]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/namespace.c
NFSv4: fix getacl head length estimation
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
fd4b5fa6
EB
30/* Maximum number of mounts in a mount namespace */
31unsigned int sysctl_mount_max __read_mostly = 100000;
32
0818bf27
AV
33static unsigned int m_hash_mask __read_mostly;
34static unsigned int m_hash_shift __read_mostly;
35static unsigned int mp_hash_mask __read_mostly;
36static unsigned int mp_hash_shift __read_mostly;
37
38static __initdata unsigned long mhash_entries;
39static int __init set_mhash_entries(char *str)
40{
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45}
46__setup("mhash_entries=", set_mhash_entries);
47
48static __initdata unsigned long mphash_entries;
49static int __init set_mphash_entries(char *str)
50{
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55}
56__setup("mphash_entries=", set_mphash_entries);
13f14b4d 57
c7999c36 58static u64 event;
73cd49ec 59static DEFINE_IDA(mnt_id_ida);
719f5d7f 60static DEFINE_IDA(mnt_group_ida);
99b7db7b 61static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
62static int mnt_id_start = 0;
63static int mnt_group_start = 1;
1da177e4 64
38129a13 65static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 66static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 67static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 68static DECLARE_RWSEM(namespace_sem);
1da177e4 69
f87fd4c2 70/* /sys/fs */
00d26666
GKH
71struct kobject *fs_kobj;
72EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 73
99b7db7b
NP
74/*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
48a066e7 82__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 83
38129a13 84static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 85{
b58fed8b
RP
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90}
91
92static inline struct hlist_head *mp_hash(struct dentry *dentry)
93{
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
97}
98
99b7db7b
NP
99/*
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
102 */
b105e270 103static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
104{
105 int res;
106
107retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 109 spin_lock(&mnt_id_lock);
15169fe7 110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 111 if (!res)
15169fe7 112 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 113 spin_unlock(&mnt_id_lock);
73cd49ec
MS
114 if (res == -EAGAIN)
115 goto retry;
116
117 return res;
118}
119
b105e270 120static void mnt_free_id(struct mount *mnt)
73cd49ec 121{
15169fe7 122 int id = mnt->mnt_id;
99b7db7b 123 spin_lock(&mnt_id_lock);
f21f6220
AV
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
99b7db7b 127 spin_unlock(&mnt_id_lock);
73cd49ec
MS
128}
129
719f5d7f
MS
130/*
131 * Allocate a new peer group ID
132 *
133 * mnt_group_ida is protected by namespace_sem
134 */
4b8b21f4 135static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 136{
f21f6220
AV
137 int res;
138
719f5d7f
MS
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
141
f21f6220
AV
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
15169fe7 144 &mnt->mnt_group_id);
f21f6220 145 if (!res)
15169fe7 146 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
147
148 return res;
719f5d7f
MS
149}
150
151/*
152 * Release a peer group ID
153 */
4b8b21f4 154void mnt_release_group_id(struct mount *mnt)
719f5d7f 155{
15169fe7 156 int id = mnt->mnt_group_id;
f21f6220
AV
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
15169fe7 160 mnt->mnt_group_id = 0;
719f5d7f
MS
161}
162
b3e19d92
NP
163/*
164 * vfsmount lock must be held for read
165 */
83adc753 166static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
167{
168#ifdef CONFIG_SMP
68e8a9fe 169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
170#else
171 preempt_disable();
68e8a9fe 172 mnt->mnt_count += n;
b3e19d92
NP
173 preempt_enable();
174#endif
175}
176
b3e19d92
NP
177/*
178 * vfsmount lock must be held for write
179 */
83adc753 180unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
181{
182#ifdef CONFIG_SMP
f03c6599 183 unsigned int count = 0;
b3e19d92
NP
184 int cpu;
185
186 for_each_possible_cpu(cpu) {
68e8a9fe 187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
188 }
189
190 return count;
191#else
68e8a9fe 192 return mnt->mnt_count;
b3e19d92
NP
193#endif
194}
195
87b95ce0
AV
196static void drop_mountpoint(struct fs_pin *p)
197{
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
202}
203
b105e270 204static struct mount *alloc_vfsmnt(const char *name)
1da177e4 205{
c63181e6
AV
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
73cd49ec
MS
208 int err;
209
c63181e6 210 err = mnt_alloc_id(mnt);
88b38782
LZ
211 if (err)
212 goto out_free_cache;
213
214 if (name) {
fcc139ae 215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 216 if (!mnt->mnt_devname)
88b38782 217 goto out_free_id;
73cd49ec
MS
218 }
219
b3e19d92 220#ifdef CONFIG_SMP
c63181e6
AV
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
b3e19d92
NP
223 goto out_free_devname;
224
c63181e6 225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 226#else
c63181e6
AV
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
b3e19d92
NP
229#endif
230
38129a13 231 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
232 INIT_LIST_HEAD(&mnt->mnt_child);
233 INIT_LIST_HEAD(&mnt->mnt_mounts);
234 INIT_LIST_HEAD(&mnt->mnt_list);
235 INIT_LIST_HEAD(&mnt->mnt_expire);
236 INIT_LIST_HEAD(&mnt->mnt_share);
237 INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 239 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
240#ifdef CONFIG_FSNOTIFY
241 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 242#endif
87b95ce0 243 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 244 }
c63181e6 245 return mnt;
88b38782 246
d3ef3d73 247#ifdef CONFIG_SMP
248out_free_devname:
fcc139ae 249 kfree_const(mnt->mnt_devname);
d3ef3d73 250#endif
88b38782 251out_free_id:
c63181e6 252 mnt_free_id(mnt);
88b38782 253out_free_cache:
c63181e6 254 kmem_cache_free(mnt_cache, mnt);
88b38782 255 return NULL;
1da177e4
LT
256}
257
3d733633
DH
258/*
259 * Most r/o checks on a fs are for operations that take
260 * discrete amounts of time, like a write() or unlink().
261 * We must keep track of when those operations start
262 * (for permission checks) and when they end, so that
263 * we can determine when writes are able to occur to
264 * a filesystem.
265 */
266/*
267 * __mnt_is_readonly: check whether a mount is read-only
268 * @mnt: the mount to check for its write status
269 *
270 * This shouldn't be used directly ouside of the VFS.
271 * It does not guarantee that the filesystem will stay
272 * r/w, just that it is right *now*. This can not and
273 * should not be used in place of IS_RDONLY(inode).
274 * mnt_want/drop_write() will _keep_ the filesystem
275 * r/w.
276 */
277int __mnt_is_readonly(struct vfsmount *mnt)
278{
2e4b7fcd
DH
279 if (mnt->mnt_flags & MNT_READONLY)
280 return 1;
281 if (mnt->mnt_sb->s_flags & MS_RDONLY)
282 return 1;
283 return 0;
3d733633
DH
284}
285EXPORT_SYMBOL_GPL(__mnt_is_readonly);
286
83adc753 287static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 288{
289#ifdef CONFIG_SMP
68e8a9fe 290 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 291#else
68e8a9fe 292 mnt->mnt_writers++;
d3ef3d73 293#endif
294}
3d733633 295
83adc753 296static inline void mnt_dec_writers(struct mount *mnt)
3d733633 297{
d3ef3d73 298#ifdef CONFIG_SMP
68e8a9fe 299 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 300#else
68e8a9fe 301 mnt->mnt_writers--;
d3ef3d73 302#endif
3d733633 303}
3d733633 304
83adc753 305static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 306{
d3ef3d73 307#ifdef CONFIG_SMP
308 unsigned int count = 0;
3d733633 309 int cpu;
3d733633
DH
310
311 for_each_possible_cpu(cpu) {
68e8a9fe 312 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 313 }
3d733633 314
d3ef3d73 315 return count;
316#else
317 return mnt->mnt_writers;
318#endif
3d733633
DH
319}
320
4ed5e82f
MS
321static int mnt_is_readonly(struct vfsmount *mnt)
322{
323 if (mnt->mnt_sb->s_readonly_remount)
324 return 1;
325 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
326 smp_rmb();
327 return __mnt_is_readonly(mnt);
328}
329
8366025e 330/*
eb04c282
JK
331 * Most r/o & frozen checks on a fs are for operations that take discrete
332 * amounts of time, like a write() or unlink(). We must keep track of when
333 * those operations start (for permission checks) and when they end, so that we
334 * can determine when writes are able to occur to a filesystem.
8366025e
DH
335 */
336/**
eb04c282 337 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 338 * @m: the mount on which to take a write
8366025e 339 *
eb04c282
JK
340 * This tells the low-level filesystem that a write is about to be performed to
341 * it, and makes sure that writes are allowed (mnt it read-write) before
342 * returning success. This operation does not protect against filesystem being
343 * frozen. When the write operation is finished, __mnt_drop_write() must be
344 * called. This is effectively a refcount.
8366025e 345 */
eb04c282 346int __mnt_want_write(struct vfsmount *m)
8366025e 347{
83adc753 348 struct mount *mnt = real_mount(m);
3d733633 349 int ret = 0;
3d733633 350
d3ef3d73 351 preempt_disable();
c6653a83 352 mnt_inc_writers(mnt);
d3ef3d73 353 /*
c6653a83 354 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 355 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
356 * incremented count after it has set MNT_WRITE_HOLD.
357 */
358 smp_mb();
1e75529e 359 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 360 cpu_relax();
361 /*
362 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
363 * be set to match its requirements. So we must not load that until
364 * MNT_WRITE_HOLD is cleared.
365 */
366 smp_rmb();
4ed5e82f 367 if (mnt_is_readonly(m)) {
c6653a83 368 mnt_dec_writers(mnt);
3d733633 369 ret = -EROFS;
3d733633 370 }
d3ef3d73 371 preempt_enable();
eb04c282
JK
372
373 return ret;
374}
375
376/**
377 * mnt_want_write - get write access to a mount
378 * @m: the mount on which to take a write
379 *
380 * This tells the low-level filesystem that a write is about to be performed to
381 * it, and makes sure that writes are allowed (mount is read-write, filesystem
382 * is not frozen) before returning success. When the write operation is
383 * finished, mnt_drop_write() must be called. This is effectively a refcount.
384 */
385int mnt_want_write(struct vfsmount *m)
386{
387 int ret;
388
389 sb_start_write(m->mnt_sb);
390 ret = __mnt_want_write(m);
391 if (ret)
392 sb_end_write(m->mnt_sb);
3d733633 393 return ret;
8366025e
DH
394}
395EXPORT_SYMBOL_GPL(mnt_want_write);
396
96029c4e 397/**
398 * mnt_clone_write - get write access to a mount
399 * @mnt: the mount on which to take a write
400 *
401 * This is effectively like mnt_want_write, except
402 * it must only be used to take an extra write reference
403 * on a mountpoint that we already know has a write reference
404 * on it. This allows some optimisation.
405 *
406 * After finished, mnt_drop_write must be called as usual to
407 * drop the reference.
408 */
409int mnt_clone_write(struct vfsmount *mnt)
410{
411 /* superblock may be r/o */
412 if (__mnt_is_readonly(mnt))
413 return -EROFS;
414 preempt_disable();
83adc753 415 mnt_inc_writers(real_mount(mnt));
96029c4e 416 preempt_enable();
417 return 0;
418}
419EXPORT_SYMBOL_GPL(mnt_clone_write);
420
421/**
eb04c282 422 * __mnt_want_write_file - get write access to a file's mount
96029c4e 423 * @file: the file who's mount on which to take a write
424 *
eb04c282 425 * This is like __mnt_want_write, but it takes a file and can
96029c4e 426 * do some optimisations if the file is open for write already
427 */
eb04c282 428int __mnt_want_write_file(struct file *file)
96029c4e 429{
83f936c7 430 if (!(file->f_mode & FMODE_WRITER))
eb04c282 431 return __mnt_want_write(file->f_path.mnt);
96029c4e 432 else
433 return mnt_clone_write(file->f_path.mnt);
434}
eb04c282
JK
435
436/**
437 * mnt_want_write_file - get write access to a file's mount
438 * @file: the file who's mount on which to take a write
439 *
440 * This is like mnt_want_write, but it takes a file and can
441 * do some optimisations if the file is open for write already
442 */
443int mnt_want_write_file(struct file *file)
444{
445 int ret;
446
447 sb_start_write(file->f_path.mnt->mnt_sb);
448 ret = __mnt_want_write_file(file);
449 if (ret)
450 sb_end_write(file->f_path.mnt->mnt_sb);
451 return ret;
452}
96029c4e 453EXPORT_SYMBOL_GPL(mnt_want_write_file);
454
8366025e 455/**
eb04c282 456 * __mnt_drop_write - give up write access to a mount
8366025e
DH
457 * @mnt: the mount on which to give up write access
458 *
459 * Tells the low-level filesystem that we are done
460 * performing writes to it. Must be matched with
eb04c282 461 * __mnt_want_write() call above.
8366025e 462 */
eb04c282 463void __mnt_drop_write(struct vfsmount *mnt)
8366025e 464{
d3ef3d73 465 preempt_disable();
83adc753 466 mnt_dec_writers(real_mount(mnt));
d3ef3d73 467 preempt_enable();
8366025e 468}
dee5220c 469EXPORT_SYMBOL_GPL(__mnt_drop_write);
eb04c282
JK
470
471/**
472 * mnt_drop_write - give up write access to a mount
473 * @mnt: the mount on which to give up write access
474 *
475 * Tells the low-level filesystem that we are done performing writes to it and
476 * also allows filesystem to be frozen again. Must be matched with
477 * mnt_want_write() call above.
