]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
mm, proc: adjust PSS calculation
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
c8c06efa 26 * mapping->i_mmap_rwsem
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
c4843a75
GT
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
250df6ed 35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 40 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 41 *
5a505085 42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 43 * ->tasklist_lock
6a46079c 44 * pte map lock
1da177e4
LT
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
5ad64688 53#include <linux/ksm.h>
1da177e4
LT
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
b95f1b31 56#include <linux/export.h>
8a9f3ccd 57#include <linux/memcontrol.h>
cddb8a5c 58#include <linux/mmu_notifier.h>
64cdd548 59#include <linux/migrate.h>
0fe6e20b 60#include <linux/hugetlb.h>
ef5d437f 61#include <linux/backing-dev.h>
33c3fc71 62#include <linux/page_idle.h>
1da177e4
LT
63
64#include <asm/tlbflush.h>
65
72b252ae
MG
66#include <trace/events/tlb.h>
67
b291f000
NP
68#include "internal.h"
69
fdd2e5f8 70static struct kmem_cache *anon_vma_cachep;
5beb4930 71static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
72
73static inline struct anon_vma *anon_vma_alloc(void)
74{
01d8b20d
PZ
75 struct anon_vma *anon_vma;
76
77 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
78 if (anon_vma) {
79 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
80 anon_vma->degree = 1; /* Reference for first vma */
81 anon_vma->parent = anon_vma;
01d8b20d
PZ
82 /*
83 * Initialise the anon_vma root to point to itself. If called
84 * from fork, the root will be reset to the parents anon_vma.
85 */
86 anon_vma->root = anon_vma;
87 }
88
89 return anon_vma;
fdd2e5f8
AB
90}
91
01d8b20d 92static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 93{
01d8b20d 94 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
95
96 /*
4fc3f1d6 97 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
98 * we can safely hold the lock without the anon_vma getting
99 * freed.
100 *
101 * Relies on the full mb implied by the atomic_dec_and_test() from
102 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 103 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 104 *
4fc3f1d6
IM
105 * page_lock_anon_vma_read() VS put_anon_vma()
106 * down_read_trylock() atomic_dec_and_test()
88c22088 107 * LOCK MB
4fc3f1d6 108 * atomic_read() rwsem_is_locked()
88c22088
PZ
109 *
110 * LOCK should suffice since the actual taking of the lock must
111 * happen _before_ what follows.
112 */
7f39dda9 113 might_sleep();
5a505085 114 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 115 anon_vma_lock_write(anon_vma);
08b52706 116 anon_vma_unlock_write(anon_vma);
88c22088
PZ
117 }
118
fdd2e5f8
AB
119 kmem_cache_free(anon_vma_cachep, anon_vma);
120}
1da177e4 121
dd34739c 122static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 123{
dd34739c 124 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
125}
126
e574b5fd 127static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
128{
129 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
130}
131
6583a843
KC
132static void anon_vma_chain_link(struct vm_area_struct *vma,
133 struct anon_vma_chain *avc,
134 struct anon_vma *anon_vma)
135{
136 avc->vma = vma;
137 avc->anon_vma = anon_vma;
138 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 139 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
140}
141
d9d332e0
LT
142/**
143 * anon_vma_prepare - attach an anon_vma to a memory region
144 * @vma: the memory region in question
145 *
146 * This makes sure the memory mapping described by 'vma' has
147 * an 'anon_vma' attached to it, so that we can associate the
148 * anonymous pages mapped into it with that anon_vma.
149 *
150 * The common case will be that we already have one, but if
23a0790a 151 * not we either need to find an adjacent mapping that we
d9d332e0
LT
152 * can re-use the anon_vma from (very common when the only
153 * reason for splitting a vma has been mprotect()), or we
154 * allocate a new one.
155 *
156 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 157 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
158 * and that may actually touch the spinlock even in the newly
159 * allocated vma (it depends on RCU to make sure that the
160 * anon_vma isn't actually destroyed).
161 *
162 * As a result, we need to do proper anon_vma locking even
163 * for the new allocation. At the same time, we do not want
164 * to do any locking for the common case of already having
165 * an anon_vma.
166 *
167 * This must be called with the mmap_sem held for reading.
168 */
1da177e4
LT
169int anon_vma_prepare(struct vm_area_struct *vma)
170{
171 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 172 struct anon_vma_chain *avc;
1da177e4
LT
173
174 might_sleep();
175 if (unlikely(!anon_vma)) {
176 struct mm_struct *mm = vma->vm_mm;
d9d332e0 177 struct anon_vma *allocated;
1da177e4 178
dd34739c 179 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
180 if (!avc)
181 goto out_enomem;
182
1da177e4 183 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
184 allocated = NULL;
185 if (!anon_vma) {
1da177e4
LT
186 anon_vma = anon_vma_alloc();
187 if (unlikely(!anon_vma))
5beb4930 188 goto out_enomem_free_avc;
1da177e4 189 allocated = anon_vma;
1da177e4
LT
190 }
191
4fc3f1d6 192 anon_vma_lock_write(anon_vma);
1da177e4
LT
193 /* page_table_lock to protect against threads */
194 spin_lock(&mm->page_table_lock);
195 if (likely(!vma->anon_vma)) {
196 vma->anon_vma = anon_vma;
6583a843 197 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208
KK
198 /* vma reference or self-parent link for new root */
199 anon_vma->degree++;
1da177e4 200 allocated = NULL;
31f2b0eb 201 avc = NULL;
1da177e4
LT
202 }
203 spin_unlock(&mm->page_table_lock);
08b52706 204 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
205
206 if (unlikely(allocated))
01d8b20d 207 put_anon_vma(allocated);
31f2b0eb 208 if (unlikely(avc))
5beb4930 209 anon_vma_chain_free(avc);
1da177e4
LT
210 }
211 return 0;
5beb4930
RR
212
213 out_enomem_free_avc:
214 anon_vma_chain_free(avc);
215 out_enomem:
216 return -ENOMEM;
1da177e4
LT
217}
218
bb4aa396
LT
219/*
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222 * have the same vma.
223 *
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
226 */
227static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228{
229 struct anon_vma *new_root = anon_vma->root;
230 if (new_root != root) {
231 if (WARN_ON_ONCE(root))
5a505085 232 up_write(&root->rwsem);
bb4aa396 233 root = new_root;
5a505085 234 down_write(&root->rwsem);
bb4aa396
LT
235 }
236 return root;
237}
238
239static inline void unlock_anon_vma_root(struct anon_vma *root)
240{
241 if (root)
5a505085 242 up_write(&root->rwsem);
bb4aa396
LT
243}
244
5beb4930
RR
245/*
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
248 *
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
255 * page is mapped.
