]> git.proxmox.com Git - mirror_edk2.git/blame - MdePkg/Include/Library/BaseLib.h
MdePkg/BaseLib: Add StrToGuid/StrHexToBytes/StrToIpv[4/6]Address
[mirror_edk2.git] / MdePkg / Include / Library / BaseLib.h
CommitLineData
ac644614 1/** @file\r
50a64e5b 2 Provides string functions, linked list functions, math functions, synchronization\r
ae591c14 3 functions, file path functions, and CPU architecture-specific functions.\r
ac644614 4\r
b590e43a 5Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR>\r
9df063a0
HT
6Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>\r
7This program and the accompanying materials\r
50a64e5b 8are licensed and made available under the terms and conditions of the BSD License\r
9which accompanies this distribution. The full text of the license may be found at\r
af2dc6a7 10http://opensource.org/licenses/bsd-license.php.\r
ac644614 11\r
50a64e5b 12THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
13WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
ac644614 14\r
15**/\r
16\r
17#ifndef __BASE_LIB__\r
18#define __BASE_LIB__\r
19\r
1106ffe1 20//\r
1a2f870c 21// Definitions for architecture-specific types\r
1106ffe1 22//\r
ac644614 23#if defined (MDE_CPU_IA32)\r
fc30687f 24///\r
af2dc6a7 25/// The IA-32 architecture context buffer used by SetJump() and LongJump().\r
fc30687f 26///\r
ac644614 27typedef struct {\r
28 UINT32 Ebx;\r
29 UINT32 Esi;\r
30 UINT32 Edi;\r
31 UINT32 Ebp;\r
32 UINT32 Esp;\r
33 UINT32 Eip;\r
34} BASE_LIBRARY_JUMP_BUFFER;\r
35\r
36#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
37\r
aa4df547 38#endif // defined (MDE_CPU_IA32)\r
39\r
40#if defined (MDE_CPU_IPF)\r
ac644614 41\r
fc30687f 42///\r
af2dc6a7 43/// The Itanium architecture context buffer used by SetJump() and LongJump().\r
fc30687f 44///\r
ac644614 45typedef struct {\r
46 UINT64 F2[2];\r
47 UINT64 F3[2];\r
48 UINT64 F4[2];\r
49 UINT64 F5[2];\r
50 UINT64 F16[2];\r
51 UINT64 F17[2];\r
52 UINT64 F18[2];\r
53 UINT64 F19[2];\r
54 UINT64 F20[2];\r
55 UINT64 F21[2];\r
56 UINT64 F22[2];\r
57 UINT64 F23[2];\r
58 UINT64 F24[2];\r
59 UINT64 F25[2];\r
60 UINT64 F26[2];\r
61 UINT64 F27[2];\r
62 UINT64 F28[2];\r
63 UINT64 F29[2];\r
64 UINT64 F30[2];\r
65 UINT64 F31[2];\r
66 UINT64 R4;\r
67 UINT64 R5;\r
68 UINT64 R6;\r
69 UINT64 R7;\r
70 UINT64 SP;\r
71 UINT64 BR0;\r
72 UINT64 BR1;\r
73 UINT64 BR2;\r
74 UINT64 BR3;\r
75 UINT64 BR4;\r
76 UINT64 BR5;\r
77 UINT64 InitialUNAT;\r
78 UINT64 AfterSpillUNAT;\r
79 UINT64 PFS;\r
80 UINT64 BSP;\r
81 UINT64 Predicates;\r
82 UINT64 LoopCount;\r
83 UINT64 FPSR;\r
84} BASE_LIBRARY_JUMP_BUFFER;\r
85\r
86#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10\r
87\r
aa4df547 88#endif // defined (MDE_CPU_IPF)\r
89\r
90#if defined (MDE_CPU_X64)\r
fc30687f 91///\r
af2dc6a7 92/// The x64 architecture context buffer used by SetJump() and LongJump().\r
fc30687f 93///\r
ac644614 94typedef struct {\r
95 UINT64 Rbx;\r
96 UINT64 Rsp;\r
97 UINT64 Rbp;\r
98 UINT64 Rdi;\r
99 UINT64 Rsi;\r
100 UINT64 R12;\r
101 UINT64 R13;\r
102 UINT64 R14;\r
103 UINT64 R15;\r
104 UINT64 Rip;\r
9b9641c6 105 UINT64 MxCsr;\r
af2dc6a7 106 UINT8 XmmBuffer[160]; ///< XMM6-XMM15.\r
ac644614 107} BASE_LIBRARY_JUMP_BUFFER;\r
108\r
109#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
110\r
aa4df547 111#endif // defined (MDE_CPU_X64)\r
112\r
113#if defined (MDE_CPU_EBC)\r
fc30687f 114///\r
af2dc6a7 115/// The EBC context buffer used by SetJump() and LongJump().\r
fc30687f 116///\r
ac644614 117typedef struct {\r
118 UINT64 R0;\r
119 UINT64 R1;\r
120 UINT64 R2;\r
121 UINT64 R3;\r
122 UINT64 IP;\r
123} BASE_LIBRARY_JUMP_BUFFER;\r
124\r
125#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
126\r
aa4df547 127#endif // defined (MDE_CPU_EBC)\r
ac644614 128\r
ebd04fc2 129#if defined (MDE_CPU_ARM)\r
130\r
131typedef struct {\r
af2dc6a7 132 UINT32 R3; ///< A copy of R13.\r
01a54966 133 UINT32 R4;\r
134 UINT32 R5;\r
135 UINT32 R6;\r
136 UINT32 R7;\r
137 UINT32 R8;\r
138 UINT32 R9;\r
139 UINT32 R10;\r
140 UINT32 R11;\r
141 UINT32 R12;\r
142 UINT32 R14;\r
ebd04fc2 143} BASE_LIBRARY_JUMP_BUFFER;\r
144\r
145#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
146\r
147#endif // defined (MDE_CPU_ARM)\r
148\r
807e2604
HL
149#if defined (MDE_CPU_AARCH64)\r
150typedef struct {\r
151 // GP regs\r
152 UINT64 X19;\r
153 UINT64 X20;\r
154 UINT64 X21;\r
155 UINT64 X22;\r
156 UINT64 X23;\r
157 UINT64 X24;\r
158 UINT64 X25;\r
159 UINT64 X26;\r
160 UINT64 X27;\r
161 UINT64 X28;\r
162 UINT64 FP;\r
163 UINT64 LR;\r
164 UINT64 IP0;\r
165\r
166 // FP regs\r
167 UINT64 D8;\r
168 UINT64 D9;\r
169 UINT64 D10;\r
170 UINT64 D11;\r
171 UINT64 D12;\r
172 UINT64 D13;\r
173 UINT64 D14;\r
174 UINT64 D15;\r
175} BASE_LIBRARY_JUMP_BUFFER;\r
176\r
177#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
178\r
179#endif // defined (MDE_CPU_AARCH64)\r
180\r
181\r
ac644614 182//\r
183// String Services\r
184//\r
185\r
c058d59f
JY
186\r
187/**\r
188 Returns the length of a Null-terminated Unicode string.\r
189\r
328f84b1
JY
190 This function is similar as strlen_s defined in C11.\r
191\r
c058d59f
JY
192 If String is not aligned on a 16-bit boundary, then ASSERT().\r
193\r
194 @param String A pointer to a Null-terminated Unicode string.\r
195 @param MaxSize The maximum number of Destination Unicode\r
196 char, including terminating null char.\r
197\r
198 @retval 0 If String is NULL.\r
199 @retval MaxSize If there is no null character in the first MaxSize characters of String.\r
200 @return The number of characters that percede the terminating null character.\r
201\r
202**/\r
203UINTN\r
204EFIAPI\r
205StrnLenS (\r
206 IN CONST CHAR16 *String,\r
207 IN UINTN MaxSize\r
208 );\r
209\r
b590e43a
HW
210/**\r
211 Returns the size of a Null-terminated Unicode string in bytes, including the\r
212 Null terminator.\r
213\r
214 This function returns the size of the Null-terminated Unicode string\r
215 specified by String in bytes, including the Null terminator.\r
216\r
217 If String is not aligned on a 16-bit boundary, then ASSERT().\r
218\r
219 @param String A pointer to a Null-terminated Unicode string.\r
220 @param MaxSize The maximum number of Destination Unicode\r
221 char, including the Null terminator.\r
222\r
223 @retval 0 If String is NULL.\r
224 @retval (sizeof (CHAR16) * (MaxSize + 1))\r
225 If there is no Null terminator in the first MaxSize characters of\r
226 String.\r
227 @return The size of the Null-terminated Unicode string in bytes, including\r
228 the Null terminator.\r
229\r
230**/\r
231UINTN\r
232EFIAPI\r
233StrnSizeS (\r
234 IN CONST CHAR16 *String,\r
235 IN UINTN MaxSize\r
236 );\r
237\r
c058d59f
JY
238/**\r
239 Copies the string pointed to by Source (including the terminating null char)\r
240 to the array pointed to by Destination.\r
241\r
328f84b1
JY
242 This function is similar as strcpy_s defined in C11.\r
243\r
c058d59f
JY
244 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
245 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
0e93edbb 246 If an error would be returned, then the function will also ASSERT().\r
c058d59f 247\r
328f84b1
JY
248 If an error is returned, then the Destination is unmodified.\r
249\r
c058d59f
JY
250 @param Destination A pointer to a Null-terminated Unicode string.\r
251 @param DestMax The maximum number of Destination Unicode\r
252 char, including terminating null char.\r
253 @param Source A pointer to a Null-terminated Unicode string.\r
254\r
255 @retval RETURN_SUCCESS String is copied.\r
256 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
257 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
258 If Source is NULL.\r
259 If PcdMaximumUnicodeStringLength is not zero,\r
260 and DestMax is greater than \r
261 PcdMaximumUnicodeStringLength.\r
262 If DestMax is 0.\r
263 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
264**/\r
265RETURN_STATUS\r
266EFIAPI\r
267StrCpyS (\r
268 OUT CHAR16 *Destination,\r
269 IN UINTN DestMax,\r
270 IN CONST CHAR16 *Source\r
271 );\r
272\r
273/**\r
274 Copies not more than Length successive char from the string pointed to by\r
275 Source to the array pointed to by Destination. If no null char is copied from\r
276 Source, then Destination[Length] is always set to null.\r
277\r
328f84b1
JY
278 This function is similar as strncpy_s defined in C11.\r
279\r
c058d59f
JY
280 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
281 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
0e93edbb 282 If an error would be returned, then the function will also ASSERT().\r
c058d59f 283\r
328f84b1
JY
284 If an error is returned, then the Destination is unmodified.\r
285\r
c058d59f
JY
286 @param Destination A pointer to a Null-terminated Unicode string.\r
287 @param DestMax The maximum number of Destination Unicode\r
288 char, including terminating null char.\r
289 @param Source A pointer to a Null-terminated Unicode string.\r
290 @param Length The maximum number of Unicode characters to copy.\r
291\r
292 @retval RETURN_SUCCESS String is copied.\r
293 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than \r
294 MIN(StrLen(Source), Length).\r
295 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
296 If Source is NULL.\r
297 If PcdMaximumUnicodeStringLength is not zero,\r
298 and DestMax is greater than \r
299 PcdMaximumUnicodeStringLength.\r
300 If DestMax is 0.\r
301 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
302**/\r
303RETURN_STATUS\r
304EFIAPI\r
305StrnCpyS (\r
306 OUT CHAR16 *Destination,\r
307 IN UINTN DestMax,\r
308 IN CONST CHAR16 *Source,\r
309 IN UINTN Length\r
310 );\r
311\r
312/**\r
313 Appends a copy of the string pointed to by Source (including the terminating\r
314 null char) to the end of the string pointed to by Destination.\r
315\r
328f84b1
JY
316 This function is similar as strcat_s defined in C11.\r
317\r
c058d59f
JY
318 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
319 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
0e93edbb 320 If an error would be returned, then the function will also ASSERT().\r
c058d59f 321\r
328f84b1
JY
322 If an error is returned, then the Destination is unmodified.\r
323\r
c058d59f
JY
324 @param Destination A pointer to a Null-terminated Unicode string.\r
325 @param DestMax The maximum number of Destination Unicode\r
326 char, including terminating null char.\r
327 @param Source A pointer to a Null-terminated Unicode string.\r
328\r
329 @retval RETURN_SUCCESS String is appended.\r
330 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than \r
331 StrLen(Destination).\r
332 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
333 greater than StrLen(Source).\r
334 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
335 If Source is NULL.\r
336 If PcdMaximumUnicodeStringLength is not zero,\r
337 and DestMax is greater than \r
338 PcdMaximumUnicodeStringLength.\r
339 If DestMax is 0.\r
340 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
341**/\r
342RETURN_STATUS\r
343EFIAPI\r
344StrCatS (\r
345 IN OUT CHAR16 *Destination,\r
346 IN UINTN DestMax,\r
347 IN CONST CHAR16 *Source\r
348 );\r
349\r
350/**\r
351 Appends not more than Length successive char from the string pointed to by\r
352 Source to the end of the string pointed to by Destination. If no null char is\r
353 copied from Source, then Destination[StrLen(Destination) + Length] is always\r
354 set to null.\r
355\r
328f84b1
JY
356 This function is similar as strncat_s defined in C11.\r
357\r
c058d59f 358 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
0e93edbb
JY
359 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
360 If an error would be returned, then the function will also ASSERT().\r
c058d59f 361\r
328f84b1
JY
362 If an error is returned, then the Destination is unmodified.\r
363\r
c058d59f
JY
364 @param Destination A pointer to a Null-terminated Unicode string.\r
365 @param DestMax The maximum number of Destination Unicode\r
366 char, including terminating null char.\r
367 @param Source A pointer to a Null-terminated Unicode string.\r
368 @param Length The maximum number of Unicode characters to copy.\r
369\r
370 @retval RETURN_SUCCESS String is appended.\r
371 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than\r
372 StrLen(Destination).\r
373 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
374 greater than MIN(StrLen(Source), Length).\r
375 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
376 If Source is NULL.\r
377 If PcdMaximumUnicodeStringLength is not zero,\r
378 and DestMax is greater than \r
379 PcdMaximumUnicodeStringLength.\r
380 If DestMax is 0.\r
381 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
382**/\r
383RETURN_STATUS\r
384EFIAPI\r
385StrnCatS (\r
386 IN OUT CHAR16 *Destination,\r
387 IN UINTN DestMax,\r
388 IN CONST CHAR16 *Source,\r
389 IN UINTN Length\r
390 );\r
391\r
d8af3301
HW
392/**\r
393 Convert a Null-terminated Unicode decimal string to a value of type UINTN.\r
394\r
395 This function outputs a value of type UINTN by interpreting the contents of\r
396 the Unicode string specified by String as a decimal number. The format of the\r
397 input Unicode string String is:\r
398\r
399 [spaces] [decimal digits].\r
400\r
401 The valid decimal digit character is in the range [0-9]. The function will\r
402 ignore the pad space, which includes spaces or tab characters, before\r
403 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
404 be ignored. Then, the function stops at the first character that is a not a\r
405 valid decimal character or a Null-terminator, whichever one comes first.\r
406\r
407 If String is NULL, then ASSERT().\r
408 If Data is NULL, then ASSERT().\r
409 If String is not aligned in a 16-bit boundary, then ASSERT().\r
410 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
411 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
412 Null-terminator, then ASSERT().\r
413\r
414 If String has no valid decimal digits in the above format, then 0 is stored\r
415 at the location pointed to by Data.\r
416 If the number represented by String exceeds the range defined by UINTN, then\r
417 MAX_UINTN is stored at the location pointed to by Data.\r
418\r
419 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
420 is stored at the location pointed to by EndPointer. If String has no valid\r
421 decimal digits right after the optional pad spaces, the value of String is\r
422 stored at the location pointed to by EndPointer.\r
423\r
424 @param String Pointer to a Null-terminated Unicode string.\r
425 @param EndPointer Pointer to character that stops scan.\r
426 @param Data Pointer to the converted value.\r
427\r
428 @retval RETURN_SUCCESS Value is translated from String.\r
429 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
430 If Data is NULL.\r
431 If PcdMaximumUnicodeStringLength is not\r
432 zero, and String contains more than\r
433 PcdMaximumUnicodeStringLength Unicode\r
434 characters, not including the\r
435 Null-terminator.\r
436 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
437 the range defined by UINTN.\r
438\r
439**/\r
440RETURN_STATUS\r
441EFIAPI\r
442StrDecimalToUintnS (\r
443 IN CONST CHAR16 *String,\r
444 OUT CHAR16 **EndPointer, OPTIONAL\r
445 OUT UINTN *Data\r
446 );\r
447\r
448/**\r
449 Convert a Null-terminated Unicode decimal string to a value of type UINT64.\r
450\r
451 This function outputs a value of type UINT64 by interpreting the contents of\r
452 the Unicode string specified by String as a decimal number. The format of the\r
453 input Unicode string String is:\r
454\r
455 [spaces] [decimal digits].\r
456\r
457 The valid decimal digit character is in the range [0-9]. The function will\r
458 ignore the pad space, which includes spaces or tab characters, before\r
459 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
460 be ignored. Then, the function stops at the first character that is a not a\r
461 valid decimal character or a Null-terminator, whichever one comes first.\r
462\r
463 If String is NULL, then ASSERT().\r
464 If Data is NULL, then ASSERT().\r
465 If String is not aligned in a 16-bit boundary, then ASSERT().\r
466 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
467 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
468 Null-terminator, then ASSERT().\r
469\r
470 If String has no valid decimal digits in the above format, then 0 is stored\r
471 at the location pointed to by Data.\r
472 If the number represented by String exceeds the range defined by UINT64, then\r
473 MAX_UINT64 is stored at the location pointed to by Data.\r
474\r
475 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
476 is stored at the location pointed to by EndPointer. If String has no valid\r
477 decimal digits right after the optional pad spaces, the value of String is\r
478 stored at the location pointed to by EndPointer.\r
479\r
480 @param String Pointer to a Null-terminated Unicode string.\r
481 @param EndPointer Pointer to character that stops scan.\r
482 @param Data Pointer to the converted value.\r
483\r
484 @retval RETURN_SUCCESS Value is translated from String.\r
485 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
486 If Data is NULL.\r
487 If PcdMaximumUnicodeStringLength is not\r
488 zero, and String contains more than\r
489 PcdMaximumUnicodeStringLength Unicode\r
490 characters, not including the\r
491 Null-terminator.\r
492 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
493 the range defined by UINT64.\r
494\r
495**/\r
496RETURN_STATUS\r
497EFIAPI\r
498StrDecimalToUint64S (\r
499 IN CONST CHAR16 *String,\r
500 OUT CHAR16 **EndPointer, OPTIONAL\r
501 OUT UINT64 *Data\r
502 );\r
503\r
504/**\r
505 Convert a Null-terminated Unicode hexadecimal string to a value of type\r
506 UINTN.\r
507\r
508 This function outputs a value of type UINTN by interpreting the contents of\r
509 the Unicode string specified by String as a hexadecimal number. The format of\r
510 the input Unicode string String is:\r
511\r
512 [spaces][zeros][x][hexadecimal digits].\r
513\r
514 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
515 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
516 If "x" appears in the input string, it must be prefixed with at least one 0.\r
517 The function will ignore the pad space, which includes spaces or tab\r
518 characters, before [zeros], [x] or [hexadecimal digit]. The running zero\r
519 before [x] or [hexadecimal digit] will be ignored. Then, the decoding starts\r
520 after [x] or the first valid hexadecimal digit. Then, the function stops at\r
521 the first character that is a not a valid hexadecimal character or NULL,\r
522 whichever one comes first.\r
523\r
524 If String is NULL, then ASSERT().\r
525 If Data is NULL, then ASSERT().\r
526 If String is not aligned in a 16-bit boundary, then ASSERT().\r
527 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
528 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
529 Null-terminator, then ASSERT().\r
530\r
531 If String has no valid hexadecimal digits in the above format, then 0 is\r
532 stored at the location pointed to by Data.\r
533 If the number represented by String exceeds the range defined by UINTN, then\r
534 MAX_UINTN is stored at the location pointed to by Data.\r
535\r
536 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
537 is stored at the location pointed to by EndPointer. If String has no valid\r
538 hexadecimal digits right after the optional pad spaces, the value of String\r
539 is stored at the location pointed to by EndPointer.\r
540\r
541 @param String Pointer to a Null-terminated Unicode string.\r
542 @param EndPointer Pointer to character that stops scan.\r
543 @param Data Pointer to the converted value.\r
544\r
545 @retval RETURN_SUCCESS Value is translated from String.\r
546 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
547 If Data is NULL.\r
548 If PcdMaximumUnicodeStringLength is not\r
549 zero, and String contains more than\r
550 PcdMaximumUnicodeStringLength Unicode\r
551 characters, not including the\r
552 Null-terminator.\r
553 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
554 the range defined by UINTN.\r
555\r
556**/\r
557RETURN_STATUS\r
558EFIAPI\r
559StrHexToUintnS (\r
560 IN CONST CHAR16 *String,\r
561 OUT CHAR16 **EndPointer, OPTIONAL\r
562 OUT UINTN *Data\r
563 );\r
564\r
565/**\r
566 Convert a Null-terminated Unicode hexadecimal string to a value of type\r
567 UINT64.\r
568\r
569 This function outputs a value of type UINT64 by interpreting the contents of\r
570 the Unicode string specified by String as a hexadecimal number. The format of\r
571 the input Unicode string String is:\r
572\r
573 [spaces][zeros][x][hexadecimal digits].\r
574\r
575 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
576 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
577 If "x" appears in the input string, it must be prefixed with at least one 0.\r
578 The function will ignore the pad space, which includes spaces or tab\r
579 characters, before [zeros], [x] or [hexadecimal digit]. The running zero\r
580 before [x] or [hexadecimal digit] will be ignored. Then, the decoding starts\r
581 after [x] or the first valid hexadecimal digit. Then, the function stops at\r
582 the first character that is a not a valid hexadecimal character or NULL,\r
583 whichever one comes first.\r
584\r
585 If String is NULL, then ASSERT().\r
586 If Data is NULL, then ASSERT().\r
587 If String is not aligned in a 16-bit boundary, then ASSERT().\r
588 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
589 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
590 Null-terminator, then ASSERT().\r
591\r
592 If String has no valid hexadecimal digits in the above format, then 0 is\r
593 stored at the location pointed to by Data.\r
594 If the number represented by String exceeds the range defined by UINT64, then\r
595 MAX_UINT64 is stored at the location pointed to by Data.\r
596\r
597 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
598 is stored at the location pointed to by EndPointer. If String has no valid\r
599 hexadecimal digits right after the optional pad spaces, the value of String\r
600 is stored at the location pointed to by EndPointer.\r
601\r
602 @param String Pointer to a Null-terminated Unicode string.\r
603 @param EndPointer Pointer to character that stops scan.\r
604 @param Data Pointer to the converted value.\r
605\r
606 @retval RETURN_SUCCESS Value is translated from String.\r
607 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
608 If Data is NULL.\r
609 If PcdMaximumUnicodeStringLength is not\r
610 zero, and String contains more than\r
611 PcdMaximumUnicodeStringLength Unicode\r
612 characters, not including the\r
613 Null-terminator.\r
614 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
615 the range defined by UINT64.\r
616\r
617**/\r
618RETURN_STATUS\r
619EFIAPI\r
620StrHexToUint64S (\r
621 IN CONST CHAR16 *String,\r
622 OUT CHAR16 **EndPointer, OPTIONAL\r
623 OUT UINT64 *Data\r
624 );\r
625\r
c058d59f
JY
626/**\r
627 Returns the length of a Null-terminated Ascii string.\r
628\r
328f84b1
JY
629 This function is similar as strlen_s defined in C11.\r
630\r
c058d59f
JY
631 @param String A pointer to a Null-terminated Ascii string.\r
632 @param MaxSize The maximum number of Destination Ascii\r
633 char, including terminating null char.\r
634\r
635 @retval 0 If String is NULL.\r
636 @retval MaxSize If there is no null character in the first MaxSize characters of String.\r
637 @return The number of characters that percede the terminating null character.\r
638\r
639**/\r
640UINTN\r
641EFIAPI\r
642AsciiStrnLenS (\r
643 IN CONST CHAR8 *String,\r
644 IN UINTN MaxSize\r
645 );\r
646\r
b590e43a
HW
647/**\r
648 Returns the size of a Null-terminated Ascii string in bytes, including the\r
649 Null terminator.\r
650\r
651 This function returns the size of the Null-terminated Ascii string specified\r
652 by String in bytes, including the Null terminator.\r
653\r
654 @param String A pointer to a Null-terminated Ascii string.\r
655 @param MaxSize The maximum number of Destination Ascii\r
656 char, including the Null terminator.\r
657\r
658 @retval 0 If String is NULL.\r
659 @retval (sizeof (CHAR8) * (MaxSize + 1))\r
660 If there is no Null terminator in the first MaxSize characters of\r
661 String.\r
662 @return The size of the Null-terminated Ascii string in bytes, including the\r
663 Null terminator.\r
664\r
665**/\r
666UINTN\r
667EFIAPI\r
668AsciiStrnSizeS (\r
669 IN CONST CHAR8 *String,\r
670 IN UINTN MaxSize\r
671 );\r
672\r
c058d59f
JY
673/**\r
674 Copies the string pointed to by Source (including the terminating null char)\r
675 to the array pointed to by Destination.\r
676\r
328f84b1
JY
677 This function is similar as strcpy_s defined in C11.\r
678\r
0e93edbb
JY
679 If an error would be returned, then the function will also ASSERT().\r
680\r
328f84b1
JY
681 If an error is returned, then the Destination is unmodified.\r
682\r
c058d59f
JY
683 @param Destination A pointer to a Null-terminated Ascii string.\r
684 @param DestMax The maximum number of Destination Ascii\r
685 char, including terminating null char.\r
686 @param Source A pointer to a Null-terminated Ascii string.\r
687\r
688 @retval RETURN_SUCCESS String is copied.\r
689 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
690 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
691 If Source is NULL.\r
692 If PcdMaximumAsciiStringLength is not zero,\r
693 and DestMax is greater than \r
694 PcdMaximumAsciiStringLength.\r
695 If DestMax is 0.\r
696 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
697**/\r
698RETURN_STATUS\r
699EFIAPI\r
700AsciiStrCpyS (\r
701 OUT CHAR8 *Destination,\r
702 IN UINTN DestMax,\r
703 IN CONST CHAR8 *Source\r
704 );\r
705\r
706/**\r
707 Copies not more than Length successive char from the string pointed to by\r
708 Source to the array pointed to by Destination. If no null char is copied from\r
709 Source, then Destination[Length] is always set to null.\r
710\r
328f84b1
JY
711 This function is similar as strncpy_s defined in C11.\r
712\r
0e93edbb
JY
713 If an error would be returned, then the function will also ASSERT().\r
714\r
328f84b1
JY
715 If an error is returned, then the Destination is unmodified.\r
716\r
c058d59f
JY
717 @param Destination A pointer to a Null-terminated Ascii string.\r
718 @param DestMax The maximum number of Destination Ascii\r
719 char, including terminating null char.\r
720 @param Source A pointer to a Null-terminated Ascii string.\r
721 @param Length The maximum number of Ascii characters to copy.\r
722\r
723 @retval RETURN_SUCCESS String is copied.\r
724 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than \r
725 MIN(StrLen(Source), Length).\r
726 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
727 If Source is NULL.\r
728 If PcdMaximumAsciiStringLength is not zero,\r
729 and DestMax is greater than \r
730 PcdMaximumAsciiStringLength.\r
731 If DestMax is 0.\r
732 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
733**/\r
734RETURN_STATUS\r
735EFIAPI\r
736AsciiStrnCpyS (\r
737 OUT CHAR8 *Destination,\r
738 IN UINTN DestMax,\r
739 IN CONST CHAR8 *Source,\r
740 IN UINTN Length\r
741 );\r
742\r
743/**\r
744 Appends a copy of the string pointed to by Source (including the terminating\r
745 null char) to the end of the string pointed to by Destination.\r
746\r
328f84b1
JY
747 This function is similar as strcat_s defined in C11.\r
748\r
0e93edbb
JY
749 If an error would be returned, then the function will also ASSERT().\r
750\r
328f84b1
JY
751 If an error is returned, then the Destination is unmodified.\r
752\r
c058d59f
JY
753 @param Destination A pointer to a Null-terminated Ascii string.\r
754 @param DestMax The maximum number of Destination Ascii\r
755 char, including terminating null char.\r
756 @param Source A pointer to a Null-terminated Ascii string.\r
757\r
758 @retval RETURN_SUCCESS String is appended.\r
759 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than \r
760 StrLen(Destination).\r
761 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
762 greater than StrLen(Source).\r
763 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
764 If Source is NULL.\r
765 If PcdMaximumAsciiStringLength is not zero,\r
766 and DestMax is greater than \r
767 PcdMaximumAsciiStringLength.\r
768 If DestMax is 0.\r
769 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
770**/\r
771RETURN_STATUS\r
772EFIAPI\r
773AsciiStrCatS (\r
774 IN OUT CHAR8 *Destination,\r
775 IN UINTN DestMax,\r
776 IN CONST CHAR8 *Source\r
777 );\r
778\r
779/**\r
780 Appends not more than Length successive char from the string pointed to by\r
781 Source to the end of the string pointed to by Destination. If no null char is\r
782 copied from Source, then Destination[StrLen(Destination) + Length] is always\r
783 set to null.\r
784\r
328f84b1
JY
785 This function is similar as strncat_s defined in C11.\r
786\r
0e93edbb
JY
787 If an error would be returned, then the function will also ASSERT().\r
788\r
328f84b1
JY
789 If an error is returned, then the Destination is unmodified.\r
790\r
c058d59f
JY
791 @param Destination A pointer to a Null-terminated Ascii string.\r
792 @param DestMax The maximum number of Destination Ascii\r
793 char, including terminating null char.\r
794 @param Source A pointer to a Null-terminated Ascii string.\r
795 @param Length The maximum number of Ascii characters to copy.\r
796\r
797 @retval RETURN_SUCCESS String is appended.\r
798 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than\r
799 StrLen(Destination).\r
800 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
801 greater than MIN(StrLen(Source), Length).\r
802 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
803 If Source is NULL.\r
804 If PcdMaximumAsciiStringLength is not zero,\r
805 and DestMax is greater than \r
806 PcdMaximumAsciiStringLength.\r
807 If DestMax is 0.\r
808 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
809**/\r
810RETURN_STATUS\r
811EFIAPI\r
812AsciiStrnCatS (\r
813 IN OUT CHAR8 *Destination,\r
814 IN UINTN DestMax,\r
815 IN CONST CHAR8 *Source,\r
816 IN UINTN Length\r
817 );\r
818\r
d8af3301
HW
819/**\r
820 Convert a Null-terminated Ascii decimal string to a value of type UINTN.\r
821\r
822 This function outputs a value of type UINTN by interpreting the contents of\r
823 the Ascii string specified by String as a decimal number. The format of the\r
824 input Ascii string String is:\r
825\r
826 [spaces] [decimal digits].\r
827\r
828 The valid decimal digit character is in the range [0-9]. The function will\r
829 ignore the pad space, which includes spaces or tab characters, before\r
830 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
831 be ignored. Then, the function stops at the first character that is a not a\r
832 valid decimal character or a Null-terminator, whichever one comes first.\r
833\r
834 If String is NULL, then ASSERT().\r
835 If Data is NULL, then ASSERT().\r
836 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
837 PcdMaximumAsciiStringLength Ascii characters, not including the\r
838 Null-terminator, then ASSERT().\r
839\r
840 If String has no valid decimal digits in the above format, then 0 is stored\r
841 at the location pointed to by Data.\r
842 If the number represented by String exceeds the range defined by UINTN, then\r
843 MAX_UINTN is stored at the location pointed to by Data.\r
844\r
845 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
846 is stored at the location pointed to by EndPointer. If String has no valid\r
847 decimal digits right after the optional pad spaces, the value of String is\r
848 stored at the location pointed to by EndPointer.\r
849\r
850 @param String Pointer to a Null-terminated Ascii string.\r
851 @param EndPointer Pointer to character that stops scan.\r
852 @param Data Pointer to the converted value.\r
853\r
854 @retval RETURN_SUCCESS Value is translated from String.\r
855 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
856 If Data is NULL.\r
857 If PcdMaximumAsciiStringLength is not zero,\r
858 and String contains more than\r
859 PcdMaximumAsciiStringLength Ascii\r
860 characters, not including the\r
861 Null-terminator.\r
862 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
863 the range defined by UINTN.\r
864\r
865**/\r
866RETURN_STATUS\r
867EFIAPI\r
868AsciiStrDecimalToUintnS (\r
869 IN CONST CHAR8 *String,\r
870 OUT CHAR8 **EndPointer, OPTIONAL\r
871 OUT UINTN *Data\r
872 );\r
873\r
874/**\r
875 Convert a Null-terminated Ascii decimal string to a value of type UINT64.\r
876\r
877 This function outputs a value of type UINT64 by interpreting the contents of\r
878 the Ascii string specified by String as a decimal number. The format of the\r
879 input Ascii string String is:\r
880\r
881 [spaces] [decimal digits].\r
882\r
883 The valid decimal digit character is in the range [0-9]. The function will\r
884 ignore the pad space, which includes spaces or tab characters, before\r
885 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
886 be ignored. Then, the function stops at the first character that is a not a\r
887 valid decimal character or a Null-terminator, whichever one comes first.\r
888\r
889 If String is NULL, then ASSERT().\r
890 If Data is NULL, then ASSERT().\r
891 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
892 PcdMaximumAsciiStringLength Ascii characters, not including the\r
893 Null-terminator, then ASSERT().\r
894\r
895 If String has no valid decimal digits in the above format, then 0 is stored\r
896 at the location pointed to by Data.\r
897 If the number represented by String exceeds the range defined by UINT64, then\r
898 MAX_UINT64 is stored at the location pointed to by Data.\r
899\r
900 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
901 is stored at the location pointed to by EndPointer. If String has no valid\r
902 decimal digits right after the optional pad spaces, the value of String is\r
903 stored at the location pointed to by EndPointer.\r
904\r
905 @param String Pointer to a Null-terminated Ascii string.\r
906 @param EndPointer Pointer to character that stops scan.\r
907 @param Data Pointer to the converted value.\r
908\r
909 @retval RETURN_SUCCESS Value is translated from String.\r
910 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
911 If Data is NULL.\r
912 If PcdMaximumAsciiStringLength is not zero,\r
913 and String contains more than\r
914 PcdMaximumAsciiStringLength Ascii\r
915 characters, not including the\r
916 Null-terminator.\r
917 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
918 the range defined by UINT64.\r
919\r
920**/\r
921RETURN_STATUS\r
922EFIAPI\r
923AsciiStrDecimalToUint64S (\r
924 IN CONST CHAR8 *String,\r
925 OUT CHAR8 **EndPointer, OPTIONAL\r
926 OUT UINT64 *Data\r
927 );\r
928\r
929/**\r
930 Convert a Null-terminated Ascii hexadecimal string to a value of type UINTN.\r
931\r
932 This function outputs a value of type UINTN by interpreting the contents of\r
933 the Ascii string specified by String as a hexadecimal number. The format of\r
934 the input Ascii string String is:\r
935\r
936 [spaces][zeros][x][hexadecimal digits].\r
937\r
938 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
939 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If\r
940 "x" appears in the input string, it must be prefixed with at least one 0. The\r
941 function will ignore the pad space, which includes spaces or tab characters,\r
942 before [zeros], [x] or [hexadecimal digits]. The running zero before [x] or\r
943 [hexadecimal digits] will be ignored. Then, the decoding starts after [x] or\r
944 the first valid hexadecimal digit. Then, the function stops at the first\r
945 character that is a not a valid hexadecimal character or Null-terminator,\r
946 whichever on comes first.\r
947\r
948 If String is NULL, then ASSERT().\r
949 If Data is NULL, then ASSERT().\r
950 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
951 PcdMaximumAsciiStringLength Ascii characters, not including the\r
952 Null-terminator, then ASSERT().\r
953\r
954 If String has no valid hexadecimal digits in the above format, then 0 is\r
955 stored at the location pointed to by Data.\r
956 If the number represented by String exceeds the range defined by UINTN, then\r
957 MAX_UINTN is stored at the location pointed to by Data.\r
958\r
959 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
960 is stored at the location pointed to by EndPointer. If String has no valid\r
961 hexadecimal digits right after the optional pad spaces, the value of String\r
962 is stored at the location pointed to by EndPointer.\r
963\r
964 @param String Pointer to a Null-terminated Ascii string.\r
965 @param EndPointer Pointer to character that stops scan.\r
966 @param Data Pointer to the converted value.\r
967\r
968 @retval RETURN_SUCCESS Value is translated from String.\r
969 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
970 If Data is NULL.\r
971 If PcdMaximumAsciiStringLength is not zero,\r
972 and String contains more than\r
973 PcdMaximumAsciiStringLength Ascii\r
974 characters, not including the\r
975 Null-terminator.\r
976 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
977 the range defined by UINTN.\r
978\r
979**/\r
980RETURN_STATUS\r
981EFIAPI\r
982AsciiStrHexToUintnS (\r
983 IN CONST CHAR8 *String,\r
984 OUT CHAR8 **EndPointer, OPTIONAL\r
985 OUT UINTN *Data\r
986 );\r
987\r
988/**\r
989 Convert a Null-terminated Ascii hexadecimal string to a value of type UINT64.\r
990\r
991 This function outputs a value of type UINT64 by interpreting the contents of\r
992 the Ascii string specified by String as a hexadecimal number. The format of\r
993 the input Ascii string String is:\r
994\r
995 [spaces][zeros][x][hexadecimal digits].\r
996\r
997 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
