]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: simple improvements for bio->flags
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
5bb23a68
N
132static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
1da177e4 134{
78d8e58a 135 if (error)
4246a0b6 136 bio->bi_error = error;
797e7dbb 137
e8064021 138 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 139 bio_set_flag(bio, BIO_QUIET);
08bafc03 140
f79ea416 141 bio_advance(bio, nbytes);
7ba1ba12 142
143a87f4 143 /* don't actually finish bio if it's part of flush sequence */
e8064021 144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 145 bio_endio(bio);
1da177e4 146}
1da177e4 147
1da177e4
LT
148void blk_dump_rq_flags(struct request *rq, char *msg)
149{
aebf526b
CH
150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 152 (unsigned long long) rq->cmd_flags);
1da177e4 153
83096ebf
TH
154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
155 (unsigned long long)blk_rq_pos(rq),
156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
157 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
158 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 159}
1da177e4
LT
160EXPORT_SYMBOL(blk_dump_rq_flags);
161
3cca6dc1 162static void blk_delay_work(struct work_struct *work)
1da177e4 163{
3cca6dc1 164 struct request_queue *q;
1da177e4 165
3cca6dc1
JA
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
24ecfbe2 168 __blk_run_queue(q);
3cca6dc1 169 spin_unlock_irq(q->queue_lock);
1da177e4 170}
1da177e4
LT
171
172/**
3cca6dc1
JA
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
1da177e4
LT
176 *
177 * Description:
3cca6dc1
JA
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
70460571 180 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
181 */
182void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 183{
70460571
BVA
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
2ad8b1ef 187}
3cca6dc1 188EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 189
21491412
JA
190/**
191 * blk_start_queue_async - asynchronously restart a previously stopped queue
192 * @q: The &struct request_queue in question
193 *
194 * Description:
195 * blk_start_queue_async() will clear the stop flag on the queue, and
196 * ensure that the request_fn for the queue is run from an async
197 * context.
198 **/
199void blk_start_queue_async(struct request_queue *q)
200{
201 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 blk_run_queue_async(q);
203}
204EXPORT_SYMBOL(blk_start_queue_async);
205
1da177e4
LT
206/**
207 * blk_start_queue - restart a previously stopped queue
165125e1 208 * @q: The &struct request_queue in question
1da177e4
LT
209 *
210 * Description:
211 * blk_start_queue() will clear the stop flag on the queue, and call
212 * the request_fn for the queue if it was in a stopped state when
213 * entered. Also see blk_stop_queue(). Queue lock must be held.
214 **/
165125e1 215void blk_start_queue(struct request_queue *q)
1da177e4 216{
a038e253
PBG
217 WARN_ON(!irqs_disabled());
218
75ad23bc 219 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 220 __blk_run_queue(q);
1da177e4 221}
1da177e4
LT
222EXPORT_SYMBOL(blk_start_queue);
223
224/**
225 * blk_stop_queue - stop a queue
165125e1 226 * @q: The &struct request_queue in question
1da177e4
LT
227 *
228 * Description:
229 * The Linux block layer assumes that a block driver will consume all
230 * entries on the request queue when the request_fn strategy is called.
231 * Often this will not happen, because of hardware limitations (queue
232 * depth settings). If a device driver gets a 'queue full' response,
233 * or if it simply chooses not to queue more I/O at one point, it can
234 * call this function to prevent the request_fn from being called until
235 * the driver has signalled it's ready to go again. This happens by calling
236 * blk_start_queue() to restart queue operations. Queue lock must be held.
237 **/
165125e1 238void blk_stop_queue(struct request_queue *q)
1da177e4 239{
136b5721 240 cancel_delayed_work(&q->delay_work);
75ad23bc 241 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
242}
243EXPORT_SYMBOL(blk_stop_queue);
244
245/**
246 * blk_sync_queue - cancel any pending callbacks on a queue
247 * @q: the queue
248 *
249 * Description:
250 * The block layer may perform asynchronous callback activity
251 * on a queue, such as calling the unplug function after a timeout.
252 * A block device may call blk_sync_queue to ensure that any
253 * such activity is cancelled, thus allowing it to release resources
59c51591 254 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
255 * that its ->make_request_fn will not re-add plugging prior to calling
256 * this function.
257 *
da527770 258 * This function does not cancel any asynchronous activity arising
da3dae54 259 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 260 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 261 *
1da177e4
LT
262 */
263void blk_sync_queue(struct request_queue *q)
264{
70ed28b9 265 del_timer_sync(&q->timeout);
f04c1fe7
ML
266
267 if (q->mq_ops) {
268 struct blk_mq_hw_ctx *hctx;
269 int i;
270
70f4db63 271 queue_for_each_hw_ctx(q, hctx, i) {
27489a3c 272 cancel_work_sync(&hctx->run_work);
70f4db63
CH
273 cancel_delayed_work_sync(&hctx->delay_work);
274 }
f04c1fe7
ML
275 } else {
276 cancel_delayed_work_sync(&q->delay_work);
277 }
1da177e4
LT
278}
279EXPORT_SYMBOL(blk_sync_queue);
280
c246e80d
BVA
281/**
282 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
283 * @q: The queue to run
284 *
285 * Description:
286 * Invoke request handling on a queue if there are any pending requests.
287 * May be used to restart request handling after a request has completed.
288 * This variant runs the queue whether or not the queue has been
289 * stopped. Must be called with the queue lock held and interrupts
290 * disabled. See also @blk_run_queue.
291 */
292inline void __blk_run_queue_uncond(struct request_queue *q)
293{
294 if (unlikely(blk_queue_dead(q)))
295 return;
296
24faf6f6
BVA
297 /*
298 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
299 * the queue lock internally. As a result multiple threads may be
300 * running such a request function concurrently. Keep track of the
301 * number of active request_fn invocations such that blk_drain_queue()
302 * can wait until all these request_fn calls have finished.
303 */
304 q->request_fn_active++;
c246e80d 305 q->request_fn(q);
24faf6f6 306 q->request_fn_active--;
c246e80d 307}
a7928c15 308EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 309
1da177e4 310/**
80a4b58e 311 * __blk_run_queue - run a single device queue
1da177e4 312 * @q: The queue to run
80a4b58e
JA
313 *
314 * Description:
315 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 316 * held and interrupts disabled.
1da177e4 317 */
24ecfbe2 318void __blk_run_queue(struct request_queue *q)
1da177e4 319{
a538cd03
TH
320 if (unlikely(blk_queue_stopped(q)))
321 return;
322
c246e80d 323 __blk_run_queue_uncond(q);
75ad23bc
NP
324}
325EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 326
24ecfbe2
CH
327/**
328 * blk_run_queue_async - run a single device queue in workqueue context
329 * @q: The queue to run
330 *
331 * Description:
332 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 333 * of us. The caller must hold the queue lock.
24ecfbe2
CH
334 */
335void blk_run_queue_async(struct request_queue *q)
336{
70460571 337 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 338 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 339}
c21e6beb 340EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 341
75ad23bc
NP
342/**
343 * blk_run_queue - run a single device queue
344 * @q: The queue to run
80a4b58e
JA
345 *
346 * Description:
347 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 348 * May be used to restart queueing when a request has completed.
75ad23bc
NP
349 */
350void blk_run_queue(struct request_queue *q)
351{
352 unsigned long flags;
353
354 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 355 __blk_run_queue(q);
1da177e4
LT
356 spin_unlock_irqrestore(q->queue_lock, flags);
357}
358EXPORT_SYMBOL(blk_run_queue);
359
165125e1 360void blk_put_queue(struct request_queue *q)
483f4afc
AV
361{
362 kobject_put(&q->kobj);
363}
d86e0e83 364EXPORT_SYMBOL(blk_put_queue);
483f4afc 365
e3c78ca5 366/**
807592a4 367 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 368 * @q: queue to drain
c9a929dd 369 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 370 *
c9a929dd
TH
371 * Drain requests from @q. If @drain_all is set, all requests are drained.
372 * If not, only ELVPRIV requests are drained. The caller is responsible
373 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 374 */
807592a4
BVA
375static void __blk_drain_queue(struct request_queue *q, bool drain_all)
376 __releases(q->queue_lock)
377 __acquires(q->queue_lock)
e3c78ca5 378{
458f27a9
AH
379 int i;
380
807592a4
BVA
381 lockdep_assert_held(q->queue_lock);
382
e3c78ca5 383 while (true) {
481a7d64 384 bool drain = false;
e3c78ca5 385
b855b04a
TH
386 /*
387 * The caller might be trying to drain @q before its
388 * elevator is initialized.
389 */
390 if (q->elevator)
391 elv_drain_elevator(q);
392
5efd6113 393 blkcg_drain_queue(q);
e3c78ca5 394
4eabc941
TH
395 /*
396 * This function might be called on a queue which failed
b855b04a
TH
397 * driver init after queue creation or is not yet fully
398 * active yet. Some drivers (e.g. fd and loop) get unhappy
399 * in such cases. Kick queue iff dispatch queue has
400 * something on it and @q has request_fn set.
4eabc941 401 */
b855b04a 402 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 403 __blk_run_queue(q);
c9a929dd 404
8a5ecdd4 405 drain |= q->nr_rqs_elvpriv;
24faf6f6 406 drain |= q->request_fn_active;
481a7d64
TH
407
408 /*
409 * Unfortunately, requests are queued at and tracked from
410 * multiple places and there's no single counter which can
411 * be drained. Check all the queues and counters.
412 */
413 if (drain_all) {
e97c293c 414 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
415 drain |= !list_empty(&q->queue_head);
416 for (i = 0; i < 2; i++) {
8a5ecdd4 417 drain |= q->nr_rqs[i];
481a7d64 418 drain |= q->in_flight[i];
7c94e1c1
ML
419 if (fq)
420 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
421 }
422 }
e3c78ca5 423
481a7d64 424 if (!drain)
e3c78ca5 425 break;
807592a4
BVA
426
427 spin_unlock_irq(q->queue_lock);
428
e3c78ca5 429 msleep(10);
807592a4
BVA
430
431 spin_lock_irq(q->queue_lock);
e3c78ca5 432 }
458f27a9
AH
433
434 /*
435 * With queue marked dead, any woken up waiter will fail the
436 * allocation path, so the wakeup chaining is lost and we're
437 * left with hung waiters. We need to wake up those waiters.
438 */
439 if (q->request_fn) {
a051661c
TH
440 struct request_list *rl;
441
a051661c
TH
442 blk_queue_for_each_rl(rl, q)
443 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
444 wake_up_all(&rl->wait[i]);
458f27a9 445 }
e3c78ca5
TH
446}
447
d732580b
TH
448/**
449 * blk_queue_bypass_start - enter queue bypass mode
450 * @q: queue of interest
451 *
452 * In bypass mode, only the dispatch FIFO queue of @q is used. This
453 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 454 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
455 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
456 * inside queue or RCU read lock.
d732580b
TH
457 */
458void blk_queue_bypass_start(struct request_queue *q)
459{
460 spin_lock_irq(q->queue_lock);
776687bc 461 q->bypass_depth++;
d732580b
TH
462 queue_flag_set(QUEUE_FLAG_BYPASS, q);
463 spin_unlock_irq(q->queue_lock);
464
776687bc
TH
465 /*
466 * Queues start drained. Skip actual draining till init is
467 * complete. This avoids lenghty delays during queue init which
468 * can happen many times during boot.
469 */
470 if (blk_queue_init_done(q)) {
807592a4
BVA
471 spin_lock_irq(q->queue_lock);
472 __blk_drain_queue(q, false);
473 spin_unlock_irq(q->queue_lock);
474
b82d4b19
TH
475 /* ensure blk_queue_bypass() is %true inside RCU read lock */
476 synchronize_rcu();
477 }
d732580b
TH
478}
479EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
480
481/**
482 * blk_queue_bypass_end - leave queue bypass mode
483 * @q: queue of interest
484 *
485 * Leave bypass mode and restore the normal queueing behavior.
486 */
487void blk_queue_bypass_end(struct request_queue *q)
488{
489 spin_lock_irq(q->queue_lock);
490 if (!--q->bypass_depth)
491 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
492 WARN_ON_ONCE(q->bypass_depth < 0);
493 spin_unlock_irq(q->queue_lock);
494}
495EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
496
aed3ea94
JA
497void blk_set_queue_dying(struct request_queue *q)
498{
1b856086
BVA
499 spin_lock_irq(q->queue_lock);
500 queue_flag_set(QUEUE_FLAG_DYING, q);
501 spin_unlock_irq(q->queue_lock);
aed3ea94 502
d3cfb2a0
ML
503 /*
504 * When queue DYING flag is set, we need to block new req
505 * entering queue, so we call blk_freeze_queue_start() to
506 * prevent I/O from crossing blk_queue_enter().
507 */
508 blk_freeze_queue_start(q);
509
aed3ea94
JA
510 if (q->mq_ops)
511 blk_mq_wake_waiters(q);
512 else {
513 struct request_list *rl;
514
bbfc3c5d 515 spin_lock_irq(q->queue_lock);
aed3ea94
JA
516 blk_queue_for_each_rl(rl, q) {
517 if (rl->rq_pool) {
518 wake_up(&rl->wait[BLK_RW_SYNC]);
519 wake_up(&rl->wait[BLK_RW_ASYNC]);
520 }
521 }
bbfc3c5d 522 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
523 }
524}
525EXPORT_SYMBOL_GPL(blk_set_queue_dying);
526
c9a929dd
TH
527/**
528 * blk_cleanup_queue - shutdown a request queue
529 * @q: request queue to shutdown
530 *
c246e80d
BVA
531 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
532 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 533 */
6728cb0e 534void blk_cleanup_queue(struct request_queue *q)
483f4afc 535{
c9a929dd 536 spinlock_t *lock = q->queue_lock;
e3335de9 537
3f3299d5 538 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 539 mutex_lock(&q->sysfs_lock);
aed3ea94 540 blk_set_queue_dying(q);
c9a929dd 541 spin_lock_irq(lock);
6ecf23af 542
80fd9979 543 /*
3f3299d5 544 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
545 * that, unlike blk_queue_bypass_start(), we aren't performing
546 * synchronize_rcu() after entering bypass mode to avoid the delay
547 * as some drivers create and destroy a lot of queues while
548 * probing. This is still safe because blk_release_queue() will be
549 * called only after the queue refcnt drops to zero and nothing,
550 * RCU or not, would be traversing the queue by then.