5beb4930
RR
256 */
257int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 258{
5beb4930 259 struct anon_vma_chain *avc, *pavc;
bb4aa396 260 struct anon_vma *root = NULL;
5beb4930 261
646d87b4 262 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
263 struct anon_vma *anon_vma;
264
dd34739c
LT
265 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 if (unlikely(!avc)) {
267 unlock_anon_vma_root(root);
268 root = NULL;
269 avc = anon_vma_chain_alloc(GFP_KERNEL);
270 if (!avc)
271 goto enomem_failure;
272 }
bb4aa396
LT
273 anon_vma = pavc->anon_vma;
274 root = lock_anon_vma_root(root, anon_vma);
275 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
276
277 /*
278 * Reuse existing anon_vma if its degree lower than two,
279 * that means it has no vma and only one anon_vma child.
280 *
281 * Do not chose parent anon_vma, otherwise first child
282 * will always reuse it. Root anon_vma is never reused:
283 * it has self-parent reference and at least one child.
284 */
285 if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 anon_vma->degree < 2)
287 dst->anon_vma = anon_vma;
5beb4930 288 }
7a3ef208
KK
289 if (dst->anon_vma)
290 dst->anon_vma->degree++;
bb4aa396 291 unlock_anon_vma_root(root);
5beb4930 292 return 0;
1da177e4 293
5beb4930 294 enomem_failure:
3fe89b3e
LY
295 /*
296 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 * decremented in unlink_anon_vmas().
298 * We can safely do this because callers of anon_vma_clone() don't care
299 * about dst->anon_vma if anon_vma_clone() failed.
300 */
301 dst->anon_vma = NULL;
5beb4930
RR
302 unlink_anon_vmas(dst);
303 return -ENOMEM;
1da177e4
LT
304}
305
5beb4930
RR
306/*
307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
308 * the corresponding VMA in the parent process is attached to.
309 * Returns 0 on success, non-zero on failure.
310 */
311int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 312{
5beb4930
RR
313 struct anon_vma_chain *avc;
314 struct anon_vma *anon_vma;
c4ea95d7 315 int error;
1da177e4 316
5beb4930
RR
317 /* Don't bother if the parent process has no anon_vma here. */
318 if (!pvma->anon_vma)
319 return 0;
320
7a3ef208
KK
321 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 vma->anon_vma = NULL;
323
5beb4930
RR
324 /*
325 * First, attach the new VMA to the parent VMA's anon_vmas,
326 * so rmap can find non-COWed pages in child processes.
327 */
c4ea95d7
DF
328 error = anon_vma_clone(vma, pvma);
329 if (error)
330 return error;
5beb4930 331
7a3ef208
KK
332 /* An existing anon_vma has been reused, all done then. */
333 if (vma->anon_vma)
334 return 0;
335
5beb4930
RR
336 /* Then add our own anon_vma. */
337 anon_vma = anon_vma_alloc();
338 if (!anon_vma)
339 goto out_error;
dd34739c 340 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
341 if (!avc)
342 goto out_error_free_anon_vma;
5c341ee1
RR
343
344 /*
345 * The root anon_vma's spinlock is the lock actually used when we
346 * lock any of the anon_vmas in this anon_vma tree.
347 */
348 anon_vma->root = pvma->anon_vma->root;
7a3ef208 349 anon_vma->parent = pvma->anon_vma;
76545066 350 /*
01d8b20d
PZ
351 * With refcounts, an anon_vma can stay around longer than the
352 * process it belongs to. The root anon_vma needs to be pinned until
353 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
354 */
355 get_anon_vma(anon_vma->root);
5beb4930
RR
356 /* Mark this anon_vma as the one where our new (COWed) pages go. */
357 vma->anon_vma = anon_vma;
4fc3f1d6 358 anon_vma_lock_write(anon_vma);
5c341ee1 359 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 360 anon_vma->parent->degree++;
08b52706 361 anon_vma_unlock_write(anon_vma);
5beb4930
RR
362
363 return 0;
364
365 out_error_free_anon_vma:
01d8b20d 366 put_anon_vma(anon_vma);
5beb4930 367 out_error:
4946d54c 368 unlink_anon_vmas(vma);
5beb4930 369 return -ENOMEM;
1da177e4
LT
370}
371
5beb4930
RR
372void unlink_anon_vmas(struct vm_area_struct *vma)
373{
374 struct anon_vma_chain *avc, *next;
eee2acba 375 struct anon_vma *root = NULL;
5beb4930 376
5c341ee1
RR
377 /*
378 * Unlink each anon_vma chained to the VMA. This list is ordered
379 * from newest to oldest, ensuring the root anon_vma gets freed last.
380 */
5beb4930 381 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
382 struct anon_vma *anon_vma = avc->anon_vma;
383
384 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 385 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
386
387 /*
388 * Leave empty anon_vmas on the list - we'll need
389 * to free them outside the lock.
390 */
7a3ef208
KK
391 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392 anon_vma->parent->degree--;
eee2acba 393 continue;
7a3ef208 394 }
eee2acba
PZ
395
396 list_del(&avc->same_vma);
397 anon_vma_chain_free(avc);
398 }
7a3ef208
KK
399 if (vma->anon_vma)
400 vma->anon_vma->degree--;
eee2acba
PZ
401 unlock_anon_vma_root(root);
402
403 /*
404 * Iterate the list once more, it now only contains empty and unlinked
405 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 406 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
407 */
408 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409 struct anon_vma *anon_vma = avc->anon_vma;
410
7a3ef208 411 BUG_ON(anon_vma->degree);
eee2acba
PZ
412 put_anon_vma(anon_vma);
413
5beb4930
RR
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
417}
418
51cc5068 419static void anon_vma_ctor(void *data)
1da177e4 420{
a35afb83 421 struct anon_vma *anon_vma = data;
1da177e4 422
5a505085 423 init_rwsem(&anon_vma->rwsem);
83813267 424 atomic_set(&anon_vma->refcount, 0);
bf181b9f 425 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
426}
427
428void __init anon_vma_init(void)
429{
430 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5d097056
VD
431 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
432 anon_vma_ctor);
433 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
434 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
435}
436
437/*
6111e4ca
PZ
438 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
439 *
440 * Since there is no serialization what so ever against page_remove_rmap()
441 * the best this function can do is return a locked anon_vma that might
442 * have been relevant to this page.
443 *
444 * The page might have been remapped to a different anon_vma or the anon_vma
445 * returned may already be freed (and even reused).
446 *
bc658c96
PZ
447 * In case it was remapped to a different anon_vma, the new anon_vma will be a
448 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
449 * ensure that any anon_vma obtained from the page will still be valid for as
450 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
451 *
6111e4ca
PZ
452 * All users of this function must be very careful when walking the anon_vma
453 * chain and verify that the page in question is indeed mapped in it
454 * [ something equivalent to page_mapped_in_vma() ].
