]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
UBUNTU: Packaging: Breaks yet another iscsitarget-dkms version
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
df4c0e36
AR
41#include <linux/kasan.h>
42
07f3f05c 43#include "internal.h"
b2dba1af 44#include "mount.h"
1da177e4 45
789680d1
NP
46/*
47 * Usage:
873feea0 48 * dcache->d_inode->i_lock protects:
946e51f2 49 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
19156840 54 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
b7ab39f6 60 * - d_count
da502956 61 * - d_unhashed()
2fd6b7f5
NP
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
946e51f2 64 * - d_u.d_alias, d_inode
789680d1
NP
65 *
66 * Ordering:
873feea0 67 * dentry->d_inode->i_lock
b5c84bf6 68 * dentry->d_lock
19156840 69 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
70 * dcache_hash_bucket lock
71 * s_anon lock
789680d1 72 *
da502956
NP
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
789680d1
NP
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
fa3536cc 84int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
74c3cbe3 87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 88
949854d0 89EXPORT_SYMBOL(rename_lock);
1da177e4 90
e18b890b 91static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 92
1da177e4
LT
93/*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
1da177e4 101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8966be90 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 108 unsigned int hash)
ceb5bdc2 109{
6d7d1a0d 110 hash += (unsigned long) parent / L1_CACHE_BYTES;
99d263d4 111 return dentry_hashtable + hash_32(hash, d_hash_shift);
ceb5bdc2
NP
112}
113
1da177e4
LT
114/* Statistics gathering. */
115struct dentry_stat_t dentry_stat = {
116 .age_limit = 45,
117};
118
3942c07c 119static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 120static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
123
124/*
125 * Here we resort to our own counters instead of using generic per-cpu counters
126 * for consistency with what the vfs inode code does. We are expected to harvest
127 * better code and performance by having our own specialized counters.
128 *
129 * Please note that the loop is done over all possible CPUs, not over all online
130 * CPUs. The reason for this is that we don't want to play games with CPUs going
131 * on and off. If one of them goes off, we will just keep their counters.
132 *
133 * glommer: See cffbc8a for details, and if you ever intend to change this,
134 * please update all vfs counters to match.
135 */
3942c07c 136static long get_nr_dentry(void)
3e880fb5
NP
137{
138 int i;
3942c07c 139 long sum = 0;
3e880fb5
NP
140 for_each_possible_cpu(i)
141 sum += per_cpu(nr_dentry, i);
142 return sum < 0 ? 0 : sum;
143}
144
62d36c77
DC
145static long get_nr_dentry_unused(void)
146{
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry_unused, i);
151 return sum < 0 ? 0 : sum;
152}
153
1f7e0616 154int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
155 size_t *lenp, loff_t *ppos)
156{
3e880fb5 157 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 158 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
160}
161#endif
162
5483f18e
LT
163/*
164 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165 * The strings are both count bytes long, and count is non-zero.
166 */
e419b4cc
LT
167#ifdef CONFIG_DCACHE_WORD_ACCESS
168
169#include <asm/word-at-a-time.h>
170/*
171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172 * aligned allocation for this particular component. We don't
173 * strictly need the load_unaligned_zeropad() safety, but it
174 * doesn't hurt either.
175 *
176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177 * need the careful unaligned handling.
178 */
94753db5 179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 180{
bfcfaa77 181 unsigned long a,b,mask;
bfcfaa77
LT
182
183 for (;;) {
12f8ad4b 184 a = *(unsigned long *)cs;
e419b4cc 185 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
186 if (tcount < sizeof(unsigned long))
187 break;
188 if (unlikely(a != b))
189 return 1;
190 cs += sizeof(unsigned long);
191 ct += sizeof(unsigned long);
192 tcount -= sizeof(unsigned long);
193 if (!tcount)
194 return 0;
195 }
a5c21dce 196 mask = bytemask_from_count(tcount);
bfcfaa77 197 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
198}
199
bfcfaa77 200#else
e419b4cc 201
94753db5 202static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 203{
5483f18e
LT
204 do {
205 if (*cs != *ct)
206 return 1;
207 cs++;
208 ct++;
209 tcount--;
210 } while (tcount);
211 return 0;
212}
213
e419b4cc
LT
214#endif
215
94753db5
LT
216static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217{
6326c71f 218 const unsigned char *cs;
94753db5
LT
219 /*
220 * Be careful about RCU walk racing with rename:
221 * use ACCESS_ONCE to fetch the name pointer.
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
6326c71f
LT
235 cs = ACCESS_ONCE(dentry->d_name.name);
236 smp_read_barrier_depends();
237 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
238}
239
8d85b484
AV
240struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246};
247
248static inline struct external_name *external_name(struct dentry *dentry)
249{
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251}
252
9c82ab9c 253static void __d_free(struct rcu_head *head)
1da177e4 254{
9c82ab9c
CH
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
8d85b484
AV
257 kmem_cache_free(dentry_cache, dentry);
258}
259
260static void __d_free_external(struct rcu_head *head)
261{
262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 263 kfree(external_name(dentry));
1da177e4
LT
264 kmem_cache_free(dentry_cache, dentry);
265}
266
810bb172
AV
267static inline int dname_external(const struct dentry *dentry)
268{
269 return dentry->d_name.name != dentry->d_iname;
270}
271
626f7c23
AV
272void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
273{
274 spin_lock(&dentry->d_lock);
275 if (unlikely(dname_external(dentry))) {
276 struct external_name *p = external_name(dentry);
277 atomic_inc(&p->u.count);
278 spin_unlock(&dentry->d_lock);
279 name->name = p->name;
280 } else {
281 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
282 spin_unlock(&dentry->d_lock);
283 name->name = name->inline_name;
284 }
285}
286EXPORT_SYMBOL(take_dentry_name_snapshot);
287
288void release_dentry_name_snapshot(struct name_snapshot *name)
289{
290 if (unlikely(name->name != name->inline_name)) {
291 struct external_name *p;
292 p = container_of(name->name, struct external_name, name[0]);
293 if (unlikely(atomic_dec_and_test(&p->u.count)))
294 kfree_rcu(p, u.head);
295 }
296}
297EXPORT_SYMBOL(release_dentry_name_snapshot);
298
4bf46a27
DH
299static inline void __d_set_inode_and_type(struct dentry *dentry,
300 struct inode *inode,
301 unsigned type_flags)
302{
303 unsigned flags;
304
305 dentry->d_inode = inode;
4bf46a27
DH
306 flags = READ_ONCE(dentry->d_flags);
307 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
308 flags |= type_flags;
309 WRITE_ONCE(dentry->d_flags, flags);
310}
311
4bf46a27
DH
312static inline void __d_clear_type_and_inode(struct dentry *dentry)
313{
314 unsigned flags = READ_ONCE(dentry->d_flags);
315
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
318 dentry->d_inode = NULL;
319}
320
b4f0354e
AV
321static void dentry_free(struct dentry *dentry)
322{
946e51f2 323 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
324 if (unlikely(dname_external(dentry))) {
325 struct external_name *p = external_name(dentry);
326 if (likely(atomic_dec_and_test(&p->u.count))) {
327 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
328 return;
329 }
330 }
b4f0354e
AV
331 /* if dentry was never visible to RCU, immediate free is OK */
332 if (!(dentry->d_flags & DCACHE_RCUACCESS))
333 __d_free(&dentry->d_u.d_rcu);
334 else
335 call_rcu(&dentry->d_u.d_rcu, __d_free);
336}
337
31e6b01f 338/**
a7c6f571 339 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
ff5fdb61 340 * @dentry: the target dentry
31e6b01f
NP
341 * After this call, in-progress rcu-walk path lookup will fail. This
342 * should be called after unhashing, and after changing d_inode (if
343 * the dentry has not already been unhashed).
344 */
a7c6f571 345static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
31e6b01f 346{
a7c6f571
PZ
347 lockdep_assert_held(&dentry->d_lock);
348 /* Go through am invalidation barrier */
349 write_seqcount_invalidate(&dentry->d_seq);
31e6b01f
NP
350}
351
1da177e4
LT
352/*
353 * Release the dentry's inode, using the filesystem
31e6b01f
NP
354 * d_iput() operation if defined. Dentry has no refcount
355 * and is unhashed.
1da177e4 356 */
858119e1 357static void dentry_iput(struct dentry * dentry)
31f3e0b3 358 __releases(dentry->d_lock)
873feea0 359 __releases(dentry->d_inode->i_lock)
1da177e4
LT
360{
361 struct inode *inode = dentry->d_inode;
362 if (inode) {
4bf46a27 363 __d_clear_type_and_inode(dentry);
946e51f2 364 hlist_del_init(&dentry->d_u.d_alias);
1da177e4 365 spin_unlock(&dentry->d_lock);
873feea0 366 spin_unlock(&inode->i_lock);
f805fbda
LT
367 if (!inode->i_nlink)
368 fsnotify_inoderemove(inode);
1da177e4
LT
369 if (dentry->d_op && dentry->d_op->d_iput)
370 dentry->d_op->d_iput(dentry, inode);
371 else
372 iput(inode);
373 } else {
374 spin_unlock(&dentry->d_lock);
1da177e4
LT
375 }
376}
377
31e6b01f
NP
378/*
379 * Release the dentry's inode, using the filesystem
380 * d_iput() operation if defined. dentry remains in-use.
381 */
382static void dentry_unlink_inode(struct dentry * dentry)
383 __releases(dentry->d_lock)
873feea0 384 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
385{
386 struct inode *inode = dentry->d_inode;
8f5b4f99
AV
387
388 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 389 __d_clear_type_and_inode(dentry);
946e51f2 390 hlist_del_init(&dentry->d_u.d_alias);
8f5b4f99 391 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 392 spin_unlock(&dentry->d_lock);
873feea0 393 spin_unlock(&inode->i_lock);
31e6b01f
NP
394 if (!inode->i_nlink)
395 fsnotify_inoderemove(inode);
396 if (dentry->d_op && dentry->d_op->d_iput)
397 dentry->d_op->d_iput(dentry, inode);
398 else
399 iput(inode);
400}
401
89dc77bc
LT
402/*
403 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
404 * is in use - which includes both the "real" per-superblock
405 * LRU list _and_ the DCACHE_SHRINK_LIST use.
406 *
407 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
408 * on the shrink list (ie not on the superblock LRU list).
409 *
410 * The per-cpu "nr_dentry_unused" counters are updated with
411 * the DCACHE_LRU_LIST bit.
412 *
413 * These helper functions make sure we always follow the
414 * rules. d_lock must be held by the caller.
415 */
416#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
417static void d_lru_add(struct dentry *dentry)
418{
419 D_FLAG_VERIFY(dentry, 0);
420 dentry->d_flags |= DCACHE_LRU_LIST;
421 this_cpu_inc(nr_dentry_unused);
422 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
423}
424
425static void d_lru_del(struct dentry *dentry)
426{
427 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
428 dentry->d_flags &= ~DCACHE_LRU_LIST;
429 this_cpu_dec(nr_dentry_unused);
430 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
431}
432
433static void d_shrink_del(struct dentry *dentry)
434{
435 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
436 list_del_init(&dentry->d_lru);
437 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
438 this_cpu_dec(nr_dentry_unused);
439}
440
441static void d_shrink_add(struct dentry *dentry, struct list_head *list)
442{
443 D_FLAG_VERIFY(dentry, 0);
444 list_add(&dentry->d_lru, list);
445 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
446 this_cpu_inc(nr_dentry_unused);
447}
448
449/*
450 * These can only be called under the global LRU lock, ie during the
451 * callback for freeing the LRU list. "isolate" removes it from the
452 * LRU lists entirely, while shrink_move moves it to the indicated
453 * private list.
454 */
3f97b163 455static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
456{
457 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
458 dentry->d_flags &= ~DCACHE_LRU_LIST;
459 this_cpu_dec(nr_dentry_unused);
3f97b163 460 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
461}
462
3f97b163
VD
463static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
464 struct list_head *list)
89dc77bc
LT
465{
466 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
467 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 468 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
469}
470
da3bbdd4 471/*
f6041567 472 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
473 */
474static void dentry_lru_add(struct dentry *dentry)
475{
89dc77bc
LT
476 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
477 d_lru_add(dentry);
da3bbdd4
KM
478}
479
789680d1
NP
480/**
481 * d_drop - drop a dentry
482 * @dentry: dentry to drop
483 *
484 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
485 * be found through a VFS lookup any more. Note that this is different from
486 * deleting the dentry - d_delete will try to mark the dentry negative if
487 * possible, giving a successful _negative_ lookup, while d_drop will
488 * just make the cache lookup fail.
489 *
490 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
491 * reason (NFS timeouts or autofs deletes).
492 *
493 * __d_drop requires dentry->d_lock.
494 */
495void __d_drop(struct dentry *dentry)
496{
dea3667b 497 if (!d_unhashed(dentry)) {
b61625d2 498 struct hlist_bl_head *b;
7632e465
BF
499 /*
500 * Hashed dentries are normally on the dentry hashtable,
501 * with the exception of those newly allocated by
502 * d_obtain_alias, which are always IS_ROOT:
503 */
504 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
505 b = &dentry->d_sb->s_anon;
506 else
507 b = d_hash(dentry->d_parent, dentry->d_name.hash);
508
509 hlist_bl_lock(b);
510 __hlist_bl_del(&dentry->d_hash);
511 dentry->d_hash.pprev = NULL;
512 hlist_bl_unlock(b);
a7c6f571 513 dentry_rcuwalk_invalidate(dentry);
789680d1
NP
514 }
515}
516EXPORT_SYMBOL(__d_drop);
517
518void d_drop(struct dentry *dentry)
519{
789680d1
NP
520 spin_lock(&dentry->d_lock);
521 __d_drop(dentry);
522 spin_unlock(&dentry->d_lock);
789680d1
NP
523}
524EXPORT_SYMBOL(d_drop);
525
e55fd011 526static void __dentry_kill(struct dentry *dentry)
77812a1e 527{
41edf278
AV
528 struct dentry *parent = NULL;
529 bool can_free = true;
41edf278 530 if (!IS_ROOT(dentry))
77812a1e 531 parent = dentry->d_parent;
31e6b01f 532
0d98439e
LT
533 /*
534 * The dentry is now unrecoverably dead to the world.
535 */
536 lockref_mark_dead(&dentry->d_lockref);
537
f0023bc6 538 /*
f0023bc6
SW
539 * inform the fs via d_prune that this dentry is about to be
540 * unhashed and destroyed.
