]> git.proxmox.com Git - mirror_edk2.git/blame - MdePkg/Include/Library/BaseLib.h
MdeModulePkg/Variable/RuntimeDxe: delete and lock OS-created MOR variable
[mirror_edk2.git] / MdePkg / Include / Library / BaseLib.h
CommitLineData
ac644614 1/** @file\r
50a64e5b 2 Provides string functions, linked list functions, math functions, synchronization\r
ae591c14 3 functions, file path functions, and CPU architecture-specific functions.\r
ac644614 4\r
b590e43a 5Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR>\r
9df063a0
HT
6Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>\r
7This program and the accompanying materials\r
50a64e5b 8are licensed and made available under the terms and conditions of the BSD License\r
9which accompanies this distribution. The full text of the license may be found at\r
af2dc6a7 10http://opensource.org/licenses/bsd-license.php.\r
ac644614 11\r
50a64e5b 12THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
13WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
ac644614 14\r
15**/\r
16\r
17#ifndef __BASE_LIB__\r
18#define __BASE_LIB__\r
19\r
1106ffe1 20//\r
1a2f870c 21// Definitions for architecture-specific types\r
1106ffe1 22//\r
ac644614 23#if defined (MDE_CPU_IA32)\r
fc30687f 24///\r
af2dc6a7 25/// The IA-32 architecture context buffer used by SetJump() and LongJump().\r
fc30687f 26///\r
ac644614 27typedef struct {\r
28 UINT32 Ebx;\r
29 UINT32 Esi;\r
30 UINT32 Edi;\r
31 UINT32 Ebp;\r
32 UINT32 Esp;\r
33 UINT32 Eip;\r
34} BASE_LIBRARY_JUMP_BUFFER;\r
35\r
36#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
37\r
aa4df547 38#endif // defined (MDE_CPU_IA32)\r
39\r
40#if defined (MDE_CPU_IPF)\r
ac644614 41\r
fc30687f 42///\r
af2dc6a7 43/// The Itanium architecture context buffer used by SetJump() and LongJump().\r
fc30687f 44///\r
ac644614 45typedef struct {\r
46 UINT64 F2[2];\r
47 UINT64 F3[2];\r
48 UINT64 F4[2];\r
49 UINT64 F5[2];\r
50 UINT64 F16[2];\r
51 UINT64 F17[2];\r
52 UINT64 F18[2];\r
53 UINT64 F19[2];\r
54 UINT64 F20[2];\r
55 UINT64 F21[2];\r
56 UINT64 F22[2];\r
57 UINT64 F23[2];\r
58 UINT64 F24[2];\r
59 UINT64 F25[2];\r
60 UINT64 F26[2];\r
61 UINT64 F27[2];\r
62 UINT64 F28[2];\r
63 UINT64 F29[2];\r
64 UINT64 F30[2];\r
65 UINT64 F31[2];\r
66 UINT64 R4;\r
67 UINT64 R5;\r
68 UINT64 R6;\r
69 UINT64 R7;\r
70 UINT64 SP;\r
71 UINT64 BR0;\r
72 UINT64 BR1;\r
73 UINT64 BR2;\r
74 UINT64 BR3;\r
75 UINT64 BR4;\r
76 UINT64 BR5;\r
77 UINT64 InitialUNAT;\r
78 UINT64 AfterSpillUNAT;\r
79 UINT64 PFS;\r
80 UINT64 BSP;\r
81 UINT64 Predicates;\r
82 UINT64 LoopCount;\r
83 UINT64 FPSR;\r
84} BASE_LIBRARY_JUMP_BUFFER;\r
85\r
86#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10\r
87\r
aa4df547 88#endif // defined (MDE_CPU_IPF)\r
89\r
90#if defined (MDE_CPU_X64)\r
fc30687f 91///\r
af2dc6a7 92/// The x64 architecture context buffer used by SetJump() and LongJump().\r
fc30687f 93///\r
ac644614 94typedef struct {\r
95 UINT64 Rbx;\r
96 UINT64 Rsp;\r
97 UINT64 Rbp;\r
98 UINT64 Rdi;\r
99 UINT64 Rsi;\r
100 UINT64 R12;\r
101 UINT64 R13;\r
102 UINT64 R14;\r
103 UINT64 R15;\r
104 UINT64 Rip;\r
9b9641c6 105 UINT64 MxCsr;\r
af2dc6a7 106 UINT8 XmmBuffer[160]; ///< XMM6-XMM15.\r
ac644614 107} BASE_LIBRARY_JUMP_BUFFER;\r
108\r
109#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
110\r
aa4df547 111#endif // defined (MDE_CPU_X64)\r
112\r
113#if defined (MDE_CPU_EBC)\r
fc30687f 114///\r
af2dc6a7 115/// The EBC context buffer used by SetJump() and LongJump().\r
fc30687f 116///\r
ac644614 117typedef struct {\r
118 UINT64 R0;\r
119 UINT64 R1;\r
120 UINT64 R2;\r
121 UINT64 R3;\r
122 UINT64 IP;\r
123} BASE_LIBRARY_JUMP_BUFFER;\r
124\r
125#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
126\r
aa4df547 127#endif // defined (MDE_CPU_EBC)\r
ac644614 128\r
ebd04fc2 129#if defined (MDE_CPU_ARM)\r
130\r
131typedef struct {\r
af2dc6a7 132 UINT32 R3; ///< A copy of R13.\r
01a54966 133 UINT32 R4;\r
134 UINT32 R5;\r
135 UINT32 R6;\r
136 UINT32 R7;\r
137 UINT32 R8;\r
138 UINT32 R9;\r
139 UINT32 R10;\r
140 UINT32 R11;\r
141 UINT32 R12;\r
142 UINT32 R14;\r
ebd04fc2 143} BASE_LIBRARY_JUMP_BUFFER;\r
144\r
145#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
146\r
147#endif // defined (MDE_CPU_ARM)\r
148\r
807e2604
HL
149#if defined (MDE_CPU_AARCH64)\r
150typedef struct {\r
151 // GP regs\r
152 UINT64 X19;\r
153 UINT64 X20;\r
154 UINT64 X21;\r
155 UINT64 X22;\r
156 UINT64 X23;\r
157 UINT64 X24;\r
158 UINT64 X25;\r
159 UINT64 X26;\r
160 UINT64 X27;\r
161 UINT64 X28;\r
162 UINT64 FP;\r
163 UINT64 LR;\r
164 UINT64 IP0;\r
165\r
166 // FP regs\r
167 UINT64 D8;\r
168 UINT64 D9;\r
169 UINT64 D10;\r
170 UINT64 D11;\r
171 UINT64 D12;\r
172 UINT64 D13;\r
173 UINT64 D14;\r
174 UINT64 D15;\r
175} BASE_LIBRARY_JUMP_BUFFER;\r
176\r
177#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
178\r
179#endif // defined (MDE_CPU_AARCH64)\r
180\r
181\r
ac644614 182//\r
183// String Services\r
184//\r
185\r
c058d59f
JY
186\r
187/**\r
188 Returns the length of a Null-terminated Unicode string.\r
189\r
328f84b1
JY
190 This function is similar as strlen_s defined in C11.\r
191\r
c058d59f
JY
192 If String is not aligned on a 16-bit boundary, then ASSERT().\r
193\r
194 @param String A pointer to a Null-terminated Unicode string.\r
195 @param MaxSize The maximum number of Destination Unicode\r
196 char, including terminating null char.\r
197\r
198 @retval 0 If String is NULL.\r
199 @retval MaxSize If there is no null character in the first MaxSize characters of String.\r
200 @return The number of characters that percede the terminating null character.\r
201\r
202**/\r
203UINTN\r
204EFIAPI\r
205StrnLenS (\r
206 IN CONST CHAR16 *String,\r
207 IN UINTN MaxSize\r
208 );\r
209\r
b590e43a
HW
210/**\r
211 Returns the size of a Null-terminated Unicode string in bytes, including the\r
212 Null terminator.\r
213\r
214 This function returns the size of the Null-terminated Unicode string\r
215 specified by String in bytes, including the Null terminator.\r
216\r
217 If String is not aligned on a 16-bit boundary, then ASSERT().\r
218\r
219 @param String A pointer to a Null-terminated Unicode string.\r
220 @param MaxSize The maximum number of Destination Unicode\r
221 char, including the Null terminator.\r
222\r
223 @retval 0 If String is NULL.\r
224 @retval (sizeof (CHAR16) * (MaxSize + 1))\r
225 If there is no Null terminator in the first MaxSize characters of\r
226 String.\r
227 @return The size of the Null-terminated Unicode string in bytes, including\r
228 the Null terminator.\r
229\r
230**/\r
231UINTN\r
232EFIAPI\r
233StrnSizeS (\r
234 IN CONST CHAR16 *String,\r
235 IN UINTN MaxSize\r
236 );\r
237\r
c058d59f
JY
238/**\r
239 Copies the string pointed to by Source (including the terminating null char)\r
240 to the array pointed to by Destination.\r
241\r
328f84b1
JY
242 This function is similar as strcpy_s defined in C11.\r
243\r
c058d59f
JY
244 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
245 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
0e93edbb 246 If an error would be returned, then the function will also ASSERT().\r
c058d59f 247\r
328f84b1
JY
248 If an error is returned, then the Destination is unmodified.\r
249\r
c058d59f
JY
250 @param Destination A pointer to a Null-terminated Unicode string.\r
251 @param DestMax The maximum number of Destination Unicode\r
252 char, including terminating null char.\r
253 @param Source A pointer to a Null-terminated Unicode string.\r
254\r
255 @retval RETURN_SUCCESS String is copied.\r
256 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
257 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
258 If Source is NULL.\r
259 If PcdMaximumUnicodeStringLength is not zero,\r
260 and DestMax is greater than \r
261 PcdMaximumUnicodeStringLength.\r
262 If DestMax is 0.\r
263 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
264**/\r
265RETURN_STATUS\r
266EFIAPI\r
267StrCpyS (\r
268 OUT CHAR16 *Destination,\r
269 IN UINTN DestMax,\r
270 IN CONST CHAR16 *Source\r
271 );\r
272\r
273/**\r
274 Copies not more than Length successive char from the string pointed to by\r
275 Source to the array pointed to by Destination. If no null char is copied from\r
276 Source, then Destination[Length] is always set to null.\r
277\r
328f84b1
JY
278 This function is similar as strncpy_s defined in C11.\r
279\r
c058d59f
JY
280 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
281 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
0e93edbb 282 If an error would be returned, then the function will also ASSERT().\r
c058d59f 283\r
328f84b1
JY
284 If an error is returned, then the Destination is unmodified.\r
285\r
c058d59f
JY
286 @param Destination A pointer to a Null-terminated Unicode string.\r
287 @param DestMax The maximum number of Destination Unicode\r
288 char, including terminating null char.\r
289 @param Source A pointer to a Null-terminated Unicode string.\r
290 @param Length The maximum number of Unicode characters to copy.\r
291\r
292 @retval RETURN_SUCCESS String is copied.\r
293 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than \r
294 MIN(StrLen(Source), Length).\r
295 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
296 If Source is NULL.\r
297 If PcdMaximumUnicodeStringLength is not zero,\r
298 and DestMax is greater than \r
299 PcdMaximumUnicodeStringLength.\r
300 If DestMax is 0.\r
301 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
302**/\r
303RETURN_STATUS\r
304EFIAPI\r
305StrnCpyS (\r
306 OUT CHAR16 *Destination,\r
307 IN UINTN DestMax,\r
308 IN CONST CHAR16 *Source,\r
309 IN UINTN Length\r
310 );\r
311\r
312/**\r
313 Appends a copy of the string pointed to by Source (including the terminating\r
314 null char) to the end of the string pointed to by Destination.\r
315\r
328f84b1
JY
316 This function is similar as strcat_s defined in C11.\r
317\r
c058d59f
JY
318 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
319 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
0e93edbb 320 If an error would be returned, then the function will also ASSERT().\r
c058d59f 321\r
328f84b1
JY
322 If an error is returned, then the Destination is unmodified.\r
323\r
c058d59f
JY
324 @param Destination A pointer to a Null-terminated Unicode string.\r
325 @param DestMax The maximum number of Destination Unicode\r
326 char, including terminating null char.\r
327 @param Source A pointer to a Null-terminated Unicode string.\r
328\r
329 @retval RETURN_SUCCESS String is appended.\r
330 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than \r
331 StrLen(Destination).\r
332 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
333 greater than StrLen(Source).\r
334 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
335 If Source is NULL.\r
336 If PcdMaximumUnicodeStringLength is not zero,\r
337 and DestMax is greater than \r
338 PcdMaximumUnicodeStringLength.\r
339 If DestMax is 0.\r
340 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
341**/\r
342RETURN_STATUS\r
343EFIAPI\r
344StrCatS (\r
345 IN OUT CHAR16 *Destination,\r
346 IN UINTN DestMax,\r
347 IN CONST CHAR16 *Source\r
348 );\r
349\r
350/**\r
351 Appends not more than Length successive char from the string pointed to by\r
352 Source to the end of the string pointed to by Destination. If no null char is\r
353 copied from Source, then Destination[StrLen(Destination) + Length] is always\r
354 set to null.\r
355\r
328f84b1
JY
356 This function is similar as strncat_s defined in C11.\r
357\r
c058d59f 358 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
0e93edbb
JY
359 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
360 If an error would be returned, then the function will also ASSERT().\r
c058d59f 361\r
328f84b1
JY
362 If an error is returned, then the Destination is unmodified.\r
363\r
c058d59f
JY
364 @param Destination A pointer to a Null-terminated Unicode string.\r
365 @param DestMax The maximum number of Destination Unicode\r
366 char, including terminating null char.\r
367 @param Source A pointer to a Null-terminated Unicode string.\r
368 @param Length The maximum number of Unicode characters to copy.\r
369\r
370 @retval RETURN_SUCCESS String is appended.\r
371 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than\r
372 StrLen(Destination).\r
373 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
374 greater than MIN(StrLen(Source), Length).\r
375 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
376 If Source is NULL.\r
377 If PcdMaximumUnicodeStringLength is not zero,\r
378 and DestMax is greater than \r
379 PcdMaximumUnicodeStringLength.\r
380 If DestMax is 0.\r
381 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
382**/\r
383RETURN_STATUS\r
384EFIAPI\r
385StrnCatS (\r
386 IN OUT CHAR16 *Destination,\r
387 IN UINTN DestMax,\r
388 IN CONST CHAR16 *Source,\r
389 IN UINTN Length\r
390 );\r
391\r
d8af3301
HW
392/**\r
393 Convert a Null-terminated Unicode decimal string to a value of type UINTN.\r
394\r
395 This function outputs a value of type UINTN by interpreting the contents of\r
396 the Unicode string specified by String as a decimal number. The format of the\r
397 input Unicode string String is:\r
398\r
399 [spaces] [decimal digits].\r
400\r
401 The valid decimal digit character is in the range [0-9]. The function will\r
402 ignore the pad space, which includes spaces or tab characters, before\r
403 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
404 be ignored. Then, the function stops at the first character that is a not a\r
405 valid decimal character or a Null-terminator, whichever one comes first.\r
406\r
407 If String is NULL, then ASSERT().\r
408 If Data is NULL, then ASSERT().\r
409 If String is not aligned in a 16-bit boundary, then ASSERT().\r
410 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
411 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
412 Null-terminator, then ASSERT().\r
413\r
414 If String has no valid decimal digits in the above format, then 0 is stored\r
415 at the location pointed to by Data.\r
416 If the number represented by String exceeds the range defined by UINTN, then\r
417 MAX_UINTN is stored at the location pointed to by Data.\r
418\r
419 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
420 is stored at the location pointed to by EndPointer. If String has no valid\r
421 decimal digits right after the optional pad spaces, the value of String is\r
422 stored at the location pointed to by EndPointer.\r
423\r
424 @param String Pointer to a Null-terminated Unicode string.\r
425 @param EndPointer Pointer to character that stops scan.\r
426 @param Data Pointer to the converted value.\r
427\r
428 @retval RETURN_SUCCESS Value is translated from String.\r
429 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
430 If Data is NULL.\r
431 If PcdMaximumUnicodeStringLength is not\r
432 zero, and String contains more than\r
433 PcdMaximumUnicodeStringLength Unicode\r
434 characters, not including the\r
435 Null-terminator.\r
436 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
437 the range defined by UINTN.\r
438\r
439**/\r
440RETURN_STATUS\r
441EFIAPI\r
442StrDecimalToUintnS (\r
443 IN CONST CHAR16 *String,\r
444 OUT CHAR16 **EndPointer, OPTIONAL\r
445 OUT UINTN *Data\r
446 );\r
447\r
448/**\r
449 Convert a Null-terminated Unicode decimal string to a value of type UINT64.\r
450\r
451 This function outputs a value of type UINT64 by interpreting the contents of\r
452 the Unicode string specified by String as a decimal number. The format of the\r
453 input Unicode string String is:\r
454\r
455 [spaces] [decimal digits].\r
456\r
457 The valid decimal digit character is in the range [0-9]. The function will\r
458 ignore the pad space, which includes spaces or tab characters, before\r
459 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
460 be ignored. Then, the function stops at the first character that is a not a\r
461 valid decimal character or a Null-terminator, whichever one comes first.\r
462\r
463 If String is NULL, then ASSERT().\r
464 If Data is NULL, then ASSERT().\r
465 If String is not aligned in a 16-bit boundary, then ASSERT().\r
466 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
467 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
468 Null-terminator, then ASSERT().\r
469\r
470 If String has no valid decimal digits in the above format, then 0 is stored\r
471 at the location pointed to by Data.\r
472 If the number represented by String exceeds the range defined by UINT64, then\r
473 MAX_UINT64 is stored at the location pointed to by Data.\r
474\r
475 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
476 is stored at the location pointed to by EndPointer. If String has no valid\r
477 decimal digits right after the optional pad spaces, the value of String is\r
478 stored at the location pointed to by EndPointer.\r
479\r
480 @param String Pointer to a Null-terminated Unicode string.\r
481 @param EndPointer Pointer to character that stops scan.\r
482 @param Data Pointer to the converted value.\r
483\r
484 @retval RETURN_SUCCESS Value is translated from String.\r
485 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
486 If Data is NULL.\r
487 If PcdMaximumUnicodeStringLength is not\r
488 zero, and String contains more than\r
489 PcdMaximumUnicodeStringLength Unicode\r
490 characters, not including the\r
491 Null-terminator.\r
492 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
493 the range defined by UINT64.\r
494\r
495**/\r
496RETURN_STATUS\r
497EFIAPI\r
498StrDecimalToUint64S (\r
499 IN CONST CHAR16 *String,\r
500 OUT CHAR16 **EndPointer, OPTIONAL\r
501 OUT UINT64 *Data\r
502 );\r
503\r
504/**\r
505 Convert a Null-terminated Unicode hexadecimal string to a value of type\r
506 UINTN.\r
507\r
508 This function outputs a value of type UINTN by interpreting the contents of\r
509 the Unicode string specified by String as a hexadecimal number. The format of\r
510 the input Unicode string String is:\r
511\r
512 [spaces][zeros][x][hexadecimal digits].\r
513\r
514 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
515 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
516 If "x" appears in the input string, it must be prefixed with at least one 0.\r
517 The function will ignore the pad space, which includes spaces or tab\r
518 characters, before [zeros], [x] or [hexadecimal digit]. The running zero\r
519 before [x] or [hexadecimal digit] will be ignored. Then, the decoding starts\r
520 after [x] or the first valid hexadecimal digit. Then, the function stops at\r
521 the first character that is a not a valid hexadecimal character or NULL,\r
522 whichever one comes first.\r
523\r
524 If String is NULL, then ASSERT().\r
525 If Data is NULL, then ASSERT().\r
526 If String is not aligned in a 16-bit boundary, then ASSERT().\r
527 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
528 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
529 Null-terminator, then ASSERT().\r
530\r
531 If String has no valid hexadecimal digits in the above format, then 0 is\r
532 stored at the location pointed to by Data.\r
533 If the number represented by String exceeds the range defined by UINTN, then\r
534 MAX_UINTN is stored at the location pointed to by Data.\r
535\r
536 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
537 is stored at the location pointed to by EndPointer. If String has no valid\r
538 hexadecimal digits right after the optional pad spaces, the value of String\r
539 is stored at the location pointed to by EndPointer.\r
540\r
541 @param String Pointer to a Null-terminated Unicode string.\r
542 @param EndPointer Pointer to character that stops scan.\r
543 @param Data Pointer to the converted value.\r
544\r
545 @retval RETURN_SUCCESS Value is translated from String.\r
546 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
547 If Data is NULL.\r
548 If PcdMaximumUnicodeStringLength is not\r
549 zero, and String contains more than\r
550 PcdMaximumUnicodeStringLength Unicode\r
551 characters, not including the\r
552 Null-terminator.\r
553 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
554 the range defined by UINTN.\r
555\r
556**/\r
557RETURN_STATUS\r
558EFIAPI\r
559StrHexToUintnS (\r
560 IN CONST CHAR16 *String,\r
561 OUT CHAR16 **EndPointer, OPTIONAL\r
562 OUT UINTN *Data\r
563 );\r
564\r
565/**\r
566 Convert a Null-terminated Unicode hexadecimal string to a value of type\r
567 UINT64.\r
568\r
569 This function outputs a value of type UINT64 by interpreting the contents of\r
570 the Unicode string specified by String as a hexadecimal number. The format of\r
571 the input Unicode string String is:\r
572\r
573 [spaces][zeros][x][hexadecimal digits].\r
574\r
575 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
576 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
577 If "x" appears in the input string, it must be prefixed with at least one 0.\r
578 The function will ignore the pad space, which includes spaces or tab\r
579 characters, before [zeros], [x] or [hexadecimal digit]. The running zero\r
580 before [x] or [hexadecimal digit] will be ignored. Then, the decoding starts\r
581 after [x] or the first valid hexadecimal digit. Then, the function stops at\r
582 the first character that is a not a valid hexadecimal character or NULL,\r
583 whichever one comes first.\r
584\r
585 If String is NULL, then ASSERT().\r
586 If Data is NULL, then ASSERT().\r
587 If String is not aligned in a 16-bit boundary, then ASSERT().\r
588 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
589 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
590 Null-terminator, then ASSERT().\r
591\r
592 If String has no valid hexadecimal digits in the above format, then 0 is\r
593 stored at the location pointed to by Data.\r
594 If the number represented by String exceeds the range defined by UINT64, then\r
595 MAX_UINT64 is stored at the location pointed to by Data.\r
596\r
597 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
598 is stored at the location pointed to by EndPointer. If String has no valid\r
599 hexadecimal digits right after the optional pad spaces, the value of String\r
600 is stored at the location pointed to by EndPointer.\r
601\r
602 @param String Pointer to a Null-terminated Unicode string.\r
603 @param EndPointer Pointer to character that stops scan.\r
604 @param Data Pointer to the converted value.\r
605\r
606 @retval RETURN_SUCCESS Value is translated from String.\r
607 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
608 If Data is NULL.\r
609 If PcdMaximumUnicodeStringLength is not\r
610 zero, and String contains more than\r
611 PcdMaximumUnicodeStringLength Unicode\r
612 characters, not including the\r
613 Null-terminator.\r
614 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
615 the range defined by UINT64.\r
616\r
617**/\r
618RETURN_STATUS\r
619EFIAPI\r
620StrHexToUint64S (\r
621 IN CONST CHAR16 *String,\r
622 OUT CHAR16 **EndPointer, OPTIONAL\r
623 OUT UINT64 *Data\r
624 );\r
625\r
c058d59f
JY
626/**\r
627 Returns the length of a Null-terminated Ascii string.\r
628\r
328f84b1
JY
629 This function is similar as strlen_s defined in C11.\r
630\r
c058d59f
JY
631 @param String A pointer to a Null-terminated Ascii string.\r
632 @param MaxSize The maximum number of Destination Ascii\r
633 char, including terminating null char.\r
634\r
635 @retval 0 If String is NULL.\r
636 @retval MaxSize If there is no null character in the first MaxSize characters of String.\r
637 @return The number of characters that percede the terminating null character.\r
638\r
639**/\r
640UINTN\r
641EFIAPI\r
642AsciiStrnLenS (\r
643 IN CONST CHAR8 *String,\r
644 IN UINTN MaxSize\r
645 );\r
646\r
b590e43a
HW
647/**\r
648 Returns the size of a Null-terminated Ascii string in bytes, including the\r
649 Null terminator.\r
650\r
651 This function returns the size of the Null-terminated Ascii string specified\r
652 by String in bytes, including the Null terminator.\r
653\r
654 @param String A pointer to a Null-terminated Ascii string.\r
655 @param MaxSize The maximum number of Destination Ascii\r
656 char, including the Null terminator.\r
657\r
658 @retval 0 If String is NULL.\r
659 @retval (sizeof (CHAR8) * (MaxSize + 1))\r
660 If there is no Null terminator in the first MaxSize characters of\r
661 String.\r
662 @return The size of the Null-terminated Ascii string in bytes, including the\r
663 Null terminator.\r
664\r
665**/\r
666UINTN\r
667EFIAPI\r
668AsciiStrnSizeS (\r
669 IN CONST CHAR8 *String,\r
670 IN UINTN MaxSize\r
671 );\r
672\r
c058d59f
JY
673/**\r
674 Copies the string pointed to by Source (including the terminating null char)\r
675 to the array pointed to by Destination.\r
676\r
328f84b1
JY
677 This function is similar as strcpy_s defined in C11.\r
678\r
0e93edbb
JY
679 If an error would be returned, then the function will also ASSERT().\r
680\r
328f84b1
JY
681 If an error is returned, then the Destination is unmodified.\r
682\r
c058d59f
JY
683 @param Destination A pointer to a Null-terminated Ascii string.\r
684 @param DestMax The maximum number of Destination Ascii\r
685 char, including terminating null char.\r
686 @param Source A pointer to a Null-terminated Ascii string.\r
687\r
688 @retval RETURN_SUCCESS String is copied.\r
689 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
690 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
691 If Source is NULL.\r
692 If PcdMaximumAsciiStringLength is not zero,\r
693 and DestMax is greater than \r
694 PcdMaximumAsciiStringLength.\r
695 If DestMax is 0.\r
696 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
697**/\r
698RETURN_STATUS\r
699EFIAPI\r
700AsciiStrCpyS (\r
701 OUT CHAR8 *Destination,\r
702 IN UINTN DestMax,\r
703 IN CONST CHAR8 *Source\r
704 );\r
705\r
706/**\r
707 Copies not more than Length successive char from the string pointed to by\r
708 Source to the array pointed to by Destination. If no null char is copied from\r
709 Source, then Destination[Length] is always set to null.\r
710\r
328f84b1
JY
711 This function is similar as strncpy_s defined in C11.\r
712\r
0e93edbb
JY
713 If an error would be returned, then the function will also ASSERT().\r
714\r
328f84b1
JY
715 If an error is returned, then the Destination is unmodified.\r
716\r
c058d59f
JY
717 @param Destination A pointer to a Null-terminated Ascii string.\r
718 @param DestMax The maximum number of Destination Ascii\r
719 char, including terminating null char.\r
720 @param Source A pointer to a Null-terminated Ascii string.\r
721 @param Length The maximum number of Ascii characters to copy.\r
722\r
723 @retval RETURN_SUCCESS String is copied.\r
724 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than \r
725 MIN(StrLen(Source), Length).\r
726 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
727 If Source is NULL.\r
728 If PcdMaximumAsciiStringLength is not zero,\r
729 and DestMax is greater than \r
730 PcdMaximumAsciiStringLength.\r
731 If DestMax is 0.\r
732 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
733**/\r
734RETURN_STATUS\r
735EFIAPI\r
736AsciiStrnCpyS (\r
737 OUT CHAR8 *Destination,\r
738 IN UINTN DestMax,\r
739 IN CONST CHAR8 *Source,\r
740 IN UINTN Length\r
741 );\r
742\r
743/**\r
744 Appends a copy of the string pointed to by Source (including the terminating\r
745 null char) to the end of the string pointed to by Destination.\r
746\r
328f84b1
JY
747 This function is similar as strcat_s defined in C11.\r
748\r
0e93edbb
JY
749 If an error would be returned, then the function will also ASSERT().\r
750\r
328f84b1
JY
751 If an error is returned, then the Destination is unmodified.\r
752\r
c058d59f
JY
753 @param Destination A pointer to a Null-terminated Ascii string.\r
754 @param DestMax The maximum number of Destination Ascii\r
755 char, including terminating null char.\r
756 @param Source A pointer to a Null-terminated Ascii string.\r
757\r
758 @retval RETURN_SUCCESS String is appended.\r
759 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than \r
760 StrLen(Destination).\r
761 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
762 greater than StrLen(Source).\r
763 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
764 If Source is NULL.\r
765 If PcdMaximumAsciiStringLength is not zero,\r
766 and DestMax is greater than \r
767 PcdMaximumAsciiStringLength.\r
768 If DestMax is 0.\r
769 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
770**/\r
771RETURN_STATUS\r
772EFIAPI\r
773AsciiStrCatS (\r
774 IN OUT CHAR8 *Destination,\r
775 IN UINTN DestMax,\r
776 IN CONST CHAR8 *Source\r
777 );\r
778\r
779/**\r
780 Appends not more than Length successive char from the string pointed to by\r
781 Source to the end of the string pointed to by Destination. If no null char is\r
782 copied from Source, then Destination[StrLen(Destination) + Length] is always\r
783 set to null.\r
784\r
328f84b1
JY
785 This function is similar as strncat_s defined in C11.\r
786\r
0e93edbb
JY
787 If an error would be returned, then the function will also ASSERT().\r
788\r
328f84b1
JY
789 If an error is returned, then the Destination is unmodified.\r
790\r
c058d59f
JY
791 @param Destination A pointer to a Null-terminated Ascii string.\r
792 @param DestMax The maximum number of Destination Ascii\r
793 char, including terminating null char.\r
794 @param Source A pointer to a Null-terminated Ascii string.\r
795 @param Length The maximum number of Ascii characters to copy.\r
796\r
797 @retval RETURN_SUCCESS String is appended.\r
798 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than\r
799 StrLen(Destination).\r
800 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
801 greater than MIN(StrLen(Source), Length).\r
802 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
803 If Source is NULL.\r
804 If PcdMaximumAsciiStringLength is not zero,\r
805 and DestMax is greater than \r
806 PcdMaximumAsciiStringLength.\r
807 If DestMax is 0.\r
808 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
809**/\r
810RETURN_STATUS\r
811EFIAPI\r
812AsciiStrnCatS (\r
813 IN OUT CHAR8 *Destination,\r
814 IN UINTN DestMax,\r
815 IN CONST CHAR8 *Source,\r
816 IN UINTN Length\r
817 );\r
818\r
d8af3301
HW
819/**\r
820 Convert a Null-terminated Ascii decimal string to a value of type UINTN.\r
821\r
822 This function outputs a value of type UINTN by interpreting the contents of\r
823 the Ascii string specified by String as a decimal number. The format of the\r
824 input Ascii string String is:\r
825\r
826 [spaces] [decimal digits].\r
827\r
828 The valid decimal digit character is in the range [0-9]. The function will\r
829 ignore the pad space, which includes spaces or tab characters, before\r
830 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
831 be ignored. Then, the function stops at the first character that is a not a\r
832 valid decimal character or a Null-terminator, whichever one comes first.\r
833\r
834 If String is NULL, then ASSERT().\r
835 If Data is NULL, then ASSERT().\r
836 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
837 PcdMaximumAsciiStringLength Ascii characters, not including the\r
838 Null-terminator, then ASSERT().\r
839\r
840 If String has no valid decimal digits in the above format, then 0 is stored\r
841 at the location pointed to by Data.\r
842 If the number represented by String exceeds the range defined by UINTN, then\r
843 MAX_UINTN is stored at the location pointed to by Data.\r
844\r
845 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
846 is stored at the location pointed to by EndPointer. If String has no valid\r
847 decimal digits right after the optional pad spaces, the value of String is\r
848 stored at the location pointed to by EndPointer.\r
849\r
850 @param String Pointer to a Null-terminated Ascii string.\r
851 @param EndPointer Pointer to character that stops scan.\r
852 @param Data Pointer to the converted value.\r
853\r
854 @retval RETURN_SUCCESS Value is translated from String.\r
855 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
856 If Data is NULL.\r
857 If PcdMaximumAsciiStringLength is not zero,\r
858 and String contains more than\r
859 PcdMaximumAsciiStringLength Ascii\r
860 characters, not including the\r
861 Null-terminator.\r
862 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
863 the range defined by UINTN.\r
864\r
865**/\r
866RETURN_STATUS\r