455 *
456 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
457 * that the anon_vma pointer from page->mapping is valid if there is a
458 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 459 */
746b18d4 460struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 461{
746b18d4 462 struct anon_vma *anon_vma = NULL;
1da177e4
LT
463 unsigned long anon_mapping;
464
465 rcu_read_lock();
4db0c3c2 466 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 467 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
468 goto out;
469 if (!page_mapped(page))
470 goto out;
471
472 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
473 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
474 anon_vma = NULL;
475 goto out;
476 }
f1819427
HD
477
478 /*
479 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
480 * freed. But if it has been unmapped, we have no security against the
481 * anon_vma structure being freed and reused (for another anon_vma:
482 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
483 * above cannot corrupt).
f1819427 484 */
746b18d4 485 if (!page_mapped(page)) {
7f39dda9 486 rcu_read_unlock();
746b18d4 487 put_anon_vma(anon_vma);
7f39dda9 488 return NULL;
746b18d4 489 }
1da177e4
LT
490out:
491 rcu_read_unlock();
746b18d4
PZ
492
493 return anon_vma;
494}
495
88c22088
PZ
496/*
497 * Similar to page_get_anon_vma() except it locks the anon_vma.
498 *
499 * Its a little more complex as it tries to keep the fast path to a single
500 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
501 * reference like with page_get_anon_vma() and then block on the mutex.
502 */
4fc3f1d6 503struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 504{
88c22088 505 struct anon_vma *anon_vma = NULL;
eee0f252 506 struct anon_vma *root_anon_vma;
88c22088 507 unsigned long anon_mapping;
746b18d4 508
88c22088 509 rcu_read_lock();
4db0c3c2 510 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
511 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
512 goto out;
513 if (!page_mapped(page))
514 goto out;
515
516 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 517 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 518 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 519 /*
eee0f252
HD
520 * If the page is still mapped, then this anon_vma is still
521 * its anon_vma, and holding the mutex ensures that it will
bc658c96 522 * not go away, see anon_vma_free().
88c22088 523 */
eee0f252 524 if (!page_mapped(page)) {
4fc3f1d6 525 up_read(&root_anon_vma->rwsem);
88c22088
PZ
526 anon_vma = NULL;
527 }
528 goto out;
529 }
746b18d4 530
88c22088
PZ
531 /* trylock failed, we got to sleep */
532 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
533 anon_vma = NULL;
534 goto out;
535 }
536
537 if (!page_mapped(page)) {
7f39dda9 538 rcu_read_unlock();
88c22088 539 put_anon_vma(anon_vma);
7f39dda9 540 return NULL;
88c22088
PZ
541 }
542
543 /* we pinned the anon_vma, its safe to sleep */
544 rcu_read_unlock();
4fc3f1d6 545 anon_vma_lock_read(anon_vma);
88c22088
PZ
546
547 if (atomic_dec_and_test(&anon_vma->refcount)) {
548 /*
549 * Oops, we held the last refcount, release the lock
550 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 551 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 552 */
4fc3f1d6 553 anon_vma_unlock_read(anon_vma);
88c22088
PZ
554 __put_anon_vma(anon_vma);
555 anon_vma = NULL;
556 }
557
558 return anon_vma;
559
560out:
561 rcu_read_unlock();
746b18d4 562 return anon_vma;
34bbd704
ON
563}
564
4fc3f1d6 565void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 566{
4fc3f1d6 567 anon_vma_unlock_read(anon_vma);
1da177e4
LT
568}
569
570/*
3ad33b24 571 * At what user virtual address is page expected in @vma?
1da177e4 572 */
86c2ad19
ML
573static inline unsigned long
574__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4 575{
a0f7a756 576 pgoff_t pgoff = page_to_pgoff(page);
86c2ad19
ML
577 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
578}
579
580inline unsigned long
581vma_address(struct page *page, struct vm_area_struct *vma)
582{
583 unsigned long address = __vma_address(page, vma);
584
585 /* page should be within @vma mapping range */
81d1b09c 586 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
86c2ad19 587
1da177e4
LT
588 return address;
589}
590
72b252ae
MG
591#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
592static void percpu_flush_tlb_batch_pages(void *data)
593{
594 /*
595 * All TLB entries are flushed on the assumption that it is
596 * cheaper to flush all TLBs and let them be refilled than
597 * flushing individual PFNs. Note that we do not track mm's
598 * to flush as that might simply be multiple full TLB flushes
599 * for no gain.
600 */
601 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
602 flush_tlb_local();
603}
604
605/*
606 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
607 * important if a PTE was dirty when it was unmapped that it's flushed
608 * before any IO is initiated on the page to prevent lost writes. Similarly,
609 * it must be flushed before freeing to prevent data leakage.
610 */
611void try_to_unmap_flush(void)
612{
613 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
614 int cpu;
615
616 if (!tlb_ubc->flush_required)
617 return;
618
619 cpu = get_cpu();
620
621 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
622
623 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
624 percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
625
626 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
627 smp_call_function_many(&tlb_ubc->cpumask,
628 percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
629 }
630 cpumask_clear(&tlb_ubc->cpumask);
631 tlb_ubc->flush_required = false;
d950c947 632 tlb_ubc->writable = false;
72b252ae
MG
633 put_cpu();
634}
635
d950c947
MG
636/* Flush iff there are potentially writable TLB entries that can race with IO */
637void try_to_unmap_flush_dirty(void)
638{
639 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
640
641 if (tlb_ubc->writable)
642 try_to_unmap_flush();
643}
644
72b252ae 645static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 646 struct page *page, bool writable)
72b252ae
MG
647{
648 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
649
650 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
651 tlb_ubc->flush_required = true;
d950c947
MG
652
653 /*
654 * If the PTE was dirty then it's best to assume it's writable. The
655 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
656 * before the page is queued for IO.
657 */
658 if (writable)
659 tlb_ubc->writable = true;
72b252ae
MG
660}
661
662/*
663 * Returns true if the TLB flush should be deferred to the end of a batch of
664 * unmap operations to reduce IPIs.
665 */
666static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
667{
668 bool should_defer = false;
669
670 if (!(flags & TTU_BATCH_FLUSH))
671 return false;
672
673 /* If remote CPUs need to be flushed then defer batch the flush */
674 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
675 should_defer = true;
676 put_cpu();
677
678 return should_defer;
679}
680#else
681static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 682 struct page *page, bool writable)
72b252ae
MG
683{
684}
685
686static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
687{
688 return false;
689}
690#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
691
1da177e4 692/*
bf89c8c8 693 * At what user virtual address is page expected in vma?
ab941e0f 694 * Caller should check the page is actually part of the vma.
1da177e4
LT
695 */
696unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
697{
86c2ad19 698 unsigned long address;
21d0d443 699 if (PageAnon(page)) {
4829b906
HD
700 struct anon_vma *page__anon_vma = page_anon_vma(page);
701 /*
702 * Note: swapoff's unuse_vma() is more efficient with this
703 * check, and needs it to match anon_vma when KSM is active.