998 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If\r
999 "x" appears in the input string, it must be prefixed with at least one 0. The\r
1000 function will ignore the pad space, which includes spaces or tab characters,\r
1001 before [zeros], [x] or [hexadecimal digits]. The running zero before [x] or\r
1002 [hexadecimal digits] will be ignored. Then, the decoding starts after [x] or\r
1003 the first valid hexadecimal digit. Then, the function stops at the first\r
1004 character that is a not a valid hexadecimal character or Null-terminator,\r
1005 whichever on comes first.\r
1006\r
1007 If String is NULL, then ASSERT().\r
1008 If Data is NULL, then ASSERT().\r
1009 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
1010 PcdMaximumAsciiStringLength Ascii characters, not including the\r
1011 Null-terminator, then ASSERT().\r
1012\r
1013 If String has no valid hexadecimal digits in the above format, then 0 is\r
1014 stored at the location pointed to by Data.\r
1015 If the number represented by String exceeds the range defined by UINT64, then\r
1016 MAX_UINT64 is stored at the location pointed to by Data.\r
1017\r
1018 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
1019 is stored at the location pointed to by EndPointer. If String has no valid\r
1020 hexadecimal digits right after the optional pad spaces, the value of String\r
1021 is stored at the location pointed to by EndPointer.\r
1022\r
1023 @param String Pointer to a Null-terminated Ascii string.\r
1024 @param EndPointer Pointer to character that stops scan.\r
1025 @param Data Pointer to the converted value.\r
1026\r
1027 @retval RETURN_SUCCESS Value is translated from String.\r
1028 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1029 If Data is NULL.\r
1030 If PcdMaximumAsciiStringLength is not zero,\r
1031 and String contains more than\r
1032 PcdMaximumAsciiStringLength Ascii\r
1033 characters, not including the\r
1034 Null-terminator.\r
1035 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
1036 the range defined by UINT64.\r
1037\r
1038**/\r
1039RETURN_STATUS\r
1040EFIAPI\r
1041AsciiStrHexToUint64S (\r
1042 IN CONST CHAR8 *String,\r
1043 OUT CHAR8 **EndPointer, OPTIONAL\r
1044 OUT UINT64 *Data\r
1045 );\r
1046\r
c058d59f 1047\r
1bb390f1
ED
1048#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1049\r
ac644614 1050/**\r
ae591c14 1051 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1052\r
ac644614 1053 Copies one Null-terminated Unicode string to another Null-terminated Unicode\r
1054 string and returns the new Unicode string.\r
1055\r
1056 This function copies the contents of the Unicode string Source to the Unicode\r
1057 string Destination, and returns Destination. If Source and Destination\r
1058 overlap, then the results are undefined.\r
1059\r
1060 If Destination is NULL, then ASSERT().\r
1061 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1062 If Source is NULL, then ASSERT().\r
1063 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1064 If Source and Destination overlap, then ASSERT().\r
1065 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
1066 PcdMaximumUnicodeStringLength Unicode characters not including the\r
1067 Null-terminator, then ASSERT().\r
1068\r
af2dc6a7 1069 @param Destination The pointer to a Null-terminated Unicode string.\r
1070 @param Source The pointer to a Null-terminated Unicode string.\r
ac644614 1071\r
9aa049d9 1072 @return Destination.\r
ac644614 1073\r
1074**/\r
1075CHAR16 *\r
1076EFIAPI\r
1077StrCpy (\r
1078 OUT CHAR16 *Destination,\r
1079 IN CONST CHAR16 *Source\r
1080 );\r
1081\r
1082\r
1083/**\r
ae591c14 1084 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1085\r
af2dc6a7 1086 Copies up to a specified length from one Null-terminated Unicode string to \r
17f695ed 1087 another Null-terminated Unicode string and returns the new Unicode string.\r
ac644614 1088\r
1089 This function copies the contents of the Unicode string Source to the Unicode\r
1090 string Destination, and returns Destination. At most, Length Unicode\r
1091 characters are copied from Source to Destination. If Length is 0, then\r
1092 Destination is returned unmodified. If Length is greater that the number of\r
1093 Unicode characters in Source, then Destination is padded with Null Unicode\r
1094 characters. If Source and Destination overlap, then the results are\r
1095 undefined.\r
1096\r
1097 If Length > 0 and Destination is NULL, then ASSERT().\r
1098 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1099 If Length > 0 and Source is NULL, then ASSERT().\r
77f863ee 1100 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 1101 If Source and Destination overlap, then ASSERT().\r
50c247fd 1102 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
1103 PcdMaximumUnicodeStringLength, then ASSERT().\r
ac644614 1104 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
50c247fd 1105 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
1106 then ASSERT().\r
ac644614 1107\r
af2dc6a7 1108 @param Destination The pointer to a Null-terminated Unicode string.\r
1109 @param Source The pointer to a Null-terminated Unicode string.\r
1110 @param Length The maximum number of Unicode characters to copy.\r
ac644614 1111\r
9aa049d9 1112 @return Destination.\r
ac644614 1113\r
1114**/\r
1115CHAR16 *\r
1116EFIAPI\r
1117StrnCpy (\r
1118 OUT CHAR16 *Destination,\r
1119 IN CONST CHAR16 *Source,\r
1120 IN UINTN Length\r
1121 );\r
1bb390f1 1122#endif\r
ac644614 1123\r
1124/**\r
1125 Returns the length of a Null-terminated Unicode string.\r
1126\r
1127 This function returns the number of Unicode characters in the Null-terminated\r
1128 Unicode string specified by String.\r
1129\r
1130 If String is NULL, then ASSERT().\r
1131 If String is not aligned on a 16-bit boundary, then ASSERT().\r
1132 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1133 PcdMaximumUnicodeStringLength Unicode characters not including the\r
1134 Null-terminator, then ASSERT().\r
1135\r
1136 @param String Pointer to a Null-terminated Unicode string.\r
1137\r
1138 @return The length of String.\r
1139\r
1140**/\r
1141UINTN\r
1142EFIAPI\r
1143StrLen (\r
1144 IN CONST CHAR16 *String\r
1145 );\r
1146\r
1147\r
1148/**\r
1149 Returns the size of a Null-terminated Unicode string in bytes, including the\r
1150 Null terminator.\r
1151\r
17f695ed 1152 This function returns the size, in bytes, of the Null-terminated Unicode string \r
1153 specified by String.\r
ac644614 1154\r
1155 If String is NULL, then ASSERT().\r
1156 If String is not aligned on a 16-bit boundary, then ASSERT().\r
1157 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1158 PcdMaximumUnicodeStringLength Unicode characters not including the\r
1159 Null-terminator, then ASSERT().\r
1160\r
af2dc6a7 1161 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1162\r
1163 @return The size of String.\r
1164\r
1165**/\r
1166UINTN\r
1167EFIAPI\r
1168StrSize (\r
1169 IN CONST CHAR16 *String\r
1170 );\r
1171\r
1172\r
1173/**\r
1174 Compares two Null-terminated Unicode strings, and returns the difference\r
1175 between the first mismatched Unicode characters.\r
1176\r
1177 This function compares the Null-terminated Unicode string FirstString to the\r
1178 Null-terminated Unicode string SecondString. If FirstString is identical to\r
1179 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
1180 mismatched Unicode character in SecondString subtracted from the first\r
1181 mismatched Unicode character in FirstString.\r
1182\r
1183 If FirstString is NULL, then ASSERT().\r
1184 If FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
1185 If SecondString is NULL, then ASSERT().\r
1186 If SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
1187 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more\r
1188 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
1189 Null-terminator, then ASSERT().\r
1190 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more\r
af2dc6a7 1191 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1192 Null-terminator, then ASSERT().\r
1193\r
af2dc6a7 1194 @param FirstString The pointer to a Null-terminated Unicode string.\r
1195 @param SecondString The pointer to a Null-terminated Unicode string.\r
ac644614 1196\r
1106ffe1 1197 @retval 0 FirstString is identical to SecondString.\r
1198 @return others FirstString is not identical to SecondString.\r
ac644614 1199\r
1200**/\r
1201INTN\r
1202EFIAPI\r
1203StrCmp (\r
1204 IN CONST CHAR16 *FirstString,\r
1205 IN CONST CHAR16 *SecondString\r
1206 );\r
1207\r
1208\r
1209/**\r
17f695ed 1210 Compares up to a specified length the contents of two Null-terminated Unicode strings,\r
1211 and returns the difference between the first mismatched Unicode characters.\r
1212 \r
ac644614 1213 This function compares the Null-terminated Unicode string FirstString to the\r
1214 Null-terminated Unicode string SecondString. At most, Length Unicode\r
1215 characters will be compared. If Length is 0, then 0 is returned. If\r
1216 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
1217 value returned is the first mismatched Unicode character in SecondString\r
1218 subtracted from the first mismatched Unicode character in FirstString.\r
1219\r
1220 If Length > 0 and FirstString is NULL, then ASSERT().\r
77f863ee 1221 If Length > 0 and FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 1222 If Length > 0 and SecondString is NULL, then ASSERT().\r
77f863ee 1223 If Length > 0 and SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
50c247fd 1224 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than\r
1225 PcdMaximumUnicodeStringLength, then ASSERT().\r
1226 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more than\r
1227 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
1228 then ASSERT().\r
1229 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more than\r
1230 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
1231 then ASSERT().\r
ac644614 1232\r
af2dc6a7 1233 @param FirstString The pointer to a Null-terminated Unicode string.\r
1234 @param SecondString The pointer to a Null-terminated Unicode string.\r
1235 @param Length The maximum number of Unicode characters to compare.\r
ac644614 1236\r
1106ffe1 1237 @retval 0 FirstString is identical to SecondString.\r
1238 @return others FirstString is not identical to SecondString.\r
ac644614 1239\r
1240**/\r
1241INTN\r
1242EFIAPI\r
1243StrnCmp (\r
1244 IN CONST CHAR16 *FirstString,\r
1245 IN CONST CHAR16 *SecondString,\r
1246 IN UINTN Length\r
1247 );\r
1248\r
1249\r
1bb390f1
ED
1250#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1251\r
ac644614 1252/**\r
ae591c14 1253 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1254\r
ac644614 1255 Concatenates one Null-terminated Unicode string to another Null-terminated\r
1256 Unicode string, and returns the concatenated Unicode string.\r
1257\r
1258 This function concatenates two Null-terminated Unicode strings. The contents\r
1259 of Null-terminated Unicode string Source are concatenated to the end of\r
1260 Null-terminated Unicode string Destination. The Null-terminated concatenated\r
1261 Unicode String is returned. If Source and Destination overlap, then the\r
1262 results are undefined.\r
1263\r
1264 If Destination is NULL, then ASSERT().\r
77f863ee 1265 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 1266 If Source is NULL, then ASSERT().\r
77f863ee 1267 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 1268 If Source and Destination overlap, then ASSERT().\r
1269 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
af2dc6a7 1270 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1271 Null-terminator, then ASSERT().\r
1272 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
af2dc6a7 1273 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1274 Null-terminator, then ASSERT().\r
1275 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
1276 and Source results in a Unicode string with more than\r
af2dc6a7 1277 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1278 Null-terminator, then ASSERT().\r
1279\r
af2dc6a7 1280 @param Destination The pointer to a Null-terminated Unicode string.\r
1281 @param Source The pointer to a Null-terminated Unicode string.\r
ac644614 1282\r
9aa049d9 1283 @return Destination.\r
ac644614 1284\r
1285**/\r
1286CHAR16 *\r
1287EFIAPI\r
1288StrCat (\r
1289 IN OUT CHAR16 *Destination,\r
1290 IN CONST CHAR16 *Source\r
1291 );\r
1292\r
1293\r
1294/**\r
ae591c14 1295 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1296\r
17f695ed 1297 Concatenates up to a specified length one Null-terminated Unicode to the end \r
1298 of another Null-terminated Unicode string, and returns the concatenated \r
ac644614 1299 Unicode string.\r
1300\r
1301 This function concatenates two Null-terminated Unicode strings. The contents\r
1302 of Null-terminated Unicode string Source are concatenated to the end of\r
1303 Null-terminated Unicode string Destination, and Destination is returned. At\r
1304 most, Length Unicode characters are concatenated from Source to the end of\r
1305 Destination, and Destination is always Null-terminated. If Length is 0, then\r
1306 Destination is returned unmodified. If Source and Destination overlap, then\r
1307 the results are undefined.\r
1308\r
1309 If Destination is NULL, then ASSERT().\r
1310 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1311 If Length > 0 and Source is NULL, then ASSERT().\r
1312 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
1313 If Source and Destination overlap, then ASSERT().\r
50c247fd 1314 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
1315 PcdMaximumUnicodeStringLength, then ASSERT().\r
ac644614 1316 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
50c247fd 1317 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1318 Null-terminator, then ASSERT().\r
1319 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
50c247fd 1320 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1321 Null-terminator, then ASSERT().\r
1322 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
50c247fd 1323 and Source results in a Unicode string with more than PcdMaximumUnicodeStringLength\r
1324 Unicode characters, not including the Null-terminator, then ASSERT().\r
ac644614 1325\r
af2dc6a7 1326 @param Destination The pointer to a Null-terminated Unicode string.\r
1327 @param Source The pointer to a Null-terminated Unicode string.\r
1328 @param Length The maximum number of Unicode characters to concatenate from\r
ac644614 1329 Source.\r
1330\r
9aa049d9 1331 @return Destination.\r
ac644614 1332\r
1333**/\r
1334CHAR16 *\r
1335EFIAPI\r
1336StrnCat (\r
1337 IN OUT CHAR16 *Destination,\r
1338 IN CONST CHAR16 *Source,\r
1339 IN UINTN Length\r
1340 );\r
1bb390f1 1341#endif\r
ac644614 1342\r
1343/**\r
9aa049d9 1344 Returns the first occurrence of a Null-terminated Unicode sub-string\r
ac644614 1345 in a Null-terminated Unicode string.\r
1346\r
1347 This function scans the contents of the Null-terminated Unicode string\r
1348 specified by String and returns the first occurrence of SearchString.\r
1349 If SearchString is not found in String, then NULL is returned. If\r
af2dc6a7 1350 the length of SearchString is zero, then String is returned.\r
ac644614 1351\r
1352 If String is NULL, then ASSERT().\r
1353 If String is not aligned on a 16-bit boundary, then ASSERT().\r
1354 If SearchString is NULL, then ASSERT().\r
1355 If SearchString is not aligned on a 16-bit boundary, then ASSERT().\r
1356\r
1357 If PcdMaximumUnicodeStringLength is not zero, and SearchString\r
1358 or String contains more than PcdMaximumUnicodeStringLength Unicode\r
af2dc6a7 1359 characters, not including the Null-terminator, then ASSERT().\r
ac644614 1360\r
af2dc6a7 1361 @param String The pointer to a Null-terminated Unicode string.\r
1362 @param SearchString The pointer to a Null-terminated Unicode string to search for.\r
ac644614 1363\r
1364 @retval NULL If the SearchString does not appear in String.\r
1106ffe1 1365 @return others If there is a match.\r
ac644614 1366\r
1367**/\r
1368CHAR16 *\r
1369EFIAPI\r
1370StrStr (\r
17f695ed 1371 IN CONST CHAR16 *String,\r
1372 IN CONST CHAR16 *SearchString\r
ac644614 1373 );\r
1374\r
1375/**\r
1376 Convert a Null-terminated Unicode decimal string to a value of\r
1377 type UINTN.\r
1378\r
1379 This function returns a value of type UINTN by interpreting the contents\r
1380 of the Unicode string specified by String as a decimal number. The format\r
1381 of the input Unicode string String is:\r
1382\r
1383 [spaces] [decimal digits].\r
1384\r
1385 The valid decimal digit character is in the range [0-9]. The\r
1386 function will ignore the pad space, which includes spaces or\r
1387 tab characters, before [decimal digits]. The running zero in the\r
1388 beginning of [decimal digits] will be ignored. Then, the function\r
1389 stops at the first character that is a not a valid decimal character\r
1390 or a Null-terminator, whichever one comes first.\r
1391\r
1392 If String is NULL, then ASSERT().\r
1393 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1394 If String has only pad spaces, then 0 is returned.\r
1395 If String has no pad spaces or valid decimal digits,\r
1396 then 0 is returned.\r
1397 If the number represented by String overflows according\r
ea2e0921 1398 to the range defined by UINTN, then MAX_UINTN is returned.\r
ac644614 1399\r
1400 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
1401 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
1402 the Null-terminator, then ASSERT().\r
1403\r
af2dc6a7 1404 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1405\r
38bbd3d9 1406 @retval Value translated from String.\r
ac644614 1407\r
1408**/\r
1409UINTN\r
1410EFIAPI\r
1411StrDecimalToUintn (\r
17f695ed 1412 IN CONST CHAR16 *String\r
ac644614 1413 );\r
1414\r
1415/**\r
1416 Convert a Null-terminated Unicode decimal string to a value of\r
1417 type UINT64.\r
1418\r
1419 This function returns a value of type UINT64 by interpreting the contents\r
1420 of the Unicode string specified by String as a decimal number. The format\r
1421 of the input Unicode string String is:\r
1422\r
1423 [spaces] [decimal digits].\r
1424\r
1425 The valid decimal digit character is in the range [0-9]. The\r
1426 function will ignore the pad space, which includes spaces or\r
1427 tab characters, before [decimal digits]. The running zero in the\r
1428 beginning of [decimal digits] will be ignored. Then, the function\r
1429 stops at the first character that is a not a valid decimal character\r
1430 or a Null-terminator, whichever one comes first.\r
1431\r
1432 If String is NULL, then ASSERT().\r
1433 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1434 If String has only pad spaces, then 0 is returned.\r
1435 If String has no pad spaces or valid decimal digits,\r
1436 then 0 is returned.\r
1437 If the number represented by String overflows according\r
ea2e0921 1438 to the range defined by UINT64, then MAX_UINT64 is returned.\r
ac644614 1439\r
1440 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
1441 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
1442 the Null-terminator, then ASSERT().\r
1443\r
af2dc6a7 1444 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1445\r
38bbd3d9 1446 @retval Value translated from String.\r
ac644614 1447\r
1448**/\r
1449UINT64\r
1450EFIAPI\r
1451StrDecimalToUint64 (\r
17f695ed 1452 IN CONST CHAR16 *String\r
ac644614 1453 );\r
1454 \r
1455\r
1456/**\r
1457 Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.\r
1458\r
1459 This function returns a value of type UINTN by interpreting the contents\r
1460 of the Unicode string specified by String as a hexadecimal number.\r
1461 The format of the input Unicode string String is:\r
1462\r
1463 [spaces][zeros][x][hexadecimal digits].\r
1464\r
1465 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1466 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
1467 If "x" appears in the input string, it must be prefixed with at least one 0.\r
1468 The function will ignore the pad space, which includes spaces or tab characters,\r
1469 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
1470 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
af2dc6a7 1471 first valid hexadecimal digit. Then, the function stops at the first character \r
1472 that is a not a valid hexadecimal character or NULL, whichever one comes first.\r
ac644614 1473\r
1474 If String is NULL, then ASSERT().\r
1475 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1476 If String has only pad spaces, then zero is returned.\r
1477 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
1478 then zero is returned.\r
1479 If the number represented by String overflows according to the range defined by\r
ea2e0921 1480 UINTN, then MAX_UINTN is returned.\r
ac644614 1481\r
1482 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1483 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
1484 then ASSERT().\r
1485\r
af2dc6a7 1486 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1487\r
38bbd3d9 1488 @retval Value translated from String.\r
ac644614 1489\r
1490**/\r
1491UINTN\r
1492EFIAPI\r
1493StrHexToUintn (\r
17f695ed 1494 IN CONST CHAR16 *String\r
ac644614 1495 );\r
1496\r
1497\r
1498/**\r
1499 Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.\r
1500\r
1501 This function returns a value of type UINT64 by interpreting the contents\r
1502 of the Unicode string specified by String as a hexadecimal number.\r
1503 The format of the input Unicode string String is\r
1504\r
1505 [spaces][zeros][x][hexadecimal digits].\r
1506\r
1507 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1508 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
1509 If "x" appears in the input string, it must be prefixed with at least one 0.\r
1510 The function will ignore the pad space, which includes spaces or tab characters,\r
1511 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
1512 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
1513 first valid hexadecimal digit. Then, the function stops at the first character that is\r
1514 a not a valid hexadecimal character or NULL, whichever one comes first.\r
1515\r
1516 If String is NULL, then ASSERT().\r
1517 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1518 If String has only pad spaces, then zero is returned.\r
1519 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
1520 then zero is returned.\r
1521 If the number represented by String overflows according to the range defined by\r
ea2e0921 1522 UINT64, then MAX_UINT64 is returned.\r
ac644614 1523\r
1524 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1525 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
1526 then ASSERT().\r
1527\r
af2dc6a7 1528 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1529\r
38bbd3d9 1530 @retval Value translated from String.\r
ac644614 1531\r
1532**/\r
1533UINT64\r
1534EFIAPI\r
1535StrHexToUint64 (\r
17f695ed 1536 IN CONST CHAR16 *String\r
ac644614 1537 );\r
1538\r
36396ea2
RN
1539/**\r
1540 Convert a Null-terminated Unicode string to IPv6 address and prefix length.\r
1541\r
1542 This function outputs a value of type IPv6_ADDRESS and may output a value\r
1543 of type UINT8 by interpreting the contents of the Unicode string specified\r
1544 by String. The format of the input Unicode string String is as follows:\r
1545\r
1546 X:X:X:X:X:X:X:X[/P]\r
1547\r
1548 X contains one to four hexadecimal digit characters in the range [0-9], [a-f] and\r
1549 [A-F]. X is converted to a value of type UINT16, whose low byte is stored in low\r
1550 memory address and high byte is stored in high memory address. P contains decimal\r
1551 digit characters in the range [0-9]. The running zero in the beginning of P will\r
1552 be ignored. /P is optional.\r
1553\r
1554 When /P is not in the String, the function stops at the first character that is\r
1555 not a valid hexadecimal digit character after eight X's are converted.\r
1556\r
1557 When /P is in the String, the function stops at the first character that is not\r
1558 a valid decimal digit character after P is converted.\r
1559\r
1560 "::" can be used to compress one or more groups of X when X contains only 0.\r
1561 The "::" can only appear once in the String.\r
1562\r
1563 If String is NULL, then ASSERT().\r
1564\r
1565 If Address is NULL, then ASSERT().\r
1566\r
1567 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1568\r
1569 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1570 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1571 Null-terminator, then ASSERT().\r
1572\r
1573 If EndPointer is not NULL and Address is translated from String, a pointer\r
1574 to the character that stopped the scan is stored at the location pointed to\r
1575 by EndPointer.\r
1576\r
1577 @param String Pointer to a Null-terminated Unicode string.\r
1578 @param EndPointer Pointer to character that stops scan.\r
1579 @param Address Pointer to the converted IPv6 address.\r
1580 @param PrefixLength Pointer to the converted IPv6 address prefix\r
1581 length. MAX_UINT8 is returned when /P is\r
1582 not in the String.\r
1583\r
1584 @retval RETURN_SUCCESS Address is translated from String.\r
1585 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1586 If Data is NULL.\r
1587 @retval RETURN_UNSUPPORTED If X contains more than four hexadecimal\r
1588 digit characters.\r
1589 If String contains "::" and number of X\r
1590 is not less than 8.\r
1591 If P starts with character that is not a\r
1592 valid decimal digit character.\r
1593 If the decimal number converted from P\r
1594 exceeds 128.\r
1595\r
1596**/\r
1597RETURN_STATUS\r
1598EFIAPI\r
1599StrToIpv6Address (\r
1600 IN CONST CHAR16 *String,\r
1601 OUT CHAR16 **EndPointer, OPTIONAL\r
1602 OUT IPv6_ADDRESS *Address,\r
1603 OUT UINT8 *PrefixLength OPTIONAL\r
1604 );\r
1605\r
1606/**\r
1607 Convert a Null-terminated Unicode string to IPv4 address and prefix length.\r
1608\r
1609 This function outputs a value of type IPv4_ADDRESS and may output a value\r
1610 of type UINT8 by interpreting the contents of the Unicode string specified\r
1611 by String. The format of the input Unicode string String is as follows:\r
1612\r
1613 D.D.D.D[/P]\r
1614\r
1615 D and P are decimal digit characters in the range [0-9]. The running zero in\r
1616 the beginning of D and P will be ignored. /P is optional.\r
1617\r
1618 When /P is not in the String, the function stops at the first character that is\r
1619 not a valid decimal digit character after four D's are converted.\r
1620\r
1621 When /P is in the String, the function stops at the first character that is not\r
1622 a valid decimal digit character after P is converted.\r
1623\r
1624 If String is NULL, then ASSERT().\r
1625\r
1626 If Address is NULL, then ASSERT().\r
1627\r
1628 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1629\r
1630 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1631 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1632 Null-terminator, then ASSERT().\r
1633\r
1634 If EndPointer is not NULL and Address is translated from String, a pointer\r
1635 to the character that stopped the scan is stored at the location pointed to\r
1636 by EndPointer.\r
1637\r
1638 @param String Pointer to a Null-terminated Unicode string.\r
1639 @param EndPointer Pointer to character that stops scan.\r
1640 @param Address Pointer to the converted IPv4 address.\r
1641 @param PrefixLength Pointer to the converted IPv4 address prefix\r
1642 length. MAX_UINT8 is returned when /P is\r
1643 not in the String.\r
1644\r
1645 @retval RETURN_SUCCESS Address is translated from String.\r
1646 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1647 If Data is NULL.\r
1648 @retval RETURN_UNSUPPORTED If String is not in the correct format.\r
1649 If any decimal number converted from D\r
1650 exceeds 255.\r
1651 If the decimal number converted from P\r
1652 exceeds 32.\r
1653\r
1654**/\r
1655RETURN_STATUS\r
1656EFIAPI\r
1657StrToIpv4Address (\r
1658 IN CONST CHAR16 *String,\r
1659 OUT CHAR16 **EndPointer, OPTIONAL\r
1660 OUT IPv4_ADDRESS *Address,\r
1661 OUT UINT8 *PrefixLength OPTIONAL\r
1662 );\r
1663\r
1664#define GUID_STRING_LENGTH 36\r
1665\r
1666/**\r
1667 Convert a Null-terminated Unicode GUID string to a value of type\r
1668 EFI_GUID.\r
1669\r
1670 This function outputs a GUID value by interpreting the contents of\r
1671 the Unicode string specified by String. The format of the input\r
1672 Unicode string String consists of 36 characters, as follows:\r
1673\r
1674 aabbccdd-eeff-gghh-iijj-kkllmmnnoopp\r
1675\r
1676 The pairs aa - pp are two characters in the range [0-9], [a-f] and\r
1677 [A-F], with each pair representing a single byte hexadecimal value.\r
1678\r
1679 The mapping between String and the EFI_GUID structure is as follows:\r
1680 aa Data1[24:31]\r
1681 bb Data1[16:23]\r
1682 cc Data1[8:15]\r
1683 dd Data1[0:7]\r
1684 ee Data2[8:15]\r
1685 ff Data2[0:7]\r
1686 gg Data3[8:15]\r
1687 hh Data3[0:7]\r
1688 ii Data4[0:7]\r
1689 jj Data4[8:15]\r
1690 kk Data4[16:23]\r
1691 ll Data4[24:31]\r
1692 mm Data4[32:39]\r
1693 nn Data4[40:47]\r
1694 oo Data4[48:55]\r
1695 pp Data4[56:63]\r
1696\r
1697 If String is NULL, then ASSERT().\r
1698 If Guid is NULL, then ASSERT().\r
1699 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1700\r
1701 @param String Pointer to a Null-terminated Unicode string.\r
1702 @param Guid Pointer to the converted GUID.\r
1703\r
1704 @retval RETURN_SUCCESS Guid is translated from String.\r
1705 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1706 If Data is NULL.\r
1707 @retval RETURN_UNSUPPORTED If String is not as the above format.\r
1708\r
1709**/\r
1710RETURN_STATUS\r
1711EFIAPI\r
1712StrToGuid (\r
1713 IN CONST CHAR16 *String,\r
1714 OUT GUID *Guid\r
1715 );\r
1716\r
1717/**\r
1718 Convert a Null-terminated Unicode hexadecimal string to a byte array.\r
1719\r
1720 This function outputs a byte array by interpreting the contents of\r
1721 the Unicode string specified by String in hexadecimal format. The format of\r
1722 the input Unicode string String is:\r
1723\r
1724 [XX]*\r
1725\r
1726 X is a hexadecimal digit character in the range [0-9], [a-f] and [A-F].\r
1727 The function decodes every two hexadecimal digit characters as one byte. The\r
1728 decoding stops after Length of characters and outputs Buffer containing\r
1729 (Length / 2) bytes.\r
1730\r
1731 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1732\r
1733 If String is NULL, then ASSERT().\r
1734\r
1735 If Buffer is NULL, then ASSERT().\r
1736\r
1737 If Length is not multiple of 2, then ASSERT().\r
1738\r
1739 If PcdMaximumUnicodeStringLength is not zero and Length is greater than\r
1740 PcdMaximumUnicodeStringLength, then ASSERT().\r
1741\r
1742 If MaxBufferSize is less than (Length / 2), then ASSERT().\r
1743\r
1744 @param String Pointer to a Null-terminated Unicode string.\r
1745 @param Length The number of Unicode characters to decode.\r
1746 @param Buffer Pointer to the converted bytes array.\r
1747 @param MaxBufferSize The maximum size of Buffer.\r
1748\r
1749 @retval RETURN_SUCCESS Buffer is translated from String.\r
1750 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1751 If Data is NULL.\r
1752 If Length is not multiple of 2.\r
1753 If PcdMaximumUnicodeStringLength is not zero,\r
1754 and Length is greater than\r
1755 PcdMaximumUnicodeStringLength.\r
1756 @retval RETURN_UNSUPPORTED If Length of characters from String contain\r
1757 a character that is not valid hexadecimal\r
1758 digit characters, or a Null-terminator.\r
1759 @retval RETURN_BUFFER_TOO_SMALL If MaxBufferSize is less than (Length / 2).\r
1760**/\r
1761RETURN_STATUS\r
1762EFIAPI\r
1763StrHexToBytes (\r
1764 IN CONST CHAR16 *String,\r
1765 IN UINTN Length,\r
1766 OUT UINT8 *Buffer,\r
1767 IN UINTN MaxBufferSize\r
1768 );\r
1769\r
415aa2f1
SZ
1770#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1771\r
ac644614 1772/**\r
415aa2f1
SZ
1773 [ATTENTION] This function is deprecated for security reason.\r
1774\r
17f695ed 1775 Convert a Null-terminated Unicode string to a Null-terminated\r
ac644614 1776 ASCII string and returns the ASCII string.\r
1777\r
1778 This function converts the content of the Unicode string Source\r
1779 to the ASCII string Destination by copying the lower 8 bits of\r
1780 each Unicode character. It returns Destination.\r
1781\r
d3e0289c 1782 The caller is responsible to make sure Destination points to a buffer with size\r
1783 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1784\r
ac644614 1785 If any Unicode characters in Source contain non-zero value in\r
1786 the upper 8 bits, then ASSERT().\r
1787\r
1788 If Destination is NULL, then ASSERT().\r
1789 If Source is NULL, then ASSERT().\r
1790 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1791 If Source and Destination overlap, then ASSERT().\r
1792\r
1793 If PcdMaximumUnicodeStringLength is not zero, and Source contains\r
1794 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
1795 the Null-terminator, then ASSERT().\r
1796\r
1797 If PcdMaximumAsciiStringLength is not zero, and Source contains more\r
1798 than PcdMaximumAsciiStringLength Unicode characters not including the\r
1799 Null-terminator, then ASSERT().\r
1800\r
af2dc6a7 1801 @param Source The pointer to a Null-terminated Unicode string.\r
1802 @param Destination The pointer to a Null-terminated ASCII string.\r
ac644614 1803\r
9aa049d9 1804 @return Destination.\r
ac644614 1805\r
1806**/\r
1807CHAR8 *\r
1808EFIAPI\r
1809UnicodeStrToAsciiStr (\r
17f695ed 1810 IN CONST CHAR16 *Source,\r
1811 OUT CHAR8 *Destination\r
ac644614 1812 );\r
1813\r
415aa2f1
SZ
1814#endif\r
1815\r
3ab41b7a
JY
1816/**\r
1817 Convert a Null-terminated Unicode string to a Null-terminated\r
1818 ASCII string.\r
1819\r
1820 This function is similar to AsciiStrCpyS.\r
1821\r
1822 This function converts the content of the Unicode string Source\r
1823 to the ASCII string Destination by copying the lower 8 bits of\r
1824 each Unicode character. The function terminates the ASCII string\r
1825 Destination by appending a Null-terminator character at the end.\r
1826\r
1827 The caller is responsible to make sure Destination points to a buffer with size\r
1828 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1829\r
1830 If any Unicode characters in Source contain non-zero value in\r
1831 the upper 8 bits, then ASSERT().\r
1832\r
1833 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1834 If an error would be returned, then the function will also ASSERT().\r
1835\r
1836 If an error is returned, then the Destination is unmodified.\r
1837\r
1838 @param Source The pointer to a Null-terminated Unicode string.\r
1839 @param Destination The pointer to a Null-terminated ASCII string.\r
1840 @param DestMax The maximum number of Destination Ascii\r
1841 char, including terminating null char.\r
1842\r
1843 @retval RETURN_SUCCESS String is converted.\r
1844 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
1845 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
1846 If Source is NULL.\r
1847 If PcdMaximumAsciiStringLength is not zero,\r
1848 and DestMax is greater than\r
1849 PcdMaximumAsciiStringLength.\r
1850 If PcdMaximumUnicodeStringLength is not zero,\r
1851 and DestMax is greater than\r
1852 PcdMaximumUnicodeStringLength.\r
1853 If DestMax is 0.\r
1854 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
1855\r
1856**/\r
1857RETURN_STATUS\r
1858EFIAPI\r
1859UnicodeStrToAsciiStrS (\r
1860 IN CONST CHAR16 *Source,\r
1861 OUT CHAR8 *Destination,\r
1862 IN UINTN DestMax\r
1863 );\r
ac644614 1864\r
02263214
HW
1865/**\r
1866 Convert not more than Length successive characters from a Null-terminated\r
1867 Unicode string to a Null-terminated Ascii string. If no null char is copied\r
1868 from Source, then Destination[Length] is always set to null.\r
1869\r
1870 This function converts not more than Length successive characters from the\r
1871 Unicode string Source to the Ascii string Destination by copying the lower 8\r
1872 bits of each Unicode character. The function terminates the Ascii string\r
1873 Destination by appending a Null-terminator character at the end.\r
1874\r
1875 The caller is responsible to make sure Destination points to a buffer with size\r
1876 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1877\r
1878 If any Unicode characters in Source contain non-zero value in the upper 8\r
1879 bits, then ASSERT().\r
1880 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1881 If an error would be returned, then the function will also ASSERT().\r
1882\r
1883 If an error is returned, then the Destination is unmodified.\r
1884\r
1885 @param Source The pointer to a Null-terminated Unicode string.\r
1886 @param Length The maximum number of Unicode characters to\r
1887 convert.\r
1888 @param Destination The pointer to a Null-terminated Ascii string.\r
1889 @param DestMax The maximum number of Destination Ascii\r
1890 char, including terminating null char.\r
1891 @param DestinationLength The number of Unicode characters converted.\r
1892\r
1893 @retval RETURN_SUCCESS String is converted.\r
1894 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
1895 If Source is NULL.\r
1896 If DestinationLength is NULL.\r
1897 If PcdMaximumAsciiStringLength is not zero,\r
1898 and Length or DestMax is greater than\r
1899 PcdMaximumAsciiStringLength.\r
1900 If PcdMaximumUnicodeStringLength is not\r
1901 zero, and Length or DestMax is greater than\r
1902 PcdMaximumUnicodeStringLength.\r
1903 If DestMax is 0.\r
1904 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than\r
1905 MIN(StrLen(Source), Length).\r
1906 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
1907\r
1908**/\r