551 */
6ecf23af
TH
552 q->bypass_depth++;
553 queue_flag_set(QUEUE_FLAG_BYPASS, q);
554
c9a929dd
TH
555 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
556 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 557 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
558 spin_unlock_irq(lock);
559 mutex_unlock(&q->sysfs_lock);
560
c246e80d
BVA
561 /*
562 * Drain all requests queued before DYING marking. Set DEAD flag to
563 * prevent that q->request_fn() gets invoked after draining finished.
564 */
3ef28e83
DW
565 blk_freeze_queue(q);
566 spin_lock_irq(lock);
567 if (!q->mq_ops)
43a5e4e2 568 __blk_drain_queue(q, true);
c246e80d 569 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 570 spin_unlock_irq(lock);
c9a929dd 571
5a48fc14
DW
572 /* for synchronous bio-based driver finish in-flight integrity i/o */
573 blk_flush_integrity();
574
c9a929dd 575 /* @q won't process any more request, flush async actions */
dc3b17cc 576 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
577 blk_sync_queue(q);
578
45a9c9d9
BVA
579 if (q->mq_ops)
580 blk_mq_free_queue(q);
3ef28e83 581 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 582
5e5cfac0
AH
583 spin_lock_irq(lock);
584 if (q->queue_lock != &q->__queue_lock)
585 q->queue_lock = &q->__queue_lock;
586 spin_unlock_irq(lock);
587
c9a929dd 588 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
589 blk_put_queue(q);
590}
1da177e4
LT
591EXPORT_SYMBOL(blk_cleanup_queue);
592
271508db 593/* Allocate memory local to the request queue */
6d247d7f 594static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 595{
6d247d7f
CH
596 struct request_queue *q = data;
597
598 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
599}
600
6d247d7f 601static void free_request_simple(void *element, void *data)
271508db
DR
602{
603 kmem_cache_free(request_cachep, element);
604}
605
6d247d7f
CH
606static void *alloc_request_size(gfp_t gfp_mask, void *data)
607{
608 struct request_queue *q = data;
609 struct request *rq;
610
611 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
612 q->node);
613 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
614 kfree(rq);
615 rq = NULL;
616 }
617 return rq;
618}
619
620static void free_request_size(void *element, void *data)
621{
622 struct request_queue *q = data;
623
624 if (q->exit_rq_fn)
625 q->exit_rq_fn(q, element);
626 kfree(element);
627}
628
5b788ce3
TH
629int blk_init_rl(struct request_list *rl, struct request_queue *q,
630 gfp_t gfp_mask)
1da177e4 631{
1abec4fd
MS
632 if (unlikely(rl->rq_pool))
633 return 0;
634
5b788ce3 635 rl->q = q;
1faa16d2
JA
636 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
637 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
638 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
639 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 640
6d247d7f
CH
641 if (q->cmd_size) {
642 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
643 alloc_request_size, free_request_size,
644 q, gfp_mask, q->node);
645 } else {
646 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
647 alloc_request_simple, free_request_simple,
648 q, gfp_mask, q->node);
649 }
1da177e4
LT
650 if (!rl->rq_pool)
651 return -ENOMEM;
652
653 return 0;
654}
655
5b788ce3
TH
656void blk_exit_rl(struct request_list *rl)
657{
658 if (rl->rq_pool)
659 mempool_destroy(rl->rq_pool);
660}
661
165125e1 662struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 663{
c304a51b 664 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
665}
666EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 667
6f3b0e8b 668int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
669{
670 while (true) {
671 int ret;
672
673 if (percpu_ref_tryget_live(&q->q_usage_counter))
674 return 0;
675
6f3b0e8b 676 if (nowait)
3ef28e83
DW
677 return -EBUSY;
678
5ed61d3f 679 /*
1671d522 680 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 681 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
682 * .q_usage_counter and reading .mq_freeze_depth or
683 * queue dying flag, otherwise the following wait may
684 * never return if the two reads are reordered.
5ed61d3f
ML
685 */
686 smp_rmb();
687
3ef28e83
DW
688 ret = wait_event_interruptible(q->mq_freeze_wq,
689 !atomic_read(&q->mq_freeze_depth) ||
690 blk_queue_dying(q));
691 if (blk_queue_dying(q))
692 return -ENODEV;
693 if (ret)
694 return ret;
695 }
696}
697
698void blk_queue_exit(struct request_queue *q)
699{
700 percpu_ref_put(&q->q_usage_counter);
701}
702
703static void blk_queue_usage_counter_release(struct percpu_ref *ref)
704{
705 struct request_queue *q =
706 container_of(ref, struct request_queue, q_usage_counter);
707
708 wake_up_all(&q->mq_freeze_wq);
709}
710
287922eb
CH
711static void blk_rq_timed_out_timer(unsigned long data)
712{
713 struct request_queue *q = (struct request_queue *)data;
714
715 kblockd_schedule_work(&q->timeout_work);
716}
717
165125e1 718struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 719{
165125e1 720 struct request_queue *q;
1946089a 721
8324aa91 722 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 723 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
724 if (!q)
725 return NULL;
726
00380a40 727 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 728 if (q->id < 0)
3d2936f4 729 goto fail_q;
a73f730d 730
54efd50b
KO
731 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
732 if (!q->bio_split)
733 goto fail_id;
734
d03f6cdc
JK
735 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
736 if (!q->backing_dev_info)
737 goto fail_split;
738
a83b576c
JA
739 q->stats = blk_alloc_queue_stats();
740 if (!q->stats)
741 goto fail_stats;
742
dc3b17cc 743 q->backing_dev_info->ra_pages =
09cbfeaf 744 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
745 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
746 q->backing_dev_info->name = "block";
5151412d 747 q->node = node_id;
0989a025 748
dc3b17cc 749 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 750 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 751 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 752 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 753 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 754 INIT_LIST_HEAD(&q->icq_list);
4eef3049 755#ifdef CONFIG_BLK_CGROUP
e8989fae 756 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 757#endif
3cca6dc1 758 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 759
8324aa91 760 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 761
483f4afc 762 mutex_init(&q->sysfs_lock);
e7e72bf6 763 spin_lock_init(&q->__queue_lock);
483f4afc 764
c94a96ac
VG
765 /*
766 * By default initialize queue_lock to internal lock and driver can
767 * override it later if need be.
768 */
769 q->queue_lock = &q->__queue_lock;
770
b82d4b19
TH
771 /*
772 * A queue starts its life with bypass turned on to avoid
773 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
774 * init. The initial bypass will be finished when the queue is
775 * registered by blk_register_queue().
b82d4b19
TH
776 */
777 q->bypass_depth = 1;
778 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
779
320ae51f
JA
780 init_waitqueue_head(&q->mq_freeze_wq);
781
3ef28e83
DW
782 /*
783 * Init percpu_ref in atomic mode so that it's faster to shutdown.
784 * See blk_register_queue() for details.
785 */
786 if (percpu_ref_init(&q->q_usage_counter,
787 blk_queue_usage_counter_release,
788 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 789 goto fail_bdi;
f51b802c 790
3ef28e83
DW
791 if (blkcg_init_queue(q))
792 goto fail_ref;
793
1da177e4 794 return q;
a73f730d 795
3ef28e83
DW
796fail_ref:
797 percpu_ref_exit(&q->q_usage_counter);
fff4996b 798fail_bdi:
a83b576c
JA
799 blk_free_queue_stats(q->stats);
800fail_stats:
d03f6cdc 801 bdi_put(q->backing_dev_info);
54efd50b
KO
802fail_split:
803 bioset_free(q->bio_split);
a73f730d
TH
804fail_id:
805 ida_simple_remove(&blk_queue_ida, q->id);
806fail_q:
807 kmem_cache_free(blk_requestq_cachep, q);
808 return NULL;
1da177e4 809}
1946089a 810EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
811
812/**
813 * blk_init_queue - prepare a request queue for use with a block device
814 * @rfn: The function to be called to process requests that have been
815 * placed on the queue.
816 * @lock: Request queue spin lock
817 *
818 * Description:
819 * If a block device wishes to use the standard request handling procedures,
820 * which sorts requests and coalesces adjacent requests, then it must
821 * call blk_init_queue(). The function @rfn will be called when there
822 * are requests on the queue that need to be processed. If the device
823 * supports plugging, then @rfn may not be called immediately when requests
824 * are available on the queue, but may be called at some time later instead.
825 * Plugged queues are generally unplugged when a buffer belonging to one
826 * of the requests on the queue is needed, or due to memory pressure.
827 *
828 * @rfn is not required, or even expected, to remove all requests off the
829 * queue, but only as many as it can handle at a time. If it does leave
830 * requests on the queue, it is responsible for arranging that the requests
831 * get dealt with eventually.
832 *
833 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
834 * request queue; this lock will be taken also from interrupt context, so irq
835 * disabling is needed for it.
1da177e4 836 *
710027a4 837 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
838 * it didn't succeed.
839 *
840 * Note:
841 * blk_init_queue() must be paired with a blk_cleanup_queue() call
842 * when the block device is deactivated (such as at module unload).
843 **/
1946089a 844
165125e1 845struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 846{
c304a51b 847 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
848}
849EXPORT_SYMBOL(blk_init_queue);
850
165125e1 851struct request_queue *
1946089a
CL
852blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
853{
5ea708d1 854 struct request_queue *q;
1da177e4 855
5ea708d1
CH
856 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
857 if (!q)
c86d1b8a
MS
858 return NULL;
859
5ea708d1
CH
860 q->request_fn = rfn;
861 if (lock)
862 q->queue_lock = lock;
863 if (blk_init_allocated_queue(q) < 0) {
864 blk_cleanup_queue(q);
865 return NULL;
866 }
18741986 867
7982e90c 868 return q;
01effb0d
MS
869}
870EXPORT_SYMBOL(blk_init_queue_node);
871
dece1635 872static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 873
1da177e4 874
5ea708d1
CH
875int blk_init_allocated_queue(struct request_queue *q)
876{
6d247d7f 877 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 878 if (!q->fq)
5ea708d1 879 return -ENOMEM;
7982e90c 880
6d247d7f
CH
881 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
882 goto out_free_flush_queue;
7982e90c 883
a051661c 884 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 885 goto out_exit_flush_rq;
1da177e4 886
287922eb 887 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 888 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 889
f3b144aa
JA
890 /*
891 * This also sets hw/phys segments, boundary and size
892 */
c20e8de2 893 blk_queue_make_request(q, blk_queue_bio);
1da177e4 894
44ec9542
AS
895 q->sg_reserved_size = INT_MAX;
896
eb1c160b
TS
897 /* Protect q->elevator from elevator_change */
898 mutex_lock(&q->sysfs_lock);
899
b82d4b19 900 /* init elevator */
eb1c160b
TS
901 if (elevator_init(q, NULL)) {
902 mutex_unlock(&q->sysfs_lock);
6d247d7f 903 goto out_exit_flush_rq;
eb1c160b
TS
904 }
905
906 mutex_unlock(&q->sysfs_lock);
5ea708d1 907 return 0;
eb1c160b 908
6d247d7f
CH
909out_exit_flush_rq:
910 if (q->exit_rq_fn)
911 q->exit_rq_fn(q, q->fq->flush_rq);
912out_free_flush_queue:
ba483388 913 blk_free_flush_queue(q->fq);
5ea708d1 914 return -ENOMEM;
1da177e4 915}
5151412d 916EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 917
09ac46c4 918bool blk_get_queue(struct request_queue *q)
1da177e4 919{
3f3299d5 920 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
921 __blk_get_queue(q);
922 return true;
1da177e4
LT
923 }
924
09ac46c4 925 return false;
1da177e4 926}
d86e0e83 927EXPORT_SYMBOL(blk_get_queue);
1da177e4 928
5b788ce3 929static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 930{
e8064021 931 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 932 elv_put_request(rl->q, rq);
f1f8cc94 933 if (rq->elv.icq)
11a3122f 934 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
935 }
936
5b788ce3 937 mempool_free(rq, rl->rq_pool);
1da177e4
LT
938}
939
1da177e4
LT
940/*
941 * ioc_batching returns true if the ioc is a valid batching request and
942 * should be given priority access to a request.
943 */
165125e1 944static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
945{
946 if (!ioc)
947 return 0;
948
949 /*
950 * Make sure the process is able to allocate at least 1 request
951 * even if the batch times out, otherwise we could theoretically
952 * lose wakeups.
953 */
954 return ioc->nr_batch_requests == q->nr_batching ||
955 (ioc->nr_batch_requests > 0
956 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
957}
958
959/*
960 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
961 * will cause the process to be a "batcher" on all queues in the system. This
962 * is the behaviour we want though - once it gets a wakeup it should be given
963 * a nice run.
964 */
165125e1 965static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
966{
967 if (!ioc || ioc_batching(q, ioc))
968 return;
969
970 ioc->nr_batch_requests = q->nr_batching;
971 ioc->last_waited = jiffies;
972}
973
5b788ce3 974static void __freed_request(struct request_list *rl, int sync)
1da177e4 975{
5b788ce3 976 struct request_queue *q = rl->q;
1da177e4 977
d40f75a0
TH
978 if (rl->count[sync] < queue_congestion_off_threshold(q))
979 blk_clear_congested(rl, sync);
1da177e4 980
1faa16d2
JA
981 if (rl->count[sync] + 1 <= q->nr_requests) {
982 if (waitqueue_active(&rl->wait[sync]))
983 wake_up(&rl->wait[sync]);
1da177e4 984
5b788ce3 985 blk_clear_rl_full(rl, sync);
1da177e4
LT
986 }
987}
988
989/*
990 * A request has just been released. Account for it, update the full and
991 * congestion status, wake up any waiters. Called under q->queue_lock.