867EFIAPI\r
868AsciiStrDecimalToUintnS (\r
869 IN CONST CHAR8 *String,\r
870 OUT CHAR8 **EndPointer, OPTIONAL\r
871 OUT UINTN *Data\r
872 );\r
873\r
874/**\r
875 Convert a Null-terminated Ascii decimal string to a value of type UINT64.\r
876\r
877 This function outputs a value of type UINT64 by interpreting the contents of\r
878 the Ascii string specified by String as a decimal number. The format of the\r
879 input Ascii string String is:\r
880\r
881 [spaces] [decimal digits].\r
882\r
883 The valid decimal digit character is in the range [0-9]. The function will\r
884 ignore the pad space, which includes spaces or tab characters, before\r
885 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
886 be ignored. Then, the function stops at the first character that is a not a\r
887 valid decimal character or a Null-terminator, whichever one comes first.\r
888\r
889 If String is NULL, then ASSERT().\r
890 If Data is NULL, then ASSERT().\r
891 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
892 PcdMaximumAsciiStringLength Ascii characters, not including the\r
893 Null-terminator, then ASSERT().\r
894\r
895 If String has no valid decimal digits in the above format, then 0 is stored\r
896 at the location pointed to by Data.\r
897 If the number represented by String exceeds the range defined by UINT64, then\r
898 MAX_UINT64 is stored at the location pointed to by Data.\r
899\r
900 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
901 is stored at the location pointed to by EndPointer. If String has no valid\r
902 decimal digits right after the optional pad spaces, the value of String is\r
903 stored at the location pointed to by EndPointer.\r
904\r
905 @param String Pointer to a Null-terminated Ascii string.\r
906 @param EndPointer Pointer to character that stops scan.\r
907 @param Data Pointer to the converted value.\r
908\r
909 @retval RETURN_SUCCESS Value is translated from String.\r
910 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
911 If Data is NULL.\r
912 If PcdMaximumAsciiStringLength is not zero,\r
913 and String contains more than\r
914 PcdMaximumAsciiStringLength Ascii\r
915 characters, not including the\r
916 Null-terminator.\r
917 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
918 the range defined by UINT64.\r
919\r
920**/\r
921RETURN_STATUS\r
922EFIAPI\r
923AsciiStrDecimalToUint64S (\r
924 IN CONST CHAR8 *String,\r
925 OUT CHAR8 **EndPointer, OPTIONAL\r
926 OUT UINT64 *Data\r
927 );\r
928\r
929/**\r
930 Convert a Null-terminated Ascii hexadecimal string to a value of type UINTN.\r
931\r
932 This function outputs a value of type UINTN by interpreting the contents of\r
933 the Ascii string specified by String as a hexadecimal number. The format of\r
934 the input Ascii string String is:\r
935\r
936 [spaces][zeros][x][hexadecimal digits].\r
937\r
938 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
939 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If\r
940 "x" appears in the input string, it must be prefixed with at least one 0. The\r
941 function will ignore the pad space, which includes spaces or tab characters,\r
942 before [zeros], [x] or [hexadecimal digits]. The running zero before [x] or\r
943 [hexadecimal digits] will be ignored. Then, the decoding starts after [x] or\r
944 the first valid hexadecimal digit. Then, the function stops at the first\r
945 character that is a not a valid hexadecimal character or Null-terminator,\r
946 whichever on comes first.\r
947\r
948 If String is NULL, then ASSERT().\r
949 If Data is NULL, then ASSERT().\r
950 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
951 PcdMaximumAsciiStringLength Ascii characters, not including the\r
952 Null-terminator, then ASSERT().\r
953\r
954 If String has no valid hexadecimal digits in the above format, then 0 is\r
955 stored at the location pointed to by Data.\r
956 If the number represented by String exceeds the range defined by UINTN, then\r
957 MAX_UINTN is stored at the location pointed to by Data.\r
958\r
959 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
960 is stored at the location pointed to by EndPointer. If String has no valid\r
961 hexadecimal digits right after the optional pad spaces, the value of String\r
962 is stored at the location pointed to by EndPointer.\r
963\r
964 @param String Pointer to a Null-terminated Ascii string.\r
965 @param EndPointer Pointer to character that stops scan.\r
966 @param Data Pointer to the converted value.\r
967\r
968 @retval RETURN_SUCCESS Value is translated from String.\r
969 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
970 If Data is NULL.\r
971 If PcdMaximumAsciiStringLength is not zero,\r
972 and String contains more than\r
973 PcdMaximumAsciiStringLength Ascii\r
974 characters, not including the\r
975 Null-terminator.\r
976 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
977 the range defined by UINTN.\r
978\r
979**/\r
980RETURN_STATUS\r
981EFIAPI\r
982AsciiStrHexToUintnS (\r
983 IN CONST CHAR8 *String,\r
984 OUT CHAR8 **EndPointer, OPTIONAL\r
985 OUT UINTN *Data\r
986 );\r
987\r
988/**\r
989 Convert a Null-terminated Ascii hexadecimal string to a value of type UINT64.\r
990\r
991 This function outputs a value of type UINT64 by interpreting the contents of\r
992 the Ascii string specified by String as a hexadecimal number. The format of\r
993 the input Ascii string String is:\r
994\r
995 [spaces][zeros][x][hexadecimal digits].\r
996\r
997 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
998 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If\r
999 "x" appears in the input string, it must be prefixed with at least one 0. The\r
1000 function will ignore the pad space, which includes spaces or tab characters,\r
1001 before [zeros], [x] or [hexadecimal digits]. The running zero before [x] or\r
1002 [hexadecimal digits] will be ignored. Then, the decoding starts after [x] or\r
1003 the first valid hexadecimal digit. Then, the function stops at the first\r
1004 character that is a not a valid hexadecimal character or Null-terminator,\r
1005 whichever on comes first.\r
1006\r
1007 If String is NULL, then ASSERT().\r
1008 If Data is NULL, then ASSERT().\r
1009 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
1010 PcdMaximumAsciiStringLength Ascii characters, not including the\r
1011 Null-terminator, then ASSERT().\r
1012\r
1013 If String has no valid hexadecimal digits in the above format, then 0 is\r
1014 stored at the location pointed to by Data.\r
1015 If the number represented by String exceeds the range defined by UINT64, then\r
1016 MAX_UINT64 is stored at the location pointed to by Data.\r
1017\r
1018 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
1019 is stored at the location pointed to by EndPointer. If String has no valid\r
1020 hexadecimal digits right after the optional pad spaces, the value of String\r
1021 is stored at the location pointed to by EndPointer.\r
1022\r
1023 @param String Pointer to a Null-terminated Ascii string.\r
1024 @param EndPointer Pointer to character that stops scan.\r
1025 @param Data Pointer to the converted value.\r
1026\r
1027 @retval RETURN_SUCCESS Value is translated from String.\r
1028 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1029 If Data is NULL.\r
1030 If PcdMaximumAsciiStringLength is not zero,\r
1031 and String contains more than\r
1032 PcdMaximumAsciiStringLength Ascii\r
1033 characters, not including the\r
1034 Null-terminator.\r
1035 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
1036 the range defined by UINT64.\r
1037\r
1038**/\r
1039RETURN_STATUS\r
1040EFIAPI\r
1041AsciiStrHexToUint64S (\r
1042 IN CONST CHAR8 *String,\r
1043 OUT CHAR8 **EndPointer, OPTIONAL\r
1044 OUT UINT64 *Data\r
1045 );\r
1046\r
c058d59f 1047\r
1bb390f1
ED
1048#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1049\r
ac644614 1050/**\r
ae591c14 1051 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1052\r
ac644614 1053 Copies one Null-terminated Unicode string to another Null-terminated Unicode\r
1054 string and returns the new Unicode string.\r
1055\r
1056 This function copies the contents of the Unicode string Source to the Unicode\r
1057 string Destination, and returns Destination. If Source and Destination\r
1058 overlap, then the results are undefined.\r
1059\r
1060 If Destination is NULL, then ASSERT().\r
1061 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1062 If Source is NULL, then ASSERT().\r
1063 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1064 If Source and Destination overlap, then ASSERT().\r
1065 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
1066 PcdMaximumUnicodeStringLength Unicode characters not including the\r
1067 Null-terminator, then ASSERT().\r
1068\r
af2dc6a7 1069 @param Destination The pointer to a Null-terminated Unicode string.\r
1070 @param Source The pointer to a Null-terminated Unicode string.\r
ac644614 1071\r
9aa049d9 1072 @return Destination.\r
ac644614 1073\r
1074**/\r
1075CHAR16 *\r
1076EFIAPI\r
1077StrCpy (\r
1078 OUT CHAR16 *Destination,\r
1079 IN CONST CHAR16 *Source\r
1080 );\r
1081\r
1082\r
1083/**\r
ae591c14 1084 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1085\r
af2dc6a7 1086 Copies up to a specified length from one Null-terminated Unicode string to \r
17f695ed 1087 another Null-terminated Unicode string and returns the new Unicode string.\r
ac644614 1088\r
1089 This function copies the contents of the Unicode string Source to the Unicode\r
1090 string Destination, and returns Destination. At most, Length Unicode\r
1091 characters are copied from Source to Destination. If Length is 0, then\r
1092 Destination is returned unmodified. If Length is greater that the number of\r
1093 Unicode characters in Source, then Destination is padded with Null Unicode\r
1094 characters. If Source and Destination overlap, then the results are\r
1095 undefined.\r
1096\r
1097 If Length > 0 and Destination is NULL, then ASSERT().\r
1098 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1099 If Length > 0 and Source is NULL, then ASSERT().\r
77f863ee 1100 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 1101 If Source and Destination overlap, then ASSERT().\r
50c247fd 1102 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
1103 PcdMaximumUnicodeStringLength, then ASSERT().\r
ac644614 1104 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
50c247fd 1105 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
1106 then ASSERT().\r
ac644614 1107\r
af2dc6a7 1108 @param Destination The pointer to a Null-terminated Unicode string.\r
1109 @param Source The pointer to a Null-terminated Unicode string.\r
1110 @param Length The maximum number of Unicode characters to copy.\r
ac644614 1111\r
9aa049d9 1112 @return Destination.\r
ac644614 1113\r
1114**/\r
1115CHAR16 *\r
1116EFIAPI\r
1117StrnCpy (\r
1118 OUT CHAR16 *Destination,\r
1119 IN CONST CHAR16 *Source,\r
1120 IN UINTN Length\r
1121 );\r
1bb390f1 1122#endif\r
ac644614 1123\r
1124/**\r
1125 Returns the length of a Null-terminated Unicode string.\r
1126\r
1127 This function returns the number of Unicode characters in the Null-terminated\r
1128 Unicode string specified by String.\r
1129\r
1130 If String is NULL, then ASSERT().\r
1131 If String is not aligned on a 16-bit boundary, then ASSERT().\r
1132 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1133 PcdMaximumUnicodeStringLength Unicode characters not including the\r
1134 Null-terminator, then ASSERT().\r
1135\r
1136 @param String Pointer to a Null-terminated Unicode string.\r
1137\r
1138 @return The length of String.\r
1139\r
1140**/\r
1141UINTN\r
1142EFIAPI\r
1143StrLen (\r
1144 IN CONST CHAR16 *String\r
1145 );\r
1146\r
1147\r
1148/**\r
1149 Returns the size of a Null-terminated Unicode string in bytes, including the\r
1150 Null terminator.\r
1151\r
17f695ed 1152 This function returns the size, in bytes, of the Null-terminated Unicode string \r
1153 specified by String.\r
ac644614 1154\r
1155 If String is NULL, then ASSERT().\r
1156 If String is not aligned on a 16-bit boundary, then ASSERT().\r
1157 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1158 PcdMaximumUnicodeStringLength Unicode characters not including the\r
1159 Null-terminator, then ASSERT().\r
1160\r
af2dc6a7 1161 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1162\r
1163 @return The size of String.\r
1164\r
1165**/\r
1166UINTN\r
1167EFIAPI\r
1168StrSize (\r
1169 IN CONST CHAR16 *String\r
1170 );\r
1171\r
1172\r
1173/**\r
1174 Compares two Null-terminated Unicode strings, and returns the difference\r
1175 between the first mismatched Unicode characters.\r
1176\r
1177 This function compares the Null-terminated Unicode string FirstString to the\r
1178 Null-terminated Unicode string SecondString. If FirstString is identical to\r
1179 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
1180 mismatched Unicode character in SecondString subtracted from the first\r
1181 mismatched Unicode character in FirstString.\r
1182\r
1183 If FirstString is NULL, then ASSERT().\r
1184 If FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
1185 If SecondString is NULL, then ASSERT().\r
1186 If SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
1187 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more\r
1188 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
1189 Null-terminator, then ASSERT().\r
1190 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more\r
af2dc6a7 1191 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1192 Null-terminator, then ASSERT().\r
1193\r
af2dc6a7 1194 @param FirstString The pointer to a Null-terminated Unicode string.\r
1195 @param SecondString The pointer to a Null-terminated Unicode string.\r
ac644614 1196\r
1106ffe1 1197 @retval 0 FirstString is identical to SecondString.\r
1198 @return others FirstString is not identical to SecondString.\r
ac644614 1199\r
1200**/\r
1201INTN\r
1202EFIAPI\r
1203StrCmp (\r
1204 IN CONST CHAR16 *FirstString,\r
1205 IN CONST CHAR16 *SecondString\r
1206 );\r
1207\r
1208\r
1209/**\r
17f695ed 1210 Compares up to a specified length the contents of two Null-terminated Unicode strings,\r
1211 and returns the difference between the first mismatched Unicode characters.\r
1212 \r
ac644614 1213 This function compares the Null-terminated Unicode string FirstString to the\r
1214 Null-terminated Unicode string SecondString. At most, Length Unicode\r
1215 characters will be compared. If Length is 0, then 0 is returned. If\r
1216 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
1217 value returned is the first mismatched Unicode character in SecondString\r
1218 subtracted from the first mismatched Unicode character in FirstString.\r
1219\r
1220 If Length > 0 and FirstString is NULL, then ASSERT().\r
77f863ee 1221 If Length > 0 and FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 1222 If Length > 0 and SecondString is NULL, then ASSERT().\r
77f863ee 1223 If Length > 0 and SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
50c247fd 1224 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than\r
1225 PcdMaximumUnicodeStringLength, then ASSERT().\r
1226 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more than\r
1227 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
1228 then ASSERT().\r
1229 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more than\r
1230 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
1231 then ASSERT().\r
ac644614 1232\r
af2dc6a7 1233 @param FirstString The pointer to a Null-terminated Unicode string.\r
1234 @param SecondString The pointer to a Null-terminated Unicode string.\r
1235 @param Length The maximum number of Unicode characters to compare.\r
ac644614 1236\r
1106ffe1 1237 @retval 0 FirstString is identical to SecondString.\r
1238 @return others FirstString is not identical to SecondString.\r
ac644614 1239\r
1240**/\r
1241INTN\r
1242EFIAPI\r
1243StrnCmp (\r
1244 IN CONST CHAR16 *FirstString,\r
1245 IN CONST CHAR16 *SecondString,\r
1246 IN UINTN Length\r
1247 );\r
1248\r
1249\r
1bb390f1
ED
1250#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1251\r
ac644614 1252/**\r
ae591c14 1253 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1254\r
ac644614 1255 Concatenates one Null-terminated Unicode string to another Null-terminated\r
1256 Unicode string, and returns the concatenated Unicode string.\r
1257\r
1258 This function concatenates two Null-terminated Unicode strings. The contents\r
1259 of Null-terminated Unicode string Source are concatenated to the end of\r
1260 Null-terminated Unicode string Destination. The Null-terminated concatenated\r
1261 Unicode String is returned. If Source and Destination overlap, then the\r
1262 results are undefined.\r
1263\r
1264 If Destination is NULL, then ASSERT().\r
77f863ee 1265 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 1266 If Source is NULL, then ASSERT().\r
77f863ee 1267 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 1268 If Source and Destination overlap, then ASSERT().\r
1269 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
af2dc6a7 1270 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1271 Null-terminator, then ASSERT().\r
1272 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
af2dc6a7 1273 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1274 Null-terminator, then ASSERT().\r
1275 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
1276 and Source results in a Unicode string with more than\r
af2dc6a7 1277 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1278 Null-terminator, then ASSERT().\r
1279\r
af2dc6a7 1280 @param Destination The pointer to a Null-terminated Unicode string.\r
1281 @param Source The pointer to a Null-terminated Unicode string.\r
ac644614 1282\r
9aa049d9 1283 @return Destination.\r
ac644614 1284\r
1285**/\r
1286CHAR16 *\r
1287EFIAPI\r
1288StrCat (\r
1289 IN OUT CHAR16 *Destination,\r
1290 IN CONST CHAR16 *Source\r
1291 );\r
1292\r
1293\r
1294/**\r
ae591c14 1295 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1296\r
17f695ed 1297 Concatenates up to a specified length one Null-terminated Unicode to the end \r
1298 of another Null-terminated Unicode string, and returns the concatenated \r
ac644614 1299 Unicode string.\r
1300\r
1301 This function concatenates two Null-terminated Unicode strings. The contents\r
1302 of Null-terminated Unicode string Source are concatenated to the end of\r
1303 Null-terminated Unicode string Destination, and Destination is returned. At\r
1304 most, Length Unicode characters are concatenated from Source to the end of\r
1305 Destination, and Destination is always Null-terminated. If Length is 0, then\r
1306 Destination is returned unmodified. If Source and Destination overlap, then\r
1307 the results are undefined.\r
1308\r
1309 If Destination is NULL, then ASSERT().\r
1310 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1311 If Length > 0 and Source is NULL, then ASSERT().\r
1312 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
1313 If Source and Destination overlap, then ASSERT().\r
50c247fd 1314 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
1315 PcdMaximumUnicodeStringLength, then ASSERT().\r
ac644614 1316 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
50c247fd 1317 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1318 Null-terminator, then ASSERT().\r
1319 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
50c247fd 1320 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1321 Null-terminator, then ASSERT().\r
1322 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
50c247fd 1323 and Source results in a Unicode string with more than PcdMaximumUnicodeStringLength\r
1324 Unicode characters, not including the Null-terminator, then ASSERT().\r
ac644614 1325\r
af2dc6a7 1326 @param Destination The pointer to a Null-terminated Unicode string.\r
1327 @param Source The pointer to a Null-terminated Unicode string.\r
1328 @param Length The maximum number of Unicode characters to concatenate from\r
ac644614 1329 Source.\r
1330\r
9aa049d9 1331 @return Destination.\r
ac644614 1332\r
1333**/\r
1334CHAR16 *\r
1335EFIAPI\r
1336StrnCat (\r
1337 IN OUT CHAR16 *Destination,\r
1338 IN CONST CHAR16 *Source,\r
1339 IN UINTN Length\r
1340 );\r
1bb390f1 1341#endif\r
ac644614 1342\r
1343/**\r
9aa049d9 1344 Returns the first occurrence of a Null-terminated Unicode sub-string\r
ac644614 1345 in a Null-terminated Unicode string.\r
1346\r
1347 This function scans the contents of the Null-terminated Unicode string\r
1348 specified by String and returns the first occurrence of SearchString.\r
1349 If SearchString is not found in String, then NULL is returned. If\r
af2dc6a7 1350 the length of SearchString is zero, then String is returned.\r
ac644614 1351\r
1352 If String is NULL, then ASSERT().\r
1353 If String is not aligned on a 16-bit boundary, then ASSERT().\r
1354 If SearchString is NULL, then ASSERT().\r
1355 If SearchString is not aligned on a 16-bit boundary, then ASSERT().\r
1356\r
1357 If PcdMaximumUnicodeStringLength is not zero, and SearchString\r
1358 or String contains more than PcdMaximumUnicodeStringLength Unicode\r
af2dc6a7 1359 characters, not including the Null-terminator, then ASSERT().\r
ac644614 1360\r
af2dc6a7 1361 @param String The pointer to a Null-terminated Unicode string.\r
1362 @param SearchString The pointer to a Null-terminated Unicode string to search for.\r
ac644614 1363\r
1364 @retval NULL If the SearchString does not appear in String.\r
1106ffe1 1365 @return others If there is a match.\r
ac644614 1366\r
1367**/\r
1368CHAR16 *\r
1369EFIAPI\r
1370StrStr (\r
17f695ed 1371 IN CONST CHAR16 *String,\r
1372 IN CONST CHAR16 *SearchString\r
ac644614 1373 );\r
1374\r
1375/**\r
1376 Convert a Null-terminated Unicode decimal string to a value of\r
1377 type UINTN.\r
1378\r
1379 This function returns a value of type UINTN by interpreting the contents\r
1380 of the Unicode string specified by String as a decimal number. The format\r
1381 of the input Unicode string String is:\r
1382\r
1383 [spaces] [decimal digits].\r
1384\r
1385 The valid decimal digit character is in the range [0-9]. The\r
1386 function will ignore the pad space, which includes spaces or\r
1387 tab characters, before [decimal digits]. The running zero in the\r
1388 beginning of [decimal digits] will be ignored. Then, the function\r
1389 stops at the first character that is a not a valid decimal character\r
1390 or a Null-terminator, whichever one comes first.\r
1391\r
1392 If String is NULL, then ASSERT().\r
1393 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1394 If String has only pad spaces, then 0 is returned.\r
1395 If String has no pad spaces or valid decimal digits,\r
1396 then 0 is returned.\r
1397 If the number represented by String overflows according\r
ea2e0921 1398 to the range defined by UINTN, then MAX_UINTN is returned.\r
ac644614 1399\r
1400 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
1401 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
1402 the Null-terminator, then ASSERT().\r
1403\r
af2dc6a7 1404 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1405\r
38bbd3d9 1406 @retval Value translated from String.\r
ac644614 1407\r
1408**/\r
1409UINTN\r
1410EFIAPI\r
1411StrDecimalToUintn (\r
17f695ed 1412 IN CONST CHAR16 *String\r
ac644614 1413 );\r
1414\r
1415/**\r
1416 Convert a Null-terminated Unicode decimal string to a value of\r
1417 type UINT64.\r
1418\r
1419 This function returns a value of type UINT64 by interpreting the contents\r
1420 of the Unicode string specified by String as a decimal number. The format\r
1421 of the input Unicode string String is:\r
1422\r
1423 [spaces] [decimal digits].\r
1424\r
1425 The valid decimal digit character is in the range [0-9]. The\r
1426 function will ignore the pad space, which includes spaces or\r
1427 tab characters, before [decimal digits]. The running zero in the\r
1428 beginning of [decimal digits] will be ignored. Then, the function\r
1429 stops at the first character that is a not a valid decimal character\r
1430 or a Null-terminator, whichever one comes first.\r
1431\r
1432 If String is NULL, then ASSERT().\r
1433 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1434 If String has only pad spaces, then 0 is returned.\r
1435 If String has no pad spaces or valid decimal digits,\r
1436 then 0 is returned.\r
1437 If the number represented by String overflows according\r
ea2e0921 1438 to the range defined by UINT64, then MAX_UINT64 is returned.\r
ac644614 1439\r
1440 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
1441 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
1442 the Null-terminator, then ASSERT().\r
1443\r
af2dc6a7 1444 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1445\r
38bbd3d9 1446 @retval Value translated from String.\r
ac644614 1447\r
1448**/\r
1449UINT64\r
1450EFIAPI\r
1451StrDecimalToUint64 (\r
17f695ed 1452 IN CONST CHAR16 *String\r
ac644614 1453 );\r
1454 \r
1455\r
1456/**\r
1457 Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.\r
1458\r
1459 This function returns a value of type UINTN by interpreting the contents\r
1460 of the Unicode string specified by String as a hexadecimal number.\r
1461 The format of the input Unicode string String is:\r
1462\r
1463 [spaces][zeros][x][hexadecimal digits].\r
1464\r
1465 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1466 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
1467 If "x" appears in the input string, it must be prefixed with at least one 0.\r
1468 The function will ignore the pad space, which includes spaces or tab characters,\r
1469 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
1470 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
af2dc6a7 1471 first valid hexadecimal digit. Then, the function stops at the first character \r
1472 that is a not a valid hexadecimal character or NULL, whichever one comes first.\r
ac644614 1473\r
1474 If String is NULL, then ASSERT().\r
1475 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1476 If String has only pad spaces, then zero is returned.\r
1477 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
1478 then zero is returned.\r
1479 If the number represented by String overflows according to the range defined by\r
ea2e0921 1480 UINTN, then MAX_UINTN is returned.\r
ac644614 1481\r
1482 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1483 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
1484 then ASSERT().\r
1485\r
af2dc6a7 1486 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1487\r
38bbd3d9 1488 @retval Value translated from String.\r
ac644614 1489\r
1490**/\r
1491UINTN\r
1492EFIAPI\r
1493StrHexToUintn (\r
17f695ed 1494 IN CONST CHAR16 *String\r
ac644614 1495 );\r
1496\r
1497\r
1498/**\r
1499 Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.\r
1500\r
1501 This function returns a value of type UINT64 by interpreting the contents\r
1502 of the Unicode string specified by String as a hexadecimal number.\r
1503 The format of the input Unicode string String is\r
1504\r
1505 [spaces][zeros][x][hexadecimal digits].\r
1506\r
1507 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1508 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
1509 If "x" appears in the input string, it must be prefixed with at least one 0.\r
1510 The function will ignore the pad space, which includes spaces or tab characters,\r
1511 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
1512 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
1513 first valid hexadecimal digit. Then, the function stops at the first character that is\r
1514 a not a valid hexadecimal character or NULL, whichever one comes first.\r
1515\r
1516 If String is NULL, then ASSERT().\r
1517 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1518 If String has only pad spaces, then zero is returned.\r
1519 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
1520 then zero is returned.\r
1521 If the number represented by String overflows according to the range defined by\r
ea2e0921 1522 UINT64, then MAX_UINT64 is returned.\r
ac644614 1523\r
1524 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1525 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
1526 then ASSERT().\r
1527\r
af2dc6a7 1528 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1529\r
38bbd3d9 1530 @retval Value translated from String.\r
ac644614 1531\r
1532**/\r
1533UINT64\r
1534EFIAPI\r
1535StrHexToUint64 (\r
17f695ed 1536 IN CONST CHAR16 *String\r
ac644614 1537 );\r
1538\r
36396ea2
RN
1539/**\r
1540 Convert a Null-terminated Unicode string to IPv6 address and prefix length.\r
1541\r
1542 This function outputs a value of type IPv6_ADDRESS and may output a value\r
1543 of type UINT8 by interpreting the contents of the Unicode string specified\r
1544 by String. The format of the input Unicode string String is as follows:\r
1545\r
1546 X:X:X:X:X:X:X:X[/P]\r
1547\r
1548 X contains one to four hexadecimal digit characters in the range [0-9], [a-f] and\r
1549 [A-F]. X is converted to a value of type UINT16, whose low byte is stored in low\r
1550 memory address and high byte is stored in high memory address. P contains decimal\r
1551 digit characters in the range [0-9]. The running zero in the beginning of P will\r
1552 be ignored. /P is optional.\r
1553\r
1554 When /P is not in the String, the function stops at the first character that is\r
1555 not a valid hexadecimal digit character after eight X's are converted.\r
1556\r
1557 When /P is in the String, the function stops at the first character that is not\r
1558 a valid decimal digit character after P is converted.\r
1559\r
1560 "::" can be used to compress one or more groups of X when X contains only 0.\r
1561 The "::" can only appear once in the String.\r
1562\r
1563 If String is NULL, then ASSERT().\r
1564\r
1565 If Address is NULL, then ASSERT().\r
1566\r
1567 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1568\r
1569 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1570 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1571 Null-terminator, then ASSERT().\r
1572\r
1573 If EndPointer is not NULL and Address is translated from String, a pointer\r
1574 to the character that stopped the scan is stored at the location pointed to\r
1575 by EndPointer.\r
1576\r
1577 @param String Pointer to a Null-terminated Unicode string.\r
1578 @param EndPointer Pointer to character that stops scan.\r
1579 @param Address Pointer to the converted IPv6 address.\r
1580 @param PrefixLength Pointer to the converted IPv6 address prefix\r
1581 length. MAX_UINT8 is returned when /P is\r
1582 not in the String.\r
1583\r
1584 @retval RETURN_SUCCESS Address is translated from String.\r
1585 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1586 If Data is NULL.\r
1587 @retval RETURN_UNSUPPORTED If X contains more than four hexadecimal\r
1588 digit characters.\r
1589 If String contains "::" and number of X\r
1590 is not less than 8.\r
1591 If P starts with character that is not a\r
1592 valid decimal digit character.\r
1593 If the decimal number converted from P\r
1594 exceeds 128.\r
1595\r
1596**/\r
1597RETURN_STATUS\r
1598EFIAPI\r
1599StrToIpv6Address (\r
1600 IN CONST CHAR16 *String,\r
1601 OUT CHAR16 **EndPointer, OPTIONAL\r
1602 OUT IPv6_ADDRESS *Address,\r
1603 OUT UINT8 *PrefixLength OPTIONAL\r
1604 );\r
1605\r
1606/**\r
1607 Convert a Null-terminated Unicode string to IPv4 address and prefix length.\r
1608\r
1609 This function outputs a value of type IPv4_ADDRESS and may output a value\r
1610 of type UINT8 by interpreting the contents of the Unicode string specified\r
1611 by String. The format of the input Unicode string String is as follows:\r
1612\r
1613 D.D.D.D[/P]\r
1614\r
1615 D and P are decimal digit characters in the range [0-9]. The running zero in\r
1616 the beginning of D and P will be ignored. /P is optional.\r
1617\r
1618 When /P is not in the String, the function stops at the first character that is\r
1619 not a valid decimal digit character after four D's are converted.\r
1620\r
1621 When /P is in the String, the function stops at the first character that is not\r
1622 a valid decimal digit character after P is converted.\r
1623\r
1624 If String is NULL, then ASSERT().\r
