]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/vmx.c
kvm: nVMX: Add support for fast unprotection of nested guest page tables
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
c207aee4 36#include <linux/frame.h>
5fdbf976 37#include "kvm_cache_regs.h"
35920a35 38#include "x86.h"
e495606d 39
28b835d6 40#include <asm/cpu.h>
6aa8b732 41#include <asm/io.h>
3b3be0d1 42#include <asm/desc.h>
13673a90 43#include <asm/vmx.h>
6210e37b 44#include <asm/virtext.h>
a0861c02 45#include <asm/mce.h>
952f07ec 46#include <asm/fpu/internal.h>
d7cd9796 47#include <asm/perf_event.h>
81908bf4 48#include <asm/debugreg.h>
8f536b76 49#include <asm/kexec.h>
dab2087d 50#include <asm/apic.h>
efc64404 51#include <asm/irq_remapping.h>
d6e41f11 52#include <asm/mmu_context.h>
6aa8b732 53
229456fc 54#include "trace.h"
25462f7f 55#include "pmu.h"
229456fc 56
4ecac3fd 57#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
58#define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 60
6aa8b732
AK
61MODULE_AUTHOR("Qumranet");
62MODULE_LICENSE("GPL");
63
e9bda3b3
JT
64static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67};
68MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
476bc001 70static bool __read_mostly enable_vpid = 1;
736caefe 71module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 72
476bc001 73static bool __read_mostly flexpriority_enabled = 1;
736caefe 74module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 75
476bc001 76static bool __read_mostly enable_ept = 1;
736caefe 77module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 78
476bc001 79static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
80module_param_named(unrestricted_guest,
81 enable_unrestricted_guest, bool, S_IRUGO);
82
83c3a331
XH
83static bool __read_mostly enable_ept_ad_bits = 1;
84module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
a27685c3 86static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 87module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 88
476bc001 89static bool __read_mostly fasteoi = 1;
58fbbf26
KT
90module_param(fasteoi, bool, S_IRUGO);
91
5a71785d 92static bool __read_mostly enable_apicv = 1;
01e439be 93module_param(enable_apicv, bool, S_IRUGO);
83d4c286 94
abc4fc58
AG
95static bool __read_mostly enable_shadow_vmcs = 1;
96module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
97/*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
476bc001 102static bool __read_mostly nested = 0;
801d3424
NHE
103module_param(nested, bool, S_IRUGO);
104
20300099
WL
105static u64 __read_mostly host_xss;
106
843e4330
KH
107static bool __read_mostly enable_pml = 1;
108module_param_named(pml, enable_pml, bool, S_IRUGO);
109
64903d61
HZ
110#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
111
64672c95
YJ
112/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
113static int __read_mostly cpu_preemption_timer_multi;
114static bool __read_mostly enable_preemption_timer = 1;
115#ifdef CONFIG_X86_64
116module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117#endif
118
5037878e
GN
119#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
121#define KVM_VM_CR0_ALWAYS_ON \
122 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
123#define KVM_CR4_GUEST_OWNED_BITS \
124 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 125 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 126
cdc0e244
AK
127#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
78ac8b47
AK
130#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
f4124500
JK
132#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
16c2aec6
JD
134/*
135 * Hyper-V requires all of these, so mark them as supported even though
136 * they are just treated the same as all-context.
137 */
138#define VMX_VPID_EXTENT_SUPPORTED_MASK \
139 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
140 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
141 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
4b8d54f9
ZE
144/*
145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146 * ple_gap: upper bound on the amount of time between two successive
147 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 148 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
149 * ple_window: upper bound on the amount of time a guest is allowed to execute
150 * in a PAUSE loop. Tests indicate that most spinlocks are held for
151 * less than 2^12 cycles
152 * Time is measured based on a counter that runs at the same rate as the TSC,
153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
154 */
b4a2d31d
RK
155#define KVM_VMX_DEFAULT_PLE_GAP 128
156#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
157#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
158#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
160 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
4b8d54f9
ZE
162static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163module_param(ple_gap, int, S_IRUGO);
164
165static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166module_param(ple_window, int, S_IRUGO);
167
b4a2d31d
RK
168/* Default doubles per-vcpu window every exit. */
169static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170module_param(ple_window_grow, int, S_IRUGO);
171
172/* Default resets per-vcpu window every exit to ple_window. */
173static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174module_param(ple_window_shrink, int, S_IRUGO);
175
176/* Default is to compute the maximum so we can never overflow. */
177static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179module_param(ple_window_max, int, S_IRUGO);
180
83287ea4
AK
181extern const ulong vmx_return;
182
8bf00a52 183#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 184#define VMCS02_POOL_SIZE 1
61d2ef2c 185
a2fa3e9f
GH
186struct vmcs {
187 u32 revision_id;
188 u32 abort;
189 char data[0];
190};
191
d462b819
NHE
192/*
193 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195 * loaded on this CPU (so we can clear them if the CPU goes down).
196 */
197struct loaded_vmcs {
198 struct vmcs *vmcs;
355f4fb1 199 struct vmcs *shadow_vmcs;
d462b819 200 int cpu;
4c4a6f79
PB
201 bool launched;
202 bool nmi_known_unmasked;
d462b819
NHE
203 struct list_head loaded_vmcss_on_cpu_link;
204};
205
26bb0981
AK
206struct shared_msr_entry {
207 unsigned index;
208 u64 data;
d5696725 209 u64 mask;
26bb0981
AK
210};
211
a9d30f33
NHE
212/*
213 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
214 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
215 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
216 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
217 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
218 * More than one of these structures may exist, if L1 runs multiple L2 guests.
219 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
220 * underlying hardware which will be used to run L2.
221 * This structure is packed to ensure that its layout is identical across
222 * machines (necessary for live migration).
223 * If there are changes in this struct, VMCS12_REVISION must be changed.
224 */
22bd0358 225typedef u64 natural_width;
a9d30f33
NHE
226struct __packed vmcs12 {
227 /* According to the Intel spec, a VMCS region must start with the
228 * following two fields. Then follow implementation-specific data.
229 */
230 u32 revision_id;
231 u32 abort;
22bd0358 232
27d6c865
NHE
233 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
234 u32 padding[7]; /* room for future expansion */
235
22bd0358
NHE
236 u64 io_bitmap_a;
237 u64 io_bitmap_b;
238 u64 msr_bitmap;
239 u64 vm_exit_msr_store_addr;
240 u64 vm_exit_msr_load_addr;
241 u64 vm_entry_msr_load_addr;
242 u64 tsc_offset;
243 u64 virtual_apic_page_addr;
244 u64 apic_access_addr;
705699a1 245 u64 posted_intr_desc_addr;
27c42a1b 246 u64 vm_function_control;
22bd0358 247 u64 ept_pointer;
608406e2
WV
248 u64 eoi_exit_bitmap0;
249 u64 eoi_exit_bitmap1;
250 u64 eoi_exit_bitmap2;
251 u64 eoi_exit_bitmap3;
41ab9372 252 u64 eptp_list_address;
81dc01f7 253 u64 xss_exit_bitmap;
22bd0358
NHE
254 u64 guest_physical_address;
255 u64 vmcs_link_pointer;
c5f983f6 256 u64 pml_address;
22bd0358
NHE
257 u64 guest_ia32_debugctl;
258 u64 guest_ia32_pat;
259 u64 guest_ia32_efer;
260 u64 guest_ia32_perf_global_ctrl;
261 u64 guest_pdptr0;
262 u64 guest_pdptr1;
263 u64 guest_pdptr2;
264 u64 guest_pdptr3;
36be0b9d 265 u64 guest_bndcfgs;
22bd0358
NHE
266 u64 host_ia32_pat;
267 u64 host_ia32_efer;
268 u64 host_ia32_perf_global_ctrl;
269 u64 padding64[8]; /* room for future expansion */
270 /*
271 * To allow migration of L1 (complete with its L2 guests) between
272 * machines of different natural widths (32 or 64 bit), we cannot have
273 * unsigned long fields with no explict size. We use u64 (aliased
274 * natural_width) instead. Luckily, x86 is little-endian.
275 */
276 natural_width cr0_guest_host_mask;
277 natural_width cr4_guest_host_mask;
278 natural_width cr0_read_shadow;
279 natural_width cr4_read_shadow;
280 natural_width cr3_target_value0;
281 natural_width cr3_target_value1;
282 natural_width cr3_target_value2;
283 natural_width cr3_target_value3;
284 natural_width exit_qualification;
285 natural_width guest_linear_address;
286 natural_width guest_cr0;
287 natural_width guest_cr3;
288 natural_width guest_cr4;
289 natural_width guest_es_base;
290 natural_width guest_cs_base;
291 natural_width guest_ss_base;
292 natural_width guest_ds_base;
293 natural_width guest_fs_base;
294 natural_width guest_gs_base;
295 natural_width guest_ldtr_base;
296 natural_width guest_tr_base;
297 natural_width guest_gdtr_base;
298 natural_width guest_idtr_base;
299 natural_width guest_dr7;
300 natural_width guest_rsp;
301 natural_width guest_rip;
302 natural_width guest_rflags;
303 natural_width guest_pending_dbg_exceptions;
304 natural_width guest_sysenter_esp;
305 natural_width guest_sysenter_eip;
306 natural_width host_cr0;
307 natural_width host_cr3;
308 natural_width host_cr4;
309 natural_width host_fs_base;
310 natural_width host_gs_base;
311 natural_width host_tr_base;
312 natural_width host_gdtr_base;
313 natural_width host_idtr_base;
314 natural_width host_ia32_sysenter_esp;
315 natural_width host_ia32_sysenter_eip;
316 natural_width host_rsp;
317 natural_width host_rip;
318 natural_width paddingl[8]; /* room for future expansion */
319 u32 pin_based_vm_exec_control;
320 u32 cpu_based_vm_exec_control;
321 u32 exception_bitmap;
322 u32 page_fault_error_code_mask;
323 u32 page_fault_error_code_match;
324 u32 cr3_target_count;
325 u32 vm_exit_controls;
326 u32 vm_exit_msr_store_count;
327 u32 vm_exit_msr_load_count;
328 u32 vm_entry_controls;
329 u32 vm_entry_msr_load_count;
330 u32 vm_entry_intr_info_field;
331 u32 vm_entry_exception_error_code;
332 u32 vm_entry_instruction_len;
333 u32 tpr_threshold;
334 u32 secondary_vm_exec_control;
335 u32 vm_instruction_error;
336 u32 vm_exit_reason;
337 u32 vm_exit_intr_info;
338 u32 vm_exit_intr_error_code;
339 u32 idt_vectoring_info_field;
340 u32 idt_vectoring_error_code;
341 u32 vm_exit_instruction_len;
342 u32 vmx_instruction_info;
343 u32 guest_es_limit;
344 u32 guest_cs_limit;
345 u32 guest_ss_limit;
346 u32 guest_ds_limit;
347 u32 guest_fs_limit;
348 u32 guest_gs_limit;
349 u32 guest_ldtr_limit;
350 u32 guest_tr_limit;
351 u32 guest_gdtr_limit;
352 u32 guest_idtr_limit;
353 u32 guest_es_ar_bytes;
354 u32 guest_cs_ar_bytes;
355 u32 guest_ss_ar_bytes;
356 u32 guest_ds_ar_bytes;
357 u32 guest_fs_ar_bytes;
358 u32 guest_gs_ar_bytes;
359 u32 guest_ldtr_ar_bytes;
360 u32 guest_tr_ar_bytes;
361 u32 guest_interruptibility_info;
362 u32 guest_activity_state;
363 u32 guest_sysenter_cs;
364 u32 host_ia32_sysenter_cs;
0238ea91
JK
365 u32 vmx_preemption_timer_value;
366 u32 padding32[7]; /* room for future expansion */
22bd0358 367 u16 virtual_processor_id;
705699a1 368 u16 posted_intr_nv;
22bd0358
NHE
369 u16 guest_es_selector;
370 u16 guest_cs_selector;
371 u16 guest_ss_selector;
372 u16 guest_ds_selector;
373 u16 guest_fs_selector;
374 u16 guest_gs_selector;
375 u16 guest_ldtr_selector;
376 u16 guest_tr_selector;
608406e2 377 u16 guest_intr_status;
c5f983f6 378 u16 guest_pml_index;
22bd0358
NHE
379 u16 host_es_selector;
380 u16 host_cs_selector;
381 u16 host_ss_selector;
382 u16 host_ds_selector;
383 u16 host_fs_selector;
384 u16 host_gs_selector;
385 u16 host_tr_selector;
a9d30f33
NHE
386};
387
388/*
389 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
390 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
391 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
392 */
393#define VMCS12_REVISION 0x11e57ed0
394
395/*
396 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
397 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
398 * current implementation, 4K are reserved to avoid future complications.
399 */
400#define VMCS12_SIZE 0x1000
401
ff2f6fe9
NHE
402/* Used to remember the last vmcs02 used for some recently used vmcs12s */
403struct vmcs02_list {
404 struct list_head list;
405 gpa_t vmptr;
406 struct loaded_vmcs vmcs02;
407};
408
ec378aee
NHE
409/*
410 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
411 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
412 */
413struct nested_vmx {
414 /* Has the level1 guest done vmxon? */
415 bool vmxon;
3573e22c 416 gpa_t vmxon_ptr;
c5f983f6 417 bool pml_full;
a9d30f33
NHE
418
419 /* The guest-physical address of the current VMCS L1 keeps for L2 */
420 gpa_t current_vmptr;
4f2777bc
DM
421 /*
422 * Cache of the guest's VMCS, existing outside of guest memory.
423 * Loaded from guest memory during VMPTRLD. Flushed to guest
8ca44e88 424 * memory during VMCLEAR and VMPTRLD.
4f2777bc
DM
425 */
426 struct vmcs12 *cached_vmcs12;
012f83cb
AG
427 /*
428 * Indicates if the shadow vmcs must be updated with the
429 * data hold by vmcs12
430 */
431 bool sync_shadow_vmcs;
ff2f6fe9
NHE
432
433 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
434 struct list_head vmcs02_pool;
435 int vmcs02_num;
dccbfcf5 436 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
437 /* L2 must run next, and mustn't decide to exit to L1. */
438 bool nested_run_pending;
fe3ef05c
NHE
439 /*
440 * Guest pages referred to in vmcs02 with host-physical pointers, so
441 * we must keep them pinned while L2 runs.
442 */
443 struct page *apic_access_page;
a7c0b07d 444 struct page *virtual_apic_page;
705699a1
WV
445 struct page *pi_desc_page;
446 struct pi_desc *pi_desc;
447 bool pi_pending;
448 u16 posted_intr_nv;
f4124500 449
d048c098
RK
450 unsigned long *msr_bitmap;
451
f4124500
JK
452 struct hrtimer preemption_timer;
453 bool preemption_timer_expired;
2996fca0
JK
454
455 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
456 u64 vmcs01_debugctl;
b9c237bb 457
5c614b35
WL
458 u16 vpid02;
459 u16 last_vpid;
460
0115f9cb
DM
461 /*
462 * We only store the "true" versions of the VMX capability MSRs. We
463 * generate the "non-true" versions by setting the must-be-1 bits
464 * according to the SDM.
465 */
b9c237bb
WV
466 u32 nested_vmx_procbased_ctls_low;
467 u32 nested_vmx_procbased_ctls_high;
b9c237bb
WV
468 u32 nested_vmx_secondary_ctls_low;
469 u32 nested_vmx_secondary_ctls_high;
470 u32 nested_vmx_pinbased_ctls_low;
471 u32 nested_vmx_pinbased_ctls_high;
472 u32 nested_vmx_exit_ctls_low;
473 u32 nested_vmx_exit_ctls_high;
b9c237bb
WV
474 u32 nested_vmx_entry_ctls_low;
475 u32 nested_vmx_entry_ctls_high;
b9c237bb
WV
476 u32 nested_vmx_misc_low;
477 u32 nested_vmx_misc_high;
478 u32 nested_vmx_ept_caps;
99b83ac8 479 u32 nested_vmx_vpid_caps;
62cc6b9d
DM
480 u64 nested_vmx_basic;
481 u64 nested_vmx_cr0_fixed0;
482 u64 nested_vmx_cr0_fixed1;
483 u64 nested_vmx_cr4_fixed0;
484 u64 nested_vmx_cr4_fixed1;
485 u64 nested_vmx_vmcs_enum;
27c42a1b 486 u64 nested_vmx_vmfunc_controls;
ec378aee
NHE
487};
488
01e439be 489#define POSTED_INTR_ON 0
ebbfc765
FW
490#define POSTED_INTR_SN 1
491
01e439be
YZ
492/* Posted-Interrupt Descriptor */
493struct pi_desc {
494 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
495 union {
496 struct {
497 /* bit 256 - Outstanding Notification */
498 u16 on : 1,
499 /* bit 257 - Suppress Notification */
500 sn : 1,
501 /* bit 271:258 - Reserved */
502 rsvd_1 : 14;
503 /* bit 279:272 - Notification Vector */
504 u8 nv;
505 /* bit 287:280 - Reserved */
506 u8 rsvd_2;
507 /* bit 319:288 - Notification Destination */
508 u32 ndst;
509 };
510 u64 control;
511 };
512 u32 rsvd[6];
01e439be
YZ
513} __aligned(64);
514
a20ed54d
YZ
515static bool pi_test_and_set_on(struct pi_desc *pi_desc)
516{
517 return test_and_set_bit(POSTED_INTR_ON,
518 (unsigned long *)&pi_desc->control);
519}
520
521static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
522{
523 return test_and_clear_bit(POSTED_INTR_ON,
524 (unsigned long *)&pi_desc->control);
525}
526
527static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
528{
529 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
530}
531
ebbfc765
FW
532static inline void pi_clear_sn(struct pi_desc *pi_desc)
533{
534 return clear_bit(POSTED_INTR_SN,
535 (unsigned long *)&pi_desc->control);
536}
537
538static inline void pi_set_sn(struct pi_desc *pi_desc)
539{
540 return set_bit(POSTED_INTR_SN,
541 (unsigned long *)&pi_desc->control);
542}
543
ad361091
PB
544static inline void pi_clear_on(struct pi_desc *pi_desc)
545{
546 clear_bit(POSTED_INTR_ON,
547 (unsigned long *)&pi_desc->control);
548}
549
ebbfc765
FW
550static inline int pi_test_on(struct pi_desc *pi_desc)
551{
552 return test_bit(POSTED_INTR_ON,
553 (unsigned long *)&pi_desc->control);
554}
555
556static inline int pi_test_sn(struct pi_desc *pi_desc)
557{
558 return test_bit(POSTED_INTR_SN,
559 (unsigned long *)&pi_desc->control);
560}
561
a2fa3e9f 562struct vcpu_vmx {
fb3f0f51 563 struct kvm_vcpu vcpu;
313dbd49 564 unsigned long host_rsp;
29bd8a78 565 u8 fail;
51aa01d1 566 u32 exit_intr_info;
1155f76a 567 u32 idt_vectoring_info;
6de12732 568 ulong rflags;
26bb0981 569 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
570 int nmsrs;
571 int save_nmsrs;
a547c6db 572 unsigned long host_idt_base;
a2fa3e9f 573#ifdef CONFIG_X86_64
44ea2b17
AK
574 u64 msr_host_kernel_gs_base;
575 u64 msr_guest_kernel_gs_base;
a2fa3e9f 576#endif
2961e876
GN
577 u32 vm_entry_controls_shadow;
578 u32 vm_exit_controls_shadow;
d462b819
NHE
579 /*
580 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
581 * non-nested (L1) guest, it always points to vmcs01. For a nested
582 * guest (L2), it points to a different VMCS.
583 */
584 struct loaded_vmcs vmcs01;
585 struct loaded_vmcs *loaded_vmcs;
586 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
587 struct msr_autoload {
588 unsigned nr;
589 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
590 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
591 } msr_autoload;
a2fa3e9f
GH
592 struct {
593 int loaded;
594 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
595#ifdef CONFIG_X86_64
596 u16 ds_sel, es_sel;
597#endif
152d3f2f
LV
598 int gs_ldt_reload_needed;
599 int fs_reload_needed;
da8999d3 600 u64 msr_host_bndcfgs;
d6e41f11 601 unsigned long vmcs_host_cr3; /* May not match real cr3 */
d974baa3 602 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 603 } host_state;
9c8cba37 604 struct {
7ffd92c5 605 int vm86_active;
78ac8b47 606 ulong save_rflags;
f5f7b2fe
AK
607 struct kvm_segment segs[8];
608 } rmode;
609 struct {
610 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
611 struct kvm_save_segment {
612 u16 selector;
613 unsigned long base;
614 u32 limit;
615 u32 ar;
f5f7b2fe 616 } seg[8];
2fb92db1 617 } segment_cache;
2384d2b3 618 int vpid;
04fa4d32 619 bool emulation_required;
3b86cd99 620
a0861c02 621 u32 exit_reason;
4e47c7a6 622
01e439be
YZ
623 /* Posted interrupt descriptor */
624 struct pi_desc pi_desc;
625
ec378aee
NHE
626 /* Support for a guest hypervisor (nested VMX) */
627 struct nested_vmx nested;
a7653ecd
RK
628
629 /* Dynamic PLE window. */
630 int ple_window;
631 bool ple_window_dirty;
843e4330
KH
632
633 /* Support for PML */
634#define PML_ENTITY_NUM 512
635 struct page *pml_pg;
2680d6da 636
64672c95
YJ
637 /* apic deadline value in host tsc */
638 u64 hv_deadline_tsc;
639
2680d6da 640 u64 current_tsc_ratio;
1be0e61c
XG
641
642 bool guest_pkru_valid;
643 u32 guest_pkru;
644 u32 host_pkru;
3b84080b 645
37e4c997
HZ
646 /*
647 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
648 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
649 * in msr_ia32_feature_control_valid_bits.
650 */
3b84080b 651 u64 msr_ia32_feature_control;
37e4c997 652 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
653};
654
2fb92db1
AK
655enum segment_cache_field {
656 SEG_FIELD_SEL = 0,
657 SEG_FIELD_BASE = 1,
658 SEG_FIELD_LIMIT = 2,
659 SEG_FIELD_AR = 3,
660
661 SEG_FIELD_NR = 4
662};
663
a2fa3e9f
GH
664static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
665{
fb3f0f51 666 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
667}
668
efc64404
FW
669static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
670{
671 return &(to_vmx(vcpu)->pi_desc);
672}
673
22bd0358
NHE
674#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
675#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
676#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
677 [number##_HIGH] = VMCS12_OFFSET(name)+4
678
4607c2d7 679
fe2b201b 680static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
681 /*
682 * We do NOT shadow fields that are modified when L0
683 * traps and emulates any vmx instruction (e.g. VMPTRLD,
684 * VMXON...) executed by L1.
685 * For example, VM_INSTRUCTION_ERROR is read
686 * by L1 if a vmx instruction fails (part of the error path).
687 * Note the code assumes this logic. If for some reason
688 * we start shadowing these fields then we need to
689 * force a shadow sync when L0 emulates vmx instructions
690 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
691 * by nested_vmx_failValid)
692 */
693 VM_EXIT_REASON,
694 VM_EXIT_INTR_INFO,
695 VM_EXIT_INSTRUCTION_LEN,
696 IDT_VECTORING_INFO_FIELD,
697 IDT_VECTORING_ERROR_CODE,
698 VM_EXIT_INTR_ERROR_CODE,
699 EXIT_QUALIFICATION,
700 GUEST_LINEAR_ADDRESS,
701 GUEST_PHYSICAL_ADDRESS
702};
fe2b201b 703static int max_shadow_read_only_fields =
4607c2d7
AG
704 ARRAY_SIZE(shadow_read_only_fields);
705
fe2b201b 706static unsigned long shadow_read_write_fields[] = {
a7c0b07d 707 TPR_THRESHOLD,
4607c2d7
AG
708 GUEST_RIP,
709 GUEST_RSP,
710 GUEST_CR0,
711 GUEST_CR3,
712 GUEST_CR4,
713 GUEST_INTERRUPTIBILITY_INFO,
714 GUEST_RFLAGS,
715 GUEST_CS_SELECTOR,
716 GUEST_CS_AR_BYTES,
717 GUEST_CS_LIMIT,
718 GUEST_CS_BASE,
719 GUEST_ES_BASE,
36be0b9d 720 GUEST_BNDCFGS,
4607c2d7
AG
721 CR0_GUEST_HOST_MASK,
722 CR0_READ_SHADOW,
723 CR4_READ_SHADOW,
724 TSC_OFFSET,
725 EXCEPTION_BITMAP,
726 CPU_BASED_VM_EXEC_CONTROL,
727 VM_ENTRY_EXCEPTION_ERROR_CODE,
728 VM_ENTRY_INTR_INFO_FIELD,
729 VM_ENTRY_INSTRUCTION_LEN,
730 VM_ENTRY_EXCEPTION_ERROR_CODE,
731 HOST_FS_BASE,
732 HOST_GS_BASE,
733 HOST_FS_SELECTOR,
734 HOST_GS_SELECTOR
735};
fe2b201b 736static int max_shadow_read_write_fields =
4607c2d7
AG
737 ARRAY_SIZE(shadow_read_write_fields);
738
772e0318 739static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 740 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 741 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
742 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
743 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
744 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
745 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
746 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
747 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
748 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
749 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 750 FIELD(GUEST_INTR_STATUS, guest_intr_status),
c5f983f6 751 FIELD(GUEST_PML_INDEX, guest_pml_index),
22bd0358
NHE
752 FIELD(HOST_ES_SELECTOR, host_es_selector),
753 FIELD(HOST_CS_SELECTOR, host_cs_selector),
754 FIELD(HOST_SS_SELECTOR, host_ss_selector),
755 FIELD(HOST_DS_SELECTOR, host_ds_selector),
756 FIELD(HOST_FS_SELECTOR, host_fs_selector),
757 FIELD(HOST_GS_SELECTOR, host_gs_selector),
758 FIELD(HOST_TR_SELECTOR, host_tr_selector),
759 FIELD64(IO_BITMAP_A, io_bitmap_a),
760 FIELD64(IO_BITMAP_B, io_bitmap_b),
761 FIELD64(MSR_BITMAP, msr_bitmap),
762 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765 FIELD64(TSC_OFFSET, tsc_offset),
766 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 768 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
27c42a1b 769 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
22bd0358 770 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
771 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
772 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
773 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
774 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
41ab9372 775 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
81dc01f7 776 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
777 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
778 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
c5f983f6 779 FIELD64(PML_ADDRESS, pml_address),
22bd0358
NHE
780 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
781 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
782 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
783 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
784 FIELD64(GUEST_PDPTR0, guest_pdptr0),
785 FIELD64(GUEST_PDPTR1, guest_pdptr1),
786 FIELD64(GUEST_PDPTR2, guest_pdptr2),
787 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 788 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
789 FIELD64(HOST_IA32_PAT, host_ia32_pat),
790 FIELD64(HOST_IA32_EFER, host_ia32_efer),
791 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
792 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
793 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
794 FIELD(EXCEPTION_BITMAP, exception_bitmap),
795 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
796 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
797 FIELD(CR3_TARGET_COUNT, cr3_target_count),
798 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
799 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
800 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
801 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
802 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
803 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
804 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
805 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
806 FIELD(TPR_THRESHOLD, tpr_threshold),
807 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
808 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
809 FIELD(VM_EXIT_REASON, vm_exit_reason),
810 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
811 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
812 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
813 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
814 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
815 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
816 FIELD(GUEST_ES_LIMIT, guest_es_limit),
817 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
818 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
819 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
820 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
821 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
822 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
823 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
824 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
825 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
826 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
827 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
828 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
829 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
830 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
831 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
832 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
833 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
834 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
835 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
836 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
837 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 838 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
839 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
840 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
841 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
842 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
843 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
844 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
845 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
846 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
847 FIELD(EXIT_QUALIFICATION, exit_qualification),
848 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
849 FIELD(GUEST_CR0, guest_cr0),
850 FIELD(GUEST_CR3, guest_cr3),
851 FIELD(GUEST_CR4, guest_cr4),
852 FIELD(GUEST_ES_BASE, guest_es_base),
853 FIELD(GUEST_CS_BASE, guest_cs_base),
854 FIELD(GUEST_SS_BASE, guest_ss_base),
855 FIELD(GUEST_DS_BASE, guest_ds_base),
856 FIELD(GUEST_FS_BASE, guest_fs_base),
857 FIELD(GUEST_GS_BASE, guest_gs_base),
858 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
859 FIELD(GUEST_TR_BASE, guest_tr_base),
860 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
861 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
862 FIELD(GUEST_DR7, guest_dr7),
863 FIELD(GUEST_RSP, guest_rsp),
864 FIELD(GUEST_RIP, guest_rip),
865 FIELD(GUEST_RFLAGS, guest_rflags),
866 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
867 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
868 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
869 FIELD(HOST_CR0, host_cr0),
870 FIELD(HOST_CR3, host_cr3),
871 FIELD(HOST_CR4, host_cr4),
872 FIELD(HOST_FS_BASE, host_fs_base),
873 FIELD(HOST_GS_BASE, host_gs_base),
874 FIELD(HOST_TR_BASE, host_tr_base),
875 FIELD(HOST_GDTR_BASE, host_gdtr_base),
876 FIELD(HOST_IDTR_BASE, host_idtr_base),
877 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
878 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
879 FIELD(HOST_RSP, host_rsp),
880 FIELD(HOST_RIP, host_rip),
881};
22bd0358
NHE
882
883static inline short vmcs_field_to_offset(unsigned long field)
884{
a2ae9df7
PB
885 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
886
887 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
888 vmcs_field_to_offset_table[field] == 0)
889 return -ENOENT;
890
22bd0358
NHE
891 return vmcs_field_to_offset_table[field];
892}
893
a9d30f33
NHE
894static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
895{
4f2777bc 896 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
897}
898
995f00a6 899static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
bfd0a56b 900static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
995f00a6 901static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
f53cd63c 902static bool vmx_xsaves_supported(void);
776e58ea 903static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
904static void vmx_set_segment(struct kvm_vcpu *vcpu,
905 struct kvm_segment *var, int seg);
906static void vmx_get_segment(struct kvm_vcpu *vcpu,
907 struct kvm_segment *var, int seg);
d99e4152
GN
908static bool guest_state_valid(struct kvm_vcpu *vcpu);
909static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 910static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 911static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 912static int alloc_identity_pagetable(struct kvm *kvm);
b96fb439
PB
913static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
914static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
915static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
916 u16 error_code);
75880a01 917
6aa8b732
AK
918static DEFINE_PER_CPU(struct vmcs *, vmxarea);
919static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
920/*
921 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
922 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
923 */
924static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
6aa8b732 925
bf9f6ac8
FW
926/*
927 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
928 * can find which vCPU should be waken up.
929 */
930static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
931static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
932
23611332
RK
933enum {
934 VMX_IO_BITMAP_A,
935 VMX_IO_BITMAP_B,
936 VMX_MSR_BITMAP_LEGACY,
937 VMX_MSR_BITMAP_LONGMODE,
938 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
939 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
940 VMX_MSR_BITMAP_LEGACY_X2APIC,
941 VMX_MSR_BITMAP_LONGMODE_X2APIC,
942 VMX_VMREAD_BITMAP,
943 VMX_VMWRITE_BITMAP,
944 VMX_BITMAP_NR
945};
946
947static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
948
949#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
950#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
951#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
952#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
953#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
954#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
955#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
956#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
957#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
958#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 959
110312c8 960static bool cpu_has_load_ia32_efer;
8bf00a52 961static bool cpu_has_load_perf_global_ctrl;
110312c8 962
2384d2b3
SY
963static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
964static DEFINE_SPINLOCK(vmx_vpid_lock);
965
1c3d14fe 966static struct vmcs_config {
6aa8b732
AK
967 int size;
968 int order;
9ac7e3e8 969 u32 basic_cap;
6aa8b732 970 u32 revision_id;
1c3d14fe
YS
971 u32 pin_based_exec_ctrl;
972 u32 cpu_based_exec_ctrl;
f78e0e2e 973 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
974 u32 vmexit_ctrl;
975 u32 vmentry_ctrl;
976} vmcs_config;
6aa8b732 977
efff9e53 978static struct vmx_capability {
d56f546d
SY
979 u32 ept;
980 u32 vpid;
981} vmx_capability;
982
6aa8b732
AK
983#define VMX_SEGMENT_FIELD(seg) \
984 [VCPU_SREG_##seg] = { \
985 .selector = GUEST_##seg##_SELECTOR, \
986 .base = GUEST_##seg##_BASE, \
987 .limit = GUEST_##seg##_LIMIT, \
988 .ar_bytes = GUEST_##seg##_AR_BYTES, \
989 }
990
772e0318 991static const struct kvm_vmx_segment_field {
6aa8b732
AK
992 unsigned selector;
993 unsigned base;
994 unsigned limit;
995 unsigned ar_bytes;
996} kvm_vmx_segment_fields[] = {
997 VMX_SEGMENT_FIELD(CS),
998 VMX_SEGMENT_FIELD(DS),
999 VMX_SEGMENT_FIELD(ES),
1000 VMX_SEGMENT_FIELD(FS),
1001 VMX_SEGMENT_FIELD(GS),
1002 VMX_SEGMENT_FIELD(SS),
1003 VMX_SEGMENT_FIELD(TR),
1004 VMX_SEGMENT_FIELD(LDTR),
1005};
1006
26bb0981
AK
1007static u64 host_efer;
1008
6de4f3ad
AK
1009static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1010
4d56c8a7 1011/*
8c06585d 1012 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1013 * away by decrementing the array size.
1014 */
6aa8b732 1015static const u32 vmx_msr_index[] = {
05b3e0c2 1016#ifdef CONFIG_X86_64
44ea2b17 1017 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1018#endif
8c06585d 1019 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1020};
6aa8b732 1021
5bb16016 1022static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1023{
1024 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1025 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1026 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1027}
1028
6f05485d
JK
1029static inline bool is_debug(u32 intr_info)
1030{
1031 return is_exception_n(intr_info, DB_VECTOR);
1032}
1033
1034static inline bool is_breakpoint(u32 intr_info)
1035{
1036 return is_exception_n(intr_info, BP_VECTOR);
1037}
1038
5bb16016
JK
1039static inline bool is_page_fault(u32 intr_info)
1040{
1041 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1042}
1043
31299944 1044static inline bool is_no_device(u32 intr_info)
2ab455cc 1045{
5bb16016 1046 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1047}
1048
31299944 1049static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1050{
5bb16016 1051 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1052}
1053
31299944 1054static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1055{
1056 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1057 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1058}
1059
31299944 1060static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1061{
1062 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1063 INTR_INFO_VALID_MASK)) ==
1064 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1065}
1066
31299944 1067static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1068{
04547156 1069 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1070}
1071
31299944 1072static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1073{
04547156 1074 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1075}
1076
35754c98 1077static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1078{
35754c98 1079 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1080}
1081
31299944 1082static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1083{
04547156
SY
1084 return vmcs_config.cpu_based_exec_ctrl &
1085 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1086}
1087
774ead3a 1088static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1089{
04547156
SY
1090 return vmcs_config.cpu_based_2nd_exec_ctrl &
1091 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1092}
1093
8d14695f
YZ
1094static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1095{
1096 return vmcs_config.cpu_based_2nd_exec_ctrl &
1097 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1098}
1099
83d4c286
YZ
1100static inline bool cpu_has_vmx_apic_register_virt(void)
1101{
1102 return vmcs_config.cpu_based_2nd_exec_ctrl &
1103 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1104}
1105
c7c9c56c
YZ
1106static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1107{
1108 return vmcs_config.cpu_based_2nd_exec_ctrl &
1109 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1110}
1111
64672c95
YJ
1112/*
1113 * Comment's format: document - errata name - stepping - processor name.
1114 * Refer from
1115 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1116 */
1117static u32 vmx_preemption_cpu_tfms[] = {
1118/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
11190x000206E6,
1120/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1121/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1122/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11230x00020652,
1124/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11250x00020655,
1126/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1127/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1128/*
1129 * 320767.pdf - AAP86 - B1 -
1130 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1131 */
11320x000106E5,
1133/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11340x000106A0,
1135/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11360x000106A1,
1137/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11380x000106A4,
1139 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1140 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1141 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11420x000106A5,
1143};
1144
1145static inline bool cpu_has_broken_vmx_preemption_timer(void)
1146{
1147 u32 eax = cpuid_eax(0x00000001), i;
1148
1149 /* Clear the reserved bits */
1150 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1151 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1152 if (eax == vmx_preemption_cpu_tfms[i])
1153 return true;
1154
1155 return false;
1156}
1157
1158static inline bool cpu_has_vmx_preemption_timer(void)
1159{
64672c95
YJ
1160 return vmcs_config.pin_based_exec_ctrl &
1161 PIN_BASED_VMX_PREEMPTION_TIMER;
1162}
1163
01e439be
YZ
1164static inline bool cpu_has_vmx_posted_intr(void)
1165{
d6a858d1
PB
1166 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1167 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1168}
1169
1170static inline bool cpu_has_vmx_apicv(void)
1171{
1172 return cpu_has_vmx_apic_register_virt() &&
1173 cpu_has_vmx_virtual_intr_delivery() &&
1174 cpu_has_vmx_posted_intr();
1175}
1176
04547156
SY
1177static inline bool cpu_has_vmx_flexpriority(void)
1178{
1179 return cpu_has_vmx_tpr_shadow() &&
1180 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1181}
1182
e799794e
MT
1183static inline bool cpu_has_vmx_ept_execute_only(void)
1184{
31299944 1185 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1186}
1187
e799794e
MT
1188static inline bool cpu_has_vmx_ept_2m_page(void)
1189{
31299944 1190 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1191}
1192
878403b7
SY
1193static inline bool cpu_has_vmx_ept_1g_page(void)
1194{
31299944 1195 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1196}
1197
4bc9b982
SY
1198static inline bool cpu_has_vmx_ept_4levels(void)
1199{
1200 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1201}
1202
83c3a331
XH
1203static inline bool cpu_has_vmx_ept_ad_bits(void)
1204{
1205 return vmx_capability.ept & VMX_EPT_AD_BIT;
1206}
1207
31299944 1208static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1209{
31299944 1210 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1211}
1212
31299944 1213static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1214{
31299944 1215 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1216}
1217
518c8aee
GJ
1218static inline bool cpu_has_vmx_invvpid_single(void)
1219{
1220 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1221}
1222
b9d762fa
GJ
1223static inline bool cpu_has_vmx_invvpid_global(void)
1224{
1225 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1226}
1227
08d839c4
WL
1228static inline bool cpu_has_vmx_invvpid(void)
1229{
1230 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1231}
1232
31299944 1233static inline bool cpu_has_vmx_ept(void)
d56f546d 1234{
04547156
SY
1235 return vmcs_config.cpu_based_2nd_exec_ctrl &
1236 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1237}
1238
31299944 1239static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1240{
1241 return vmcs_config.cpu_based_2nd_exec_ctrl &
1242 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1243}
1244
31299944 1245static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1246{
1247 return vmcs_config.cpu_based_2nd_exec_ctrl &
1248 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1249}
1250
9ac7e3e8
JD
1251static inline bool cpu_has_vmx_basic_inout(void)
1252{
1253 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1254}
1255
35754c98 1256static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1257{
35754c98 1258 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1259}
1260
31299944 1261static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1262{
04547156
SY
1263 return vmcs_config.cpu_based_2nd_exec_ctrl &
1264 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1265}
1266
31299944 1267static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1268{
1269 return vmcs_config.cpu_based_2nd_exec_ctrl &
1270 SECONDARY_EXEC_RDTSCP;
1271}
1272
ad756a16
MJ
1273static inline bool cpu_has_vmx_invpcid(void)
1274{
1275 return vmcs_config.cpu_based_2nd_exec_ctrl &
1276 SECONDARY_EXEC_ENABLE_INVPCID;
1277}
1278
f5f48ee1
SY
1279static inline bool cpu_has_vmx_wbinvd_exit(void)
1280{
1281 return vmcs_config.cpu_based_2nd_exec_ctrl &
1282 SECONDARY_EXEC_WBINVD_EXITING;
1283}
1284
abc4fc58
AG
1285static inline bool cpu_has_vmx_shadow_vmcs(void)
1286{
1287 u64 vmx_msr;
1288 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1289 /* check if the cpu supports writing r/o exit information fields */
1290 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1291 return false;
1292
1293 return vmcs_config.cpu_based_2nd_exec_ctrl &
1294 SECONDARY_EXEC_SHADOW_VMCS;
1295}
1296
843e4330
KH
1297static inline bool cpu_has_vmx_pml(void)
1298{
1299 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1300}
1301
64903d61
HZ
1302static inline bool cpu_has_vmx_tsc_scaling(void)
1303{
1304 return vmcs_config.cpu_based_2nd_exec_ctrl &
1305 SECONDARY_EXEC_TSC_SCALING;
1306}
1307
2a499e49
BD
1308static inline bool cpu_has_vmx_vmfunc(void)
1309{
1310 return vmcs_config.cpu_based_2nd_exec_ctrl &
1311 SECONDARY_EXEC_ENABLE_VMFUNC;
1312}
1313
04547156
SY
1314static inline bool report_flexpriority(void)
1315{
1316 return flexpriority_enabled;
1317}
1318
c7c2c709
JM
1319static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1320{
1321 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1322}
1323
fe3ef05c
NHE
1324static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1325{
1326 return vmcs12->cpu_based_vm_exec_control & bit;
1327}
1328
1329static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1330{
1331 return (vmcs12->cpu_based_vm_exec_control &
1332 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1333 (vmcs12->secondary_vm_exec_control & bit);
1334}
1335
f5c4368f 1336static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1337{
1338 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1339}
1340
f4124500
JK
1341static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1342{
1343 return vmcs12->pin_based_vm_exec_control &
1344 PIN_BASED_VMX_PREEMPTION_TIMER;
1345}
1346
155a97a3
NHE
1347static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1348{
1349 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1350}
1351
81dc01f7
WL
1352static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1353{
1354 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1355 vmx_xsaves_supported();
1356}
1357
c5f983f6
BD
1358static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1359{
1360 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1361}
1362
f2b93280
WV
1363static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1364{
1365 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1366}
1367
5c614b35
WL
1368static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1369{
1370 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1371}
1372
82f0dd4b
WV
1373static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1374{
1375 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1376}
1377
608406e2
WV
1378static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1379{
1380 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1381}
1382
705699a1
WV
1383static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1384{
1385 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1386}
1387
27c42a1b
BD
1388static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1389{
1390 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1391}
1392
41ab9372
BD
1393static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1394{
1395 return nested_cpu_has_vmfunc(vmcs12) &&
1396 (vmcs12->vm_function_control &
1397 VMX_VMFUNC_EPTP_SWITCHING);
1398}
1399
ef85b673 1400static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1401{
1402 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1403 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1404}
1405
533558bc
JK
1406static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1407 u32 exit_intr_info,
1408 unsigned long exit_qualification);
7c177938
NHE
1409static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1410 struct vmcs12 *vmcs12,
1411 u32 reason, unsigned long qualification);
1412
8b9cf98c 1413static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1414{
1415 int i;
1416
a2fa3e9f 1417 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1418 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1419 return i;
1420 return -1;
1421}
1422
2384d2b3
SY
1423static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1424{
1425 struct {
1426 u64 vpid : 16;
1427 u64 rsvd : 48;
1428 u64 gva;
1429 } operand = { vpid, 0, gva };
1430
4ecac3fd 1431 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1432 /* CF==1 or ZF==1 --> rc = -1 */
1433 "; ja 1f ; ud2 ; 1:"
1434 : : "a"(&operand), "c"(ext) : "cc", "memory");
1435}
1436
1439442c
SY
1437static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1438{
1439 struct {
1440 u64 eptp, gpa;
1441 } operand = {eptp, gpa};
1442
4ecac3fd 1443 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1444 /* CF==1 or ZF==1 --> rc = -1 */
1445 "; ja 1f ; ud2 ; 1:\n"
1446 : : "a" (&operand), "c" (ext) : "cc", "memory");
1447}
1448
26bb0981 1449static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1450{
1451 int i;
1452
8b9cf98c 1453 i = __find_msr_index(vmx, msr);
a75beee6 1454 if (i >= 0)
a2fa3e9f 1455 return &vmx->guest_msrs[i];
8b6d44c7 1456 return NULL;
7725f0ba
AK
1457}
1458
6aa8b732
AK
1459static void vmcs_clear(struct vmcs *vmcs)
1460{
1461 u64 phys_addr = __pa(vmcs);
1462 u8 error;
1463
4ecac3fd 1464 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1465 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1466 : "cc", "memory");
1467 if (error)
1468 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1469 vmcs, phys_addr);
1470}
1471
d462b819
NHE
1472static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1473{
1474 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1475 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1476 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1477 loaded_vmcs->cpu = -1;
1478 loaded_vmcs->launched = 0;
1479}
1480
7725b894
DX
1481static void vmcs_load(struct vmcs *vmcs)
1482{
1483 u64 phys_addr = __pa(vmcs);
1484 u8 error;
1485
1486 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1487 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1488 : "cc", "memory");
1489 if (error)
2844d849 1490 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1491 vmcs, phys_addr);
1492}
1493
2965faa5 1494#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1495/*
1496 * This bitmap is used to indicate whether the vmclear
1497 * operation is enabled on all cpus. All disabled by
1498 * default.