992 */
e8064021
CH
993static void freed_request(struct request_list *rl, bool sync,
994 req_flags_t rq_flags)
1da177e4 995{
5b788ce3 996 struct request_queue *q = rl->q;
1da177e4 997
8a5ecdd4 998 q->nr_rqs[sync]--;
1faa16d2 999 rl->count[sync]--;
e8064021 1000 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1001 q->nr_rqs_elvpriv--;
1da177e4 1002
5b788ce3 1003 __freed_request(rl, sync);
1da177e4 1004
1faa16d2 1005 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1006 __freed_request(rl, sync ^ 1);
1da177e4
LT
1007}
1008
e3a2b3f9
JA
1009int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1010{
1011 struct request_list *rl;
d40f75a0 1012 int on_thresh, off_thresh;
e3a2b3f9
JA
1013
1014 spin_lock_irq(q->queue_lock);
1015 q->nr_requests = nr;
1016 blk_queue_congestion_threshold(q);
d40f75a0
TH
1017 on_thresh = queue_congestion_on_threshold(q);
1018 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1019
d40f75a0
TH
1020 blk_queue_for_each_rl(rl, q) {
1021 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1022 blk_set_congested(rl, BLK_RW_SYNC);
1023 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1024 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1025
d40f75a0
TH
1026 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1027 blk_set_congested(rl, BLK_RW_ASYNC);
1028 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1029 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1030
e3a2b3f9
JA
1031 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1032 blk_set_rl_full(rl, BLK_RW_SYNC);
1033 } else {
1034 blk_clear_rl_full(rl, BLK_RW_SYNC);
1035 wake_up(&rl->wait[BLK_RW_SYNC]);
1036 }
1037
1038 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1039 blk_set_rl_full(rl, BLK_RW_ASYNC);
1040 } else {
1041 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1042 wake_up(&rl->wait[BLK_RW_ASYNC]);
1043 }
1044 }
1045
1046 spin_unlock_irq(q->queue_lock);
1047 return 0;
1048}
1049
da8303c6 1050/**
a06e05e6 1051 * __get_request - get a free request
5b788ce3 1052 * @rl: request list to allocate from
ef295ecf 1053 * @op: operation and flags
da8303c6
TH
1054 * @bio: bio to allocate request for (can be %NULL)
1055 * @gfp_mask: allocation mask
1056 *
1057 * Get a free request from @q. This function may fail under memory
1058 * pressure or if @q is dead.
1059 *
da3dae54 1060 * Must be called with @q->queue_lock held and,
a492f075
JL
1061 * Returns ERR_PTR on failure, with @q->queue_lock held.
1062 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1063 */
ef295ecf
CH
1064static struct request *__get_request(struct request_list *rl, unsigned int op,
1065 struct bio *bio, gfp_t gfp_mask)
1da177e4 1066{
5b788ce3 1067 struct request_queue *q = rl->q;
b679281a 1068 struct request *rq;
7f4b35d1
TH
1069 struct elevator_type *et = q->elevator->type;
1070 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1071 struct io_cq *icq = NULL;
ef295ecf 1072 const bool is_sync = op_is_sync(op);
75eb6c37 1073 int may_queue;
e8064021 1074 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1075
3f3299d5 1076 if (unlikely(blk_queue_dying(q)))
a492f075 1077 return ERR_PTR(-ENODEV);
da8303c6 1078
ef295ecf 1079 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1080 if (may_queue == ELV_MQUEUE_NO)
1081 goto rq_starved;
1082
1faa16d2
JA
1083 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1084 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1085 /*
1086 * The queue will fill after this allocation, so set
1087 * it as full, and mark this process as "batching".
1088 * This process will be allowed to complete a batch of
1089 * requests, others will be blocked.
1090 */
5b788ce3 1091 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1092 ioc_set_batching(q, ioc);
5b788ce3 1093 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1094 } else {
1095 if (may_queue != ELV_MQUEUE_MUST
1096 && !ioc_batching(q, ioc)) {
1097 /*
1098 * The queue is full and the allocating
1099 * process is not a "batcher", and not
1100 * exempted by the IO scheduler
1101 */
a492f075 1102 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1103 }
1104 }
1da177e4 1105 }
d40f75a0 1106 blk_set_congested(rl, is_sync);
1da177e4
LT
1107 }
1108
082cf69e
JA
1109 /*
1110 * Only allow batching queuers to allocate up to 50% over the defined
1111 * limit of requests, otherwise we could have thousands of requests
1112 * allocated with any setting of ->nr_requests
1113 */
1faa16d2 1114 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1115 return ERR_PTR(-ENOMEM);
fd782a4a 1116
8a5ecdd4 1117 q->nr_rqs[is_sync]++;
1faa16d2
JA
1118 rl->count[is_sync]++;
1119 rl->starved[is_sync] = 0;
cb98fc8b 1120
f1f8cc94
TH
1121 /*
1122 * Decide whether the new request will be managed by elevator. If
e8064021 1123 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1124 * prevent the current elevator from being destroyed until the new
1125 * request is freed. This guarantees icq's won't be destroyed and
1126 * makes creating new ones safe.
1127 *
e6f7f93d
CH
1128 * Flush requests do not use the elevator so skip initialization.
1129 * This allows a request to share the flush and elevator data.
1130 *
f1f8cc94
TH
1131 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1132 * it will be created after releasing queue_lock.
1133 */
e6f7f93d 1134 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1135 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1136 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1137 if (et->icq_cache && ioc)
1138 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1139 }
cb98fc8b 1140
f253b86b 1141 if (blk_queue_io_stat(q))
e8064021 1142 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1143 spin_unlock_irq(q->queue_lock);
1144
29e2b09a 1145 /* allocate and init request */
5b788ce3 1146 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1147 if (!rq)
b679281a 1148 goto fail_alloc;
1da177e4 1149
29e2b09a 1150 blk_rq_init(q, rq);
a051661c 1151 blk_rq_set_rl(rq, rl);
ef295ecf 1152 rq->cmd_flags = op;
e8064021 1153 rq->rq_flags = rq_flags;
29e2b09a 1154
aaf7c680 1155 /* init elvpriv */
e8064021 1156 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1157 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1158 if (ioc)
1159 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1160 if (!icq)
1161 goto fail_elvpriv;
29e2b09a 1162 }
aaf7c680
TH
1163
1164 rq->elv.icq = icq;
1165 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1166 goto fail_elvpriv;
1167
1168 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1169 if (icq)
1170 get_io_context(icq->ioc);
1171 }
aaf7c680 1172out:
88ee5ef1
JA
1173 /*
1174 * ioc may be NULL here, and ioc_batching will be false. That's
1175 * OK, if the queue is under the request limit then requests need
1176 * not count toward the nr_batch_requests limit. There will always
1177 * be some limit enforced by BLK_BATCH_TIME.
1178 */
1da177e4
LT
1179 if (ioc_batching(q, ioc))
1180 ioc->nr_batch_requests--;
6728cb0e 1181
e6a40b09 1182 trace_block_getrq(q, bio, op);
1da177e4 1183 return rq;
b679281a 1184
aaf7c680
TH
1185fail_elvpriv:
1186 /*
1187 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1188 * and may fail indefinitely under memory pressure and thus
1189 * shouldn't stall IO. Treat this request as !elvpriv. This will
1190 * disturb iosched and blkcg but weird is bettern than dead.
1191 */
7b2b10e0 1192 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1193 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1194
e8064021 1195 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1196 rq->elv.icq = NULL;
1197
1198 spin_lock_irq(q->queue_lock);
8a5ecdd4 1199 q->nr_rqs_elvpriv--;
aaf7c680
TH
1200 spin_unlock_irq(q->queue_lock);
1201 goto out;
1202
b679281a
TH
1203fail_alloc:
1204 /*
1205 * Allocation failed presumably due to memory. Undo anything we
1206 * might have messed up.
1207 *
1208 * Allocating task should really be put onto the front of the wait
1209 * queue, but this is pretty rare.
1210 */
1211 spin_lock_irq(q->queue_lock);
e8064021 1212 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1213
1214 /*
1215 * in the very unlikely event that allocation failed and no
1216 * requests for this direction was pending, mark us starved so that
1217 * freeing of a request in the other direction will notice
1218 * us. another possible fix would be to split the rq mempool into
1219 * READ and WRITE
1220 */
1221rq_starved:
1222 if (unlikely(rl->count[is_sync] == 0))
1223 rl->starved[is_sync] = 1;
a492f075 1224 return ERR_PTR(-ENOMEM);
1da177e4
LT
1225}
1226
da8303c6 1227/**
a06e05e6 1228 * get_request - get a free request
da8303c6 1229 * @q: request_queue to allocate request from
ef295ecf 1230 * @op: operation and flags
da8303c6 1231 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1232 * @gfp_mask: allocation mask
da8303c6 1233 *
d0164adc
MG
1234 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1235 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1236 *
da3dae54 1237 * Must be called with @q->queue_lock held and,
a492f075
JL
1238 * Returns ERR_PTR on failure, with @q->queue_lock held.
1239 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1240 */
ef295ecf
CH
1241static struct request *get_request(struct request_queue *q, unsigned int op,
1242 struct bio *bio, gfp_t gfp_mask)
1da177e4 1243{
ef295ecf 1244 const bool is_sync = op_is_sync(op);
a06e05e6 1245 DEFINE_WAIT(wait);
a051661c 1246 struct request_list *rl;
1da177e4 1247 struct request *rq;
a051661c
TH
1248
1249 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1250retry:
ef295ecf 1251 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1252 if (!IS_ERR(rq))
a06e05e6 1253 return rq;
1da177e4 1254
d0164adc 1255 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1256 blk_put_rl(rl);
a492f075 1257 return rq;
a051661c 1258 }
1da177e4 1259
a06e05e6
TH
1260 /* wait on @rl and retry */
1261 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1262 TASK_UNINTERRUPTIBLE);
1da177e4 1263
e6a40b09 1264 trace_block_sleeprq(q, bio, op);
1da177e4 1265
a06e05e6
TH
1266 spin_unlock_irq(q->queue_lock);
1267 io_schedule();
d6344532 1268
a06e05e6
TH
1269 /*
1270 * After sleeping, we become a "batching" process and will be able
1271 * to allocate at least one request, and up to a big batch of them
1272 * for a small period time. See ioc_batching, ioc_set_batching
1273 */
a06e05e6 1274 ioc_set_batching(q, current->io_context);
05caf8db 1275
a06e05e6
TH
1276 spin_lock_irq(q->queue_lock);
1277 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1278
a06e05e6 1279 goto retry;
1da177e4
LT
1280}
1281
320ae51f
JA
1282static struct request *blk_old_get_request(struct request_queue *q, int rw,
1283 gfp_t gfp_mask)
1da177e4
LT
1284{
1285 struct request *rq;
1286
7f4b35d1
TH
1287 /* create ioc upfront */
1288 create_io_context(gfp_mask, q->node);
1289
d6344532 1290 spin_lock_irq(q->queue_lock);
ef295ecf 1291 rq = get_request(q, rw, NULL, gfp_mask);
0c4de0f3 1292 if (IS_ERR(rq)) {
da8303c6 1293 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1294 return rq;
1295 }
1da177e4 1296
0c4de0f3
CH
1297 /* q->queue_lock is unlocked at this point */
1298 rq->__data_len = 0;
1299 rq->__sector = (sector_t) -1;
1300 rq->bio = rq->biotail = NULL;
1da177e4
LT
1301 return rq;
1302}
320ae51f
JA
1303
1304struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1305{
1306 if (q->mq_ops)
6f3b0e8b
CH
1307 return blk_mq_alloc_request(q, rw,
1308 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1309 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1310 else
1311 return blk_old_get_request(q, rw, gfp_mask);
1312}
1da177e4
LT
1313EXPORT_SYMBOL(blk_get_request);
1314
1315/**
1316 * blk_requeue_request - put a request back on queue
1317 * @q: request queue where request should be inserted
1318 * @rq: request to be inserted
1319 *
1320 * Description:
1321 * Drivers often keep queueing requests until the hardware cannot accept
1322 * more, when that condition happens we need to put the request back
1323 * on the queue. Must be called with queue lock held.
1324 */
165125e1 1325void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1326{
242f9dcb
JA
1327 blk_delete_timer(rq);
1328 blk_clear_rq_complete(rq);
5f3ea37c 1329 trace_block_rq_requeue(q, rq);
87760e5e 1330 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1331
e8064021 1332 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1333 blk_queue_end_tag(q, rq);
1334
ba396a6c
JB
1335 BUG_ON(blk_queued_rq(rq));
1336
1da177e4
LT
1337 elv_requeue_request(q, rq);
1338}
1da177e4
LT
1339EXPORT_SYMBOL(blk_requeue_request);
1340
73c10101
JA
1341static void add_acct_request(struct request_queue *q, struct request *rq,
1342 int where)
1343{
320ae51f 1344 blk_account_io_start(rq, true);
7eaceacc 1345 __elv_add_request(q, rq, where);
73c10101
JA
1346}
1347
074a7aca
TH
1348static void part_round_stats_single(int cpu, struct hd_struct *part,
1349 unsigned long now)
1350{
7276d02e
JA
1351 int inflight;
1352
074a7aca
TH
1353 if (now == part->stamp)
1354 return;
1355
7276d02e
JA
1356 inflight = part_in_flight(part);
1357 if (inflight) {
074a7aca 1358 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1359 inflight * (now - part->stamp));
074a7aca
TH
1360 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1361 }
1362 part->stamp = now;
1363}
1364
1365/**
496aa8a9
RD
1366 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1367 * @cpu: cpu number for stats access
1368 * @part: target partition
1da177e4
LT
1369 *
1370 * The average IO queue length and utilisation statistics are maintained
1371 * by observing the current state of the queue length and the amount of
1372 * time it has been in this state for.
1373 *
1374 * Normally, that accounting is done on IO completion, but that can result
1375 * in more than a second's worth of IO being accounted for within any one
1376 * second, leading to >100% utilisation. To deal with that, we call this
1377 * function to do a round-off before returning the results when reading
1378 * /proc/diskstats. This accounts immediately for all queue usage up to
1379 * the current jiffies and restarts the counters again.