1625\r
1626 If Address is NULL, then ASSERT().\r
1627\r
1628 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1629\r
1630 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1631 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1632 Null-terminator, then ASSERT().\r
1633\r
1634 If EndPointer is not NULL and Address is translated from String, a pointer\r
1635 to the character that stopped the scan is stored at the location pointed to\r
1636 by EndPointer.\r
1637\r
1638 @param String Pointer to a Null-terminated Unicode string.\r
1639 @param EndPointer Pointer to character that stops scan.\r
1640 @param Address Pointer to the converted IPv4 address.\r
1641 @param PrefixLength Pointer to the converted IPv4 address prefix\r
1642 length. MAX_UINT8 is returned when /P is\r
1643 not in the String.\r
1644\r
1645 @retval RETURN_SUCCESS Address is translated from String.\r
1646 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1647 If Data is NULL.\r
1648 @retval RETURN_UNSUPPORTED If String is not in the correct format.\r
1649 If any decimal number converted from D\r
1650 exceeds 255.\r
1651 If the decimal number converted from P\r
1652 exceeds 32.\r
1653\r
1654**/\r
1655RETURN_STATUS\r
1656EFIAPI\r
1657StrToIpv4Address (\r
1658 IN CONST CHAR16 *String,\r
1659 OUT CHAR16 **EndPointer, OPTIONAL\r
1660 OUT IPv4_ADDRESS *Address,\r
1661 OUT UINT8 *PrefixLength OPTIONAL\r
1662 );\r
1663\r
1664#define GUID_STRING_LENGTH 36\r
1665\r
1666/**\r
1667 Convert a Null-terminated Unicode GUID string to a value of type\r
1668 EFI_GUID.\r
1669\r
1670 This function outputs a GUID value by interpreting the contents of\r
1671 the Unicode string specified by String. The format of the input\r
1672 Unicode string String consists of 36 characters, as follows:\r
1673\r
1674 aabbccdd-eeff-gghh-iijj-kkllmmnnoopp\r
1675\r
1676 The pairs aa - pp are two characters in the range [0-9], [a-f] and\r
1677 [A-F], with each pair representing a single byte hexadecimal value.\r
1678\r
1679 The mapping between String and the EFI_GUID structure is as follows:\r
1680 aa Data1[24:31]\r
1681 bb Data1[16:23]\r
1682 cc Data1[8:15]\r
1683 dd Data1[0:7]\r
1684 ee Data2[8:15]\r
1685 ff Data2[0:7]\r
1686 gg Data3[8:15]\r
1687 hh Data3[0:7]\r
1688 ii Data4[0:7]\r
1689 jj Data4[8:15]\r
1690 kk Data4[16:23]\r
1691 ll Data4[24:31]\r
1692 mm Data4[32:39]\r
1693 nn Data4[40:47]\r
1694 oo Data4[48:55]\r
1695 pp Data4[56:63]\r
1696\r
1697 If String is NULL, then ASSERT().\r
1698 If Guid is NULL, then ASSERT().\r
1699 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1700\r
1701 @param String Pointer to a Null-terminated Unicode string.\r
1702 @param Guid Pointer to the converted GUID.\r
1703\r
1704 @retval RETURN_SUCCESS Guid is translated from String.\r
1705 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1706 If Data is NULL.\r
1707 @retval RETURN_UNSUPPORTED If String is not as the above format.\r
1708\r
1709**/\r
1710RETURN_STATUS\r
1711EFIAPI\r
1712StrToGuid (\r
1713 IN CONST CHAR16 *String,\r
1714 OUT GUID *Guid\r
1715 );\r
1716\r
1717/**\r
1718 Convert a Null-terminated Unicode hexadecimal string to a byte array.\r
1719\r
1720 This function outputs a byte array by interpreting the contents of\r
1721 the Unicode string specified by String in hexadecimal format. The format of\r
1722 the input Unicode string String is:\r
1723\r
1724 [XX]*\r
1725\r
1726 X is a hexadecimal digit character in the range [0-9], [a-f] and [A-F].\r
1727 The function decodes every two hexadecimal digit characters as one byte. The\r
1728 decoding stops after Length of characters and outputs Buffer containing\r
1729 (Length / 2) bytes.\r
1730\r
1731 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1732\r
1733 If String is NULL, then ASSERT().\r
1734\r
1735 If Buffer is NULL, then ASSERT().\r
1736\r
1737 If Length is not multiple of 2, then ASSERT().\r
1738\r
1739 If PcdMaximumUnicodeStringLength is not zero and Length is greater than\r
1740 PcdMaximumUnicodeStringLength, then ASSERT().\r
1741\r
1742 If MaxBufferSize is less than (Length / 2), then ASSERT().\r
1743\r
1744 @param String Pointer to a Null-terminated Unicode string.\r
1745 @param Length The number of Unicode characters to decode.\r
1746 @param Buffer Pointer to the converted bytes array.\r
1747 @param MaxBufferSize The maximum size of Buffer.\r
1748\r
1749 @retval RETURN_SUCCESS Buffer is translated from String.\r
1750 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1751 If Data is NULL.\r
1752 If Length is not multiple of 2.\r
1753 If PcdMaximumUnicodeStringLength is not zero,\r
1754 and Length is greater than\r
1755 PcdMaximumUnicodeStringLength.\r
1756 @retval RETURN_UNSUPPORTED If Length of characters from String contain\r
1757 a character that is not valid hexadecimal\r
1758 digit characters, or a Null-terminator.\r
1759 @retval RETURN_BUFFER_TOO_SMALL If MaxBufferSize is less than (Length / 2).\r
1760**/\r
1761RETURN_STATUS\r
1762EFIAPI\r
1763StrHexToBytes (\r
1764 IN CONST CHAR16 *String,\r
1765 IN UINTN Length,\r
1766 OUT UINT8 *Buffer,\r
1767 IN UINTN MaxBufferSize\r
1768 );\r
1769\r
415aa2f1
SZ
1770#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1771\r
ac644614 1772/**\r
415aa2f1
SZ
1773 [ATTENTION] This function is deprecated for security reason.\r
1774\r
17f695ed 1775 Convert a Null-terminated Unicode string to a Null-terminated\r
ac644614 1776 ASCII string and returns the ASCII string.\r
1777\r
1778 This function converts the content of the Unicode string Source\r
1779 to the ASCII string Destination by copying the lower 8 bits of\r
1780 each Unicode character. It returns Destination.\r
1781\r
d3e0289c 1782 The caller is responsible to make sure Destination points to a buffer with size\r
1783 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1784\r
ac644614 1785 If any Unicode characters in Source contain non-zero value in\r
1786 the upper 8 bits, then ASSERT().\r
1787\r
1788 If Destination is NULL, then ASSERT().\r
1789 If Source is NULL, then ASSERT().\r
1790 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1791 If Source and Destination overlap, then ASSERT().\r
1792\r
1793 If PcdMaximumUnicodeStringLength is not zero, and Source contains\r
1794 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
1795 the Null-terminator, then ASSERT().\r
1796\r
1797 If PcdMaximumAsciiStringLength is not zero, and Source contains more\r
1798 than PcdMaximumAsciiStringLength Unicode characters not including the\r
1799 Null-terminator, then ASSERT().\r
1800\r
af2dc6a7 1801 @param Source The pointer to a Null-terminated Unicode string.\r
1802 @param Destination The pointer to a Null-terminated ASCII string.\r
ac644614 1803\r
9aa049d9 1804 @return Destination.\r
ac644614 1805\r
1806**/\r
1807CHAR8 *\r
1808EFIAPI\r
1809UnicodeStrToAsciiStr (\r
17f695ed 1810 IN CONST CHAR16 *Source,\r
1811 OUT CHAR8 *Destination\r
ac644614 1812 );\r
1813\r
415aa2f1
SZ
1814#endif\r
1815\r
3ab41b7a
JY
1816/**\r
1817 Convert a Null-terminated Unicode string to a Null-terminated\r
1818 ASCII string.\r
1819\r
1820 This function is similar to AsciiStrCpyS.\r
1821\r
1822 This function converts the content of the Unicode string Source\r
1823 to the ASCII string Destination by copying the lower 8 bits of\r
1824 each Unicode character. The function terminates the ASCII string\r
1825 Destination by appending a Null-terminator character at the end.\r
1826\r
1827 The caller is responsible to make sure Destination points to a buffer with size\r
1828 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1829\r
1830 If any Unicode characters in Source contain non-zero value in\r
1831 the upper 8 bits, then ASSERT().\r
1832\r
1833 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1834 If an error would be returned, then the function will also ASSERT().\r
1835\r
1836 If an error is returned, then the Destination is unmodified.\r
1837\r
1838 @param Source The pointer to a Null-terminated Unicode string.\r
1839 @param Destination The pointer to a Null-terminated ASCII string.\r
1840 @param DestMax The maximum number of Destination Ascii\r
1841 char, including terminating null char.\r
1842\r
1843 @retval RETURN_SUCCESS String is converted.\r
1844 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
1845 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
1846 If Source is NULL.\r
1847 If PcdMaximumAsciiStringLength is not zero,\r
1848 and DestMax is greater than\r
1849 PcdMaximumAsciiStringLength.\r
1850 If PcdMaximumUnicodeStringLength is not zero,\r
1851 and DestMax is greater than\r
1852 PcdMaximumUnicodeStringLength.\r
1853 If DestMax is 0.\r
1854 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
1855\r
1856**/\r
1857RETURN_STATUS\r
1858EFIAPI\r
1859UnicodeStrToAsciiStrS (\r
1860 IN CONST CHAR16 *Source,\r
1861 OUT CHAR8 *Destination,\r
1862 IN UINTN DestMax\r
1863 );\r
ac644614 1864\r
02263214
HW
1865/**\r
1866 Convert not more than Length successive characters from a Null-terminated\r
1867 Unicode string to a Null-terminated Ascii string. If no null char is copied\r
1868 from Source, then Destination[Length] is always set to null.\r
1869\r
1870 This function converts not more than Length successive characters from the\r
1871 Unicode string Source to the Ascii string Destination by copying the lower 8\r
1872 bits of each Unicode character. The function terminates the Ascii string\r
1873 Destination by appending a Null-terminator character at the end.\r
1874\r
1875 The caller is responsible to make sure Destination points to a buffer with size\r
1876 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1877\r
1878 If any Unicode characters in Source contain non-zero value in the upper 8\r
1879 bits, then ASSERT().\r
1880 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1881 If an error would be returned, then the function will also ASSERT().\r
1882\r
1883 If an error is returned, then the Destination is unmodified.\r
1884\r
1885 @param Source The pointer to a Null-terminated Unicode string.\r
1886 @param Length The maximum number of Unicode characters to\r
1887 convert.\r
1888 @param Destination The pointer to a Null-terminated Ascii string.\r
1889 @param DestMax The maximum number of Destination Ascii\r
1890 char, including terminating null char.\r
1891 @param DestinationLength The number of Unicode characters converted.\r
1892\r
1893 @retval RETURN_SUCCESS String is converted.\r
1894 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
1895 If Source is NULL.\r
1896 If DestinationLength is NULL.\r
1897 If PcdMaximumAsciiStringLength is not zero,\r
1898 and Length or DestMax is greater than\r
1899 PcdMaximumAsciiStringLength.\r
1900 If PcdMaximumUnicodeStringLength is not\r
1901 zero, and Length or DestMax is greater than\r
1902 PcdMaximumUnicodeStringLength.\r
1903 If DestMax is 0.\r
1904 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than\r
1905 MIN(StrLen(Source), Length).\r
1906 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
1907\r
1908**/\r
1909RETURN_STATUS\r
1910EFIAPI\r
1911UnicodeStrnToAsciiStrS (\r
1912 IN CONST CHAR16 *Source,\r
1913 IN UINTN Length,\r
1914 OUT CHAR8 *Destination,\r
1915 IN UINTN DestMax,\r
1916 OUT UINTN *DestinationLength\r
1917 );\r
1918\r
1bb390f1
ED
1919#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1920\r
ac644614 1921/**\r
ae591c14 1922 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1923\r
ac644614 1924 Copies one Null-terminated ASCII string to another Null-terminated ASCII\r
1925 string and returns the new ASCII string.\r
1926\r
1927 This function copies the contents of the ASCII string Source to the ASCII\r
1928 string Destination, and returns Destination. If Source and Destination\r
1929 overlap, then the results are undefined.\r
1930\r
1931 If Destination is NULL, then ASSERT().\r
1932 If Source is NULL, then ASSERT().\r
1933 If Source and Destination overlap, then ASSERT().\r
1934 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
1935 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1936 then ASSERT().\r
1937\r
af2dc6a7 1938 @param Destination The pointer to a Null-terminated ASCII string.\r
1939 @param Source The pointer to a Null-terminated ASCII string.\r
ac644614 1940\r
1941 @return Destination\r
1942\r
1943**/\r
1944CHAR8 *\r
1945EFIAPI\r
1946AsciiStrCpy (\r
1947 OUT CHAR8 *Destination,\r
1948 IN CONST CHAR8 *Source\r
1949 );\r
1950\r
1951\r
1952/**\r
ae591c14 1953 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1954\r
17f695ed 1955 Copies up to a specified length one Null-terminated ASCII string to another \r
1956 Null-terminated ASCII string and returns the new ASCII string.\r
ac644614 1957\r
1958 This function copies the contents of the ASCII string Source to the ASCII\r
1959 string Destination, and returns Destination. At most, Length ASCII characters\r
1960 are copied from Source to Destination. If Length is 0, then Destination is\r
1961 returned unmodified. If Length is greater that the number of ASCII characters\r
1962 in Source, then Destination is padded with Null ASCII characters. If Source\r
1963 and Destination overlap, then the results are undefined.\r
1964\r
1965 If Destination is NULL, then ASSERT().\r
1966 If Source is NULL, then ASSERT().\r
1967 If Source and Destination overlap, then ASSERT().\r
50c247fd 1968 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
1969 PcdMaximumAsciiStringLength, then ASSERT().\r
ac644614 1970 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
50c247fd 1971 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 1972 then ASSERT().\r
1973\r
af2dc6a7 1974 @param Destination The pointer to a Null-terminated ASCII string.\r
1975 @param Source The pointer to a Null-terminated ASCII string.\r
1976 @param Length The maximum number of ASCII characters to copy.\r
ac644614 1977\r
1978 @return Destination\r
1979\r
1980**/\r
1981CHAR8 *\r
1982EFIAPI\r
1983AsciiStrnCpy (\r
1984 OUT CHAR8 *Destination,\r
1985 IN CONST CHAR8 *Source,\r
1986 IN UINTN Length\r
1987 );\r
1bb390f1 1988#endif\r
ac644614 1989\r
1990/**\r
1991 Returns the length of a Null-terminated ASCII string.\r
1992\r
1993 This function returns the number of ASCII characters in the Null-terminated\r
1994 ASCII string specified by String.\r
1995\r
1996 If Length > 0 and Destination is NULL, then ASSERT().\r
1997 If Length > 0 and Source is NULL, then ASSERT().\r
1998 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
1999 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2000 then ASSERT().\r
2001\r
af2dc6a7 2002 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2003\r
2004 @return The length of String.\r
2005\r
2006**/\r
2007UINTN\r
2008EFIAPI\r
2009AsciiStrLen (\r
2010 IN CONST CHAR8 *String\r
2011 );\r
2012\r
2013\r
2014/**\r
2015 Returns the size of a Null-terminated ASCII string in bytes, including the\r
2016 Null terminator.\r
2017\r
2018 This function returns the size, in bytes, of the Null-terminated ASCII string\r
2019 specified by String.\r
2020\r
2021 If String is NULL, then ASSERT().\r
2022 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
2023 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2024 then ASSERT().\r
2025\r
af2dc6a7 2026 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2027\r
2028 @return The size of String.\r
2029\r
2030**/\r
2031UINTN\r
2032EFIAPI\r
2033AsciiStrSize (\r
2034 IN CONST CHAR8 *String\r
2035 );\r
2036\r
2037\r
2038/**\r
2039 Compares two Null-terminated ASCII strings, and returns the difference\r
2040 between the first mismatched ASCII characters.\r
2041\r
2042 This function compares the Null-terminated ASCII string FirstString to the\r
2043 Null-terminated ASCII string SecondString. If FirstString is identical to\r
2044 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
2045 mismatched ASCII character in SecondString subtracted from the first\r
2046 mismatched ASCII character in FirstString.\r
2047\r
2048 If FirstString is NULL, then ASSERT().\r
2049 If SecondString is NULL, then ASSERT().\r
2050 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
2051 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2052 then ASSERT().\r
2053 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
2054 than PcdMaximumAsciiStringLength ASCII characters not including the\r
2055 Null-terminator, then ASSERT().\r
2056\r
af2dc6a7 2057 @param FirstString The pointer to a Null-terminated ASCII string.\r
2058 @param SecondString The pointer to a Null-terminated ASCII string.\r
ac644614 2059\r
17f695ed 2060 @retval ==0 FirstString is identical to SecondString.\r
2061 @retval !=0 FirstString is not identical to SecondString.\r
ac644614 2062\r
2063**/\r
2064INTN\r
2065EFIAPI\r
2066AsciiStrCmp (\r
2067 IN CONST CHAR8 *FirstString,\r
2068 IN CONST CHAR8 *SecondString\r
2069 );\r
2070\r
2071\r
2072/**\r
2073 Performs a case insensitive comparison of two Null-terminated ASCII strings,\r
2074 and returns the difference between the first mismatched ASCII characters.\r
2075\r
2076 This function performs a case insensitive comparison of the Null-terminated\r
2077 ASCII string FirstString to the Null-terminated ASCII string SecondString. If\r
2078 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
2079 value returned is the first mismatched lower case ASCII character in\r
2080 SecondString subtracted from the first mismatched lower case ASCII character\r
2081 in FirstString.\r
2082\r
2083 If FirstString is NULL, then ASSERT().\r
2084 If SecondString is NULL, then ASSERT().\r
2085 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
2086 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2087 then ASSERT().\r
2088 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
2089 than PcdMaximumAsciiStringLength ASCII characters not including the\r
2090 Null-terminator, then ASSERT().\r
2091\r
af2dc6a7 2092 @param FirstString The pointer to a Null-terminated ASCII string.\r
2093 @param SecondString The pointer to a Null-terminated ASCII string.\r
ac644614 2094\r
17f695ed 2095 @retval ==0 FirstString is identical to SecondString using case insensitive\r
1106ffe1 2096 comparisons.\r
17f695ed 2097 @retval !=0 FirstString is not identical to SecondString using case\r
1106ffe1 2098 insensitive comparisons.\r
ac644614 2099\r
2100**/\r
2101INTN\r
2102EFIAPI\r
2103AsciiStriCmp (\r
2104 IN CONST CHAR8 *FirstString,\r
2105 IN CONST CHAR8 *SecondString\r
2106 );\r
2107\r
2108\r
2109/**\r
2110 Compares two Null-terminated ASCII strings with maximum lengths, and returns\r
2111 the difference between the first mismatched ASCII characters.\r
2112\r
2113 This function compares the Null-terminated ASCII string FirstString to the\r
2114 Null-terminated ASCII string SecondString. At most, Length ASCII characters\r
2115 will be compared. If Length is 0, then 0 is returned. If FirstString is\r
2116 identical to SecondString, then 0 is returned. Otherwise, the value returned\r
2117 is the first mismatched ASCII character in SecondString subtracted from the\r
2118 first mismatched ASCII character in FirstString.\r
2119\r
2120 If Length > 0 and FirstString is NULL, then ASSERT().\r
2121 If Length > 0 and SecondString is NULL, then ASSERT().\r
50c247fd 2122 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
2123 PcdMaximumAsciiStringLength, then ASSERT().\r
2124 If PcdMaximumAsciiStringLength is not zero, and FirstString contains more than\r
2125 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 2126 then ASSERT().\r
50c247fd 2127 If PcdMaximumAsciiStringLength is not zero, and SecondString contains more than\r
2128 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 2129 then ASSERT().\r
2130\r
af2dc6a7 2131 @param FirstString The pointer to a Null-terminated ASCII string.\r
2132 @param SecondString The pointer to a Null-terminated ASCII string.\r
2133 @param Length The maximum number of ASCII characters for compare.\r
ac644614 2134 \r
17f695ed 2135 @retval ==0 FirstString is identical to SecondString.\r
2136 @retval !=0 FirstString is not identical to SecondString.\r
ac644614 2137\r
2138**/\r
2139INTN\r
2140EFIAPI\r
2141AsciiStrnCmp (\r
2142 IN CONST CHAR8 *FirstString,\r
2143 IN CONST CHAR8 *SecondString,\r
2144 IN UINTN Length\r
2145 );\r
2146\r
2147\r
1bb390f1
ED
2148#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
2149\r
ac644614 2150/**\r
ae591c14 2151 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 2152\r
ac644614 2153 Concatenates one Null-terminated ASCII string to another Null-terminated\r
2154 ASCII string, and returns the concatenated ASCII string.\r
2155\r
2156 This function concatenates two Null-terminated ASCII strings. The contents of\r
2157 Null-terminated ASCII string Source are concatenated to the end of Null-\r
2158 terminated ASCII string Destination. The Null-terminated concatenated ASCII\r
2159 String is returned.\r
2160\r
2161 If Destination is NULL, then ASSERT().\r
2162 If Source is NULL, then ASSERT().\r
2163 If PcdMaximumAsciiStringLength is not zero and Destination contains more than\r
2164 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2165 then ASSERT().\r
2166 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
2167 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2168 then ASSERT().\r
2169 If PcdMaximumAsciiStringLength is not zero and concatenating Destination and\r
2170 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
2171 ASCII characters, then ASSERT().\r
2172\r
af2dc6a7 2173 @param Destination The pointer to a Null-terminated ASCII string.\r
2174 @param Source The pointer to a Null-terminated ASCII string.\r
ac644614 2175\r
2176 @return Destination\r
2177\r
2178**/\r
2179CHAR8 *\r
2180EFIAPI\r
2181AsciiStrCat (\r
2182 IN OUT CHAR8 *Destination,\r
2183 IN CONST CHAR8 *Source\r
2184 );\r
2185\r
2186\r
2187/**\r
ae591c14 2188 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 2189\r
17f695ed 2190 Concatenates up to a specified length one Null-terminated ASCII string to \r
2191 the end of another Null-terminated ASCII string, and returns the \r
2192 concatenated ASCII string.\r
ac644614 2193\r
2194 This function concatenates two Null-terminated ASCII strings. The contents\r
2195 of Null-terminated ASCII string Source are concatenated to the end of Null-\r
2196 terminated ASCII string Destination, and Destination is returned. At most,\r
2197 Length ASCII characters are concatenated from Source to the end of\r
2198 Destination, and Destination is always Null-terminated. If Length is 0, then\r
2199 Destination is returned unmodified. If Source and Destination overlap, then\r
2200 the results are undefined.\r
2201\r
2202 If Length > 0 and Destination is NULL, then ASSERT().\r
2203 If Length > 0 and Source is NULL, then ASSERT().\r
2204 If Source and Destination overlap, then ASSERT().\r
50c247fd 2205 If PcdMaximumAsciiStringLength is not zero, and Length is greater than\r
2206 PcdMaximumAsciiStringLength, then ASSERT().\r
ac644614 2207 If PcdMaximumAsciiStringLength is not zero, and Destination contains more than\r
50c247fd 2208 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 2209 then ASSERT().\r
2210 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
50c247fd 2211 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 2212 then ASSERT().\r
2213 If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and\r
2214 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
50c247fd 2215 ASCII characters, not including the Null-terminator, then ASSERT().\r
ac644614 2216\r
af2dc6a7 2217 @param Destination The pointer to a Null-terminated ASCII string.\r
2218 @param Source The pointer to a Null-terminated ASCII string.\r
2219 @param Length The maximum number of ASCII characters to concatenate from\r
ac644614 2220 Source.\r
2221\r
2222 @return Destination\r
2223\r
2224**/\r
2225CHAR8 *\r
2226EFIAPI\r
2227AsciiStrnCat (\r
2228 IN OUT CHAR8 *Destination,\r
2229 IN CONST CHAR8 *Source,\r
2230 IN UINTN Length\r
2231 );\r
1bb390f1 2232#endif\r
ac644614 2233\r
2234/**\r
9aa049d9 2235 Returns the first occurrence of a Null-terminated ASCII sub-string\r
ac644614 2236 in a Null-terminated ASCII string.\r
2237\r
2238 This function scans the contents of the ASCII string specified by String\r
2239 and returns the first occurrence of SearchString. If SearchString is not\r
2240 found in String, then NULL is returned. If the length of SearchString is zero,\r
2241 then String is returned.\r
2242\r
2243 If String is NULL, then ASSERT().\r
2244 If SearchString is NULL, then ASSERT().\r
2245\r
2246 If PcdMaximumAsciiStringLength is not zero, and SearchString or\r
2247 String contains more than PcdMaximumAsciiStringLength Unicode characters\r
2248 not including the Null-terminator, then ASSERT().\r
2249\r
af2dc6a7 2250 @param String The pointer to a Null-terminated ASCII string.\r
2251 @param SearchString The pointer to a Null-terminated ASCII string to search for.\r
ac644614 2252\r
2253 @retval NULL If the SearchString does not appear in String.\r
17f695ed 2254 @retval others If there is a match return the first occurrence of SearchingString.\r
9aa049d9 2255 If the length of SearchString is zero,return String.\r
ac644614 2256\r
2257**/\r
2258CHAR8 *\r
2259EFIAPI\r
2260AsciiStrStr (\r
17f695ed 2261 IN CONST CHAR8 *String,\r
2262 IN CONST CHAR8 *SearchString\r
ac644614 2263 );\r
2264\r
2265\r
2266/**\r
2267 Convert a Null-terminated ASCII decimal string to a value of type\r
2268 UINTN.\r
2269\r
2270 This function returns a value of type UINTN by interpreting the contents\r
2271 of the ASCII string String as a decimal number. The format of the input\r
2272 ASCII string String is:\r
2273\r
2274 [spaces] [decimal digits].\r
2275\r
2276 The valid decimal digit character is in the range [0-9]. The function will\r
2277 ignore the pad space, which includes spaces or tab characters, before the digits.\r
2278 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
2279 function stops at the first character that is a not a valid decimal character or\r
2280 Null-terminator, whichever on comes first.\r
2281\r
2282 If String has only pad spaces, then 0 is returned.\r
2283 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
2284 If the number represented by String overflows according to the range defined by\r
ea2e0921 2285 UINTN, then MAX_UINTN is returned.\r
ac644614 2286 If String is NULL, then ASSERT().\r
2287 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
2288 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2289 then ASSERT().\r
2290\r
af2dc6a7 2291 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2292\r
af2dc6a7 2293 @retval The value translated from String.\r
ac644614 2294\r
2295**/\r
2296UINTN\r
2297EFIAPI\r
2298AsciiStrDecimalToUintn (\r
2299 IN CONST CHAR8 *String\r
2300 );\r
2301\r
2302\r
2303/**\r
2304 Convert a Null-terminated ASCII decimal string to a value of type\r
2305 UINT64.\r
2306\r
2307 This function returns a value of type UINT64 by interpreting the contents\r
2308 of the ASCII string String as a decimal number. The format of the input\r
2309 ASCII string String is:\r
2310\r
2311 [spaces] [decimal digits].\r
2312\r
2313 The valid decimal digit character is in the range [0-9]. The function will\r
2314 ignore the pad space, which includes spaces or tab characters, before the digits.\r
2315 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
2316 function stops at the first character that is a not a valid decimal character or\r
2317 Null-terminator, whichever on comes first.\r
2318\r
2319 If String has only pad spaces, then 0 is returned.\r
2320 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
2321 If the number represented by String overflows according to the range defined by\r
ea2e0921 2322 UINT64, then MAX_UINT64 is returned.\r
ac644614 2323 If String is NULL, then ASSERT().\r
2324 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
2325 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2326 then ASSERT().\r
2327\r
af2dc6a7 2328 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2329\r
38bbd3d9 2330 @retval Value translated from String.\r
ac644614 2331\r
2332**/\r
2333UINT64\r
2334EFIAPI\r
2335AsciiStrDecimalToUint64 (\r
17f695ed 2336 IN CONST CHAR8 *String\r
ac644614 2337 );\r
2338\r
2339\r
2340/**\r
2341 Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.\r
2342\r
2343 This function returns a value of type UINTN by interpreting the contents of\r
2344 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
2345 string String is:\r
2346\r
2347 [spaces][zeros][x][hexadecimal digits].\r
2348\r
2349 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
2350 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
2351 appears in the input string, it must be prefixed with at least one 0. The function\r
2352 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
2353 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
2354 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
2355 digit. Then, the function stops at the first character that is a not a valid\r
2356 hexadecimal character or Null-terminator, whichever on comes first.\r
2357\r
2358 If String has only pad spaces, then 0 is returned.\r
2359 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
2360 0 is returned.\r
2361\r
2362 If the number represented by String overflows according to the range defined by UINTN,\r
ea2e0921 2363 then MAX_UINTN is returned.\r
ac644614 2364 If String is NULL, then ASSERT().\r
2365 If PcdMaximumAsciiStringLength is not zero,\r
2366 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
2367 the Null-terminator, then ASSERT().\r
2368\r
af2dc6a7 2369 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2370\r
38bbd3d9 2371 @retval Value translated from String.\r
ac644614 2372\r
2373**/\r
2374UINTN\r
2375EFIAPI\r
2376AsciiStrHexToUintn (\r
17f695ed 2377 IN CONST CHAR8 *String\r
ac644614 2378 );\r
2379\r
2380\r
2381/**\r
2382 Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.\r
2383\r
2384 This function returns a value of type UINT64 by interpreting the contents of\r
2385 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
2386 string String is:\r
2387\r
2388 [spaces][zeros][x][hexadecimal digits].\r
2389\r
2390 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
2391 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
2392 appears in the input string, it must be prefixed with at least one 0. The function\r
2393 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
2394 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
2395 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
2396 digit. Then, the function stops at the first character that is a not a valid\r
2397 hexadecimal character or Null-terminator, whichever on comes first.\r
2398\r
2399 If String has only pad spaces, then 0 is returned.\r
2400 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
2401 0 is returned.\r
2402\r
2403 If the number represented by String overflows according to the range defined by UINT64,\r
ea2e0921 2404 then MAX_UINT64 is returned.\r
ac644614 2405 If String is NULL, then ASSERT().\r
2406 If PcdMaximumAsciiStringLength is not zero,\r
2407 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
2408 the Null-terminator, then ASSERT().\r
2409\r
af2dc6a7 2410 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2411\r
38bbd3d9 2412 @retval Value translated from String.\r
ac644614 2413\r
2414**/\r
2415UINT64\r
2416EFIAPI\r
2417AsciiStrHexToUint64 (\r
17f695ed 2418 IN CONST CHAR8 *String\r
ac644614 2419 );\r
2420\r
fb4dd857
RN
2421/**\r
2422 Convert a Null-terminated ASCII string to IPv6 address and prefix length.\r
2423\r
2424 This function outputs a value of type IPv6_ADDRESS and may output a value\r
2425 of type UINT8 by interpreting the contents of the ASCII string specified\r
2426 by String. The format of the input ASCII string String is as follows:\r
2427\r
2428 X:X:X:X:X:X:X:X[/P]\r
2429\r
2430 X contains one to four hexadecimal digit characters in the range [0-9], [a-f] and\r
2431 [A-F]. X is converted to a value of type UINT16, whose low byte is stored in low\r
2432 memory address and high byte is stored in high memory address. P contains decimal\r
2433 digit characters in the range [0-9]. The running zero in the beginning of P will\r
2434 be ignored. /P is optional.\r
2435\r