478 */
479void mnt_drop_write(struct vfsmount *mnt)
480{
481 __mnt_drop_write(mnt);
482 sb_end_write(mnt->mnt_sb);
483}
8366025e
DH
484EXPORT_SYMBOL_GPL(mnt_drop_write);
485
eb04c282
JK
486void __mnt_drop_write_file(struct file *file)
487{
488 __mnt_drop_write(file->f_path.mnt);
489}
490
2a79f17e
AV
491void mnt_drop_write_file(struct file *file)
492{
493 mnt_drop_write(file->f_path.mnt);
494}
495EXPORT_SYMBOL(mnt_drop_write_file);
496
83adc753 497static int mnt_make_readonly(struct mount *mnt)
8366025e 498{
3d733633
DH
499 int ret = 0;
500
719ea2fb 501 lock_mount_hash();
83adc753 502 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 503 /*
d3ef3d73 504 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
505 * should be visible before we do.
3d733633 506 */
d3ef3d73 507 smp_mb();
508
3d733633 509 /*
d3ef3d73 510 * With writers on hold, if this value is zero, then there are
511 * definitely no active writers (although held writers may subsequently
512 * increment the count, they'll have to wait, and decrement it after
513 * seeing MNT_READONLY).
514 *
515 * It is OK to have counter incremented on one CPU and decremented on
516 * another: the sum will add up correctly. The danger would be when we
517 * sum up each counter, if we read a counter before it is incremented,
518 * but then read another CPU's count which it has been subsequently
519 * decremented from -- we would see more decrements than we should.
520 * MNT_WRITE_HOLD protects against this scenario, because
521 * mnt_want_write first increments count, then smp_mb, then spins on
522 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
523 * we're counting up here.
3d733633 524 */
c6653a83 525 if (mnt_get_writers(mnt) > 0)
d3ef3d73 526 ret = -EBUSY;
527 else
83adc753 528 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 529 /*
530 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
531 * that become unheld will see MNT_READONLY.
532 */
533 smp_wmb();
83adc753 534 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 535 unlock_mount_hash();
3d733633 536 return ret;
8366025e 537}
8366025e 538
83adc753 539static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 540{
719ea2fb 541 lock_mount_hash();
83adc753 542 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 543 unlock_mount_hash();
2e4b7fcd
DH
544}
545
4ed5e82f
MS
546int sb_prepare_remount_readonly(struct super_block *sb)
547{
548 struct mount *mnt;
549 int err = 0;
550
8e8b8796
MS
551 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
552 if (atomic_long_read(&sb->s_remove_count))
553 return -EBUSY;
554
719ea2fb 555 lock_mount_hash();
4ed5e82f
MS
556 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
557 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
558 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
559 smp_mb();
560 if (mnt_get_writers(mnt) > 0) {
561 err = -EBUSY;
562 break;
563 }
564 }
565 }
8e8b8796
MS
566 if (!err && atomic_long_read(&sb->s_remove_count))
567 err = -EBUSY;
568
4ed5e82f
MS
569 if (!err) {
570 sb->s_readonly_remount = 1;
571 smp_wmb();
572 }
573 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
574 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
575 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
576 }
719ea2fb 577 unlock_mount_hash();
4ed5e82f
MS
578
579 return err;
580}
581
b105e270 582static void free_vfsmnt(struct mount *mnt)
1da177e4 583{
fcc139ae 584 kfree_const(mnt->mnt_devname);
d3ef3d73 585#ifdef CONFIG_SMP
68e8a9fe 586 free_percpu(mnt->mnt_pcp);
d3ef3d73 587#endif
b105e270 588 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
589}
590
8ffcb32e
DH
591static void delayed_free_vfsmnt(struct rcu_head *head)
592{
593 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
594}
595
48a066e7 596/* call under rcu_read_lock */
294d71ff 597int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
598{
599 struct mount *mnt;
600 if (read_seqretry(&mount_lock, seq))
294d71ff 601 return 1;
48a066e7 602 if (bastard == NULL)
294d71ff 603 return 0;
48a066e7
AV
604 mnt = real_mount(bastard);
605 mnt_add_count(mnt, 1);
606 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 607 return 0;
48a066e7
AV
608 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
609 mnt_add_count(mnt, -1);
294d71ff
AV
610 return 1;
611 }
612 return -1;
613}
614
615/* call under rcu_read_lock */
616bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
617{
618 int res = __legitimize_mnt(bastard, seq);
619 if (likely(!res))
620 return true;
621 if (unlikely(res < 0)) {
622 rcu_read_unlock();
623 mntput(bastard);
624 rcu_read_lock();
48a066e7 625 }
48a066e7
AV
626 return false;
627}
628
1da177e4 629/*
474279dc 630 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 631 * call under rcu_read_lock()
1da177e4 632 */
474279dc 633struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 634{
38129a13 635 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
636 struct mount *p;
637
38129a13 638 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
639 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
640 return p;
641 return NULL;
642}
643
644/*
645 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 646 * mount_lock must be held.
474279dc
AV
647 */
648struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
649{
411a938b
EB
650 struct mount *p, *res = NULL;
651 p = __lookup_mnt(mnt, dentry);
38129a13
AV
652 if (!p)
653 goto out;
411a938b
EB
654 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
655 res = p;
38129a13 656 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
657 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
658 break;
411a938b
EB
659 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
660 res = p;
1d6a32ac 661 }
38129a13 662out:
1d6a32ac 663 return res;
1da177e4
LT
664}
665
a05964f3 666/*
f015f126
DH
667 * lookup_mnt - Return the first child mount mounted at path
668 *
669 * "First" means first mounted chronologically. If you create the
670 * following mounts:
671 *
672 * mount /dev/sda1 /mnt
673 * mount /dev/sda2 /mnt
674 * mount /dev/sda3 /mnt
675 *
676 * Then lookup_mnt() on the base /mnt dentry in the root mount will
677 * return successively the root dentry and vfsmount of /dev/sda1, then
678 * /dev/sda2, then /dev/sda3, then NULL.
679 *
680 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 681 */
1c755af4 682struct vfsmount *lookup_mnt(struct path *path)
a05964f3 683{
c7105365 684 struct mount *child_mnt;
48a066e7
AV
685 struct vfsmount *m;
686 unsigned seq;
99b7db7b 687
48a066e7
AV
688 rcu_read_lock();
689 do {
690 seq = read_seqbegin(&mount_lock);
691 child_mnt = __lookup_mnt(path->mnt, path->dentry);
692 m = child_mnt ? &child_mnt->mnt : NULL;
693 } while (!legitimize_mnt(m, seq));
694 rcu_read_unlock();
695 return m;
a05964f3
RP
696}
697
7af1364f
EB
698/*
699 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
700 * current mount namespace.
701 *
702 * The common case is dentries are not mountpoints at all and that
703 * test is handled inline. For the slow case when we are actually
704 * dealing with a mountpoint of some kind, walk through all of the
705 * mounts in the current mount namespace and test to see if the dentry
706 * is a mountpoint.
707 *
708 * The mount_hashtable is not usable in the context because we
709 * need to identify all mounts that may be in the current mount
710 * namespace not just a mount that happens to have some specified
711 * parent mount.
712 */
713bool __is_local_mountpoint(struct dentry *dentry)
714{
715 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
716 struct mount *mnt;
717 bool is_covered = false;
718
719 if (!d_mountpoint(dentry))
720 goto out;
721
722 down_read(&namespace_sem);
723 list_for_each_entry(mnt, &ns->list, mnt_list) {
724 is_covered = (mnt->mnt_mountpoint == dentry);
725 if (is_covered)
726 break;
727 }
728 up_read(&namespace_sem);
729out:
730 return is_covered;
731}
732
e2dfa935 733static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 734{
0818bf27 735 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
736 struct mountpoint *mp;
737
0818bf27 738 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
739 if (mp->m_dentry == dentry) {
740 /* might be worth a WARN_ON() */
741 if (d_unlinked(dentry))
742 return ERR_PTR(-ENOENT);
743 mp->m_count++;
744 return mp;
745 }
746 }
e2dfa935
EB
747 return NULL;
748}
749
e178bd11 750static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 751{
e178bd11 752 struct mountpoint *mp, *new = NULL;
e2dfa935 753 int ret;
84d17192 754
e178bd11
EB
755 if (d_mountpoint(dentry)) {
756mountpoint:
757 read_seqlock_excl(&mount_lock);
758 mp = lookup_mountpoint(dentry);
759 read_sequnlock_excl(&mount_lock);
760 if (mp)
761 goto done;
762 }
763
764 if (!new)
765 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
766 if (!new)
84d17192
AV
767 return ERR_PTR(-ENOMEM);
768
e178bd11
EB
769
770 /* Exactly one processes may set d_mounted */
eed81007 771 ret = d_set_mounted(dentry);
eed81007 772
e178bd11
EB
773 /* Someone else set d_mounted? */
774 if (ret == -EBUSY)
775 goto mountpoint;
776
777 /* The dentry is not available as a mountpoint? */
778 mp = ERR_PTR(ret);
779 if (ret)
780 goto done;
781
782 /* Add the new mountpoint to the hash table */
783 read_seqlock_excl(&mount_lock);
784 new->m_dentry = dentry;
785 new->m_count = 1;
786 hlist_add_head(&new->m_hash, mp_hash(dentry));
787 INIT_HLIST_HEAD(&new->m_list);
788 read_sequnlock_excl(&mount_lock);
789
790 mp = new;
791 new = NULL;
792done:
793 kfree(new);
84d17192
AV
794 return mp;
795}
796
797static void put_mountpoint(struct mountpoint *mp)
798{
799 if (!--mp->m_count) {
800 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 801 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
802 spin_lock(&dentry->d_lock);
803 dentry->d_flags &= ~DCACHE_MOUNTED;
804 spin_unlock(&dentry->d_lock);
0818bf27 805 hlist_del(&mp->m_hash);
84d17192
AV
806 kfree(mp);
807 }
808}
809
143c8c91 810static inline int check_mnt(struct mount *mnt)
1da177e4 811{
6b3286ed 812 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
813}
814
99b7db7b
NP
815/*
816 * vfsmount lock must be held for write
817 */
6b3286ed 818static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
819{
820 if (ns) {
821 ns->event = ++event;
822 wake_up_interruptible(&ns->poll);
823 }
824}
825
99b7db7b
NP
826/*
827 * vfsmount lock must be held for write
828 */
6b3286ed 829static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
830{
831 if (ns && ns->event != event) {
832 ns->event = event;
833 wake_up_interruptible(&ns->poll);
834 }
835}
836
99b7db7b
NP
837/*
838 * vfsmount lock must be held for write
839 */
7bdb11de 840static void unhash_mnt(struct mount *mnt)
419148da 841{
0714a533 842 mnt->mnt_parent = mnt;
a73324da 843 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 844 list_del_init(&mnt->mnt_child);
38129a13 845 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 846 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
847 put_mountpoint(mnt->mnt_mp);
848 mnt->mnt_mp = NULL;
1da177e4
LT
849}
850
7bdb11de
EB
851/*
852 * vfsmount lock must be held for write
853 */
854static void detach_mnt(struct mount *mnt, struct path *old_path)
855{
856 old_path->dentry = mnt->mnt_mountpoint;
857 old_path->mnt = &mnt->mnt_parent->mnt;
858 unhash_mnt(mnt);
859}
860
6a46c573
EB
861/*
862 * vfsmount lock must be held for write
863 */
864static void umount_mnt(struct mount *mnt)
865{
866 /* old mountpoint will be dropped when we can do that */
867 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
868 unhash_mnt(mnt);
869}
870
99b7db7b
NP
871/*
872 * vfsmount lock must be held for write
873 */
84d17192
AV
874void mnt_set_mountpoint(struct mount *mnt,
875 struct mountpoint *mp,
44d964d6 876 struct mount *child_mnt)
b90fa9ae 877{
84d17192 878 mp->m_count++;
3a2393d7 879 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 880 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 881 child_mnt->mnt_parent = mnt;
84d17192 882 child_mnt->mnt_mp = mp;
0a5eb7c8 883 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
884}
885
99b7db7b
NP
886/*
887 * vfsmount lock must be held for write
888 */
84d17192
AV
889static void attach_mnt(struct mount *mnt,
890 struct mount *parent,
891 struct mountpoint *mp)
1da177e4 892{
84d17192 893 mnt_set_mountpoint(parent, mp, mnt);
38129a13 894 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 895 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
896}
897
12a5b529
AV
898static void attach_shadowed(struct mount *mnt,
899 struct mount *parent,
900 struct mount *shadows)
901{
902 if (shadows) {
f6f99332 903 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
904 list_add(&mnt->mnt_child, &shadows->mnt_child);
905 } else {
906 hlist_add_head_rcu(&mnt->mnt_hash,
907 m_hash(&parent->mnt, mnt->mnt_mountpoint));
908 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
909 }
910}
911
b90fa9ae 912/*
99b7db7b 913 * vfsmount lock must be held for write
b90fa9ae 914 */
1d6a32ac 915static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 916{
0714a533 917 struct mount *parent = mnt->mnt_parent;
83adc753 918 struct mount *m;
b90fa9ae 919 LIST_HEAD(head);
143c8c91 920 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 921
0714a533 922 BUG_ON(parent == mnt);
b90fa9ae 923
1a4eeaf2 924 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 925 list_for_each_entry(m, &head, mnt_list)
143c8c91 926 m->mnt_ns = n;
f03c6599 927
b90fa9ae
RP
928 list_splice(&head, n->list.prev);
929
fd4b5fa6
EB
930 n->mounts += n->pending_mounts;
931 n->pending_mounts = 0;
932
12a5b529 933 attach_shadowed(mnt, parent, shadows);
6b3286ed 934 touch_mnt_namespace(n);
1da177e4
LT
935}
936
909b0a88 937static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 938{
6b41d536
AV
939 struct list_head *next = p->mnt_mounts.next;
940 if (next == &p->mnt_mounts) {
1da177e4 941 while (1) {
909b0a88 942 if (p == root)
1da177e4 943 return NULL;
6b41d536
AV
944 next = p->mnt_child.next;
945 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 946 break;
0714a533 947 p = p->mnt_parent;
1da177e4
LT
948 }
949 }
6b41d536 950 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
951}
952
315fc83e 953static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 954{
6b41d536
AV
955 struct list_head *prev = p->mnt_mounts.prev;
956 while (prev != &p->mnt_mounts) {
957 p = list_entry(prev, struct mount, mnt_child);
958 prev = p->mnt_mounts.prev;
9676f0c6
RP
959 }
960 return p;
961}
962
9d412a43
AV
963struct vfsmount *
964vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
965{
b105e270 966 struct mount *mnt;
9d412a43
AV
967 struct dentry *root;
968
969 if (!type)
970 return ERR_PTR(-ENODEV);
971
972 mnt = alloc_vfsmnt(name);
973 if (!mnt)
974 return ERR_PTR(-ENOMEM);
975
976 if (flags & MS_KERNMOUNT)
b105e270 977 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
978
979 root = mount_fs(type, flags, name, data);
980 if (IS_ERR(root)) {
8ffcb32e 981 mnt_free_id(mnt);
9d412a43
AV
982 free_vfsmnt(mnt);
983 return ERR_CAST(root);
984 }
985
b105e270
AV
986 mnt->mnt.mnt_root = root;
987 mnt->mnt.mnt_sb = root->d_sb;
a73324da 988 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 989 mnt->mnt_parent = mnt;
719ea2fb 990 lock_mount_hash();
39f7c4db 991 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 992 unlock_mount_hash();
b105e270 993 return &mnt->mnt;
9d412a43
AV
994}
995EXPORT_SYMBOL_GPL(vfs_kern_mount);
996
28ba5876
EB
997struct vfsmount *
998vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
999 const char *name, void *data)
1000{
1001 /* Until it is worked out how to pass the user namespace
1002 * through from the parent mount to the submount don't support
1003 * unprivileged mounts with submounts.