1499 */
1500static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1501
1502static inline void crash_enable_local_vmclear(int cpu)
1503{
1504 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1505}
1506
1507static inline void crash_disable_local_vmclear(int cpu)
1508{
1509 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1510}
1511
1512static inline int crash_local_vmclear_enabled(int cpu)
1513{
1514 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1515}
1516
1517static void crash_vmclear_local_loaded_vmcss(void)
1518{
1519 int cpu = raw_smp_processor_id();
1520 struct loaded_vmcs *v;
1521
1522 if (!crash_local_vmclear_enabled(cpu))
1523 return;
1524
1525 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1526 loaded_vmcss_on_cpu_link)
1527 vmcs_clear(v->vmcs);
1528}
1529#else
1530static inline void crash_enable_local_vmclear(int cpu) { }
1531static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1532#endif /* CONFIG_KEXEC_CORE */
8f536b76 1533
d462b819 1534static void __loaded_vmcs_clear(void *arg)
6aa8b732 1535{
d462b819 1536 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1537 int cpu = raw_smp_processor_id();
6aa8b732 1538
d462b819
NHE
1539 if (loaded_vmcs->cpu != cpu)
1540 return; /* vcpu migration can race with cpu offline */
1541 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1542 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1543 crash_disable_local_vmclear(cpu);
d462b819 1544 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1545
1546 /*
1547 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1548 * is before setting loaded_vmcs->vcpu to -1 which is done in
1549 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1550 * then adds the vmcs into percpu list before it is deleted.
1551 */
1552 smp_wmb();
1553
d462b819 1554 loaded_vmcs_init(loaded_vmcs);
8f536b76 1555 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1556}
1557
d462b819 1558static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1559{
e6c7d321
XG
1560 int cpu = loaded_vmcs->cpu;
1561
1562 if (cpu != -1)
1563 smp_call_function_single(cpu,
1564 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1565}
1566
dd5f5341 1567static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1568{
dd5f5341 1569 if (vpid == 0)
2384d2b3
SY
1570 return;
1571
518c8aee 1572 if (cpu_has_vmx_invvpid_single())
dd5f5341 1573 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1574}
1575
b9d762fa
GJ
1576static inline void vpid_sync_vcpu_global(void)
1577{
1578 if (cpu_has_vmx_invvpid_global())
1579 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1580}
1581
dd5f5341 1582static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1583{
1584 if (cpu_has_vmx_invvpid_single())
dd5f5341 1585 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1586 else
1587 vpid_sync_vcpu_global();
1588}
1589
1439442c
SY
1590static inline void ept_sync_global(void)
1591{
1592 if (cpu_has_vmx_invept_global())
1593 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1594}
1595
1596static inline void ept_sync_context(u64 eptp)
1597{
089d034e 1598 if (enable_ept) {
1439442c
SY
1599 if (cpu_has_vmx_invept_context())
1600 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1601 else
1602 ept_sync_global();
1603 }
1604}
1605
8a86aea9
PB
1606static __always_inline void vmcs_check16(unsigned long field)
1607{
1608 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1609 "16-bit accessor invalid for 64-bit field");
1610 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1611 "16-bit accessor invalid for 64-bit high field");
1612 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1613 "16-bit accessor invalid for 32-bit high field");
1614 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1615 "16-bit accessor invalid for natural width field");
1616}
1617
1618static __always_inline void vmcs_check32(unsigned long field)
1619{
1620 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1621 "32-bit accessor invalid for 16-bit field");
1622 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1623 "32-bit accessor invalid for natural width field");
1624}
1625
1626static __always_inline void vmcs_check64(unsigned long field)
1627{
1628 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1629 "64-bit accessor invalid for 16-bit field");
1630 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1631 "64-bit accessor invalid for 64-bit high field");
1632 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1633 "64-bit accessor invalid for 32-bit field");
1634 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1635 "64-bit accessor invalid for natural width field");
1636}
1637
1638static __always_inline void vmcs_checkl(unsigned long field)
1639{
1640 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1641 "Natural width accessor invalid for 16-bit field");
1642 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1643 "Natural width accessor invalid for 64-bit field");
1644 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1645 "Natural width accessor invalid for 64-bit high field");
1646 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1647 "Natural width accessor invalid for 32-bit field");
1648}
1649
1650static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1651{
5e520e62 1652 unsigned long value;
6aa8b732 1653
5e520e62
AK
1654 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1655 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1656 return value;
1657}
1658
96304217 1659static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1660{
8a86aea9
PB
1661 vmcs_check16(field);
1662 return __vmcs_readl(field);
6aa8b732
AK
1663}
1664
96304217 1665static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1666{
8a86aea9
PB
1667 vmcs_check32(field);
1668 return __vmcs_readl(field);
6aa8b732
AK
1669}
1670
96304217 1671static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1672{
8a86aea9 1673 vmcs_check64(field);
05b3e0c2 1674#ifdef CONFIG_X86_64
8a86aea9 1675 return __vmcs_readl(field);
6aa8b732 1676#else
8a86aea9 1677 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1678#endif
1679}
1680
8a86aea9
PB
1681static __always_inline unsigned long vmcs_readl(unsigned long field)
1682{
1683 vmcs_checkl(field);
1684 return __vmcs_readl(field);
1685}
1686
e52de1b8
AK
1687static noinline void vmwrite_error(unsigned long field, unsigned long value)
1688{
1689 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1690 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1691 dump_stack();
1692}
1693
8a86aea9 1694static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1695{
1696 u8 error;
1697
4ecac3fd 1698 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1699 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1700 if (unlikely(error))
1701 vmwrite_error(field, value);
6aa8b732
AK
1702}
1703
8a86aea9 1704static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1705{
8a86aea9
PB
1706 vmcs_check16(field);
1707 __vmcs_writel(field, value);
6aa8b732
AK
1708}
1709
8a86aea9 1710static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1711{
8a86aea9
PB
1712 vmcs_check32(field);
1713 __vmcs_writel(field, value);
6aa8b732
AK
1714}
1715
8a86aea9 1716static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1717{
8a86aea9
PB
1718 vmcs_check64(field);
1719 __vmcs_writel(field, value);
7682f2d0 1720#ifndef CONFIG_X86_64
6aa8b732 1721 asm volatile ("");
8a86aea9 1722 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1723#endif
1724}
1725
8a86aea9 1726static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1727{
8a86aea9
PB
1728 vmcs_checkl(field);
1729 __vmcs_writel(field, value);
2ab455cc
AL
1730}
1731
8a86aea9 1732static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1733{
8a86aea9
PB
1734 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1735 "vmcs_clear_bits does not support 64-bit fields");
1736 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1737}
1738
8a86aea9 1739static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1740{
8a86aea9
PB
1741 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1742 "vmcs_set_bits does not support 64-bit fields");
1743 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1744}
1745
8391ce44
PB
1746static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1747{
1748 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1749}
1750
2961e876
GN
1751static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1752{
1753 vmcs_write32(VM_ENTRY_CONTROLS, val);
1754 vmx->vm_entry_controls_shadow = val;
1755}
1756
1757static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1758{
1759 if (vmx->vm_entry_controls_shadow != val)
1760 vm_entry_controls_init(vmx, val);
1761}
1762
1763static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1764{
1765 return vmx->vm_entry_controls_shadow;
1766}
1767
1768
1769static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1770{
1771 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1772}
1773
1774static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1775{
1776 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1777}
1778
8391ce44
PB
1779static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1780{
1781 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1782}
1783
2961e876
GN
1784static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1785{
1786 vmcs_write32(VM_EXIT_CONTROLS, val);
1787 vmx->vm_exit_controls_shadow = val;
1788}
1789
1790static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1791{
1792 if (vmx->vm_exit_controls_shadow != val)
1793 vm_exit_controls_init(vmx, val);
1794}
1795
1796static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1797{
1798 return vmx->vm_exit_controls_shadow;
1799}
1800
1801
1802static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1803{
1804 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1805}
1806
1807static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1808{
1809 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1810}
1811
2fb92db1
AK
1812static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1813{
1814 vmx->segment_cache.bitmask = 0;
1815}
1816
1817static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1818 unsigned field)
1819{
1820 bool ret;
1821 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1822
1823 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1824 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1825 vmx->segment_cache.bitmask = 0;
1826 }
1827 ret = vmx->segment_cache.bitmask & mask;
1828 vmx->segment_cache.bitmask |= mask;
1829 return ret;
1830}
1831
1832static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1833{
1834 u16 *p = &vmx->segment_cache.seg[seg].selector;
1835
1836 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1837 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1838 return *p;
1839}
1840
1841static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1842{
1843 ulong *p = &vmx->segment_cache.seg[seg].base;
1844
1845 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1846 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1847 return *p;
1848}
1849
1850static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1851{
1852 u32 *p = &vmx->segment_cache.seg[seg].limit;
1853
1854 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1855 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1856 return *p;
1857}
1858
1859static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1860{
1861 u32 *p = &vmx->segment_cache.seg[seg].ar;
1862
1863 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1864 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1865 return *p;
1866}
1867
abd3f2d6
AK
1868static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1869{
1870 u32 eb;
1871
fd7373cc 1872 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 1873 (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1874 if ((vcpu->guest_debug &
1875 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1876 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1877 eb |= 1u << BP_VECTOR;
7ffd92c5 1878 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1879 eb = ~0;
089d034e 1880 if (enable_ept)
1439442c 1881 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
1882
1883 /* When we are running a nested L2 guest and L1 specified for it a
1884 * certain exception bitmap, we must trap the same exceptions and pass
1885 * them to L1. When running L2, we will only handle the exceptions
1886 * specified above if L1 did not want them.
1887 */
1888 if (is_guest_mode(vcpu))
1889 eb |= get_vmcs12(vcpu)->exception_bitmap;
1890
abd3f2d6
AK
1891 vmcs_write32(EXCEPTION_BITMAP, eb);
1892}
1893
2961e876
GN
1894static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1895 unsigned long entry, unsigned long exit)
8bf00a52 1896{
2961e876
GN
1897 vm_entry_controls_clearbit(vmx, entry);
1898 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1899}
1900
61d2ef2c
AK
1901static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1902{
1903 unsigned i;
1904 struct msr_autoload *m = &vmx->msr_autoload;
1905
8bf00a52
GN
1906 switch (msr) {
1907 case MSR_EFER:
1908 if (cpu_has_load_ia32_efer) {
2961e876
GN
1909 clear_atomic_switch_msr_special(vmx,
1910 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1911 VM_EXIT_LOAD_IA32_EFER);
1912 return;
1913 }
1914 break;
1915 case MSR_CORE_PERF_GLOBAL_CTRL:
1916 if (cpu_has_load_perf_global_ctrl) {
2961e876 1917 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1918 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1919 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1920 return;
1921 }
1922 break;
110312c8
AK
1923 }
1924
61d2ef2c
AK
1925 for (i = 0; i < m->nr; ++i)
1926 if (m->guest[i].index == msr)
1927 break;
1928
1929 if (i == m->nr)
1930 return;
1931 --m->nr;
1932 m->guest[i] = m->guest[m->nr];
1933 m->host[i] = m->host[m->nr];
1934 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1935 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1936}
1937
2961e876
GN
1938static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1939 unsigned long entry, unsigned long exit,
1940 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1941 u64 guest_val, u64 host_val)
8bf00a52
GN
1942{
1943 vmcs_write64(guest_val_vmcs, guest_val);
1944 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1945 vm_entry_controls_setbit(vmx, entry);
1946 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1947}
1948
61d2ef2c
AK
1949static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1950 u64 guest_val, u64 host_val)
1951{
1952 unsigned i;
1953 struct msr_autoload *m = &vmx->msr_autoload;
1954
8bf00a52
GN
1955 switch (msr) {
1956 case MSR_EFER:
1957 if (cpu_has_load_ia32_efer) {
2961e876
GN
1958 add_atomic_switch_msr_special(vmx,
1959 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1960 VM_EXIT_LOAD_IA32_EFER,
1961 GUEST_IA32_EFER,
1962 HOST_IA32_EFER,
1963 guest_val, host_val);
1964 return;
1965 }
1966 break;
1967 case MSR_CORE_PERF_GLOBAL_CTRL:
1968 if (cpu_has_load_perf_global_ctrl) {
2961e876 1969 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1970 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1971 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1972 GUEST_IA32_PERF_GLOBAL_CTRL,
1973 HOST_IA32_PERF_GLOBAL_CTRL,
1974 guest_val, host_val);
1975 return;
1976 }
1977 break;
7099e2e1
RK
1978 case MSR_IA32_PEBS_ENABLE:
1979 /* PEBS needs a quiescent period after being disabled (to write
1980 * a record). Disabling PEBS through VMX MSR swapping doesn't
1981 * provide that period, so a CPU could write host's record into
1982 * guest's memory.
1983 */
1984 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1985 }
1986
61d2ef2c
AK
1987 for (i = 0; i < m->nr; ++i)
1988 if (m->guest[i].index == msr)
1989 break;
1990
e7fc6f93 1991 if (i == NR_AUTOLOAD_MSRS) {
60266204 1992 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1993 "Can't add msr %x\n", msr);
1994 return;
1995 } else if (i == m->nr) {
61d2ef2c
AK
1996 ++m->nr;
1997 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1998 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1999 }
2000
2001 m->guest[i].index = msr;
2002 m->guest[i].value = guest_val;
2003 m->host[i].index = msr;
2004 m->host[i].value = host_val;
2005}
2006
92c0d900 2007static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2008{
844a5fe2
PB
2009 u64 guest_efer = vmx->vcpu.arch.efer;
2010 u64 ignore_bits = 0;
2011
2012 if (!enable_ept) {
2013 /*
2014 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2015 * host CPUID is more efficient than testing guest CPUID
2016 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2017 */
2018 if (boot_cpu_has(X86_FEATURE_SMEP))
2019 guest_efer |= EFER_NX;
2020 else if (!(guest_efer & EFER_NX))
2021 ignore_bits |= EFER_NX;
2022 }
3a34a881 2023
51c6cf66 2024 /*
844a5fe2 2025 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2026 */
844a5fe2 2027 ignore_bits |= EFER_SCE;
51c6cf66
AK
2028#ifdef CONFIG_X86_64
2029 ignore_bits |= EFER_LMA | EFER_LME;
2030 /* SCE is meaningful only in long mode on Intel */
2031 if (guest_efer & EFER_LMA)
2032 ignore_bits &= ~(u64)EFER_SCE;
2033#endif
84ad33ef
AK
2034
2035 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2036
2037 /*
2038 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2039 * On CPUs that support "load IA32_EFER", always switch EFER
2040 * atomically, since it's faster than switching it manually.
2041 */
2042 if (cpu_has_load_ia32_efer ||
2043 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2044 if (!(guest_efer & EFER_LMA))
2045 guest_efer &= ~EFER_LME;
54b98bff
AL
2046 if (guest_efer != host_efer)
2047 add_atomic_switch_msr(vmx, MSR_EFER,
2048 guest_efer, host_efer);
84ad33ef 2049 return false;
844a5fe2
PB
2050 } else {
2051 guest_efer &= ~ignore_bits;
2052 guest_efer |= host_efer & ignore_bits;
2053
2054 vmx->guest_msrs[efer_offset].data = guest_efer;
2055 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2056
844a5fe2
PB
2057 return true;
2058 }
51c6cf66
AK
2059}
2060
e28baead
AL
2061#ifdef CONFIG_X86_32
2062/*
2063 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2064 * VMCS rather than the segment table. KVM uses this helper to figure
2065 * out the current bases to poke them into the VMCS before entry.
2066 */
2d49ec72
GN
2067static unsigned long segment_base(u16 selector)
2068{
8c2e41f7 2069 struct desc_struct *table;
2d49ec72
GN
2070 unsigned long v;
2071
8c2e41f7 2072 if (!(selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2073 return 0;
2074
45fc8757 2075 table = get_current_gdt_ro();
2d49ec72 2076
8c2e41f7 2077 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2d49ec72
GN
2078 u16 ldt_selector = kvm_read_ldt();
2079
8c2e41f7 2080 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2081 return 0;
2082
8c2e41f7 2083 table = (struct desc_struct *)segment_base(ldt_selector);
2d49ec72 2084 }
8c2e41f7 2085 v = get_desc_base(&table[selector >> 3]);
2d49ec72
GN
2086 return v;
2087}
e28baead 2088#endif
2d49ec72 2089
04d2cc77 2090static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2091{
04d2cc77 2092 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2093 int i;
04d2cc77 2094
a2fa3e9f 2095 if (vmx->host_state.loaded)
33ed6329
AK
2096 return;
2097
a2fa3e9f 2098 vmx->host_state.loaded = 1;
33ed6329
AK
2099 /*
2100 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2101 * allow segment selectors with cpl > 0 or ti == 1.
2102 */
d6e88aec 2103 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2104 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2105 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2106 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2107 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2108 vmx->host_state.fs_reload_needed = 0;
2109 } else {
33ed6329 2110 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2111 vmx->host_state.fs_reload_needed = 1;
33ed6329 2112 }
9581d442 2113 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2114 if (!(vmx->host_state.gs_sel & 7))
2115 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2116 else {
2117 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2118 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2119 }
2120
b2da15ac
AK
2121#ifdef CONFIG_X86_64
2122 savesegment(ds, vmx->host_state.ds_sel);
2123 savesegment(es, vmx->host_state.es_sel);
2124#endif
2125
33ed6329
AK
2126#ifdef CONFIG_X86_64
2127 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2128 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2129#else
a2fa3e9f
GH
2130 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2131 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2132#endif
707c0874
AK
2133
2134#ifdef CONFIG_X86_64
c8770e7b
AK
2135 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2136 if (is_long_mode(&vmx->vcpu))
44ea2b17 2137 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2138#endif
da8999d3
LJ
2139 if (boot_cpu_has(X86_FEATURE_MPX))
2140 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2141 for (i = 0; i < vmx->save_nmsrs; ++i)
2142 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2143 vmx->guest_msrs[i].data,
2144 vmx->guest_msrs[i].mask);
33ed6329
AK
2145}
2146
a9b21b62 2147static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2148{
a2fa3e9f 2149 if (!vmx->host_state.loaded)
33ed6329
AK
2150 return;
2151
e1beb1d3 2152 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2153 vmx->host_state.loaded = 0;
c8770e7b
AK
2154#ifdef CONFIG_X86_64
2155 if (is_long_mode(&vmx->vcpu))
2156 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2157#endif
152d3f2f 2158 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2159 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2160#ifdef CONFIG_X86_64
9581d442 2161 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2162#else
2163 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2164#endif
33ed6329 2165 }
0a77fe4c
AK
2166 if (vmx->host_state.fs_reload_needed)
2167 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2168#ifdef CONFIG_X86_64
2169 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2170 loadsegment(ds, vmx->host_state.ds_sel);
2171 loadsegment(es, vmx->host_state.es_sel);
2172 }
b2da15ac 2173#endif
b7ffc44d 2174 invalidate_tss_limit();
44ea2b17 2175#ifdef CONFIG_X86_64
c8770e7b 2176 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2177#endif
da8999d3
LJ
2178 if (vmx->host_state.msr_host_bndcfgs)
2179 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
45fc8757 2180 load_fixmap_gdt(raw_smp_processor_id());
33ed6329
AK
2181}
2182
a9b21b62
AK
2183static void vmx_load_host_state(struct vcpu_vmx *vmx)
2184{
2185 preempt_disable();
2186 __vmx_load_host_state(vmx);
2187 preempt_enable();
2188}
2189
28b835d6
FW
2190static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2191{
2192 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2193 struct pi_desc old, new;
2194 unsigned int dest;
2195
2196 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2197 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2198 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2199 return;
2200
2201 do {
2202 old.control = new.control = pi_desc->control;
2203
2204 /*
2205 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2206 * are two possible cases:
2207 * 1. After running 'pre_block', context switch
2208 * happened. For this case, 'sn' was set in
2209 * vmx_vcpu_put(), so we need to clear it here.
2210 * 2. After running 'pre_block', we were blocked,
2211 * and woken up by some other guy. For this case,
2212 * we don't need to do anything, 'pi_post_block'
2213 * will do everything for us. However, we cannot
2214 * check whether it is case #1 or case #2 here
2215 * (maybe, not needed), so we also clear sn here,
2216 * I think it is not a big deal.
2217 */
2218 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2219 if (vcpu->cpu != cpu) {
2220 dest = cpu_physical_id(cpu);
2221
2222 if (x2apic_enabled())
2223 new.ndst = dest;
2224 else
2225 new.ndst = (dest << 8) & 0xFF00;
2226 }
2227
2228 /* set 'NV' to 'notification vector' */
2229 new.nv = POSTED_INTR_VECTOR;
2230 }
2231
2232 /* Allow posting non-urgent interrupts */
2233 new.sn = 0;
2234 } while (cmpxchg(&pi_desc->control, old.control,
2235 new.control) != old.control);
2236}
1be0e61c 2237
c95ba92a
PF
2238static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2239{
2240 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2241 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2242}
2243
6aa8b732
AK
2244/*
2245 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2246 * vcpu mutex is already taken.
2247 */
15ad7146 2248static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2249{
a2fa3e9f 2250 struct vcpu_vmx *vmx = to_vmx(vcpu);
b80c76ec 2251 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2252
b80c76ec 2253 if (!already_loaded) {
fe0e80be 2254 loaded_vmcs_clear(vmx->loaded_vmcs);
92fe13be 2255 local_irq_disable();
8f536b76 2256 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2257
2258 /*
2259 * Read loaded_vmcs->cpu should be before fetching
2260 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2261 * See the comments in __loaded_vmcs_clear().
2262 */
2263 smp_rmb();
2264
d462b819
NHE
2265 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2266 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2267 crash_enable_local_vmclear(cpu);
92fe13be 2268 local_irq_enable();
b80c76ec
JM
2269 }
2270
2271 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2272 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2273 vmcs_load(vmx->loaded_vmcs->vmcs);
2274 }
2275
2276 if (!already_loaded) {
59c58ceb 2277 void *gdt = get_current_gdt_ro();
b80c76ec
JM
2278 unsigned long sysenter_esp;
2279
2280 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2281
6aa8b732
AK
2282 /*
2283 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2284 * processors. See 22.2.4.
6aa8b732 2285 */
e0c23063
AL
2286 vmcs_writel(HOST_TR_BASE,
2287 (unsigned long)this_cpu_ptr(&cpu_tss));
59c58ceb 2288 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
6aa8b732 2289
b7ffc44d
AL
2290 /*
2291 * VM exits change the host TR limit to 0x67 after a VM
2292 * exit. This is okay, since 0x67 covers everything except
2293 * the IO bitmap and have have code to handle the IO bitmap
2294 * being lost after a VM exit.
2295 */
2296 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2297
6aa8b732
AK
2298 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2299 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2300
d462b819 2301 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2302 }
28b835d6 2303
2680d6da
OH
2304 /* Setup TSC multiplier */
2305 if (kvm_has_tsc_control &&
c95ba92a
PF
2306 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2307 decache_tsc_multiplier(vmx);
2680d6da 2308
28b835d6 2309 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2310 vmx->host_pkru = read_pkru();
28b835d6
FW
2311}
2312
2313static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2314{
2315 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2316
2317 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2318 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2319 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2320 return;
2321
2322 /* Set SN when the vCPU is preempted */
2323 if (vcpu->preempted)
2324 pi_set_sn(pi_desc);
6aa8b732
AK
2325}
2326
2327static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2328{
28b835d6
FW
2329 vmx_vcpu_pi_put(vcpu);
2330
a9b21b62 2331 __vmx_load_host_state(to_vmx(vcpu));
6aa8b732
AK
2332}
2333
f244deed
WL
2334static bool emulation_required(struct kvm_vcpu *vcpu)
2335{
2336 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2337}
2338
edcafe3c
AK
2339static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2340
fe3ef05c
NHE
2341/*
2342 * Return the cr0 value that a nested guest would read. This is a combination
2343 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2344 * its hypervisor (cr0_read_shadow).
2345 */
2346static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2347{
2348 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2349 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2350}
2351static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2352{
2353 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2354 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2355}
2356
6aa8b732
AK
2357static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2358{
78ac8b47 2359 unsigned long rflags, save_rflags;
345dcaa8 2360
6de12732
AK
2361 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2362 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2363 rflags = vmcs_readl(GUEST_RFLAGS);
2364 if (to_vmx(vcpu)->rmode.vm86_active) {
2365 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2366 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2367 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2368 }
2369 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2370 }
6de12732 2371 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2372}
2373
2374static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2375{
f244deed
WL
2376 unsigned long old_rflags = vmx_get_rflags(vcpu);
2377
6de12732
AK
2378 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2379 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2380 if (to_vmx(vcpu)->rmode.vm86_active) {
2381 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2382 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2383 }
6aa8b732 2384 vmcs_writel(GUEST_RFLAGS, rflags);
f244deed
WL
2385
2386 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2387 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
6aa8b732
AK
2388}
2389
be94f6b7
HH
2390static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2391{
2392 return to_vmx(vcpu)->guest_pkru;
2393}
2394
37ccdcbe 2395static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2396{
2397 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2398 int ret = 0;
2399
2400 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2401 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2402 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2403 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2404
37ccdcbe 2405 return ret;
2809f5d2
GC
2406}
2407
2408static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2409{
2410 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2411 u32 interruptibility = interruptibility_old;
2412
2413 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2414
48005f64 2415 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2416 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2417 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2418 interruptibility |= GUEST_INTR_STATE_STI;
2419
2420 if ((interruptibility != interruptibility_old))
2421 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2422}
2423
6aa8b732
AK
2424static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2425{
2426 unsigned long rip;
6aa8b732 2427
5fdbf976 2428 rip = kvm_rip_read(vcpu);
6aa8b732 2429 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2430 kvm_rip_write(vcpu, rip);
6aa8b732 2431
2809f5d2
GC
2432 /* skipping an emulated instruction also counts */
2433 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2434}
2435
b96fb439
PB
2436static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2437 unsigned long exit_qual)
2438{
2439 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2440 unsigned int nr = vcpu->arch.exception.nr;
2441 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2442
2443 if (vcpu->arch.exception.has_error_code) {
2444 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2445 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2446 }
2447
2448 if (kvm_exception_is_soft(nr))
2449 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2450 else
2451 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2452
2453 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2454 vmx_get_nmi_mask(vcpu))
2455 intr_info |= INTR_INFO_UNBLOCK_NMI;
2456
2457 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2458}
2459
0b6ac343
NHE
2460/*
2461 * KVM wants to inject page-faults which it got to the guest. This function
2462 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2463 */
adfe20fb 2464static int nested_vmx_check_exception(struct kvm_vcpu *vcpu)
0b6ac343
NHE
2465{
2466 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
adfe20fb 2467 unsigned int nr = vcpu->arch.exception.nr;
0b6ac343 2468
b96fb439
PB
2469 if (nr == PF_VECTOR) {
2470 if (vcpu->arch.exception.nested_apf) {
2471 nested_vmx_inject_exception_vmexit(vcpu,
2472 vcpu->arch.apf.nested_apf_token);
2473 return 1;
2474 }
2475 /*
2476 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2477 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2478 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2479 * can be written only when inject_pending_event runs. This should be
2480 * conditional on a new capability---if the capability is disabled,
2481 * kvm_multiple_exception would write the ancillary information to
2482 * CR2 or DR6, for backwards ABI-compatibility.
2483 */
2484 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2485 vcpu->arch.exception.error_code)) {
2486 nested_vmx_inject_exception_vmexit(vcpu, vcpu->arch.cr2);
2487 return 1;
2488 }
2489 } else {
2490 unsigned long exit_qual = 0;
2491 if (nr == DB_VECTOR)
2492 exit_qual = vcpu->arch.dr6;
0b6ac343 2493
b96fb439
PB
2494 if (vmcs12->exception_bitmap & (1u << nr)) {
2495 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
2496 return 1;
2497 }
adfe20fb
WL
2498 }
2499
b96fb439 2500 return 0;
0b6ac343
NHE
2501}
2502
cfcd20e5 2503static void vmx_queue_exception(struct kvm_vcpu *vcpu)
298101da 2504{
77ab6db0 2505 struct vcpu_vmx *vmx = to_vmx(vcpu);
cfcd20e5
WL
2506 unsigned nr = vcpu->arch.exception.nr;
2507 bool has_error_code = vcpu->arch.exception.has_error_code;
2508 bool reinject = vcpu->arch.exception.reinject;
2509 u32 error_code = vcpu->arch.exception.error_code;
8ab2d2e2 2510 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2511
e011c663 2512 if (!reinject && is_guest_mode(vcpu) &&
adfe20fb 2513 nested_vmx_check_exception(vcpu))
0b6ac343
NHE
2514 return;
2515
8ab2d2e2 2516 if (has_error_code) {
77ab6db0 2517 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2518 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2519 }
77ab6db0 2520
7ffd92c5 2521 if (vmx->rmode.vm86_active) {
71f9833b
SH
2522 int inc_eip = 0;
2523 if (kvm_exception_is_soft(nr))
2524 inc_eip = vcpu->arch.event_exit_inst_len;
2525 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2526 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2527 return;
2528 }
2529
66fd3f7f
GN
2530 if (kvm_exception_is_soft(nr)) {
2531 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2532 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2533 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2534 } else
2535 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2536
2537 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2538}
2539
4e47c7a6
SY
2540static bool vmx_rdtscp_supported(void)
2541{
2542 return cpu_has_vmx_rdtscp();
2543}
2544
ad756a16
MJ
2545static bool vmx_invpcid_supported(void)
2546{
2547 return cpu_has_vmx_invpcid() && enable_ept;
2548}
2549
a75beee6
ED
2550/*
2551 * Swap MSR entry in host/guest MSR entry array.
2552 */
8b9cf98c 2553static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2554{
26bb0981 2555 struct shared_msr_entry tmp;
a2fa3e9f
GH
2556
2557 tmp = vmx->guest_msrs[to];
2558 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2559 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2560}
2561
8d14695f
YZ
2562static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2563{
2564 unsigned long *msr_bitmap;
2565
670125bd 2566 if (is_guest_mode(vcpu))
d048c098 2567 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
3ce424e4
RK
2568 else if (cpu_has_secondary_exec_ctrls() &&
2569 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2570 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
f6e90f9e
WL
2571 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2572 if (is_long_mode(vcpu))
c63e4563 2573 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
f6e90f9e 2574 else
c63e4563 2575 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
f6e90f9e
WL
2576 } else {
2577 if (is_long_mode(vcpu))
c63e4563 2578 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
f6e90f9e 2579 else
c63e4563 2580 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
f6e90f9e 2581 }
8d14695f
YZ
2582 } else {
2583 if (is_long_mode(vcpu))
2584 msr_bitmap = vmx_msr_bitmap_longmode;
2585 else
2586 msr_bitmap = vmx_msr_bitmap_legacy;
2587 }
2588
2589 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2590}
2591
e38aea3e
AK
2592/*
2593 * Set up the vmcs to automatically save and restore system
2594 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2595 * mode, as fiddling with msrs is very expensive.
2596 */
8b9cf98c 2597static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2598{
26bb0981 2599 int save_nmsrs, index;
e38aea3e 2600
a75beee6
ED
2601 save_nmsrs = 0;
2602#ifdef CONFIG_X86_64
8b9cf98c 2603 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2604 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2605 if (index >= 0)
8b9cf98c
RR
2606 move_msr_up(vmx, index, save_nmsrs++);
2607 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2608 if (index >= 0)
8b9cf98c
RR
2609 move_msr_up(vmx, index, save_nmsrs++);
2610 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2611 if (index >= 0)
8b9cf98c 2612 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2613 index = __find_msr_index(vmx, MSR_TSC_AUX);
d6321d49 2614 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
4e47c7a6 2615 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2616 /*
8c06585d 2617 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2618 * if efer.sce is enabled.
2619 */
8c06585d 2620 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2621 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2622 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2623 }
2624#endif
92c0d900
AK
2625 index = __find_msr_index(vmx, MSR_EFER);
2626 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2627 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2628
26bb0981 2629 vmx->save_nmsrs = save_nmsrs;
5897297b 2630
8d14695f
YZ
2631 if (cpu_has_vmx_msr_bitmap())
2632 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2633}
2634
6aa8b732
AK
2635/*
2636 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2637 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2638 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2639 */
be7b263e 2640static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2641{
2642 u64 host_tsc, tsc_offset;
2643
4ea1636b 2644 host_tsc = rdtsc();
6aa8b732 2645 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2646 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2647}
2648
2649/*
99e3e30a 2650 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2651 */
99e3e30a 2652static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2653{
27fc51b2 2654 if (is_guest_mode(vcpu)) {
7991825b 2655 /*
27fc51b2
NHE
2656 * We're here if L1 chose not to trap WRMSR to TSC. According
2657 * to the spec, this should set L1's TSC; The offset that L1
2658 * set for L2 remains unchanged, and still needs to be added
2659 * to the newly set TSC to get L2's TSC.
7991825b 2660 */
27fc51b2 2661 struct vmcs12 *vmcs12;
27fc51b2
NHE
2662 /* recalculate vmcs02.TSC_OFFSET: */
2663 vmcs12 = get_vmcs12(vcpu);
2664 vmcs_write64(TSC_OFFSET, offset +
2665 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2666 vmcs12->tsc_offset : 0));
2667 } else {
489223ed
YY
2668 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2669 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2670 vmcs_write64(TSC_OFFSET, offset);
2671 }
6aa8b732
AK
2672}
2673
801d3424
NHE
2674/*
2675 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2676 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2677 * all guests if the "nested" module option is off, and can also be disabled
2678 * for a single guest by disabling its VMX cpuid bit.
2679 */
2680static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2681{
d6321d49 2682 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
801d3424
NHE
2683}
2684
b87a51ae
NHE
2685/*
2686 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2687 * returned for the various VMX controls MSRs when nested VMX is enabled.
2688 * The same values should also be used to verify that vmcs12 control fields are
2689 * valid during nested entry from L1 to L2.
2690 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2691 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2692 * bit in the high half is on if the corresponding bit in the control field
2693 * may be on. See also vmx_control_verify().
b87a51ae 2694 */
b9c237bb 2695static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2696{
2697 /*
2698 * Note that as a general rule, the high half of the MSRs (bits in
2699 * the control fields which may be 1) should be initialized by the
2700 * intersection of the underlying hardware's MSR (i.e., features which
2701 * can be supported) and the list of features we want to expose -
2702 * because they are known to be properly supported in our code.
2703 * Also, usually, the low half of the MSRs (bits which must be 1) can
2704 * be set to 0, meaning that L1 may turn off any of these bits. The
2705 * reason is that if one of these bits is necessary, it will appear
2706 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2707 * fields of vmcs01 and vmcs02, will turn these bits off - and
7313c698 2708 * nested_vmx_exit_reflected() will not pass related exits to L1.
b87a51ae
NHE
2709 * These rules have exceptions below.
2710 */
2711
2712 /* pin-based controls */
eabeaacc 2713 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2714 vmx->nested.nested_vmx_pinbased_ctls_low,
2715 vmx->nested.nested_vmx_pinbased_ctls_high);
2716 vmx->nested.nested_vmx_pinbased_ctls_low |=
2717 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2718 vmx->nested.nested_vmx_pinbased_ctls_high &=
2719 PIN_BASED_EXT_INTR_MASK |
2720 PIN_BASED_NMI_EXITING |
2721 PIN_BASED_VIRTUAL_NMIS;
2722 vmx->nested.nested_vmx_pinbased_ctls_high |=
2723 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2724 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2725 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2726 vmx->nested.nested_vmx_pinbased_ctls_high |=
2727 PIN_BASED_POSTED_INTR;
b87a51ae 2728
3dbcd8da 2729 /* exit controls */
c0dfee58 2730 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2731 vmx->nested.nested_vmx_exit_ctls_low,
2732 vmx->nested.nested_vmx_exit_ctls_high);
2733 vmx->nested.nested_vmx_exit_ctls_low =
2734 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2735
b9c237bb 2736 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2737#ifdef CONFIG_X86_64
c0dfee58 2738 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2739#endif
f4124500 2740 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2741 vmx->nested.nested_vmx_exit_ctls_high |=
2742 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2743 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2744 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2745
a87036ad 2746 if (kvm_mpx_supported())
b9c237bb 2747 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2748
2996fca0 2749 /* We support free control of debug control saving. */
0115f9cb 2750 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2751
b87a51ae
NHE
2752 /* entry controls */
2753 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2754 vmx->nested.nested_vmx_entry_ctls_low,
2755 vmx->nested.nested_vmx_entry_ctls_high);
2756 vmx->nested.nested_vmx_entry_ctls_low =
2757 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2758 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2759#ifdef CONFIG_X86_64
2760 VM_ENTRY_IA32E_MODE |
2761#endif
2762 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2763 vmx->nested.nested_vmx_entry_ctls_high |=
2764 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2765 if (kvm_mpx_supported())
b9c237bb 2766 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2767
2996fca0 2768 /* We support free control of debug control loading. */
0115f9cb 2769 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 2770
b87a51ae
NHE
2771 /* cpu-based controls */
2772 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2773 vmx->nested.nested_vmx_procbased_ctls_low,
2774 vmx->nested.nested_vmx_procbased_ctls_high);
2775 vmx->nested.nested_vmx_procbased_ctls_low =
2776 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2777 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2778 CPU_BASED_VIRTUAL_INTR_PENDING |
2779 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2780 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2781 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2782 CPU_BASED_CR3_STORE_EXITING |
2783#ifdef CONFIG_X86_64
2784 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2785#endif
2786 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2787 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2788 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2789 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2790 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2791 /*
2792 * We can allow some features even when not supported by the
2793 * hardware. For example, L1 can specify an MSR bitmap - and we
2794 * can use it to avoid exits to L1 - even when L0 runs L2
2795 * without MSR bitmaps.
2796 */
b9c237bb
WV
2797 vmx->nested.nested_vmx_procbased_ctls_high |=
2798 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2799 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2800
3dcdf3ec 2801 /* We support free control of CR3 access interception. */
0115f9cb 2802 vmx->nested.nested_vmx_procbased_ctls_low &=
3dcdf3ec
JK
2803 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2804
b87a51ae
NHE
2805 /* secondary cpu-based controls */
2806 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2807 vmx->nested.nested_vmx_secondary_ctls_low,
2808 vmx->nested.nested_vmx_secondary_ctls_high);
2809 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2810 vmx->nested.nested_vmx_secondary_ctls_high &=
a5f46457 2811 SECONDARY_EXEC_RDRAND | SECONDARY_EXEC_RDSEED |
d6851fbe 2812 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2813 SECONDARY_EXEC_RDTSCP |
1b07304c 2814 SECONDARY_EXEC_DESC |
f2b93280 2815 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 2816 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2817 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7 2818 SECONDARY_EXEC_WBINVD_EXITING |
dfa169bb 2819 SECONDARY_EXEC_XSAVES;
c18911a2 2820
afa61f75
NHE
2821 if (enable_ept) {
2822 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2823 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2824 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2825 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
7db74265 2826 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
02120c45
BD
2827 if (cpu_has_vmx_ept_execute_only())
2828 vmx->nested.nested_vmx_ept_caps |=
2829 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2830 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817 2831 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7db74265
PB
2832 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2833 VMX_EPT_1GB_PAGE_BIT;
03efce6f
BD
2834 if (enable_ept_ad_bits) {
2835 vmx->nested.nested_vmx_secondary_ctls_high |=
2836 SECONDARY_EXEC_ENABLE_PML;
7461fbc4 2837 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
03efce6f 2838 }
afa61f75 2839 } else
b9c237bb 2840 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2841
27c42a1b
BD
2842 if (cpu_has_vmx_vmfunc()) {
2843 vmx->nested.nested_vmx_secondary_ctls_high |=
2844 SECONDARY_EXEC_ENABLE_VMFUNC;
41ab9372
BD
2845 /*
2846 * Advertise EPTP switching unconditionally
2847 * since we emulate it
2848 */
2849 vmx->nested.nested_vmx_vmfunc_controls =
2850 VMX_VMFUNC_EPTP_SWITCHING;
27c42a1b
BD
2851 }
2852
ef697a71
PB
2853 /*
2854 * Old versions of KVM use the single-context version without
2855 * checking for support, so declare that it is supported even
2856 * though it is treated as global context. The alternative is
2857 * not failing the single-context invvpid, and it is worse.
2858 */
63cb6d5f
WL
2859 if (enable_vpid) {
2860 vmx->nested.nested_vmx_secondary_ctls_high |=
2861 SECONDARY_EXEC_ENABLE_VPID;
089d7b6e 2862 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 2863 VMX_VPID_EXTENT_SUPPORTED_MASK;
63cb6d5f 2864 } else
089d7b6e 2865 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2866
0790ec17
RK
2867 if (enable_unrestricted_guest)
2868 vmx->nested.nested_vmx_secondary_ctls_high |=
2869 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2870
c18911a2 2871 /* miscellaneous data */
b9c237bb
WV
2872 rdmsr(MSR_IA32_VMX_MISC,
2873 vmx->nested.nested_vmx_misc_low,
2874 vmx->nested.nested_vmx_misc_high);
2875 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2876 vmx->nested.nested_vmx_misc_low |=
2877 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2878 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2879 vmx->nested.nested_vmx_misc_high = 0;
62cc6b9d
DM
2880
2881 /*
2882 * This MSR reports some information about VMX support. We
2883 * should return information about the VMX we emulate for the
2884 * guest, and the VMCS structure we give it - not about the
2885 * VMX support of the underlying hardware.
2886 */
2887 vmx->nested.nested_vmx_basic =
2888 VMCS12_REVISION |
2889 VMX_BASIC_TRUE_CTLS |
2890 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2891 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2892
2893 if (cpu_has_vmx_basic_inout())
2894 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2895
2896 /*
8322ebbb 2897 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
2898 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2899 * We picked the standard core2 setting.