2436 When /P is not in the String, the function stops at the first character that is\r
2437 not a valid hexadecimal digit character after eight X's are converted.\r
2438\r
2439 When /P is in the String, the function stops at the first character that is not\r
2440 a valid decimal digit character after P is converted.\r
2441\r
2442 "::" can be used to compress one or more groups of X when X contains only 0.\r
2443 The "::" can only appear once in the String.\r
2444\r
2445 If String is NULL, then ASSERT().\r
2446\r
2447 If Address is NULL, then ASSERT().\r
2448\r
2449 If EndPointer is not NULL and Address is translated from String, a pointer\r
2450 to the character that stopped the scan is stored at the location pointed to\r
2451 by EndPointer.\r
2452\r
2453 @param String Pointer to a Null-terminated ASCII string.\r
2454 @param EndPointer Pointer to character that stops scan.\r
2455 @param Address Pointer to the converted IPv6 address.\r
2456 @param PrefixLength Pointer to the converted IPv6 address prefix\r
2457 length. MAX_UINT8 is returned when /P is\r
2458 not in the String.\r
2459\r
2460 @retval RETURN_SUCCESS Address is translated from String.\r
2461 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
2462 If Data is NULL.\r
2463 @retval RETURN_UNSUPPORTED If X contains more than four hexadecimal\r
2464 digit characters.\r
2465 If String contains "::" and number of X\r
2466 is not less than 8.\r
2467 If P starts with character that is not a\r
2468 valid decimal digit character.\r
2469 If the decimal number converted from P\r
2470 exceeds 128.\r
2471\r
2472**/\r
2473RETURN_STATUS\r
2474EFIAPI\r
2475AsciiStrToIpv6Address (\r
2476 IN CONST CHAR8 *String,\r
2477 OUT CHAR8 **EndPointer, OPTIONAL\r
2478 OUT IPv6_ADDRESS *Address,\r
2479 OUT UINT8 *PrefixLength OPTIONAL\r
2480 );\r
2481\r
2482/**\r
2483 Convert a Null-terminated ASCII string to IPv4 address and prefix length.\r
2484\r
2485 This function outputs a value of type IPv4_ADDRESS and may output a value\r
2486 of type UINT8 by interpreting the contents of the ASCII string specified\r
2487 by String. The format of the input ASCII string String is as follows:\r
2488\r
2489 D.D.D.D[/P]\r
2490\r
2491 D and P are decimal digit characters in the range [0-9]. The running zero in\r
2492 the beginning of D and P will be ignored. /P is optional.\r
2493\r
2494 When /P is not in the String, the function stops at the first character that is\r
2495 not a valid decimal digit character after four D's are converted.\r
2496\r
2497 When /P is in the String, the function stops at the first character that is not\r
2498 a valid decimal digit character after P is converted.\r
2499\r
2500 If String is NULL, then ASSERT().\r
2501\r
2502 If Address is NULL, then ASSERT().\r
2503\r
2504 If EndPointer is not NULL and Address is translated from String, a pointer\r
2505 to the character that stopped the scan is stored at the location pointed to\r
2506 by EndPointer.\r
2507\r
2508 @param String Pointer to a Null-terminated ASCII string.\r
2509 @param EndPointer Pointer to character that stops scan.\r
2510 @param Address Pointer to the converted IPv4 address.\r
2511 @param PrefixLength Pointer to the converted IPv4 address prefix\r
2512 length. MAX_UINT8 is returned when /P is\r
2513 not in the String.\r
2514\r
2515 @retval RETURN_SUCCESS Address is translated from String.\r
2516 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
2517 If Data is NULL.\r
2518 @retval RETURN_UNSUPPORTED If String is not in the correct format.\r
2519 If any decimal number converted from D\r
2520 exceeds 255.\r
2521 If the decimal number converted from P\r
2522 exceeds 32.\r
2523\r
2524**/\r
2525RETURN_STATUS\r
2526EFIAPI\r
2527AsciiStrToIpv4Address (\r
2528 IN CONST CHAR8 *String,\r
2529 OUT CHAR8 **EndPointer, OPTIONAL\r
2530 OUT IPv4_ADDRESS *Address,\r
2531 OUT UINT8 *PrefixLength OPTIONAL\r
2532 );\r
2533\r
2534/**\r
2535 Convert a Null-terminated ASCII GUID string to a value of type\r
2536 EFI_GUID.\r
2537\r
2538 This function outputs a GUID value by interpreting the contents of\r
2539 the ASCII string specified by String. The format of the input\r
2540 ASCII string String consists of 36 characters, as follows:\r
2541\r
2542 aabbccdd-eeff-gghh-iijj-kkllmmnnoopp\r
2543\r
2544 The pairs aa - pp are two characters in the range [0-9], [a-f] and\r
2545 [A-F], with each pair representing a single byte hexadecimal value.\r
2546\r
2547 The mapping between String and the EFI_GUID structure is as follows:\r
2548 aa Data1[24:31]\r
2549 bb Data1[16:23]\r
2550 cc Data1[8:15]\r
2551 dd Data1[0:7]\r
2552 ee Data2[8:15]\r
2553 ff Data2[0:7]\r
2554 gg Data3[8:15]\r
2555 hh Data3[0:7]\r
2556 ii Data4[0:7]\r
2557 jj Data4[8:15]\r
2558 kk Data4[16:23]\r
2559 ll Data4[24:31]\r
2560 mm Data4[32:39]\r
2561 nn Data4[40:47]\r
2562 oo Data4[48:55]\r
2563 pp Data4[56:63]\r
2564\r
2565 If String is NULL, then ASSERT().\r
2566 If Guid is NULL, then ASSERT().\r
2567\r
2568 @param String Pointer to a Null-terminated ASCII string.\r
2569 @param Guid Pointer to the converted GUID.\r
2570\r
2571 @retval RETURN_SUCCESS Guid is translated from String.\r
2572 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
2573 If Data is NULL.\r
2574 @retval RETURN_UNSUPPORTED If String is not as the above format.\r
2575\r
2576**/\r
2577RETURN_STATUS\r
2578EFIAPI\r
2579AsciiStrToGuid (\r
2580 IN CONST CHAR8 *String,\r
2581 OUT GUID *Guid\r
2582 );\r
2583\r
2584/**\r
2585 Convert a Null-terminated ASCII hexadecimal string to a byte array.\r
2586\r
2587 This function outputs a byte array by interpreting the contents of\r
2588 the ASCII string specified by String in hexadecimal format. The format of\r
2589 the input ASCII string String is:\r
2590\r
2591 [XX]*\r
2592\r
2593 X is a hexadecimal digit character in the range [0-9], [a-f] and [A-F].\r
2594 The function decodes every two hexadecimal digit characters as one byte. The\r
2595 decoding stops after Length of characters and outputs Buffer containing\r
2596 (Length / 2) bytes.\r
2597\r
2598 If String is NULL, then ASSERT().\r
2599\r
2600 If Buffer is NULL, then ASSERT().\r
2601\r
2602 If Length is not multiple of 2, then ASSERT().\r
2603\r
2604 If PcdMaximumAsciiStringLength is not zero and Length is greater than\r
2605 PcdMaximumAsciiStringLength, then ASSERT().\r
2606\r
2607 If MaxBufferSize is less than (Length / 2), then ASSERT().\r
2608\r
2609 @param String Pointer to a Null-terminated ASCII string.\r
2610 @param Length The number of ASCII characters to decode.\r
2611 @param Buffer Pointer to the converted bytes array.\r
2612 @param MaxBufferSize The maximum size of Buffer.\r
2613\r
2614 @retval RETURN_SUCCESS Buffer is translated from String.\r
2615 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
2616 If Data is NULL.\r
2617 If Length is not multiple of 2.\r
2618 If PcdMaximumAsciiStringLength is not zero,\r
2619 and Length is greater than\r
2620 PcdMaximumAsciiStringLength.\r
2621 @retval RETURN_UNSUPPORTED If Length of characters from String contain\r
2622 a character that is not valid hexadecimal\r
2623 digit characters, or a Null-terminator.\r
2624 @retval RETURN_BUFFER_TOO_SMALL If MaxBufferSize is less than (Length / 2).\r
2625**/\r
2626RETURN_STATUS\r
2627EFIAPI\r
2628AsciiStrHexToBytes (\r
2629 IN CONST CHAR8 *String,\r
2630 IN UINTN Length,\r
2631 OUT UINT8 *Buffer,\r
2632 IN UINTN MaxBufferSize\r
2633 );\r
2634\r
415aa2f1 2635#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
ac644614 2636\r
2637/**\r
415aa2f1
SZ
2638 [ATTENTION] This function is deprecated for security reason.\r
2639\r
ac644614 2640 Convert one Null-terminated ASCII string to a Null-terminated\r
2641 Unicode string and returns the Unicode string.\r
2642\r
2643 This function converts the contents of the ASCII string Source to the Unicode\r
2644 string Destination, and returns Destination. The function terminates the\r
2645 Unicode string Destination by appending a Null-terminator character at the end.\r
2646 The caller is responsible to make sure Destination points to a buffer with size\r
2647 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
2648\r
2649 If Destination is NULL, then ASSERT().\r
2650 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
2651 If Source is NULL, then ASSERT().\r
2652 If Source and Destination overlap, then ASSERT().\r
2653 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
2654 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2655 then ASSERT().\r
2656 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
2657 PcdMaximumUnicodeStringLength ASCII characters not including the\r
2658 Null-terminator, then ASSERT().\r
2659\r
af2dc6a7 2660 @param Source The pointer to a Null-terminated ASCII string.\r
2661 @param Destination The pointer to a Null-terminated Unicode string.\r
ac644614 2662\r
9aa049d9 2663 @return Destination.\r
ac644614 2664\r
2665**/\r
2666CHAR16 *\r
2667EFIAPI\r
2668AsciiStrToUnicodeStr (\r
17f695ed 2669 IN CONST CHAR8 *Source,\r
2670 OUT CHAR16 *Destination\r
ac644614 2671 );\r
2672\r
415aa2f1
SZ
2673#endif\r
2674\r
3ab41b7a
JY
2675/**\r
2676 Convert one Null-terminated ASCII string to a Null-terminated\r
2677 Unicode string.\r
2678\r
2679 This function is similar to StrCpyS.\r
2680\r
2681 This function converts the contents of the ASCII string Source to the Unicode\r
2682 string Destination. The function terminates the Unicode string Destination by\r
2683 appending a Null-terminator character at the end.\r
2684\r
2685 The caller is responsible to make sure Destination points to a buffer with size\r
2686 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
2687\r
2688 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
2689 If an error would be returned, then the function will also ASSERT().\r
2690\r
2691 If an error is returned, then the Destination is unmodified.\r
2692\r
2693 @param Source The pointer to a Null-terminated ASCII string.\r
2694 @param Destination The pointer to a Null-terminated Unicode string.\r
2695 @param DestMax The maximum number of Destination Unicode\r
2696 char, including terminating null char.\r
2697\r
2698 @retval RETURN_SUCCESS String is converted.\r
2699 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
2700 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
2701 If Source is NULL.\r
2702 If PcdMaximumUnicodeStringLength is not zero,\r
2703 and DestMax is greater than\r
2704 PcdMaximumUnicodeStringLength.\r
2705 If PcdMaximumAsciiStringLength is not zero,\r
2706 and DestMax is greater than\r
2707 PcdMaximumAsciiStringLength.\r
2708 If DestMax is 0.\r
2709 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
2710\r
2711**/\r
2712RETURN_STATUS\r
2713EFIAPI\r
2714AsciiStrToUnicodeStrS (\r
2715 IN CONST CHAR8 *Source,\r
2716 OUT CHAR16 *Destination,\r
2717 IN UINTN DestMax\r
2718 );\r
ac644614 2719\r
02263214
HW
2720/**\r
2721 Convert not more than Length successive characters from a Null-terminated\r
2722 Ascii string to a Null-terminated Unicode string. If no null char is copied\r
2723 from Source, then Destination[Length] is always set to null.\r
2724\r
2725 This function converts not more than Length successive characters from the\r
2726 Ascii string Source to the Unicode string Destination. The function\r
2727 terminates the Unicode string Destination by appending a Null-terminator\r
2728 character at the end.\r
2729\r
2730 The caller is responsible to make sure Destination points to a buffer with\r
2731 size not smaller than\r
2732 ((MIN(AsciiStrLen(Source), Length) + 1) * sizeof (CHAR8)) in bytes.\r
2733\r
2734 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
2735 If an error would be returned, then the function will also ASSERT().\r
2736\r
2737 If an error is returned, then Destination and DestinationLength are\r
2738 unmodified.\r
2739\r
2740 @param Source The pointer to a Null-terminated Ascii string.\r
2741 @param Length The maximum number of Ascii characters to convert.\r
2742 @param Destination The pointer to a Null-terminated Unicode string.\r
2743 @param DestMax The maximum number of Destination Unicode char,\r
2744 including terminating null char.\r
2745 @param DestinationLength The number of Ascii characters converted.\r
2746\r
2747 @retval RETURN_SUCCESS String is converted.\r
2748 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
2749 If Source is NULL.\r
2750 If DestinationLength is NULL.\r
2751 If PcdMaximumUnicodeStringLength is not\r
2752 zero, and Length or DestMax is greater than\r
2753 PcdMaximumUnicodeStringLength.\r
2754 If PcdMaximumAsciiStringLength is not zero,\r
2755 and Length or DestMax is greater than\r
2756 PcdMaximumAsciiStringLength.\r
2757 If DestMax is 0.\r
2758 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than\r
2759 MIN(AsciiStrLen(Source), Length).\r
2760 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
2761\r
2762**/\r
2763RETURN_STATUS\r
2764EFIAPI\r
2765AsciiStrnToUnicodeStrS (\r
2766 IN CONST CHAR8 *Source,\r
2767 IN UINTN Length,\r
2768 OUT CHAR16 *Destination,\r
2769 IN UINTN DestMax,\r
2770 OUT UINTN *DestinationLength\r
2771 );\r
2772\r
ac644614 2773/**\r
2774 Converts an 8-bit value to an 8-bit BCD value.\r
2775\r
2776 Converts the 8-bit value specified by Value to BCD. The BCD value is\r
2777 returned.\r
2778\r
2779 If Value >= 100, then ASSERT().\r
2780\r
2781 @param Value The 8-bit value to convert to BCD. Range 0..99.\r
2782\r
9aa049d9 2783 @return The BCD value.\r
ac644614 2784\r
2785**/\r
2786UINT8\r
2787EFIAPI\r
2788DecimalToBcd8 (\r
2789 IN UINT8 Value\r
2790 );\r
2791\r
2792\r
2793/**\r
2794 Converts an 8-bit BCD value to an 8-bit value.\r
2795\r
2796 Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit\r
2797 value is returned.\r
2798\r
2799 If Value >= 0xA0, then ASSERT().\r
2800 If (Value & 0x0F) >= 0x0A, then ASSERT().\r
2801\r
2802 @param Value The 8-bit BCD value to convert to an 8-bit value.\r
2803\r
2804 @return The 8-bit value is returned.\r
2805\r
2806**/\r
2807UINT8\r
2808EFIAPI\r
2809BcdToDecimal8 (\r
2810 IN UINT8 Value\r
2811 );\r
2812\r
ae591c14
DM
2813//\r
2814// File Path Manipulation Functions\r
2815//\r
2816\r
2817/**\r
6a623094 2818 Removes the last directory or file entry in a path.\r
ae591c14
DM
2819\r
2820 @param[in, out] Path The pointer to the path to modify.\r
2821\r
2822 @retval FALSE Nothing was found to remove.\r
2823 @retval TRUE A directory or file was removed.\r
2824**/\r
2825BOOLEAN\r
2826EFIAPI\r
2827PathRemoveLastItem(\r
2828 IN OUT CHAR16 *Path\r
2829 );\r
2830\r
2831/**\r
2832 Function to clean up paths.\r
2833 - Single periods in the path are removed.\r
2834 - Double periods in the path are removed along with a single parent directory.\r
2835 - Forward slashes L'/' are converted to backward slashes L'\'.\r
2836\r
2837 This will be done inline and the existing buffer may be larger than required\r
2838 upon completion.\r
2839\r
2840 @param[in] Path The pointer to the string containing the path.\r
2841\r
00b7cc0f 2842 @return Returns Path, otherwise returns NULL to indicate that an error has occurred.\r
ae591c14
DM
2843**/\r
2844CHAR16*\r
2845EFIAPI\r
2846PathCleanUpDirectories(\r
2847 IN CHAR16 *Path\r
909ac47b 2848 );\r
ac644614 2849\r
2850//\r
2851// Linked List Functions and Macros\r
2852//\r
2853\r
2854/**\r
2855 Initializes the head node of a doubly linked list that is declared as a\r
2856 global variable in a module.\r
2857\r
2858 Initializes the forward and backward links of a new linked list. After\r
2859 initializing a linked list with this macro, the other linked list functions\r
2860 may be used to add and remove nodes from the linked list. This macro results\r
2861 in smaller executables by initializing the linked list in the data section,\r
2862 instead if calling the InitializeListHead() function to perform the\r
2863 equivalent operation.\r
2864\r
77f863ee 2865 @param ListHead The head note of a list to initialize.\r
ac644614 2866\r
2867**/\r
17f695ed 2868#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&(ListHead), &(ListHead)}\r
ac644614 2869\r
2870\r
d0aef615
MH
2871/**\r
2872 Checks whether FirstEntry and SecondEntry are part of the same doubly-linked\r
2873 list.\r
2874\r
2875 If FirstEntry is NULL, then ASSERT().\r
2876 If FirstEntry->ForwardLink is NULL, then ASSERT().\r
2877 If FirstEntry->BackLink is NULL, then ASSERT().\r
2878 If SecondEntry is NULL, then ASSERT();\r
2879 If PcdMaximumLinkedListLength is not zero, and List contains more than\r
2880 PcdMaximumLinkedListLength nodes, then ASSERT().\r
2881\r
2882 @param FirstEntry A pointer to a node in a linked list.\r
2883 @param SecondEntry A pointer to the node to locate.\r
2884\r
2885 @retval TRUE SecondEntry is in the same doubly-linked list as FirstEntry.\r
2886 @retval FALSE SecondEntry isn't in the same doubly-linked list as FirstEntry,\r
2887 or FirstEntry is invalid.\r
2888\r
2889**/\r
2890BOOLEAN\r
2891EFIAPI\r
2892IsNodeInList (\r
2893 IN CONST LIST_ENTRY *FirstEntry,\r
2894 IN CONST LIST_ENTRY *SecondEntry\r
2895 );\r
2896\r
2897\r
ac644614 2898/**\r
2899 Initializes the head node of a doubly linked list, and returns the pointer to\r
2900 the head node of the doubly linked list.\r
2901\r
2902 Initializes the forward and backward links of a new linked list. After\r
2903 initializing a linked list with this function, the other linked list\r
2904 functions may be used to add and remove nodes from the linked list. It is up\r
2905 to the caller of this function to allocate the memory for ListHead.\r
2906\r
2907 If ListHead is NULL, then ASSERT().\r
2908\r
2909 @param ListHead A pointer to the head node of a new doubly linked list.\r
2910\r
2911 @return ListHead\r
2912\r
2913**/\r
2914LIST_ENTRY *\r
2915EFIAPI\r
2916InitializeListHead (\r
aa0583c7 2917 IN OUT LIST_ENTRY *ListHead\r
ac644614 2918 );\r
2919\r
2920\r
2921/**\r
2922 Adds a node to the beginning of a doubly linked list, and returns the pointer\r
2923 to the head node of the doubly linked list.\r
2924\r
2925 Adds the node Entry at the beginning of the doubly linked list denoted by\r
2926 ListHead, and returns ListHead.\r
2927\r
2928 If ListHead is NULL, then ASSERT().\r
2929 If Entry is NULL, then ASSERT().\r
17f695ed 2930 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
2931 InitializeListHead(), then ASSERT().\r
a71865b1 2932 If PcdMaximumLinkedListLength is not zero, and prior to insertion the number\r
ac644614 2933 of nodes in ListHead, including the ListHead node, is greater than or\r
2934 equal to PcdMaximumLinkedListLength, then ASSERT().\r
2935\r
2936 @param ListHead A pointer to the head node of a doubly linked list.\r
2937 @param Entry A pointer to a node that is to be inserted at the beginning\r
2938 of a doubly linked list.\r
2939\r
2940 @return ListHead\r
2941\r
2942**/\r
2943LIST_ENTRY *\r
2944EFIAPI\r
2945InsertHeadList (\r
aa0583c7 2946 IN OUT LIST_ENTRY *ListHead,\r
2947 IN OUT LIST_ENTRY *Entry\r
ac644614 2948 );\r
2949\r
2950\r
2951/**\r
2952 Adds a node to the end of a doubly linked list, and returns the pointer to\r
2953 the head node of the doubly linked list.\r
2954\r
2955 Adds the node Entry to the end of the doubly linked list denoted by ListHead,\r
2956 and returns ListHead.\r
2957\r
2958 If ListHead is NULL, then ASSERT().\r
2959 If Entry is NULL, then ASSERT().\r
17f695ed 2960 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
2961 InitializeListHead(), then ASSERT().\r
a71865b1 2962 If PcdMaximumLinkedListLength is not zero, and prior to insertion the number\r
ac644614 2963 of nodes in ListHead, including the ListHead node, is greater than or\r
2964 equal to PcdMaximumLinkedListLength, then ASSERT().\r
2965\r
2966 @param ListHead A pointer to the head node of a doubly linked list.\r
2967 @param Entry A pointer to a node that is to be added at the end of the\r
2968 doubly linked list.\r
2969\r
2970 @return ListHead\r
2971\r
2972**/\r
2973LIST_ENTRY *\r
2974EFIAPI\r
2975InsertTailList (\r
aa0583c7 2976 IN OUT LIST_ENTRY *ListHead,\r
2977 IN OUT LIST_ENTRY *Entry\r
ac644614 2978 );\r
2979\r
2980\r
2981/**\r
2982 Retrieves the first node of a doubly linked list.\r
2983\r
17f695ed 2984 Returns the first node of a doubly linked list. List must have been \r
2985 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
2986 If List is empty, then List is returned.\r
ac644614 2987\r
2988 If List is NULL, then ASSERT().\r
17f695ed 2989 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
2990 InitializeListHead(), then ASSERT().\r
a71865b1 2991 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
ac644614 2992 in List, including the List node, is greater than or equal to\r
2993 PcdMaximumLinkedListLength, then ASSERT().\r
2994\r
2995 @param List A pointer to the head node of a doubly linked list.\r
2996\r
2997 @return The first node of a doubly linked list.\r
e01a125f 2998 @retval List The list is empty.\r
ac644614 2999\r
3000**/\r
3001LIST_ENTRY *\r
3002EFIAPI\r
3003GetFirstNode (\r
3004 IN CONST LIST_ENTRY *List\r
3005 );\r
3006\r
3007\r
3008/**\r
3009 Retrieves the next node of a doubly linked list.\r
3010\r
17f695ed 3011 Returns the node of a doubly linked list that follows Node. \r
3012 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
3013 or InitializeListHead(). If List is empty, then List is returned.\r
ac644614 3014\r
3015 If List is NULL, then ASSERT().\r
3016 If Node is NULL, then ASSERT().\r
17f695ed 3017 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
3018 InitializeListHead(), then ASSERT().\r
a71865b1
LG
3019 If PcdMaximumLinkedListLength is not zero, and List contains more than\r
3020 PcdMaximumLinkedListLength nodes, then ASSERT().\r
1081f624 3021 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
ac644614 3022\r
3023 @param List A pointer to the head node of a doubly linked list.\r
3024 @param Node A pointer to a node in the doubly linked list.\r
3025\r
af2dc6a7 3026 @return The pointer to the next node if one exists. Otherwise List is returned.\r
ac644614 3027\r
3028**/\r
3029LIST_ENTRY *\r
3030EFIAPI\r
3031GetNextNode (\r
3032 IN CONST LIST_ENTRY *List,\r
3033 IN CONST LIST_ENTRY *Node\r
3034 );\r
3035\r
cbca8de5 3036 \r
3037/**\r
3038 Retrieves the previous node of a doubly linked list.\r
3039 \r
3040 Returns the node of a doubly linked list that precedes Node. \r
3041 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
3042 or InitializeListHead(). If List is empty, then List is returned.\r
3043 \r
3044 If List is NULL, then ASSERT().\r
3045 If Node is NULL, then ASSERT().\r
3046 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
3047 InitializeListHead(), then ASSERT().\r
a71865b1
LG
3048 If PcdMaximumLinkedListLength is not zero, and List contains more than\r
3049 PcdMaximumLinkedListLength nodes, then ASSERT().\r
cbca8de5 3050 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
3051 \r
3052 @param List A pointer to the head node of a doubly linked list.\r
3053 @param Node A pointer to a node in the doubly linked list.\r
3054 \r
af2dc6a7 3055 @return The pointer to the previous node if one exists. Otherwise List is returned.\r
cbca8de5 3056 \r
3057**/\r
3058LIST_ENTRY *\r
3059EFIAPI\r
3060GetPreviousNode (\r
3061 IN CONST LIST_ENTRY *List,\r
3062 IN CONST LIST_ENTRY *Node\r
3063 );\r
ac644614 3064\r
cbca8de5 3065 \r
ac644614 3066/**\r
3067 Checks to see if a doubly linked list is empty or not.\r
3068\r
3069 Checks to see if the doubly linked list is empty. If the linked list contains\r
3070 zero nodes, this function returns TRUE. Otherwise, it returns FALSE.\r
3071\r
3072 If ListHead is NULL, then ASSERT().\r
17f695ed 3073 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
3074 InitializeListHead(), then ASSERT().\r
a71865b1 3075 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
ac644614 3076 in List, including the List node, is greater than or equal to\r
3077 PcdMaximumLinkedListLength, then ASSERT().\r
3078\r
3079 @param ListHead A pointer to the head node of a doubly linked list.\r
3080\r
3081 @retval TRUE The linked list is empty.\r
3082 @retval FALSE The linked list is not empty.\r
3083\r
3084**/\r
3085BOOLEAN\r
3086EFIAPI\r
3087IsListEmpty (\r
3088 IN CONST LIST_ENTRY *ListHead\r
3089 );\r
3090\r
3091\r
3092/**\r
aa0583c7 3093 Determines if a node in a doubly linked list is the head node of a the same\r
3094 doubly linked list. This function is typically used to terminate a loop that\r
3095 traverses all the nodes in a doubly linked list starting with the head node.\r
ac644614 3096\r
aa0583c7 3097 Returns TRUE if Node is equal to List. Returns FALSE if Node is one of the\r
3098 nodes in the doubly linked list specified by List. List must have been\r
17f695ed 3099 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
ac644614 3100\r
3101 If List is NULL, then ASSERT().\r
3102 If Node is NULL, then ASSERT().\r
17f695ed 3103 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), \r
3104 then ASSERT().\r
a71865b1 3105 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
ac644614 3106 in List, including the List node, is greater than or equal to\r
3107 PcdMaximumLinkedListLength, then ASSERT().\r
1081f624 3108 If PcdVerifyNodeInList is TRUE and Node is not a node in List the and Node is not equal \r
3109 to List, then ASSERT().\r
ac644614 3110\r
3111 @param List A pointer to the head node of a doubly linked list.\r
3112 @param Node A pointer to a node in the doubly linked list.\r
3113\r
1955808d
LG
3114 @retval TRUE Node is the head of the doubly-linked list pointed by List.\r
3115 @retval FALSE Node is not the head of the doubly-linked list pointed by List.\r
ac644614 3116\r
3117**/\r
3118BOOLEAN\r
3119EFIAPI\r
3120IsNull (\r
3121 IN CONST LIST_ENTRY *List,\r
3122 IN CONST LIST_ENTRY *Node\r
3123 );\r
3124\r
3125\r
3126/**\r
3127 Determines if a node the last node in a doubly linked list.\r
3128\r
3129 Returns TRUE if Node is the last node in the doubly linked list specified by\r
3130 List. Otherwise, FALSE is returned. List must have been initialized with\r
17f695ed 3131 INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
ac644614 3132\r
3133 If List is NULL, then ASSERT().\r
3134 If Node is NULL, then ASSERT().\r
17f695ed 3135 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
3136 InitializeListHead(), then ASSERT().\r
a71865b1 3137 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
ac644614 3138 in List, including the List node, is greater than or equal to\r
3139 PcdMaximumLinkedListLength, then ASSERT().\r
1081f624 3140 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
ac644614 3141\r
3142 @param List A pointer to the head node of a doubly linked list.\r
3143 @param Node A pointer to a node in the doubly linked list.\r
3144\r
3145 @retval TRUE Node is the last node in the linked list.\r
3146 @retval FALSE Node is not the last node in the linked list.\r
3147\r
3148**/\r
3149BOOLEAN\r
3150EFIAPI\r
3151IsNodeAtEnd (\r
3152 IN CONST LIST_ENTRY *List,\r
3153 IN CONST LIST_ENTRY *Node\r
3154 );\r
3155\r
3156\r
3157/**\r
3158 Swaps the location of two nodes in a doubly linked list, and returns the\r
3159 first node after the swap.\r
3160\r
3161 If FirstEntry is identical to SecondEntry, then SecondEntry is returned.\r
3162 Otherwise, the location of the FirstEntry node is swapped with the location\r
3163 of the SecondEntry node in a doubly linked list. SecondEntry must be in the\r
3164 same double linked list as FirstEntry and that double linked list must have\r
17f695ed 3165 been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). \r
3166 SecondEntry is returned after the nodes are swapped.\r
ac644614 3167\r
3168 If FirstEntry is NULL, then ASSERT().\r
3169 If SecondEntry is NULL, then ASSERT().\r
1081f624 3170 If PcdVerifyNodeInList is TRUE and SecondEntry and FirstEntry are not in the \r
3171 same linked list, then ASSERT().\r
ac644614 3172 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
3173 linked list containing the FirstEntry and SecondEntry nodes, including\r
3174 the FirstEntry and SecondEntry nodes, is greater than or equal to\r
3175 PcdMaximumLinkedListLength, then ASSERT().\r
3176\r
3177 @param FirstEntry A pointer to a node in a linked list.\r
3178 @param SecondEntry A pointer to another node in the same linked list.\r
38bbd3d9 3179 \r
9aa049d9 3180 @return SecondEntry.\r
ac644614 3181\r
3182**/\r
3183LIST_ENTRY *\r
3184EFIAPI\r
3185SwapListEntries (\r
aa0583c7 3186 IN OUT LIST_ENTRY *FirstEntry,\r
3187 IN OUT LIST_ENTRY *SecondEntry\r
ac644614 3188 );\r
3189\r
3190\r
3191/**\r
3192 Removes a node from a doubly linked list, and returns the node that follows\r
3193 the removed node.\r
3194\r
3195 Removes the node Entry from a doubly linked list. It is up to the caller of\r
3196 this function to release the memory used by this node if that is required. On\r
3197 exit, the node following Entry in the doubly linked list is returned. If\r
3198 Entry is the only node in the linked list, then the head node of the linked\r
3199 list is returned.\r
3200\r
3201 If Entry is NULL, then ASSERT().\r
3202 If Entry is the head node of an empty list, then ASSERT().\r
3203 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
3204 linked list containing Entry, including the Entry node, is greater than\r
3205 or equal to PcdMaximumLinkedListLength, then ASSERT().\r
3206\r
9aa049d9 3207 @param Entry A pointer to a node in a linked list.\r
ac644614 3208\r
9aa049d9 3209 @return Entry.\r
ac644614 3210\r
3211**/\r
3212LIST_ENTRY *\r
3213EFIAPI\r
3214RemoveEntryList (\r
3215 IN CONST LIST_ENTRY *Entry\r
3216 );\r
3217\r
3218//\r
3219// Math Services\r
3220//\r
3221\r
3222/**\r
3223 Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled\r
3224 with zeros. The shifted value is returned.\r
3225\r
3226 This function shifts the 64-bit value Operand to the left by Count bits. The\r
3227 low Count bits are set to zero. The shifted value is returned.\r
3228\r
3229 If Count is greater than 63, then ASSERT().\r
3230\r
3231 @param Operand The 64-bit operand to shift left.\r
3232 @param Count The number of bits to shift left.\r
3233\r
9aa049d9 3234 @return Operand << Count.\r
ac644614 3235\r
3236**/\r
3237UINT64\r
3238EFIAPI\r
3239LShiftU64 (\r
3240 IN UINT64 Operand,\r
3241 IN UINTN Count\r
3242 );\r
3243\r
3244\r
3245/**\r
3246 Shifts a 64-bit integer right between 0 and 63 bits. This high bits are\r
3247 filled with zeros. The shifted value is returned.\r
3248\r
3249 This function shifts the 64-bit value Operand to the right by Count bits. The\r
3250 high Count bits are set to zero. The shifted value is returned.\r
3251\r
3252 If Count is greater than 63, then ASSERT().\r
3253\r
3254 @param Operand The 64-bit operand to shift right.\r
3255 @param Count The number of bits to shift right.\r
3256\r
3257 @return Operand >> Count\r
3258\r
3259**/\r
3260UINT64\r
3261EFIAPI\r
3262RShiftU64 (\r
3263 IN UINT64 Operand,\r
3264 IN UINTN Count\r
3265 );\r
3266\r
3267\r
3268/**\r
3269 Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled\r
3270 with original integer's bit 63. The shifted value is returned.\r
3271\r
3272 This function shifts the 64-bit value Operand to the right by Count bits. The\r
3273 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
3274\r
3275 If Count is greater than 63, then ASSERT().\r
3276\r
3277 @param Operand The 64-bit operand to shift right.\r
3278 @param Count The number of bits to shift right.\r
3279\r
3280 @return Operand >> Count\r
3281\r
3282**/\r
3283UINT64\r
3284EFIAPI\r
3285ARShiftU64 (\r
3286 IN UINT64 Operand,\r
3287 IN UINTN Count\r
3288 );\r
3289\r
3290\r
3291/**\r
3292 Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits\r
3293 with the high bits that were rotated.\r
3294\r
3295 This function rotates the 32-bit value Operand to the left by Count bits. The\r
3296 low Count bits are fill with the high Count bits of Operand. The rotated\r
3297 value is returned.\r
3298\r
3299 If Count is greater than 31, then ASSERT().\r
3300\r
3301 @param Operand The 32-bit operand to rotate left.\r
3302 @param Count The number of bits to rotate left.\r
3303\r
17f695ed 3304 @return Operand << Count\r
ac644614 3305\r
3306**/\r
3307UINT32\r
3308EFIAPI\r
3309LRotU32 (\r
3310 IN UINT32 Operand,\r
3311 IN UINTN Count\r
3312 );\r
3313\r
3314\r
3315/**\r
3316 Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits\r
