]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/namespace.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
0818bf27 26#include <linux/bootmem.h>
9ea459e1 27#include <linux/task_work.h>
07b20889 28#include "pnode.h"
948730b0 29#include "internal.h"
1da177e4 30
d2921684
EB
31/* Maximum number of mounts in a mount namespace */
32unsigned int sysctl_mount_max __read_mostly = 100000;
33
0818bf27
AV
34static unsigned int m_hash_mask __read_mostly;
35static unsigned int m_hash_shift __read_mostly;
36static unsigned int mp_hash_mask __read_mostly;
37static unsigned int mp_hash_shift __read_mostly;
38
39static __initdata unsigned long mhash_entries;
40static int __init set_mhash_entries(char *str)
41{
42 if (!str)
43 return 0;
44 mhash_entries = simple_strtoul(str, &str, 0);
45 return 1;
46}
47__setup("mhash_entries=", set_mhash_entries);
48
49static __initdata unsigned long mphash_entries;
50static int __init set_mphash_entries(char *str)
51{
52 if (!str)
53 return 0;
54 mphash_entries = simple_strtoul(str, &str, 0);
55 return 1;
56}
57__setup("mphash_entries=", set_mphash_entries);
13f14b4d 58
c7999c36 59static u64 event;
73cd49ec 60static DEFINE_IDA(mnt_id_ida);
719f5d7f 61static DEFINE_IDA(mnt_group_ida);
99b7db7b 62static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
63static int mnt_id_start = 0;
64static int mnt_group_start = 1;
1da177e4 65
38129a13 66static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 67static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 68static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 69static DECLARE_RWSEM(namespace_sem);
1da177e4 70
f87fd4c2 71/* /sys/fs */
00d26666
GKH
72struct kobject *fs_kobj;
73EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 74
99b7db7b
NP
75/*
76 * vfsmount lock may be taken for read to prevent changes to the
77 * vfsmount hash, ie. during mountpoint lookups or walking back
78 * up the tree.
79 *
80 * It should be taken for write in all cases where the vfsmount
81 * tree or hash is modified or when a vfsmount structure is modified.
82 */
48a066e7 83__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 84
38129a13 85static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 86{
b58fed8b
RP
87 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
88 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
89 tmp = tmp + (tmp >> m_hash_shift);
90 return &mount_hashtable[tmp & m_hash_mask];
91}
92
93static inline struct hlist_head *mp_hash(struct dentry *dentry)
94{
95 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
96 tmp = tmp + (tmp >> mp_hash_shift);
97 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
98}
99
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
87b95ce0
AV
193static void drop_mountpoint(struct fs_pin *p)
194{
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199}
200
b105e270 201static struct mount *alloc_vfsmnt(const char *name)
1da177e4 202{
c63181e6
AV
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
73cd49ec
MS
205 int err;
206
c63181e6 207 err = mnt_alloc_id(mnt);
88b38782
LZ
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
fcc139ae 212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 213 if (!mnt->mnt_devname)
88b38782 214 goto out_free_id;
73cd49ec
MS
215 }
216
b3e19d92 217#ifdef CONFIG_SMP
c63181e6
AV
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
b3e19d92
NP
220 goto out_free_devname;
221
c63181e6 222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 223#else
c63181e6
AV
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
b3e19d92
NP
226#endif
227
38129a13 228 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
237#ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 239#endif
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73 244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73 290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73 304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73 312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
1e75529e 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e 394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e 413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e 420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e 423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e 429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440int mnt_want_write_file(struct file *file)
441{
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449}
96029c4e 450EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
8366025e 452/**
eb04c282 453 * __mnt_drop_write - give up write access to a mount
8366025e
DH
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
eb04c282 458 * __mnt_want_write() call above.
8366025e 459 */
eb04c282 460void __mnt_drop_write(struct vfsmount *mnt)
8366025e 461{
d3ef3d73 462 preempt_disable();
83adc753 463 mnt_dec_writers(real_mount(mnt));
d3ef3d73 464 preempt_enable();
8366025e 465}
eb04c282
JK
466
467/**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475void mnt_drop_write(struct vfsmount *mnt)
476{
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479}
8366025e
DH
480EXPORT_SYMBOL_GPL(mnt_drop_write);
481
eb04c282
JK
482void __mnt_drop_write_file(struct file *file)
483{
484 __mnt_drop_write(file->f_path.mnt);
485}
486
2a79f17e
AV
487void mnt_drop_write_file(struct file *file)
488{
489 mnt_drop_write(file->f_path.mnt);
490}
491EXPORT_SYMBOL(mnt_drop_write_file);
492
83adc753 493static int mnt_make_readonly(struct mount *mnt)
8366025e 494{
3d733633
DH
495 int ret = 0;
496
719ea2fb 497 lock_mount_hash();
83adc753 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 499 /*
d3ef3d73 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
3d733633 502 */
d3ef3d73 503 smp_mb();
504
3d733633 505 /*
d3ef3d73 506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
3d733633 520 */
c6653a83 521 if (mnt_get_writers(mnt) > 0)
d3ef3d73 522 ret = -EBUSY;
523 else
83adc753 524 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
83adc753 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 531 unlock_mount_hash();
3d733633 532 return ret;
8366025e 533}
8366025e 534
83adc753 535static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 536{
719ea2fb 537 lock_mount_hash();
83adc753 538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 539 unlock_mount_hash();
2e4b7fcd
DH
540}
541
4ed5e82f
MS
542int sb_prepare_remount_readonly(struct super_block *sb)
543{
544 struct mount *mnt;
545 int err = 0;
546
8e8b8796
MS
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
719ea2fb 551 lock_mount_hash();
4ed5e82f
MS
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
8e8b8796
MS
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
4ed5e82f
MS
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
719ea2fb 573 unlock_mount_hash();
4ed5e82f
MS
574
575 return err;
576}
577
b105e270 578static void free_vfsmnt(struct mount *mnt)
1da177e4 579{
fcc139ae 580 kfree_const(mnt->mnt_devname);
d3ef3d73 581#ifdef CONFIG_SMP
68e8a9fe 582 free_percpu(mnt->mnt_pcp);
d3ef3d73 583#endif
b105e270 584 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
585}
586
8ffcb32e
DH
587static void delayed_free_vfsmnt(struct rcu_head *head)
588{
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590}
591
48a066e7 592/* call under rcu_read_lock */
294d71ff 593int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
594{
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
294d71ff 597 return 1;
48a066e7 598 if (bastard == NULL)
294d71ff 599 return 0;
48a066e7
AV
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 603 return 0;
48a066e7
AV
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
294d71ff
AV
606 return 1;
607 }
608 return -1;
609}
610
611/* call under rcu_read_lock */
612bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
613{
614 int res = __legitimize_mnt(bastard, seq);
615 if (likely(!res))
616 return true;
617 if (unlikely(res < 0)) {
618 rcu_read_unlock();
619 mntput(bastard);
620 rcu_read_lock();
48a066e7 621 }
48a066e7
AV
622 return false;
623}
624
1da177e4 625/*
474279dc 626 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 627 * call under rcu_read_lock()
1da177e4 628 */
474279dc 629struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 630{
38129a13 631 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
632 struct mount *p;
633
38129a13 634 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
635 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
636 return p;
637 return NULL;
638}
639
a05964f3 640/*
f015f126
DH
641 * lookup_mnt - Return the first child mount mounted at path
642 *
643 * "First" means first mounted chronologically. If you create the
644 * following mounts:
645 *
646 * mount /dev/sda1 /mnt
647 * mount /dev/sda2 /mnt
648 * mount /dev/sda3 /mnt
649 *
650 * Then lookup_mnt() on the base /mnt dentry in the root mount will
651 * return successively the root dentry and vfsmount of /dev/sda1, then
652 * /dev/sda2, then /dev/sda3, then NULL.
653 *
654 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 655 */
ca71cf71 656struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 657{
c7105365 658 struct mount *child_mnt;
48a066e7
AV
659 struct vfsmount *m;
660 unsigned seq;
99b7db7b 661
48a066e7
AV
662 rcu_read_lock();
663 do {
664 seq = read_seqbegin(&mount_lock);
665 child_mnt = __lookup_mnt(path->mnt, path->dentry);
666 m = child_mnt ? &child_mnt->mnt : NULL;
667 } while (!legitimize_mnt(m, seq));
668 rcu_read_unlock();
669 return m;
a05964f3
RP
670}
671
7af1364f
EB
672/*
673 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
674 * current mount namespace.
675 *
676 * The common case is dentries are not mountpoints at all and that
677 * test is handled inline. For the slow case when we are actually
678 * dealing with a mountpoint of some kind, walk through all of the
679 * mounts in the current mount namespace and test to see if the dentry
680 * is a mountpoint.
681 *
682 * The mount_hashtable is not usable in the context because we
683 * need to identify all mounts that may be in the current mount
684 * namespace not just a mount that happens to have some specified
685 * parent mount.
686 */
687bool __is_local_mountpoint(struct dentry *dentry)
688{
689 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
690 struct mount *mnt;
691 bool is_covered = false;
692
693 if (!d_mountpoint(dentry))
694 goto out;
695
696 down_read(&namespace_sem);
697 list_for_each_entry(mnt, &ns->list, mnt_list) {
698 is_covered = (mnt->mnt_mountpoint == dentry);
699 if (is_covered)
700 break;
701 }
702 up_read(&namespace_sem);
703out:
704 return is_covered;
705}
706
e2dfa935 707static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 708{
0818bf27 709 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
710 struct mountpoint *mp;
711
0818bf27 712 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
713 if (mp->m_dentry == dentry) {
714 /* might be worth a WARN_ON() */
715 if (d_unlinked(dentry))
716 return ERR_PTR(-ENOENT);
717 mp->m_count++;
718 return mp;
719 }
720 }
e2dfa935
EB
721 return NULL;
722}
723
3895dbf8 724static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 725{
3895dbf8 726 struct mountpoint *mp, *new = NULL;
e2dfa935 727 int ret;
84d17192 728
3895dbf8
EB
729 if (d_mountpoint(dentry)) {
730mountpoint:
731 read_seqlock_excl(&mount_lock);
732 mp = lookup_mountpoint(dentry);
733 read_sequnlock_excl(&mount_lock);
734 if (mp)
735 goto done;
736 }
737
738 if (!new)
739 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
740 if (!new)
84d17192
AV
741 return ERR_PTR(-ENOMEM);
742
3895dbf8
EB
743
744 /* Exactly one processes may set d_mounted */
eed81007 745 ret = d_set_mounted(dentry);
eed81007 746
3895dbf8
EB
747 /* Someone else set d_mounted? */
748 if (ret == -EBUSY)
749 goto mountpoint;
750
751 /* The dentry is not available as a mountpoint? */
752 mp = ERR_PTR(ret);
753 if (ret)
754 goto done;
755
756 /* Add the new mountpoint to the hash table */
757 read_seqlock_excl(&mount_lock);
758 new->m_dentry = dentry;
759 new->m_count = 1;
760 hlist_add_head(&new->m_hash, mp_hash(dentry));
761 INIT_HLIST_HEAD(&new->m_list);
762 read_sequnlock_excl(&mount_lock);
763
764 mp = new;
765 new = NULL;
766done:
767 kfree(new);
84d17192
AV
768 return mp;
769}
770
771static void put_mountpoint(struct mountpoint *mp)
772{
773 if (!--mp->m_count) {
774 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 775 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
776 spin_lock(&dentry->d_lock);
777 dentry->d_flags &= ~DCACHE_MOUNTED;
778 spin_unlock(&dentry->d_lock);
0818bf27 779 hlist_del(&mp->m_hash);
84d17192
AV
780 kfree(mp);
781 }
782}
783
143c8c91 784static inline int check_mnt(struct mount *mnt)
1da177e4 785{
6b3286ed 786 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
787}
788
99b7db7b
NP
789/*
790 * vfsmount lock must be held for write
791 */
6b3286ed 792static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
793{
794 if (ns) {
795 ns->event = ++event;
796 wake_up_interruptible(&ns->poll);
797 }
798}
799
99b7db7b
NP
800/*
801 * vfsmount lock must be held for write
802 */
6b3286ed 803static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
804{
805 if (ns && ns->event != event) {
806 ns->event = event;
807 wake_up_interruptible(&ns->poll);
808 }
809}
810
99b7db7b
NP
811/*
812 * vfsmount lock must be held for write
813 */
7bdb11de 814static void unhash_mnt(struct mount *mnt)
419148da 815{
0714a533 816 mnt->mnt_parent = mnt;
a73324da 817 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 818 list_del_init(&mnt->mnt_child);
38129a13 819 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 820 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
821 put_mountpoint(mnt->mnt_mp);
822 mnt->mnt_mp = NULL;
1da177e4
LT
823}
824
7bdb11de
EB
825/*
826 * vfsmount lock must be held for write
827 */
828static void detach_mnt(struct mount *mnt, struct path *old_path)
829{
830 old_path->dentry = mnt->mnt_mountpoint;
831 old_path->mnt = &mnt->mnt_parent->mnt;
832 unhash_mnt(mnt);
833}
834
6a46c573
EB
835/*
836 * vfsmount lock must be held for write
837 */
838static void umount_mnt(struct mount *mnt)
839{
840 /* old mountpoint will be dropped when we can do that */
841 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
842 unhash_mnt(mnt);
843}
844
99b7db7b
NP
845/*
846 * vfsmount lock must be held for write
847 */
84d17192
AV
848void mnt_set_mountpoint(struct mount *mnt,
849 struct mountpoint *mp,
44d964d6 850 struct mount *child_mnt)
b90fa9ae 851{
84d17192 852 mp->m_count++;
3a2393d7 853 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 854 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 855 child_mnt->mnt_parent = mnt;
84d17192 856 child_mnt->mnt_mp = mp;
0a5eb7c8 857 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
858}
859
1064f874
EB
860static void __attach_mnt(struct mount *mnt, struct mount *parent)
861{
862 hlist_add_head_rcu(&mnt->mnt_hash,
863 m_hash(&parent->mnt, mnt->mnt_mountpoint));
864 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
865}
866
99b7db7b
NP
867/*
868 * vfsmount lock must be held for write
869 */
84d17192
AV
870static void attach_mnt(struct mount *mnt,
871 struct mount *parent,
872 struct mountpoint *mp)
1da177e4 873{
84d17192 874 mnt_set_mountpoint(parent, mp, mnt);
1064f874 875 __attach_mnt(mnt, parent);
b90fa9ae
RP
876}
877
1064f874 878void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 879{
1064f874
EB
880 struct mountpoint *old_mp = mnt->mnt_mp;
881 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
882 struct mount *old_parent = mnt->mnt_parent;
883
884 list_del_init(&mnt->mnt_child);
885 hlist_del_init(&mnt->mnt_mp_list);
886 hlist_del_init_rcu(&mnt->mnt_hash);
887
888 attach_mnt(mnt, parent, mp);
889
890 put_mountpoint(old_mp);
891
892 /*
893 * Safely avoid even the suggestion this code might sleep or
894 * lock the mount hash by taking advantage of the knowledge that
895 * mnt_change_mountpoint will not release the final reference
896 * to a mountpoint.