1380 */
c9959059 1381void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1382{
1383 unsigned long now = jiffies;
1384
074a7aca
TH
1385 if (part->partno)
1386 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1387 part_round_stats_single(cpu, part, now);
6f2576af 1388}
074a7aca 1389EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1390
47fafbc7 1391#ifdef CONFIG_PM
c8158819
LM
1392static void blk_pm_put_request(struct request *rq)
1393{
e8064021 1394 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1395 pm_runtime_mark_last_busy(rq->q->dev);
1396}
1397#else
1398static inline void blk_pm_put_request(struct request *rq) {}
1399#endif
1400
1da177e4
LT
1401/*
1402 * queue lock must be held
1403 */
165125e1 1404void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1405{
e8064021
CH
1406 req_flags_t rq_flags = req->rq_flags;
1407
1da177e4
LT
1408 if (unlikely(!q))
1409 return;
1da177e4 1410
6f5ba581
CH
1411 if (q->mq_ops) {
1412 blk_mq_free_request(req);
1413 return;
1414 }
1415
c8158819
LM
1416 blk_pm_put_request(req);
1417
8922e16c
TH
1418 elv_completed_request(q, req);
1419
1cd96c24
BH
1420 /* this is a bio leak */
1421 WARN_ON(req->bio != NULL);
1422
87760e5e
JA
1423 wbt_done(q->rq_wb, &req->issue_stat);
1424
1da177e4
LT
1425 /*
1426 * Request may not have originated from ll_rw_blk. if not,
1427 * it didn't come out of our reserved rq pools
1428 */
e8064021 1429 if (rq_flags & RQF_ALLOCED) {
a051661c 1430 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1431 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1432
1da177e4 1433 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1434 BUG_ON(ELV_ON_HASH(req));
1da177e4 1435
a051661c 1436 blk_free_request(rl, req);
e8064021 1437 freed_request(rl, sync, rq_flags);
a051661c 1438 blk_put_rl(rl);
1da177e4
LT
1439 }
1440}
6e39b69e
MC
1441EXPORT_SYMBOL_GPL(__blk_put_request);
1442
1da177e4
LT
1443void blk_put_request(struct request *req)
1444{
165125e1 1445 struct request_queue *q = req->q;
8922e16c 1446
320ae51f
JA
1447 if (q->mq_ops)
1448 blk_mq_free_request(req);
1449 else {
1450 unsigned long flags;
1451
1452 spin_lock_irqsave(q->queue_lock, flags);
1453 __blk_put_request(q, req);
1454 spin_unlock_irqrestore(q->queue_lock, flags);
1455 }
1da177e4 1456}
1da177e4
LT
1457EXPORT_SYMBOL(blk_put_request);
1458
320ae51f
JA
1459bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1460 struct bio *bio)
73c10101 1461{
1eff9d32 1462 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1463
73c10101
JA
1464 if (!ll_back_merge_fn(q, req, bio))
1465 return false;
1466
8c1cf6bb 1467 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1468
1469 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1470 blk_rq_set_mixed_merge(req);
1471
1472 req->biotail->bi_next = bio;
1473 req->biotail = bio;
4f024f37 1474 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1475 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1476
320ae51f 1477 blk_account_io_start(req, false);
73c10101
JA
1478 return true;
1479}
1480
320ae51f
JA
1481bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1482 struct bio *bio)
73c10101 1483{
1eff9d32 1484 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1485
73c10101
JA
1486 if (!ll_front_merge_fn(q, req, bio))
1487 return false;
1488
8c1cf6bb 1489 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1490
1491 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1492 blk_rq_set_mixed_merge(req);
1493
73c10101
JA
1494 bio->bi_next = req->bio;
1495 req->bio = bio;
1496
4f024f37
KO
1497 req->__sector = bio->bi_iter.bi_sector;
1498 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1499 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1500
320ae51f 1501 blk_account_io_start(req, false);
73c10101
JA
1502 return true;
1503}
1504
1e739730
CH
1505bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1506 struct bio *bio)
1507{
1508 unsigned short segments = blk_rq_nr_discard_segments(req);
1509
1510 if (segments >= queue_max_discard_segments(q))
1511 goto no_merge;
1512 if (blk_rq_sectors(req) + bio_sectors(bio) >
1513 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1514 goto no_merge;
1515
1516 req->biotail->bi_next = bio;
1517 req->biotail = bio;
1518 req->__data_len += bio->bi_iter.bi_size;
1519 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1520 req->nr_phys_segments = segments + 1;
1521
1522 blk_account_io_start(req, false);
1523 return true;
1524no_merge:
1525 req_set_nomerge(q, req);
1526 return false;
1527}
1528
bd87b589 1529/**
320ae51f 1530 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1531 * @q: request_queue new bio is being queued at
1532 * @bio: new bio being queued
1533 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1534 * @same_queue_rq: pointer to &struct request that gets filled in when
1535 * another request associated with @q is found on the plug list
1536 * (optional, may be %NULL)
bd87b589
TH
1537 *
1538 * Determine whether @bio being queued on @q can be merged with a request
1539 * on %current's plugged list. Returns %true if merge was successful,
1540 * otherwise %false.
1541 *
07c2bd37
TH
1542 * Plugging coalesces IOs from the same issuer for the same purpose without
1543 * going through @q->queue_lock. As such it's more of an issuing mechanism
1544 * than scheduling, and the request, while may have elvpriv data, is not
1545 * added on the elevator at this point. In addition, we don't have
1546 * reliable access to the elevator outside queue lock. Only check basic
1547 * merging parameters without querying the elevator.
da41a589
RE
1548 *
1549 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1550 */
320ae51f 1551bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1552 unsigned int *request_count,
1553 struct request **same_queue_rq)
73c10101
JA
1554{
1555 struct blk_plug *plug;
1556 struct request *rq;
92f399c7 1557 struct list_head *plug_list;
73c10101 1558
bd87b589 1559 plug = current->plug;
73c10101 1560 if (!plug)
34fe7c05 1561 return false;
56ebdaf2 1562 *request_count = 0;
73c10101 1563
92f399c7
SL
1564 if (q->mq_ops)
1565 plug_list = &plug->mq_list;
1566 else
1567 plug_list = &plug->list;
1568
1569 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1570 bool merged = false;
73c10101 1571
5b3f341f 1572 if (rq->q == q) {
1b2e19f1 1573 (*request_count)++;
5b3f341f
SL
1574 /*
1575 * Only blk-mq multiple hardware queues case checks the
1576 * rq in the same queue, there should be only one such
1577 * rq in a queue
1578 **/
1579 if (same_queue_rq)
1580 *same_queue_rq = rq;
1581 }
56ebdaf2 1582
07c2bd37 1583 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1584 continue;
1585
34fe7c05
CH
1586 switch (blk_try_merge(rq, bio)) {
1587 case ELEVATOR_BACK_MERGE:
1588 merged = bio_attempt_back_merge(q, rq, bio);
1589 break;
1590 case ELEVATOR_FRONT_MERGE:
1591 merged = bio_attempt_front_merge(q, rq, bio);
1592 break;
1e739730
CH
1593 case ELEVATOR_DISCARD_MERGE:
1594 merged = bio_attempt_discard_merge(q, rq, bio);
1595 break;
34fe7c05
CH
1596 default:
1597 break;
73c10101 1598 }
34fe7c05
CH
1599
1600 if (merged)
1601 return true;
73c10101 1602 }
34fe7c05
CH
1603
1604 return false;
73c10101
JA
1605}
1606
0809e3ac
JM
1607unsigned int blk_plug_queued_count(struct request_queue *q)
1608{
1609 struct blk_plug *plug;
1610 struct request *rq;
1611 struct list_head *plug_list;
1612 unsigned int ret = 0;
1613
1614 plug = current->plug;
1615 if (!plug)
1616 goto out;
1617
1618 if (q->mq_ops)
1619 plug_list = &plug->mq_list;
1620 else
1621 plug_list = &plug->list;
1622
1623 list_for_each_entry(rq, plug_list, queuelist) {
1624 if (rq->q == q)
1625 ret++;
1626 }
1627out:
1628 return ret;
1629}
1630
86db1e29 1631void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1632{
1eff9d32 1633 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1634 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1635
52d9e675 1636 req->errors = 0;
4f024f37 1637 req->__sector = bio->bi_iter.bi_sector;
85003a44 1638 blk_rq_set_prio(req, rq_ioc(bio));
5dc8b362
AM
1639 if (ioprio_valid(bio_prio(bio)))
1640 req->ioprio = bio_prio(bio);
bc1c56fd 1641 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1642}
1643
dece1635 1644static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1645{
73c10101 1646 struct blk_plug *plug;
34fe7c05 1647 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1648 struct request *req, *free;
56ebdaf2 1649 unsigned int request_count = 0;
87760e5e 1650 unsigned int wb_acct;
1da177e4 1651
1da177e4
LT
1652 /*
1653 * low level driver can indicate that it wants pages above a
1654 * certain limit bounced to low memory (ie for highmem, or even
1655 * ISA dma in theory)
1656 */
1657 blk_queue_bounce(q, &bio);
1658
23688bf4
JN
1659 blk_queue_split(q, &bio, q->bio_split);
1660
ffecfd1a 1661 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1662 bio->bi_error = -EIO;
1663 bio_endio(bio);
dece1635 1664 return BLK_QC_T_NONE;
ffecfd1a
DW
1665 }
1666
f73f44eb 1667 if (op_is_flush(bio->bi_opf)) {
73c10101 1668 spin_lock_irq(q->queue_lock);
ae1b1539 1669 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1670 goto get_rq;
1671 }
1672
73c10101
JA
1673 /*
1674 * Check if we can merge with the plugged list before grabbing
1675 * any locks.
1676 */
0809e3ac
JM
1677 if (!blk_queue_nomerges(q)) {
1678 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1679 return BLK_QC_T_NONE;
0809e3ac
JM
1680 } else
1681 request_count = blk_plug_queued_count(q);
1da177e4 1682
73c10101 1683 spin_lock_irq(q->queue_lock);
2056a782 1684
34fe7c05
CH
1685 switch (elv_merge(q, &req, bio)) {
1686 case ELEVATOR_BACK_MERGE:
1687 if (!bio_attempt_back_merge(q, req, bio))
1688 break;
1689 elv_bio_merged(q, req, bio);
1690 free = attempt_back_merge(q, req);
1691 if (free)
1692 __blk_put_request(q, free);
1693 else
1694 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1695 goto out_unlock;
1696 case ELEVATOR_FRONT_MERGE:
1697 if (!bio_attempt_front_merge(q, req, bio))
1698 break;
1699 elv_bio_merged(q, req, bio);
1700 free = attempt_front_merge(q, req);
1701 if (free)
1702 __blk_put_request(q, free);
1703 else
1704 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1705 goto out_unlock;
1706 default:
1707 break;
1da177e4
LT
1708 }
1709
450991bc 1710get_rq:
87760e5e
JA
1711 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1712
1da177e4 1713 /*
450991bc 1714 * Grab a free request. This is might sleep but can not fail.
d6344532 1715 * Returns with the queue unlocked.
450991bc 1716 */
ef295ecf 1717 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1718 if (IS_ERR(req)) {
87760e5e 1719 __wbt_done(q->rq_wb, wb_acct);
4246a0b6
CH
1720 bio->bi_error = PTR_ERR(req);
1721 bio_endio(bio);
da8303c6
TH
1722 goto out_unlock;
1723 }
d6344532 1724
87760e5e
JA
1725 wbt_track(&req->issue_stat, wb_acct);
1726
450991bc
NP
1727 /*
1728 * After dropping the lock and possibly sleeping here, our request
1729 * may now be mergeable after it had proven unmergeable (above).
1730 * We don't worry about that case for efficiency. It won't happen
1731 * often, and the elevators are able to handle it.
1da177e4 1732 */
52d9e675 1733 init_request_from_bio(req, bio);
1da177e4 1734
9562ad9a 1735 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1736 req->cpu = raw_smp_processor_id();
73c10101
JA
1737
1738 plug = current->plug;
721a9602 1739 if (plug) {
dc6d36c9
JA
1740 /*
1741 * If this is the first request added after a plug, fire
7aef2e78 1742 * of a plug trace.
0a6219a9
ML
1743 *
1744 * @request_count may become stale because of schedule
1745 * out, so check plug list again.
dc6d36c9 1746 */
0a6219a9 1747 if (!request_count || list_empty(&plug->list))
dc6d36c9 1748 trace_block_plug(q);
3540d5e8 1749 else {
50d24c34
SL
1750 struct request *last = list_entry_rq(plug->list.prev);
1751 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1752 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1753 blk_flush_plug_list(plug, false);
019ceb7d
SL
1754 trace_block_plug(q);
1755 }
73c10101 1756 }
73c10101 1757 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1758 blk_account_io_start(req, true);
73c10101
JA
1759 } else {
1760 spin_lock_irq(q->queue_lock);
1761 add_acct_request(q, req, where);
24ecfbe2 1762 __blk_run_queue(q);
73c10101
JA
1763out_unlock:
1764 spin_unlock_irq(q->queue_lock);
1765 }
dece1635
JA
1766
1767 return BLK_QC_T_NONE;
1da177e4
LT
1768}
1769
1770/*
1771 * If bio->bi_dev is a partition, remap the location
1772 */
1773static inline void blk_partition_remap(struct bio *bio)
1774{
1775 struct block_device *bdev = bio->bi_bdev;
1776
778889d8
ST
1777 /*
1778 * Zone reset does not include bi_size so bio_sectors() is always 0.
1779 * Include a test for the reset op code and perform the remap if needed.
