list_lock);
2022 list_del_init(&dev->node);
2023 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2024 tmp = nvme_thread;
2025 nvme_thread = NULL;
2026 }
2027 spin_unlock(&dev_list_lock);
2028
2029 if (tmp)
2030 kthread_stop(tmp);
2031}
2032
c9d3bf88
KB
2033static void nvme_freeze_queues(struct nvme_dev *dev)
2034{
2035 struct nvme_ns *ns;
2036
5bae7f73 2037 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
c9d3bf88
KB
2038 blk_mq_freeze_queue_start(ns->queue);
2039
cddcd72b 2040 spin_lock_irq(ns->queue->queue_lock);
c9d3bf88 2041 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
cddcd72b 2042 spin_unlock_irq(ns->queue->queue_lock);
c9d3bf88
KB
2043
2044 blk_mq_cancel_requeue_work(ns->queue);
2045 blk_mq_stop_hw_queues(ns->queue);
2046 }
2047}
2048
2049static void nvme_unfreeze_queues(struct nvme_dev *dev)
2050{
2051 struct nvme_ns *ns;
2052
5bae7f73 2053 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
c9d3bf88
KB
2054 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2055 blk_mq_unfreeze_queue(ns->queue);
2056 blk_mq_start_stopped_hw_queues(ns->queue, true);
2057 blk_mq_kick_requeue_list(ns->queue);
2058 }
2059}
2060
f0b50732 2061static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 2062{
22404274 2063 int i;
7c1b2450 2064 u32 csts = -1;
22404274 2065
b9afca3e 2066 nvme_dev_list_remove(dev);
1fa6aead 2067
77bf25ea 2068 mutex_lock(&dev->shutdown_lock);
c9d3bf88
KB
2069 if (dev->bar) {
2070 nvme_freeze_queues(dev);
7a67cbea 2071 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 2072 }
7c1b2450 2073 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 2074 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 2075 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 2076 nvme_suspend_queue(nvmeq);
4d115420
KB
2077 }
2078 } else {
2079 nvme_disable_io_queues(dev);
5fd4ce1b 2080 nvme_shutdown_ctrl(&dev->ctrl);
4d115420
KB
2081 nvme_disable_queue(dev, 0);
2082 }
f0b50732 2083 nvme_dev_unmap(dev);
07836e65
KB
2084
2085 for (i = dev->queue_count - 1; i >= 0; i--)
2086 nvme_clear_queue(dev->queues[i]);
77bf25ea 2087 mutex_unlock(&dev->shutdown_lock);
f0b50732
KB
2088}
2089
091b6092
MW
2090static int nvme_setup_prp_pools(struct nvme_dev *dev)
2091{
e75ec752 2092 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2093 PAGE_SIZE, PAGE_SIZE, 0);
2094 if (!dev->prp_page_pool)
2095 return -ENOMEM;
2096
99802a7a 2097 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2098 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2099 256, 256, 0);
2100 if (!dev->prp_small_pool) {
2101 dma_pool_destroy(dev->prp_page_pool);
2102 return -ENOMEM;
2103 }
091b6092
MW
2104 return 0;
2105}
2106
2107static void nvme_release_prp_pools(struct nvme_dev *dev)
2108{
2109 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2110 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2111}
2112
1673f1f0 2113static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2114{
1673f1f0 2115 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2116
e75ec752 2117 put_device(dev->dev);
4af0e21c
KB
2118 if (dev->tagset.tags)
2119 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2120 if (dev->ctrl.admin_q)
2121 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
2122 kfree(dev->queues);
2123 kfree(dev->entry);
2124 kfree(dev);
2125}
2126
3cf519b5 2127static void nvme_probe_work(struct work_struct *work)
f0b50732 2128{
3cf519b5 2129 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3cf519b5 2130 int result;
f0b50732
KB
2131
2132 result = nvme_dev_map(dev);
2133 if (result)
3cf519b5 2134 goto out;
f0b50732
KB
2135
2136 result = nvme_configure_admin_queue(dev);
2137 if (result)
2138 goto unmap;
2139
a4aea562 2140 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2141 result = nvme_alloc_admin_tags(dev);
2142 if (result)
2143 goto disable;
b9afca3e 2144
ce4541f4
CH
2145 result = nvme_init_identify(&dev->ctrl);
2146 if (result)
2147 goto free_tags;
2148
f0b50732 2149 result = nvme_setup_io_queues(dev);
badc34d4 2150 if (result)
0fb59cbc 2151 goto free_tags;
f0b50732 2152
1c63dc66 2153 dev->ctrl.event_limit = 1;
3cf519b5 2154
7385014c
CH
2155 result = nvme_dev_list_add(dev);
2156 if (result)
2157 goto remove;
2158
2659e57b
CH
2159 /*
2160 * Keep the controller around but remove all namespaces if we don't have
2161 * any working I/O queue.