1004 */
1005 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1006 return ERR_PTR(-EPERM);
1007
1008 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1009}
1010EXPORT_SYMBOL_GPL(vfs_submount);
1011
87129cc0 1012static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1013 int flag)
1da177e4 1014{
87129cc0 1015 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1016 struct mount *mnt;
1017 int err;
1da177e4 1018
be34d1a3
DH
1019 mnt = alloc_vfsmnt(old->mnt_devname);
1020 if (!mnt)
1021 return ERR_PTR(-ENOMEM);
719f5d7f 1022
7a472ef4 1023 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1024 mnt->mnt_group_id = 0; /* not a peer of original */
1025 else
1026 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1027
be34d1a3
DH
1028 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1029 err = mnt_alloc_group_id(mnt);
1030 if (err)
1031 goto out_free;
1da177e4 1032 }
be34d1a3 1033
f2ebb3a9 1034 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 1035 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
1036 if (flag & CL_UNPRIVILEGED) {
1037 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1038
1039 if (mnt->mnt.mnt_flags & MNT_READONLY)
1040 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1041
1042 if (mnt->mnt.mnt_flags & MNT_NODEV)
1043 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1044
1045 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1046 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1047
1048 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1049 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1050 }
132c94e3 1051
5ff9d8a6 1052 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1053 if ((flag & CL_UNPRIVILEGED) &&
1054 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1055 mnt->mnt.mnt_flags |= MNT_LOCKED;
1056
be34d1a3
DH
1057 atomic_inc(&sb->s_active);
1058 mnt->mnt.mnt_sb = sb;
1059 mnt->mnt.mnt_root = dget(root);
1060 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1061 mnt->mnt_parent = mnt;
719ea2fb 1062 lock_mount_hash();
be34d1a3 1063 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1064 unlock_mount_hash();
be34d1a3 1065
7a472ef4
EB
1066 if ((flag & CL_SLAVE) ||
1067 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1068 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1069 mnt->mnt_master = old;
1070 CLEAR_MNT_SHARED(mnt);
1071 } else if (!(flag & CL_PRIVATE)) {
1072 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1073 list_add(&mnt->mnt_share, &old->mnt_share);
1074 if (IS_MNT_SLAVE(old))
1075 list_add(&mnt->mnt_slave, &old->mnt_slave);
1076 mnt->mnt_master = old->mnt_master;
1077 }
1078 if (flag & CL_MAKE_SHARED)
1079 set_mnt_shared(mnt);
1080
1081 /* stick the duplicate mount on the same expiry list
1082 * as the original if that was on one */
1083 if (flag & CL_EXPIRE) {
1084 if (!list_empty(&old->mnt_expire))
1085 list_add(&mnt->mnt_expire, &old->mnt_expire);
1086 }
1087
cb338d06 1088 return mnt;
719f5d7f
MS
1089
1090 out_free:
8ffcb32e 1091 mnt_free_id(mnt);
719f5d7f 1092 free_vfsmnt(mnt);
be34d1a3 1093 return ERR_PTR(err);
1da177e4
LT
1094}
1095
9ea459e1
AV
1096static void cleanup_mnt(struct mount *mnt)
1097{
1098 /*
1099 * This probably indicates that somebody messed
1100 * up a mnt_want/drop_write() pair. If this
1101 * happens, the filesystem was probably unable
1102 * to make r/w->r/o transitions.
1103 */
1104 /*
1105 * The locking used to deal with mnt_count decrement provides barriers,
1106 * so mnt_get_writers() below is safe.
1107 */
1108 WARN_ON(mnt_get_writers(mnt));
1109 if (unlikely(mnt->mnt_pins.first))
1110 mnt_pin_kill(mnt);
1111 fsnotify_vfsmount_delete(&mnt->mnt);
1112 dput(mnt->mnt.mnt_root);
1113 deactivate_super(mnt->mnt.mnt_sb);
1114 mnt_free_id(mnt);
1115 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1116}
1117
1118static void __cleanup_mnt(struct rcu_head *head)
1119{
1120 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1121}
1122
1123static LLIST_HEAD(delayed_mntput_list);
1124static void delayed_mntput(struct work_struct *unused)
1125{
1126 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1127 struct llist_node *next;
1128
1129 for (; node; node = next) {
1130 next = llist_next(node);
1131 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1132 }
1133}
1134static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1135
900148dc 1136static void mntput_no_expire(struct mount *mnt)
b3e19d92 1137{
48a066e7
AV
1138 rcu_read_lock();
1139 mnt_add_count(mnt, -1);
1140 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1141 rcu_read_unlock();
f03c6599 1142 return;
b3e19d92 1143 }
719ea2fb 1144 lock_mount_hash();
b3e19d92 1145 if (mnt_get_count(mnt)) {
48a066e7 1146 rcu_read_unlock();
719ea2fb 1147 unlock_mount_hash();
99b7db7b
NP
1148 return;
1149 }
48a066e7
AV
1150 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1151 rcu_read_unlock();
1152 unlock_mount_hash();
1153 return;
1154 }
1155 mnt->mnt.mnt_flags |= MNT_DOOMED;
1156 rcu_read_unlock();
962830df 1157
39f7c4db 1158 list_del(&mnt->mnt_instance);
ce07d891
EB
1159
1160 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1161 struct mount *p, *tmp;
1162 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1163 umount_mnt(p);
1164 }
1165 }
719ea2fb 1166 unlock_mount_hash();
649a795a 1167
9ea459e1
AV
1168 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1169 struct task_struct *task = current;
1170 if (likely(!(task->flags & PF_KTHREAD))) {
1171 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1172 if (!task_work_add(task, &mnt->mnt_rcu, true))
1173 return;
1174 }
1175 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1176 schedule_delayed_work(&delayed_mntput_work, 1);
1177 return;
1178 }
1179 cleanup_mnt(mnt);
b3e19d92 1180}
b3e19d92
NP
1181
1182void mntput(struct vfsmount *mnt)
1183{
1184 if (mnt) {
863d684f 1185 struct mount *m = real_mount(mnt);
b3e19d92 1186 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1187 if (unlikely(m->mnt_expiry_mark))
1188 m->mnt_expiry_mark = 0;
1189 mntput_no_expire(m);
b3e19d92
NP
1190 }
1191}
1192EXPORT_SYMBOL(mntput);
1193
1194struct vfsmount *mntget(struct vfsmount *mnt)
1195{
1196 if (mnt)
83adc753 1197 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1198 return mnt;
1199}
1200EXPORT_SYMBOL(mntget);
1201
3064c356 1202struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1203{
3064c356
AV
1204 struct mount *p;
1205 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1206 if (IS_ERR(p))
1207 return ERR_CAST(p);
1208 p->mnt.mnt_flags |= MNT_INTERNAL;
1209 return &p->mnt;
7b7b1ace 1210}
1da177e4 1211
b3b304a2
MS
1212static inline void mangle(struct seq_file *m, const char *s)
1213{
1214 seq_escape(m, s, " \t\n\\");
1215}
1216
1217/*
1218 * Simple .show_options callback for filesystems which don't want to
1219 * implement more complex mount option showing.
1220 *
1221 * See also save_mount_options().
1222 */
34c80b1d 1223int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1224{
2a32cebd
AV
1225 const char *options;
1226
1227 rcu_read_lock();
34c80b1d 1228 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1229
1230 if (options != NULL && options[0]) {
1231 seq_putc(m, ',');
1232 mangle(m, options);
1233 }
2a32cebd 1234 rcu_read_unlock();
b3b304a2
MS
1235
1236 return 0;
1237}
1238EXPORT_SYMBOL(generic_show_options);
1239
1240/*
1241 * If filesystem uses generic_show_options(), this function should be
1242 * called from the fill_super() callback.
1243 *
1244 * The .remount_fs callback usually needs to be handled in a special
1245 * way, to make sure, that previous options are not overwritten if the
1246 * remount fails.
1247 *
1248 * Also note, that if the filesystem's .remount_fs function doesn't
1249 * reset all options to their default value, but changes only newly
1250 * given options, then the displayed options will not reflect reality
1251 * any more.
1252 */
1253void save_mount_options(struct super_block *sb, char *options)
1254{
2a32cebd
AV
1255 BUG_ON(sb->s_options);
1256 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1257}
1258EXPORT_SYMBOL(save_mount_options);
1259
2a32cebd
AV
1260void replace_mount_options(struct super_block *sb, char *options)
1261{
1262 char *old = sb->s_options;
1263 rcu_assign_pointer(sb->s_options, options);
1264 if (old) {
1265 synchronize_rcu();
1266 kfree(old);
1267 }
1268}
1269EXPORT_SYMBOL(replace_mount_options);
1270
a1a2c409 1271#ifdef CONFIG_PROC_FS
0226f492 1272/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1273static void *m_start(struct seq_file *m, loff_t *pos)
1274{
ede1bf0d 1275 struct proc_mounts *p = m->private;
1da177e4 1276
390c6843 1277 down_read(&namespace_sem);
c7999c36
AV
1278 if (p->cached_event == p->ns->event) {
1279 void *v = p->cached_mount;
1280 if (*pos == p->cached_index)
1281 return v;
1282 if (*pos == p->cached_index + 1) {
1283 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1284 return p->cached_mount = v;
1285 }
1286 }
1287
1288 p->cached_event = p->ns->event;
1289 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1290 p->cached_index = *pos;
1291 return p->cached_mount;
1da177e4
LT
1292}
1293
1294static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1295{
ede1bf0d 1296 struct proc_mounts *p = m->private;
b0765fb8 1297
c7999c36
AV
1298 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1299 p->cached_index = *pos;
1300 return p->cached_mount;
1da177e4
LT
1301}
1302
1303static void m_stop(struct seq_file *m, void *v)
1304{
390c6843 1305 up_read(&namespace_sem);
1da177e4
LT
1306}
1307
0226f492 1308static int m_show(struct seq_file *m, void *v)
2d4d4864 1309{
ede1bf0d 1310 struct proc_mounts *p = m->private;
1a4eeaf2 1311 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1312 return p->show(m, &r->mnt);
1da177e4
LT
1313}
1314
a1a2c409 1315const struct seq_operations mounts_op = {
1da177e4
LT
1316 .start = m_start,
1317 .next = m_next,
1318 .stop = m_stop,
0226f492 1319 .show = m_show,
b4629fe2 1320};
a1a2c409 1321#endif /* CONFIG_PROC_FS */
b4629fe2 1322
1da177e4
LT
1323/**
1324 * may_umount_tree - check if a mount tree is busy
1325 * @mnt: root of mount tree
1326 *
1327 * This is called to check if a tree of mounts has any
1328 * open files, pwds, chroots or sub mounts that are
1329 * busy.
1330 */
909b0a88 1331int may_umount_tree(struct vfsmount *m)
1da177e4 1332{
909b0a88 1333 struct mount *mnt = real_mount(m);
36341f64
RP
1334 int actual_refs = 0;
1335 int minimum_refs = 0;
315fc83e 1336 struct mount *p;
909b0a88 1337 BUG_ON(!m);
1da177e4 1338
b3e19d92 1339 /* write lock needed for mnt_get_count */
719ea2fb 1340 lock_mount_hash();
909b0a88 1341 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1342 actual_refs += mnt_get_count(p);
1da177e4 1343 minimum_refs += 2;
1da177e4 1344 }
719ea2fb 1345 unlock_mount_hash();
1da177e4
LT
1346
1347 if (actual_refs > minimum_refs)
e3474a8e 1348 return 0;
1da177e4 1349
e3474a8e 1350 return 1;
1da177e4
LT
1351}
1352
1353EXPORT_SYMBOL(may_umount_tree);
1354
1355/**
1356 * may_umount - check if a mount point is busy
1357 * @mnt: root of mount
1358 *
1359 * This is called to check if a mount point has any
1360 * open files, pwds, chroots or sub mounts. If the
1361 * mount has sub mounts this will return busy
1362 * regardless of whether the sub mounts are busy.
1363 *
1364 * Doesn't take quota and stuff into account. IOW, in some cases it will
1365 * give false negatives. The main reason why it's here is that we need
1366 * a non-destructive way to look for easily umountable filesystems.