2900 */
2901#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2902#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2903 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
62cc6b9d 2904 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
2905
2906 /* These MSRs specify bits which the guest must keep fixed off. */
2907 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2908 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
62cc6b9d
DM
2909
2910 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2911 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
b87a51ae
NHE
2912}
2913
3899152c
DM
2914/*
2915 * if fixed0[i] == 1: val[i] must be 1
2916 * if fixed1[i] == 0: val[i] must be 0
2917 */
2918static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2919{
2920 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
2921}
2922
2923static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2924{
3899152c 2925 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
2926}
2927
2928static inline u64 vmx_control_msr(u32 low, u32 high)
2929{
2930 return low | ((u64)high << 32);
2931}
2932
62cc6b9d
DM
2933static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2934{
2935 superset &= mask;
2936 subset &= mask;
2937
2938 return (superset | subset) == superset;
2939}
2940
2941static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2942{
2943 const u64 feature_and_reserved =
2944 /* feature (except bit 48; see below) */
2945 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2946 /* reserved */
2947 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2948 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2949
2950 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2951 return -EINVAL;
2952
2953 /*
2954 * KVM does not emulate a version of VMX that constrains physical
2955 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2956 */
2957 if (data & BIT_ULL(48))
2958 return -EINVAL;
2959
2960 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2961 vmx_basic_vmcs_revision_id(data))
2962 return -EINVAL;
2963
2964 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2965 return -EINVAL;
2966
2967 vmx->nested.nested_vmx_basic = data;
2968 return 0;
2969}
2970
2971static int
2972vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2973{
2974 u64 supported;
2975 u32 *lowp, *highp;
2976
2977 switch (msr_index) {
2978 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2979 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2980 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2981 break;
2982 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2983 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2984 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2985 break;
2986 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2987 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2988 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2989 break;
2990 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2991 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2992 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2993 break;
2994 case MSR_IA32_VMX_PROCBASED_CTLS2:
2995 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2996 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2997 break;
2998 default:
2999 BUG();
3000 }
3001
3002 supported = vmx_control_msr(*lowp, *highp);
3003
3004 /* Check must-be-1 bits are still 1. */
3005 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3006 return -EINVAL;
3007
3008 /* Check must-be-0 bits are still 0. */
3009 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3010 return -EINVAL;
3011
3012 *lowp = data;
3013 *highp = data >> 32;
3014 return 0;
3015}
3016
3017static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3018{
3019 const u64 feature_and_reserved_bits =
3020 /* feature */
3021 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3022 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3023 /* reserved */
3024 GENMASK_ULL(13, 9) | BIT_ULL(31);
3025 u64 vmx_misc;
3026
3027 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3028 vmx->nested.nested_vmx_misc_high);
3029
3030 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3031 return -EINVAL;
3032
3033 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3034 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3035 vmx_misc_preemption_timer_rate(data) !=
3036 vmx_misc_preemption_timer_rate(vmx_misc))
3037 return -EINVAL;
3038
3039 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3040 return -EINVAL;
3041
3042 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3043 return -EINVAL;
3044
3045 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3046 return -EINVAL;
3047
3048 vmx->nested.nested_vmx_misc_low = data;
3049 vmx->nested.nested_vmx_misc_high = data >> 32;
3050 return 0;
3051}
3052
3053static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3054{
3055 u64 vmx_ept_vpid_cap;
3056
3057 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3058 vmx->nested.nested_vmx_vpid_caps);
3059
3060 /* Every bit is either reserved or a feature bit. */
3061 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3062 return -EINVAL;
3063
3064 vmx->nested.nested_vmx_ept_caps = data;
3065 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3066 return 0;
3067}
3068
3069static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3070{
3071 u64 *msr;
3072
3073 switch (msr_index) {
3074 case MSR_IA32_VMX_CR0_FIXED0:
3075 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3076 break;
3077 case MSR_IA32_VMX_CR4_FIXED0:
3078 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3079 break;
3080 default:
3081 BUG();
3082 }
3083
3084 /*
3085 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3086 * must be 1 in the restored value.
3087 */
3088 if (!is_bitwise_subset(data, *msr, -1ULL))
3089 return -EINVAL;
3090
3091 *msr = data;
3092 return 0;
3093}
3094
3095/*
3096 * Called when userspace is restoring VMX MSRs.
3097 *
3098 * Returns 0 on success, non-0 otherwise.
3099 */
3100static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3101{
b9c237bb
WV
3102 struct vcpu_vmx *vmx = to_vmx(vcpu);
3103
b87a51ae 3104 switch (msr_index) {
b87a51ae 3105 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3106 return vmx_restore_vmx_basic(vmx, data);
3107 case MSR_IA32_VMX_PINBASED_CTLS:
3108 case MSR_IA32_VMX_PROCBASED_CTLS:
3109 case MSR_IA32_VMX_EXIT_CTLS:
3110 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3111 /*
62cc6b9d
DM
3112 * The "non-true" VMX capability MSRs are generated from the
3113 * "true" MSRs, so we do not support restoring them directly.
3114 *
3115 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3116 * should restore the "true" MSRs with the must-be-1 bits
3117 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3118 * DEFAULT SETTINGS".
b87a51ae 3119 */
62cc6b9d
DM
3120 return -EINVAL;
3121 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3122 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3123 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3124 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3125 case MSR_IA32_VMX_PROCBASED_CTLS2:
3126 return vmx_restore_control_msr(vmx, msr_index, data);
3127 case MSR_IA32_VMX_MISC:
3128 return vmx_restore_vmx_misc(vmx, data);
3129 case MSR_IA32_VMX_CR0_FIXED0:
3130 case MSR_IA32_VMX_CR4_FIXED0:
3131 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3132 case MSR_IA32_VMX_CR0_FIXED1:
3133 case MSR_IA32_VMX_CR4_FIXED1:
3134 /*
3135 * These MSRs are generated based on the vCPU's CPUID, so we
3136 * do not support restoring them directly.
3137 */
3138 return -EINVAL;
3139 case MSR_IA32_VMX_EPT_VPID_CAP:
3140 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3141 case MSR_IA32_VMX_VMCS_ENUM:
3142 vmx->nested.nested_vmx_vmcs_enum = data;
3143 return 0;
3144 default:
b87a51ae 3145 /*
62cc6b9d 3146 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3147 */
62cc6b9d
DM
3148 return -EINVAL;
3149 }
3150}
3151
3152/* Returns 0 on success, non-0 otherwise. */
3153static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3154{
3155 struct vcpu_vmx *vmx = to_vmx(vcpu);
3156
3157 switch (msr_index) {
3158 case MSR_IA32_VMX_BASIC:
3159 *pdata = vmx->nested.nested_vmx_basic;
b87a51ae
NHE
3160 break;
3161 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3162 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
3163 *pdata = vmx_control_msr(
3164 vmx->nested.nested_vmx_pinbased_ctls_low,
3165 vmx->nested.nested_vmx_pinbased_ctls_high);
0115f9cb
DM
3166 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3167 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3168 break;
3169 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3170 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
3171 *pdata = vmx_control_msr(
3172 vmx->nested.nested_vmx_procbased_ctls_low,
3173 vmx->nested.nested_vmx_procbased_ctls_high);
0115f9cb
DM
3174 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3175 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3176 break;
3177 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3178 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
3179 *pdata = vmx_control_msr(
3180 vmx->nested.nested_vmx_exit_ctls_low,
3181 vmx->nested.nested_vmx_exit_ctls_high);
0115f9cb
DM
3182 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3183 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3184 break;
3185 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3186 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
3187 *pdata = vmx_control_msr(
3188 vmx->nested.nested_vmx_entry_ctls_low,
3189 vmx->nested.nested_vmx_entry_ctls_high);
0115f9cb
DM
3190 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3191 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3192 break;
3193 case MSR_IA32_VMX_MISC:
b9c237bb
WV
3194 *pdata = vmx_control_msr(
3195 vmx->nested.nested_vmx_misc_low,
3196 vmx->nested.nested_vmx_misc_high);
b87a51ae 3197 break;
b87a51ae 3198 case MSR_IA32_VMX_CR0_FIXED0:
62cc6b9d 3199 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
b87a51ae
NHE
3200 break;
3201 case MSR_IA32_VMX_CR0_FIXED1:
62cc6b9d 3202 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
b87a51ae
NHE
3203 break;
3204 case MSR_IA32_VMX_CR4_FIXED0:
62cc6b9d 3205 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
b87a51ae
NHE
3206 break;
3207 case MSR_IA32_VMX_CR4_FIXED1:
62cc6b9d 3208 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
b87a51ae
NHE
3209 break;
3210 case MSR_IA32_VMX_VMCS_ENUM:
62cc6b9d 3211 *pdata = vmx->nested.nested_vmx_vmcs_enum;
b87a51ae
NHE
3212 break;
3213 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
3214 *pdata = vmx_control_msr(
3215 vmx->nested.nested_vmx_secondary_ctls_low,
3216 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
3217 break;
3218 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
3219 *pdata = vmx->nested.nested_vmx_ept_caps |
3220 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae 3221 break;
27c42a1b
BD
3222 case MSR_IA32_VMX_VMFUNC:
3223 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3224 break;
b87a51ae 3225 default:
b87a51ae 3226 return 1;
b3897a49
NHE
3227 }
3228
b87a51ae
NHE
3229 return 0;
3230}
3231
37e4c997
HZ
3232static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3233 uint64_t val)
3234{
3235 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3236
3237 return !(val & ~valid_bits);
3238}
3239
6aa8b732
AK
3240/*
3241 * Reads an msr value (of 'msr_index') into 'pdata'.
3242 * Returns 0 on success, non-0 otherwise.
3243 * Assumes vcpu_load() was already called.
3244 */
609e36d3 3245static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3246{
26bb0981 3247 struct shared_msr_entry *msr;
6aa8b732 3248
609e36d3 3249 switch (msr_info->index) {
05b3e0c2 3250#ifdef CONFIG_X86_64
6aa8b732 3251 case MSR_FS_BASE:
609e36d3 3252 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3253 break;
3254 case MSR_GS_BASE:
609e36d3 3255 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3256 break;
44ea2b17
AK
3257 case MSR_KERNEL_GS_BASE:
3258 vmx_load_host_state(to_vmx(vcpu));
609e36d3 3259 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3260 break;
26bb0981 3261#endif
6aa8b732 3262 case MSR_EFER:
609e36d3 3263 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3264 case MSR_IA32_TSC:
be7b263e 3265 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
3266 break;
3267 case MSR_IA32_SYSENTER_CS:
609e36d3 3268 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3269 break;
3270 case MSR_IA32_SYSENTER_EIP:
609e36d3 3271 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3272 break;
3273 case MSR_IA32_SYSENTER_ESP:
609e36d3 3274 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3275 break;
0dd376e7 3276 case MSR_IA32_BNDCFGS:
691bd434 3277 if (!kvm_mpx_supported() ||
d6321d49
RK
3278 (!msr_info->host_initiated &&
3279 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3280 return 1;
609e36d3 3281 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3282 break;
c45dcc71
AR
3283 case MSR_IA32_MCG_EXT_CTL:
3284 if (!msr_info->host_initiated &&
3285 !(to_vmx(vcpu)->msr_ia32_feature_control &
3286 FEATURE_CONTROL_LMCE))
cae50139 3287 return 1;
c45dcc71
AR
3288 msr_info->data = vcpu->arch.mcg_ext_ctl;
3289 break;
cae50139 3290 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3291 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3292 break;
3293 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3294 if (!nested_vmx_allowed(vcpu))
3295 return 1;
609e36d3 3296 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3297 case MSR_IA32_XSS:
3298 if (!vmx_xsaves_supported())
3299 return 1;
609e36d3 3300 msr_info->data = vcpu->arch.ia32_xss;
20300099 3301 break;
4e47c7a6 3302 case MSR_TSC_AUX:
d6321d49
RK
3303 if (!msr_info->host_initiated &&
3304 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3305 return 1;
3306 /* Otherwise falls through */
6aa8b732 3307 default:
609e36d3 3308 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3309 if (msr) {
609e36d3 3310 msr_info->data = msr->data;
3bab1f5d 3311 break;
6aa8b732 3312 }
609e36d3 3313 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3314 }
3315
6aa8b732
AK
3316 return 0;
3317}
3318
cae50139
JK
3319static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3320
6aa8b732
AK
3321/*
3322 * Writes msr value into into the appropriate "register".
3323 * Returns 0 on success, non-0 otherwise.
3324 * Assumes vcpu_load() was already called.
3325 */
8fe8ab46 3326static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3327{
a2fa3e9f 3328 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3329 struct shared_msr_entry *msr;
2cc51560 3330 int ret = 0;
8fe8ab46
WA
3331 u32 msr_index = msr_info->index;
3332 u64 data = msr_info->data;
2cc51560 3333
6aa8b732 3334 switch (msr_index) {
3bab1f5d 3335 case MSR_EFER:
8fe8ab46 3336 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3337 break;
16175a79 3338#ifdef CONFIG_X86_64
6aa8b732 3339 case MSR_FS_BASE:
2fb92db1 3340 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3341 vmcs_writel(GUEST_FS_BASE, data);
3342 break;
3343 case MSR_GS_BASE:
2fb92db1 3344 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3345 vmcs_writel(GUEST_GS_BASE, data);
3346 break;
44ea2b17
AK
3347 case MSR_KERNEL_GS_BASE:
3348 vmx_load_host_state(vmx);
3349 vmx->msr_guest_kernel_gs_base = data;
3350 break;
6aa8b732
AK
3351#endif
3352 case MSR_IA32_SYSENTER_CS:
3353 vmcs_write32(GUEST_SYSENTER_CS, data);
3354 break;
3355 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3356 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3357 break;
3358 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3359 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3360 break;
0dd376e7 3361 case MSR_IA32_BNDCFGS:
691bd434 3362 if (!kvm_mpx_supported() ||
d6321d49
RK
3363 (!msr_info->host_initiated &&
3364 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3365 return 1;
4531662d
JM
3366 if (is_noncanonical_address(data & PAGE_MASK) ||
3367 (data & MSR_IA32_BNDCFGS_RSVD))
93c4adc7 3368 return 1;
0dd376e7
LJ
3369 vmcs_write64(GUEST_BNDCFGS, data);
3370 break;
af24a4e4 3371 case MSR_IA32_TSC:
8fe8ab46 3372 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3373 break;
468d472f
SY
3374 case MSR_IA32_CR_PAT:
3375 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3376 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3377 return 1;
468d472f
SY
3378 vmcs_write64(GUEST_IA32_PAT, data);
3379 vcpu->arch.pat = data;
3380 break;
3381 }
8fe8ab46 3382 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3383 break;
ba904635
WA
3384 case MSR_IA32_TSC_ADJUST:
3385 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3386 break;
c45dcc71
AR
3387 case MSR_IA32_MCG_EXT_CTL:
3388 if ((!msr_info->host_initiated &&
3389 !(to_vmx(vcpu)->msr_ia32_feature_control &
3390 FEATURE_CONTROL_LMCE)) ||
3391 (data & ~MCG_EXT_CTL_LMCE_EN))
3392 return 1;
3393 vcpu->arch.mcg_ext_ctl = data;
3394 break;
cae50139 3395 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3396 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3397 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3398 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3399 return 1;
3b84080b 3400 vmx->msr_ia32_feature_control = data;
cae50139
JK
3401 if (msr_info->host_initiated && data == 0)
3402 vmx_leave_nested(vcpu);
3403 break;
3404 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3405 if (!msr_info->host_initiated)
3406 return 1; /* they are read-only */
3407 if (!nested_vmx_allowed(vcpu))
3408 return 1;
3409 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3410 case MSR_IA32_XSS:
3411 if (!vmx_xsaves_supported())
3412 return 1;
3413 /*
3414 * The only supported bit as of Skylake is bit 8, but
3415 * it is not supported on KVM.
3416 */
3417 if (data != 0)
3418 return 1;
3419 vcpu->arch.ia32_xss = data;
3420 if (vcpu->arch.ia32_xss != host_xss)
3421 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3422 vcpu->arch.ia32_xss, host_xss);
3423 else
3424 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3425 break;
4e47c7a6 3426 case MSR_TSC_AUX:
d6321d49
RK
3427 if (!msr_info->host_initiated &&
3428 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3429 return 1;
3430 /* Check reserved bit, higher 32 bits should be zero */
3431 if ((data >> 32) != 0)
3432 return 1;
3433 /* Otherwise falls through */
6aa8b732 3434 default:
8b9cf98c 3435 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3436 if (msr) {
8b3c3104 3437 u64 old_msr_data = msr->data;
3bab1f5d 3438 msr->data = data;
2225fd56
AK
3439 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3440 preempt_disable();
8b3c3104
AH
3441 ret = kvm_set_shared_msr(msr->index, msr->data,
3442 msr->mask);
2225fd56 3443 preempt_enable();
8b3c3104
AH
3444 if (ret)
3445 msr->data = old_msr_data;
2225fd56 3446 }
3bab1f5d 3447 break;
6aa8b732 3448 }
8fe8ab46 3449 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3450 }
3451
2cc51560 3452 return ret;
6aa8b732
AK
3453}
3454
5fdbf976 3455static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3456{
5fdbf976
MT
3457 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3458 switch (reg) {
3459 case VCPU_REGS_RSP:
3460 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3461 break;
3462 case VCPU_REGS_RIP:
3463 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3464 break;
6de4f3ad
AK
3465 case VCPU_EXREG_PDPTR:
3466 if (enable_ept)
3467 ept_save_pdptrs(vcpu);
3468 break;
5fdbf976
MT
3469 default:
3470 break;
3471 }
6aa8b732
AK
3472}
3473
6aa8b732
AK
3474static __init int cpu_has_kvm_support(void)
3475{
6210e37b 3476 return cpu_has_vmx();
6aa8b732
AK
3477}
3478
3479static __init int vmx_disabled_by_bios(void)
3480{
3481 u64 msr;
3482
3483 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3484 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3485 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3486 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3487 && tboot_enabled())
3488 return 1;
23f3e991 3489 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3490 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3491 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3492 && !tboot_enabled()) {
3493 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3494 "activate TXT before enabling KVM\n");
cafd6659 3495 return 1;
f9335afe 3496 }
23f3e991
JC
3497 /* launched w/o TXT and VMX disabled */
3498 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3499 && !tboot_enabled())
3500 return 1;
cafd6659
SW
3501 }
3502
3503 return 0;
6aa8b732
AK
3504}
3505
7725b894
DX
3506static void kvm_cpu_vmxon(u64 addr)
3507{
fe0e80be 3508 cr4_set_bits(X86_CR4_VMXE);
1c5ac21a
AS
3509 intel_pt_handle_vmx(1);
3510
7725b894
DX
3511 asm volatile (ASM_VMX_VMXON_RAX
3512 : : "a"(&addr), "m"(addr)
3513 : "memory", "cc");
3514}
3515
13a34e06 3516static int hardware_enable(void)
6aa8b732
AK
3517{
3518 int cpu = raw_smp_processor_id();
3519 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3520 u64 old, test_bits;
6aa8b732 3521
1e02ce4c 3522 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3523 return -EBUSY;
3524
d462b819 3525 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3526 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3527 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3528
3529 /*
3530 * Now we can enable the vmclear operation in kdump
3531 * since the loaded_vmcss_on_cpu list on this cpu
3532 * has been initialized.
3533 *
3534 * Though the cpu is not in VMX operation now, there
3535 * is no problem to enable the vmclear operation
3536 * for the loaded_vmcss_on_cpu list is empty!
3537 */
3538 crash_enable_local_vmclear(cpu);
3539
6aa8b732 3540 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3541
3542 test_bits = FEATURE_CONTROL_LOCKED;
3543 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3544 if (tboot_enabled())
3545 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3546
3547 if ((old & test_bits) != test_bits) {
6aa8b732 3548 /* enable and lock */
cafd6659
SW
3549 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3550 }
fe0e80be
DH
3551 kvm_cpu_vmxon(phys_addr);
3552 ept_sync_global();
10474ae8
AG
3553
3554 return 0;
6aa8b732
AK
3555}
3556
d462b819 3557static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3558{
3559 int cpu = raw_smp_processor_id();
d462b819 3560 struct loaded_vmcs *v, *n;
543e4243 3561
d462b819
NHE
3562 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3563 loaded_vmcss_on_cpu_link)
3564 __loaded_vmcs_clear(v);
543e4243
AK
3565}
3566
710ff4a8
EH
3567
3568/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3569 * tricks.
3570 */
3571static void kvm_cpu_vmxoff(void)
6aa8b732 3572{
4ecac3fd 3573 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3574
3575 intel_pt_handle_vmx(0);
fe0e80be 3576 cr4_clear_bits(X86_CR4_VMXE);
6aa8b732
AK
3577}
3578
13a34e06 3579static void hardware_disable(void)
710ff4a8 3580{
fe0e80be
DH
3581 vmclear_local_loaded_vmcss();
3582 kvm_cpu_vmxoff();
710ff4a8
EH
3583}
3584
1c3d14fe 3585static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3586 u32 msr, u32 *result)
1c3d14fe
YS
3587{
3588 u32 vmx_msr_low, vmx_msr_high;
3589 u32 ctl = ctl_min | ctl_opt;
3590
3591 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3592
3593 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3594 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3595
3596 /* Ensure minimum (required) set of control bits are supported. */
3597 if (ctl_min & ~ctl)
002c7f7c 3598 return -EIO;
1c3d14fe
YS
3599
3600 *result = ctl;
3601 return 0;
3602}
3603
110312c8
AK
3604static __init bool allow_1_setting(u32 msr, u32 ctl)
3605{
3606 u32 vmx_msr_low, vmx_msr_high;
3607
3608 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3609 return vmx_msr_high & ctl;
3610}
3611
002c7f7c 3612static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3613{
3614 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3615 u32 min, opt, min2, opt2;
1c3d14fe
YS
3616 u32 _pin_based_exec_control = 0;
3617 u32 _cpu_based_exec_control = 0;
f78e0e2e 3618 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3619 u32 _vmexit_control = 0;
3620 u32 _vmentry_control = 0;
3621
10166744 3622 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3623#ifdef CONFIG_X86_64
3624 CPU_BASED_CR8_LOAD_EXITING |
3625 CPU_BASED_CR8_STORE_EXITING |
3626#endif
d56f546d
SY
3627 CPU_BASED_CR3_LOAD_EXITING |
3628 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3629 CPU_BASED_USE_IO_BITMAPS |
3630 CPU_BASED_MOV_DR_EXITING |
a7052897 3631 CPU_BASED_USE_TSC_OFFSETING |
fee84b07
AK
3632 CPU_BASED_INVLPG_EXITING |
3633 CPU_BASED_RDPMC_EXITING;
443381a8 3634
668fffa3
MT
3635 if (!kvm_mwait_in_guest())
3636 min |= CPU_BASED_MWAIT_EXITING |
3637 CPU_BASED_MONITOR_EXITING;
3638
f78e0e2e 3639 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3640 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3641 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3642 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3643 &_cpu_based_exec_control) < 0)
002c7f7c 3644 return -EIO;
6e5d865c
YS
3645#ifdef CONFIG_X86_64
3646 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3647 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3648 ~CPU_BASED_CR8_STORE_EXITING;
3649#endif
f78e0e2e 3650 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3651 min2 = 0;
3652 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3653 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3654 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3655 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3656 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3657 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3658 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3659 SECONDARY_EXEC_RDTSCP |
83d4c286 3660 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3661 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3662 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3663 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3664 SECONDARY_EXEC_XSAVES |
8b3e34e4 3665 SECONDARY_EXEC_ENABLE_PML |
2a499e49
BD
3666 SECONDARY_EXEC_TSC_SCALING |
3667 SECONDARY_EXEC_ENABLE_VMFUNC;
d56f546d
SY
3668 if (adjust_vmx_controls(min2, opt2,
3669 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3670 &_cpu_based_2nd_exec_control) < 0)
3671 return -EIO;
3672 }
3673#ifndef CONFIG_X86_64
3674 if (!(_cpu_based_2nd_exec_control &
3675 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3676 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3677#endif
83d4c286
YZ
3678
3679 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3680 _cpu_based_2nd_exec_control &= ~(
8d14695f 3681 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3682 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3683 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3684
d56f546d 3685 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3686 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3687 enabled */
5fff7d27
GN
3688 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3689 CPU_BASED_CR3_STORE_EXITING |
3690 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3691 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3692 vmx_capability.ept, vmx_capability.vpid);
3693 }
1c3d14fe 3694
91fa0f8e 3695 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3696#ifdef CONFIG_X86_64
3697 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3698#endif
a547c6db 3699 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3700 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3701 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3702 &_vmexit_control) < 0)
002c7f7c 3703 return -EIO;
1c3d14fe 3704
2c82878b
PB
3705 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3706 PIN_BASED_VIRTUAL_NMIS;
3707 opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3708 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3709 &_pin_based_exec_control) < 0)
3710 return -EIO;
3711
1c17c3e6
PB
3712 if (cpu_has_broken_vmx_preemption_timer())
3713 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3714 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3715 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3716 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3717
c845f9c6 3718 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3719 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3720 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3721 &_vmentry_control) < 0)
002c7f7c 3722 return -EIO;
6aa8b732 3723
c68876fd 3724 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3725
3726 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3727 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3728 return -EIO;
1c3d14fe
YS
3729
3730#ifdef CONFIG_X86_64
3731 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3732 if (vmx_msr_high & (1u<<16))
002c7f7c 3733 return -EIO;
1c3d14fe
YS
3734#endif
3735
3736 /* Require Write-Back (WB) memory type for VMCS accesses. */
3737 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3738 return -EIO;
1c3d14fe 3739
002c7f7c 3740 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3741 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3742 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3743 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3744
002c7f7c
YS
3745 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3746 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3747 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3748 vmcs_conf->vmexit_ctrl = _vmexit_control;
3749 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3750
110312c8
AK
3751 cpu_has_load_ia32_efer =
3752 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3753 VM_ENTRY_LOAD_IA32_EFER)
3754 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3755 VM_EXIT_LOAD_IA32_EFER);
3756
8bf00a52
GN
3757 cpu_has_load_perf_global_ctrl =
3758 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3759 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3760 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3761 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3762
3763 /*
3764 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3765 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3766 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3767 *
3768 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3769 *
3770 * AAK155 (model 26)
3771 * AAP115 (model 30)
3772 * AAT100 (model 37)
3773 * BC86,AAY89,BD102 (model 44)
3774 * BA97 (model 46)
3775 *
3776 */
3777 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3778 switch (boot_cpu_data.x86_model) {
3779 case 26:
3780 case 30:
3781 case 37:
3782 case 44:
3783 case 46:
3784 cpu_has_load_perf_global_ctrl = false;
3785 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3786 "does not work properly. Using workaround\n");
3787 break;
3788 default:
3789 break;
3790 }
3791 }
3792
782511b0 3793 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3794 rdmsrl(MSR_IA32_XSS, host_xss);
3795
1c3d14fe 3796 return 0;
c68876fd 3797}
6aa8b732
AK
3798
3799static struct vmcs *alloc_vmcs_cpu(int cpu)
3800{
3801 int node = cpu_to_node(cpu);
3802 struct page *pages;
3803 struct vmcs *vmcs;
3804
96db800f 3805 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3806 if (!pages)
3807 return NULL;
3808 vmcs = page_address(pages);
1c3d14fe
YS
3809 memset(vmcs, 0, vmcs_config.size);
3810 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3811 return vmcs;
3812}
3813
3814static struct vmcs *alloc_vmcs(void)
3815{
d3b2c338 3816 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3817}
3818
3819static void free_vmcs(struct vmcs *vmcs)
3820{
1c3d14fe 3821 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3822}
3823
d462b819
NHE
3824/*
3825 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3826 */
3827static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3828{
3829 if (!loaded_vmcs->vmcs)
3830 return;
3831 loaded_vmcs_clear(loaded_vmcs);
3832 free_vmcs(loaded_vmcs->vmcs);
3833 loaded_vmcs->vmcs = NULL;
355f4fb1 3834 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
3835}
3836
39959588 3837static void free_kvm_area(void)
6aa8b732
AK
3838{
3839 int cpu;
3840
3230bb47 3841 for_each_possible_cpu(cpu) {
6aa8b732 3842 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3843 per_cpu(vmxarea, cpu) = NULL;
3844 }
6aa8b732
AK
3845}
3846
85fd514e
JM
3847enum vmcs_field_type {
3848 VMCS_FIELD_TYPE_U16 = 0,
3849 VMCS_FIELD_TYPE_U64 = 1,
3850 VMCS_FIELD_TYPE_U32 = 2,
3851 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3852};
3853
3854static inline int vmcs_field_type(unsigned long field)
3855{
3856 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
3857 return VMCS_FIELD_TYPE_U32;
3858 return (field >> 13) & 0x3 ;
3859}
3860
3861static inline int vmcs_field_readonly(unsigned long field)
3862{
3863 return (((field >> 10) & 0x3) == 1);
3864}
3865
fe2b201b
BD
3866static void init_vmcs_shadow_fields(void)
3867{
3868 int i, j;
3869
3870 /* No checks for read only fields yet */
3871
3872 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3873 switch (shadow_read_write_fields[i]) {
3874 case GUEST_BNDCFGS:
a87036ad 3875 if (!kvm_mpx_supported())
fe2b201b
BD
3876 continue;
3877 break;
3878 default:
3879 break;
3880 }
3881
3882 if (j < i)
3883 shadow_read_write_fields[j] =
3884 shadow_read_write_fields[i];
3885 j++;
3886 }
3887 max_shadow_read_write_fields = j;
3888
3889 /* shadowed fields guest access without vmexit */
3890 for (i = 0; i < max_shadow_read_write_fields; i++) {
85fd514e
JM
3891 unsigned long field = shadow_read_write_fields[i];
3892
3893 clear_bit(field, vmx_vmwrite_bitmap);
3894 clear_bit(field, vmx_vmread_bitmap);
3895 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3896 clear_bit(field + 1, vmx_vmwrite_bitmap);
3897 clear_bit(field + 1, vmx_vmread_bitmap);
3898 }
3899 }
3900 for (i = 0; i < max_shadow_read_only_fields; i++) {
3901 unsigned long field = shadow_read_only_fields[i];
3902
3903 clear_bit(field, vmx_vmread_bitmap);
3904 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3905 clear_bit(field + 1, vmx_vmread_bitmap);
fe2b201b 3906 }
fe2b201b
BD
3907}
3908
6aa8b732
AK
3909static __init int alloc_kvm_area(void)
3910{
3911 int cpu;
3912
3230bb47 3913 for_each_possible_cpu(cpu) {
6aa8b732
AK
3914 struct vmcs *vmcs;
3915
3916 vmcs = alloc_vmcs_cpu(cpu);
3917 if (!vmcs) {
3918 free_kvm_area();
3919 return -ENOMEM;
3920 }
3921
3922 per_cpu(vmxarea, cpu) = vmcs;
3923 }
3924 return 0;
3925}
3926
91b0aa2c 3927static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3928 struct kvm_segment *save)
6aa8b732 3929{
d99e4152
GN
3930 if (!emulate_invalid_guest_state) {
3931 /*
3932 * CS and SS RPL should be equal during guest entry according
3933 * to VMX spec, but in reality it is not always so. Since vcpu
3934 * is in the middle of the transition from real mode to
3935 * protected mode it is safe to assume that RPL 0 is a good
3936 * default value.
3937 */
3938 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3939 save->selector &= ~SEGMENT_RPL_MASK;
3940 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3941 save->s = 1;
6aa8b732 3942 }
d99e4152 3943 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3944}
3945
3946static void enter_pmode(struct kvm_vcpu *vcpu)
3947{
3948 unsigned long flags;
a89a8fb9 3949 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3950
d99e4152
GN
3951 /*
3952 * Update real mode segment cache. It may be not up-to-date if sement
3953 * register was written while vcpu was in a guest mode.
3954 */
3955 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3956 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3957 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3958 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3959 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3960 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3961
7ffd92c5 3962 vmx->rmode.vm86_active = 0;
6aa8b732 3963
2fb92db1
AK
3964 vmx_segment_cache_clear(vmx);
3965
f5f7b2fe 3966 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3967
3968 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3969 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3970 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3971 vmcs_writel(GUEST_RFLAGS, flags);
3972
66aee91a
RR
3973 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3974 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3975
3976 update_exception_bitmap(vcpu);
3977
91b0aa2c
GN
3978 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3979 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3980 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3981 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3982 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3983 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3984}
3985
f5f7b2fe 3986static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3987{
772e0318 3988 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3989 struct kvm_segment var = *save;
3990
3991 var.dpl = 0x3;
3992 if (seg == VCPU_SREG_CS)
3993 var.type = 0x3;
3994
3995 if (!emulate_invalid_guest_state) {
3996 var.selector = var.base >> 4;
3997 var.base = var.base & 0xffff0;
3998 var.limit = 0xffff;
3999 var.g = 0;
4000 var.db = 0;
4001 var.present = 1;
4002 var.s = 1;
4003 var.l = 0;
4004 var.unusable = 0;
4005 var.type = 0x3;
4006 var.avl = 0;
4007 if (save->base & 0xf)
4008 printk_once(KERN_WARNING "kvm: segment base is not "
4009 "paragraph aligned when entering "
4010 "protected mode (seg=%d)", seg);
4011 }
6aa8b732 4012
d99e4152 4013 vmcs_write16(sf->selector, var.selector);
96794e4e 4014 vmcs_writel(sf->base, var.base);
d99e4152
GN
4015 vmcs_write32(sf->limit, var.limit);
4016 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
4017}
4018
4019static void enter_rmode(struct kvm_vcpu *vcpu)
4020{
4021 unsigned long flags;
a89a8fb9 4022 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 4023
f5f7b2fe
AK
4024 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4025 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4026 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4027 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4028 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
4029 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4030 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 4031
7ffd92c5 4032 vmx->rmode.vm86_active = 1;
6aa8b732 4033
776e58ea
GN
4034 /*
4035 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 4036 * vcpu. Warn the user that an update is overdue.
776e58ea 4037 */
4918c6ca 4038 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
4039 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4040 "called before entering vcpu\n");
776e58ea 4041
2fb92db1
AK
4042 vmx_segment_cache_clear(vmx);
4043
4918c6ca 4044 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 4045 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
4046 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4047
4048 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 4049 vmx->rmode.save_rflags = flags;
6aa8b732 4050
053de044 4051 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
4052
4053 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 4054 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
4055 update_exception_bitmap(vcpu);
4056
d99e4152
GN
4057 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4058 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4059 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4060 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4061 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4062 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 4063
8668a3c4 4064 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
4065}
4066
401d10de
AS
4067static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4068{
4069 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
4070 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4071
4072 if (!msr)
4073 return;
401d10de 4074
44ea2b17
AK
4075 /*
4076 * Force kernel_gs_base reloading before EFER changes, as control
4077 * of this msr depends on is_long_mode().
4078 */
4079 vmx_load_host_state(to_vmx(vcpu));
f6801dff 4080 vcpu->arch.efer = efer;
401d10de 4081 if (efer & EFER_LMA) {
2961e876 4082 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4083 msr->data = efer;
4084 } else {
2961e876 4085 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4086
4087 msr->data = efer & ~EFER_LME;
4088 }
4089 setup_msrs(vmx);
4090}
4091
05b3e0c2 4092#ifdef CONFIG_X86_64
6aa8b732
AK
4093
4094static void enter_lmode(struct kvm_vcpu *vcpu)
4095{
4096 u32 guest_tr_ar;
4097
2fb92db1
AK
4098 vmx_segment_cache_clear(to_vmx(vcpu));
4099
6aa8b732 4100 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 4101 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
4102 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4103 __func__);
6aa8b732 4104 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
4105 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4106 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4107 }
da38f438 4108 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4109}
4110
4111static void exit_lmode(struct kvm_vcpu *vcpu)
4112{
2961e876 4113 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4114 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4115}
4116
4117#endif
4118
dd5f5341 4119static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 4120{
dd180b3e
XG
4121 if (enable_ept) {
4122 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4123 return;
995f00a6 4124 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
f0b98c02
JM
4125 } else {
4126 vpid_sync_context(vpid);
dd180b3e 4127 }
2384d2b3
SY
4128}
4129
dd5f5341
WL
4130static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4131{
4132 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4133}
4134
fb6c8198
JM
4135static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4136{
4137 if (enable_ept)
4138 vmx_flush_tlb(vcpu);
4139}
4140
e8467fda
AK
4141static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4142{
4143 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4144
4145 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4146 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4147}
4148
aff48baa
AK
4149static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4150{
4151 if (enable_ept && is_paging(vcpu))
4152 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4153 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4154}
4155
25c4c276 4156static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4157{
fc78f519
AK
4158 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4159
4160 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4161 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4162}
4163
1439442c
SY
4164static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4165{
d0d538b9
GN
4166 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4167
6de4f3ad
AK
4168 if (!test_bit(VCPU_EXREG_PDPTR,
4169 (unsigned long *)&vcpu->arch.regs_dirty))
4170 return;
4171
1439442c 4172 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4173 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4174 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4175 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4176 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4177 }
4178}
4179
8f5d549f
AK
4180static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4181{
d0d538b9
GN
4182 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4183
8f5d549f 4184 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4185 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4186 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4187 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4188 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4189 }
6de4f3ad
AK
4190
4191 __set_bit(VCPU_EXREG_PDPTR,
4192 (unsigned long *)&vcpu->arch.regs_avail);
4193 __set_bit(VCPU_EXREG_PDPTR,
4194 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4195}
4196
3899152c
DM
4197static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4198{
4199 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4200 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4201 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4202
4203 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4204 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4205 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4206 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4207
4208 return fixed_bits_valid(val, fixed0, fixed1);
4209}
4210
4211static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4212{
4213 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4214 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4215
4216 return fixed_bits_valid(val, fixed0, fixed1);
4217}
4218
4219static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4220{
4221 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4222 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4223
4224 return fixed_bits_valid(val, fixed0, fixed1);
4225}
4226
4227/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4228#define nested_guest_cr4_valid nested_cr4_valid
4229#define nested_host_cr4_valid nested_cr4_valid
4230
5e1746d6 4231static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4232
4233static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4234 unsigned long cr0,
4235 struct kvm_vcpu *vcpu)
4236{
5233dd51
MT
4237 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4238 vmx_decache_cr3(vcpu);
1439442c
SY
4239 if (!(cr0 & X86_CR0_PG)) {
4240 /* From paging/starting to nonpaging */
4241 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4242 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4243 (CPU_BASED_CR3_LOAD_EXITING |
4244 CPU_BASED_CR3_STORE_EXITING));
4245 vcpu->arch.cr0 = cr0;
fc78f519 4246 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4247 } else if (!is_paging(vcpu)) {
4248 /* From nonpaging to paging */
4249 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4250 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4251 ~(CPU_BASED_CR3_LOAD_EXITING |
4252 CPU_BASED_CR3_STORE_EXITING));
4253 vcpu->arch.cr0 = cr0;
fc78f519 4254 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4255 }
95eb84a7
SY
4256
4257 if (!(cr0 & X86_CR0_WP))
4258 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4259}
4260
6aa8b732
AK
4261static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4262{
7ffd92c5 4263 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4264 unsigned long hw_cr0;
4265
5037878e 4266 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4267 if (enable_unrestricted_guest)
5037878e 4268 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4269 else {
5037878e 4270 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4271
218e763f
GN
4272 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4273 enter_pmode(vcpu);
6aa8b732 4274
218e763f
GN
4275 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4276 enter_rmode(vcpu);
4277 }
6aa8b732 4278
05b3e0c2 4279#ifdef CONFIG_X86_64
f6801dff 4280 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4281 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4282 enter_lmode(vcpu);
707d92fa 4283 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4284 exit_lmode(vcpu);
4285 }
4286#endif
4287
089d034e 4288 if (enable_ept)
1439442c
SY
4289 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4290
6aa8b732 4291 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4292 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4293 vcpu->arch.cr0 = cr0;
14168786
GN
4294
4295 /* depends on vcpu->arch.cr0 to be set to a new value */
4296 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4297}
4298
995f00a6 4299static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
1439442c
SY
4300{
4301 u64 eptp;
4302
4303 /* TODO write the value reading from MSR */
4304 eptp = VMX_EPT_DEFAULT_MT |
4305 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
995f00a6
PF
4306 if (enable_ept_ad_bits &&
4307 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
b38f9934 4308 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
4309 eptp |= (root_hpa & PAGE_MASK);
4310
4311 return eptp;
4312}
4313
6aa8b732
AK
4314static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4315{
1439442c
SY
4316 unsigned long guest_cr3;
4317 u64 eptp;
4318
4319 guest_cr3 = cr3;
089d034e 4320 if (enable_ept) {
995f00a6 4321 eptp = construct_eptp(vcpu, cr3);
1439442c 4322 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
4323 if (is_paging(vcpu) || is_guest_mode(vcpu))
4324 guest_cr3 = kvm_read_cr3(vcpu);
4325 else
4326 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 4327 ept_load_pdptrs(vcpu);
1439442c
SY
4328 }
4329
2384d2b3 4330 vmx_flush_tlb(vcpu);
1439442c 4331 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4332}
4333
5e1746d6 4334static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4335{
085e68ee
BS
4336 /*
4337 * Pass through host's Machine Check Enable value to hw_cr4, which
4338 * is in force while we are in guest mode. Do not let guests control
4339 * this bit, even if host CR4.MCE == 0.
4340 */
4341 unsigned long hw_cr4 =
4342 (cr4_read_shadow() & X86_CR4_MCE) |
4343 (cr4 & ~X86_CR4_MCE) |
4344 (to_vmx(vcpu)->rmode.vm86_active ?
4345 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4346
5e1746d6
NHE
4347 if (cr4 & X86_CR4_VMXE) {
4348 /*
4349 * To use VMXON (and later other VMX instructions), a guest
4350 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4351 * So basically the check on whether to allow nested VMX
4352 * is here.
4353 */
4354 if (!nested_vmx_allowed(vcpu))
4355 return 1;
1a0d74e6 4356 }
3899152c
DM
4357
4358 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4359 return 1;
4360
ad312c7c 4361 vcpu->arch.cr4 = cr4;
bc23008b
AK
4362 if (enable_ept) {
4363 if (!is_paging(vcpu)) {
4364 hw_cr4 &= ~X86_CR4_PAE;
4365 hw_cr4 |= X86_CR4_PSE;
4366 } else if (!(cr4 & X86_CR4_PAE)) {
4367 hw_cr4 &= ~X86_CR4_PAE;
4368 }
4369 }
1439442c 4370
656ec4a4
RK
4371 if (!enable_unrestricted_guest && !is_paging(vcpu))
4372 /*
ddba2628
HH
4373 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4374 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4375 * to be manually disabled when guest switches to non-paging
4376 * mode.
4377 *
4378 * If !enable_unrestricted_guest, the CPU is always running
4379 * with CR0.PG=1 and CR4 needs to be modified.
4380 * If enable_unrestricted_guest, the CPU automatically
4381 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4382 */
ddba2628 4383 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4384
1439442c
SY
4385 vmcs_writel(CR4_READ_SHADOW, cr4);
4386 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4387 return 0;
6aa8b732
AK
4388}
4389
6aa8b732
AK
4390static void vmx_get_segment(struct kvm_vcpu *vcpu,
4391 struct kvm_segment *var, int seg)
4392{
a9179499 4393 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4394 u32 ar;
4395
c6ad1153 4396 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4397 *var = vmx->rmode.segs[seg];
a9179499 4398 if (seg == VCPU_SREG_TR
2fb92db1 4399 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4400 return;
1390a28b
AK
4401 var->base = vmx_read_guest_seg_base(vmx, seg);
4402 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4403 return;
a9179499 4404 }
2fb92db1
AK
4405 var->base = vmx_read_guest_seg_base(vmx, seg);
4406 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4407 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4408 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4409 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4410 var->type = ar & 15;
4411 var->s = (ar >> 4) & 1;
4412 var->dpl = (ar >> 5) & 3;
03617c18
GN
4413 /*
4414 * Some userspaces do not preserve unusable property. Since usable
4415 * segment has to be present according to VMX spec we can use present
4416 * property to amend userspace bug by making unusable segment always
4417 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4418 * segment as unusable.
4419 */
4420 var->present = !var->unusable;
6aa8b732
AK
4421 var->avl = (ar >> 12) & 1;
4422 var->l = (ar >> 13) & 1;
4423 var->db = (ar >> 14) & 1;
4424 var->g = (ar >> 15) & 1;
6aa8b732
AK
4425}
4426
a9179499
AK
4427static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4428{
a9179499
AK
4429 struct kvm_segment s;
4430
4431 if (to_vmx(vcpu)->rmode.vm86_active) {
4432 vmx_get_segment(vcpu, &s, seg);
4433 return s.base;
4434 }
2fb92db1 4435 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4436}
4437
b09408d0 4438static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4439{
b09408d0
MT
4440 struct vcpu_vmx *vmx = to_vmx(vcpu);
4441
ae9fedc7 4442 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4443 return 0;
ae9fedc7
PB
4444 else {
4445 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4446 return VMX_AR_DPL(ar);
69c73028 4447 }
69c73028
AK
4448}
4449
653e3108 4450static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4451{
6aa8b732
AK
4452 u32 ar;
4453
f0495f9b 4454 if (var->unusable || !var->present)
6aa8b732
AK
4455 ar = 1 << 16;
4456 else {
4457 ar = var->type & 15;
4458 ar |= (var->s & 1) << 4;
4459 ar |= (var->dpl & 3) << 5;
4460 ar |= (var->present & 1) << 7;
4461 ar |= (var->avl & 1) << 12;
4462 ar |= (var->l & 1) << 13;
4463 ar |= (var->db & 1) << 14;
4464 ar |= (var->g & 1) << 15;
4465 }
653e3108
AK
4466
4467 return ar;
4468}
4469
4470static void vmx_set_segment(struct kvm_vcpu *vcpu,
4471 struct kvm_segment *var, int seg)
4472{
7ffd92c5 4473 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4474 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4475
2fb92db1
AK
4476 vmx_segment_cache_clear(vmx);
4477
1ecd50a9
GN
4478 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4479 vmx->rmode.segs[seg] = *var;
4480 if (seg == VCPU_SREG_TR)
4481 vmcs_write16(sf->selector, var->selector);
4482 else if (var->s)
4483 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4484 goto out;
653e3108 4485 }
1ecd50a9 4486
653e3108
AK
4487 vmcs_writel(sf->base, var->base);
4488 vmcs_write32(sf->limit, var->limit);
4489 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4490
4491 /*
4492 * Fix the "Accessed" bit in AR field of segment registers for older
4493 * qemu binaries.