541 */
29266201 542 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
543 dentry->d_op->d_prune(dentry);
544
01b60351
AV
545 if (dentry->d_flags & DCACHE_LRU_LIST) {
546 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
547 d_lru_del(dentry);
01b60351 548 }
77812a1e
NP
549 /* if it was on the hash then remove it */
550 __d_drop(dentry);
ca5358ef 551 __list_del_entry(&dentry->d_child);
03b3b889
AV
552 /*
553 * Inform d_walk() that we are no longer attached to the
554 * dentry tree
555 */
556 dentry->d_flags |= DCACHE_DENTRY_KILLED;
557 if (parent)
558 spin_unlock(&parent->d_lock);
559 dentry_iput(dentry);
560 /*
561 * dentry_iput drops the locks, at which point nobody (except
562 * transient RCU lookups) can reach this dentry.
563 */
360f5479 564 BUG_ON(dentry->d_lockref.count > 0);
03b3b889
AV
565 this_cpu_dec(nr_dentry);
566 if (dentry->d_op && dentry->d_op->d_release)
567 dentry->d_op->d_release(dentry);
568
41edf278
AV
569 spin_lock(&dentry->d_lock);
570 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
571 dentry->d_flags |= DCACHE_MAY_FREE;
572 can_free = false;
573 }
574 spin_unlock(&dentry->d_lock);
41edf278
AV
575 if (likely(can_free))
576 dentry_free(dentry);
e55fd011
AV
577}
578
579/*
580 * Finish off a dentry we've decided to kill.
581 * dentry->d_lock must be held, returns with it unlocked.
582 * If ref is non-zero, then decrement the refcount too.
583 * Returns dentry requiring refcount drop, or NULL if we're done.
584 */
8cbf74da 585static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
586 __releases(dentry->d_lock)
587{
588 struct inode *inode = dentry->d_inode;
589 struct dentry *parent = NULL;
590
591 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
592 goto failed;
593
594 if (!IS_ROOT(dentry)) {
595 parent = dentry->d_parent;
596 if (unlikely(!spin_trylock(&parent->d_lock))) {
597 if (inode)
598 spin_unlock(&inode->i_lock);
599 goto failed;
600 }
601 }
602
603 __dentry_kill(dentry);
03b3b889 604 return parent;
e55fd011
AV
605
606failed:
8cbf74da 607 spin_unlock(&dentry->d_lock);
e55fd011 608 return dentry; /* try again with same dentry */
77812a1e
NP
609}
610
046b961b
AV
611static inline struct dentry *lock_parent(struct dentry *dentry)
612{
613 struct dentry *parent = dentry->d_parent;
614 if (IS_ROOT(dentry))
615 return NULL;
360f5479 616 if (unlikely(dentry->d_lockref.count < 0))
c2338f2d 617 return NULL;
046b961b
AV
618 if (likely(spin_trylock(&parent->d_lock)))
619 return parent;
046b961b 620 rcu_read_lock();
c2338f2d 621 spin_unlock(&dentry->d_lock);
046b961b
AV
622again:
623 parent = ACCESS_ONCE(dentry->d_parent);
624 spin_lock(&parent->d_lock);
625 /*
626 * We can't blindly lock dentry until we are sure
627 * that we won't violate the locking order.
628 * Any changes of dentry->d_parent must have
629 * been done with parent->d_lock held, so
630 * spin_lock() above is enough of a barrier
631 * for checking if it's still our child.
632 */
633 if (unlikely(parent != dentry->d_parent)) {
634 spin_unlock(&parent->d_lock);
635 goto again;
636 }
637 rcu_read_unlock();
638 if (parent != dentry)
9f12600f 639 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
640 else
641 parent = NULL;
642 return parent;
643}
644
360f5479
LT
645/*
646 * Try to do a lockless dput(), and return whether that was successful.
647 *
648 * If unsuccessful, we return false, having already taken the dentry lock.
649 *
650 * The caller needs to hold the RCU read lock, so that the dentry is
651 * guaranteed to stay around even if the refcount goes down to zero!
652 */
653static inline bool fast_dput(struct dentry *dentry)
654{
655 int ret;
656 unsigned int d_flags;
657
658 /*
659 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 660 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
661 */
662 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
663 return lockref_put_or_lock(&dentry->d_lockref);
664
665 /*
666 * .. otherwise, we can try to just decrement the
667 * lockref optimistically.
668 */
669 ret = lockref_put_return(&dentry->d_lockref);
670
671 /*
672 * If the lockref_put_return() failed due to the lock being held
673 * by somebody else, the fast path has failed. We will need to
674 * get the lock, and then check the count again.
675 */
676 if (unlikely(ret < 0)) {
677 spin_lock(&dentry->d_lock);
678 if (dentry->d_lockref.count > 1) {
679 dentry->d_lockref.count--;
680 spin_unlock(&dentry->d_lock);
681 return 1;
682 }
683 return 0;
684 }
685
686 /*
687 * If we weren't the last ref, we're done.
688 */
689 if (ret)
690 return 1;
691
692 /*
693 * Careful, careful. The reference count went down
694 * to zero, but we don't hold the dentry lock, so
695 * somebody else could get it again, and do another
696 * dput(), and we need to not race with that.
697 *
698 * However, there is a very special and common case
699 * where we don't care, because there is nothing to
700 * do: the dentry is still hashed, it does not have
701 * a 'delete' op, and it's referenced and already on
702 * the LRU list.
703 *
704 * NOTE! Since we aren't locked, these values are
705 * not "stable". However, it is sufficient that at
706 * some point after we dropped the reference the
707 * dentry was hashed and the flags had the proper
708 * value. Other dentry users may have re-gotten
709 * a reference to the dentry and change that, but
710 * our work is done - we can leave the dentry
711 * around with a zero refcount.
712 */
713 smp_rmb();
714 d_flags = ACCESS_ONCE(dentry->d_flags);
75a6f82a 715 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
716
717 /* Nothing to do? Dropping the reference was all we needed? */
718 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
719 return 1;
720
721 /*
722 * Not the fast normal case? Get the lock. We've already decremented
723 * the refcount, but we'll need to re-check the situation after
724 * getting the lock.
725 */
726 spin_lock(&dentry->d_lock);
727
728 /*
729 * Did somebody else grab a reference to it in the meantime, and
730 * we're no longer the last user after all? Alternatively, somebody
731 * else could have killed it and marked it dead. Either way, we
732 * don't need to do anything else.
733 */
734 if (dentry->d_lockref.count) {
735 spin_unlock(&dentry->d_lock);
736 return 1;
737 }
738
739 /*
740 * Re-get the reference we optimistically dropped. We hold the
741 * lock, and we just tested that it was zero, so we can just
742 * set it to 1.
743 */
744 dentry->d_lockref.count = 1;
745 return 0;
746}
747
748
1da177e4
LT
749/*
750 * This is dput
751 *
752 * This is complicated by the fact that we do not want to put
753 * dentries that are no longer on any hash chain on the unused
754 * list: we'd much rather just get rid of them immediately.
755 *
756 * However, that implies that we have to traverse the dentry
757 * tree upwards to the parents which might _also_ now be
758 * scheduled for deletion (it may have been only waiting for
759 * its last child to go away).
760 *
761 * This tail recursion is done by hand as we don't want to depend
762 * on the compiler to always get this right (gcc generally doesn't).
763 * Real recursion would eat up our stack space.
764 */
765
766/*
767 * dput - release a dentry
768 * @dentry: dentry to release
769 *
770 * Release a dentry. This will drop the usage count and if appropriate
771 * call the dentry unlink method as well as removing it from the queues and
772 * releasing its resources. If the parent dentries were scheduled for release
773 * they too may now get deleted.
1da177e4 774 */
1da177e4
LT
775void dput(struct dentry *dentry)
776{
8aab6a27 777 if (unlikely(!dentry))
1da177e4
LT
778 return;
779
780repeat:
d2f4ebdc
WF
781 might_sleep();
782
360f5479
LT
783 rcu_read_lock();
784 if (likely(fast_dput(dentry))) {
785 rcu_read_unlock();
1da177e4 786 return;
360f5479
LT
787 }
788
789 /* Slow case: now with the dentry lock held */
790 rcu_read_unlock();
1da177e4 791
8aab6a27
LT
792 /* Unreachable? Get rid of it */
793 if (unlikely(d_unhashed(dentry)))
794 goto kill_it;
795
75a6f82a
AV
796 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
797 goto kill_it;
798
8aab6a27 799 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 800 if (dentry->d_op->d_delete(dentry))
61f3dee4 801 goto kill_it;
1da177e4 802 }
265ac902 803
358eec18
LT
804 if (!(dentry->d_flags & DCACHE_REFERENCED))
805 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 806 dentry_lru_add(dentry);
265ac902 807
98474236 808 dentry->d_lockref.count--;
61f3dee4 809 spin_unlock(&dentry->d_lock);
1da177e4
LT
810 return;
811
d52b9086 812kill_it:
8cbf74da 813 dentry = dentry_kill(dentry);
d2f4ebdc
WF
814 if (dentry) {
815 cond_resched();
d52b9086 816 goto repeat;
d2f4ebdc 817 }
1da177e4 818}
ec4f8605 819EXPORT_SYMBOL(dput);
1da177e4 820
1da177e4 821
b5c84bf6 822/* This must be called with d_lock held */
dc0474be 823static inline void __dget_dlock(struct dentry *dentry)
23044507 824{
98474236 825 dentry->d_lockref.count++;
23044507
NP
826}
827
dc0474be 828static inline void __dget(struct dentry *dentry)
1da177e4 829{
98474236 830 lockref_get(&dentry->d_lockref);
1da177e4
LT
831}
832
b7ab39f6
NP
833struct dentry *dget_parent(struct dentry *dentry)
834{
df3d0bbc 835 int gotref;
b7ab39f6
NP
836 struct dentry *ret;
837
df3d0bbc
WL
838 /*
839 * Do optimistic parent lookup without any
840 * locking.
841 */
842 rcu_read_lock();
843 ret = ACCESS_ONCE(dentry->d_parent);
844 gotref = lockref_get_not_zero(&ret->d_lockref);
845 rcu_read_unlock();
846 if (likely(gotref)) {
847 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
848 return ret;
849 dput(ret);
850 }
851
b7ab39f6 852repeat:
a734eb45
NP
853 /*
854 * Don't need rcu_dereference because we re-check it was correct under
855 * the lock.
856 */
857 rcu_read_lock();
b7ab39f6 858 ret = dentry->d_parent;
a734eb45
NP
859 spin_lock(&ret->d_lock);
860 if (unlikely(ret != dentry->d_parent)) {
861 spin_unlock(&ret->d_lock);
862 rcu_read_unlock();
b7ab39f6
NP
863 goto repeat;
864 }
a734eb45 865 rcu_read_unlock();
98474236
WL
866 BUG_ON(!ret->d_lockref.count);
867 ret->d_lockref.count++;
b7ab39f6 868 spin_unlock(&ret->d_lock);
b7ab39f6
NP
869 return ret;
870}
871EXPORT_SYMBOL(dget_parent);
872
1da177e4
LT
873/**
874 * d_find_alias - grab a hashed alias of inode
875 * @inode: inode in question
1da177e4
LT
876 *
877 * If inode has a hashed alias, or is a directory and has any alias,
878 * acquire the reference to alias and return it. Otherwise return NULL.
879 * Notice that if inode is a directory there can be only one alias and
880 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
881 * of a filesystem, or if the directory was renamed and d_revalidate
882 * was the first vfs operation to notice.
1da177e4 883 *
21c0d8fd 884 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 885 * any other hashed alias over that one.
1da177e4 886 */
52ed46f0 887static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 888{
da502956 889 struct dentry *alias, *discon_alias;
1da177e4 890
da502956
NP
891again:
892 discon_alias = NULL;
946e51f2 893 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 894 spin_lock(&alias->d_lock);
1da177e4 895 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 896 if (IS_ROOT(alias) &&
da502956 897 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 898 discon_alias = alias;
52ed46f0 899 } else {
dc0474be 900 __dget_dlock(alias);
da502956
NP
901 spin_unlock(&alias->d_lock);
902 return alias;
903 }
904 }
905 spin_unlock(&alias->d_lock);
906 }
907 if (discon_alias) {
908 alias = discon_alias;
909 spin_lock(&alias->d_lock);
910 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
911 __dget_dlock(alias);
912 spin_unlock(&alias->d_lock);
913 return alias;
1da177e4 914 }
da502956
NP
915 spin_unlock(&alias->d_lock);
916 goto again;
1da177e4 917 }
da502956 918 return NULL;
1da177e4
LT
919}
920
da502956 921struct dentry *d_find_alias(struct inode *inode)
1da177e4 922{
214fda1f
DH
923 struct dentry *de = NULL;
924
b3d9b7a3 925 if (!hlist_empty(&inode->i_dentry)) {
873feea0 926 spin_lock(&inode->i_lock);
52ed46f0 927 de = __d_find_alias(inode);
873feea0 928 spin_unlock(&inode->i_lock);
214fda1f 929 }
1da177e4
LT
930 return de;
931}
ec4f8605 932EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
933
934/*
935 * Try to kill dentries associated with this inode.
936 * WARNING: you must own a reference to inode.
937 */
938void d_prune_aliases(struct inode *inode)
939{
0cdca3f9 940 struct dentry *dentry;
1da177e4 941restart:
873feea0 942 spin_lock(&inode->i_lock);
946e51f2 943 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 944 spin_lock(&dentry->d_lock);
98474236 945 if (!dentry->d_lockref.count) {
29355c39
AV
946 struct dentry *parent = lock_parent(dentry);
947 if (likely(!dentry->d_lockref.count)) {
948 __dentry_kill(dentry);
4a7795d3 949 dput(parent);
29355c39
AV
950 goto restart;
951 }
952 if (parent)
953 spin_unlock(&parent->d_lock);
1da177e4
LT
954 }
955 spin_unlock(&dentry->d_lock);
956 }
873feea0 957 spin_unlock(&inode->i_lock);
1da177e4 958}
ec4f8605 959EXPORT_SYMBOL(d_prune_aliases);
1da177e4 960
3049cfe2 961static void shrink_dentry_list(struct list_head *list)
1da177e4 962{
5c47e6d0 963 struct dentry *dentry, *parent;
da3bbdd4 964
60942f2f 965 while (!list_empty(list)) {
ff2fde99 966 struct inode *inode;
60942f2f 967 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 968 spin_lock(&dentry->d_lock);
046b961b
AV
969 parent = lock_parent(dentry);
970
dd1f6b2e
DC
971 /*
972 * The dispose list is isolated and dentries are not accounted
973 * to the LRU here, so we can simply remove it from the list
974 * here regardless of whether it is referenced or not.