1367 */
1368int may_umount(struct vfsmount *mnt)
1369{
e3474a8e 1370 int ret = 1;
8ad08d8a 1371 down_read(&namespace_sem);
719ea2fb 1372 lock_mount_hash();
1ab59738 1373 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1374 ret = 0;
719ea2fb 1375 unlock_mount_hash();
8ad08d8a 1376 up_read(&namespace_sem);
a05964f3 1377 return ret;
1da177e4
LT
1378}
1379
1380EXPORT_SYMBOL(may_umount);
1381
38129a13 1382static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1383
97216be0 1384static void namespace_unlock(void)
70fbcdf4 1385{
a3b3c562 1386 struct hlist_head head;
97216be0 1387
a3b3c562 1388 hlist_move_list(&unmounted, &head);
97216be0 1389
97216be0
AV
1390 up_write(&namespace_sem);
1391
a3b3c562
EB
1392 if (likely(hlist_empty(&head)))
1393 return;
1394
48a066e7
AV
1395 synchronize_rcu();
1396
87b95ce0 1397 group_pin_kill(&head);
70fbcdf4
RP
1398}
1399
97216be0 1400static inline void namespace_lock(void)
e3197d83 1401{
97216be0 1402 down_write(&namespace_sem);
e3197d83
AV
1403}
1404
e819f152
EB
1405enum umount_tree_flags {
1406 UMOUNT_SYNC = 1,
1407 UMOUNT_PROPAGATE = 2,
e0c9c0af 1408 UMOUNT_CONNECTED = 4,
e819f152 1409};
f2d0a123
EB
1410
1411static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1412{
1413 /* Leaving mounts connected is only valid for lazy umounts */
1414 if (how & UMOUNT_SYNC)
1415 return true;
1416
1417 /* A mount without a parent has nothing to be connected to */
1418 if (!mnt_has_parent(mnt))
1419 return true;
1420
1421 /* Because the reference counting rules change when mounts are
1422 * unmounted and connected, umounted mounts may not be
1423 * connected to mounted mounts.
1424 */
1425 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1426 return true;
1427
1428 /* Has it been requested that the mount remain connected? */
1429 if (how & UMOUNT_CONNECTED)
1430 return false;
1431
1432 /* Is the mount locked such that it needs to remain connected? */
1433 if (IS_MNT_LOCKED(mnt))
1434 return false;
1435
1436 /* By default disconnect the mount */
1437 return true;
1438}
1439
99b7db7b 1440/*
48a066e7 1441 * mount_lock must be held
99b7db7b
NP
1442 * namespace_sem must be held for write
1443 */
e819f152 1444static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1445{
c003b26f 1446 LIST_HEAD(tmp_list);
315fc83e 1447 struct mount *p;
1da177e4 1448
5d88457e
EB
1449 if (how & UMOUNT_PROPAGATE)
1450 propagate_mount_unlock(mnt);
1451
c003b26f 1452 /* Gather the mounts to umount */
590ce4bc
EB
1453 for (p = mnt; p; p = next_mnt(p, mnt)) {
1454 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1455 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1456 }
1da177e4 1457
411a938b 1458 /* Hide the mounts from mnt_mounts */
c003b26f 1459 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1460 list_del_init(&p->mnt_child);
c003b26f 1461 }
88b368f2 1462
c003b26f 1463 /* Add propogated mounts to the tmp_list */
e819f152 1464 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1465 propagate_umount(&tmp_list);
a05964f3 1466
c003b26f 1467 while (!list_empty(&tmp_list)) {
fd4b5fa6 1468 struct mnt_namespace *ns;
ce07d891 1469 bool disconnect;
c003b26f 1470 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1471 list_del_init(&p->mnt_expire);
1a4eeaf2 1472 list_del_init(&p->mnt_list);
fd4b5fa6
EB
1473 ns = p->mnt_ns;
1474 if (ns) {
1475 ns->mounts--;
1476 __touch_mnt_namespace(ns);
1477 }
143c8c91 1478 p->mnt_ns = NULL;
e819f152 1479 if (how & UMOUNT_SYNC)
48a066e7 1480 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1481
f2d0a123 1482 disconnect = disconnect_mount(p, how);
ce07d891
EB
1483
1484 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1485 disconnect ? &unmounted : NULL);
676da58d 1486 if (mnt_has_parent(p)) {
81b6b061 1487 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1488 if (!disconnect) {
1489 /* Don't forget about p */
1490 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1491 } else {
1492 umount_mnt(p);
1493 }
7c4b93d8 1494 }
0f0afb1d 1495 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1496 }
1497}
1498
b54b9be7 1499static void shrink_submounts(struct mount *mnt);
c35038be 1500
1ab59738 1501static int do_umount(struct mount *mnt, int flags)
1da177e4 1502{
1ab59738 1503 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1504 int retval;
1505
1ab59738 1506 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1507 if (retval)
1508 return retval;
1509
1510 /*
1511 * Allow userspace to request a mountpoint be expired rather than
1512 * unmounting unconditionally. Unmount only happens if:
1513 * (1) the mark is already set (the mark is cleared by mntput())
1514 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1515 */
1516 if (flags & MNT_EXPIRE) {
1ab59738 1517 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1518 flags & (MNT_FORCE | MNT_DETACH))
1519 return -EINVAL;
1520
b3e19d92
NP
1521 /*
1522 * probably don't strictly need the lock here if we examined
1523 * all race cases, but it's a slowpath.
1524 */
719ea2fb 1525 lock_mount_hash();
83adc753 1526 if (mnt_get_count(mnt) != 2) {
719ea2fb 1527 unlock_mount_hash();
1da177e4 1528 return -EBUSY;
b3e19d92 1529 }
719ea2fb 1530 unlock_mount_hash();
1da177e4 1531
863d684f 1532 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1533 return -EAGAIN;
1534 }
1535
1536 /*
1537 * If we may have to abort operations to get out of this
1538 * mount, and they will themselves hold resources we must
1539 * allow the fs to do things. In the Unix tradition of
1540 * 'Gee thats tricky lets do it in userspace' the umount_begin
1541 * might fail to complete on the first run through as other tasks
1542 * must return, and the like. Thats for the mount program to worry
1543 * about for the moment.
1544 */
1545
42faad99 1546 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1547 sb->s_op->umount_begin(sb);
42faad99 1548 }
1da177e4
LT
1549
1550 /*
1551 * No sense to grab the lock for this test, but test itself looks
1552 * somewhat bogus. Suggestions for better replacement?
1553 * Ho-hum... In principle, we might treat that as umount + switch
1554 * to rootfs. GC would eventually take care of the old vfsmount.
1555 * Actually it makes sense, especially if rootfs would contain a
1556 * /reboot - static binary that would close all descriptors and
1557 * call reboot(9). Then init(8) could umount root and exec /reboot.
1558 */
1ab59738 1559 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1560 /*
1561 * Special case for "unmounting" root ...
1562 * we just try to remount it readonly.
1563 */
05b459a0 1564 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1565 return -EPERM;
1da177e4 1566 down_write(&sb->s_umount);
4aa98cf7 1567 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1568 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1569 up_write(&sb->s_umount);
1570 return retval;
1571 }
1572
97216be0 1573 namespace_lock();
719ea2fb 1574 lock_mount_hash();
5addc5dd 1575 event++;
1da177e4 1576
48a066e7 1577 if (flags & MNT_DETACH) {
1a4eeaf2 1578 if (!list_empty(&mnt->mnt_list))
e819f152 1579 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1580 retval = 0;
48a066e7
AV
1581 } else {
1582 shrink_submounts(mnt);
1583 retval = -EBUSY;
1584 if (!propagate_mount_busy(mnt, 2)) {
1585 if (!list_empty(&mnt->mnt_list))
e819f152 1586 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1587 retval = 0;
1588 }
1da177e4 1589 }
719ea2fb 1590 unlock_mount_hash();
e3197d83 1591 namespace_unlock();
1da177e4
LT
1592 return retval;
1593}
1594
80b5dce8
EB
1595/*
1596 * __detach_mounts - lazily unmount all mounts on the specified dentry
1597 *
1598 * During unlink, rmdir, and d_drop it is possible to loose the path
1599 * to an existing mountpoint, and wind up leaking the mount.
1600 * detach_mounts allows lazily unmounting those mounts instead of
1601 * leaking them.
1602 *
1603 * The caller may hold dentry->d_inode->i_mutex.
1604 */
1605void __detach_mounts(struct dentry *dentry)
1606{
1607 struct mountpoint *mp;
1608 struct mount *mnt;
1609
1610 namespace_lock();
e178bd11 1611 lock_mount_hash();
80b5dce8 1612 mp = lookup_mountpoint(dentry);
f53e5797 1613 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1614 goto out_unlock;
1615
fe27d92f 1616 event++;
80b5dce8
EB
1617 while (!hlist_empty(&mp->m_list)) {
1618 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1619 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1620 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1621 umount_mnt(mnt);
ce07d891 1622 }
e0c9c0af 1623 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1624 }
80b5dce8
EB
1625 put_mountpoint(mp);
1626out_unlock:
e178bd11 1627 unlock_mount_hash();
80b5dce8
EB
1628 namespace_unlock();
1629}
1630
9b40bc90
AV
1631/*
1632 * Is the caller allowed to modify his namespace?
1633 */
1634static inline bool may_mount(void)
1635{
1636 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1637}
1638
1da177e4
LT
1639/*
1640 * Now umount can handle mount points as well as block devices.
1641 * This is important for filesystems which use unnamed block devices.
1642 *
1643 * We now support a flag for forced unmount like the other 'big iron'
1644 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1645 */
1646
bdc480e3 1647SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1648{
2d8f3038 1649 struct path path;
900148dc 1650 struct mount *mnt;
1da177e4 1651 int retval;
db1f05bb 1652 int lookup_flags = 0;
1da177e4 1653
db1f05bb
MS
1654 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1655 return -EINVAL;
1656
9b40bc90
AV
1657 if (!may_mount())
1658 return -EPERM;
1659
db1f05bb
MS
1660 if (!(flags & UMOUNT_NOFOLLOW))
1661 lookup_flags |= LOOKUP_FOLLOW;
1662
197df04c 1663 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1664 if (retval)
1665 goto out;
900148dc 1666 mnt = real_mount(path.mnt);
1da177e4 1667 retval = -EINVAL;
2d8f3038 1668 if (path.dentry != path.mnt->mnt_root)
1da177e4 1669 goto dput_and_out;
143c8c91 1670 if (!check_mnt(mnt))
1da177e4 1671 goto dput_and_out;
5ff9d8a6
EB
1672 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1673 goto dput_and_out;
b2f5d4dc
EB
1674 retval = -EPERM;
1675 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1676 goto dput_and_out;
1da177e4 1677
900148dc 1678 retval = do_umount(mnt, flags);
1da177e4 1679dput_and_out:
429731b1 1680 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1681 dput(path.dentry);
900148dc 1682 mntput_no_expire(mnt);
1da177e4
LT
1683out:
1684 return retval;
1685}
1686
1687#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1688
1689/*
b58fed8b 1690 * The 2.0 compatible umount. No flags.
1da177e4 1691 */
bdc480e3 1692SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1693{
b58fed8b 1694 return sys_umount(name, 0);
1da177e4
LT
1695}
1696
1697#endif
1698
4ce5d2b1 1699static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1700{
4ce5d2b1 1701 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1702 return dentry->d_op == &ns_dentry_operations &&
1703 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1704}
1705
58be2825
AV
1706struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1707{
1708 return container_of(ns, struct mnt_namespace, ns);
1709}
1710
4ce5d2b1
EB
1711static bool mnt_ns_loop(struct dentry *dentry)
1712{
1713 /* Could bind mounting the mount namespace inode cause a
1714 * mount namespace loop?
1715 */
1716 struct mnt_namespace *mnt_ns;
1717 if (!is_mnt_ns_file(dentry))
1718 return false;
1719
f77c8014 1720 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1721 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1722}
1723
87129cc0 1724struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1725 int flag)
1da177e4 1726{
84d17192 1727 struct mount *res, *p, *q, *r, *parent;
1da177e4 1728
4ce5d2b1
EB
1729 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1730 return ERR_PTR(-EINVAL);
1731
1732 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1733 return ERR_PTR(-EINVAL);
9676f0c6 1734
36341f64 1735 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1736 if (IS_ERR(q))
1737 return q;
1738
a73324da 1739 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1740
1741 p = mnt;
6b41d536 1742 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1743 struct mount *s;
7ec02ef1 1744 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1745 continue;
1746
909b0a88 1747 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1748 struct mount *t = NULL;
4ce5d2b1
EB
1749 if (!(flag & CL_COPY_UNBINDABLE) &&
1750 IS_MNT_UNBINDABLE(s)) {
1751 s = skip_mnt_tree(s);
1752 continue;
1753 }
1754 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1755 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1756 s = skip_mnt_tree(s);
1757 continue;
1758 }
0714a533
AV
1759 while (p != s->mnt_parent) {
1760 p = p->mnt_parent;
1761 q = q->mnt_parent;
1da177e4 1762 }
87129cc0 1763 p = s;
84d17192 1764 parent = q;
87129cc0 1765 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1766 if (IS_ERR(q))
1767 goto out;
719ea2fb 1768 lock_mount_hash();
1a4eeaf2 1769 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1770 mnt_set_mountpoint(parent, p->mnt_mp, q);
1771 if (!list_empty(&parent->mnt_mounts)) {
1772 t = list_last_entry(&parent->mnt_mounts,
1773 struct mount, mnt_child);
1774 if (t->mnt_mp != p->mnt_mp)
1775 t = NULL;
1776 }
1777 attach_shadowed(q, parent, t);
719ea2fb 1778 unlock_mount_hash();
1da177e4
LT
1779 }
1780 }
1781 return res;
be34d1a3 1782out:
1da177e4 1783 if (res) {
719ea2fb 1784 lock_mount_hash();
e819f152 1785 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1786 unlock_mount_hash();
1da177e4 1787 }
be34d1a3 1788 return q;
1da177e4
LT
1789}
1790
be34d1a3
DH
1791/* Caller should check returned pointer for errors */
1792
589ff870 1793struct vfsmount *collect_mounts(struct path *path)
8aec0809 1794{
cb338d06 1795 struct mount *tree;
97216be0 1796 namespace_lock();
cd4a4017
EB
1797 if (!check_mnt(real_mount(path->mnt)))
1798 tree = ERR_PTR(-EINVAL);
1799 else
1800 tree = copy_tree(real_mount(path->mnt), path->dentry,
1801 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1802 namespace_unlock();
be34d1a3 1803 if (IS_ERR(tree))
52e220d3 1804 return ERR_CAST(tree);
be34d1a3 1805 return &tree->mnt;
8aec0809
AV
1806}
1807
1808void drop_collected_mounts(struct vfsmount *mnt)
1809{
97216be0 1810 namespace_lock();
719ea2fb 1811 lock_mount_hash();
e819f152 1812 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1813 unlock_mount_hash();
3ab6abee 1814 namespace_unlock();
8aec0809
AV
1815}
1816
c771d683
MS
1817/**
1818 * clone_private_mount - create a private clone of a path
1819 *
1820 * This creates a new vfsmount, which will be the clone of @path. The new will
1821 * not be attached anywhere in the namespace and will be private (i.e. changes
1822 * to the originating mount won't be propagated into this).