4494 * IA32 arch specifies that at the time of processor reset the
4495 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4496 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4497 * state vmexit when "unrestricted guest" mode is turned on.
4498 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4499 * tree. Newer qemu binaries with that qemu fix would not need this
4500 * kvm hack.
4501 */
4502 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4503 var->type |= 0x1; /* Accessed */
3a624e29 4504
f924d66d 4505 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4506
4507out:
98eb2f8b 4508 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4509}
4510
6aa8b732
AK
4511static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4512{
2fb92db1 4513 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4514
4515 *db = (ar >> 14) & 1;
4516 *l = (ar >> 13) & 1;
4517}
4518
89a27f4d 4519static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4520{
89a27f4d
GN
4521 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4522 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4523}
4524
89a27f4d 4525static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4526{
89a27f4d
GN
4527 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4528 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4529}
4530
89a27f4d 4531static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4532{
89a27f4d
GN
4533 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4534 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4535}
4536
89a27f4d 4537static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4538{
89a27f4d
GN
4539 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4540 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4541}
4542
648dfaa7
MG
4543static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4544{
4545 struct kvm_segment var;
4546 u32 ar;
4547
4548 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4549 var.dpl = 0x3;
0647f4aa
GN
4550 if (seg == VCPU_SREG_CS)
4551 var.type = 0x3;
648dfaa7
MG
4552 ar = vmx_segment_access_rights(&var);
4553
4554 if (var.base != (var.selector << 4))
4555 return false;
89efbed0 4556 if (var.limit != 0xffff)
648dfaa7 4557 return false;
07f42f5f 4558 if (ar != 0xf3)
648dfaa7
MG
4559 return false;
4560
4561 return true;
4562}
4563
4564static bool code_segment_valid(struct kvm_vcpu *vcpu)
4565{
4566 struct kvm_segment cs;
4567 unsigned int cs_rpl;
4568
4569 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4570 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4571
1872a3f4
AK
4572 if (cs.unusable)
4573 return false;
4d283ec9 4574 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4575 return false;
4576 if (!cs.s)
4577 return false;
4d283ec9 4578 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4579 if (cs.dpl > cs_rpl)
4580 return false;
1872a3f4 4581 } else {
648dfaa7
MG
4582 if (cs.dpl != cs_rpl)
4583 return false;
4584 }
4585 if (!cs.present)
4586 return false;
4587
4588 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4589 return true;
4590}
4591
4592static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4593{
4594 struct kvm_segment ss;
4595 unsigned int ss_rpl;
4596
4597 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4598 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4599
1872a3f4
AK
4600 if (ss.unusable)
4601 return true;
4602 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4603 return false;
4604 if (!ss.s)
4605 return false;
4606 if (ss.dpl != ss_rpl) /* DPL != RPL */
4607 return false;
4608 if (!ss.present)
4609 return false;
4610
4611 return true;
4612}
4613
4614static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4615{
4616 struct kvm_segment var;
4617 unsigned int rpl;
4618
4619 vmx_get_segment(vcpu, &var, seg);
b32a9918 4620 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4621
1872a3f4
AK
4622 if (var.unusable)
4623 return true;
648dfaa7
MG
4624 if (!var.s)
4625 return false;
4626 if (!var.present)
4627 return false;
4d283ec9 4628 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4629 if (var.dpl < rpl) /* DPL < RPL */
4630 return false;
4631 }
4632
4633 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4634 * rights flags
4635 */
4636 return true;
4637}
4638
4639static bool tr_valid(struct kvm_vcpu *vcpu)
4640{
4641 struct kvm_segment tr;
4642
4643 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4644
1872a3f4
AK
4645 if (tr.unusable)
4646 return false;
b32a9918 4647 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4648 return false;
1872a3f4 4649 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4650 return false;
4651 if (!tr.present)
4652 return false;
4653
4654 return true;
4655}
4656
4657static bool ldtr_valid(struct kvm_vcpu *vcpu)
4658{
4659 struct kvm_segment ldtr;
4660
4661 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4662
1872a3f4
AK
4663 if (ldtr.unusable)
4664 return true;
b32a9918 4665 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4666 return false;
4667 if (ldtr.type != 2)
4668 return false;
4669 if (!ldtr.present)
4670 return false;
4671
4672 return true;
4673}
4674
4675static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4676{
4677 struct kvm_segment cs, ss;
4678
4679 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4680 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4681
b32a9918
NA
4682 return ((cs.selector & SEGMENT_RPL_MASK) ==
4683 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4684}
4685
4686/*
4687 * Check if guest state is valid. Returns true if valid, false if
4688 * not.
4689 * We assume that registers are always usable
4690 */
4691static bool guest_state_valid(struct kvm_vcpu *vcpu)
4692{
c5e97c80
GN
4693 if (enable_unrestricted_guest)
4694 return true;
4695
648dfaa7 4696 /* real mode guest state checks */
f13882d8 4697 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4698 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4699 return false;
4700 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4701 return false;
4702 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4703 return false;
4704 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4705 return false;
4706 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4707 return false;
4708 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4709 return false;
4710 } else {
4711 /* protected mode guest state checks */
4712 if (!cs_ss_rpl_check(vcpu))
4713 return false;
4714 if (!code_segment_valid(vcpu))
4715 return false;
4716 if (!stack_segment_valid(vcpu))
4717 return false;
4718 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4719 return false;
4720 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4721 return false;
4722 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4723 return false;
4724 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4725 return false;
4726 if (!tr_valid(vcpu))
4727 return false;
4728 if (!ldtr_valid(vcpu))
4729 return false;
4730 }
4731 /* TODO:
4732 * - Add checks on RIP
4733 * - Add checks on RFLAGS
4734 */
4735
4736 return true;
4737}
4738
5fa99cbe
JM
4739static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4740{
4741 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4742}
4743
d77c26fc 4744static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4745{
40dcaa9f 4746 gfn_t fn;
195aefde 4747 u16 data = 0;
1f755a82 4748 int idx, r;
6aa8b732 4749
40dcaa9f 4750 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4751 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4752 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4753 if (r < 0)
10589a46 4754 goto out;
195aefde 4755 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4756 r = kvm_write_guest_page(kvm, fn++, &data,
4757 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4758 if (r < 0)
10589a46 4759 goto out;
195aefde
IE
4760 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4761 if (r < 0)
10589a46 4762 goto out;
195aefde
IE
4763 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4764 if (r < 0)
10589a46 4765 goto out;
195aefde 4766 data = ~0;
10589a46
MT
4767 r = kvm_write_guest_page(kvm, fn, &data,
4768 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4769 sizeof(u8));
10589a46 4770out:
40dcaa9f 4771 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4772 return r;
6aa8b732
AK
4773}
4774
b7ebfb05
SY
4775static int init_rmode_identity_map(struct kvm *kvm)
4776{
f51770ed 4777 int i, idx, r = 0;
ba049e93 4778 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4779 u32 tmp;
4780
089d034e 4781 if (!enable_ept)
f51770ed 4782 return 0;
a255d479
TC
4783
4784 /* Protect kvm->arch.ept_identity_pagetable_done. */
4785 mutex_lock(&kvm->slots_lock);
4786
f51770ed 4787 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4788 goto out2;
a255d479 4789
b927a3ce 4790 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4791
4792 r = alloc_identity_pagetable(kvm);
f51770ed 4793 if (r < 0)
a255d479
TC
4794 goto out2;
4795
40dcaa9f 4796 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4797 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4798 if (r < 0)
4799 goto out;
4800 /* Set up identity-mapping pagetable for EPT in real mode */
4801 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4802 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4803 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4804 r = kvm_write_guest_page(kvm, identity_map_pfn,
4805 &tmp, i * sizeof(tmp), sizeof(tmp));
4806 if (r < 0)
4807 goto out;
4808 }
4809 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4810
b7ebfb05 4811out:
40dcaa9f 4812 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4813
4814out2:
4815 mutex_unlock(&kvm->slots_lock);
f51770ed 4816 return r;
b7ebfb05
SY
4817}
4818
6aa8b732
AK
4819static void seg_setup(int seg)
4820{
772e0318 4821 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4822 unsigned int ar;
6aa8b732
AK
4823
4824 vmcs_write16(sf->selector, 0);
4825 vmcs_writel(sf->base, 0);
4826 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4827 ar = 0x93;
4828 if (seg == VCPU_SREG_CS)
4829 ar |= 0x08; /* code segment */
3a624e29
NK
4830
4831 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4832}
4833
f78e0e2e
SY
4834static int alloc_apic_access_page(struct kvm *kvm)
4835{
4484141a 4836 struct page *page;
f78e0e2e
SY
4837 int r = 0;
4838
79fac95e 4839 mutex_lock(&kvm->slots_lock);
c24ae0dc 4840 if (kvm->arch.apic_access_page_done)
f78e0e2e 4841 goto out;
1d8007bd
PB
4842 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4843 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4844 if (r)
4845 goto out;
72dc67a6 4846
73a6d941 4847 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4848 if (is_error_page(page)) {
4849 r = -EFAULT;
4850 goto out;
4851 }
4852
c24ae0dc
TC
4853 /*
4854 * Do not pin the page in memory, so that memory hot-unplug
4855 * is able to migrate it.
4856 */
4857 put_page(page);
4858 kvm->arch.apic_access_page_done = true;
f78e0e2e 4859out:
79fac95e 4860 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4861 return r;
4862}
4863
b7ebfb05
SY
4864static int alloc_identity_pagetable(struct kvm *kvm)
4865{
a255d479
TC
4866 /* Called with kvm->slots_lock held. */
4867
b7ebfb05
SY
4868 int r = 0;
4869
a255d479
TC
4870 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4871
1d8007bd
PB
4872 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4873 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4874
b7ebfb05
SY
4875 return r;
4876}
4877
991e7a0e 4878static int allocate_vpid(void)
2384d2b3
SY
4879{
4880 int vpid;
4881
919818ab 4882 if (!enable_vpid)
991e7a0e 4883 return 0;
2384d2b3
SY
4884 spin_lock(&vmx_vpid_lock);
4885 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4886 if (vpid < VMX_NR_VPIDS)
2384d2b3 4887 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4888 else
4889 vpid = 0;
2384d2b3 4890 spin_unlock(&vmx_vpid_lock);
991e7a0e 4891 return vpid;
2384d2b3
SY
4892}
4893
991e7a0e 4894static void free_vpid(int vpid)
cdbecfc3 4895{
991e7a0e 4896 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4897 return;
4898 spin_lock(&vmx_vpid_lock);
991e7a0e 4899 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4900 spin_unlock(&vmx_vpid_lock);
4901}
4902
8d14695f
YZ
4903#define MSR_TYPE_R 1
4904#define MSR_TYPE_W 2
4905static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4906 u32 msr, int type)
25c5f225 4907{
3e7c73e9 4908 int f = sizeof(unsigned long);
25c5f225
SY
4909
4910 if (!cpu_has_vmx_msr_bitmap())
4911 return;
4912
4913 /*
4914 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4915 * have the write-low and read-high bitmap offsets the wrong way round.
4916 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4917 */
25c5f225 4918 if (msr <= 0x1fff) {
8d14695f
YZ
4919 if (type & MSR_TYPE_R)
4920 /* read-low */
4921 __clear_bit(msr, msr_bitmap + 0x000 / f);
4922
4923 if (type & MSR_TYPE_W)
4924 /* write-low */
4925 __clear_bit(msr, msr_bitmap + 0x800 / f);
4926
25c5f225
SY
4927 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4928 msr &= 0x1fff;
8d14695f
YZ
4929 if (type & MSR_TYPE_R)
4930 /* read-high */
4931 __clear_bit(msr, msr_bitmap + 0x400 / f);
4932
4933 if (type & MSR_TYPE_W)
4934 /* write-high */
4935 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4936
4937 }
4938}
4939
f2b93280
WV
4940/*
4941 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4942 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4943 */
4944static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4945 unsigned long *msr_bitmap_nested,
4946 u32 msr, int type)
4947{
4948 int f = sizeof(unsigned long);
4949
4950 if (!cpu_has_vmx_msr_bitmap()) {
4951 WARN_ON(1);
4952 return;
4953 }
4954
4955 /*
4956 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4957 * have the write-low and read-high bitmap offsets the wrong way round.
4958 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4959 */
4960 if (msr <= 0x1fff) {
4961 if (type & MSR_TYPE_R &&
4962 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4963 /* read-low */
4964 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4965
4966 if (type & MSR_TYPE_W &&
4967 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4968 /* write-low */
4969 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4970
4971 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4972 msr &= 0x1fff;
4973 if (type & MSR_TYPE_R &&
4974 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4975 /* read-high */
4976 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4977
4978 if (type & MSR_TYPE_W &&
4979 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4980 /* write-high */
4981 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4982
4983 }
4984}
4985
5897297b
AK
4986static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4987{
4988 if (!longmode_only)
8d14695f
YZ
4989 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4990 msr, MSR_TYPE_R | MSR_TYPE_W);
4991 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4992 msr, MSR_TYPE_R | MSR_TYPE_W);
4993}
4994
2e69f865 4995static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
8d14695f 4996{
f6e90f9e 4997 if (apicv_active) {
c63e4563 4998 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
2e69f865 4999 msr, type);
c63e4563 5000 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
2e69f865 5001 msr, type);
f6e90f9e 5002 } else {
f6e90f9e 5003 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
2e69f865 5004 msr, type);
f6e90f9e 5005 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
2e69f865 5006 msr, type);
f6e90f9e 5007 }
5897297b
AK
5008}
5009
d62caabb 5010static bool vmx_get_enable_apicv(void)
d50ab6c1 5011{
d62caabb 5012 return enable_apicv;
d50ab6c1
PB
5013}
5014
c9f04407
DM
5015static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5016{
5017 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5018 gfn_t gfn;
5019
5020 /*
5021 * Don't need to mark the APIC access page dirty; it is never
5022 * written to by the CPU during APIC virtualization.
5023 */
5024
5025 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5026 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5027 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5028 }
5029
5030 if (nested_cpu_has_posted_intr(vmcs12)) {
5031 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5032 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5033 }
5034}
5035
5036
6342c50a 5037static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
5038{
5039 struct vcpu_vmx *vmx = to_vmx(vcpu);
5040 int max_irr;
5041 void *vapic_page;
5042 u16 status;
5043
c9f04407
DM
5044 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5045 return;
705699a1 5046
c9f04407
DM
5047 vmx->nested.pi_pending = false;
5048 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5049 return;
705699a1 5050
c9f04407
DM
5051 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5052 if (max_irr != 256) {
705699a1 5053 vapic_page = kmap(vmx->nested.virtual_apic_page);
705699a1
WV
5054 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5055 kunmap(vmx->nested.virtual_apic_page);
5056
5057 status = vmcs_read16(GUEST_INTR_STATUS);
5058 if ((u8)max_irr > ((u8)status & 0xff)) {
5059 status &= ~0xff;
5060 status |= (u8)max_irr;
5061 vmcs_write16(GUEST_INTR_STATUS, status);
5062 }
5063 }
c9f04407
DM
5064
5065 nested_mark_vmcs12_pages_dirty(vcpu);
705699a1
WV
5066}
5067
06a5524f
WV
5068static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5069 bool nested)
21bc8dc5
RK
5070{
5071#ifdef CONFIG_SMP
06a5524f
WV
5072 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5073
21bc8dc5 5074 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6
FW
5075 struct vcpu_vmx *vmx = to_vmx(vcpu);
5076
5077 /*
5078 * Currently, we don't support urgent interrupt,
5079 * all interrupts are recognized as non-urgent
5080 * interrupt, so we cannot post interrupts when
5081 * 'SN' is set.
5082 *
5083 * If the vcpu is in guest mode, it means it is
5084 * running instead of being scheduled out and
5085 * waiting in the run queue, and that's the only
5086 * case when 'SN' is set currently, warning if
5087 * 'SN' is set.
5088 */
5089 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
5090
06a5524f 5091 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
21bc8dc5
RK
5092 return true;
5093 }
5094#endif
5095 return false;
5096}
5097
705699a1
WV
5098static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5099 int vector)
5100{
5101 struct vcpu_vmx *vmx = to_vmx(vcpu);
5102
5103 if (is_guest_mode(vcpu) &&
5104 vector == vmx->nested.posted_intr_nv) {
5105 /* the PIR and ON have been set by L1. */
06a5524f 5106 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
705699a1
WV
5107 /*
5108 * If a posted intr is not recognized by hardware,
5109 * we will accomplish it in the next vmentry.
5110 */
5111 vmx->nested.pi_pending = true;
5112 kvm_make_request(KVM_REQ_EVENT, vcpu);
5113 return 0;
5114 }
5115 return -1;
5116}
a20ed54d
YZ
5117/*
5118 * Send interrupt to vcpu via posted interrupt way.
5119 * 1. If target vcpu is running(non-root mode), send posted interrupt
5120 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5121 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5122 * interrupt from PIR in next vmentry.
5123 */
5124static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5125{
5126 struct vcpu_vmx *vmx = to_vmx(vcpu);
5127 int r;
5128
705699a1
WV
5129 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5130 if (!r)
5131 return;
5132
a20ed54d
YZ
5133 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5134 return;
5135
b95234c8
PB
5136 /* If a previous notification has sent the IPI, nothing to do. */
5137 if (pi_test_and_set_on(&vmx->pi_desc))
5138 return;
5139
06a5524f 5140 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
a20ed54d
YZ
5141 kvm_vcpu_kick(vcpu);
5142}
5143
a3a8ff8e
NHE
5144/*
5145 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5146 * will not change in the lifetime of the guest.
5147 * Note that host-state that does change is set elsewhere. E.g., host-state
5148 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5149 */
a547c6db 5150static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5151{
5152 u32 low32, high32;
5153 unsigned long tmpl;
5154 struct desc_ptr dt;
d6e41f11 5155 unsigned long cr0, cr3, cr4;
a3a8ff8e 5156
04ac88ab
AL
5157 cr0 = read_cr0();
5158 WARN_ON(cr0 & X86_CR0_TS);
5159 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
d6e41f11
AL
5160
5161 /*
5162 * Save the most likely value for this task's CR3 in the VMCS.
5163 * We can't use __get_current_cr3_fast() because we're not atomic.
5164 */
6c690ee1 5165 cr3 = __read_cr3();
d6e41f11
AL
5166 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
5167 vmx->host_state.vmcs_host_cr3 = cr3;
a3a8ff8e 5168
d974baa3 5169 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5170 cr4 = cr4_read_shadow();
d974baa3
AL
5171 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5172 vmx->host_state.vmcs_host_cr4 = cr4;
5173
a3a8ff8e 5174 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5175#ifdef CONFIG_X86_64
5176 /*
5177 * Load null selectors, so we can avoid reloading them in
5178 * __vmx_load_host_state(), in case userspace uses the null selectors
5179 * too (the expected case).
5180 */
5181 vmcs_write16(HOST_DS_SELECTOR, 0);
5182 vmcs_write16(HOST_ES_SELECTOR, 0);
5183#else
a3a8ff8e
NHE
5184 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5185 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5186#endif
a3a8ff8e
NHE
5187 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5188 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5189
5190 native_store_idt(&dt);
5191 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5192 vmx->host_idt_base = dt.address;
a3a8ff8e 5193
83287ea4 5194 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5195
5196 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5197 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5198 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5199 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5200
5201 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5202 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5203 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5204 }
5205}
5206
bf8179a0
NHE
5207static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5208{
5209 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5210 if (enable_ept)
5211 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5212 if (is_guest_mode(&vmx->vcpu))
5213 vmx->vcpu.arch.cr4_guest_owned_bits &=
5214 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5215 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5216}
5217
01e439be
YZ
5218static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5219{
5220 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5221
d62caabb 5222 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5223 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
64672c95
YJ
5224 /* Enable the preemption timer dynamically */
5225 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5226 return pin_based_exec_ctrl;
5227}
5228
d62caabb
AS
5229static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5230{
5231 struct vcpu_vmx *vmx = to_vmx(vcpu);
5232
5233 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5234 if (cpu_has_secondary_exec_ctrls()) {
5235 if (kvm_vcpu_apicv_active(vcpu))
5236 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5237 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5238 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5239 else
5240 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5241 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5242 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5243 }
5244
5245 if (cpu_has_vmx_msr_bitmap())
5246 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
5247}
5248
bf8179a0
NHE
5249static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5250{
5251 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5252
5253 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5254 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5255
35754c98 5256 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5257 exec_control &= ~CPU_BASED_TPR_SHADOW;
5258#ifdef CONFIG_X86_64
5259 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5260 CPU_BASED_CR8_LOAD_EXITING;
5261#endif
5262 }
5263 if (!enable_ept)
5264 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5265 CPU_BASED_CR3_LOAD_EXITING |
5266 CPU_BASED_INVLPG_EXITING;
5267 return exec_control;
5268}
5269
5270static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5271{
5272 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
35754c98 5273 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
bf8179a0
NHE
5274 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5275 if (vmx->vpid == 0)
5276 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5277 if (!enable_ept) {
5278 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5279 enable_unrestricted_guest = 0;
ad756a16
MJ
5280 /* Enable INVPCID for non-ept guests may cause performance regression. */
5281 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5282 }
5283 if (!enable_unrestricted_guest)
5284 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5285 if (!ple_gap)
5286 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
d62caabb 5287 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
c7c9c56c
YZ
5288 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5289 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5290 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5291 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5292 (handle_vmptrld).
5293 We can NOT enable shadow_vmcs here because we don't have yet
5294 a current VMCS12
5295 */
5296 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5297
5298 if (!enable_pml)
5299 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5300
bf8179a0
NHE
5301 return exec_control;
5302}
5303
ce88decf
XG
5304static void ept_set_mmio_spte_mask(void)
5305{
5306 /*
5307 * EPT Misconfigurations can be generated if the value of bits 2:0
5308 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5309 */
dcdca5fe
PF
5310 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5311 VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5312}
5313
f53cd63c 5314#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5315/*
5316 * Sets up the vmcs for emulated real mode.
5317 */
8b9cf98c 5318static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5319{
2e4ce7f5 5320#ifdef CONFIG_X86_64
6aa8b732 5321 unsigned long a;
2e4ce7f5 5322#endif
6aa8b732 5323 int i;
6aa8b732 5324
6aa8b732 5325 /* I/O */
3e7c73e9
AK
5326 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5327 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5328
4607c2d7
AG
5329 if (enable_shadow_vmcs) {
5330 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5331 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5332 }
25c5f225 5333 if (cpu_has_vmx_msr_bitmap())
5897297b 5334 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 5335
6aa8b732
AK
5336 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5337
6aa8b732 5338 /* Control */
01e439be 5339 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5340 vmx->hv_deadline_tsc = -1;
6e5d865c 5341
bf8179a0 5342 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5343
dfa169bb 5344 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
5345 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5346 vmx_secondary_exec_control(vmx));
dfa169bb 5347 }
f78e0e2e 5348
d62caabb 5349 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5350 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5351 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5352 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5353 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5354
5355 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5356
0bcf261c 5357 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5358 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5359 }
5360
4b8d54f9
ZE
5361 if (ple_gap) {
5362 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5363 vmx->ple_window = ple_window;
5364 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5365 }
5366
c3707958
XG
5367 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5368 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5369 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5370
9581d442
AK
5371 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5372 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5373 vmx_set_constant_host_state(vmx);
05b3e0c2 5374#ifdef CONFIG_X86_64
6aa8b732
AK
5375 rdmsrl(MSR_FS_BASE, a);
5376 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5377 rdmsrl(MSR_GS_BASE, a);
5378 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5379#else
5380 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5381 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5382#endif
5383
2a499e49
BD
5384 if (cpu_has_vmx_vmfunc())
5385 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5386
2cc51560
ED
5387 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5388 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5389 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5390 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5391 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5392
74545705
RK
5393 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5394 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5395
03916db9 5396 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5397 u32 index = vmx_msr_index[i];
5398 u32 data_low, data_high;
a2fa3e9f 5399 int j = vmx->nmsrs;
6aa8b732
AK
5400
5401 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5402 continue;
432bd6cb
AK
5403 if (wrmsr_safe(index, data_low, data_high) < 0)
5404 continue;
26bb0981
AK
5405 vmx->guest_msrs[j].index = i;
5406 vmx->guest_msrs[j].data = 0;
d5696725 5407 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5408 ++vmx->nmsrs;
6aa8b732 5409 }
6aa8b732 5410
2961e876
GN
5411
5412 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5413
5414 /* 22.2.1, 20.8.1 */
2961e876 5415 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5416
bd7e5b08
PB
5417 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5418 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5419
bf8179a0 5420 set_cr4_guest_host_mask(vmx);
e00c8cf2 5421
f53cd63c
WL
5422 if (vmx_xsaves_supported())
5423 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5424
4e59516a
PF
5425 if (enable_pml) {
5426 ASSERT(vmx->pml_pg);
5427 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5428 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5429 }
5430
e00c8cf2
AK
5431 return 0;
5432}
5433
d28bc9dd 5434static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5435{
5436 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5437 struct msr_data apic_base_msr;
d28bc9dd 5438 u64 cr0;
e00c8cf2 5439
7ffd92c5 5440 vmx->rmode.vm86_active = 0;
e00c8cf2 5441
ad312c7c 5442 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5443 kvm_set_cr8(vcpu, 0);
5444
5445 if (!init_event) {
5446 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5447 MSR_IA32_APICBASE_ENABLE;
5448 if (kvm_vcpu_is_reset_bsp(vcpu))
5449 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5450 apic_base_msr.host_initiated = true;
5451 kvm_set_apic_base(vcpu, &apic_base_msr);
5452 }
e00c8cf2 5453
2fb92db1
AK
5454 vmx_segment_cache_clear(vmx);
5455
5706be0d 5456 seg_setup(VCPU_SREG_CS);
66450a21 5457 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5458 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5459
5460 seg_setup(VCPU_SREG_DS);
5461 seg_setup(VCPU_SREG_ES);
5462 seg_setup(VCPU_SREG_FS);
5463 seg_setup(VCPU_SREG_GS);
5464 seg_setup(VCPU_SREG_SS);
5465
5466 vmcs_write16(GUEST_TR_SELECTOR, 0);
5467 vmcs_writel(GUEST_TR_BASE, 0);
5468 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5469 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5470
5471 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5472 vmcs_writel(GUEST_LDTR_BASE, 0);
5473 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5474 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5475
d28bc9dd
NA
5476 if (!init_event) {
5477 vmcs_write32(GUEST_SYSENTER_CS, 0);
5478 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5479 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5480 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5481 }
e00c8cf2
AK
5482
5483 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5484 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5485
e00c8cf2
AK
5486 vmcs_writel(GUEST_GDTR_BASE, 0);
5487 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5488
5489 vmcs_writel(GUEST_IDTR_BASE, 0);
5490 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5491
443381a8 5492 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5493 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5494 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5495
e00c8cf2
AK
5496 setup_msrs(vmx);
5497
6aa8b732
AK
5498 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5499
d28bc9dd 5500 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5501 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5502 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5503 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5504 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5505 vmcs_write32(TPR_THRESHOLD, 0);
5506 }
5507
a73896cb 5508 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5509
d62caabb 5510 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5511 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5512
2384d2b3
SY
5513 if (vmx->vpid != 0)
5514 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5515
d28bc9dd 5516 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5517 vmx->vcpu.arch.cr0 = cr0;
f2463247 5518 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5519 vmx_set_cr4(vcpu, 0);
5690891b 5520 vmx_set_efer(vcpu, 0);
bd7e5b08 5521
d28bc9dd 5522 update_exception_bitmap(vcpu);
6aa8b732 5523
dd5f5341 5524 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5525}
5526
b6f1250e
NHE
5527/*
5528 * In nested virtualization, check if L1 asked to exit on external interrupts.
5529 * For most existing hypervisors, this will always return true.
5530 */
5531static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5532{
5533 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5534 PIN_BASED_EXT_INTR_MASK;
5535}
5536
77b0f5d6
BD
5537/*
5538 * In nested virtualization, check if L1 has set
5539 * VM_EXIT_ACK_INTR_ON_EXIT
5540 */
5541static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5542{
5543 return get_vmcs12(vcpu)->vm_exit_controls &
5544 VM_EXIT_ACK_INTR_ON_EXIT;
5545}
5546
ea8ceb83
JK
5547static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5548{
5549 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5550 PIN_BASED_NMI_EXITING;
5551}
5552
c9a7953f 5553static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 5554{
47c0152e
PB
5555 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5556 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
5557}
5558
c9a7953f 5559static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 5560{
2c82878b 5561 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
c9a7953f
JK
5562 enable_irq_window(vcpu);
5563 return;
5564 }
3b86cd99 5565
47c0152e
PB
5566 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5567 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
5568}
5569
66fd3f7f 5570static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5571{
9c8cba37 5572 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5573 uint32_t intr;
5574 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5575
229456fc 5576 trace_kvm_inj_virq(irq);
2714d1d3 5577
fa89a817 5578 ++vcpu->stat.irq_injections;
7ffd92c5 5579 if (vmx->rmode.vm86_active) {
71f9833b
SH
5580 int inc_eip = 0;
5581 if (vcpu->arch.interrupt.soft)
5582 inc_eip = vcpu->arch.event_exit_inst_len;
5583 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5584 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5585 return;
5586 }
66fd3f7f
GN
5587 intr = irq | INTR_INFO_VALID_MASK;
5588 if (vcpu->arch.interrupt.soft) {
5589 intr |= INTR_TYPE_SOFT_INTR;
5590 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5591 vmx->vcpu.arch.event_exit_inst_len);
5592 } else
5593 intr |= INTR_TYPE_EXT_INTR;
5594 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5595}
5596
f08864b4
SY
5597static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5598{
66a5a347
JK
5599 struct vcpu_vmx *vmx = to_vmx(vcpu);
5600
4c4a6f79
PB
5601 ++vcpu->stat.nmi_injections;
5602 vmx->loaded_vmcs->nmi_known_unmasked = false;
3b86cd99 5603
7ffd92c5 5604 if (vmx->rmode.vm86_active) {
71f9833b 5605 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5606 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5607 return;
5608 }
c5a6d5f7 5609
f08864b4
SY
5610 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5611 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5612}
5613
3cfc3092
JK
5614static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5615{
4c4a6f79
PB
5616 struct vcpu_vmx *vmx = to_vmx(vcpu);
5617 bool masked;
5618
5619 if (vmx->loaded_vmcs->nmi_known_unmasked)
9d58b931 5620 return false;
4c4a6f79
PB
5621 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5622 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5623 return masked;
3cfc3092
JK
5624}
5625
5626static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5627{
5628 struct vcpu_vmx *vmx = to_vmx(vcpu);
5629
4c4a6f79 5630 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
2c82878b
PB
5631 if (masked)
5632 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5633 GUEST_INTR_STATE_NMI);
5634 else
5635 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5636 GUEST_INTR_STATE_NMI);
3cfc3092
JK
5637}
5638
2505dc9f
JK
5639static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5640{
b6b8a145
JK
5641 if (to_vmx(vcpu)->nested.nested_run_pending)
5642 return 0;
ea8ceb83 5643
2505dc9f
JK
5644 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5645 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5646 | GUEST_INTR_STATE_NMI));
5647}
5648
78646121
GN
5649static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5650{
b6b8a145
JK
5651 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5652 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5653 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5654 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5655}
5656
cbc94022
IE
5657static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5658{
5659 int ret;
cbc94022 5660
1d8007bd
PB
5661 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5662 PAGE_SIZE * 3);
cbc94022
IE
5663 if (ret)
5664 return ret;
bfc6d222 5665 kvm->arch.tss_addr = addr;
1f755a82 5666 return init_rmode_tss(kvm);
cbc94022
IE
5667}
5668
0ca1b4f4 5669static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5670{
77ab6db0 5671 switch (vec) {
77ab6db0 5672 case BP_VECTOR:
c573cd22
JK
5673 /*
5674 * Update instruction length as we may reinject the exception
5675 * from user space while in guest debugging mode.
5676 */
5677 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5678 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5679 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5680 return false;
5681 /* fall through */
5682 case DB_VECTOR:
5683 if (vcpu->guest_debug &
5684 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5685 return false;
d0bfb940
JK
5686 /* fall through */
5687 case DE_VECTOR:
77ab6db0
JK
5688 case OF_VECTOR:
5689 case BR_VECTOR:
5690 case UD_VECTOR:
5691 case DF_VECTOR:
5692 case SS_VECTOR:
5693 case GP_VECTOR:
5694 case MF_VECTOR:
0ca1b4f4
GN
5695 return true;
5696 break;
77ab6db0 5697 }
0ca1b4f4
GN
5698 return false;
5699}
5700
5701static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5702 int vec, u32 err_code)
5703{
5704 /*
5705 * Instruction with address size override prefix opcode 0x67
5706 * Cause the #SS fault with 0 error code in VM86 mode.
5707 */
5708 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5709 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5710 if (vcpu->arch.halt_request) {
5711 vcpu->arch.halt_request = 0;
5cb56059 5712 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5713 }
5714 return 1;
5715 }
5716 return 0;
5717 }
5718
5719 /*
5720 * Forward all other exceptions that are valid in real mode.
5721 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5722 * the required debugging infrastructure rework.
5723 */
5724 kvm_queue_exception(vcpu, vec);
5725 return 1;
6aa8b732
AK
5726}
5727
a0861c02
AK
5728/*
5729 * Trigger machine check on the host. We assume all the MSRs are already set up
5730 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5731 * We pass a fake environment to the machine check handler because we want
5732 * the guest to be always treated like user space, no matter what context
5733 * it used internally.
5734 */
5735static void kvm_machine_check(void)
5736{
5737#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5738 struct pt_regs regs = {
5739 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5740 .flags = X86_EFLAGS_IF,
5741 };
5742
5743 do_machine_check(&regs, 0);
5744#endif
5745}
5746
851ba692 5747static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5748{
5749 /* already handled by vcpu_run */
5750 return 1;
5751}
5752
851ba692 5753static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5754{
1155f76a 5755 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5756 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5757 u32 intr_info, ex_no, error_code;
42dbaa5a 5758 unsigned long cr2, rip, dr6;
6aa8b732
AK
5759 u32 vect_info;
5760 enum emulation_result er;
5761
1155f76a 5762 vect_info = vmx->idt_vectoring_info;
88786475 5763 intr_info = vmx->exit_intr_info;
6aa8b732 5764
a0861c02 5765 if (is_machine_check(intr_info))
851ba692 5766 return handle_machine_check(vcpu);
a0861c02 5767
ef85b673 5768 if (is_nmi(intr_info))
1b6269db 5769 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 5770
7aa81cc0 5771 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5772 if (is_guest_mode(vcpu)) {
5773 kvm_queue_exception(vcpu, UD_VECTOR);
5774 return 1;
5775 }
51d8b661 5776 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5777 if (er != EMULATE_DONE)
7ee5d940 5778 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5779 return 1;
5780 }
5781
6aa8b732 5782 error_code = 0;
2e11384c 5783 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5784 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5785
5786 /*
5787 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5788 * MMIO, it is better to report an internal error.
5789 * See the comments in vmx_handle_exit.
5790 */
5791 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5792 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5793 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5794 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5795 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5796 vcpu->run->internal.data[0] = vect_info;
5797 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5798 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5799 return 0;
5800 }
5801
6aa8b732
AK
5802 if (is_page_fault(intr_info)) {
5803 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1261bfa3
WL
5804 /* EPT won't cause page fault directly */
5805 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5806 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5807 true);
6aa8b732
AK
5808 }
5809
d0bfb940 5810 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5811
5812 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5813 return handle_rmode_exception(vcpu, ex_no, error_code);
5814
42dbaa5a 5815 switch (ex_no) {
54a20552
EN
5816 case AC_VECTOR:
5817 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5818 return 1;
42dbaa5a
JK
5819 case DB_VECTOR:
5820 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5821 if (!(vcpu->guest_debug &
5822 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5823 vcpu->arch.dr6 &= ~15;
6f43ed01 5824 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5825 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5826 skip_emulated_instruction(vcpu);
5827
42dbaa5a
JK
5828 kvm_queue_exception(vcpu, DB_VECTOR);
5829 return 1;
5830 }
5831 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5832 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5833 /* fall through */
5834 case BP_VECTOR:
c573cd22
JK
5835 /*
5836 * Update instruction length as we may reinject #BP from
5837 * user space while in guest debugging mode. Reading it for
5838 * #DB as well causes no harm, it is not used in that case.
5839 */
5840 vmx->vcpu.arch.event_exit_inst_len =
5841 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5842 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5843 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5844 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5845 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5846 break;
5847 default:
d0bfb940
JK
5848 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5849 kvm_run->ex.exception = ex_no;
5850 kvm_run->ex.error_code = error_code;
42dbaa5a 5851 break;
6aa8b732 5852 }
6aa8b732
AK
5853 return 0;
5854}
5855
851ba692 5856static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5857{
1165f5fe 5858 ++vcpu->stat.irq_exits;
6aa8b732
AK
5859 return 1;
5860}
5861
851ba692 5862static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5863{
851ba692 5864 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
bbeac283 5865 vcpu->mmio_needed = 0;
988ad74f
AK
5866 return 0;
5867}
6aa8b732 5868
851ba692 5869static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5870{
bfdaab09 5871 unsigned long exit_qualification;
6affcbed 5872 int size, in, string, ret;
039576c0 5873 unsigned port;
6aa8b732 5874
bfdaab09 5875 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5876 string = (exit_qualification & 16) != 0;
cf8f70bf 5877 in = (exit_qualification & 8) != 0;
e70669ab 5878
cf8f70bf 5879 ++vcpu->stat.io_exits;
e70669ab 5880
cf8f70bf 5881 if (string || in)
51d8b661 5882 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5883
cf8f70bf
GN
5884 port = exit_qualification >> 16;
5885 size = (exit_qualification & 7) + 1;
cf8f70bf 5886
6affcbed
KH
5887 ret = kvm_skip_emulated_instruction(vcpu);
5888
5889 /*
5890 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5891 * KVM_EXIT_DEBUG here.
5892 */
5893 return kvm_fast_pio_out(vcpu, size, port) && ret;
6aa8b732
AK
5894}
5895
102d8325
IM
5896static void
5897vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5898{
5899 /*
5900 * Patch in the VMCALL instruction:
5901 */
5902 hypercall[0] = 0x0f;
5903 hypercall[1] = 0x01;
5904 hypercall[2] = 0xc1;
102d8325
IM
5905}
5906
0fa06071 5907/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5908static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5909{
eeadf9e7 5910 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5911 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5912 unsigned long orig_val = val;
5913
eeadf9e7
NHE
5914 /*
5915 * We get here when L2 changed cr0 in a way that did not change
5916 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5917 * but did change L0 shadowed bits. So we first calculate the
5918 * effective cr0 value that L1 would like to write into the
5919 * hardware. It consists of the L2-owned bits from the new
5920 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5921 */
1a0d74e6
JK
5922 val = (val & ~vmcs12->cr0_guest_host_mask) |
5923 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5924
3899152c 5925 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 5926 return 1;
1a0d74e6
JK
5927
5928 if (kvm_set_cr0(vcpu, val))
5929 return 1;
5930 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5931 return 0;
1a0d74e6
JK
5932 } else {
5933 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 5934 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 5935 return 1;
3899152c 5936
eeadf9e7 5937 return kvm_set_cr0(vcpu, val);
1a0d74e6 5938 }
eeadf9e7
NHE
5939}
5940
5941static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5942{
5943 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5944 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5945 unsigned long orig_val = val;
5946
5947 /* analogously to handle_set_cr0 */
5948 val = (val & ~vmcs12->cr4_guest_host_mask) |
5949 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5950 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5951 return 1;
1a0d74e6 5952 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5953 return 0;
5954 } else
5955 return kvm_set_cr4(vcpu, val);
5956}
5957
851ba692 5958static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5959{
229456fc 5960 unsigned long exit_qualification, val;
6aa8b732
AK
5961 int cr;
5962 int reg;
49a9b07e 5963 int err;
6affcbed 5964 int ret;
6aa8b732 5965
bfdaab09 5966 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5967 cr = exit_qualification & 15;
5968 reg = (exit_qualification >> 8) & 15;
5969 switch ((exit_qualification >> 4) & 3) {
5970 case 0: /* mov to cr */
1e32c079 5971 val = kvm_register_readl(vcpu, reg);
229456fc 5972 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5973 switch (cr) {
5974 case 0:
eeadf9e7 5975 err = handle_set_cr0(vcpu, val);
6affcbed 5976 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 5977 case 3:
2390218b 5978 err = kvm_set_cr3(vcpu, val);
6affcbed 5979 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 5980 case 4:
eeadf9e7 5981 err = handle_set_cr4(vcpu, val);
6affcbed 5982 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
5983 case 8: {
5984 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5985 u8 cr8 = (u8)val;
eea1cff9 5986 err = kvm_set_cr8(vcpu, cr8);
6affcbed 5987 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 5988 if (lapic_in_kernel(vcpu))
6affcbed 5989 return ret;
0a5fff19 5990 if (cr8_prev <= cr8)
6affcbed
KH
5991 return ret;
5992 /*
5993 * TODO: we might be squashing a
5994 * KVM_GUESTDBG_SINGLESTEP-triggered
5995 * KVM_EXIT_DEBUG here.
5996 */
851ba692 5997 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5998 return 0;
5999 }
4b8073e4 6000 }
6aa8b732 6001 break;
25c4c276 6002 case 2: /* clts */
bd7e5b08
PB
6003 WARN_ONCE(1, "Guest should always own CR0.TS");
6004 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 6005 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 6006 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6007 case 1: /*mov from cr*/
6008 switch (cr) {
6009 case 3:
9f8fe504
AK
6010 val = kvm_read_cr3(vcpu);
6011 kvm_register_write(vcpu, reg, val);
6012 trace_kvm_cr_read(cr, val);
6affcbed 6013 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 6014 case 8:
229456fc
MT
6015 val = kvm_get_cr8(vcpu);
6016 kvm_register_write(vcpu, reg, val);
6017 trace_kvm_cr_read(cr, val);
6affcbed 6018 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6019 }
6020 break;
6021 case 3: /* lmsw */
a1f83a74 6022 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 6023 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 6024 kvm_lmsw(vcpu, val);
6aa8b732 6025
6affcbed 6026 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6027 default:
6028 break;
6029 }
851ba692 6030 vcpu->run->exit_reason = 0;
a737f256 6031 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
6032 (int)(exit_qualification >> 4) & 3, cr);
6033 return 0;
6034}
6035
851ba692 6036static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 6037{
bfdaab09 6038 unsigned long exit_qualification;
16f8a6f9
NA
6039 int dr, dr7, reg;
6040
6041 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6042 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6043
6044 /* First, if DR does not exist, trigger UD */
6045 if (!kvm_require_dr(vcpu, dr))
6046 return 1;
6aa8b732 6047
f2483415 6048 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
6049 if (!kvm_require_cpl(vcpu, 0))
6050 return 1;
16f8a6f9
NA
6051 dr7 = vmcs_readl(GUEST_DR7);
6052 if (dr7 & DR7_GD) {
42dbaa5a
JK
6053 /*
6054 * As the vm-exit takes precedence over the debug trap, we
6055 * need to emulate the latter, either for the host or the
6056 * guest debugging itself.
6057 */
6058 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 6059 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 6060 vcpu->run->debug.arch.dr7 = dr7;
82b32774 6061 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
6062 vcpu->run->debug.arch.exception = DB_VECTOR;
6063 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
6064 return 0;
6065 } else {
7305eb5d 6066 vcpu->arch.dr6 &= ~15;
6f43ed01 6067 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
6068 kvm_queue_exception(vcpu, DB_VECTOR);
6069 return 1;
6070 }
6071 }
6072
81908bf4 6073 if (vcpu->guest_debug == 0) {
8f22372f
PB
6074 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6075 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6076
6077 /*
6078 * No more DR vmexits; force a reload of the debug registers
6079 * and reenter on this instruction. The next vmexit will
6080 * retrieve the full state of the debug registers.