1780 */
1781 if (bdev != bdev->bd_contains &&
1782 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1783 struct hd_struct *p = bdev->bd_part;
1784
4f024f37 1785 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1786 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1787
d07335e5
MS
1788 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1789 bdev->bd_dev,
4f024f37 1790 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1791 }
1792}
1793
1da177e4
LT
1794static void handle_bad_sector(struct bio *bio)
1795{
1796 char b[BDEVNAME_SIZE];
1797
1798 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1799 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1800 bdevname(bio->bi_bdev, b),
1eff9d32 1801 bio->bi_opf,
f73a1c7d 1802 (unsigned long long)bio_end_sector(bio),
77304d2a 1803 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1804}
1805
c17bb495
AM
1806#ifdef CONFIG_FAIL_MAKE_REQUEST
1807
1808static DECLARE_FAULT_ATTR(fail_make_request);
1809
1810static int __init setup_fail_make_request(char *str)
1811{
1812 return setup_fault_attr(&fail_make_request, str);
1813}
1814__setup("fail_make_request=", setup_fail_make_request);
1815
b2c9cd37 1816static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1817{
b2c9cd37 1818 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1819}
1820
1821static int __init fail_make_request_debugfs(void)
1822{
dd48c085
AM
1823 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1824 NULL, &fail_make_request);
1825
21f9fcd8 1826 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1827}
1828
1829late_initcall(fail_make_request_debugfs);
1830
1831#else /* CONFIG_FAIL_MAKE_REQUEST */
1832
b2c9cd37
AM
1833static inline bool should_fail_request(struct hd_struct *part,
1834 unsigned int bytes)
c17bb495 1835{
b2c9cd37 1836 return false;
c17bb495
AM
1837}
1838
1839#endif /* CONFIG_FAIL_MAKE_REQUEST */
1840
c07e2b41
JA
1841/*
1842 * Check whether this bio extends beyond the end of the device.
1843 */
1844static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1845{
1846 sector_t maxsector;
1847
1848 if (!nr_sectors)
1849 return 0;
1850
1851 /* Test device or partition size, when known. */
77304d2a 1852 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1853 if (maxsector) {
4f024f37 1854 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1855
1856 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1857 /*
1858 * This may well happen - the kernel calls bread()
1859 * without checking the size of the device, e.g., when
1860 * mounting a device.
1861 */
1862 handle_bad_sector(bio);
1863 return 1;
1864 }
1865 }
1866
1867 return 0;
1868}
1869
27a84d54
CH
1870static noinline_for_stack bool
1871generic_make_request_checks(struct bio *bio)
1da177e4 1872{
165125e1 1873 struct request_queue *q;
5a7bbad2 1874 int nr_sectors = bio_sectors(bio);
51fd77bd 1875 int err = -EIO;
5a7bbad2
CH
1876 char b[BDEVNAME_SIZE];
1877 struct hd_struct *part;
1da177e4
LT
1878
1879 might_sleep();
1da177e4 1880
c07e2b41
JA
1881 if (bio_check_eod(bio, nr_sectors))
1882 goto end_io;
1da177e4 1883
5a7bbad2
CH
1884 q = bdev_get_queue(bio->bi_bdev);
1885 if (unlikely(!q)) {
1886 printk(KERN_ERR
1887 "generic_make_request: Trying to access "
1888 "nonexistent block-device %s (%Lu)\n",
1889 bdevname(bio->bi_bdev, b),
4f024f37 1890 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1891 goto end_io;
1892 }
c17bb495 1893
5a7bbad2 1894 part = bio->bi_bdev->bd_part;
4f024f37 1895 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1896 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1897 bio->bi_iter.bi_size))
5a7bbad2 1898 goto end_io;
2056a782 1899
5a7bbad2
CH
1900 /*
1901 * If this device has partitions, remap block n
1902 * of partition p to block n+start(p) of the disk.
1903 */
1904 blk_partition_remap(bio);
2056a782 1905
5a7bbad2
CH
1906 if (bio_check_eod(bio, nr_sectors))
1907 goto end_io;
1e87901e 1908
5a7bbad2
CH
1909 /*
1910 * Filter flush bio's early so that make_request based
1911 * drivers without flush support don't have to worry
1912 * about them.
1913 */
f3a8ab7d 1914 if (op_is_flush(bio->bi_opf) &&
c888a8f9 1915 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 1916 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2
CH
1917 if (!nr_sectors) {
1918 err = 0;
51fd77bd
JA
1919 goto end_io;
1920 }
5a7bbad2 1921 }
5ddfe969 1922
288dab8a
CH
1923 switch (bio_op(bio)) {
1924 case REQ_OP_DISCARD:
1925 if (!blk_queue_discard(q))
1926 goto not_supported;
1927 break;
1928 case REQ_OP_SECURE_ERASE:
1929 if (!blk_queue_secure_erase(q))
1930 goto not_supported;
1931 break;
1932 case REQ_OP_WRITE_SAME:
1933 if (!bdev_write_same(bio->bi_bdev))
1934 goto not_supported;
58886785 1935 break;
2d253440
ST
1936 case REQ_OP_ZONE_REPORT:
1937 case REQ_OP_ZONE_RESET:
1938 if (!bdev_is_zoned(bio->bi_bdev))
1939 goto not_supported;
288dab8a 1940 break;
a6f0788e
CK
1941 case REQ_OP_WRITE_ZEROES:
1942 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1943 goto not_supported;
1944 break;
288dab8a
CH
1945 default:
1946 break;
5a7bbad2 1947 }
01edede4 1948
7f4b35d1
TH
1949 /*
1950 * Various block parts want %current->io_context and lazy ioc
1951 * allocation ends up trading a lot of pain for a small amount of
1952 * memory. Just allocate it upfront. This may fail and block
1953 * layer knows how to live with it.
1954 */
1955 create_io_context(GFP_ATOMIC, q->node);
1956
ae118896
TH
1957 if (!blkcg_bio_issue_check(q, bio))
1958 return false;
27a84d54 1959
5a7bbad2 1960 trace_block_bio_queue(q, bio);
27a84d54 1961 return true;
a7384677 1962
288dab8a
CH
1963not_supported:
1964 err = -EOPNOTSUPP;
a7384677 1965end_io:
4246a0b6
CH
1966 bio->bi_error = err;
1967 bio_endio(bio);
27a84d54 1968 return false;
1da177e4
LT
1969}
1970
27a84d54
CH
1971/**
1972 * generic_make_request - hand a buffer to its device driver for I/O
1973 * @bio: The bio describing the location in memory and on the device.
1974 *
1975 * generic_make_request() is used to make I/O requests of block
1976 * devices. It is passed a &struct bio, which describes the I/O that needs
1977 * to be done.
1978 *
1979 * generic_make_request() does not return any status. The
1980 * success/failure status of the request, along with notification of
1981 * completion, is delivered asynchronously through the bio->bi_end_io
1982 * function described (one day) else where.
1983 *
1984 * The caller of generic_make_request must make sure that bi_io_vec
1985 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1986 * set to describe the device address, and the
1987 * bi_end_io and optionally bi_private are set to describe how
1988 * completion notification should be signaled.
1989 *
1990 * generic_make_request and the drivers it calls may use bi_next if this
1991 * bio happens to be merged with someone else, and may resubmit the bio to
1992 * a lower device by calling into generic_make_request recursively, which
1993 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1994 */
dece1635 1995blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1996{
f5fe1b51
N
1997 /*
1998 * bio_list_on_stack[0] contains bios submitted by the current
1999 * make_request_fn.
2000 * bio_list_on_stack[1] contains bios that were submitted before
2001 * the current make_request_fn, but that haven't been processed
2002 * yet.
2003 */
2004 struct bio_list bio_list_on_stack[2];
dece1635 2005 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2006
27a84d54 2007 if (!generic_make_request_checks(bio))
dece1635 2008 goto out;
27a84d54
CH
2009
2010 /*
2011 * We only want one ->make_request_fn to be active at a time, else
2012 * stack usage with stacked devices could be a problem. So use
2013 * current->bio_list to keep a list of requests submited by a
2014 * make_request_fn function. current->bio_list is also used as a
2015 * flag to say if generic_make_request is currently active in this
2016 * task or not. If it is NULL, then no make_request is active. If
2017 * it is non-NULL, then a make_request is active, and new requests
2018 * should be added at the tail
2019 */
bddd87c7 2020 if (current->bio_list) {
f5fe1b51 2021 bio_list_add(&current->bio_list[0], bio);
dece1635 2022 goto out;
d89d8796 2023 }
27a84d54 2024
d89d8796
NB
2025 /* following loop may be a bit non-obvious, and so deserves some
2026 * explanation.
2027 * Before entering the loop, bio->bi_next is NULL (as all callers
2028 * ensure that) so we have a list with a single bio.
2029 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2030 * we assign bio_list to a pointer to the bio_list_on_stack,
2031 * thus initialising the bio_list of new bios to be
27a84d54 2032 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2033 * through a recursive call to generic_make_request. If it
2034 * did, we find a non-NULL value in bio_list and re-enter the loop
2035 * from the top. In this case we really did just take the bio
bddd87c7 2036 * of the top of the list (no pretending) and so remove it from
27a84d54 2037 * bio_list, and call into ->make_request() again.
d89d8796
NB
2038 */
2039 BUG_ON(bio->bi_next);
f5fe1b51
N
2040 bio_list_init(&bio_list_on_stack[0]);
2041 current->bio_list = bio_list_on_stack;
d89d8796 2042 do {
27a84d54
CH
2043 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2044
6f3b0e8b 2045 if (likely(blk_queue_enter(q, false) == 0)) {
79bd9959
N
2046 struct bio_list lower, same;
2047
2048 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2049 bio_list_on_stack[1] = bio_list_on_stack[0];
2050 bio_list_init(&bio_list_on_stack[0]);
dece1635 2051 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2052
2053 blk_queue_exit(q);
27a84d54 2054
79bd9959
N
2055 /* sort new bios into those for a lower level
2056 * and those for the same level
2057 */
2058 bio_list_init(&lower);
2059 bio_list_init(&same);
f5fe1b51 2060 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
79bd9959
N
2061 if (q == bdev_get_queue(bio->bi_bdev))
2062 bio_list_add(&same, bio);
2063 else
2064 bio_list_add(&lower, bio);
2065 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2066 bio_list_merge(&bio_list_on_stack[0], &lower);
2067 bio_list_merge(&bio_list_on_stack[0], &same);
2068 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2069 } else {
3ef28e83 2070 bio_io_error(bio);
3ef28e83 2071 }
f5fe1b51 2072 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2073 } while (bio);
bddd87c7 2074 current->bio_list = NULL; /* deactivate */
dece1635
JA
2075
2076out:
2077 return ret;
d89d8796 2078}
1da177e4
LT
2079EXPORT_SYMBOL(generic_make_request);
2080
2081/**
710027a4 2082 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2083 * @bio: The &struct bio which describes the I/O
2084 *
2085 * submit_bio() is very similar in purpose to generic_make_request(), and
2086 * uses that function to do most of the work. Both are fairly rough
710027a4 2087 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2088 *
2089 */
4e49ea4a 2090blk_qc_t submit_bio(struct bio *bio)
1da177e4 2091{
bf2de6f5
JA
2092 /*
2093 * If it's a regular read/write or a barrier with data attached,
2094 * go through the normal accounting stuff before submission.
2095 */
e2a60da7 2096 if (bio_has_data(bio)) {
4363ac7c
MP
2097 unsigned int count;
2098
95fe6c1a 2099 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2100 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2101 else
2102 count = bio_sectors(bio);
2103
a8ebb056 2104 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2105 count_vm_events(PGPGOUT, count);
2106 } else {
4f024f37 2107 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2108 count_vm_events(PGPGIN, count);
2109 }
2110
2111 if (unlikely(block_dump)) {
2112 char b[BDEVNAME_SIZE];
8dcbdc74 2113 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2114 current->comm, task_pid_nr(current),
a8ebb056 2115 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2116 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2117 bdevname(bio->bi_bdev, b),
2118 count);
bf2de6f5 2119 }
1da177e4
LT
2120 }
2121
dece1635 2122 return generic_make_request(bio);
1da177e4 2123}
1da177e4
LT
2124EXPORT_SYMBOL(submit_bio);
2125
82124d60 2126/**
bf4e6b4e
HR
2127 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2128 * for new the queue limits
82124d60
KU
2129 * @q: the queue
2130 * @rq: the request being checked
2131 *
2132 * Description:
2133 * @rq may have been made based on weaker limitations of upper-level queues
2134 * in request stacking drivers, and it may violate the limitation of @q.
2135 * Since the block layer and the underlying device driver trust @rq
2136 * after it is inserted to @q, it should be checked against @q before
2137 * the insertion using this generic function.
2138 *
82124d60 2139 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2140 * limits when retrying requests on other queues. Those requests need
2141 * to be checked against the new queue limits again during dispatch.
82124d60 2142 */
bf4e6b4e
HR
2143static int blk_cloned_rq_check_limits(struct request_queue *q,
2144 struct request *rq)
82124d60 2145{
8fe0d473 2146 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2147 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2148 return -EIO;
2149 }
2150
2151 /*
2152 * queue's settings related to segment counting like q->bounce_pfn
2153 * may differ from that of other stacking queues.
2154 * Recalculate it to check the request correctly on this queue's
2155 * limitation.
2156 */
2157 blk_recalc_rq_segments(rq);
8a78362c 2158 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2159 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2160 return -EIO;
2161 }
2162
2163 return 0;
2164}
82124d60
KU
2165
2166/**
2167 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2168 * @q: the queue to submit the request
2169 * @rq: the request being queued
2170 */
2171int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2172{
2173 unsigned long flags;
4853abaa 2174 int where = ELEVATOR_INSERT_BACK;
82124d60 2175
bf4e6b4e 2176 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2177 return -EIO;
2178
b2c9cd37
AM
2179 if (rq->rq_disk &&
2180 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2181 return -EIO;
82124d60 2182
7fb4898e
KB
2183 if (q->mq_ops) {
2184 if (blk_queue_io_stat(q))
2185 blk_account_io_start(rq, true);
bd6737f1 2186 blk_mq_sched_insert_request(rq, false, true, false, false);
7fb4898e
KB
2187 return 0;
2188 }
2189
82124d60 2190 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2191 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2192 spin_unlock_irqrestore(q->queue_lock, flags);
2193 return -ENODEV;
2194 }
82124d60
KU
2195
2196 /*
2197 * Submitting request must be dequeued before calling this function
2198 * because it will be linked to another request_queue
2199 */
2200 BUG_ON(blk_queued_rq(rq));
2201
f73f44eb 2202 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2203 where = ELEVATOR_INSERT_FLUSH;
2204
2205 add_acct_request(q, rq, where);
e67b77c7
JM
2206 if (where == ELEVATOR_INSERT_FLUSH)
2207 __blk_run_queue(q);
82124d60
KU
2208 spin_unlock_irqrestore(q->queue_lock, flags);
2209
2210 return 0;
2211}
2212EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2213
80a761fd
TH
2214/**
2215 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2216 * @rq: request to examine
2217 *
2218 * Description:
2219 * A request could be merge of IOs which require different failure
2220 * handling. This function determines the number of bytes which
2221 * can be failed from the beginning of the request without
2222 * crossing into area which need to be retried further.