1909RETURN_STATUS\r
1910EFIAPI\r
1911UnicodeStrnToAsciiStrS (\r
1912 IN CONST CHAR16 *Source,\r
1913 IN UINTN Length,\r
1914 OUT CHAR8 *Destination,\r
1915 IN UINTN DestMax,\r
1916 OUT UINTN *DestinationLength\r
1917 );\r
1918\r
1bb390f1
ED
1919#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1920\r
ac644614 1921/**\r
ae591c14 1922 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1923\r
ac644614 1924 Copies one Null-terminated ASCII string to another Null-terminated ASCII\r
1925 string and returns the new ASCII string.\r
1926\r
1927 This function copies the contents of the ASCII string Source to the ASCII\r
1928 string Destination, and returns Destination. If Source and Destination\r
1929 overlap, then the results are undefined.\r
1930\r
1931 If Destination is NULL, then ASSERT().\r
1932 If Source is NULL, then ASSERT().\r
1933 If Source and Destination overlap, then ASSERT().\r
1934 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
1935 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1936 then ASSERT().\r
1937\r
af2dc6a7 1938 @param Destination The pointer to a Null-terminated ASCII string.\r
1939 @param Source The pointer to a Null-terminated ASCII string.\r
ac644614 1940\r
1941 @return Destination\r
1942\r
1943**/\r
1944CHAR8 *\r
1945EFIAPI\r
1946AsciiStrCpy (\r
1947 OUT CHAR8 *Destination,\r
1948 IN CONST CHAR8 *Source\r
1949 );\r
1950\r
1951\r
1952/**\r
ae591c14 1953 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1954\r
17f695ed 1955 Copies up to a specified length one Null-terminated ASCII string to another \r
1956 Null-terminated ASCII string and returns the new ASCII string.\r
ac644614 1957\r
1958 This function copies the contents of the ASCII string Source to the ASCII\r
1959 string Destination, and returns Destination. At most, Length ASCII characters\r
1960 are copied from Source to Destination. If Length is 0, then Destination is\r
1961 returned unmodified. If Length is greater that the number of ASCII characters\r
1962 in Source, then Destination is padded with Null ASCII characters. If Source\r
1963 and Destination overlap, then the results are undefined.\r
1964\r
1965 If Destination is NULL, then ASSERT().\r
1966 If Source is NULL, then ASSERT().\r
1967 If Source and Destination overlap, then ASSERT().\r
50c247fd 1968 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
1969 PcdMaximumAsciiStringLength, then ASSERT().\r
ac644614 1970 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
50c247fd 1971 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 1972 then ASSERT().\r
1973\r
af2dc6a7 1974 @param Destination The pointer to a Null-terminated ASCII string.\r
1975 @param Source The pointer to a Null-terminated ASCII string.\r
1976 @param Length The maximum number of ASCII characters to copy.\r
ac644614 1977\r
1978 @return Destination\r
1979\r
1980**/\r
1981CHAR8 *\r
1982EFIAPI\r
1983AsciiStrnCpy (\r
1984 OUT CHAR8 *Destination,\r
1985 IN CONST CHAR8 *Source,\r
1986 IN UINTN Length\r
1987 );\r
1bb390f1 1988#endif\r
ac644614 1989\r
1990/**\r
1991 Returns the length of a Null-terminated ASCII string.\r
1992\r
1993 This function returns the number of ASCII characters in the Null-terminated\r
1994 ASCII string specified by String.\r
1995\r
1996 If Length > 0 and Destination is NULL, then ASSERT().\r
1997 If Length > 0 and Source is NULL, then ASSERT().\r
1998 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
1999 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2000 then ASSERT().\r
2001\r
af2dc6a7 2002 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2003\r
2004 @return The length of String.\r
2005\r
2006**/\r
2007UINTN\r
2008EFIAPI\r
2009AsciiStrLen (\r
2010 IN CONST CHAR8 *String\r
2011 );\r
2012\r
2013\r
2014/**\r
2015 Returns the size of a Null-terminated ASCII string in bytes, including the\r
2016 Null terminator.\r
2017\r
2018 This function returns the size, in bytes, of the Null-terminated ASCII string\r
2019 specified by String.\r
2020\r
2021 If String is NULL, then ASSERT().\r
2022 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
2023 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2024 then ASSERT().\r
2025\r
af2dc6a7 2026 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2027\r
2028 @return The size of String.\r
2029\r
2030**/\r
2031UINTN\r
2032EFIAPI\r
2033AsciiStrSize (\r
2034 IN CONST CHAR8 *String\r
2035 );\r
2036\r
2037\r
2038/**\r
2039 Compares two Null-terminated ASCII strings, and returns the difference\r
2040 between the first mismatched ASCII characters.\r
2041\r
2042 This function compares the Null-terminated ASCII string FirstString to the\r
2043 Null-terminated ASCII string SecondString. If FirstString is identical to\r
2044 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
2045 mismatched ASCII character in SecondString subtracted from the first\r
2046 mismatched ASCII character in FirstString.\r
2047\r
2048 If FirstString is NULL, then ASSERT().\r
2049 If SecondString is NULL, then ASSERT().\r
2050 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
2051 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2052 then ASSERT().\r
2053 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
2054 than PcdMaximumAsciiStringLength ASCII characters not including the\r
2055 Null-terminator, then ASSERT().\r
2056\r
af2dc6a7 2057 @param FirstString The pointer to a Null-terminated ASCII string.\r
2058 @param SecondString The pointer to a Null-terminated ASCII string.\r
ac644614 2059\r
17f695ed 2060 @retval ==0 FirstString is identical to SecondString.\r
2061 @retval !=0 FirstString is not identical to SecondString.\r
ac644614 2062\r
2063**/\r
2064INTN\r
2065EFIAPI\r
2066AsciiStrCmp (\r
2067 IN CONST CHAR8 *FirstString,\r
2068 IN CONST CHAR8 *SecondString\r
2069 );\r
2070\r
2071\r
2072/**\r
2073 Performs a case insensitive comparison of two Null-terminated ASCII strings,\r
2074 and returns the difference between the first mismatched ASCII characters.\r
2075\r
2076 This function performs a case insensitive comparison of the Null-terminated\r
2077 ASCII string FirstString to the Null-terminated ASCII string SecondString. If\r
2078 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
2079 value returned is the first mismatched lower case ASCII character in\r
2080 SecondString subtracted from the first mismatched lower case ASCII character\r
2081 in FirstString.\r
2082\r
2083 If FirstString is NULL, then ASSERT().\r
2084 If SecondString is NULL, then ASSERT().\r
2085 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
2086 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2087 then ASSERT().\r
2088 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
2089 than PcdMaximumAsciiStringLength ASCII characters not including the\r
2090 Null-terminator, then ASSERT().\r
2091\r
af2dc6a7 2092 @param FirstString The pointer to a Null-terminated ASCII string.\r
2093 @param SecondString The pointer to a Null-terminated ASCII string.\r
ac644614 2094\r
17f695ed 2095 @retval ==0 FirstString is identical to SecondString using case insensitive\r
1106ffe1 2096 comparisons.\r
17f695ed 2097 @retval !=0 FirstString is not identical to SecondString using case\r
1106ffe1 2098 insensitive comparisons.\r
ac644614 2099\r
2100**/\r
2101INTN\r
2102EFIAPI\r
2103AsciiStriCmp (\r
2104 IN CONST CHAR8 *FirstString,\r
2105 IN CONST CHAR8 *SecondString\r
2106 );\r
2107\r
2108\r
2109/**\r
2110 Compares two Null-terminated ASCII strings with maximum lengths, and returns\r
2111 the difference between the first mismatched ASCII characters.\r
2112\r
2113 This function compares the Null-terminated ASCII string FirstString to the\r
2114 Null-terminated ASCII string SecondString. At most, Length ASCII characters\r
2115 will be compared. If Length is 0, then 0 is returned. If FirstString is\r
2116 identical to SecondString, then 0 is returned. Otherwise, the value returned\r
2117 is the first mismatched ASCII character in SecondString subtracted from the\r
2118 first mismatched ASCII character in FirstString.\r
2119\r
2120 If Length > 0 and FirstString is NULL, then ASSERT().\r
2121 If Length > 0 and SecondString is NULL, then ASSERT().\r
50c247fd 2122 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
2123 PcdMaximumAsciiStringLength, then ASSERT().\r
2124 If PcdMaximumAsciiStringLength is not zero, and FirstString contains more than\r
2125 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 2126 then ASSERT().\r
50c247fd 2127 If PcdMaximumAsciiStringLength is not zero, and SecondString contains more than\r
2128 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 2129 then ASSERT().\r
2130\r
af2dc6a7 2131 @param FirstString The pointer to a Null-terminated ASCII string.\r
2132 @param SecondString The pointer to a Null-terminated ASCII string.\r
2133 @param Length The maximum number of ASCII characters for compare.\r
ac644614 2134 \r
17f695ed 2135 @retval ==0 FirstString is identical to SecondString.\r
2136 @retval !=0 FirstString is not identical to SecondString.\r
ac644614 2137\r
2138**/\r
2139INTN\r
2140EFIAPI\r
2141AsciiStrnCmp (\r
2142 IN CONST CHAR8 *FirstString,\r
2143 IN CONST CHAR8 *SecondString,\r
2144 IN UINTN Length\r
2145 );\r
2146\r
2147\r
1bb390f1
ED
2148#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
2149\r
ac644614 2150/**\r
ae591c14 2151 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 2152\r
ac644614 2153 Concatenates one Null-terminated ASCII string to another Null-terminated\r
2154 ASCII string, and returns the concatenated ASCII string.\r
2155\r
2156 This function concatenates two Null-terminated ASCII strings. The contents of\r
2157 Null-terminated ASCII string Source are concatenated to the end of Null-\r
2158 terminated ASCII string Destination. The Null-terminated concatenated ASCII\r
2159 String is returned.\r
2160\r
2161 If Destination is NULL, then ASSERT().\r
2162 If Source is NULL, then ASSERT().\r
2163 If PcdMaximumAsciiStringLength is not zero and Destination contains more than\r
2164 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2165 then ASSERT().\r
2166 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
2167 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2168 then ASSERT().\r
2169 If PcdMaximumAsciiStringLength is not zero and concatenating Destination and\r
2170 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
2171 ASCII characters, then ASSERT().\r
2172\r
af2dc6a7 2173 @param Destination The pointer to a Null-terminated ASCII string.\r
2174 @param Source The pointer to a Null-terminated ASCII string.\r
ac644614 2175\r
2176 @return Destination\r
2177\r
2178**/\r
2179CHAR8 *\r
2180EFIAPI\r
2181AsciiStrCat (\r
2182 IN OUT CHAR8 *Destination,\r
2183 IN CONST CHAR8 *Source\r
2184 );\r
2185\r
2186\r
2187/**\r
ae591c14 2188 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 2189\r
17f695ed 2190 Concatenates up to a specified length one Null-terminated ASCII string to \r
2191 the end of another Null-terminated ASCII string, and returns the \r
2192 concatenated ASCII string.\r
ac644614 2193\r
2194 This function concatenates two Null-terminated ASCII strings. The contents\r
2195 of Null-terminated ASCII string Source are concatenated to the end of Null-\r
2196 terminated ASCII string Destination, and Destination is returned. At most,\r
2197 Length ASCII characters are concatenated from Source to the end of\r
2198 Destination, and Destination is always Null-terminated. If Length is 0, then\r
2199 Destination is returned unmodified. If Source and Destination overlap, then\r
2200 the results are undefined.\r
2201\r
2202 If Length > 0 and Destination is NULL, then ASSERT().\r
2203 If Length > 0 and Source is NULL, then ASSERT().\r
2204 If Source and Destination overlap, then ASSERT().\r
50c247fd 2205 If PcdMaximumAsciiStringLength is not zero, and Length is greater than\r
2206 PcdMaximumAsciiStringLength, then ASSERT().\r
ac644614 2207 If PcdMaximumAsciiStringLength is not zero, and Destination contains more than\r
50c247fd 2208 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 2209 then ASSERT().\r
2210 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
50c247fd 2211 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 2212 then ASSERT().\r
2213 If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and\r
2214 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
50c247fd 2215 ASCII characters, not including the Null-terminator, then ASSERT().\r
ac644614 2216\r
af2dc6a7 2217 @param Destination The pointer to a Null-terminated ASCII string.\r
2218 @param Source The pointer to a Null-terminated ASCII string.\r
2219 @param Length The maximum number of ASCII characters to concatenate from\r
ac644614 2220 Source.\r
2221\r
2222 @return Destination\r
2223\r
2224**/\r
2225CHAR8 *\r
2226EFIAPI\r
2227AsciiStrnCat (\r
2228 IN OUT CHAR8 *Destination,\r
2229 IN CONST CHAR8 *Source,\r
2230 IN UINTN Length\r
2231 );\r
1bb390f1 2232#endif\r
ac644614 2233\r
2234/**\r
9aa049d9 2235 Returns the first occurrence of a Null-terminated ASCII sub-string\r
ac644614 2236 in a Null-terminated ASCII string.\r
2237\r
2238 This function scans the contents of the ASCII string specified by String\r
2239 and returns the first occurrence of SearchString. If SearchString is not\r
2240 found in String, then NULL is returned. If the length of SearchString is zero,\r
2241 then String is returned.\r
2242\r
2243 If String is NULL, then ASSERT().\r
2244 If SearchString is NULL, then ASSERT().\r
2245\r
2246 If PcdMaximumAsciiStringLength is not zero, and SearchString or\r
2247 String contains more than PcdMaximumAsciiStringLength Unicode characters\r
2248 not including the Null-terminator, then ASSERT().\r
2249\r
af2dc6a7 2250 @param String The pointer to a Null-terminated ASCII string.\r
2251 @param SearchString The pointer to a Null-terminated ASCII string to search for.\r
ac644614 2252\r
2253 @retval NULL If the SearchString does not appear in String.\r
17f695ed 2254 @retval others If there is a match return the first occurrence of SearchingString.\r
9aa049d9 2255 If the length of SearchString is zero,return String.\r
ac644614 2256\r
2257**/\r
2258CHAR8 *\r
2259EFIAPI\r
2260AsciiStrStr (\r
17f695ed 2261 IN CONST CHAR8 *String,\r
2262 IN CONST CHAR8 *SearchString\r
ac644614 2263 );\r
2264\r
2265\r
2266/**\r
2267 Convert a Null-terminated ASCII decimal string to a value of type\r
2268 UINTN.\r
2269\r
2270 This function returns a value of type UINTN by interpreting the contents\r
2271 of the ASCII string String as a decimal number. The format of the input\r
2272 ASCII string String is:\r
2273\r
2274 [spaces] [decimal digits].\r
2275\r
2276 The valid decimal digit character is in the range [0-9]. The function will\r
2277 ignore the pad space, which includes spaces or tab characters, before the digits.\r
2278 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
2279 function stops at the first character that is a not a valid decimal character or\r
2280 Null-terminator, whichever on comes first.\r
2281\r
2282 If String has only pad spaces, then 0 is returned.\r
2283 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
2284 If the number represented by String overflows according to the range defined by\r
ea2e0921 2285 UINTN, then MAX_UINTN is returned.\r
ac644614 2286 If String is NULL, then ASSERT().\r
2287 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
2288 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2289 then ASSERT().\r
2290\r
af2dc6a7 2291 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2292\r
af2dc6a7 2293 @retval The value translated from String.\r
ac644614 2294\r
2295**/\r
2296UINTN\r
2297EFIAPI\r
2298AsciiStrDecimalToUintn (\r
2299 IN CONST CHAR8 *String\r
2300 );\r
2301\r
2302\r
2303/**\r
2304 Convert a Null-terminated ASCII decimal string to a value of type\r
2305 UINT64.\r
2306\r
2307 This function returns a value of type UINT64 by interpreting the contents\r
2308 of the ASCII string String as a decimal number. The format of the input\r
2309 ASCII string String is:\r
2310\r
2311 [spaces] [decimal digits].\r
2312\r
2313 The valid decimal digit character is in the range [0-9]. The function will\r
2314 ignore the pad space, which includes spaces or tab characters, before the digits.\r
2315 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
2316 function stops at the first character that is a not a valid decimal character or\r
2317 Null-terminator, whichever on comes first.\r
2318\r
2319 If String has only pad spaces, then 0 is returned.\r
2320 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
2321 If the number represented by String overflows according to the range defined by\r
ea2e0921 2322 UINT64, then MAX_UINT64 is returned.\r
ac644614 2323 If String is NULL, then ASSERT().\r
2324 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
2325 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2326 then ASSERT().\r
2327\r
af2dc6a7 2328 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2329\r
38bbd3d9 2330 @retval Value translated from String.\r
ac644614 2331\r
2332**/\r
2333UINT64\r
2334EFIAPI\r
2335AsciiStrDecimalToUint64 (\r
17f695ed 2336 IN CONST CHAR8 *String\r
ac644614 2337 );\r
2338\r
2339\r
2340/**\r
2341 Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.\r
2342\r
2343 This function returns a value of type UINTN by interpreting the contents of\r
2344 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
2345 string String is:\r
2346\r
2347 [spaces][zeros][x][hexadecimal digits].\r
2348\r
2349 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
2350 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
2351 appears in the input string, it must be prefixed with at least one 0. The function\r
2352 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
2353 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
2354 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
2355 digit. Then, the function stops at the first character that is a not a valid\r
2356 hexadecimal character or Null-terminator, whichever on comes first.\r
2357\r
2358 If String has only pad spaces, then 0 is returned.\r
2359 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
2360 0 is returned.\r
2361\r
2362 If the number represented by String overflows according to the range defined by UINTN,\r
ea2e0921 2363 then MAX_UINTN is returned.\r
ac644614 2364 If String is NULL, then ASSERT().\r
2365 If PcdMaximumAsciiStringLength is not zero,\r
2366 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
2367 the Null-terminator, then ASSERT().\r
2368\r
af2dc6a7 2369 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2370\r
38bbd3d9 2371 @retval Value translated from String.\r
ac644614 2372\r
2373**/\r
2374UINTN\r
2375EFIAPI\r
2376AsciiStrHexToUintn (\r
17f695ed 2377 IN CONST CHAR8 *String\r
ac644614 2378 );\r
2379\r
2380\r
2381/**\r
2382 Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.\r
2383\r
2384 This function returns a value of type UINT64 by interpreting the contents of\r
2385 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
2386 string String is:\r
2387\r
2388 [spaces][zeros][x][hexadecimal digits].\r
2389\r
2390 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
2391 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
2392 appears in the input string, it must be prefixed with at least one 0. The function\r
2393 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
2394 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
2395 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
2396 digit. Then, the function stops at the first character that is a not a valid\r
2397 hexadecimal character or Null-terminator, whichever on comes first.\r
2398\r
2399 If String has only pad spaces, then 0 is returned.\r
2400 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
2401 0 is returned.\r
2402\r
2403 If the number represented by String overflows according to the range defined by UINT64,\r
ea2e0921 2404 then MAX_UINT64 is returned.\r
ac644614 2405 If String is NULL, then ASSERT().\r
2406 If PcdMaximumAsciiStringLength is not zero,\r
2407 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
2408 the Null-terminator, then ASSERT().\r
2409\r
af2dc6a7 2410 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2411\r
38bbd3d9 2412 @retval Value translated from String.\r
ac644614 2413\r
2414**/\r
2415UINT64\r
2416EFIAPI\r
2417AsciiStrHexToUint64 (\r
17f695ed 2418 IN CONST CHAR8 *String\r
ac644614 2419 );\r
2420\r
415aa2f1 2421#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
ac644614 2422\r
2423/**\r
415aa2f1
SZ
2424 [ATTENTION] This function is deprecated for security reason.\r
2425\r
ac644614 2426 Convert one Null-terminated ASCII string to a Null-terminated\r
2427 Unicode string and returns the Unicode string.\r
2428\r
2429 This function converts the contents of the ASCII string Source to the Unicode\r
2430 string Destination, and returns Destination. The function terminates the\r
2431 Unicode string Destination by appending a Null-terminator character at the end.\r
2432 The caller is responsible to make sure Destination points to a buffer with size\r
2433 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
2434\r
2435 If Destination is NULL, then ASSERT().\r
2436 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
2437 If Source is NULL, then ASSERT().\r
2438 If Source and Destination overlap, then ASSERT().\r
2439 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
2440 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2441 then ASSERT().\r
2442 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
2443 PcdMaximumUnicodeStringLength ASCII characters not including the\r
2444 Null-terminator, then ASSERT().\r
2445\r
af2dc6a7 2446 @param Source The pointer to a Null-terminated ASCII string.\r
2447 @param Destination The pointer to a Null-terminated Unicode string.\r
ac644614 2448\r
9aa049d9 2449 @return Destination.\r
ac644614 2450\r
2451**/\r
2452CHAR16 *\r
2453EFIAPI\r
2454AsciiStrToUnicodeStr (\r
17f695ed 2455 IN CONST CHAR8 *Source,\r
2456 OUT CHAR16 *Destination\r
ac644614 2457 );\r
2458\r
415aa2f1
SZ
2459#endif\r
2460\r
3ab41b7a
JY
2461/**\r
2462 Convert one Null-terminated ASCII string to a Null-terminated\r
2463 Unicode string.\r
2464\r
2465 This function is similar to StrCpyS.\r
2466\r
2467 This function converts the contents of the ASCII string Source to the Unicode\r
2468 string Destination. The function terminates the Unicode string Destination by\r
2469 appending a Null-terminator character at the end.\r
2470\r
2471 The caller is responsible to make sure Destination points to a buffer with size\r
2472 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
2473\r
2474 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
2475 If an error would be returned, then the function will also ASSERT().\r
2476\r
2477 If an error is returned, then the Destination is unmodified.\r
2478\r
2479 @param Source The pointer to a Null-terminated ASCII string.\r
2480 @param Destination The pointer to a Null-terminated Unicode string.\r
2481 @param DestMax The maximum number of Destination Unicode\r
2482 char, including terminating null char.\r
2483\r
2484 @retval RETURN_SUCCESS String is converted.\r
2485 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
2486 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
2487 If Source is NULL.\r
2488 If PcdMaximumUnicodeStringLength is not zero,\r
2489 and DestMax is greater than\r
2490 PcdMaximumUnicodeStringLength.\r
2491 If PcdMaximumAsciiStringLength is not zero,\r
2492 and DestMax is greater than\r
2493 PcdMaximumAsciiStringLength.\r
2494 If DestMax is 0.\r
2495 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
2496\r
2497**/\r
2498RETURN_STATUS\r
2499EFIAPI\r
2500AsciiStrToUnicodeStrS (\r
2501 IN CONST CHAR8 *Source,\r
2502 OUT CHAR16 *Destination,\r
2503 IN UINTN DestMax\r
2504 );\r
ac644614 2505\r
02263214
HW
2506/**\r
2507 Convert not more than Length successive characters from a Null-terminated\r
2508 Ascii string to a Null-terminated Unicode string. If no null char is copied\r
2509 from Source, then Destination[Length] is always set to null.\r
2510\r
2511 This function converts not more than Length successive characters from the\r
2512 Ascii string Source to the Unicode string Destination. The function\r
2513 terminates the Unicode string Destination by appending a Null-terminator\r
2514 character at the end.\r
2515\r
2516 The caller is responsible to make sure Destination points to a buffer with\r
2517 size not smaller than\r
2518 ((MIN(AsciiStrLen(Source), Length) + 1) * sizeof (CHAR8)) in bytes.\r
2519\r
2520 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
2521 If an error would be returned, then the function will also ASSERT().\r
2522\r
2523 If an error is returned, then Destination and DestinationLength are\r
2524 unmodified.\r
2525\r
2526 @param Source The pointer to a Null-terminated Ascii string.\r
2527 @param Length The maximum number of Ascii characters to convert.\r
2528 @param Destination The pointer to a Null-terminated Unicode string.\r
2529 @param DestMax The maximum number of Destination Unicode char,\r
2530 including terminating null char.\r
2531 @param DestinationLength The number of Ascii characters converted.\r
2532\r
2533 @retval RETURN_SUCCESS String is converted.\r
2534 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
2535 If Source is NULL.\r
2536 If DestinationLength is NULL.\r
2537 If PcdMaximumUnicodeStringLength is not\r
2538 zero, and Length or DestMax is greater than\r
2539 PcdMaximumUnicodeStringLength.\r
2540 If PcdMaximumAsciiStringLength is not zero,\r
2541 and Length or DestMax is greater than\r
2542 PcdMaximumAsciiStringLength.\r
2543 If DestMax is 0.\r
2544 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than\r
2545 MIN(AsciiStrLen(Source), Length).\r
2546 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
2547\r
2548**/\r
2549RETURN_STATUS\r
2550EFIAPI\r
2551AsciiStrnToUnicodeStrS (\r
2552 IN CONST CHAR8 *Source,\r
2553 IN UINTN Length,\r
2554 OUT CHAR16 *Destination,\r
2555 IN UINTN DestMax,\r
2556 OUT UINTN *DestinationLength\r
2557 );\r
2558\r
ac644614 2559/**\r
2560 Converts an 8-bit value to an 8-bit BCD value.\r
2561\r
2562 Converts the 8-bit value specified by Value to BCD. The BCD value is\r
2563 returned.\r
2564\r
2565 If Value >= 100, then ASSERT().\r
2566\r
2567 @param Value The 8-bit value to convert to BCD. Range 0..99.\r
2568\r
9aa049d9 2569 @return The BCD value.\r
ac644614 2570\r
2571**/\r
2572UINT8\r
2573EFIAPI\r
2574DecimalToBcd8 (\r
2575 IN UINT8 Value\r
2576 );\r
2577\r
2578\r
2579/**\r
2580 Converts an 8-bit BCD value to an 8-bit value.\r
2581\r
2582 Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit\r
2583 value is returned.\r
2584\r
2585 If Value >= 0xA0, then ASSERT().\r
2586 If (Value & 0x0F) >= 0x0A, then ASSERT().\r
2587\r
2588 @param Value The 8-bit BCD value to convert to an 8-bit value.\r
2589\r
2590 @return The 8-bit value is returned.\r
2591\r
2592**/\r
2593UINT8\r
2594EFIAPI\r
2595BcdToDecimal8 (\r
2596 IN UINT8 Value\r
2597 );\r
2598\r
ae591c14
DM
2599//\r
2600// File Path Manipulation Functions\r
2601//\r
2602\r
2603/**\r
6a623094 2604 Removes the last directory or file entry in a path.\r
ae591c14
DM
2605\r
2606 @param[in, out] Path The pointer to the path to modify.\r
2607\r
2608 @retval FALSE Nothing was found to remove.\r
2609 @retval TRUE A directory or file was removed.\r
2610**/\r
2611BOOLEAN\r
2612EFIAPI\r
2613PathRemoveLastItem(\r
2614 IN OUT CHAR16 *Path\r
2615 );\r
2616\r
2617/**\r
2618 Function to clean up paths.\r
2619 - Single periods in the path are removed.\r
2620 - Double periods in the path are removed along with a single parent directory.\r
2621 - Forward slashes L'/' are converted to backward slashes L'\'.\r
2622\r
2623 This will be done inline and the existing buffer may be larger than required\r
2624 upon completion.\r
2625\r
2626 @param[in] Path The pointer to the string containing the path.\r
2627\r
00b7cc0f 2628 @return Returns Path, otherwise returns NULL to indicate that an error has occurred.\r
ae591c14
DM
2629**/\r
2630CHAR16*\r
2631EFIAPI\r
2632PathCleanUpDirectories(\r
2633 IN CHAR16 *Path\r
909ac47b 2634 );\r
ac644614 2635\r
2636//\r
2637// Linked List Functions and Macros\r
2638//\r
2639\r
2640/**\r
2641 Initializes the head node of a doubly linked list that is declared as a\r
2642 global variable in a module.\r
2643\r
2644 Initializes the forward and backward links of a new linked list. After\r
2645 initializing a linked list with this macro, the other linked list functions\r
2646 may be used to add and remove nodes from the linked list. This macro results\r
2647 in smaller executables by initializing the linked list in the data section,\r
2648 instead if calling the InitializeListHead() function to perform the\r
2649 equivalent operation.\r
2650\r
77f863ee 2651 @param ListHead The head note of a list to initialize.\r
ac644614 2652\r
2653**/\r
17f695ed 2654#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&(ListHead), &(ListHead)}\r
ac644614 2655\r
2656\r
2657/**\r
2658 Initializes the head node of a doubly linked list, and returns the pointer to\r
2659 the head node of the doubly linked list.\r
2660\r
2661 Initializes the forward and backward links of a new linked list. After\r
2662 initializing a linked list with this function, the other linked list\r
2663 functions may be used to add and remove nodes from the linked list. It is up\r
2664 to the caller of this function to allocate the memory for ListHead.\r
2665\r
2666 If ListHead is NULL, then ASSERT().\r
2667\r
2668 @param ListHead A pointer to the head node of a new doubly linked list.\r
2669\r
2670 @return ListHead\r
2671\r
2672**/\r
2673LIST_ENTRY *\r
2674EFIAPI\r
2675InitializeListHead (\r
aa0583c7 2676 IN OUT LIST_ENTRY *ListHead\r
ac644614 2677 );\r
2678\r
2679\r
2680/**\r
2681 Adds a node to the beginning of a doubly linked list, and returns the pointer\r
2682 to the head node of the doubly linked list.\r
2683\r
2684 Adds the node Entry at the beginning of the doubly linked list denoted by\r
2685 ListHead, and returns ListHead.\r
2686\r
2687 If ListHead is NULL, then ASSERT().\r
2688 If Entry is NULL, then ASSERT().\r
17f695ed 2689 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
2690 InitializeListHead(), then ASSERT().\r
a71865b1 2691 If PcdMaximumLinkedListLength is not zero, and prior to insertion the number\r
ac644614 2692 of nodes in ListHead, including the ListHead node, is greater than or\r
2693 equal to PcdMaximumLinkedListLength, then ASSERT().\r
2694\r
2695 @param ListHead A pointer to the head node of a doubly linked list.\r
2696 @param Entry A pointer to a node that is to be inserted at the beginning\r
2697 of a doubly linked list.\r
2698\r
2699 @return ListHead\r
2700\r
2701**/\r
2702LIST_ENTRY *\r
2703EFIAPI\r
2704InsertHeadList (\r
aa0583c7 2705 IN OUT LIST_ENTRY *ListHead,\r
2706 IN OUT LIST_ENTRY *Entry\r
ac644614 2707 );\r
2708\r
2709\r
2710/**\r
2711 Adds a node to the end of a doubly linked list, and returns the pointer to\r
2712 the head node of the doubly linked list.\r
2713\r
2714 Adds the node Entry to the end of the doubly linked list denoted by ListHead,\r
2715 and returns ListHead.\r
2716\r
2717 If ListHead is NULL, then ASSERT().\r
2718 If Entry is NULL, then ASSERT().\r
17f695ed 2719 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
2720 InitializeListHead(), then ASSERT().\r
a71865b1 2721 If PcdMaximumLinkedListLength is not zero, and prior to insertion the number\r
ac644614 2722 of nodes in ListHead, including the ListHead node, is greater than or\r
2723 equal to PcdMaximumLinkedListLength, then ASSERT().\r
2724\r
2725 @param ListHead A pointer to the head node of a doubly linked list.\r
2726 @param Entry A pointer to a node that is to be added at the end of the\r
2727 doubly linked list.\r
2728\r
2729 @return ListHead\r
2730\r
2731**/\r
2732LIST_ENTRY *\r
2733EFIAPI\r
2734InsertTailList (\r
aa0583c7 2735 IN OUT LIST_ENTRY *ListHead,\r
2736 IN OUT LIST_ENTRY *Entry\r
ac644614 2737 );\r
2738\r
2739\r
2740/**\r
2741 Retrieves the first node of a doubly linked list.\r
2742\r
17f695ed 2743 Returns the first node of a doubly linked list. List must have been \r
2744 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
2745 If List is empty, then List is returned.\r
ac644614 2746\r
2747 If List is NULL, then ASSERT().\r
17f695ed 2748 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
2749 InitializeListHead(), then ASSERT().\r
a71865b1 2750 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
ac644614 2751 in List, including the List node, is greater than or equal to\r
2752 PcdMaximumLinkedListLength, then ASSERT().\r
2753\r
2754 @param List A pointer to the head node of a doubly linked list.\r
2755\r
2756 @return The first node of a doubly linked list.\r
e01a125f 2757 @retval List The list is empty.\r
ac644614 2758\r
2759**/\r
2760LIST_ENTRY *\r
2761EFIAPI\r
2762GetFirstNode (\r
2763 IN CONST LIST_ENTRY *List\r
2764 );\r
2765\r
2766\r
2767/**\r
2768 Retrieves the next node of a doubly linked list.\r
2769\r
17f695ed 2770 Returns the node of a doubly linked list that follows Node. \r
2771 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
2772 or InitializeListHead(). If List is empty, then List is returned.\r
ac644614 2773\r
2774 If List is NULL, then ASSERT().\r
2775 If Node is NULL, then ASSERT().\r
17f695ed 2776 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
2777 InitializeListHead(), then ASSERT().\r
a71865b1
LG
2778 If PcdMaximumLinkedListLength is not zero, and List contains more than\r
2779 PcdMaximumLinkedListLength nodes, then ASSERT().\r
1081f624 2780 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
ac644614 2781\r
2782 @param List A pointer to the head node of a doubly linked list.\r
2783 @param Node A pointer to a node in the doubly linked list.\r
2784\r
af2dc6a7 2785 @return The pointer to the next node if one exists. Otherwise List is returned.\r
ac644614 2786\r
2787**/\r
2788LIST_ENTRY *\r
2789EFIAPI\r
2790GetNextNode (\r
2791 IN CONST LIST_ENTRY *List,\r
2792 IN CONST LIST_ENTRY *Node\r
2793 );\r
2794\r
cbca8de5 2795 \r
2796/**\r
2797 Retrieves the previous node of a doubly linked list.\r
2798 \r
2799 Returns the node of a doubly linked list that precedes Node. \r
2800 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
2801 or InitializeListHead(). If List is empty, then List is returned.\r
2802 \r
2803 If List is NULL, then ASSERT().\r
2804 If Node is NULL, then ASSERT().\r
2805 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
2806 InitializeListHead(), then ASSERT().\r
a71865b1
LG
2807 If PcdMaximumLinkedListLength is not zero, and List contains more than\r
2808 PcdMaximumLinkedListLength nodes, then ASSERT().\r
cbca8de5 2809 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
2810 \r
2811 @param List A pointer to the head node of a doubly linked list.\r
2812 @param Node A pointer to a node in the doubly linked list.\r
2813 \r
af2dc6a7 2814 @return The pointer to the previous node if one exists. Otherwise List is returned.\r
cbca8de5 2815 \r
2816**/\r
2817LIST_ENTRY *\r
2818EFIAPI\r
2819GetPreviousNode (\r
2820 IN CONST LIST_ENTRY *List,\r
2821 IN CONST LIST_ENTRY *Node\r
2822 );\r
ac644614 2823\r
cbca8de5 2824 \r
ac644614 2825/**\r
2826 Checks to see if a doubly linked list is empty or not.\r
2827\r
2828 Checks to see if the doubly linked list is empty. If the linked list contains\r
2829 zero nodes, this function returns TRUE. Otherwise, it returns FALSE.\r
2830\r
2831 If ListHead is NULL, then ASSERT().\r
17f695ed 2832 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
2833 InitializeListHead(), then ASSERT().\r
a71865b1 2834 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
ac644614 2835 in List, including the List node, is greater than or equal to\r
2836 PcdMaximumLinkedListLength, then ASSERT().\r
2837\r
2838 @param ListHead A pointer to the head node of a doubly linked list.\r
2839\r
2840 @retval TRUE The linked list is empty.\r
2841 @retval FALSE The linked list is not empty.\r
2842\r
2843**/\r
2844BOOLEAN\r
2845EFIAPI\r
2846IsListEmpty (\r
2847 IN CONST LIST_ENTRY *ListHead\r
2848 );\r
2849\r
2850\r
2851/**\r
aa0583c7 2852 Determines if a node in a doubly linked list is the head node of a the same\r
2853 doubly linked list. This function is typically used to terminate a loop that\r
2854 traverses all the nodes in a doubly linked list starting with the head node.\r
ac644614 2855\r
aa0583c7 2856 Returns TRUE if Node is equal to List. Returns FALSE if Node is one of the\r
2857 nodes in the doubly linked list specified by List. List must have been\r
17f695ed 2858 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
ac644614 2859\r
2860 If List is NULL, then ASSERT().\r
2861 If Node is NULL, then ASSERT().\r
17f695ed 2862 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), \r
2863 then ASSERT().\r
a71865b1 2864 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
ac644614 2865 in List, including the List node, is greater than or equal to\r
2866 PcdMaximumLinkedListLength, then ASSERT().\r
1081f624 2867 If PcdVerifyNodeInList is TRUE and Node is not a node in List the and Node is not equal \r
2868 to List, then ASSERT().\r
ac644614 2869\r
2870 @param List A pointer to the head node of a doubly linked list.\r
2871 @param Node A pointer to a node in the doubly linked list.\r
2872\r
1955808d
LG
2873 @retval TRUE Node is the head of the doubly-linked list pointed by List.\r
2874 @retval FALSE Node is not the head of the doubly-linked list pointed by List.\r
ac644614 2875\r
2876**/\r
2877BOOLEAN\r
2878EFIAPI\r
2879IsNull (\r
2880 IN CONST LIST_ENTRY *List,\r
2881 IN CONST LIST_ENTRY *Node\r