6081 */
6082 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6083 return 1;
6084 }
6085
42dbaa5a
JK
6086 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6087 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 6088 unsigned long val;
4c4d563b
JK
6089
6090 if (kvm_get_dr(vcpu, dr, &val))
6091 return 1;
6092 kvm_register_write(vcpu, reg, val);
020df079 6093 } else
5777392e 6094 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
6095 return 1;
6096
6affcbed 6097 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6098}
6099
73aaf249
JK
6100static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6101{
6102 return vcpu->arch.dr6;
6103}
6104
6105static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6106{
6107}
6108
81908bf4
PB
6109static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6110{
81908bf4
PB
6111 get_debugreg(vcpu->arch.db[0], 0);
6112 get_debugreg(vcpu->arch.db[1], 1);
6113 get_debugreg(vcpu->arch.db[2], 2);
6114 get_debugreg(vcpu->arch.db[3], 3);
6115 get_debugreg(vcpu->arch.dr6, 6);
6116 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6117
6118 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 6119 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6120}
6121
020df079
GN
6122static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6123{
6124 vmcs_writel(GUEST_DR7, val);
6125}
6126
851ba692 6127static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 6128{
6a908b62 6129 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
6130}
6131
851ba692 6132static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 6133{
ad312c7c 6134 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 6135 struct msr_data msr_info;
6aa8b732 6136
609e36d3
PB
6137 msr_info.index = ecx;
6138 msr_info.host_initiated = false;
6139 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 6140 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 6141 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6142 return 1;
6143 }
6144
609e36d3 6145 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6146
6aa8b732 6147 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6148 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6149 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6150 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6151}
6152
851ba692 6153static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6154{
8fe8ab46 6155 struct msr_data msr;
ad312c7c
ZX
6156 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6157 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6158 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6159
8fe8ab46
WA
6160 msr.data = data;
6161 msr.index = ecx;
6162 msr.host_initiated = false;
854e8bb1 6163 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6164 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6165 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6166 return 1;
6167 }
6168
59200273 6169 trace_kvm_msr_write(ecx, data);
6affcbed 6170 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6171}
6172
851ba692 6173static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6174{
eb90f341 6175 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6176 return 1;
6177}
6178
851ba692 6179static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6180{
47c0152e
PB
6181 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6182 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6183
3842d135
AK
6184 kvm_make_request(KVM_REQ_EVENT, vcpu);
6185
a26bf12a 6186 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6187 return 1;
6188}
6189
851ba692 6190static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6191{
d3bef15f 6192 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6193}
6194
851ba692 6195static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6196{
0d9c055e 6197 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6198}
6199
ec25d5e6
GN
6200static int handle_invd(struct kvm_vcpu *vcpu)
6201{
51d8b661 6202 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6203}
6204
851ba692 6205static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6206{
f9c617f6 6207 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6208
6209 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6210 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6211}
6212
fee84b07
AK
6213static int handle_rdpmc(struct kvm_vcpu *vcpu)
6214{
6215 int err;
6216
6217 err = kvm_rdpmc(vcpu);
6affcbed 6218 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6219}
6220
851ba692 6221static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6222{
6affcbed 6223 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6224}
6225
2acf923e
DC
6226static int handle_xsetbv(struct kvm_vcpu *vcpu)
6227{
6228 u64 new_bv = kvm_read_edx_eax(vcpu);
6229 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6230
6231 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6232 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6233 return 1;
6234}
6235
f53cd63c
WL
6236static int handle_xsaves(struct kvm_vcpu *vcpu)
6237{
6affcbed 6238 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6239 WARN(1, "this should never happen\n");
6240 return 1;
6241}
6242
6243static int handle_xrstors(struct kvm_vcpu *vcpu)
6244{
6affcbed 6245 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6246 WARN(1, "this should never happen\n");
6247 return 1;
6248}
6249
851ba692 6250static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6251{
58fbbf26
KT
6252 if (likely(fasteoi)) {
6253 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6254 int access_type, offset;
6255
6256 access_type = exit_qualification & APIC_ACCESS_TYPE;
6257 offset = exit_qualification & APIC_ACCESS_OFFSET;
6258 /*
6259 * Sane guest uses MOV to write EOI, with written value
6260 * not cared. So make a short-circuit here by avoiding
6261 * heavy instruction emulation.
6262 */
6263 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6264 (offset == APIC_EOI)) {
6265 kvm_lapic_set_eoi(vcpu);
6affcbed 6266 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6267 }
6268 }
51d8b661 6269 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6270}
6271
c7c9c56c
YZ
6272static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6273{
6274 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6275 int vector = exit_qualification & 0xff;
6276
6277 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6278 kvm_apic_set_eoi_accelerated(vcpu, vector);
6279 return 1;
6280}
6281
83d4c286
YZ
6282static int handle_apic_write(struct kvm_vcpu *vcpu)
6283{
6284 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6285 u32 offset = exit_qualification & 0xfff;
6286
6287 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6288 kvm_apic_write_nodecode(vcpu, offset);
6289 return 1;
6290}
6291
851ba692 6292static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6293{
60637aac 6294 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6295 unsigned long exit_qualification;
e269fb21
JK
6296 bool has_error_code = false;
6297 u32 error_code = 0;
37817f29 6298 u16 tss_selector;
7f3d35fd 6299 int reason, type, idt_v, idt_index;
64a7ec06
GN
6300
6301 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6302 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6303 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6304
6305 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6306
6307 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6308 if (reason == TASK_SWITCH_GATE && idt_v) {
6309 switch (type) {
6310 case INTR_TYPE_NMI_INTR:
6311 vcpu->arch.nmi_injected = false;
654f06fc 6312 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6313 break;
6314 case INTR_TYPE_EXT_INTR:
66fd3f7f 6315 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6316 kvm_clear_interrupt_queue(vcpu);
6317 break;
6318 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6319 if (vmx->idt_vectoring_info &
6320 VECTORING_INFO_DELIVER_CODE_MASK) {
6321 has_error_code = true;
6322 error_code =
6323 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6324 }
6325 /* fall through */
64a7ec06
GN
6326 case INTR_TYPE_SOFT_EXCEPTION:
6327 kvm_clear_exception_queue(vcpu);
6328 break;
6329 default:
6330 break;
6331 }
60637aac 6332 }
37817f29
IE
6333 tss_selector = exit_qualification;
6334
64a7ec06
GN
6335 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6336 type != INTR_TYPE_EXT_INTR &&
6337 type != INTR_TYPE_NMI_INTR))
6338 skip_emulated_instruction(vcpu);
6339
7f3d35fd
KW
6340 if (kvm_task_switch(vcpu, tss_selector,
6341 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6342 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6343 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6344 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6345 vcpu->run->internal.ndata = 0;
42dbaa5a 6346 return 0;
acb54517 6347 }
42dbaa5a 6348
42dbaa5a
JK
6349 /*
6350 * TODO: What about debug traps on tss switch?
6351 * Are we supposed to inject them and update dr6?
6352 */
6353
6354 return 1;
37817f29
IE
6355}
6356
851ba692 6357static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6358{
f9c617f6 6359 unsigned long exit_qualification;
1439442c 6360 gpa_t gpa;
eebed243 6361 u64 error_code;
1439442c 6362
f9c617f6 6363 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6364
0be9c7a8
GN
6365 /*
6366 * EPT violation happened while executing iret from NMI,
6367 * "blocked by NMI" bit has to be set before next VM entry.
6368 * There are errata that may cause this bit to not be set:
6369 * AAK134, BY25.
6370 */
bcd1c294 6371 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
bcd1c294 6372 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6373 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6374
1439442c 6375 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6376 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6377
27959a44 6378 /* Is it a read fault? */
ab22a473 6379 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
6380 ? PFERR_USER_MASK : 0;
6381 /* Is it a write fault? */
ab22a473 6382 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
6383 ? PFERR_WRITE_MASK : 0;
6384 /* Is it a fetch fault? */
ab22a473 6385 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
6386 ? PFERR_FETCH_MASK : 0;
6387 /* ept page table entry is present? */
6388 error_code |= (exit_qualification &
6389 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6390 EPT_VIOLATION_EXECUTABLE))
6391 ? PFERR_PRESENT_MASK : 0;
4f5982a5 6392
eebed243
PB
6393 error_code |= (exit_qualification & 0x100) != 0 ?
6394 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
6395
db1c056c 6396 vcpu->arch.gpa_available = true;
25d92081
YZ
6397 vcpu->arch.exit_qualification = exit_qualification;
6398
4f5982a5 6399 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6400}
6401
851ba692 6402static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6403{
f735d4af 6404 int ret;
68f89400
MT
6405 gpa_t gpa;
6406
6407 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
e32edf4f 6408 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 6409 trace_kvm_fast_mmio(gpa);
6affcbed 6410 return kvm_skip_emulated_instruction(vcpu);
68c3b4d1 6411 }
68f89400 6412
450869d6 6413 ret = handle_mmio_page_fault(vcpu, gpa, true);
db1c056c 6414 vcpu->arch.gpa_available = true;
b37fbea6 6415 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
6416 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6417 EMULATE_DONE;
f8f55942
XG
6418
6419 if (unlikely(ret == RET_MMIO_PF_INVALID))
6420 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6421
b37fbea6 6422 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
6423 return 1;
6424
6425 /* It is the real ept misconfig */
f735d4af 6426 WARN_ON(1);
68f89400 6427
851ba692
AK
6428 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6429 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6430
6431 return 0;
6432}
6433
851ba692 6434static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 6435{
47c0152e
PB
6436 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6437 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 6438 ++vcpu->stat.nmi_window_exits;
3842d135 6439 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6440
6441 return 1;
6442}
6443
80ced186 6444static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6445{
8b3079a5
AK
6446 struct vcpu_vmx *vmx = to_vmx(vcpu);
6447 enum emulation_result err = EMULATE_DONE;
80ced186 6448 int ret = 1;
49e9d557
AK
6449 u32 cpu_exec_ctrl;
6450 bool intr_window_requested;
b8405c18 6451 unsigned count = 130;
49e9d557
AK
6452
6453 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6454 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6455
98eb2f8b 6456 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6457 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6458 return handle_interrupt_window(&vmx->vcpu);
6459
72875d8a 6460 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
de87dcdd
AK
6461 return 1;
6462
991eebf9 6463 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6464
ac0a48c3 6465 if (err == EMULATE_USER_EXIT) {
94452b9e 6466 ++vcpu->stat.mmio_exits;
80ced186
MG
6467 ret = 0;
6468 goto out;
6469 }
1d5a4d9b 6470
de5f70e0
AK
6471 if (err != EMULATE_DONE) {
6472 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6473 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6474 vcpu->run->internal.ndata = 0;
6d77dbfc 6475 return 0;
de5f70e0 6476 }
ea953ef0 6477
8d76c49e
GN
6478 if (vcpu->arch.halt_request) {
6479 vcpu->arch.halt_request = 0;
5cb56059 6480 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6481 goto out;
6482 }
6483
ea953ef0 6484 if (signal_pending(current))
80ced186 6485 goto out;
ea953ef0
MG
6486 if (need_resched())
6487 schedule();
6488 }
6489
80ced186
MG
6490out:
6491 return ret;
ea953ef0
MG
6492}
6493
b4a2d31d
RK
6494static int __grow_ple_window(int val)
6495{
6496 if (ple_window_grow < 1)
6497 return ple_window;
6498
6499 val = min(val, ple_window_actual_max);
6500
6501 if (ple_window_grow < ple_window)
6502 val *= ple_window_grow;
6503 else
6504 val += ple_window_grow;
6505
6506 return val;
6507}
6508
6509static int __shrink_ple_window(int val, int modifier, int minimum)
6510{
6511 if (modifier < 1)
6512 return ple_window;
6513
6514 if (modifier < ple_window)
6515 val /= modifier;
6516 else
6517 val -= modifier;
6518
6519 return max(val, minimum);
6520}
6521
6522static void grow_ple_window(struct kvm_vcpu *vcpu)
6523{
6524 struct vcpu_vmx *vmx = to_vmx(vcpu);
6525 int old = vmx->ple_window;
6526
6527 vmx->ple_window = __grow_ple_window(old);
6528
6529 if (vmx->ple_window != old)
6530 vmx->ple_window_dirty = true;
7b46268d
RK
6531
6532 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6533}
6534
6535static void shrink_ple_window(struct kvm_vcpu *vcpu)
6536{
6537 struct vcpu_vmx *vmx = to_vmx(vcpu);
6538 int old = vmx->ple_window;
6539
6540 vmx->ple_window = __shrink_ple_window(old,
6541 ple_window_shrink, ple_window);
6542
6543 if (vmx->ple_window != old)
6544 vmx->ple_window_dirty = true;
7b46268d
RK
6545
6546 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6547}
6548
6549/*
6550 * ple_window_actual_max is computed to be one grow_ple_window() below
6551 * ple_window_max. (See __grow_ple_window for the reason.)
6552 * This prevents overflows, because ple_window_max is int.
6553 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6554 * this process.
6555 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6556 */
6557static void update_ple_window_actual_max(void)
6558{
6559 ple_window_actual_max =
6560 __shrink_ple_window(max(ple_window_max, ple_window),
6561 ple_window_grow, INT_MIN);
6562}
6563
bf9f6ac8
FW
6564/*
6565 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6566 */
6567static void wakeup_handler(void)
6568{
6569 struct kvm_vcpu *vcpu;
6570 int cpu = smp_processor_id();
6571
6572 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6573 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6574 blocked_vcpu_list) {
6575 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6576
6577 if (pi_test_on(pi_desc) == 1)
6578 kvm_vcpu_kick(vcpu);
6579 }
6580 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6581}
6582
f160c7b7
JS
6583void vmx_enable_tdp(void)
6584{
6585 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6586 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6587 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6588 0ull, VMX_EPT_EXECUTABLE_MASK,
6589 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
995f00a6 6590 VMX_EPT_RWX_MASK);
f160c7b7
JS
6591
6592 ept_set_mmio_spte_mask();
6593 kvm_enable_tdp();
6594}
6595
f2c7648d
TC
6596static __init int hardware_setup(void)
6597{
34a1cd60
TC
6598 int r = -ENOMEM, i, msr;
6599
6600 rdmsrl_safe(MSR_EFER, &host_efer);
6601
6602 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6603 kvm_define_shared_msr(i, vmx_msr_index[i]);
6604
23611332
RK
6605 for (i = 0; i < VMX_BITMAP_NR; i++) {
6606 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6607 if (!vmx_bitmap[i])
6608 goto out;
6609 }
34a1cd60
TC
6610
6611 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
34a1cd60
TC
6612 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6613 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6614
6615 /*
6616 * Allow direct access to the PC debug port (it is often used for I/O
6617 * delays, but the vmexits simply slow things down).
6618 */
6619 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6620 clear_bit(0x80, vmx_io_bitmap_a);
6621
6622 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6623
6624 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6625 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6626
34a1cd60
TC
6627 if (setup_vmcs_config(&vmcs_config) < 0) {
6628 r = -EIO;
23611332 6629 goto out;
baa03522 6630 }
f2c7648d
TC
6631
6632 if (boot_cpu_has(X86_FEATURE_NX))
6633 kvm_enable_efer_bits(EFER_NX);
6634
08d839c4
WL
6635 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6636 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
f2c7648d 6637 enable_vpid = 0;
08d839c4 6638
f2c7648d
TC
6639 if (!cpu_has_vmx_shadow_vmcs())
6640 enable_shadow_vmcs = 0;
6641 if (enable_shadow_vmcs)
6642 init_vmcs_shadow_fields();
6643
6644 if (!cpu_has_vmx_ept() ||
6645 !cpu_has_vmx_ept_4levels()) {
6646 enable_ept = 0;
6647 enable_unrestricted_guest = 0;
6648 enable_ept_ad_bits = 0;
6649 }
6650
fce6ac4c 6651 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
f2c7648d
TC
6652 enable_ept_ad_bits = 0;
6653
6654 if (!cpu_has_vmx_unrestricted_guest())
6655 enable_unrestricted_guest = 0;
6656
ad15a296 6657 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6658 flexpriority_enabled = 0;
6659
ad15a296
PB
6660 /*
6661 * set_apic_access_page_addr() is used to reload apic access
6662 * page upon invalidation. No need to do anything if not
6663 * using the APIC_ACCESS_ADDR VMCS field.
6664 */
6665 if (!flexpriority_enabled)
f2c7648d 6666 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6667
6668 if (!cpu_has_vmx_tpr_shadow())
6669 kvm_x86_ops->update_cr8_intercept = NULL;
6670
6671 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6672 kvm_disable_largepages();
6673
6674 if (!cpu_has_vmx_ple())
6675 ple_gap = 0;
6676
76dfafd5 6677 if (!cpu_has_vmx_apicv()) {
f2c7648d 6678 enable_apicv = 0;
76dfafd5
PB
6679 kvm_x86_ops->sync_pir_to_irr = NULL;
6680 }
f2c7648d 6681
64903d61
HZ
6682 if (cpu_has_vmx_tsc_scaling()) {
6683 kvm_has_tsc_control = true;
6684 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6685 kvm_tsc_scaling_ratio_frac_bits = 48;
6686 }
6687
baa03522
TC
6688 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6689 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6690 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6691 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6692 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6693 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
baa03522 6694
c63e4563 6695 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
baa03522 6696 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6697 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
baa03522 6698 vmx_msr_bitmap_longmode, PAGE_SIZE);
c63e4563 6699 memcpy(vmx_msr_bitmap_legacy_x2apic,
f6e90f9e 6700 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6701 memcpy(vmx_msr_bitmap_longmode_x2apic,
f6e90f9e 6702 vmx_msr_bitmap_longmode, PAGE_SIZE);
baa03522 6703
04bb92e4
WL
6704 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6705
40d8338d
RK
6706 for (msr = 0x800; msr <= 0x8ff; msr++) {
6707 if (msr == 0x839 /* TMCCT */)
6708 continue;
2e69f865 6709 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
40d8338d 6710 }
3ce424e4 6711
f6e90f9e 6712 /*
2e69f865
RK
6713 * TPR reads and writes can be virtualized even if virtual interrupt
6714 * delivery is not in use.
f6e90f9e 6715 */
2e69f865
RK
6716 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6717 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
3ce424e4 6718
3ce424e4 6719 /* EOI */
2e69f865 6720 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
3ce424e4 6721 /* SELF-IPI */
2e69f865 6722 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
baa03522 6723
f160c7b7
JS
6724 if (enable_ept)
6725 vmx_enable_tdp();
6726 else
baa03522
TC
6727 kvm_disable_tdp();
6728
6729 update_ple_window_actual_max();
6730
843e4330
KH
6731 /*
6732 * Only enable PML when hardware supports PML feature, and both EPT
6733 * and EPT A/D bit features are enabled -- PML depends on them to work.
6734 */
6735 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6736 enable_pml = 0;
6737
6738 if (!enable_pml) {
6739 kvm_x86_ops->slot_enable_log_dirty = NULL;
6740 kvm_x86_ops->slot_disable_log_dirty = NULL;
6741 kvm_x86_ops->flush_log_dirty = NULL;
6742 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6743 }
6744
64672c95
YJ
6745 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6746 u64 vmx_msr;
6747
6748 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6749 cpu_preemption_timer_multi =
6750 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6751 } else {
6752 kvm_x86_ops->set_hv_timer = NULL;
6753 kvm_x86_ops->cancel_hv_timer = NULL;
6754 }
6755
bf9f6ac8
FW
6756 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6757
c45dcc71
AR
6758 kvm_mce_cap_supported |= MCG_LMCE_P;
6759
f2c7648d 6760 return alloc_kvm_area();
34a1cd60 6761
34a1cd60 6762out:
23611332
RK
6763 for (i = 0; i < VMX_BITMAP_NR; i++)
6764 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
6765
6766 return r;
f2c7648d
TC
6767}
6768
6769static __exit void hardware_unsetup(void)
6770{
23611332
RK
6771 int i;
6772
6773 for (i = 0; i < VMX_BITMAP_NR; i++)
6774 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 6775
f2c7648d
TC
6776 free_kvm_area();
6777}
6778
4b8d54f9
ZE
6779/*
6780 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6781 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6782 */
9fb41ba8 6783static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6784{
b4a2d31d
RK
6785 if (ple_gap)
6786 grow_ple_window(vcpu);
6787
de63ad4c
LM
6788 /*
6789 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6790 * VM-execution control is ignored if CPL > 0. OTOH, KVM
6791 * never set PAUSE_EXITING and just set PLE if supported,
6792 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6793 */
6794 kvm_vcpu_on_spin(vcpu, true);
6affcbed 6795 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
6796}
6797
87c00572 6798static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6799{
6affcbed 6800 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
6801}
6802
87c00572
GS
6803static int handle_mwait(struct kvm_vcpu *vcpu)
6804{
6805 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6806 return handle_nop(vcpu);
6807}
6808
5f3d45e7
MD
6809static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6810{
6811 return 1;
6812}
6813
87c00572
GS
6814static int handle_monitor(struct kvm_vcpu *vcpu)
6815{
6816 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6817 return handle_nop(vcpu);
6818}
6819
ff2f6fe9
NHE
6820/*
6821 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6822 * We could reuse a single VMCS for all the L2 guests, but we also want the
6823 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6824 * allows keeping them loaded on the processor, and in the future will allow
6825 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6826 * every entry if they never change.
6827 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6828 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6829 *
6830 * The following functions allocate and free a vmcs02 in this pool.
6831 */
6832
6833/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6834static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6835{
6836 struct vmcs02_list *item;
6837 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6838 if (item->vmptr == vmx->nested.current_vmptr) {
6839 list_move(&item->list, &vmx->nested.vmcs02_pool);
6840 return &item->vmcs02;
6841 }
6842
6843 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6844 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6845 item = list_last_entry(&vmx->nested.vmcs02_pool,
6846 struct vmcs02_list, list);
ff2f6fe9
NHE
6847 item->vmptr = vmx->nested.current_vmptr;
6848 list_move(&item->list, &vmx->nested.vmcs02_pool);
6849 return &item->vmcs02;
6850 }
6851
6852 /* Create a new VMCS */
0fa24ce3 6853 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6854 if (!item)
6855 return NULL;
6856 item->vmcs02.vmcs = alloc_vmcs();
355f4fb1 6857 item->vmcs02.shadow_vmcs = NULL;
ff2f6fe9
NHE
6858 if (!item->vmcs02.vmcs) {
6859 kfree(item);
6860 return NULL;
6861 }
6862 loaded_vmcs_init(&item->vmcs02);
6863 item->vmptr = vmx->nested.current_vmptr;
6864 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6865 vmx->nested.vmcs02_num++;
6866 return &item->vmcs02;
6867}
6868
6869/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6870static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6871{
6872 struct vmcs02_list *item;
6873 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6874 if (item->vmptr == vmptr) {
6875 free_loaded_vmcs(&item->vmcs02);
6876 list_del(&item->list);
6877 kfree(item);
6878 vmx->nested.vmcs02_num--;
6879 return;
6880 }
6881}
6882
6883/*
6884 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6885 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6886 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6887 */
6888static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6889{
6890 struct vmcs02_list *item, *n;
4fa7734c
PB
6891
6892 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6893 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6894 /*
6895 * Something will leak if the above WARN triggers. Better than
6896 * a use-after-free.
6897 */
6898 if (vmx->loaded_vmcs == &item->vmcs02)
6899 continue;
6900
6901 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6902 list_del(&item->list);
6903 kfree(item);
4fa7734c 6904 vmx->nested.vmcs02_num--;
ff2f6fe9 6905 }
ff2f6fe9
NHE
6906}
6907
0658fbaa
ACL
6908/*
6909 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6910 * set the success or error code of an emulated VMX instruction, as specified
6911 * by Vol 2B, VMX Instruction Reference, "Conventions".
6912 */
6913static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6914{
6915 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6916 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6917 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6918}
6919
6920static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6921{
6922 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6923 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6924 X86_EFLAGS_SF | X86_EFLAGS_OF))
6925 | X86_EFLAGS_CF);
6926}
6927
145c28dd 6928static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6929 u32 vm_instruction_error)
6930{
6931 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6932 /*
6933 * failValid writes the error number to the current VMCS, which
6934 * can't be done there isn't a current VMCS.
6935 */
6936 nested_vmx_failInvalid(vcpu);
6937 return;
6938 }
6939 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6940 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6941 X86_EFLAGS_SF | X86_EFLAGS_OF))
6942 | X86_EFLAGS_ZF);
6943 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6944 /*
6945 * We don't need to force a shadow sync because
6946 * VM_INSTRUCTION_ERROR is not shadowed
6947 */
6948}
145c28dd 6949
ff651cb6
WV
6950static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6951{
6952 /* TODO: not to reset guest simply here. */
6953 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 6954 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
6955}
6956
f4124500
JK
6957static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6958{
6959 struct vcpu_vmx *vmx =
6960 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6961
6962 vmx->nested.preemption_timer_expired = true;
6963 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6964 kvm_vcpu_kick(&vmx->vcpu);
6965
6966 return HRTIMER_NORESTART;
6967}
6968
19677e32
BD
6969/*
6970 * Decode the memory-address operand of a vmx instruction, as recorded on an
6971 * exit caused by such an instruction (run by a guest hypervisor).
6972 * On success, returns 0. When the operand is invalid, returns 1 and throws
6973 * #UD or #GP.
6974 */
6975static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6976 unsigned long exit_qualification,
f9eb4af6 6977 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 6978{
f9eb4af6
EK
6979 gva_t off;
6980 bool exn;
6981 struct kvm_segment s;
6982
19677e32
BD
6983 /*
6984 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6985 * Execution", on an exit, vmx_instruction_info holds most of the
6986 * addressing components of the operand. Only the displacement part
6987 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6988 * For how an actual address is calculated from all these components,
6989 * refer to Vol. 1, "Operand Addressing".
6990 */
6991 int scaling = vmx_instruction_info & 3;
6992 int addr_size = (vmx_instruction_info >> 7) & 7;
6993 bool is_reg = vmx_instruction_info & (1u << 10);
6994 int seg_reg = (vmx_instruction_info >> 15) & 7;
6995 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6996 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6997 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6998 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6999
7000 if (is_reg) {
7001 kvm_queue_exception(vcpu, UD_VECTOR);
7002 return 1;
7003 }
7004
7005 /* Addr = segment_base + offset */
7006 /* offset = base + [index * scale] + displacement */
f9eb4af6 7007 off = exit_qualification; /* holds the displacement */
19677e32 7008 if (base_is_valid)
f9eb4af6 7009 off += kvm_register_read(vcpu, base_reg);
19677e32 7010 if (index_is_valid)
f9eb4af6
EK
7011 off += kvm_register_read(vcpu, index_reg)<<scaling;
7012 vmx_get_segment(vcpu, &s, seg_reg);
7013 *ret = s.base + off;
19677e32
BD
7014
7015 if (addr_size == 1) /* 32 bit */
7016 *ret &= 0xffffffff;
7017
f9eb4af6
EK
7018 /* Checks for #GP/#SS exceptions. */
7019 exn = false;
ff30ef40
QC
7020 if (is_long_mode(vcpu)) {
7021 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7022 * non-canonical form. This is the only check on the memory
7023 * destination for long mode!
7024 */
7025 exn = is_noncanonical_address(*ret);
7026 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
7027 /* Protected mode: apply checks for segment validity in the
7028 * following order:
7029 * - segment type check (#GP(0) may be thrown)
7030 * - usability check (#GP(0)/#SS(0))
7031 * - limit check (#GP(0)/#SS(0))
7032 */
7033 if (wr)
7034 /* #GP(0) if the destination operand is located in a
7035 * read-only data segment or any code segment.
7036 */
7037 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7038 else
7039 /* #GP(0) if the source operand is located in an
7040 * execute-only code segment
7041 */
7042 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
7043 if (exn) {
7044 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7045 return 1;
7046 }
f9eb4af6
EK
7047 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7048 */
7049 exn = (s.unusable != 0);
7050 /* Protected mode: #GP(0)/#SS(0) if the memory
7051 * operand is outside the segment limit.
7052 */
7053 exn = exn || (off + sizeof(u64) > s.limit);
7054 }
7055 if (exn) {
7056 kvm_queue_exception_e(vcpu,
7057 seg_reg == VCPU_SREG_SS ?
7058 SS_VECTOR : GP_VECTOR,
7059 0);
7060 return 1;
7061 }
7062
19677e32
BD
7063 return 0;
7064}
7065
cbf71279 7066static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
3573e22c
BD
7067{
7068 gva_t gva;
3573e22c 7069 struct x86_exception e;
3573e22c
BD
7070
7071 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7072 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
7073 return 1;
7074
cbf71279
RK
7075 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7076 sizeof(*vmpointer), &e)) {
3573e22c
BD
7077 kvm_inject_page_fault(vcpu, &e);
7078 return 1;
7079 }
7080
3573e22c
BD
7081 return 0;
7082}
7083
e29acc55
JM
7084static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7085{
7086 struct vcpu_vmx *vmx = to_vmx(vcpu);
7087 struct vmcs *shadow_vmcs;
7088
7089 if (cpu_has_vmx_msr_bitmap()) {
7090 vmx->nested.msr_bitmap =
7091 (unsigned long *)__get_free_page(GFP_KERNEL);
7092 if (!vmx->nested.msr_bitmap)
7093 goto out_msr_bitmap;
7094 }
7095
7096 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7097 if (!vmx->nested.cached_vmcs12)
7098 goto out_cached_vmcs12;
7099
7100 if (enable_shadow_vmcs) {
7101 shadow_vmcs = alloc_vmcs();
7102 if (!shadow_vmcs)
7103 goto out_shadow_vmcs;
7104 /* mark vmcs as shadow */
7105 shadow_vmcs->revision_id |= (1u << 31);
7106 /* init shadow vmcs */
7107 vmcs_clear(shadow_vmcs);
7108 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7109 }
7110
7111 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7112 vmx->nested.vmcs02_num = 0;
7113
7114 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7115 HRTIMER_MODE_REL_PINNED);
7116 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7117
7118 vmx->nested.vmxon = true;
7119 return 0;
7120
7121out_shadow_vmcs:
7122 kfree(vmx->nested.cached_vmcs12);
7123
7124out_cached_vmcs12:
7125 free_page((unsigned long)vmx->nested.msr_bitmap);
7126
7127out_msr_bitmap:
7128 return -ENOMEM;
7129}
7130
ec378aee
NHE
7131/*
7132 * Emulate the VMXON instruction.
7133 * Currently, we just remember that VMX is active, and do not save or even
7134 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7135 * do not currently need to store anything in that guest-allocated memory
7136 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7137 * argument is different from the VMXON pointer (which the spec says they do).
7138 */
7139static int handle_vmon(struct kvm_vcpu *vcpu)
7140{
e29acc55 7141 int ret;
cbf71279
RK
7142 gpa_t vmptr;
7143 struct page *page;
ec378aee 7144 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
7145 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7146 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee 7147
70f3aac9
JM
7148 /*
7149 * The Intel VMX Instruction Reference lists a bunch of bits that are
7150 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7151 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7152 * Otherwise, we should fail with #UD. But most faulting conditions
7153 * have already been checked by hardware, prior to the VM-exit for
7154 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7155 * that bit set to 1 in non-root mode.
ec378aee 7156 */
70f3aac9 7157 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
ec378aee
NHE
7158 kvm_queue_exception(vcpu, UD_VECTOR);
7159 return 1;
7160 }
7161
145c28dd
AG
7162 if (vmx->nested.vmxon) {
7163 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7164 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7165 }
b3897a49 7166
3b84080b 7167 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7168 != VMXON_NEEDED_FEATURES) {
7169 kvm_inject_gp(vcpu, 0);
7170 return 1;
7171 }
7172
cbf71279 7173 if (nested_vmx_get_vmptr(vcpu, &vmptr))
21e7fbe7 7174 return 1;
cbf71279
RK
7175
7176 /*
7177 * SDM 3: 24.11.5
7178 * The first 4 bytes of VMXON region contain the supported
7179 * VMCS revision identifier
7180 *
7181 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7182 * which replaces physical address width with 32
7183 */
7184 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7185 nested_vmx_failInvalid(vcpu);
7186 return kvm_skip_emulated_instruction(vcpu);
7187 }
7188
5e2f30b7
DH
7189 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7190 if (is_error_page(page)) {
cbf71279
RK
7191 nested_vmx_failInvalid(vcpu);
7192 return kvm_skip_emulated_instruction(vcpu);
7193 }
7194 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7195 kunmap(page);
53a70daf 7196 kvm_release_page_clean(page);
cbf71279
RK
7197 nested_vmx_failInvalid(vcpu);
7198 return kvm_skip_emulated_instruction(vcpu);
7199 }
7200 kunmap(page);
53a70daf 7201 kvm_release_page_clean(page);
cbf71279
RK
7202
7203 vmx->nested.vmxon_ptr = vmptr;
e29acc55
JM
7204 ret = enter_vmx_operation(vcpu);
7205 if (ret)
7206 return ret;
ec378aee 7207
a25eb114 7208 nested_vmx_succeed(vcpu);
6affcbed 7209 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7210}
7211
7212/*
7213 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7214 * for running VMX instructions (except VMXON, whose prerequisites are
7215 * slightly different). It also specifies what exception to inject otherwise.
70f3aac9
JM
7216 * Note that many of these exceptions have priority over VM exits, so they
7217 * don't have to be checked again here.
ec378aee
NHE
7218 */
7219static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7220{
70f3aac9 7221 if (!to_vmx(vcpu)->nested.vmxon) {
ec378aee
NHE
7222 kvm_queue_exception(vcpu, UD_VECTOR);
7223 return 0;
7224 }
ec378aee
NHE
7225 return 1;
7226}
7227
8ca44e88
DM
7228static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7229{
7230 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7231 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7232}
7233
e7953d7f
AG
7234static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7235{
9a2a05b9
PB
7236 if (vmx->nested.current_vmptr == -1ull)
7237 return;
7238
012f83cb 7239 if (enable_shadow_vmcs) {
9a2a05b9
PB
7240 /* copy to memory all shadowed fields in case
7241 they were modified */
7242 copy_shadow_to_vmcs12(vmx);
7243 vmx->nested.sync_shadow_vmcs = false;
8ca44e88 7244 vmx_disable_shadow_vmcs(vmx);
012f83cb 7245 }
705699a1 7246 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7247
7248 /* Flush VMCS12 to guest memory */
9f744c59
PB
7249 kvm_vcpu_write_guest_page(&vmx->vcpu,
7250 vmx->nested.current_vmptr >> PAGE_SHIFT,
7251 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4f2777bc 7252
9a2a05b9 7253 vmx->nested.current_vmptr = -1ull;
e7953d7f
AG
7254}
7255
ec378aee
NHE
7256/*
7257 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7258 * just stops using VMX.
7259 */
7260static void free_nested(struct vcpu_vmx *vmx)
7261{
7262 if (!vmx->nested.vmxon)
7263 return;
9a2a05b9 7264
ec378aee 7265 vmx->nested.vmxon = false;
5c614b35 7266 free_vpid(vmx->nested.vpid02);
8ca44e88
DM
7267 vmx->nested.posted_intr_nv = -1;
7268 vmx->nested.current_vmptr = -1ull;
d048c098
RK
7269 if (vmx->nested.msr_bitmap) {
7270 free_page((unsigned long)vmx->nested.msr_bitmap);
7271 vmx->nested.msr_bitmap = NULL;
7272 }
355f4fb1 7273 if (enable_shadow_vmcs) {
8ca44e88 7274 vmx_disable_shadow_vmcs(vmx);
355f4fb1
JM
7275 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7276 free_vmcs(vmx->vmcs01.shadow_vmcs);
7277 vmx->vmcs01.shadow_vmcs = NULL;
7278 }
4f2777bc 7279 kfree(vmx->nested.cached_vmcs12);
fe3ef05c
NHE
7280 /* Unpin physical memory we referred to in current vmcs02 */
7281 if (vmx->nested.apic_access_page) {
53a70daf 7282 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 7283 vmx->nested.apic_access_page = NULL;
fe3ef05c 7284 }
a7c0b07d 7285 if (vmx->nested.virtual_apic_page) {
53a70daf 7286 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 7287 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7288 }
705699a1
WV
7289 if (vmx->nested.pi_desc_page) {
7290 kunmap(vmx->nested.pi_desc_page);
53a70daf 7291 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
7292 vmx->nested.pi_desc_page = NULL;
7293 vmx->nested.pi_desc = NULL;
7294 }
ff2f6fe9
NHE
7295
7296 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
7297}
7298
7299/* Emulate the VMXOFF instruction */
7300static int handle_vmoff(struct kvm_vcpu *vcpu)
7301{
7302 if (!nested_vmx_check_permission(vcpu))
7303 return 1;
7304 free_nested(to_vmx(vcpu));
a25eb114 7305 nested_vmx_succeed(vcpu);
6affcbed 7306 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7307}
7308
27d6c865
NHE
7309/* Emulate the VMCLEAR instruction */
7310static int handle_vmclear(struct kvm_vcpu *vcpu)
7311{
7312 struct vcpu_vmx *vmx = to_vmx(vcpu);
587d7e72 7313 u32 zero = 0;
27d6c865 7314 gpa_t vmptr;
27d6c865
NHE
7315
7316 if (!nested_vmx_check_permission(vcpu))
7317 return 1;
7318
cbf71279 7319 if (nested_vmx_get_vmptr(vcpu, &vmptr))
27d6c865 7320 return 1;
27d6c865 7321
cbf71279
RK
7322 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7323 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7324 return kvm_skip_emulated_instruction(vcpu);
7325 }
7326
7327 if (vmptr == vmx->nested.vmxon_ptr) {
7328 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7329 return kvm_skip_emulated_instruction(vcpu);
7330 }
7331
9a2a05b9 7332 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7333 nested_release_vmcs12(vmx);
27d6c865 7334
587d7e72
JM
7335 kvm_vcpu_write_guest(vcpu,
7336 vmptr + offsetof(struct vmcs12, launch_state),
7337 &zero, sizeof(zero));
27d6c865
NHE
7338
7339 nested_free_vmcs02(vmx, vmptr);
7340
27d6c865 7341 nested_vmx_succeed(vcpu);
6affcbed 7342 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7343}
7344
cd232ad0
NHE
7345static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7346
7347/* Emulate the VMLAUNCH instruction */
7348static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7349{
7350 return nested_vmx_run(vcpu, true);
7351}
7352
7353/* Emulate the VMRESUME instruction */
7354static int handle_vmresume(struct kvm_vcpu *vcpu)
7355{
7356
7357 return nested_vmx_run(vcpu, false);
7358}
7359
49f705c5
NHE
7360/*
7361 * Read a vmcs12 field. Since these can have varying lengths and we return
7362 * one type, we chose the biggest type (u64) and zero-extend the return value
7363 * to that size. Note that the caller, handle_vmread, might need to use only
7364 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7365 * 64-bit fields are to be returned).
7366 */
a2ae9df7
PB
7367static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7368 unsigned long field, u64 *ret)
49f705c5
NHE
7369{
7370 short offset = vmcs_field_to_offset(field);
7371 char *p;
7372
7373 if (offset < 0)
a2ae9df7 7374 return offset;
49f705c5
NHE
7375
7376 p = ((char *)(get_vmcs12(vcpu))) + offset;
7377
7378 switch (vmcs_field_type(field)) {
7379 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7380 *ret = *((natural_width *)p);
a2ae9df7 7381 return 0;
49f705c5
NHE
7382 case VMCS_FIELD_TYPE_U16:
7383 *ret = *((u16 *)p);
a2ae9df7 7384 return 0;
49f705c5
NHE
7385 case VMCS_FIELD_TYPE_U32:
7386 *ret = *((u32 *)p);
a2ae9df7 7387 return 0;
49f705c5
NHE
7388 case VMCS_FIELD_TYPE_U64:
7389 *ret = *((u64 *)p);
a2ae9df7 7390 return 0;
49f705c5 7391 default:
a2ae9df7
PB
7392 WARN_ON(1);
7393 return -ENOENT;
49f705c5
NHE
7394 }
7395}
7396
20b97fea 7397
a2ae9df7
PB
7398static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7399 unsigned long field, u64 field_value){
20b97fea
AG
7400 short offset = vmcs_field_to_offset(field);
7401 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7402 if (offset < 0)
a2ae9df7 7403 return offset;
20b97fea
AG
7404
7405 switch (vmcs_field_type(field)) {
7406 case VMCS_FIELD_TYPE_U16:
7407 *(u16 *)p = field_value;
a2ae9df7 7408 return 0;
20b97fea
AG
7409 case VMCS_FIELD_TYPE_U32:
7410 *(u32 *)p = field_value;
a2ae9df7 7411 return 0;
20b97fea
AG
7412 case VMCS_FIELD_TYPE_U64:
7413 *(u64 *)p = field_value;
a2ae9df7 7414 return 0;
20b97fea
AG
7415 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7416 *(natural_width *)p = field_value;
a2ae9df7 7417 return 0;
20b97fea 7418 default:
a2ae9df7
PB
7419 WARN_ON(1);
7420 return -ENOENT;
20b97fea
AG
7421 }
7422
7423}
7424
16f5b903
AG
7425static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7426{
7427 int i;
7428 unsigned long field;
7429 u64 field_value;
355f4fb1 7430 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c2bae893
MK
7431 const unsigned long *fields = shadow_read_write_fields;
7432 const int num_fields = max_shadow_read_write_fields;
16f5b903 7433
282da870
JK
7434 preempt_disable();
7435
16f5b903
AG
7436 vmcs_load(shadow_vmcs);
7437
7438 for (i = 0; i < num_fields; i++) {
7439 field = fields[i];
7440 switch (vmcs_field_type(field)) {
7441 case VMCS_FIELD_TYPE_U16:
7442 field_value = vmcs_read16(field);
7443 break;
7444 case VMCS_FIELD_TYPE_U32:
7445 field_value = vmcs_read32(field);
7446 break;
7447 case VMCS_FIELD_TYPE_U64:
7448 field_value = vmcs_read64(field);
7449 break;
7450 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7451 field_value = vmcs_readl(field);
7452 break;
a2ae9df7
PB
7453 default:
7454 WARN_ON(1);
7455 continue;
16f5b903
AG
7456 }
7457 vmcs12_write_any(&vmx->vcpu, field, field_value);
7458 }
7459
7460 vmcs_clear(shadow_vmcs);
7461 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7462
7463 preempt_enable();
16f5b903
AG
7464}
7465
c3114420
AG
7466static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7467{
c2bae893
MK
7468 const unsigned long *fields[] = {
7469 shadow_read_write_fields,
7470 shadow_read_only_fields
c3114420 7471 };
c2bae893 7472 const int max_fields[] = {
c3114420
AG
7473 max_shadow_read_write_fields,
7474 max_shadow_read_only_fields
7475 };
7476 int i, q;
7477 unsigned long field;
7478 u64 field_value = 0;
355f4fb1 7479 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7480
7481 vmcs_load(shadow_vmcs);
7482
c2bae893 7483 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7484 for (i = 0; i < max_fields[q]; i++) {
7485 field = fields[q][i];
7486 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7487
7488 switch (vmcs_field_type(field)) {
7489 case VMCS_FIELD_TYPE_U16:
7490 vmcs_write16(field, (u16)field_value);
7491 break;
7492 case VMCS_FIELD_TYPE_U32:
7493 vmcs_write32(field, (u32)field_value);
7494 break;
7495 case VMCS_FIELD_TYPE_U64:
7496 vmcs_write64(field, (u64)field_value);
7497 break;
7498 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7499 vmcs_writel(field, (long)field_value);
7500 break;
a2ae9df7
PB
7501 default:
7502 WARN_ON(1);
7503 break;
c3114420
AG
7504 }
7505 }
7506 }
7507
7508 vmcs_clear(shadow_vmcs);
7509 vmcs_load(vmx->loaded_vmcs->vmcs);
7510}
7511
49f705c5
NHE
7512/*
7513 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7514 * used before) all generate the same failure when it is missing.
7515 */
7516static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7517{
7518 struct vcpu_vmx *vmx = to_vmx(vcpu);
7519 if (vmx->nested.current_vmptr == -1ull) {
7520 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7521 return 0;
7522 }
7523 return 1;
7524}
7525
7526static int handle_vmread(struct kvm_vcpu *vcpu)
7527{
7528 unsigned long field;
7529 u64 field_value;
7530 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7531 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7532 gva_t gva = 0;
7533
eb277562 7534 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7535 return 1;
7536
6affcbed
KH
7537 if (!nested_vmx_check_vmcs12(vcpu))
7538 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7539
7540 /* Decode instruction info and find the field to read */
27e6fb5d 7541 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7542 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7543 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 7544 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7545 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7546 }
7547 /*
7548 * Now copy part of this value to register or memory, as requested.