3317 with the low bits that were rotated.\r
3318\r
3319 This function rotates the 32-bit value Operand to the right by Count bits.\r
3320 The high Count bits are fill with the low Count bits of Operand. The rotated\r
3321 value is returned.\r
3322\r
3323 If Count is greater than 31, then ASSERT().\r
3324\r
3325 @param Operand The 32-bit operand to rotate right.\r
3326 @param Count The number of bits to rotate right.\r
3327\r
2fe241a2 3328 @return Operand >> Count\r
ac644614 3329\r
3330**/\r
3331UINT32\r
3332EFIAPI\r
3333RRotU32 (\r
3334 IN UINT32 Operand,\r
3335 IN UINTN Count\r
3336 );\r
3337\r
3338\r
3339/**\r
3340 Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits\r
3341 with the high bits that were rotated.\r
3342\r
3343 This function rotates the 64-bit value Operand to the left by Count bits. The\r
3344 low Count bits are fill with the high Count bits of Operand. The rotated\r
3345 value is returned.\r
3346\r
3347 If Count is greater than 63, then ASSERT().\r
3348\r
3349 @param Operand The 64-bit operand to rotate left.\r
3350 @param Count The number of bits to rotate left.\r
3351\r
17f695ed 3352 @return Operand << Count\r
ac644614 3353\r
3354**/\r
3355UINT64\r
3356EFIAPI\r
3357LRotU64 (\r
3358 IN UINT64 Operand,\r
3359 IN UINTN Count\r
3360 );\r
3361\r
3362\r
3363/**\r
3364 Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits\r
3365 with the high low bits that were rotated.\r
3366\r
3367 This function rotates the 64-bit value Operand to the right by Count bits.\r
3368 The high Count bits are fill with the low Count bits of Operand. The rotated\r
3369 value is returned.\r
3370\r
3371 If Count is greater than 63, then ASSERT().\r
3372\r
3373 @param Operand The 64-bit operand to rotate right.\r
3374 @param Count The number of bits to rotate right.\r
3375\r
17f695ed 3376 @return Operand >> Count\r
ac644614 3377\r
3378**/\r
3379UINT64\r
3380EFIAPI\r
3381RRotU64 (\r
3382 IN UINT64 Operand,\r
3383 IN UINTN Count\r
3384 );\r
3385\r
3386\r
3387/**\r
3388 Returns the bit position of the lowest bit set in a 32-bit value.\r
3389\r
3390 This function computes the bit position of the lowest bit set in the 32-bit\r
3391 value specified by Operand. If Operand is zero, then -1 is returned.\r
3392 Otherwise, a value between 0 and 31 is returned.\r
3393\r
3394 @param Operand The 32-bit operand to evaluate.\r
3395\r
9aa049d9 3396 @retval 0..31 The lowest bit set in Operand was found.\r
17f695ed 3397 @retval -1 Operand is zero.\r
ac644614 3398\r
3399**/\r
3400INTN\r
3401EFIAPI\r
3402LowBitSet32 (\r
3403 IN UINT32 Operand\r
3404 );\r
3405\r
3406\r
3407/**\r
3408 Returns the bit position of the lowest bit set in a 64-bit value.\r
3409\r
3410 This function computes the bit position of the lowest bit set in the 64-bit\r
3411 value specified by Operand. If Operand is zero, then -1 is returned.\r
3412 Otherwise, a value between 0 and 63 is returned.\r
3413\r
3414 @param Operand The 64-bit operand to evaluate.\r
3415\r
9aa049d9 3416 @retval 0..63 The lowest bit set in Operand was found.\r
17f695ed 3417 @retval -1 Operand is zero.\r
3418\r
ac644614 3419\r
3420**/\r
3421INTN\r
3422EFIAPI\r
3423LowBitSet64 (\r
3424 IN UINT64 Operand\r
3425 );\r
3426\r
3427\r
3428/**\r
3429 Returns the bit position of the highest bit set in a 32-bit value. Equivalent\r
3430 to log2(x).\r
3431\r
3432 This function computes the bit position of the highest bit set in the 32-bit\r
3433 value specified by Operand. If Operand is zero, then -1 is returned.\r
3434 Otherwise, a value between 0 and 31 is returned.\r
3435\r
3436 @param Operand The 32-bit operand to evaluate.\r
3437\r
9aa049d9 3438 @retval 0..31 Position of the highest bit set in Operand if found.\r
17f695ed 3439 @retval -1 Operand is zero.\r
ac644614 3440\r
3441**/\r
3442INTN\r
3443EFIAPI\r
3444HighBitSet32 (\r
3445 IN UINT32 Operand\r
3446 );\r
3447\r
3448\r
3449/**\r
3450 Returns the bit position of the highest bit set in a 64-bit value. Equivalent\r
3451 to log2(x).\r
3452\r
3453 This function computes the bit position of the highest bit set in the 64-bit\r
3454 value specified by Operand. If Operand is zero, then -1 is returned.\r
3455 Otherwise, a value between 0 and 63 is returned.\r
3456\r
3457 @param Operand The 64-bit operand to evaluate.\r
3458\r
9aa049d9 3459 @retval 0..63 Position of the highest bit set in Operand if found.\r
17f695ed 3460 @retval -1 Operand is zero.\r
ac644614 3461\r
3462**/\r
3463INTN\r
3464EFIAPI\r
3465HighBitSet64 (\r
3466 IN UINT64 Operand\r
3467 );\r
3468\r
3469\r
3470/**\r
3471 Returns the value of the highest bit set in a 32-bit value. Equivalent to\r
17f695ed 3472 1 << log2(x).\r
ac644614 3473\r
3474 This function computes the value of the highest bit set in the 32-bit value\r
3475 specified by Operand. If Operand is zero, then zero is returned.\r
3476\r
3477 @param Operand The 32-bit operand to evaluate.\r
3478\r
3479 @return 1 << HighBitSet32(Operand)\r
3480 @retval 0 Operand is zero.\r
3481\r
3482**/\r
3483UINT32\r
3484EFIAPI\r
3485GetPowerOfTwo32 (\r
3486 IN UINT32 Operand\r
3487 );\r
3488\r
3489\r
3490/**\r
3491 Returns the value of the highest bit set in a 64-bit value. Equivalent to\r
17f695ed 3492 1 << log2(x).\r
ac644614 3493\r
3494 This function computes the value of the highest bit set in the 64-bit value\r
3495 specified by Operand. If Operand is zero, then zero is returned.\r
3496\r
3497 @param Operand The 64-bit operand to evaluate.\r
3498\r
3499 @return 1 << HighBitSet64(Operand)\r
3500 @retval 0 Operand is zero.\r
3501\r
3502**/\r
3503UINT64\r
3504EFIAPI\r
3505GetPowerOfTwo64 (\r
3506 IN UINT64 Operand\r
3507 );\r
3508\r
3509\r
3510/**\r
af2dc6a7 3511 Switches the endianness of a 16-bit integer.\r
ac644614 3512\r
3513 This function swaps the bytes in a 16-bit unsigned value to switch the value\r
3514 from little endian to big endian or vice versa. The byte swapped value is\r
3515 returned.\r
3516\r
2a53dabf 3517 @param Value A 16-bit unsigned value.\r
ac644614 3518\r
efb23117 3519 @return The byte swapped Value.\r
ac644614 3520\r
3521**/\r
3522UINT16\r
3523EFIAPI\r
3524SwapBytes16 (\r
3525 IN UINT16 Value\r
3526 );\r
3527\r
3528\r
3529/**\r
af2dc6a7 3530 Switches the endianness of a 32-bit integer.\r
ac644614 3531\r
3532 This function swaps the bytes in a 32-bit unsigned value to switch the value\r
3533 from little endian to big endian or vice versa. The byte swapped value is\r
3534 returned.\r
3535\r
2a53dabf 3536 @param Value A 32-bit unsigned value.\r
ac644614 3537\r
efb23117 3538 @return The byte swapped Value.\r
ac644614 3539\r
3540**/\r
3541UINT32\r
3542EFIAPI\r
3543SwapBytes32 (\r
3544 IN UINT32 Value\r
3545 );\r
3546\r
3547\r
3548/**\r
af2dc6a7 3549 Switches the endianness of a 64-bit integer.\r
ac644614 3550\r
3551 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
3552 from little endian to big endian or vice versa. The byte swapped value is\r
3553 returned.\r
3554\r
2a53dabf 3555 @param Value A 64-bit unsigned value.\r
ac644614 3556\r
efb23117 3557 @return The byte swapped Value.\r
ac644614 3558\r
3559**/\r
3560UINT64\r
3561EFIAPI\r
3562SwapBytes64 (\r
3563 IN UINT64 Value\r
3564 );\r
3565\r
3566\r
3567/**\r
3568 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and\r
3569 generates a 64-bit unsigned result.\r
3570\r
3571 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit\r
3572 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
3573 bit unsigned result is returned.\r
3574\r
ac644614 3575 @param Multiplicand A 64-bit unsigned value.\r
3576 @param Multiplier A 32-bit unsigned value.\r
3577\r
3578 @return Multiplicand * Multiplier\r
3579\r
3580**/\r
3581UINT64\r
3582EFIAPI\r
3583MultU64x32 (\r
3584 IN UINT64 Multiplicand,\r
3585 IN UINT32 Multiplier\r
3586 );\r
3587\r
3588\r
3589/**\r
3590 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and\r
3591 generates a 64-bit unsigned result.\r
3592\r
3593 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
3594 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
3595 bit unsigned result is returned.\r
3596\r
ac644614 3597 @param Multiplicand A 64-bit unsigned value.\r
3598 @param Multiplier A 64-bit unsigned value.\r
3599\r
af2dc6a7 3600 @return Multiplicand * Multiplier.\r
ac644614 3601\r
3602**/\r
3603UINT64\r
3604EFIAPI\r
3605MultU64x64 (\r
3606 IN UINT64 Multiplicand,\r
3607 IN UINT64 Multiplier\r
3608 );\r
3609\r
3610\r
3611/**\r
3612 Multiples a 64-bit signed integer by a 64-bit signed integer and generates a\r
3613 64-bit signed result.\r
3614\r
3615 This function multiples the 64-bit signed value Multiplicand by the 64-bit\r
3616 signed value Multiplier and generates a 64-bit signed result. This 64-bit\r
3617 signed result is returned.\r
3618\r
ac644614 3619 @param Multiplicand A 64-bit signed value.\r
3620 @param Multiplier A 64-bit signed value.\r
3621\r
3622 @return Multiplicand * Multiplier\r
3623\r
3624**/\r
3625INT64\r
3626EFIAPI\r
3627MultS64x64 (\r
3628 IN INT64 Multiplicand,\r
3629 IN INT64 Multiplier\r
3630 );\r
3631\r
3632\r
3633/**\r
3634 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
3635 a 64-bit unsigned result.\r
3636\r
3637 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
3638 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
3639 function returns the 64-bit unsigned quotient.\r
3640\r
3641 If Divisor is 0, then ASSERT().\r
3642\r
3643 @param Dividend A 64-bit unsigned value.\r
3644 @param Divisor A 32-bit unsigned value.\r
3645\r
af2dc6a7 3646 @return Dividend / Divisor.\r
ac644614 3647\r
3648**/\r
3649UINT64\r
3650EFIAPI\r
3651DivU64x32 (\r
3652 IN UINT64 Dividend,\r
3653 IN UINT32 Divisor\r
3654 );\r
3655\r
3656\r
3657/**\r
3658 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
3659 a 32-bit unsigned remainder.\r
3660\r
3661 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
3662 unsigned value Divisor and generates a 32-bit remainder. This function\r
3663 returns the 32-bit unsigned remainder.\r
3664\r
3665 If Divisor is 0, then ASSERT().\r
3666\r
3667 @param Dividend A 64-bit unsigned value.\r
3668 @param Divisor A 32-bit unsigned value.\r
3669\r
af2dc6a7 3670 @return Dividend % Divisor.\r
ac644614 3671\r
3672**/\r
3673UINT32\r
3674EFIAPI\r
3675ModU64x32 (\r
3676 IN UINT64 Dividend,\r
3677 IN UINT32 Divisor\r
3678 );\r
3679\r
3680\r
3681/**\r
3682 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
3683 a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
3684\r
3685 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
3686 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
3687 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
3688 This function returns the 64-bit unsigned quotient.\r
3689\r
3690 If Divisor is 0, then ASSERT().\r
3691\r
3692 @param Dividend A 64-bit unsigned value.\r
3693 @param Divisor A 32-bit unsigned value.\r
3694 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
3695 optional and may be NULL.\r
3696\r
af2dc6a7 3697 @return Dividend / Divisor.\r
ac644614 3698\r
3699**/\r
3700UINT64\r
3701EFIAPI\r
3702DivU64x32Remainder (\r
3703 IN UINT64 Dividend,\r
3704 IN UINT32 Divisor,\r
3705 OUT UINT32 *Remainder OPTIONAL\r
3706 );\r
3707\r
3708\r
3709/**\r
3710 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates\r
3711 a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
3712\r
3713 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
3714 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
3715 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
3716 This function returns the 64-bit unsigned quotient.\r
3717\r
3718 If Divisor is 0, then ASSERT().\r
3719\r
3720 @param Dividend A 64-bit unsigned value.\r
3721 @param Divisor A 64-bit unsigned value.\r
3722 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
3723 optional and may be NULL.\r
3724\r
af2dc6a7 3725 @return Dividend / Divisor.\r
ac644614 3726\r
3727**/\r
3728UINT64\r
3729EFIAPI\r
3730DivU64x64Remainder (\r
3731 IN UINT64 Dividend,\r
3732 IN UINT64 Divisor,\r
3733 OUT UINT64 *Remainder OPTIONAL\r
3734 );\r
3735\r
3736\r
3737/**\r
3738 Divides a 64-bit signed integer by a 64-bit signed integer and generates a\r
3739 64-bit signed result and a optional 64-bit signed remainder.\r
3740\r
3741 This function divides the 64-bit signed value Dividend by the 64-bit signed\r
3742 value Divisor and generates a 64-bit signed quotient. If Remainder is not\r
3743 NULL, then the 64-bit signed remainder is returned in Remainder. This\r
3744 function returns the 64-bit signed quotient.\r
3745\r
9aa049d9 3746 It is the caller's responsibility to not call this function with a Divisor of 0.\r
17f695ed 3747 If Divisor is 0, then the quotient and remainder should be assumed to be \r
3748 the largest negative integer.\r
3749\r
ac644614 3750 If Divisor is 0, then ASSERT().\r
3751\r
3752 @param Dividend A 64-bit signed value.\r
3753 @param Divisor A 64-bit signed value.\r
3754 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
3755 optional and may be NULL.\r
3756\r
af2dc6a7 3757 @return Dividend / Divisor.\r
ac644614 3758\r
3759**/\r
3760INT64\r
3761EFIAPI\r
3762DivS64x64Remainder (\r
3763 IN INT64 Dividend,\r
3764 IN INT64 Divisor,\r
3765 OUT INT64 *Remainder OPTIONAL\r
3766 );\r
3767\r
3768\r
3769/**\r
3770 Reads a 16-bit value from memory that may be unaligned.\r
3771\r
3772 This function returns the 16-bit value pointed to by Buffer. The function\r
3773 guarantees that the read operation does not produce an alignment fault.\r
3774\r
3775 If the Buffer is NULL, then ASSERT().\r
3776\r
af2dc6a7 3777 @param Buffer The pointer to a 16-bit value that may be unaligned.\r
ac644614 3778\r
5385a579 3779 @return The 16-bit value read from Buffer.\r
ac644614 3780\r
3781**/\r
3782UINT16\r
3783EFIAPI\r
3784ReadUnaligned16 (\r
5385a579 3785 IN CONST UINT16 *Buffer\r
ac644614 3786 );\r
3787\r
3788\r
3789/**\r
3790 Writes a 16-bit value to memory that may be unaligned.\r
3791\r
3792 This function writes the 16-bit value specified by Value to Buffer. Value is\r
3793 returned. The function guarantees that the write operation does not produce\r
3794 an alignment fault.\r
3795\r
3796 If the Buffer is NULL, then ASSERT().\r
3797\r
af2dc6a7 3798 @param Buffer The pointer to a 16-bit value that may be unaligned.\r
ac644614 3799 @param Value 16-bit value to write to Buffer.\r
3800\r
5385a579 3801 @return The 16-bit value to write to Buffer.\r
ac644614 3802\r
3803**/\r
3804UINT16\r
3805EFIAPI\r
3806WriteUnaligned16 (\r
5385a579 3807 OUT UINT16 *Buffer,\r
3808 IN UINT16 Value\r
ac644614 3809 );\r
3810\r
3811\r
3812/**\r
3813 Reads a 24-bit value from memory that may be unaligned.\r
3814\r
3815 This function returns the 24-bit value pointed to by Buffer. The function\r
3816 guarantees that the read operation does not produce an alignment fault.\r
3817\r
3818 If the Buffer is NULL, then ASSERT().\r
3819\r
af2dc6a7 3820 @param Buffer The pointer to a 24-bit value that may be unaligned.\r
ac644614 3821\r
5385a579 3822 @return The 24-bit value read from Buffer.\r
ac644614 3823\r
3824**/\r
3825UINT32\r
3826EFIAPI\r
3827ReadUnaligned24 (\r
5385a579 3828 IN CONST UINT32 *Buffer\r
ac644614 3829 );\r
3830\r
3831\r
3832/**\r
3833 Writes a 24-bit value to memory that may be unaligned.\r
3834\r
3835 This function writes the 24-bit value specified by Value to Buffer. Value is\r
3836 returned. The function guarantees that the write operation does not produce\r
3837 an alignment fault.\r
3838\r
3839 If the Buffer is NULL, then ASSERT().\r
3840\r
af2dc6a7 3841 @param Buffer The pointer to a 24-bit value that may be unaligned.\r
ac644614 3842 @param Value 24-bit value to write to Buffer.\r
3843\r
5385a579 3844 @return The 24-bit value to write to Buffer.\r
ac644614 3845\r
3846**/\r
3847UINT32\r
3848EFIAPI\r
3849WriteUnaligned24 (\r
5385a579 3850 OUT UINT32 *Buffer,\r
3851 IN UINT32 Value\r
ac644614 3852 );\r
3853\r
3854\r
3855/**\r
3856 Reads a 32-bit value from memory that may be unaligned.\r
3857\r
3858 This function returns the 32-bit value pointed to by Buffer. The function\r
3859 guarantees that the read operation does not produce an alignment fault.\r
3860\r
3861 If the Buffer is NULL, then ASSERT().\r
3862\r
af2dc6a7 3863 @param Buffer The pointer to a 32-bit value that may be unaligned.\r
ac644614 3864\r
5385a579 3865 @return The 32-bit value read from Buffer.\r
ac644614 3866\r
3867**/\r
3868UINT32\r
3869EFIAPI\r
3870ReadUnaligned32 (\r
5385a579 3871 IN CONST UINT32 *Buffer\r
ac644614 3872 );\r
3873\r
3874\r
3875/**\r
3876 Writes a 32-bit value to memory that may be unaligned.\r
3877\r
3878 This function writes the 32-bit value specified by Value to Buffer. Value is\r
3879 returned. The function guarantees that the write operation does not produce\r
3880 an alignment fault.\r
3881\r
3882 If the Buffer is NULL, then ASSERT().\r
3883\r
af2dc6a7 3884 @param Buffer The pointer to a 32-bit value that may be unaligned.\r
ac644614 3885 @param Value 32-bit value to write to Buffer.\r
3886\r
5385a579 3887 @return The 32-bit value to write to Buffer.\r
ac644614 3888\r
3889**/\r
3890UINT32\r
3891EFIAPI\r
3892WriteUnaligned32 (\r
5385a579 3893 OUT UINT32 *Buffer,\r
3894 IN UINT32 Value\r
ac644614 3895 );\r
3896\r
3897\r
3898/**\r
3899 Reads a 64-bit value from memory that may be unaligned.\r
3900\r
3901 This function returns the 64-bit value pointed to by Buffer. The function\r
3902 guarantees that the read operation does not produce an alignment fault.\r
3903\r
3904 If the Buffer is NULL, then ASSERT().\r
3905\r
af2dc6a7 3906 @param Buffer The pointer to a 64-bit value that may be unaligned.\r
ac644614 3907\r
5385a579 3908 @return The 64-bit value read from Buffer.\r
ac644614 3909\r
3910**/\r
3911UINT64\r
3912EFIAPI\r
3913ReadUnaligned64 (\r
5385a579 3914 IN CONST UINT64 *Buffer\r
ac644614 3915 );\r
3916\r
3917\r
3918/**\r
3919 Writes a 64-bit value to memory that may be unaligned.\r
3920\r
3921 This function writes the 64-bit value specified by Value to Buffer. Value is\r
3922 returned. The function guarantees that the write operation does not produce\r
3923 an alignment fault.\r
3924\r
3925 If the Buffer is NULL, then ASSERT().\r
3926\r
af2dc6a7 3927 @param Buffer The pointer to a 64-bit value that may be unaligned.\r
ac644614 3928 @param Value 64-bit value to write to Buffer.\r
3929\r
5385a579 3930 @return The 64-bit value to write to Buffer.\r
ac644614 3931\r
3932**/\r
3933UINT64\r
3934EFIAPI\r
3935WriteUnaligned64 (\r
5385a579 3936 OUT UINT64 *Buffer,\r
3937 IN UINT64 Value\r
ac644614 3938 );\r
3939\r
3940\r
3941//\r
3942// Bit Field Functions\r
3943//\r
3944\r
3945/**\r
3946 Returns a bit field from an 8-bit value.\r
3947\r
3948 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
3949\r
3950 If 8-bit operations are not supported, then ASSERT().\r
3951 If StartBit is greater than 7, then ASSERT().\r
3952 If EndBit is greater than 7, then ASSERT().\r
3953 If EndBit is less than StartBit, then ASSERT().\r
3954\r
3955 @param Operand Operand on which to perform the bitfield operation.\r
3956 @param StartBit The ordinal of the least significant bit in the bit field.\r
3957 Range 0..7.\r
3958 @param EndBit The ordinal of the most significant bit in the bit field.\r
3959 Range 0..7.\r
3960\r
3961 @return The bit field read.\r
3962\r
3963**/\r
3964UINT8\r
3965EFIAPI\r
3966BitFieldRead8 (\r
3967 IN UINT8 Operand,\r
3968 IN UINTN StartBit,\r
3969 IN UINTN EndBit\r
3970 );\r
3971\r
3972\r
3973/**\r
3974 Writes a bit field to an 8-bit value, and returns the result.\r
3975\r
3976 Writes Value to the bit field specified by the StartBit and the EndBit in\r
3977 Operand. All other bits in Operand are preserved. The new 8-bit value is\r
3978 returned.\r
3979\r
3980 If 8-bit operations are not supported, then ASSERT().\r
3981 If StartBit is greater than 7, then ASSERT().\r
3982 If EndBit is greater than 7, then ASSERT().\r
3983 If EndBit is less than StartBit, then ASSERT().\r
94952554 3984 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 3985\r
3986 @param Operand Operand on which to perform the bitfield operation.\r
3987 @param StartBit The ordinal of the least significant bit in the bit field.\r
3988 Range 0..7.\r
3989 @param EndBit The ordinal of the most significant bit in the bit field.\r
3990 Range 0..7.\r
3991 @param Value New value of the bit field.\r
3992\r
3993 @return The new 8-bit value.\r
3994\r
3995**/\r
3996UINT8\r
3997EFIAPI\r
3998BitFieldWrite8 (\r
3999 IN UINT8 Operand,\r
4000 IN UINTN StartBit,\r
4001 IN UINTN EndBit,\r
4002 IN UINT8 Value\r
4003 );\r
4004\r
4005\r
4006/**\r
4007 Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the\r
4008 result.\r
4009\r
62991af2 4010 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 4011 and EndBit in Operand and the value specified by OrData. All other bits in\r
4012 Operand are preserved. The new 8-bit value is returned.\r
4013\r
4014 If 8-bit operations are not supported, then ASSERT().\r
4015 If StartBit is greater than 7, then ASSERT().\r
4016 If EndBit is greater than 7, then ASSERT().\r
4017 If EndBit is less than StartBit, then ASSERT().\r
94952554 4018 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4019\r
4020 @param Operand Operand on which to perform the bitfield operation.\r
4021 @param StartBit The ordinal of the least significant bit in the bit field.\r
4022 Range 0..7.\r
4023 @param EndBit The ordinal of the most significant bit in the bit field.\r
4024 Range 0..7.\r
4025 @param OrData The value to OR with the read value from the value\r
4026\r
4027 @return The new 8-bit value.\r
4028\r
4029**/\r
4030UINT8\r
4031EFIAPI\r
4032BitFieldOr8 (\r
4033 IN UINT8 Operand,\r
4034 IN UINTN StartBit,\r
4035 IN UINTN EndBit,\r
4036 IN UINT8 OrData\r
4037 );\r
4038\r
4039\r
4040/**\r
4041 Reads a bit field from an 8-bit value, performs a bitwise AND, and returns\r
4042 the result.\r
4043\r
4044 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4045 in Operand and the value specified by AndData. All other bits in Operand are\r
4046 preserved. The new 8-bit value is returned.\r
4047\r
4048 If 8-bit operations are not supported, then ASSERT().\r
4049 If StartBit is greater than 7, then ASSERT().\r
4050 If EndBit is greater than 7, then ASSERT().\r
4051 If EndBit is less than StartBit, then ASSERT().\r
94952554 4052 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4053\r
4054 @param Operand Operand on which to perform the bitfield operation.\r
4055 @param StartBit The ordinal of the least significant bit in the bit field.\r
4056 Range 0..7.\r
4057 @param EndBit The ordinal of the most significant bit in the bit field.\r
4058 Range 0..7.\r
4059 @param AndData The value to AND with the read value from the value.\r
4060\r
4061 @return The new 8-bit value.\r
4062\r
4063**/\r
4064UINT8\r
4065EFIAPI\r
4066BitFieldAnd8 (\r
4067 IN UINT8 Operand,\r
4068 IN UINTN StartBit,\r
4069 IN UINTN EndBit,\r
4070 IN UINT8 AndData\r
4071 );\r
4072\r
4073\r
4074/**\r
4075 Reads a bit field from an 8-bit value, performs a bitwise AND followed by a\r
4076 bitwise OR, and returns the result.\r
4077\r
4078 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 4079 in Operand and the value specified by AndData, followed by a bitwise \r
4080 OR with value specified by OrData. All other bits in Operand are\r
ac644614 4081 preserved. The new 8-bit value is returned.\r
4082\r
4083 If 8-bit operations are not supported, then ASSERT().\r
4084 If StartBit is greater than 7, then ASSERT().\r
4085 If EndBit is greater than 7, then ASSERT().\r
4086 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
4087 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4088 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4089\r
4090 @param Operand Operand on which to perform the bitfield operation.\r
4091 @param StartBit The ordinal of the least significant bit in the bit field.\r
4092 Range 0..7.\r
4093 @param EndBit The ordinal of the most significant bit in the bit field.\r
4094 Range 0..7.\r
4095 @param AndData The value to AND with the read value from the value.\r
4096 @param OrData The value to OR with the result of the AND operation.\r
4097\r
4098 @return The new 8-bit value.\r
4099\r
4100**/\r
4101UINT8\r
4102EFIAPI\r
4103BitFieldAndThenOr8 (\r
4104 IN UINT8 Operand,\r
4105 IN UINTN StartBit,\r
4106 IN UINTN EndBit,\r
4107 IN UINT8 AndData,\r
4108 IN UINT8 OrData\r
4109 );\r
4110\r
4111\r
4112/**\r
4113 Returns a bit field from a 16-bit value.\r
4114\r
4115 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
4116\r
4117 If 16-bit operations are not supported, then ASSERT().\r
4118 If StartBit is greater than 15, then ASSERT().\r
4119 If EndBit is greater than 15, then ASSERT().\r
4120 If EndBit is less than StartBit, then ASSERT().\r
4121\r
4122 @param Operand Operand on which to perform the bitfield operation.\r
4123 @param StartBit The ordinal of the least significant bit in the bit field.\r
4124 Range 0..15.\r
4125 @param EndBit The ordinal of the most significant bit in the bit field.\r
4126 Range 0..15.\r
4127\r
4128 @return The bit field read.\r
4129\r
4130**/\r
4131UINT16\r
4132EFIAPI\r
4133BitFieldRead16 (\r
4134 IN UINT16 Operand,\r
4135 IN UINTN StartBit,\r
4136 IN UINTN EndBit\r
4137 );\r
4138\r
4139\r
4140/**\r
4141 Writes a bit field to a 16-bit value, and returns the result.\r
4142\r
4143 Writes Value to the bit field specified by the StartBit and the EndBit in\r
4144 Operand. All other bits in Operand are preserved. The new 16-bit value is\r
4145 returned.\r
4146\r
4147 If 16-bit operations are not supported, then ASSERT().\r
4148 If StartBit is greater than 15, then ASSERT().\r
4149 If EndBit is greater than 15, then ASSERT().\r
4150 If EndBit is less than StartBit, then ASSERT().\r
94952554 4151 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4152\r
4153 @param Operand Operand on which to perform the bitfield operation.\r
4154 @param StartBit The ordinal of the least significant bit in the bit field.\r
4155 Range 0..15.\r
4156 @param EndBit The ordinal of the most significant bit in the bit field.\r
4157 Range 0..15.\r
4158 @param Value New value of the bit field.\r
4159\r
4160 @return The new 16-bit value.\r
4161\r
4162**/\r
4163UINT16\r
4164EFIAPI\r
4165BitFieldWrite16 (\r
4166 IN UINT16 Operand,\r
4167 IN UINTN StartBit,\r
4168 IN UINTN EndBit,\r
4169 IN UINT16 Value\r
4170 );\r
4171\r
4172\r
4173/**\r
4174 Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the\r
4175 result.\r
4176\r
62991af2 4177 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 4178 and EndBit in Operand and the value specified by OrData. All other bits in\r
4179 Operand are preserved. The new 16-bit value is returned.\r
4180\r
4181 If 16-bit operations are not supported, then ASSERT().\r
4182 If StartBit is greater than 15, then ASSERT().\r
4183 If EndBit is greater than 15, then ASSERT().\r
4184 If EndBit is less than StartBit, then ASSERT().\r
94952554 4185 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4186\r
4187 @param Operand Operand on which to perform the bitfield operation.\r
4188 @param StartBit The ordinal of the least significant bit in the bit field.\r
4189 Range 0..15.\r
4190 @param EndBit The ordinal of the most significant bit in the bit field.\r
4191 Range 0..15.\r
4192 @param OrData The value to OR with the read value from the value\r
4193\r
4194 @return The new 16-bit value.\r
4195\r
4196**/\r
4197UINT16\r
4198EFIAPI\r
4199BitFieldOr16 (\r
4200 IN UINT16 Operand,\r
4201 IN UINTN StartBit,\r
4202 IN UINTN EndBit,\r
4203 IN UINT16 OrData\r
4204 );\r
4205\r
4206\r
4207/**\r
4208 Reads a bit field from a 16-bit value, performs a bitwise AND, and returns\r
4209 the result.\r
4210\r
4211 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4212 in Operand and the value specified by AndData. All other bits in Operand are\r
4213 preserved. The new 16-bit value is returned.\r
4214\r
4215 If 16-bit operations are not supported, then ASSERT().\r
4216 If StartBit is greater than 15, then ASSERT().\r
4217 If EndBit is greater than 15, then ASSERT().\r
4218 If EndBit is less than StartBit, then ASSERT().\r
94952554 4219 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4220\r
4221 @param Operand Operand on which to perform the bitfield operation.\r
4222 @param StartBit The ordinal of the least significant bit in the bit field.\r
4223 Range 0..15.\r
4224 @param EndBit The ordinal of the most significant bit in the bit field.\r
4225 Range 0..15.\r
4226 @param AndData The value to AND with the read value from the value\r
4227\r
4228 @return The new 16-bit value.\r
4229\r
4230**/\r
4231UINT16\r
4232EFIAPI\r
4233BitFieldAnd16 (\r
4234 IN UINT16 Operand,\r
4235 IN UINTN StartBit,\r
4236 IN UINTN EndBit,\r
4237 IN UINT16 AndData\r
4238 );\r
4239\r
4240\r
4241/**\r
4242 Reads a bit field from a 16-bit value, performs a bitwise AND followed by a\r
4243 bitwise OR, and returns the result.\r
4244\r
4245 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 4246 in Operand and the value specified by AndData, followed by a bitwise \r
4247 OR with value specified by OrData. All other bits in Operand are\r
ac644614 4248 preserved. The new 16-bit value is returned.\r
4249\r
4250 If 16-bit operations are not supported, then ASSERT().\r
4251 If StartBit is greater than 15, then ASSERT().\r
4252 If EndBit is greater than 15, then ASSERT().\r
4253 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
4254 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4255 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4256\r
4257 @param Operand Operand on which to perform the bitfield operation.\r
4258 @param StartBit The ordinal of the least significant bit in the bit field.\r
4259 Range 0..15.\r
4260 @param EndBit The ordinal of the most significant bit in the bit field.\r
4261 Range 0..15.\r
4262 @param AndData The value to AND with the read value from the value.\r
4263 @param OrData The value to OR with the result of the AND operation.\r
4264\r
4265 @return The new 16-bit value.\r
4266\r
4267**/\r
4268UINT16\r
4269EFIAPI\r
4270BitFieldAndThenOr16 (\r
4271 IN UINT16 Operand,\r
4272 IN UINTN StartBit,\r
4273 IN UINTN EndBit,\r
4274 IN UINT16 AndData,\r
4275 IN UINT16 OrData\r
4276 );\r
4277\r
4278\r
4279/**\r
4280 Returns a bit field from a 32-bit value.\r
4281\r
4282 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
4283\r
4284 If 32-bit operations are not supported, then ASSERT().\r
4285 If StartBit is greater than 31, then ASSERT().\r
4286 If EndBit is greater than 31, then ASSERT().\r
4287 If EndBit is less than StartBit, then ASSERT().\r
4288\r
4289 @param Operand Operand on which to perform the bitfield operation.\r
4290 @param StartBit The ordinal of the least significant bit in the bit field.\r
4291 Range 0..31.\r
4292 @param EndBit The ordinal of the most significant bit in the bit field.\r
4293 Range 0..31.\r
4294\r
4295 @return The bit field read.\r
4296\r
4297**/\r
4298UINT32\r
4299EFIAPI\r
4300BitFieldRead32 (\r
4301 IN UINT32 Operand,\r
4302 IN UINTN StartBit,\r
4303 IN UINTN EndBit\r
4304 );\r
4305\r
4306\r
4307/**\r
4308 Writes a bit field to a 32-bit value, and returns the result.\r
4309\r
4310 Writes Value to the bit field specified by the StartBit and the EndBit in\r
4311 Operand. All other bits in Operand are preserved. The new 32-bit value is\r
4312 returned.\r
4313\r
4314 If 32-bit operations are not supported, then ASSERT().\r
4315 If StartBit is greater than 31, then ASSERT().\r
4316 If EndBit is greater than 31, then ASSERT().\r
4317 If EndBit is less than StartBit, then ASSERT().\r
94952554 4318 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4319\r
4320 @param Operand Operand on which to perform the bitfield operation.\r
4321 @param StartBit The ordinal of the least significant bit in the bit field.\r
4322 Range 0..31.\r
4323 @param EndBit The ordinal of the most significant bit in the bit field.\r
4324 Range 0..31.\r
4325 @param Value New value of the bit field.\r
4326\r
4327 @return The new 32-bit value.\r
4328\r
4329**/\r
4330UINT32\r
4331EFIAPI\r
4332BitFieldWrite32 (\r
4333 IN UINT32 Operand,\r
4334 IN UINTN StartBit,\r
4335 IN UINTN EndBit,\r
4336 IN UINT32 Value\r
4337 );\r
4338\r
4339\r
4340/**\r
4341 Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the\r
4342 result.\r
4343\r