2223 *
2224 * Return:
2225 * The number of bytes to fail.
2226 *
2227 * Context:
2228 * queue_lock must be held.
2229 */
2230unsigned int blk_rq_err_bytes(const struct request *rq)
2231{
2232 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2233 unsigned int bytes = 0;
2234 struct bio *bio;
2235
e8064021 2236 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2237 return blk_rq_bytes(rq);
2238
2239 /*
2240 * Currently the only 'mixing' which can happen is between
2241 * different fastfail types. We can safely fail portions
2242 * which have all the failfast bits that the first one has -
2243 * the ones which are at least as eager to fail as the first
2244 * one.
2245 */
2246 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2247 if ((bio->bi_opf & ff) != ff)
80a761fd 2248 break;
4f024f37 2249 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2250 }
2251
2252 /* this could lead to infinite loop */
2253 BUG_ON(blk_rq_bytes(rq) && !bytes);
2254 return bytes;
2255}
2256EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2257
320ae51f 2258void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2259{
c2553b58 2260 if (blk_do_io_stat(req)) {
bc58ba94
JA
2261 const int rw = rq_data_dir(req);
2262 struct hd_struct *part;
2263 int cpu;
2264
2265 cpu = part_stat_lock();
09e099d4 2266 part = req->part;
bc58ba94
JA
2267 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2268 part_stat_unlock();
2269 }
2270}
2271
320ae51f 2272void blk_account_io_done(struct request *req)
bc58ba94 2273{
bc58ba94 2274 /*
dd4c133f
TH
2275 * Account IO completion. flush_rq isn't accounted as a
2276 * normal IO on queueing nor completion. Accounting the
2277 * containing request is enough.
bc58ba94 2278 */
e8064021 2279 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2280 unsigned long duration = jiffies - req->start_time;
2281 const int rw = rq_data_dir(req);
2282 struct hd_struct *part;
2283 int cpu;
2284
2285 cpu = part_stat_lock();
09e099d4 2286 part = req->part;
bc58ba94
JA
2287
2288 part_stat_inc(cpu, part, ios[rw]);
2289 part_stat_add(cpu, part, ticks[rw], duration);
2290 part_round_stats(cpu, part);
316d315b 2291 part_dec_in_flight(part, rw);
bc58ba94 2292
6c23a968 2293 hd_struct_put(part);
bc58ba94
JA
2294 part_stat_unlock();
2295 }
2296}
2297
47fafbc7 2298#ifdef CONFIG_PM
c8158819
LM
2299/*
2300 * Don't process normal requests when queue is suspended
2301 * or in the process of suspending/resuming
2302 */
2303static struct request *blk_pm_peek_request(struct request_queue *q,
2304 struct request *rq)
2305{
2306 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2307 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2308 return NULL;
2309 else
2310 return rq;
2311}
2312#else
2313static inline struct request *blk_pm_peek_request(struct request_queue *q,
2314 struct request *rq)
2315{
2316 return rq;
2317}
2318#endif
2319
320ae51f
JA
2320void blk_account_io_start(struct request *rq, bool new_io)
2321{
2322 struct hd_struct *part;
2323 int rw = rq_data_dir(rq);
2324 int cpu;
2325
2326 if (!blk_do_io_stat(rq))
2327 return;
2328
2329 cpu = part_stat_lock();
2330
2331 if (!new_io) {
2332 part = rq->part;
2333 part_stat_inc(cpu, part, merges[rw]);
2334 } else {
2335 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2336 if (!hd_struct_try_get(part)) {
2337 /*
2338 * The partition is already being removed,
2339 * the request will be accounted on the disk only
2340 *
2341 * We take a reference on disk->part0 although that
2342 * partition will never be deleted, so we can treat
2343 * it as any other partition.
2344 */
2345 part = &rq->rq_disk->part0;
2346 hd_struct_get(part);
2347 }
2348 part_round_stats(cpu, part);
2349 part_inc_in_flight(part, rw);
2350 rq->part = part;
2351 }
2352
2353 part_stat_unlock();
2354}
2355
3bcddeac 2356/**
9934c8c0
TH
2357 * blk_peek_request - peek at the top of a request queue
2358 * @q: request queue to peek at
2359 *
2360 * Description:
2361 * Return the request at the top of @q. The returned request
2362 * should be started using blk_start_request() before LLD starts
2363 * processing it.
2364 *
2365 * Return:
2366 * Pointer to the request at the top of @q if available. Null
2367 * otherwise.
2368 *
2369 * Context:
2370 * queue_lock must be held.
2371 */
2372struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2373{
2374 struct request *rq;
2375 int ret;
2376
2377 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2378
2379 rq = blk_pm_peek_request(q, rq);
2380 if (!rq)
2381 break;
2382
e8064021 2383 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2384 /*
2385 * This is the first time the device driver
2386 * sees this request (possibly after
2387 * requeueing). Notify IO scheduler.
2388 */
e8064021 2389 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2390 elv_activate_rq(q, rq);
2391
2392 /*
2393 * just mark as started even if we don't start
2394 * it, a request that has been delayed should
2395 * not be passed by new incoming requests
2396 */
e8064021 2397 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2398 trace_block_rq_issue(q, rq);
2399 }
2400
2401 if (!q->boundary_rq || q->boundary_rq == rq) {
2402 q->end_sector = rq_end_sector(rq);
2403 q->boundary_rq = NULL;
2404 }
2405
e8064021 2406 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2407 break;
2408
2e46e8b2 2409 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2410 /*
2411 * make sure space for the drain appears we
2412 * know we can do this because max_hw_segments
2413 * has been adjusted to be one fewer than the
2414 * device can handle
2415 */
2416 rq->nr_phys_segments++;
2417 }
2418
2419 if (!q->prep_rq_fn)
2420 break;
2421
2422 ret = q->prep_rq_fn(q, rq);
2423 if (ret == BLKPREP_OK) {
2424 break;
2425 } else if (ret == BLKPREP_DEFER) {
2426 /*
2427 * the request may have been (partially) prepped.
2428 * we need to keep this request in the front to
e8064021 2429 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2430 * prevent other fs requests from passing this one.
2431 */
2e46e8b2 2432 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2433 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2434 /*
2435 * remove the space for the drain we added
2436 * so that we don't add it again
2437 */
2438 --rq->nr_phys_segments;
2439 }
2440
2441 rq = NULL;
2442 break;
0fb5b1fb
MP
2443 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2444 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2445
e8064021 2446 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2447 /*
2448 * Mark this request as started so we don't trigger
2449 * any debug logic in the end I/O path.
2450 */
2451 blk_start_request(rq);
0fb5b1fb 2452 __blk_end_request_all(rq, err);
158dbda0
TH
2453 } else {
2454 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2455 break;
2456 }
2457 }
2458
2459 return rq;
2460}
9934c8c0 2461EXPORT_SYMBOL(blk_peek_request);
158dbda0 2462
9934c8c0 2463void blk_dequeue_request(struct request *rq)
158dbda0 2464{
9934c8c0
TH
2465 struct request_queue *q = rq->q;
2466
158dbda0
TH
2467 BUG_ON(list_empty(&rq->queuelist));
2468 BUG_ON(ELV_ON_HASH(rq));
2469
2470 list_del_init(&rq->queuelist);
2471
2472 /*
2473 * the time frame between a request being removed from the lists
2474 * and to it is freed is accounted as io that is in progress at
2475 * the driver side.
2476 */
9195291e 2477 if (blk_account_rq(rq)) {
0a7ae2ff 2478 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2479 set_io_start_time_ns(rq);
2480 }
158dbda0
TH
2481}
2482
9934c8c0
TH
2483/**
2484 * blk_start_request - start request processing on the driver
2485 * @req: request to dequeue
2486 *
2487 * Description:
2488 * Dequeue @req and start timeout timer on it. This hands off the
2489 * request to the driver.
2490 *
2491 * Block internal functions which don't want to start timer should
2492 * call blk_dequeue_request().
2493 *
2494 * Context:
2495 * queue_lock must be held.
2496 */
2497void blk_start_request(struct request *req)
2498{
2499 blk_dequeue_request(req);
2500
cf43e6be 2501 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2502 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2503 req->rq_flags |= RQF_STATS;
87760e5e 2504 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2505 }
2506
4912aa6c 2507 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2508 blk_add_timer(req);
2509}
2510EXPORT_SYMBOL(blk_start_request);
2511
2512/**
2513 * blk_fetch_request - fetch a request from a request queue
2514 * @q: request queue to fetch a request from
2515 *
2516 * Description:
2517 * Return the request at the top of @q. The request is started on
2518 * return and LLD can start processing it immediately.
2519 *
2520 * Return:
2521 * Pointer to the request at the top of @q if available. Null
2522 * otherwise.
2523 *
2524 * Context:
2525 * queue_lock must be held.
2526 */
2527struct request *blk_fetch_request(struct request_queue *q)
2528{
2529 struct request *rq;
2530
2531 rq = blk_peek_request(q);
2532 if (rq)
2533 blk_start_request(rq);
2534 return rq;
2535}
2536EXPORT_SYMBOL(blk_fetch_request);
2537
3bcddeac 2538/**
2e60e022 2539 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2540 * @req: the request being processed
710027a4 2541 * @error: %0 for success, < %0 for error
8ebf9756 2542 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2543 *
2544 * Description:
8ebf9756
RD
2545 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2546 * the request structure even if @req doesn't have leftover.
2547 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2548 *
2549 * This special helper function is only for request stacking drivers
2550 * (e.g. request-based dm) so that they can handle partial completion.
2551 * Actual device drivers should use blk_end_request instead.
2552 *
2553 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2554 * %false return from this function.
3bcddeac
KU
2555 *
2556 * Return:
2e60e022
TH
2557 * %false - this request doesn't have any more data
2558 * %true - this request has more data
3bcddeac 2559 **/
2e60e022 2560bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2561{
f79ea416 2562 int total_bytes;
1da177e4 2563
4a0efdc9
HR
2564 trace_block_rq_complete(req->q, req, nr_bytes);
2565
2e60e022
TH
2566 if (!req->bio)
2567 return false;
2568
1da177e4 2569 /*
6f41469c
TH
2570 * For fs requests, rq is just carrier of independent bio's
2571 * and each partial completion should be handled separately.
2572 * Reset per-request error on each partial completion.
2573 *
2574 * TODO: tj: This is too subtle. It would be better to let
2575 * low level drivers do what they see fit.
1da177e4 2576 */
57292b58 2577 if (!blk_rq_is_passthrough(req))
1da177e4
LT
2578 req->errors = 0;
2579
57292b58 2580 if (error && !blk_rq_is_passthrough(req) &&
e8064021 2581 !(req->rq_flags & RQF_QUIET)) {
79775567
HR
2582 char *error_type;
2583
2584 switch (error) {
2585 case -ENOLINK:
2586 error_type = "recoverable transport";
2587 break;
2588 case -EREMOTEIO:
2589 error_type = "critical target";
2590 break;
2591 case -EBADE:
2592 error_type = "critical nexus";
2593 break;
d1ffc1f8
HR
2594 case -ETIMEDOUT:
2595 error_type = "timeout";
2596 break;
a9d6ceb8
HR
2597 case -ENOSPC:
2598 error_type = "critical space allocation";
2599 break;
7e782af5
HR
2600 case -ENODATA:
2601 error_type = "critical medium";
2602 break;
79775567
HR
2603 case -EIO:
2604 default:
2605 error_type = "I/O";
2606 break;
2607 }
ef3ecb66
RE
2608 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2609 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2610 req->rq_disk->disk_name : "?",
2611 (unsigned long long)blk_rq_pos(req));
2612
1da177e4
LT
2613 }
2614
bc58ba94 2615 blk_account_io_completion(req, nr_bytes);
d72d904a 2616
f79ea416
KO
2617 total_bytes = 0;
2618 while (req->bio) {
2619 struct bio *bio = req->bio;
4f024f37 2620 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2621
4f024f37 2622 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2623 req->bio = bio->bi_next;
1da177e4 2624
f79ea416 2625 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2626
f79ea416
KO
2627 total_bytes += bio_bytes;
2628 nr_bytes -= bio_bytes;
1da177e4 2629
f79ea416
KO
2630 if (!nr_bytes)
2631 break;
1da177e4
LT
2632 }
2633
2634 /*
2635 * completely done
2636 */
2e60e022
TH
2637 if (!req->bio) {
2638 /*
2639 * Reset counters so that the request stacking driver
2640 * can find how many bytes remain in the request
2641 * later.
2642 */
a2dec7b3 2643 req->__data_len = 0;
2e60e022
TH
2644 return false;
2645 }
1da177e4 2646
f9d03f96
CH
2647 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2648
a2dec7b3 2649 req->__data_len -= total_bytes;
2e46e8b2
TH
2650
2651 /* update sector only for requests with clear definition of sector */
57292b58 2652 if (!blk_rq_is_passthrough(req))
a2dec7b3 2653 req->__sector += total_bytes >> 9;
2e46e8b2 2654
80a761fd 2655 /* mixed attributes always follow the first bio */
e8064021 2656 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2657 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2658 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2659 }
2660
2e46e8b2
TH
2661 /*
2662 * If total number of sectors is less than the first segment
2663 * size, something has gone terribly wrong.