1823 *
1824 * Release with mntput().
1825 */
1826struct vfsmount *clone_private_mount(struct path *path)
1827{
1828 struct mount *old_mnt = real_mount(path->mnt);
1829 struct mount *new_mnt;
1830
1831 if (IS_MNT_UNBINDABLE(old_mnt))
1832 return ERR_PTR(-EINVAL);
1833
1834 down_read(&namespace_sem);
1835 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1836 up_read(&namespace_sem);
1837 if (IS_ERR(new_mnt))
1838 return ERR_CAST(new_mnt);
1839
1840 return &new_mnt->mnt;
1841}
1842EXPORT_SYMBOL_GPL(clone_private_mount);
1843
1f707137
AV
1844int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1845 struct vfsmount *root)
1846{
1a4eeaf2 1847 struct mount *mnt;
1f707137
AV
1848 int res = f(root, arg);
1849 if (res)
1850 return res;
1a4eeaf2
AV
1851 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1852 res = f(&mnt->mnt, arg);
1f707137
AV
1853 if (res)
1854 return res;
1855 }
1856 return 0;
1857}
dee5220c 1858EXPORT_SYMBOL(iterate_mounts);
1f707137 1859
4b8b21f4 1860static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1861{
315fc83e 1862 struct mount *p;
719f5d7f 1863
909b0a88 1864 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1865 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1866 mnt_release_group_id(p);
719f5d7f
MS
1867 }
1868}
1869
4b8b21f4 1870static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1871{
315fc83e 1872 struct mount *p;
719f5d7f 1873
909b0a88 1874 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1875 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1876 int err = mnt_alloc_group_id(p);
719f5d7f 1877 if (err) {
4b8b21f4 1878 cleanup_group_ids(mnt, p);
719f5d7f
MS
1879 return err;
1880 }
1881 }
1882 }
1883
1884 return 0;
1885}
1886
fd4b5fa6
EB
1887int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1888{
1889 unsigned int max = READ_ONCE(sysctl_mount_max);
1890 unsigned int mounts = 0, old, pending, sum;
1891 struct mount *p;
1892
1893 for (p = mnt; p; p = next_mnt(p, mnt))
1894 mounts++;
1895
1896 old = ns->mounts;
1897 pending = ns->pending_mounts;
1898 sum = old + pending;
1899 if ((old > sum) ||
1900 (pending > sum) ||
1901 (max < sum) ||
1902 (mounts > (max - sum)))
1903 return -ENOSPC;
1904
1905 ns->pending_mounts = pending + mounts;
1906 return 0;
1907}
1908
b90fa9ae
RP
1909/*
1910 * @source_mnt : mount tree to be attached
21444403
RP
1911 * @nd : place the mount tree @source_mnt is attached
1912 * @parent_nd : if non-null, detach the source_mnt from its parent and
1913 * store the parent mount and mountpoint dentry.
1914 * (done when source_mnt is moved)
b90fa9ae
RP
1915 *
1916 * NOTE: in the table below explains the semantics when a source mount
1917 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1918 * ---------------------------------------------------------------------------
1919 * | BIND MOUNT OPERATION |
1920 * |**************************************************************************
1921 * | source-->| shared | private | slave | unbindable |
1922 * | dest | | | | |
1923 * | | | | | | |
1924 * | v | | | | |
1925 * |**************************************************************************
1926 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1927 * | | | | | |
1928 * |non-shared| shared (+) | private | slave (*) | invalid |
1929 * ***************************************************************************
b90fa9ae
RP
1930 * A bind operation clones the source mount and mounts the clone on the
1931 * destination mount.
1932 *
1933 * (++) the cloned mount is propagated to all the mounts in the propagation
1934 * tree of the destination mount and the cloned mount is added to
1935 * the peer group of the source mount.
1936 * (+) the cloned mount is created under the destination mount and is marked
1937 * as shared. The cloned mount is added to the peer group of the source
1938 * mount.
5afe0022
RP
1939 * (+++) the mount is propagated to all the mounts in the propagation tree
1940 * of the destination mount and the cloned mount is made slave
1941 * of the same master as that of the source mount. The cloned mount
1942 * is marked as 'shared and slave'.
1943 * (*) the cloned mount is made a slave of the same master as that of the
1944 * source mount.
1945 *
9676f0c6
RP
1946 * ---------------------------------------------------------------------------
1947 * | MOVE MOUNT OPERATION |
1948 * |**************************************************************************
1949 * | source-->| shared | private | slave | unbindable |
1950 * | dest | | | | |
1951 * | | | | | | |
1952 * | v | | | | |
1953 * |**************************************************************************
1954 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1955 * | | | | | |
1956 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1957 * ***************************************************************************
5afe0022
RP
1958 *
1959 * (+) the mount is moved to the destination. And is then propagated to
1960 * all the mounts in the propagation tree of the destination mount.
21444403 1961 * (+*) the mount is moved to the destination.
5afe0022
RP
1962 * (+++) the mount is moved to the destination and is then propagated to
1963 * all the mounts belonging to the destination mount's propagation tree.
1964 * the mount is marked as 'shared and slave'.
1965 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1966 *
1967 * if the source mount is a tree, the operations explained above is
1968 * applied to each mount in the tree.
1969 * Must be called without spinlocks held, since this function can sleep
1970 * in allocations.
1971 */
0fb54e50 1972static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1973 struct mount *dest_mnt,
1974 struct mountpoint *dest_mp,
1975 struct path *parent_path)
b90fa9ae 1976{
38129a13 1977 HLIST_HEAD(tree_list);
fd4b5fa6 1978 struct mnt_namespace *ns = dest_mnt->mnt_ns;
315fc83e 1979 struct mount *child, *p;
38129a13 1980 struct hlist_node *n;
719f5d7f 1981 int err;
b90fa9ae 1982
fd4b5fa6
EB
1983 /* Is there space to add these mounts to the mount namespace? */
1984 if (!parent_path) {
1985 err = count_mounts(ns, source_mnt);
1986 if (err)
1987 goto out;
1988 }
1989
fc7be130 1990 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1991 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1992 if (err)
1993 goto out;
0b1b901b 1994 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1995 lock_mount_hash();
0b1b901b
AV
1996 if (err)
1997 goto out_cleanup_ids;
909b0a88 1998 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1999 set_mnt_shared(p);
0b1b901b
AV
2000 } else {
2001 lock_mount_hash();
b90fa9ae 2002 }
1a390689 2003 if (parent_path) {
0fb54e50 2004 detach_mnt(source_mnt, parent_path);
84d17192 2005 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2006 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2007 } else {
84d17192 2008 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 2009 commit_tree(source_mnt, NULL);
21444403 2010 }
b90fa9ae 2011
38129a13 2012 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2013 struct mount *q;
38129a13 2014 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
2015 q = __lookup_mnt_last(&child->mnt_parent->mnt,
2016 child->mnt_mountpoint);
2017 commit_tree(child, q);
b90fa9ae 2018 }
719ea2fb 2019 unlock_mount_hash();
99b7db7b 2020
b90fa9ae 2021 return 0;
719f5d7f
MS
2022
2023 out_cleanup_ids:
f2ebb3a9
AV
2024 while (!hlist_empty(&tree_list)) {
2025 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
fd4b5fa6 2026 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2027 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2028 }
2029 unlock_mount_hash();
0b1b901b 2030 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2031 out:
fd4b5fa6 2032 ns->pending_mounts = 0;
719f5d7f 2033 return err;
b90fa9ae
RP
2034}
2035
84d17192 2036static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2037{
2038 struct vfsmount *mnt;
84d17192 2039 struct dentry *dentry = path->dentry;
b12cea91 2040retry:
84d17192
AV
2041 mutex_lock(&dentry->d_inode->i_mutex);
2042 if (unlikely(cant_mount(dentry))) {
2043 mutex_unlock(&dentry->d_inode->i_mutex);
2044 return ERR_PTR(-ENOENT);
b12cea91 2045 }
97216be0 2046 namespace_lock();
b12cea91 2047 mnt = lookup_mnt(path);
84d17192 2048 if (likely(!mnt)) {
e178bd11 2049 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2050 if (IS_ERR(mp)) {
97216be0 2051 namespace_unlock();
84d17192
AV
2052 mutex_unlock(&dentry->d_inode->i_mutex);
2053 return mp;
2054 }
2055 return mp;
2056 }
97216be0 2057 namespace_unlock();
b12cea91
AV
2058 mutex_unlock(&path->dentry->d_inode->i_mutex);
2059 path_put(path);
2060 path->mnt = mnt;
84d17192 2061 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2062 goto retry;
2063}
2064
84d17192 2065static void unlock_mount(struct mountpoint *where)
b12cea91 2066{
84d17192 2067 struct dentry *dentry = where->m_dentry;
e178bd11
EB
2068
2069 read_seqlock_excl(&mount_lock);
84d17192 2070 put_mountpoint(where);
e178bd11
EB
2071 read_sequnlock_excl(&mount_lock);
2072
328e6d90 2073 namespace_unlock();
84d17192 2074 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
2075}
2076
84d17192 2077static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2078{
95bc5f25 2079 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
2080 return -EINVAL;
2081
e36cb0b8
DH
2082 if (d_is_dir(mp->m_dentry) !=
2083 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2084 return -ENOTDIR;
2085
84d17192 2086 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2087}
2088
7a2e8a8f
VA
2089/*
2090 * Sanity check the flags to change_mnt_propagation.
2091 */
2092
2093static int flags_to_propagation_type(int flags)
2094{
7c6e984d 2095 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2096
2097 /* Fail if any non-propagation flags are set */
2098 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2099 return 0;
2100 /* Only one propagation flag should be set */
2101 if (!is_power_of_2(type))
2102 return 0;
2103 return type;
2104}
2105
07b20889
RP
2106/*
2107 * recursively change the type of the mountpoint.
2108 */
0a0d8a46 2109static int do_change_type(struct path *path, int flag)
07b20889 2110{
315fc83e 2111 struct mount *m;
4b8b21f4 2112 struct mount *mnt = real_mount(path->mnt);
07b20889 2113 int recurse = flag & MS_REC;
7a2e8a8f 2114 int type;
719f5d7f 2115 int err = 0;
07b20889 2116
2d92ab3c 2117 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2118 return -EINVAL;
2119
7a2e8a8f
VA
2120 type = flags_to_propagation_type(flag);
2121 if (!type)
2122 return -EINVAL;
2123
97216be0 2124 namespace_lock();
719f5d7f
MS
2125 if (type == MS_SHARED) {
2126 err = invent_group_ids(mnt, recurse);
2127 if (err)
2128 goto out_unlock;
2129 }
2130
719ea2fb 2131 lock_mount_hash();
909b0a88 2132 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2133 change_mnt_propagation(m, type);
719ea2fb 2134 unlock_mount_hash();
719f5d7f
MS
2135
2136 out_unlock:
97216be0 2137 namespace_unlock();
719f5d7f 2138 return err;
07b20889
RP
2139}
2140
5ff9d8a6
EB
2141static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2142{
2143 struct mount *child;
2144 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2145 if (!is_subdir(child->mnt_mountpoint, dentry))
2146 continue;
2147
2148 if (child->mnt.mnt_flags & MNT_LOCKED)
2149 return true;
2150 }
2151 return false;
2152}
2153
1da177e4
LT
2154/*
2155 * do loopback mount.