975 */
89dc77bc 976 d_shrink_del(dentry);
dd1f6b2e 977
1da177e4
LT
978 /*
979 * We found an inuse dentry which was not removed from
dd1f6b2e 980 * the LRU because of laziness during lookup. Do not free it.
1da177e4 981 */
360f5479 982 if (dentry->d_lockref.count > 0) {
da3bbdd4 983 spin_unlock(&dentry->d_lock);
046b961b
AV
984 if (parent)
985 spin_unlock(&parent->d_lock);
1da177e4
LT
986 continue;
987 }
77812a1e 988
64fd72e0
AV
989
990 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
991 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
992 spin_unlock(&dentry->d_lock);
046b961b
AV
993 if (parent)
994 spin_unlock(&parent->d_lock);
64fd72e0
AV
995 if (can_free)
996 dentry_free(dentry);
997 continue;
998 }
999
ff2fde99
AV
1000 inode = dentry->d_inode;
1001 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 1002 d_shrink_add(dentry, list);
dd1f6b2e 1003 spin_unlock(&dentry->d_lock);
046b961b
AV
1004 if (parent)
1005 spin_unlock(&parent->d_lock);
5c47e6d0 1006 continue;
dd1f6b2e 1007 }
ff2fde99 1008
ff2fde99 1009 __dentry_kill(dentry);
046b961b 1010
5c47e6d0
AV
1011 /*
1012 * We need to prune ancestors too. This is necessary to prevent
1013 * quadratic behavior of shrink_dcache_parent(), but is also
1014 * expected to be beneficial in reducing dentry cache
1015 * fragmentation.
1016 */
1017 dentry = parent;
b2b80195
AV
1018 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1019 parent = lock_parent(dentry);
1020 if (dentry->d_lockref.count != 1) {
1021 dentry->d_lockref.count--;
1022 spin_unlock(&dentry->d_lock);
1023 if (parent)
1024 spin_unlock(&parent->d_lock);
1025 break;
1026 }
1027 inode = dentry->d_inode; /* can't be NULL */
1028 if (unlikely(!spin_trylock(&inode->i_lock))) {
1029 spin_unlock(&dentry->d_lock);
1030 if (parent)
1031 spin_unlock(&parent->d_lock);
1032 cpu_relax();
1033 continue;
1034 }
1035 __dentry_kill(dentry);
1036 dentry = parent;
1037 }
da3bbdd4 1038 }
3049cfe2
CH
1039}
1040
3f97b163
VD
1041static enum lru_status dentry_lru_isolate(struct list_head *item,
1042 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1043{
1044 struct list_head *freeable = arg;
1045 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1046
1047
1048 /*
1049 * we are inverting the lru lock/dentry->d_lock here,
1050 * so use a trylock. If we fail to get the lock, just skip
1051 * it
1052 */
1053 if (!spin_trylock(&dentry->d_lock))
1054 return LRU_SKIP;
1055
1056 /*
1057 * Referenced dentries are still in use. If they have active
1058 * counts, just remove them from the LRU. Otherwise give them
1059 * another pass through the LRU.
1060 */
1061 if (dentry->d_lockref.count) {
3f97b163 1062 d_lru_isolate(lru, dentry);
f6041567
DC
1063 spin_unlock(&dentry->d_lock);
1064 return LRU_REMOVED;
1065 }
1066
1067 if (dentry->d_flags & DCACHE_REFERENCED) {
1068 dentry->d_flags &= ~DCACHE_REFERENCED;
1069 spin_unlock(&dentry->d_lock);
1070
1071 /*
1072 * The list move itself will be made by the common LRU code. At
1073 * this point, we've dropped the dentry->d_lock but keep the
1074 * lru lock. This is safe to do, since every list movement is
1075 * protected by the lru lock even if both locks are held.
1076 *
1077 * This is guaranteed by the fact that all LRU management
1078 * functions are intermediated by the LRU API calls like
1079 * list_lru_add and list_lru_del. List movement in this file
1080 * only ever occur through this functions or through callbacks
1081 * like this one, that are called from the LRU API.
1082 *
1083 * The only exceptions to this are functions like
1084 * shrink_dentry_list, and code that first checks for the
1085 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1086 * operating only with stack provided lists after they are
1087 * properly isolated from the main list. It is thus, always a
1088 * local access.
1089 */
1090 return LRU_ROTATE;
1091 }
1092
3f97b163 1093 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1094 spin_unlock(&dentry->d_lock);
1095
1096 return LRU_REMOVED;
1097}
1098
3049cfe2 1099/**
b48f03b3
DC
1100 * prune_dcache_sb - shrink the dcache
1101 * @sb: superblock
503c358c 1102 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1103 *
503c358c
VD
1104 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1105 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1106 * function.
3049cfe2 1107 *
b48f03b3
DC
1108 * This function may fail to free any resources if all the dentries are in
1109 * use.
3049cfe2 1110 */
503c358c 1111long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1112{
f6041567
DC
1113 LIST_HEAD(dispose);
1114 long freed;
3049cfe2 1115
503c358c
VD
1116 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1117 dentry_lru_isolate, &dispose);
f6041567 1118 shrink_dentry_list(&dispose);
0a234c6d 1119 return freed;
da3bbdd4 1120}
23044507 1121
4e717f5c 1122static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1123 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1124{
4e717f5c
GC
1125 struct list_head *freeable = arg;
1126 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1127
4e717f5c
GC
1128 /*
1129 * we are inverting the lru lock/dentry->d_lock here,
1130 * so use a trylock. If we fail to get the lock, just skip
1131 * it
1132 */
1133 if (!spin_trylock(&dentry->d_lock))
1134 return LRU_SKIP;
1135
3f97b163 1136 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1137 spin_unlock(&dentry->d_lock);
ec33679d 1138
4e717f5c 1139 return LRU_REMOVED;
da3bbdd4
KM
1140}
1141
4e717f5c 1142
1da177e4
LT
1143/**
1144 * shrink_dcache_sb - shrink dcache for a superblock
1145 * @sb: superblock
1146 *
3049cfe2
CH
1147 * Shrink the dcache for the specified super block. This is used to free
1148 * the dcache before unmounting a file system.
1da177e4 1149 */
3049cfe2 1150void shrink_dcache_sb(struct super_block *sb)
1da177e4 1151{
4e717f5c
GC
1152 long freed;
1153
1154 do {
1155 LIST_HEAD(dispose);
1156
1157 freed = list_lru_walk(&sb->s_dentry_lru,
ddc32826 1158 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1159
4e717f5c
GC
1160 this_cpu_sub(nr_dentry_unused, freed);
1161 shrink_dentry_list(&dispose);
ddc32826
ST
1162 cond_resched();
1163 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1164}
ec4f8605 1165EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1166
db14fc3a
MS
1167/**
1168 * enum d_walk_ret - action to talke during tree walk
1169 * @D_WALK_CONTINUE: contrinue walk
1170 * @D_WALK_QUIT: quit walk
1171 * @D_WALK_NORETRY: quit when retry is needed
1172 * @D_WALK_SKIP: skip this dentry and its children
1173 */
1174enum d_walk_ret {
1175 D_WALK_CONTINUE,
1176 D_WALK_QUIT,
1177 D_WALK_NORETRY,
1178 D_WALK_SKIP,
1179};
c826cb7d 1180
1da177e4 1181/**
db14fc3a
MS
1182 * d_walk - walk the dentry tree
1183 * @parent: start of walk
1184 * @data: data passed to @enter() and @finish()
1185 * @enter: callback when first entering the dentry
1186 * @finish: callback when successfully finished the walk
1da177e4 1187 *
db14fc3a 1188 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1189 */
dee5220c 1190void d_walk(struct dentry *parent, void *data,
db14fc3a
MS
1191 enum d_walk_ret (*enter)(void *, struct dentry *),
1192 void (*finish)(void *))
1da177e4 1193{
949854d0 1194 struct dentry *this_parent;
1da177e4 1195 struct list_head *next;
48f5ec21 1196 unsigned seq = 0;
db14fc3a
MS
1197 enum d_walk_ret ret;
1198 bool retry = true;
949854d0 1199
58db63d0 1200again:
48f5ec21 1201 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1202 this_parent = parent;
2fd6b7f5 1203 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1204
1205 ret = enter(data, this_parent);
1206 switch (ret) {
1207 case D_WALK_CONTINUE:
1208 break;
1209 case D_WALK_QUIT:
1210 case D_WALK_SKIP:
1211 goto out_unlock;
1212 case D_WALK_NORETRY:
1213 retry = false;
1214 break;
1215 }
1da177e4
LT
1216repeat:
1217 next = this_parent->d_subdirs.next;
1218resume:
1219 while (next != &this_parent->d_subdirs) {
1220 struct list_head *tmp = next;
946e51f2 1221 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1222 next = tmp->next;
2fd6b7f5
NP
1223
1224 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1225
1226 ret = enter(data, dentry);
1227 switch (ret) {
1228 case D_WALK_CONTINUE:
1229 break;
1230 case D_WALK_QUIT:
2fd6b7f5 1231 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1232 goto out_unlock;
1233 case D_WALK_NORETRY:
1234 retry = false;
1235 break;
1236 case D_WALK_SKIP:
1237 spin_unlock(&dentry->d_lock);
1238 continue;
2fd6b7f5 1239 }
db14fc3a 1240
1da177e4 1241 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1242 spin_unlock(&this_parent->d_lock);
1243 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1244 this_parent = dentry;
2fd6b7f5 1245 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1246 goto repeat;
1247 }
2fd6b7f5 1248 spin_unlock(&dentry->d_lock);
1da177e4
LT
1249 }
1250 /*
1251 * All done at this level ... ascend and resume the search.
1252 */
ca5358ef
AV
1253 rcu_read_lock();
1254ascend:
1da177e4 1255 if (this_parent != parent) {
c826cb7d 1256 struct dentry *child = this_parent;
31dec132
AV
1257 this_parent = child->d_parent;
1258
31dec132
AV
1259 spin_unlock(&child->d_lock);
1260 spin_lock(&this_parent->d_lock);
1261
ca5358ef
AV
1262 /* might go back up the wrong parent if we have had a rename. */
1263 if (need_seqretry(&rename_lock, seq))
949854d0 1264 goto rename_retry;
2159184e
AV
1265 /* go into the first sibling still alive */
1266 do {
1267 next = child->d_child.next;
ca5358ef
AV
1268 if (next == &this_parent->d_subdirs)
1269 goto ascend;
1270 child = list_entry(next, struct dentry, d_child);
2159184e 1271 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1272 rcu_read_unlock();
1da177e4
LT
1273 goto resume;
1274 }
ca5358ef 1275 if (need_seqretry(&rename_lock, seq))
949854d0 1276 goto rename_retry;
ca5358ef 1277 rcu_read_unlock();
db14fc3a
MS
1278 if (finish)
1279 finish(data);
1280
1281out_unlock:
1282 spin_unlock(&this_parent->d_lock);
48f5ec21 1283 done_seqretry(&rename_lock, seq);
db14fc3a 1284 return;
58db63d0
NP
1285
1286rename_retry:
ca5358ef
AV
1287 spin_unlock(&this_parent->d_lock);
1288 rcu_read_unlock();
1289 BUG_ON(seq & 1);
db14fc3a
MS
1290 if (!retry)
1291 return;
48f5ec21 1292 seq = 1;
58db63d0 1293 goto again;
1da177e4 1294}
dee5220c 1295EXPORT_SYMBOL(d_walk);
db14fc3a
MS
1296
1297/*
1298 * Search for at least 1 mount point in the dentry's subdirs.
1299 * We descend to the next level whenever the d_subdirs
1300 * list is non-empty and continue searching.
1301 */
1302
db14fc3a
MS
1303static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1304{
1305 int *ret = data;
1306 if (d_mountpoint(dentry)) {
1307 *ret = 1;
1308 return D_WALK_QUIT;
1309 }
1310 return D_WALK_CONTINUE;
1311}
1312
69c88dc7
RD
1313/**
1314 * have_submounts - check for mounts over a dentry
1315 * @parent: dentry to check.
1316 *
1317 * Return true if the parent or its subdirectories contain
1318 * a mount point
1319 */
db14fc3a
MS
1320int have_submounts(struct dentry *parent)
1321{
1322 int ret = 0;
1323
1324 d_walk(parent, &ret, check_mount, NULL);
1325
1326 return ret;
1327}
ec4f8605 1328EXPORT_SYMBOL(have_submounts);
1da177e4 1329
eed81007
MS
1330/*
1331 * Called by mount code to set a mountpoint and check if the mountpoint is
1332 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1333 * subtree can become unreachable).
1334 *
1ffe46d1 1335 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1336 * this reason take rename_lock and d_lock on dentry and ancestors.
1337 */
1338int d_set_mounted(struct dentry *dentry)
1339{
1340 struct dentry *p;
1341 int ret = -ENOENT;
1342 write_seqlock(&rename_lock);
1343 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1344 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1345 spin_lock(&p->d_lock);
1346 if (unlikely(d_unhashed(p))) {
1347 spin_unlock(&p->d_lock);
1348 goto out;
1349 }
1350 spin_unlock(&p->d_lock);
1351 }
1352 spin_lock(&dentry->d_lock);
1353 if (!d_unlinked(dentry)) {
e178bd11
EB
1354 ret = -EBUSY;
1355 if (!d_mountpoint(dentry)) {
1356 dentry->d_flags |= DCACHE_MOUNTED;
1357 ret = 0;
1358 }
eed81007
MS
1359 }
1360 spin_unlock(&dentry->d_lock);
1361out:
1362 write_sequnlock(&rename_lock);
1363 return ret;
1364}
1365
1da177e4 1366/*
fd517909 1367 * Search the dentry child list of the specified parent,
1da177e4
LT
1368 * and move any unused dentries to the end of the unused
1369 * list for prune_dcache(). We descend to the next level
1370 * whenever the d_subdirs list is non-empty and continue
1371 * searching.
1372 *
1373 * It returns zero iff there are no unused children,
1374 * otherwise it returns the number of children moved to
1375 * the end of the unused list. This may not be the total
1376 * number of unused children, because select_parent can
1377 * drop the lock and return early due to latency
1378 * constraints.