704 */
705 if (!vma->anon_vma || !page__anon_vma ||
706 vma->anon_vma->root != page__anon_vma->root)
21d0d443 707 return -EFAULT;
27ba0644
KS
708 } else if (page->mapping) {
709 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
710 return -EFAULT;
711 } else
712 return -EFAULT;
86c2ad19
ML
713 address = __vma_address(page, vma);
714 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
715 return -EFAULT;
716 return address;
1da177e4
LT
717}
718
6219049a
BL
719pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
720{
721 pgd_t *pgd;
722 pud_t *pud;
723 pmd_t *pmd = NULL;
f72e7dcd 724 pmd_t pmde;
6219049a
BL
725
726 pgd = pgd_offset(mm, address);
727 if (!pgd_present(*pgd))
728 goto out;
729
730 pud = pud_offset(pgd, address);
731 if (!pud_present(*pud))
732 goto out;
733
734 pmd = pmd_offset(pud, address);
f72e7dcd 735 /*
8809aa2d 736 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
737 * without holding anon_vma lock for write. So when looking for a
738 * genuine pmde (in which to find pte), test present and !THP together.
739 */
e37c6982
CB
740 pmde = *pmd;
741 barrier();
f72e7dcd 742 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
743 pmd = NULL;
744out:
745 return pmd;
746}
747
81b4082d
ND
748/*
749 * Check that @page is mapped at @address into @mm.
750 *
479db0bf
NP
751 * If @sync is false, page_check_address may perform a racy check to avoid
752 * the page table lock when the pte is not present (helpful when reclaiming
753 * highly shared pages).
754 *
b8072f09 755 * On success returns with pte mapped and locked.
81b4082d 756 */
e9a81a82 757pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 758 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 759{
81b4082d
ND
760 pmd_t *pmd;
761 pte_t *pte;
c0718806 762 spinlock_t *ptl;
81b4082d 763
0fe6e20b 764 if (unlikely(PageHuge(page))) {
98398c32 765 /* when pud is not present, pte will be NULL */
0fe6e20b 766 pte = huge_pte_offset(mm, address);
98398c32
JW
767 if (!pte)
768 return NULL;
769
cb900f41 770 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
771 goto check;
772 }
773
6219049a
BL
774 pmd = mm_find_pmd(mm, address);
775 if (!pmd)
c0718806
HD
776 return NULL;
777
c0718806
HD
778 pte = pte_offset_map(pmd, address);
779 /* Make a quick check before getting the lock */
479db0bf 780 if (!sync && !pte_present(*pte)) {
c0718806
HD
781 pte_unmap(pte);
782 return NULL;
783 }
784
4c21e2f2 785 ptl = pte_lockptr(mm, pmd);
0fe6e20b 786check:
c0718806
HD
787 spin_lock(ptl);
788 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
789 *ptlp = ptl;
790 return pte;
81b4082d 791 }
c0718806
HD
792 pte_unmap_unlock(pte, ptl);
793 return NULL;
81b4082d
ND
794}
795
b291f000
NP
796/**
797 * page_mapped_in_vma - check whether a page is really mapped in a VMA
798 * @page: the page to test
799 * @vma: the VMA to test
800 *
801 * Returns 1 if the page is mapped into the page tables of the VMA, 0
802 * if the page is not mapped into the page tables of this VMA. Only
803 * valid for normal file or anonymous VMAs.
804 */
6a46079c 805int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
806{
807 unsigned long address;
808 pte_t *pte;
809 spinlock_t *ptl;
810
86c2ad19
ML
811 address = __vma_address(page, vma);
812 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
813 return 0;
814 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
815 if (!pte) /* the page is not in this mm */
816 return 0;
817 pte_unmap_unlock(pte, ptl);
818
819 return 1;
820}
821
9f32624b
JK
822struct page_referenced_arg {
823 int mapcount;
824 int referenced;
825 unsigned long vm_flags;
826 struct mem_cgroup *memcg;
827};
1da177e4 828/*
9f32624b 829 * arg: page_referenced_arg will be passed
1da177e4 830 */
ac769501 831static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
9f32624b 832 unsigned long address, void *arg)
1da177e4
LT
833{
834 struct mm_struct *mm = vma->vm_mm;
117b0791 835 spinlock_t *ptl;
1da177e4 836 int referenced = 0;
9f32624b 837 struct page_referenced_arg *pra = arg;
1da177e4 838
71e3aac0
AA
839 if (unlikely(PageTransHuge(page))) {
840 pmd_t *pmd;
841
2da28bfd
AA
842 /*
843 * rmap might return false positives; we must filter
844 * these out using page_check_address_pmd().
845 */
71e3aac0 846 pmd = page_check_address_pmd(page, mm, address,
117b0791
KS
847 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
848 if (!pmd)
9f32624b 849 return SWAP_AGAIN;
2da28bfd
AA
850
851 if (vma->vm_flags & VM_LOCKED) {
117b0791 852 spin_unlock(ptl);
9f32624b
JK
853 pra->vm_flags |= VM_LOCKED;
854 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
855 }
856
857 /* go ahead even if the pmd is pmd_trans_splitting() */
858 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0 859 referenced++;
117b0791 860 spin_unlock(ptl);
71e3aac0
AA
861 } else {
862 pte_t *pte;
71e3aac0 863
2da28bfd
AA
864 /*
865 * rmap might return false positives; we must filter
866 * these out using page_check_address().
867 */
71e3aac0
AA
868 pte = page_check_address(page, mm, address, &ptl, 0);
869 if (!pte)
9f32624b 870 return SWAP_AGAIN;
71e3aac0 871
2da28bfd
AA
872 if (vma->vm_flags & VM_LOCKED) {
873 pte_unmap_unlock(pte, ptl);
9f32624b
JK
874 pra->vm_flags |= VM_LOCKED;
875 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
876 }
877
71e3aac0
AA
878 if (ptep_clear_flush_young_notify(vma, address, pte)) {
879 /*
880 * Don't treat a reference through a sequentially read
881 * mapping as such. If the page has been used in
882 * another mapping, we will catch it; if this other
883 * mapping is already gone, the unmap path will have
884 * set PG_referenced or activated the page.
885 */
64363aad 886 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
71e3aac0
AA
887 referenced++;
888 }
889 pte_unmap_unlock(pte, ptl);
890 }
891
33c3fc71
VD
892 if (referenced)
893 clear_page_idle(page);
894 if (test_and_clear_page_young(page))
895 referenced++;
896
9f32624b
JK
897 if (referenced) {
898 pra->referenced++;
899 pra->vm_flags |= vma->vm_flags;
1da177e4 900 }
34bbd704 901
9f32624b
JK
902 pra->mapcount--;
903 if (!pra->mapcount)
904 return SWAP_SUCCESS; /* To break the loop */
905
906 return SWAP_AGAIN;
1da177e4
LT
907}
908
9f32624b 909static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 910{
9f32624b
JK
911 struct page_referenced_arg *pra = arg;
912 struct mem_cgroup *memcg = pra->memcg;
1da177e4 913
9f32624b
JK
914 if (!mm_match_cgroup(vma->vm_mm, memcg))
915 return true;
1da177e4 916
9f32624b 917 return false;
1da177e4
LT
918}
919
920/**
921 * page_referenced - test if the page was referenced
922 * @page: the page to test
923 * @is_locked: caller holds lock on the page
72835c86 924 * @memcg: target memory cgroup
6fe6b7e3 925 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
926 *
927 * Quick test_and_clear_referenced for all mappings to a page,
928 * returns the number of ptes which referenced the page.