2162 */
3cf519b5
CH
2163 if (dev->online_queues < 2) {
2164 dev_warn(dev->dev, "IO queues not created\n");
5bae7f73 2165 nvme_remove_namespaces(&dev->ctrl);
3cf519b5
CH
2166 } else {
2167 nvme_unfreeze_queues(dev);
2168 nvme_dev_add(dev);
2169 }
2170
2171 return;
f0b50732 2172
7385014c
CH
2173 remove:
2174 nvme_dev_list_remove(dev);
0fb59cbc
KB
2175 free_tags:
2176 nvme_dev_remove_admin(dev);
1c63dc66
CH
2177 blk_put_queue(dev->ctrl.admin_q);
2178 dev->ctrl.admin_q = NULL;
4af0e21c 2179 dev->queues[0]->tags = NULL;
f0b50732 2180 disable:
a1a5ef99 2181 nvme_disable_queue(dev, 0);
f0b50732
KB
2182 unmap:
2183 nvme_dev_unmap(dev);
3cf519b5
CH
2184 out:
2185 if (!work_busy(&dev->reset_work))
2186 nvme_dead_ctrl(dev);
f0b50732
KB
2187}
2188
9a6b9458
KB
2189static int nvme_remove_dead_ctrl(void *arg)
2190{
2191 struct nvme_dev *dev = (struct nvme_dev *)arg;
e75ec752 2192 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2193
2194 if (pci_get_drvdata(pdev))
c81f4975 2195 pci_stop_and_remove_bus_device_locked(pdev);
1673f1f0 2196 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2197 return 0;
2198}
2199
de3eff2b
KB
2200static void nvme_dead_ctrl(struct nvme_dev *dev)
2201{
2202 dev_warn(dev->dev, "Device failed to resume\n");
1673f1f0 2203 kref_get(&dev->ctrl.kref);
de3eff2b 2204 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
1c63dc66 2205 dev->ctrl.instance))) {
de3eff2b
KB
2206 dev_err(dev->dev,
2207 "Failed to start controller remove task\n");
1673f1f0 2208 nvme_put_ctrl(&dev->ctrl);
de3eff2b
KB
2209 }
2210}
2211
77b50d9e 2212static void nvme_reset_work(struct work_struct *ws)
9a6b9458 2213{
77b50d9e 2214 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
ffe7704d
KB
2215 bool in_probe = work_busy(&dev->probe_work);
2216
9a6b9458 2217 nvme_dev_shutdown(dev);
ffe7704d
KB
2218
2219 /* Synchronize with device probe so that work will see failure status
2220 * and exit gracefully without trying to schedule another reset */
2221 flush_work(&dev->probe_work);
2222
2223 /* Fail this device if reset occured during probe to avoid
2224 * infinite initialization loops. */
2225 if (in_probe) {
de3eff2b 2226 nvme_dead_ctrl(dev);
ffe7704d 2227 return;
9a6b9458 2228 }
ffe7704d
KB
2229 /* Schedule device resume asynchronously so the reset work is available
2230 * to cleanup errors that may occur during reinitialization */
2231 schedule_work(&dev->probe_work);
9a6b9458
KB
2232}
2233
4cc06521
KB
2234static int nvme_reset(struct nvme_dev *dev)
2235{
1c63dc66 2236 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521
KB
2237 return -ENODEV;
2238
846cc05f
CH
2239 if (!queue_work(nvme_workq, &dev->reset_work))
2240 return -EBUSY;
4cc06521 2241
846cc05f
CH
2242 flush_work(&dev->reset_work);
2243 flush_work(&dev->probe_work);
2244 return 0;
4cc06521
KB
2245}
2246
1c63dc66
CH
2247static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2248{
2249 *val = readl(to_nvme_dev(ctrl)->bar + off);
2250 return 0;
2251}
2252
5fd4ce1b
CH
2253static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2254{
2255 writel(val, to_nvme_dev(ctrl)->bar + off);
2256 return 0;
2257}
2258
7fd8930f
CH
2259static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2260{
2261 *val = readq(to_nvme_dev(ctrl)->bar + off);
2262 return 0;
2263}
2264
5bae7f73
CH
2265static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2266{