7549 * Note that the number of bits actually copied is 32 or 64 depending
7550 * on the guest's mode (32 or 64 bit), not on the given field's length.
7551 */
7552 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7553 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7554 field_value);
7555 } else {
7556 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7557 vmx_instruction_info, true, &gva))
49f705c5 7558 return 1;
70f3aac9 7559 /* _system ok, as hardware has verified cpl=0 */
49f705c5
NHE
7560 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7561 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7562 }
7563
7564 nested_vmx_succeed(vcpu);
6affcbed 7565 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7566}
7567
7568
7569static int handle_vmwrite(struct kvm_vcpu *vcpu)
7570{
7571 unsigned long field;
7572 gva_t gva;
7573 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7574 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7575 /* The value to write might be 32 or 64 bits, depending on L1's long
7576 * mode, and eventually we need to write that into a field of several
7577 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7578 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7579 * bits into the vmcs12 field.
7580 */
7581 u64 field_value = 0;
7582 struct x86_exception e;
7583
eb277562 7584 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7585 return 1;
7586
6affcbed
KH
7587 if (!nested_vmx_check_vmcs12(vcpu))
7588 return kvm_skip_emulated_instruction(vcpu);
eb277562 7589
49f705c5 7590 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7591 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7592 (((vmx_instruction_info) >> 3) & 0xf));
7593 else {
7594 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7595 vmx_instruction_info, false, &gva))
49f705c5
NHE
7596 return 1;
7597 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7598 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7599 kvm_inject_page_fault(vcpu, &e);
7600 return 1;
7601 }
7602 }
7603
7604
27e6fb5d 7605 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7606 if (vmcs_field_readonly(field)) {
7607 nested_vmx_failValid(vcpu,
7608 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 7609 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7610 }
7611
a2ae9df7 7612 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 7613 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7614 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7615 }
7616
7617 nested_vmx_succeed(vcpu);
6affcbed 7618 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7619}
7620
a8bc284e
JM
7621static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7622{
7623 vmx->nested.current_vmptr = vmptr;
7624 if (enable_shadow_vmcs) {
7625 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7626 SECONDARY_EXEC_SHADOW_VMCS);
7627 vmcs_write64(VMCS_LINK_POINTER,
7628 __pa(vmx->vmcs01.shadow_vmcs));
7629 vmx->nested.sync_shadow_vmcs = true;
7630 }
7631}
7632
63846663
NHE
7633/* Emulate the VMPTRLD instruction */
7634static int handle_vmptrld(struct kvm_vcpu *vcpu)
7635{
7636 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7637 gpa_t vmptr;
63846663
NHE
7638
7639 if (!nested_vmx_check_permission(vcpu))
7640 return 1;
7641
cbf71279 7642 if (nested_vmx_get_vmptr(vcpu, &vmptr))
63846663 7643 return 1;
63846663 7644
cbf71279
RK
7645 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7646 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7647 return kvm_skip_emulated_instruction(vcpu);
7648 }
7649
7650 if (vmptr == vmx->nested.vmxon_ptr) {
7651 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7652 return kvm_skip_emulated_instruction(vcpu);
7653 }
7654
63846663
NHE
7655 if (vmx->nested.current_vmptr != vmptr) {
7656 struct vmcs12 *new_vmcs12;
7657 struct page *page;
5e2f30b7
DH
7658 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7659 if (is_error_page(page)) {
63846663 7660 nested_vmx_failInvalid(vcpu);
6affcbed 7661 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7662 }
7663 new_vmcs12 = kmap(page);
7664 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7665 kunmap(page);
53a70daf 7666 kvm_release_page_clean(page);
63846663
NHE
7667 nested_vmx_failValid(vcpu,
7668 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 7669 return kvm_skip_emulated_instruction(vcpu);
63846663 7670 }
63846663 7671
9a2a05b9 7672 nested_release_vmcs12(vmx);
4f2777bc
DM
7673 /*
7674 * Load VMCS12 from guest memory since it is not already
7675 * cached.
7676 */
9f744c59
PB
7677 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7678 kunmap(page);
53a70daf 7679 kvm_release_page_clean(page);
9f744c59 7680
a8bc284e 7681 set_current_vmptr(vmx, vmptr);
63846663
NHE
7682 }
7683
7684 nested_vmx_succeed(vcpu);
6affcbed 7685 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7686}
7687
6a4d7550
NHE
7688/* Emulate the VMPTRST instruction */
7689static int handle_vmptrst(struct kvm_vcpu *vcpu)
7690{
7691 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7692 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7693 gva_t vmcs_gva;
7694 struct x86_exception e;
7695
7696 if (!nested_vmx_check_permission(vcpu))
7697 return 1;
7698
7699 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7700 vmx_instruction_info, true, &vmcs_gva))
6a4d7550 7701 return 1;
70f3aac9 7702 /* ok to use *_system, as hardware has verified cpl=0 */
6a4d7550
NHE
7703 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7704 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7705 sizeof(u64), &e)) {
7706 kvm_inject_page_fault(vcpu, &e);
7707 return 1;
7708 }
7709 nested_vmx_succeed(vcpu);
6affcbed 7710 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
7711}
7712
bfd0a56b
NHE
7713/* Emulate the INVEPT instruction */
7714static int handle_invept(struct kvm_vcpu *vcpu)
7715{
b9c237bb 7716 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7717 u32 vmx_instruction_info, types;
7718 unsigned long type;
7719 gva_t gva;
7720 struct x86_exception e;
7721 struct {
7722 u64 eptp, gpa;
7723 } operand;
bfd0a56b 7724
b9c237bb
WV
7725 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7726 SECONDARY_EXEC_ENABLE_EPT) ||
7727 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7728 kvm_queue_exception(vcpu, UD_VECTOR);
7729 return 1;
7730 }
7731
7732 if (!nested_vmx_check_permission(vcpu))
7733 return 1;
7734
bfd0a56b 7735 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7736 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7737
b9c237bb 7738 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 7739
85c856b3 7740 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
7741 nested_vmx_failValid(vcpu,
7742 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7743 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7744 }
7745
7746 /* According to the Intel VMX instruction reference, the memory
7747 * operand is read even if it isn't needed (e.g., for type==global)
7748 */
7749 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7750 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7751 return 1;
7752 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7753 sizeof(operand), &e)) {
7754 kvm_inject_page_fault(vcpu, &e);
7755 return 1;
7756 }
7757
7758 switch (type) {
bfd0a56b 7759 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7760 /*
7761 * TODO: track mappings and invalidate
7762 * single context requests appropriately
7763 */
7764 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7765 kvm_mmu_sync_roots(vcpu);
77c3913b 7766 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7767 nested_vmx_succeed(vcpu);
7768 break;
7769 default:
7770 BUG_ON(1);
7771 break;
7772 }
7773
6affcbed 7774 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7775}
7776
a642fc30
PM
7777static int handle_invvpid(struct kvm_vcpu *vcpu)
7778{
99b83ac8
WL
7779 struct vcpu_vmx *vmx = to_vmx(vcpu);
7780 u32 vmx_instruction_info;
7781 unsigned long type, types;
7782 gva_t gva;
7783 struct x86_exception e;
40352605
JM
7784 struct {
7785 u64 vpid;
7786 u64 gla;
7787 } operand;
99b83ac8
WL
7788
7789 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7790 SECONDARY_EXEC_ENABLE_VPID) ||
7791 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7792 kvm_queue_exception(vcpu, UD_VECTOR);
7793 return 1;
7794 }
7795
7796 if (!nested_vmx_check_permission(vcpu))
7797 return 1;
7798
7799 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7800 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7801
bcdde302
JD
7802 types = (vmx->nested.nested_vmx_vpid_caps &
7803 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 7804
85c856b3 7805 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
7806 nested_vmx_failValid(vcpu,
7807 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7808 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7809 }
7810
7811 /* according to the intel vmx instruction reference, the memory
7812 * operand is read even if it isn't needed (e.g., for type==global)
7813 */
7814 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7815 vmx_instruction_info, false, &gva))
7816 return 1;
40352605
JM
7817 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7818 sizeof(operand), &e)) {
99b83ac8
WL
7819 kvm_inject_page_fault(vcpu, &e);
7820 return 1;
7821 }
40352605
JM
7822 if (operand.vpid >> 16) {
7823 nested_vmx_failValid(vcpu,
7824 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7825 return kvm_skip_emulated_instruction(vcpu);
7826 }
99b83ac8
WL
7827
7828 switch (type) {
bcdde302 7829 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
40352605
JM
7830 if (is_noncanonical_address(operand.gla)) {
7831 nested_vmx_failValid(vcpu,
7832 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7833 return kvm_skip_emulated_instruction(vcpu);
7834 }
7835 /* fall through */
ef697a71 7836 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302 7837 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
40352605 7838 if (!operand.vpid) {
bcdde302
JD
7839 nested_vmx_failValid(vcpu,
7840 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7841 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
7842 }
7843 break;
99b83ac8 7844 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
7845 break;
7846 default:
bcdde302 7847 WARN_ON_ONCE(1);
6affcbed 7848 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7849 }
7850
bcdde302
JD
7851 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7852 nested_vmx_succeed(vcpu);
7853
6affcbed 7854 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
7855}
7856
843e4330
KH
7857static int handle_pml_full(struct kvm_vcpu *vcpu)
7858{
7859 unsigned long exit_qualification;
7860
7861 trace_kvm_pml_full(vcpu->vcpu_id);
7862
7863 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7864
7865 /*
7866 * PML buffer FULL happened while executing iret from NMI,
7867 * "blocked by NMI" bit has to be set before next VM entry.
7868 */
7869 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
843e4330
KH
7870 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7871 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7872 GUEST_INTR_STATE_NMI);
7873
7874 /*
7875 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7876 * here.., and there's no userspace involvement needed for PML.
7877 */
7878 return 1;
7879}
7880
64672c95
YJ
7881static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7882{
7883 kvm_lapic_expired_hv_timer(vcpu);
7884 return 1;
7885}
7886
41ab9372
BD
7887static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
7888{
7889 struct vcpu_vmx *vmx = to_vmx(vcpu);
7890 u64 mask = address & 0x7;
7891 int maxphyaddr = cpuid_maxphyaddr(vcpu);
7892
7893 /* Check for memory type validity */
7894 switch (mask) {
7895 case 0:
7896 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
7897 return false;
7898 break;
7899 case 6:
7900 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
7901 return false;
7902 break;
7903 default:
7904 return false;
7905 }
7906
7907 /* Bits 5:3 must be 3 */
7908 if (((address >> VMX_EPT_GAW_EPTP_SHIFT) & 0x7) != VMX_EPT_DEFAULT_GAW)
7909 return false;
7910
7911 /* Reserved bits should not be set */
7912 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
7913 return false;
7914
7915 /* AD, if set, should be supported */
7916 if ((address & VMX_EPT_AD_ENABLE_BIT)) {
7917 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
7918 return false;
7919 }
7920
7921 return true;
7922}
7923
7924static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
7925 struct vmcs12 *vmcs12)
7926{
7927 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
7928 u64 address;
7929 bool accessed_dirty;
7930 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7931
7932 if (!nested_cpu_has_eptp_switching(vmcs12) ||
7933 !nested_cpu_has_ept(vmcs12))
7934 return 1;
7935
7936 if (index >= VMFUNC_EPTP_ENTRIES)
7937 return 1;
7938
7939
7940 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
7941 &address, index * 8, 8))
7942 return 1;
7943
7944 accessed_dirty = !!(address & VMX_EPT_AD_ENABLE_BIT);
7945
7946 /*
7947 * If the (L2) guest does a vmfunc to the currently
7948 * active ept pointer, we don't have to do anything else
7949 */
7950 if (vmcs12->ept_pointer != address) {
7951 if (!valid_ept_address(vcpu, address))
7952 return 1;
7953
7954 kvm_mmu_unload(vcpu);
7955 mmu->ept_ad = accessed_dirty;
7956 mmu->base_role.ad_disabled = !accessed_dirty;
7957 vmcs12->ept_pointer = address;
7958 /*
7959 * TODO: Check what's the correct approach in case
7960 * mmu reload fails. Currently, we just let the next
7961 * reload potentially fail
7962 */
7963 kvm_mmu_reload(vcpu);
7964 }
7965
7966 return 0;
7967}
7968
2a499e49
BD
7969static int handle_vmfunc(struct kvm_vcpu *vcpu)
7970{
27c42a1b
BD
7971 struct vcpu_vmx *vmx = to_vmx(vcpu);
7972 struct vmcs12 *vmcs12;
7973 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
7974
7975 /*
7976 * VMFUNC is only supported for nested guests, but we always enable the
7977 * secondary control for simplicity; for non-nested mode, fake that we
7978 * didn't by injecting #UD.
7979 */
7980 if (!is_guest_mode(vcpu)) {
7981 kvm_queue_exception(vcpu, UD_VECTOR);
7982 return 1;
7983 }
7984
7985 vmcs12 = get_vmcs12(vcpu);
7986 if ((vmcs12->vm_function_control & (1 << function)) == 0)
7987 goto fail;
41ab9372
BD
7988
7989 switch (function) {
7990 case 0:
7991 if (nested_vmx_eptp_switching(vcpu, vmcs12))
7992 goto fail;
7993 break;
7994 default:
7995 goto fail;
7996 }
7997 return kvm_skip_emulated_instruction(vcpu);
27c42a1b
BD
7998
7999fail:
8000 nested_vmx_vmexit(vcpu, vmx->exit_reason,
8001 vmcs_read32(VM_EXIT_INTR_INFO),
8002 vmcs_readl(EXIT_QUALIFICATION));
2a499e49
BD
8003 return 1;
8004}
8005
6aa8b732
AK
8006/*
8007 * The exit handlers return 1 if the exit was handled fully and guest execution
8008 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8009 * to be done to userspace and return 0.
8010 */
772e0318 8011static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
8012 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8013 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 8014 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 8015 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 8016 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
8017 [EXIT_REASON_CR_ACCESS] = handle_cr,
8018 [EXIT_REASON_DR_ACCESS] = handle_dr,
8019 [EXIT_REASON_CPUID] = handle_cpuid,
8020 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8021 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8022 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8023 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 8024 [EXIT_REASON_INVD] = handle_invd,
a7052897 8025 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 8026 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 8027 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 8028 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 8029 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 8030 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 8031 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 8032 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 8033 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 8034 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
8035 [EXIT_REASON_VMOFF] = handle_vmoff,
8036 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
8037 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8038 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 8039 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 8040 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 8041 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 8042 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 8043 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 8044 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
8045 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8046 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 8047 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 8048 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 8049 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 8050 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 8051 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 8052 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
8053 [EXIT_REASON_XSAVES] = handle_xsaves,
8054 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 8055 [EXIT_REASON_PML_FULL] = handle_pml_full,
2a499e49 8056 [EXIT_REASON_VMFUNC] = handle_vmfunc,
64672c95 8057 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
8058};
8059
8060static const int kvm_vmx_max_exit_handlers =
50a3485c 8061 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 8062
908a7bdd
JK
8063static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8064 struct vmcs12 *vmcs12)
8065{
8066 unsigned long exit_qualification;
8067 gpa_t bitmap, last_bitmap;
8068 unsigned int port;
8069 int size;
8070 u8 b;
8071
908a7bdd 8072 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 8073 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
8074
8075 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8076
8077 port = exit_qualification >> 16;
8078 size = (exit_qualification & 7) + 1;
8079
8080 last_bitmap = (gpa_t)-1;
8081 b = -1;
8082
8083 while (size > 0) {
8084 if (port < 0x8000)
8085 bitmap = vmcs12->io_bitmap_a;
8086 else if (port < 0x10000)
8087 bitmap = vmcs12->io_bitmap_b;
8088 else
1d804d07 8089 return true;
908a7bdd
JK
8090 bitmap += (port & 0x7fff) / 8;
8091
8092 if (last_bitmap != bitmap)
54bf36aa 8093 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 8094 return true;
908a7bdd 8095 if (b & (1 << (port & 7)))
1d804d07 8096 return true;
908a7bdd
JK
8097
8098 port++;
8099 size--;
8100 last_bitmap = bitmap;
8101 }
8102
1d804d07 8103 return false;
908a7bdd
JK
8104}
8105
644d711a
NHE
8106/*
8107 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8108 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8109 * disinterest in the current event (read or write a specific MSR) by using an
8110 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8111 */
8112static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8113 struct vmcs12 *vmcs12, u32 exit_reason)
8114{
8115 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8116 gpa_t bitmap;
8117
cbd29cb6 8118 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 8119 return true;
644d711a
NHE
8120
8121 /*
8122 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8123 * for the four combinations of read/write and low/high MSR numbers.
8124 * First we need to figure out which of the four to use:
8125 */
8126 bitmap = vmcs12->msr_bitmap;
8127 if (exit_reason == EXIT_REASON_MSR_WRITE)
8128 bitmap += 2048;
8129 if (msr_index >= 0xc0000000) {
8130 msr_index -= 0xc0000000;
8131 bitmap += 1024;
8132 }
8133
8134 /* Then read the msr_index'th bit from this bitmap: */
8135 if (msr_index < 1024*8) {
8136 unsigned char b;
54bf36aa 8137 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 8138 return true;
644d711a
NHE
8139 return 1 & (b >> (msr_index & 7));
8140 } else
1d804d07 8141 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
8142}
8143
8144/*
8145 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8146 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8147 * intercept (via guest_host_mask etc.) the current event.
8148 */
8149static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8150 struct vmcs12 *vmcs12)
8151{
8152 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8153 int cr = exit_qualification & 15;
e1d39b17
JS
8154 int reg;
8155 unsigned long val;
644d711a
NHE
8156
8157 switch ((exit_qualification >> 4) & 3) {
8158 case 0: /* mov to cr */
e1d39b17
JS
8159 reg = (exit_qualification >> 8) & 15;
8160 val = kvm_register_readl(vcpu, reg);
644d711a
NHE
8161 switch (cr) {
8162 case 0:
8163 if (vmcs12->cr0_guest_host_mask &
8164 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8165 return true;
644d711a
NHE
8166 break;
8167 case 3:
8168 if ((vmcs12->cr3_target_count >= 1 &&
8169 vmcs12->cr3_target_value0 == val) ||
8170 (vmcs12->cr3_target_count >= 2 &&
8171 vmcs12->cr3_target_value1 == val) ||
8172 (vmcs12->cr3_target_count >= 3 &&
8173 vmcs12->cr3_target_value2 == val) ||
8174 (vmcs12->cr3_target_count >= 4 &&
8175 vmcs12->cr3_target_value3 == val))
1d804d07 8176 return false;
644d711a 8177 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 8178 return true;
644d711a
NHE
8179 break;
8180 case 4:
8181 if (vmcs12->cr4_guest_host_mask &
8182 (vmcs12->cr4_read_shadow ^ val))
1d804d07 8183 return true;
644d711a
NHE
8184 break;
8185 case 8:
8186 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 8187 return true;
644d711a
NHE
8188 break;
8189 }
8190 break;
8191 case 2: /* clts */
8192 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8193 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 8194 return true;
644d711a
NHE
8195 break;
8196 case 1: /* mov from cr */
8197 switch (cr) {
8198 case 3:
8199 if (vmcs12->cpu_based_vm_exec_control &
8200 CPU_BASED_CR3_STORE_EXITING)
1d804d07 8201 return true;
644d711a
NHE
8202 break;
8203 case 8:
8204 if (vmcs12->cpu_based_vm_exec_control &
8205 CPU_BASED_CR8_STORE_EXITING)
1d804d07 8206 return true;
644d711a
NHE
8207 break;
8208 }
8209 break;
8210 case 3: /* lmsw */
8211 /*
8212 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8213 * cr0. Other attempted changes are ignored, with no exit.
8214 */
e1d39b17 8215 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
644d711a
NHE
8216 if (vmcs12->cr0_guest_host_mask & 0xe &
8217 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8218 return true;
644d711a
NHE
8219 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8220 !(vmcs12->cr0_read_shadow & 0x1) &&
8221 (val & 0x1))
1d804d07 8222 return true;
644d711a
NHE
8223 break;
8224 }
1d804d07 8225 return false;
644d711a
NHE
8226}
8227
8228/*
8229 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8230 * should handle it ourselves in L0 (and then continue L2). Only call this
8231 * when in is_guest_mode (L2).
8232 */
7313c698 8233static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
644d711a 8234{
644d711a
NHE
8235 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8236 struct vcpu_vmx *vmx = to_vmx(vcpu);
8237 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8238
542060ea
JK
8239 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8240 vmcs_readl(EXIT_QUALIFICATION),
8241 vmx->idt_vectoring_info,
8242 intr_info,
8243 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8244 KVM_ISA_VMX);
8245
c9f04407
DM
8246 /*
8247 * The host physical addresses of some pages of guest memory
8248 * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8249 * may write to these pages via their host physical address while
8250 * L2 is running, bypassing any address-translation-based dirty
8251 * tracking (e.g. EPT write protection).
8252 *
8253 * Mark them dirty on every exit from L2 to prevent them from
8254 * getting out of sync with dirty tracking.
8255 */
8256 nested_mark_vmcs12_pages_dirty(vcpu);
8257
644d711a 8258 if (vmx->nested.nested_run_pending)
1d804d07 8259 return false;
644d711a
NHE
8260
8261 if (unlikely(vmx->fail)) {
bd80158a
JK
8262 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8263 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 8264 return true;
644d711a
NHE
8265 }
8266
8267 switch (exit_reason) {
8268 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8269 if (is_nmi(intr_info))
1d804d07 8270 return false;
644d711a 8271 else if (is_page_fault(intr_info))
52a5c155 8272 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
e504c909 8273 else if (is_no_device(intr_info) &&
ccf9844e 8274 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8275 return false;
6f05485d
JK
8276 else if (is_debug(intr_info) &&
8277 vcpu->guest_debug &
8278 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8279 return false;
8280 else if (is_breakpoint(intr_info) &&
8281 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8282 return false;
644d711a
NHE
8283 return vmcs12->exception_bitmap &
8284 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8285 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8286 return false;
644d711a 8287 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8288 return true;
644d711a 8289 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8290 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8291 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8292 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8293 case EXIT_REASON_TASK_SWITCH:
1d804d07 8294 return true;
644d711a 8295 case EXIT_REASON_CPUID:
1d804d07 8296 return true;
644d711a
NHE
8297 case EXIT_REASON_HLT:
8298 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8299 case EXIT_REASON_INVD:
1d804d07 8300 return true;
644d711a
NHE
8301 case EXIT_REASON_INVLPG:
8302 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8303 case EXIT_REASON_RDPMC:
8304 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
a5f46457
PB
8305 case EXIT_REASON_RDRAND:
8306 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8307 case EXIT_REASON_RDSEED:
8308 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
b3a2a907 8309 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8310 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8311 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8312 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8313 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8314 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8315 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8316 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8317 /*
8318 * VMX instructions trap unconditionally. This allows L1 to
8319 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8320 */
1d804d07 8321 return true;
644d711a
NHE
8322 case EXIT_REASON_CR_ACCESS:
8323 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8324 case EXIT_REASON_DR_ACCESS:
8325 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8326 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8327 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8328 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8329 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8330 case EXIT_REASON_MSR_READ:
8331 case EXIT_REASON_MSR_WRITE:
8332 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8333 case EXIT_REASON_INVALID_STATE:
1d804d07 8334 return true;
644d711a
NHE
8335 case EXIT_REASON_MWAIT_INSTRUCTION:
8336 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8337 case EXIT_REASON_MONITOR_TRAP_FLAG:
8338 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8339 case EXIT_REASON_MONITOR_INSTRUCTION:
8340 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8341 case EXIT_REASON_PAUSE_INSTRUCTION:
8342 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8343 nested_cpu_has2(vmcs12,
8344 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8345 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8346 return false;
644d711a 8347 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8348 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8349 case EXIT_REASON_APIC_ACCESS:
8350 return nested_cpu_has2(vmcs12,
8351 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8352 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8353 case EXIT_REASON_EOI_INDUCED:
8354 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8355 return true;
644d711a 8356 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8357 /*
8358 * L0 always deals with the EPT violation. If nested EPT is
8359 * used, and the nested mmu code discovers that the address is
8360 * missing in the guest EPT table (EPT12), the EPT violation
8361 * will be injected with nested_ept_inject_page_fault()
8362 */
1d804d07 8363 return false;
644d711a 8364 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8365 /*
8366 * L2 never uses directly L1's EPT, but rather L0's own EPT
8367 * table (shadow on EPT) or a merged EPT table that L0 built
8368 * (EPT on EPT). So any problems with the structure of the
8369 * table is L0's fault.
8370 */
1d804d07 8371 return false;
90a2db6d
PB
8372 case EXIT_REASON_INVPCID:
8373 return
8374 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8375 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
644d711a
NHE
8376 case EXIT_REASON_WBINVD:
8377 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8378 case EXIT_REASON_XSETBV:
1d804d07 8379 return true;
81dc01f7
WL
8380 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8381 /*
8382 * This should never happen, since it is not possible to
8383 * set XSS to a non-zero value---neither in L1 nor in L2.
8384 * If if it were, XSS would have to be checked against
8385 * the XSS exit bitmap in vmcs12.
8386 */
8387 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8388 case EXIT_REASON_PREEMPTION_TIMER:
8389 return false;
ab007cc9 8390 case EXIT_REASON_PML_FULL:
03efce6f 8391 /* We emulate PML support to L1. */
ab007cc9 8392 return false;
2a499e49
BD
8393 case EXIT_REASON_VMFUNC:
8394 /* VM functions are emulated through L2->L0 vmexits. */
8395 return false;
644d711a 8396 default:
1d804d07 8397 return true;
644d711a
NHE
8398 }
8399}
8400
7313c698
PB
8401static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8402{
8403 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8404
8405 /*
8406 * At this point, the exit interruption info in exit_intr_info
8407 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8408 * we need to query the in-kernel LAPIC.
8409 */
8410 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8411 if ((exit_intr_info &
8412 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8413 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8414 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8415 vmcs12->vm_exit_intr_error_code =
8416 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8417 }
8418
8419 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8420 vmcs_readl(EXIT_QUALIFICATION));
8421 return 1;
8422}
8423
586f9607
AK
8424static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8425{
8426 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8427 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8428}
8429
a3eaa864 8430static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8431{
a3eaa864
KH
8432 if (vmx->pml_pg) {
8433 __free_page(vmx->pml_pg);
8434 vmx->pml_pg = NULL;
8435 }
843e4330
KH
8436}
8437
54bf36aa 8438static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8439{
54bf36aa 8440 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8441 u64 *pml_buf;
8442 u16 pml_idx;
8443
8444 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8445
8446 /* Do nothing if PML buffer is empty */
8447 if (pml_idx == (PML_ENTITY_NUM - 1))
8448 return;
8449
8450 /* PML index always points to next available PML buffer entity */
8451 if (pml_idx >= PML_ENTITY_NUM)
8452 pml_idx = 0;
8453 else
8454 pml_idx++;
8455
8456 pml_buf = page_address(vmx->pml_pg);
8457 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8458 u64 gpa;
8459
8460 gpa = pml_buf[pml_idx];
8461 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8462 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8463 }
8464
8465 /* reset PML index */
8466 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8467}
8468
8469/*
8470 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8471 * Called before reporting dirty_bitmap to userspace.
8472 */
8473static void kvm_flush_pml_buffers(struct kvm *kvm)
8474{
8475 int i;
8476 struct kvm_vcpu *vcpu;
8477 /*
8478 * We only need to kick vcpu out of guest mode here, as PML buffer
8479 * is flushed at beginning of all VMEXITs, and it's obvious that only
8480 * vcpus running in guest are possible to have unflushed GPAs in PML
8481 * buffer.
8482 */
8483 kvm_for_each_vcpu(i, vcpu, kvm)
8484 kvm_vcpu_kick(vcpu);
8485}
8486
4eb64dce
PB
8487static void vmx_dump_sel(char *name, uint32_t sel)
8488{
8489 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
96794e4e 8490 name, vmcs_read16(sel),
4eb64dce
PB
8491 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8492 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8493 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8494}
8495
8496static void vmx_dump_dtsel(char *name, uint32_t limit)
8497{
8498 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8499 name, vmcs_read32(limit),
8500 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8501}
8502
8503static void dump_vmcs(void)
8504{
8505 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8506 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8507 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8508 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8509 u32 secondary_exec_control = 0;
8510 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8511 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8512 int i, n;
8513
8514 if (cpu_has_secondary_exec_ctrls())
8515 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8516
8517 pr_err("*** Guest State ***\n");
8518 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8519 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8520 vmcs_readl(CR0_GUEST_HOST_MASK));
8521 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8522 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8523 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8524 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8525 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8526 {
845c5b40
PB
8527 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8528 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8529 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8530 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8531 }
8532 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8533 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8534 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8535 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8536 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8537 vmcs_readl(GUEST_SYSENTER_ESP),
8538 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8539 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8540 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8541 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8542 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8543 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8544 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8545 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8546 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8547 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8548 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8549 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8550 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8551 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8552 efer, vmcs_read64(GUEST_IA32_PAT));
8553 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8554 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8555 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8556 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8557 pr_err("PerfGlobCtl = 0x%016llx\n",
8558 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8559 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8560 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8561 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8562 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8563 vmcs_read32(GUEST_ACTIVITY_STATE));
8564 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8565 pr_err("InterruptStatus = %04x\n",
8566 vmcs_read16(GUEST_INTR_STATUS));
8567
8568 pr_err("*** Host State ***\n");
8569 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8570 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8571 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8572 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8573 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8574 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8575 vmcs_read16(HOST_TR_SELECTOR));
8576 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8577 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8578 vmcs_readl(HOST_TR_BASE));
8579 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8580 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8581 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8582 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8583 vmcs_readl(HOST_CR4));
8584 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8585 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8586 vmcs_read32(HOST_IA32_SYSENTER_CS),
8587 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8588 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8589 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8590 vmcs_read64(HOST_IA32_EFER),
8591 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8592 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8593 pr_err("PerfGlobCtl = 0x%016llx\n",
8594 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8595
8596 pr_err("*** Control State ***\n");
8597 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8598 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8599 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8600 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8601 vmcs_read32(EXCEPTION_BITMAP),
8602 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8603 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8604 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8605 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8606 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8607 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8608 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8609 vmcs_read32(VM_EXIT_INTR_INFO),
8610 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8611 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8612 pr_err(" reason=%08x qualification=%016lx\n",
8613 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8614 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8615 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8616 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8617 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8618 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8619 pr_err("TSC Multiplier = 0x%016llx\n",
8620 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8621 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8622 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8623 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8624 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8625 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8626 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8627 n = vmcs_read32(CR3_TARGET_COUNT);
8628 for (i = 0; i + 1 < n; i += 4)
8629 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8630 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8631 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8632 if (i < n)
8633 pr_err("CR3 target%u=%016lx\n",
8634 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8635 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8636 pr_err("PLE Gap=%08x Window=%08x\n",
8637 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8638 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8639 pr_err("Virtual processor ID = 0x%04x\n",
8640 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8641}
8642
6aa8b732
AK
8643/*
8644 * The guest has exited. See if we can fix it or if we need userspace
8645 * assistance.
8646 */
851ba692 8647static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8648{
29bd8a78 8649 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8650 u32 exit_reason = vmx->exit_reason;
1155f76a 8651 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8652
8b89fe1f 8653 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
db1c056c 8654 vcpu->arch.gpa_available = false;
8b89fe1f 8655
843e4330
KH
8656 /*
8657 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8658 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8659 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8660 * mode as if vcpus is in root mode, the PML buffer must has been
8661 * flushed already.
8662 */
8663 if (enable_pml)
54bf36aa 8664 vmx_flush_pml_buffer(vcpu);
843e4330 8665
80ced186 8666 /* If guest state is invalid, start emulating */
14168786 8667 if (vmx->emulation_required)
80ced186 8668 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8669
7313c698
PB
8670 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8671 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
644d711a 8672
5120702e 8673 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8674 dump_vmcs();
5120702e
MG
8675 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8676 vcpu->run->fail_entry.hardware_entry_failure_reason
8677 = exit_reason;
8678 return 0;
8679 }
8680
29bd8a78 8681 if (unlikely(vmx->fail)) {
851ba692
AK
8682 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8683 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8684 = vmcs_read32(VM_INSTRUCTION_ERROR);
8685 return 0;
8686 }
6aa8b732 8687
b9bf6882
XG
8688 /*
8689 * Note:
8690 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8691 * delivery event since it indicates guest is accessing MMIO.
8692 * The vm-exit can be triggered again after return to guest that
8693 * will cause infinite loop.
8694 */
d77c26fc 8695 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8696 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8697 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8698 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8699 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8700 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8701 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
70bcd708 8702 vcpu->run->internal.ndata = 3;
b9bf6882
XG
8703 vcpu->run->internal.data[0] = vectoring_info;
8704 vcpu->run->internal.data[1] = exit_reason;
70bcd708
PB
8705 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8706 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8707 vcpu->run->internal.ndata++;
8708 vcpu->run->internal.data[3] =
8709 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8710 }
b9bf6882
XG
8711 return 0;
8712 }
3b86cd99 8713
6aa8b732
AK
8714 if (exit_reason < kvm_vmx_max_exit_handlers
8715 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8716 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8717 else {
6c6c5e03
RK
8718 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8719 exit_reason);
2bc19dc3
MT
8720 kvm_queue_exception(vcpu, UD_VECTOR);
8721 return 1;
6aa8b732 8722 }
6aa8b732
AK
8723}
8724
95ba8273 8725static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8726{
a7c0b07d
WL
8727 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8728
8729 if (is_guest_mode(vcpu) &&
8730 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8731 return;
8732
95ba8273 8733 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8734 vmcs_write32(TPR_THRESHOLD, 0);
8735 return;
8736 }
8737
95ba8273 8738 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8739}
8740
8d14695f
YZ
8741static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8742{
8743 u32 sec_exec_control;
8744
dccbfcf5
RK
8745 /* Postpone execution until vmcs01 is the current VMCS. */
8746 if (is_guest_mode(vcpu)) {
8747 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8748 return;
8749 }
8750
f6e90f9e 8751 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8752 return;
8753
35754c98 8754 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8755 return;
8756
8757 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8758
8759 if (set) {
8760 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8761 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8762 } else {
8763 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8764 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
fb6c8198 8765 vmx_flush_tlb_ept_only(vcpu);
8d14695f
YZ
8766 }
8767 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8768
8769 vmx_set_msr_bitmap(vcpu);
8770}
8771
38b99173
TC
8772static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8773{
8774 struct vcpu_vmx *vmx = to_vmx(vcpu);
8775
8776 /*
8777 * Currently we do not handle the nested case where L2 has an
8778 * APIC access page of its own; that page is still pinned.
8779 * Hence, we skip the case where the VCPU is in guest mode _and_
8780 * L1 prepared an APIC access page for L2.
8781 *
8782 * For the case where L1 and L2 share the same APIC access page
8783 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8784 * in the vmcs12), this function will only update either the vmcs01
8785 * or the vmcs02. If the former, the vmcs02 will be updated by
8786 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8787 * the next L2->L1 exit.
8788 */
8789 if (!is_guest_mode(vcpu) ||
4f2777bc 8790 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
fb6c8198 8791 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
38b99173 8792 vmcs_write64(APIC_ACCESS_ADDR, hpa);
fb6c8198
JM
8793 vmx_flush_tlb_ept_only(vcpu);
8794 }
38b99173
TC
8795}
8796
67c9dddc 8797static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8798{
8799 u16 status;
8800 u8 old;
8801
67c9dddc
PB
8802 if (max_isr == -1)
8803 max_isr = 0;
c7c9c56c
YZ
8804
8805 status = vmcs_read16(GUEST_INTR_STATUS);
8806 old = status >> 8;
67c9dddc 8807 if (max_isr != old) {
c7c9c56c 8808 status &= 0xff;
67c9dddc 8809 status |= max_isr << 8;
c7c9c56c
YZ
8810 vmcs_write16(GUEST_INTR_STATUS, status);
8811 }
8812}
8813
8814static void vmx_set_rvi(int vector)
8815{
8816 u16 status;
8817 u8 old;
8818
4114c27d
WW
8819 if (vector == -1)
8820 vector = 0;
8821
c7c9c56c
YZ
8822 status = vmcs_read16(GUEST_INTR_STATUS);
8823 old = (u8)status & 0xff;
8824 if ((u8)vector != old) {
8825 status &= ~0xff;
8826 status |= (u8)vector;
8827 vmcs_write16(GUEST_INTR_STATUS, status);
8828 }
8829}
8830
8831static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8832{
4114c27d
WW
8833 if (!is_guest_mode(vcpu)) {
8834 vmx_set_rvi(max_irr);
8835 return;
8836 }
8837
c7c9c56c
YZ
8838 if (max_irr == -1)
8839 return;
8840
963fee16 8841 /*
4114c27d
WW
8842 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8843 * handles it.
963fee16 8844 */
4114c27d 8845 if (nested_exit_on_intr(vcpu))
963fee16
WL
8846 return;
8847
963fee16 8848 /*
4114c27d 8849 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8850 * is run without virtual interrupt delivery.
8851 */
8852 if (!kvm_event_needs_reinjection(vcpu) &&
8853 vmx_interrupt_allowed(vcpu)) {
8854 kvm_queue_interrupt(vcpu, max_irr, false);
8855 vmx_inject_irq(vcpu);
8856 }
c7c9c56c
YZ
8857}
8858
76dfafd5 8859static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
8860{
8861 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 8862 int max_irr;
810e6def 8863
76dfafd5
PB
8864 WARN_ON(!vcpu->arch.apicv_active);
8865 if (pi_test_on(&vmx->pi_desc)) {
8866 pi_clear_on(&vmx->pi_desc);
8867 /*
8868 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8869 * But on x86 this is just a compiler barrier anyway.
8870 */
8871 smp_mb__after_atomic();
8872 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8873 } else {
8874 max_irr = kvm_lapic_find_highest_irr(vcpu);
8875 }
8876 vmx_hwapic_irr_update(vcpu, max_irr);
8877 return max_irr;
810e6def
PB
8878}
8879
6308630b 8880static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8881{
d62caabb 8882 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8883 return;
8884
c7c9c56c
YZ
8885 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8886 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8887 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8888 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8889}
8890
967235d3
PB
8891static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8892{
8893 struct vcpu_vmx *vmx = to_vmx(vcpu);
8894
8895 pi_clear_on(&vmx->pi_desc);
8896 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8897}
8898
51aa01d1 8899static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8900{
48ae0fb4
JM
8901 u32 exit_intr_info = 0;
8902 u16 basic_exit_reason = (u16)vmx->exit_reason;
00eba012 8903
48ae0fb4
JM
8904 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8905 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
00eba012
AK
8906 return;
8907
48ae0fb4
JM
8908 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
8909 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8910 vmx->exit_intr_info = exit_intr_info;
a0861c02 8911
1261bfa3
WL
8912 /* if exit due to PF check for async PF */
8913 if (is_page_fault(exit_intr_info))
8914 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
8915
a0861c02 8916 /* Handle machine checks before interrupts are enabled */
48ae0fb4
JM
8917 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
8918 is_machine_check(exit_intr_info))
a0861c02
AK
8919 kvm_machine_check();
8920
20f65983 8921 /* We need to handle NMIs before interrupts are enabled */
ef85b673 8922 if (is_nmi(exit_intr_info)) {
ff9d07a0 8923 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 8924 asm("int $2");
ff9d07a0
ZY
8925 kvm_after_handle_nmi(&vmx->vcpu);
8926 }
51aa01d1 8927}
20f65983 8928
a547c6db
YZ
8929static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8930{
8931 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3f62de5f 8932 register void *__sp asm(_ASM_SP);
a547c6db 8933
a547c6db
YZ
8934 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8935 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8936 unsigned int vector;
8937 unsigned long entry;
8938 gate_desc *desc;
8939 struct vcpu_vmx *vmx = to_vmx(vcpu);
8940#ifdef CONFIG_X86_64
8941 unsigned long tmp;
8942#endif
8943
8944 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8945 desc = (gate_desc *)vmx->host_idt_base + vector;
8946 entry = gate_offset(*desc);
8947 asm volatile(
8948#ifdef CONFIG_X86_64
8949 "mov %%" _ASM_SP ", %[sp]\n\t"
8950 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8951 "push $%c[ss]\n\t"
8952 "push %[sp]\n\t"
8953#endif
8954 "pushf\n\t"
a547c6db
YZ
8955 __ASM_SIZE(push) " $%c[cs]\n\t"
8956 "call *%[entry]\n\t"
8957 :
8958#ifdef CONFIG_X86_64
3f62de5f 8959 [sp]"=&r"(tmp),
a547c6db 8960#endif
3f62de5f 8961 "+r"(__sp)
a547c6db
YZ
8962 :
8963 [entry]"r"(entry),
8964 [ss]"i"(__KERNEL_DS),
8965 [cs]"i"(__KERNEL_CS)
8966 );
f2485b3e 8967 }
a547c6db 8968}
c207aee4 8969STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
a547c6db 8970
6d396b55
PB
8971static bool vmx_has_high_real_mode_segbase(void)
8972{
8973 return enable_unrestricted_guest || emulate_invalid_guest_state;
8974}
8975
da8999d3
LJ
8976static bool vmx_mpx_supported(void)
8977{
8978 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8979 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8980}
8981
55412b2e
WL
8982static bool vmx_xsaves_supported(void)
8983{
8984 return vmcs_config.cpu_based_2nd_exec_ctrl &
8985 SECONDARY_EXEC_XSAVES;
8986}
8987
51aa01d1
AK
8988static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8989{
c5ca8e57 8990 u32 exit_intr_info;
51aa01d1
AK
8991 bool unblock_nmi;
8992 u8 vector;
8993 bool idtv_info_valid;
8994
8995 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8996
4c4a6f79 8997 if (vmx->loaded_vmcs->nmi_known_unmasked)
2c82878b
PB
8998 return;
8999 /*
9000 * Can't use vmx->exit_intr_info since we're not sure what
9001 * the exit reason is.
9002 */
9003 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9004 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9005 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9006 /*
9007 * SDM 3: 27.7.1.2 (September 2008)
9008 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9009 * a guest IRET fault.
9010 * SDM 3: 23.2.2 (September 2008)
9011 * Bit 12 is undefined in any of the following cases:
9012 * If the VM exit sets the valid bit in the IDT-vectoring
9013 * information field.
9014 * If the VM exit is due to a double fault.
9015 */
9016 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9017 vector != DF_VECTOR && !idtv_info_valid)
9018 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9019 GUEST_INTR_STATE_NMI);
9020 else
4c4a6f79 9021 vmx->loaded_vmcs->nmi_known_unmasked =
2c82878b
PB
9022 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9023 & GUEST_INTR_STATE_NMI);
51aa01d1
AK
9024}
9025
3ab66e8a 9026static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
9027 u32 idt_vectoring_info,
9028 int instr_len_field,
9029 int error_code_field)
51aa01d1 9030{
51aa01d1
AK
9031 u8 vector;
9032 int type;
9033 bool idtv_info_valid;
9034
9035 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 9036
3ab66e8a
JK
9037 vcpu->arch.nmi_injected = false;
9038 kvm_clear_exception_queue(vcpu);
9039 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
9040
9041 if (!idtv_info_valid)
9042 return;
9043
3ab66e8a 9044 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 9045
668f612f
AK
9046 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9047 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 9048
64a7ec06 9049 switch (type) {
37b96e98 9050 case INTR_TYPE_NMI_INTR:
3ab66e8a 9051 vcpu->arch.nmi_injected = true;
668f612f 9052 /*
7b4a25cb 9053 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
9054 * Clear bit "block by NMI" before VM entry if a NMI
9055 * delivery faulted.