897 *
898 * During mounting, the mount passed in as the parent mount will
899 * continue to use the old mountpoint and during unmounting, the
900 * old mountpoint will continue to exist until namespace_unlock,
901 * which happens well after mnt_change_mountpoint.
902 */
903 spin_lock(&old_mountpoint->d_lock);
904 old_mountpoint->d_lockref.count--;
905 spin_unlock(&old_mountpoint->d_lock);
906
907 mnt_add_count(old_parent, -1);
12a5b529
AV
908}
909
b90fa9ae 910/*
99b7db7b 911 * vfsmount lock must be held for write
b90fa9ae 912 */
1064f874 913static void commit_tree(struct mount *mnt)
b90fa9ae 914{
0714a533 915 struct mount *parent = mnt->mnt_parent;
83adc753 916 struct mount *m;
b90fa9ae 917 LIST_HEAD(head);
143c8c91 918 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 919
0714a533 920 BUG_ON(parent == mnt);
b90fa9ae 921
1a4eeaf2 922 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 923 list_for_each_entry(m, &head, mnt_list)
143c8c91 924 m->mnt_ns = n;
f03c6599 925
b90fa9ae
RP
926 list_splice(&head, n->list.prev);
927
d2921684
EB
928 n->mounts += n->pending_mounts;
929 n->pending_mounts = 0;
930
1064f874 931 __attach_mnt(mnt, parent);
6b3286ed 932 touch_mnt_namespace(n);
1da177e4
LT
933}
934
909b0a88 935static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 936{
6b41d536
AV
937 struct list_head *next = p->mnt_mounts.next;
938 if (next == &p->mnt_mounts) {
1da177e4 939 while (1) {
909b0a88 940 if (p == root)
1da177e4 941 return NULL;
6b41d536
AV
942 next = p->mnt_child.next;
943 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 944 break;
0714a533 945 p = p->mnt_parent;
1da177e4
LT
946 }
947 }
6b41d536 948 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
949}
950
315fc83e 951static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 952{
6b41d536
AV
953 struct list_head *prev = p->mnt_mounts.prev;
954 while (prev != &p->mnt_mounts) {
955 p = list_entry(prev, struct mount, mnt_child);
956 prev = p->mnt_mounts.prev;
9676f0c6
RP
957 }
958 return p;
959}
960
9d412a43
AV
961struct vfsmount *
962vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
963{
b105e270 964 struct mount *mnt;
9d412a43
AV
965 struct dentry *root;
966
967 if (!type)
968 return ERR_PTR(-ENODEV);
969
970 mnt = alloc_vfsmnt(name);
971 if (!mnt)
972 return ERR_PTR(-ENOMEM);
973
974 if (flags & MS_KERNMOUNT)
b105e270 975 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
976
977 root = mount_fs(type, flags, name, data);
978 if (IS_ERR(root)) {
8ffcb32e 979 mnt_free_id(mnt);
9d412a43
AV
980 free_vfsmnt(mnt);
981 return ERR_CAST(root);
982 }
983
b105e270
AV
984 mnt->mnt.mnt_root = root;
985 mnt->mnt.mnt_sb = root->d_sb;
a73324da 986 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 987 mnt->mnt_parent = mnt;
719ea2fb 988 lock_mount_hash();
39f7c4db 989 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 990 unlock_mount_hash();
b105e270 991 return &mnt->mnt;
9d412a43
AV
992}
993EXPORT_SYMBOL_GPL(vfs_kern_mount);
994
93faccbb
EB
995struct vfsmount *
996vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
997 const char *name, void *data)
998{
999 /* Until it is worked out how to pass the user namespace
1000 * through from the parent mount to the submount don't support
1001 * unprivileged mounts with submounts.
1002 */
1003 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1004 return ERR_PTR(-EPERM);
1005
1006 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1007}
1008EXPORT_SYMBOL_GPL(vfs_submount);
1009
87129cc0 1010static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1011 int flag)
1da177e4 1012{
87129cc0 1013 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1014 struct mount *mnt;
1015 int err;
1da177e4 1016
be34d1a3
DH
1017 mnt = alloc_vfsmnt(old->mnt_devname);
1018 if (!mnt)
1019 return ERR_PTR(-ENOMEM);
719f5d7f 1020
7a472ef4 1021 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1022 mnt->mnt_group_id = 0; /* not a peer of original */
1023 else
1024 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1025
be34d1a3
DH
1026 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1027 err = mnt_alloc_group_id(mnt);
1028 if (err)
1029 goto out_free;
1da177e4 1030 }
be34d1a3 1031
f2ebb3a9 1032 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 1033 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
1034 if (flag & CL_UNPRIVILEGED) {
1035 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1036
1037 if (mnt->mnt.mnt_flags & MNT_READONLY)
1038 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1039
1040 if (mnt->mnt.mnt_flags & MNT_NODEV)
1041 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1042
1043 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1044 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1045
1046 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1047 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1048 }
132c94e3 1049
5ff9d8a6 1050 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1051 if ((flag & CL_UNPRIVILEGED) &&
1052 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1053 mnt->mnt.mnt_flags |= MNT_LOCKED;
1054
be34d1a3
DH
1055 atomic_inc(&sb->s_active);
1056 mnt->mnt.mnt_sb = sb;
1057 mnt->mnt.mnt_root = dget(root);
1058 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1059 mnt->mnt_parent = mnt;
719ea2fb 1060 lock_mount_hash();
be34d1a3 1061 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1062 unlock_mount_hash();
be34d1a3 1063
7a472ef4
EB
1064 if ((flag & CL_SLAVE) ||
1065 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1066 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1067 mnt->mnt_master = old;
1068 CLEAR_MNT_SHARED(mnt);
1069 } else if (!(flag & CL_PRIVATE)) {
1070 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1071 list_add(&mnt->mnt_share, &old->mnt_share);
1072 if (IS_MNT_SLAVE(old))
1073 list_add(&mnt->mnt_slave, &old->mnt_slave);
1074 mnt->mnt_master = old->mnt_master;
5235d448
AV
1075 } else {
1076 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1077 }
1078 if (flag & CL_MAKE_SHARED)
1079 set_mnt_shared(mnt);
1080
1081 /* stick the duplicate mount on the same expiry list
1082 * as the original if that was on one */
1083 if (flag & CL_EXPIRE) {
1084 if (!list_empty(&old->mnt_expire))
1085 list_add(&mnt->mnt_expire, &old->mnt_expire);
1086 }
1087
cb338d06 1088 return mnt;
719f5d7f
MS
1089
1090 out_free:
8ffcb32e 1091 mnt_free_id(mnt);
719f5d7f 1092 free_vfsmnt(mnt);
be34d1a3 1093 return ERR_PTR(err);
1da177e4
LT
1094}
1095
9ea459e1
AV
1096static void cleanup_mnt(struct mount *mnt)
1097{
1098 /*
1099 * This probably indicates that somebody messed
1100 * up a mnt_want/drop_write() pair. If this
1101 * happens, the filesystem was probably unable
1102 * to make r/w->r/o transitions.
1103 */
1104 /*
1105 * The locking used to deal with mnt_count decrement provides barriers,
1106 * so mnt_get_writers() below is safe.
1107 */
1108 WARN_ON(mnt_get_writers(mnt));
1109 if (unlikely(mnt->mnt_pins.first))
1110 mnt_pin_kill(mnt);
1111 fsnotify_vfsmount_delete(&mnt->mnt);
1112 dput(mnt->mnt.mnt_root);
1113 deactivate_super(mnt->mnt.mnt_sb);
1114 mnt_free_id(mnt);
1115 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1116}
1117
1118static void __cleanup_mnt(struct rcu_head *head)
1119{
1120 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1121}
1122
1123static LLIST_HEAD(delayed_mntput_list);
1124static void delayed_mntput(struct work_struct *unused)
1125{
1126 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1127 struct llist_node *next;
1128
1129 for (; node; node = next) {
1130 next = llist_next(node);
1131 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1132 }
1133}
1134static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1135
900148dc 1136static void mntput_no_expire(struct mount *mnt)
b3e19d92 1137{
48a066e7
AV
1138 rcu_read_lock();
1139 mnt_add_count(mnt, -1);
1140 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1141 rcu_read_unlock();
f03c6599 1142 return;
b3e19d92 1143 }
719ea2fb 1144 lock_mount_hash();
b3e19d92 1145 if (mnt_get_count(mnt)) {
48a066e7 1146 rcu_read_unlock();
719ea2fb 1147 unlock_mount_hash();
99b7db7b
NP
1148 return;
1149 }
48a066e7
AV
1150 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1151 rcu_read_unlock();
1152 unlock_mount_hash();
1153 return;
1154 }
1155 mnt->mnt.mnt_flags |= MNT_DOOMED;
1156 rcu_read_unlock();
962830df 1157
39f7c4db 1158 list_del(&mnt->mnt_instance);
ce07d891
EB
1159
1160 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1161 struct mount *p, *tmp;
1162 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1163 umount_mnt(p);
1164 }
1165 }
719ea2fb 1166 unlock_mount_hash();
649a795a 1167
9ea459e1
AV
1168 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1169 struct task_struct *task = current;
1170 if (likely(!(task->flags & PF_KTHREAD))) {
1171 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1172 if (!task_work_add(task, &mnt->mnt_rcu, true))
1173 return;
1174 }
1175 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1176 schedule_delayed_work(&delayed_mntput_work, 1);
1177 return;
1178 }
1179 cleanup_mnt(mnt);
b3e19d92 1180}
b3e19d92
NP
1181
1182void mntput(struct vfsmount *mnt)
1183{
1184 if (mnt) {
863d684f 1185 struct mount *m = real_mount(mnt);
b3e19d92 1186 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1187 if (unlikely(m->mnt_expiry_mark))
1188 m->mnt_expiry_mark = 0;
1189 mntput_no_expire(m);
b3e19d92
NP
1190 }
1191}
1192EXPORT_SYMBOL(mntput);
1193
1194struct vfsmount *mntget(struct vfsmount *mnt)
1195{
1196 if (mnt)
83adc753 1197 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1198 return mnt;
1199}
1200EXPORT_SYMBOL(mntget);
1201
c6609c0a
IK
1202/* path_is_mountpoint() - Check if path is a mount in the current
1203 * namespace.