2156 */
808d4e3c 2157static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2158 int recurse)
1da177e4 2159{
2d92ab3c 2160 struct path old_path;
84d17192
AV
2161 struct mount *mnt = NULL, *old, *parent;
2162 struct mountpoint *mp;
57eccb83 2163 int err;
1da177e4
LT
2164 if (!old_name || !*old_name)
2165 return -EINVAL;
815d405c 2166 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2167 if (err)
2168 return err;
2169
8823c079 2170 err = -EINVAL;
4ce5d2b1 2171 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
2172 goto out;
2173
84d17192
AV
2174 mp = lock_mount(path);
2175 err = PTR_ERR(mp);
2176 if (IS_ERR(mp))
b12cea91
AV
2177 goto out;
2178
87129cc0 2179 old = real_mount(old_path.mnt);
84d17192 2180 parent = real_mount(path->mnt);
87129cc0 2181
1da177e4 2182 err = -EINVAL;
fc7be130 2183 if (IS_MNT_UNBINDABLE(old))
b12cea91 2184 goto out2;
9676f0c6 2185
e149ed2b
AV
2186 if (!check_mnt(parent))
2187 goto out2;
2188
2189 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2190 goto out2;
1da177e4 2191
5ff9d8a6
EB
2192 if (!recurse && has_locked_children(old, old_path.dentry))
2193 goto out2;
2194
ccd48bc7 2195 if (recurse)
4ce5d2b1 2196 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2197 else
87129cc0 2198 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2199
be34d1a3
DH
2200 if (IS_ERR(mnt)) {
2201 err = PTR_ERR(mnt);
e9c5d8a5 2202 goto out2;
be34d1a3 2203 }
ccd48bc7 2204
5ff9d8a6
EB
2205 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2206
84d17192 2207 err = graft_tree(mnt, parent, mp);
ccd48bc7 2208 if (err) {
719ea2fb 2209 lock_mount_hash();
e819f152 2210 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2211 unlock_mount_hash();
5b83d2c5 2212 }
b12cea91 2213out2:
84d17192 2214 unlock_mount(mp);
ccd48bc7 2215out:
2d92ab3c 2216 path_put(&old_path);
1da177e4
LT
2217 return err;
2218}
2219
2e4b7fcd
DH
2220static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2221{
2222 int error = 0;
2223 int readonly_request = 0;
2224
2225 if (ms_flags & MS_RDONLY)
2226 readonly_request = 1;
2227 if (readonly_request == __mnt_is_readonly(mnt))
2228 return 0;
2229
2230 if (readonly_request)
83adc753 2231 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2232 else
83adc753 2233 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2234 return error;
2235}
2236
1da177e4
LT
2237/*
2238 * change filesystem flags. dir should be a physical root of filesystem.
2239 * If you've mounted a non-root directory somewhere and want to do remount
2240 * on it - tough luck.
2241 */
0a0d8a46 2242static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2243 void *data)
2244{
2245 int err;
2d92ab3c 2246 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2247 struct mount *mnt = real_mount(path->mnt);
1da177e4 2248
143c8c91 2249 if (!check_mnt(mnt))
1da177e4
LT
2250 return -EINVAL;
2251
2d92ab3c 2252 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2253 return -EINVAL;
2254
07b64558
EB
2255 /* Don't allow changing of locked mnt flags.
2256 *
2257 * No locks need to be held here while testing the various
2258 * MNT_LOCK flags because those flags can never be cleared
2259 * once they are set.
2260 */
2261 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2262 !(mnt_flags & MNT_READONLY)) {
2263 return -EPERM;
2264 }
9566d674
EB
2265 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2266 !(mnt_flags & MNT_NODEV)) {
3e186641
EB
2267 /* Was the nodev implicitly added in mount? */
2268 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2269 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2270 mnt_flags |= MNT_NODEV;
2271 } else {
2272 return -EPERM;
2273 }
9566d674
EB
2274 }
2275 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2276 !(mnt_flags & MNT_NOSUID)) {
2277 return -EPERM;
2278 }
2279 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2280 !(mnt_flags & MNT_NOEXEC)) {
2281 return -EPERM;
2282 }
2283 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2284 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2285 return -EPERM;
2286 }
2287
ff36fe2c
EP
2288 err = security_sb_remount(sb, data);
2289 if (err)
2290 return err;
2291
1da177e4 2292 down_write(&sb->s_umount);
2e4b7fcd 2293 if (flags & MS_BIND)
2d92ab3c 2294 err = change_mount_flags(path->mnt, flags);
05b459a0 2295 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
57eccb83 2296 err = -EPERM;
4aa98cf7 2297 else
2e4b7fcd 2298 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2299 if (!err) {
719ea2fb 2300 lock_mount_hash();
a6138db8 2301 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2302 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2303 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2304 unlock_mount_hash();
0e55a7cc 2305 }
6339dab8 2306 up_write(&sb->s_umount);
1da177e4
LT
2307 return err;
2308}
2309
cbbe362c 2310static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2311{
315fc83e 2312 struct mount *p;
909b0a88 2313 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2314 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2315 return 1;
2316 }
2317 return 0;
2318}
2319
808d4e3c 2320static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2321{
2d92ab3c 2322 struct path old_path, parent_path;
676da58d 2323 struct mount *p;
0fb54e50 2324 struct mount *old;
84d17192 2325 struct mountpoint *mp;
57eccb83 2326 int err;
1da177e4
LT
2327 if (!old_name || !*old_name)
2328 return -EINVAL;
2d92ab3c 2329 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2330 if (err)
2331 return err;
2332
84d17192
AV
2333 mp = lock_mount(path);
2334 err = PTR_ERR(mp);
2335 if (IS_ERR(mp))
cc53ce53
DH
2336 goto out;
2337
143c8c91 2338 old = real_mount(old_path.mnt);
fc7be130 2339 p = real_mount(path->mnt);
143c8c91 2340
1da177e4 2341 err = -EINVAL;
fc7be130 2342 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2343 goto out1;
2344
5ff9d8a6
EB
2345 if (old->mnt.mnt_flags & MNT_LOCKED)
2346 goto out1;
2347
1da177e4 2348 err = -EINVAL;
2d92ab3c 2349 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2350 goto out1;
1da177e4 2351
676da58d 2352 if (!mnt_has_parent(old))
21444403 2353 goto out1;
1da177e4 2354
e36cb0b8
DH
2355 if (d_is_dir(path->dentry) !=
2356 d_is_dir(old_path.dentry))
21444403
RP
2357 goto out1;
2358 /*
2359 * Don't move a mount residing in a shared parent.
2360 */
fc7be130 2361 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2362 goto out1;
9676f0c6
RP
2363 /*
2364 * Don't move a mount tree containing unbindable mounts to a destination
2365 * mount which is shared.
2366 */
fc7be130 2367 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2368 goto out1;
1da177e4 2369 err = -ELOOP;
fc7be130 2370 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2371 if (p == old)
21444403 2372 goto out1;
1da177e4 2373
84d17192 2374 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2375 if (err)
21444403 2376 goto out1;
1da177e4
LT
2377
2378 /* if the mount is moved, it should no longer be expire
2379 * automatically */
6776db3d 2380 list_del_init(&old->mnt_expire);
1da177e4 2381out1:
84d17192 2382 unlock_mount(mp);
1da177e4 2383out:
1da177e4 2384 if (!err)
1a390689 2385 path_put(&parent_path);
2d92ab3c 2386 path_put(&old_path);
1da177e4
LT
2387 return err;
2388}
2389
9d412a43
AV
2390static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2391{
2392 int err;
2393 const char *subtype = strchr(fstype, '.');
2394 if (subtype) {
2395 subtype++;
2396 err = -EINVAL;
2397 if (!subtype[0])
2398 goto err;
2399 } else
2400 subtype = "";
2401
2402 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2403 err = -ENOMEM;
2404 if (!mnt->mnt_sb->s_subtype)
2405 goto err;
2406 return mnt;
2407
2408 err:
2409 mntput(mnt);
2410 return ERR_PTR(err);
2411}
2412
9d412a43
AV
2413/*
2414 * add a mount into a namespace's mount tree
2415 */
95bc5f25 2416static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2417{
84d17192
AV
2418 struct mountpoint *mp;
2419 struct mount *parent;
9d412a43
AV
2420 int err;
2421
f2ebb3a9 2422 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2423
84d17192
AV
2424 mp = lock_mount(path);
2425 if (IS_ERR(mp))
2426 return PTR_ERR(mp);
9d412a43 2427
84d17192 2428 parent = real_mount(path->mnt);
9d412a43 2429 err = -EINVAL;
84d17192 2430 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2431 /* that's acceptable only for automounts done in private ns */
2432 if (!(mnt_flags & MNT_SHRINKABLE))
2433 goto unlock;
2434 /* ... and for those we'd better have mountpoint still alive */
84d17192 2435 if (!parent->mnt_ns)
156cacb1
AV
2436 goto unlock;
2437 }
9d412a43
AV
2438
2439 /* Refuse the same filesystem on the same mount point */
2440 err = -EBUSY;
95bc5f25 2441 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2442 path->mnt->mnt_root == path->dentry)
2443 goto unlock;
2444
2445 err = -EINVAL;
e36cb0b8 2446 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2447 goto unlock;
2448
95bc5f25 2449 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2450 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2451
2452unlock:
84d17192 2453 unlock_mount(mp);
9d412a43
AV
2454 return err;
2455}
b1e75df4 2456
8c6cf9cc 2457static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
1b852bce 2458
1da177e4
LT
2459/*
2460 * create a new mount for userspace and request it to be added into the
2461 * namespace's tree
2462 */
0c55cfc4 2463static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2464 int mnt_flags, const char *name, void *data)
1da177e4 2465{
0c55cfc4 2466 struct file_system_type *type;
9b40bc90 2467 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2468 struct vfsmount *mnt;
15f9a3f3 2469 int err;
1da177e4 2470
b6500fda
SF
2471 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2472 return -EPERM;
2473
0c55cfc4 2474 if (!fstype)
1da177e4
LT
2475 return -EINVAL;
2476
0c55cfc4
EB
2477 type = get_fs_type(fstype);
2478 if (!type)
2479 return -ENODEV;
2480
2481 if (user_ns != &init_user_ns) {
0c55cfc4
EB
2482 /* Only in special cases allow devices from mounts
2483 * created outside the initial user namespace.
2484 */
2485 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2486 flags |= MS_NODEV;
9566d674 2487 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4 2488 }
1b852bce 2489 if (type->fs_flags & FS_USERNS_VISIBLE) {
2bf68fcb
EB
2490 if (!fs_fully_visible(type, &mnt_flags)) {
2491 put_filesystem(type);
1b852bce 2492 return -EPERM;
2bf68fcb 2493 }
1b852bce 2494 }
0c55cfc4
EB
2495 }
2496
2497 mnt = vfs_kern_mount(type, flags, name, data);
2498 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2499 !mnt->mnt_sb->s_subtype)
2500 mnt = fs_set_subtype(mnt, fstype);
2501
2502 put_filesystem(type);
1da177e4
LT
2503 if (IS_ERR(mnt))
2504 return PTR_ERR(mnt);
2505
95bc5f25 2506 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2507 if (err)
2508 mntput(mnt);
2509 return err;
1da177e4
LT
2510}
2511
19a167af
AV
2512int finish_automount(struct vfsmount *m, struct path *path)
2513{
6776db3d 2514 struct mount *mnt = real_mount(m);
19a167af
AV
2515 int err;
2516 /* The new mount record should have at least 2 refs to prevent it being
2517 * expired before we get a chance to add it
2518 */
6776db3d 2519 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2520
2521 if (m->mnt_sb == path->mnt->mnt_sb &&
2522 m->mnt_root == path->dentry) {
b1e75df4
AV
2523 err = -ELOOP;
2524 goto fail;
19a167af
AV
2525 }
2526
95bc5f25 2527 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2528 if (!err)
2529 return 0;
2530fail:
2531 /* remove m from any expiration list it may be on */
6776db3d 2532 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2533 namespace_lock();
6776db3d 2534 list_del_init(&mnt->mnt_expire);
97216be0 2535 namespace_unlock();
19a167af 2536 }
b1e75df4
AV
2537 mntput(m);
2538 mntput(m);
19a167af
AV
2539 return err;
2540}
2541
ea5b778a
DH
2542/**
2543 * mnt_set_expiry - Put a mount on an expiration list
2544 * @mnt: The mount to list.
2545 * @expiry_list: The list to add the mount to.
2546 */
2547void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2548{
97216be0 2549 namespace_lock();
ea5b778a 2550
6776db3d 2551 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2552
97216be0 2553 namespace_unlock();
ea5b778a
DH
2554}
2555EXPORT_SYMBOL(mnt_set_expiry);
2556
1da177e4
LT
2557/*
2558 * process a list of expirable mountpoints with the intent of discarding any
2559 * mountpoints that aren't in use and haven't been touched since last we came
2560 * here
2561 */
2562void mark_mounts_for_expiry(struct list_head *mounts)
2563{
761d5c38 2564 struct mount *mnt, *next;
1da177e4
LT
2565 LIST_HEAD(graveyard);
2566
2567 if (list_empty(mounts))
2568 return;
2569
97216be0 2570 namespace_lock();
719ea2fb 2571 lock_mount_hash();
1da177e4
LT
2572
2573 /* extract from the expiration list every vfsmount that matches the
2574 * following criteria:
2575 * - only referenced by its parent vfsmount
2576 * - still marked for expiry (marked on the last call here; marks are
2577 * cleared by mntput())
2578 */
6776db3d 2579 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2580 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2581 propagate_mount_busy(mnt, 1))
1da177e4 2582 continue;
6776db3d 2583 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2584 }
bcc5c7d2 2585 while (!list_empty(&graveyard)) {
6776db3d 2586 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2587 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2588 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2589 }
719ea2fb 2590 unlock_mount_hash();
3ab6abee 2591 namespace_unlock();
5528f911
TM
2592}
2593
2594EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2595
2596/*
2597 * Ripoff of 'select_parent()'
2598 *
2599 * search the list of submounts for a given mountpoint, and move any
2600 * shrinkable submounts to the 'graveyard' list.
2601 */
692afc31 2602static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2603{
692afc31 2604 struct mount *this_parent = parent;
5528f911
TM
2605 struct list_head *next;
2606 int found = 0;
2607
2608repeat:
6b41d536 2609 next = this_parent->mnt_mounts.next;
5528f911 2610resume:
6b41d536 2611 while (next != &this_parent->mnt_mounts) {
5528f911 2612 struct list_head *tmp = next;
6b41d536 2613 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2614
2615 next = tmp->next;
692afc31 2616 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2617 continue;
5528f911
TM
2618 /*
2619 * Descend a level if the d_mounts list is non-empty.