929 */
6fe6b7e3
WF
930int page_referenced(struct page *page,
931 int is_locked,
72835c86 932 struct mem_cgroup *memcg,
6fe6b7e3 933 unsigned long *vm_flags)
1da177e4 934{
9f32624b 935 int ret;
5ad64688 936 int we_locked = 0;
9f32624b
JK
937 struct page_referenced_arg pra = {
938 .mapcount = page_mapcount(page),
939 .memcg = memcg,
940 };
941 struct rmap_walk_control rwc = {
942 .rmap_one = page_referenced_one,
943 .arg = (void *)&pra,
944 .anon_lock = page_lock_anon_vma_read,
945 };
1da177e4 946
6fe6b7e3 947 *vm_flags = 0;
9f32624b
JK
948 if (!page_mapped(page))
949 return 0;
950
951 if (!page_rmapping(page))
952 return 0;
953
954 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
955 we_locked = trylock_page(page);
956 if (!we_locked)
957 return 1;
1da177e4 958 }
9f32624b
JK
959
960 /*
961 * If we are reclaiming on behalf of a cgroup, skip
962 * counting on behalf of references from different
963 * cgroups
964 */
965 if (memcg) {
966 rwc.invalid_vma = invalid_page_referenced_vma;
967 }
968
969 ret = rmap_walk(page, &rwc);
970 *vm_flags = pra.vm_flags;
971
972 if (we_locked)
973 unlock_page(page);
974
975 return pra.referenced;
1da177e4
LT
976}
977
1cb1729b 978static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 979 unsigned long address, void *arg)
d08b3851
PZ
980{
981 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 982 pte_t *pte;
d08b3851
PZ
983 spinlock_t *ptl;
984 int ret = 0;
9853a407 985 int *cleaned = arg;
d08b3851 986
479db0bf 987 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
988 if (!pte)
989 goto out;
990
c2fda5fe
PZ
991 if (pte_dirty(*pte) || pte_write(*pte)) {
992 pte_t entry;
d08b3851 993
c2fda5fe 994 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 995 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
996 entry = pte_wrprotect(entry);
997 entry = pte_mkclean(entry);
d6e88e67 998 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
999 ret = 1;
1000 }
d08b3851 1001
d08b3851 1002 pte_unmap_unlock(pte, ptl);
2ec74c3e 1003
9853a407 1004 if (ret) {
2ec74c3e 1005 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
1006 (*cleaned)++;
1007 }
d08b3851 1008out:
9853a407 1009 return SWAP_AGAIN;
d08b3851
PZ
1010}
1011
9853a407 1012static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1013{
9853a407 1014 if (vma->vm_flags & VM_SHARED)
871beb8c 1015 return false;
d08b3851 1016
871beb8c 1017 return true;
d08b3851
PZ
1018}
1019
1020int page_mkclean(struct page *page)
1021{
9853a407
JK
1022 int cleaned = 0;
1023 struct address_space *mapping;
1024 struct rmap_walk_control rwc = {
1025 .arg = (void *)&cleaned,
1026 .rmap_one = page_mkclean_one,
1027 .invalid_vma = invalid_mkclean_vma,
1028 };
d08b3851
PZ
1029
1030 BUG_ON(!PageLocked(page));
1031
9853a407
JK
1032 if (!page_mapped(page))
1033 return 0;
1034
1035 mapping = page_mapping(page);
1036 if (!mapping)
1037 return 0;
1038
1039 rmap_walk(page, &rwc);
d08b3851 1040
9853a407 1041 return cleaned;
d08b3851 1042}
60b59bea 1043EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 1044
c44b6743
RR
1045/**
1046 * page_move_anon_rmap - move a page to our anon_vma
1047 * @page: the page to move to our anon_vma
1048 * @vma: the vma the page belongs to
1049 * @address: the user virtual address mapped
1050 *
1051 * When a page belongs exclusively to one process after a COW event,
1052 * that page can be moved into the anon_vma that belongs to just that
1053 * process, so the rmap code will not search the parent or sibling
1054 * processes.
1055 */
1056void page_move_anon_rmap(struct page *page,
1057 struct vm_area_struct *vma, unsigned long address)
1058{
1059 struct anon_vma *anon_vma = vma->anon_vma;
1060
309381fe 1061 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1062 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 1063 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
1064
1065 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1066 /*
1067 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1068 * simultaneously, so a concurrent reader (eg page_referenced()'s
1069 * PageAnon()) will not see one without the other.
1070 */
1071 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1072}
1073
9617d95e 1074/**
4e1c1975
AK
1075 * __page_set_anon_rmap - set up new anonymous rmap
1076 * @page: Page to add to rmap
1077 * @vma: VM area to add page to.
1078 * @address: User virtual address of the mapping
e8a03feb 1079 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1080 */
1081static void __page_set_anon_rmap(struct page *page,
e8a03feb 1082 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1083{
e8a03feb 1084 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1085
e8a03feb 1086 BUG_ON(!anon_vma);
ea90002b 1087
4e1c1975
AK
1088 if (PageAnon(page))
1089 return;
1090
ea90002b 1091 /*
e8a03feb
RR
1092 * If the page isn't exclusively mapped into this vma,
1093 * we must use the _oldest_ possible anon_vma for the
1094 * page mapping!
ea90002b 1095 */
4e1c1975 1096 if (!exclusive)
288468c3 1097 anon_vma = anon_vma->root;
9617d95e 1098
9617d95e
NP
1099 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1100 page->mapping = (struct address_space *) anon_vma;
9617d95e 1101 page->index = linear_page_index(vma, address);
9617d95e
NP
1102}
1103
c97a9e10 1104/**
43d8eac4 1105 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1106 * @page: the page to add the mapping to
1107 * @vma: the vm area in which the mapping is added
1108 * @address: the user virtual address mapped
1109 */
1110static void __page_check_anon_rmap(struct page *page,
1111 struct vm_area_struct *vma, unsigned long address)
1112{
1113#ifdef CONFIG_DEBUG_VM
1114 /*
1115 * The page's anon-rmap details (mapping and index) are guaranteed to
1116 * be set up correctly at this point.
1117 *
1118 * We have exclusion against page_add_anon_rmap because the caller
1119 * always holds the page locked, except if called from page_dup_rmap,
1120 * in which case the page is already known to be setup.
1121 *
1122 * We have exclusion against page_add_new_anon_rmap because those pages
1123 * are initially only visible via the pagetables, and the pte is locked
1124 * over the call to page_add_new_anon_rmap.