1204 *
1205 * d_mountpoint() can only be used reliably to establish if a dentry is
1206 * not mounted in any namespace and that common case is handled inline.
1207 * d_mountpoint() isn't aware of the possibility there may be multiple
1208 * mounts using a given dentry in a different namespace. This function
1209 * checks if the passed in path is a mountpoint rather than the dentry
1210 * alone.
1211 */
1212bool path_is_mountpoint(const struct path *path)
1213{
1214 unsigned seq;
1215 bool res;
1216
1217 if (!d_mountpoint(path->dentry))
1218 return false;
1219
1220 rcu_read_lock();
1221 do {
1222 seq = read_seqbegin(&mount_lock);
1223 res = __path_is_mountpoint(path);
1224 } while (read_seqretry(&mount_lock, seq));
1225 rcu_read_unlock();
1226
1227 return res;
1228}
1229EXPORT_SYMBOL(path_is_mountpoint);
1230
ca71cf71 1231struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1232{
3064c356
AV
1233 struct mount *p;
1234 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1235 if (IS_ERR(p))
1236 return ERR_CAST(p);
1237 p->mnt.mnt_flags |= MNT_INTERNAL;
1238 return &p->mnt;
7b7b1ace 1239}
1da177e4 1240
b3b304a2
MS
1241static inline void mangle(struct seq_file *m, const char *s)
1242{
1243 seq_escape(m, s, " \t\n\\");
1244}
1245
1246/*
1247 * Simple .show_options callback for filesystems which don't want to
1248 * implement more complex mount option showing.
1249 *
1250 * See also save_mount_options().
1251 */
34c80b1d 1252int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1253{
2a32cebd
AV
1254 const char *options;
1255
1256 rcu_read_lock();
34c80b1d 1257 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1258
1259 if (options != NULL && options[0]) {
1260 seq_putc(m, ',');
1261 mangle(m, options);
1262 }
2a32cebd 1263 rcu_read_unlock();
b3b304a2
MS
1264
1265 return 0;
1266}
1267EXPORT_SYMBOL(generic_show_options);
1268
1269/*
1270 * If filesystem uses generic_show_options(), this function should be
1271 * called from the fill_super() callback.
1272 *
1273 * The .remount_fs callback usually needs to be handled in a special
1274 * way, to make sure, that previous options are not overwritten if the
1275 * remount fails.
1276 *
1277 * Also note, that if the filesystem's .remount_fs function doesn't
1278 * reset all options to their default value, but changes only newly
1279 * given options, then the displayed options will not reflect reality
1280 * any more.
1281 */
1282void save_mount_options(struct super_block *sb, char *options)
1283{
2a32cebd
AV
1284 BUG_ON(sb->s_options);
1285 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1286}
1287EXPORT_SYMBOL(save_mount_options);
1288
2a32cebd
AV
1289void replace_mount_options(struct super_block *sb, char *options)
1290{
1291 char *old = sb->s_options;
1292 rcu_assign_pointer(sb->s_options, options);
1293 if (old) {
1294 synchronize_rcu();
1295 kfree(old);
1296 }
1297}
1298EXPORT_SYMBOL(replace_mount_options);
1299
a1a2c409 1300#ifdef CONFIG_PROC_FS
0226f492 1301/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1302static void *m_start(struct seq_file *m, loff_t *pos)
1303{
ede1bf0d 1304 struct proc_mounts *p = m->private;
1da177e4 1305
390c6843 1306 down_read(&namespace_sem);
c7999c36
AV
1307 if (p->cached_event == p->ns->event) {
1308 void *v = p->cached_mount;
1309 if (*pos == p->cached_index)
1310 return v;
1311 if (*pos == p->cached_index + 1) {
1312 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1313 return p->cached_mount = v;
1314 }
1315 }
1316
1317 p->cached_event = p->ns->event;
1318 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1319 p->cached_index = *pos;
1320 return p->cached_mount;
1da177e4
LT
1321}
1322
1323static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1324{
ede1bf0d 1325 struct proc_mounts *p = m->private;
b0765fb8 1326
c7999c36
AV
1327 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1328 p->cached_index = *pos;
1329 return p->cached_mount;
1da177e4
LT
1330}
1331
1332static void m_stop(struct seq_file *m, void *v)
1333{
390c6843 1334 up_read(&namespace_sem);
1da177e4
LT
1335}
1336
0226f492 1337static int m_show(struct seq_file *m, void *v)
2d4d4864 1338{
ede1bf0d 1339 struct proc_mounts *p = m->private;
1a4eeaf2 1340 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1341 return p->show(m, &r->mnt);
1da177e4
LT
1342}
1343
a1a2c409 1344const struct seq_operations mounts_op = {
1da177e4
LT
1345 .start = m_start,
1346 .next = m_next,
1347 .stop = m_stop,
0226f492 1348 .show = m_show,
b4629fe2 1349};
a1a2c409 1350#endif /* CONFIG_PROC_FS */
b4629fe2 1351
1da177e4
LT
1352/**
1353 * may_umount_tree - check if a mount tree is busy
1354 * @mnt: root of mount tree
1355 *
1356 * This is called to check if a tree of mounts has any
1357 * open files, pwds, chroots or sub mounts that are
1358 * busy.
1359 */
909b0a88 1360int may_umount_tree(struct vfsmount *m)
1da177e4 1361{
909b0a88 1362 struct mount *mnt = real_mount(m);
36341f64
RP
1363 int actual_refs = 0;
1364 int minimum_refs = 0;
315fc83e 1365 struct mount *p;
909b0a88 1366 BUG_ON(!m);
1da177e4 1367
b3e19d92 1368 /* write lock needed for mnt_get_count */
719ea2fb 1369 lock_mount_hash();
909b0a88 1370 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1371 actual_refs += mnt_get_count(p);
1da177e4 1372 minimum_refs += 2;
1da177e4 1373 }
719ea2fb 1374 unlock_mount_hash();
1da177e4
LT
1375
1376 if (actual_refs > minimum_refs)
e3474a8e 1377 return 0;
1da177e4 1378
e3474a8e 1379 return 1;
1da177e4
LT
1380}
1381
1382EXPORT_SYMBOL(may_umount_tree);
1383
1384/**
1385 * may_umount - check if a mount point is busy
1386 * @mnt: root of mount
1387 *
1388 * This is called to check if a mount point has any
1389 * open files, pwds, chroots or sub mounts. If the
1390 * mount has sub mounts this will return busy
1391 * regardless of whether the sub mounts are busy.
1392 *
1393 * Doesn't take quota and stuff into account. IOW, in some cases it will
1394 * give false negatives. The main reason why it's here is that we need
1395 * a non-destructive way to look for easily umountable filesystems.
1396 */
1397int may_umount(struct vfsmount *mnt)
1398{
e3474a8e 1399 int ret = 1;
8ad08d8a 1400 down_read(&namespace_sem);
719ea2fb 1401 lock_mount_hash();
1ab59738 1402 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1403 ret = 0;
719ea2fb 1404 unlock_mount_hash();
8ad08d8a 1405 up_read(&namespace_sem);
a05964f3 1406 return ret;
1da177e4
LT
1407}
1408
1409EXPORT_SYMBOL(may_umount);
1410
38129a13 1411static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1412
97216be0 1413static void namespace_unlock(void)
70fbcdf4 1414{
a3b3c562 1415 struct hlist_head head;
97216be0 1416
a3b3c562 1417 hlist_move_list(&unmounted, &head);
97216be0 1418
97216be0
AV
1419 up_write(&namespace_sem);
1420
a3b3c562
EB
1421 if (likely(hlist_empty(&head)))
1422 return;
1423
48a066e7
AV
1424 synchronize_rcu();
1425
87b95ce0 1426 group_pin_kill(&head);
70fbcdf4
RP
1427}
1428
97216be0 1429static inline void namespace_lock(void)
e3197d83 1430{
97216be0 1431 down_write(&namespace_sem);
e3197d83
AV
1432}
1433
e819f152
EB
1434enum umount_tree_flags {
1435 UMOUNT_SYNC = 1,
1436 UMOUNT_PROPAGATE = 2,
e0c9c0af 1437 UMOUNT_CONNECTED = 4,
e819f152 1438};
f2d0a123
EB
1439
1440static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1441{
1442 /* Leaving mounts connected is only valid for lazy umounts */
1443 if (how & UMOUNT_SYNC)
1444 return true;
1445
1446 /* A mount without a parent has nothing to be connected to */
1447 if (!mnt_has_parent(mnt))
1448 return true;
1449
1450 /* Because the reference counting rules change when mounts are
1451 * unmounted and connected, umounted mounts may not be
1452 * connected to mounted mounts.
1453 */
1454 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1455 return true;
1456
1457 /* Has it been requested that the mount remain connected? */
1458 if (how & UMOUNT_CONNECTED)
1459 return false;
1460
1461 /* Is the mount locked such that it needs to remain connected? */
1462 if (IS_MNT_LOCKED(mnt))
1463 return false;
1464
1465 /* By default disconnect the mount */
1466 return true;
1467}
1468
99b7db7b 1469/*
48a066e7 1470 * mount_lock must be held
99b7db7b
NP
1471 * namespace_sem must be held for write
1472 */
e819f152 1473static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1474{
c003b26f 1475 LIST_HEAD(tmp_list);
315fc83e 1476 struct mount *p;
1da177e4 1477
5d88457e
EB
1478 if (how & UMOUNT_PROPAGATE)
1479 propagate_mount_unlock(mnt);
1480
c003b26f 1481 /* Gather the mounts to umount */
590ce4bc
EB
1482 for (p = mnt; p; p = next_mnt(p, mnt)) {
1483 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1484 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1485 }
1da177e4 1486
411a938b 1487 /* Hide the mounts from mnt_mounts */
c003b26f 1488 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1489 list_del_init(&p->mnt_child);
c003b26f 1490 }
88b368f2 1491
c003b26f 1492 /* Add propogated mounts to the tmp_list */
e819f152 1493 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1494 propagate_umount(&tmp_list);
a05964f3 1495
c003b26f 1496 while (!list_empty(&tmp_list)) {
d2921684 1497 struct mnt_namespace *ns;
ce07d891 1498 bool disconnect;
c003b26f 1499 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1500 list_del_init(&p->mnt_expire);
1a4eeaf2 1501 list_del_init(&p->mnt_list);
d2921684
EB
1502 ns = p->mnt_ns;
1503 if (ns) {
1504 ns->mounts--;
1505 __touch_mnt_namespace(ns);
1506 }
143c8c91 1507 p->mnt_ns = NULL;
e819f152 1508 if (how & UMOUNT_SYNC)
48a066e7 1509 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1510
f2d0a123 1511 disconnect = disconnect_mount(p, how);
ce07d891
EB
1512
1513 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1514 disconnect ? &unmounted : NULL);
676da58d 1515 if (mnt_has_parent(p)) {
81b6b061 1516 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1517 if (!disconnect) {
1518 /* Don't forget about p */
1519 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1520 } else {
1521 umount_mnt(p);
1522 }
7c4b93d8 1523 }
0f0afb1d 1524 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1525 }
1526}
1527
b54b9be7 1528static void shrink_submounts(struct mount *mnt);
c35038be 1529
1ab59738 1530static int do_umount(struct mount *mnt, int flags)
1da177e4 1531{
1ab59738 1532 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1533 int retval;
1534
1ab59738 1535 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1536 if (retval)
1537 return retval;
1538
1539 /*
1540 * Allow userspace to request a mountpoint be expired rather than
1541 * unmounting unconditionally. Unmount only happens if:
1542 * (1) the mark is already set (the mark is cleared by mntput())
1543 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1544 */
1545 if (flags & MNT_EXPIRE) {
1ab59738 1546 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1547 flags & (MNT_FORCE | MNT_DETACH))
1548 return -EINVAL;
1549
b3e19d92
NP
1550 /*
1551 * probably don't strictly need the lock here if we examined
1552 * all race cases, but it's a slowpath.
1553 */
719ea2fb 1554 lock_mount_hash();
83adc753 1555 if (mnt_get_count(mnt) != 2) {
719ea2fb 1556 unlock_mount_hash();
1da177e4 1557 return -EBUSY;
b3e19d92 1558 }
719ea2fb 1559 unlock_mount_hash();
1da177e4 1560
863d684f 1561 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1562 return -EAGAIN;
1563 }
1564
1565 /*
1566 * If we may have to abort operations to get out of this
1567 * mount, and they will themselves hold resources we must
1568 * allow the fs to do things. In the Unix tradition of
1569 * 'Gee thats tricky lets do it in userspace' the umount_begin
1570 * might fail to complete on the first run through as other tasks
1571 * must return, and the like. Thats for the mount program to worry
1572 * about for the moment.