2267 struct nvme_dev *dev = to_nvme_dev(ctrl);
2268
2269 return !dev->bar || dev->online_queues < 2;
2270}
2271
f3ca80fc
CH
2272static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2273{
2274 return nvme_reset(to_nvme_dev(ctrl));
2275}
2276
1c63dc66
CH
2277static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2278 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2279 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2280 .reg_read64 = nvme_pci_reg_read64,
5bae7f73 2281 .io_incapable = nvme_pci_io_incapable,
f3ca80fc 2282 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 2283 .free_ctrl = nvme_pci_free_ctrl,
1c63dc66
CH
2284};
2285
8d85fce7 2286static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2287{
a4aea562 2288 int node, result = -ENOMEM;
b60503ba
MW
2289 struct nvme_dev *dev;
2290
a4aea562
MB
2291 node = dev_to_node(&pdev->dev);
2292 if (node == NUMA_NO_NODE)
2293 set_dev_node(&pdev->dev, 0);
2294
2295 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2296 if (!dev)
2297 return -ENOMEM;
a4aea562
MB
2298 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2299 GFP_KERNEL, node);
b60503ba
MW
2300 if (!dev->entry)
2301 goto free;
a4aea562
MB
2302 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2303 GFP_KERNEL, node);
b60503ba
MW
2304 if (!dev->queues)
2305 goto free;
2306
e75ec752 2307 dev->dev = get_device(&pdev->dev);
9a6b9458 2308 pci_set_drvdata(pdev, dev);
1c63dc66 2309
f3ca80fc
CH
2310 INIT_LIST_HEAD(&dev->node);
2311 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2312 INIT_WORK(&dev->probe_work, nvme_probe_work);
2313 INIT_WORK(&dev->reset_work, nvme_reset_work);
77bf25ea 2314 mutex_init(&dev->shutdown_lock);
1c63dc66 2315
f3ca80fc 2316 result = nvme_setup_prp_pools(dev);
cd58ad7d 2317 if (result)
a96d4f5c 2318 goto put_pci;
b60503ba 2319
f3ca80fc
CH
2320 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2321 id->driver_data);
091b6092 2322 if (result)
2e1d8448 2323 goto release_pools;
740216fc 2324
2e1d8448 2325 schedule_work(&dev->probe_work);
b60503ba
MW
2326 return 0;
2327
0877cb0d 2328 release_pools:
091b6092 2329 nvme_release_prp_pools(dev);
a96d4f5c 2330 put_pci:
e75ec752 2331 put_device(dev->dev);
b60503ba
MW
2332 free:
2333 kfree(dev->queues);
2334 kfree(dev->entry);
2335 kfree(dev);
2336 return result;
2337}
2338
f0d54a54
KB
2339static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2340{
a6739479 2341 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2342
a6739479
KB
2343 if (prepare)
2344 nvme_dev_shutdown(dev);
2345 else
0a7385ad 2346 schedule_work(&dev->probe_work);
f0d54a54
KB
2347}
2348
09ece142
KB
2349static void nvme_shutdown(struct pci_dev *pdev)
2350{
2351 struct nvme_dev *dev = pci_get_drvdata(pdev);
2352 nvme_dev_shutdown(dev);
2353}
2354
8d85fce7 2355static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2356{
2357 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
2358
2359 spin_lock(&dev_list_lock);
2360 list_del_init(&dev->node);
2361 spin_unlock(&dev_list_lock);
2362
2363 pci_set_drvdata(pdev, NULL);
2e1d8448 2364 flush_work(&dev->probe_work);
9a6b9458 2365 flush_work(&dev->reset_work);
a5768aa8 2366 flush_work(&dev->scan_work);
5bae7f73 2367 nvme_remove_namespaces(&dev->ctrl);
3399a3f7 2368 nvme_dev_shutdown(dev);
a4aea562 2369 nvme_dev_remove_admin(dev);
a1a5ef99 2370 nvme_free_queues(dev, 0);