1379 */
1da177e4 1380
db14fc3a
MS
1381struct select_data {
1382 struct dentry *start;
1383 struct list_head dispose;
1384 int found;
1385};
23044507 1386
db14fc3a
MS
1387static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1388{
1389 struct select_data *data = _data;
1390 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1391
db14fc3a
MS
1392 if (data->start == dentry)
1393 goto out;
2fd6b7f5 1394
fe91522a 1395 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1396 data->found++;
fe91522a
AV
1397 } else {
1398 if (dentry->d_flags & DCACHE_LRU_LIST)
1399 d_lru_del(dentry);
1400 if (!dentry->d_lockref.count) {
1401 d_shrink_add(dentry, &data->dispose);
1402 data->found++;
1403 }
1da177e4 1404 }
db14fc3a
MS
1405 /*
1406 * We can return to the caller if we have found some (this
1407 * ensures forward progress). We'll be coming back to find
1408 * the rest.
1409 */
fe91522a
AV
1410 if (!list_empty(&data->dispose))
1411 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1412out:
db14fc3a 1413 return ret;
1da177e4
LT
1414}
1415
1416/**
1417 * shrink_dcache_parent - prune dcache
1418 * @parent: parent of entries to prune
1419 *
1420 * Prune the dcache to remove unused children of the parent dentry.
1421 */
db14fc3a 1422void shrink_dcache_parent(struct dentry *parent)
1da177e4 1423{
db14fc3a
MS
1424 for (;;) {
1425 struct select_data data;
1da177e4 1426
db14fc3a
MS
1427 INIT_LIST_HEAD(&data.dispose);
1428 data.start = parent;
1429 data.found = 0;
1430
1431 d_walk(parent, &data, select_collect, NULL);
1432 if (!data.found)
1433 break;
1434
1435 shrink_dentry_list(&data.dispose);
421348f1
GT
1436 cond_resched();
1437 }
1da177e4 1438}
ec4f8605 1439EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1440
9c8c10e2 1441static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1442{
9c8c10e2
AV
1443 /* it has busy descendents; complain about those instead */
1444 if (!list_empty(&dentry->d_subdirs))
1445 return D_WALK_CONTINUE;
42c32608 1446
9c8c10e2
AV
1447 /* root with refcount 1 is fine */
1448 if (dentry == _data && dentry->d_lockref.count == 1)
1449 return D_WALK_CONTINUE;
1450
1451 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1452 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1453 dentry,
1454 dentry->d_inode ?
1455 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1456 dentry,
42c32608
AV
1457 dentry->d_lockref.count,
1458 dentry->d_sb->s_type->name,
1459 dentry->d_sb->s_id);
9c8c10e2
AV
1460 WARN_ON(1);
1461 return D_WALK_CONTINUE;
1462}
1463
1464static void do_one_tree(struct dentry *dentry)
1465{
1466 shrink_dcache_parent(dentry);
1467 d_walk(dentry, dentry, umount_check, NULL);
1468 d_drop(dentry);
1469 dput(dentry);
42c32608
AV
1470}
1471
1472/*
1473 * destroy the dentries attached to a superblock on unmounting
1474 */
1475void shrink_dcache_for_umount(struct super_block *sb)
1476{
1477 struct dentry *dentry;
1478
9c8c10e2 1479 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1480
1481 dentry = sb->s_root;
1482 sb->s_root = NULL;
9c8c10e2 1483 do_one_tree(dentry);
42c32608
AV
1484
1485 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1486 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1487 do_one_tree(dentry);
42c32608
AV
1488 }
1489}
1490
8ed936b5
EB
1491struct detach_data {
1492 struct select_data select;
1493 struct dentry *mountpoint;
1494};
1495static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1496{
8ed936b5 1497 struct detach_data *data = _data;
848ac114
MS
1498
1499 if (d_mountpoint(dentry)) {
8ed936b5
EB
1500 __dget_dlock(dentry);
1501 data->mountpoint = dentry;
848ac114
MS
1502 return D_WALK_QUIT;
1503 }
1504
8ed936b5 1505 return select_collect(&data->select, dentry);
848ac114
MS
1506}
1507
1508static void check_and_drop(void *_data)
1509{
8ed936b5 1510 struct detach_data *data = _data;
848ac114 1511
8ed936b5
EB
1512 if (!data->mountpoint && !data->select.found)
1513 __d_drop(data->select.start);
848ac114
MS
1514}
1515
1516/**
1ffe46d1
EB
1517 * d_invalidate - detach submounts, prune dcache, and drop
1518 * @dentry: dentry to invalidate (aka detach, prune and drop)
1519 *
1ffe46d1 1520 * no dcache lock.
848ac114 1521 *
8ed936b5
EB
1522 * The final d_drop is done as an atomic operation relative to
1523 * rename_lock ensuring there are no races with d_set_mounted. This
1524 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1525 */
5542aa2f 1526void d_invalidate(struct dentry *dentry)
848ac114 1527{
1ffe46d1
EB
1528 /*
1529 * If it's already been dropped, return OK.
1530 */
1531 spin_lock(&dentry->d_lock);
1532 if (d_unhashed(dentry)) {
1533 spin_unlock(&dentry->d_lock);
5542aa2f 1534 return;
1ffe46d1
EB
1535 }
1536 spin_unlock(&dentry->d_lock);
1537
848ac114
MS
1538 /* Negative dentries can be dropped without further checks */
1539 if (!dentry->d_inode) {
1540 d_drop(dentry);
5542aa2f 1541 return;
848ac114
MS
1542 }
1543
1544 for (;;) {
8ed936b5 1545 struct detach_data data;
848ac114 1546
8ed936b5
EB
1547 data.mountpoint = NULL;
1548 INIT_LIST_HEAD(&data.select.dispose);
1549 data.select.start = dentry;
1550 data.select.found = 0;
1551
1552 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1553
8ed936b5
EB
1554 if (data.select.found)
1555 shrink_dentry_list(&data.select.dispose);
848ac114 1556
8ed936b5
EB
1557 if (data.mountpoint) {
1558 detach_mounts(data.mountpoint);
1559 dput(data.mountpoint);
1560 }
848ac114 1561
8ed936b5 1562 if (!data.mountpoint && !data.select.found)
848ac114
MS
1563 break;
1564
1565 cond_resched();
1566 }
848ac114 1567}
1ffe46d1 1568EXPORT_SYMBOL(d_invalidate);
848ac114 1569
1da177e4 1570/**
a4464dbc
AV
1571 * __d_alloc - allocate a dcache entry
1572 * @sb: filesystem it will belong to
1da177e4
LT
1573 * @name: qstr of the name
1574 *
1575 * Allocates a dentry. It returns %NULL if there is insufficient memory
1576 * available. On a success the dentry is returned. The name passed in is
1577 * copied and the copy passed in may be reused after this call.
1578 */
1579
a4464dbc 1580struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1581{
1582 struct dentry *dentry;
1583 char *dname;
1584
e12ba74d 1585 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1586 if (!dentry)
1587 return NULL;
1588
6326c71f
LT
1589 /*
1590 * We guarantee that the inline name is always NUL-terminated.
1591 * This way the memcpy() done by the name switching in rename
1592 * will still always have a NUL at the end, even if we might
1593 * be overwriting an internal NUL character
1594 */
1595 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4 1596 if (name->len > DNAME_INLINE_LEN-1) {
8d85b484
AV
1597 size_t size = offsetof(struct external_name, name[1]);
1598 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1599 if (!p) {
1da177e4
LT
1600 kmem_cache_free(dentry_cache, dentry);
1601 return NULL;
1602 }
8d85b484
AV
1603 atomic_set(&p->u.count, 1);
1604 dname = p->name;
df4c0e36
AR
1605 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1606 kasan_unpoison_shadow(dname,
1607 round_up(name->len + 1, sizeof(unsigned long)));
1da177e4
LT
1608 } else {
1609 dname = dentry->d_iname;
1610 }
1da177e4
LT
1611
1612 dentry->d_name.len = name->len;
1613 dentry->d_name.hash = name->hash;
1614 memcpy(dname, name->name, name->len);
1615 dname[name->len] = 0;
1616
6326c71f
LT
1617 /* Make sure we always see the terminating NUL character */
1618 smp_wmb();
1619 dentry->d_name.name = dname;
1620
98474236 1621 dentry->d_lockref.count = 1;
dea3667b 1622 dentry->d_flags = 0;
1da177e4 1623 spin_lock_init(&dentry->d_lock);
31e6b01f 1624 seqcount_init(&dentry->d_seq);
1da177e4 1625 dentry->d_inode = NULL;
a4464dbc
AV
1626 dentry->d_parent = dentry;
1627 dentry->d_sb = sb;
1da177e4
LT
1628 dentry->d_op = NULL;
1629 dentry->d_fsdata = NULL;
ceb5bdc2 1630 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1631 INIT_LIST_HEAD(&dentry->d_lru);
1632 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1633 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1634 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1635 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1636
3e880fb5 1637 this_cpu_inc(nr_dentry);
312d3ca8 1638
1da177e4
LT
1639 return dentry;
1640}
a4464dbc
AV
1641
1642/**
1643 * d_alloc - allocate a dcache entry
1644 * @parent: parent of entry to allocate
1645 * @name: qstr of the name
1646 *
1647 * Allocates a dentry. It returns %NULL if there is insufficient memory
1648 * available. On a success the dentry is returned. The name passed in is
1649 * copied and the copy passed in may be reused after this call.
1650 */
1651struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1652{
1653 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1654 if (!dentry)
1655 return NULL;
a6e8956e 1656 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1657 spin_lock(&parent->d_lock);
1658 /*
1659 * don't need child lock because it is not subject
1660 * to concurrency here
1661 */
1662 __dget_dlock(parent);
1663 dentry->d_parent = parent;
946e51f2 1664 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1665 spin_unlock(&parent->d_lock);
1666
1667 return dentry;
1668}
ec4f8605 1669EXPORT_SYMBOL(d_alloc);
1da177e4 1670
e1a24bb0
BF
1671/**
1672 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1673 * @sb: the superblock
1674 * @name: qstr of the name
1675 *
1676 * For a filesystem that just pins its dentries in memory and never
1677 * performs lookups at all, return an unhashed IS_ROOT dentry.
1678 */
4b936885
NP
1679struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1680{
e1a24bb0 1681 return __d_alloc(sb, name);
4b936885
NP
1682}
1683EXPORT_SYMBOL(d_alloc_pseudo);
1684
1da177e4
LT
1685struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1686{
1687 struct qstr q;
1688
1689 q.name = name;
1690 q.len = strlen(name);
1691 q.hash = full_name_hash(q.name, q.len);
1692 return d_alloc(parent, &q);
1693}
ef26ca97 1694EXPORT_SYMBOL(d_alloc_name);
1da177e4 1695
fb045adb
NP
1696void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1697{
6f7f7caa
LT
1698 WARN_ON_ONCE(dentry->d_op);
1699 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1700 DCACHE_OP_COMPARE |
1701 DCACHE_OP_REVALIDATE |
ecf3d1f1 1702 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1703 DCACHE_OP_DELETE |
e20a60a2
MS
1704 DCACHE_OP_SELECT_INODE |
1705 DCACHE_OP_REAL));
fb045adb
NP
1706 dentry->d_op = op;
1707 if (!op)
1708 return;
1709 if (op->d_hash)
1710 dentry->d_flags |= DCACHE_OP_HASH;
1711 if (op->d_compare)
1712 dentry->d_flags |= DCACHE_OP_COMPARE;
1713 if (op->d_revalidate)
1714 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1715 if (op->d_weak_revalidate)
1716 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1717 if (op->d_delete)
1718 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1719 if (op->d_prune)
1720 dentry->d_flags |= DCACHE_OP_PRUNE;
4bacc9c9
DH
1721 if (op->d_select_inode)
1722 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
e20a60a2
MS
1723 if (op->d_real)
1724 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1725
1726}
1727EXPORT_SYMBOL(d_set_d_op);
1728
df1a085a
DH
1729
1730/*
1731 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1732 * @dentry - The dentry to mark
1733 *
1734 * Mark a dentry as falling through to the lower layer (as set with
1735 * d_pin_lower()). This flag may be recorded on the medium.
1736 */
1737void d_set_fallthru(struct dentry *dentry)
1738{
1739 spin_lock(&dentry->d_lock);
1740 dentry->d_flags |= DCACHE_FALLTHRU;
1741 spin_unlock(&dentry->d_lock);
1742}
1743EXPORT_SYMBOL(d_set_fallthru);
1744
b18825a7
DH
1745static unsigned d_flags_for_inode(struct inode *inode)
1746{
44bdb5e5 1747 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1748
1749 if (!inode)
1750 return DCACHE_MISS_TYPE;
1751
1752 if (S_ISDIR(inode->i_mode)) {
1753 add_flags = DCACHE_DIRECTORY_TYPE;
1754 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1755 if (unlikely(!inode->i_op->lookup))
1756 add_flags = DCACHE_AUTODIR_TYPE;
1757 else
1758 inode->i_opflags |= IOP_LOOKUP;
1759 }
44bdb5e5
DH
1760 goto type_determined;
1761 }
1762
1763 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1764 if (unlikely(inode->i_op->follow_link)) {
b18825a7 1765 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1766 goto type_determined;
1767 }
1768 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1769 }
1770
44bdb5e5
DH
1771 if (unlikely(!S_ISREG(inode->i_mode)))
1772 add_flags = DCACHE_SPECIAL_TYPE;
1773
1774type_determined:
b18825a7
DH
1775 if (unlikely(IS_AUTOMOUNT(inode)))
1776 add_flags |= DCACHE_NEED_AUTOMOUNT;
1777 return add_flags;
1778}
1779
360da900
OH
1780static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1781{
b18825a7
DH
1782 unsigned add_flags = d_flags_for_inode(inode);
1783
b23fb0a6 1784 spin_lock(&dentry->d_lock);
b18825a7 1785 if (inode)
946e51f2 1786 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
8f5b4f99 1787 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1788 __d_set_inode_and_type(dentry, inode, add_flags);
8f5b4f99 1789 raw_write_seqcount_end(&dentry->d_seq);
b23fb0a6 1790 spin_unlock(&dentry->d_lock);
360da900
OH
1791 fsnotify_d_instantiate(dentry, inode);
1792}
1793
1da177e4
LT
1794/**
1795 * d_instantiate - fill in inode information for a dentry
1796 * @entry: dentry to complete
1797 * @inode: inode to attach to this dentry
1798 *
1799 * Fill in inode information in the entry.
1800 *
1801 * This turns negative dentries into productive full members
1802 * of society.