2882 );\r
2883\r
2884\r
2885/**\r
2886 Determines if a node the last node in a doubly linked list.\r
2887\r
2888 Returns TRUE if Node is the last node in the doubly linked list specified by\r
2889 List. Otherwise, FALSE is returned. List must have been initialized with\r
17f695ed 2890 INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
ac644614 2891\r
2892 If List is NULL, then ASSERT().\r
2893 If Node is NULL, then ASSERT().\r
17f695ed 2894 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
2895 InitializeListHead(), then ASSERT().\r
a71865b1 2896 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
ac644614 2897 in List, including the List node, is greater than or equal to\r
2898 PcdMaximumLinkedListLength, then ASSERT().\r
1081f624 2899 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
ac644614 2900\r
2901 @param List A pointer to the head node of a doubly linked list.\r
2902 @param Node A pointer to a node in the doubly linked list.\r
2903\r
2904 @retval TRUE Node is the last node in the linked list.\r
2905 @retval FALSE Node is not the last node in the linked list.\r
2906\r
2907**/\r
2908BOOLEAN\r
2909EFIAPI\r
2910IsNodeAtEnd (\r
2911 IN CONST LIST_ENTRY *List,\r
2912 IN CONST LIST_ENTRY *Node\r
2913 );\r
2914\r
2915\r
2916/**\r
2917 Swaps the location of two nodes in a doubly linked list, and returns the\r
2918 first node after the swap.\r
2919\r
2920 If FirstEntry is identical to SecondEntry, then SecondEntry is returned.\r
2921 Otherwise, the location of the FirstEntry node is swapped with the location\r
2922 of the SecondEntry node in a doubly linked list. SecondEntry must be in the\r
2923 same double linked list as FirstEntry and that double linked list must have\r
17f695ed 2924 been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). \r
2925 SecondEntry is returned after the nodes are swapped.\r
ac644614 2926\r
2927 If FirstEntry is NULL, then ASSERT().\r
2928 If SecondEntry is NULL, then ASSERT().\r
1081f624 2929 If PcdVerifyNodeInList is TRUE and SecondEntry and FirstEntry are not in the \r
2930 same linked list, then ASSERT().\r
ac644614 2931 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
2932 linked list containing the FirstEntry and SecondEntry nodes, including\r
2933 the FirstEntry and SecondEntry nodes, is greater than or equal to\r
2934 PcdMaximumLinkedListLength, then ASSERT().\r
2935\r
2936 @param FirstEntry A pointer to a node in a linked list.\r
2937 @param SecondEntry A pointer to another node in the same linked list.\r
38bbd3d9 2938 \r
9aa049d9 2939 @return SecondEntry.\r
ac644614 2940\r
2941**/\r
2942LIST_ENTRY *\r
2943EFIAPI\r
2944SwapListEntries (\r
aa0583c7 2945 IN OUT LIST_ENTRY *FirstEntry,\r
2946 IN OUT LIST_ENTRY *SecondEntry\r
ac644614 2947 );\r
2948\r
2949\r
2950/**\r
2951 Removes a node from a doubly linked list, and returns the node that follows\r
2952 the removed node.\r
2953\r
2954 Removes the node Entry from a doubly linked list. It is up to the caller of\r
2955 this function to release the memory used by this node if that is required. On\r
2956 exit, the node following Entry in the doubly linked list is returned. If\r
2957 Entry is the only node in the linked list, then the head node of the linked\r
2958 list is returned.\r
2959\r
2960 If Entry is NULL, then ASSERT().\r
2961 If Entry is the head node of an empty list, then ASSERT().\r
2962 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
2963 linked list containing Entry, including the Entry node, is greater than\r
2964 or equal to PcdMaximumLinkedListLength, then ASSERT().\r
2965\r
9aa049d9 2966 @param Entry A pointer to a node in a linked list.\r
ac644614 2967\r
9aa049d9 2968 @return Entry.\r
ac644614 2969\r
2970**/\r
2971LIST_ENTRY *\r
2972EFIAPI\r
2973RemoveEntryList (\r
2974 IN CONST LIST_ENTRY *Entry\r
2975 );\r
2976\r
2977//\r
2978// Math Services\r
2979//\r
2980\r
2981/**\r
2982 Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled\r
2983 with zeros. The shifted value is returned.\r
2984\r
2985 This function shifts the 64-bit value Operand to the left by Count bits. The\r
2986 low Count bits are set to zero. The shifted value is returned.\r
2987\r
2988 If Count is greater than 63, then ASSERT().\r
2989\r
2990 @param Operand The 64-bit operand to shift left.\r
2991 @param Count The number of bits to shift left.\r
2992\r
9aa049d9 2993 @return Operand << Count.\r
ac644614 2994\r
2995**/\r
2996UINT64\r
2997EFIAPI\r
2998LShiftU64 (\r
2999 IN UINT64 Operand,\r
3000 IN UINTN Count\r
3001 );\r
3002\r
3003\r
3004/**\r
3005 Shifts a 64-bit integer right between 0 and 63 bits. This high bits are\r
3006 filled with zeros. The shifted value is returned.\r
3007\r
3008 This function shifts the 64-bit value Operand to the right by Count bits. The\r
3009 high Count bits are set to zero. The shifted value is returned.\r
3010\r
3011 If Count is greater than 63, then ASSERT().\r
3012\r
3013 @param Operand The 64-bit operand to shift right.\r
3014 @param Count The number of bits to shift right.\r
3015\r
3016 @return Operand >> Count\r
3017\r
3018**/\r
3019UINT64\r
3020EFIAPI\r
3021RShiftU64 (\r
3022 IN UINT64 Operand,\r
3023 IN UINTN Count\r
3024 );\r
3025\r
3026\r
3027/**\r
3028 Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled\r
3029 with original integer's bit 63. The shifted value is returned.\r
3030\r
3031 This function shifts the 64-bit value Operand to the right by Count bits. The\r
3032 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
3033\r
3034 If Count is greater than 63, then ASSERT().\r
3035\r
3036 @param Operand The 64-bit operand to shift right.\r
3037 @param Count The number of bits to shift right.\r
3038\r
3039 @return Operand >> Count\r
3040\r
3041**/\r
3042UINT64\r
3043EFIAPI\r
3044ARShiftU64 (\r
3045 IN UINT64 Operand,\r
3046 IN UINTN Count\r
3047 );\r
3048\r
3049\r
3050/**\r
3051 Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits\r
3052 with the high bits that were rotated.\r
3053\r
3054 This function rotates the 32-bit value Operand to the left by Count bits. The\r
3055 low Count bits are fill with the high Count bits of Operand. The rotated\r
3056 value is returned.\r
3057\r
3058 If Count is greater than 31, then ASSERT().\r
3059\r
3060 @param Operand The 32-bit operand to rotate left.\r
3061 @param Count The number of bits to rotate left.\r
3062\r
17f695ed 3063 @return Operand << Count\r
ac644614 3064\r
3065**/\r
3066UINT32\r
3067EFIAPI\r
3068LRotU32 (\r
3069 IN UINT32 Operand,\r
3070 IN UINTN Count\r
3071 );\r
3072\r
3073\r
3074/**\r
3075 Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits\r
3076 with the low bits that were rotated.\r
3077\r
3078 This function rotates the 32-bit value Operand to the right by Count bits.\r
3079 The high Count bits are fill with the low Count bits of Operand. The rotated\r
3080 value is returned.\r
3081\r
3082 If Count is greater than 31, then ASSERT().\r
3083\r
3084 @param Operand The 32-bit operand to rotate right.\r
3085 @param Count The number of bits to rotate right.\r
3086\r
2fe241a2 3087 @return Operand >> Count\r
ac644614 3088\r
3089**/\r
3090UINT32\r
3091EFIAPI\r
3092RRotU32 (\r
3093 IN UINT32 Operand,\r
3094 IN UINTN Count\r
3095 );\r
3096\r
3097\r
3098/**\r
3099 Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits\r
3100 with the high bits that were rotated.\r
3101\r
3102 This function rotates the 64-bit value Operand to the left by Count bits. The\r
3103 low Count bits are fill with the high Count bits of Operand. The rotated\r
3104 value is returned.\r
3105\r
3106 If Count is greater than 63, then ASSERT().\r
3107\r
3108 @param Operand The 64-bit operand to rotate left.\r
3109 @param Count The number of bits to rotate left.\r
3110\r
17f695ed 3111 @return Operand << Count\r
ac644614 3112\r
3113**/\r
3114UINT64\r
3115EFIAPI\r
3116LRotU64 (\r
3117 IN UINT64 Operand,\r
3118 IN UINTN Count\r
3119 );\r
3120\r
3121\r
3122/**\r
3123 Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits\r
3124 with the high low bits that were rotated.\r
3125\r
3126 This function rotates the 64-bit value Operand to the right by Count bits.\r
3127 The high Count bits are fill with the low Count bits of Operand. The rotated\r
3128 value is returned.\r
3129\r
3130 If Count is greater than 63, then ASSERT().\r
3131\r
3132 @param Operand The 64-bit operand to rotate right.\r
3133 @param Count The number of bits to rotate right.\r
3134\r
17f695ed 3135 @return Operand >> Count\r
ac644614 3136\r
3137**/\r
3138UINT64\r
3139EFIAPI\r
3140RRotU64 (\r
3141 IN UINT64 Operand,\r
3142 IN UINTN Count\r
3143 );\r
3144\r
3145\r
3146/**\r
3147 Returns the bit position of the lowest bit set in a 32-bit value.\r
3148\r
3149 This function computes the bit position of the lowest bit set in the 32-bit\r
3150 value specified by Operand. If Operand is zero, then -1 is returned.\r
3151 Otherwise, a value between 0 and 31 is returned.\r
3152\r
3153 @param Operand The 32-bit operand to evaluate.\r
3154\r
9aa049d9 3155 @retval 0..31 The lowest bit set in Operand was found.\r
17f695ed 3156 @retval -1 Operand is zero.\r
ac644614 3157\r
3158**/\r
3159INTN\r
3160EFIAPI\r
3161LowBitSet32 (\r
3162 IN UINT32 Operand\r
3163 );\r
3164\r
3165\r
3166/**\r
3167 Returns the bit position of the lowest bit set in a 64-bit value.\r
3168\r
3169 This function computes the bit position of the lowest bit set in the 64-bit\r
3170 value specified by Operand. If Operand is zero, then -1 is returned.\r
3171 Otherwise, a value between 0 and 63 is returned.\r
3172\r
3173 @param Operand The 64-bit operand to evaluate.\r
3174\r
9aa049d9 3175 @retval 0..63 The lowest bit set in Operand was found.\r
17f695ed 3176 @retval -1 Operand is zero.\r
3177\r
ac644614 3178\r
3179**/\r
3180INTN\r
3181EFIAPI\r
3182LowBitSet64 (\r
3183 IN UINT64 Operand\r
3184 );\r
3185\r
3186\r
3187/**\r
3188 Returns the bit position of the highest bit set in a 32-bit value. Equivalent\r
3189 to log2(x).\r
3190\r
3191 This function computes the bit position of the highest bit set in the 32-bit\r
3192 value specified by Operand. If Operand is zero, then -1 is returned.\r
3193 Otherwise, a value between 0 and 31 is returned.\r
3194\r
3195 @param Operand The 32-bit operand to evaluate.\r
3196\r
9aa049d9 3197 @retval 0..31 Position of the highest bit set in Operand if found.\r
17f695ed 3198 @retval -1 Operand is zero.\r
ac644614 3199\r
3200**/\r
3201INTN\r
3202EFIAPI\r
3203HighBitSet32 (\r
3204 IN UINT32 Operand\r
3205 );\r
3206\r
3207\r
3208/**\r
3209 Returns the bit position of the highest bit set in a 64-bit value. Equivalent\r
3210 to log2(x).\r
3211\r
3212 This function computes the bit position of the highest bit set in the 64-bit\r
3213 value specified by Operand. If Operand is zero, then -1 is returned.\r
3214 Otherwise, a value between 0 and 63 is returned.\r
3215\r
3216 @param Operand The 64-bit operand to evaluate.\r
3217\r
9aa049d9 3218 @retval 0..63 Position of the highest bit set in Operand if found.\r
17f695ed 3219 @retval -1 Operand is zero.\r
ac644614 3220\r
3221**/\r
3222INTN\r
3223EFIAPI\r
3224HighBitSet64 (\r
3225 IN UINT64 Operand\r
3226 );\r
3227\r
3228\r
3229/**\r
3230 Returns the value of the highest bit set in a 32-bit value. Equivalent to\r
17f695ed 3231 1 << log2(x).\r
ac644614 3232\r
3233 This function computes the value of the highest bit set in the 32-bit value\r
3234 specified by Operand. If Operand is zero, then zero is returned.\r
3235\r
3236 @param Operand The 32-bit operand to evaluate.\r
3237\r
3238 @return 1 << HighBitSet32(Operand)\r
3239 @retval 0 Operand is zero.\r
3240\r
3241**/\r
3242UINT32\r
3243EFIAPI\r
3244GetPowerOfTwo32 (\r
3245 IN UINT32 Operand\r
3246 );\r
3247\r
3248\r
3249/**\r
3250 Returns the value of the highest bit set in a 64-bit value. Equivalent to\r
17f695ed 3251 1 << log2(x).\r
ac644614 3252\r
3253 This function computes the value of the highest bit set in the 64-bit value\r
3254 specified by Operand. If Operand is zero, then zero is returned.\r
3255\r
3256 @param Operand The 64-bit operand to evaluate.\r
3257\r
3258 @return 1 << HighBitSet64(Operand)\r
3259 @retval 0 Operand is zero.\r
3260\r
3261**/\r
3262UINT64\r
3263EFIAPI\r
3264GetPowerOfTwo64 (\r
3265 IN UINT64 Operand\r
3266 );\r
3267\r
3268\r
3269/**\r
af2dc6a7 3270 Switches the endianness of a 16-bit integer.\r
ac644614 3271\r
3272 This function swaps the bytes in a 16-bit unsigned value to switch the value\r
3273 from little endian to big endian or vice versa. The byte swapped value is\r
3274 returned.\r
3275\r
2a53dabf 3276 @param Value A 16-bit unsigned value.\r
ac644614 3277\r
efb23117 3278 @return The byte swapped Value.\r
ac644614 3279\r
3280**/\r
3281UINT16\r
3282EFIAPI\r
3283SwapBytes16 (\r
3284 IN UINT16 Value\r
3285 );\r
3286\r
3287\r
3288/**\r
af2dc6a7 3289 Switches the endianness of a 32-bit integer.\r
ac644614 3290\r
3291 This function swaps the bytes in a 32-bit unsigned value to switch the value\r
3292 from little endian to big endian or vice versa. The byte swapped value is\r
3293 returned.\r
3294\r
2a53dabf 3295 @param Value A 32-bit unsigned value.\r
ac644614 3296\r
efb23117 3297 @return The byte swapped Value.\r
ac644614 3298\r
3299**/\r
3300UINT32\r
3301EFIAPI\r
3302SwapBytes32 (\r
3303 IN UINT32 Value\r
3304 );\r
3305\r
3306\r
3307/**\r
af2dc6a7 3308 Switches the endianness of a 64-bit integer.\r
ac644614 3309\r
3310 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
3311 from little endian to big endian or vice versa. The byte swapped value is\r
3312 returned.\r
3313\r
2a53dabf 3314 @param Value A 64-bit unsigned value.\r
ac644614 3315\r
efb23117 3316 @return The byte swapped Value.\r
ac644614 3317\r
3318**/\r
3319UINT64\r
3320EFIAPI\r
3321SwapBytes64 (\r
3322 IN UINT64 Value\r
3323 );\r
3324\r
3325\r
3326/**\r
3327 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and\r
3328 generates a 64-bit unsigned result.\r
3329\r
3330 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit\r
3331 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
3332 bit unsigned result is returned.\r
3333\r
ac644614 3334 @param Multiplicand A 64-bit unsigned value.\r
3335 @param Multiplier A 32-bit unsigned value.\r
3336\r
3337 @return Multiplicand * Multiplier\r
3338\r
3339**/\r
3340UINT64\r
3341EFIAPI\r
3342MultU64x32 (\r
3343 IN UINT64 Multiplicand,\r
3344 IN UINT32 Multiplier\r
3345 );\r
3346\r
3347\r
3348/**\r
3349 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and\r
3350 generates a 64-bit unsigned result.\r
3351\r
3352 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
3353 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
3354 bit unsigned result is returned.\r
3355\r
ac644614 3356 @param Multiplicand A 64-bit unsigned value.\r
3357 @param Multiplier A 64-bit unsigned value.\r
3358\r
af2dc6a7 3359 @return Multiplicand * Multiplier.\r
ac644614 3360\r
3361**/\r
3362UINT64\r
3363EFIAPI\r
3364MultU64x64 (\r
3365 IN UINT64 Multiplicand,\r
3366 IN UINT64 Multiplier\r
3367 );\r
3368\r
3369\r
3370/**\r
3371 Multiples a 64-bit signed integer by a 64-bit signed integer and generates a\r
3372 64-bit signed result.\r
3373\r
3374 This function multiples the 64-bit signed value Multiplicand by the 64-bit\r
3375 signed value Multiplier and generates a 64-bit signed result. This 64-bit\r
3376 signed result is returned.\r
3377\r
ac644614 3378 @param Multiplicand A 64-bit signed value.\r
3379 @param Multiplier A 64-bit signed value.\r
3380\r
3381 @return Multiplicand * Multiplier\r
3382\r
3383**/\r
3384INT64\r
3385EFIAPI\r
3386MultS64x64 (\r
3387 IN INT64 Multiplicand,\r
3388 IN INT64 Multiplier\r
3389 );\r
3390\r
3391\r
3392/**\r
3393 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
3394 a 64-bit unsigned result.\r
3395\r
3396 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
3397 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
3398 function returns the 64-bit unsigned quotient.\r
3399\r
3400 If Divisor is 0, then ASSERT().\r
3401\r
3402 @param Dividend A 64-bit unsigned value.\r
3403 @param Divisor A 32-bit unsigned value.\r
3404\r
af2dc6a7 3405 @return Dividend / Divisor.\r
ac644614 3406\r
3407**/\r
3408UINT64\r
3409EFIAPI\r
3410DivU64x32 (\r
3411 IN UINT64 Dividend,\r
3412 IN UINT32 Divisor\r
3413 );\r
3414\r
3415\r
3416/**\r
3417 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
3418 a 32-bit unsigned remainder.\r
3419\r
3420 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
3421 unsigned value Divisor and generates a 32-bit remainder. This function\r
3422 returns the 32-bit unsigned remainder.\r
3423\r
3424 If Divisor is 0, then ASSERT().\r
3425\r
3426 @param Dividend A 64-bit unsigned value.\r
3427 @param Divisor A 32-bit unsigned value.\r
3428\r
af2dc6a7 3429 @return Dividend % Divisor.\r
ac644614 3430\r
3431**/\r
3432UINT32\r
3433EFIAPI\r
3434ModU64x32 (\r
3435 IN UINT64 Dividend,\r
3436 IN UINT32 Divisor\r
3437 );\r
3438\r
3439\r
3440/**\r
3441 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
3442 a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
3443\r
3444 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
3445 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
3446 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
3447 This function returns the 64-bit unsigned quotient.\r
3448\r
3449 If Divisor is 0, then ASSERT().\r
3450\r
3451 @param Dividend A 64-bit unsigned value.\r
3452 @param Divisor A 32-bit unsigned value.\r
3453 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
3454 optional and may be NULL.\r
3455\r
af2dc6a7 3456 @return Dividend / Divisor.\r
ac644614 3457\r
3458**/\r
3459UINT64\r
3460EFIAPI\r
3461DivU64x32Remainder (\r
3462 IN UINT64 Dividend,\r
3463 IN UINT32 Divisor,\r
3464 OUT UINT32 *Remainder OPTIONAL\r
3465 );\r
3466\r
3467\r
3468/**\r
3469 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates\r
3470 a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
3471\r
3472 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
3473 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
3474 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
3475 This function returns the 64-bit unsigned quotient.\r
3476\r
3477 If Divisor is 0, then ASSERT().\r
3478\r
3479 @param Dividend A 64-bit unsigned value.\r
3480 @param Divisor A 64-bit unsigned value.\r
3481 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
3482 optional and may be NULL.\r
3483\r
af2dc6a7 3484 @return Dividend / Divisor.\r
ac644614 3485\r
3486**/\r
3487UINT64\r
3488EFIAPI\r
3489DivU64x64Remainder (\r
3490 IN UINT64 Dividend,\r
3491 IN UINT64 Divisor,\r
3492 OUT UINT64 *Remainder OPTIONAL\r
3493 );\r
3494\r
3495\r
3496/**\r
3497 Divides a 64-bit signed integer by a 64-bit signed integer and generates a\r
3498 64-bit signed result and a optional 64-bit signed remainder.\r
3499\r
3500 This function divides the 64-bit signed value Dividend by the 64-bit signed\r
3501 value Divisor and generates a 64-bit signed quotient. If Remainder is not\r
3502 NULL, then the 64-bit signed remainder is returned in Remainder. This\r
3503 function returns the 64-bit signed quotient.\r
3504\r
9aa049d9 3505 It is the caller's responsibility to not call this function with a Divisor of 0.\r
17f695ed 3506 If Divisor is 0, then the quotient and remainder should be assumed to be \r
3507 the largest negative integer.\r
3508\r
ac644614 3509 If Divisor is 0, then ASSERT().\r
3510\r
3511 @param Dividend A 64-bit signed value.\r
3512 @param Divisor A 64-bit signed value.\r
3513 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
3514 optional and may be NULL.\r
3515\r
af2dc6a7 3516 @return Dividend / Divisor.\r
ac644614 3517\r
3518**/\r
3519INT64\r
3520EFIAPI\r
3521DivS64x64Remainder (\r
3522 IN INT64 Dividend,\r
3523 IN INT64 Divisor,\r
3524 OUT INT64 *Remainder OPTIONAL\r
3525 );\r
3526\r
3527\r
3528/**\r
3529 Reads a 16-bit value from memory that may be unaligned.\r
3530\r
3531 This function returns the 16-bit value pointed to by Buffer. The function\r
3532 guarantees that the read operation does not produce an alignment fault.\r
3533\r
3534 If the Buffer is NULL, then ASSERT().\r
3535\r
af2dc6a7 3536 @param Buffer The pointer to a 16-bit value that may be unaligned.\r
ac644614 3537\r
5385a579 3538 @return The 16-bit value read from Buffer.\r
ac644614 3539\r
3540**/\r
3541UINT16\r
3542EFIAPI\r
3543ReadUnaligned16 (\r
5385a579 3544 IN CONST UINT16 *Buffer\r
ac644614 3545 );\r
3546\r
3547\r
3548/**\r
3549 Writes a 16-bit value to memory that may be unaligned.\r
3550\r
3551 This function writes the 16-bit value specified by Value to Buffer. Value is\r
3552 returned. The function guarantees that the write operation does not produce\r
3553 an alignment fault.\r
3554\r
3555 If the Buffer is NULL, then ASSERT().\r
3556\r
af2dc6a7 3557 @param Buffer The pointer to a 16-bit value that may be unaligned.\r
ac644614 3558 @param Value 16-bit value to write to Buffer.\r
3559\r
5385a579 3560 @return The 16-bit value to write to Buffer.\r
ac644614 3561\r
3562**/\r
3563UINT16\r
3564EFIAPI\r
3565WriteUnaligned16 (\r
5385a579 3566 OUT UINT16 *Buffer,\r
3567 IN UINT16 Value\r
ac644614 3568 );\r
3569\r
3570\r
3571/**\r
3572 Reads a 24-bit value from memory that may be unaligned.\r
3573\r
3574 This function returns the 24-bit value pointed to by Buffer. The function\r
3575 guarantees that the read operation does not produce an alignment fault.\r
3576\r
3577 If the Buffer is NULL, then ASSERT().\r
3578\r
af2dc6a7 3579 @param Buffer The pointer to a 24-bit value that may be unaligned.\r
ac644614 3580\r
5385a579 3581 @return The 24-bit value read from Buffer.\r
ac644614 3582\r
3583**/\r
3584UINT32\r
3585EFIAPI\r
3586ReadUnaligned24 (\r
5385a579 3587 IN CONST UINT32 *Buffer\r
ac644614 3588 );\r
3589\r
3590\r
3591/**\r
3592 Writes a 24-bit value to memory that may be unaligned.\r
3593\r
3594 This function writes the 24-bit value specified by Value to Buffer. Value is\r
3595 returned. The function guarantees that the write operation does not produce\r
3596 an alignment fault.\r
3597\r
3598 If the Buffer is NULL, then ASSERT().\r
3599\r
af2dc6a7 3600 @param Buffer The pointer to a 24-bit value that may be unaligned.\r
ac644614 3601 @param Value 24-bit value to write to Buffer.\r
3602\r
5385a579 3603 @return The 24-bit value to write to Buffer.\r
ac644614 3604\r
3605**/\r
3606UINT32\r
3607EFIAPI\r
3608WriteUnaligned24 (\r
5385a579 3609 OUT UINT32 *Buffer,\r
3610 IN UINT32 Value\r
ac644614 3611 );\r
3612\r
3613\r
3614/**\r
3615 Reads a 32-bit value from memory that may be unaligned.\r
3616\r
3617 This function returns the 32-bit value pointed to by Buffer. The function\r
3618 guarantees that the read operation does not produce an alignment fault.\r
3619\r
3620 If the Buffer is NULL, then ASSERT().\r
3621\r
af2dc6a7 3622 @param Buffer The pointer to a 32-bit value that may be unaligned.\r
ac644614 3623\r
5385a579 3624 @return The 32-bit value read from Buffer.\r
ac644614 3625\r
3626**/\r
3627UINT32\r
3628EFIAPI\r
3629ReadUnaligned32 (\r
5385a579 3630 IN CONST UINT32 *Buffer\r
ac644614 3631 );\r
3632\r
3633\r
3634/**\r
3635 Writes a 32-bit value to memory that may be unaligned.\r
3636\r
3637 This function writes the 32-bit value specified by Value to Buffer. Value is\r
3638 returned. The function guarantees that the write operation does not produce\r
3639 an alignment fault.\r
3640\r
3641 If the Buffer is NULL, then ASSERT().\r
3642\r
af2dc6a7 3643 @param Buffer The pointer to a 32-bit value that may be unaligned.\r
ac644614 3644 @param Value 32-bit value to write to Buffer.\r
3645\r
5385a579 3646 @return The 32-bit value to write to Buffer.\r
ac644614 3647\r
3648**/\r
3649UINT32\r
3650EFIAPI\r
3651WriteUnaligned32 (\r
5385a579 3652 OUT UINT32 *Buffer,\r
3653 IN UINT32 Value\r
ac644614 3654 );\r
3655\r
3656\r
3657/**\r
3658 Reads a 64-bit value from memory that may be unaligned.\r
3659\r
3660 This function returns the 64-bit value pointed to by Buffer. The function\r
3661 guarantees that the read operation does not produce an alignment fault.\r
3662\r
3663 If the Buffer is NULL, then ASSERT().\r
3664\r
af2dc6a7 3665 @param Buffer The pointer to a 64-bit value that may be unaligned.\r
ac644614 3666\r
5385a579 3667 @return The 64-bit value read from Buffer.\r
ac644614 3668\r
3669**/\r
3670UINT64\r
3671EFIAPI\r
3672ReadUnaligned64 (\r
5385a579 3673 IN CONST UINT64 *Buffer\r
ac644614 3674 );\r
3675\r
3676\r
3677/**\r
3678 Writes a 64-bit value to memory that may be unaligned.\r
3679\r
3680 This function writes the 64-bit value specified by Value to Buffer. Value is\r
3681 returned. The function guarantees that the write operation does not produce\r
3682 an alignment fault.\r
3683\r
3684 If the Buffer is NULL, then ASSERT().\r
3685\r
af2dc6a7 3686 @param Buffer The pointer to a 64-bit value that may be unaligned.\r
ac644614 3687 @param Value 64-bit value to write to Buffer.\r
3688\r
5385a579 3689 @return The 64-bit value to write to Buffer.\r
ac644614 3690\r
3691**/\r
3692UINT64\r
3693EFIAPI\r
3694WriteUnaligned64 (\r
5385a579 3695 OUT UINT64 *Buffer,\r
3696 IN UINT64 Value\r
ac644614 3697 );\r
3698\r
3699\r
3700//\r
3701// Bit Field Functions\r
3702//\r
3703\r
3704/**\r
3705 Returns a bit field from an 8-bit value.\r
3706\r
3707 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
3708\r
3709 If 8-bit operations are not supported, then ASSERT().\r
3710 If StartBit is greater than 7, then ASSERT().\r
3711 If EndBit is greater than 7, then ASSERT().\r
3712 If EndBit is less than StartBit, then ASSERT().\r
3713\r
3714 @param Operand Operand on which to perform the bitfield operation.\r
3715 @param StartBit The ordinal of the least significant bit in the bit field.\r
3716 Range 0..7.\r
3717 @param EndBit The ordinal of the most significant bit in the bit field.\r
3718 Range 0..7.\r
3719\r
3720 @return The bit field read.\r
3721\r
3722**/\r
3723UINT8\r
3724EFIAPI\r
3725BitFieldRead8 (\r
3726 IN UINT8 Operand,\r
3727 IN UINTN StartBit,\r
3728 IN UINTN EndBit\r
3729 );\r
3730\r
3731\r
3732/**\r
3733 Writes a bit field to an 8-bit value, and returns the result.\r
3734\r
3735 Writes Value to the bit field specified by the StartBit and the EndBit in\r
3736 Operand. All other bits in Operand are preserved. The new 8-bit value is\r
3737 returned.\r
3738\r
3739 If 8-bit operations are not supported, then ASSERT().\r
3740 If StartBit is greater than 7, then ASSERT().\r
3741 If EndBit is greater than 7, then ASSERT().\r
3742 If EndBit is less than StartBit, then ASSERT().\r
94952554 3743 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 3744\r
3745 @param Operand Operand on which to perform the bitfield operation.\r
3746 @param StartBit The ordinal of the least significant bit in the bit field.\r
3747 Range 0..7.\r
3748 @param EndBit The ordinal of the most significant bit in the bit field.\r
3749 Range 0..7.\r
3750 @param Value New value of the bit field.\r
3751\r
3752 @return The new 8-bit value.\r
3753\r
3754**/\r
3755UINT8\r
3756EFIAPI\r
3757BitFieldWrite8 (\r
3758 IN UINT8 Operand,\r
3759 IN UINTN StartBit,\r
3760 IN UINTN EndBit,\r
3761 IN UINT8 Value\r
3762 );\r
3763\r
3764\r
3765/**\r
3766 Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the\r
3767 result.\r
3768\r
62991af2 3769 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 3770 and EndBit in Operand and the value specified by OrData. All other bits in\r
3771 Operand are preserved. The new 8-bit value is returned.\r
3772\r
3773 If 8-bit operations are not supported, then ASSERT().\r
3774 If StartBit is greater than 7, then ASSERT().\r
3775 If EndBit is greater than 7, then ASSERT().\r
3776 If EndBit is less than StartBit, then ASSERT().\r
94952554 3777 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 3778\r
3779 @param Operand Operand on which to perform the bitfield operation.\r
3780 @param StartBit The ordinal of the least significant bit in the bit field.\r
3781 Range 0..7.\r
3782 @param EndBit The ordinal of the most significant bit in the bit field.\r
3783 Range 0..7.\r
3784 @param OrData The value to OR with the read value from the value\r
3785\r
3786 @return The new 8-bit value.\r
3787\r
3788**/\r
3789UINT8\r
3790EFIAPI\r
3791BitFieldOr8 (\r
3792 IN UINT8 Operand,\r
3793 IN UINTN StartBit,\r
3794 IN UINTN EndBit,\r
3795 IN UINT8 OrData\r
3796 );\r
3797\r
3798\r
3799/**\r
3800 Reads a bit field from an 8-bit value, performs a bitwise AND, and returns\r
3801 the result.\r
3802\r
3803 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
3804 in Operand and the value specified by AndData. All other bits in Operand are\r
3805 preserved. The new 8-bit value is returned.\r
3806\r
3807 If 8-bit operations are not supported, then ASSERT().\r
3808 If StartBit is greater than 7, then ASSERT().\r
3809 If EndBit is greater than 7, then ASSERT().\r
3810 If EndBit is less than StartBit, then ASSERT().\r
94952554 3811 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 3812\r
3813 @param Operand Operand on which to perform the bitfield operation.\r
3814 @param StartBit The ordinal of the least significant bit in the bit field.\r
3815 Range 0..7.\r
3816 @param EndBit The ordinal of the most significant bit in the bit field.\r
3817 Range 0..7.\r
3818 @param AndData The value to AND with the read value from the value.\r
3819\r
3820 @return The new 8-bit value.\r
3821\r
3822**/\r
3823UINT8\r
3824EFIAPI\r
3825BitFieldAnd8 (\r
3826 IN UINT8 Operand,\r
3827 IN UINTN StartBit,\r
3828 IN UINTN EndBit,\r
3829 IN UINT8 AndData\r
3830 );\r
3831\r
3832\r
3833/**\r
3834 Reads a bit field from an 8-bit value, performs a bitwise AND followed by a\r
3835 bitwise OR, and returns the result.\r
3836\r
3837 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 3838 in Operand and the value specified by AndData, followed by a bitwise \r
3839 OR with value specified by OrData. All other bits in Operand are\r
ac644614 3840 preserved. The new 8-bit value is returned.\r
3841\r
3842 If 8-bit operations are not supported, then ASSERT().\r
3843 If StartBit is greater than 7, then ASSERT().\r
3844 If EndBit is greater than 7, then ASSERT().\r
3845 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
3846 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3847 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 3848\r
3849 @param Operand Operand on which to perform the bitfield operation.\r
3850 @param StartBit The ordinal of the least significant bit in the bit field.\r
3851 Range 0..7.\r
3852 @param EndBit The ordinal of the most significant bit in the bit field.\r
3853 Range 0..7.\r
3854 @param AndData The value to AND with the read value from the value.\r
3855 @param OrData The value to OR with the result of the AND operation.\r
3856\r
3857 @return The new 8-bit value.\r
3858\r
3859**/\r
3860UINT8\r
3861EFIAPI\r
3862BitFieldAndThenOr8 (\r
3863 IN UINT8 Operand,\r
3864 IN UINTN StartBit,\r
3865 IN UINTN EndBit,\r
3866 IN UINT8 AndData,\r
3867 IN UINT8 OrData\r
3868 );\r
3869\r
3870\r
3871/**\r
3872 Returns a bit field from a 16-bit value.\r
3873\r
3874 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
3875\r
3876 If 16-bit operations are not supported, then ASSERT().\r
3877 If StartBit is greater than 15, then ASSERT().\r
3878 If EndBit is greater than 15, then ASSERT().\r
3879 If EndBit is less than StartBit, then ASSERT().\r
3880\r
3881 @param Operand Operand on which to perform the bitfield operation.\r
3882 @param StartBit The ordinal of the least significant bit in the bit field.\r
3883 Range 0..15.\r
3884 @param EndBit The ordinal of the most significant bit in the bit field.\r
3885 Range 0..15.\r
3886\r
3887 @return The bit field read.\r
3888\r
3889**/\r
3890UINT16\r
3891EFIAPI\r
3892BitFieldRead16 (\r
3893 IN UINT16 Operand,\r
3894 IN UINTN StartBit,\r
3895 IN UINTN EndBit\r
3896 );\r
3897\r
3898\r
3899/**\r
3900 Writes a bit field to a 16-bit value, and returns the result.\r
3901\r
3902 Writes Value to the bit field specified by the StartBit and the EndBit in\r
3903 Operand. All other bits in Operand are preserved. The new 16-bit value is\r
3904 returned.\r
3905\r
3906 If 16-bit operations are not supported, then ASSERT().\r
3907 If StartBit is greater than 15, then ASSERT().\r
3908 If EndBit is greater than 15, then ASSERT().\r
3909 If EndBit is less than StartBit, then ASSERT().\r
94952554 3910 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 3911\r
3912 @param Operand Operand on which to perform the bitfield operation.\r
3913 @param StartBit The ordinal of the least significant bit in the bit field.\r
3914 Range 0..15.\r
3915 @param EndBit The ordinal of the most significant bit in the bit field.\r
3916 Range 0..15.\r
3917 @param Value New value of the bit field.\r
3918\r
3919 @return The new 16-bit value.\r
3920\r
3921**/\r
3922UINT16\r
3923EFIAPI\r
3924BitFieldWrite16 (\r
3925 IN UINT16 Operand,\r
3926 IN UINTN StartBit,\r
3927 IN UINTN EndBit,\r
3928 IN UINT16 Value\r
3929 );\r
3930\r
3931\r
3932/**\r
3933 Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the\r
3934 result.\r
3935\r
62991af2 3936 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 3937 and EndBit in Operand and the value specified by OrData. All other bits in\r
3938 Operand are preserved. The new 16-bit value is returned.\r
3939\r
3940 If 16-bit operations are not supported, then ASSERT().\r
3941 If StartBit is greater than 15, then ASSERT().\r
3942 If EndBit is greater than 15, then ASSERT().\r
3943 If EndBit is less than StartBit, then ASSERT().\r
94952554 3944 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 3945\r
3946 @param Operand Operand on which to perform the bitfield operation.\r
3947 @param StartBit The ordinal of the least significant bit in the bit field.\r
3948 Range 0..15.\r
3949 @param EndBit The ordinal of the most significant bit in the bit field.\r
3950 Range 0..15.\r
3951 @param OrData The value to OR with the read value from the value\r
3952\r
3953 @return The new 16-bit value.\r
3954\r
3955**/\r
3956UINT16\r
3957EFIAPI\r
3958BitFieldOr16 (\r
3959 IN UINT16 Operand,\r
3960 IN UINTN StartBit,\r
3961 IN UINTN EndBit,\r
3962 IN UINT16 OrData\r
3963 );\r
3964\r
3965\r
3966/**\r
3967 Reads a bit field from a 16-bit value, performs a bitwise AND, and returns\r
3968 the result.\r
3969\r
3970 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
3971 in Operand and the value specified by AndData. All other bits in Operand are\r
3972 preserved. The new 16-bit value is returned.\r
3973\r
3974 If 16-bit operations are not supported, then ASSERT().\r
3975 If StartBit is greater than 15, then ASSERT().\r
3976 If EndBit is greater than 15, then ASSERT().\r
3977 If EndBit is less than StartBit, then ASSERT().\r
94952554 3978 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 3979\r
3980 @param Operand Operand on which to perform the bitfield operation.\r
3981 @param StartBit The ordinal of the least significant bit in the bit field.\r
3982 Range 0..15.\r
3983 @param EndBit The ordinal of the most significant bit in the bit field.\r
3984 Range 0..15.\r
3985 @param AndData The value to AND with the read value from the value\r
3986\r
3987 @return The new 16-bit value.\r
3988\r
3989**/\r
3990UINT16\r
3991EFIAPI\r
3992BitFieldAnd16 (\r
3993 IN UINT16 Operand,\r
3994 IN UINTN StartBit,\r
3995 IN UINTN EndBit,\r
3996 IN UINT16 AndData\r
3997 );\r
3998\r
3999\r
4000/**\r
4001 Reads a bit field from a 16-bit value, performs a bitwise AND followed by a\r
4002 bitwise OR, and returns the result.\r
4003\r
4004 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 4005 in Operand and the value specified by AndData, followed by a bitwise \r
4006 OR with value specified by OrData. All other bits in Operand are\r
ac644614 4007 preserved. The new 16-bit value is returned.\r
4008\r
4009 If 16-bit operations are not supported, then ASSERT().\r
4010 If StartBit is greater than 15, then ASSERT().\r
4011 If EndBit is greater than 15, then ASSERT().\r
4012 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
4013 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4014 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4015\r
4016 @param Operand Operand on which to perform the bitfield operation.\r
4017 @param StartBit The ordinal of the least significant bit in the bit field.\r
4018 Range 0..15.\r
4019 @param EndBit The ordinal of the most significant bit in the bit field.\r
4020 Range 0..15.\r
4021 @param AndData The value to AND with the read value from the value.\r
4022 @param OrData The value to OR with the result of the AND operation.\r
4023\r
4024 @return The new 16-bit value.\r
4025\r
4026**/\r
4027UINT16\r
4028EFIAPI\r
4029BitFieldAndThenOr16 (\r
4030 IN UINT16 Operand,\r
4031 IN UINTN StartBit,\r
4032 IN UINTN EndBit,\r
4033 IN UINT16 AndData,\r
4034 IN UINT16 OrData\r
4035 );\r
4036\r
4037\r
4038/**\r
4039 Returns a bit field from a 32-bit value.\r
4040\r
4041 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
4042\r
4043 If 32-bit operations are not supported, then ASSERT().\r
4044 If StartBit is greater than 31, then ASSERT().\r
4045 If EndBit is greater than 31, then ASSERT().\r
4046 If EndBit is less than StartBit, then ASSERT().\r
4047\r
4048 @param Operand Operand on which to perform the bitfield operation.\r
4049 @param StartBit The ordinal of the least significant bit in the bit field.\r
4050 Range 0..31.\r
4051 @param EndBit The ordinal of the most significant bit in the bit field.\r
4052 Range 0..31.\r
4053\r
4054 @return The bit field read.\r
4055\r
4056**/\r
4057UINT32\r
4058EFIAPI\r
4059BitFieldRead32 (\r
4060 IN UINT32 Operand,\r
4061 IN UINTN StartBit,\r
4062 IN UINTN EndBit\r
4063 );\r
4064\r
4065\r
4066/**\r
4067 Writes a bit field to a 32-bit value, and returns the result.\r
4068\r
4069 Writes Value to the bit field specified by the StartBit and the EndBit in\r