8ffaadf7 2371 nvme_release_cmb(dev);
9a6b9458 2372 nvme_release_prp_pools(dev);
1673f1f0 2373 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2374}
2375
2376/* These functions are yet to be implemented */
2377#define nvme_error_detected NULL
2378#define nvme_dump_registers NULL
2379#define nvme_link_reset NULL
2380#define nvme_slot_reset NULL
2381#define nvme_error_resume NULL
cd638946 2382
671a6018 2383#ifdef CONFIG_PM_SLEEP
cd638946
KB
2384static int nvme_suspend(struct device *dev)
2385{
2386 struct pci_dev *pdev = to_pci_dev(dev);
2387 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2388
2389 nvme_dev_shutdown(ndev);
2390 return 0;
2391}
2392
2393static int nvme_resume(struct device *dev)
2394{
2395 struct pci_dev *pdev = to_pci_dev(dev);
2396 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2397
0a7385ad 2398 schedule_work(&ndev->probe_work);
9a6b9458 2399 return 0;
cd638946 2400}
671a6018 2401#endif
cd638946
KB
2402
2403static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2404
1d352035 2405static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
2406 .error_detected = nvme_error_detected,
2407 .mmio_enabled = nvme_dump_registers,
2408 .link_reset = nvme_link_reset,
2409 .slot_reset = nvme_slot_reset,
2410 .resume = nvme_error_resume,
f0d54a54 2411 .reset_notify = nvme_reset_notify,
b60503ba
MW
2412};
2413
2414/* Move to pci_ids.h later */
2415#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2416
6eb0d698 2417static const struct pci_device_id nvme_id_table[] = {
106198ed
CH
2418 { PCI_VDEVICE(INTEL, 0x0953),
2419 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
b60503ba 2420 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2421 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2422 { 0, }
2423};
2424MODULE_DEVICE_TABLE(pci, nvme_id_table);
2425
2426static struct pci_driver nvme_driver = {
2427 .name = "nvme",
2428 .id_table = nvme_id_table,
2429 .probe = nvme_probe,
8d85fce7 2430 .remove = nvme_remove,
09ece142 2431 .shutdown = nvme_shutdown,
cd638946
KB
2432 .driver = {
2433 .pm = &nvme_dev_pm_ops,
2434 },
b60503ba
MW
2435 .err_handler = &nvme_err_handler,
2436};
2437
2438static int __init nvme_init(void)
2439{
0ac13140 2440 int result;
1fa6aead 2441
b9afca3e 2442 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 2443
9a6b9458
KB
2444 nvme_workq = create_singlethread_workqueue("nvme");
2445 if (!nvme_workq)
b9afca3e 2446 return -ENOMEM;
9a6b9458 2447
5bae7f73 2448 result = nvme_core_init();
5c42ea16 2449 if (result < 0)
9a6b9458 2450 goto kill_workq;
b60503ba 2451
f3db22fe
KB
2452 result = pci_register_driver(&nvme_driver);
2453 if (result)
f3ca80fc 2454 goto core_exit;
1fa6aead 2455 return 0;
b60503ba 2456
f3ca80fc 2457 core_exit:
5bae7f73 2458 nvme_core_exit();
9a6b9458
KB
2459 kill_workq:
2460 destroy_workqueue(nvme_workq);
b60503ba
MW
2461 return result;
2462}
2463
2464static void __exit nvme_exit(void)
2465{
2466 pci_unregister_driver(&nvme_driver);
5bae7f73 2467 nvme_core_exit();
9a6b9458 2468 destroy_workqueue(nvme_workq);
b9afca3e 2469 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 2470 _nvme_check_size();
b60503ba
MW
2471}
2472
2473MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2474MODULE_LICENSE("GPL");
c78b4713 2475MODULE_VERSION("1.0");
b60503ba
MW
2476module_init(nvme_init);
2477module_exit(nvme_exit);