2664 */
2665 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2666 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2667 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2668 }
2669
2670 /* recalculate the number of segments */
1da177e4 2671 blk_recalc_rq_segments(req);
2e46e8b2 2672
2e60e022 2673 return true;
1da177e4 2674}
2e60e022 2675EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2676
2e60e022
TH
2677static bool blk_update_bidi_request(struct request *rq, int error,
2678 unsigned int nr_bytes,
2679 unsigned int bidi_bytes)
5efccd17 2680{
2e60e022
TH
2681 if (blk_update_request(rq, error, nr_bytes))
2682 return true;
5efccd17 2683
2e60e022
TH
2684 /* Bidi request must be completed as a whole */
2685 if (unlikely(blk_bidi_rq(rq)) &&
2686 blk_update_request(rq->next_rq, error, bidi_bytes))
2687 return true;
5efccd17 2688
e2e1a148
JA
2689 if (blk_queue_add_random(rq->q))
2690 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2691
2692 return false;
1da177e4
LT
2693}
2694
28018c24
JB
2695/**
2696 * blk_unprep_request - unprepare a request
2697 * @req: the request
2698 *
2699 * This function makes a request ready for complete resubmission (or
2700 * completion). It happens only after all error handling is complete,
2701 * so represents the appropriate moment to deallocate any resources
2702 * that were allocated to the request in the prep_rq_fn. The queue
2703 * lock is held when calling this.
2704 */
2705void blk_unprep_request(struct request *req)
2706{
2707 struct request_queue *q = req->q;
2708
e8064021 2709 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2710 if (q->unprep_rq_fn)
2711 q->unprep_rq_fn(q, req);
2712}
2713EXPORT_SYMBOL_GPL(blk_unprep_request);
2714
1da177e4
LT
2715/*
2716 * queue lock must be held
2717 */
12120077 2718void blk_finish_request(struct request *req, int error)
1da177e4 2719{
cf43e6be
JA
2720 struct request_queue *q = req->q;
2721
2722 if (req->rq_flags & RQF_STATS)
34dbad5d 2723 blk_stat_add(req);
cf43e6be 2724
e8064021 2725 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2726 blk_queue_end_tag(q, req);
b8286239 2727
ba396a6c 2728 BUG_ON(blk_queued_rq(req));
1da177e4 2729
57292b58 2730 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2731 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2732
e78042e5
MA
2733 blk_delete_timer(req);
2734
e8064021 2735 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2736 blk_unprep_request(req);
2737
bc58ba94 2738 blk_account_io_done(req);
b8286239 2739
87760e5e
JA
2740 if (req->end_io) {
2741 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2742 req->end_io(req, error);
87760e5e 2743 } else {
b8286239
KU
2744 if (blk_bidi_rq(req))
2745 __blk_put_request(req->next_rq->q, req->next_rq);
2746
cf43e6be 2747 __blk_put_request(q, req);
b8286239 2748 }
1da177e4 2749}
12120077 2750EXPORT_SYMBOL(blk_finish_request);
1da177e4 2751
3b11313a 2752/**
2e60e022
TH
2753 * blk_end_bidi_request - Complete a bidi request
2754 * @rq: the request to complete
2755 * @error: %0 for success, < %0 for error
2756 * @nr_bytes: number of bytes to complete @rq
2757 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2758 *
2759 * Description:
e3a04fe3 2760 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2761 * Drivers that supports bidi can safely call this member for any
2762 * type of request, bidi or uni. In the later case @bidi_bytes is
2763 * just ignored.
336cdb40
KU
2764 *
2765 * Return:
2e60e022
TH
2766 * %false - we are done with this request
2767 * %true - still buffers pending for this request
a0cd1285 2768 **/
b1f74493 2769static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2770 unsigned int nr_bytes, unsigned int bidi_bytes)
2771{
336cdb40 2772 struct request_queue *q = rq->q;
2e60e022 2773 unsigned long flags;
32fab448 2774
2e60e022
TH
2775 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2776 return true;
32fab448 2777
336cdb40 2778 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2779 blk_finish_request(rq, error);
336cdb40
KU
2780 spin_unlock_irqrestore(q->queue_lock, flags);
2781
2e60e022 2782 return false;
32fab448
KU
2783}
2784
336cdb40 2785/**
2e60e022
TH
2786 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2787 * @rq: the request to complete
710027a4 2788 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2789 * @nr_bytes: number of bytes to complete @rq
2790 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2791 *
2792 * Description:
2e60e022
TH
2793 * Identical to blk_end_bidi_request() except that queue lock is
2794 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2795 *
2796 * Return:
2e60e022
TH
2797 * %false - we are done with this request
2798 * %true - still buffers pending for this request
336cdb40 2799 **/
4853abaa 2800bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2801 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2802{
2e60e022
TH
2803 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2804 return true;
336cdb40 2805
2e60e022 2806 blk_finish_request(rq, error);
336cdb40 2807
2e60e022 2808 return false;
336cdb40 2809}
e19a3ab0
KU
2810
2811/**
2812 * blk_end_request - Helper function for drivers to complete the request.
2813 * @rq: the request being processed
710027a4 2814 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2815 * @nr_bytes: number of bytes to complete
2816 *
2817 * Description:
2818 * Ends I/O on a number of bytes attached to @rq.
2819 * If @rq has leftover, sets it up for the next range of segments.
2820 *
2821 * Return:
b1f74493
FT
2822 * %false - we are done with this request
2823 * %true - still buffers pending for this request
e19a3ab0 2824 **/
b1f74493 2825bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2826{
b1f74493 2827 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2828}
56ad1740 2829EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2830
2831/**
b1f74493
FT
2832 * blk_end_request_all - Helper function for drives to finish the request.
2833 * @rq: the request to finish
8ebf9756 2834 * @error: %0 for success, < %0 for error
336cdb40
KU
2835 *
2836 * Description:
b1f74493
FT
2837 * Completely finish @rq.
2838 */
2839void blk_end_request_all(struct request *rq, int error)
336cdb40 2840{
b1f74493
FT
2841 bool pending;
2842 unsigned int bidi_bytes = 0;
336cdb40 2843
b1f74493
FT
2844 if (unlikely(blk_bidi_rq(rq)))
2845 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2846
b1f74493
FT
2847 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2848 BUG_ON(pending);
2849}
56ad1740 2850EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2851
b1f74493
FT
2852/**
2853 * blk_end_request_cur - Helper function to finish the current request chunk.
2854 * @rq: the request to finish the current chunk for
8ebf9756 2855 * @error: %0 for success, < %0 for error
b1f74493
FT
2856 *
2857 * Description:
2858 * Complete the current consecutively mapped chunk from @rq.
2859 *
2860 * Return:
2861 * %false - we are done with this request
2862 * %true - still buffers pending for this request
2863 */
2864bool blk_end_request_cur(struct request *rq, int error)
2865{
2866 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2867}
56ad1740 2868EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2869
80a761fd
TH
2870/**
2871 * blk_end_request_err - Finish a request till the next failure boundary.
2872 * @rq: the request to finish till the next failure boundary for
2873 * @error: must be negative errno
2874 *
2875 * Description:
2876 * Complete @rq till the next failure boundary.
2877 *
2878 * Return:
2879 * %false - we are done with this request
2880 * %true - still buffers pending for this request
2881 */
2882bool blk_end_request_err(struct request *rq, int error)
2883{
2884 WARN_ON(error >= 0);
2885 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2886}
2887EXPORT_SYMBOL_GPL(blk_end_request_err);
2888
e3a04fe3 2889/**
b1f74493
FT
2890 * __blk_end_request - Helper function for drivers to complete the request.
2891 * @rq: the request being processed
2892 * @error: %0 for success, < %0 for error
2893 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2894 *
2895 * Description:
b1f74493 2896 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2897 *
2898 * Return:
b1f74493
FT
2899 * %false - we are done with this request
2900 * %true - still buffers pending for this request
e3a04fe3 2901 **/
b1f74493 2902bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2903{
b1f74493 2904 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2905}
56ad1740 2906EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2907
32fab448 2908/**
b1f74493
FT
2909 * __blk_end_request_all - Helper function for drives to finish the request.
2910 * @rq: the request to finish
8ebf9756 2911 * @error: %0 for success, < %0 for error
32fab448
KU
2912 *
2913 * Description:
b1f74493 2914 * Completely finish @rq. Must be called with queue lock held.
32fab448 2915 */
b1f74493 2916void __blk_end_request_all(struct request *rq, int error)
32fab448 2917{
b1f74493
FT
2918 bool pending;
2919 unsigned int bidi_bytes = 0;
2920
2921 if (unlikely(blk_bidi_rq(rq)))
2922 bidi_bytes = blk_rq_bytes(rq->next_rq);
2923
2924 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2925 BUG_ON(pending);
32fab448 2926}
56ad1740 2927EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2928
e19a3ab0 2929/**
b1f74493
FT
2930 * __blk_end_request_cur - Helper function to finish the current request chunk.
2931 * @rq: the request to finish the current chunk for
8ebf9756 2932 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2933 *
2934 * Description:
b1f74493
FT
2935 * Complete the current consecutively mapped chunk from @rq. Must
2936 * be called with queue lock held.
e19a3ab0
KU
2937 *
2938 * Return:
b1f74493
FT
2939 * %false - we are done with this request
2940 * %true - still buffers pending for this request
2941 */
2942bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2943{
b1f74493 2944 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2945}
56ad1740 2946EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2947
80a761fd
TH
2948/**
2949 * __blk_end_request_err - Finish a request till the next failure boundary.
2950 * @rq: the request to finish till the next failure boundary for
2951 * @error: must be negative errno
2952 *
2953 * Description:
2954 * Complete @rq till the next failure boundary. Must be called
2955 * with queue lock held.
2956 *
2957 * Return:
2958 * %false - we are done with this request
2959 * %true - still buffers pending for this request
2960 */
2961bool __blk_end_request_err(struct request *rq, int error)
2962{
2963 WARN_ON(error >= 0);
2964 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2965}
2966EXPORT_SYMBOL_GPL(__blk_end_request_err);
2967
86db1e29
JA
2968void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2969 struct bio *bio)
1da177e4 2970{
b4f42e28 2971 if (bio_has_data(bio))
fb2dce86 2972 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2973
4f024f37 2974 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2975 rq->bio = rq->biotail = bio;
1da177e4 2976
66846572
N
2977 if (bio->bi_bdev)
2978 rq->rq_disk = bio->bi_bdev->bd_disk;
2979}
1da177e4 2980
2d4dc890
IL
2981#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2982/**
2983 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2984 * @rq: the request to be flushed
2985 *
2986 * Description:
2987 * Flush all pages in @rq.
2988 */
2989void rq_flush_dcache_pages(struct request *rq)
2990{
2991 struct req_iterator iter;
7988613b 2992 struct bio_vec bvec;
2d4dc890
IL
2993
2994 rq_for_each_segment(bvec, rq, iter)
7988613b 2995 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2996}
2997EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2998#endif
2999
ef9e3fac
KU
3000/**
3001 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3002 * @q : the queue of the device being checked
3003 *
3004 * Description:
3005 * Check if underlying low-level drivers of a device are busy.
3006 * If the drivers want to export their busy state, they must set own
3007 * exporting function using blk_queue_lld_busy() first.
3008 *
3009 * Basically, this function is used only by request stacking drivers
3010 * to stop dispatching requests to underlying devices when underlying
3011 * devices are busy. This behavior helps more I/O merging on the queue
3012 * of the request stacking driver and prevents I/O throughput regression
3013 * on burst I/O load.
3014 *
3015 * Return:
3016 * 0 - Not busy (The request stacking driver should dispatch request)
3017 * 1 - Busy (The request stacking driver should stop dispatching request)
3018 */
3019int blk_lld_busy(struct request_queue *q)
3020{
3021 if (q->lld_busy_fn)
3022 return q->lld_busy_fn(q);
3023
3024 return 0;
3025}
3026EXPORT_SYMBOL_GPL(blk_lld_busy);
3027
78d8e58a
MS
3028/**
3029 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3030 * @rq: the clone request to be cleaned up
3031 *
3032 * Description:
3033 * Free all bios in @rq for a cloned request.
3034 */
3035void blk_rq_unprep_clone(struct request *rq)
3036{
3037 struct bio *bio;
3038
3039 while ((bio = rq->bio) != NULL) {
3040 rq->bio = bio->bi_next;
3041
3042 bio_put(bio);
3043 }
3044}
3045EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3046
3047/*
3048 * Copy attributes of the original request to the clone request.
3049 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3050 */
3051static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3052{
3053 dst->cpu = src->cpu;
b0fd271d
KU
3054 dst->__sector = blk_rq_pos(src);
3055 dst->__data_len = blk_rq_bytes(src);
3056 dst->nr_phys_segments = src->nr_phys_segments;
3057 dst->ioprio = src->ioprio;
3058 dst->extra_len = src->extra_len;
78d8e58a
MS
3059}
3060
3061/**
3062 * blk_rq_prep_clone - Helper function to setup clone request
3063 * @rq: the request to be setup
3064 * @rq_src: original request to be cloned
3065 * @bs: bio_set that bios for clone are allocated from
3066 * @gfp_mask: memory allocation mask for bio
3067 * @bio_ctr: setup function to be called for each clone bio.
3068 * Returns %0 for success, non %0 for failure.
3069 * @data: private data to be passed to @bio_ctr
3070 *
3071 * Description:
3072 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3073 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3074 * are not copied, and copying such parts is the caller's responsibility.
3075 * Also, pages which the original bios are pointing to are not copied
3076 * and the cloned bios just point same pages.
3077 * So cloned bios must be completed before original bios, which means
3078 * the caller must complete @rq before @rq_src.