4070 Operand. All other bits in Operand are preserved. The new 32-bit value is\r
4071 returned.\r
4072\r
4073 If 32-bit operations are not supported, then ASSERT().\r
4074 If StartBit is greater than 31, then ASSERT().\r
4075 If EndBit is greater than 31, then ASSERT().\r
4076 If EndBit is less than StartBit, then ASSERT().\r
94952554 4077 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4078\r
4079 @param Operand Operand on which to perform the bitfield operation.\r
4080 @param StartBit The ordinal of the least significant bit in the bit field.\r
4081 Range 0..31.\r
4082 @param EndBit The ordinal of the most significant bit in the bit field.\r
4083 Range 0..31.\r
4084 @param Value New value of the bit field.\r
4085\r
4086 @return The new 32-bit value.\r
4087\r
4088**/\r
4089UINT32\r
4090EFIAPI\r
4091BitFieldWrite32 (\r
4092 IN UINT32 Operand,\r
4093 IN UINTN StartBit,\r
4094 IN UINTN EndBit,\r
4095 IN UINT32 Value\r
4096 );\r
4097\r
4098\r
4099/**\r
4100 Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the\r
4101 result.\r
4102\r
62991af2 4103 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 4104 and EndBit in Operand and the value specified by OrData. All other bits in\r
4105 Operand are preserved. The new 32-bit value is returned.\r
4106\r
4107 If 32-bit operations are not supported, then ASSERT().\r
4108 If StartBit is greater than 31, then ASSERT().\r
4109 If EndBit is greater than 31, then ASSERT().\r
4110 If EndBit is less than StartBit, then ASSERT().\r
94952554 4111 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4112\r
4113 @param Operand Operand on which to perform the bitfield operation.\r
4114 @param StartBit The ordinal of the least significant bit in the bit field.\r
4115 Range 0..31.\r
4116 @param EndBit The ordinal of the most significant bit in the bit field.\r
4117 Range 0..31.\r
af2dc6a7 4118 @param OrData The value to OR with the read value from the value.\r
ac644614 4119\r
4120 @return The new 32-bit value.\r
4121\r
4122**/\r
4123UINT32\r
4124EFIAPI\r
4125BitFieldOr32 (\r
4126 IN UINT32 Operand,\r
4127 IN UINTN StartBit,\r
4128 IN UINTN EndBit,\r
4129 IN UINT32 OrData\r
4130 );\r
4131\r
4132\r
4133/**\r
4134 Reads a bit field from a 32-bit value, performs a bitwise AND, and returns\r
4135 the result.\r
4136\r
4137 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4138 in Operand and the value specified by AndData. All other bits in Operand are\r
4139 preserved. The new 32-bit value is returned.\r
4140\r
4141 If 32-bit operations are not supported, then ASSERT().\r
4142 If StartBit is greater than 31, then ASSERT().\r
4143 If EndBit is greater than 31, then ASSERT().\r
4144 If EndBit is less than StartBit, then ASSERT().\r
94952554 4145 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4146\r
4147 @param Operand Operand on which to perform the bitfield operation.\r
4148 @param StartBit The ordinal of the least significant bit in the bit field.\r
4149 Range 0..31.\r
4150 @param EndBit The ordinal of the most significant bit in the bit field.\r
4151 Range 0..31.\r
4152 @param AndData The value to AND with the read value from the value\r
4153\r
4154 @return The new 32-bit value.\r
4155\r
4156**/\r
4157UINT32\r
4158EFIAPI\r
4159BitFieldAnd32 (\r
4160 IN UINT32 Operand,\r
4161 IN UINTN StartBit,\r
4162 IN UINTN EndBit,\r
4163 IN UINT32 AndData\r
4164 );\r
4165\r
4166\r
4167/**\r
4168 Reads a bit field from a 32-bit value, performs a bitwise AND followed by a\r
4169 bitwise OR, and returns the result.\r
4170\r
4171 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 4172 in Operand and the value specified by AndData, followed by a bitwise \r
4173 OR with value specified by OrData. All other bits in Operand are\r
ac644614 4174 preserved. The new 32-bit value is returned.\r
4175\r
4176 If 32-bit operations are not supported, then ASSERT().\r
4177 If StartBit is greater than 31, then ASSERT().\r
4178 If EndBit is greater than 31, then ASSERT().\r
4179 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
4180 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4181 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4182\r
4183 @param Operand Operand on which to perform the bitfield operation.\r
4184 @param StartBit The ordinal of the least significant bit in the bit field.\r
4185 Range 0..31.\r
4186 @param EndBit The ordinal of the most significant bit in the bit field.\r
4187 Range 0..31.\r
4188 @param AndData The value to AND with the read value from the value.\r
4189 @param OrData The value to OR with the result of the AND operation.\r
4190\r
4191 @return The new 32-bit value.\r
4192\r
4193**/\r
4194UINT32\r
4195EFIAPI\r
4196BitFieldAndThenOr32 (\r
4197 IN UINT32 Operand,\r
4198 IN UINTN StartBit,\r
4199 IN UINTN EndBit,\r
4200 IN UINT32 AndData,\r
4201 IN UINT32 OrData\r
4202 );\r
4203\r
4204\r
4205/**\r
4206 Returns a bit field from a 64-bit value.\r
4207\r
4208 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
4209\r
4210 If 64-bit operations are not supported, then ASSERT().\r
4211 If StartBit is greater than 63, then ASSERT().\r
4212 If EndBit is greater than 63, then ASSERT().\r
4213 If EndBit is less than StartBit, then ASSERT().\r
4214\r
4215 @param Operand Operand on which to perform the bitfield operation.\r
4216 @param StartBit The ordinal of the least significant bit in the bit field.\r
4217 Range 0..63.\r
4218 @param EndBit The ordinal of the most significant bit in the bit field.\r
4219 Range 0..63.\r
4220\r
4221 @return The bit field read.\r
4222\r
4223**/\r
4224UINT64\r
4225EFIAPI\r
4226BitFieldRead64 (\r
4227 IN UINT64 Operand,\r
4228 IN UINTN StartBit,\r
4229 IN UINTN EndBit\r
4230 );\r
4231\r
4232\r
4233/**\r
4234 Writes a bit field to a 64-bit value, and returns the result.\r
4235\r
4236 Writes Value to the bit field specified by the StartBit and the EndBit in\r
4237 Operand. All other bits in Operand are preserved. The new 64-bit value is\r
4238 returned.\r
4239\r
4240 If 64-bit operations are not supported, then ASSERT().\r
4241 If StartBit is greater than 63, then ASSERT().\r
4242 If EndBit is greater than 63, then ASSERT().\r
4243 If EndBit is less than StartBit, then ASSERT().\r
94952554 4244 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4245\r
4246 @param Operand Operand on which to perform the bitfield operation.\r
4247 @param StartBit The ordinal of the least significant bit in the bit field.\r
4248 Range 0..63.\r
4249 @param EndBit The ordinal of the most significant bit in the bit field.\r
4250 Range 0..63.\r
4251 @param Value New value of the bit field.\r
4252\r
4253 @return The new 64-bit value.\r
4254\r
4255**/\r
4256UINT64\r
4257EFIAPI\r
4258BitFieldWrite64 (\r
4259 IN UINT64 Operand,\r
4260 IN UINTN StartBit,\r
4261 IN UINTN EndBit,\r
4262 IN UINT64 Value\r
4263 );\r
4264\r
4265\r
4266/**\r
4267 Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the\r
4268 result.\r
4269\r
62991af2 4270 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 4271 and EndBit in Operand and the value specified by OrData. All other bits in\r
4272 Operand are preserved. The new 64-bit value is returned.\r
4273\r
4274 If 64-bit operations are not supported, then ASSERT().\r
4275 If StartBit is greater than 63, then ASSERT().\r
4276 If EndBit is greater than 63, then ASSERT().\r
4277 If EndBit is less than StartBit, then ASSERT().\r
94952554 4278 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4279\r
4280 @param Operand Operand on which to perform the bitfield operation.\r
4281 @param StartBit The ordinal of the least significant bit in the bit field.\r
4282 Range 0..63.\r
4283 @param EndBit The ordinal of the most significant bit in the bit field.\r
4284 Range 0..63.\r
4285 @param OrData The value to OR with the read value from the value\r
4286\r
4287 @return The new 64-bit value.\r
4288\r
4289**/\r
4290UINT64\r
4291EFIAPI\r
4292BitFieldOr64 (\r
4293 IN UINT64 Operand,\r
4294 IN UINTN StartBit,\r
4295 IN UINTN EndBit,\r
4296 IN UINT64 OrData\r
4297 );\r
4298\r
4299\r
4300/**\r
4301 Reads a bit field from a 64-bit value, performs a bitwise AND, and returns\r
4302 the result.\r
4303\r
4304 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4305 in Operand and the value specified by AndData. All other bits in Operand are\r
4306 preserved. The new 64-bit value is returned.\r
4307\r
4308 If 64-bit operations are not supported, then ASSERT().\r
4309 If StartBit is greater than 63, then ASSERT().\r
4310 If EndBit is greater than 63, then ASSERT().\r
4311 If EndBit is less than StartBit, then ASSERT().\r
94952554 4312 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4313\r
4314 @param Operand Operand on which to perform the bitfield operation.\r
4315 @param StartBit The ordinal of the least significant bit in the bit field.\r
4316 Range 0..63.\r
4317 @param EndBit The ordinal of the most significant bit in the bit field.\r
4318 Range 0..63.\r
4319 @param AndData The value to AND with the read value from the value\r
4320\r
4321 @return The new 64-bit value.\r
4322\r
4323**/\r
4324UINT64\r
4325EFIAPI\r
4326BitFieldAnd64 (\r
4327 IN UINT64 Operand,\r
4328 IN UINTN StartBit,\r
4329 IN UINTN EndBit,\r
4330 IN UINT64 AndData\r
4331 );\r
4332\r
4333\r
4334/**\r
4335 Reads a bit field from a 64-bit value, performs a bitwise AND followed by a\r
4336 bitwise OR, and returns the result.\r
4337\r
4338 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 4339 in Operand and the value specified by AndData, followed by a bitwise \r
4340 OR with value specified by OrData. All other bits in Operand are\r
ac644614 4341 preserved. The new 64-bit value is returned.\r
4342\r
4343 If 64-bit operations are not supported, then ASSERT().\r
4344 If StartBit is greater than 63, then ASSERT().\r
4345 If EndBit is greater than 63, then ASSERT().\r
4346 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
4347 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4348 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4349\r
4350 @param Operand Operand on which to perform the bitfield operation.\r
4351 @param StartBit The ordinal of the least significant bit in the bit field.\r
4352 Range 0..63.\r
4353 @param EndBit The ordinal of the most significant bit in the bit field.\r
4354 Range 0..63.\r
4355 @param AndData The value to AND with the read value from the value.\r
4356 @param OrData The value to OR with the result of the AND operation.\r
4357\r
4358 @return The new 64-bit value.\r
4359\r
4360**/\r
4361UINT64\r
4362EFIAPI\r
4363BitFieldAndThenOr64 (\r
4364 IN UINT64 Operand,\r
4365 IN UINTN StartBit,\r
4366 IN UINTN EndBit,\r
4367 IN UINT64 AndData,\r
4368 IN UINT64 OrData\r
4369 );\r
4370\r
ac644614 4371//\r
4372// Base Library Checksum Functions\r
4373//\r
4374\r
4375/**\r
17f695ed 4376 Returns the sum of all elements in a buffer in unit of UINT8.\r
ac644614 4377 During calculation, the carry bits are dropped.\r
4378\r
4379 This function calculates the sum of all elements in a buffer\r
4380 in unit of UINT8. The carry bits in result of addition are dropped.\r
4381 The result is returned as UINT8. If Length is Zero, then Zero is\r
4382 returned.\r
4383\r
4384 If Buffer is NULL, then ASSERT().\r
4385 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4386\r
af2dc6a7 4387 @param Buffer The pointer to the buffer to carry out the sum operation.\r
17f695ed 4388 @param Length The size, in bytes, of Buffer.\r
ac644614 4389\r
4390 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4391\r
4392**/\r
4393UINT8\r
4394EFIAPI\r
4395CalculateSum8 (\r
ee6c452c 4396 IN CONST UINT8 *Buffer,\r
4397 IN UINTN Length\r
ac644614 4398 );\r
4399\r
4400\r
4401/**\r
4402 Returns the two's complement checksum of all elements in a buffer\r
4403 of 8-bit values.\r
4404\r
4405 This function first calculates the sum of the 8-bit values in the\r
4406 buffer specified by Buffer and Length. The carry bits in the result\r
4407 of addition are dropped. Then, the two's complement of the sum is\r
4408 returned. If Length is 0, then 0 is returned.\r
4409\r
4410 If Buffer is NULL, then ASSERT().\r
4411 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4412\r
af2dc6a7 4413 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
1106ffe1 4414 @param Length The size, in bytes, of Buffer.\r
ac644614 4415\r
af2dc6a7 4416 @return Checksum The two's complement checksum of Buffer.\r
ac644614 4417\r
4418**/\r
4419UINT8\r
4420EFIAPI\r
4421CalculateCheckSum8 (\r
ee6c452c 4422 IN CONST UINT8 *Buffer,\r
4423 IN UINTN Length\r
ac644614 4424 );\r
4425\r
4426\r
4427/**\r
4428 Returns the sum of all elements in a buffer of 16-bit values. During\r
4429 calculation, the carry bits are dropped.\r
4430\r
4431 This function calculates the sum of the 16-bit values in the buffer\r
4432 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
4433 The 16-bit result is returned. If Length is 0, then 0 is returned.\r
4434\r
4435 If Buffer is NULL, then ASSERT().\r
4436 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
4437 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
4438 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4439\r
af2dc6a7 4440 @param Buffer The pointer to the buffer to carry out the sum operation.\r
1106ffe1 4441 @param Length The size, in bytes, of Buffer.\r
ac644614 4442\r
4443 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4444\r
4445**/\r
4446UINT16\r
4447EFIAPI\r
4448CalculateSum16 (\r
ee6c452c 4449 IN CONST UINT16 *Buffer,\r
4450 IN UINTN Length\r
ac644614 4451 );\r
4452\r
4453\r
4454/**\r
4455 Returns the two's complement checksum of all elements in a buffer of\r
4456 16-bit values.\r
4457\r
4458 This function first calculates the sum of the 16-bit values in the buffer\r
4459 specified by Buffer and Length. The carry bits in the result of addition\r
4460 are dropped. Then, the two's complement of the sum is returned. If Length\r
4461 is 0, then 0 is returned.\r
4462\r
4463 If Buffer is NULL, then ASSERT().\r
4464 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
4465 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
4466 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4467\r
af2dc6a7 4468 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
1106ffe1 4469 @param Length The size, in bytes, of Buffer.\r
ac644614 4470\r
af2dc6a7 4471 @return Checksum The two's complement checksum of Buffer.\r
ac644614 4472\r
4473**/\r
4474UINT16\r
4475EFIAPI\r
4476CalculateCheckSum16 (\r
ee6c452c 4477 IN CONST UINT16 *Buffer,\r
4478 IN UINTN Length\r
ac644614 4479 );\r
4480\r
4481\r
4482/**\r
17f695ed 4483 Returns the sum of all elements in a buffer of 32-bit values. During\r
ac644614 4484 calculation, the carry bits are dropped.\r
4485\r
4486 This function calculates the sum of the 32-bit values in the buffer\r
4487 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
17f695ed 4488 The 32-bit result is returned. If Length is 0, then 0 is returned.\r
ac644614 4489\r
4490 If Buffer is NULL, then ASSERT().\r
4491 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
4492 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
4493 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4494\r
af2dc6a7 4495 @param Buffer The pointer to the buffer to carry out the sum operation.\r
1106ffe1 4496 @param Length The size, in bytes, of Buffer.\r
ac644614 4497\r
4498 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4499\r
4500**/\r
4501UINT32\r
4502EFIAPI\r
4503CalculateSum32 (\r
ee6c452c 4504 IN CONST UINT32 *Buffer,\r
4505 IN UINTN Length\r
ac644614 4506 );\r
4507\r
4508\r
4509/**\r
4510 Returns the two's complement checksum of all elements in a buffer of\r
4511 32-bit values.\r
4512\r
4513 This function first calculates the sum of the 32-bit values in the buffer\r
4514 specified by Buffer and Length. The carry bits in the result of addition\r
4515 are dropped. Then, the two's complement of the sum is returned. If Length\r
4516 is 0, then 0 is returned.\r
4517\r
4518 If Buffer is NULL, then ASSERT().\r
4519 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
4520 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
4521 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4522\r
af2dc6a7 4523 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
1106ffe1 4524 @param Length The size, in bytes, of Buffer.\r
ac644614 4525\r
af2dc6a7 4526 @return Checksum The two's complement checksum of Buffer.\r
ac644614 4527\r
4528**/\r
4529UINT32\r
4530EFIAPI\r
4531CalculateCheckSum32 (\r
ee6c452c 4532 IN CONST UINT32 *Buffer,\r
4533 IN UINTN Length\r
ac644614 4534 );\r
4535\r
4536\r
4537/**\r
4538 Returns the sum of all elements in a buffer of 64-bit values. During\r
4539 calculation, the carry bits are dropped.\r
4540\r
4541 This function calculates the sum of the 64-bit values in the buffer\r
4542 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
4543 The 64-bit result is returned. If Length is 0, then 0 is returned.\r
4544\r
4545 If Buffer is NULL, then ASSERT().\r
4546 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
4547 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
4548 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4549\r
af2dc6a7 4550 @param Buffer The pointer to the buffer to carry out the sum operation.\r
1106ffe1 4551 @param Length The size, in bytes, of Buffer.\r
ac644614 4552\r
4553 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4554\r
4555**/\r
4556UINT64\r
4557EFIAPI\r
4558CalculateSum64 (\r
ee6c452c 4559 IN CONST UINT64 *Buffer,\r
4560 IN UINTN Length\r
ac644614 4561 );\r
4562\r
4563\r
4564/**\r
4565 Returns the two's complement checksum of all elements in a buffer of\r
4566 64-bit values.\r
4567\r
4568 This function first calculates the sum of the 64-bit values in the buffer\r
4569 specified by Buffer and Length. The carry bits in the result of addition\r
4570 are dropped. Then, the two's complement of the sum is returned. If Length\r
4571 is 0, then 0 is returned.\r
4572\r
4573 If Buffer is NULL, then ASSERT().\r
4574 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
4575 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
4576 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4577\r
af2dc6a7 4578 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
1106ffe1 4579 @param Length The size, in bytes, of Buffer.\r
ac644614 4580\r
af2dc6a7 4581 @return Checksum The two's complement checksum of Buffer.\r
ac644614 4582\r
4583**/\r
4584UINT64\r
4585EFIAPI\r
4586CalculateCheckSum64 (\r
ee6c452c 4587 IN CONST UINT64 *Buffer,\r
4588 IN UINTN Length\r
ac644614 4589 );\r
4590\r
4591\r
d75f9fc2 4592//\r
4593// Base Library CPU Functions\r
4594//\r
4595\r
4596/**\r
4597 Function entry point used when a stack switch is requested with SwitchStack()\r
4598\r
4599 @param Context1 Context1 parameter passed into SwitchStack().\r
4600 @param Context2 Context2 parameter passed into SwitchStack().\r
4601\r
4602**/\r
ac644614 4603typedef\r
4604VOID\r
9810cdd8 4605(EFIAPI *SWITCH_STACK_ENTRY_POINT)(\r
ac644614 4606 IN VOID *Context1, OPTIONAL\r
4607 IN VOID *Context2 OPTIONAL\r
4608 );\r
4609\r
4610\r
4611/**\r
4612 Used to serialize load and store operations.\r
4613\r
4614 All loads and stores that proceed calls to this function are guaranteed to be\r
4615 globally visible when this function returns.\r
4616\r
4617**/\r
4618VOID\r
4619EFIAPI\r
4620MemoryFence (\r
4621 VOID\r
4622 );\r
4623\r
4624\r
4625/**\r
4626 Saves the current CPU context that can be restored with a call to LongJump()\r
4627 and returns 0.\r
4628\r
4629 Saves the current CPU context in the buffer specified by JumpBuffer and\r
4630 returns 0. The initial call to SetJump() must always return 0. Subsequent\r
4631 calls to LongJump() cause a non-zero value to be returned by SetJump().\r
4632\r
4633 If JumpBuffer is NULL, then ASSERT().\r
1a2f870c 4634 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
17f695ed 4635 \r
4636 NOTE: The structure BASE_LIBRARY_JUMP_BUFFER is CPU architecture specific.\r
4637 The same structure must never be used for more than one CPU architecture context.\r
4638 For example, a BASE_LIBRARY_JUMP_BUFFER allocated by an IA-32 module must never be used from an x64 module. \r
4639 SetJump()/LongJump() is not currently supported for the EBC processor type. \r
ac644614 4640\r
4641 @param JumpBuffer A pointer to CPU context buffer.\r
4642\r
4643 @retval 0 Indicates a return from SetJump().\r
4644\r
4645**/\r
4646UINTN\r
4647EFIAPI\r
4648SetJump (\r
4649 OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
4650 );\r
4651\r
4652\r
4653/**\r
4654 Restores the CPU context that was saved with SetJump().\r
4655\r
4656 Restores the CPU context from the buffer specified by JumpBuffer. This\r
4657 function never returns to the caller. Instead is resumes execution based on\r
4658 the state of JumpBuffer.\r
4659\r
4660 If JumpBuffer is NULL, then ASSERT().\r
1a2f870c 4661 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
ac644614 4662 If Value is 0, then ASSERT().\r
4663\r
4664 @param JumpBuffer A pointer to CPU context buffer.\r
4665 @param Value The value to return when the SetJump() context is\r
4666 restored and must be non-zero.\r
4667\r
4668**/\r
4669VOID\r
4670EFIAPI\r
4671LongJump (\r
4672 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
4673 IN UINTN Value\r
4674 );\r
4675\r
4676\r
4677/**\r
4678 Enables CPU interrupts.\r
4679\r
ac644614 4680**/\r
4681VOID\r
4682EFIAPI\r
4683EnableInterrupts (\r
4684 VOID\r
4685 );\r
4686\r
4687\r
4688/**\r
4689 Disables CPU interrupts.\r
4690\r
ac644614 4691**/\r
4692VOID\r
4693EFIAPI\r
4694DisableInterrupts (\r
4695 VOID\r
4696 );\r
4697\r
4698\r
4699/**\r
4700 Disables CPU interrupts and returns the interrupt state prior to the disable\r
4701 operation.\r
4702\r
ac644614 4703 @retval TRUE CPU interrupts were enabled on entry to this call.\r
4704 @retval FALSE CPU interrupts were disabled on entry to this call.\r
4705\r
4706**/\r
4707BOOLEAN\r
4708EFIAPI\r
4709SaveAndDisableInterrupts (\r
4710 VOID\r
4711 );\r
4712\r
4713\r
4714/**\r
4715 Enables CPU interrupts for the smallest window required to capture any\r
4716 pending interrupts.\r
4717\r
ac644614 4718**/\r
4719VOID\r
4720EFIAPI\r
4721EnableDisableInterrupts (\r
4722 VOID\r
4723 );\r
4724\r
4725\r
4726/**\r
4727 Retrieves the current CPU interrupt state.\r
4728\r
af2dc6a7 4729 Returns TRUE if interrupts are currently enabled. Otherwise\r
38bbd3d9 4730 returns FALSE.\r
ac644614 4731\r
4732 @retval TRUE CPU interrupts are enabled.\r
4733 @retval FALSE CPU interrupts are disabled.\r
4734\r
4735**/\r
4736BOOLEAN\r
4737EFIAPI\r
4738GetInterruptState (\r
4739 VOID\r
4740 );\r
4741\r
4742\r
4743/**\r
4744 Set the current CPU interrupt state.\r
4745\r
4746 Sets the current CPU interrupt state to the state specified by\r
4747 InterruptState. If InterruptState is TRUE, then interrupts are enabled. If\r
4748 InterruptState is FALSE, then interrupts are disabled. InterruptState is\r
4749 returned.\r
4750\r
4751 @param InterruptState TRUE if interrupts should enabled. FALSE if\r
4752 interrupts should be disabled.\r
4753\r
4754 @return InterruptState\r
4755\r
4756**/\r
4757BOOLEAN\r
4758EFIAPI\r
4759SetInterruptState (\r
4760 IN BOOLEAN InterruptState\r
4761 );\r
4762\r
4763\r
4764/**\r
4765 Requests CPU to pause for a short period of time.\r
4766\r
4767 Requests CPU to pause for a short period of time. Typically used in MP\r
4768 systems to prevent memory starvation while waiting for a spin lock.\r
4769\r
4770**/\r
4771VOID\r
4772EFIAPI\r
4773CpuPause (\r
4774 VOID\r
4775 );\r
4776\r
4777\r
4778/**\r
4779 Transfers control to a function starting with a new stack.\r
4780\r
4781 Transfers control to the function specified by EntryPoint using the\r
4782 new stack specified by NewStack and passing in the parameters specified\r
4783 by Context1 and Context2. Context1 and Context2 are optional and may\r
4784 be NULL. The function EntryPoint must never return. This function\r
4785 supports a variable number of arguments following the NewStack parameter.\r
1a2f870c 4786 These additional arguments are ignored on IA-32, x64, and EBC architectures.\r
4787 Itanium processors expect one additional parameter of type VOID * that specifies\r
ac644614 4788 the new backing store pointer.\r
4789\r
4790 If EntryPoint is NULL, then ASSERT().\r
4791 If NewStack is NULL, then ASSERT().\r
4792\r
4793 @param EntryPoint A pointer to function to call with the new stack.\r
4794 @param Context1 A pointer to the context to pass into the EntryPoint\r
4795 function.\r
4796 @param Context2 A pointer to the context to pass into the EntryPoint\r
4797 function.\r
4798 @param NewStack A pointer to the new stack to use for the EntryPoint\r
4799 function.\r
af2dc6a7 4800 @param ... This variable argument list is ignored for IA-32, x64, and \r
4801 EBC architectures. For Itanium processors, this variable \r
4802 argument list is expected to contain a single parameter of \r
4803 type VOID * that specifies the new backing store pointer.\r
42eedea9 4804\r
ac644614 4805\r
4806**/\r
4807VOID\r
4808EFIAPI\r
4809SwitchStack (\r
4810 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
4811 IN VOID *Context1, OPTIONAL\r
4812 IN VOID *Context2, OPTIONAL\r
4813 IN VOID *NewStack,\r
4814 ...\r
4815 );\r
4816\r
4817\r
4818/**\r
4819 Generates a breakpoint on the CPU.\r
4820\r
4821 Generates a breakpoint on the CPU. The breakpoint must be implemented such\r
4822 that code can resume normal execution after the breakpoint.\r
4823\r
4824**/\r
4825VOID\r
4826EFIAPI\r
4827CpuBreakpoint (\r
4828 VOID\r
4829 );\r
4830\r
4831\r
4832/**\r
4833 Executes an infinite loop.\r
4834\r
4835 Forces the CPU to execute an infinite loop. A debugger may be used to skip\r
4836 past the loop and the code that follows the loop must execute properly. This\r
4837 implies that the infinite loop must not cause the code that follow it to be\r
4838 optimized away.\r
4839\r
4840**/\r
4841VOID\r
4842EFIAPI\r
4843CpuDeadLoop (\r
4844 VOID\r
4845 );\r
2fe241a2 4846 \r
ac644614 4847#if defined (MDE_CPU_IPF)\r
4848\r
4849/**\r
4850 Flush a range of cache lines in the cache coherency domain of the calling\r
4851 CPU.\r
4852\r
cc39b88b 4853 Flushes the cache lines specified by Address and Length. If Address is not aligned \r
4854 on a cache line boundary, then entire cache line containing Address is flushed. \r
4855 If Address + Length is not aligned on a cache line boundary, then the entire cache \r
4856 line containing Address + Length - 1 is flushed. This function may choose to flush \r
4857 the entire cache if that is more efficient than flushing the specified range. If \r
4858 Length is 0, the no cache lines are flushed. Address is returned. \r
1a2f870c 4859 This function is only available on Itanium processors.\r
ac644614 4860\r
4861 If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().\r
4862\r
4863 @param Address The base address of the instruction lines to invalidate. If\r
4864 the CPU is in a physical addressing mode, then Address is a\r
4865 physical address. If the CPU is in a virtual addressing mode,\r
4866 then Address is a virtual address.\r
4867\r
4868 @param Length The number of bytes to invalidate from the instruction cache.\r
4869\r
cc39b88b 4870 @return Address.\r
ac644614 4871\r
4872**/\r
4873VOID *\r
4874EFIAPI\r
cc39b88b 4875AsmFlushCacheRange (\r
ac644614 4876 IN VOID *Address,\r
4877 IN UINTN Length\r
4878 );\r
4879\r
4880\r
4881/**\r
af2dc6a7 4882 Executes an FC instruction.\r
4883 Executes an FC instruction on the cache line specified by Address.\r
ac644614 4884 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
1a2f870c 4885 An implementation may flush a larger region. This function is only available on Itanium processors.\r
ac644614 4886\r
ee6c452c 4887 @param Address The Address of cache line to be flushed.\r
ac644614 4888\r
4889 @return The address of FC instruction executed.\r
4890\r
4891**/\r
4892UINT64\r
4893EFIAPI\r
4894AsmFc (\r
4895 IN UINT64 Address\r
4896 );\r
4897\r
4898\r
4899/**\r
af2dc6a7 4900 Executes an FC.I instruction.\r
4901 Executes an FC.I instruction on the cache line specified by Address.\r
ac644614 4902 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
1a2f870c 4903 An implementation may flush a larger region. This function is only available on Itanium processors.\r
ac644614 4904\r
ee6c452c 4905 @param Address The Address of cache line to be flushed.\r
ac644614 4906\r
af2dc6a7 4907 @return The address of the FC.I instruction executed.\r
ac644614 4908\r
4909**/\r
4910UINT64\r
4911EFIAPI\r
4912AsmFci (\r
4913 IN UINT64 Address\r
4914 );\r
4915\r
4916\r
4917/**\r
4918 Reads the current value of a Processor Identifier Register (CPUID).\r
17f695ed 4919 \r
4920 Reads and returns the current value of Processor Identifier Register specified by Index. \r
ac644614 4921 The Index of largest implemented CPUID (One less than the number of implemented CPUID\r
4922 registers) is determined by CPUID [3] bits {7:0}.\r
4923 No parameter checking is performed on Index. If the Index value is beyond the\r
4924 implemented CPUID register range, a Reserved Register/Field fault may occur. The caller\r
4925 must either guarantee that Index is valid, or the caller must set up fault handlers to\r
1a2f870c 4926 catch the faults. This function is only available on Itanium processors.\r
ac644614 4927\r
ee6c452c 4928 @param Index The 8-bit Processor Identifier Register index to read.\r
ac644614 4929\r
4930 @return The current value of Processor Identifier Register specified by Index.\r
4931\r
4932**/\r
4933UINT64\r
4934EFIAPI\r
4935AsmReadCpuid (\r
4936 IN UINT8 Index\r
4937 );\r
4938\r
4939\r
4940/**\r
4941 Reads the current value of 64-bit Processor Status Register (PSR).\r
1a2f870c 4942 This function is only available on Itanium processors.\r
ac644614 4943\r
4944 @return The current value of PSR.\r
4945\r
4946**/\r
4947UINT64\r
4948EFIAPI\r
4949AsmReadPsr (\r
4950 VOID\r
4951 );\r
4952\r
4953\r
4954/**\r
4955 Writes the current value of 64-bit Processor Status Register (PSR).\r
22388319 4956\r
ac644614 4957 No parameter checking is performed on Value. All bits of Value corresponding to\r
22388319 4958 reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur.\r
4959 The caller must either guarantee that Value is valid, or the caller must set up\r
1a2f870c 4960 fault handlers to catch the faults. This function is only available on Itanium processors.\r
ac644614 4961\r
ee6c452c 4962 @param Value The 64-bit value to write to PSR.\r
ac644614 4963\r
4964 @return The 64-bit value written to the PSR.\r
4965\r
4966**/\r
4967UINT64\r
4968EFIAPI\r
4969AsmWritePsr (\r
4970 IN UINT64 Value\r
4971 );\r
4972\r
4973\r
4974/**\r
4975 Reads the current value of 64-bit Kernel Register #0 (KR0).\r
2fe241a2 4976 \r
4977 Reads and returns the current value of KR0. \r
1a2f870c 4978 This function is only available on Itanium processors.\r
ac644614 4979\r
4980 @return The current value of KR0.\r
4981\r
4982**/\r
4983UINT64\r
4984EFIAPI\r
4985AsmReadKr0 (\r
4986 VOID\r
4987 );\r
4988\r
4989\r
4990/**\r
4991 Reads the current value of 64-bit Kernel Register #1 (KR1).\r
2fe241a2 4992\r
4993 Reads and returns the current value of KR1. \r
1a2f870c 4994 This function is only available on Itanium processors.\r
ac644614 4995\r
4996 @return The current value of KR1.\r
4997\r
4998**/\r
4999UINT64\r
5000EFIAPI\r
5001AsmReadKr1 (\r
5002 VOID\r
5003 );\r
5004\r
5005\r
5006/**\r
5007 Reads the current value of 64-bit Kernel Register #2 (KR2).\r
2fe241a2 5008\r
5009 Reads and returns the current value of KR2. \r
1a2f870c 5010 This function is only available on Itanium processors.\r
ac644614 5011\r
5012 @return The current value of KR2.\r
5013\r
5014**/\r
5015UINT64\r
5016EFIAPI\r
5017AsmReadKr2 (\r
5018 VOID\r
5019 );\r
5020\r
5021\r
5022/**\r
5023 Reads the current value of 64-bit Kernel Register #3 (KR3).\r
2fe241a2 5024\r
5025 Reads and returns the current value of KR3. \r
1a2f870c 5026 This function is only available on Itanium processors.\r
ac644614 5027\r
5028 @return The current value of KR3.\r
5029\r
5030**/\r
5031UINT64\r
5032EFIAPI\r
5033AsmReadKr3 (\r
5034 VOID\r
5035 );\r
5036\r
5037\r
5038/**\r
5039 Reads the current value of 64-bit Kernel Register #4 (KR4).\r
ac644614 5040\r
2fe241a2 5041 Reads and returns the current value of KR4. \r
1a2f870c 5042 This function is only available on Itanium processors.\r
2fe241a2 5043 \r
ac644614 5044 @return The current value of KR4.\r
5045\r
5046**/\r
5047UINT64\r
5048EFIAPI\r
5049AsmReadKr4 (\r
5050 VOID\r
5051 );\r
5052\r
5053\r
5054/**\r
5055 Reads the current value of 64-bit Kernel Register #5 (KR5).\r
2fe241a2 5056\r
5057 Reads and returns the current value of KR5. \r
1a2f870c 5058 This function is only available on Itanium processors.\r
ac644614 5059\r
5060 @return The current value of KR5.\r
5061\r
5062**/\r
5063UINT64\r
5064EFIAPI\r
5065AsmReadKr5 (\r
5066 VOID\r
5067 );\r
5068\r
5069\r
5070/**\r
5071 Reads the current value of 64-bit Kernel Register #6 (KR6).\r
2fe241a2 5072\r
5073 Reads and returns the current value of KR6. \r
1a2f870c 5074 This function is only available on Itanium processors.\r
ac644614 5075\r
5076 @return The current value of KR6.\r
5077\r
5078**/\r
5079UINT64\r
5080EFIAPI\r
5081AsmReadKr6 (\r
5082 VOID\r
5083 );\r
5084\r
5085\r
5086/**\r
5087 Reads the current value of 64-bit Kernel Register #7 (KR7).\r
2fe241a2 5088\r
5089 Reads and returns the current value of KR7. \r
1a2f870c 5090 This function is only available on Itanium processors.\r
ac644614 5091\r
5092 @return The current value of KR7.\r
5093\r
5094**/\r
5095UINT64\r
5096EFIAPI\r
5097AsmReadKr7 (\r
5098 VOID\r
5099 );\r
5100\r
5101\r
5102/**\r
5103 Write the current value of 64-bit Kernel Register #0 (KR0).\r
2fe241a2 5104 \r
5105 Writes the current value of KR0. The 64-bit value written to \r
1a2f870c 5106 the KR0 is returned. This function is only available on Itanium processors.\r
ac644614 5107\r
ee6c452c 5108 @param Value The 64-bit value to write to KR0.\r
ac644614 5109\r
5110 @return The 64-bit value written to the KR0.\r
5111\r
5112**/\r
5113UINT64\r
5114EFIAPI\r
5115AsmWriteKr0 (\r
5116 IN UINT64 Value\r
5117 );\r
5118\r
5119\r
5120/**\r
5121 Write the current value of 64-bit Kernel Register #1 (KR1).\r
2fe241a2 5122\r
5123 Writes the current value of KR1. The 64-bit value written to \r
1a2f870c 5124 the KR1 is returned. This function is only available on Itanium processors.\r
ac644614 5125\r
ee6c452c 5126 @param Value The 64-bit value to write to KR1.\r
ac644614 5127\r
5128 @return The 64-bit value written to the KR1.\r
5129\r
5130**/\r
5131UINT64\r
5132EFIAPI\r
5133AsmWriteKr1 (\r
5134 IN UINT64 Value\r
5135 );\r
5136\r
5137\r
5138/**\r
5139 Write the current value of 64-bit Kernel Register #2 (KR2).\r
2fe241a2 5140\r
5141 Writes the current value of KR2. The 64-bit value written to \r
1a2f870c 5142 the KR2 is returned. This function is only available on Itanium processors.\r
ac644614 5143\r
ee6c452c 5144 @param Value The 64-bit value to write to KR2.\r
ac644614 5145\r
5146 @return The 64-bit value written to the KR2.\r
5147\r
5148**/\r
5149UINT64\r
5150EFIAPI\r
5151AsmWriteKr2 (\r
5152 IN UINT64 Value\r
5153 );\r
5154\r
5155\r
5156/**\r
5157 Write the current value of 64-bit Kernel Register #3 (KR3).\r
2fe241a2 5158\r
5159 Writes the current value of KR3. The 64-bit value written to \r
1a2f870c 5160 the KR3 is returned. This function is only available on Itanium processors.\r
ac644614 5161\r
ee6c452c 5162 @param Value The 64-bit value to write to KR3.\r
ac644614 5163\r
5164 @return The 64-bit value written to the KR3.\r
5165\r
5166**/\r
5167UINT64\r
5168EFIAPI\r
5169AsmWriteKr3 (\r
5170 IN UINT64 Value\r
5171 );\r
5172\r
5173\r
5174/**\r
5175 Write the current value of 64-bit Kernel Register #4 (KR4).\r
2fe241a2 5176\r
5177 Writes the current value of KR4. The 64-bit value written to \r
1a2f870c 5178 the KR4 is returned. This function is only available on Itanium processors.\r
ac644614 5179\r
ee6c452c 5180 @param Value The 64-bit value to write to KR4.\r
ac644614 5181\r
5182 @return The 64-bit value written to the KR4.\r
5183\r
5184**/\r
5185UINT64\r
5186EFIAPI\r
5187AsmWriteKr4 (\r
5188 IN UINT64 Value\r
5189 );\r
5190\r
5191\r
5192/**\r
5193 Write the current value of 64-bit Kernel Register #5 (KR5).\r
2fe241a2 5194\r
5195 Writes the current value of KR5. The 64-bit value written to \r
1a2f870c 5196 the KR5 is returned. This function is only available on Itanium processors.\r
ac644614 5197\r
ee6c452c 5198 @param Value The 64-bit value to write to KR5.\r
ac644614 5199\r
5200 @return The 64-bit value written to the KR5.\r
5201\r
5202**/\r
5203UINT64\r
5204EFIAPI\r
5205AsmWriteKr5 (\r
5206 IN UINT64 Value\r
5207 );\r
5208\r
5209\r
5210/**\r
5211 Write the current value of 64-bit Kernel Register #6 (KR6).\r
2fe241a2 5212\r
5213 Writes the current value of KR6. The 64-bit value written to \r
1a2f870c 5214 the KR6 is returned. This function is only available on Itanium processors.\r
ac644614 5215\r
ee6c452c 5216 @param Value The 64-bit value to write to KR6.\r
ac644614 5217\r
5218 @return The 64-bit value written to the KR6.\r
5219\r
5220**/\r
5221UINT64\r
5222EFIAPI\r
5223AsmWriteKr6 (\r
5224 IN UINT64 Value\r
5225 );\r
5226\r
5227\r
5228/**\r
5229 Write the current value of 64-bit Kernel Register #7 (KR7).\r
2fe241a2 5230\r
5231 Writes the current value of KR7. The 64-bit value written to \r
1a2f870c 5232 the KR7 is returned. This function is only available on Itanium processors.\r
ac644614 5233\r
ee6c452c 5234 @param Value The 64-bit value to write to KR7.\r
ac644614 5235\r
5236 @return The 64-bit value written to the KR7.\r
5237\r
5238**/\r
5239UINT64\r
5240EFIAPI\r
5241AsmWriteKr7 (\r
5242 IN UINT64 Value\r
5243 );\r
5244\r
5245\r
5246/**\r