62991af2 4344 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 4345 and EndBit in Operand and the value specified by OrData. All other bits in\r
4346 Operand are preserved. The new 32-bit value is returned.\r
4347\r
4348 If 32-bit operations are not supported, then ASSERT().\r
4349 If StartBit is greater than 31, then ASSERT().\r
4350 If EndBit is greater than 31, then ASSERT().\r
4351 If EndBit is less than StartBit, then ASSERT().\r
94952554 4352 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4353\r
4354 @param Operand Operand on which to perform the bitfield operation.\r
4355 @param StartBit The ordinal of the least significant bit in the bit field.\r
4356 Range 0..31.\r
4357 @param EndBit The ordinal of the most significant bit in the bit field.\r
4358 Range 0..31.\r
af2dc6a7 4359 @param OrData The value to OR with the read value from the value.\r
ac644614 4360\r
4361 @return The new 32-bit value.\r
4362\r
4363**/\r
4364UINT32\r
4365EFIAPI\r
4366BitFieldOr32 (\r
4367 IN UINT32 Operand,\r
4368 IN UINTN StartBit,\r
4369 IN UINTN EndBit,\r
4370 IN UINT32 OrData\r
4371 );\r
4372\r
4373\r
4374/**\r
4375 Reads a bit field from a 32-bit value, performs a bitwise AND, and returns\r
4376 the result.\r
4377\r
4378 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4379 in Operand and the value specified by AndData. All other bits in Operand are\r
4380 preserved. The new 32-bit value is returned.\r
4381\r
4382 If 32-bit operations are not supported, then ASSERT().\r
4383 If StartBit is greater than 31, then ASSERT().\r
4384 If EndBit is greater than 31, then ASSERT().\r
4385 If EndBit is less than StartBit, then ASSERT().\r
94952554 4386 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4387\r
4388 @param Operand Operand on which to perform the bitfield operation.\r
4389 @param StartBit The ordinal of the least significant bit in the bit field.\r
4390 Range 0..31.\r
4391 @param EndBit The ordinal of the most significant bit in the bit field.\r
4392 Range 0..31.\r
4393 @param AndData The value to AND with the read value from the value\r
4394\r
4395 @return The new 32-bit value.\r
4396\r
4397**/\r
4398UINT32\r
4399EFIAPI\r
4400BitFieldAnd32 (\r
4401 IN UINT32 Operand,\r
4402 IN UINTN StartBit,\r
4403 IN UINTN EndBit,\r
4404 IN UINT32 AndData\r
4405 );\r
4406\r
4407\r
4408/**\r
4409 Reads a bit field from a 32-bit value, performs a bitwise AND followed by a\r
4410 bitwise OR, and returns the result.\r
4411\r
4412 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 4413 in Operand and the value specified by AndData, followed by a bitwise \r
4414 OR with value specified by OrData. All other bits in Operand are\r
ac644614 4415 preserved. The new 32-bit value is returned.\r
4416\r
4417 If 32-bit operations are not supported, then ASSERT().\r
4418 If StartBit is greater than 31, then ASSERT().\r
4419 If EndBit is greater than 31, then ASSERT().\r
4420 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
4421 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4422 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4423\r
4424 @param Operand Operand on which to perform the bitfield operation.\r
4425 @param StartBit The ordinal of the least significant bit in the bit field.\r
4426 Range 0..31.\r
4427 @param EndBit The ordinal of the most significant bit in the bit field.\r
4428 Range 0..31.\r
4429 @param AndData The value to AND with the read value from the value.\r
4430 @param OrData The value to OR with the result of the AND operation.\r
4431\r
4432 @return The new 32-bit value.\r
4433\r
4434**/\r
4435UINT32\r
4436EFIAPI\r
4437BitFieldAndThenOr32 (\r
4438 IN UINT32 Operand,\r
4439 IN UINTN StartBit,\r
4440 IN UINTN EndBit,\r
4441 IN UINT32 AndData,\r
4442 IN UINT32 OrData\r
4443 );\r
4444\r
4445\r
4446/**\r
4447 Returns a bit field from a 64-bit value.\r
4448\r
4449 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
4450\r
4451 If 64-bit operations are not supported, then ASSERT().\r
4452 If StartBit is greater than 63, then ASSERT().\r
4453 If EndBit is greater than 63, then ASSERT().\r
4454 If EndBit is less than StartBit, then ASSERT().\r
4455\r
4456 @param Operand Operand on which to perform the bitfield operation.\r
4457 @param StartBit The ordinal of the least significant bit in the bit field.\r
4458 Range 0..63.\r
4459 @param EndBit The ordinal of the most significant bit in the bit field.\r
4460 Range 0..63.\r
4461\r
4462 @return The bit field read.\r
4463\r
4464**/\r
4465UINT64\r
4466EFIAPI\r
4467BitFieldRead64 (\r
4468 IN UINT64 Operand,\r
4469 IN UINTN StartBit,\r
4470 IN UINTN EndBit\r
4471 );\r
4472\r
4473\r
4474/**\r
4475 Writes a bit field to a 64-bit value, and returns the result.\r
4476\r
4477 Writes Value to the bit field specified by the StartBit and the EndBit in\r
4478 Operand. All other bits in Operand are preserved. The new 64-bit value is\r
4479 returned.\r
4480\r
4481 If 64-bit operations are not supported, then ASSERT().\r
4482 If StartBit is greater than 63, then ASSERT().\r
4483 If EndBit is greater than 63, then ASSERT().\r
4484 If EndBit is less than StartBit, then ASSERT().\r
94952554 4485 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4486\r
4487 @param Operand Operand on which to perform the bitfield operation.\r
4488 @param StartBit The ordinal of the least significant bit in the bit field.\r
4489 Range 0..63.\r
4490 @param EndBit The ordinal of the most significant bit in the bit field.\r
4491 Range 0..63.\r
4492 @param Value New value of the bit field.\r
4493\r
4494 @return The new 64-bit value.\r
4495\r
4496**/\r
4497UINT64\r
4498EFIAPI\r
4499BitFieldWrite64 (\r
4500 IN UINT64 Operand,\r
4501 IN UINTN StartBit,\r
4502 IN UINTN EndBit,\r
4503 IN UINT64 Value\r
4504 );\r
4505\r
4506\r
4507/**\r
4508 Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the\r
4509 result.\r
4510\r
62991af2 4511 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 4512 and EndBit in Operand and the value specified by OrData. All other bits in\r
4513 Operand are preserved. The new 64-bit value is returned.\r
4514\r
4515 If 64-bit operations are not supported, then ASSERT().\r
4516 If StartBit is greater than 63, then ASSERT().\r
4517 If EndBit is greater than 63, then ASSERT().\r
4518 If EndBit is less than StartBit, then ASSERT().\r
94952554 4519 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4520\r
4521 @param Operand Operand on which to perform the bitfield operation.\r
4522 @param StartBit The ordinal of the least significant bit in the bit field.\r
4523 Range 0..63.\r
4524 @param EndBit The ordinal of the most significant bit in the bit field.\r
4525 Range 0..63.\r
4526 @param OrData The value to OR with the read value from the value\r
4527\r
4528 @return The new 64-bit value.\r
4529\r
4530**/\r
4531UINT64\r
4532EFIAPI\r
4533BitFieldOr64 (\r
4534 IN UINT64 Operand,\r
4535 IN UINTN StartBit,\r
4536 IN UINTN EndBit,\r
4537 IN UINT64 OrData\r
4538 );\r
4539\r
4540\r
4541/**\r
4542 Reads a bit field from a 64-bit value, performs a bitwise AND, and returns\r
4543 the result.\r
4544\r
4545 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4546 in Operand and the value specified by AndData. All other bits in Operand are\r
4547 preserved. The new 64-bit value is returned.\r
4548\r
4549 If 64-bit operations are not supported, then ASSERT().\r
4550 If StartBit is greater than 63, then ASSERT().\r
4551 If EndBit is greater than 63, then ASSERT().\r
4552 If EndBit is less than StartBit, then ASSERT().\r
94952554 4553 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4554\r
4555 @param Operand Operand on which to perform the bitfield operation.\r
4556 @param StartBit The ordinal of the least significant bit in the bit field.\r
4557 Range 0..63.\r
4558 @param EndBit The ordinal of the most significant bit in the bit field.\r
4559 Range 0..63.\r
4560 @param AndData The value to AND with the read value from the value\r
4561\r
4562 @return The new 64-bit value.\r
4563\r
4564**/\r
4565UINT64\r
4566EFIAPI\r
4567BitFieldAnd64 (\r
4568 IN UINT64 Operand,\r
4569 IN UINTN StartBit,\r
4570 IN UINTN EndBit,\r
4571 IN UINT64 AndData\r
4572 );\r
4573\r
4574\r
4575/**\r
4576 Reads a bit field from a 64-bit value, performs a bitwise AND followed by a\r
4577 bitwise OR, and returns the result.\r
4578\r
4579 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 4580 in Operand and the value specified by AndData, followed by a bitwise \r
4581 OR with value specified by OrData. All other bits in Operand are\r
ac644614 4582 preserved. The new 64-bit value is returned.\r
4583\r
4584 If 64-bit operations are not supported, then ASSERT().\r
4585 If StartBit is greater than 63, then ASSERT().\r
4586 If EndBit is greater than 63, then ASSERT().\r
4587 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
4588 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4589 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4590\r
4591 @param Operand Operand on which to perform the bitfield operation.\r
4592 @param StartBit The ordinal of the least significant bit in the bit field.\r
4593 Range 0..63.\r
4594 @param EndBit The ordinal of the most significant bit in the bit field.\r
4595 Range 0..63.\r
4596 @param AndData The value to AND with the read value from the value.\r
4597 @param OrData The value to OR with the result of the AND operation.\r
4598\r
4599 @return The new 64-bit value.\r
4600\r
4601**/\r
4602UINT64\r
4603EFIAPI\r
4604BitFieldAndThenOr64 (\r
4605 IN UINT64 Operand,\r
4606 IN UINTN StartBit,\r
4607 IN UINTN EndBit,\r
4608 IN UINT64 AndData,\r
4609 IN UINT64 OrData\r
4610 );\r
4611\r
ac644614 4612//\r
4613// Base Library Checksum Functions\r
4614//\r
4615\r
4616/**\r
17f695ed 4617 Returns the sum of all elements in a buffer in unit of UINT8.\r
ac644614 4618 During calculation, the carry bits are dropped.\r
4619\r
4620 This function calculates the sum of all elements in a buffer\r
4621 in unit of UINT8. The carry bits in result of addition are dropped.\r
4622 The result is returned as UINT8. If Length is Zero, then Zero is\r
4623 returned.\r
4624\r
4625 If Buffer is NULL, then ASSERT().\r
4626 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4627\r
af2dc6a7 4628 @param Buffer The pointer to the buffer to carry out the sum operation.\r
17f695ed 4629 @param Length The size, in bytes, of Buffer.\r
ac644614 4630\r
4631 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4632\r
4633**/\r
4634UINT8\r
4635EFIAPI\r
4636CalculateSum8 (\r
ee6c452c 4637 IN CONST UINT8 *Buffer,\r
4638 IN UINTN Length\r
ac644614 4639 );\r
4640\r
4641\r
4642/**\r
4643 Returns the two's complement checksum of all elements in a buffer\r
4644 of 8-bit values.\r
4645\r
4646 This function first calculates the sum of the 8-bit values in the\r
4647 buffer specified by Buffer and Length. The carry bits in the result\r
4648 of addition are dropped. Then, the two's complement of the sum is\r
4649 returned. If Length is 0, then 0 is returned.\r
4650\r
4651 If Buffer is NULL, then ASSERT().\r
4652 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4653\r
af2dc6a7 4654 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
1106ffe1 4655 @param Length The size, in bytes, of Buffer.\r
ac644614 4656\r
af2dc6a7 4657 @return Checksum The two's complement checksum of Buffer.\r
ac644614 4658\r
4659**/\r
4660UINT8\r
4661EFIAPI\r
4662CalculateCheckSum8 (\r
ee6c452c 4663 IN CONST UINT8 *Buffer,\r
4664 IN UINTN Length\r
ac644614 4665 );\r
4666\r
4667\r
4668/**\r
4669 Returns the sum of all elements in a buffer of 16-bit values. During\r
4670 calculation, the carry bits are dropped.\r
4671\r
4672 This function calculates the sum of the 16-bit values in the buffer\r
4673 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
4674 The 16-bit result is returned. If Length is 0, then 0 is returned.\r
4675\r
4676 If Buffer is NULL, then ASSERT().\r
4677 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
4678 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
4679 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4680\r
af2dc6a7 4681 @param Buffer The pointer to the buffer to carry out the sum operation.\r
1106ffe1 4682 @param Length The size, in bytes, of Buffer.\r
ac644614 4683\r
4684 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4685\r
4686**/\r
4687UINT16\r
4688EFIAPI\r
4689CalculateSum16 (\r
ee6c452c 4690 IN CONST UINT16 *Buffer,\r
4691 IN UINTN Length\r
ac644614 4692 );\r
4693\r
4694\r
4695/**\r
4696 Returns the two's complement checksum of all elements in a buffer of\r
4697 16-bit values.\r
4698\r
4699 This function first calculates the sum of the 16-bit values in the buffer\r
4700 specified by Buffer and Length. The carry bits in the result of addition\r
4701 are dropped. Then, the two's complement of the sum is returned. If Length\r
4702 is 0, then 0 is returned.\r
4703\r
4704 If Buffer is NULL, then ASSERT().\r
4705 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
4706 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
4707 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4708\r
af2dc6a7 4709 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
1106ffe1 4710 @param Length The size, in bytes, of Buffer.\r
ac644614 4711\r
af2dc6a7 4712 @return Checksum The two's complement checksum of Buffer.\r
ac644614 4713\r
4714**/\r
4715UINT16\r
4716EFIAPI\r
4717CalculateCheckSum16 (\r
ee6c452c 4718 IN CONST UINT16 *Buffer,\r
4719 IN UINTN Length\r
ac644614 4720 );\r
4721\r
4722\r
4723/**\r
17f695ed 4724 Returns the sum of all elements in a buffer of 32-bit values. During\r
ac644614 4725 calculation, the carry bits are dropped.\r
4726\r
4727 This function calculates the sum of the 32-bit values in the buffer\r
4728 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
17f695ed 4729 The 32-bit result is returned. If Length is 0, then 0 is returned.\r
ac644614 4730\r
4731 If Buffer is NULL, then ASSERT().\r
4732 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
4733 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
4734 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4735\r
af2dc6a7 4736 @param Buffer The pointer to the buffer to carry out the sum operation.\r
1106ffe1 4737 @param Length The size, in bytes, of Buffer.\r
ac644614 4738\r
4739 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4740\r
4741**/\r
4742UINT32\r
4743EFIAPI\r
4744CalculateSum32 (\r
ee6c452c 4745 IN CONST UINT32 *Buffer,\r
4746 IN UINTN Length\r
ac644614 4747 );\r
4748\r
4749\r
4750/**\r
4751 Returns the two's complement checksum of all elements in a buffer of\r
4752 32-bit values.\r
4753\r
4754 This function first calculates the sum of the 32-bit values in the buffer\r
4755 specified by Buffer and Length. The carry bits in the result of addition\r
4756 are dropped. Then, the two's complement of the sum is returned. If Length\r
4757 is 0, then 0 is returned.\r
4758\r
4759 If Buffer is NULL, then ASSERT().\r
4760 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
4761 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
4762 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4763\r
af2dc6a7 4764 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
1106ffe1 4765 @param Length The size, in bytes, of Buffer.\r
ac644614 4766\r
af2dc6a7 4767 @return Checksum The two's complement checksum of Buffer.\r
ac644614 4768\r
4769**/\r
4770UINT32\r
4771EFIAPI\r
4772CalculateCheckSum32 (\r
ee6c452c 4773 IN CONST UINT32 *Buffer,\r
4774 IN UINTN Length\r
ac644614 4775 );\r
4776\r
4777\r
4778/**\r
4779 Returns the sum of all elements in a buffer of 64-bit values. During\r
4780 calculation, the carry bits are dropped.\r
4781\r
4782 This function calculates the sum of the 64-bit values in the buffer\r
4783 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
4784 The 64-bit result is returned. If Length is 0, then 0 is returned.\r
4785\r
4786 If Buffer is NULL, then ASSERT().\r
4787 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
4788 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
4789 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4790\r
af2dc6a7 4791 @param Buffer The pointer to the buffer to carry out the sum operation.\r
1106ffe1 4792 @param Length The size, in bytes, of Buffer.\r
ac644614 4793\r
4794 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4795\r
4796**/\r
4797UINT64\r
4798EFIAPI\r
4799CalculateSum64 (\r
ee6c452c 4800 IN CONST UINT64 *Buffer,\r
4801 IN UINTN Length\r
ac644614 4802 );\r
4803\r
4804\r
4805/**\r
4806 Returns the two's complement checksum of all elements in a buffer of\r
4807 64-bit values.\r
4808\r
4809 This function first calculates the sum of the 64-bit values in the buffer\r
4810 specified by Buffer and Length. The carry bits in the result of addition\r
4811 are dropped. Then, the two's complement of the sum is returned. If Length\r
4812 is 0, then 0 is returned.\r
4813\r
4814 If Buffer is NULL, then ASSERT().\r
4815 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
4816 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
4817 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4818\r
af2dc6a7 4819 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
1106ffe1 4820 @param Length The size, in bytes, of Buffer.\r
ac644614 4821\r
af2dc6a7 4822 @return Checksum The two's complement checksum of Buffer.\r
ac644614 4823\r
4824**/\r
4825UINT64\r
4826EFIAPI\r
4827CalculateCheckSum64 (\r
ee6c452c 4828 IN CONST UINT64 *Buffer,\r
4829 IN UINTN Length\r
ac644614 4830 );\r
4831\r
4832\r
d75f9fc2 4833//\r
4834// Base Library CPU Functions\r
4835//\r
4836\r
4837/**\r
4838 Function entry point used when a stack switch is requested with SwitchStack()\r
4839\r
4840 @param Context1 Context1 parameter passed into SwitchStack().\r
4841 @param Context2 Context2 parameter passed into SwitchStack().\r
4842\r
4843**/\r
ac644614 4844typedef\r
4845VOID\r
9810cdd8 4846(EFIAPI *SWITCH_STACK_ENTRY_POINT)(\r
ac644614 4847 IN VOID *Context1, OPTIONAL\r
4848 IN VOID *Context2 OPTIONAL\r
4849 );\r
4850\r
4851\r
4852/**\r
4853 Used to serialize load and store operations.\r
4854\r
4855 All loads and stores that proceed calls to this function are guaranteed to be\r
4856 globally visible when this function returns.\r
4857\r
4858**/\r
4859VOID\r
4860EFIAPI\r
4861MemoryFence (\r
4862 VOID\r
4863 );\r
4864\r
4865\r
4866/**\r
4867 Saves the current CPU context that can be restored with a call to LongJump()\r
4868 and returns 0.\r
4869\r
4870 Saves the current CPU context in the buffer specified by JumpBuffer and\r
4871 returns 0. The initial call to SetJump() must always return 0. Subsequent\r
4872 calls to LongJump() cause a non-zero value to be returned by SetJump().\r
4873\r
4874 If JumpBuffer is NULL, then ASSERT().\r
1a2f870c 4875 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
17f695ed 4876 \r
4877 NOTE: The structure BASE_LIBRARY_JUMP_BUFFER is CPU architecture specific.\r
4878 The same structure must never be used for more than one CPU architecture context.\r
4879 For example, a BASE_LIBRARY_JUMP_BUFFER allocated by an IA-32 module must never be used from an x64 module. \r
4880 SetJump()/LongJump() is not currently supported for the EBC processor type. \r
ac644614 4881\r
4882 @param JumpBuffer A pointer to CPU context buffer.\r
4883\r
4884 @retval 0 Indicates a return from SetJump().\r
4885\r
4886**/\r
4887UINTN\r
4888EFIAPI\r
4889SetJump (\r
4890 OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
4891 );\r
4892\r
4893\r
4894/**\r
4895 Restores the CPU context that was saved with SetJump().\r
4896\r
4897 Restores the CPU context from the buffer specified by JumpBuffer. This\r
4898 function never returns to the caller. Instead is resumes execution based on\r
4899 the state of JumpBuffer.\r
4900\r
4901 If JumpBuffer is NULL, then ASSERT().\r
1a2f870c 4902 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
ac644614 4903 If Value is 0, then ASSERT().\r
4904\r
4905 @param JumpBuffer A pointer to CPU context buffer.\r
4906 @param Value The value to return when the SetJump() context is\r
4907 restored and must be non-zero.\r
4908\r
4909**/\r
4910VOID\r
4911EFIAPI\r
4912LongJump (\r
4913 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
4914 IN UINTN Value\r
4915 );\r
4916\r
4917\r
4918/**\r
4919 Enables CPU interrupts.\r
4920\r
ac644614 4921**/\r
4922VOID\r
4923EFIAPI\r
4924EnableInterrupts (\r
4925 VOID\r
4926 );\r
4927\r
4928\r
4929/**\r
4930 Disables CPU interrupts.\r
4931\r
ac644614 4932**/\r
4933VOID\r
4934EFIAPI\r
4935DisableInterrupts (\r
4936 VOID\r
4937 );\r
4938\r
4939\r
4940/**\r
4941 Disables CPU interrupts and returns the interrupt state prior to the disable\r
4942 operation.\r
4943\r
ac644614 4944 @retval TRUE CPU interrupts were enabled on entry to this call.\r
4945 @retval FALSE CPU interrupts were disabled on entry to this call.\r
4946\r
4947**/\r
4948BOOLEAN\r
4949EFIAPI\r
4950SaveAndDisableInterrupts (\r
4951 VOID\r
4952 );\r
4953\r
4954\r
4955/**\r
4956 Enables CPU interrupts for the smallest window required to capture any\r
4957 pending interrupts.\r
4958\r
ac644614 4959**/\r
4960VOID\r
4961EFIAPI\r
4962EnableDisableInterrupts (\r
4963 VOID\r
4964 );\r
4965\r
4966\r
4967/**\r
4968 Retrieves the current CPU interrupt state.\r
4969\r
af2dc6a7 4970 Returns TRUE if interrupts are currently enabled. Otherwise\r
38bbd3d9 4971 returns FALSE.\r
ac644614 4972\r
4973 @retval TRUE CPU interrupts are enabled.\r
4974 @retval FALSE CPU interrupts are disabled.\r
4975\r
4976**/\r
4977BOOLEAN\r
4978EFIAPI\r
4979GetInterruptState (\r
4980 VOID\r
4981 );\r
4982\r
4983\r
4984/**\r
4985 Set the current CPU interrupt state.\r
4986\r
4987 Sets the current CPU interrupt state to the state specified by\r
4988 InterruptState. If InterruptState is TRUE, then interrupts are enabled. If\r
4989 InterruptState is FALSE, then interrupts are disabled. InterruptState is\r
4990 returned.\r
4991\r
4992 @param InterruptState TRUE if interrupts should enabled. FALSE if\r
4993 interrupts should be disabled.\r
4994\r
4995 @return InterruptState\r
4996\r
4997**/\r
4998BOOLEAN\r
4999EFIAPI\r
5000SetInterruptState (\r
5001 IN BOOLEAN InterruptState\r
5002 );\r
5003\r
5004\r
5005/**\r
5006 Requests CPU to pause for a short period of time.\r
5007\r
5008 Requests CPU to pause for a short period of time. Typically used in MP\r
5009 systems to prevent memory starvation while waiting for a spin lock.\r
5010\r
5011**/\r
5012VOID\r
5013EFIAPI\r
5014CpuPause (\r
5015 VOID\r
5016 );\r
5017\r
5018\r
5019/**\r
5020 Transfers control to a function starting with a new stack.\r
5021\r
5022 Transfers control to the function specified by EntryPoint using the\r
5023 new stack specified by NewStack and passing in the parameters specified\r
5024 by Context1 and Context2. Context1 and Context2 are optional and may\r
5025 be NULL. The function EntryPoint must never return. This function\r
5026 supports a variable number of arguments following the NewStack parameter.\r
1a2f870c 5027 These additional arguments are ignored on IA-32, x64, and EBC architectures.\r
5028 Itanium processors expect one additional parameter of type VOID * that specifies\r
ac644614 5029 the new backing store pointer.\r
5030\r
5031 If EntryPoint is NULL, then ASSERT().\r
5032 If NewStack is NULL, then ASSERT().\r
5033\r
5034 @param EntryPoint A pointer to function to call with the new stack.\r
5035 @param Context1 A pointer to the context to pass into the EntryPoint\r
5036 function.\r
5037 @param Context2 A pointer to the context to pass into the EntryPoint\r
5038 function.\r
5039 @param NewStack A pointer to the new stack to use for the EntryPoint\r
5040 function.\r
af2dc6a7 5041 @param ... This variable argument list is ignored for IA-32, x64, and \r
5042 EBC architectures. For Itanium processors, this variable \r
5043 argument list is expected to contain a single parameter of \r
5044 type VOID * that specifies the new backing store pointer.\r
42eedea9 5045\r
ac644614 5046\r
5047**/\r
5048VOID\r
5049EFIAPI\r
5050SwitchStack (\r
5051 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
5052 IN VOID *Context1, OPTIONAL\r
5053 IN VOID *Context2, OPTIONAL\r
5054 IN VOID *NewStack,\r
5055 ...\r
5056 );\r
5057\r
5058\r
5059/**\r
5060 Generates a breakpoint on the CPU.\r
5061\r
5062 Generates a breakpoint on the CPU. The breakpoint must be implemented such\r
5063 that code can resume normal execution after the breakpoint.\r
5064\r
5065**/\r
5066VOID\r
5067EFIAPI\r
5068CpuBreakpoint (\r
5069 VOID\r
5070 );\r
5071\r
5072\r
5073/**\r
5074 Executes an infinite loop.\r
5075\r
5076 Forces the CPU to execute an infinite loop. A debugger may be used to skip\r
5077 past the loop and the code that follows the loop must execute properly. This\r
5078 implies that the infinite loop must not cause the code that follow it to be\r
5079 optimized away.\r
5080\r
5081**/\r
5082VOID\r
5083EFIAPI\r
5084CpuDeadLoop (\r
5085 VOID\r
5086 );\r
2fe241a2 5087 \r
ac644614 5088#if defined (MDE_CPU_IPF)\r
5089\r
5090/**\r
5091 Flush a range of cache lines in the cache coherency domain of the calling\r
5092 CPU.\r
5093\r
cc39b88b 5094 Flushes the cache lines specified by Address and Length. If Address is not aligned \r
5095 on a cache line boundary, then entire cache line containing Address is flushed. \r
5096 If Address + Length is not aligned on a cache line boundary, then the entire cache \r
5097 line containing Address + Length - 1 is flushed. This function may choose to flush \r
5098 the entire cache if that is more efficient than flushing the specified range. If \r
5099 Length is 0, the no cache lines are flushed. Address is returned. \r
1a2f870c 5100 This function is only available on Itanium processors.\r
ac644614 5101\r
5102 If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().\r
5103\r
5104 @param Address The base address of the instruction lines to invalidate. If\r
5105 the CPU is in a physical addressing mode, then Address is a\r
5106 physical address. If the CPU is in a virtual addressing mode,\r
5107 then Address is a virtual address.\r
5108\r
5109 @param Length The number of bytes to invalidate from the instruction cache.\r
5110\r
cc39b88b 5111 @return Address.\r
ac644614 5112\r
5113**/\r
5114VOID *\r
5115EFIAPI\r
cc39b88b 5116AsmFlushCacheRange (\r
ac644614 5117 IN VOID *Address,\r
5118 IN UINTN Length\r
5119 );\r
5120\r
5121\r
5122/**\r
af2dc6a7 5123 Executes an FC instruction.\r
5124 Executes an FC instruction on the cache line specified by Address.\r
ac644614 5125 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
1a2f870c 5126 An implementation may flush a larger region. This function is only available on Itanium processors.\r
ac644614 5127\r
ee6c452c 5128 @param Address The Address of cache line to be flushed.\r
ac644614 5129\r
5130 @return The address of FC instruction executed.\r
5131\r
5132**/\r
5133UINT64\r
5134EFIAPI\r
5135AsmFc (\r
5136 IN UINT64 Address\r
5137 );\r
5138\r
5139\r
5140/**\r
af2dc6a7 5141 Executes an FC.I instruction.\r
5142 Executes an FC.I instruction on the cache line specified by Address.\r
ac644614 5143 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
1a2f870c 5144 An implementation may flush a larger region. This function is only available on Itanium processors.\r
ac644614 5145\r
ee6c452c 5146 @param Address The Address of cache line to be flushed.\r
ac644614 5147\r
af2dc6a7 5148 @return The address of the FC.I instruction executed.\r
ac644614 5149\r
5150**/\r
5151UINT64\r
5152EFIAPI\r
5153AsmFci (\r
5154 IN UINT64 Address\r
5155 );\r
5156\r
5157\r
5158/**\r
5159 Reads the current value of a Processor Identifier Register (CPUID).\r
17f695ed 5160 \r
5161 Reads and returns the current value of Processor Identifier Register specified by Index. \r
ac644614 5162 The Index of largest implemented CPUID (One less than the number of implemented CPUID\r
5163 registers) is determined by CPUID [3] bits {7:0}.\r
5164 No parameter checking is performed on Index. If the Index value is beyond the\r
5165 implemented CPUID register range, a Reserved Register/Field fault may occur. The caller\r
5166 must either guarantee that Index is valid, or the caller must set up fault handlers to\r
1a2f870c 5167 catch the faults. This function is only available on Itanium processors.\r
ac644614 5168\r
ee6c452c 5169 @param Index The 8-bit Processor Identifier Register index to read.\r
ac644614 5170\r
5171 @return The current value of Processor Identifier Register specified by Index.\r
5172\r
5173**/\r
5174UINT64\r
5175EFIAPI\r
5176AsmReadCpuid (\r
5177 IN UINT8 Index\r
5178 );\r
5179\r
5180\r
5181/**\r
5182 Reads the current value of 64-bit Processor Status Register (PSR).\r
1a2f870c 5183 This function is only available on Itanium processors.\r
ac644614 5184\r
5185 @return The current value of PSR.\r
5186\r
5187**/\r
5188UINT64\r
5189EFIAPI\r
5190AsmReadPsr (\r
5191 VOID\r
5192 );\r
5193\r
5194\r
5195/**\r
5196 Writes the current value of 64-bit Processor Status Register (PSR).\r
22388319 5197\r
ac644614 5198 No parameter checking is performed on Value. All bits of Value corresponding to\r
22388319 5199 reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur.\r
5200 The caller must either guarantee that Value is valid, or the caller must set up\r
1a2f870c 5201 fault handlers to catch the faults. This function is only available on Itanium processors.\r
ac644614 5202\r
ee6c452c 5203 @param Value The 64-bit value to write to PSR.\r
ac644614 5204\r
5205 @return The 64-bit value written to the PSR.\r
5206\r
5207**/\r
5208UINT64\r
5209EFIAPI\r
5210AsmWritePsr (\r
5211 IN UINT64 Value\r
5212 );\r
5213\r
5214\r
5215/**\r
5216 Reads the current value of 64-bit Kernel Register #0 (KR0).\r
2fe241a2 5217 \r
5218 Reads and returns the current value of KR0. \r
1a2f870c 5219 This function is only available on Itanium processors.\r
ac644614 5220\r
5221 @return The current value of KR0.\r
5222\r
5223**/\r
5224UINT64\r
5225EFIAPI\r
5226AsmReadKr0 (\r
5227 VOID\r
5228 );\r
5229\r
5230\r
5231/**\r
5232 Reads the current value of 64-bit Kernel Register #1 (KR1).\r
2fe241a2 5233\r
5234 Reads and returns the current value of KR1. \r
1a2f870c 5235 This function is only available on Itanium processors.\r
ac644614 5236\r
5237 @return The current value of KR1.\r
5238\r
5239**/\r
5240UINT64\r
5241EFIAPI\r
5242AsmReadKr1 (\r
5243 VOID\r
5244 );\r
5245\r
5246\r
5247/**\r
5248 Reads the current value of 64-bit Kernel Register #2 (KR2).\r
2fe241a2 5249\r
5250 Reads and returns the current value of KR2. \r
1a2f870c 5251 This function is only available on Itanium processors.\r
ac644614 5252\r
5253 @return The current value of KR2.\r
5254\r
5255**/\r
5256UINT64\r
5257EFIAPI\r
5258AsmReadKr2 (\r
5259 VOID\r
5260 );\r
5261\r
5262\r
5263/**\r
5264 Reads the current value of 64-bit Kernel Register #3 (KR3).\r
2fe241a2 5265\r
5266 Reads and returns the current value of KR3. \r
1a2f870c 5267 This function is only available on Itanium processors.\r
ac644614 5268\r
5269 @return The current value of KR3.\r
5270\r
5271**/\r
5272UINT64\r
5273EFIAPI\r
5274AsmReadKr3 (\r
5275 VOID\r
5276 );\r
5277\r
5278\r
5279/**\r
5280 Reads the current value of 64-bit Kernel Register #4 (KR4).\r
ac644614 5281\r
2fe241a2 5282 Reads and returns the current value of KR4. \r
1a2f870c 5283 This function is only available on Itanium processors.\r
2fe241a2 5284 \r
ac644614 5285 @return The current value of KR4.\r
5286\r
5287**/\r
5288UINT64\r
5289EFIAPI\r
5290AsmReadKr4 (\r
5291 VOID\r
5292 );\r
5293\r
5294\r
5295/**\r
5296 Reads the current value of 64-bit Kernel Register #5 (KR5).\r
2fe241a2 5297\r
5298 Reads and returns the current value of KR5. \r
1a2f870c 5299 This function is only available on Itanium processors.\r
ac644614 5300\r
5301 @return The current value of KR5.\r
5302\r
5303**/\r
5304UINT64\r
5305EFIAPI\r
5306AsmReadKr5 (\r
5307 VOID\r
5308 );\r
5309\r
5310\r
5311/**\r
5312 Reads the current value of 64-bit Kernel Register #6 (KR6).\r
2fe241a2 5313\r
5314 Reads and returns the current value of KR6. \r
1a2f870c 5315 This function is only available on Itanium processors.\r
ac644614 5316\r
5317 @return The current value of KR6.\r
5318\r
5319**/\r
5320UINT64\r
5321EFIAPI\r
5322AsmReadKr6 (\r
5323 VOID\r
5324 );\r
5325\r
5326\r
5327/**\r
5328 Reads the current value of 64-bit Kernel Register #7 (KR7).\r