1573 */
1574
42faad99 1575 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1576 sb->s_op->umount_begin(sb);
42faad99 1577 }
1da177e4
LT
1578
1579 /*
1580 * No sense to grab the lock for this test, but test itself looks
1581 * somewhat bogus. Suggestions for better replacement?
1582 * Ho-hum... In principle, we might treat that as umount + switch
1583 * to rootfs. GC would eventually take care of the old vfsmount.
1584 * Actually it makes sense, especially if rootfs would contain a
1585 * /reboot - static binary that would close all descriptors and
1586 * call reboot(9). Then init(8) could umount root and exec /reboot.
1587 */
1ab59738 1588 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1589 /*
1590 * Special case for "unmounting" root ...
1591 * we just try to remount it readonly.
1592 */
a1480dcc
AL
1593 if (!capable(CAP_SYS_ADMIN))
1594 return -EPERM;
1da177e4 1595 down_write(&sb->s_umount);
4aa98cf7 1596 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1597 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1598 up_write(&sb->s_umount);
1599 return retval;
1600 }
1601
97216be0 1602 namespace_lock();
719ea2fb 1603 lock_mount_hash();
5addc5dd 1604 event++;
1da177e4 1605
48a066e7 1606 if (flags & MNT_DETACH) {
1a4eeaf2 1607 if (!list_empty(&mnt->mnt_list))
e819f152 1608 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1609 retval = 0;
48a066e7
AV
1610 } else {
1611 shrink_submounts(mnt);
1612 retval = -EBUSY;
1613 if (!propagate_mount_busy(mnt, 2)) {
1614 if (!list_empty(&mnt->mnt_list))
e819f152 1615 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1616 retval = 0;
1617 }
1da177e4 1618 }
719ea2fb 1619 unlock_mount_hash();
e3197d83 1620 namespace_unlock();
1da177e4
LT
1621 return retval;
1622}
1623
80b5dce8
EB
1624/*
1625 * __detach_mounts - lazily unmount all mounts on the specified dentry
1626 *
1627 * During unlink, rmdir, and d_drop it is possible to loose the path
1628 * to an existing mountpoint, and wind up leaking the mount.
1629 * detach_mounts allows lazily unmounting those mounts instead of
1630 * leaking them.
1631 *
1632 * The caller may hold dentry->d_inode->i_mutex.
1633 */
1634void __detach_mounts(struct dentry *dentry)
1635{
1636 struct mountpoint *mp;
1637 struct mount *mnt;
1638
1639 namespace_lock();
3895dbf8 1640 lock_mount_hash();
80b5dce8 1641 mp = lookup_mountpoint(dentry);
f53e5797 1642 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1643 goto out_unlock;
1644
e06b933e 1645 event++;
80b5dce8
EB
1646 while (!hlist_empty(&mp->m_list)) {
1647 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1648 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1649 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1650 umount_mnt(mnt);
ce07d891 1651 }
e0c9c0af 1652 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1653 }
80b5dce8
EB
1654 put_mountpoint(mp);
1655out_unlock:
3895dbf8 1656 unlock_mount_hash();
80b5dce8
EB
1657 namespace_unlock();
1658}
1659
9b40bc90
AV
1660/*
1661 * Is the caller allowed to modify his namespace?
1662 */
1663static inline bool may_mount(void)
1664{
1665 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1666}
1667
9e8925b6
JL
1668static inline bool may_mandlock(void)
1669{
1670#ifndef CONFIG_MANDATORY_FILE_LOCKING
1671 return false;
1672#endif
95ace754 1673 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1674}
1675
1da177e4
LT
1676/*
1677 * Now umount can handle mount points as well as block devices.
1678 * This is important for filesystems which use unnamed block devices.
1679 *
1680 * We now support a flag for forced unmount like the other 'big iron'
1681 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1682 */
1683
bdc480e3 1684SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1685{
2d8f3038 1686 struct path path;
900148dc 1687 struct mount *mnt;
1da177e4 1688 int retval;
db1f05bb 1689 int lookup_flags = 0;
1da177e4 1690
db1f05bb
MS
1691 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1692 return -EINVAL;
1693
9b40bc90
AV
1694 if (!may_mount())
1695 return -EPERM;
1696
db1f05bb
MS
1697 if (!(flags & UMOUNT_NOFOLLOW))
1698 lookup_flags |= LOOKUP_FOLLOW;
1699
197df04c 1700 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1701 if (retval)
1702 goto out;
900148dc 1703 mnt = real_mount(path.mnt);
1da177e4 1704 retval = -EINVAL;
2d8f3038 1705 if (path.dentry != path.mnt->mnt_root)
1da177e4 1706 goto dput_and_out;
143c8c91 1707 if (!check_mnt(mnt))
1da177e4 1708 goto dput_and_out;
5ff9d8a6
EB
1709 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1710 goto dput_and_out;
b2f5d4dc
EB
1711 retval = -EPERM;
1712 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1713 goto dput_and_out;
1da177e4 1714
900148dc 1715 retval = do_umount(mnt, flags);
1da177e4 1716dput_and_out:
429731b1 1717 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1718 dput(path.dentry);
900148dc 1719 mntput_no_expire(mnt);
1da177e4
LT
1720out:
1721 return retval;
1722}
1723
1724#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1725
1726/*
b58fed8b 1727 * The 2.0 compatible umount. No flags.
1da177e4 1728 */
bdc480e3 1729SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1730{
b58fed8b 1731 return sys_umount(name, 0);
1da177e4
LT
1732}
1733
1734#endif
1735
4ce5d2b1 1736static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1737{
4ce5d2b1 1738 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1739 return dentry->d_op == &ns_dentry_operations &&
1740 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1741}
1742
58be2825
AV
1743struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1744{
1745 return container_of(ns, struct mnt_namespace, ns);
1746}
1747
4ce5d2b1
EB
1748static bool mnt_ns_loop(struct dentry *dentry)
1749{
1750 /* Could bind mounting the mount namespace inode cause a
1751 * mount namespace loop?
1752 */
1753 struct mnt_namespace *mnt_ns;
1754 if (!is_mnt_ns_file(dentry))
1755 return false;
1756
f77c8014 1757 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1758 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1759}
1760
87129cc0 1761struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1762 int flag)
1da177e4 1763{
84d17192 1764 struct mount *res, *p, *q, *r, *parent;
1da177e4 1765
4ce5d2b1
EB
1766 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1767 return ERR_PTR(-EINVAL);
1768
1769 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1770 return ERR_PTR(-EINVAL);
9676f0c6 1771
36341f64 1772 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1773 if (IS_ERR(q))
1774 return q;
1775
a73324da 1776 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1777
1778 p = mnt;
6b41d536 1779 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1780 struct mount *s;
7ec02ef1 1781 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1782 continue;
1783
909b0a88 1784 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1785 if (!(flag & CL_COPY_UNBINDABLE) &&
1786 IS_MNT_UNBINDABLE(s)) {
1787 s = skip_mnt_tree(s);
1788 continue;
1789 }
1790 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1791 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1792 s = skip_mnt_tree(s);
1793 continue;
1794 }
0714a533
AV
1795 while (p != s->mnt_parent) {
1796 p = p->mnt_parent;
1797 q = q->mnt_parent;
1da177e4 1798 }
87129cc0 1799 p = s;
84d17192 1800 parent = q;
87129cc0 1801 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1802 if (IS_ERR(q))
1803 goto out;
719ea2fb 1804 lock_mount_hash();
1a4eeaf2 1805 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1806 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1807 unlock_mount_hash();
1da177e4
LT
1808 }
1809 }
1810 return res;
be34d1a3 1811out:
1da177e4 1812 if (res) {
719ea2fb 1813 lock_mount_hash();
e819f152 1814 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1815 unlock_mount_hash();
1da177e4 1816 }
be34d1a3 1817 return q;
1da177e4
LT
1818}
1819
be34d1a3
DH
1820/* Caller should check returned pointer for errors */
1821
ca71cf71 1822struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1823{
cb338d06 1824 struct mount *tree;
97216be0 1825 namespace_lock();
cd4a4017
EB
1826 if (!check_mnt(real_mount(path->mnt)))
1827 tree = ERR_PTR(-EINVAL);
1828 else
1829 tree = copy_tree(real_mount(path->mnt), path->dentry,
1830 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1831 namespace_unlock();
be34d1a3 1832 if (IS_ERR(tree))
52e220d3 1833 return ERR_CAST(tree);
be34d1a3 1834 return &tree->mnt;
8aec0809
AV
1835}
1836
1837void drop_collected_mounts(struct vfsmount *mnt)
1838{
97216be0 1839 namespace_lock();
719ea2fb 1840 lock_mount_hash();
e819f152 1841 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1842 unlock_mount_hash();
3ab6abee 1843 namespace_unlock();
8aec0809
AV
1844}
1845
c771d683
MS
1846/**
1847 * clone_private_mount - create a private clone of a path
1848 *
1849 * This creates a new vfsmount, which will be the clone of @path. The new will
1850 * not be attached anywhere in the namespace and will be private (i.e. changes
1851 * to the originating mount won't be propagated into this).
1852 *
1853 * Release with mntput().
1854 */
ca71cf71 1855struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1856{
1857 struct mount *old_mnt = real_mount(path->mnt);
1858 struct mount *new_mnt;
1859
1860 if (IS_MNT_UNBINDABLE(old_mnt))
1861 return ERR_PTR(-EINVAL);
1862
c771d683 1863 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1864 if (IS_ERR(new_mnt))
1865 return ERR_CAST(new_mnt);
1866
1867 return &new_mnt->mnt;
1868}
1869EXPORT_SYMBOL_GPL(clone_private_mount);
1870
1f707137
AV
1871int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1872 struct vfsmount *root)
1873{
1a4eeaf2 1874 struct mount *mnt;
1f707137
AV
1875 int res = f(root, arg);
1876 if (res)
1877 return res;
1a4eeaf2
AV
1878 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1879 res = f(&mnt->mnt, arg);
1f707137
AV
1880 if (res)
1881 return res;
1882 }
1883 return 0;
1884}
1885
4b8b21f4 1886static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1887{
315fc83e 1888 struct mount *p;
719f5d7f 1889
909b0a88 1890 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1891 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1892 mnt_release_group_id(p);
719f5d7f
MS
1893 }
1894}
1895
4b8b21f4 1896static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1897{
315fc83e 1898 struct mount *p;
719f5d7f 1899
909b0a88 1900 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1901 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1902 int err = mnt_alloc_group_id(p);
719f5d7f 1903 if (err) {
4b8b21f4 1904 cleanup_group_ids(mnt, p);
719f5d7f
MS
1905 return err;
1906 }
1907 }
1908 }
1909
1910 return 0;
1911}
1912
d2921684
EB
1913int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1914{
1915 unsigned int max = READ_ONCE(sysctl_mount_max);
1916 unsigned int mounts = 0, old, pending, sum;
1917 struct mount *p;
1918
1919 for (p = mnt; p; p = next_mnt(p, mnt))
1920 mounts++;
1921
1922 old = ns->mounts;
1923 pending = ns->pending_mounts;
1924 sum = old + pending;
1925 if ((old > sum) ||
1926 (pending > sum) ||
1927 (max < sum) ||
1928 (mounts > (max - sum)))
1929 return -ENOSPC;
1930
1931 ns->pending_mounts = pending + mounts;
1932 return 0;
1933}
1934
b90fa9ae
RP
1935/*
1936 * @source_mnt : mount tree to be attached
21444403
RP
1937 * @nd : place the mount tree @source_mnt is attached
1938 * @parent_nd : if non-null, detach the source_mnt from its parent and
1939 * store the parent mount and mountpoint dentry.
1940 * (done when source_mnt is moved)
b90fa9ae
RP
1941 *
1942 * NOTE: in the table below explains the semantics when a source mount
1943 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1944 * ---------------------------------------------------------------------------
1945 * | BIND MOUNT OPERATION |
1946 * |**************************************************************************
1947 * | source-->| shared | private | slave | unbindable |
1948 * | dest | | | | |
1949 * | | | | | | |
1950 * | v | | | | |
1951 * |**************************************************************************
1952 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1953 * | | | | | |
1954 * |non-shared| shared (+) | private | slave (*) | invalid |
1955 * ***************************************************************************
b90fa9ae
RP
1956 * A bind operation clones the source mount and mounts the clone on the
1957 * destination mount.
1958 *
1959 * (++) the cloned mount is propagated to all the mounts in the propagation
1960 * tree of the destination mount and the cloned mount is added to
1961 * the peer group of the source mount.
1962 * (+) the cloned mount is created under the destination mount and is marked
1963 * as shared. The cloned mount is added to the peer group of the source
1964 * mount.