2620 */
6b41d536 2621 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2622 this_parent = mnt;
2623 goto repeat;
2624 }
1da177e4 2625
1ab59738 2626 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2627 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2628 found++;
2629 }
1da177e4 2630 }
5528f911
TM
2631 /*
2632 * All done at this level ... ascend and resume the search
2633 */
2634 if (this_parent != parent) {
6b41d536 2635 next = this_parent->mnt_child.next;
0714a533 2636 this_parent = this_parent->mnt_parent;
5528f911
TM
2637 goto resume;
2638 }
2639 return found;
2640}
2641
2642/*
2643 * process a list of expirable mountpoints with the intent of discarding any
2644 * submounts of a specific parent mountpoint
99b7db7b 2645 *
48a066e7 2646 * mount_lock must be held for write
5528f911 2647 */
b54b9be7 2648static void shrink_submounts(struct mount *mnt)
5528f911
TM
2649{
2650 LIST_HEAD(graveyard);
761d5c38 2651 struct mount *m;
5528f911 2652
5528f911 2653 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2654 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2655 while (!list_empty(&graveyard)) {
761d5c38 2656 m = list_first_entry(&graveyard, struct mount,
6776db3d 2657 mnt_expire);
143c8c91 2658 touch_mnt_namespace(m->mnt_ns);
e819f152 2659 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2660 }
2661 }
1da177e4
LT
2662}
2663
1da177e4
LT
2664/*
2665 * Some copy_from_user() implementations do not return the exact number of
2666 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2667 * Note that this function differs from copy_from_user() in that it will oops
2668 * on bad values of `to', rather than returning a short copy.
2669 */
b58fed8b
RP
2670static long exact_copy_from_user(void *to, const void __user * from,
2671 unsigned long n)
1da177e4
LT
2672{
2673 char *t = to;
2674 const char __user *f = from;
2675 char c;
2676
2677 if (!access_ok(VERIFY_READ, from, n))
2678 return n;
2679
2680 while (n) {
2681 if (__get_user(c, f)) {
2682 memset(t, 0, n);
2683 break;
2684 }
2685 *t++ = c;
2686 f++;
2687 n--;
2688 }
2689 return n;
2690}
2691
b58fed8b 2692int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2693{
2694 int i;
2695 unsigned long page;
2696 unsigned long size;
b58fed8b 2697
1da177e4
LT
2698 *where = 0;
2699 if (!data)
2700 return 0;
2701
2702 if (!(page = __get_free_page(GFP_KERNEL)))
2703 return -ENOMEM;
2704
2705 /* We only care that *some* data at the address the user
2706 * gave us is valid. Just in case, we'll zero
2707 * the remainder of the page.
2708 */
2709 /* copy_from_user cannot cross TASK_SIZE ! */
2710 size = TASK_SIZE - (unsigned long)data;
2711 if (size > PAGE_SIZE)
2712 size = PAGE_SIZE;
2713
2714 i = size - exact_copy_from_user((void *)page, data, size);
2715 if (!i) {
b58fed8b 2716 free_page(page);
1da177e4
LT
2717 return -EFAULT;
2718 }
2719 if (i != PAGE_SIZE)
2720 memset((char *)page + i, 0, PAGE_SIZE - i);
2721 *where = page;
2722 return 0;
2723}
2724
b8850d1f 2725char *copy_mount_string(const void __user *data)
eca6f534 2726{
b8850d1f 2727 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2728}
2729
1da177e4
LT
2730/*
2731 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2732 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2733 *
2734 * data is a (void *) that can point to any structure up to
2735 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2736 * information (or be NULL).
2737 *
2738 * Pre-0.97 versions of mount() didn't have a flags word.
2739 * When the flags word was introduced its top half was required
2740 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2741 * Therefore, if this magic number is present, it carries no information
2742 * and must be discarded.
2743 */
5e6123f3 2744long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2745 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2746{
2d92ab3c 2747 struct path path;
1da177e4
LT
2748 int retval = 0;
2749 int mnt_flags = 0;
2750
2751 /* Discard magic */
2752 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2753 flags &= ~MS_MGC_MSK;
2754
2755 /* Basic sanity checks */
1da177e4
LT
2756 if (data_page)
2757 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2758
a27ab9f2 2759 /* ... and get the mountpoint */
5e6123f3 2760 retval = user_path(dir_name, &path);
a27ab9f2
TH
2761 if (retval)
2762 return retval;
2763
2764 retval = security_sb_mount(dev_name, &path,
2765 type_page, flags, data_page);
0d5cadb8
AV
2766 if (!retval && !may_mount())
2767 retval = -EPERM;
a27ab9f2
TH
2768 if (retval)
2769 goto dput_out;
2770
613cbe3d
AK
2771 /* Default to relatime unless overriden */
2772 if (!(flags & MS_NOATIME))
2773 mnt_flags |= MNT_RELATIME;
0a1c01c9 2774
1da177e4
LT
2775 /* Separate the per-mountpoint flags */
2776 if (flags & MS_NOSUID)
2777 mnt_flags |= MNT_NOSUID;
2778 if (flags & MS_NODEV)
2779 mnt_flags |= MNT_NODEV;
2780 if (flags & MS_NOEXEC)
2781 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2782 if (flags & MS_NOATIME)
2783 mnt_flags |= MNT_NOATIME;
2784 if (flags & MS_NODIRATIME)
2785 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2786 if (flags & MS_STRICTATIME)
2787 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2788 if (flags & MS_RDONLY)
2789 mnt_flags |= MNT_READONLY;
fc33a7bb 2790
ffbc6f0e
EB
2791 /* The default atime for remount is preservation */
2792 if ((flags & MS_REMOUNT) &&
2793 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2794 MS_STRICTATIME)) == 0)) {
2795 mnt_flags &= ~MNT_ATIME_MASK;
2796 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2797 }
2798
7a4dec53 2799 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57 2800 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
28ba5876 2801 MS_STRICTATIME | MS_SUBMOUNT);
1da177e4 2802
1da177e4 2803 if (flags & MS_REMOUNT)
2d92ab3c 2804 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2805 data_page);
2806 else if (flags & MS_BIND)
2d92ab3c 2807 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2808 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2809 retval = do_change_type(&path, flags);
1da177e4 2810 else if (flags & MS_MOVE)
2d92ab3c 2811 retval = do_move_mount(&path, dev_name);
1da177e4 2812 else
2d92ab3c 2813 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2814 dev_name, data_page);
2815dput_out:
2d92ab3c 2816 path_put(&path);
1da177e4
LT
2817 return retval;
2818}
2819
771b1371
EB
2820static void free_mnt_ns(struct mnt_namespace *ns)
2821{
6344c433 2822 ns_free_inum(&ns->ns);
771b1371
EB
2823 put_user_ns(ns->user_ns);
2824 kfree(ns);
2825}
2826
8823c079
EB
2827/*
2828 * Assign a sequence number so we can detect when we attempt to bind
2829 * mount a reference to an older mount namespace into the current
2830 * mount namespace, preventing reference counting loops. A 64bit
2831 * number incrementing at 10Ghz will take 12,427 years to wrap which
2832 * is effectively never, so we can ignore the possibility.
2833 */
2834static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2835
771b1371 2836static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2837{
2838 struct mnt_namespace *new_ns;
98f842e6 2839 int ret;
cf8d2c11
TM
2840
2841 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2842 if (!new_ns)
2843 return ERR_PTR(-ENOMEM);
6344c433 2844 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2845 if (ret) {
2846 kfree(new_ns);
2847 return ERR_PTR(ret);
2848 }
33c42940 2849 new_ns->ns.ops = &mntns_operations;
8823c079 2850 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2851 atomic_set(&new_ns->count, 1);
2852 new_ns->root = NULL;
2853 INIT_LIST_HEAD(&new_ns->list);
2854 init_waitqueue_head(&new_ns->poll);
2855 new_ns->event = 0;
771b1371 2856 new_ns->user_ns = get_user_ns(user_ns);
fd4b5fa6
EB
2857 new_ns->mounts = 0;
2858 new_ns->pending_mounts = 0;
cf8d2c11
TM
2859 return new_ns;
2860}
2861
9559f689
AV
2862struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2863 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2864{
6b3286ed 2865 struct mnt_namespace *new_ns;
7f2da1e7 2866 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2867 struct mount *p, *q;
9559f689 2868 struct mount *old;
cb338d06 2869 struct mount *new;
7a472ef4 2870 int copy_flags;
1da177e4 2871
9559f689
AV
2872 BUG_ON(!ns);
2873
2874 if (likely(!(flags & CLONE_NEWNS))) {
2875 get_mnt_ns(ns);
2876 return ns;
2877 }
2878
2879 old = ns->root;
2880
771b1371 2881 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2882 if (IS_ERR(new_ns))
2883 return new_ns;
1da177e4 2884
97216be0 2885 namespace_lock();
1da177e4 2886 /* First pass: copy the tree topology */
4ce5d2b1 2887 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2888 if (user_ns != ns->user_ns)
132c94e3 2889 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2890 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2891 if (IS_ERR(new)) {
328e6d90 2892 namespace_unlock();
771b1371 2893 free_mnt_ns(new_ns);
be34d1a3 2894 return ERR_CAST(new);
1da177e4 2895 }
be08d6d2 2896 new_ns->root = new;
1a4eeaf2 2897 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2898
2899 /*
2900 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2901 * as belonging to new namespace. We have already acquired a private
2902 * fs_struct, so tsk->fs->lock is not needed.
2903 */
909b0a88 2904 p = old;
cb338d06 2905 q = new;
1da177e4 2906 while (p) {
143c8c91 2907 q->mnt_ns = new_ns;
fd4b5fa6 2908 new_ns->mounts++;
9559f689
AV
2909 if (new_fs) {
2910 if (&p->mnt == new_fs->root.mnt) {
2911 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2912 rootmnt = &p->mnt;
1da177e4 2913 }
9559f689
AV
2914 if (&p->mnt == new_fs->pwd.mnt) {
2915 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2916 pwdmnt = &p->mnt;
1da177e4 2917 }
1da177e4 2918 }
909b0a88
AV
2919 p = next_mnt(p, old);
2920 q = next_mnt(q, new);
4ce5d2b1
EB
2921 if (!q)
2922 break;
2923 while (p->mnt.mnt_root != q->mnt.mnt_root)
2924 p = next_mnt(p, old);
1da177e4 2925 }
328e6d90 2926 namespace_unlock();
1da177e4 2927
1da177e4 2928 if (rootmnt)
f03c6599 2929 mntput(rootmnt);
1da177e4 2930 if (pwdmnt)
f03c6599 2931 mntput(pwdmnt);
1da177e4 2932
741a2951 2933 return new_ns;
1da177e4
LT
2934}
2935
cf8d2c11
TM
2936/**
2937 * create_mnt_ns - creates a private namespace and adds a root filesystem
2938 * @mnt: pointer to the new root filesystem mountpoint
2939 */
1a4eeaf2 2940static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2941{
771b1371 2942 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2943 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2944 struct mount *mnt = real_mount(m);
2945 mnt->mnt_ns = new_ns;
be08d6d2 2946 new_ns->root = mnt;
fd4b5fa6 2947 new_ns->mounts++;
b1983cd8 2948 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2949 } else {
1a4eeaf2 2950 mntput(m);
cf8d2c11
TM
2951 }
2952 return new_ns;
2953}
cf8d2c11 2954
ea441d11
AV
2955struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2956{
2957 struct mnt_namespace *ns;
d31da0f0 2958 struct super_block *s;
ea441d11
AV
2959 struct path path;
2960 int err;
2961
2962 ns = create_mnt_ns(mnt);
2963 if (IS_ERR(ns))
2964 return ERR_CAST(ns);
2965
2966 err = vfs_path_lookup(mnt->mnt_root, mnt,
2967 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2968
2969 put_mnt_ns(ns);
2970
2971 if (err)
2972 return ERR_PTR(err);
2973
2974 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2975 s = path.mnt->mnt_sb;
2976 atomic_inc(&s->s_active);
ea441d11
AV
2977 mntput(path.mnt);
2978 /* lock the sucker */
d31da0f0 2979 down_write(&s->s_umount);
ea441d11
AV
2980 /* ... and return the root of (sub)tree on it */
2981 return path.dentry;
2982}
2983EXPORT_SYMBOL(mount_subtree);
2984
bdc480e3
HC
2985SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2986 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2987{
eca6f534
VN
2988 int ret;
2989 char *kernel_type;
eca6f534 2990 char *kernel_dev;
1da177e4 2991 unsigned long data_page;
1da177e4 2992
b8850d1f
TG
2993 kernel_type = copy_mount_string(type);
2994 ret = PTR_ERR(kernel_type);
2995 if (IS_ERR(kernel_type))
eca6f534 2996 goto out_type;
1da177e4 2997
b8850d1f
TG
2998 kernel_dev = copy_mount_string(dev_name);
2999 ret = PTR_ERR(kernel_dev);
3000 if (IS_ERR(kernel_dev))
eca6f534 3001 goto out_dev;
1da177e4 3002
eca6f534
VN
3003 ret = copy_mount_options(data, &data_page);
3004 if (ret < 0)
3005 goto out_data;
1da177e4 3006
5e6123f3 3007 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
eca6f534 3008 (void *) data_page);
1da177e4 3009
eca6f534
VN
3010 free_page(data_page);
3011out_data:
3012 kfree(kernel_dev);
3013out_dev:
eca6f534
VN
3014 kfree(kernel_type);
3015out_type:
3016 return ret;
1da177e4
LT
3017}
3018
afac7cba
AV
3019/*
3020 * Return true if path is reachable from root
3021 *
48a066e7 3022 * namespace_sem or mount_lock is held
afac7cba 3023 */
643822b4 3024bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3025 const struct path *root)
3026{
643822b4 3027 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3028 dentry = mnt->mnt_mountpoint;
0714a533 3029 mnt = mnt->mnt_parent;
afac7cba 3030 }
643822b4 3031 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3032}
3033
3034int path_is_under(struct path *path1, struct path *path2)
3035{
3036 int res;
48a066e7 3037 read_seqlock_excl(&mount_lock);
643822b4 3038 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3039 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3040 return res;
3041}
3042EXPORT_SYMBOL(path_is_under);
3043
1da177e4
LT
3044/*
3045 * pivot_root Semantics:
3046 * Moves the root file system of the current process to the directory put_old,
3047 * makes new_root as the new root file system of the current process, and sets
3048 * root/cwd of all processes which had them on the current root to new_root.