2fe241a2 5329\r
5330 Reads and returns the current value of KR7. \r
1a2f870c 5331 This function is only available on Itanium processors.\r
ac644614 5332\r
5333 @return The current value of KR7.\r
5334\r
5335**/\r
5336UINT64\r
5337EFIAPI\r
5338AsmReadKr7 (\r
5339 VOID\r
5340 );\r
5341\r
5342\r
5343/**\r
5344 Write the current value of 64-bit Kernel Register #0 (KR0).\r
2fe241a2 5345 \r
5346 Writes the current value of KR0. The 64-bit value written to \r
1a2f870c 5347 the KR0 is returned. This function is only available on Itanium processors.\r
ac644614 5348\r
ee6c452c 5349 @param Value The 64-bit value to write to KR0.\r
ac644614 5350\r
5351 @return The 64-bit value written to the KR0.\r
5352\r
5353**/\r
5354UINT64\r
5355EFIAPI\r
5356AsmWriteKr0 (\r
5357 IN UINT64 Value\r
5358 );\r
5359\r
5360\r
5361/**\r
5362 Write the current value of 64-bit Kernel Register #1 (KR1).\r
2fe241a2 5363\r
5364 Writes the current value of KR1. The 64-bit value written to \r
1a2f870c 5365 the KR1 is returned. This function is only available on Itanium processors.\r
ac644614 5366\r
ee6c452c 5367 @param Value The 64-bit value to write to KR1.\r
ac644614 5368\r
5369 @return The 64-bit value written to the KR1.\r
5370\r
5371**/\r
5372UINT64\r
5373EFIAPI\r
5374AsmWriteKr1 (\r
5375 IN UINT64 Value\r
5376 );\r
5377\r
5378\r
5379/**\r
5380 Write the current value of 64-bit Kernel Register #2 (KR2).\r
2fe241a2 5381\r
5382 Writes the current value of KR2. The 64-bit value written to \r
1a2f870c 5383 the KR2 is returned. This function is only available on Itanium processors.\r
ac644614 5384\r
ee6c452c 5385 @param Value The 64-bit value to write to KR2.\r
ac644614 5386\r
5387 @return The 64-bit value written to the KR2.\r
5388\r
5389**/\r
5390UINT64\r
5391EFIAPI\r
5392AsmWriteKr2 (\r
5393 IN UINT64 Value\r
5394 );\r
5395\r
5396\r
5397/**\r
5398 Write the current value of 64-bit Kernel Register #3 (KR3).\r
2fe241a2 5399\r
5400 Writes the current value of KR3. The 64-bit value written to \r
1a2f870c 5401 the KR3 is returned. This function is only available on Itanium processors.\r
ac644614 5402\r
ee6c452c 5403 @param Value The 64-bit value to write to KR3.\r
ac644614 5404\r
5405 @return The 64-bit value written to the KR3.\r
5406\r
5407**/\r
5408UINT64\r
5409EFIAPI\r
5410AsmWriteKr3 (\r
5411 IN UINT64 Value\r
5412 );\r
5413\r
5414\r
5415/**\r
5416 Write the current value of 64-bit Kernel Register #4 (KR4).\r
2fe241a2 5417\r
5418 Writes the current value of KR4. The 64-bit value written to \r
1a2f870c 5419 the KR4 is returned. This function is only available on Itanium processors.\r
ac644614 5420\r
ee6c452c 5421 @param Value The 64-bit value to write to KR4.\r
ac644614 5422\r
5423 @return The 64-bit value written to the KR4.\r
5424\r
5425**/\r
5426UINT64\r
5427EFIAPI\r
5428AsmWriteKr4 (\r
5429 IN UINT64 Value\r
5430 );\r
5431\r
5432\r
5433/**\r
5434 Write the current value of 64-bit Kernel Register #5 (KR5).\r
2fe241a2 5435\r
5436 Writes the current value of KR5. The 64-bit value written to \r
1a2f870c 5437 the KR5 is returned. This function is only available on Itanium processors.\r
ac644614 5438\r
ee6c452c 5439 @param Value The 64-bit value to write to KR5.\r
ac644614 5440\r
5441 @return The 64-bit value written to the KR5.\r
5442\r
5443**/\r
5444UINT64\r
5445EFIAPI\r
5446AsmWriteKr5 (\r
5447 IN UINT64 Value\r
5448 );\r
5449\r
5450\r
5451/**\r
5452 Write the current value of 64-bit Kernel Register #6 (KR6).\r
2fe241a2 5453\r
5454 Writes the current value of KR6. The 64-bit value written to \r
1a2f870c 5455 the KR6 is returned. This function is only available on Itanium processors.\r
ac644614 5456\r
ee6c452c 5457 @param Value The 64-bit value to write to KR6.\r
ac644614 5458\r
5459 @return The 64-bit value written to the KR6.\r
5460\r
5461**/\r
5462UINT64\r
5463EFIAPI\r
5464AsmWriteKr6 (\r
5465 IN UINT64 Value\r
5466 );\r
5467\r
5468\r
5469/**\r
5470 Write the current value of 64-bit Kernel Register #7 (KR7).\r
2fe241a2 5471\r
5472 Writes the current value of KR7. The 64-bit value written to \r
1a2f870c 5473 the KR7 is returned. This function is only available on Itanium processors.\r
ac644614 5474\r
ee6c452c 5475 @param Value The 64-bit value to write to KR7.\r
ac644614 5476\r
5477 @return The 64-bit value written to the KR7.\r
5478\r
5479**/\r
5480UINT64\r
5481EFIAPI\r
5482AsmWriteKr7 (\r
5483 IN UINT64 Value\r
5484 );\r
5485\r
5486\r
5487/**\r
5488 Reads the current value of Interval Timer Counter Register (ITC).\r
2fe241a2 5489 \r
5490 Reads and returns the current value of ITC.\r
1a2f870c 5491 This function is only available on Itanium processors.\r
ac644614 5492\r
5493 @return The current value of ITC.\r
5494\r
5495**/\r
5496UINT64\r
5497EFIAPI\r
5498AsmReadItc (\r
5499 VOID\r
5500 );\r
5501\r
5502\r
5503/**\r
5504 Reads the current value of Interval Timer Vector Register (ITV).\r
2fe241a2 5505 \r
5506 Reads and returns the current value of ITV. \r
1a2f870c 5507 This function is only available on Itanium processors.\r
ac644614 5508\r
5509 @return The current value of ITV.\r
5510\r
5511**/\r
5512UINT64\r
5513EFIAPI\r
5514AsmReadItv (\r
5515 VOID\r
5516 );\r
5517\r
5518\r
5519/**\r
5520 Reads the current value of Interval Timer Match Register (ITM).\r
2fe241a2 5521 \r
5522 Reads and returns the current value of ITM.\r
1a2f870c 5523 This function is only available on Itanium processors.\r
ac644614 5524\r
5525 @return The current value of ITM.\r
5526**/\r
5527UINT64\r
5528EFIAPI\r
5529AsmReadItm (\r
5530 VOID\r
5531 );\r
5532\r
5533\r
5534/**\r
5535 Writes the current value of 64-bit Interval Timer Counter Register (ITC).\r
2fe241a2 5536 \r
5537 Writes the current value of ITC. The 64-bit value written to the ITC is returned. \r
1a2f870c 5538 This function is only available on Itanium processors.\r
ac644614 5539\r
ee6c452c 5540 @param Value The 64-bit value to write to ITC.\r
ac644614 5541\r
5542 @return The 64-bit value written to the ITC.\r
5543\r
5544**/\r
5545UINT64\r
5546EFIAPI\r
5547AsmWriteItc (\r
5548 IN UINT64 Value\r
5549 );\r
5550\r
5551\r
5552/**\r
5553 Writes the current value of 64-bit Interval Timer Match Register (ITM).\r
2fe241a2 5554 \r
5555 Writes the current value of ITM. The 64-bit value written to the ITM is returned. \r
1a2f870c 5556 This function is only available on Itanium processors.\r
ac644614 5557\r
ee6c452c 5558 @param Value The 64-bit value to write to ITM.\r
ac644614 5559\r
5560 @return The 64-bit value written to the ITM.\r
5561\r
5562**/\r
5563UINT64\r
5564EFIAPI\r
5565AsmWriteItm (\r
5566 IN UINT64 Value\r
5567 );\r
5568\r
5569\r
5570/**\r
5571 Writes the current value of 64-bit Interval Timer Vector Register (ITV).\r
2fe241a2 5572 \r
5573 Writes the current value of ITV. The 64-bit value written to the ITV is returned. \r
ac644614 5574 No parameter checking is performed on Value. All bits of Value corresponding to\r
5575 reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur.\r
5576 The caller must either guarantee that Value is valid, or the caller must set up\r
5577 fault handlers to catch the faults.\r
1a2f870c 5578 This function is only available on Itanium processors.\r
ac644614 5579\r
ee6c452c 5580 @param Value The 64-bit value to write to ITV.\r
ac644614 5581\r
5582 @return The 64-bit value written to the ITV.\r
5583\r
5584**/\r
5585UINT64\r
5586EFIAPI\r
5587AsmWriteItv (\r
5588 IN UINT64 Value\r
5589 );\r
5590\r
5591\r
5592/**\r
5593 Reads the current value of Default Control Register (DCR).\r
2fe241a2 5594 \r
1a2f870c 5595 Reads and returns the current value of DCR. This function is only available on Itanium processors.\r
ac644614 5596\r
5597 @return The current value of DCR.\r
5598\r
5599**/\r
5600UINT64\r
5601EFIAPI\r
5602AsmReadDcr (\r
5603 VOID\r
5604 );\r
5605\r
5606\r
5607/**\r
5608 Reads the current value of Interruption Vector Address Register (IVA).\r
2fe241a2 5609 \r
1a2f870c 5610 Reads and returns the current value of IVA. This function is only available on Itanium processors.\r
ac644614 5611\r
5612 @return The current value of IVA.\r
5613**/\r
5614UINT64\r
5615EFIAPI\r
5616AsmReadIva (\r
5617 VOID\r
5618 );\r
5619\r
5620\r
5621/**\r
5622 Reads the current value of Page Table Address Register (PTA).\r
2fe241a2 5623 \r
1a2f870c 5624 Reads and returns the current value of PTA. This function is only available on Itanium processors.\r
ac644614 5625\r
5626 @return The current value of PTA.\r
5627\r
5628**/\r
5629UINT64\r
5630EFIAPI\r
5631AsmReadPta (\r
5632 VOID\r
5633 );\r
5634\r
5635\r
5636/**\r
5637 Writes the current value of 64-bit Default Control Register (DCR).\r
2fe241a2 5638 \r
5639 Writes the current value of DCR. The 64-bit value written to the DCR is returned. \r
ac644614 5640 No parameter checking is performed on Value. All bits of Value corresponding to\r
5641 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
5642 The caller must either guarantee that Value is valid, or the caller must set up\r
5643 fault handlers to catch the faults.\r
1a2f870c 5644 This function is only available on Itanium processors.\r
ac644614 5645\r
ee6c452c 5646 @param Value The 64-bit value to write to DCR.\r
ac644614 5647\r
5648 @return The 64-bit value written to the DCR.\r
5649\r
5650**/\r
5651UINT64\r
5652EFIAPI\r
5653AsmWriteDcr (\r
5654 IN UINT64 Value\r
5655 );\r
5656\r
5657\r
5658/**\r
5659 Writes the current value of 64-bit Interruption Vector Address Register (IVA).\r
2fe241a2 5660 \r
5661 Writes the current value of IVA. The 64-bit value written to the IVA is returned. \r
ac644614 5662 The size of vector table is 32 K bytes and is 32 K bytes aligned\r
5663 the low 15 bits of Value is ignored when written.\r
1a2f870c 5664 This function is only available on Itanium processors.\r
ac644614 5665\r
ee6c452c 5666 @param Value The 64-bit value to write to IVA.\r
ac644614 5667\r
5668 @return The 64-bit value written to the IVA.\r
5669\r
5670**/\r
5671UINT64\r
5672EFIAPI\r
5673AsmWriteIva (\r
5674 IN UINT64 Value\r
5675 );\r
5676\r
5677\r
5678/**\r
5679 Writes the current value of 64-bit Page Table Address Register (PTA).\r
2fe241a2 5680 \r
5681 Writes the current value of PTA. The 64-bit value written to the PTA is returned. \r
ac644614 5682 No parameter checking is performed on Value. All bits of Value corresponding to\r
5683 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
5684 The caller must either guarantee that Value is valid, or the caller must set up\r
5685 fault handlers to catch the faults.\r
1a2f870c 5686 This function is only available on Itanium processors.\r
ac644614 5687\r
ee6c452c 5688 @param Value The 64-bit value to write to PTA.\r
ac644614 5689\r
5690 @return The 64-bit value written to the PTA.\r
5691**/\r
5692UINT64\r
5693EFIAPI\r
5694AsmWritePta (\r
5695 IN UINT64 Value\r
5696 );\r
5697\r
5698\r
5699/**\r
5700 Reads the current value of Local Interrupt ID Register (LID).\r
2fe241a2 5701 \r
1a2f870c 5702 Reads and returns the current value of LID. This function is only available on Itanium processors.\r
ac644614 5703\r
5704 @return The current value of LID.\r
5705\r
5706**/\r
5707UINT64\r
5708EFIAPI\r
5709AsmReadLid (\r
5710 VOID\r
5711 );\r
5712\r
5713\r
5714/**\r
5715 Reads the current value of External Interrupt Vector Register (IVR).\r
2fe241a2 5716 \r
1a2f870c 5717 Reads and returns the current value of IVR. This function is only available on Itanium processors. \r
ac644614 5718\r
5719 @return The current value of IVR.\r
5720\r
5721**/\r
5722UINT64\r
5723EFIAPI\r
5724AsmReadIvr (\r
5725 VOID\r
5726 );\r
5727\r
5728\r
5729/**\r
5730 Reads the current value of Task Priority Register (TPR).\r
2fe241a2 5731 \r
1a2f870c 5732 Reads and returns the current value of TPR. This function is only available on Itanium processors. \r
ac644614 5733\r
5734 @return The current value of TPR.\r
5735\r
5736**/\r
5737UINT64\r
5738EFIAPI\r
5739AsmReadTpr (\r
5740 VOID\r
5741 );\r
5742\r
5743\r
5744/**\r
5745 Reads the current value of External Interrupt Request Register #0 (IRR0).\r
2fe241a2 5746 \r
1a2f870c 5747 Reads and returns the current value of IRR0. This function is only available on Itanium processors. \r
ac644614 5748\r
5749 @return The current value of IRR0.\r
5750\r
5751**/\r
5752UINT64\r
5753EFIAPI\r
5754AsmReadIrr0 (\r
5755 VOID\r
5756 );\r
5757\r
5758\r
5759/**\r
5760 Reads the current value of External Interrupt Request Register #1 (IRR1).\r
2fe241a2 5761 \r
1a2f870c 5762 Reads and returns the current value of IRR1. This function is only available on Itanium processors. \r
ac644614 5763\r
5764 @return The current value of IRR1.\r
5765\r
5766**/\r
5767UINT64\r
5768EFIAPI\r
5769AsmReadIrr1 (\r
5770 VOID\r
5771 );\r
5772\r
5773\r
5774/**\r
5775 Reads the current value of External Interrupt Request Register #2 (IRR2).\r
2fe241a2 5776 \r
1a2f870c 5777 Reads and returns the current value of IRR2. This function is only available on Itanium processors.\r
ac644614 5778\r
5779 @return The current value of IRR2.\r
5780\r
5781**/\r
5782UINT64\r
5783EFIAPI\r
5784AsmReadIrr2 (\r
5785 VOID\r
5786 );\r
5787\r
5788\r
5789/**\r
5790 Reads the current value of External Interrupt Request Register #3 (IRR3).\r
2fe241a2 5791 \r
1a2f870c 5792 Reads and returns the current value of IRR3. This function is only available on Itanium processors. \r
ac644614 5793\r
5794 @return The current value of IRR3.\r
5795\r
5796**/\r
5797UINT64\r
5798EFIAPI\r
5799AsmReadIrr3 (\r
5800 VOID\r
5801 );\r
5802\r
5803\r
5804/**\r
5805 Reads the current value of Performance Monitor Vector Register (PMV).\r
2fe241a2 5806 \r
1a2f870c 5807 Reads and returns the current value of PMV. This function is only available on Itanium processors. \r
ac644614 5808\r
5809 @return The current value of PMV.\r
5810\r
5811**/\r
5812UINT64\r
5813EFIAPI\r
5814AsmReadPmv (\r
5815 VOID\r
5816 );\r
5817\r
5818\r
5819/**\r
5820 Reads the current value of Corrected Machine Check Vector Register (CMCV).\r
2fe241a2 5821 \r
1a2f870c 5822 Reads and returns the current value of CMCV. This function is only available on Itanium processors.\r
ac644614 5823\r
5824 @return The current value of CMCV.\r
5825\r
5826**/\r
5827UINT64\r
5828EFIAPI\r
5829AsmReadCmcv (\r
5830 VOID\r
5831 );\r
5832\r
5833\r
5834/**\r
5835 Reads the current value of Local Redirection Register #0 (LRR0).\r
2fe241a2 5836 \r
1a2f870c 5837 Reads and returns the current value of LRR0. This function is only available on Itanium processors. \r
ac644614 5838\r
5839 @return The current value of LRR0.\r
5840\r
5841**/\r
5842UINT64\r
5843EFIAPI\r
5844AsmReadLrr0 (\r
5845 VOID\r
5846 );\r
5847\r
5848\r
5849/**\r
5850 Reads the current value of Local Redirection Register #1 (LRR1).\r
2fe241a2 5851 \r
1a2f870c 5852 Reads and returns the current value of LRR1. This function is only available on Itanium processors.\r
ac644614 5853\r
5854 @return The current value of LRR1.\r
5855\r
5856**/\r
5857UINT64\r
5858EFIAPI\r
5859AsmReadLrr1 (\r
5860 VOID\r
5861 );\r
5862\r
5863\r
5864/**\r
5865 Writes the current value of 64-bit Page Local Interrupt ID Register (LID).\r
2fe241a2 5866 \r
5867 Writes the current value of LID. The 64-bit value written to the LID is returned. \r
ac644614 5868 No parameter checking is performed on Value. All bits of Value corresponding to\r
5869 reserved fields of LID must be 0 or a Reserved Register/Field fault may occur.\r
5870 The caller must either guarantee that Value is valid, or the caller must set up\r
5871 fault handlers to catch the faults.\r
1a2f870c 5872 This function is only available on Itanium processors.\r
ac644614 5873\r
ee6c452c 5874 @param Value The 64-bit value to write to LID.\r
ac644614 5875\r
5876 @return The 64-bit value written to the LID.\r
5877\r
5878**/\r
5879UINT64\r
5880EFIAPI\r
5881AsmWriteLid (\r
5882 IN UINT64 Value\r
5883 );\r
5884\r
5885\r
5886/**\r
5887 Writes the current value of 64-bit Task Priority Register (TPR).\r
2fe241a2 5888 \r
5889 Writes the current value of TPR. The 64-bit value written to the TPR is returned. \r
ac644614 5890 No parameter checking is performed on Value. All bits of Value corresponding to\r
5891 reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur.\r
5892 The caller must either guarantee that Value is valid, or the caller must set up\r
5893 fault handlers to catch the faults.\r
1a2f870c 5894 This function is only available on Itanium processors.\r
ac644614 5895\r
ee6c452c 5896 @param Value The 64-bit value to write to TPR.\r
ac644614 5897\r
5898 @return The 64-bit value written to the TPR.\r
5899\r
5900**/\r
5901UINT64\r
5902EFIAPI\r
5903AsmWriteTpr (\r
5904 IN UINT64 Value\r
5905 );\r
5906\r
5907\r
5908/**\r
5909 Performs a write operation on End OF External Interrupt Register (EOI).\r
2fe241a2 5910 \r
1a2f870c 5911 Writes a value of 0 to the EOI Register. This function is only available on Itanium processors.\r
ac644614 5912\r
5913**/\r
5914VOID\r
5915EFIAPI\r
5916AsmWriteEoi (\r
5917 VOID\r
5918 );\r
5919\r
5920\r
5921/**\r
5922 Writes the current value of 64-bit Performance Monitor Vector Register (PMV).\r
2fe241a2 5923 \r
5924 Writes the current value of PMV. The 64-bit value written to the PMV is returned. \r
ac644614 5925 No parameter checking is performed on Value. All bits of Value corresponding\r
5926 to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur.\r
5927 The caller must either guarantee that Value is valid, or the caller must set up\r
5928 fault handlers to catch the faults.\r
1a2f870c 5929 This function is only available on Itanium processors.\r
ac644614 5930\r
ee6c452c 5931 @param Value The 64-bit value to write to PMV.\r
ac644614 5932\r
5933 @return The 64-bit value written to the PMV.\r
5934\r
5935**/\r
5936UINT64\r
5937EFIAPI\r
5938AsmWritePmv (\r
5939 IN UINT64 Value\r
5940 );\r
5941\r
5942\r
5943/**\r
5944 Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).\r
2fe241a2 5945 \r
5946 Writes the current value of CMCV. The 64-bit value written to the CMCV is returned. \r
ac644614 5947 No parameter checking is performed on Value. All bits of Value corresponding\r
5948 to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur.\r
5949 The caller must either guarantee that Value is valid, or the caller must set up\r
5950 fault handlers to catch the faults.\r
1a2f870c 5951 This function is only available on Itanium processors.\r
ac644614 5952\r
ee6c452c 5953 @param Value The 64-bit value to write to CMCV.\r
ac644614 5954\r
5955 @return The 64-bit value written to the CMCV.\r
5956\r
5957**/\r
5958UINT64\r
5959EFIAPI\r
5960AsmWriteCmcv (\r
5961 IN UINT64 Value\r
5962 );\r
5963\r
5964\r
5965/**\r
5966 Writes the current value of 64-bit Local Redirection Register #0 (LRR0).\r
2fe241a2 5967 \r
5968 Writes the current value of LRR0. The 64-bit value written to the LRR0 is returned. \r
ac644614 5969 No parameter checking is performed on Value. All bits of Value corresponding\r
5970 to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur.\r
5971 The caller must either guarantee that Value is valid, or the caller must set up\r
5972 fault handlers to catch the faults.\r
1a2f870c 5973 This function is only available on Itanium processors.\r
ac644614 5974\r
ee6c452c 5975 @param Value The 64-bit value to write to LRR0.\r
ac644614 5976\r
5977 @return The 64-bit value written to the LRR0.\r
5978\r
5979**/\r
5980UINT64\r
5981EFIAPI\r
5982AsmWriteLrr0 (\r
5983 IN UINT64 Value\r
5984 );\r
5985\r
5986\r
5987/**\r
5988 Writes the current value of 64-bit Local Redirection Register #1 (LRR1).\r
2fe241a2 5989 \r
5990 Writes the current value of LRR1. The 64-bit value written to the LRR1 is returned. \r
ac644614 5991 No parameter checking is performed on Value. All bits of Value corresponding\r
5992 to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur.\r
5993 The caller must either guarantee that Value is valid, or the caller must\r
5994 set up fault handlers to catch the faults.\r
1a2f870c 5995 This function is only available on Itanium processors.\r
ac644614 5996\r
ee6c452c 5997 @param Value The 64-bit value to write to LRR1.\r
ac644614 5998\r
5999 @return The 64-bit value written to the LRR1.\r
6000\r
6001**/\r
6002UINT64\r
6003EFIAPI\r
6004AsmWriteLrr1 (\r
6005 IN UINT64 Value\r
6006 );\r
6007\r
6008\r
6009/**\r
6010 Reads the current value of Instruction Breakpoint Register (IBR).\r
6011 \r
6012 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
6013 registers contain breakpoint addresses, and the odd numbered registers contain\r
af2dc6a7 6014 breakpoint mask conditions. At least four instruction registers pairs are implemented\r
ac644614 6015 on all processor models. Implemented registers are contiguous starting with\r
6016 register 0. No parameter checking is performed on Index, and if the Index value\r
6017 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
6018 occur. The caller must either guarantee that Index is valid, or the caller must\r
6019 set up fault handlers to catch the faults.\r
1a2f870c 6020 This function is only available on Itanium processors.\r
ac644614 6021\r
ee6c452c 6022 @param Index The 8-bit Instruction Breakpoint Register index to read.\r
ac644614 6023\r
6024 @return The current value of Instruction Breakpoint Register specified by Index.\r
6025\r
6026**/\r
6027UINT64\r
6028EFIAPI\r
6029AsmReadIbr (\r
6030 IN UINT8 Index\r
6031 );\r
6032\r
6033\r
6034/**\r
6035 Reads the current value of Data Breakpoint Register (DBR).\r
6036\r
6037 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
6038 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
af2dc6a7 6039 mask conditions. At least four data registers pairs are implemented on all processor\r
ac644614 6040 models. Implemented registers are contiguous starting with register 0.\r
6041 No parameter checking is performed on Index. If the Index value is beyond\r
6042 the implemented DBR register range, a Reserved Register/Field fault may occur.\r
6043 The caller must either guarantee that Index is valid, or the caller must set up\r
6044 fault handlers to catch the faults.\r
1a2f870c 6045 This function is only available on Itanium processors.\r
ac644614 6046\r
ee6c452c 6047 @param Index The 8-bit Data Breakpoint Register index to read.\r
ac644614 6048\r
6049 @return The current value of Data Breakpoint Register specified by Index.\r
6050\r
6051**/\r
6052UINT64\r
6053EFIAPI\r
6054AsmReadDbr (\r
6055 IN UINT8 Index\r
6056 );\r
6057\r
6058\r
6059/**\r
6060 Reads the current value of Performance Monitor Configuration Register (PMC).\r
6061\r
af2dc6a7 6062 All processor implementations provide at least four performance counters\r
6063 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow\r
ac644614 6064 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
6065 additional implementation-dependent PMC and PMD to increase the number of\r
6066 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
6067 register set is implementation dependent. No parameter checking is performed\r
6068 on Index. If the Index value is beyond the implemented PMC register range,\r
6069 zero value will be returned.\r
1a2f870c 6070 This function is only available on Itanium processors.\r
ac644614 6071\r
ee6c452c 6072 @param Index The 8-bit Performance Monitor Configuration Register index to read.\r
ac644614 6073\r
2fe241a2 6074 @return The current value of Performance Monitor Configuration Register\r
6075 specified by Index.\r
ac644614 6076\r
6077**/\r
6078UINT64\r
6079EFIAPI\r
6080AsmReadPmc (\r
6081 IN UINT8 Index\r
6082 );\r
6083\r
6084\r
6085/**\r
6086 Reads the current value of Performance Monitor Data Register (PMD).\r
6087\r
6088 All processor implementations provide at least 4 performance counters\r
6089 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter\r
6090 overflow status registers (PMC [0]... PMC [3]). Processor implementations may\r
6091 provide additional implementation-dependent PMC and PMD to increase the number\r
6092 of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
6093 register set is implementation dependent. No parameter checking is performed\r
6094 on Index. If the Index value is beyond the implemented PMD register range,\r
6095 zero value will be returned.\r
1a2f870c 6096 This function is only available on Itanium processors.\r
ac644614 6097\r
ee6c452c 6098 @param Index The 8-bit Performance Monitor Data Register index to read.\r
ac644614 6099\r
6100 @return The current value of Performance Monitor Data Register specified by Index.\r
6101\r
6102**/\r
6103UINT64\r
6104EFIAPI\r
6105AsmReadPmd (\r
6106 IN UINT8 Index\r
6107 );\r
6108\r
6109\r
6110/**\r
6111 Writes the current value of 64-bit Instruction Breakpoint Register (IBR).\r
6112\r
6113 Writes current value of Instruction Breakpoint Register specified by Index.\r
6114 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
6115 registers contain breakpoint addresses, and odd numbered registers contain\r
af2dc6a7 6116 breakpoint mask conditions. At least four instruction registers pairs are implemented\r
ac644614 6117 on all processor models. Implemented registers are contiguous starting with\r
6118 register 0. No parameter checking is performed on Index. If the Index value\r
6119 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
6120 occur. The caller must either guarantee that Index is valid, or the caller must\r
6121 set up fault handlers to catch the faults.\r
1a2f870c 6122 This function is only available on Itanium processors.\r
ac644614 6123\r
ee6c452c 6124 @param Index The 8-bit Instruction Breakpoint Register index to write.\r
6125 @param Value The 64-bit value to write to IBR.\r
ac644614 6126\r
6127 @return The 64-bit value written to the IBR.\r
6128\r
6129**/\r
6130UINT64\r
6131EFIAPI\r
6132AsmWriteIbr (\r
6133 IN UINT8 Index,\r
6134 IN UINT64 Value\r
6135 );\r
6136\r
6137\r
6138/**\r
6139 Writes the current value of 64-bit Data Breakpoint Register (DBR).\r
6140\r
6141 Writes current value of Data Breakpoint Register specified by Index.\r
6142 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
6143 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
af2dc6a7 6144 mask conditions. At least four data registers pairs are implemented on all processor\r
ac644614 6145 models. Implemented registers are contiguous starting with register 0. No parameter\r
6146 checking is performed on Index. If the Index value is beyond the implemented\r
6147 DBR register range, a Reserved Register/Field fault may occur. The caller must\r
6148 either guarantee that Index is valid, or the caller must set up fault handlers to\r
6149 catch the faults.\r
1a2f870c 6150 This function is only available on Itanium processors.\r
ac644614 6151\r
ee6c452c 6152 @param Index The 8-bit Data Breakpoint Register index to write.\r
6153 @param Value The 64-bit value to write to DBR.\r
ac644614 6154\r
6155 @return The 64-bit value written to the DBR.\r
6156\r
6157**/\r
6158UINT64\r
6159EFIAPI\r
6160AsmWriteDbr (\r
6161 IN UINT8 Index,\r
6162 IN UINT64 Value\r
6163 );\r
6164\r
6165\r
6166/**\r
6167 Writes the current value of 64-bit Performance Monitor Configuration Register (PMC).\r
6168\r
6169 Writes current value of Performance Monitor Configuration Register specified by Index.\r
af2dc6a7 6170 All processor implementations provide at least four performance counters\r
6171 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow status\r
ac644614 6172 registers (PMC [0]... PMC [3]). Processor implementations may provide additional\r
6173 implementation-dependent PMC and PMD to increase the number of 'generic' performance\r
6174 counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation\r
6175 dependent. No parameter checking is performed on Index. If the Index value is\r
6176 beyond the implemented PMC register range, the write is ignored.\r
1a2f870c 6177 This function is only available on Itanium processors.\r
ac644614 6178\r
ee6c452c 6179 @param Index The 8-bit Performance Monitor Configuration Register index to write.\r
6180 @param Value The 64-bit value to write to PMC.\r
ac644614 6181\r
6182 @return The 64-bit value written to the PMC.\r
6183\r
6184**/\r
6185UINT64\r
6186EFIAPI\r
6187AsmWritePmc (\r
6188 IN UINT8 Index,\r
6189 IN UINT64 Value\r
6190 );\r
6191\r
6192\r
6193/**\r
6194 Writes the current value of 64-bit Performance Monitor Data Register (PMD).\r
6195\r
6196 Writes current value of Performance Monitor Data Register specified by Index.\r
af2dc6a7 6197 All processor implementations provide at least four performance counters\r
6198 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow\r
ac644614 6199 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
6200 additional implementation-dependent PMC and PMD to increase the number of 'generic'\r
6201 performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set\r
6202 is implementation dependent. No parameter checking is performed on Index. If the\r
6203 Index value is beyond the implemented PMD register range, the write is ignored.\r
1a2f870c 6204 This function is only available on Itanium processors.\r
ac644614 6205\r
ee6c452c 6206 @param Index The 8-bit Performance Monitor Data Register index to write.\r
6207 @param Value The 64-bit value to write to PMD.\r
ac644614 6208\r
6209 @return The 64-bit value written to the PMD.\r
6210\r
6211**/\r
6212UINT64\r
6213EFIAPI\r
6214AsmWritePmd (\r
6215 IN UINT8 Index,\r
6216 IN UINT64 Value\r
6217 );\r
6218\r
6219\r
6220/**\r
6221 Reads the current value of 64-bit Global Pointer (GP).\r
6222\r
6223 Reads and returns the current value of GP.\r
1a2f870c 6224 This function is only available on Itanium processors.\r
ac644614 6225\r
6226 @return The current value of GP.\r
6227\r
6228**/\r
6229UINT64\r
6230EFIAPI\r
6231AsmReadGp (\r
6232 VOID\r
6233 );\r
6234\r
6235\r
6236/**\r
6237 Write the current value of 64-bit Global Pointer (GP).\r
6238\r
6239 Writes the current value of GP. The 64-bit value written to the GP is returned.\r
6240 No parameter checking is performed on Value.\r
1a2f870c 6241 This function is only available on Itanium processors.\r
ac644614 6242\r
6243 @param Value The 64-bit value to write to GP.\r
6244\r
6245 @return The 64-bit value written to the GP.\r
6246\r
6247**/\r
6248UINT64\r
6249EFIAPI\r
6250AsmWriteGp (\r
6251 IN UINT64 Value\r
6252 );\r
6253\r
6254\r
6255/**\r
6256 Reads the current value of 64-bit Stack Pointer (SP).\r
6257\r
6258 Reads and returns the current value of SP.\r
1a2f870c 6259 This function is only available on Itanium processors.\r
ac644614 6260\r
6261 @return The current value of SP.\r
6262\r
6263**/\r
6264UINT64\r
6265EFIAPI\r
6266AsmReadSp (\r
6267 VOID\r
6268 );\r
6269\r
6270\r
aad6137d 6271///\r
af2dc6a7 6272/// Valid Index value for AsmReadControlRegister().\r
aad6137d 6273///\r
6274#define IPF_CONTROL_REGISTER_DCR 0\r
6275#define IPF_CONTROL_REGISTER_ITM 1\r
6276#define IPF_CONTROL_REGISTER_IVA 2\r
6277#define IPF_CONTROL_REGISTER_PTA 8\r
6278#define IPF_CONTROL_REGISTER_IPSR 16\r
6279#define IPF_CONTROL_REGISTER_ISR 17\r
6280#define IPF_CONTROL_REGISTER_IIP 19\r
6281#define IPF_CONTROL_REGISTER_IFA 20\r
6282#define IPF_CONTROL_REGISTER_ITIR 21\r
6283#define IPF_CONTROL_REGISTER_IIPA 22\r
6284#define IPF_CONTROL_REGISTER_IFS 23\r
6285#define IPF_CONTROL_REGISTER_IIM 24\r
6286#define IPF_CONTROL_REGISTER_IHA 25\r
6287#define IPF_CONTROL_REGISTER_LID 64\r
6288#define IPF_CONTROL_REGISTER_IVR 65\r
6289#define IPF_CONTROL_REGISTER_TPR 66\r
6290#define IPF_CONTROL_REGISTER_EOI 67\r
6291#define IPF_CONTROL_REGISTER_IRR0 68\r
6292#define IPF_CONTROL_REGISTER_IRR1 69\r
6293#define IPF_CONTROL_REGISTER_IRR2 70\r
6294#define IPF_CONTROL_REGISTER_IRR3 71\r
6295#define IPF_CONTROL_REGISTER_ITV 72\r
6296#define IPF_CONTROL_REGISTER_PMV 73\r
6297#define IPF_CONTROL_REGISTER_CMCV 74\r
6298#define IPF_CONTROL_REGISTER_LRR0 80\r
6299#define IPF_CONTROL_REGISTER_LRR1 81\r
6300\r
6301/**\r
6302 Reads a 64-bit control register.\r
6303\r
af2dc6a7 6304 Reads and returns the control register specified by Index. The valid Index valued \r
6305 are defined above in "Related Definitions".\r
6306 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only \r
6307 available on Itanium processors.\r
aad6137d 6308\r
6309 @param Index The index of the control register to read.\r
6310\r
6311 @return The control register specified by Index.\r
6312\r
6313**/\r
6314UINT64\r
6315EFIAPI\r