5afe0022
RP
1965 * (+++) the mount is propagated to all the mounts in the propagation tree
1966 * of the destination mount and the cloned mount is made slave
1967 * of the same master as that of the source mount. The cloned mount
1968 * is marked as 'shared and slave'.
1969 * (*) the cloned mount is made a slave of the same master as that of the
1970 * source mount.
1971 *
9676f0c6
RP
1972 * ---------------------------------------------------------------------------
1973 * | MOVE MOUNT OPERATION |
1974 * |**************************************************************************
1975 * | source-->| shared | private | slave | unbindable |
1976 * | dest | | | | |
1977 * | | | | | | |
1978 * | v | | | | |
1979 * |**************************************************************************
1980 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1981 * | | | | | |
1982 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1983 * ***************************************************************************
5afe0022
RP
1984 *
1985 * (+) the mount is moved to the destination. And is then propagated to
1986 * all the mounts in the propagation tree of the destination mount.
21444403 1987 * (+*) the mount is moved to the destination.
5afe0022
RP
1988 * (+++) the mount is moved to the destination and is then propagated to
1989 * all the mounts belonging to the destination mount's propagation tree.
1990 * the mount is marked as 'shared and slave'.
1991 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1992 *
1993 * if the source mount is a tree, the operations explained above is
1994 * applied to each mount in the tree.
1995 * Must be called without spinlocks held, since this function can sleep
1996 * in allocations.
1997 */
0fb54e50 1998static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1999 struct mount *dest_mnt,
2000 struct mountpoint *dest_mp,
2001 struct path *parent_path)
b90fa9ae 2002{
38129a13 2003 HLIST_HEAD(tree_list);
d2921684 2004 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2005 struct mountpoint *smp;
315fc83e 2006 struct mount *child, *p;
38129a13 2007 struct hlist_node *n;
719f5d7f 2008 int err;
b90fa9ae 2009
1064f874
EB
2010 /* Preallocate a mountpoint in case the new mounts need
2011 * to be tucked under other mounts.
2012 */
2013 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2014 if (IS_ERR(smp))
2015 return PTR_ERR(smp);
2016
d2921684
EB
2017 /* Is there space to add these mounts to the mount namespace? */
2018 if (!parent_path) {
2019 err = count_mounts(ns, source_mnt);
2020 if (err)
2021 goto out;
2022 }
2023
fc7be130 2024 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2025 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2026 if (err)
2027 goto out;
0b1b901b 2028 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2029 lock_mount_hash();
0b1b901b
AV
2030 if (err)
2031 goto out_cleanup_ids;
909b0a88 2032 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2033 set_mnt_shared(p);
0b1b901b
AV
2034 } else {
2035 lock_mount_hash();
b90fa9ae 2036 }
1a390689 2037 if (parent_path) {
0fb54e50 2038 detach_mnt(source_mnt, parent_path);
84d17192 2039 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2040 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2041 } else {
84d17192 2042 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2043 commit_tree(source_mnt);
21444403 2044 }
b90fa9ae 2045
38129a13 2046 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2047 struct mount *q;
38129a13 2048 hlist_del_init(&child->mnt_hash);
1064f874
EB
2049 q = __lookup_mnt(&child->mnt_parent->mnt,
2050 child->mnt_mountpoint);
2051 if (q)
2052 mnt_change_mountpoint(child, smp, q);
2053 commit_tree(child);
b90fa9ae 2054 }
1064f874 2055 put_mountpoint(smp);
719ea2fb 2056 unlock_mount_hash();
99b7db7b 2057
b90fa9ae 2058 return 0;
719f5d7f
MS
2059
2060 out_cleanup_ids:
f2ebb3a9
AV
2061 while (!hlist_empty(&tree_list)) {
2062 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2063 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2064 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2065 }
2066 unlock_mount_hash();
0b1b901b 2067 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2068 out:
d2921684 2069 ns->pending_mounts = 0;
1064f874
EB
2070
2071 read_seqlock_excl(&mount_lock);
2072 put_mountpoint(smp);
2073 read_sequnlock_excl(&mount_lock);
2074
719f5d7f 2075 return err;
b90fa9ae
RP
2076}
2077
84d17192 2078static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2079{
2080 struct vfsmount *mnt;
84d17192 2081 struct dentry *dentry = path->dentry;
b12cea91 2082retry:
5955102c 2083 inode_lock(dentry->d_inode);
84d17192 2084 if (unlikely(cant_mount(dentry))) {
5955102c 2085 inode_unlock(dentry->d_inode);
84d17192 2086 return ERR_PTR(-ENOENT);
b12cea91 2087 }
97216be0 2088 namespace_lock();
b12cea91 2089 mnt = lookup_mnt(path);
84d17192 2090 if (likely(!mnt)) {
3895dbf8 2091 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2092 if (IS_ERR(mp)) {
97216be0 2093 namespace_unlock();
5955102c 2094 inode_unlock(dentry->d_inode);
84d17192
AV
2095 return mp;
2096 }
2097 return mp;
2098 }
97216be0 2099 namespace_unlock();
5955102c 2100 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2101 path_put(path);
2102 path->mnt = mnt;
84d17192 2103 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2104 goto retry;
2105}
2106
84d17192 2107static void unlock_mount(struct mountpoint *where)
b12cea91 2108{
84d17192 2109 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2110
2111 read_seqlock_excl(&mount_lock);
84d17192 2112 put_mountpoint(where);
3895dbf8
EB
2113 read_sequnlock_excl(&mount_lock);
2114
328e6d90 2115 namespace_unlock();
5955102c 2116 inode_unlock(dentry->d_inode);
b12cea91
AV
2117}
2118
84d17192 2119static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2120{
95bc5f25 2121 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
2122 return -EINVAL;
2123
e36cb0b8
DH
2124 if (d_is_dir(mp->m_dentry) !=
2125 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2126 return -ENOTDIR;
2127
84d17192 2128 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2129}
2130
7a2e8a8f
VA
2131/*
2132 * Sanity check the flags to change_mnt_propagation.
2133 */
2134
2135static int flags_to_propagation_type(int flags)
2136{
7c6e984d 2137 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2138
2139 /* Fail if any non-propagation flags are set */
2140 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2141 return 0;
2142 /* Only one propagation flag should be set */
2143 if (!is_power_of_2(type))
2144 return 0;
2145 return type;
2146}
2147
07b20889
RP
2148/*
2149 * recursively change the type of the mountpoint.
2150 */
0a0d8a46 2151static int do_change_type(struct path *path, int flag)
07b20889 2152{
315fc83e 2153 struct mount *m;
4b8b21f4 2154 struct mount *mnt = real_mount(path->mnt);
07b20889 2155 int recurse = flag & MS_REC;
7a2e8a8f 2156 int type;
719f5d7f 2157 int err = 0;
07b20889 2158
2d92ab3c 2159 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2160 return -EINVAL;
2161
7a2e8a8f
VA
2162 type = flags_to_propagation_type(flag);
2163 if (!type)
2164 return -EINVAL;
2165
97216be0 2166 namespace_lock();
719f5d7f
MS
2167 if (type == MS_SHARED) {
2168 err = invent_group_ids(mnt, recurse);
2169 if (err)
2170 goto out_unlock;
2171 }
2172
719ea2fb 2173 lock_mount_hash();
909b0a88 2174 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2175 change_mnt_propagation(m, type);
719ea2fb 2176 unlock_mount_hash();
719f5d7f
MS
2177
2178 out_unlock:
97216be0 2179 namespace_unlock();
719f5d7f 2180 return err;
07b20889
RP
2181}
2182
5ff9d8a6
EB
2183static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2184{
2185 struct mount *child;
2186 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2187 if (!is_subdir(child->mnt_mountpoint, dentry))
2188 continue;
2189
2190 if (child->mnt.mnt_flags & MNT_LOCKED)
2191 return true;
2192 }
2193 return false;
2194}
2195
1da177e4
LT
2196/*
2197 * do loopback mount.
2198 */
808d4e3c 2199static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2200 int recurse)
1da177e4 2201{
2d92ab3c 2202 struct path old_path;
84d17192
AV
2203 struct mount *mnt = NULL, *old, *parent;
2204 struct mountpoint *mp;
57eccb83 2205 int err;
1da177e4
LT
2206 if (!old_name || !*old_name)
2207 return -EINVAL;
815d405c 2208 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2209 if (err)
2210 return err;
2211
8823c079 2212 err = -EINVAL;
4ce5d2b1 2213 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
2214 goto out;
2215
84d17192
AV
2216 mp = lock_mount(path);
2217 err = PTR_ERR(mp);
2218 if (IS_ERR(mp))
b12cea91
AV
2219 goto out;
2220
87129cc0 2221 old = real_mount(old_path.mnt);
84d17192 2222 parent = real_mount(path->mnt);
87129cc0 2223
1da177e4 2224 err = -EINVAL;
fc7be130 2225 if (IS_MNT_UNBINDABLE(old))
b12cea91 2226 goto out2;
9676f0c6 2227
e149ed2b
AV
2228 if (!check_mnt(parent))
2229 goto out2;
2230
2231 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2232 goto out2;
1da177e4 2233
5ff9d8a6
EB
2234 if (!recurse && has_locked_children(old, old_path.dentry))
2235 goto out2;
2236
ccd48bc7 2237 if (recurse)
4ce5d2b1 2238 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2239 else
87129cc0 2240 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2241
be34d1a3
DH
2242 if (IS_ERR(mnt)) {
2243 err = PTR_ERR(mnt);
e9c5d8a5 2244 goto out2;
be34d1a3 2245 }
ccd48bc7 2246
5ff9d8a6
EB
2247 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2248
84d17192 2249 err = graft_tree(mnt, parent, mp);
ccd48bc7 2250 if (err) {
719ea2fb 2251 lock_mount_hash();
e819f152 2252 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2253 unlock_mount_hash();
5b83d2c5 2254 }
b12cea91 2255out2:
84d17192 2256 unlock_mount(mp);
ccd48bc7 2257out:
2d92ab3c 2258 path_put(&old_path);
1da177e4
LT
2259 return err;
2260}
2261
2e4b7fcd
DH
2262static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2263{
2264 int error = 0;
2265 int readonly_request = 0;
2266
2267 if (ms_flags & MS_RDONLY)
2268 readonly_request = 1;
2269 if (readonly_request == __mnt_is_readonly(mnt))
2270 return 0;
2271
2272 if (readonly_request)
83adc753 2273 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2274 else
83adc753 2275 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2276 return error;
2277}
2278
1da177e4
LT
2279/*
2280 * change filesystem flags. dir should be a physical root of filesystem.
2281 * If you've mounted a non-root directory somewhere and want to do remount
2282 * on it - tough luck.
2283 */
0a0d8a46 2284static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2285 void *data)
2286{
2287 int err;
2d92ab3c 2288 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2289 struct mount *mnt = real_mount(path->mnt);
1da177e4 2290
143c8c91 2291 if (!check_mnt(mnt))
1da177e4
LT
2292 return -EINVAL;
2293
2d92ab3c 2294 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2295 return -EINVAL;
2296
07b64558
EB
2297 /* Don't allow changing of locked mnt flags.
2298 *
2299 * No locks need to be held here while testing the various
2300 * MNT_LOCK flags because those flags can never be cleared
2301 * once they are set.
2302 */
2303 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2304 !(mnt_flags & MNT_READONLY)) {
2305 return -EPERM;
2306 }
9566d674
EB
2307 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2308 !(mnt_flags & MNT_NODEV)) {
67690f93 2309 return -EPERM;
9566d674
EB
2310 }
2311 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2312 !(mnt_flags & MNT_NOSUID)) {
2313 return -EPERM;
2314 }
2315 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2316 !(mnt_flags & MNT_NOEXEC)) {
2317 return -EPERM;
2318 }
2319 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2320 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2321 return -EPERM;
2322 }
2323
ff36fe2c
EP
2324 err = security_sb_remount(sb, data);
2325 if (err)
2326 return err;
2327
1da177e4 2328 down_write(&sb->s_umount);
2e4b7fcd 2329 if (flags & MS_BIND)
2d92ab3c 2330 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2331 else if (!capable(CAP_SYS_ADMIN))
2332 err = -EPERM;
4aa98cf7 2333 else
2e4b7fcd 2334 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2335 if (!err) {
719ea2fb 2336 lock_mount_hash();
a6138db8 2337 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2338 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2339 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2340 unlock_mount_hash();
0e55a7cc 2341 }
6339dab8 2342 up_write(&sb->s_umount);
1da177e4
LT
2343 return err;
2344}
2345
cbbe362c 2346static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2347{
315fc83e 2348 struct mount *p;
909b0a88 2349 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2350 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2351 return 1;
2352 }
2353 return 0;
2354}
2355
808d4e3c 2356static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2357{
2d92ab3c 2358 struct path old_path, parent_path;
676da58d 2359 struct mount *p;
0fb54e50 2360 struct mount *old;
84d17192 2361 struct mountpoint *mp;
57eccb83 2362 int err;
1da177e4
LT
2363 if (!old_name || !*old_name)
2364 return -EINVAL;
2d92ab3c 2365 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2366 if (err)
2367 return err;
2368
84d17192
AV
2369 mp = lock_mount(path);
2370 err = PTR_ERR(mp);
2371 if (IS_ERR(mp))
cc53ce53
DH
2372 goto out;
2373
143c8c91 2374 old = real_mount(old_path.mnt);
fc7be130 2375 p = real_mount(path->mnt);
143c8c91 2376
1da177e4 2377 err = -EINVAL;
fc7be130 2378 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2379 goto out1;
2380
5ff9d8a6
EB
2381 if (old->mnt.mnt_flags & MNT_LOCKED)
2382 goto out1;
2383
1da177e4 2384 err = -EINVAL;
2d92ab3c 2385 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2386 goto out1;
1da177e4 2387
676da58d 2388 if (!mnt_has_parent(old))
21444403 2389 goto out1;
1da177e4 2390
e36cb0b8
DH
2391 if (d_is_dir(path->dentry) !=
2392 d_is_dir(old_path.dentry))
21444403
RP
2393 goto out1;
2394 /*
2395 * Don't move a mount residing in a shared parent.