5247 Reads the current value of Interval Timer Counter Register (ITC).\r
2fe241a2 5248 \r
5249 Reads and returns the current value of ITC.\r
1a2f870c 5250 This function is only available on Itanium processors.\r
ac644614 5251\r
5252 @return The current value of ITC.\r
5253\r
5254**/\r
5255UINT64\r
5256EFIAPI\r
5257AsmReadItc (\r
5258 VOID\r
5259 );\r
5260\r
5261\r
5262/**\r
5263 Reads the current value of Interval Timer Vector Register (ITV).\r
2fe241a2 5264 \r
5265 Reads and returns the current value of ITV. \r
1a2f870c 5266 This function is only available on Itanium processors.\r
ac644614 5267\r
5268 @return The current value of ITV.\r
5269\r
5270**/\r
5271UINT64\r
5272EFIAPI\r
5273AsmReadItv (\r
5274 VOID\r
5275 );\r
5276\r
5277\r
5278/**\r
5279 Reads the current value of Interval Timer Match Register (ITM).\r
2fe241a2 5280 \r
5281 Reads and returns the current value of ITM.\r
1a2f870c 5282 This function is only available on Itanium processors.\r
ac644614 5283\r
5284 @return The current value of ITM.\r
5285**/\r
5286UINT64\r
5287EFIAPI\r
5288AsmReadItm (\r
5289 VOID\r
5290 );\r
5291\r
5292\r
5293/**\r
5294 Writes the current value of 64-bit Interval Timer Counter Register (ITC).\r
2fe241a2 5295 \r
5296 Writes the current value of ITC. The 64-bit value written to the ITC is returned. \r
1a2f870c 5297 This function is only available on Itanium processors.\r
ac644614 5298\r
ee6c452c 5299 @param Value The 64-bit value to write to ITC.\r
ac644614 5300\r
5301 @return The 64-bit value written to the ITC.\r
5302\r
5303**/\r
5304UINT64\r
5305EFIAPI\r
5306AsmWriteItc (\r
5307 IN UINT64 Value\r
5308 );\r
5309\r
5310\r
5311/**\r
5312 Writes the current value of 64-bit Interval Timer Match Register (ITM).\r
2fe241a2 5313 \r
5314 Writes the current value of ITM. The 64-bit value written to the ITM is returned. \r
1a2f870c 5315 This function is only available on Itanium processors.\r
ac644614 5316\r
ee6c452c 5317 @param Value The 64-bit value to write to ITM.\r
ac644614 5318\r
5319 @return The 64-bit value written to the ITM.\r
5320\r
5321**/\r
5322UINT64\r
5323EFIAPI\r
5324AsmWriteItm (\r
5325 IN UINT64 Value\r
5326 );\r
5327\r
5328\r
5329/**\r
5330 Writes the current value of 64-bit Interval Timer Vector Register (ITV).\r
2fe241a2 5331 \r
5332 Writes the current value of ITV. The 64-bit value written to the ITV is returned. \r
ac644614 5333 No parameter checking is performed on Value. All bits of Value corresponding to\r
5334 reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur.\r
5335 The caller must either guarantee that Value is valid, or the caller must set up\r
5336 fault handlers to catch the faults.\r
1a2f870c 5337 This function is only available on Itanium processors.\r
ac644614 5338\r
ee6c452c 5339 @param Value The 64-bit value to write to ITV.\r
ac644614 5340\r
5341 @return The 64-bit value written to the ITV.\r
5342\r
5343**/\r
5344UINT64\r
5345EFIAPI\r
5346AsmWriteItv (\r
5347 IN UINT64 Value\r
5348 );\r
5349\r
5350\r
5351/**\r
5352 Reads the current value of Default Control Register (DCR).\r
2fe241a2 5353 \r
1a2f870c 5354 Reads and returns the current value of DCR. This function is only available on Itanium processors.\r
ac644614 5355\r
5356 @return The current value of DCR.\r
5357\r
5358**/\r
5359UINT64\r
5360EFIAPI\r
5361AsmReadDcr (\r
5362 VOID\r
5363 );\r
5364\r
5365\r
5366/**\r
5367 Reads the current value of Interruption Vector Address Register (IVA).\r
2fe241a2 5368 \r
1a2f870c 5369 Reads and returns the current value of IVA. This function is only available on Itanium processors.\r
ac644614 5370\r
5371 @return The current value of IVA.\r
5372**/\r
5373UINT64\r
5374EFIAPI\r
5375AsmReadIva (\r
5376 VOID\r
5377 );\r
5378\r
5379\r
5380/**\r
5381 Reads the current value of Page Table Address Register (PTA).\r
2fe241a2 5382 \r
1a2f870c 5383 Reads and returns the current value of PTA. This function is only available on Itanium processors.\r
ac644614 5384\r
5385 @return The current value of PTA.\r
5386\r
5387**/\r
5388UINT64\r
5389EFIAPI\r
5390AsmReadPta (\r
5391 VOID\r
5392 );\r
5393\r
5394\r
5395/**\r
5396 Writes the current value of 64-bit Default Control Register (DCR).\r
2fe241a2 5397 \r
5398 Writes the current value of DCR. The 64-bit value written to the DCR is returned. \r
ac644614 5399 No parameter checking is performed on Value. All bits of Value corresponding to\r
5400 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
5401 The caller must either guarantee that Value is valid, or the caller must set up\r
5402 fault handlers to catch the faults.\r
1a2f870c 5403 This function is only available on Itanium processors.\r
ac644614 5404\r
ee6c452c 5405 @param Value The 64-bit value to write to DCR.\r
ac644614 5406\r
5407 @return The 64-bit value written to the DCR.\r
5408\r
5409**/\r
5410UINT64\r
5411EFIAPI\r
5412AsmWriteDcr (\r
5413 IN UINT64 Value\r
5414 );\r
5415\r
5416\r
5417/**\r
5418 Writes the current value of 64-bit Interruption Vector Address Register (IVA).\r
2fe241a2 5419 \r
5420 Writes the current value of IVA. The 64-bit value written to the IVA is returned. \r
ac644614 5421 The size of vector table is 32 K bytes and is 32 K bytes aligned\r
5422 the low 15 bits of Value is ignored when written.\r
1a2f870c 5423 This function is only available on Itanium processors.\r
ac644614 5424\r
ee6c452c 5425 @param Value The 64-bit value to write to IVA.\r
ac644614 5426\r
5427 @return The 64-bit value written to the IVA.\r
5428\r
5429**/\r
5430UINT64\r
5431EFIAPI\r
5432AsmWriteIva (\r
5433 IN UINT64 Value\r
5434 );\r
5435\r
5436\r
5437/**\r
5438 Writes the current value of 64-bit Page Table Address Register (PTA).\r
2fe241a2 5439 \r
5440 Writes the current value of PTA. The 64-bit value written to the PTA is returned. \r
ac644614 5441 No parameter checking is performed on Value. All bits of Value corresponding to\r
5442 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
5443 The caller must either guarantee that Value is valid, or the caller must set up\r
5444 fault handlers to catch the faults.\r
1a2f870c 5445 This function is only available on Itanium processors.\r
ac644614 5446\r
ee6c452c 5447 @param Value The 64-bit value to write to PTA.\r
ac644614 5448\r
5449 @return The 64-bit value written to the PTA.\r
5450**/\r
5451UINT64\r
5452EFIAPI\r
5453AsmWritePta (\r
5454 IN UINT64 Value\r
5455 );\r
5456\r
5457\r
5458/**\r
5459 Reads the current value of Local Interrupt ID Register (LID).\r
2fe241a2 5460 \r
1a2f870c 5461 Reads and returns the current value of LID. This function is only available on Itanium processors.\r
ac644614 5462\r
5463 @return The current value of LID.\r
5464\r
5465**/\r
5466UINT64\r
5467EFIAPI\r
5468AsmReadLid (\r
5469 VOID\r
5470 );\r
5471\r
5472\r
5473/**\r
5474 Reads the current value of External Interrupt Vector Register (IVR).\r
2fe241a2 5475 \r
1a2f870c 5476 Reads and returns the current value of IVR. This function is only available on Itanium processors. \r
ac644614 5477\r
5478 @return The current value of IVR.\r
5479\r
5480**/\r
5481UINT64\r
5482EFIAPI\r
5483AsmReadIvr (\r
5484 VOID\r
5485 );\r
5486\r
5487\r
5488/**\r
5489 Reads the current value of Task Priority Register (TPR).\r
2fe241a2 5490 \r
1a2f870c 5491 Reads and returns the current value of TPR. This function is only available on Itanium processors. \r
ac644614 5492\r
5493 @return The current value of TPR.\r
5494\r
5495**/\r
5496UINT64\r
5497EFIAPI\r
5498AsmReadTpr (\r
5499 VOID\r
5500 );\r
5501\r
5502\r
5503/**\r
5504 Reads the current value of External Interrupt Request Register #0 (IRR0).\r
2fe241a2 5505 \r
1a2f870c 5506 Reads and returns the current value of IRR0. This function is only available on Itanium processors. \r
ac644614 5507\r
5508 @return The current value of IRR0.\r
5509\r
5510**/\r
5511UINT64\r
5512EFIAPI\r
5513AsmReadIrr0 (\r
5514 VOID\r
5515 );\r
5516\r
5517\r
5518/**\r
5519 Reads the current value of External Interrupt Request Register #1 (IRR1).\r
2fe241a2 5520 \r
1a2f870c 5521 Reads and returns the current value of IRR1. This function is only available on Itanium processors. \r
ac644614 5522\r
5523 @return The current value of IRR1.\r
5524\r
5525**/\r
5526UINT64\r
5527EFIAPI\r
5528AsmReadIrr1 (\r
5529 VOID\r
5530 );\r
5531\r
5532\r
5533/**\r
5534 Reads the current value of External Interrupt Request Register #2 (IRR2).\r
2fe241a2 5535 \r
1a2f870c 5536 Reads and returns the current value of IRR2. This function is only available on Itanium processors.\r
ac644614 5537\r
5538 @return The current value of IRR2.\r
5539\r
5540**/\r
5541UINT64\r
5542EFIAPI\r
5543AsmReadIrr2 (\r
5544 VOID\r
5545 );\r
5546\r
5547\r
5548/**\r
5549 Reads the current value of External Interrupt Request Register #3 (IRR3).\r
2fe241a2 5550 \r
1a2f870c 5551 Reads and returns the current value of IRR3. This function is only available on Itanium processors. \r
ac644614 5552\r
5553 @return The current value of IRR3.\r
5554\r
5555**/\r
5556UINT64\r
5557EFIAPI\r
5558AsmReadIrr3 (\r
5559 VOID\r
5560 );\r
5561\r
5562\r
5563/**\r
5564 Reads the current value of Performance Monitor Vector Register (PMV).\r
2fe241a2 5565 \r
1a2f870c 5566 Reads and returns the current value of PMV. This function is only available on Itanium processors. \r
ac644614 5567\r
5568 @return The current value of PMV.\r
5569\r
5570**/\r
5571UINT64\r
5572EFIAPI\r
5573AsmReadPmv (\r
5574 VOID\r
5575 );\r
5576\r
5577\r
5578/**\r
5579 Reads the current value of Corrected Machine Check Vector Register (CMCV).\r
2fe241a2 5580 \r
1a2f870c 5581 Reads and returns the current value of CMCV. This function is only available on Itanium processors.\r
ac644614 5582\r
5583 @return The current value of CMCV.\r
5584\r
5585**/\r
5586UINT64\r
5587EFIAPI\r
5588AsmReadCmcv (\r
5589 VOID\r
5590 );\r
5591\r
5592\r
5593/**\r
5594 Reads the current value of Local Redirection Register #0 (LRR0).\r
2fe241a2 5595 \r
1a2f870c 5596 Reads and returns the current value of LRR0. This function is only available on Itanium processors. \r
ac644614 5597\r
5598 @return The current value of LRR0.\r
5599\r
5600**/\r
5601UINT64\r
5602EFIAPI\r
5603AsmReadLrr0 (\r
5604 VOID\r
5605 );\r
5606\r
5607\r
5608/**\r
5609 Reads the current value of Local Redirection Register #1 (LRR1).\r
2fe241a2 5610 \r
1a2f870c 5611 Reads and returns the current value of LRR1. This function is only available on Itanium processors.\r
ac644614 5612\r
5613 @return The current value of LRR1.\r
5614\r
5615**/\r
5616UINT64\r
5617EFIAPI\r
5618AsmReadLrr1 (\r
5619 VOID\r
5620 );\r
5621\r
5622\r
5623/**\r
5624 Writes the current value of 64-bit Page Local Interrupt ID Register (LID).\r
2fe241a2 5625 \r
5626 Writes the current value of LID. The 64-bit value written to the LID is returned. \r
ac644614 5627 No parameter checking is performed on Value. All bits of Value corresponding to\r
5628 reserved fields of LID must be 0 or a Reserved Register/Field fault may occur.\r
5629 The caller must either guarantee that Value is valid, or the caller must set up\r
5630 fault handlers to catch the faults.\r
1a2f870c 5631 This function is only available on Itanium processors.\r
ac644614 5632\r
ee6c452c 5633 @param Value The 64-bit value to write to LID.\r
ac644614 5634\r
5635 @return The 64-bit value written to the LID.\r
5636\r
5637**/\r
5638UINT64\r
5639EFIAPI\r
5640AsmWriteLid (\r
5641 IN UINT64 Value\r
5642 );\r
5643\r
5644\r
5645/**\r
5646 Writes the current value of 64-bit Task Priority Register (TPR).\r
2fe241a2 5647 \r
5648 Writes the current value of TPR. The 64-bit value written to the TPR is returned. \r
ac644614 5649 No parameter checking is performed on Value. All bits of Value corresponding to\r
5650 reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur.\r
5651 The caller must either guarantee that Value is valid, or the caller must set up\r
5652 fault handlers to catch the faults.\r
1a2f870c 5653 This function is only available on Itanium processors.\r
ac644614 5654\r
ee6c452c 5655 @param Value The 64-bit value to write to TPR.\r
ac644614 5656\r
5657 @return The 64-bit value written to the TPR.\r
5658\r
5659**/\r
5660UINT64\r
5661EFIAPI\r
5662AsmWriteTpr (\r
5663 IN UINT64 Value\r
5664 );\r
5665\r
5666\r
5667/**\r
5668 Performs a write operation on End OF External Interrupt Register (EOI).\r
2fe241a2 5669 \r
1a2f870c 5670 Writes a value of 0 to the EOI Register. This function is only available on Itanium processors.\r
ac644614 5671\r
5672**/\r
5673VOID\r
5674EFIAPI\r
5675AsmWriteEoi (\r
5676 VOID\r
5677 );\r
5678\r
5679\r
5680/**\r
5681 Writes the current value of 64-bit Performance Monitor Vector Register (PMV).\r
2fe241a2 5682 \r
5683 Writes the current value of PMV. The 64-bit value written to the PMV is returned. \r
ac644614 5684 No parameter checking is performed on Value. All bits of Value corresponding\r
5685 to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur.\r
5686 The caller must either guarantee that Value is valid, or the caller must set up\r
5687 fault handlers to catch the faults.\r
1a2f870c 5688 This function is only available on Itanium processors.\r
ac644614 5689\r
ee6c452c 5690 @param Value The 64-bit value to write to PMV.\r
ac644614 5691\r
5692 @return The 64-bit value written to the PMV.\r
5693\r
5694**/\r
5695UINT64\r
5696EFIAPI\r
5697AsmWritePmv (\r
5698 IN UINT64 Value\r
5699 );\r
5700\r
5701\r
5702/**\r
5703 Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).\r
2fe241a2 5704 \r
5705 Writes the current value of CMCV. The 64-bit value written to the CMCV is returned. \r
ac644614 5706 No parameter checking is performed on Value. All bits of Value corresponding\r
5707 to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur.\r
5708 The caller must either guarantee that Value is valid, or the caller must set up\r
5709 fault handlers to catch the faults.\r
1a2f870c 5710 This function is only available on Itanium processors.\r
ac644614 5711\r
ee6c452c 5712 @param Value The 64-bit value to write to CMCV.\r
ac644614 5713\r
5714 @return The 64-bit value written to the CMCV.\r
5715\r
5716**/\r
5717UINT64\r
5718EFIAPI\r
5719AsmWriteCmcv (\r
5720 IN UINT64 Value\r
5721 );\r
5722\r
5723\r
5724/**\r
5725 Writes the current value of 64-bit Local Redirection Register #0 (LRR0).\r
2fe241a2 5726 \r
5727 Writes the current value of LRR0. The 64-bit value written to the LRR0 is returned. \r
ac644614 5728 No parameter checking is performed on Value. All bits of Value corresponding\r
5729 to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur.\r
5730 The caller must either guarantee that Value is valid, or the caller must set up\r
5731 fault handlers to catch the faults.\r
1a2f870c 5732 This function is only available on Itanium processors.\r
ac644614 5733\r
ee6c452c 5734 @param Value The 64-bit value to write to LRR0.\r
ac644614 5735\r
5736 @return The 64-bit value written to the LRR0.\r
5737\r
5738**/\r
5739UINT64\r
5740EFIAPI\r
5741AsmWriteLrr0 (\r
5742 IN UINT64 Value\r
5743 );\r
5744\r
5745\r
5746/**\r
5747 Writes the current value of 64-bit Local Redirection Register #1 (LRR1).\r
2fe241a2 5748 \r
5749 Writes the current value of LRR1. The 64-bit value written to the LRR1 is returned. \r
ac644614 5750 No parameter checking is performed on Value. All bits of Value corresponding\r
5751 to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur.\r
5752 The caller must either guarantee that Value is valid, or the caller must\r
5753 set up fault handlers to catch the faults.\r
1a2f870c 5754 This function is only available on Itanium processors.\r
ac644614 5755\r
ee6c452c 5756 @param Value The 64-bit value to write to LRR1.\r
ac644614 5757\r
5758 @return The 64-bit value written to the LRR1.\r
5759\r
5760**/\r
5761UINT64\r
5762EFIAPI\r
5763AsmWriteLrr1 (\r
5764 IN UINT64 Value\r
5765 );\r
5766\r
5767\r
5768/**\r
5769 Reads the current value of Instruction Breakpoint Register (IBR).\r
5770 \r
5771 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
5772 registers contain breakpoint addresses, and the odd numbered registers contain\r
af2dc6a7 5773 breakpoint mask conditions. At least four instruction registers pairs are implemented\r
ac644614 5774 on all processor models. Implemented registers are contiguous starting with\r
5775 register 0. No parameter checking is performed on Index, and if the Index value\r
5776 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
5777 occur. The caller must either guarantee that Index is valid, or the caller must\r
5778 set up fault handlers to catch the faults.\r
1a2f870c 5779 This function is only available on Itanium processors.\r
ac644614 5780\r
ee6c452c 5781 @param Index The 8-bit Instruction Breakpoint Register index to read.\r
ac644614 5782\r
5783 @return The current value of Instruction Breakpoint Register specified by Index.\r
5784\r
5785**/\r
5786UINT64\r
5787EFIAPI\r
5788AsmReadIbr (\r
5789 IN UINT8 Index\r
5790 );\r
5791\r
5792\r
5793/**\r
5794 Reads the current value of Data Breakpoint Register (DBR).\r
5795\r
5796 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
5797 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
af2dc6a7 5798 mask conditions. At least four data registers pairs are implemented on all processor\r
ac644614 5799 models. Implemented registers are contiguous starting with register 0.\r
5800 No parameter checking is performed on Index. If the Index value is beyond\r
5801 the implemented DBR register range, a Reserved Register/Field fault may occur.\r
5802 The caller must either guarantee that Index is valid, or the caller must set up\r
5803 fault handlers to catch the faults.\r
1a2f870c 5804 This function is only available on Itanium processors.\r
ac644614 5805\r
ee6c452c 5806 @param Index The 8-bit Data Breakpoint Register index to read.\r
ac644614 5807\r
5808 @return The current value of Data Breakpoint Register specified by Index.\r
5809\r
5810**/\r
5811UINT64\r
5812EFIAPI\r
5813AsmReadDbr (\r
5814 IN UINT8 Index\r
5815 );\r
5816\r
5817\r
5818/**\r
5819 Reads the current value of Performance Monitor Configuration Register (PMC).\r
5820\r
af2dc6a7 5821 All processor implementations provide at least four performance counters\r
5822 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow\r
ac644614 5823 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
5824 additional implementation-dependent PMC and PMD to increase the number of\r
5825 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
5826 register set is implementation dependent. No parameter checking is performed\r
5827 on Index. If the Index value is beyond the implemented PMC register range,\r
5828 zero value will be returned.\r
1a2f870c 5829 This function is only available on Itanium processors.\r
ac644614 5830\r
ee6c452c 5831 @param Index The 8-bit Performance Monitor Configuration Register index to read.\r
ac644614 5832\r
2fe241a2 5833 @return The current value of Performance Monitor Configuration Register\r
5834 specified by Index.\r
ac644614 5835\r
5836**/\r
5837UINT64\r
5838EFIAPI\r
5839AsmReadPmc (\r
5840 IN UINT8 Index\r
5841 );\r
5842\r
5843\r
5844/**\r
5845 Reads the current value of Performance Monitor Data Register (PMD).\r
5846\r
5847 All processor implementations provide at least 4 performance counters\r
5848 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter\r
5849 overflow status registers (PMC [0]... PMC [3]). Processor implementations may\r
5850 provide additional implementation-dependent PMC and PMD to increase the number\r
5851 of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
5852 register set is implementation dependent. No parameter checking is performed\r
5853 on Index. If the Index value is beyond the implemented PMD register range,\r
5854 zero value will be returned.\r
1a2f870c 5855 This function is only available on Itanium processors.\r
ac644614 5856\r
ee6c452c 5857 @param Index The 8-bit Performance Monitor Data Register index to read.\r
ac644614 5858\r
5859 @return The current value of Performance Monitor Data Register specified by Index.\r
5860\r
5861**/\r
5862UINT64\r
5863EFIAPI\r
5864AsmReadPmd (\r
5865 IN UINT8 Index\r
5866 );\r
5867\r
5868\r
5869/**\r
5870 Writes the current value of 64-bit Instruction Breakpoint Register (IBR).\r
5871\r
5872 Writes current value of Instruction Breakpoint Register specified by Index.\r
5873 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
5874 registers contain breakpoint addresses, and odd numbered registers contain\r
af2dc6a7 5875 breakpoint mask conditions. At least four instruction registers pairs are implemented\r
ac644614 5876 on all processor models. Implemented registers are contiguous starting with\r
5877 register 0. No parameter checking is performed on Index. If the Index value\r
5878 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
5879 occur. The caller must either guarantee that Index is valid, or the caller must\r
5880 set up fault handlers to catch the faults.\r
1a2f870c 5881 This function is only available on Itanium processors.\r
ac644614 5882\r
ee6c452c 5883 @param Index The 8-bit Instruction Breakpoint Register index to write.\r
5884 @param Value The 64-bit value to write to IBR.\r
ac644614 5885\r
5886 @return The 64-bit value written to the IBR.\r
5887\r
5888**/\r
5889UINT64\r
5890EFIAPI\r
5891AsmWriteIbr (\r
5892 IN UINT8 Index,\r
5893 IN UINT64 Value\r
5894 );\r
5895\r
5896\r
5897/**\r
5898 Writes the current value of 64-bit Data Breakpoint Register (DBR).\r
5899\r
5900 Writes current value of Data Breakpoint Register specified by Index.\r
5901 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
5902 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
af2dc6a7 5903 mask conditions. At least four data registers pairs are implemented on all processor\r
ac644614 5904 models. Implemented registers are contiguous starting with register 0. No parameter\r
5905 checking is performed on Index. If the Index value is beyond the implemented\r
5906 DBR register range, a Reserved Register/Field fault may occur. The caller must\r
5907 either guarantee that Index is valid, or the caller must set up fault handlers to\r
5908 catch the faults.\r
1a2f870c 5909 This function is only available on Itanium processors.\r
ac644614 5910\r
ee6c452c 5911 @param Index The 8-bit Data Breakpoint Register index to write.\r
5912 @param Value The 64-bit value to write to DBR.\r
ac644614 5913\r
5914 @return The 64-bit value written to the DBR.\r
5915\r
5916**/\r
5917UINT64\r
5918EFIAPI\r
5919AsmWriteDbr (\r
5920 IN UINT8 Index,\r
5921 IN UINT64 Value\r
5922 );\r
5923\r
5924\r
5925/**\r
5926 Writes the current value of 64-bit Performance Monitor Configuration Register (PMC).\r
5927\r
5928 Writes current value of Performance Monitor Configuration Register specified by Index.\r
af2dc6a7 5929 All processor implementations provide at least four performance counters\r
5930 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow status\r
ac644614 5931 registers (PMC [0]... PMC [3]). Processor implementations may provide additional\r
5932 implementation-dependent PMC and PMD to increase the number of 'generic' performance\r
5933 counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation\r
5934 dependent. No parameter checking is performed on Index. If the Index value is\r
5935 beyond the implemented PMC register range, the write is ignored.\r
1a2f870c 5936 This function is only available on Itanium processors.\r
ac644614 5937\r
ee6c452c 5938 @param Index The 8-bit Performance Monitor Configuration Register index to write.\r
5939 @param Value The 64-bit value to write to PMC.\r
ac644614 5940\r
5941 @return The 64-bit value written to the PMC.\r
5942\r
5943**/\r
5944UINT64\r
5945EFIAPI\r
5946AsmWritePmc (\r
5947 IN UINT8 Index,\r
5948 IN UINT64 Value\r
5949 );\r
5950\r
5951\r
5952/**\r
5953 Writes the current value of 64-bit Performance Monitor Data Register (PMD).\r
5954\r
5955 Writes current value of Performance Monitor Data Register specified by Index.\r
af2dc6a7 5956 All processor implementations provide at least four performance counters\r
5957 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow\r
ac644614 5958 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
5959 additional implementation-dependent PMC and PMD to increase the number of 'generic'\r
5960 performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set\r
5961 is implementation dependent. No parameter checking is performed on Index. If the\r
5962 Index value is beyond the implemented PMD register range, the write is ignored.\r
1a2f870c 5963 This function is only available on Itanium processors.\r
ac644614 5964\r
ee6c452c 5965 @param Index The 8-bit Performance Monitor Data Register index to write.\r
5966 @param Value The 64-bit value to write to PMD.\r
ac644614 5967\r
5968 @return The 64-bit value written to the PMD.\r
5969\r
5970**/\r
5971UINT64\r
5972EFIAPI\r
5973AsmWritePmd (\r
5974 IN UINT8 Index,\r
5975 IN UINT64 Value\r
5976 );\r
5977\r
5978\r
5979/**\r
5980 Reads the current value of 64-bit Global Pointer (GP).\r
5981\r
5982 Reads and returns the current value of GP.\r
1a2f870c 5983 This function is only available on Itanium processors.\r
ac644614 5984\r
5985 @return The current value of GP.\r
5986\r
5987**/\r
5988UINT64\r
5989EFIAPI\r
5990AsmReadGp (\r
5991 VOID\r
5992 );\r
5993\r
5994\r
5995/**\r
5996 Write the current value of 64-bit Global Pointer (GP).\r
5997\r
5998 Writes the current value of GP. The 64-bit value written to the GP is returned.\r
5999 No parameter checking is performed on Value.\r
1a2f870c 6000 This function is only available on Itanium processors.\r
ac644614 6001\r
6002 @param Value The 64-bit value to write to GP.\r
6003\r
6004 @return The 64-bit value written to the GP.\r
6005\r
6006**/\r
6007UINT64\r
6008EFIAPI\r
6009AsmWriteGp (\r
6010 IN UINT64 Value\r
6011 );\r
6012\r
6013\r
6014/**\r
6015 Reads the current value of 64-bit Stack Pointer (SP).\r
6016\r
6017 Reads and returns the current value of SP.\r
1a2f870c 6018 This function is only available on Itanium processors.\r
ac644614 6019\r
6020 @return The current value of SP.\r
6021\r
6022**/\r
6023UINT64\r
6024EFIAPI\r
6025AsmReadSp (\r
6026 VOID\r
6027 );\r
6028\r
6029\r
aad6137d 6030///\r
af2dc6a7 6031/// Valid Index value for AsmReadControlRegister().\r
aad6137d 6032///\r
6033#define IPF_CONTROL_REGISTER_DCR 0\r
6034#define IPF_CONTROL_REGISTER_ITM 1\r
6035#define IPF_CONTROL_REGISTER_IVA 2\r
6036#define IPF_CONTROL_REGISTER_PTA 8\r
6037#define IPF_CONTROL_REGISTER_IPSR 16\r
6038#define IPF_CONTROL_REGISTER_ISR 17\r
6039#define IPF_CONTROL_REGISTER_IIP 19\r
6040#define IPF_CONTROL_REGISTER_IFA 20\r
6041#define IPF_CONTROL_REGISTER_ITIR 21\r
6042#define IPF_CONTROL_REGISTER_IIPA 22\r
6043#define IPF_CONTROL_REGISTER_IFS 23\r
6044#define IPF_CONTROL_REGISTER_IIM 24\r
6045#define IPF_CONTROL_REGISTER_IHA 25\r
6046#define IPF_CONTROL_REGISTER_LID 64\r
6047#define IPF_CONTROL_REGISTER_IVR 65\r
6048#define IPF_CONTROL_REGISTER_TPR 66\r
6049#define IPF_CONTROL_REGISTER_EOI 67\r
6050#define IPF_CONTROL_REGISTER_IRR0 68\r
6051#define IPF_CONTROL_REGISTER_IRR1 69\r
6052#define IPF_CONTROL_REGISTER_IRR2 70\r
6053#define IPF_CONTROL_REGISTER_IRR3 71\r
6054#define IPF_CONTROL_REGISTER_ITV 72\r
6055#define IPF_CONTROL_REGISTER_PMV 73\r
6056#define IPF_CONTROL_REGISTER_CMCV 74\r
6057#define IPF_CONTROL_REGISTER_LRR0 80\r
6058#define IPF_CONTROL_REGISTER_LRR1 81\r
6059\r
6060/**\r
6061 Reads a 64-bit control register.\r
6062\r
af2dc6a7 6063 Reads and returns the control register specified by Index. The valid Index valued \r
6064 are defined above in "Related Definitions".\r
6065 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only \r
6066 available on Itanium processors.\r
aad6137d 6067\r
6068 @param Index The index of the control register to read.\r
6069\r
6070 @return The control register specified by Index.\r
6071\r
6072**/\r
6073UINT64\r
6074EFIAPI\r
6075AsmReadControlRegister (\r
6076 IN UINT64 Index\r
6077 );\r
6078\r
6079\r
6080///\r
af2dc6a7 6081/// Valid Index value for AsmReadApplicationRegister().\r
aad6137d 6082///\r
6083#define IPF_APPLICATION_REGISTER_K0 0\r
6084#define IPF_APPLICATION_REGISTER_K1 1\r
6085#define IPF_APPLICATION_REGISTER_K2 2\r
6086#define IPF_APPLICATION_REGISTER_K3 3\r
6087#define IPF_APPLICATION_REGISTER_K4 4\r
6088#define IPF_APPLICATION_REGISTER_K5 5\r
6089#define IPF_APPLICATION_REGISTER_K6 6\r
6090#define IPF_APPLICATION_REGISTER_K7 7\r
6091#define IPF_APPLICATION_REGISTER_RSC 16\r
6092#define IPF_APPLICATION_REGISTER_BSP 17\r
6093#define IPF_APPLICATION_REGISTER_BSPSTORE 18\r
6094#define IPF_APPLICATION_REGISTER_RNAT 19\r
6095#define IPF_APPLICATION_REGISTER_FCR 21\r
6096#define IPF_APPLICATION_REGISTER_EFLAG 24\r
6097#define IPF_APPLICATION_REGISTER_CSD 25\r
6098#define IPF_APPLICATION_REGISTER_SSD 26\r
6099#define IPF_APPLICATION_REGISTER_CFLG 27\r
6100#define IPF_APPLICATION_REGISTER_FSR 28\r
6101#define IPF_APPLICATION_REGISTER_FIR 29\r
6102#define IPF_APPLICATION_REGISTER_FDR 30\r
6103#define IPF_APPLICATION_REGISTER_CCV 32\r
6104#define IPF_APPLICATION_REGISTER_UNAT 36\r
6105#define IPF_APPLICATION_REGISTER_FPSR 40\r
6106#define IPF_APPLICATION_REGISTER_ITC 44\r
6107#define IPF_APPLICATION_REGISTER_PFS 64\r
6108#define IPF_APPLICATION_REGISTER_LC 65\r
6109#define IPF_APPLICATION_REGISTER_EC 66\r
6110\r
6111/**\r
6112 Reads a 64-bit application register.\r
6113\r
af2dc6a7 6114 Reads and returns the application register specified by Index. The valid Index \r
6115 valued are defined above in "Related Definitions".\r
6116 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only \r
6117 available on Itanium processors.\r
aad6137d 6118\r
6119 @param Index The index of the application register to read.\r
6120\r
6121 @return The application register specified by Index.\r
6122\r
6123**/\r
6124UINT64\r
6125EFIAPI\r
6126AsmReadApplicationRegister (\r
6127 IN UINT64 Index\r
6128 );\r
6129\r
6130\r
59e0bb0c 6131/**\r
6132 Reads the current value of a Machine Specific Register (MSR).\r
6133\r
6134 Reads and returns the current value of the Machine Specific Register specified by Index. No\r
6135 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
6136 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
6137 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
1a2f870c 6138 only available on Itanium processors.\r
59e0bb0c 6139\r
6140 @param Index The 8-bit Machine Specific Register index to read.\r
6141\r
6142 @return The current value of the Machine Specific Register specified by Index. \r
6143\r
6144**/\r
6145UINT64\r
6146EFIAPI\r
6147AsmReadMsr (\r
6148 IN UINT8 Index \r
6149 );\r
6150\r
6151\r
6152/**\r
6153 Writes the current value of a Machine Specific Register (MSR).\r
6154\r
6155 Writes Value to the Machine Specific Register specified by Index. Value is returned. No\r
6156 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
6157 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
6158 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
1a2f870c 6159 only available on Itanium processors.\r
59e0bb0c 6160\r
6161 @param Index The 8-bit Machine Specific Register index to write.\r
6162 @param Value The 64-bit value to write to the Machine Specific Register.\r
6163\r
6164 @return The 64-bit value to write to the Machine Specific Register. \r
6165\r
6166**/\r
6167UINT64\r
6168EFIAPI\r
6169AsmWriteMsr (\r
6170 IN UINT8 Index, \r
6171 IN UINT64 Value \r
6172 );\r
6173\r
6174\r
ac644614 6175/**\r
6176 Determines if the CPU is currently executing in virtual, physical, or mixed mode.\r
6177\r
6178 Determines the current execution mode of the CPU.\r
6179 If the CPU is in virtual mode(PSR.RT=1, PSR.DT=1, PSR.IT=1), then 1 is returned.\r
6180 If the CPU is in physical mode(PSR.RT=0, PSR.DT=0, PSR.IT=0), then 0 is returned.\r
6181 If the CPU is not in physical mode or virtual mode, then it is in mixed mode,\r
6182 and -1 is returned.\r
1a2f870c 6183 This function is only available on Itanium processors.\r
ac644614 6184\r
17f695ed 6185 @retval 1 The CPU is in virtual mode.\r
6186 @retval 0 The CPU is in physical mode.\r
6187 @retval -1 The CPU is in mixed mode.\r
ac644614 6188\r
6189**/\r
6190INT64\r
6191EFIAPI\r
6192AsmCpuVirtual (\r
6193 VOID\r
6194 );\r
6195\r
6196\r
6197/**\r
6198 Makes a PAL procedure call.\r
6199\r
6200 This is a wrapper function to make a PAL procedure call. Based on the Index\r
6201 value this API will make static or stacked PAL call. The following table\r
6202 describes the usage of PAL Procedure Index Assignment. Architected procedures\r
6203 may be designated as required or optional. If a PAL procedure is specified\r
6204 as optional, a unique return code of 0xFFFFFFFFFFFFFFFF is returned in the\r
6205 Status field of the PAL_CALL_RETURN structure.\r
6206 This indicates that the procedure is not present in this PAL implementation.\r
6207 It is the caller's responsibility to check for this return code after calling\r
6208 any optional PAL procedure.\r
6209 No parameter checking is performed on the 5 input parameters, but there are\r
6210 some common rules that the caller should follow when making a PAL call. Any\r
6211 address passed to PAL as buffers for return parameters must be 8-byte aligned.\r
6212 Unaligned addresses may cause undefined results. For those parameters defined\r
6213 as reserved or some fields defined as reserved must be zero filled or the invalid\r
6214 argument return value may be returned or undefined result may occur during the\r
6215 execution of the procedure. If the PalEntryPoint does not point to a valid\r
6216 PAL entry point then the system behavior is undefined. This function is only\r
1a2f870c 6217 available on Itanium processors.\r
ac644614 6218\r
ee6c452c 6219 @param PalEntryPoint The PAL procedure calls entry point.\r
6220 @param Index The PAL procedure Index number.\r
6221 @param Arg2 The 2nd parameter for PAL procedure calls.\r
6222 @param Arg3 The 3rd parameter for PAL procedure calls.\r
6223 @param Arg4 The 4th parameter for PAL procedure calls.\r
ac644614 6224\r
6225 @return structure returned from the PAL Call procedure, including the status and return value.\r
6226\r
6227**/\r
6228PAL_CALL_RETURN\r
6229EFIAPI\r
6230AsmPalCall (\r
6231 IN UINT64 PalEntryPoint,\r
6232 IN UINT64 Index,\r
6233 IN UINT64 Arg2,\r
6234 IN UINT64 Arg3,\r
6235 IN UINT64 Arg4\r
6236 );\r
fd163050 6237#endif\r
ac644614 6238\r
fd163050 6239#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
1106ffe1 6240///\r
af2dc6a7 6241/// IA32 and x64 Specific Functions.\r
6242/// Byte packed structure for 16-bit Real Mode EFLAGS.\r
1106ffe1 6243///\r
ac644614 6244typedef union {\r
6245 struct {\r
af2dc6a7 6246 UINT32 CF:1; ///< Carry Flag.\r
6247 UINT32 Reserved_0:1; ///< Reserved.\r
6248 UINT32 PF:1; ///< Parity Flag.\r
6249 UINT32 Reserved_1:1; ///< Reserved.\r
6250 UINT32 AF:1; ///< Auxiliary Carry Flag.\r
6251 UINT32 Reserved_2:1; ///< Reserved.\r
6252 UINT32 ZF:1; ///< Zero Flag.\r
6253 UINT32 SF:1; ///< Sign Flag.\r
6254 UINT32 TF:1; ///< Trap Flag.\r
6255 UINT32 IF:1; ///< Interrupt Enable Flag.\r
6256 UINT32 DF:1; ///< Direction Flag.\r
6257 UINT32 OF:1; ///< Overflow Flag.\r
6258 UINT32 IOPL:2; ///< I/O Privilege Level.\r
6259 UINT32 NT:1; ///< Nested Task.\r
6260 UINT32 Reserved_3:1; ///< Reserved.\r
ac644614 6261 } Bits;\r
6262 UINT16 Uint16;\r
6263} IA32_FLAGS16;\r
6264\r
1106ffe1 6265///\r
af2dc6a7 6266/// Byte packed structure for EFLAGS/RFLAGS.\r
6267/// 32-bits on IA-32.\r
6268/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
1106ffe1 6269///\r
ac644614 6270typedef union {\r
6271 struct {\r
af2dc6a7 6272 UINT32 CF:1; ///< Carry Flag.\r
6273 UINT32 Reserved_0:1; ///< Reserved.\r
6274 UINT32 PF:1; ///< Parity Flag.\r
6275 UINT32 Reserved_1:1; ///< Reserved.\r
6276 UINT32 AF:1; ///< Auxiliary Carry Flag.\r
6277 UINT32 Reserved_2:1; ///< Reserved.\r
6278 UINT32 ZF:1; ///< Zero Flag.\r
6279 UINT32 SF:1; ///< Sign Flag.\r
6280 UINT32 TF:1; ///< Trap Flag.\r
6281 UINT32 IF:1; ///< Interrupt Enable Flag.\r
6282 UINT32 DF:1; ///< Direction Flag.\r
6283 UINT32 OF:1; ///< Overflow Flag.\r
6284 UINT32 IOPL:2; ///< I/O Privilege Level.\r
6285 UINT32 NT:1; ///< Nested Task.\r
6286 UINT32 Reserved_3:1; ///< Reserved.\r
6287 UINT32 RF:1; ///< Resume Flag.\r
6288 UINT32 VM:1; ///< Virtual 8086 Mode.\r
6289 UINT32 AC:1; ///< Alignment Check.\r
6290 UINT32 VIF:1; ///< Virtual Interrupt Flag.\r
6291 UINT32 VIP:1; ///< Virtual Interrupt Pending.\r
6292 UINT32 ID:1; ///< ID Flag.\r
6293 UINT32 Reserved_4:10; ///< Reserved.\r
ac644614 6294 } Bits;\r
6295 UINTN UintN;\r
6296} IA32_EFLAGS32;\r
6297\r
1106ffe1 6298///\r
af2dc6a7 6299/// Byte packed structure for Control Register 0 (CR0).\r
6300/// 32-bits on IA-32.\r
6301/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
1106ffe1 6302///\r
ac644614 6303typedef union {\r
6304 struct {\r
af2dc6a7 6305 UINT32 PE:1; ///< Protection Enable.\r
6306 UINT32 MP:1; ///< Monitor Coprocessor.\r
6307 UINT32 EM:1; ///< Emulation.\r
6308 UINT32 TS:1; ///< Task Switched.\r
6309 UINT32 ET:1; ///< Extension Type.\r
6310 UINT32 NE:1; ///< Numeric Error.\r
6311 UINT32 Reserved_0:10; ///< Reserved.\r
6312 UINT32 WP:1; ///< Write Protect.\r
6313 UINT32 Reserved_1:1; ///< Reserved.\r
6314 UINT32 AM:1; ///< Alignment Mask.\r
6315 UINT32 Reserved_2:10; ///< Reserved.\r
6316 UINT32 NW:1; ///< Mot Write-through.\r
6317 UINT32 CD:1; ///< Cache Disable.\r
6318 UINT32 PG:1; ///< Paging.\r
ac644614 6319 } Bits;\r
6320 UINTN UintN;\r
6321} IA32_CR0;\r
6322\r
1106ffe1 6323///\r
af2dc6a7 6324/// Byte packed structure for Control Register 4 (CR4).\r
6325/// 32-bits on IA-32.\r
6326/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
1106ffe1 6327///\r
ac644614 6328typedef union {\r
6329 struct {\r
af2dc6a7 6330 UINT32 VME:1; ///< Virtual-8086 Mode Extensions.\r