1803 *
1804 * NOTE! This assumes that the inode count has been incremented
1805 * (or otherwise set) by the caller to indicate that it is now
1806 * in use by the dcache.
1807 */
1808
1809void d_instantiate(struct dentry *entry, struct inode * inode)
1810{
946e51f2 1811 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
873feea0
NP
1812 if (inode)
1813 spin_lock(&inode->i_lock);
360da900 1814 __d_instantiate(entry, inode);
873feea0
NP
1815 if (inode)
1816 spin_unlock(&inode->i_lock);
1da177e4
LT
1817 security_d_instantiate(entry, inode);
1818}
ec4f8605 1819EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1820
1821/**
1822 * d_instantiate_unique - instantiate a non-aliased dentry
1823 * @entry: dentry to instantiate
1824 * @inode: inode to attach to this dentry
1825 *
1826 * Fill in inode information in the entry. On success, it returns NULL.
1827 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1828 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1829 *
1830 * Note that in order to avoid conflicts with rename() etc, the caller
1831 * had better be holding the parent directory semaphore.
e866cfa9
OD
1832 *
1833 * This also assumes that the inode count has been incremented
1834 * (or otherwise set) by the caller to indicate that it is now
1835 * in use by the dcache.
1da177e4 1836 */
770bfad8
DH
1837static struct dentry *__d_instantiate_unique(struct dentry *entry,
1838 struct inode *inode)
1da177e4
LT
1839{
1840 struct dentry *alias;
1841 int len = entry->d_name.len;
1842 const char *name = entry->d_name.name;
1843 unsigned int hash = entry->d_name.hash;
1844
770bfad8 1845 if (!inode) {
360da900 1846 __d_instantiate(entry, NULL);
770bfad8
DH
1847 return NULL;
1848 }
1849
946e51f2 1850 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
9abca360
NP
1851 /*
1852 * Don't need alias->d_lock here, because aliases with
1853 * d_parent == entry->d_parent are not subject to name or
1854 * parent changes, because the parent inode i_mutex is held.
1855 */
12f8ad4b 1856 if (alias->d_name.hash != hash)
1da177e4
LT
1857 continue;
1858 if (alias->d_parent != entry->d_parent)
1859 continue;
ee983e89
LT
1860 if (alias->d_name.len != len)
1861 continue;
12f8ad4b 1862 if (dentry_cmp(alias, name, len))
1da177e4 1863 continue;
dc0474be 1864 __dget(alias);
1da177e4
LT
1865 return alias;
1866 }
770bfad8 1867
360da900 1868 __d_instantiate(entry, inode);
1da177e4
LT
1869 return NULL;
1870}
770bfad8
DH
1871
1872struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1873{
1874 struct dentry *result;
1875
946e51f2 1876 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
770bfad8 1877
873feea0
NP
1878 if (inode)
1879 spin_lock(&inode->i_lock);
770bfad8 1880 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1881 if (inode)
1882 spin_unlock(&inode->i_lock);
770bfad8
DH
1883
1884 if (!result) {
1885 security_d_instantiate(entry, inode);
1886 return NULL;
1887 }
1888
1889 BUG_ON(!d_unhashed(result));
1890 iput(inode);
1891 return result;
1892}
1893
1da177e4
LT
1894EXPORT_SYMBOL(d_instantiate_unique);
1895
b70a80e7
MS
1896/**
1897 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1898 * @entry: dentry to complete
1899 * @inode: inode to attach to this dentry
1900 *
1901 * Fill in inode information in the entry. If a directory alias is found, then
1902 * return an error (and drop inode). Together with d_materialise_unique() this
1903 * guarantees that a directory inode may never have more than one alias.
1904 */
1905int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1906{
946e51f2 1907 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7
MS
1908
1909 spin_lock(&inode->i_lock);
1910 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1911 spin_unlock(&inode->i_lock);
1912 iput(inode);
1913 return -EBUSY;
1914 }
1915 __d_instantiate(entry, inode);
1916 spin_unlock(&inode->i_lock);
1917 security_d_instantiate(entry, inode);
1918
1919 return 0;
1920}
1921EXPORT_SYMBOL(d_instantiate_no_diralias);
1922
adc0e91a
AV
1923struct dentry *d_make_root(struct inode *root_inode)
1924{
1925 struct dentry *res = NULL;
1926
1927 if (root_inode) {
26fe5750 1928 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1929
1930 res = __d_alloc(root_inode->i_sb, &name);
1931 if (res)
1932 d_instantiate(res, root_inode);
1933 else
1934 iput(root_inode);
1935 }
1936 return res;
1937}
1938EXPORT_SYMBOL(d_make_root);
1939
d891eedb
BF
1940static struct dentry * __d_find_any_alias(struct inode *inode)
1941{
1942 struct dentry *alias;
1943
b3d9b7a3 1944 if (hlist_empty(&inode->i_dentry))
d891eedb 1945 return NULL;
946e51f2 1946 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1947 __dget(alias);
1948 return alias;
1949}
1950
46f72b34
SW
1951/**
1952 * d_find_any_alias - find any alias for a given inode
1953 * @inode: inode to find an alias for
1954 *
1955 * If any aliases exist for the given inode, take and return a
1956 * reference for one of them. If no aliases exist, return %NULL.
1957 */
1958struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1959{
1960 struct dentry *de;
1961
1962 spin_lock(&inode->i_lock);
1963 de = __d_find_any_alias(inode);
1964 spin_unlock(&inode->i_lock);
1965 return de;
1966}
46f72b34 1967EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1968
49c7dd28 1969static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1970{
b911a6bd 1971 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1972 struct dentry *tmp;
1973 struct dentry *res;
b18825a7 1974 unsigned add_flags;
4ea3ada2
CH
1975
1976 if (!inode)
44003728 1977 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1978 if (IS_ERR(inode))
1979 return ERR_CAST(inode);
1980
d891eedb 1981 res = d_find_any_alias(inode);
9308a612
CH
1982 if (res)
1983 goto out_iput;
1984
a4464dbc 1985 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1986 if (!tmp) {
1987 res = ERR_PTR(-ENOMEM);
1988 goto out_iput;
4ea3ada2 1989 }
b5c84bf6 1990
873feea0 1991 spin_lock(&inode->i_lock);
d891eedb 1992 res = __d_find_any_alias(inode);
9308a612 1993 if (res) {
873feea0 1994 spin_unlock(&inode->i_lock);
9308a612
CH
1995 dput(tmp);
1996 goto out_iput;
1997 }
1998
1999 /* attach a disconnected dentry */
1a0a397e
BF
2000 add_flags = d_flags_for_inode(inode);
2001
2002 if (disconnected)
2003 add_flags |= DCACHE_DISCONNECTED;
b18825a7 2004
9308a612 2005 spin_lock(&tmp->d_lock);
4bf46a27 2006 __d_set_inode_and_type(tmp, inode, add_flags);
946e51f2 2007 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1879fd6a 2008 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 2009 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 2010 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 2011 spin_unlock(&tmp->d_lock);
873feea0 2012 spin_unlock(&inode->i_lock);
24ff6663 2013 security_d_instantiate(tmp, inode);
9308a612 2014
9308a612
CH
2015 return tmp;
2016
2017 out_iput:
24ff6663
JB
2018 if (res && !IS_ERR(res))
2019 security_d_instantiate(res, inode);
9308a612
CH
2020 iput(inode);
2021 return res;
4ea3ada2 2022}
1a0a397e
BF
2023
2024/**
2025 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2026 * @inode: inode to allocate the dentry for
2027 *
2028 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2029 * similar open by handle operations. The returned dentry may be anonymous,
2030 * or may have a full name (if the inode was already in the cache).
2031 *
2032 * When called on a directory inode, we must ensure that the inode only ever
2033 * has one dentry. If a dentry is found, that is returned instead of
2034 * allocating a new one.
2035 *
2036 * On successful return, the reference to the inode has been transferred
2037 * to the dentry. In case of an error the reference on the inode is released.
2038 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2039 * be passed in and the error will be propagated to the return value,
2040 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2041 */
2042struct dentry *d_obtain_alias(struct inode *inode)
2043{
2044 return __d_obtain_alias(inode, 1);
2045}
adc48720 2046EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2047
1a0a397e
BF
2048/**
2049 * d_obtain_root - find or allocate a dentry for a given inode
2050 * @inode: inode to allocate the dentry for
2051 *
2052 * Obtain an IS_ROOT dentry for the root of a filesystem.
2053 *
2054 * We must ensure that directory inodes only ever have one dentry. If a
2055 * dentry is found, that is returned instead of allocating a new one.
2056 *
2057 * On successful return, the reference to the inode has been transferred
2058 * to the dentry. In case of an error the reference on the inode is
2059 * released. A %NULL or IS_ERR inode may be passed in and will be the
2060 * error will be propagate to the return value, with a %NULL @inode
2061 * replaced by ERR_PTR(-ESTALE).
2062 */
2063struct dentry *d_obtain_root(struct inode *inode)
2064{
2065 return __d_obtain_alias(inode, 0);
2066}
2067EXPORT_SYMBOL(d_obtain_root);
2068
9403540c
BN
2069/**
2070 * d_add_ci - lookup or allocate new dentry with case-exact name
2071 * @inode: the inode case-insensitive lookup has found
2072 * @dentry: the negative dentry that was passed to the parent's lookup func
2073 * @name: the case-exact name to be associated with the returned dentry
2074 *
2075 * This is to avoid filling the dcache with case-insensitive names to the
2076 * same inode, only the actual correct case is stored in the dcache for
2077 * case-insensitive filesystems.
2078 *
2079 * For a case-insensitive lookup match and if the the case-exact dentry
2080 * already exists in in the dcache, use it and return it.
2081 *
2082 * If no entry exists with the exact case name, allocate new dentry with
2083 * the exact case, and return the spliced entry.
2084 */
e45b590b 2085struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2086 struct qstr *name)
2087{
9403540c
BN
2088 struct dentry *found;
2089 struct dentry *new;
2090
b6520c81
CH
2091 /*
2092 * First check if a dentry matching the name already exists,
2093 * if not go ahead and create it now.
2094 */
9403540c 2095 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
2096 if (!found) {
2097 new = d_alloc(dentry->d_parent, name);
2098 if (!new) {
4f522a24 2099 found = ERR_PTR(-ENOMEM);
427c77d4
AV
2100 } else {
2101 found = d_splice_alias(inode, new);
2102 if (found) {
2103 dput(new);
2104 return found;
2105 }
2106 return new;
9403540c 2107 }
9403540c 2108 }
9403540c 2109 iput(inode);
4f522a24 2110 return found;
9403540c 2111}
ec4f8605 2112EXPORT_SYMBOL(d_add_ci);
1da177e4 2113
12f8ad4b
LT
2114/*
2115 * Do the slow-case of the dentry name compare.
2116 *
2117 * Unlike the dentry_cmp() function, we need to atomically
da53be12 2118 * load the name and length information, so that the
12f8ad4b
LT
2119 * filesystem can rely on them, and can use the 'name' and
2120 * 'len' information without worrying about walking off the
2121 * end of memory etc.
2122 *
2123 * Thus the read_seqcount_retry() and the "duplicate" info
2124 * in arguments (the low-level filesystem should not look
2125 * at the dentry inode or name contents directly, since
2126 * rename can change them while we're in RCU mode).
2127 */
2128enum slow_d_compare {
2129 D_COMP_OK,
2130 D_COMP_NOMATCH,
2131 D_COMP_SEQRETRY,
2132};
2133
2134static noinline enum slow_d_compare slow_dentry_cmp(
2135 const struct dentry *parent,
12f8ad4b
LT
2136 struct dentry *dentry,
2137 unsigned int seq,
2138 const struct qstr *name)
2139{
2140 int tlen = dentry->d_name.len;
2141 const char *tname = dentry->d_name.name;
12f8ad4b
LT
2142
2143 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2144 cpu_relax();
2145 return D_COMP_SEQRETRY;
2146 }
da53be12 2147 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
2148 return D_COMP_NOMATCH;
2149 return D_COMP_OK;
2150}
2151
31e6b01f
NP
2152/**
2153 * __d_lookup_rcu - search for a dentry (racy, store-free)
2154 * @parent: parent dentry
2155 * @name: qstr of name we wish to find
1f1e6e52 2156 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2157 * Returns: dentry, or NULL
2158 *
2159 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2160 * resolution (store-free path walking) design described in
2161 * Documentation/filesystems/path-lookup.txt.
2162 *
2163 * This is not to be used outside core vfs.
2164 *
2165 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2166 * held, and rcu_read_lock held. The returned dentry must not be stored into
2167 * without taking d_lock and checking d_seq sequence count against @seq
2168 * returned here.
2169 *
15570086 2170 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2171 * function.
2172 *
2173 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2174 * the returned dentry, so long as its parent's seqlock is checked after the
2175 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2176 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2177 *
2178 * NOTE! The caller *has* to check the resulting dentry against the sequence
2179 * number we've returned before using any of the resulting dentry state!
31e6b01f 2180 */
8966be90
LT
2181struct dentry *__d_lookup_rcu(const struct dentry *parent,
2182 const struct qstr *name,
da53be12 2183 unsigned *seqp)
31e6b01f 2184{
26fe5750 2185 u64 hashlen = name->hash_len;
31e6b01f 2186 const unsigned char *str = name->name;
26fe5750 2187 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2188 struct hlist_bl_node *node;
31e6b01f
NP
2189 struct dentry *dentry;
2190
2191 /*
2192 * Note: There is significant duplication with __d_lookup_rcu which is
2193 * required to prevent single threaded performance regressions
2194 * especially on architectures where smp_rmb (in seqcounts) are costly.
2195 * Keep the two functions in sync.
2196 */
2197
2198 /*
2199 * The hash list is protected using RCU.
2200 *
2201 * Carefully use d_seq when comparing a candidate dentry, to avoid
2202 * races with d_move().
2203 *
2204 * It is possible that concurrent renames can mess up our list
2205 * walk here and result in missing our dentry, resulting in the
2206 * false-negative result. d_lookup() protects against concurrent
2207 * renames using rename_lock seqlock.
2208 *
b0a4bb83 2209 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2210 */
b07ad996 2211 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2212 unsigned seq;
31e6b01f 2213
31e6b01f 2214seqretry:
12f8ad4b
LT
2215 /*
2216 * The dentry sequence count protects us from concurrent
da53be12 2217 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2218 *
2219 * The caller must perform a seqcount check in order
da53be12 2220 * to do anything useful with the returned dentry.