2396 */
fc7be130 2397 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2398 goto out1;
9676f0c6
RP
2399 /*
2400 * Don't move a mount tree containing unbindable mounts to a destination
2401 * mount which is shared.
2402 */
fc7be130 2403 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2404 goto out1;
1da177e4 2405 err = -ELOOP;
fc7be130 2406 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2407 if (p == old)
21444403 2408 goto out1;
1da177e4 2409
84d17192 2410 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2411 if (err)
21444403 2412 goto out1;
1da177e4
LT
2413
2414 /* if the mount is moved, it should no longer be expire
2415 * automatically */
6776db3d 2416 list_del_init(&old->mnt_expire);
1da177e4 2417out1:
84d17192 2418 unlock_mount(mp);
1da177e4 2419out:
1da177e4 2420 if (!err)
1a390689 2421 path_put(&parent_path);
2d92ab3c 2422 path_put(&old_path);
1da177e4
LT
2423 return err;
2424}
2425
9d412a43
AV
2426static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2427{
2428 int err;
2429 const char *subtype = strchr(fstype, '.');
2430 if (subtype) {
2431 subtype++;
2432 err = -EINVAL;
2433 if (!subtype[0])
2434 goto err;
2435 } else
2436 subtype = "";
2437
2438 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2439 err = -ENOMEM;
2440 if (!mnt->mnt_sb->s_subtype)
2441 goto err;
2442 return mnt;
2443
2444 err:
2445 mntput(mnt);
2446 return ERR_PTR(err);
2447}
2448
9d412a43
AV
2449/*
2450 * add a mount into a namespace's mount tree
2451 */
95bc5f25 2452static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2453{
84d17192
AV
2454 struct mountpoint *mp;
2455 struct mount *parent;
9d412a43
AV
2456 int err;
2457
f2ebb3a9 2458 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2459
84d17192
AV
2460 mp = lock_mount(path);
2461 if (IS_ERR(mp))
2462 return PTR_ERR(mp);
9d412a43 2463
84d17192 2464 parent = real_mount(path->mnt);
9d412a43 2465 err = -EINVAL;
84d17192 2466 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2467 /* that's acceptable only for automounts done in private ns */
2468 if (!(mnt_flags & MNT_SHRINKABLE))
2469 goto unlock;
2470 /* ... and for those we'd better have mountpoint still alive */
84d17192 2471 if (!parent->mnt_ns)
156cacb1
AV
2472 goto unlock;
2473 }
9d412a43
AV
2474
2475 /* Refuse the same filesystem on the same mount point */
2476 err = -EBUSY;
95bc5f25 2477 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2478 path->mnt->mnt_root == path->dentry)
2479 goto unlock;
2480
2481 err = -EINVAL;
e36cb0b8 2482 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2483 goto unlock;
2484
95bc5f25 2485 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2486 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2487
2488unlock:
84d17192 2489 unlock_mount(mp);
9d412a43
AV
2490 return err;
2491}
b1e75df4 2492
8654df4e 2493static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2494
1da177e4
LT
2495/*
2496 * create a new mount for userspace and request it to be added into the
2497 * namespace's tree
2498 */
0c55cfc4 2499static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2500 int mnt_flags, const char *name, void *data)
1da177e4 2501{
0c55cfc4 2502 struct file_system_type *type;
1da177e4 2503 struct vfsmount *mnt;
15f9a3f3 2504 int err;
1da177e4 2505
0c55cfc4 2506 if (!fstype)
1da177e4
LT
2507 return -EINVAL;
2508
0c55cfc4
EB
2509 type = get_fs_type(fstype);
2510 if (!type)
2511 return -ENODEV;
2512
0c55cfc4
EB
2513 mnt = vfs_kern_mount(type, flags, name, data);
2514 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2515 !mnt->mnt_sb->s_subtype)
2516 mnt = fs_set_subtype(mnt, fstype);
2517
2518 put_filesystem(type);
1da177e4
LT
2519 if (IS_ERR(mnt))
2520 return PTR_ERR(mnt);
2521
8654df4e
EB
2522 if (mount_too_revealing(mnt, &mnt_flags)) {
2523 mntput(mnt);
2524 return -EPERM;
2525 }
2526
95bc5f25 2527 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2528 if (err)
2529 mntput(mnt);
2530 return err;
1da177e4
LT
2531}
2532
19a167af
AV
2533int finish_automount(struct vfsmount *m, struct path *path)
2534{
6776db3d 2535 struct mount *mnt = real_mount(m);
19a167af
AV
2536 int err;
2537 /* The new mount record should have at least 2 refs to prevent it being
2538 * expired before we get a chance to add it
2539 */
6776db3d 2540 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2541
2542 if (m->mnt_sb == path->mnt->mnt_sb &&
2543 m->mnt_root == path->dentry) {
b1e75df4
AV
2544 err = -ELOOP;
2545 goto fail;
19a167af
AV
2546 }
2547
95bc5f25 2548 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2549 if (!err)
2550 return 0;
2551fail:
2552 /* remove m from any expiration list it may be on */
6776db3d 2553 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2554 namespace_lock();
6776db3d 2555 list_del_init(&mnt->mnt_expire);
97216be0 2556 namespace_unlock();
19a167af 2557 }
b1e75df4
AV
2558 mntput(m);
2559 mntput(m);
19a167af
AV
2560 return err;
2561}
2562
ea5b778a
DH
2563/**
2564 * mnt_set_expiry - Put a mount on an expiration list
2565 * @mnt: The mount to list.
2566 * @expiry_list: The list to add the mount to.
2567 */
2568void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2569{
97216be0 2570 namespace_lock();
ea5b778a 2571
6776db3d 2572 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2573
97216be0 2574 namespace_unlock();
ea5b778a
DH
2575}
2576EXPORT_SYMBOL(mnt_set_expiry);
2577
1da177e4
LT
2578/*
2579 * process a list of expirable mountpoints with the intent of discarding any
2580 * mountpoints that aren't in use and haven't been touched since last we came
2581 * here
2582 */
2583void mark_mounts_for_expiry(struct list_head *mounts)
2584{
761d5c38 2585 struct mount *mnt, *next;
1da177e4
LT
2586 LIST_HEAD(graveyard);
2587
2588 if (list_empty(mounts))
2589 return;
2590
97216be0 2591 namespace_lock();
719ea2fb 2592 lock_mount_hash();
1da177e4
LT
2593
2594 /* extract from the expiration list every vfsmount that matches the
2595 * following criteria:
2596 * - only referenced by its parent vfsmount
2597 * - still marked for expiry (marked on the last call here; marks are
2598 * cleared by mntput())
2599 */
6776db3d 2600 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2601 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2602 propagate_mount_busy(mnt, 1))
1da177e4 2603 continue;
6776db3d 2604 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2605 }
bcc5c7d2 2606 while (!list_empty(&graveyard)) {
6776db3d 2607 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2608 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2609 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2610 }
719ea2fb 2611 unlock_mount_hash();
3ab6abee 2612 namespace_unlock();
5528f911
TM
2613}
2614
2615EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2616
2617/*
2618 * Ripoff of 'select_parent()'
2619 *
2620 * search the list of submounts for a given mountpoint, and move any
2621 * shrinkable submounts to the 'graveyard' list.
2622 */
692afc31 2623static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2624{
692afc31 2625 struct mount *this_parent = parent;
5528f911
TM
2626 struct list_head *next;
2627 int found = 0;
2628
2629repeat:
6b41d536 2630 next = this_parent->mnt_mounts.next;
5528f911 2631resume:
6b41d536 2632 while (next != &this_parent->mnt_mounts) {
5528f911 2633 struct list_head *tmp = next;
6b41d536 2634 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2635
2636 next = tmp->next;
692afc31 2637 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2638 continue;
5528f911
TM
2639 /*
2640 * Descend a level if the d_mounts list is non-empty.
2641 */
6b41d536 2642 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2643 this_parent = mnt;
2644 goto repeat;
2645 }
1da177e4 2646
1ab59738 2647 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2648 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2649 found++;
2650 }
1da177e4 2651 }
5528f911
TM
2652 /*
2653 * All done at this level ... ascend and resume the search
2654 */
2655 if (this_parent != parent) {
6b41d536 2656 next = this_parent->mnt_child.next;
0714a533 2657 this_parent = this_parent->mnt_parent;
5528f911
TM
2658 goto resume;
2659 }
2660 return found;
2661}
2662
2663/*
2664 * process a list of expirable mountpoints with the intent of discarding any
2665 * submounts of a specific parent mountpoint
99b7db7b 2666 *
48a066e7 2667 * mount_lock must be held for write
5528f911 2668 */
b54b9be7 2669static void shrink_submounts(struct mount *mnt)
5528f911
TM
2670{
2671 LIST_HEAD(graveyard);
761d5c38 2672 struct mount *m;
5528f911 2673
5528f911 2674 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2675 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2676 while (!list_empty(&graveyard)) {
761d5c38 2677 m = list_first_entry(&graveyard, struct mount,
6776db3d 2678 mnt_expire);
143c8c91 2679 touch_mnt_namespace(m->mnt_ns);
e819f152 2680 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2681 }
2682 }
1da177e4
LT
2683}
2684
1da177e4
LT
2685/*
2686 * Some copy_from_user() implementations do not return the exact number of
2687 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2688 * Note that this function differs from copy_from_user() in that it will oops
2689 * on bad values of `to', rather than returning a short copy.
2690 */
b58fed8b
RP
2691static long exact_copy_from_user(void *to, const void __user * from,
2692 unsigned long n)
1da177e4
LT
2693{
2694 char *t = to;
2695 const char __user *f = from;
2696 char c;
2697
2698 if (!access_ok(VERIFY_READ, from, n))
2699 return n;
2700
2701 while (n) {
2702 if (__get_user(c, f)) {
2703 memset(t, 0, n);
2704 break;
2705 }
2706 *t++ = c;
2707 f++;
2708 n--;
2709 }
2710 return n;
2711}
2712
b40ef869 2713void *copy_mount_options(const void __user * data)
1da177e4
LT
2714{
2715 int i;
1da177e4 2716 unsigned long size;
b40ef869 2717 char *copy;
b58fed8b 2718
1da177e4 2719 if (!data)
b40ef869 2720 return NULL;
1da177e4 2721
b40ef869
AV
2722 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2723 if (!copy)
2724 return ERR_PTR(-ENOMEM);
1da177e4
LT
2725
2726 /* We only care that *some* data at the address the user
2727 * gave us is valid. Just in case, we'll zero
2728 * the remainder of the page.
2729 */
2730 /* copy_from_user cannot cross TASK_SIZE ! */
2731 size = TASK_SIZE - (unsigned long)data;
2732 if (size > PAGE_SIZE)
2733 size = PAGE_SIZE;
2734
b40ef869 2735 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2736 if (!i) {
b40ef869
AV
2737 kfree(copy);
2738 return ERR_PTR(-EFAULT);
1da177e4
LT
2739 }
2740 if (i != PAGE_SIZE)
b40ef869
AV
2741 memset(copy + i, 0, PAGE_SIZE - i);
2742 return copy;
1da177e4
LT
2743}
2744
b8850d1f 2745char *copy_mount_string(const void __user *data)
eca6f534 2746{
b8850d1f 2747 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2748}
2749
1da177e4
LT
2750/*
2751 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2752 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2753 *
2754 * data is a (void *) that can point to any structure up to
2755 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2756 * information (or be NULL).