1125 */
44ab57a0 1126 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1127 BUG_ON(page->index != linear_page_index(vma, address));
1128#endif
1129}
1130
1da177e4
LT
1131/**
1132 * page_add_anon_rmap - add pte mapping to an anonymous page
1133 * @page: the page to add the mapping to
1134 * @vma: the vm area in which the mapping is added
1135 * @address: the user virtual address mapped
1136 *
5ad64688 1137 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1138 * the anon_vma case: to serialize mapping,index checking after setting,
1139 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1140 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1141 */
1142void page_add_anon_rmap(struct page *page,
1143 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1144{
1145 do_page_add_anon_rmap(page, vma, address, 0);
1146}
1147
1148/*
1149 * Special version of the above for do_swap_page, which often runs
1150 * into pages that are exclusively owned by the current process.
1151 * Everybody else should continue to use page_add_anon_rmap above.
1152 */
1153void do_page_add_anon_rmap(struct page *page,
1154 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1155{
5ad64688 1156 int first = atomic_inc_and_test(&page->_mapcount);
79134171 1157 if (first) {
bea04b07
JZ
1158 /*
1159 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1160 * these counters are not modified in interrupt context, and
1161 * pte lock(a spinlock) is held, which implies preemption
1162 * disabled.
1163 */
3cd14fcd 1164 if (PageTransHuge(page))
79134171
AA
1165 __inc_zone_page_state(page,
1166 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1167 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1168 hpage_nr_pages(page));
79134171 1169 }
5ad64688
HD
1170 if (unlikely(PageKsm(page)))
1171 return;
1172
309381fe 1173 VM_BUG_ON_PAGE(!PageLocked(page), page);
5dbe0af4 1174 /* address might be in next vma when migration races vma_adjust */
5ad64688 1175 if (first)
ad8c2ee8 1176 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1177 else
c97a9e10 1178 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1179}
1180
43d8eac4 1181/**
9617d95e
NP
1182 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1183 * @page: the page to add the mapping to
1184 * @vma: the vm area in which the mapping is added
1185 * @address: the user virtual address mapped
1186 *
1187 * Same as page_add_anon_rmap but must only be called on *new* pages.
1188 * This means the inc-and-test can be bypassed.
c97a9e10 1189 * Page does not have to be locked.
9617d95e
NP
1190 */
1191void page_add_new_anon_rmap(struct page *page,
1192 struct vm_area_struct *vma, unsigned long address)
1193{
81d1b09c 1194 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a
HD
1195 SetPageSwapBacked(page);
1196 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
3cd14fcd 1197 if (PageTransHuge(page))
79134171 1198 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1199 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1200 hpage_nr_pages(page));
e8a03feb 1201 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1202}
1203
1da177e4
LT
1204/**
1205 * page_add_file_rmap - add pte mapping to a file page
1206 * @page: the page to add the mapping to
1207 *
b8072f09 1208 * The caller needs to hold the pte lock.
1da177e4
LT
1209 */
1210void page_add_file_rmap(struct page *page)
1211{
d7365e78 1212 struct mem_cgroup *memcg;
89c06bd5 1213
6de22619 1214 memcg = mem_cgroup_begin_page_stat(page);
d69b042f 1215 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1216 __inc_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1217 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1218 }
6de22619 1219 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
1220}
1221
8186eb6a
JW
1222static void page_remove_file_rmap(struct page *page)
1223{
1224 struct mem_cgroup *memcg;
8186eb6a 1225
6de22619 1226 memcg = mem_cgroup_begin_page_stat(page);
8186eb6a
JW
1227
1228 /* page still mapped by someone else? */
1229 if (!atomic_add_negative(-1, &page->_mapcount))
1230 goto out;
1231
1232 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1233 if (unlikely(PageHuge(page)))
1234 goto out;
1235
1236 /*
1237 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1238 * these counters are not modified in interrupt context, and
1239 * pte lock(a spinlock) is held, which implies preemption disabled.
1240 */
1241 __dec_zone_page_state(page, NR_FILE_MAPPED);
1242 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1243
1244 if (unlikely(PageMlocked(page)))
1245 clear_page_mlock(page);
1246out:
6de22619 1247 mem_cgroup_end_page_stat(memcg);
8186eb6a
JW
1248}
1249
1da177e4
LT
1250/**
1251 * page_remove_rmap - take down pte mapping from a page
1252 * @page: page to remove mapping from
1253 *
b8072f09 1254 * The caller needs to hold the pte lock.
1da177e4 1255 */
edc315fd 1256void page_remove_rmap(struct page *page)
1da177e4 1257{
8186eb6a
JW
1258 if (!PageAnon(page)) {
1259 page_remove_file_rmap(page);
1260 return;
1261 }
89c06bd5 1262
b904dcfe
KM
1263 /* page still mapped by someone else? */
1264 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1265 return;
1266
1267 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1268 if (unlikely(PageHuge(page)))
1269 return;
b904dcfe 1270
0fe6e20b 1271 /*
bea04b07
JZ
1272 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1273 * these counters are not modified in interrupt context, and
bea04b07 1274 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1275 */
8186eb6a
JW
1276 if (PageTransHuge(page))
1277 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1278
1279 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1280 -hpage_nr_pages(page));
1281
e6c509f8
HD
1282 if (unlikely(PageMlocked(page)))
1283 clear_page_mlock(page);
8186eb6a 1284
b904dcfe
KM
1285 /*
1286 * It would be tidy to reset the PageAnon mapping here,
1287 * but that might overwrite a racing page_add_anon_rmap
1288 * which increments mapcount after us but sets mapping
1289 * before us: so leave the reset to free_hot_cold_page,
1290 * and remember that it's only reliable while mapped.
1291 * Leaving it set also helps swapoff to reinstate ptes
1292 * faster for those pages still in swapcache.
1293 */
1da177e4
LT
1294}
1295
1296/*
52629506 1297 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1298 */
ac769501 1299static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1300 unsigned long address, void *arg)
1da177e4
LT
1301{
1302 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1303 pte_t *pte;
1304 pte_t pteval;
c0718806 1305 spinlock_t *ptl;
1da177e4 1306 int ret = SWAP_AGAIN;
52629506 1307 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1308
b87537d9
HD
1309 /* munlock has nothing to gain from examining un-locked vmas */
1310 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1311 goto out;
1312
479db0bf 1313 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1314 if (!pte)
81b4082d 1315 goto out;
1da177e4
LT
1316
1317 /*
1318 * If the page is mlock()d, we cannot swap it out.
1319 * If it's recently referenced (perhaps page_referenced
1320 * skipped over this mm) then we should reactivate it.