12f8ad4b
LT
2221 *
2222 * NOTE! We do a "raw" seqcount_begin here. That means that
2223 * we don't wait for the sequence count to stabilize if it
2224 * is in the middle of a sequence change. If we do the slow
2225 * dentry compare, we will do seqretries until it is stable,
2226 * and if we end up with a successful lookup, we actually
2227 * want to exit RCU lookup anyway.
2228 */
2229 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2230 if (dentry->d_parent != parent)
2231 continue;
2e321806
LT
2232 if (d_unhashed(dentry))
2233 continue;
12f8ad4b 2234
830c0f0e 2235 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2236 if (dentry->d_name.hash != hashlen_hash(hashlen))
2237 continue;
da53be12
LT
2238 *seqp = seq;
2239 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2240 case D_COMP_OK:
2241 return dentry;
2242 case D_COMP_NOMATCH:
31e6b01f 2243 continue;
12f8ad4b
LT
2244 default:
2245 goto seqretry;
2246 }
31e6b01f 2247 }
12f8ad4b 2248
26fe5750 2249 if (dentry->d_name.hash_len != hashlen)
ee983e89 2250 continue;
da53be12 2251 *seqp = seq;
26fe5750 2252 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2253 return dentry;
31e6b01f
NP
2254 }
2255 return NULL;
2256}
2257
1da177e4
LT
2258/**
2259 * d_lookup - search for a dentry
2260 * @parent: parent dentry
2261 * @name: qstr of name we wish to find
b04f784e 2262 * Returns: dentry, or NULL
1da177e4 2263 *
b04f784e
NP
2264 * d_lookup searches the children of the parent dentry for the name in
2265 * question. If the dentry is found its reference count is incremented and the
2266 * dentry is returned. The caller must use dput to free the entry when it has
2267 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2268 */
da2d8455 2269struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2270{
31e6b01f 2271 struct dentry *dentry;
949854d0 2272 unsigned seq;
1da177e4 2273
b8314f93
DY
2274 do {
2275 seq = read_seqbegin(&rename_lock);
2276 dentry = __d_lookup(parent, name);
2277 if (dentry)
1da177e4
LT
2278 break;
2279 } while (read_seqretry(&rename_lock, seq));
2280 return dentry;
2281}
ec4f8605 2282EXPORT_SYMBOL(d_lookup);
1da177e4 2283
31e6b01f 2284/**
b04f784e
NP
2285 * __d_lookup - search for a dentry (racy)
2286 * @parent: parent dentry
2287 * @name: qstr of name we wish to find
2288 * Returns: dentry, or NULL
2289 *
2290 * __d_lookup is like d_lookup, however it may (rarely) return a
2291 * false-negative result due to unrelated rename activity.
2292 *
2293 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2294 * however it must be used carefully, eg. with a following d_lookup in
2295 * the case of failure.
2296 *
2297 * __d_lookup callers must be commented.
2298 */
a713ca2a 2299struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2300{
2301 unsigned int len = name->len;
2302 unsigned int hash = name->hash;
2303 const unsigned char *str = name->name;
b07ad996 2304 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2305 struct hlist_bl_node *node;
31e6b01f 2306 struct dentry *found = NULL;
665a7583 2307 struct dentry *dentry;
1da177e4 2308
31e6b01f
NP
2309 /*
2310 * Note: There is significant duplication with __d_lookup_rcu which is
2311 * required to prevent single threaded performance regressions
2312 * especially on architectures where smp_rmb (in seqcounts) are costly.
2313 * Keep the two functions in sync.
2314 */
2315
b04f784e
NP
2316 /*
2317 * The hash list is protected using RCU.
2318 *
2319 * Take d_lock when comparing a candidate dentry, to avoid races
2320 * with d_move().
2321 *
2322 * It is possible that concurrent renames can mess up our list
2323 * walk here and result in missing our dentry, resulting in the
2324 * false-negative result. d_lookup() protects against concurrent
2325 * renames using rename_lock seqlock.
2326 *
b0a4bb83 2327 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2328 */
1da177e4
LT
2329 rcu_read_lock();
2330
b07ad996 2331 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2332
1da177e4
LT
2333 if (dentry->d_name.hash != hash)
2334 continue;
1da177e4
LT
2335
2336 spin_lock(&dentry->d_lock);
1da177e4
LT
2337 if (dentry->d_parent != parent)
2338 goto next;
d0185c08
LT
2339 if (d_unhashed(dentry))
2340 goto next;
2341
1da177e4
LT
2342 /*
2343 * It is safe to compare names since d_move() cannot
2344 * change the qstr (protected by d_lock).
2345 */
fb045adb 2346 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2347 int tlen = dentry->d_name.len;
2348 const char *tname = dentry->d_name.name;
da53be12 2349 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2350 goto next;
2351 } else {
ee983e89
LT
2352 if (dentry->d_name.len != len)
2353 goto next;
12f8ad4b 2354 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2355 goto next;
2356 }
2357
98474236 2358 dentry->d_lockref.count++;
d0185c08 2359 found = dentry;
1da177e4
LT
2360 spin_unlock(&dentry->d_lock);
2361 break;
2362next:
2363 spin_unlock(&dentry->d_lock);
2364 }
2365 rcu_read_unlock();
2366
2367 return found;
2368}
2369
3e7e241f
EB
2370/**
2371 * d_hash_and_lookup - hash the qstr then search for a dentry
2372 * @dir: Directory to search in
2373 * @name: qstr of name we wish to find
2374 *
4f522a24 2375 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2376 */
2377struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2378{
3e7e241f
EB
2379 /*
2380 * Check for a fs-specific hash function. Note that we must
2381 * calculate the standard hash first, as the d_op->d_hash()
2382 * routine may choose to leave the hash value unchanged.
2383 */
2384 name->hash = full_name_hash(name->name, name->len);
fb045adb 2385 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2386 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2387 if (unlikely(err < 0))
2388 return ERR_PTR(err);
3e7e241f 2389 }
4f522a24 2390 return d_lookup(dir, name);
3e7e241f 2391}
4f522a24 2392EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2393
1da177e4
LT
2394/*
2395 * When a file is deleted, we have two options:
2396 * - turn this dentry into a negative dentry
2397 * - unhash this dentry and free it.
2398 *
2399 * Usually, we want to just turn this into
2400 * a negative dentry, but if anybody else is
2401 * currently using the dentry or the inode
2402 * we can't do that and we fall back on removing
2403 * it from the hash queues and waiting for
2404 * it to be deleted later when it has no users
2405 */
2406
2407/**
2408 * d_delete - delete a dentry
2409 * @dentry: The dentry to delete
2410 *
2411 * Turn the dentry into a negative dentry if possible, otherwise
2412 * remove it from the hash queues so it can be deleted later
2413 */
2414
2415void d_delete(struct dentry * dentry)
2416{
873feea0 2417 struct inode *inode;
7a91bf7f 2418 int isdir = 0;
1da177e4
LT
2419 /*
2420 * Are we the only user?
2421 */
357f8e65 2422again:
1da177e4 2423 spin_lock(&dentry->d_lock);
873feea0
NP
2424 inode = dentry->d_inode;
2425 isdir = S_ISDIR(inode->i_mode);
98474236 2426 if (dentry->d_lockref.count == 1) {
1fe0c023 2427 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2428 spin_unlock(&dentry->d_lock);
2429 cpu_relax();
2430 goto again;
2431 }
13e3c5e5 2432 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2433 dentry_unlink_inode(dentry);
7a91bf7f 2434 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2435 return;
2436 }
2437
2438 if (!d_unhashed(dentry))
2439 __d_drop(dentry);
2440
2441 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2442
2443 fsnotify_nameremove(dentry, isdir);
1da177e4 2444}
ec4f8605 2445EXPORT_SYMBOL(d_delete);
1da177e4 2446
b07ad996 2447static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2448{
ceb5bdc2 2449 BUG_ON(!d_unhashed(entry));
1879fd6a 2450 hlist_bl_lock(b);
b07ad996 2451 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2452 hlist_bl_unlock(b);
1da177e4
LT
2453}
2454
770bfad8
DH
2455static void _d_rehash(struct dentry * entry)
2456{
2457 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2458}
2459
1da177e4
LT
2460/**
2461 * d_rehash - add an entry back to the hash
2462 * @entry: dentry to add to the hash
2463 *
2464 * Adds a dentry to the hash according to its name.
2465 */
2466
2467void d_rehash(struct dentry * entry)
2468{
1da177e4 2469 spin_lock(&entry->d_lock);
770bfad8 2470 _d_rehash(entry);
1da177e4 2471 spin_unlock(&entry->d_lock);
1da177e4 2472}
ec4f8605 2473EXPORT_SYMBOL(d_rehash);
1da177e4 2474
fb2d5b86
NP
2475/**
2476 * dentry_update_name_case - update case insensitive dentry with a new name
2477 * @dentry: dentry to be updated
2478 * @name: new name
2479 *
2480 * Update a case insensitive dentry with new case of name.
2481 *
2482 * dentry must have been returned by d_lookup with name @name. Old and new
2483 * name lengths must match (ie. no d_compare which allows mismatched name
2484 * lengths).
2485 *
2486 * Parent inode i_mutex must be held over d_lookup and into this call (to
2487 * keep renames and concurrent inserts, and readdir(2) away).
2488 */
2489void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2490{
7ebfa57f 2491 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2492 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2493
fb2d5b86 2494 spin_lock(&dentry->d_lock);
31e6b01f 2495 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2496 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2497 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2498 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2499}
2500EXPORT_SYMBOL(dentry_update_name_case);
2501
8d85b484 2502static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2503{
8d85b484
AV
2504 if (unlikely(dname_external(target))) {
2505 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2506 /*
2507 * Both external: swap the pointers
2508 */
9a8d5bb4 2509 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2510 } else {
2511 /*
2512 * dentry:internal, target:external. Steal target's
2513 * storage and make target internal.
2514 */
321bcf92
BF
2515 memcpy(target->d_iname, dentry->d_name.name,
2516 dentry->d_name.len + 1);
1da177e4
LT
2517 dentry->d_name.name = target->d_name.name;
2518 target->d_name.name = target->d_iname;
2519 }
2520 } else {
8d85b484 2521 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2522 /*
2523 * dentry:external, target:internal. Give dentry's
2524 * storage to target and make dentry internal
2525 */
2526 memcpy(dentry->d_iname, target->d_name.name,
2527 target->d_name.len + 1);
2528 target->d_name.name = dentry->d_name.name;
2529 dentry->d_name.name = dentry->d_iname;
2530 } else {
2531 /*
da1ce067 2532 * Both are internal.
1da177e4 2533 */
da1ce067
MS
2534 unsigned int i;
2535 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
08d4f772
MP
2536 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2537 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
da1ce067
MS
2538 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2539 swap(((long *) &dentry->d_iname)[i],
2540 ((long *) &target->d_iname)[i]);
2541 }
1da177e4
LT
2542 }
2543 }
a28ddb87 2544 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2545}
2546
8d85b484
AV
2547static void copy_name(struct dentry *dentry, struct dentry *target)
2548{
2549 struct external_name *old_name = NULL;
2550 if (unlikely(dname_external(dentry)))
2551 old_name = external_name(dentry);
2552 if (unlikely(dname_external(target))) {
2553 atomic_inc(&external_name(target)->u.count);
2554 dentry->d_name = target->d_name;
2555 } else {
2556 memcpy(dentry->d_iname, target->d_name.name,
2557 target->d_name.len + 1);
2558 dentry->d_name.name = dentry->d_iname;
2559 dentry->d_name.hash_len = target->d_name.hash_len;
2560 }
2561 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2562 kfree_rcu(old_name, u.head);
2563}
2564
2fd6b7f5
NP
2565static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2566{
2567 /*
2568 * XXXX: do we really need to take target->d_lock?
2569 */
2570 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2571 spin_lock(&target->d_parent->d_lock);
2572 else {
2573 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2574 spin_lock(&dentry->d_parent->d_lock);
2575 spin_lock_nested(&target->d_parent->d_lock,
2576 DENTRY_D_LOCK_NESTED);
2577 } else {
2578 spin_lock(&target->d_parent->d_lock);
2579 spin_lock_nested(&dentry->d_parent->d_lock,
2580 DENTRY_D_LOCK_NESTED);
2581 }
2582 }
2583 if (target < dentry) {
2584 spin_lock_nested(&target->d_lock, 2);
2585 spin_lock_nested(&dentry->d_lock, 3);
2586 } else {
2587 spin_lock_nested(&dentry->d_lock, 2);
2588 spin_lock_nested(&target->d_lock, 3);
2589 }
2590}
2591
986c0194 2592static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2593{
2594 if (target->d_parent != dentry->d_parent)
2595 spin_unlock(&dentry->d_parent->d_lock);
2596 if (target->d_parent != target)
2597 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2598 spin_unlock(&target->d_lock);
2599 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2600}
2601
1da177e4 2602/*
2fd6b7f5
NP
2603 * When switching names, the actual string doesn't strictly have to
2604 * be preserved in the target - because we're dropping the target
2605 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2606 * the new name before we switch, unless we are going to rehash
2607 * it. Note that if we *do* unhash the target, we are not allowed
2608 * to rehash it without giving it a new name/hash key - whether
2609 * we swap or overwrite the names here, resulting name won't match
2610 * the reality in filesystem; it's only there for d_path() purposes.
2611 * Note that all of this is happening under rename_lock, so the
2612 * any hash lookup seeing it in the middle of manipulations will
2613 * be discarded anyway. So we do not care what happens to the hash
2614 * key in that case.
1da177e4 2615 */
9eaef27b 2616/*
18367501 2617 * __d_move - move a dentry
1da177e4
LT
2618 * @dentry: entry to move
2619 * @target: new dentry
da1ce067 2620 * @exchange: exchange the two dentries
1da177e4
LT
2621 *
2622 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2623 * dcache entries should not be moved in this way. Caller must hold
2624 * rename_lock, the i_mutex of the source and target directories,
2625 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2626 */
da1ce067
MS
2627static void __d_move(struct dentry *dentry, struct dentry *target,
2628 bool exchange)
1da177e4 2629{
1da177e4
LT
2630 if (!dentry->d_inode)
2631 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2632
2fd6b7f5
NP
2633 BUG_ON(d_ancestor(dentry, target));
2634 BUG_ON(d_ancestor(target, dentry));
2635
2fd6b7f5 2636 dentry_lock_for_move(dentry, target);
1da177e4 2637
31e6b01f 2638 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2639 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2640
ceb5bdc2
NP
2641 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2642
2643 /*
2644 * Move the dentry to the target hash queue. Don't bother checking
2645 * for the same hash queue because of how unlikely it is.