3049 *
3050 * Restrictions:
3051 * The new_root and put_old must be directories, and must not be on the
3052 * same file system as the current process root. The put_old must be
3053 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3054 * pointed to by put_old must yield the same directory as new_root. No other
3055 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3056 *
4a0d11fa
NB
3057 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3058 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3059 * in this situation.
3060 *
1da177e4
LT
3061 * Notes:
3062 * - we don't move root/cwd if they are not at the root (reason: if something
3063 * cared enough to change them, it's probably wrong to force them elsewhere)
3064 * - it's okay to pick a root that isn't the root of a file system, e.g.
3065 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3066 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3067 * first.
3068 */
3480b257
HC
3069SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3070 const char __user *, put_old)
1da177e4 3071{
2d8f3038 3072 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3073 struct mount *new_mnt, *root_mnt, *old_mnt;
3074 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3075 int error;
3076
9b40bc90 3077 if (!may_mount())
1da177e4
LT
3078 return -EPERM;
3079
2d8f3038 3080 error = user_path_dir(new_root, &new);
1da177e4
LT
3081 if (error)
3082 goto out0;
1da177e4 3083
2d8f3038 3084 error = user_path_dir(put_old, &old);
1da177e4
LT
3085 if (error)
3086 goto out1;
3087
2d8f3038 3088 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3089 if (error)
3090 goto out2;
1da177e4 3091
f7ad3c6b 3092 get_fs_root(current->fs, &root);
84d17192
AV
3093 old_mp = lock_mount(&old);
3094 error = PTR_ERR(old_mp);
3095 if (IS_ERR(old_mp))
b12cea91
AV
3096 goto out3;
3097
1da177e4 3098 error = -EINVAL;
419148da
AV
3099 new_mnt = real_mount(new.mnt);
3100 root_mnt = real_mount(root.mnt);
84d17192
AV
3101 old_mnt = real_mount(old.mnt);
3102 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3103 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3104 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3105 goto out4;
143c8c91 3106 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3107 goto out4;
5ff9d8a6
EB
3108 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3109 goto out4;
1da177e4 3110 error = -ENOENT;
f3da392e 3111 if (d_unlinked(new.dentry))
b12cea91 3112 goto out4;
1da177e4 3113 error = -EBUSY;
84d17192 3114 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3115 goto out4; /* loop, on the same file system */
1da177e4 3116 error = -EINVAL;
8c3ee42e 3117 if (root.mnt->mnt_root != root.dentry)
b12cea91 3118 goto out4; /* not a mountpoint */
676da58d 3119 if (!mnt_has_parent(root_mnt))
b12cea91 3120 goto out4; /* not attached */
84d17192 3121 root_mp = root_mnt->mnt_mp;
2d8f3038 3122 if (new.mnt->mnt_root != new.dentry)
b12cea91 3123 goto out4; /* not a mountpoint */
676da58d 3124 if (!mnt_has_parent(new_mnt))
b12cea91 3125 goto out4; /* not attached */
4ac91378 3126 /* make sure we can reach put_old from new_root */
84d17192 3127 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3128 goto out4;
0d082601
EB
3129 /* make certain new is below the root */
3130 if (!is_path_reachable(new_mnt, new.dentry, &root))
3131 goto out4;
84d17192 3132 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3133 lock_mount_hash();
419148da
AV
3134 detach_mnt(new_mnt, &parent_path);
3135 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3136 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3137 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3138 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3139 }
4ac91378 3140 /* mount old root on put_old */
84d17192 3141 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3142 /* mount new_root on / */
84d17192 3143 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3144 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3145 /* A moved mount should not expire automatically */
3146 list_del_init(&new_mnt->mnt_expire);
e178bd11 3147 put_mountpoint(root_mp);
719ea2fb 3148 unlock_mount_hash();
2d8f3038 3149 chroot_fs_refs(&root, &new);
1da177e4 3150 error = 0;
b12cea91 3151out4:
84d17192 3152 unlock_mount(old_mp);
b12cea91
AV
3153 if (!error) {
3154 path_put(&root_parent);
3155 path_put(&parent_path);
3156 }
3157out3:
8c3ee42e 3158 path_put(&root);
b12cea91 3159out2:
2d8f3038 3160 path_put(&old);
1da177e4 3161out1:
2d8f3038 3162 path_put(&new);
1da177e4 3163out0:
1da177e4 3164 return error;
1da177e4
LT
3165}
3166
3167static void __init init_mount_tree(void)
3168{
3169 struct vfsmount *mnt;
6b3286ed 3170 struct mnt_namespace *ns;
ac748a09 3171 struct path root;
0c55cfc4 3172 struct file_system_type *type;
1da177e4 3173
0c55cfc4
EB
3174 type = get_fs_type("rootfs");
3175 if (!type)
3176 panic("Can't find rootfs type");
3177 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3178 put_filesystem(type);
1da177e4
LT
3179 if (IS_ERR(mnt))
3180 panic("Can't create rootfs");
b3e19d92 3181
3b22edc5
TM
3182 ns = create_mnt_ns(mnt);
3183 if (IS_ERR(ns))
1da177e4 3184 panic("Can't allocate initial namespace");
6b3286ed
KK
3185
3186 init_task.nsproxy->mnt_ns = ns;
3187 get_mnt_ns(ns);
3188
be08d6d2
AV
3189 root.mnt = mnt;
3190 root.dentry = mnt->mnt_root;
da362b09 3191 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3192
3193 set_fs_pwd(current->fs, &root);
3194 set_fs_root(current->fs, &root);
1da177e4
LT
3195}
3196
74bf17cf 3197void __init mnt_init(void)
1da177e4 3198{
13f14b4d 3199 unsigned u;
15a67dd8 3200 int err;
1da177e4 3201
7d6fec45 3202 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3203 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3204
0818bf27 3205 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3206 sizeof(struct hlist_head),
0818bf27
AV
3207 mhash_entries, 19,
3208 0,
3209 &m_hash_shift, &m_hash_mask, 0, 0);
3210 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3211 sizeof(struct hlist_head),
3212 mphash_entries, 19,
3213 0,
3214 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3215
84d17192 3216 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3217 panic("Failed to allocate mount hash table\n");
3218
0818bf27 3219 for (u = 0; u <= m_hash_mask; u++)
38129a13 3220 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3221 for (u = 0; u <= mp_hash_mask; u++)
3222 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3223
4b93dc9b
TH
3224 kernfs_init();
3225
15a67dd8
RD
3226 err = sysfs_init();
3227 if (err)
3228 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3229 __func__, err);
00d26666
GKH
3230 fs_kobj = kobject_create_and_add("fs", NULL);
3231 if (!fs_kobj)
8e24eea7 3232 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3233 init_rootfs();
3234 init_mount_tree();
3235}
3236
616511d0 3237void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3238{
d498b25a 3239 if (!atomic_dec_and_test(&ns->count))
616511d0 3240 return;
7b00ed6f 3241 drop_collected_mounts(&ns->root->mnt);
771b1371 3242 free_mnt_ns(ns);
1da177e4 3243}
9d412a43
AV
3244
3245struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3246{
423e0ab0
TC
3247 struct vfsmount *mnt;
3248 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3249 if (!IS_ERR(mnt)) {
3250 /*
3251 * it is a longterm mount, don't release mnt until
3252 * we unmount before file sys is unregistered
3253 */
f7a99c5b 3254 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3255 }
3256 return mnt;
9d412a43
AV
3257}
3258EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3259
3260void kern_unmount(struct vfsmount *mnt)
3261{
3262 /* release long term mount so mount point can be released */
3263 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3264 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3265 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3266 mntput(mnt);
3267 }
3268}
3269EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3270
3271bool our_mnt(struct vfsmount *mnt)
3272{
143c8c91 3273 return check_mnt(real_mount(mnt));
02125a82 3274}
8823c079 3275
3151527e
EB
3276bool current_chrooted(void)
3277{
3278 /* Does the current process have a non-standard root */
3279 struct path ns_root;
3280 struct path fs_root;
3281 bool chrooted;
3282
3283 /* Find the namespace root */
3284 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3285 ns_root.dentry = ns_root.mnt->mnt_root;
3286 path_get(&ns_root);
3287 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3288 ;
3289
3290 get_fs_root(current->fs, &fs_root);
3291
3292 chrooted = !path_equal(&fs_root, &ns_root);
3293
3294 path_put(&fs_root);
3295 path_put(&ns_root);
3296
3297 return chrooted;
3298}
3299
8c6cf9cc 3300static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
87a8ebd6
EB
3301{
3302 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
8c6cf9cc 3303 int new_flags = *new_mnt_flags;
87a8ebd6 3304 struct mount *mnt;
e51db735 3305 bool visible = false;
87a8ebd6 3306
e51db735
EB
3307 if (unlikely(!ns))
3308 return false;
3309
44bb4385 3310 down_read(&namespace_sem);
87a8ebd6 3311 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3312 struct mount *child;
77b1a97d
EB
3313 int mnt_flags;
3314
e51db735
EB
3315 if (mnt->mnt.mnt_sb->s_type != type)
3316 continue;
3317
7e96c1b0
EB
3318 /* This mount is not fully visible if it's root directory
3319 * is not the root directory of the filesystem.
3320 */
3321 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3322 continue;
3323
77b1a97d
EB
3324 /* Read the mount flags and filter out flags that
3325 * may safely be ignored.
3326 */
3327 mnt_flags = mnt->mnt.mnt_flags;
3328 if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
3329 mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
06f412ab
EB
3330
3331 /* Don't miss readonly hidden in the superblock flags */
3332 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3333 mnt_flags |= MNT_LOCK_READONLY;
77b1a97d 3334
8c6cf9cc
EB
3335 /* Verify the mount flags are equal to or more permissive
3336 * than the proposed new mount.
3337 */
77b1a97d 3338 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3339 !(new_flags & MNT_READONLY))
3340 continue;
77b1a97d 3341 if ((mnt_flags & MNT_LOCK_NODEV) &&
8c6cf9cc
EB
3342 !(new_flags & MNT_NODEV))
3343 continue;
77b1a97d
EB
3344 if ((mnt_flags & MNT_LOCK_NOSUID) &&
3345 !(new_flags & MNT_NOSUID))
3346 continue;
3347 if ((mnt_flags & MNT_LOCK_NOEXEC) &&
3348 !(new_flags & MNT_NOEXEC))
3349 continue;
3350 if ((mnt_flags & MNT_LOCK_ATIME) &&
3351 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3352 continue;
3353
ceeb0e5d
EB
3354 /* This mount is not fully visible if there are any
3355 * locked child mounts that cover anything except for
3356 * empty directories.
e51db735
EB
3357 */
3358 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3359 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3360 /* Only worry about locked mounts */
314c8817 3361 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3362 continue;
7236c85e
EB
3363 /* Is the directory permanetly empty? */
3364 if (!is_empty_dir_inode(inode))
e51db735 3365 goto next;
87a8ebd6 3366 }
8c6cf9cc 3367 /* Preserve the locked attributes */
77b1a97d
EB
3368 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3369 MNT_LOCK_NODEV | \
3370 MNT_LOCK_NOSUID | \
3371 MNT_LOCK_NOEXEC | \
3372 MNT_LOCK_ATIME);
e51db735
EB
3373 visible = true;
3374 goto found;
3375 next: ;
87a8ebd6 3376 }
e51db735 3377found:
44bb4385 3378 up_read(&namespace_sem);
e51db735 3379 return visible;
87a8ebd6
EB
3380}
3381
895b5840
AL
3382bool mnt_may_suid(struct vfsmount *mnt)
3383{
3384 /*
3385 * Foreign mounts (accessed via fchdir or through /proc
3386 * symlinks) are always treated as if they are nosuid. This
3387 * prevents namespaces from trusting potentially unsafe
3388 * suid/sgid bits, file caps, or security labels that originate
3389 * in other namespaces.
3390 */
3391 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
2c95625c 3392 current_in_userns(mnt->mnt_sb->s_user_ns);
895b5840
AL
3393}
3394
64964528 3395static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3396{
58be2825 3397 struct ns_common *ns = NULL;
8823c079
EB
3398 struct nsproxy *nsproxy;
3399
728dba3a
EB
3400 task_lock(task);
3401 nsproxy = task->nsproxy;
8823c079 3402 if (nsproxy) {
58be2825
AV
3403 ns = &nsproxy->mnt_ns->ns;
3404 get_mnt_ns(to_mnt_ns(ns));
8823c079 3405 }
728dba3a 3406 task_unlock(task);
8823c079
EB
3407
3408 return ns;
3409}
3410
64964528 3411static void mntns_put(struct ns_common *ns)
8823c079 3412{
58be2825 3413 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3414}
3415
64964528 3416static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3417{
3418 struct fs_struct *fs = current->fs;
58be2825 3419 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3420 struct path root;
3421
0c55cfc4 3422 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3423 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3424 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3425 return -EPERM;
8823c079
EB
3426
3427 if (fs->users != 1)
3428 return -EINVAL;
3429
3430 get_mnt_ns(mnt_ns);
3431 put_mnt_ns(nsproxy->mnt_ns);
3432 nsproxy->mnt_ns = mnt_ns;
3433
3434 /* Find the root */
3435 root.mnt = &mnt_ns->root->mnt;
3436 root.dentry = mnt_ns->root->mnt.mnt_root;
3437 path_get(&root);
3438 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3439 ;
3440
3441 /* Update the pwd and root */
3442 set_fs_pwd(fs, &root);
3443 set_fs_root(fs, &root);
3444
3445 path_put(&root);
3446 return 0;
3447}
3448
3449const struct proc_ns_operations mntns_operations = {
3450 .name = "mnt",
3451 .type = CLONE_NEWNS,
3452 .get = mntns_get,
3453 .put = mntns_put,
3454 .install = mntns_install,
3455};