3079 */
3080int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3081 struct bio_set *bs, gfp_t gfp_mask,
3082 int (*bio_ctr)(struct bio *, struct bio *, void *),
3083 void *data)
3084{
3085 struct bio *bio, *bio_src;
3086
3087 if (!bs)
3088 bs = fs_bio_set;
3089
3090 __rq_for_each_bio(bio_src, rq_src) {
3091 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3092 if (!bio)
3093 goto free_and_out;
3094
3095 if (bio_ctr && bio_ctr(bio, bio_src, data))
3096 goto free_and_out;
3097
3098 if (rq->bio) {
3099 rq->biotail->bi_next = bio;
3100 rq->biotail = bio;
3101 } else
3102 rq->bio = rq->biotail = bio;
3103 }
3104
3105 __blk_rq_prep_clone(rq, rq_src);
3106
3107 return 0;
3108
3109free_and_out:
3110 if (bio)
3111 bio_put(bio);
3112 blk_rq_unprep_clone(rq);
3113
3114 return -ENOMEM;
b0fd271d
KU
3115}
3116EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3117
59c3d45e 3118int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3119{
3120 return queue_work(kblockd_workqueue, work);
3121}
1da177e4
LT
3122EXPORT_SYMBOL(kblockd_schedule_work);
3123
ee63cfa7
JA
3124int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3125{
3126 return queue_work_on(cpu, kblockd_workqueue, work);
3127}
3128EXPORT_SYMBOL(kblockd_schedule_work_on);
3129
59c3d45e
JA
3130int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3131 unsigned long delay)
e43473b7
VG
3132{
3133 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3134}
3135EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3136
8ab14595
JA
3137int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3138 unsigned long delay)
3139{
3140 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3141}
3142EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3143
75df7136
SJ
3144/**
3145 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3146 * @plug: The &struct blk_plug that needs to be initialized
3147 *
3148 * Description:
3149 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3150 * pending I/O should the task end up blocking between blk_start_plug() and
3151 * blk_finish_plug(). This is important from a performance perspective, but
3152 * also ensures that we don't deadlock. For instance, if the task is blocking
3153 * for a memory allocation, memory reclaim could end up wanting to free a
3154 * page belonging to that request that is currently residing in our private
3155 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3156 * this kind of deadlock.
3157 */
73c10101
JA
3158void blk_start_plug(struct blk_plug *plug)
3159{
3160 struct task_struct *tsk = current;
3161
dd6cf3e1
SL
3162 /*
3163 * If this is a nested plug, don't actually assign it.
3164 */
3165 if (tsk->plug)
3166 return;
3167
73c10101 3168 INIT_LIST_HEAD(&plug->list);
320ae51f 3169 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3170 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3171 /*
dd6cf3e1
SL
3172 * Store ordering should not be needed here, since a potential
3173 * preempt will imply a full memory barrier
73c10101 3174 */
dd6cf3e1 3175 tsk->plug = plug;
73c10101
JA
3176}
3177EXPORT_SYMBOL(blk_start_plug);
3178
3179static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3180{
3181 struct request *rqa = container_of(a, struct request, queuelist);
3182 struct request *rqb = container_of(b, struct request, queuelist);
3183
975927b9
JM
3184 return !(rqa->q < rqb->q ||
3185 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3186}
3187
49cac01e
JA
3188/*
3189 * If 'from_schedule' is true, then postpone the dispatch of requests
3190 * until a safe kblockd context. We due this to avoid accidental big
3191 * additional stack usage in driver dispatch, in places where the originally
3192 * plugger did not intend it.
3193 */
f6603783 3194static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3195 bool from_schedule)
99e22598 3196 __releases(q->queue_lock)
94b5eb28 3197{
49cac01e 3198 trace_block_unplug(q, depth, !from_schedule);
99e22598 3199
70460571 3200 if (from_schedule)
24ecfbe2 3201 blk_run_queue_async(q);
70460571 3202 else
24ecfbe2 3203 __blk_run_queue(q);
70460571 3204 spin_unlock(q->queue_lock);
94b5eb28
JA
3205}
3206
74018dc3 3207static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3208{
3209 LIST_HEAD(callbacks);
3210
2a7d5559
SL
3211 while (!list_empty(&plug->cb_list)) {
3212 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3213
2a7d5559
SL
3214 while (!list_empty(&callbacks)) {
3215 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3216 struct blk_plug_cb,
3217 list);
2a7d5559 3218 list_del(&cb->list);
74018dc3 3219 cb->callback(cb, from_schedule);
2a7d5559 3220 }
048c9374
N
3221 }
3222}
3223
9cbb1750
N
3224struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3225 int size)
3226{
3227 struct blk_plug *plug = current->plug;
3228 struct blk_plug_cb *cb;
3229
3230 if (!plug)
3231 return NULL;
3232
3233 list_for_each_entry(cb, &plug->cb_list, list)
3234 if (cb->callback == unplug && cb->data == data)
3235 return cb;
3236
3237 /* Not currently on the callback list */
3238 BUG_ON(size < sizeof(*cb));
3239 cb = kzalloc(size, GFP_ATOMIC);
3240 if (cb) {
3241 cb->data = data;
3242 cb->callback = unplug;
3243 list_add(&cb->list, &plug->cb_list);
3244 }
3245 return cb;
3246}
3247EXPORT_SYMBOL(blk_check_plugged);
3248
49cac01e 3249void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3250{
3251 struct request_queue *q;
3252 unsigned long flags;
3253 struct request *rq;
109b8129 3254 LIST_HEAD(list);
94b5eb28 3255 unsigned int depth;
73c10101 3256
74018dc3 3257 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3258
3259 if (!list_empty(&plug->mq_list))
3260 blk_mq_flush_plug_list(plug, from_schedule);
3261
73c10101
JA
3262 if (list_empty(&plug->list))
3263 return;
3264
109b8129
N
3265 list_splice_init(&plug->list, &list);
3266
422765c2 3267 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3268
3269 q = NULL;
94b5eb28 3270 depth = 0;
18811272
JA
3271
3272 /*
3273 * Save and disable interrupts here, to avoid doing it for every
3274 * queue lock we have to take.
3275 */
73c10101 3276 local_irq_save(flags);
109b8129
N
3277 while (!list_empty(&list)) {
3278 rq = list_entry_rq(list.next);
73c10101 3279 list_del_init(&rq->queuelist);
73c10101
JA
3280 BUG_ON(!rq->q);
3281 if (rq->q != q) {
99e22598
JA
3282 /*
3283 * This drops the queue lock
3284 */
3285 if (q)
49cac01e 3286 queue_unplugged(q, depth, from_schedule);
73c10101 3287 q = rq->q;
94b5eb28 3288 depth = 0;
73c10101
JA
3289 spin_lock(q->queue_lock);
3290 }
8ba61435
TH
3291
3292 /*
3293 * Short-circuit if @q is dead
3294 */
3f3299d5 3295 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3296 __blk_end_request_all(rq, -ENODEV);
3297 continue;
3298 }
3299
73c10101
JA
3300 /*
3301 * rq is already accounted, so use raw insert
3302 */
f73f44eb 3303 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3304 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3305 else
3306 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3307
3308 depth++;
73c10101
JA
3309 }
3310
99e22598
JA
3311 /*
3312 * This drops the queue lock
3313 */
3314 if (q)
49cac01e 3315 queue_unplugged(q, depth, from_schedule);
73c10101 3316
73c10101
JA
3317 local_irq_restore(flags);
3318}
73c10101
JA
3319
3320void blk_finish_plug(struct blk_plug *plug)
3321{
dd6cf3e1
SL
3322 if (plug != current->plug)
3323 return;
f6603783 3324 blk_flush_plug_list(plug, false);
73c10101 3325
dd6cf3e1 3326 current->plug = NULL;
73c10101 3327}
88b996cd 3328EXPORT_SYMBOL(blk_finish_plug);
73c10101 3329
47fafbc7 3330#ifdef CONFIG_PM
6c954667
LM
3331/**
3332 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3333 * @q: the queue of the device
3334 * @dev: the device the queue belongs to
3335 *
3336 * Description:
3337 * Initialize runtime-PM-related fields for @q and start auto suspend for
3338 * @dev. Drivers that want to take advantage of request-based runtime PM
3339 * should call this function after @dev has been initialized, and its
3340 * request queue @q has been allocated, and runtime PM for it can not happen
3341 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3342 * cases, driver should call this function before any I/O has taken place.
3343 *
3344 * This function takes care of setting up using auto suspend for the device,
3345 * the autosuspend delay is set to -1 to make runtime suspend impossible
3346 * until an updated value is either set by user or by driver. Drivers do
3347 * not need to touch other autosuspend settings.
3348 *
3349 * The block layer runtime PM is request based, so only works for drivers
3350 * that use request as their IO unit instead of those directly use bio's.
3351 */
3352void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3353{
3354 q->dev = dev;
3355 q->rpm_status = RPM_ACTIVE;
3356 pm_runtime_set_autosuspend_delay(q->dev, -1);
3357 pm_runtime_use_autosuspend(q->dev);
3358}
3359EXPORT_SYMBOL(blk_pm_runtime_init);
3360
3361/**
3362 * blk_pre_runtime_suspend - Pre runtime suspend check
3363 * @q: the queue of the device
3364 *
3365 * Description:
3366 * This function will check if runtime suspend is allowed for the device
3367 * by examining if there are any requests pending in the queue. If there
3368 * are requests pending, the device can not be runtime suspended; otherwise,
3369 * the queue's status will be updated to SUSPENDING and the driver can
3370 * proceed to suspend the device.
3371 *
3372 * For the not allowed case, we mark last busy for the device so that
3373 * runtime PM core will try to autosuspend it some time later.
3374 *
3375 * This function should be called near the start of the device's
3376 * runtime_suspend callback.
3377 *
3378 * Return:
3379 * 0 - OK to runtime suspend the device
3380 * -EBUSY - Device should not be runtime suspended
3381 */
3382int blk_pre_runtime_suspend(struct request_queue *q)
3383{
3384 int ret = 0;
3385
4fd41a85
KX
3386 if (!q->dev)
3387 return ret;
3388
6c954667
LM
3389 spin_lock_irq(q->queue_lock);
3390 if (q->nr_pending) {
3391 ret = -EBUSY;
3392 pm_runtime_mark_last_busy(q->dev);
3393 } else {
3394 q->rpm_status = RPM_SUSPENDING;
3395 }
3396 spin_unlock_irq(q->queue_lock);
3397 return ret;
3398}
3399EXPORT_SYMBOL(blk_pre_runtime_suspend);
3400
3401/**
3402 * blk_post_runtime_suspend - Post runtime suspend processing
3403 * @q: the queue of the device
3404 * @err: return value of the device's runtime_suspend function
3405 *
3406 * Description:
3407 * Update the queue's runtime status according to the return value of the
3408 * device's runtime suspend function and mark last busy for the device so
3409 * that PM core will try to auto suspend the device at a later time.
3410 *
3411 * This function should be called near the end of the device's
3412 * runtime_suspend callback.
3413 */
3414void blk_post_runtime_suspend(struct request_queue *q, int err)
3415{
4fd41a85
KX
3416 if (!q->dev)
3417 return;
3418
6c954667
LM
3419 spin_lock_irq(q->queue_lock);
3420 if (!err) {
3421 q->rpm_status = RPM_SUSPENDED;
3422 } else {
3423 q->rpm_status = RPM_ACTIVE;
3424 pm_runtime_mark_last_busy(q->dev);
3425 }
3426 spin_unlock_irq(q->queue_lock);
3427}
3428EXPORT_SYMBOL(blk_post_runtime_suspend);
3429
3430/**
3431 * blk_pre_runtime_resume - Pre runtime resume processing
3432 * @q: the queue of the device
3433 *
3434 * Description:
3435 * Update the queue's runtime status to RESUMING in preparation for the
3436 * runtime resume of the device.
3437 *
3438 * This function should be called near the start of the device's
3439 * runtime_resume callback.
3440 */
3441void blk_pre_runtime_resume(struct request_queue *q)
3442{
4fd41a85
KX
3443 if (!q->dev)
3444 return;
3445
6c954667
LM
3446 spin_lock_irq(q->queue_lock);
3447 q->rpm_status = RPM_RESUMING;
3448 spin_unlock_irq(q->queue_lock);
3449}
3450EXPORT_SYMBOL(blk_pre_runtime_resume);
3451
3452/**
3453 * blk_post_runtime_resume - Post runtime resume processing
3454 * @q: the queue of the device
3455 * @err: return value of the device's runtime_resume function
3456 *
3457 * Description:
3458 * Update the queue's runtime status according to the return value of the
3459 * device's runtime_resume function. If it is successfully resumed, process
3460 * the requests that are queued into the device's queue when it is resuming
3461 * and then mark last busy and initiate autosuspend for it.
3462 *
3463 * This function should be called near the end of the device's
3464 * runtime_resume callback.
3465 */
3466void blk_post_runtime_resume(struct request_queue *q, int err)
3467{
4fd41a85
KX
3468 if (!q->dev)
3469 return;
3470
6c954667
LM
3471 spin_lock_irq(q->queue_lock);
3472 if (!err) {
3473 q->rpm_status = RPM_ACTIVE;
3474 __blk_run_queue(q);
3475 pm_runtime_mark_last_busy(q->dev);
c60855cd 3476 pm_request_autosuspend(q->dev);
6c954667
LM
3477 } else {
3478 q->rpm_status = RPM_SUSPENDED;
3479 }
3480 spin_unlock_irq(q->queue_lock);
3481}
3482EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3483
3484/**
3485 * blk_set_runtime_active - Force runtime status of the queue to be active
3486 * @q: the queue of the device
3487 *
3488 * If the device is left runtime suspended during system suspend the resume
3489 * hook typically resumes the device and corrects runtime status
3490 * accordingly. However, that does not affect the queue runtime PM status
3491 * which is still "suspended". This prevents processing requests from the
3492 * queue.
3493 *
3494 * This function can be used in driver's resume hook to correct queue
3495 * runtime PM status and re-enable peeking requests from the queue. It
3496 * should be called before first request is added to the queue.
3497 */
3498void blk_set_runtime_active(struct request_queue *q)
3499{
3500 spin_lock_irq(q->queue_lock);
3501 q->rpm_status = RPM_ACTIVE;
3502 pm_runtime_mark_last_busy(q->dev);
3503 pm_request_autosuspend(q->dev);
3504 spin_unlock_irq(q->queue_lock);
3505}
3506EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3507#endif
3508
1da177e4
LT
3509int __init blk_dev_init(void)
3510{
ef295ecf
CH
3511 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3512 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3513 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3514 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3515 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3516
89b90be2
TH
3517 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3518 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3519 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3520 if (!kblockd_workqueue)
3521 panic("Failed to create kblockd\n");
3522
3523 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3524 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3525
c2789bd4 3526 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3527 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3528
18fbda91
OS
3529#ifdef CONFIG_DEBUG_FS
3530 blk_debugfs_root = debugfs_create_dir("block", NULL);
3531#endif
3532
d38ecf93 3533 return 0;
1da177e4 3534}