2757 *
2758 * Pre-0.97 versions of mount() didn't have a flags word.
2759 * When the flags word was introduced its top half was required
2760 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2761 * Therefore, if this magic number is present, it carries no information
2762 * and must be discarded.
2763 */
5e6123f3 2764long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2765 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2766{
2d92ab3c 2767 struct path path;
1da177e4
LT
2768 int retval = 0;
2769 int mnt_flags = 0;
2770
2771 /* Discard magic */
2772 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2773 flags &= ~MS_MGC_MSK;
2774
2775 /* Basic sanity checks */
1da177e4
LT
2776 if (data_page)
2777 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2778
a27ab9f2 2779 /* ... and get the mountpoint */
5e6123f3 2780 retval = user_path(dir_name, &path);
a27ab9f2
TH
2781 if (retval)
2782 return retval;
2783
2784 retval = security_sb_mount(dev_name, &path,
2785 type_page, flags, data_page);
0d5cadb8
AV
2786 if (!retval && !may_mount())
2787 retval = -EPERM;
9e8925b6
JL
2788 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2789 retval = -EPERM;
a27ab9f2
TH
2790 if (retval)
2791 goto dput_out;
2792
613cbe3d
AK
2793 /* Default to relatime unless overriden */
2794 if (!(flags & MS_NOATIME))
2795 mnt_flags |= MNT_RELATIME;
0a1c01c9 2796
1da177e4
LT
2797 /* Separate the per-mountpoint flags */
2798 if (flags & MS_NOSUID)
2799 mnt_flags |= MNT_NOSUID;
2800 if (flags & MS_NODEV)
2801 mnt_flags |= MNT_NODEV;
2802 if (flags & MS_NOEXEC)
2803 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2804 if (flags & MS_NOATIME)
2805 mnt_flags |= MNT_NOATIME;
2806 if (flags & MS_NODIRATIME)
2807 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2808 if (flags & MS_STRICTATIME)
2809 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2810 if (flags & MS_RDONLY)
2811 mnt_flags |= MNT_READONLY;
fc33a7bb 2812
ffbc6f0e
EB
2813 /* The default atime for remount is preservation */
2814 if ((flags & MS_REMOUNT) &&
2815 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2816 MS_STRICTATIME)) == 0)) {
2817 mnt_flags &= ~MNT_ATIME_MASK;
2818 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2819 }
2820
7a4dec53 2821 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57 2822 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
93faccbb 2823 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
1da177e4 2824
1da177e4 2825 if (flags & MS_REMOUNT)
2d92ab3c 2826 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2827 data_page);
2828 else if (flags & MS_BIND)
2d92ab3c 2829 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2830 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2831 retval = do_change_type(&path, flags);
1da177e4 2832 else if (flags & MS_MOVE)
2d92ab3c 2833 retval = do_move_mount(&path, dev_name);
1da177e4 2834 else
2d92ab3c 2835 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2836 dev_name, data_page);
2837dput_out:
2d92ab3c 2838 path_put(&path);
1da177e4
LT
2839 return retval;
2840}
2841
537f7ccb
EB
2842static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2843{
2844 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2845}
2846
2847static void dec_mnt_namespaces(struct ucounts *ucounts)
2848{
2849 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2850}
2851
771b1371
EB
2852static void free_mnt_ns(struct mnt_namespace *ns)
2853{
6344c433 2854 ns_free_inum(&ns->ns);
537f7ccb 2855 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2856 put_user_ns(ns->user_ns);
2857 kfree(ns);
2858}
2859
8823c079
EB
2860/*
2861 * Assign a sequence number so we can detect when we attempt to bind
2862 * mount a reference to an older mount namespace into the current
2863 * mount namespace, preventing reference counting loops. A 64bit
2864 * number incrementing at 10Ghz will take 12,427 years to wrap which
2865 * is effectively never, so we can ignore the possibility.
2866 */
2867static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2868
771b1371 2869static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2870{
2871 struct mnt_namespace *new_ns;
537f7ccb 2872 struct ucounts *ucounts;
98f842e6 2873 int ret;
cf8d2c11 2874
537f7ccb
EB
2875 ucounts = inc_mnt_namespaces(user_ns);
2876 if (!ucounts)
df75e774 2877 return ERR_PTR(-ENOSPC);
537f7ccb 2878
cf8d2c11 2879 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2880 if (!new_ns) {
2881 dec_mnt_namespaces(ucounts);
cf8d2c11 2882 return ERR_PTR(-ENOMEM);
537f7ccb 2883 }
6344c433 2884 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2885 if (ret) {
2886 kfree(new_ns);
537f7ccb 2887 dec_mnt_namespaces(ucounts);
98f842e6
EB
2888 return ERR_PTR(ret);
2889 }
33c42940 2890 new_ns->ns.ops = &mntns_operations;
8823c079 2891 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2892 atomic_set(&new_ns->count, 1);
2893 new_ns->root = NULL;
2894 INIT_LIST_HEAD(&new_ns->list);
2895 init_waitqueue_head(&new_ns->poll);
2896 new_ns->event = 0;
771b1371 2897 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2898 new_ns->ucounts = ucounts;
d2921684
EB
2899 new_ns->mounts = 0;
2900 new_ns->pending_mounts = 0;
cf8d2c11
TM
2901 return new_ns;
2902}
2903
0766f788 2904__latent_entropy
9559f689
AV
2905struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2906 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2907{
6b3286ed 2908 struct mnt_namespace *new_ns;
7f2da1e7 2909 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2910 struct mount *p, *q;
9559f689 2911 struct mount *old;
cb338d06 2912 struct mount *new;
7a472ef4 2913 int copy_flags;
1da177e4 2914
9559f689
AV
2915 BUG_ON(!ns);
2916
2917 if (likely(!(flags & CLONE_NEWNS))) {
2918 get_mnt_ns(ns);
2919 return ns;
2920 }
2921
2922 old = ns->root;
2923
771b1371 2924 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2925 if (IS_ERR(new_ns))
2926 return new_ns;
1da177e4 2927
97216be0 2928 namespace_lock();
1da177e4 2929 /* First pass: copy the tree topology */
4ce5d2b1 2930 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2931 if (user_ns != ns->user_ns)
132c94e3 2932 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2933 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2934 if (IS_ERR(new)) {
328e6d90 2935 namespace_unlock();
771b1371 2936 free_mnt_ns(new_ns);
be34d1a3 2937 return ERR_CAST(new);
1da177e4 2938 }
be08d6d2 2939 new_ns->root = new;
1a4eeaf2 2940 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2941
2942 /*
2943 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2944 * as belonging to new namespace. We have already acquired a private
2945 * fs_struct, so tsk->fs->lock is not needed.
2946 */
909b0a88 2947 p = old;
cb338d06 2948 q = new;
1da177e4 2949 while (p) {
143c8c91 2950 q->mnt_ns = new_ns;
d2921684 2951 new_ns->mounts++;
9559f689
AV
2952 if (new_fs) {
2953 if (&p->mnt == new_fs->root.mnt) {
2954 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2955 rootmnt = &p->mnt;
1da177e4 2956 }
9559f689
AV
2957 if (&p->mnt == new_fs->pwd.mnt) {
2958 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2959 pwdmnt = &p->mnt;
1da177e4 2960 }
1da177e4 2961 }
909b0a88
AV
2962 p = next_mnt(p, old);
2963 q = next_mnt(q, new);
4ce5d2b1
EB
2964 if (!q)
2965 break;
2966 while (p->mnt.mnt_root != q->mnt.mnt_root)
2967 p = next_mnt(p, old);
1da177e4 2968 }
328e6d90 2969 namespace_unlock();
1da177e4 2970
1da177e4 2971 if (rootmnt)
f03c6599 2972 mntput(rootmnt);
1da177e4 2973 if (pwdmnt)
f03c6599 2974 mntput(pwdmnt);
1da177e4 2975
741a2951 2976 return new_ns;
1da177e4
LT
2977}
2978
cf8d2c11
TM
2979/**
2980 * create_mnt_ns - creates a private namespace and adds a root filesystem
2981 * @mnt: pointer to the new root filesystem mountpoint
2982 */
1a4eeaf2 2983static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2984{
771b1371 2985 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2986 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2987 struct mount *mnt = real_mount(m);
2988 mnt->mnt_ns = new_ns;
be08d6d2 2989 new_ns->root = mnt;
d2921684 2990 new_ns->mounts++;
b1983cd8 2991 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2992 } else {
1a4eeaf2 2993 mntput(m);
cf8d2c11
TM
2994 }
2995 return new_ns;
2996}
cf8d2c11 2997
ea441d11
AV
2998struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2999{
3000 struct mnt_namespace *ns;
d31da0f0 3001 struct super_block *s;
ea441d11
AV
3002 struct path path;
3003 int err;
3004
3005 ns = create_mnt_ns(mnt);
3006 if (IS_ERR(ns))
3007 return ERR_CAST(ns);
3008
3009 err = vfs_path_lookup(mnt->mnt_root, mnt,
3010 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3011
3012 put_mnt_ns(ns);
3013
3014 if (err)
3015 return ERR_PTR(err);
3016
3017 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3018 s = path.mnt->mnt_sb;
3019 atomic_inc(&s->s_active);
ea441d11
AV
3020 mntput(path.mnt);
3021 /* lock the sucker */
d31da0f0 3022 down_write(&s->s_umount);
ea441d11
AV
3023 /* ... and return the root of (sub)tree on it */
3024 return path.dentry;
3025}
3026EXPORT_SYMBOL(mount_subtree);
3027
bdc480e3
HC
3028SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3029 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3030{
eca6f534
VN
3031 int ret;
3032 char *kernel_type;
eca6f534 3033 char *kernel_dev;
b40ef869 3034 void *options;
1da177e4 3035
b8850d1f
TG
3036 kernel_type = copy_mount_string(type);
3037 ret = PTR_ERR(kernel_type);
3038 if (IS_ERR(kernel_type))
eca6f534 3039 goto out_type;
1da177e4 3040
b8850d1f
TG
3041 kernel_dev = copy_mount_string(dev_name);
3042 ret = PTR_ERR(kernel_dev);
3043 if (IS_ERR(kernel_dev))
eca6f534 3044 goto out_dev;
1da177e4 3045
b40ef869
AV
3046 options = copy_mount_options(data);
3047 ret = PTR_ERR(options);
3048 if (IS_ERR(options))
eca6f534 3049 goto out_data;
1da177e4 3050
b40ef869 3051 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3052
b40ef869 3053 kfree(options);
eca6f534
VN
3054out_data:
3055 kfree(kernel_dev);
3056out_dev:
eca6f534
VN
3057 kfree(kernel_type);
3058out_type:
3059 return ret;
1da177e4
LT
3060}
3061
afac7cba
AV
3062/*
3063 * Return true if path is reachable from root
3064 *
48a066e7 3065 * namespace_sem or mount_lock is held
afac7cba 3066 */
643822b4 3067bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3068 const struct path *root)
3069{
643822b4 3070 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3071 dentry = mnt->mnt_mountpoint;
0714a533 3072 mnt = mnt->mnt_parent;
afac7cba 3073 }
643822b4 3074 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3075}
3076
640eb7e7 3077bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3078{
25ab4c9b 3079 bool res;
48a066e7 3080 read_seqlock_excl(&mount_lock);
643822b4 3081 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3082 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3083 return res;
3084}
3085EXPORT_SYMBOL(path_is_under);
3086
1da177e4
LT
3087/*
3088 * pivot_root Semantics:
3089 * Moves the root file system of the current process to the directory put_old,
3090 * makes new_root as the new root file system of the current process, and sets
3091 * root/cwd of all processes which had them on the current root to new_root.
3092 *
3093 * Restrictions:
3094 * The new_root and put_old must be directories, and must not be on the
3095 * same file system as the current process root. The put_old must be
3096 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3097 * pointed to by put_old must yield the same directory as new_root. No other
3098 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3099 *
4a0d11fa
NB
3100 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3101 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3102 * in this situation.
3103 *
1da177e4
LT
3104 * Notes:
3105 * - we don't move root/cwd if they are not at the root (reason: if something
3106 * cared enough to change them, it's probably wrong to force them elsewhere)
3107 * - it's okay to pick a root that isn't the root of a file system, e.g.
3108 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3109 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3110 * first.