1321 */
14fa31b8 1322 if (!(flags & TTU_IGNORE_MLOCK)) {
b87537d9
HD
1323 if (vma->vm_flags & VM_LOCKED) {
1324 /* Holding pte lock, we do *not* need mmap_sem here */
1325 mlock_vma_page(page);
1326 ret = SWAP_MLOCK;
1327 goto out_unmap;
1328 }
daa5ba76 1329 if (flags & TTU_MUNLOCK)
53f79acb 1330 goto out_unmap;
14fa31b8
AK
1331 }
1332 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1333 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1334 ret = SWAP_FAIL;
1335 goto out_unmap;
1336 }
1337 }
1da177e4 1338
1da177e4
LT
1339 /* Nuke the page table entry. */
1340 flush_cache_page(vma, address, page_to_pfn(page));
72b252ae
MG
1341 if (should_defer_flush(mm, flags)) {
1342 /*
1343 * We clear the PTE but do not flush so potentially a remote
1344 * CPU could still be writing to the page. If the entry was
1345 * previously clean then the architecture must guarantee that
1346 * a clear->dirty transition on a cached TLB entry is written
1347 * through and traps if the PTE is unmapped.
1348 */
1349 pteval = ptep_get_and_clear(mm, address, pte);
1350
d950c947 1351 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
72b252ae
MG
1352 } else {
1353 pteval = ptep_clear_flush(vma, address, pte);
1354 }
1da177e4
LT
1355
1356 /* Move the dirty bit to the physical page now the pte is gone. */
1357 if (pte_dirty(pteval))
1358 set_page_dirty(page);
1359
365e9c87
HD
1360 /* Update high watermark before we lower rss */
1361 update_hiwater_rss(mm);
1362
888b9f7c 1363 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5d317b2b
NH
1364 if (PageHuge(page)) {
1365 hugetlb_count_sub(1 << compound_order(page), mm);
1366 } else {
eca56ff9 1367 dec_mm_counter(mm, mm_counter(page));
5f24ae58 1368 }
888b9f7c 1369 set_pte_at(mm, address, pte,
5f24ae58 1370 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1371 } else if (pte_unused(pteval)) {
1372 /*
1373 * The guest indicated that the page content is of no
1374 * interest anymore. Simply discard the pte, vmscan
1375 * will take care of the rest.
1376 */
eca56ff9 1377 dec_mm_counter(mm, mm_counter(page));
470f119f
HD
1378 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1379 swp_entry_t entry;
1380 pte_t swp_pte;
1381 /*
1382 * Store the pfn of the page in a special migration
1383 * pte. do_swap_page() will wait until the migration
1384 * pte is removed and then restart fault handling.
1385 */
1386 entry = make_migration_entry(page, pte_write(pteval));
1387 swp_pte = swp_entry_to_pte(entry);
1388 if (pte_soft_dirty(pteval))
1389 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1390 set_pte_at(mm, address, pte, swp_pte);
888b9f7c 1391 } else if (PageAnon(page)) {
4c21e2f2 1392 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1393 pte_t swp_pte;
470f119f
HD
1394 /*
1395 * Store the swap location in the pte.
1396 * See handle_pte_fault() ...
1397 */
1398 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1399 if (swap_duplicate(entry) < 0) {
1400 set_pte_at(mm, address, pte, pteval);
1401 ret = SWAP_FAIL;
1402 goto out_unmap;
1403 }
1404 if (list_empty(&mm->mmlist)) {
1405 spin_lock(&mmlist_lock);
1406 if (list_empty(&mm->mmlist))
1407 list_add(&mm->mmlist, &init_mm.mmlist);
1408 spin_unlock(&mmlist_lock);
1da177e4 1409 }
470f119f
HD
1410 dec_mm_counter(mm, MM_ANONPAGES);
1411 inc_mm_counter(mm, MM_SWAPENTS);
179ef71c
CG
1412 swp_pte = swp_entry_to_pte(entry);
1413 if (pte_soft_dirty(pteval))
1414 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1415 set_pte_at(mm, address, pte, swp_pte);
04e62a29 1416 } else
eca56ff9 1417 dec_mm_counter(mm, mm_counter_file(page));
1da177e4 1418
edc315fd 1419 page_remove_rmap(page);
1da177e4
LT
1420 page_cache_release(page);
1421
1422out_unmap:
c0718806 1423 pte_unmap_unlock(pte, ptl);
b87537d9 1424 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
2ec74c3e 1425 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1426out:
1427 return ret;
1da177e4
LT
1428}
1429
71e3aac0 1430bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1431{
1432 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1433
1434 if (!maybe_stack)
1435 return false;
1436
1437 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1438 VM_STACK_INCOMPLETE_SETUP)
1439 return true;
1440
1441 return false;
1442}
1443
52629506
JK
1444static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1445{
1446 return is_vma_temporary_stack(vma);
1447}
1448
52629506
JK
1449static int page_not_mapped(struct page *page)
1450{
1451 return !page_mapped(page);
1452};
1453
1da177e4
LT
1454/**
1455 * try_to_unmap - try to remove all page table mappings to a page
1456 * @page: the page to get unmapped
14fa31b8 1457 * @flags: action and flags
1da177e4
LT
1458 *
1459 * Tries to remove all the page table entries which are mapping this
1460 * page, used in the pageout path. Caller must hold the page lock.
1461 * Return values are:
1462 *
1463 * SWAP_SUCCESS - we succeeded in removing all mappings
1464 * SWAP_AGAIN - we missed a mapping, try again later
1465 * SWAP_FAIL - the page is unswappable
b291f000 1466 * SWAP_MLOCK - page is mlocked.
1da177e4 1467 */
14fa31b8 1468int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1469{
1470 int ret;
52629506
JK
1471 struct rmap_walk_control rwc = {
1472 .rmap_one = try_to_unmap_one,
1473 .arg = (void *)flags,
1474 .done = page_not_mapped,
52629506
JK
1475 .anon_lock = page_lock_anon_vma_read,
1476 };
1da177e4 1477
309381fe 1478 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1479
52629506
JK
1480 /*
1481 * During exec, a temporary VMA is setup and later moved.
1482 * The VMA is moved under the anon_vma lock but not the
1483 * page tables leading to a race where migration cannot
1484 * find the migration ptes. Rather than increasing the
1485 * locking requirements of exec(), migration skips
1486 * temporary VMAs until after exec() completes.
1487 */
daa5ba76 1488 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1489 rwc.invalid_vma = invalid_migration_vma;
1490
1491 ret = rmap_walk(page, &rwc);
1492
b291f000 1493 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1494 ret = SWAP_SUCCESS;
1495 return ret;
1496}
81b4082d 1497
b291f000
NP
1498/**
1499 * try_to_munlock - try to munlock a page
1500 * @page: the page to be munlocked
1501 *
1502 * Called from munlock code. Checks all of the VMAs mapping the page
1503 * to make sure nobody else has this page mlocked. The page will be
1504 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1505 *
1506 * Return values are:
1507 *
53f79acb 1508 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1509 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1510 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1511 * SWAP_MLOCK - page is now mlocked.