6331 UINT32 PVI:1; ///< Protected-Mode Virtual Interrupts.\r
6332 UINT32 TSD:1; ///< Time Stamp Disable.\r
6333 UINT32 DE:1; ///< Debugging Extensions.\r
6334 UINT32 PSE:1; ///< Page Size Extensions.\r
6335 UINT32 PAE:1; ///< Physical Address Extension.\r
6336 UINT32 MCE:1; ///< Machine Check Enable.\r
6337 UINT32 PGE:1; ///< Page Global Enable.\r
2a53dabf 6338 UINT32 PCE:1; ///< Performance Monitoring Counter\r
af2dc6a7 6339 ///< Enable.\r
2a53dabf
LG
6340 UINT32 OSFXSR:1; ///< Operating System Support for\r
6341 ///< FXSAVE and FXRSTOR instructions\r
6342 UINT32 OSXMMEXCPT:1; ///< Operating System Support for\r
6343 ///< Unmasked SIMD Floating Point\r
af2dc6a7 6344 ///< Exceptions.\r
6345 UINT32 Reserved_0:2; ///< Reserved.\r
2a53dabf 6346 UINT32 VMXE:1; ///< VMX Enable\r
af2dc6a7 6347 UINT32 Reserved_1:18; ///< Reserved.\r
ac644614 6348 } Bits;\r
6349 UINTN UintN;\r
6350} IA32_CR4;\r
6351\r
6088db38 6352///\r
6353/// Byte packed structure for a segment descriptor in a GDT/LDT.\r
6354///\r
6355typedef union {\r
6356 struct {\r
6357 UINT32 LimitLow:16;\r
6358 UINT32 BaseLow:16;\r
6359 UINT32 BaseMid:8;\r
6360 UINT32 Type:4;\r
6361 UINT32 S:1;\r
6362 UINT32 DPL:2;\r
6363 UINT32 P:1;\r
6364 UINT32 LimitHigh:4;\r
6365 UINT32 AVL:1;\r
6366 UINT32 L:1;\r
6367 UINT32 DB:1;\r
6368 UINT32 G:1;\r
6369 UINT32 BaseHigh:8;\r
6370 } Bits;\r
6371 UINT64 Uint64;\r
6372} IA32_SEGMENT_DESCRIPTOR;\r
6373\r
1106ffe1 6374///\r
af2dc6a7 6375/// Byte packed structure for an IDTR, GDTR, LDTR descriptor.\r
1106ffe1 6376///\r
ac644614 6377#pragma pack (1)\r
6378typedef struct {\r
6379 UINT16 Limit;\r
6380 UINTN Base;\r
6381} IA32_DESCRIPTOR;\r
6382#pragma pack ()\r
6383\r
6384#define IA32_IDT_GATE_TYPE_TASK 0x85\r
6385#define IA32_IDT_GATE_TYPE_INTERRUPT_16 0x86\r
6386#define IA32_IDT_GATE_TYPE_TRAP_16 0x87\r
6387#define IA32_IDT_GATE_TYPE_INTERRUPT_32 0x8E\r
6388#define IA32_IDT_GATE_TYPE_TRAP_32 0x8F\r
6389\r
6f4aad3b 6390\r
6391#if defined (MDE_CPU_IA32)\r
1106ffe1 6392///\r
af2dc6a7 6393/// Byte packed structure for an IA-32 Interrupt Gate Descriptor.\r
1106ffe1 6394///\r
dc317713 6395typedef union {\r
6396 struct {\r
af2dc6a7 6397 UINT32 OffsetLow:16; ///< Offset bits 15..0.\r
6398 UINT32 Selector:16; ///< Selector.\r
6399 UINT32 Reserved_0:8; ///< Reserved.\r
6400 UINT32 GateType:8; ///< Gate Type. See #defines above.\r
6401 UINT32 OffsetHigh:16; ///< Offset bits 31..16.\r
dc317713 6402 } Bits;\r
6403 UINT64 Uint64;\r
6404} IA32_IDT_GATE_DESCRIPTOR;\r
6405\r
6406#endif\r
6407\r
6408#if defined (MDE_CPU_X64)\r
6f4aad3b 6409///\r
af2dc6a7 6410/// Byte packed structure for an x64 Interrupt Gate Descriptor.\r
6f4aad3b 6411///\r
ac644614 6412typedef union {\r
6413 struct {\r
af2dc6a7 6414 UINT32 OffsetLow:16; ///< Offset bits 15..0.\r
6415 UINT32 Selector:16; ///< Selector.\r
6416 UINT32 Reserved_0:8; ///< Reserved.\r
6417 UINT32 GateType:8; ///< Gate Type. See #defines above.\r
6418 UINT32 OffsetHigh:16; ///< Offset bits 31..16.\r
6419 UINT32 OffsetUpper:32; ///< Offset bits 63..32.\r
6420 UINT32 Reserved_1:32; ///< Reserved.\r
ac644614 6421 } Bits;\r
6f4aad3b 6422 struct {\r
6423 UINT64 Uint64;\r
6424 UINT64 Uint64_1;\r
6425 } Uint128; \r
ac644614 6426} IA32_IDT_GATE_DESCRIPTOR;\r
6427\r
dc317713 6428#endif\r
6429\r
1106ffe1 6430///\r
af2dc6a7 6431/// Byte packed structure for an FP/SSE/SSE2 context.\r
1106ffe1 6432///\r
ac644614 6433typedef struct {\r
6434 UINT8 Buffer[512];\r
6435} IA32_FX_BUFFER;\r
6436\r
1106ffe1 6437///\r
af2dc6a7 6438/// Structures for the 16-bit real mode thunks.\r
1106ffe1 6439///\r
ac644614 6440typedef struct {\r
6441 UINT32 Reserved1;\r
6442 UINT32 Reserved2;\r
6443 UINT32 Reserved3;\r
6444 UINT32 Reserved4;\r
6445 UINT8 BL;\r
6446 UINT8 BH;\r
6447 UINT16 Reserved5;\r
6448 UINT8 DL;\r
6449 UINT8 DH;\r
6450 UINT16 Reserved6;\r
6451 UINT8 CL;\r
6452 UINT8 CH;\r
6453 UINT16 Reserved7;\r
6454 UINT8 AL;\r
6455 UINT8 AH;\r
6456 UINT16 Reserved8;\r
6457} IA32_BYTE_REGS;\r
6458\r
6459typedef struct {\r
6460 UINT16 DI;\r
6461 UINT16 Reserved1;\r
6462 UINT16 SI;\r
6463 UINT16 Reserved2;\r
6464 UINT16 BP;\r
6465 UINT16 Reserved3;\r
6466 UINT16 SP;\r
6467 UINT16 Reserved4;\r
6468 UINT16 BX;\r
6469 UINT16 Reserved5;\r
6470 UINT16 DX;\r
6471 UINT16 Reserved6;\r
6472 UINT16 CX;\r
6473 UINT16 Reserved7;\r
6474 UINT16 AX;\r
6475 UINT16 Reserved8;\r
6476} IA32_WORD_REGS;\r
6477\r
6478typedef struct {\r
6479 UINT32 EDI;\r
6480 UINT32 ESI;\r
6481 UINT32 EBP;\r
6482 UINT32 ESP;\r
6483 UINT32 EBX;\r
6484 UINT32 EDX;\r
6485 UINT32 ECX;\r
6486 UINT32 EAX;\r
6487 UINT16 DS;\r
6488 UINT16 ES;\r
6489 UINT16 FS;\r
6490 UINT16 GS;\r
6491 IA32_EFLAGS32 EFLAGS;\r
6492 UINT32 Eip;\r
6493 UINT16 CS;\r
6494 UINT16 SS;\r
6495} IA32_DWORD_REGS;\r
6496\r
6497typedef union {\r
6498 IA32_DWORD_REGS E;\r
6499 IA32_WORD_REGS X;\r
6500 IA32_BYTE_REGS H;\r
6501} IA32_REGISTER_SET;\r
6502\r
1106ffe1 6503///\r
af2dc6a7 6504/// Byte packed structure for an 16-bit real mode thunks.\r
1106ffe1 6505///\r
ac644614 6506typedef struct {\r
6507 IA32_REGISTER_SET *RealModeState;\r
6508 VOID *RealModeBuffer;\r
6509 UINT32 RealModeBufferSize;\r
6510 UINT32 ThunkAttributes;\r
6511} THUNK_CONTEXT;\r
6512\r
6513#define THUNK_ATTRIBUTE_BIG_REAL_MODE 0x00000001\r
6514#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 0x00000002\r
6515#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL 0x00000004\r
6516\r
6517/**\r
6518 Retrieves CPUID information.\r
6519\r
6520 Executes the CPUID instruction with EAX set to the value specified by Index.\r
6521 This function always returns Index.\r
6522 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
6523 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
6524 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
6525 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
030cd1a2 6526 This function is only available on IA-32 and x64.\r
ac644614 6527\r
6528 @param Index The 32-bit value to load into EAX prior to invoking the CPUID\r
6529 instruction.\r
af2dc6a7 6530 @param Eax The pointer to the 32-bit EAX value returned by the CPUID\r
ac644614 6531 instruction. This is an optional parameter that may be NULL.\r
af2dc6a7 6532 @param Ebx The pointer to the 32-bit EBX value returned by the CPUID\r
ac644614 6533 instruction. This is an optional parameter that may be NULL.\r
af2dc6a7 6534 @param Ecx The pointer to the 32-bit ECX value returned by the CPUID\r
ac644614 6535 instruction. This is an optional parameter that may be NULL.\r
af2dc6a7 6536 @param Edx The pointer to the 32-bit EDX value returned by the CPUID\r
ac644614 6537 instruction. This is an optional parameter that may be NULL.\r
6538\r
2fe241a2 6539 @return Index.\r
ac644614 6540\r
6541**/\r
6542UINT32\r
6543EFIAPI\r
6544AsmCpuid (\r
6545 IN UINT32 Index,\r
6546 OUT UINT32 *Eax, OPTIONAL\r
6547 OUT UINT32 *Ebx, OPTIONAL\r
6548 OUT UINT32 *Ecx, OPTIONAL\r
6549 OUT UINT32 *Edx OPTIONAL\r
6550 );\r
6551\r
6552\r
6553/**\r
6554 Retrieves CPUID information using an extended leaf identifier.\r
6555\r
6556 Executes the CPUID instruction with EAX set to the value specified by Index\r
6557 and ECX set to the value specified by SubIndex. This function always returns\r
6558 Index. This function is only available on IA-32 and x64.\r
6559\r
6560 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
6561 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
6562 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
6563 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
6564\r
6565 @param Index The 32-bit value to load into EAX prior to invoking the\r
6566 CPUID instruction.\r
6567 @param SubIndex The 32-bit value to load into ECX prior to invoking the\r
6568 CPUID instruction.\r
af2dc6a7 6569 @param Eax The pointer to the 32-bit EAX value returned by the CPUID\r
ac644614 6570 instruction. This is an optional parameter that may be\r
6571 NULL.\r
af2dc6a7 6572 @param Ebx The pointer to the 32-bit EBX value returned by the CPUID\r
ac644614 6573 instruction. This is an optional parameter that may be\r
6574 NULL.\r
af2dc6a7 6575 @param Ecx The pointer to the 32-bit ECX value returned by the CPUID\r
ac644614 6576 instruction. This is an optional parameter that may be\r
6577 NULL.\r
af2dc6a7 6578 @param Edx The pointer to the 32-bit EDX value returned by the CPUID\r
ac644614 6579 instruction. This is an optional parameter that may be\r
6580 NULL.\r
6581\r
2fe241a2 6582 @return Index.\r
ac644614 6583\r
6584**/\r
6585UINT32\r
6586EFIAPI\r
6587AsmCpuidEx (\r
6588 IN UINT32 Index,\r
6589 IN UINT32 SubIndex,\r
6590 OUT UINT32 *Eax, OPTIONAL\r
6591 OUT UINT32 *Ebx, OPTIONAL\r
6592 OUT UINT32 *Ecx, OPTIONAL\r
6593 OUT UINT32 *Edx OPTIONAL\r
6594 );\r
6595\r
6596\r
be5f1614 6597/**\r
6598 Set CD bit and clear NW bit of CR0 followed by a WBINVD.\r
6599\r
6600 Disables the caches by setting the CD bit of CR0 to 1, clearing the NW bit of CR0 to 0,\r
6601 and executing a WBINVD instruction. This function is only available on IA-32 and x64.\r
6602\r
6603**/\r
6604VOID\r
6605EFIAPI\r
6606AsmDisableCache (\r
6607 VOID\r
6608 );\r
6609\r
6610\r
6611/**\r
6612 Perform a WBINVD and clear both the CD and NW bits of CR0.\r
6613\r
6614 Enables the caches by executing a WBINVD instruction and then clear both the CD and NW\r
6615 bits of CR0 to 0. This function is only available on IA-32 and x64.\r
6616\r
6617**/\r
6618VOID\r
6619EFIAPI\r
6620AsmEnableCache (\r
6621 VOID\r
6622 );\r
6623\r
6624\r
ac644614 6625/**\r
6626 Returns the lower 32-bits of a Machine Specific Register(MSR).\r
6627\r
6628 Reads and returns the lower 32-bits of the MSR specified by Index.\r
6629 No parameter checking is performed on Index, and some Index values may cause\r
6630 CPU exceptions. The caller must either guarantee that Index is valid, or the\r
6631 caller must set up exception handlers to catch the exceptions. This function\r
030cd1a2 6632 is only available on IA-32 and x64.\r
ac644614 6633\r
6634 @param Index The 32-bit MSR index to read.\r
6635\r
6636 @return The lower 32 bits of the MSR identified by Index.\r
6637\r
6638**/\r
6639UINT32\r
6640EFIAPI\r
6641AsmReadMsr32 (\r
6642 IN UINT32 Index\r
6643 );\r
6644\r
6645\r
6646/**\r
17f695ed 6647 Writes a 32-bit value to a Machine Specific Register(MSR), and returns the value.\r
6648 The upper 32-bits of the MSR are set to zero.\r
ac644614 6649\r
6650 Writes the 32-bit value specified by Value to the MSR specified by Index. The\r
6651 upper 32-bits of the MSR write are set to zero. The 32-bit value written to\r
6652 the MSR is returned. No parameter checking is performed on Index or Value,\r
6653 and some of these may cause CPU exceptions. The caller must either guarantee\r
6654 that Index and Value are valid, or the caller must establish proper exception\r
030cd1a2 6655 handlers. This function is only available on IA-32 and x64.\r
ac644614 6656\r
6657 @param Index The 32-bit MSR index to write.\r
6658 @param Value The 32-bit value to write to the MSR.\r
6659\r
6660 @return Value\r
6661\r
6662**/\r
6663UINT32\r
6664EFIAPI\r
6665AsmWriteMsr32 (\r
6666 IN UINT32 Index,\r
6667 IN UINT32 Value\r
6668 );\r
6669\r
6670\r
6671/**\r
62991af2 6672 Reads a 64-bit MSR, performs a bitwise OR on the lower 32-bits, and\r
ac644614 6673 writes the result back to the 64-bit MSR.\r
6674\r
62991af2 6675 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 6676 between the lower 32-bits of the read result and the value specified by\r
6677 OrData, and writes the result to the 64-bit MSR specified by Index. The lower\r
6678 32-bits of the value written to the MSR is returned. No parameter checking is\r
6679 performed on Index or OrData, and some of these may cause CPU exceptions. The\r
6680 caller must either guarantee that Index and OrData are valid, or the caller\r
6681 must establish proper exception handlers. This function is only available on\r
030cd1a2 6682 IA-32 and x64.\r
ac644614 6683\r
6684 @param Index The 32-bit MSR index to write.\r
6685 @param OrData The value to OR with the read value from the MSR.\r
6686\r
6687 @return The lower 32-bit value written to the MSR.\r
6688\r
6689**/\r
6690UINT32\r
6691EFIAPI\r
6692AsmMsrOr32 (\r
6693 IN UINT32 Index,\r
6694 IN UINT32 OrData\r
6695 );\r
6696\r
6697\r
6698/**\r
6699 Reads a 64-bit MSR, performs a bitwise AND on the lower 32-bits, and writes\r
6700 the result back to the 64-bit MSR.\r
6701\r
6702 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
6703 lower 32-bits of the read result and the value specified by AndData, and\r
6704 writes the result to the 64-bit MSR specified by Index. The lower 32-bits of\r
6705 the value written to the MSR is returned. No parameter checking is performed\r
6706 on Index or AndData, and some of these may cause CPU exceptions. The caller\r
6707 must either guarantee that Index and AndData are valid, or the caller must\r
6708 establish proper exception handlers. This function is only available on IA-32\r
030cd1a2 6709 and x64.\r
ac644614 6710\r
6711 @param Index The 32-bit MSR index to write.\r
6712 @param AndData The value to AND with the read value from the MSR.\r
6713\r
6714 @return The lower 32-bit value written to the MSR.\r
6715\r
6716**/\r
6717UINT32\r
6718EFIAPI\r
6719AsmMsrAnd32 (\r
6720 IN UINT32 Index,\r
6721 IN UINT32 AndData\r
6722 );\r
6723\r
6724\r
6725/**\r
62991af2 6726 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise OR\r
ac644614 6727 on the lower 32-bits, and writes the result back to the 64-bit MSR.\r
6728\r
6729 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
6730 lower 32-bits of the read result and the value specified by AndData\r
62991af2 6731 preserving the upper 32-bits, performs a bitwise OR between the\r
ac644614 6732 result of the AND operation and the value specified by OrData, and writes the\r
6733 result to the 64-bit MSR specified by Address. The lower 32-bits of the value\r
6734 written to the MSR is returned. No parameter checking is performed on Index,\r
6735 AndData, or OrData, and some of these may cause CPU exceptions. The caller\r
6736 must either guarantee that Index, AndData, and OrData are valid, or the\r
6737 caller must establish proper exception handlers. This function is only\r
030cd1a2 6738 available on IA-32 and x64.\r
ac644614 6739\r
6740 @param Index The 32-bit MSR index to write.\r
6741 @param AndData The value to AND with the read value from the MSR.\r
6742 @param OrData The value to OR with the result of the AND operation.\r
6743\r
6744 @return The lower 32-bit value written to the MSR.\r
6745\r
6746**/\r
6747UINT32\r
6748EFIAPI\r
6749AsmMsrAndThenOr32 (\r
6750 IN UINT32 Index,\r
6751 IN UINT32 AndData,\r
6752 IN UINT32 OrData\r
6753 );\r
6754\r
6755\r
6756/**\r
6757 Reads a bit field of an MSR.\r
6758\r
6759 Reads the bit field in the lower 32-bits of a 64-bit MSR. The bit field is\r
6760 specified by the StartBit and the EndBit. The value of the bit field is\r
6761 returned. The caller must either guarantee that Index is valid, or the caller\r
6762 must set up exception handlers to catch the exceptions. This function is only\r
030cd1a2 6763 available on IA-32 and x64.\r
ac644614 6764\r
6765 If StartBit is greater than 31, then ASSERT().\r
6766 If EndBit is greater than 31, then ASSERT().\r
6767 If EndBit is less than StartBit, then ASSERT().\r
6768\r
6769 @param Index The 32-bit MSR index to read.\r
6770 @param StartBit The ordinal of the least significant bit in the bit field.\r
6771 Range 0..31.\r
6772 @param EndBit The ordinal of the most significant bit in the bit field.\r
6773 Range 0..31.\r
6774\r
6775 @return The bit field read from the MSR.\r
6776\r
6777**/\r
6778UINT32\r
6779EFIAPI\r
6780AsmMsrBitFieldRead32 (\r
6781 IN UINT32 Index,\r
6782 IN UINTN StartBit,\r
6783 IN UINTN EndBit\r
6784 );\r
6785\r
6786\r
6787/**\r
6788 Writes a bit field to an MSR.\r
6789\r
2fe241a2 6790 Writes Value to a bit field in the lower 32-bits of a 64-bit MSR. The bit\r
ac644614 6791 field is specified by the StartBit and the EndBit. All other bits in the\r
6792 destination MSR are preserved. The lower 32-bits of the MSR written is\r
62991af2 6793 returned. The caller must either guarantee that Index and the data written \r
6794 is valid, or the caller must set up exception handlers to catch the exceptions. \r
6795 This function is only available on IA-32 and x64.\r
ac644614 6796\r
6797 If StartBit is greater than 31, then ASSERT().\r
6798 If EndBit is greater than 31, then ASSERT().\r
6799 If EndBit is less than StartBit, then ASSERT().\r
94952554 6800 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 6801\r
6802 @param Index The 32-bit MSR index to write.\r
6803 @param StartBit The ordinal of the least significant bit in the bit field.\r
6804 Range 0..31.\r
6805 @param EndBit The ordinal of the most significant bit in the bit field.\r
6806 Range 0..31.\r
6807 @param Value New value of the bit field.\r
6808\r
6809 @return The lower 32-bit of the value written to the MSR.\r
6810\r
6811**/\r
6812UINT32\r
6813EFIAPI\r
6814AsmMsrBitFieldWrite32 (\r
6815 IN UINT32 Index,\r
6816 IN UINTN StartBit,\r
6817 IN UINTN EndBit,\r
6818 IN UINT32 Value\r
6819 );\r
6820\r
6821\r
6822/**\r
6823 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the\r
6824 result back to the bit field in the 64-bit MSR.\r
6825\r
62991af2 6826 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 6827 between the read result and the value specified by OrData, and writes the\r
6828 result to the 64-bit MSR specified by Index. The lower 32-bits of the value\r
6829 written to the MSR are returned. Extra left bits in OrData are stripped. The\r
6830 caller must either guarantee that Index and the data written is valid, or\r
6831 the caller must set up exception handlers to catch the exceptions. This\r
030cd1a2 6832 function is only available on IA-32 and x64.\r
ac644614 6833\r
6834 If StartBit is greater than 31, then ASSERT().\r
6835 If EndBit is greater than 31, then ASSERT().\r
6836 If EndBit is less than StartBit, then ASSERT().\r
94952554 6837 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 6838\r
6839 @param Index The 32-bit MSR index to write.\r
6840 @param StartBit The ordinal of the least significant bit in the bit field.\r
6841 Range 0..31.\r
6842 @param EndBit The ordinal of the most significant bit in the bit field.\r
6843 Range 0..31.\r
6844 @param OrData The value to OR with the read value from the MSR.\r
6845\r
6846 @return The lower 32-bit of the value written to the MSR.\r
6847\r
6848**/\r
6849UINT32\r
6850EFIAPI\r
6851AsmMsrBitFieldOr32 (\r
6852 IN UINT32 Index,\r
6853 IN UINTN StartBit,\r
6854 IN UINTN EndBit,\r
6855 IN UINT32 OrData\r
6856 );\r
6857\r
6858\r
6859/**\r
6860 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
6861 result back to the bit field in the 64-bit MSR.\r
6862\r
6863 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
6864 read result and the value specified by AndData, and writes the result to the\r
6865 64-bit MSR specified by Index. The lower 32-bits of the value written to the\r
6866 MSR are returned. Extra left bits in AndData are stripped. The caller must\r
6867 either guarantee that Index and the data written is valid, or the caller must\r
6868 set up exception handlers to catch the exceptions. This function is only\r
030cd1a2 6869 available on IA-32 and x64.\r
ac644614 6870\r
6871 If StartBit is greater than 31, then ASSERT().\r
6872 If EndBit is greater than 31, then ASSERT().\r
6873 If EndBit is less than StartBit, then ASSERT().\r
94952554 6874 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 6875\r
6876 @param Index The 32-bit MSR index to write.\r
6877 @param StartBit The ordinal of the least significant bit in the bit field.\r
6878 Range 0..31.\r
6879 @param EndBit The ordinal of the most significant bit in the bit field.\r
6880 Range 0..31.\r
6881 @param AndData The value to AND with the read value from the MSR.\r
6882\r
6883 @return The lower 32-bit of the value written to the MSR.\r
6884\r
6885**/\r
6886UINT32\r
6887EFIAPI\r
6888AsmMsrBitFieldAnd32 (\r
6889 IN UINT32 Index,\r
6890 IN UINTN StartBit,\r
6891 IN UINTN EndBit,\r
6892 IN UINT32 AndData\r
6893 );\r
6894\r
6895\r
6896/**\r
6897 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
62991af2 6898 bitwise OR, and writes the result back to the bit field in the\r
ac644614 6899 64-bit MSR.\r
6900\r
6901 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by a\r
62991af2 6902 bitwise OR between the read result and the value specified by\r
ac644614 6903 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
6904 lower 32-bits of the value written to the MSR are returned. Extra left bits\r
6905 in both AndData and OrData are stripped. The caller must either guarantee\r
6906 that Index and the data written is valid, or the caller must set up exception\r
6907 handlers to catch the exceptions. This function is only available on IA-32\r
030cd1a2 6908 and x64.\r
ac644614 6909\r
6910 If StartBit is greater than 31, then ASSERT().\r
6911 If EndBit is greater than 31, then ASSERT().\r
6912 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
6913 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
6914 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 6915\r
6916 @param Index The 32-bit MSR index to write.\r
6917 @param StartBit The ordinal of the least significant bit in the bit field.\r
6918 Range 0..31.\r
6919 @param EndBit The ordinal of the most significant bit in the bit field.\r
6920 Range 0..31.\r
6921 @param AndData The value to AND with the read value from the MSR.\r
6922 @param OrData The value to OR with the result of the AND operation.\r
6923\r
6924 @return The lower 32-bit of the value written to the MSR.\r
6925\r
6926**/\r
6927UINT32\r
6928EFIAPI\r
6929AsmMsrBitFieldAndThenOr32 (\r
6930 IN UINT32 Index,\r
6931 IN UINTN StartBit,\r
6932 IN UINTN EndBit,\r
6933 IN UINT32 AndData,\r
6934 IN UINT32 OrData\r
6935 );\r
6936\r
6937\r
6938/**\r
6939 Returns a 64-bit Machine Specific Register(MSR).\r
6940\r
6941 Reads and returns the 64-bit MSR specified by Index. No parameter checking is\r
6942 performed on Index, and some Index values may cause CPU exceptions. The\r
6943 caller must either guarantee that Index is valid, or the caller must set up\r
6944 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 6945 on IA-32 and x64.\r
ac644614 6946\r
6947 @param Index The 32-bit MSR index to read.\r
6948\r
6949 @return The value of the MSR identified by Index.\r
6950\r
6951**/\r
6952UINT64\r
6953EFIAPI\r
6954AsmReadMsr64 (\r
6955 IN UINT32 Index\r
6956 );\r
6957\r
6958\r
6959/**\r
6960 Writes a 64-bit value to a Machine Specific Register(MSR), and returns the\r
6961 value.\r
6962\r
6963 Writes the 64-bit value specified by Value to the MSR specified by Index. The\r
6964 64-bit value written to the MSR is returned. No parameter checking is\r
6965 performed on Index or Value, and some of these may cause CPU exceptions. The\r
6966 caller must either guarantee that Index and Value are valid, or the caller\r
6967 must establish proper exception handlers. This function is only available on\r
030cd1a2 6968 IA-32 and x64.\r
ac644614 6969\r
6970 @param Index The 32-bit MSR index to write.\r
6971 @param Value The 64-bit value to write to the MSR.\r
6972\r
6973 @return Value\r
6974\r
6975**/\r
6976UINT64\r
6977EFIAPI\r
6978AsmWriteMsr64 (\r
6979 IN UINT32 Index,\r
6980 IN UINT64 Value\r
6981 );\r
6982\r
6983\r
6984/**\r
62991af2 6985 Reads a 64-bit MSR, performs a bitwise OR, and writes the result\r
ac644614 6986 back to the 64-bit MSR.\r
6987\r
62991af2 6988 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 6989 between the read result and the value specified by OrData, and writes the\r
6990 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
6991 returned. No parameter checking is performed on Index or OrData, and some of\r
6992 these may cause CPU exceptions. The caller must either guarantee that Index\r
6993 and OrData are valid, or the caller must establish proper exception handlers.\r
030cd1a2 6994 This function is only available on IA-32 and x64.\r
ac644614 6995\r
6996 @param Index The 32-bit MSR index to write.\r
6997 @param OrData The value to OR with the read value from the MSR.\r
6998\r
6999 @return The value written back to the MSR.\r
7000\r
7001**/\r
7002UINT64\r
7003EFIAPI\r
7004AsmMsrOr64 (\r
7005 IN UINT32 Index,\r
7006 IN UINT64 OrData\r
7007 );\r
7008\r
7009\r
7010/**\r
7011 Reads a 64-bit MSR, performs a bitwise AND, and writes the result back to the\r
7012 64-bit MSR.\r
7013\r
7014 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7015 read result and the value specified by OrData, and writes the result to the\r
7016 64-bit MSR specified by Index. The value written to the MSR is returned. No\r
7017 parameter checking is performed on Index or OrData, and some of these may\r
7018 cause CPU exceptions. The caller must either guarantee that Index and OrData\r
7019 are valid, or the caller must establish proper exception handlers. This\r
030cd1a2 7020 function is only available on IA-32 and x64.\r
ac644614 7021\r
7022 @param Index The 32-bit MSR index to write.\r
7023 @param AndData The value to AND with the read value from the MSR.\r
7024\r
7025 @return The value written back to the MSR.\r
7026\r
7027**/\r
7028UINT64\r
7029EFIAPI\r
7030AsmMsrAnd64 (\r
7031 IN UINT32 Index,\r
7032 IN UINT64 AndData\r
7033 );\r
7034\r
7035\r
7036/**\r
62991af2 7037 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise \r
ac644614 7038 OR, and writes the result back to the 64-bit MSR.\r
7039\r
7040 Reads the 64-bit MSR specified by Index, performs a bitwise AND between read\r
62991af2 7041 result and the value specified by AndData, performs a bitwise OR\r
ac644614 7042 between the result of the AND operation and the value specified by OrData,\r
7043 and writes the result to the 64-bit MSR specified by Index. The value written\r
7044 to the MSR is returned. No parameter checking is performed on Index, AndData,\r
7045 or OrData, and some of these may cause CPU exceptions. The caller must either\r
7046 guarantee that Index, AndData, and OrData are valid, or the caller must\r
7047 establish proper exception handlers. This function is only available on IA-32\r
030cd1a2 7048 and x64.\r
ac644614 7049\r
7050 @param Index The 32-bit MSR index to write.\r
7051 @param AndData The value to AND with the read value from the MSR.\r
7052 @param OrData The value to OR with the result of the AND operation.\r
7053\r
7054 @return The value written back to the MSR.\r
7055\r
7056**/\r
7057UINT64\r
7058EFIAPI\r
7059AsmMsrAndThenOr64 (\r
7060 IN UINT32 Index,\r
7061 IN UINT64 AndData,\r
7062 IN UINT64 OrData\r
7063 );\r
7064\r
7065\r
7066/**\r
7067 Reads a bit field of an MSR.\r
7068\r
7069 Reads the bit field in the 64-bit MSR. The bit field is specified by the\r
7070 StartBit and the EndBit. The value of the bit field is returned. The caller\r
7071 must either guarantee that Index is valid, or the caller must set up\r
7072 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 7073 on IA-32 and x64.\r
ac644614 7074\r
7075 If StartBit is greater than 63, then ASSERT().\r
7076 If EndBit is greater than 63, then ASSERT().\r
7077 If EndBit is less than StartBit, then ASSERT().\r
7078\r
7079 @param Index The 32-bit MSR index to read.\r
7080 @param StartBit The ordinal of the least significant bit in the bit field.\r
7081 Range 0..63.\r
7082 @param EndBit The ordinal of the most significant bit in the bit field.\r
7083 Range 0..63.\r
7084\r
7085 @return The value read from the MSR.\r
7086\r
7087**/\r
7088UINT64\r
7089EFIAPI\r
7090AsmMsrBitFieldRead64 (\r
7091 IN UINT32 Index,\r
7092 IN UINTN StartBit,\r
7093 IN UINTN EndBit\r
7094 );\r
7095\r
7096\r
7097/**\r
7098 Writes a bit field to an MSR.\r
7099\r
7100 Writes Value to a bit field in a 64-bit MSR. The bit field is specified by\r
7101 the StartBit and the EndBit. All other bits in the destination MSR are\r
62991af2 7102 preserved. The MSR written is returned. The caller must either guarantee \r
7103 that Index and the data written is valid, or the caller must set up exception \r
7104 handlers to catch the exceptions. This function is only available on IA-32 and x64.\r
ac644614 7105\r
7106 If StartBit is greater than 63, then ASSERT().\r
7107 If EndBit is greater than 63, then ASSERT().\r
7108 If EndBit is less than StartBit, then ASSERT().\r
94952554 7109 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7110\r
7111 @param Index The 32-bit MSR index to write.\r
7112 @param StartBit The ordinal of the least significant bit in the bit field.\r
7113 Range 0..63.\r
7114 @param EndBit The ordinal of the most significant bit in the bit field.\r
7115 Range 0..63.\r
7116 @param Value New value of the bit field.\r
7117\r
7118 @return The value written back to the MSR.\r
7119\r
7120**/\r
7121UINT64\r
7122EFIAPI\r
7123AsmMsrBitFieldWrite64 (\r
7124 IN UINT32 Index,\r
7125 IN UINTN StartBit,\r
7126 IN UINTN EndBit,\r
7127 IN UINT64 Value\r
7128 );\r
7129\r
7130\r
7131/**\r
62991af2 7132 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and\r
ac644614 7133 writes the result back to the bit field in the 64-bit MSR.\r
7134\r
62991af2 7135 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 7136 between the read result and the value specified by OrData, and writes the\r
7137 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
7138 returned. Extra left bits in OrData are stripped. The caller must either\r
7139 guarantee that Index and the data written is valid, or the caller must set up\r
7140 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 7141 on IA-32 and x64.\r
ac644614 7142\r
7143 If StartBit is greater than 63, then ASSERT().\r
7144 If EndBit is greater than 63, then ASSERT().\r
7145 If EndBit is less than StartBit, then ASSERT().\r
94952554 7146 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7147\r
7148 @param Index The 32-bit MSR index to write.\r
7149 @param StartBit The ordinal of the least significant bit in the bit field.\r
7150 Range 0..63.\r
7151 @param EndBit The ordinal of the most significant bit in the bit field.\r
7152 Range 0..63.\r
7153 @param OrData The value to OR with the read value from the bit field.\r
7154\r
7155 @return The value written back to the MSR.\r
7156\r
7157**/\r
7158UINT64\r
7159EFIAPI\r
7160AsmMsrBitFieldOr64 (\r
7161 IN UINT32 Index,\r
7162 IN UINTN StartBit,\r
7163 IN UINTN EndBit,\r
7164 IN UINT64 OrData\r
7165 );\r
7166\r
7167\r
7168/**\r
7169 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
7170 result back to the bit field in the 64-bit MSR.\r
7171\r
7172 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7173 read result and the value specified by AndData, and writes the result to the\r
7174 64-bit MSR specified by Index. The value written to the MSR is returned.\r
7175 Extra left bits in AndData are stripped. The caller must either guarantee\r
7176 that Index and the data written is valid, or the caller must set up exception\r
7177 handlers to catch the exceptions. This function is only available on IA-32\r
030cd1a2 7178 and x64.\r
ac644614 7179\r
7180 If StartBit is greater than 63, then ASSERT().\r
7181 If EndBit is greater than 63, then ASSERT().\r
7182 If EndBit is less than StartBit, then ASSERT().\r
94952554 7183 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7184\r
7185 @param Index The 32-bit MSR index to write.\r
7186 @param StartBit The ordinal of the least significant bit in the bit field.\r
7187 Range 0..63.\r
7188 @param EndBit The ordinal of the most significant bit in the bit field.\r
7189 Range 0..63.\r
7190 @param AndData The value to AND with the read value from the bit field.\r
7191\r
7192 @return The value written back to the MSR.\r
7193\r
7194**/\r
7195UINT64\r
7196EFIAPI\r
7197AsmMsrBitFieldAnd64 (\r
7198 IN UINT32 Index,\r
7199 IN UINTN StartBit,\r
7200 IN UINTN EndBit,\r
7201 IN UINT64 AndData\r
7202 );\r
7203\r
7204\r
7205/**\r
7206 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
62991af2 7207 bitwise OR, and writes the result back to the bit field in the\r
ac644614 7208 64-bit MSR.\r
7209\r
7210 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by\r
62991af2 7211 a bitwise OR between the read result and the value specified by\r
ac644614 7212 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
7213 value written to the MSR is returned. Extra left bits in both AndData and\r
7214 OrData are stripped. The caller must either guarantee that Index and the data\r
7215 written is valid, or the caller must set up exception handlers to catch the\r
030cd1a2 7216 exceptions. This function is only available on IA-32 and x64.\r
ac644614 7217\r
7218 If StartBit is greater than 63, then ASSERT().\r
7219 If EndBit is greater than 63, then ASSERT().\r
7220 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
7221 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7222 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7223\r
7224 @param Index The 32-bit MSR index to write.\r
7225 @param StartBit The ordinal of the least significant bit in the bit field.\r
7226 Range 0..63.\r
7227 @param EndBit The ordinal of the most significant bit in the bit field.\r
7228 Range 0..63.\r
7229 @param AndData The value to AND with the read value from the bit field.\r
7230 @param OrData The value to OR with the result of the AND operation.\r
7231\r
7232 @return The value written back to the MSR.\r
7233\r
7234**/\r
7235UINT64\r
7236EFIAPI\r
7237AsmMsrBitFieldAndThenOr64 (\r
7238 IN UINT32 Index,\r
7239 IN UINTN StartBit,\r
7240 IN UINTN EndBit,\r
7241 IN UINT64 AndData,\r
7242 IN UINT64 OrData\r
7243 );\r
7244\r
7245\r
7246/**\r
7247 Reads the current value of the EFLAGS register.\r
7248\r
7249 Reads and returns the current value of the EFLAGS register. This function is\r
030cd1a2 7250 only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a\r
7251 64-bit value on x64.\r
ac644614 7252\r
030cd1a2 7253 @return EFLAGS on IA-32 or RFLAGS on x64.\r
ac644614 7254\r
7255**/\r
7256UINTN\r
7257EFIAPI\r
7258AsmReadEflags (\r
7259 VOID\r
7260 );\r
7261\r
7262\r
7263/**\r
7264 Reads the current value of the Control Register 0 (CR0).\r
7265\r
7266 Reads and returns the current value of CR0. This function is only available\r
030cd1a2 7267 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7268 x64.\r
ac644614 7269\r
7270 @return The value of the Control Register 0 (CR0).\r
7271\r
7272**/\r
7273UINTN\r
7274EFIAPI\r
7275AsmReadCr0 (\r
7276 VOID\r
7277 );\r
7278\r
7279\r
7280/**\r
7281 Reads the current value of the Control Register 2 (CR2).\r
7282\r
7283 Reads and returns the current value of CR2. This function is only available\r
030cd1a2 7284 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7285 x64.\r
ac644614 7286\r
7287 @return The value of the Control Register 2 (CR2).\r
7288\r
7289**/\r
7290UINTN\r
7291EFIAPI\r
7292AsmReadCr2 (\r
7293 VOID\r
7294 );\r
7295\r
7296\r
7297/**\r
7298 Reads the current value of the Control Register 3 (CR3).\r
7299\r
7300 Reads and returns the current value of CR3. This function is only available\r
030cd1a2 7301 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7302 x64.\r
ac644614 7303\r
7304 @return The value of the Control Register 3 (CR3).\r
7305\r
7306**/\r
7307UINTN\r
7308EFIAPI\r
7309AsmReadCr3 (\r
7310 VOID\r
7311 );\r
7312\r
7313\r
7314/**\r
7315 Reads the current value of the Control Register 4 (CR4).\r
7316\r
7317 Reads and returns the current value of CR4. This function is only available\r
030cd1a2 7318 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7319 x64.\r
ac644614 7320\r
7321 @return The value of the Control Register 4 (CR4).\r
7322\r
7323**/\r
7324UINTN\r
7325EFIAPI\r
7326AsmReadCr4 (\r
7327 VOID\r
7328 );\r
7329\r
7330\r
7331/**\r
7332 Writes a value to Control Register 0 (CR0).\r
7333\r
7334 Writes and returns a new value to CR0. This function is only available on\r
030cd1a2 7335 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7336\r
7337 @param Cr0 The value to write to CR0.\r
7338\r
7339 @return The value written to CR0.\r
7340\r
7341**/\r
7342UINTN\r
7343EFIAPI\r
7344AsmWriteCr0 (\r
7345 UINTN Cr0\r
7346 );\r
7347\r
7348\r
7349/**\r
7350 Writes a value to Control Register 2 (CR2).\r
7351\r
7352 Writes and returns a new value to CR2. This function is only available on\r
030cd1a2 7353 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7354\r
7355 @param Cr2 The value to write to CR2.\r
7356\r
7357 @return The value written to CR2.\r
7358\r
7359**/\r
7360UINTN\r
7361EFIAPI\r
7362AsmWriteCr2 (\r
7363 UINTN Cr2\r
7364 );\r
7365\r
7366\r
7367/**\r
7368 Writes a value to Control Register 3 (CR3).\r
7369\r
7370 Writes and returns a new value to CR3. This function is only available on\r
030cd1a2 7371 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7372\r
7373 @param Cr3 The value to write to CR3.\r
7374\r
7375 @return The value written to CR3.\r
7376\r
7377**/\r
7378UINTN\r
7379EFIAPI\r
7380AsmWriteCr3 (\r
7381 UINTN Cr3\r
7382 );\r
7383\r
7384\r
7385/**\r
7386 Writes a value to Control Register 4 (CR4).\r
7387\r
7388 Writes and returns a new value to CR4. This function is only available on\r
030cd1a2 7389 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7390\r
7391 @param Cr4 The value to write to CR4.\r
7392\r
7393 @return The value written to CR4.\r
7394\r
7395**/\r
7396UINTN\r
7397EFIAPI\r
7398AsmWriteCr4 (\r
7399 UINTN Cr4\r
7400 );\r
7401\r
7402\r
7403/**\r
7404 Reads the current value of Debug Register 0 (DR0).\r
7405\r
7406 Reads and returns the current value of DR0. This function is only available\r
030cd1a2 7407 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7408 x64.\r
ac644614 7409\r
7410 @return The value of Debug Register 0 (DR0).\r
7411\r
7412**/\r
7413UINTN\r
7414EFIAPI\r
7415AsmReadDr0 (\r
7416 VOID\r