2646 */
2647 __d_drop(dentry);
789680d1 2648 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2649
da1ce067
MS
2650 /*
2651 * Unhash the target (d_delete() is not usable here). If exchanging
2652 * the two dentries, then rehash onto the other's hash queue.
2653 */
1da177e4 2654 __d_drop(target);
da1ce067
MS
2655 if (exchange) {
2656 __d_rehash(target,
2657 d_hash(dentry->d_parent, dentry->d_name.hash));
2658 }
1da177e4 2659
1da177e4 2660 /* Switch the names.. */
8d85b484
AV
2661 if (exchange)
2662 swap_names(dentry, target);
2663 else
2664 copy_name(dentry, target);
1da177e4 2665
63cf427a 2666 /* ... and switch them in the tree */
1da177e4 2667 if (IS_ROOT(dentry)) {
63cf427a 2668 /* splicing a tree */
a6e8956e 2669 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2670 dentry->d_parent = target->d_parent;
2671 target->d_parent = target;
946e51f2
AV
2672 list_del_init(&target->d_child);
2673 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2674 } else {
63cf427a 2675 /* swapping two dentries */
9a8d5bb4 2676 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2677 list_move(&target->d_child, &target->d_parent->d_subdirs);
2678 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a
AV
2679 if (exchange)
2680 fsnotify_d_move(target);
2681 fsnotify_d_move(dentry);
1da177e4
LT
2682 }
2683
31e6b01f
NP
2684 write_seqcount_end(&target->d_seq);
2685 write_seqcount_end(&dentry->d_seq);
2686
986c0194 2687 dentry_unlock_for_move(dentry, target);
18367501
AV
2688}
2689
2690/*
2691 * d_move - move a dentry
2692 * @dentry: entry to move
2693 * @target: new dentry
2694 *
2695 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2696 * dcache entries should not be moved in this way. See the locking
2697 * requirements for __d_move.
18367501
AV
2698 */
2699void d_move(struct dentry *dentry, struct dentry *target)
2700{
2701 write_seqlock(&rename_lock);
da1ce067 2702 __d_move(dentry, target, false);
1da177e4 2703 write_sequnlock(&rename_lock);
9eaef27b 2704}
ec4f8605 2705EXPORT_SYMBOL(d_move);
1da177e4 2706
da1ce067
MS
2707/*
2708 * d_exchange - exchange two dentries
2709 * @dentry1: first dentry
2710 * @dentry2: second dentry
2711 */
2712void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2713{
2714 write_seqlock(&rename_lock);
2715
2716 WARN_ON(!dentry1->d_inode);
2717 WARN_ON(!dentry2->d_inode);
2718 WARN_ON(IS_ROOT(dentry1));
2719 WARN_ON(IS_ROOT(dentry2));
2720
2721 __d_move(dentry1, dentry2, true);
2722
2723 write_sequnlock(&rename_lock);
2724}
2725
e2761a11
OH
2726/**
2727 * d_ancestor - search for an ancestor
2728 * @p1: ancestor dentry
2729 * @p2: child dentry
2730 *
2731 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2732 * an ancestor of p2, else NULL.
9eaef27b 2733 */
e2761a11 2734struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2735{
2736 struct dentry *p;
2737
871c0067 2738 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2739 if (p->d_parent == p1)
e2761a11 2740 return p;
9eaef27b 2741 }
e2761a11 2742 return NULL;
9eaef27b
TM
2743}
2744
2745/*
2746 * This helper attempts to cope with remotely renamed directories
2747 *
2748 * It assumes that the caller is already holding
a03e283b 2749 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2750 *
2751 * Note: If ever the locking in lock_rename() changes, then please
2752 * remember to update this too...
9eaef27b 2753 */
b5ae6b15 2754static int __d_unalias(struct inode *inode,
873feea0 2755 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2756{
2757 struct mutex *m1 = NULL, *m2 = NULL;
3d330dc1 2758 int ret = -ESTALE;
9eaef27b
TM
2759
2760 /* If alias and dentry share a parent, then no extra locks required */
2761 if (alias->d_parent == dentry->d_parent)
2762 goto out_unalias;
2763
9eaef27b 2764 /* See lock_rename() */
9eaef27b
TM
2765 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2766 goto out_err;
2767 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2768 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2769 goto out_err;
2770 m2 = &alias->d_parent->d_inode->i_mutex;
2771out_unalias:
8ed936b5 2772 __d_move(alias, dentry, false);
b5ae6b15 2773 ret = 0;
9eaef27b 2774out_err:
9eaef27b
TM
2775 if (m2)
2776 mutex_unlock(m2);
2777 if (m1)
2778 mutex_unlock(m1);
2779 return ret;
2780}
2781
3f70bd51
BF
2782/**
2783 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2784 * @inode: the inode which may have a disconnected dentry
2785 * @dentry: a negative dentry which we want to point to the inode.
2786 *
da093a9b
BF
2787 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2788 * place of the given dentry and return it, else simply d_add the inode
2789 * to the dentry and return NULL.
3f70bd51 2790 *
908790fa
BF
2791 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2792 * we should error out: directories can't have multiple aliases.
2793 *
3f70bd51
BF
2794 * This is needed in the lookup routine of any filesystem that is exportable
2795 * (via knfsd) so that we can build dcache paths to directories effectively.
2796 *
2797 * If a dentry was found and moved, then it is returned. Otherwise NULL
2798 * is returned. This matches the expected return value of ->lookup.
2799 *
2800 * Cluster filesystems may call this function with a negative, hashed dentry.
2801 * In that case, we know that the inode will be a regular file, and also this
2802 * will only occur during atomic_open. So we need to check for the dentry
2803 * being already hashed only in the final case.
2804 */
2805struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2806{
3f70bd51
BF
2807 if (IS_ERR(inode))
2808 return ERR_CAST(inode);
2809
770bfad8
DH
2810 BUG_ON(!d_unhashed(dentry));
2811
770bfad8 2812 if (!inode) {
360da900 2813 __d_instantiate(dentry, NULL);
b5ae6b15 2814 goto out;
770bfad8 2815 }
873feea0 2816 spin_lock(&inode->i_lock);
9eaef27b 2817 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2818 struct dentry *new = __d_find_any_alias(inode);
2819 if (unlikely(new)) {
a03e283b
EB
2820 /* The reference to new ensures it remains an alias */
2821 spin_unlock(&inode->i_lock);
18367501 2822 write_seqlock(&rename_lock);
b5ae6b15
AV
2823 if (unlikely(d_ancestor(new, dentry))) {
2824 write_sequnlock(&rename_lock);
b5ae6b15
AV
2825 dput(new);
2826 new = ERR_PTR(-ELOOP);
2827 pr_warn_ratelimited(
2828 "VFS: Lookup of '%s' in %s %s"
2829 " would have caused loop\n",
2830 dentry->d_name.name,
2831 inode->i_sb->s_type->name,
2832 inode->i_sb->s_id);
2833 } else if (!IS_ROOT(new)) {
2834 int err = __d_unalias(inode, dentry, new);
18367501 2835 write_sequnlock(&rename_lock);
b5ae6b15
AV
2836 if (err) {
2837 dput(new);
2838 new = ERR_PTR(err);
2839 }
18367501 2840 } else {
b5ae6b15
AV
2841 __d_move(new, dentry, false);
2842 write_sequnlock(&rename_lock);
b5ae6b15 2843 security_d_instantiate(new, inode);
dd179946 2844 }
b5ae6b15
AV
2845 iput(inode);
2846 return new;
9eaef27b 2847 }
770bfad8 2848 }
b5ae6b15
AV
2849 /* already taking inode->i_lock, so d_add() by hand */
2850 __d_instantiate(dentry, inode);
873feea0 2851 spin_unlock(&inode->i_lock);
b5ae6b15
AV
2852out:
2853 security_d_instantiate(dentry, inode);
2854 d_rehash(dentry);
2855 return NULL;
770bfad8 2856}
b5ae6b15 2857EXPORT_SYMBOL(d_splice_alias);
770bfad8 2858
cdd16d02 2859static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2860{
2861 *buflen -= namelen;
2862 if (*buflen < 0)
2863 return -ENAMETOOLONG;
2864 *buffer -= namelen;
2865 memcpy(*buffer, str, namelen);
2866 return 0;
2867}
2868
232d2d60
WL
2869/**
2870 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2871 * @buffer: buffer pointer
2872 * @buflen: allocated length of the buffer
2873 * @name: name string and length qstr structure
232d2d60
WL
2874 *
2875 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2876 * make sure that either the old or the new name pointer and length are
2877 * fetched. However, there may be mismatch between length and pointer.
2878 * The length cannot be trusted, we need to copy it byte-by-byte until
2879 * the length is reached or a null byte is found. It also prepends "/" at
2880 * the beginning of the name. The sequence number check at the caller will
2881 * retry it again when a d_move() does happen. So any garbage in the buffer
2882 * due to mismatched pointer and length will be discarded.
6d13f694
AV
2883 *
2884 * Data dependency barrier is needed to make sure that we see that terminating
2885 * NUL. Alpha strikes again, film at 11...
232d2d60 2886 */
cdd16d02
MS
2887static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2888{
232d2d60
WL
2889 const char *dname = ACCESS_ONCE(name->name);
2890 u32 dlen = ACCESS_ONCE(name->len);
2891 char *p;
2892
6d13f694
AV
2893 smp_read_barrier_depends();
2894
232d2d60 2895 *buflen -= dlen + 1;
e825196d
AV
2896 if (*buflen < 0)
2897 return -ENAMETOOLONG;
232d2d60
WL
2898 p = *buffer -= dlen + 1;
2899 *p++ = '/';
2900 while (dlen--) {
2901 char c = *dname++;
2902 if (!c)
2903 break;
2904 *p++ = c;
2905 }
2906 return 0;
cdd16d02
MS
2907}
2908
1da177e4 2909/**
208898c1 2910 * prepend_path - Prepend path string to a buffer
9d1bc601 2911 * @path: the dentry/vfsmount to report
02125a82 2912 * @root: root vfsmnt/dentry
f2eb6575
MS
2913 * @buffer: pointer to the end of the buffer
2914 * @buflen: pointer to buffer length
552ce544 2915 *
18129977
WL
2916 * The function will first try to write out the pathname without taking any
2917 * lock other than the RCU read lock to make sure that dentries won't go away.
2918 * It only checks the sequence number of the global rename_lock as any change
2919 * in the dentry's d_seq will be preceded by changes in the rename_lock
2920 * sequence number. If the sequence number had been changed, it will restart
2921 * the whole pathname back-tracing sequence again by taking the rename_lock.
2922 * In this case, there is no need to take the RCU read lock as the recursive
2923 * parent pointer references will keep the dentry chain alive as long as no
2924 * rename operation is performed.
1da177e4 2925 */
02125a82
AV
2926static int prepend_path(const struct path *path,
2927 const struct path *root,
f2eb6575 2928 char **buffer, int *buflen)
1da177e4 2929{
ede4cebc
AV
2930 struct dentry *dentry;
2931 struct vfsmount *vfsmnt;
2932 struct mount *mnt;
f2eb6575 2933 int error = 0;
48a066e7 2934 unsigned seq, m_seq = 0;
232d2d60
WL
2935 char *bptr;
2936 int blen;
6092d048 2937
48f5ec21 2938 rcu_read_lock();
48a066e7
AV
2939restart_mnt:
2940 read_seqbegin_or_lock(&mount_lock, &m_seq);
2941 seq = 0;
4ec6c2ae 2942 rcu_read_lock();
232d2d60
WL
2943restart:
2944 bptr = *buffer;
2945 blen = *buflen;
48a066e7 2946 error = 0;
ede4cebc
AV
2947 dentry = path->dentry;
2948 vfsmnt = path->mnt;
2949 mnt = real_mount(vfsmnt);
232d2d60 2950 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2951 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2952 struct dentry * parent;
2953
1da177e4 2954 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2955 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
cde93be4
EB
2956 /* Escaped? */
2957 if (dentry != vfsmnt->mnt_root) {
2958 bptr = *buffer;
2959 blen = *buflen;
2960 error = 3;
2961 break;
2962 }
552ce544 2963 /* Global root? */
48a066e7
AV
2964 if (mnt != parent) {
2965 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2966 mnt = parent;
232d2d60
WL
2967 vfsmnt = &mnt->mnt;
2968 continue;
2969 }
232d2d60
WL
2970 if (!error)
2971 error = is_mounted(vfsmnt) ? 1 : 2;
2972 break;
1da177e4
LT
2973 }
2974 parent = dentry->d_parent;
2975 prefetch(parent);
232d2d60 2976 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2977 if (error)
2978 break;
2979
1da177e4
LT
2980 dentry = parent;
2981 }
48f5ec21
AV
2982 if (!(seq & 1))
2983 rcu_read_unlock();
2984 if (need_seqretry(&rename_lock, seq)) {
2985 seq = 1;
232d2d60 2986 goto restart;
48f5ec21
AV
2987 }
2988 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2989
2990 if (!(m_seq & 1))
2991 rcu_read_unlock();
48a066e7
AV
2992 if (need_seqretry(&mount_lock, m_seq)) {
2993 m_seq = 1;
2994 goto restart_mnt;
2995 }
2996 done_seqretry(&mount_lock, m_seq);
1da177e4 2997
232d2d60
WL
2998 if (error >= 0 && bptr == *buffer) {
2999 if (--blen < 0)
3000 error = -ENAMETOOLONG;
3001 else
3002 *--bptr = '/';
3003 }
3004 *buffer = bptr;
3005 *buflen = blen;
7ea600b5 3006 return error;
f2eb6575 3007}
be285c71 3008
f2eb6575
MS
3009/**
3010 * __d_path - return the path of a dentry
3011 * @path: the dentry/vfsmount to report
02125a82 3012 * @root: root vfsmnt/dentry
cd956a1c 3013 * @buf: buffer to return value in
f2eb6575
MS
3014 * @buflen: buffer length
3015 *
ffd1f4ed 3016 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3017 *
3018 * Returns a pointer into the buffer or an error code if the
3019 * path was too long.