668f612f 9056 */
3ab66e8a 9057 vmx_set_nmi_mask(vcpu, false);
37b96e98 9058 break;
37b96e98 9059 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 9060 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
9061 /* fall through */
9062 case INTR_TYPE_HARD_EXCEPTION:
35920a35 9063 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 9064 u32 err = vmcs_read32(error_code_field);
851eb667 9065 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 9066 } else
851eb667 9067 kvm_requeue_exception(vcpu, vector);
37b96e98 9068 break;
66fd3f7f 9069 case INTR_TYPE_SOFT_INTR:
3ab66e8a 9070 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 9071 /* fall through */
37b96e98 9072 case INTR_TYPE_EXT_INTR:
3ab66e8a 9073 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
9074 break;
9075 default:
9076 break;
f7d9238f 9077 }
cf393f75
AK
9078}
9079
83422e17
AK
9080static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9081{
3ab66e8a 9082 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
9083 VM_EXIT_INSTRUCTION_LEN,
9084 IDT_VECTORING_ERROR_CODE);
9085}
9086
b463a6f7
AK
9087static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9088{
3ab66e8a 9089 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
9090 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9091 VM_ENTRY_INSTRUCTION_LEN,
9092 VM_ENTRY_EXCEPTION_ERROR_CODE);
9093
9094 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9095}
9096
d7cd9796
GN
9097static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9098{
9099 int i, nr_msrs;
9100 struct perf_guest_switch_msr *msrs;
9101
9102 msrs = perf_guest_get_msrs(&nr_msrs);
9103
9104 if (!msrs)
9105 return;
9106
9107 for (i = 0; i < nr_msrs; i++)
9108 if (msrs[i].host == msrs[i].guest)
9109 clear_atomic_switch_msr(vmx, msrs[i].msr);
9110 else
9111 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9112 msrs[i].host);
9113}
9114
33365e7a 9115static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
9116{
9117 struct vcpu_vmx *vmx = to_vmx(vcpu);
9118 u64 tscl;
9119 u32 delta_tsc;
9120
9121 if (vmx->hv_deadline_tsc == -1)
9122 return;
9123
9124 tscl = rdtsc();
9125 if (vmx->hv_deadline_tsc > tscl)
9126 /* sure to be 32 bit only because checked on set_hv_timer */
9127 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9128 cpu_preemption_timer_multi);
9129 else
9130 delta_tsc = 0;
9131
9132 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9133}
9134
a3b5ba49 9135static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 9136{
a2fa3e9f 9137 struct vcpu_vmx *vmx = to_vmx(vcpu);
d6e41f11 9138 unsigned long debugctlmsr, cr3, cr4;
104f226b 9139
104f226b
AK
9140 /* Don't enter VMX if guest state is invalid, let the exit handler
9141 start emulation until we arrive back to a valid state */
14168786 9142 if (vmx->emulation_required)
104f226b
AK
9143 return;
9144
a7653ecd
RK
9145 if (vmx->ple_window_dirty) {
9146 vmx->ple_window_dirty = false;
9147 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9148 }
9149
012f83cb
AG
9150 if (vmx->nested.sync_shadow_vmcs) {
9151 copy_vmcs12_to_shadow(vmx);
9152 vmx->nested.sync_shadow_vmcs = false;
9153 }
9154
104f226b
AK
9155 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9156 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9157 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9158 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9159
d6e41f11
AL
9160 cr3 = __get_current_cr3_fast();
9161 if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
9162 vmcs_writel(HOST_CR3, cr3);
9163 vmx->host_state.vmcs_host_cr3 = cr3;
9164 }
9165
1e02ce4c 9166 cr4 = cr4_read_shadow();
d974baa3
AL
9167 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
9168 vmcs_writel(HOST_CR4, cr4);
9169 vmx->host_state.vmcs_host_cr4 = cr4;
9170 }
9171
104f226b
AK
9172 /* When single-stepping over STI and MOV SS, we must clear the
9173 * corresponding interruptibility bits in the guest state. Otherwise
9174 * vmentry fails as it then expects bit 14 (BS) in pending debug
9175 * exceptions being set, but that's not correct for the guest debugging
9176 * case. */
9177 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9178 vmx_set_interrupt_shadow(vcpu, 0);
9179
1be0e61c
XG
9180 if (vmx->guest_pkru_valid)
9181 __write_pkru(vmx->guest_pkru);
9182
d7cd9796 9183 atomic_switch_perf_msrs(vmx);
2a7921b7 9184 debugctlmsr = get_debugctlmsr();
d7cd9796 9185
64672c95
YJ
9186 vmx_arm_hv_timer(vcpu);
9187
d462b819 9188 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 9189 asm(
6aa8b732 9190 /* Store host registers */
b188c81f
AK
9191 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9192 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9193 "push %%" _ASM_CX " \n\t"
9194 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 9195 "je 1f \n\t"
b188c81f 9196 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 9197 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 9198 "1: \n\t"
d3edefc0 9199 /* Reload cr2 if changed */
b188c81f
AK
9200 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9201 "mov %%cr2, %%" _ASM_DX " \n\t"
9202 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 9203 "je 2f \n\t"
b188c81f 9204 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 9205 "2: \n\t"
6aa8b732 9206 /* Check if vmlaunch of vmresume is needed */
e08aa78a 9207 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 9208 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
9209 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9210 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9211 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9212 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9213 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9214 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 9215#ifdef CONFIG_X86_64
e08aa78a
AK
9216 "mov %c[r8](%0), %%r8 \n\t"
9217 "mov %c[r9](%0), %%r9 \n\t"
9218 "mov %c[r10](%0), %%r10 \n\t"
9219 "mov %c[r11](%0), %%r11 \n\t"
9220 "mov %c[r12](%0), %%r12 \n\t"
9221 "mov %c[r13](%0), %%r13 \n\t"
9222 "mov %c[r14](%0), %%r14 \n\t"
9223 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 9224#endif
b188c81f 9225 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 9226
6aa8b732 9227 /* Enter guest mode */
83287ea4 9228 "jne 1f \n\t"
4ecac3fd 9229 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
9230 "jmp 2f \n\t"
9231 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9232 "2: "
6aa8b732 9233 /* Save guest registers, load host registers, keep flags */
b188c81f 9234 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 9235 "pop %0 \n\t"
b188c81f
AK
9236 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9237 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9238 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9239 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9240 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9241 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9242 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 9243#ifdef CONFIG_X86_64
e08aa78a
AK
9244 "mov %%r8, %c[r8](%0) \n\t"
9245 "mov %%r9, %c[r9](%0) \n\t"
9246 "mov %%r10, %c[r10](%0) \n\t"
9247 "mov %%r11, %c[r11](%0) \n\t"
9248 "mov %%r12, %c[r12](%0) \n\t"
9249 "mov %%r13, %c[r13](%0) \n\t"
9250 "mov %%r14, %c[r14](%0) \n\t"
9251 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 9252#endif
b188c81f
AK
9253 "mov %%cr2, %%" _ASM_AX " \n\t"
9254 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 9255
b188c81f 9256 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 9257 "setbe %c[fail](%0) \n\t"
83287ea4
AK
9258 ".pushsection .rodata \n\t"
9259 ".global vmx_return \n\t"
9260 "vmx_return: " _ASM_PTR " 2b \n\t"
9261 ".popsection"
e08aa78a 9262 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 9263 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 9264 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 9265 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
9266 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9267 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9268 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9269 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9270 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9271 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9272 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 9273#ifdef CONFIG_X86_64
ad312c7c
ZX
9274 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9275 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9276 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9277 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9278 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9279 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9280 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9281 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9282#endif
40712fae
AK
9283 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9284 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9285 : "cc", "memory"
9286#ifdef CONFIG_X86_64
b188c81f 9287 , "rax", "rbx", "rdi", "rsi"
c2036300 9288 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
9289#else
9290 , "eax", "ebx", "edi", "esi"
c2036300
LV
9291#endif
9292 );
6aa8b732 9293
2a7921b7
GN
9294 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9295 if (debugctlmsr)
9296 update_debugctlmsr(debugctlmsr);
9297
aa67f609
AK
9298#ifndef CONFIG_X86_64
9299 /*
9300 * The sysexit path does not restore ds/es, so we must set them to
9301 * a reasonable value ourselves.
9302 *
9303 * We can't defer this to vmx_load_host_state() since that function
9304 * may be executed in interrupt context, which saves and restore segments
9305 * around it, nullifying its effect.
9306 */
9307 loadsegment(ds, __USER_DS);
9308 loadsegment(es, __USER_DS);
9309#endif
9310
6de4f3ad 9311 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9312 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9313 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9314 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9315 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9316 vcpu->arch.regs_dirty = 0;
9317
1155f76a
AK
9318 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9319
d462b819 9320 vmx->loaded_vmcs->launched = 1;
1b6269db 9321
51aa01d1 9322 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
51aa01d1 9323
1be0e61c
XG
9324 /*
9325 * eager fpu is enabled if PKEY is supported and CR4 is switched
9326 * back on host, so it is safe to read guest PKRU from current
9327 * XSAVE.
9328 */
9329 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9330 vmx->guest_pkru = __read_pkru();
9331 if (vmx->guest_pkru != vmx->host_pkru) {
9332 vmx->guest_pkru_valid = true;
9333 __write_pkru(vmx->host_pkru);
9334 } else
9335 vmx->guest_pkru_valid = false;
9336 }
9337
e0b890d3
GN
9338 /*
9339 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9340 * we did not inject a still-pending event to L1 now because of
9341 * nested_run_pending, we need to re-enable this bit.
9342 */
9343 if (vmx->nested.nested_run_pending)
9344 kvm_make_request(KVM_REQ_EVENT, vcpu);
9345
9346 vmx->nested.nested_run_pending = 0;
9347
51aa01d1
AK
9348 vmx_complete_atomic_exit(vmx);
9349 vmx_recover_nmi_blocking(vmx);
cf393f75 9350 vmx_complete_interrupts(vmx);
6aa8b732 9351}
c207aee4 9352STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
6aa8b732 9353
1279a6b1 9354static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
4fa7734c
PB
9355{
9356 struct vcpu_vmx *vmx = to_vmx(vcpu);
9357 int cpu;
9358
1279a6b1 9359 if (vmx->loaded_vmcs == vmcs)
4fa7734c
PB
9360 return;
9361
9362 cpu = get_cpu();
1279a6b1 9363 vmx->loaded_vmcs = vmcs;
4fa7734c
PB
9364 vmx_vcpu_put(vcpu);
9365 vmx_vcpu_load(vcpu, cpu);
9366 vcpu->cpu = cpu;
9367 put_cpu();
9368}
9369
2f1fe811
JM
9370/*
9371 * Ensure that the current vmcs of the logical processor is the
9372 * vmcs01 of the vcpu before calling free_nested().
9373 */
9374static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9375{
9376 struct vcpu_vmx *vmx = to_vmx(vcpu);
9377 int r;
9378
9379 r = vcpu_load(vcpu);
9380 BUG_ON(r);
1279a6b1 9381 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2f1fe811
JM
9382 free_nested(vmx);
9383 vcpu_put(vcpu);
9384}
9385
6aa8b732
AK
9386static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9387{
fb3f0f51
RR
9388 struct vcpu_vmx *vmx = to_vmx(vcpu);
9389
843e4330 9390 if (enable_pml)
a3eaa864 9391 vmx_destroy_pml_buffer(vmx);
991e7a0e 9392 free_vpid(vmx->vpid);
4fa7734c 9393 leave_guest_mode(vcpu);
2f1fe811 9394 vmx_free_vcpu_nested(vcpu);
4fa7734c 9395 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9396 kfree(vmx->guest_msrs);
9397 kvm_vcpu_uninit(vcpu);
a4770347 9398 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9399}
9400
fb3f0f51 9401static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9402{
fb3f0f51 9403 int err;
c16f862d 9404 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 9405 int cpu;
6aa8b732 9406
a2fa3e9f 9407 if (!vmx)
fb3f0f51
RR
9408 return ERR_PTR(-ENOMEM);
9409
991e7a0e 9410 vmx->vpid = allocate_vpid();
2384d2b3 9411
fb3f0f51
RR
9412 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9413 if (err)
9414 goto free_vcpu;
965b58a5 9415
4e59516a
PF
9416 err = -ENOMEM;
9417
9418 /*
9419 * If PML is turned on, failure on enabling PML just results in failure
9420 * of creating the vcpu, therefore we can simplify PML logic (by
9421 * avoiding dealing with cases, such as enabling PML partially on vcpus
9422 * for the guest, etc.
9423 */
9424 if (enable_pml) {
9425 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9426 if (!vmx->pml_pg)
9427 goto uninit_vcpu;
9428 }
9429
a2fa3e9f 9430 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9431 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9432 > PAGE_SIZE);
0123be42 9433
4e59516a
PF
9434 if (!vmx->guest_msrs)
9435 goto free_pml;
965b58a5 9436
d462b819
NHE
9437 vmx->loaded_vmcs = &vmx->vmcs01;
9438 vmx->loaded_vmcs->vmcs = alloc_vmcs();
355f4fb1 9439 vmx->loaded_vmcs->shadow_vmcs = NULL;
d462b819 9440 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 9441 goto free_msrs;
d462b819 9442 loaded_vmcs_init(vmx->loaded_vmcs);
a2fa3e9f 9443
15ad7146
AK
9444 cpu = get_cpu();
9445 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9446 vmx->vcpu.cpu = cpu;
8b9cf98c 9447 err = vmx_vcpu_setup(vmx);
fb3f0f51 9448 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9449 put_cpu();
fb3f0f51
RR
9450 if (err)
9451 goto free_vmcs;
35754c98 9452 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9453 err = alloc_apic_access_page(kvm);
9454 if (err)
5e4a0b3c 9455 goto free_vmcs;
a63cb560 9456 }
fb3f0f51 9457
b927a3ce
SY
9458 if (enable_ept) {
9459 if (!kvm->arch.ept_identity_map_addr)
9460 kvm->arch.ept_identity_map_addr =
9461 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
9462 err = init_rmode_identity_map(kvm);
9463 if (err)
93ea5388 9464 goto free_vmcs;
b927a3ce 9465 }
b7ebfb05 9466
5c614b35 9467 if (nested) {
b9c237bb 9468 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9469 vmx->nested.vpid02 = allocate_vpid();
9470 }
b9c237bb 9471
705699a1 9472 vmx->nested.posted_intr_nv = -1;
a9d30f33 9473 vmx->nested.current_vmptr = -1ull;
a9d30f33 9474
37e4c997
HZ
9475 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9476
fb3f0f51
RR
9477 return &vmx->vcpu;
9478
9479free_vmcs:
5c614b35 9480 free_vpid(vmx->nested.vpid02);
5f3fbc34 9481 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9482free_msrs:
fb3f0f51 9483 kfree(vmx->guest_msrs);
4e59516a
PF
9484free_pml:
9485 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9486uninit_vcpu:
9487 kvm_vcpu_uninit(&vmx->vcpu);
9488free_vcpu:
991e7a0e 9489 free_vpid(vmx->vpid);
a4770347 9490 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9491 return ERR_PTR(err);
6aa8b732
AK
9492}
9493
002c7f7c
YS
9494static void __init vmx_check_processor_compat(void *rtn)
9495{
9496 struct vmcs_config vmcs_conf;
9497
9498 *(int *)rtn = 0;
9499 if (setup_vmcs_config(&vmcs_conf) < 0)
9500 *(int *)rtn = -EIO;
9501 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9502 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9503 smp_processor_id());
9504 *(int *)rtn = -EIO;
9505 }
9506}
9507
67253af5
SY
9508static int get_ept_level(void)
9509{
9510 return VMX_EPT_DEFAULT_GAW + 1;
9511}
9512
4b12f0de 9513static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9514{
b18d5431
XG
9515 u8 cache;
9516 u64 ipat = 0;
4b12f0de 9517
522c68c4 9518 /* For VT-d and EPT combination
606decd6 9519 * 1. MMIO: always map as UC
522c68c4
SY
9520 * 2. EPT with VT-d:
9521 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9522 * result, try to trust guest.
522c68c4
SY
9523 * b. VT-d with snooping control feature: snooping control feature of
9524 * VT-d engine can guarantee the cache correctness. Just set it
9525 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9526 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9527 * consistent with host MTRR
9528 */
606decd6
PB
9529 if (is_mmio) {
9530 cache = MTRR_TYPE_UNCACHABLE;
9531 goto exit;
9532 }
9533
9534 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9535 ipat = VMX_EPT_IPAT_BIT;
9536 cache = MTRR_TYPE_WRBACK;
9537 goto exit;
9538 }
9539
9540 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9541 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9542 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9543 cache = MTRR_TYPE_WRBACK;
9544 else
9545 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9546 goto exit;
9547 }
9548
ff53604b 9549 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9550
9551exit:
9552 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9553}
9554
17cc3935 9555static int vmx_get_lpage_level(void)
344f414f 9556{
878403b7
SY
9557 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9558 return PT_DIRECTORY_LEVEL;
9559 else
9560 /* For shadow and EPT supported 1GB page */
9561 return PT_PDPE_LEVEL;
344f414f
JR
9562}
9563
feda805f
XG
9564static void vmcs_set_secondary_exec_control(u32 new_ctl)
9565{
9566 /*
9567 * These bits in the secondary execution controls field
9568 * are dynamic, the others are mostly based on the hypervisor
9569 * architecture and the guest's CPUID. Do not touch the
9570 * dynamic bits.
9571 */
9572 u32 mask =
9573 SECONDARY_EXEC_SHADOW_VMCS |
9574 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9575 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9576
9577 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9578
9579 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9580 (new_ctl & ~mask) | (cur_ctl & mask));
9581}
9582
8322ebbb
DM
9583/*
9584 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9585 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9586 */
9587static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9588{
9589 struct vcpu_vmx *vmx = to_vmx(vcpu);
9590 struct kvm_cpuid_entry2 *entry;
9591
9592 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9593 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9594
9595#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9596 if (entry && (entry->_reg & (_cpuid_mask))) \
9597 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9598} while (0)
9599
9600 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9601 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9602 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9603 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9604 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9605 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9606 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9607 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9608 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9609 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9610 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9611 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9612 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9613 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9614 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9615
9616 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9617 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9618 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9619 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9620 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9621 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9622 cr4_fixed1_update(bit(11), ecx, bit(2));
9623
9624#undef cr4_fixed1_update
9625}
9626
0e851880
SY
9627static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9628{
4e47c7a6 9629 struct vcpu_vmx *vmx = to_vmx(vcpu);
feda805f 9630 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
4e47c7a6 9631
4e47c7a6 9632 if (vmx_rdtscp_supported()) {
d6321d49 9633 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
1cea0ce6 9634 if (!rdtscp_enabled)
feda805f 9635 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
f36201e5 9636
8b97265a 9637 if (nested) {
1cea0ce6 9638 if (rdtscp_enabled)
8b97265a
PB
9639 vmx->nested.nested_vmx_secondary_ctls_high |=
9640 SECONDARY_EXEC_RDTSCP;
9641 else
9642 vmx->nested.nested_vmx_secondary_ctls_high &=
9643 ~SECONDARY_EXEC_RDTSCP;
9644 }
4e47c7a6 9645 }
ad756a16 9646
90a2db6d
PB
9647 if (vmx_invpcid_supported()) {
9648 /* Exposing INVPCID only when PCID is exposed */
90a2db6d 9649 bool invpcid_enabled =
1b4d56b8 9650 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
d6321d49 9651 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
29541bb8 9652
90a2db6d
PB
9653 if (!invpcid_enabled) {
9654 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
1b4d56b8 9655 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
90a2db6d
PB
9656 }
9657
9658 if (nested) {
9659 if (invpcid_enabled)
9660 vmx->nested.nested_vmx_secondary_ctls_high |=
9661 SECONDARY_EXEC_ENABLE_INVPCID;
9662 else
9663 vmx->nested.nested_vmx_secondary_ctls_high &=
9664 ~SECONDARY_EXEC_ENABLE_INVPCID;
9665 }
ad756a16 9666 }
8b3e34e4 9667
45bdbcfd
HH
9668 if (cpu_has_secondary_exec_ctrls())
9669 vmcs_set_secondary_exec_control(secondary_exec_ctl);
feda805f 9670
37e4c997
HZ
9671 if (nested_vmx_allowed(vcpu))
9672 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9673 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9674 else
9675 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9676 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
9677
9678 if (nested_vmx_allowed(vcpu))
9679 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
9680}
9681
d4330ef2
JR
9682static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9683{
7b8050f5
NHE
9684 if (func == 1 && nested)
9685 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9686}
9687
25d92081
YZ
9688static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9689 struct x86_exception *fault)
9690{
533558bc 9691 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
c5f983f6 9692 struct vcpu_vmx *vmx = to_vmx(vcpu);
533558bc 9693 u32 exit_reason;
c5f983f6 9694 unsigned long exit_qualification = vcpu->arch.exit_qualification;
25d92081 9695
c5f983f6
BD
9696 if (vmx->nested.pml_full) {
9697 exit_reason = EXIT_REASON_PML_FULL;
9698 vmx->nested.pml_full = false;
9699 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9700 } else if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9701 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9702 else
533558bc 9703 exit_reason = EXIT_REASON_EPT_VIOLATION;
c5f983f6
BD
9704
9705 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
25d92081
YZ
9706 vmcs12->guest_physical_address = fault->address;
9707}
9708
995f00a6
PF
9709static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9710{
9711 return nested_ept_get_cr3(vcpu) & VMX_EPT_AD_ENABLE_BIT;
9712}
9713
155a97a3
NHE
9714/* Callbacks for nested_ept_init_mmu_context: */
9715
9716static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9717{
9718 /* return the page table to be shadowed - in our case, EPT12 */
9719 return get_vmcs12(vcpu)->ept_pointer;
9720}
9721
ae1e2d10 9722static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9723{
995f00a6 9724 bool wants_ad;
ae1e2d10 9725
ad896af0 9726 WARN_ON(mmu_is_nested(vcpu));
995f00a6
PF
9727 wants_ad = nested_ept_ad_enabled(vcpu);
9728 if (wants_ad && !enable_ept_ad_bits)
ae1e2d10
PB
9729 return 1;
9730
9731 kvm_mmu_unload(vcpu);
ad896af0 9732 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb 9733 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
ae1e2d10 9734 VMX_EPT_EXECUTE_ONLY_BIT,
995f00a6 9735 wants_ad);
155a97a3
NHE
9736 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9737 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9738 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9739
9740 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
ae1e2d10 9741 return 0;
155a97a3
NHE
9742}
9743
9744static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9745{
9746 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9747}
9748
19d5f10b
EK
9749static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9750 u16 error_code)
9751{
9752 bool inequality, bit;
9753
9754 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9755 inequality =
9756 (error_code & vmcs12->page_fault_error_code_mask) !=
9757 vmcs12->page_fault_error_code_match;
9758 return inequality ^ bit;
9759}
9760
feaf0c7d
GN
9761static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9762 struct x86_exception *fault)
9763{
9764 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9765
9766 WARN_ON(!is_guest_mode(vcpu));
9767
7313c698 9768 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code)) {
b96fb439
PB
9769 vmcs12->vm_exit_intr_error_code = fault->error_code;
9770 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9771 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9772 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9773 fault->address);
7313c698 9774 } else {
feaf0c7d 9775 kvm_inject_page_fault(vcpu, fault);
7313c698 9776 }
feaf0c7d
GN
9777}
9778
6beb7bd5
JM
9779static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9780 struct vmcs12 *vmcs12);
9781
9782static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
9783 struct vmcs12 *vmcs12)
9784{
9785 struct vcpu_vmx *vmx = to_vmx(vcpu);
5e2f30b7 9786 struct page *page;
6beb7bd5 9787 u64 hpa;
a2bcba50
WL
9788
9789 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
9790 /*
9791 * Translate L1 physical address to host physical
9792 * address for vmcs02. Keep the page pinned, so this
9793 * physical address remains valid. We keep a reference
9794 * to it so we can release it later.
9795 */
5e2f30b7 9796 if (vmx->nested.apic_access_page) { /* shouldn't happen */
53a70daf 9797 kvm_release_page_dirty(vmx->nested.apic_access_page);
5e2f30b7
DH
9798 vmx->nested.apic_access_page = NULL;
9799 }
9800 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
9801 /*
9802 * If translation failed, no matter: This feature asks
9803 * to exit when accessing the given address, and if it
9804 * can never be accessed, this feature won't do
9805 * anything anyway.
9806 */
5e2f30b7
DH
9807 if (!is_error_page(page)) {
9808 vmx->nested.apic_access_page = page;
6beb7bd5
JM
9809 hpa = page_to_phys(vmx->nested.apic_access_page);
9810 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9811 } else {
9812 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9813 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9814 }
9815 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9816 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9817 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9818 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9819 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 9820 }
a7c0b07d
WL
9821
9822 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5e2f30b7 9823 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
53a70daf 9824 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
5e2f30b7
DH
9825 vmx->nested.virtual_apic_page = NULL;
9826 }
9827 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
a7c0b07d
WL
9828
9829 /*
6beb7bd5
JM
9830 * If translation failed, VM entry will fail because
9831 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9832 * Failing the vm entry is _not_ what the processor
9833 * does but it's basically the only possibility we
9834 * have. We could still enter the guest if CR8 load
9835 * exits are enabled, CR8 store exits are enabled, and
9836 * virtualize APIC access is disabled; in this case
9837 * the processor would never use the TPR shadow and we
9838 * could simply clear the bit from the execution
9839 * control. But such a configuration is useless, so
9840 * let's keep the code simple.
a7c0b07d 9841 */
5e2f30b7
DH
9842 if (!is_error_page(page)) {
9843 vmx->nested.virtual_apic_page = page;
6beb7bd5
JM
9844 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9845 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9846 }
a7c0b07d
WL
9847 }
9848
705699a1 9849 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
9850 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9851 kunmap(vmx->nested.pi_desc_page);
53a70daf 9852 kvm_release_page_dirty(vmx->nested.pi_desc_page);
5e2f30b7 9853 vmx->nested.pi_desc_page = NULL;
705699a1 9854 }
5e2f30b7
DH
9855 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
9856 if (is_error_page(page))
6beb7bd5 9857 return;
5e2f30b7
DH
9858 vmx->nested.pi_desc_page = page;
9859 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
705699a1
WV
9860 vmx->nested.pi_desc =
9861 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9862 (unsigned long)(vmcs12->posted_intr_desc_addr &
9863 (PAGE_SIZE - 1)));
6beb7bd5
JM
9864 vmcs_write64(POSTED_INTR_DESC_ADDR,
9865 page_to_phys(vmx->nested.pi_desc_page) +
9866 (unsigned long)(vmcs12->posted_intr_desc_addr &
9867 (PAGE_SIZE - 1)));
705699a1 9868 }
6beb7bd5
JM
9869 if (cpu_has_vmx_msr_bitmap() &&
9870 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9871 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9872 ;
9873 else
9874 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9875 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
9876}
9877
f4124500
JK
9878static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9879{
9880 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9881 struct vcpu_vmx *vmx = to_vmx(vcpu);
9882
9883 if (vcpu->arch.virtual_tsc_khz == 0)
9884 return;
9885
9886 /* Make sure short timeouts reliably trigger an immediate vmexit.
9887 * hrtimer_start does not guarantee this. */
9888 if (preemption_timeout <= 1) {
9889 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9890 return;
9891 }
9892
9893 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9894 preemption_timeout *= 1000000;
9895 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9896 hrtimer_start(&vmx->nested.preemption_timer,
9897 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9898}
9899
56a20510
JM
9900static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9901 struct vmcs12 *vmcs12)
9902{
9903 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9904 return 0;
9905
9906 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9907 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9908 return -EINVAL;
9909
9910 return 0;
9911}
9912
3af18d9c
WV
9913static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9914 struct vmcs12 *vmcs12)
9915{
3af18d9c
WV
9916 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9917 return 0;
9918
5fa99cbe 9919 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
3af18d9c
WV
9920 return -EINVAL;
9921
9922 return 0;
9923}
9924
9925/*
9926 * Merge L0's and L1's MSR bitmap, return false to indicate that
9927 * we do not use the hardware.
9928 */
9929static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9930 struct vmcs12 *vmcs12)
9931{
82f0dd4b 9932 int msr;
f2b93280 9933 struct page *page;
d048c098
RK
9934 unsigned long *msr_bitmap_l1;
9935 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
f2b93280 9936
d048c098 9937 /* This shortcut is ok because we support only x2APIC MSRs so far. */
f2b93280
WV
9938 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9939 return false;
9940
5e2f30b7
DH
9941 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
9942 if (is_error_page(page))
f2b93280 9943 return false;
d048c098 9944 msr_bitmap_l1 = (unsigned long *)kmap(page);
f2b93280 9945
d048c098
RK
9946 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9947
f2b93280 9948 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
9949 if (nested_cpu_has_apic_reg_virt(vmcs12))
9950 for (msr = 0x800; msr <= 0x8ff; msr++)
9951 nested_vmx_disable_intercept_for_msr(
d048c098 9952 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 9953 msr, MSR_TYPE_R);
d048c098
RK
9954
9955 nested_vmx_disable_intercept_for_msr(
9956 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
9957 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9958 MSR_TYPE_R | MSR_TYPE_W);
d048c098 9959
608406e2 9960 if (nested_cpu_has_vid(vmcs12)) {
608406e2 9961 nested_vmx_disable_intercept_for_msr(
d048c098 9962 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9963 APIC_BASE_MSR + (APIC_EOI >> 4),
9964 MSR_TYPE_W);
9965 nested_vmx_disable_intercept_for_msr(
d048c098 9966 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9967 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9968 MSR_TYPE_W);
9969 }
82f0dd4b 9970 }
f2b93280 9971 kunmap(page);
53a70daf 9972 kvm_release_page_clean(page);
f2b93280
WV
9973
9974 return true;
9975}
9976
9977static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9978 struct vmcs12 *vmcs12)
9979{
82f0dd4b 9980 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 9981 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
9982 !nested_cpu_has_vid(vmcs12) &&
9983 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
9984 return 0;
9985
9986 /*
9987 * If virtualize x2apic mode is enabled,
9988 * virtualize apic access must be disabled.
9989 */
82f0dd4b
WV
9990 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9991 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
9992 return -EINVAL;
9993
608406e2
WV
9994 /*
9995 * If virtual interrupt delivery is enabled,
9996 * we must exit on external interrupts.
9997 */
9998 if (nested_cpu_has_vid(vmcs12) &&
9999 !nested_exit_on_intr(vcpu))
10000 return -EINVAL;
10001
705699a1
WV
10002 /*
10003 * bits 15:8 should be zero in posted_intr_nv,
10004 * the descriptor address has been already checked
10005 * in nested_get_vmcs12_pages.
10006 */
10007 if (nested_cpu_has_posted_intr(vmcs12) &&
10008 (!nested_cpu_has_vid(vmcs12) ||
10009 !nested_exit_intr_ack_set(vcpu) ||
10010 vmcs12->posted_intr_nv & 0xff00))
10011 return -EINVAL;
10012
f2b93280
WV
10013 /* tpr shadow is needed by all apicv features. */
10014 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10015 return -EINVAL;
10016
10017 return 0;
3af18d9c
WV
10018}
10019
e9ac033e
EK
10020static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10021 unsigned long count_field,
92d71bc6 10022 unsigned long addr_field)
ff651cb6 10023{
92d71bc6 10024 int maxphyaddr;
e9ac033e
EK
10025 u64 count, addr;
10026
10027 if (vmcs12_read_any(vcpu, count_field, &count) ||
10028 vmcs12_read_any(vcpu, addr_field, &addr)) {
10029 WARN_ON(1);
10030 return -EINVAL;
10031 }
10032 if (count == 0)
10033 return 0;
92d71bc6 10034 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
10035 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10036 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 10037 pr_debug_ratelimited(
e9ac033e
EK
10038 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10039 addr_field, maxphyaddr, count, addr);
10040 return -EINVAL;
10041 }
10042 return 0;
10043}
10044
10045static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10046 struct vmcs12 *vmcs12)
10047{
e9ac033e
EK
10048 if (vmcs12->vm_exit_msr_load_count == 0 &&
10049 vmcs12->vm_exit_msr_store_count == 0 &&
10050 vmcs12->vm_entry_msr_load_count == 0)
10051 return 0; /* Fast path */
e9ac033e 10052 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 10053 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 10054 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 10055 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 10056 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 10057 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
10058 return -EINVAL;
10059 return 0;
10060}
10061
c5f983f6
BD
10062static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10063 struct vmcs12 *vmcs12)
10064{
10065 u64 address = vmcs12->pml_address;
10066 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10067
10068 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10069 if (!nested_cpu_has_ept(vmcs12) ||
10070 !IS_ALIGNED(address, 4096) ||
10071 address >> maxphyaddr)
10072 return -EINVAL;
10073 }
10074
10075 return 0;
10076}
10077
e9ac033e
EK
10078static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10079 struct vmx_msr_entry *e)
10080{
10081 /* x2APIC MSR accesses are not allowed */
8a9781f7 10082 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
10083 return -EINVAL;
10084 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10085 e->index == MSR_IA32_UCODE_REV)
10086 return -EINVAL;
10087 if (e->reserved != 0)
ff651cb6
WV
10088 return -EINVAL;
10089 return 0;
10090}
10091
e9ac033e
EK
10092static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10093 struct vmx_msr_entry *e)
ff651cb6
WV
10094{
10095 if (e->index == MSR_FS_BASE ||
10096 e->index == MSR_GS_BASE ||
e9ac033e
EK
10097 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10098 nested_vmx_msr_check_common(vcpu, e))
10099 return -EINVAL;
10100 return 0;
10101}
10102
10103static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10104 struct vmx_msr_entry *e)
10105{
10106 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10107 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
10108 return -EINVAL;
10109 return 0;
10110}
10111
10112/*
10113 * Load guest's/host's msr at nested entry/exit.
10114 * return 0 for success, entry index for failure.
10115 */
10116static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10117{
10118 u32 i;
10119 struct vmx_msr_entry e;
10120 struct msr_data msr;
10121
10122 msr.host_initiated = false;
10123 for (i = 0; i < count; i++) {
54bf36aa
PB
10124 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10125 &e, sizeof(e))) {
bbe41b95 10126 pr_debug_ratelimited(
e9ac033e
EK
10127 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10128 __func__, i, gpa + i * sizeof(e));
ff651cb6 10129 goto fail;
e9ac033e
EK
10130 }
10131 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 10132 pr_debug_ratelimited(
e9ac033e
EK
10133 "%s check failed (%u, 0x%x, 0x%x)\n",
10134 __func__, i, e.index, e.reserved);
10135 goto fail;
10136 }
ff651cb6
WV
10137 msr.index = e.index;
10138 msr.data = e.value;
e9ac033e 10139 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 10140 pr_debug_ratelimited(
e9ac033e
EK
10141 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10142 __func__, i, e.index, e.value);
ff651cb6 10143 goto fail;
e9ac033e 10144 }
ff651cb6
WV
10145 }
10146 return 0;
10147fail:
10148 return i + 1;
10149}
10150
10151static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10152{
10153 u32 i;
10154 struct vmx_msr_entry e;
10155
10156 for (i = 0; i < count; i++) {
609e36d3 10157 struct msr_data msr_info;
54bf36aa
PB
10158 if (kvm_vcpu_read_guest(vcpu,
10159 gpa + i * sizeof(e),
10160 &e, 2 * sizeof(u32))) {
bbe41b95 10161 pr_debug_ratelimited(
e9ac033e
EK
10162 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10163 __func__, i, gpa + i * sizeof(e));
ff651cb6 10164 return -EINVAL;
e9ac033e
EK
10165 }
10166 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 10167 pr_debug_ratelimited(
e9ac033e
EK
10168 "%s check failed (%u, 0x%x, 0x%x)\n",
10169 __func__, i, e.index, e.reserved);
ff651cb6 10170 return -EINVAL;
e9ac033e 10171 }
609e36d3
PB
10172 msr_info.host_initiated = false;
10173 msr_info.index = e.index;
10174 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 10175 pr_debug_ratelimited(
e9ac033e
EK
10176 "%s cannot read MSR (%u, 0x%x)\n",
10177 __func__, i, e.index);
10178 return -EINVAL;
10179 }
54bf36aa
PB
10180 if (kvm_vcpu_write_guest(vcpu,
10181 gpa + i * sizeof(e) +
10182 offsetof(struct vmx_msr_entry, value),
10183 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 10184 pr_debug_ratelimited(
e9ac033e 10185 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 10186 __func__, i, e.index, msr_info.data);
e9ac033e
EK
10187 return -EINVAL;
10188 }
ff651cb6
WV
10189 }
10190 return 0;
10191}
10192
1dc35dac
LP
10193static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10194{
10195 unsigned long invalid_mask;
10196
10197 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10198 return (val & invalid_mask) == 0;
10199}
10200
9ed38ffa
LP
10201/*
10202 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10203 * emulating VM entry into a guest with EPT enabled.
10204 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10205 * is assigned to entry_failure_code on failure.
10206 */
10207static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 10208 u32 *entry_failure_code)
9ed38ffa 10209{
9ed38ffa 10210 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 10211 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
10212 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10213 return 1;
10214 }
10215
10216 /*
10217 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10218 * must not be dereferenced.
10219 */
10220 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10221 !nested_ept) {
10222 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10223 *entry_failure_code = ENTRY_FAIL_PDPTE;
10224 return 1;
10225 }
10226 }
10227
10228 vcpu->arch.cr3 = cr3;
10229 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10230 }
10231
10232 kvm_mmu_reset_context(vcpu);
10233 return 0;
10234}
10235
fe3ef05c
NHE
10236/*
10237 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10238 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 10239 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
10240 * guest in a way that will both be appropriate to L1's requests, and our
10241 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10242 * function also has additional necessary side-effects, like setting various
10243 * vcpu->arch fields.
ee146c1c
LP
10244 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10245 * is assigned to entry_failure_code on failure.
fe3ef05c 10246 */
ee146c1c 10247static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
ca0bde28 10248 bool from_vmentry, u32 *entry_failure_code)
fe3ef05c
NHE
10249{
10250 struct vcpu_vmx *vmx = to_vmx(vcpu);
03efce6f 10251 u32 exec_control, vmcs12_exec_ctrl;
fe3ef05c
NHE
10252
10253 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10254 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10255 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10256 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10257 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10258 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10259 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10260 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10261 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10262 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10263 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10264 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10265 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10266 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10267 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10268 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10269 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10270 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10271 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10272 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10273 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10274 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10275 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10276 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10277 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10278 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10279 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10280 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10281 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10282 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10283 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10284 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10285 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10286 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10287 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10288 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10289
cf8b84f4
JM
10290 if (from_vmentry &&
10291 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
10292 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10293 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10294 } else {
10295 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10296 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10297 }
cf8b84f4
JM
10298 if (from_vmentry) {
10299 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10300 vmcs12->vm_entry_intr_info_field);
10301 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10302 vmcs12->vm_entry_exception_error_code);
10303 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10304 vmcs12->vm_entry_instruction_len);
10305 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10306 vmcs12->guest_interruptibility_info);
2d6144e3
WL
10307 vmx->loaded_vmcs->nmi_known_unmasked =
10308 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
cf8b84f4
JM
10309 } else {
10310 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10311 }
fe3ef05c 10312 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 10313 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
10314 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10315 vmcs12->guest_pending_dbg_exceptions);
10316 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10317 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10318
81dc01f7
WL
10319 if (nested_cpu_has_xsaves(vmcs12))
10320 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
10321 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10322
f4124500 10323 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
10324
10325 /* Preemption timer setting is only taken from vmcs01. */
705699a1 10326 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
10327 exec_control |= vmcs_config.pin_based_exec_ctrl;
10328 if (vmx->hv_deadline_tsc == -1)
10329 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 10330
9314006d 10331 /* Posted interrupts setting is only taken from vmcs12. */
705699a1 10332 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
10333 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10334 vmx->nested.pi_pending = false;
06a5524f 10335 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
6beb7bd5 10336 } else {
705699a1 10337 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 10338 }
705699a1 10339
f4124500 10340 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 10341
f4124500
JK
10342 vmx->nested.preemption_timer_expired = false;
10343 if (nested_cpu_has_preemption_timer(vmcs12))
10344 vmx_start_preemption_timer(vcpu);
0238ea91 10345
fe3ef05c
NHE
10346 /*
10347 * Whether page-faults are trapped is determined by a combination of
10348 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10349 * If enable_ept, L0 doesn't care about page faults and we should
10350 * set all of these to L1's desires. However, if !enable_ept, L0 does
10351 * care about (at least some) page faults, and because it is not easy
10352 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10353 * to exit on each and every L2 page fault. This is done by setting
10354 * MASK=MATCH=0 and (see below) EB.PF=1.
10355 * Note that below we don't need special code to set EB.PF beyond the
10356 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10357 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10358 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
fe3ef05c
NHE
10359 */
10360 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10361 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10362 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10363 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10364
10365 if (cpu_has_secondary_exec_ctrls()) {
f4124500 10366 exec_control = vmx_secondary_exec_control(vmx);
e2821620 10367
fe3ef05c 10368 /* Take the following fields only from vmcs12 */
696dfd95 10369 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
90a2db6d 10370 SECONDARY_EXEC_ENABLE_INVPCID |
b3a2a907 10371 SECONDARY_EXEC_RDTSCP |
696dfd95 10372 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
27c42a1b
BD
10373 SECONDARY_EXEC_APIC_REGISTER_VIRT |
10374 SECONDARY_EXEC_ENABLE_VMFUNC);
fe3ef05c 10375 if (nested_cpu_has(vmcs12,
03efce6f
BD
10376 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10377 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10378 ~SECONDARY_EXEC_ENABLE_PML;
10379 exec_control |= vmcs12_exec_ctrl;
10380 }
fe3ef05c 10381
27c42a1b
BD
10382 /* All VMFUNCs are currently emulated through L0 vmexits. */
10383 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10384 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10385
608406e2
WV
10386 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10387 vmcs_write64(EOI_EXIT_BITMAP0,
10388 vmcs12->eoi_exit_bitmap0);
10389 vmcs_write64(EOI_EXIT_BITMAP1,
10390 vmcs12->eoi_exit_bitmap1);
10391 vmcs_write64(EOI_EXIT_BITMAP2,
10392 vmcs12->eoi_exit_bitmap2);
10393 vmcs_write64(EOI_EXIT_BITMAP3,
10394 vmcs12->eoi_exit_bitmap3);
10395 vmcs_write16(GUEST_INTR_STATUS,
10396 vmcs12->guest_intr_status);
10397 }
10398
6beb7bd5
JM
10399 /*
10400 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10401 * nested_get_vmcs12_pages will either fix it up or
10402 * remove the VM execution control.
10403 */
10404 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10405 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10406
fe3ef05c
NHE
10407 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10408 }
10409
10410
10411 /*
10412 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10413 * Some constant fields are set here by vmx_set_constant_host_state().
10414 * Other fields are different per CPU, and will be set later when
10415 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10416 */
a547c6db 10417 vmx_set_constant_host_state(vmx);
fe3ef05c 10418
83bafef1
JM
10419 /*
10420 * Set the MSR load/store lists to match L0's settings.
10421 */
10422 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10423 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10424 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10425 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10426 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10427
fe3ef05c
NHE
10428 /*
10429 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10430 * entry, but only if the current (host) sp changed from the value
10431 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10432 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10433 * here we just force the write to happen on entry.
10434 */
10435 vmx->host_rsp = 0;
10436
10437 exec_control = vmx_exec_control(vmx); /* L0's desires */
10438 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10439 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10440 exec_control &= ~CPU_BASED_TPR_SHADOW;
10441 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 10442
6beb7bd5
JM
10443 /*
10444 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10445 * nested_get_vmcs12_pages can't fix it up, the illegal value
10446 * will result in a VM entry failure.
10447 */
a7c0b07d 10448 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 10449 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d
WL
10450 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10451 }
10452
fe3ef05c 10453 /*
3af18d9c 10454 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10455 * Rather, exit every time.
10456 */
fe3ef05c
NHE
10457 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10458 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10459
10460 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10461
10462 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10463 * bitwise-or of what L1 wants to trap for L2, and what we want to
10464 * trap. Note that CR0.TS also needs updating - we do this later.
10465 */
10466 update_exception_bitmap(vcpu);
10467 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10468 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10469
8049d651
NHE
10470 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10471 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10472 * bits are further modified by vmx_set_efer() below.
10473 */
f4124500 10474 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10475
10476 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10477 * emulated by vmx_set_efer(), below.