7417 );\r
7418\r
7419\r
7420/**\r
7421 Reads the current value of Debug Register 1 (DR1).\r
7422\r
7423 Reads and returns the current value of DR1. This function is only available\r
030cd1a2 7424 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7425 x64.\r
ac644614 7426\r
7427 @return The value of Debug Register 1 (DR1).\r
7428\r
7429**/\r
7430UINTN\r
7431EFIAPI\r
7432AsmReadDr1 (\r
7433 VOID\r
7434 );\r
7435\r
7436\r
7437/**\r
7438 Reads the current value of Debug Register 2 (DR2).\r
7439\r
7440 Reads and returns the current value of DR2. This function is only available\r
030cd1a2 7441 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7442 x64.\r
ac644614 7443\r
7444 @return The value of Debug Register 2 (DR2).\r
7445\r
7446**/\r
7447UINTN\r
7448EFIAPI\r
7449AsmReadDr2 (\r
7450 VOID\r
7451 );\r
7452\r
7453\r
7454/**\r
7455 Reads the current value of Debug Register 3 (DR3).\r
7456\r
7457 Reads and returns the current value of DR3. This function is only available\r
030cd1a2 7458 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7459 x64.\r
ac644614 7460\r
7461 @return The value of Debug Register 3 (DR3).\r
7462\r
7463**/\r
7464UINTN\r
7465EFIAPI\r
7466AsmReadDr3 (\r
7467 VOID\r
7468 );\r
7469\r
7470\r
7471/**\r
7472 Reads the current value of Debug Register 4 (DR4).\r
7473\r
7474 Reads and returns the current value of DR4. This function is only available\r
030cd1a2 7475 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7476 x64.\r
ac644614 7477\r
7478 @return The value of Debug Register 4 (DR4).\r
7479\r
7480**/\r
7481UINTN\r
7482EFIAPI\r
7483AsmReadDr4 (\r
7484 VOID\r
7485 );\r
7486\r
7487\r
7488/**\r
7489 Reads the current value of Debug Register 5 (DR5).\r
7490\r
7491 Reads and returns the current value of DR5. This function is only available\r
030cd1a2 7492 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7493 x64.\r
ac644614 7494\r
7495 @return The value of Debug Register 5 (DR5).\r
7496\r
7497**/\r
7498UINTN\r
7499EFIAPI\r
7500AsmReadDr5 (\r
7501 VOID\r
7502 );\r
7503\r
7504\r
7505/**\r
7506 Reads the current value of Debug Register 6 (DR6).\r
7507\r
7508 Reads and returns the current value of DR6. This function is only available\r
030cd1a2 7509 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7510 x64.\r
ac644614 7511\r
7512 @return The value of Debug Register 6 (DR6).\r
7513\r
7514**/\r
7515UINTN\r
7516EFIAPI\r
7517AsmReadDr6 (\r
7518 VOID\r
7519 );\r
7520\r
7521\r
7522/**\r
7523 Reads the current value of Debug Register 7 (DR7).\r
7524\r
7525 Reads and returns the current value of DR7. This function is only available\r
030cd1a2 7526 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7527 x64.\r
ac644614 7528\r
7529 @return The value of Debug Register 7 (DR7).\r
7530\r
7531**/\r
7532UINTN\r
7533EFIAPI\r
7534AsmReadDr7 (\r
7535 VOID\r
7536 );\r
7537\r
7538\r
7539/**\r
7540 Writes a value to Debug Register 0 (DR0).\r
7541\r
7542 Writes and returns a new value to DR0. This function is only available on\r
030cd1a2 7543 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7544\r
7545 @param Dr0 The value to write to Dr0.\r
7546\r
7547 @return The value written to Debug Register 0 (DR0).\r
7548\r
7549**/\r
7550UINTN\r
7551EFIAPI\r
7552AsmWriteDr0 (\r
7553 UINTN Dr0\r
7554 );\r
7555\r
7556\r
7557/**\r
7558 Writes a value to Debug Register 1 (DR1).\r
7559\r
7560 Writes and returns a new value to DR1. This function is only available on\r
030cd1a2 7561 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7562\r
7563 @param Dr1 The value to write to Dr1.\r
7564\r
7565 @return The value written to Debug Register 1 (DR1).\r
7566\r
7567**/\r
7568UINTN\r
7569EFIAPI\r
7570AsmWriteDr1 (\r
7571 UINTN Dr1\r
7572 );\r
7573\r
7574\r
7575/**\r
7576 Writes a value to Debug Register 2 (DR2).\r
7577\r
7578 Writes and returns a new value to DR2. This function is only available on\r
030cd1a2 7579 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7580\r
7581 @param Dr2 The value to write to Dr2.\r
7582\r
7583 @return The value written to Debug Register 2 (DR2).\r
7584\r
7585**/\r
7586UINTN\r
7587EFIAPI\r
7588AsmWriteDr2 (\r
7589 UINTN Dr2\r
7590 );\r
7591\r
7592\r
7593/**\r
7594 Writes a value to Debug Register 3 (DR3).\r
7595\r
7596 Writes and returns a new value to DR3. This function is only available on\r
030cd1a2 7597 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7598\r
7599 @param Dr3 The value to write to Dr3.\r
7600\r
7601 @return The value written to Debug Register 3 (DR3).\r
7602\r
7603**/\r
7604UINTN\r
7605EFIAPI\r
7606AsmWriteDr3 (\r
7607 UINTN Dr3\r
7608 );\r
7609\r
7610\r
7611/**\r
7612 Writes a value to Debug Register 4 (DR4).\r
7613\r
7614 Writes and returns a new value to DR4. This function is only available on\r
030cd1a2 7615 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7616\r
7617 @param Dr4 The value to write to Dr4.\r
7618\r
7619 @return The value written to Debug Register 4 (DR4).\r
7620\r
7621**/\r
7622UINTN\r
7623EFIAPI\r
7624AsmWriteDr4 (\r
7625 UINTN Dr4\r
7626 );\r
7627\r
7628\r
7629/**\r
7630 Writes a value to Debug Register 5 (DR5).\r
7631\r
7632 Writes and returns a new value to DR5. This function is only available on\r
030cd1a2 7633 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7634\r
7635 @param Dr5 The value to write to Dr5.\r
7636\r
7637 @return The value written to Debug Register 5 (DR5).\r
7638\r
7639**/\r
7640UINTN\r
7641EFIAPI\r
7642AsmWriteDr5 (\r
7643 UINTN Dr5\r
7644 );\r
7645\r
7646\r
7647/**\r
7648 Writes a value to Debug Register 6 (DR6).\r
7649\r
7650 Writes and returns a new value to DR6. This function is only available on\r
030cd1a2 7651 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7652\r
7653 @param Dr6 The value to write to Dr6.\r
7654\r
7655 @return The value written to Debug Register 6 (DR6).\r
7656\r
7657**/\r
7658UINTN\r
7659EFIAPI\r
7660AsmWriteDr6 (\r
7661 UINTN Dr6\r
7662 );\r
7663\r
7664\r
7665/**\r
7666 Writes a value to Debug Register 7 (DR7).\r
7667\r
7668 Writes and returns a new value to DR7. This function is only available on\r
030cd1a2 7669 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7670\r
7671 @param Dr7 The value to write to Dr7.\r
7672\r
7673 @return The value written to Debug Register 7 (DR7).\r
7674\r
7675**/\r
7676UINTN\r
7677EFIAPI\r
7678AsmWriteDr7 (\r
7679 UINTN Dr7\r
7680 );\r
7681\r
7682\r
7683/**\r
7684 Reads the current value of Code Segment Register (CS).\r
7685\r
7686 Reads and returns the current value of CS. This function is only available on\r
030cd1a2 7687 IA-32 and x64.\r
ac644614 7688\r
7689 @return The current value of CS.\r
7690\r
7691**/\r
7692UINT16\r
7693EFIAPI\r
7694AsmReadCs (\r
7695 VOID\r
7696 );\r
7697\r
7698\r
7699/**\r
7700 Reads the current value of Data Segment Register (DS).\r
7701\r
7702 Reads and returns the current value of DS. This function is only available on\r
030cd1a2 7703 IA-32 and x64.\r
ac644614 7704\r
7705 @return The current value of DS.\r
7706\r
7707**/\r
7708UINT16\r
7709EFIAPI\r
7710AsmReadDs (\r
7711 VOID\r
7712 );\r
7713\r
7714\r
7715/**\r
7716 Reads the current value of Extra Segment Register (ES).\r
7717\r
7718 Reads and returns the current value of ES. This function is only available on\r
030cd1a2 7719 IA-32 and x64.\r
ac644614 7720\r
7721 @return The current value of ES.\r
7722\r
7723**/\r
7724UINT16\r
7725EFIAPI\r
7726AsmReadEs (\r
7727 VOID\r
7728 );\r
7729\r
7730\r
7731/**\r
7732 Reads the current value of FS Data Segment Register (FS).\r
7733\r
7734 Reads and returns the current value of FS. This function is only available on\r
030cd1a2 7735 IA-32 and x64.\r
ac644614 7736\r
7737 @return The current value of FS.\r
7738\r
7739**/\r
7740UINT16\r
7741EFIAPI\r
7742AsmReadFs (\r
7743 VOID\r
7744 );\r
7745\r
7746\r
7747/**\r
7748 Reads the current value of GS Data Segment Register (GS).\r
7749\r
7750 Reads and returns the current value of GS. This function is only available on\r
030cd1a2 7751 IA-32 and x64.\r
ac644614 7752\r
7753 @return The current value of GS.\r
7754\r
7755**/\r
7756UINT16\r
7757EFIAPI\r
7758AsmReadGs (\r
7759 VOID\r
7760 );\r
7761\r
7762\r
7763/**\r
7764 Reads the current value of Stack Segment Register (SS).\r
7765\r
7766 Reads and returns the current value of SS. This function is only available on\r
030cd1a2 7767 IA-32 and x64.\r
ac644614 7768\r
7769 @return The current value of SS.\r
7770\r
7771**/\r
7772UINT16\r
7773EFIAPI\r
7774AsmReadSs (\r
7775 VOID\r
7776 );\r
7777\r
7778\r
7779/**\r
7780 Reads the current value of Task Register (TR).\r
7781\r
7782 Reads and returns the current value of TR. This function is only available on\r
030cd1a2 7783 IA-32 and x64.\r
ac644614 7784\r
7785 @return The current value of TR.\r
7786\r
7787**/\r
7788UINT16\r
7789EFIAPI\r
7790AsmReadTr (\r
7791 VOID\r
7792 );\r
7793\r
7794\r
7795/**\r
7796 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
7797\r
7798 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
030cd1a2 7799 function is only available on IA-32 and x64.\r
ac644614 7800\r
7801 If Gdtr is NULL, then ASSERT().\r
7802\r
af2dc6a7 7803 @param Gdtr The pointer to a GDTR descriptor.\r
ac644614 7804\r
7805**/\r
7806VOID\r
7807EFIAPI\r
7808AsmReadGdtr (\r
7809 OUT IA32_DESCRIPTOR *Gdtr\r
7810 );\r
7811\r
7812\r
7813/**\r
7814 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
7815\r
7816 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
030cd1a2 7817 only available on IA-32 and x64.\r
ac644614 7818\r
7819 If Gdtr is NULL, then ASSERT().\r
7820\r
af2dc6a7 7821 @param Gdtr The pointer to a GDTR descriptor.\r
ac644614 7822\r
7823**/\r
7824VOID\r
7825EFIAPI\r
7826AsmWriteGdtr (\r
7827 IN CONST IA32_DESCRIPTOR *Gdtr\r
7828 );\r
7829\r
7830\r
7831/**\r
17f695ed 7832 Reads the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
ac644614 7833\r
7834 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
030cd1a2 7835 function is only available on IA-32 and x64.\r
ac644614 7836\r
7837 If Idtr is NULL, then ASSERT().\r
7838\r
af2dc6a7 7839 @param Idtr The pointer to a IDTR descriptor.\r
ac644614 7840\r
7841**/\r
7842VOID\r
7843EFIAPI\r
7844AsmReadIdtr (\r
7845 OUT IA32_DESCRIPTOR *Idtr\r
7846 );\r
7847\r
7848\r
7849/**\r
17f695ed 7850 Writes the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
ac644614 7851\r
7852 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
030cd1a2 7853 only available on IA-32 and x64.\r
ac644614 7854\r
7855 If Idtr is NULL, then ASSERT().\r
7856\r
af2dc6a7 7857 @param Idtr The pointer to a IDTR descriptor.\r
ac644614 7858\r
7859**/\r
7860VOID\r
7861EFIAPI\r
7862AsmWriteIdtr (\r
7863 IN CONST IA32_DESCRIPTOR *Idtr\r
7864 );\r
7865\r
7866\r
7867/**\r
7868 Reads the current Local Descriptor Table Register(LDTR) selector.\r
7869\r
7870 Reads and returns the current 16-bit LDTR descriptor value. This function is\r
030cd1a2 7871 only available on IA-32 and x64.\r
ac644614 7872\r
7873 @return The current selector of LDT.\r
7874\r
7875**/\r
7876UINT16\r
7877EFIAPI\r
7878AsmReadLdtr (\r
7879 VOID\r
7880 );\r
7881\r
7882\r
7883/**\r
17f695ed 7884 Writes the current Local Descriptor Table Register (LDTR) selector.\r
ac644614 7885\r
7886 Writes and the current LDTR descriptor specified by Ldtr. This function is\r
030cd1a2 7887 only available on IA-32 and x64.\r
ac644614 7888\r
7889 @param Ldtr 16-bit LDTR selector value.\r
7890\r
7891**/\r
7892VOID\r
7893EFIAPI\r
7894AsmWriteLdtr (\r
7895 IN UINT16 Ldtr\r
7896 );\r
7897\r
7898\r
7899/**\r
7900 Save the current floating point/SSE/SSE2 context to a buffer.\r
7901\r
7902 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
7903 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
030cd1a2 7904 available on IA-32 and x64.\r
ac644614 7905\r
7906 If Buffer is NULL, then ASSERT().\r
7907 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
7908\r
af2dc6a7 7909 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
ac644614 7910\r
7911**/\r
7912VOID\r
7913EFIAPI\r
7914AsmFxSave (\r
7915 OUT IA32_FX_BUFFER *Buffer\r
7916 );\r
7917\r
7918\r
7919/**\r
7920 Restores the current floating point/SSE/SSE2 context from a buffer.\r
7921\r
7922 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
7923 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
030cd1a2 7924 only available on IA-32 and x64.\r
ac644614 7925\r
7926 If Buffer is NULL, then ASSERT().\r
7927 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
7928 If Buffer was not saved with AsmFxSave(), then ASSERT().\r
7929\r
af2dc6a7 7930 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
ac644614 7931\r
7932**/\r
7933VOID\r
7934EFIAPI\r
7935AsmFxRestore (\r
7936 IN CONST IA32_FX_BUFFER *Buffer\r
7937 );\r
7938\r
7939\r
7940/**\r
7941 Reads the current value of 64-bit MMX Register #0 (MM0).\r
7942\r
7943 Reads and returns the current value of MM0. This function is only available\r
030cd1a2 7944 on IA-32 and x64.\r
ac644614 7945\r
7946 @return The current value of MM0.\r
7947\r
7948**/\r
7949UINT64\r
7950EFIAPI\r
7951AsmReadMm0 (\r
7952 VOID\r
7953 );\r
7954\r
7955\r
7956/**\r
7957 Reads the current value of 64-bit MMX Register #1 (MM1).\r
7958\r
7959 Reads and returns the current value of MM1. This function is only available\r
030cd1a2 7960 on IA-32 and x64.\r
ac644614 7961\r
7962 @return The current value of MM1.\r
7963\r
7964**/\r
7965UINT64\r
7966EFIAPI\r
7967AsmReadMm1 (\r
7968 VOID\r
7969 );\r
7970\r
7971\r
7972/**\r
7973 Reads the current value of 64-bit MMX Register #2 (MM2).\r
7974\r
7975 Reads and returns the current value of MM2. This function is only available\r
030cd1a2 7976 on IA-32 and x64.\r
ac644614 7977\r
7978 @return The current value of MM2.\r
7979\r
7980**/\r
7981UINT64\r
7982EFIAPI\r
7983AsmReadMm2 (\r
7984 VOID\r
7985 );\r
7986\r
7987\r
7988/**\r
7989 Reads the current value of 64-bit MMX Register #3 (MM3).\r
7990\r
7991 Reads and returns the current value of MM3. This function is only available\r
030cd1a2 7992 on IA-32 and x64.\r
ac644614 7993\r
7994 @return The current value of MM3.\r
7995\r
7996**/\r
7997UINT64\r
7998EFIAPI\r
7999AsmReadMm3 (\r
8000 VOID\r
8001 );\r
8002\r
8003\r
8004/**\r
8005 Reads the current value of 64-bit MMX Register #4 (MM4).\r
8006\r
8007 Reads and returns the current value of MM4. This function is only available\r
030cd1a2 8008 on IA-32 and x64.\r
ac644614 8009\r
8010 @return The current value of MM4.\r
8011\r
8012**/\r
8013UINT64\r
8014EFIAPI\r
8015AsmReadMm4 (\r
8016 VOID\r
8017 );\r
8018\r
8019\r
8020/**\r
8021 Reads the current value of 64-bit MMX Register #5 (MM5).\r
8022\r
8023 Reads and returns the current value of MM5. This function is only available\r
030cd1a2 8024 on IA-32 and x64.\r
ac644614 8025\r
8026 @return The current value of MM5.\r
8027\r
8028**/\r
8029UINT64\r
8030EFIAPI\r
8031AsmReadMm5 (\r
8032 VOID\r
8033 );\r
8034\r
8035\r
8036/**\r
8037 Reads the current value of 64-bit MMX Register #6 (MM6).\r
8038\r
8039 Reads and returns the current value of MM6. This function is only available\r
030cd1a2 8040 on IA-32 and x64.\r
ac644614 8041\r
8042 @return The current value of MM6.\r
8043\r
8044**/\r
8045UINT64\r
8046EFIAPI\r
8047AsmReadMm6 (\r
8048 VOID\r
8049 );\r
8050\r
8051\r
8052/**\r
8053 Reads the current value of 64-bit MMX Register #7 (MM7).\r
8054\r
8055 Reads and returns the current value of MM7. This function is only available\r
030cd1a2 8056 on IA-32 and x64.\r
ac644614 8057\r
8058 @return The current value of MM7.\r
8059\r
8060**/\r
8061UINT64\r
8062EFIAPI\r
8063AsmReadMm7 (\r
8064 VOID\r
8065 );\r
8066\r
8067\r
8068/**\r
8069 Writes the current value of 64-bit MMX Register #0 (MM0).\r
8070\r
8071 Writes the current value of MM0. This function is only available on IA32 and\r
030cd1a2 8072 x64.\r
ac644614 8073\r
8074 @param Value The 64-bit value to write to MM0.\r
8075\r
8076**/\r
8077VOID\r
8078EFIAPI\r
8079AsmWriteMm0 (\r
8080 IN UINT64 Value\r
8081 );\r
8082\r
8083\r
8084/**\r
8085 Writes the current value of 64-bit MMX Register #1 (MM1).\r
8086\r
8087 Writes the current value of MM1. This function is only available on IA32 and\r
030cd1a2 8088 x64.\r
ac644614 8089\r
8090 @param Value The 64-bit value to write to MM1.\r
8091\r
8092**/\r
8093VOID\r
8094EFIAPI\r
8095AsmWriteMm1 (\r
8096 IN UINT64 Value\r
8097 );\r
8098\r
8099\r
8100/**\r
8101 Writes the current value of 64-bit MMX Register #2 (MM2).\r
8102\r
8103 Writes the current value of MM2. This function is only available on IA32 and\r
030cd1a2 8104 x64.\r
ac644614 8105\r
8106 @param Value The 64-bit value to write to MM2.\r
8107\r
8108**/\r
8109VOID\r
8110EFIAPI\r
8111AsmWriteMm2 (\r
8112 IN UINT64 Value\r
8113 );\r
8114\r
8115\r
8116/**\r
8117 Writes the current value of 64-bit MMX Register #3 (MM3).\r
8118\r
8119 Writes the current value of MM3. This function is only available on IA32 and\r
030cd1a2 8120 x64.\r
ac644614 8121\r
8122 @param Value The 64-bit value to write to MM3.\r
8123\r
8124**/\r
8125VOID\r
8126EFIAPI\r
8127AsmWriteMm3 (\r
8128 IN UINT64 Value\r
8129 );\r
8130\r
8131\r
8132/**\r
8133 Writes the current value of 64-bit MMX Register #4 (MM4).\r
8134\r
8135 Writes the current value of MM4. This function is only available on IA32 and\r
030cd1a2 8136 x64.\r
ac644614 8137\r
8138 @param Value The 64-bit value to write to MM4.\r
8139\r
8140**/\r
8141VOID\r
8142EFIAPI\r
8143AsmWriteMm4 (\r
8144 IN UINT64 Value\r
8145 );\r
8146\r
8147\r
8148/**\r
8149 Writes the current value of 64-bit MMX Register #5 (MM5).\r
8150\r
8151 Writes the current value of MM5. This function is only available on IA32 and\r
030cd1a2 8152 x64.\r
ac644614 8153\r
8154 @param Value The 64-bit value to write to MM5.\r
8155\r
8156**/\r
8157VOID\r
8158EFIAPI\r
8159AsmWriteMm5 (\r
8160 IN UINT64 Value\r
8161 );\r
8162\r
8163\r
8164/**\r
8165 Writes the current value of 64-bit MMX Register #6 (MM6).\r
8166\r
8167 Writes the current value of MM6. This function is only available on IA32 and\r
030cd1a2 8168 x64.\r
ac644614 8169\r
8170 @param Value The 64-bit value to write to MM6.\r
8171\r
8172**/\r
8173VOID\r
8174EFIAPI\r
8175AsmWriteMm6 (\r
8176 IN UINT64 Value\r
8177 );\r
8178\r
8179\r
8180/**\r
8181 Writes the current value of 64-bit MMX Register #7 (MM7).\r
8182\r
8183 Writes the current value of MM7. This function is only available on IA32 and\r
030cd1a2 8184 x64.\r
ac644614 8185\r
8186 @param Value The 64-bit value to write to MM7.\r
8187\r
8188**/\r
8189VOID\r
8190EFIAPI\r
8191AsmWriteMm7 (\r
8192 IN UINT64 Value\r
8193 );\r
8194\r
8195\r
8196/**\r
8197 Reads the current value of Time Stamp Counter (TSC).\r
8198\r
8199 Reads and returns the current value of TSC. This function is only available\r
030cd1a2 8200 on IA-32 and x64.\r
ac644614 8201\r
8202 @return The current value of TSC\r
8203\r
8204**/\r
8205UINT64\r
8206EFIAPI\r
8207AsmReadTsc (\r
8208 VOID\r
8209 );\r
8210\r
8211\r
8212/**\r
8213 Reads the current value of a Performance Counter (PMC).\r
8214\r
8215 Reads and returns the current value of performance counter specified by\r
030cd1a2 8216 Index. This function is only available on IA-32 and x64.\r
ac644614 8217\r
8218 @param Index The 32-bit Performance Counter index to read.\r
8219\r
8220 @return The value of the PMC specified by Index.\r
8221\r
8222**/\r
8223UINT64\r
8224EFIAPI\r
8225AsmReadPmc (\r
8226 IN UINT32 Index\r
8227 );\r
8228\r
8229\r
8230/**\r
8231 Sets up a monitor buffer that is used by AsmMwait().\r
8232\r
8233 Executes a MONITOR instruction with the register state specified by Eax, Ecx\r
030cd1a2 8234 and Edx. Returns Eax. This function is only available on IA-32 and x64.\r
ac644614 8235\r
8236 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
8237 instruction.\r
8238 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
8239 instruction.\r
8240 @param Edx The value to load into EDX or RDX before executing the MONITOR\r
8241 instruction.\r
8242\r
8243 @return Eax\r
8244\r
8245**/\r
8246UINTN\r
8247EFIAPI\r
8248AsmMonitor (\r
8249 IN UINTN Eax,\r
8250 IN UINTN Ecx,\r
8251 IN UINTN Edx\r
8252 );\r
8253\r
8254\r
8255/**\r
8256 Executes an MWAIT instruction.\r
8257\r
8258 Executes an MWAIT instruction with the register state specified by Eax and\r
030cd1a2 8259 Ecx. Returns Eax. This function is only available on IA-32 and x64.\r
ac644614 8260\r
8261 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
8262 instruction.\r
8263 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
8264 instruction.\r
8265\r
8266 @return Eax\r
8267\r
8268**/\r
8269UINTN\r
8270EFIAPI\r
8271AsmMwait (\r
8272 IN UINTN Eax,\r
8273 IN UINTN Ecx\r
8274 );\r
8275\r
8276\r
8277/**\r
8278 Executes a WBINVD instruction.\r
8279\r
8280 Executes a WBINVD instruction. This function is only available on IA-32 and\r
030cd1a2 8281 x64.\r
ac644614 8282\r
8283**/\r
8284VOID\r
8285EFIAPI\r
8286AsmWbinvd (\r
8287 VOID\r
8288 );\r
8289\r
8290\r
8291/**\r
8292 Executes a INVD instruction.\r
8293\r
8294 Executes a INVD instruction. This function is only available on IA-32 and\r
030cd1a2 8295 x64.\r
ac644614 8296\r
8297**/\r
8298VOID\r
8299EFIAPI\r
8300AsmInvd (\r
8301 VOID\r
8302 );\r
8303\r
8304\r
8305/**\r
8306 Flushes a cache line from all the instruction and data caches within the\r
8307 coherency domain of the CPU.\r
8308\r
8309 Flushed the cache line specified by LinearAddress, and returns LinearAddress.\r
030cd1a2 8310 This function is only available on IA-32 and x64.\r
ac644614 8311\r
8312 @param LinearAddress The address of the cache line to flush. If the CPU is\r
8313 in a physical addressing mode, then LinearAddress is a\r
8314 physical address. If the CPU is in a virtual\r
8315 addressing mode, then LinearAddress is a virtual\r
8316 address.\r
8317\r
af2dc6a7 8318 @return LinearAddress.\r
ac644614 8319**/\r
8320VOID *\r
8321EFIAPI\r
8322AsmFlushCacheLine (\r
8323 IN VOID *LinearAddress\r
8324 );\r
8325\r
8326\r
8327/**\r
8328 Enables the 32-bit paging mode on the CPU.\r
8329\r
8330 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
8331 must be properly initialized prior to calling this service. This function\r
8332 assumes the current execution mode is 32-bit protected mode. This function is\r
8333 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
8334 transferred to the function specified by EntryPoint using the new stack\r
8335 specified by NewStack and passing in the parameters specified by Context1 and\r
8336 Context2. Context1 and Context2 are optional and may be NULL. The function\r
8337 EntryPoint must never return.\r
8338\r
8339 If the current execution mode is not 32-bit protected mode, then ASSERT().\r
8340 If EntryPoint is NULL, then ASSERT().\r
8341 If NewStack is NULL, then ASSERT().\r
8342\r
8343 There are a number of constraints that must be followed before calling this\r
8344 function:\r
8345 1) Interrupts must be disabled.\r
8346 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
8347 means all descriptors must have a base of 0 and a limit of 4GB.\r
8348 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
8349 descriptors.\r
8350 4) CR3 must point to valid page tables that will be used once the transition\r
8351 is complete, and those page tables must guarantee that the pages for this\r
8352 function and the stack are identity mapped.\r
8353\r
8354 @param EntryPoint A pointer to function to call with the new stack after\r
8355 paging is enabled.\r
8356 @param Context1 A pointer to the context to pass into the EntryPoint\r
8357 function as the first parameter after paging is enabled.\r
8358 @param Context2 A pointer to the context to pass into the EntryPoint\r
8359 function as the second parameter after paging is enabled.\r
8360 @param NewStack A pointer to the new stack to use for the EntryPoint\r
8361 function after paging is enabled.\r
8362\r
8363**/\r
8364VOID\r
8365EFIAPI\r
8366AsmEnablePaging32 (\r
8367 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
8368 IN VOID *Context1, OPTIONAL\r
8369 IN VOID *Context2, OPTIONAL\r
8370 IN VOID *NewStack\r
8371 );\r
8372\r
8373\r
8374/**\r
8375 Disables the 32-bit paging mode on the CPU.\r
8376\r
8377 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
8378 mode. This function assumes the current execution mode is 32-paged protected\r
8379 mode. This function is only available on IA-32. After the 32-bit paging mode\r
8380 is disabled, control is transferred to the function specified by EntryPoint\r
8381 using the new stack specified by NewStack and passing in the parameters\r
8382 specified by Context1 and Context2. Context1 and Context2 are optional and\r
8383 may be NULL. The function EntryPoint must never return.\r
8384\r
8385 If the current execution mode is not 32-bit paged mode, then ASSERT().\r
8386 If EntryPoint is NULL, then ASSERT().\r
8387 If NewStack is NULL, then ASSERT().\r
8388\r
8389 There are a number of constraints that must be followed before calling this\r
8390 function:\r
8391 1) Interrupts must be disabled.\r
8392 2) The caller must be in 32-bit paged mode.\r
8393 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
8394 4) CR3 must point to valid page tables that guarantee that the pages for\r
8395 this function and the stack are identity mapped.\r
8396\r
8397 @param EntryPoint A pointer to function to call with the new stack after\r
8398 paging is disabled.\r
8399 @param Context1 A pointer to the context to pass into the EntryPoint\r
8400 function as the first parameter after paging is disabled.\r
8401 @param Context2 A pointer to the context to pass into the EntryPoint\r
8402 function as the second parameter after paging is\r
8403 disabled.\r
8404 @param NewStack A pointer to the new stack to use for the EntryPoint\r
8405 function after paging is disabled.\r
8406\r
8407**/\r
8408VOID\r
8409EFIAPI\r
8410AsmDisablePaging32 (\r
8411 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
8412 IN VOID *Context1, OPTIONAL\r
8413 IN VOID *Context2, OPTIONAL\r
8414 IN VOID *NewStack\r
8415 );\r
8416\r
8417\r
8418/**\r
8419 Enables the 64-bit paging mode on the CPU.\r
8420\r
8421 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
8422 must be properly initialized prior to calling this service. This function\r
8423 assumes the current execution mode is 32-bit protected mode with flat\r
8424 descriptors. This function is only available on IA-32. After the 64-bit\r
8425 paging mode is enabled, control is transferred to the function specified by\r
8426 EntryPoint using the new stack specified by NewStack and passing in the\r
8427 parameters specified by Context1 and Context2. Context1 and Context2 are\r
8428 optional and may be 0. The function EntryPoint must never return.\r
8429\r
8430 If the current execution mode is not 32-bit protected mode with flat\r
8431 descriptors, then ASSERT().\r
8432 If EntryPoint is 0, then ASSERT().\r
8433 If NewStack is 0, then ASSERT().\r
8434\r
17f695ed 8435 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
ac644614 8436 is called. The descriptor in the GDT that this selector\r
8437 references must be setup for long mode.\r
8438 @param EntryPoint The 64-bit virtual address of the function to call with\r
8439 the new stack after paging is enabled.\r
8440 @param Context1 The 64-bit virtual address of the context to pass into\r
8441 the EntryPoint function as the first parameter after\r
8442 paging is enabled.\r
8443 @param Context2 The 64-bit virtual address of the context to pass into\r
8444 the EntryPoint function as the second parameter after\r
8445 paging is enabled.\r
8446 @param NewStack The 64-bit virtual address of the new stack to use for\r
8447 the EntryPoint function after paging is enabled.\r
8448\r
8449**/\r
8450VOID\r
8451EFIAPI\r
8452AsmEnablePaging64 (\r
17f695ed 8453 IN UINT16 Cs,\r
ac644614 8454 IN UINT64 EntryPoint,\r
8455 IN UINT64 Context1, OPTIONAL\r
8456 IN UINT64 Context2, OPTIONAL\r
8457 IN UINT64 NewStack\r
8458 );\r
8459\r
8460\r
8461/**\r
8462 Disables the 64-bit paging mode on the CPU.\r
8463\r
8464 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
8465 mode. This function assumes the current execution mode is 64-paging mode.\r
030cd1a2 8466 This function is only available on x64. After the 64-bit paging mode is\r
ac644614 8467 disabled, control is transferred to the function specified by EntryPoint\r
8468 using the new stack specified by NewStack and passing in the parameters\r
8469 specified by Context1 and Context2. Context1 and Context2 are optional and\r
8470 may be 0. The function EntryPoint must never return.\r
8471\r
8472 If the current execution mode is not 64-bit paged mode, then ASSERT().\r
8473 If EntryPoint is 0, then ASSERT().\r
8474 If NewStack is 0, then ASSERT().\r
8475\r
17f695ed 8476 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
ac644614 8477 is called. The descriptor in the GDT that this selector\r
8478 references must be setup for 32-bit protected mode.\r
8479 @param EntryPoint The 64-bit virtual address of the function to call with\r
8480 the new stack after paging is disabled.\r
8481 @param Context1 The 64-bit virtual address of the context to pass into\r
8482 the EntryPoint function as the first parameter after\r
8483 paging is disabled.\r
8484 @param Context2 The 64-bit virtual address of the context to pass into\r
8485 the EntryPoint function as the second parameter after\r
8486 paging is disabled.\r
8487 @param NewStack The 64-bit virtual address of the new stack to use for\r
8488 the EntryPoint function after paging is disabled.\r
8489\r
8490**/\r
8491VOID\r
8492EFIAPI\r
8493AsmDisablePaging64 (\r
17f695ed 8494 IN UINT16 Cs,\r
ac644614 8495 IN UINT32 EntryPoint,\r
8496 IN UINT32 Context1, OPTIONAL\r
8497 IN UINT32 Context2, OPTIONAL\r
8498 IN UINT32 NewStack\r
8499 );\r
8500\r
8501\r
8502//\r
8503// 16-bit thunking services\r
8504//\r
8505\r
8506/**\r
8507 Retrieves the properties for 16-bit thunk functions.\r
8508\r
8509 Computes the size of the buffer and stack below 1MB required to use the\r
8510 AsmPrepareThunk16(), AsmThunk16() and AsmPrepareAndThunk16() functions. This\r
8511 buffer size is returned in RealModeBufferSize, and the stack size is returned\r
8512 in ExtraStackSize. If parameters are passed to the 16-bit real mode code,\r
8513 then the actual minimum stack size is ExtraStackSize plus the maximum number\r
8514 of bytes that need to be passed to the 16-bit real mode code.\r
52fa075c 8515 \r
ac644614 8516 If RealModeBufferSize is NULL, then ASSERT().\r
8517 If ExtraStackSize is NULL, then ASSERT().\r
8518\r
8519 @param RealModeBufferSize A pointer to the size of the buffer below 1MB\r
8520 required to use the 16-bit thunk functions.\r
8521 @param ExtraStackSize A pointer to the extra size of stack below 1MB\r
8522 that the 16-bit thunk functions require for\r
8523 temporary storage in the transition to and from\r
8524 16-bit real mode.\r
8525\r
8526**/\r
8527VOID\r
8528EFIAPI\r
8529AsmGetThunk16Properties (\r
8530 OUT UINT32 *RealModeBufferSize,\r
8531 OUT UINT32 *ExtraStackSize\r
8532 );\r
8533\r
8534\r
8535/**\r
8536 Prepares all structures a code required to use AsmThunk16().\r
8537\r
8538 Prepares all structures and code required to use AsmThunk16().\r
52fa075c 8539 \r
8243b089 8540 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
8541 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
ac644614 8542\r
8543 If ThunkContext is NULL, then ASSERT().\r
8544\r
8545 @param ThunkContext A pointer to the context structure that describes the\r
8546 16-bit real mode code to call.\r
8547\r
8548**/\r
8549VOID\r
8550EFIAPI\r
8551AsmPrepareThunk16 (\r
1445300f 8552 IN OUT THUNK_CONTEXT *ThunkContext\r
ac644614 8553 );\r
8554\r
8555\r
8556/**\r
8557 Transfers control to a 16-bit real mode entry point and returns the results.\r
8558\r
8559 Transfers control to a 16-bit real mode entry point and returns the results.\r
17f695ed 8560 AsmPrepareThunk16() must be called with ThunkContext before this function is used.\r
8561 This function must be called with interrupts disabled.\r
8562\r
8563 The register state from the RealModeState field of ThunkContext is restored just prior \r
8564 to calling the 16-bit real mode entry point. This includes the EFLAGS field of RealModeState, \r
8565 which is used to set the interrupt state when a 16-bit real mode entry point is called.\r
8566 Control is transferred to the 16-bit real mode entry point specified by the CS and Eip fields of RealModeState.\r
8567 The stack is initialized to the SS and ESP fields of RealModeState. Any parameters passed to \r
8568 the 16-bit real mode code must be populated by the caller at SS:ESP prior to calling this function. \r
8569 The 16-bit real mode entry point is invoked with a 16-bit CALL FAR instruction,\r
8570 so when accessing stack contents, the 16-bit real mode code must account for the 16-bit segment \r
8571 and 16-bit offset of the return address that were pushed onto the stack. The 16-bit real mode entry \r
8572 point must exit with a RETF instruction. The register state is captured into RealModeState immediately \r
8573 after the RETF instruction is executed.\r
8574 \r
8575 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
8576 or any of the 16-bit real mode code makes a SW interrupt, then the caller is responsible for making sure \r
8577 the IDT at address 0 is initialized to handle any HW or SW interrupts that may occur while in 16-bit real mode. \r
8578 \r
8579 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
8580 then the caller is responsible for making sure the 8259 PIC is in a state compatible with 16-bit real mode. \r
8581 This includes the base vectors, the interrupt masks, and the edge/level trigger mode.\r
8582 \r
8583 If THUNK_ATTRIBUTE_BIG_REAL_MODE is set in the ThunkAttributes field of ThunkContext, then the user code \r
8584 is invoked in big real mode. Otherwise, the user code is invoked in 16-bit real mode with 64KB segment limits.\r
8585 \r
8586 If neither THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 nor THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
8587 ThunkAttributes, then it is assumed that the user code did not enable the A20 mask, and no attempt is made to \r
8588 disable the A20 mask.\r
8589 \r
8590 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is set and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is clear in \r
8591 ThunkAttributes, then attempt to use the INT 15 service to disable the A20 mask. If this INT 15 call fails, \r
8592 then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
8593 \r
8594 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is clear and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is set in \r
8595 ThunkAttributes, then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
8596 \r
ac644614 8597 If ThunkContext is NULL, then ASSERT().\r
8598 If AsmPrepareThunk16() was not previously called with ThunkContext, then ASSERT().\r
17f695ed 8599 If both THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
8600 ThunkAttributes, then ASSERT().\r
ac644614 8601\r
8243b089 8602 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
af2dc6a7 8603 virtual to physical mappings for ThunkContext.RealModeBuffer are mapped 1:1.\r
52fa075c 8604\r
ac644614 8605 @param ThunkContext A pointer to the context structure that describes the\r
8606 16-bit real mode code to call.\r
8607\r
8608**/\r
8609VOID\r
8610EFIAPI\r
8611AsmThunk16 (\r
8612 IN OUT THUNK_CONTEXT *ThunkContext\r
8613 );\r
8614\r
8615\r
8616/**\r
8617 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
8618 control to a 16-bit real mode entry point, and returns the results.\r
8619\r
8620 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
8621 control to a 16-bit real mode entry point, and returns the results. If the\r
8622 caller only need to perform a single 16-bit real mode thunk, then this\r
8623 service should be used. If the caller intends to make more than one 16-bit\r
8624 real mode thunk, then it is more efficient if AsmPrepareThunk16() is called\r
8625 once and AsmThunk16() can be called for each 16-bit real mode thunk.\r
8626\r
8243b089 8627 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
8628 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
52fa075c 8629\r
17f695ed 8630 See AsmPrepareThunk16() and AsmThunk16() for the detailed description and ASSERT() conditions.\r
ac644614 8631\r
8632 @param ThunkContext A pointer to the context structure that describes the\r
8633 16-bit real mode code to call.\r
8634\r
8635**/\r
8636VOID\r
8637EFIAPI\r
8638AsmPrepareAndThunk16 (\r
8639 IN OUT THUNK_CONTEXT *ThunkContext\r
8640 );\r
8641\r
3cfc7813
QL
8642/**\r
8643 Generates a 16-bit random number through RDRAND instruction.\r
8644\r
8645 if Rand is NULL, then ASSERT().\r
8646\r
8647 @param[out] Rand Buffer pointer to store the random result.\r
8648\r
8649 @retval TRUE RDRAND call was successful.\r
8650 @retval FALSE Failed attempts to call RDRAND.\r
8651\r
8652 **/\r
8653BOOLEAN\r
8654EFIAPI\r
8655AsmRdRand16 (\r
8656 OUT UINT16 *Rand\r
8657 );\r
8658\r
8659/**\r
8660 Generates a 32-bit random number through RDRAND instruction.\r
8661\r
8662 if Rand is NULL, then ASSERT().\r
8663\r
8664 @param[out] Rand Buffer pointer to store the random result.\r
8665\r
8666 @retval TRUE RDRAND call was successful.\r
8667 @retval FALSE Failed attempts to call RDRAND.\r
8668\r
8669**/\r
8670BOOLEAN\r
8671EFIAPI\r
8672AsmRdRand32 (\r
8673 OUT UINT32 *Rand\r
8674 );\r
8675\r
8676/**\r
8677 Generates a 64-bit random number through RDRAND instruction.\r
8678\r
8679 if Rand is NULL, then ASSERT().\r
8680\r
8681 @param[out] Rand Buffer pointer to store the random result.\r
8682\r
8683 @retval TRUE RDRAND call was successful.\r
8684 @retval FALSE Failed attempts to call RDRAND.\r
8685\r
8686**/\r
8687BOOLEAN\r
8688EFIAPI\r
8689AsmRdRand64 (\r
8690 OUT UINT64 *Rand\r
8691 );\r
8692\r
ac644614 8693#endif\r
e3a7917f 8694#endif\r
ac644614 8695\r
8696\r