3111 */
3480b257
HC
3112SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3113 const char __user *, put_old)
1da177e4 3114{
2d8f3038 3115 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3116 struct mount *new_mnt, *root_mnt, *old_mnt;
3117 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3118 int error;
3119
9b40bc90 3120 if (!may_mount())
1da177e4
LT
3121 return -EPERM;
3122
2d8f3038 3123 error = user_path_dir(new_root, &new);
1da177e4
LT
3124 if (error)
3125 goto out0;
1da177e4 3126
2d8f3038 3127 error = user_path_dir(put_old, &old);
1da177e4
LT
3128 if (error)
3129 goto out1;
3130
2d8f3038 3131 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3132 if (error)
3133 goto out2;
1da177e4 3134
f7ad3c6b 3135 get_fs_root(current->fs, &root);
84d17192
AV
3136 old_mp = lock_mount(&old);
3137 error = PTR_ERR(old_mp);
3138 if (IS_ERR(old_mp))
b12cea91
AV
3139 goto out3;
3140
1da177e4 3141 error = -EINVAL;
419148da
AV
3142 new_mnt = real_mount(new.mnt);
3143 root_mnt = real_mount(root.mnt);
84d17192
AV
3144 old_mnt = real_mount(old.mnt);
3145 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3146 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3147 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3148 goto out4;
143c8c91 3149 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3150 goto out4;
5ff9d8a6
EB
3151 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3152 goto out4;
1da177e4 3153 error = -ENOENT;
f3da392e 3154 if (d_unlinked(new.dentry))
b12cea91 3155 goto out4;
1da177e4 3156 error = -EBUSY;
84d17192 3157 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3158 goto out4; /* loop, on the same file system */
1da177e4 3159 error = -EINVAL;
8c3ee42e 3160 if (root.mnt->mnt_root != root.dentry)
b12cea91 3161 goto out4; /* not a mountpoint */
676da58d 3162 if (!mnt_has_parent(root_mnt))
b12cea91 3163 goto out4; /* not attached */
84d17192 3164 root_mp = root_mnt->mnt_mp;
2d8f3038 3165 if (new.mnt->mnt_root != new.dentry)
b12cea91 3166 goto out4; /* not a mountpoint */
676da58d 3167 if (!mnt_has_parent(new_mnt))
b12cea91 3168 goto out4; /* not attached */
4ac91378 3169 /* make sure we can reach put_old from new_root */
84d17192 3170 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3171 goto out4;
0d082601
EB
3172 /* make certain new is below the root */
3173 if (!is_path_reachable(new_mnt, new.dentry, &root))
3174 goto out4;
84d17192 3175 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3176 lock_mount_hash();
419148da
AV
3177 detach_mnt(new_mnt, &parent_path);
3178 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3179 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3180 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3181 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3182 }
4ac91378 3183 /* mount old root on put_old */
84d17192 3184 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3185 /* mount new_root on / */
84d17192 3186 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3187 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3188 /* A moved mount should not expire automatically */
3189 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3190 put_mountpoint(root_mp);
719ea2fb 3191 unlock_mount_hash();
2d8f3038 3192 chroot_fs_refs(&root, &new);
1da177e4 3193 error = 0;
b12cea91 3194out4:
84d17192 3195 unlock_mount(old_mp);
b12cea91
AV
3196 if (!error) {
3197 path_put(&root_parent);
3198 path_put(&parent_path);
3199 }
3200out3:
8c3ee42e 3201 path_put(&root);
b12cea91 3202out2:
2d8f3038 3203 path_put(&old);
1da177e4 3204out1:
2d8f3038 3205 path_put(&new);
1da177e4 3206out0:
1da177e4 3207 return error;
1da177e4
LT
3208}
3209
3210static void __init init_mount_tree(void)
3211{
3212 struct vfsmount *mnt;
6b3286ed 3213 struct mnt_namespace *ns;
ac748a09 3214 struct path root;
0c55cfc4 3215 struct file_system_type *type;
1da177e4 3216
0c55cfc4
EB
3217 type = get_fs_type("rootfs");
3218 if (!type)
3219 panic("Can't find rootfs type");
3220 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3221 put_filesystem(type);
1da177e4
LT
3222 if (IS_ERR(mnt))
3223 panic("Can't create rootfs");
b3e19d92 3224
3b22edc5
TM
3225 ns = create_mnt_ns(mnt);
3226 if (IS_ERR(ns))
1da177e4 3227 panic("Can't allocate initial namespace");
6b3286ed
KK
3228
3229 init_task.nsproxy->mnt_ns = ns;
3230 get_mnt_ns(ns);
3231
be08d6d2
AV
3232 root.mnt = mnt;
3233 root.dentry = mnt->mnt_root;
da362b09 3234 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3235
3236 set_fs_pwd(current->fs, &root);
3237 set_fs_root(current->fs, &root);
1da177e4
LT
3238}
3239
74bf17cf 3240void __init mnt_init(void)
1da177e4 3241{
13f14b4d 3242 unsigned u;
15a67dd8 3243 int err;
1da177e4 3244
7d6fec45 3245 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3246 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3247
0818bf27 3248 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3249 sizeof(struct hlist_head),
0818bf27
AV
3250 mhash_entries, 19,
3251 0,
3252 &m_hash_shift, &m_hash_mask, 0, 0);
3253 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3254 sizeof(struct hlist_head),
3255 mphash_entries, 19,
3256 0,
3257 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3258
84d17192 3259 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3260 panic("Failed to allocate mount hash table\n");
3261
0818bf27 3262 for (u = 0; u <= m_hash_mask; u++)
38129a13 3263 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3264 for (u = 0; u <= mp_hash_mask; u++)
3265 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3266
4b93dc9b
TH
3267 kernfs_init();
3268
15a67dd8
RD
3269 err = sysfs_init();
3270 if (err)
3271 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3272 __func__, err);
00d26666
GKH
3273 fs_kobj = kobject_create_and_add("fs", NULL);
3274 if (!fs_kobj)
8e24eea7 3275 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3276 init_rootfs();
3277 init_mount_tree();
3278}
3279
616511d0 3280void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3281{
d498b25a 3282 if (!atomic_dec_and_test(&ns->count))
616511d0 3283 return;
7b00ed6f 3284 drop_collected_mounts(&ns->root->mnt);
771b1371 3285 free_mnt_ns(ns);
1da177e4 3286}
9d412a43
AV
3287
3288struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3289{
423e0ab0
TC
3290 struct vfsmount *mnt;
3291 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3292 if (!IS_ERR(mnt)) {
3293 /*
3294 * it is a longterm mount, don't release mnt until
3295 * we unmount before file sys is unregistered
3296 */
f7a99c5b 3297 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3298 }
3299 return mnt;
9d412a43
AV
3300}
3301EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3302
3303void kern_unmount(struct vfsmount *mnt)
3304{
3305 /* release long term mount so mount point can be released */
3306 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3307 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3308 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3309 mntput(mnt);
3310 }
3311}
3312EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3313
3314bool our_mnt(struct vfsmount *mnt)
3315{
143c8c91 3316 return check_mnt(real_mount(mnt));
02125a82 3317}
8823c079 3318
3151527e
EB
3319bool current_chrooted(void)
3320{
3321 /* Does the current process have a non-standard root */
3322 struct path ns_root;
3323 struct path fs_root;
3324 bool chrooted;
3325
3326 /* Find the namespace root */
3327 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3328 ns_root.dentry = ns_root.mnt->mnt_root;
3329 path_get(&ns_root);
3330 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3331 ;
3332
3333 get_fs_root(current->fs, &fs_root);
3334
3335 chrooted = !path_equal(&fs_root, &ns_root);
3336
3337 path_put(&fs_root);
3338 path_put(&ns_root);
3339
3340 return chrooted;
3341}
3342
8654df4e
EB
3343static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3344 int *new_mnt_flags)
87a8ebd6 3345{
8c6cf9cc 3346 int new_flags = *new_mnt_flags;
87a8ebd6 3347 struct mount *mnt;
e51db735 3348 bool visible = false;
87a8ebd6 3349
44bb4385 3350 down_read(&namespace_sem);
87a8ebd6 3351 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3352 struct mount *child;
77b1a97d
EB
3353 int mnt_flags;
3354
8654df4e 3355 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3356 continue;
3357
7e96c1b0
EB
3358 /* This mount is not fully visible if it's root directory
3359 * is not the root directory of the filesystem.
3360 */
3361 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3362 continue;
3363
a1935c17 3364 /* A local view of the mount flags */
77b1a97d 3365 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3366
695e9df0
EB
3367 /* Don't miss readonly hidden in the superblock flags */
3368 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3369 mnt_flags |= MNT_LOCK_READONLY;
3370
8c6cf9cc
EB
3371 /* Verify the mount flags are equal to or more permissive
3372 * than the proposed new mount.
3373 */
77b1a97d 3374 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3375 !(new_flags & MNT_READONLY))
3376 continue;
77b1a97d
EB
3377 if ((mnt_flags & MNT_LOCK_ATIME) &&
3378 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3379 continue;
3380
ceeb0e5d
EB
3381 /* This mount is not fully visible if there are any
3382 * locked child mounts that cover anything except for
3383 * empty directories.
e51db735
EB
3384 */
3385 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3386 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3387 /* Only worry about locked mounts */
d71ed6c9 3388 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3389 continue;
7236c85e
EB
3390 /* Is the directory permanetly empty? */
3391 if (!is_empty_dir_inode(inode))
e51db735 3392 goto next;
87a8ebd6 3393 }
8c6cf9cc 3394 /* Preserve the locked attributes */
77b1a97d 3395 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3396 MNT_LOCK_ATIME);
e51db735
EB
3397 visible = true;
3398 goto found;
3399 next: ;
87a8ebd6 3400 }
e51db735 3401found:
44bb4385 3402 up_read(&namespace_sem);
e51db735 3403 return visible;
87a8ebd6
EB
3404}
3405
8654df4e
EB
3406static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3407{
a1935c17 3408 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3409 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3410 unsigned long s_iflags;
3411
3412 if (ns->user_ns == &init_user_ns)
3413 return false;
3414
3415 /* Can this filesystem be too revealing? */
3416 s_iflags = mnt->mnt_sb->s_iflags;
3417 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3418 return false;
3419
a1935c17
EB
3420 if ((s_iflags & required_iflags) != required_iflags) {
3421 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3422 required_iflags);
3423 return true;
3424 }
3425
8654df4e
EB
3426 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3427}
3428
380cf5ba
AL
3429bool mnt_may_suid(struct vfsmount *mnt)
3430{
3431 /*
3432 * Foreign mounts (accessed via fchdir or through /proc
3433 * symlinks) are always treated as if they are nosuid. This
3434 * prevents namespaces from trusting potentially unsafe
3435 * suid/sgid bits, file caps, or security labels that originate
3436 * in other namespaces.
3437 */
3438 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3439 current_in_userns(mnt->mnt_sb->s_user_ns);
3440}
3441
64964528 3442static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3443{
58be2825 3444 struct ns_common *ns = NULL;
8823c079
EB
3445 struct nsproxy *nsproxy;
3446
728dba3a
EB
3447 task_lock(task);
3448 nsproxy = task->nsproxy;
8823c079 3449 if (nsproxy) {
58be2825
AV
3450 ns = &nsproxy->mnt_ns->ns;
3451 get_mnt_ns(to_mnt_ns(ns));
8823c079 3452 }
728dba3a 3453 task_unlock(task);
8823c079
EB
3454
3455 return ns;
3456}
3457
64964528 3458static void mntns_put(struct ns_common *ns)
8823c079 3459{
58be2825 3460 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3461}
3462
64964528 3463static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3464{
3465 struct fs_struct *fs = current->fs;
58be2825 3466 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3467 struct path root;
3468
0c55cfc4 3469 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3470 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3471 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3472 return -EPERM;
8823c079
EB
3473
3474 if (fs->users != 1)
3475 return -EINVAL;
3476
3477 get_mnt_ns(mnt_ns);
3478 put_mnt_ns(nsproxy->mnt_ns);
3479 nsproxy->mnt_ns = mnt_ns;
3480
3481 /* Find the root */
3482 root.mnt = &mnt_ns->root->mnt;
3483 root.dentry = mnt_ns->root->mnt.mnt_root;
3484 path_get(&root);
3485 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3486 ;
3487
3488 /* Update the pwd and root */
3489 set_fs_pwd(fs, &root);
3490 set_fs_root(fs, &root);
3491
3492 path_put(&root);
3493 return 0;
3494}
3495
bcac25a5
AV
3496static struct user_namespace *mntns_owner(struct ns_common *ns)
3497{
3498 return to_mnt_ns(ns)->user_ns;
3499}
3500
8823c079
EB
3501const struct proc_ns_operations mntns_operations = {
3502 .name = "mnt",
3503 .type = CLONE_NEWNS,
3504 .get = mntns_get,
3505 .put = mntns_put,
3506 .install = mntns_install,
bcac25a5 3507 .owner = mntns_owner,
8823c079 3508};