10478 */
2961e876 10479 vm_entry_controls_init(vmx,
8049d651
NHE
10480 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10481 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10482 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10483
cf8b84f4
JM
10484 if (from_vmentry &&
10485 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 10486 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 10487 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 10488 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10489 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 10490 }
fe3ef05c
NHE
10491
10492 set_cr4_guest_host_mask(vmx);
10493
cf8b84f4
JM
10494 if (from_vmentry &&
10495 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
36be0b9d
PB
10496 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10497
27fc51b2
NHE
10498 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10499 vmcs_write64(TSC_OFFSET,
ea26e4ec 10500 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
27fc51b2 10501 else
ea26e4ec 10502 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
c95ba92a
PF
10503 if (kvm_has_tsc_control)
10504 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
10505
10506 if (enable_vpid) {
10507 /*
5c614b35
WL
10508 * There is no direct mapping between vpid02 and vpid12, the
10509 * vpid02 is per-vCPU for L0 and reused while the value of
10510 * vpid12 is changed w/ one invvpid during nested vmentry.
10511 * The vpid12 is allocated by L1 for L2, so it will not
10512 * influence global bitmap(for vpid01 and vpid02 allocation)
10513 * even if spawn a lot of nested vCPUs.
fe3ef05c 10514 */
5c614b35
WL
10515 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10516 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10517 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10518 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10519 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10520 }
10521 } else {
10522 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10523 vmx_flush_tlb(vcpu);
10524 }
10525
fe3ef05c
NHE
10526 }
10527
1fb883bb
LP
10528 if (enable_pml) {
10529 /*
10530 * Conceptually we want to copy the PML address and index from
10531 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10532 * since we always flush the log on each vmexit, this happens
10533 * to be equivalent to simply resetting the fields in vmcs02.
10534 */
10535 ASSERT(vmx->pml_pg);
10536 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10537 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10538 }
10539
155a97a3 10540 if (nested_cpu_has_ept(vmcs12)) {
ae1e2d10
PB
10541 if (nested_ept_init_mmu_context(vcpu)) {
10542 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10543 return 1;
10544 }
fb6c8198
JM
10545 } else if (nested_cpu_has2(vmcs12,
10546 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10547 vmx_flush_tlb_ept_only(vcpu);
155a97a3
NHE
10548 }
10549
fe3ef05c 10550 /*
bd7e5b08
PB
10551 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10552 * bits which we consider mandatory enabled.
fe3ef05c
NHE
10553 * The CR0_READ_SHADOW is what L2 should have expected to read given
10554 * the specifications by L1; It's not enough to take
10555 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10556 * have more bits than L1 expected.
10557 */
10558 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10559 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10560
10561 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10562 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10563
cf8b84f4
JM
10564 if (from_vmentry &&
10565 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
10566 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10567 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10568 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10569 else
10570 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10571 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10572 vmx_set_efer(vcpu, vcpu->arch.efer);
10573
9ed38ffa 10574 /* Shadow page tables on either EPT or shadow page tables. */
7ad658b6 10575 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
9ed38ffa
LP
10576 entry_failure_code))
10577 return 1;
7ca29de2 10578
feaf0c7d
GN
10579 if (!enable_ept)
10580 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10581
3633cfc3
NHE
10582 /*
10583 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10584 */
10585 if (enable_ept) {
10586 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10587 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10588 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10589 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10590 }
10591
fe3ef05c
NHE
10592 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10593 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 10594 return 0;
fe3ef05c
NHE
10595}
10596
ca0bde28 10597static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 10598{
cd232ad0 10599 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 10600
6dfacadd 10601 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
10602 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10603 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 10604
56a20510
JM
10605 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10606 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10607
ca0bde28
JM
10608 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10609 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10610
ca0bde28
JM
10611 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10612 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 10613
ca0bde28
JM
10614 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10615 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 10616
c5f983f6
BD
10617 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10618 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10619
7c177938 10620 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
0115f9cb 10621 vmx->nested.nested_vmx_procbased_ctls_low,
b9c237bb 10622 vmx->nested.nested_vmx_procbased_ctls_high) ||
2e5b0bd9
JM
10623 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10624 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10625 vmx->nested.nested_vmx_secondary_ctls_low,
10626 vmx->nested.nested_vmx_secondary_ctls_high)) ||
7c177938 10627 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10628 vmx->nested.nested_vmx_pinbased_ctls_low,
10629 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10630 !vmx_control_verify(vmcs12->vm_exit_controls,
0115f9cb 10631 vmx->nested.nested_vmx_exit_ctls_low,
b9c237bb 10632 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10633 !vmx_control_verify(vmcs12->vm_entry_controls,
0115f9cb 10634 vmx->nested.nested_vmx_entry_ctls_low,
b9c237bb 10635 vmx->nested.nested_vmx_entry_ctls_high))
ca0bde28 10636 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10637
41ab9372
BD
10638 if (nested_cpu_has_vmfunc(vmcs12)) {
10639 if (vmcs12->vm_function_control &
10640 ~vmx->nested.nested_vmx_vmfunc_controls)
10641 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10642
10643 if (nested_cpu_has_eptp_switching(vmcs12)) {
10644 if (!nested_cpu_has_ept(vmcs12) ||
10645 !page_address_valid(vcpu, vmcs12->eptp_list_address))
10646 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10647 }
10648 }
27c42a1b 10649
c7c2c709
JM
10650 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10651 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10652
3899152c 10653 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 10654 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
10655 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10656 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10657
10658 return 0;
10659}
10660
10661static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10662 u32 *exit_qual)
10663{
10664 bool ia32e;
10665
10666 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 10667
3899152c 10668 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 10669 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 10670 return 1;
ca0bde28
JM
10671
10672 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10673 vmcs12->vmcs_link_pointer != -1ull) {
10674 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 10675 return 1;
7c177938
NHE
10676 }
10677
384bb783 10678 /*
cb0c8cda 10679 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10680 * are performed on the field for the IA32_EFER MSR:
10681 * - Bits reserved in the IA32_EFER MSR must be 0.
10682 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10683 * the IA-32e mode guest VM-exit control. It must also be identical
10684 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10685 * CR0.PG) is 1.
10686 */
ca0bde28
JM
10687 if (to_vmx(vcpu)->nested.nested_run_pending &&
10688 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
10689 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10690 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10691 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10692 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 10693 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 10694 return 1;
384bb783
JK
10695 }
10696
10697 /*
10698 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10699 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10700 * the values of the LMA and LME bits in the field must each be that of
10701 * the host address-space size VM-exit control.
10702 */
10703 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10704 ia32e = (vmcs12->vm_exit_controls &
10705 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10706 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10707 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 10708 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 10709 return 1;
ca0bde28
JM
10710 }
10711
10712 return 0;
10713}
10714
858e25c0
JM
10715static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10716{
10717 struct vcpu_vmx *vmx = to_vmx(vcpu);
10718 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10719 struct loaded_vmcs *vmcs02;
858e25c0
JM
10720 u32 msr_entry_idx;
10721 u32 exit_qual;
10722
10723 vmcs02 = nested_get_current_vmcs02(vmx);
10724 if (!vmcs02)
10725 return -ENOMEM;
10726
10727 enter_guest_mode(vcpu);
10728
10729 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10730 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10731
1279a6b1 10732 vmx_switch_vmcs(vcpu, vmcs02);
858e25c0
JM
10733 vmx_segment_cache_clear(vmx);
10734
10735 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10736 leave_guest_mode(vcpu);
1279a6b1 10737 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10738 nested_vmx_entry_failure(vcpu, vmcs12,
10739 EXIT_REASON_INVALID_STATE, exit_qual);
10740 return 1;
10741 }
10742
10743 nested_get_vmcs12_pages(vcpu, vmcs12);
10744
10745 msr_entry_idx = nested_vmx_load_msr(vcpu,
10746 vmcs12->vm_entry_msr_load_addr,
10747 vmcs12->vm_entry_msr_load_count);
10748 if (msr_entry_idx) {
10749 leave_guest_mode(vcpu);
1279a6b1 10750 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10751 nested_vmx_entry_failure(vcpu, vmcs12,
10752 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10753 return 1;
10754 }
10755
858e25c0
JM
10756 /*
10757 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10758 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10759 * returned as far as L1 is concerned. It will only return (and set
10760 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10761 */
10762 return 0;
10763}
10764
ca0bde28
JM
10765/*
10766 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10767 * for running an L2 nested guest.
10768 */
10769static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10770{
10771 struct vmcs12 *vmcs12;
10772 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3f1dfb6 10773 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
ca0bde28
JM
10774 u32 exit_qual;
10775 int ret;
10776
10777 if (!nested_vmx_check_permission(vcpu))
10778 return 1;
10779
10780 if (!nested_vmx_check_vmcs12(vcpu))
10781 goto out;
10782
10783 vmcs12 = get_vmcs12(vcpu);
10784
10785 if (enable_shadow_vmcs)
10786 copy_shadow_to_vmcs12(vmx);
10787
10788 /*
10789 * The nested entry process starts with enforcing various prerequisites
10790 * on vmcs12 as required by the Intel SDM, and act appropriately when
10791 * they fail: As the SDM explains, some conditions should cause the
10792 * instruction to fail, while others will cause the instruction to seem
10793 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10794 * To speed up the normal (success) code path, we should avoid checking
10795 * for misconfigurations which will anyway be caught by the processor
10796 * when using the merged vmcs02.
10797 */
b3f1dfb6
JM
10798 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10799 nested_vmx_failValid(vcpu,
10800 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10801 goto out;
10802 }
10803
ca0bde28
JM
10804 if (vmcs12->launch_state == launch) {
10805 nested_vmx_failValid(vcpu,
10806 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10807 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10808 goto out;
10809 }
10810
10811 ret = check_vmentry_prereqs(vcpu, vmcs12);
10812 if (ret) {
10813 nested_vmx_failValid(vcpu, ret);
10814 goto out;
10815 }
10816
10817 /*
10818 * After this point, the trap flag no longer triggers a singlestep trap
10819 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10820 * This is not 100% correct; for performance reasons, we delegate most
10821 * of the checks on host state to the processor. If those fail,
10822 * the singlestep trap is missed.
10823 */
10824 skip_emulated_instruction(vcpu);
10825
10826 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10827 if (ret) {
10828 nested_vmx_entry_failure(vcpu, vmcs12,
10829 EXIT_REASON_INVALID_STATE, exit_qual);
10830 return 1;
384bb783
JK
10831 }
10832
7c177938
NHE
10833 /*
10834 * We're finally done with prerequisite checking, and can start with
10835 * the nested entry.
10836 */
10837
858e25c0
JM
10838 ret = enter_vmx_non_root_mode(vcpu, true);
10839 if (ret)
10840 return ret;
ff651cb6 10841
6dfacadd 10842 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10843 return kvm_vcpu_halt(vcpu);
6dfacadd 10844
7af40ad3
JK
10845 vmx->nested.nested_run_pending = 1;
10846
cd232ad0 10847 return 1;
eb277562
KH
10848
10849out:
6affcbed 10850 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
10851}
10852
4704d0be
NHE
10853/*
10854 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10855 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10856 * This function returns the new value we should put in vmcs12.guest_cr0.
10857 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10858 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10859 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10860 * didn't trap the bit, because if L1 did, so would L0).
10861 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10862 * been modified by L2, and L1 knows it. So just leave the old value of
10863 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10864 * isn't relevant, because if L0 traps this bit it can set it to anything.
10865 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10866 * changed these bits, and therefore they need to be updated, but L0
10867 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10868 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10869 */
10870static inline unsigned long
10871vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10872{
10873 return
10874 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10875 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10876 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10877 vcpu->arch.cr0_guest_owned_bits));
10878}
10879
10880static inline unsigned long
10881vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10882{
10883 return
10884 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10885 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10886 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10887 vcpu->arch.cr4_guest_owned_bits));
10888}
10889
5f3d5799
JK
10890static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10891 struct vmcs12 *vmcs12)
10892{
10893 u32 idt_vectoring;
10894 unsigned int nr;
10895
851eb667 10896 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
10897 nr = vcpu->arch.exception.nr;
10898 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10899
10900 if (kvm_exception_is_soft(nr)) {
10901 vmcs12->vm_exit_instruction_len =
10902 vcpu->arch.event_exit_inst_len;
10903 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10904 } else
10905 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10906
10907 if (vcpu->arch.exception.has_error_code) {
10908 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10909 vmcs12->idt_vectoring_error_code =
10910 vcpu->arch.exception.error_code;
10911 }
10912
10913 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10914 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10915 vmcs12->idt_vectoring_info_field =
10916 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10917 } else if (vcpu->arch.interrupt.pending) {
10918 nr = vcpu->arch.interrupt.nr;
10919 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10920
10921 if (vcpu->arch.interrupt.soft) {
10922 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10923 vmcs12->vm_entry_instruction_len =
10924 vcpu->arch.event_exit_inst_len;
10925 } else
10926 idt_vectoring |= INTR_TYPE_EXT_INTR;
10927
10928 vmcs12->idt_vectoring_info_field = idt_vectoring;
10929 }
10930}
10931
b6b8a145
JK
10932static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10933{
10934 struct vcpu_vmx *vmx = to_vmx(vcpu);
10935
acc9ab60
WL
10936 if (vcpu->arch.exception.pending ||
10937 vcpu->arch.nmi_injected ||
10938 vcpu->arch.interrupt.pending)
10939 return -EBUSY;
10940
f4124500
JK
10941 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10942 vmx->nested.preemption_timer_expired) {
10943 if (vmx->nested.nested_run_pending)
10944 return -EBUSY;
10945 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10946 return 0;
10947 }
10948
b6b8a145 10949 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
acc9ab60 10950 if (vmx->nested.nested_run_pending)
b6b8a145
JK
10951 return -EBUSY;
10952 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10953 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10954 INTR_INFO_VALID_MASK, 0);
10955 /*
10956 * The NMI-triggered VM exit counts as injection:
10957 * clear this one and block further NMIs.
10958 */
10959 vcpu->arch.nmi_pending = 0;
10960 vmx_set_nmi_mask(vcpu, true);
10961 return 0;
10962 }
10963
10964 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10965 nested_exit_on_intr(vcpu)) {
10966 if (vmx->nested.nested_run_pending)
10967 return -EBUSY;
10968 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 10969 return 0;
b6b8a145
JK
10970 }
10971
6342c50a
DH
10972 vmx_complete_nested_posted_interrupt(vcpu);
10973 return 0;
b6b8a145
JK
10974}
10975
f4124500
JK
10976static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10977{
10978 ktime_t remaining =
10979 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10980 u64 value;
10981
10982 if (ktime_to_ns(remaining) <= 0)
10983 return 0;
10984
10985 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10986 do_div(value, 1000000);
10987 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10988}
10989
4704d0be 10990/*
cf8b84f4
JM
10991 * Update the guest state fields of vmcs12 to reflect changes that
10992 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10993 * VM-entry controls is also updated, since this is really a guest
10994 * state bit.)
4704d0be 10995 */
cf8b84f4 10996static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 10997{
4704d0be
NHE
10998 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10999 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11000
4704d0be
NHE
11001 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11002 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11003 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11004
11005 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11006 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11007 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11008 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11009 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11010 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11011 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11012 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11013 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11014 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11015 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11016 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11017 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11018 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11019 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11020 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11021 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11022 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11023 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11024 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11025 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11026 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11027 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11028 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11029 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11030 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11031 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11032 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11033 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11034 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11035 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11036 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11037 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11038 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11039 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11040 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11041
4704d0be
NHE
11042 vmcs12->guest_interruptibility_info =
11043 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11044 vmcs12->guest_pending_dbg_exceptions =
11045 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
11046 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11047 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11048 else
11049 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 11050
f4124500
JK
11051 if (nested_cpu_has_preemption_timer(vmcs12)) {
11052 if (vmcs12->vm_exit_controls &
11053 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11054 vmcs12->vmx_preemption_timer_value =
11055 vmx_get_preemption_timer_value(vcpu);
11056 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11057 }
7854cbca 11058
3633cfc3
NHE
11059 /*
11060 * In some cases (usually, nested EPT), L2 is allowed to change its
11061 * own CR3 without exiting. If it has changed it, we must keep it.
11062 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11063 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11064 *
11065 * Additionally, restore L2's PDPTR to vmcs12.
11066 */
11067 if (enable_ept) {
f3531054 11068 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
11069 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11070 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11071 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11072 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11073 }
11074
d281e13b 11075 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
119a9c01 11076
608406e2
WV
11077 if (nested_cpu_has_vid(vmcs12))
11078 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11079
c18911a2
JK
11080 vmcs12->vm_entry_controls =
11081 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 11082 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 11083
2996fca0
JK
11084 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11085 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11086 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11087 }
11088
4704d0be
NHE
11089 /* TODO: These cannot have changed unless we have MSR bitmaps and
11090 * the relevant bit asks not to trap the change */
b8c07d55 11091 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 11092 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
11093 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11094 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
11095 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11096 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11097 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 11098 if (kvm_mpx_supported())
36be0b9d 11099 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
cf8b84f4
JM
11100}
11101
11102/*
11103 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11104 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11105 * and this function updates it to reflect the changes to the guest state while
11106 * L2 was running (and perhaps made some exits which were handled directly by L0
11107 * without going back to L1), and to reflect the exit reason.
11108 * Note that we do not have to copy here all VMCS fields, just those that
11109 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11110 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11111 * which already writes to vmcs12 directly.
11112 */
11113static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11114 u32 exit_reason, u32 exit_intr_info,
11115 unsigned long exit_qualification)
11116{
11117 /* update guest state fields: */
11118 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
11119
11120 /* update exit information fields: */
11121
533558bc
JK
11122 vmcs12->vm_exit_reason = exit_reason;
11123 vmcs12->exit_qualification = exit_qualification;
533558bc 11124 vmcs12->vm_exit_intr_info = exit_intr_info;
7313c698 11125
5f3d5799 11126 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
11127 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11128 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11129
5f3d5799 11130 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7cdc2d62
JM
11131 vmcs12->launch_state = 1;
11132
5f3d5799
JK
11133 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11134 * instead of reading the real value. */
4704d0be 11135 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
11136
11137 /*
11138 * Transfer the event that L0 or L1 may wanted to inject into
11139 * L2 to IDT_VECTORING_INFO_FIELD.
11140 */
11141 vmcs12_save_pending_event(vcpu, vmcs12);
11142 }
11143
11144 /*
11145 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11146 * preserved above and would only end up incorrectly in L1.
11147 */
11148 vcpu->arch.nmi_injected = false;
11149 kvm_clear_exception_queue(vcpu);
11150 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
11151}
11152
11153/*
11154 * A part of what we need to when the nested L2 guest exits and we want to
11155 * run its L1 parent, is to reset L1's guest state to the host state specified
11156 * in vmcs12.
11157 * This function is to be called not only on normal nested exit, but also on
11158 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11159 * Failures During or After Loading Guest State").
11160 * This function should be called when the active VMCS is L1's (vmcs01).
11161 */
733568f9
JK
11162static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11163 struct vmcs12 *vmcs12)
4704d0be 11164{
21feb4eb 11165 struct kvm_segment seg;
ca0bde28 11166 u32 entry_failure_code;
21feb4eb 11167
4704d0be
NHE
11168 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11169 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 11170 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
11171 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11172 else
11173 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11174 vmx_set_efer(vcpu, vcpu->arch.efer);
11175
11176 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11177 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 11178 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
11179 /*
11180 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
11181 * actually changed, because vmx_set_cr0 refers to efer set above.
11182 *
11183 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11184 * (KVM doesn't change it);
4704d0be 11185 */
bd7e5b08 11186 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 11187 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 11188
bd7e5b08 11189 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be
NHE
11190 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
11191 kvm_set_cr4(vcpu, vmcs12->host_cr4);
11192
29bf08f1 11193 nested_ept_uninit_mmu_context(vcpu);
155a97a3 11194
1dc35dac
LP
11195 /*
11196 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11197 * couldn't have changed.
11198 */
11199 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11200 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4704d0be 11201
feaf0c7d
GN
11202 if (!enable_ept)
11203 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11204
4704d0be
NHE
11205 if (enable_vpid) {
11206 /*
11207 * Trivially support vpid by letting L2s share their parent
11208 * L1's vpid. TODO: move to a more elaborate solution, giving
11209 * each L2 its own vpid and exposing the vpid feature to L1.
11210 */
11211 vmx_flush_tlb(vcpu);
11212 }
06a5524f
WV
11213 /* Restore posted intr vector. */
11214 if (nested_cpu_has_posted_intr(vmcs12))
11215 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4704d0be
NHE
11216
11217 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11218 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11219 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11220 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11221 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 11222
36be0b9d
PB
11223 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11224 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11225 vmcs_write64(GUEST_BNDCFGS, 0);
11226
44811c02 11227 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 11228 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
11229 vcpu->arch.pat = vmcs12->host_ia32_pat;
11230 }
4704d0be
NHE
11231 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11232 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11233 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 11234
21feb4eb
ACL
11235 /* Set L1 segment info according to Intel SDM
11236 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11237 seg = (struct kvm_segment) {
11238 .base = 0,
11239 .limit = 0xFFFFFFFF,
11240 .selector = vmcs12->host_cs_selector,
11241 .type = 11,
11242 .present = 1,
11243 .s = 1,
11244 .g = 1
11245 };
11246 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11247 seg.l = 1;
11248 else
11249 seg.db = 1;
11250 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11251 seg = (struct kvm_segment) {
11252 .base = 0,
11253 .limit = 0xFFFFFFFF,
11254 .type = 3,
11255 .present = 1,
11256 .s = 1,
11257 .db = 1,
11258 .g = 1
11259 };
11260 seg.selector = vmcs12->host_ds_selector;
11261 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11262 seg.selector = vmcs12->host_es_selector;
11263 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11264 seg.selector = vmcs12->host_ss_selector;
11265 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11266 seg.selector = vmcs12->host_fs_selector;
11267 seg.base = vmcs12->host_fs_base;
11268 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11269 seg.selector = vmcs12->host_gs_selector;
11270 seg.base = vmcs12->host_gs_base;
11271 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11272 seg = (struct kvm_segment) {
205befd9 11273 .base = vmcs12->host_tr_base,
21feb4eb
ACL
11274 .limit = 0x67,
11275 .selector = vmcs12->host_tr_selector,
11276 .type = 11,
11277 .present = 1
11278 };
11279 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11280
503cd0c5
JK
11281 kvm_set_dr(vcpu, 7, 0x400);
11282 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 11283
3af18d9c
WV
11284 if (cpu_has_vmx_msr_bitmap())
11285 vmx_set_msr_bitmap(vcpu);
11286
ff651cb6
WV
11287 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11288 vmcs12->vm_exit_msr_load_count))
11289 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
11290}
11291
11292/*
11293 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11294 * and modify vmcs12 to make it see what it would expect to see there if
11295 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11296 */
533558bc
JK
11297static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11298 u32 exit_intr_info,
11299 unsigned long exit_qualification)
4704d0be
NHE
11300{
11301 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be 11302 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
cf3215d9 11303 u32 vm_inst_error = 0;
4704d0be 11304
5f3d5799
JK
11305 /* trying to cancel vmlaunch/vmresume is a bug */
11306 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11307
4704d0be 11308 leave_guest_mode(vcpu);
533558bc
JK
11309 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11310 exit_qualification);
4704d0be 11311
ff651cb6
WV
11312 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11313 vmcs12->vm_exit_msr_store_count))
11314 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11315
cf3215d9
JM
11316 if (unlikely(vmx->fail))
11317 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
11318
1279a6b1 11319 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
f3380ca5 11320
6550c4df
WL
11321 /*
11322 * TODO: SDM says that with acknowledge interrupt on exit, bit 31 of
11323 * the VM-exit interrupt information (valid interrupt) is always set to
11324 * 1 on EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't need
11325 * kvm_cpu_has_interrupt(). See the commit message for details.
11326 */
11327 if (nested_exit_intr_ack_set(vcpu) &&
11328 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11329 kvm_cpu_has_interrupt(vcpu)) {
77b0f5d6
BD
11330 int irq = kvm_cpu_get_interrupt(vcpu);
11331 WARN_ON(irq < 0);
11332 vmcs12->vm_exit_intr_info = irq |
11333 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11334 }
11335
542060ea
JK
11336 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11337 vmcs12->exit_qualification,
11338 vmcs12->idt_vectoring_info_field,
11339 vmcs12->vm_exit_intr_info,
11340 vmcs12->vm_exit_intr_error_code,
11341 KVM_ISA_VMX);
4704d0be 11342
8391ce44
PB
11343 vm_entry_controls_reset_shadow(vmx);
11344 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
11345 vmx_segment_cache_clear(vmx);
11346
4704d0be
NHE
11347 /* if no vmcs02 cache requested, remove the one we used */
11348 if (VMCS02_POOL_SIZE == 0)
11349 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11350
11351 load_vmcs12_host_state(vcpu, vmcs12);
11352
9314006d 11353 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
11354 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11355 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 11356 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
11357 if (vmx->hv_deadline_tsc == -1)
11358 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11359 PIN_BASED_VMX_PREEMPTION_TIMER);
11360 else
11361 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11362 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
11363 if (kvm_has_tsc_control)
11364 decache_tsc_multiplier(vmx);
4704d0be 11365
dccbfcf5
RK
11366 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11367 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11368 vmx_set_virtual_x2apic_mode(vcpu,
11369 vcpu->arch.apic_base & X2APIC_ENABLE);
fb6c8198
JM
11370 } else if (!nested_cpu_has_ept(vmcs12) &&
11371 nested_cpu_has2(vmcs12,
11372 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11373 vmx_flush_tlb_ept_only(vcpu);
dccbfcf5 11374 }
4704d0be
NHE
11375
11376 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11377 vmx->host_rsp = 0;
11378
11379 /* Unpin physical memory we referred to in vmcs02 */
11380 if (vmx->nested.apic_access_page) {
53a70daf 11381 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 11382 vmx->nested.apic_access_page = NULL;
4704d0be 11383 }
a7c0b07d 11384 if (vmx->nested.virtual_apic_page) {
53a70daf 11385 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 11386 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 11387 }
705699a1
WV
11388 if (vmx->nested.pi_desc_page) {
11389 kunmap(vmx->nested.pi_desc_page);
53a70daf 11390 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
11391 vmx->nested.pi_desc_page = NULL;
11392 vmx->nested.pi_desc = NULL;
11393 }
4704d0be 11394
38b99173
TC
11395 /*
11396 * We are now running in L2, mmu_notifier will force to reload the
11397 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11398 */
c83b6d15 11399 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 11400
4704d0be
NHE
11401 /*
11402 * Exiting from L2 to L1, we're now back to L1 which thinks it just
11403 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11404 * success or failure flag accordingly.
11405 */
11406 if (unlikely(vmx->fail)) {
11407 vmx->fail = 0;
cf3215d9 11408 nested_vmx_failValid(vcpu, vm_inst_error);
4704d0be
NHE
11409 } else
11410 nested_vmx_succeed(vcpu);
012f83cb
AG
11411 if (enable_shadow_vmcs)
11412 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
11413
11414 /* in case we halted in L2 */
11415 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
11416}
11417
42124925
JK
11418/*
11419 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11420 */
11421static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11422{
2f707d97
WL
11423 if (is_guest_mode(vcpu)) {
11424 to_vmx(vcpu)->nested.nested_run_pending = 0;
533558bc 11425 nested_vmx_vmexit(vcpu, -1, 0, 0);
2f707d97 11426 }
42124925
JK
11427 free_nested(to_vmx(vcpu));
11428}
11429
7c177938
NHE
11430/*
11431 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11432 * 23.7 "VM-entry failures during or after loading guest state" (this also
11433 * lists the acceptable exit-reason and exit-qualification parameters).
11434 * It should only be called before L2 actually succeeded to run, and when
11435 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11436 */
11437static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11438 struct vmcs12 *vmcs12,
11439 u32 reason, unsigned long qualification)
11440{
11441 load_vmcs12_host_state(vcpu, vmcs12);
11442 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11443 vmcs12->exit_qualification = qualification;
11444 nested_vmx_succeed(vcpu);
012f83cb
AG
11445 if (enable_shadow_vmcs)
11446 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
11447}
11448
8a76d7f2
JR
11449static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11450 struct x86_instruction_info *info,
11451 enum x86_intercept_stage stage)
11452{
11453 return X86EMUL_CONTINUE;
11454}
11455
64672c95
YJ
11456#ifdef CONFIG_X86_64
11457/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11458static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11459 u64 divisor, u64 *result)
11460{
11461 u64 low = a << shift, high = a >> (64 - shift);
11462
11463 /* To avoid the overflow on divq */
11464 if (high >= divisor)
11465 return 1;
11466
11467 /* Low hold the result, high hold rem which is discarded */
11468 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11469 "rm" (divisor), "0" (low), "1" (high));
11470 *result = low;
11471
11472 return 0;
11473}
11474
11475static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11476{
11477 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
11478 u64 tscl = rdtsc();
11479 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11480 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
11481
11482 /* Convert to host delta tsc if tsc scaling is enabled */
11483 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11484 u64_shl_div_u64(delta_tsc,
11485 kvm_tsc_scaling_ratio_frac_bits,
11486 vcpu->arch.tsc_scaling_ratio,
11487 &delta_tsc))
11488 return -ERANGE;
11489
11490 /*
11491 * If the delta tsc can't fit in the 32 bit after the multi shift,
11492 * we can't use the preemption timer.
11493 * It's possible that it fits on later vmentries, but checking
11494 * on every vmentry is costly so we just use an hrtimer.
11495 */
11496 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11497 return -ERANGE;
11498
11499 vmx->hv_deadline_tsc = tscl + delta_tsc;
11500 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11501 PIN_BASED_VMX_PREEMPTION_TIMER);
c8533544
WL
11502
11503 return delta_tsc == 0;
64672c95
YJ
11504}
11505
11506static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11507{
11508 struct vcpu_vmx *vmx = to_vmx(vcpu);
11509 vmx->hv_deadline_tsc = -1;
11510 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11511 PIN_BASED_VMX_PREEMPTION_TIMER);
11512}
11513#endif
11514
48d89b92 11515static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 11516{
b4a2d31d
RK
11517 if (ple_gap)
11518 shrink_ple_window(vcpu);
ae97a3b8
RK
11519}
11520
843e4330
KH
11521static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11522 struct kvm_memory_slot *slot)
11523{
11524 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11525 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11526}
11527
11528static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11529 struct kvm_memory_slot *slot)
11530{
11531 kvm_mmu_slot_set_dirty(kvm, slot);
11532}
11533
11534static void vmx_flush_log_dirty(struct kvm *kvm)
11535{
11536 kvm_flush_pml_buffers(kvm);
11537}
11538
c5f983f6
BD
11539static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11540{
11541 struct vmcs12 *vmcs12;
11542 struct vcpu_vmx *vmx = to_vmx(vcpu);
11543 gpa_t gpa;
11544 struct page *page = NULL;
11545 u64 *pml_address;
11546
11547 if (is_guest_mode(vcpu)) {
11548 WARN_ON_ONCE(vmx->nested.pml_full);
11549
11550 /*
11551 * Check if PML is enabled for the nested guest.
11552 * Whether eptp bit 6 is set is already checked
11553 * as part of A/D emulation.
11554 */
11555 vmcs12 = get_vmcs12(vcpu);
11556 if (!nested_cpu_has_pml(vmcs12))
11557 return 0;
11558
4769886b 11559 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
c5f983f6
BD
11560 vmx->nested.pml_full = true;
11561 return 1;
11562 }
11563
11564 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11565
5e2f30b7
DH
11566 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11567 if (is_error_page(page))
c5f983f6
BD
11568 return 0;
11569
11570 pml_address = kmap(page);
11571 pml_address[vmcs12->guest_pml_index--] = gpa;
11572 kunmap(page);
53a70daf 11573 kvm_release_page_clean(page);
c5f983f6
BD
11574 }
11575
11576 return 0;
11577}
11578
843e4330
KH
11579static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11580 struct kvm_memory_slot *memslot,
11581 gfn_t offset, unsigned long mask)
11582{
11583 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11584}
11585
bf9f6ac8
FW
11586/*
11587 * This routine does the following things for vCPU which is going
11588 * to be blocked if VT-d PI is enabled.
11589 * - Store the vCPU to the wakeup list, so when interrupts happen
11590 * we can find the right vCPU to wake up.
11591 * - Change the Posted-interrupt descriptor as below:
11592 * 'NDST' <-- vcpu->pre_pcpu
11593 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11594 * - If 'ON' is set during this process, which means at least one
11595 * interrupt is posted for this vCPU, we cannot block it, in
11596 * this case, return 1, otherwise, return 0.
11597 *
11598 */
bc22512b 11599static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11600{
11601 unsigned long flags;
11602 unsigned int dest;
11603 struct pi_desc old, new;
11604 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11605
11606 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11607 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11608 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11609 return 0;
11610
11611 vcpu->pre_pcpu = vcpu->cpu;
11612 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11613 vcpu->pre_pcpu), flags);
11614 list_add_tail(&vcpu->blocked_vcpu_list,
11615 &per_cpu(blocked_vcpu_on_cpu,
11616 vcpu->pre_pcpu));
11617 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11618 vcpu->pre_pcpu), flags);
11619
11620 do {
11621 old.control = new.control = pi_desc->control;
11622
11623 /*
11624 * We should not block the vCPU if
11625 * an interrupt is posted for it.
11626 */
11627 if (pi_test_on(pi_desc) == 1) {
11628 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11629 vcpu->pre_pcpu), flags);
11630 list_del(&vcpu->blocked_vcpu_list);
11631 spin_unlock_irqrestore(
11632 &per_cpu(blocked_vcpu_on_cpu_lock,
11633 vcpu->pre_pcpu), flags);
11634 vcpu->pre_pcpu = -1;
11635
11636 return 1;
11637 }
11638
11639 WARN((pi_desc->sn == 1),
11640 "Warning: SN field of posted-interrupts "
11641 "is set before blocking\n");
11642
11643 /*
11644 * Since vCPU can be preempted during this process,
11645 * vcpu->cpu could be different with pre_pcpu, we
11646 * need to set pre_pcpu as the destination of wakeup
11647 * notification event, then we can find the right vCPU
11648 * to wakeup in wakeup handler if interrupts happen
11649 * when the vCPU is in blocked state.
11650 */
11651 dest = cpu_physical_id(vcpu->pre_pcpu);
11652
11653 if (x2apic_enabled())
11654 new.ndst = dest;
11655 else
11656 new.ndst = (dest << 8) & 0xFF00;
11657
11658 /* set 'NV' to 'wakeup vector' */
11659 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11660 } while (cmpxchg(&pi_desc->control, old.control,
11661 new.control) != old.control);
11662
11663 return 0;
11664}
11665
bc22512b
YJ
11666static int vmx_pre_block(struct kvm_vcpu *vcpu)
11667{
11668 if (pi_pre_block(vcpu))
11669 return 1;
11670
64672c95
YJ
11671 if (kvm_lapic_hv_timer_in_use(vcpu))
11672 kvm_lapic_switch_to_sw_timer(vcpu);
11673
bc22512b
YJ
11674 return 0;
11675}
11676
11677static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11678{
11679 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11680 struct pi_desc old, new;
11681 unsigned int dest;
11682 unsigned long flags;
11683
11684 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11685 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11686 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11687 return;
11688
11689 do {
11690 old.control = new.control = pi_desc->control;
11691
11692 dest = cpu_physical_id(vcpu->cpu);
11693
11694 if (x2apic_enabled())
11695 new.ndst = dest;
11696 else
11697 new.ndst = (dest << 8) & 0xFF00;
11698
11699 /* Allow posting non-urgent interrupts */
11700 new.sn = 0;
11701
11702 /* set 'NV' to 'notification vector' */
11703 new.nv = POSTED_INTR_VECTOR;
11704 } while (cmpxchg(&pi_desc->control, old.control,
11705 new.control) != old.control);
11706
11707 if(vcpu->pre_pcpu != -1) {
11708 spin_lock_irqsave(
11709 &per_cpu(blocked_vcpu_on_cpu_lock,
11710 vcpu->pre_pcpu), flags);
11711 list_del(&vcpu->blocked_vcpu_list);
11712 spin_unlock_irqrestore(
11713 &per_cpu(blocked_vcpu_on_cpu_lock,
11714 vcpu->pre_pcpu), flags);
11715 vcpu->pre_pcpu = -1;
11716 }
11717}
11718
bc22512b
YJ
11719static void vmx_post_block(struct kvm_vcpu *vcpu)
11720{
64672c95
YJ
11721 if (kvm_x86_ops->set_hv_timer)
11722 kvm_lapic_switch_to_hv_timer(vcpu);
11723
bc22512b
YJ
11724 pi_post_block(vcpu);
11725}
11726
efc64404
FW
11727/*
11728 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11729 *
11730 * @kvm: kvm
11731 * @host_irq: host irq of the interrupt
11732 * @guest_irq: gsi of the interrupt
11733 * @set: set or unset PI
11734 * returns 0 on success, < 0 on failure
11735 */
11736static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11737 uint32_t guest_irq, bool set)
11738{
11739 struct kvm_kernel_irq_routing_entry *e;
11740 struct kvm_irq_routing_table *irq_rt;
11741 struct kvm_lapic_irq irq;
11742 struct kvm_vcpu *vcpu;
11743 struct vcpu_data vcpu_info;
11744 int idx, ret = -EINVAL;
11745
11746 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
11747 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11748 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
11749 return 0;
11750
11751 idx = srcu_read_lock(&kvm->irq_srcu);
11752 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11753 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11754
11755 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11756 if (e->type != KVM_IRQ_ROUTING_MSI)
11757 continue;
11758 /*
11759 * VT-d PI cannot support posting multicast/broadcast
11760 * interrupts to a vCPU, we still use interrupt remapping
11761 * for these kind of interrupts.
11762 *
11763 * For lowest-priority interrupts, we only support
11764 * those with single CPU as the destination, e.g. user
11765 * configures the interrupts via /proc/irq or uses
11766 * irqbalance to make the interrupts single-CPU.
11767 *
11768 * We will support full lowest-priority interrupt later.
11769 */
11770
37131313 11771 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
11772 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11773 /*
11774 * Make sure the IRTE is in remapped mode if
11775 * we don't handle it in posted mode.
11776 */
11777 ret = irq_set_vcpu_affinity(host_irq, NULL);
11778 if (ret < 0) {
11779 printk(KERN_INFO
11780 "failed to back to remapped mode, irq: %u\n",
11781 host_irq);
11782 goto out;
11783 }
11784
efc64404 11785 continue;
23a1c257 11786 }
efc64404
FW
11787
11788 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11789 vcpu_info.vector = irq.vector;
11790
b6ce9780 11791 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
11792 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11793
11794 if (set)
11795 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11796 else {
11797 /* suppress notification event before unposting */
11798 pi_set_sn(vcpu_to_pi_desc(vcpu));
11799 ret = irq_set_vcpu_affinity(host_irq, NULL);
11800 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11801 }
11802
11803 if (ret < 0) {
11804 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11805 __func__);
11806 goto out;
11807 }
11808 }
11809
11810 ret = 0;
11811out:
11812 srcu_read_unlock(&kvm->irq_srcu, idx);
11813 return ret;
11814}
11815
c45dcc71
AR
11816static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11817{
11818 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11819 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11820 FEATURE_CONTROL_LMCE;
11821 else
11822 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11823 ~FEATURE_CONTROL_LMCE;
11824}
11825
404f6aac 11826static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
11827 .cpu_has_kvm_support = cpu_has_kvm_support,
11828 .disabled_by_bios = vmx_disabled_by_bios,
11829 .hardware_setup = hardware_setup,
11830 .hardware_unsetup = hardware_unsetup,
002c7f7c 11831 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
11832 .hardware_enable = hardware_enable,
11833 .hardware_disable = hardware_disable,
04547156 11834 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 11835 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
11836
11837 .vcpu_create = vmx_create_vcpu,
11838 .vcpu_free = vmx_free_vcpu,
04d2cc77 11839 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 11840
04d2cc77 11841 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
11842 .vcpu_load = vmx_vcpu_load,
11843 .vcpu_put = vmx_vcpu_put,
11844
a96036b8 11845 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
11846 .get_msr = vmx_get_msr,
11847 .set_msr = vmx_set_msr,
11848 .get_segment_base = vmx_get_segment_base,
11849 .get_segment = vmx_get_segment,
11850 .set_segment = vmx_set_segment,
2e4d2653 11851 .get_cpl = vmx_get_cpl,
6aa8b732 11852 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 11853 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 11854 .decache_cr3 = vmx_decache_cr3,
25c4c276 11855 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 11856 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
11857 .set_cr3 = vmx_set_cr3,
11858 .set_cr4 = vmx_set_cr4,
6aa8b732 11859 .set_efer = vmx_set_efer,
6aa8b732
AK
11860 .get_idt = vmx_get_idt,
11861 .set_idt = vmx_set_idt,
11862 .get_gdt = vmx_get_gdt,
11863 .set_gdt = vmx_set_gdt,
73aaf249
JK
11864 .get_dr6 = vmx_get_dr6,
11865 .set_dr6 = vmx_set_dr6,
020df079 11866 .set_dr7 = vmx_set_dr7,
81908bf4 11867 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 11868 .cache_reg = vmx_cache_reg,
6aa8b732
AK
11869 .get_rflags = vmx_get_rflags,
11870 .set_rflags = vmx_set_rflags,
be94f6b7
HH
11871
11872 .get_pkru = vmx_get_pkru,
11873
6aa8b732 11874 .tlb_flush = vmx_flush_tlb,
6aa8b732 11875
6aa8b732 11876 .run = vmx_vcpu_run,
6062d012 11877 .handle_exit = vmx_handle_exit,
6aa8b732 11878 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
11879 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11880 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 11881 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 11882 .set_irq = vmx_inject_irq,
95ba8273 11883 .set_nmi = vmx_inject_nmi,
298101da 11884 .queue_exception = vmx_queue_exception,
b463a6f7 11885 .cancel_injection = vmx_cancel_injection,
78646121 11886 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 11887 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
11888 .get_nmi_mask = vmx_get_nmi_mask,
11889 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
11890 .enable_nmi_window = enable_nmi_window,
11891 .enable_irq_window = enable_irq_window,
11892 .update_cr8_intercept = update_cr8_intercept,
8d14695f 11893 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 11894 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
11895 .get_enable_apicv = vmx_get_enable_apicv,
11896 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 11897 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 11898 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
11899 .hwapic_irr_update = vmx_hwapic_irr_update,
11900 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
11901 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11902 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 11903
cbc94022 11904 .set_tss_addr = vmx_set_tss_addr,
67253af5 11905 .get_tdp_level = get_ept_level,
4b12f0de 11906 .get_mt_mask = vmx_get_mt_mask,
229456fc 11907
586f9607 11908 .get_exit_info = vmx_get_exit_info,
586f9607 11909
17cc3935 11910 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
11911
11912 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
11913
11914 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 11915 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
11916
11917 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
11918
11919 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
11920
11921 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
11922
11923 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
11924
11925 .check_intercept = vmx_check_intercept,
a547c6db 11926 .handle_external_intr = vmx_handle_external_intr,
da8999d3 11927 .mpx_supported = vmx_mpx_supported,
55412b2e 11928 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
11929
11930 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
11931
11932 .sched_in = vmx_sched_in,
843e4330
KH
11933
11934 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11935 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11936 .flush_log_dirty = vmx_flush_log_dirty,
11937 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
c5f983f6 11938 .write_log_dirty = vmx_write_pml_buffer,
25462f7f 11939
bf9f6ac8
FW
11940 .pre_block = vmx_pre_block,
11941 .post_block = vmx_post_block,
11942
25462f7f 11943 .pmu_ops = &intel_pmu_ops,
efc64404
FW
11944
11945 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
11946
11947#ifdef CONFIG_X86_64
11948 .set_hv_timer = vmx_set_hv_timer,
11949 .cancel_hv_timer = vmx_cancel_hv_timer,
11950#endif
c45dcc71
AR
11951
11952 .setup_mce = vmx_setup_mce,
6aa8b732
AK
11953};
11954
11955static int __init vmx_init(void)
11956{
34a1cd60
TC
11957 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11958 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 11959 if (r)
34a1cd60 11960 return r;
25c5f225 11961
2965faa5 11962#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
11963 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11964 crash_vmclear_local_loaded_vmcss);
11965#endif
11966
fdef3ad1 11967 return 0;
6aa8b732
AK
11968}
11969
11970static void __exit vmx_exit(void)
11971{
2965faa5 11972#ifdef CONFIG_KEXEC_CORE
3b63a43f 11973 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
11974 synchronize_rcu();
11975#endif
11976
cb498ea2 11977 kvm_exit();
6aa8b732
AK
11978}
11979
11980module_init(vmx_init)
11981module_exit(vmx_exit)