1512 */
1513int try_to_munlock(struct page *page)
1514{
e8351ac9
JK
1515 int ret;
1516 struct rmap_walk_control rwc = {
1517 .rmap_one = try_to_unmap_one,
1518 .arg = (void *)TTU_MUNLOCK,
1519 .done = page_not_mapped,
e8351ac9
JK
1520 .anon_lock = page_lock_anon_vma_read,
1521
1522 };
1523
309381fe 1524 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1525
e8351ac9
JK
1526 ret = rmap_walk(page, &rwc);
1527 return ret;
b291f000 1528}
e9995ef9 1529
01d8b20d 1530void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1531{
01d8b20d 1532 struct anon_vma *root = anon_vma->root;
76545066 1533
624483f3 1534 anon_vma_free(anon_vma);
01d8b20d
PZ
1535 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1536 anon_vma_free(root);
76545066 1537}
76545066 1538
0dd1c7bb
JK
1539static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1540 struct rmap_walk_control *rwc)
faecd8dd
JK
1541{
1542 struct anon_vma *anon_vma;
1543
0dd1c7bb
JK
1544 if (rwc->anon_lock)
1545 return rwc->anon_lock(page);
1546
faecd8dd
JK
1547 /*
1548 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1549 * because that depends on page_mapped(); but not all its usages
1550 * are holding mmap_sem. Users without mmap_sem are required to
1551 * take a reference count to prevent the anon_vma disappearing
1552 */
1553 anon_vma = page_anon_vma(page);
1554 if (!anon_vma)
1555 return NULL;
1556
1557 anon_vma_lock_read(anon_vma);
1558 return anon_vma;
1559}
1560
e9995ef9 1561/*
e8351ac9
JK
1562 * rmap_walk_anon - do something to anonymous page using the object-based
1563 * rmap method
1564 * @page: the page to be handled
1565 * @rwc: control variable according to each walk type
1566 *
1567 * Find all the mappings of a page using the mapping pointer and the vma chains
1568 * contained in the anon_vma struct it points to.
1569 *
1570 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1571 * where the page was found will be held for write. So, we won't recheck
1572 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1573 * LOCKED.
e9995ef9 1574 */
051ac83a 1575static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1576{
1577 struct anon_vma *anon_vma;
b258d860 1578 pgoff_t pgoff;
5beb4930 1579 struct anon_vma_chain *avc;
e9995ef9
HD
1580 int ret = SWAP_AGAIN;
1581
0dd1c7bb 1582 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1583 if (!anon_vma)
1584 return ret;
faecd8dd 1585
b258d860 1586 pgoff = page_to_pgoff(page);
bf181b9f 1587 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1588 struct vm_area_struct *vma = avc->vma;
e9995ef9 1589 unsigned long address = vma_address(page, vma);
0dd1c7bb 1590
ad12695f
AA
1591 cond_resched();
1592
0dd1c7bb
JK
1593 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1594 continue;
1595
051ac83a 1596 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1597 if (ret != SWAP_AGAIN)
1598 break;
0dd1c7bb
JK
1599 if (rwc->done && rwc->done(page))
1600 break;
e9995ef9 1601 }
4fc3f1d6 1602 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1603 return ret;
1604}
1605
e8351ac9
JK
1606/*
1607 * rmap_walk_file - do something to file page using the object-based rmap method
1608 * @page: the page to be handled
1609 * @rwc: control variable according to each walk type
1610 *
1611 * Find all the mappings of a page using the mapping pointer and the vma chains
1612 * contained in the address_space struct it points to.
1613 *
1614 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1615 * where the page was found will be held for write. So, we won't recheck
1616 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1617 * LOCKED.
1618 */
051ac83a 1619static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1620{
1621 struct address_space *mapping = page->mapping;
b258d860 1622 pgoff_t pgoff;
e9995ef9 1623 struct vm_area_struct *vma;
e9995ef9
HD
1624 int ret = SWAP_AGAIN;
1625
9f32624b
JK
1626 /*
1627 * The page lock not only makes sure that page->mapping cannot
1628 * suddenly be NULLified by truncation, it makes sure that the
1629 * structure at mapping cannot be freed and reused yet,
c8c06efa 1630 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1631 */
81d1b09c 1632 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1633
e9995ef9
HD
1634 if (!mapping)
1635 return ret;
3dec0ba0 1636
b258d860 1637 pgoff = page_to_pgoff(page);
3dec0ba0 1638 i_mmap_lock_read(mapping);
6b2dbba8 1639 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1640 unsigned long address = vma_address(page, vma);
0dd1c7bb 1641
ad12695f
AA
1642 cond_resched();
1643
0dd1c7bb
JK
1644 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1645 continue;
1646
051ac83a 1647 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1648 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1649 goto done;
1650 if (rwc->done && rwc->done(page))
1651 goto done;
e9995ef9 1652 }
0dd1c7bb 1653
0dd1c7bb 1654done:
3dec0ba0 1655 i_mmap_unlock_read(mapping);
e9995ef9
HD
1656 return ret;
1657}
1658
051ac83a 1659int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1660{
e9995ef9 1661 if (unlikely(PageKsm(page)))
051ac83a 1662 return rmap_walk_ksm(page, rwc);
e9995ef9 1663 else if (PageAnon(page))
051ac83a 1664 return rmap_walk_anon(page, rwc);
e9995ef9 1665 else
051ac83a 1666 return rmap_walk_file(page, rwc);
e9995ef9 1667}
0fe6e20b 1668
e3390f67 1669#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1670/*
1671 * The following three functions are for anonymous (private mapped) hugepages.
1672 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1673 * and no lru code, because we handle hugepages differently from common pages.
1674 */
1675static void __hugepage_set_anon_rmap(struct page *page,
1676 struct vm_area_struct *vma, unsigned long address, int exclusive)
1677{
1678 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1679
0fe6e20b 1680 BUG_ON(!anon_vma);
433abed6
NH
1681
1682 if (PageAnon(page))
1683 return;
1684 if (!exclusive)
1685 anon_vma = anon_vma->root;
1686
0fe6e20b
NH
1687 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1688 page->mapping = (struct address_space *) anon_vma;
1689 page->index = linear_page_index(vma, address);
1690}
1691
1692void hugepage_add_anon_rmap(struct page *page,
1693 struct vm_area_struct *vma, unsigned long address)
1694{
1695 struct anon_vma *anon_vma = vma->anon_vma;
1696 int first;
a850ea30
NH
1697
1698 BUG_ON(!PageLocked(page));
0fe6e20b 1699 BUG_ON(!anon_vma);
5dbe0af4 1700 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1701 first = atomic_inc_and_test(&page->_mapcount);
1702 if (first)
1703 __hugepage_set_anon_rmap(page, vma, address, 0);
1704}
1705
1706void hugepage_add_new_anon_rmap(struct page *page,
1707 struct vm_area_struct *vma, unsigned long address)
1708{
1709 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1710 atomic_set(&page->_mapcount, 0);
1711 __hugepage_set_anon_rmap(page, vma, address, 1);
1712}
e3390f67 1713#endif /* CONFIG_HUGETLB_PAGE */