3020 *
be148247 3021 * "buflen" should be positive.
f2eb6575 3022 *
02125a82 3023 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3024 */
02125a82
AV
3025char *__d_path(const struct path *path,
3026 const struct path *root,
f2eb6575
MS
3027 char *buf, int buflen)
3028{
3029 char *res = buf + buflen;
3030 int error;
3031
3032 prepend(&res, &buflen, "\0", 1);
f2eb6575 3033 error = prepend_path(path, root, &res, &buflen);
be148247 3034
02125a82
AV
3035 if (error < 0)
3036 return ERR_PTR(error);
3037 if (error > 0)
3038 return NULL;
3039 return res;
3040}
3041
3042char *d_absolute_path(const struct path *path,
3043 char *buf, int buflen)
3044{
3045 struct path root = {};
3046 char *res = buf + buflen;
3047 int error;
3048
3049 prepend(&res, &buflen, "\0", 1);
02125a82 3050 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3051
3052 if (error > 1)
3053 error = -EINVAL;
3054 if (error < 0)
f2eb6575 3055 return ERR_PTR(error);
f2eb6575 3056 return res;
1da177e4
LT
3057}
3058
ffd1f4ed
MS
3059/*
3060 * same as __d_path but appends "(deleted)" for unlinked files.
3061 */
02125a82
AV
3062static int path_with_deleted(const struct path *path,
3063 const struct path *root,
3064 char **buf, int *buflen)
ffd1f4ed
MS
3065{
3066 prepend(buf, buflen, "\0", 1);
3067 if (d_unlinked(path->dentry)) {
3068 int error = prepend(buf, buflen, " (deleted)", 10);
3069 if (error)
3070 return error;
3071 }
3072
3073 return prepend_path(path, root, buf, buflen);
3074}
3075
8df9d1a4
MS
3076static int prepend_unreachable(char **buffer, int *buflen)
3077{
3078 return prepend(buffer, buflen, "(unreachable)", 13);
3079}
3080
68f0d9d9
LT
3081static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3082{
3083 unsigned seq;
3084
3085 do {
3086 seq = read_seqcount_begin(&fs->seq);
3087 *root = fs->root;
3088 } while (read_seqcount_retry(&fs->seq, seq));
3089}
3090
a03a8a70
JB
3091/**
3092 * d_path - return the path of a dentry
cf28b486 3093 * @path: path to report
a03a8a70
JB
3094 * @buf: buffer to return value in
3095 * @buflen: buffer length
3096 *
3097 * Convert a dentry into an ASCII path name. If the entry has been deleted
3098 * the string " (deleted)" is appended. Note that this is ambiguous.
3099 *
52afeefb
AV
3100 * Returns a pointer into the buffer or an error code if the path was
3101 * too long. Note: Callers should use the returned pointer, not the passed
3102 * in buffer, to use the name! The implementation often starts at an offset
3103 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3104 *
31f3e0b3 3105 * "buflen" should be positive.
a03a8a70 3106 */
20d4fdc1 3107char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3108{
ffd1f4ed 3109 char *res = buf + buflen;
6ac08c39 3110 struct path root;
ffd1f4ed 3111 int error;
1da177e4 3112
c23fbb6b
ED
3113 /*
3114 * We have various synthetic filesystems that never get mounted. On
3115 * these filesystems dentries are never used for lookup purposes, and
3116 * thus don't need to be hashed. They also don't need a name until a
3117 * user wants to identify the object in /proc/pid/fd/. The little hack
3118 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3119 *
3120 * Some pseudo inodes are mountable. When they are mounted
3121 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3122 * and instead have d_path return the mounted path.
c23fbb6b 3123 */
f48cfddc
EB
3124 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3125 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3126 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3127
68f0d9d9
LT
3128 rcu_read_lock();
3129 get_fs_root_rcu(current->fs, &root);
02125a82 3130 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3131 rcu_read_unlock();
3132
02125a82 3133 if (error < 0)
ffd1f4ed 3134 res = ERR_PTR(error);
1da177e4
LT
3135 return res;
3136}
ec4f8605 3137EXPORT_SYMBOL(d_path);
1da177e4 3138
c23fbb6b
ED
3139/*
3140 * Helper function for dentry_operations.d_dname() members
3141 */
3142char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3143 const char *fmt, ...)
3144{
3145 va_list args;
3146 char temp[64];
3147 int sz;
3148
3149 va_start(args, fmt);
3150 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3151 va_end(args);
3152
3153 if (sz > sizeof(temp) || sz > buflen)
3154 return ERR_PTR(-ENAMETOOLONG);
3155
3156 buffer += buflen - sz;
3157 return memcpy(buffer, temp, sz);
3158}
3159
118b2302
AV
3160char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3161{
3162 char *end = buffer + buflen;
3163 /* these dentries are never renamed, so d_lock is not needed */
3164 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3165 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3166 prepend(&end, &buflen, "/", 1))
3167 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3168 return end;
118b2302 3169}
31bbe16f 3170EXPORT_SYMBOL(simple_dname);
118b2302 3171
6092d048
RP
3172/*
3173 * Write full pathname from the root of the filesystem into the buffer.
3174 */
f6500801 3175static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3176{
f6500801 3177 struct dentry *dentry;
232d2d60
WL
3178 char *end, *retval;
3179 int len, seq = 0;
3180 int error = 0;
6092d048 3181
f6500801
AV
3182 if (buflen < 2)
3183 goto Elong;
3184
48f5ec21 3185 rcu_read_lock();
232d2d60 3186restart:
f6500801 3187 dentry = d;
232d2d60
WL
3188 end = buf + buflen;
3189 len = buflen;
3190 prepend(&end, &len, "\0", 1);
6092d048
RP
3191 /* Get '/' right */
3192 retval = end-1;
3193 *retval = '/';
232d2d60 3194 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3195 while (!IS_ROOT(dentry)) {
3196 struct dentry *parent = dentry->d_parent;
6092d048 3197
6092d048 3198 prefetch(parent);
232d2d60
WL
3199 error = prepend_name(&end, &len, &dentry->d_name);
3200 if (error)
3201 break;
6092d048
RP
3202
3203 retval = end;
3204 dentry = parent;
3205 }
48f5ec21
AV
3206 if (!(seq & 1))
3207 rcu_read_unlock();
3208 if (need_seqretry(&rename_lock, seq)) {
3209 seq = 1;
232d2d60 3210 goto restart;
48f5ec21
AV
3211 }
3212 done_seqretry(&rename_lock, seq);
232d2d60
WL
3213 if (error)
3214 goto Elong;
c103135c
AV
3215 return retval;
3216Elong:
3217 return ERR_PTR(-ENAMETOOLONG);
3218}
ec2447c2
NP
3219
3220char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3221{
232d2d60 3222 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3223}
3224EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3225
3226char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3227{
3228 char *p = NULL;
3229 char *retval;
3230
c103135c
AV
3231 if (d_unlinked(dentry)) {
3232 p = buf + buflen;
3233 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3234 goto Elong;
3235 buflen++;
3236 }
3237 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3238 if (!IS_ERR(retval) && p)
3239 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3240 return retval;
3241Elong:
6092d048
RP
3242 return ERR_PTR(-ENAMETOOLONG);
3243}
3244
8b19e341
LT
3245static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3246 struct path *pwd)
5762482f 3247{
8b19e341
LT
3248 unsigned seq;
3249
3250 do {
3251 seq = read_seqcount_begin(&fs->seq);
3252 *root = fs->root;
3253 *pwd = fs->pwd;
3254 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3255}
3256
1da177e4
LT
3257/*
3258 * NOTE! The user-level library version returns a
3259 * character pointer. The kernel system call just
3260 * returns the length of the buffer filled (which
3261 * includes the ending '\0' character), or a negative
3262 * error value. So libc would do something like
3263 *
3264 * char *getcwd(char * buf, size_t size)
3265 * {
3266 * int retval;
3267 *
3268 * retval = sys_getcwd(buf, size);
3269 * if (retval >= 0)
3270 * return buf;
3271 * errno = -retval;
3272 * return NULL;
3273 * }
3274 */
3cdad428 3275SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3276{
552ce544 3277 int error;
6ac08c39 3278 struct path pwd, root;
3272c544 3279 char *page = __getname();
1da177e4
LT
3280
3281 if (!page)
3282 return -ENOMEM;
3283
8b19e341
LT
3284 rcu_read_lock();
3285 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3286
552ce544 3287 error = -ENOENT;
f3da392e 3288 if (!d_unlinked(pwd.dentry)) {
552ce544 3289 unsigned long len;
3272c544
LT
3290 char *cwd = page + PATH_MAX;
3291 int buflen = PATH_MAX;
1da177e4 3292
8df9d1a4 3293 prepend(&cwd, &buflen, "\0", 1);
02125a82 3294 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3295 rcu_read_unlock();
552ce544 3296
02125a82 3297 if (error < 0)
552ce544
LT
3298 goto out;
3299
8df9d1a4 3300 /* Unreachable from current root */
02125a82 3301 if (error > 0) {
8df9d1a4
MS
3302 error = prepend_unreachable(&cwd, &buflen);
3303 if (error)
3304 goto out;
3305 }
3306
552ce544 3307 error = -ERANGE;
3272c544 3308 len = PATH_MAX + page - cwd;
552ce544
LT
3309 if (len <= size) {
3310 error = len;
3311 if (copy_to_user(buf, cwd, len))
3312 error = -EFAULT;
3313 }
949854d0 3314 } else {
ff812d72 3315 rcu_read_unlock();
949854d0 3316 }
1da177e4
LT
3317
3318out:
3272c544 3319 __putname(page);
1da177e4
LT
3320 return error;
3321}
3322
3323/*
3324 * Test whether new_dentry is a subdirectory of old_dentry.
3325 *
3326 * Trivially implemented using the dcache structure
3327 */
3328
3329/**
3330 * is_subdir - is new dentry a subdirectory of old_dentry
3331 * @new_dentry: new dentry
3332 * @old_dentry: old dentry
3333 *
3334 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3335 * Returns 0 otherwise.
3336 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3337 */
3338
e2761a11 3339int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3340{
3341 int result;
949854d0 3342 unsigned seq;
1da177e4 3343
e2761a11
OH
3344 if (new_dentry == old_dentry)
3345 return 1;
3346
e2761a11 3347 do {
1da177e4 3348 /* for restarting inner loop in case of seq retry */
1da177e4 3349 seq = read_seqbegin(&rename_lock);
949854d0
NP
3350 /*
3351 * Need rcu_readlock to protect against the d_parent trashing
3352 * due to d_move
3353 */
3354 rcu_read_lock();
e2761a11 3355 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3356 result = 1;
e2761a11
OH
3357 else
3358 result = 0;
949854d0 3359 rcu_read_unlock();
1da177e4 3360 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3361
3362 return result;
3363}
3364
db14fc3a 3365static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3366{
db14fc3a
MS
3367 struct dentry *root = data;
3368 if (dentry != root) {
3369 if (d_unhashed(dentry) || !dentry->d_inode)
3370 return D_WALK_SKIP;
1da177e4 3371
01ddc4ed
MS
3372 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3373 dentry->d_flags |= DCACHE_GENOCIDE;
3374 dentry->d_lockref.count--;
3375 }
1da177e4 3376 }
db14fc3a
MS
3377 return D_WALK_CONTINUE;
3378}
58db63d0 3379
db14fc3a
MS
3380void d_genocide(struct dentry *parent)
3381{
3382 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3383}
3384
60545d0d 3385void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3386{
60545d0d
AV
3387 inode_dec_link_count(inode);
3388 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3389 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3390 !d_unlinked(dentry));
3391 spin_lock(&dentry->d_parent->d_lock);
3392 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3393 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3394 (unsigned long long)inode->i_ino);
3395 spin_unlock(&dentry->d_lock);
3396 spin_unlock(&dentry->d_parent->d_lock);
3397 d_instantiate(dentry, inode);
1da177e4 3398}
60545d0d 3399EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3400
3401static __initdata unsigned long dhash_entries;
3402static int __init set_dhash_entries(char *str)
3403{
3404 if (!str)
3405 return 0;
3406 dhash_entries = simple_strtoul(str, &str, 0);
3407 return 1;
3408}
3409__setup("dhash_entries=", set_dhash_entries);
3410
3411static void __init dcache_init_early(void)
3412{
074b8517 3413 unsigned int loop;
1da177e4
LT
3414
3415 /* If hashes are distributed across NUMA nodes, defer
3416 * hash allocation until vmalloc space is available.
3417 */
3418 if (hashdist)
3419 return;
3420
3421 dentry_hashtable =
3422 alloc_large_system_hash("Dentry cache",
b07ad996 3423 sizeof(struct hlist_bl_head),
1da177e4
LT
3424 dhash_entries,
3425 13,
3426 HASH_EARLY,
3427 &d_hash_shift,
3428 &d_hash_mask,
31fe62b9 3429 0,
1da177e4
LT
3430 0);
3431
074b8517 3432 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3433 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3434}
3435
74bf17cf 3436static void __init dcache_init(void)
1da177e4 3437{
074b8517 3438 unsigned int loop;
1da177e4
LT
3439
3440 /*
3441 * A constructor could be added for stable state like the lists,
3442 * but it is probably not worth it because of the cache nature
3443 * of the dcache.
3444 */
0a31bd5f
CL
3445 dentry_cache = KMEM_CACHE(dentry,
3446 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3447
3448 /* Hash may have been set up in dcache_init_early */
3449 if (!hashdist)
3450 return;
3451
3452 dentry_hashtable =
3453 alloc_large_system_hash("Dentry cache",
b07ad996 3454 sizeof(struct hlist_bl_head),
1da177e4
LT
3455 dhash_entries,
3456 13,
3457 0,
3458 &d_hash_shift,
3459 &d_hash_mask,
31fe62b9 3460 0,
1da177e4
LT
3461 0);
3462
074b8517 3463 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3464 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3465}
3466
3467/* SLAB cache for __getname() consumers */
e18b890b 3468struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3469EXPORT_SYMBOL(names_cachep);
1da177e4 3470
1da177e4
LT
3471EXPORT_SYMBOL(d_genocide);
3472
1da177e4
LT
3473void __init vfs_caches_init_early(void)
3474{
3475 dcache_init_early();
3476 inode_init_early();
3477}
3478
4248b0da 3479void __init vfs_caches_init(void)
1da177e4 3480{
1da177e4 3481 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3482 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3483
74bf17cf
DC
3484 dcache_init();
3485 inode_init();
4248b0da
MG
3486 files_init();
3487 files_maxfiles_init();
74bf17cf 3488 mnt_init();
1da177e4
LT
3489 bdev_cache_init();
3490 chrdev_init();
3491}