6316AsmReadControlRegister (\r
6317 IN UINT64 Index\r
6318 );\r
6319\r
6320\r
6321///\r
af2dc6a7 6322/// Valid Index value for AsmReadApplicationRegister().\r
aad6137d 6323///\r
6324#define IPF_APPLICATION_REGISTER_K0 0\r
6325#define IPF_APPLICATION_REGISTER_K1 1\r
6326#define IPF_APPLICATION_REGISTER_K2 2\r
6327#define IPF_APPLICATION_REGISTER_K3 3\r
6328#define IPF_APPLICATION_REGISTER_K4 4\r
6329#define IPF_APPLICATION_REGISTER_K5 5\r
6330#define IPF_APPLICATION_REGISTER_K6 6\r
6331#define IPF_APPLICATION_REGISTER_K7 7\r
6332#define IPF_APPLICATION_REGISTER_RSC 16\r
6333#define IPF_APPLICATION_REGISTER_BSP 17\r
6334#define IPF_APPLICATION_REGISTER_BSPSTORE 18\r
6335#define IPF_APPLICATION_REGISTER_RNAT 19\r
6336#define IPF_APPLICATION_REGISTER_FCR 21\r
6337#define IPF_APPLICATION_REGISTER_EFLAG 24\r
6338#define IPF_APPLICATION_REGISTER_CSD 25\r
6339#define IPF_APPLICATION_REGISTER_SSD 26\r
6340#define IPF_APPLICATION_REGISTER_CFLG 27\r
6341#define IPF_APPLICATION_REGISTER_FSR 28\r
6342#define IPF_APPLICATION_REGISTER_FIR 29\r
6343#define IPF_APPLICATION_REGISTER_FDR 30\r
6344#define IPF_APPLICATION_REGISTER_CCV 32\r
6345#define IPF_APPLICATION_REGISTER_UNAT 36\r
6346#define IPF_APPLICATION_REGISTER_FPSR 40\r
6347#define IPF_APPLICATION_REGISTER_ITC 44\r
6348#define IPF_APPLICATION_REGISTER_PFS 64\r
6349#define IPF_APPLICATION_REGISTER_LC 65\r
6350#define IPF_APPLICATION_REGISTER_EC 66\r
6351\r
6352/**\r
6353 Reads a 64-bit application register.\r
6354\r
af2dc6a7 6355 Reads and returns the application register specified by Index. The valid Index \r
6356 valued are defined above in "Related Definitions".\r
6357 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only \r
6358 available on Itanium processors.\r
aad6137d 6359\r
6360 @param Index The index of the application register to read.\r
6361\r
6362 @return The application register specified by Index.\r
6363\r
6364**/\r
6365UINT64\r
6366EFIAPI\r
6367AsmReadApplicationRegister (\r
6368 IN UINT64 Index\r
6369 );\r
6370\r
6371\r
59e0bb0c 6372/**\r
6373 Reads the current value of a Machine Specific Register (MSR).\r
6374\r
6375 Reads and returns the current value of the Machine Specific Register specified by Index. No\r
6376 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
6377 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
6378 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
1a2f870c 6379 only available on Itanium processors.\r
59e0bb0c 6380\r
6381 @param Index The 8-bit Machine Specific Register index to read.\r
6382\r
6383 @return The current value of the Machine Specific Register specified by Index. \r
6384\r
6385**/\r
6386UINT64\r
6387EFIAPI\r
6388AsmReadMsr (\r
6389 IN UINT8 Index \r
6390 );\r
6391\r
6392\r
6393/**\r
6394 Writes the current value of a Machine Specific Register (MSR).\r
6395\r
6396 Writes Value to the Machine Specific Register specified by Index. Value is returned. No\r
6397 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
6398 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
6399 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
1a2f870c 6400 only available on Itanium processors.\r
59e0bb0c 6401\r
6402 @param Index The 8-bit Machine Specific Register index to write.\r
6403 @param Value The 64-bit value to write to the Machine Specific Register.\r
6404\r
6405 @return The 64-bit value to write to the Machine Specific Register. \r
6406\r
6407**/\r
6408UINT64\r
6409EFIAPI\r
6410AsmWriteMsr (\r
6411 IN UINT8 Index, \r
6412 IN UINT64 Value \r
6413 );\r
6414\r
6415\r
ac644614 6416/**\r
6417 Determines if the CPU is currently executing in virtual, physical, or mixed mode.\r
6418\r
6419 Determines the current execution mode of the CPU.\r
6420 If the CPU is in virtual mode(PSR.RT=1, PSR.DT=1, PSR.IT=1), then 1 is returned.\r
6421 If the CPU is in physical mode(PSR.RT=0, PSR.DT=0, PSR.IT=0), then 0 is returned.\r
6422 If the CPU is not in physical mode or virtual mode, then it is in mixed mode,\r
6423 and -1 is returned.\r
1a2f870c 6424 This function is only available on Itanium processors.\r
ac644614 6425\r
17f695ed 6426 @retval 1 The CPU is in virtual mode.\r
6427 @retval 0 The CPU is in physical mode.\r
6428 @retval -1 The CPU is in mixed mode.\r
ac644614 6429\r
6430**/\r
6431INT64\r
6432EFIAPI\r
6433AsmCpuVirtual (\r
6434 VOID\r
6435 );\r
6436\r
6437\r
6438/**\r
6439 Makes a PAL procedure call.\r
6440\r
6441 This is a wrapper function to make a PAL procedure call. Based on the Index\r
6442 value this API will make static or stacked PAL call. The following table\r
6443 describes the usage of PAL Procedure Index Assignment. Architected procedures\r
6444 may be designated as required or optional. If a PAL procedure is specified\r
6445 as optional, a unique return code of 0xFFFFFFFFFFFFFFFF is returned in the\r
6446 Status field of the PAL_CALL_RETURN structure.\r
6447 This indicates that the procedure is not present in this PAL implementation.\r
6448 It is the caller's responsibility to check for this return code after calling\r
6449 any optional PAL procedure.\r
6450 No parameter checking is performed on the 5 input parameters, but there are\r
6451 some common rules that the caller should follow when making a PAL call. Any\r
6452 address passed to PAL as buffers for return parameters must be 8-byte aligned.\r
6453 Unaligned addresses may cause undefined results. For those parameters defined\r
6454 as reserved or some fields defined as reserved must be zero filled or the invalid\r
6455 argument return value may be returned or undefined result may occur during the\r
6456 execution of the procedure. If the PalEntryPoint does not point to a valid\r
6457 PAL entry point then the system behavior is undefined. This function is only\r
1a2f870c 6458 available on Itanium processors.\r
ac644614 6459\r
ee6c452c 6460 @param PalEntryPoint The PAL procedure calls entry point.\r
6461 @param Index The PAL procedure Index number.\r
6462 @param Arg2 The 2nd parameter for PAL procedure calls.\r
6463 @param Arg3 The 3rd parameter for PAL procedure calls.\r
6464 @param Arg4 The 4th parameter for PAL procedure calls.\r
ac644614 6465\r
6466 @return structure returned from the PAL Call procedure, including the status and return value.\r
6467\r
6468**/\r
6469PAL_CALL_RETURN\r
6470EFIAPI\r
6471AsmPalCall (\r
6472 IN UINT64 PalEntryPoint,\r
6473 IN UINT64 Index,\r
6474 IN UINT64 Arg2,\r
6475 IN UINT64 Arg3,\r
6476 IN UINT64 Arg4\r
6477 );\r
fd163050 6478#endif\r
ac644614 6479\r
fd163050 6480#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
1106ffe1 6481///\r
af2dc6a7 6482/// IA32 and x64 Specific Functions.\r
6483/// Byte packed structure for 16-bit Real Mode EFLAGS.\r
1106ffe1 6484///\r
ac644614 6485typedef union {\r
6486 struct {\r
af2dc6a7 6487 UINT32 CF:1; ///< Carry Flag.\r
6488 UINT32 Reserved_0:1; ///< Reserved.\r
6489 UINT32 PF:1; ///< Parity Flag.\r
6490 UINT32 Reserved_1:1; ///< Reserved.\r
6491 UINT32 AF:1; ///< Auxiliary Carry Flag.\r
6492 UINT32 Reserved_2:1; ///< Reserved.\r
6493 UINT32 ZF:1; ///< Zero Flag.\r
6494 UINT32 SF:1; ///< Sign Flag.\r
6495 UINT32 TF:1; ///< Trap Flag.\r
6496 UINT32 IF:1; ///< Interrupt Enable Flag.\r
6497 UINT32 DF:1; ///< Direction Flag.\r
6498 UINT32 OF:1; ///< Overflow Flag.\r
6499 UINT32 IOPL:2; ///< I/O Privilege Level.\r
6500 UINT32 NT:1; ///< Nested Task.\r
6501 UINT32 Reserved_3:1; ///< Reserved.\r
ac644614 6502 } Bits;\r
6503 UINT16 Uint16;\r
6504} IA32_FLAGS16;\r
6505\r
1106ffe1 6506///\r
af2dc6a7 6507/// Byte packed structure for EFLAGS/RFLAGS.\r
6508/// 32-bits on IA-32.\r
6509/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
1106ffe1 6510///\r
ac644614 6511typedef union {\r
6512 struct {\r
af2dc6a7 6513 UINT32 CF:1; ///< Carry Flag.\r
6514 UINT32 Reserved_0:1; ///< Reserved.\r
6515 UINT32 PF:1; ///< Parity Flag.\r
6516 UINT32 Reserved_1:1; ///< Reserved.\r
6517 UINT32 AF:1; ///< Auxiliary Carry Flag.\r
6518 UINT32 Reserved_2:1; ///< Reserved.\r
6519 UINT32 ZF:1; ///< Zero Flag.\r
6520 UINT32 SF:1; ///< Sign Flag.\r
6521 UINT32 TF:1; ///< Trap Flag.\r
6522 UINT32 IF:1; ///< Interrupt Enable Flag.\r
6523 UINT32 DF:1; ///< Direction Flag.\r
6524 UINT32 OF:1; ///< Overflow Flag.\r
6525 UINT32 IOPL:2; ///< I/O Privilege Level.\r
6526 UINT32 NT:1; ///< Nested Task.\r
6527 UINT32 Reserved_3:1; ///< Reserved.\r
6528 UINT32 RF:1; ///< Resume Flag.\r
6529 UINT32 VM:1; ///< Virtual 8086 Mode.\r
6530 UINT32 AC:1; ///< Alignment Check.\r
6531 UINT32 VIF:1; ///< Virtual Interrupt Flag.\r
6532 UINT32 VIP:1; ///< Virtual Interrupt Pending.\r
6533 UINT32 ID:1; ///< ID Flag.\r
6534 UINT32 Reserved_4:10; ///< Reserved.\r
ac644614 6535 } Bits;\r
6536 UINTN UintN;\r
6537} IA32_EFLAGS32;\r
6538\r
1106ffe1 6539///\r
af2dc6a7 6540/// Byte packed structure for Control Register 0 (CR0).\r
6541/// 32-bits on IA-32.\r
6542/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
1106ffe1 6543///\r
ac644614 6544typedef union {\r
6545 struct {\r
af2dc6a7 6546 UINT32 PE:1; ///< Protection Enable.\r
6547 UINT32 MP:1; ///< Monitor Coprocessor.\r
6548 UINT32 EM:1; ///< Emulation.\r
6549 UINT32 TS:1; ///< Task Switched.\r
6550 UINT32 ET:1; ///< Extension Type.\r
6551 UINT32 NE:1; ///< Numeric Error.\r
6552 UINT32 Reserved_0:10; ///< Reserved.\r
6553 UINT32 WP:1; ///< Write Protect.\r
6554 UINT32 Reserved_1:1; ///< Reserved.\r
6555 UINT32 AM:1; ///< Alignment Mask.\r
6556 UINT32 Reserved_2:10; ///< Reserved.\r
6557 UINT32 NW:1; ///< Mot Write-through.\r
6558 UINT32 CD:1; ///< Cache Disable.\r
6559 UINT32 PG:1; ///< Paging.\r
ac644614 6560 } Bits;\r
6561 UINTN UintN;\r
6562} IA32_CR0;\r
6563\r
1106ffe1 6564///\r
af2dc6a7 6565/// Byte packed structure for Control Register 4 (CR4).\r
6566/// 32-bits on IA-32.\r
6567/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
1106ffe1 6568///\r
ac644614 6569typedef union {\r
6570 struct {\r
af2dc6a7 6571 UINT32 VME:1; ///< Virtual-8086 Mode Extensions.\r
6572 UINT32 PVI:1; ///< Protected-Mode Virtual Interrupts.\r
6573 UINT32 TSD:1; ///< Time Stamp Disable.\r
6574 UINT32 DE:1; ///< Debugging Extensions.\r
6575 UINT32 PSE:1; ///< Page Size Extensions.\r
6576 UINT32 PAE:1; ///< Physical Address Extension.\r
6577 UINT32 MCE:1; ///< Machine Check Enable.\r
6578 UINT32 PGE:1; ///< Page Global Enable.\r
2a53dabf 6579 UINT32 PCE:1; ///< Performance Monitoring Counter\r
af2dc6a7 6580 ///< Enable.\r
2a53dabf
LG
6581 UINT32 OSFXSR:1; ///< Operating System Support for\r
6582 ///< FXSAVE and FXRSTOR instructions\r
6583 UINT32 OSXMMEXCPT:1; ///< Operating System Support for\r
6584 ///< Unmasked SIMD Floating Point\r
af2dc6a7 6585 ///< Exceptions.\r
6586 UINT32 Reserved_0:2; ///< Reserved.\r
2a53dabf 6587 UINT32 VMXE:1; ///< VMX Enable\r
af2dc6a7 6588 UINT32 Reserved_1:18; ///< Reserved.\r
ac644614 6589 } Bits;\r
6590 UINTN UintN;\r
6591} IA32_CR4;\r
6592\r
6088db38 6593///\r
6594/// Byte packed structure for a segment descriptor in a GDT/LDT.\r
6595///\r
6596typedef union {\r
6597 struct {\r
6598 UINT32 LimitLow:16;\r
6599 UINT32 BaseLow:16;\r
6600 UINT32 BaseMid:8;\r
6601 UINT32 Type:4;\r
6602 UINT32 S:1;\r
6603 UINT32 DPL:2;\r
6604 UINT32 P:1;\r
6605 UINT32 LimitHigh:4;\r
6606 UINT32 AVL:1;\r
6607 UINT32 L:1;\r
6608 UINT32 DB:1;\r
6609 UINT32 G:1;\r
6610 UINT32 BaseHigh:8;\r
6611 } Bits;\r
6612 UINT64 Uint64;\r
6613} IA32_SEGMENT_DESCRIPTOR;\r
6614\r
1106ffe1 6615///\r
af2dc6a7 6616/// Byte packed structure for an IDTR, GDTR, LDTR descriptor.\r
1106ffe1 6617///\r
ac644614 6618#pragma pack (1)\r
6619typedef struct {\r
6620 UINT16 Limit;\r
6621 UINTN Base;\r
6622} IA32_DESCRIPTOR;\r
6623#pragma pack ()\r
6624\r
6625#define IA32_IDT_GATE_TYPE_TASK 0x85\r
6626#define IA32_IDT_GATE_TYPE_INTERRUPT_16 0x86\r
6627#define IA32_IDT_GATE_TYPE_TRAP_16 0x87\r
6628#define IA32_IDT_GATE_TYPE_INTERRUPT_32 0x8E\r
6629#define IA32_IDT_GATE_TYPE_TRAP_32 0x8F\r
6630\r
6f4aad3b 6631\r
6632#if defined (MDE_CPU_IA32)\r
1106ffe1 6633///\r
af2dc6a7 6634/// Byte packed structure for an IA-32 Interrupt Gate Descriptor.\r
1106ffe1 6635///\r
dc317713 6636typedef union {\r
6637 struct {\r
af2dc6a7 6638 UINT32 OffsetLow:16; ///< Offset bits 15..0.\r
6639 UINT32 Selector:16; ///< Selector.\r
6640 UINT32 Reserved_0:8; ///< Reserved.\r
6641 UINT32 GateType:8; ///< Gate Type. See #defines above.\r
6642 UINT32 OffsetHigh:16; ///< Offset bits 31..16.\r
dc317713 6643 } Bits;\r
6644 UINT64 Uint64;\r
6645} IA32_IDT_GATE_DESCRIPTOR;\r
6646\r
6647#endif\r
6648\r
6649#if defined (MDE_CPU_X64)\r
6f4aad3b 6650///\r
af2dc6a7 6651/// Byte packed structure for an x64 Interrupt Gate Descriptor.\r
6f4aad3b 6652///\r
ac644614 6653typedef union {\r
6654 struct {\r
af2dc6a7 6655 UINT32 OffsetLow:16; ///< Offset bits 15..0.\r
6656 UINT32 Selector:16; ///< Selector.\r
6657 UINT32 Reserved_0:8; ///< Reserved.\r
6658 UINT32 GateType:8; ///< Gate Type. See #defines above.\r
6659 UINT32 OffsetHigh:16; ///< Offset bits 31..16.\r
6660 UINT32 OffsetUpper:32; ///< Offset bits 63..32.\r
6661 UINT32 Reserved_1:32; ///< Reserved.\r
ac644614 6662 } Bits;\r
6f4aad3b 6663 struct {\r
6664 UINT64 Uint64;\r
6665 UINT64 Uint64_1;\r
6666 } Uint128; \r
ac644614 6667} IA32_IDT_GATE_DESCRIPTOR;\r
6668\r
dc317713 6669#endif\r
6670\r
1106ffe1 6671///\r
af2dc6a7 6672/// Byte packed structure for an FP/SSE/SSE2 context.\r
1106ffe1 6673///\r
ac644614 6674typedef struct {\r
6675 UINT8 Buffer[512];\r
6676} IA32_FX_BUFFER;\r
6677\r
1106ffe1 6678///\r
af2dc6a7 6679/// Structures for the 16-bit real mode thunks.\r
1106ffe1 6680///\r
ac644614 6681typedef struct {\r
6682 UINT32 Reserved1;\r
6683 UINT32 Reserved2;\r
6684 UINT32 Reserved3;\r
6685 UINT32 Reserved4;\r
6686 UINT8 BL;\r
6687 UINT8 BH;\r
6688 UINT16 Reserved5;\r
6689 UINT8 DL;\r
6690 UINT8 DH;\r
6691 UINT16 Reserved6;\r
6692 UINT8 CL;\r
6693 UINT8 CH;\r
6694 UINT16 Reserved7;\r
6695 UINT8 AL;\r
6696 UINT8 AH;\r
6697 UINT16 Reserved8;\r
6698} IA32_BYTE_REGS;\r
6699\r
6700typedef struct {\r
6701 UINT16 DI;\r
6702 UINT16 Reserved1;\r
6703 UINT16 SI;\r
6704 UINT16 Reserved2;\r
6705 UINT16 BP;\r
6706 UINT16 Reserved3;\r
6707 UINT16 SP;\r
6708 UINT16 Reserved4;\r
6709 UINT16 BX;\r
6710 UINT16 Reserved5;\r
6711 UINT16 DX;\r
6712 UINT16 Reserved6;\r
6713 UINT16 CX;\r
6714 UINT16 Reserved7;\r
6715 UINT16 AX;\r
6716 UINT16 Reserved8;\r
6717} IA32_WORD_REGS;\r
6718\r
6719typedef struct {\r
6720 UINT32 EDI;\r
6721 UINT32 ESI;\r
6722 UINT32 EBP;\r
6723 UINT32 ESP;\r
6724 UINT32 EBX;\r
6725 UINT32 EDX;\r
6726 UINT32 ECX;\r
6727 UINT32 EAX;\r
6728 UINT16 DS;\r
6729 UINT16 ES;\r
6730 UINT16 FS;\r
6731 UINT16 GS;\r
6732 IA32_EFLAGS32 EFLAGS;\r
6733 UINT32 Eip;\r
6734 UINT16 CS;\r
6735 UINT16 SS;\r
6736} IA32_DWORD_REGS;\r
6737\r
6738typedef union {\r
6739 IA32_DWORD_REGS E;\r
6740 IA32_WORD_REGS X;\r
6741 IA32_BYTE_REGS H;\r
6742} IA32_REGISTER_SET;\r
6743\r
1106ffe1 6744///\r
af2dc6a7 6745/// Byte packed structure for an 16-bit real mode thunks.\r
1106ffe1 6746///\r
ac644614 6747typedef struct {\r
6748 IA32_REGISTER_SET *RealModeState;\r
6749 VOID *RealModeBuffer;\r
6750 UINT32 RealModeBufferSize;\r
6751 UINT32 ThunkAttributes;\r
6752} THUNK_CONTEXT;\r
6753\r
6754#define THUNK_ATTRIBUTE_BIG_REAL_MODE 0x00000001\r
6755#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 0x00000002\r
6756#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL 0x00000004\r
6757\r
6758/**\r
6759 Retrieves CPUID information.\r
6760\r
6761 Executes the CPUID instruction with EAX set to the value specified by Index.\r
6762 This function always returns Index.\r
6763 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
6764 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
6765 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
6766 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
030cd1a2 6767 This function is only available on IA-32 and x64.\r
ac644614 6768\r
6769 @param Index The 32-bit value to load into EAX prior to invoking the CPUID\r
6770 instruction.\r
af2dc6a7 6771 @param Eax The pointer to the 32-bit EAX value returned by the CPUID\r
ac644614 6772 instruction. This is an optional parameter that may be NULL.\r
af2dc6a7 6773 @param Ebx The pointer to the 32-bit EBX value returned by the CPUID\r
ac644614 6774 instruction. This is an optional parameter that may be NULL.\r
af2dc6a7 6775 @param Ecx The pointer to the 32-bit ECX value returned by the CPUID\r
ac644614 6776 instruction. This is an optional parameter that may be NULL.\r
af2dc6a7 6777 @param Edx The pointer to the 32-bit EDX value returned by the CPUID\r
ac644614 6778 instruction. This is an optional parameter that may be NULL.\r
6779\r
2fe241a2 6780 @return Index.\r
ac644614 6781\r
6782**/\r
6783UINT32\r
6784EFIAPI\r
6785AsmCpuid (\r
6786 IN UINT32 Index,\r
6787 OUT UINT32 *Eax, OPTIONAL\r
6788 OUT UINT32 *Ebx, OPTIONAL\r
6789 OUT UINT32 *Ecx, OPTIONAL\r
6790 OUT UINT32 *Edx OPTIONAL\r
6791 );\r
6792\r
6793\r
6794/**\r
6795 Retrieves CPUID information using an extended leaf identifier.\r
6796\r
6797 Executes the CPUID instruction with EAX set to the value specified by Index\r
6798 and ECX set to the value specified by SubIndex. This function always returns\r
6799 Index. This function is only available on IA-32 and x64.\r
6800\r
6801 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
6802 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
6803 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
6804 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
6805\r
6806 @param Index The 32-bit value to load into EAX prior to invoking the\r
6807 CPUID instruction.\r
6808 @param SubIndex The 32-bit value to load into ECX prior to invoking the\r
6809 CPUID instruction.\r
af2dc6a7 6810 @param Eax The pointer to the 32-bit EAX value returned by the CPUID\r
ac644614 6811 instruction. This is an optional parameter that may be\r
6812 NULL.\r
af2dc6a7 6813 @param Ebx The pointer to the 32-bit EBX value returned by the CPUID\r
ac644614 6814 instruction. This is an optional parameter that may be\r
6815 NULL.\r
af2dc6a7 6816 @param Ecx The pointer to the 32-bit ECX value returned by the CPUID\r
ac644614 6817 instruction. This is an optional parameter that may be\r
6818 NULL.\r
af2dc6a7 6819 @param Edx The pointer to the 32-bit EDX value returned by the CPUID\r
ac644614 6820 instruction. This is an optional parameter that may be\r
6821 NULL.\r
6822\r
2fe241a2 6823 @return Index.\r
ac644614 6824\r
6825**/\r
6826UINT32\r
6827EFIAPI\r
6828AsmCpuidEx (\r
6829 IN UINT32 Index,\r
6830 IN UINT32 SubIndex,\r
6831 OUT UINT32 *Eax, OPTIONAL\r
6832 OUT UINT32 *Ebx, OPTIONAL\r
6833 OUT UINT32 *Ecx, OPTIONAL\r
6834 OUT UINT32 *Edx OPTIONAL\r
6835 );\r
6836\r
6837\r
be5f1614 6838/**\r
6839 Set CD bit and clear NW bit of CR0 followed by a WBINVD.\r
6840\r
6841 Disables the caches by setting the CD bit of CR0 to 1, clearing the NW bit of CR0 to 0,\r
6842 and executing a WBINVD instruction. This function is only available on IA-32 and x64.\r
6843\r
6844**/\r
6845VOID\r
6846EFIAPI\r
6847AsmDisableCache (\r
6848 VOID\r
6849 );\r
6850\r
6851\r
6852/**\r
6853 Perform a WBINVD and clear both the CD and NW bits of CR0.\r
6854\r
6855 Enables the caches by executing a WBINVD instruction and then clear both the CD and NW\r
6856 bits of CR0 to 0. This function is only available on IA-32 and x64.\r
6857\r
6858**/\r
6859VOID\r
6860EFIAPI\r
6861AsmEnableCache (\r
6862 VOID\r
6863 );\r
6864\r
6865\r
ac644614 6866/**\r
6867 Returns the lower 32-bits of a Machine Specific Register(MSR).\r
6868\r
6869 Reads and returns the lower 32-bits of the MSR specified by Index.\r
6870 No parameter checking is performed on Index, and some Index values may cause\r
6871 CPU exceptions. The caller must either guarantee that Index is valid, or the\r
6872 caller must set up exception handlers to catch the exceptions. This function\r
030cd1a2 6873 is only available on IA-32 and x64.\r
ac644614 6874\r
6875 @param Index The 32-bit MSR index to read.\r
6876\r
6877 @return The lower 32 bits of the MSR identified by Index.\r
6878\r
6879**/\r
6880UINT32\r
6881EFIAPI\r
6882AsmReadMsr32 (\r
6883 IN UINT32 Index\r
6884 );\r
6885\r
6886\r
6887/**\r
17f695ed 6888 Writes a 32-bit value to a Machine Specific Register(MSR), and returns the value.\r
6889 The upper 32-bits of the MSR are set to zero.\r
ac644614 6890\r
6891 Writes the 32-bit value specified by Value to the MSR specified by Index. The\r
6892 upper 32-bits of the MSR write are set to zero. The 32-bit value written to\r
6893 the MSR is returned. No parameter checking is performed on Index or Value,\r
6894 and some of these may cause CPU exceptions. The caller must either guarantee\r
6895 that Index and Value are valid, or the caller must establish proper exception\r
030cd1a2 6896 handlers. This function is only available on IA-32 and x64.\r
ac644614 6897\r
6898 @param Index The 32-bit MSR index to write.\r
6899 @param Value The 32-bit value to write to the MSR.\r
6900\r
6901 @return Value\r
6902\r
6903**/\r
6904UINT32\r
6905EFIAPI\r
6906AsmWriteMsr32 (\r
6907 IN UINT32 Index,\r
6908 IN UINT32 Value\r
6909 );\r
6910\r
6911\r
6912/**\r
62991af2 6913 Reads a 64-bit MSR, performs a bitwise OR on the lower 32-bits, and\r
ac644614 6914 writes the result back to the 64-bit MSR.\r
6915\r
62991af2 6916 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 6917 between the lower 32-bits of the read result and the value specified by\r
6918 OrData, and writes the result to the 64-bit MSR specified by Index. The lower\r
6919 32-bits of the value written to the MSR is returned. No parameter checking is\r
6920 performed on Index or OrData, and some of these may cause CPU exceptions. The\r
6921 caller must either guarantee that Index and OrData are valid, or the caller\r
6922 must establish proper exception handlers. This function is only available on\r
030cd1a2 6923 IA-32 and x64.\r
ac644614 6924\r
6925 @param Index The 32-bit MSR index to write.\r
6926 @param OrData The value to OR with the read value from the MSR.\r
6927\r
6928 @return The lower 32-bit value written to the MSR.\r
6929\r
6930**/\r
6931UINT32\r
6932EFIAPI\r
6933AsmMsrOr32 (\r
6934 IN UINT32 Index,\r
6935 IN UINT32 OrData\r
6936 );\r
6937\r
6938\r
6939/**\r
6940 Reads a 64-bit MSR, performs a bitwise AND on the lower 32-bits, and writes\r
6941 the result back to the 64-bit MSR.\r
6942\r
6943 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
6944 lower 32-bits of the read result and the value specified by AndData, and\r
6945 writes the result to the 64-bit MSR specified by Index. The lower 32-bits of\r
6946 the value written to the MSR is returned. No parameter checking is performed\r
6947 on Index or AndData, and some of these may cause CPU exceptions. The caller\r
6948 must either guarantee that Index and AndData are valid, or the caller must\r
6949 establish proper exception handlers. This function is only available on IA-32\r
030cd1a2 6950 and x64.\r
ac644614 6951\r
6952 @param Index The 32-bit MSR index to write.\r
6953 @param AndData The value to AND with the read value from the MSR.\r
6954\r
6955 @return The lower 32-bit value written to the MSR.\r
6956\r
6957**/\r
6958UINT32\r
6959EFIAPI\r
6960AsmMsrAnd32 (\r
6961 IN UINT32 Index,\r
6962 IN UINT32 AndData\r
6963 );\r
6964\r
6965\r
6966/**\r
62991af2 6967 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise OR\r
ac644614 6968 on the lower 32-bits, and writes the result back to the 64-bit MSR.\r
6969\r
6970 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
6971 lower 32-bits of the read result and the value specified by AndData\r
62991af2 6972 preserving the upper 32-bits, performs a bitwise OR between the\r
ac644614 6973 result of the AND operation and the value specified by OrData, and writes the\r
6974 result to the 64-bit MSR specified by Address. The lower 32-bits of the value\r
6975 written to the MSR is returned. No parameter checking is performed on Index,\r
6976 AndData, or OrData, and some of these may cause CPU exceptions. The caller\r
6977 must either guarantee that Index, AndData, and OrData are valid, or the\r
6978 caller must establish proper exception handlers. This function is only\r
030cd1a2 6979 available on IA-32 and x64.\r
ac644614 6980\r
6981 @param Index The 32-bit MSR index to write.\r
6982 @param AndData The value to AND with the read value from the MSR.\r
6983 @param OrData The value to OR with the result of the AND operation.\r
6984\r
6985 @return The lower 32-bit value written to the MSR.\r
6986\r
6987**/\r
6988UINT32\r
6989EFIAPI\r
6990AsmMsrAndThenOr32 (\r
6991 IN UINT32 Index,\r
6992 IN UINT32 AndData,\r
6993 IN UINT32 OrData\r
6994 );\r
6995\r
6996\r
6997/**\r
6998 Reads a bit field of an MSR.\r
6999\r
7000 Reads the bit field in the lower 32-bits of a 64-bit MSR. The bit field is\r
7001 specified by the StartBit and the EndBit. The value of the bit field is\r
7002 returned. The caller must either guarantee that Index is valid, or the caller\r
7003 must set up exception handlers to catch the exceptions. This function is only\r
030cd1a2 7004 available on IA-32 and x64.\r
ac644614 7005\r
7006 If StartBit is greater than 31, then ASSERT().\r
7007 If EndBit is greater than 31, then ASSERT().\r
7008 If EndBit is less than StartBit, then ASSERT().\r
7009\r
7010 @param Index The 32-bit MSR index to read.\r
7011 @param StartBit The ordinal of the least significant bit in the bit field.\r
7012 Range 0..31.\r
7013 @param EndBit The ordinal of the most significant bit in the bit field.\r
7014 Range 0..31.\r
7015\r
7016 @return The bit field read from the MSR.\r
7017\r
7018**/\r
7019UINT32\r
7020EFIAPI\r
7021AsmMsrBitFieldRead32 (\r
7022 IN UINT32 Index,\r
7023 IN UINTN StartBit,\r
7024 IN UINTN EndBit\r
7025 );\r
7026\r
7027\r
7028/**\r
7029 Writes a bit field to an MSR.\r
7030\r
2fe241a2 7031 Writes Value to a bit field in the lower 32-bits of a 64-bit MSR. The bit\r
ac644614 7032 field is specified by the StartBit and the EndBit. All other bits in the\r
7033 destination MSR are preserved. The lower 32-bits of the MSR written is\r
62991af2 7034 returned. The caller must either guarantee that Index and the data written \r
7035 is valid, or the caller must set up exception handlers to catch the exceptions. \r
7036 This function is only available on IA-32 and x64.\r
ac644614 7037\r
7038 If StartBit is greater than 31, then ASSERT().\r
7039 If EndBit is greater than 31, then ASSERT().\r
7040 If EndBit is less than StartBit, then ASSERT().\r
94952554 7041 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7042\r
7043 @param Index The 32-bit MSR index to write.\r
7044 @param StartBit The ordinal of the least significant bit in the bit field.\r
7045 Range 0..31.\r
7046 @param EndBit The ordinal of the most significant bit in the bit field.\r
7047 Range 0..31.\r
7048 @param Value New value of the bit field.\r
7049\r
7050 @return The lower 32-bit of the value written to the MSR.\r
7051\r
7052**/\r
7053UINT32\r
7054EFIAPI\r
7055AsmMsrBitFieldWrite32 (\r
7056 IN UINT32 Index,\r
7057 IN UINTN StartBit,\r
7058 IN UINTN EndBit,\r
7059 IN UINT32 Value\r
7060 );\r
7061\r
7062\r
7063/**\r
7064 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the\r
7065 result back to the bit field in the 64-bit MSR.\r
7066\r
62991af2 7067 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 7068 between the read result and the value specified by OrData, and writes the\r
7069 result to the 64-bit MSR specified by Index. The lower 32-bits of the value\r
7070 written to the MSR are returned. Extra left bits in OrData are stripped. The\r
7071 caller must either guarantee that Index and the data written is valid, or\r
7072 the caller must set up exception handlers to catch the exceptions. This\r
030cd1a2 7073 function is only available on IA-32 and x64.\r
ac644614 7074\r
7075 If StartBit is greater than 31, then ASSERT().\r
7076 If EndBit is greater than 31, then ASSERT().\r
7077 If EndBit is less than StartBit, then ASSERT().\r
94952554 7078 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7079\r
7080 @param Index The 32-bit MSR index to write.\r
7081 @param StartBit The ordinal of the least significant bit in the bit field.\r
7082 Range 0..31.\r
7083 @param EndBit The ordinal of the most significant bit in the bit field.\r
7084 Range 0..31.\r
7085 @param OrData The value to OR with the read value from the MSR.\r
7086\r
7087 @return The lower 32-bit of the value written to the MSR.\r
7088\r
7089**/\r
7090UINT32\r
7091EFIAPI\r
7092AsmMsrBitFieldOr32 (\r
7093 IN UINT32 Index,\r
7094 IN UINTN StartBit,\r
7095 IN UINTN EndBit,\r
7096 IN UINT32 OrData\r
7097 );\r
7098\r
7099\r
7100/**\r
7101 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
7102 result back to the bit field in the 64-bit MSR.\r
7103\r
7104 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7105 read result and the value specified by AndData, and writes the result to the\r
7106 64-bit MSR specified by Index. The lower 32-bits of the value written to the\r
7107 MSR are returned. Extra left bits in AndData are stripped. The caller must\r
7108 either guarantee that Index and the data written is valid, or the caller must\r
7109 set up exception handlers to catch the exceptions. This function is only\r
030cd1a2 7110 available on IA-32 and x64.\r
ac644614 7111\r
7112 If StartBit is greater than 31, then ASSERT().\r
7113 If EndBit is greater than 31, then ASSERT().\r
7114 If EndBit is less than StartBit, then ASSERT().\r
94952554 7115 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7116\r
7117 @param Index The 32-bit MSR index to write.\r
7118 @param StartBit The ordinal of the least significant bit in the bit field.\r
7119 Range 0..31.\r
7120 @param EndBit The ordinal of the most significant bit in the bit field.\r
7121 Range 0..31.\r
7122 @param AndData The value to AND with the read value from the MSR.\r
7123\r
7124 @return The lower 32-bit of the value written to the MSR.\r
7125\r
7126**/\r
7127UINT32\r
7128EFIAPI\r
7129AsmMsrBitFieldAnd32 (\r
7130 IN UINT32 Index,\r
7131 IN UINTN StartBit,\r
7132 IN UINTN EndBit,\r
7133 IN UINT32 AndData\r
7134 );\r
7135\r
7136\r
7137/**\r
7138 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
62991af2 7139 bitwise OR, and writes the result back to the bit field in the\r
ac644614 7140 64-bit MSR.\r
7141\r
7142 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by a\r
62991af2 7143 bitwise OR between the read result and the value specified by\r
ac644614 7144 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
7145 lower 32-bits of the value written to the MSR are returned. Extra left bits\r
7146 in both AndData and OrData are stripped. The caller must either guarantee\r
7147 that Index and the data written is valid, or the caller must set up exception\r
7148 handlers to catch the exceptions. This function is only available on IA-32\r
030cd1a2 7149 and x64.\r
ac644614 7150\r
7151 If StartBit is greater than 31, then ASSERT().\r
7152 If EndBit is greater than 31, then ASSERT().\r
7153 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
7154 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7155 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7156\r
7157 @param Index The 32-bit MSR index to write.\r
7158 @param StartBit The ordinal of the least significant bit in the bit field.\r
7159 Range 0..31.\r
7160 @param EndBit The ordinal of the most significant bit in the bit field.\r
7161 Range 0..31.\r
7162 @param AndData The value to AND with the read value from the MSR.\r
7163 @param OrData The value to OR with the result of the AND operation.\r
7164\r
7165 @return The lower 32-bit of the value written to the MSR.\r
7166\r
7167**/\r
7168UINT32\r
7169EFIAPI\r
7170AsmMsrBitFieldAndThenOr32 (\r
7171 IN UINT32 Index,\r
7172 IN UINTN StartBit,\r
7173 IN UINTN EndBit,\r
7174 IN UINT32 AndData,\r
7175 IN UINT32 OrData\r
7176 );\r
7177\r
7178\r
7179/**\r
7180 Returns a 64-bit Machine Specific Register(MSR).\r
7181\r
7182 Reads and returns the 64-bit MSR specified by Index. No parameter checking is\r
7183 performed on Index, and some Index values may cause CPU exceptions. The\r
7184 caller must either guarantee that Index is valid, or the caller must set up\r
7185 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 7186 on IA-32 and x64.\r
ac644614 7187\r
7188 @param Index The 32-bit MSR index to read.\r
7189\r
7190 @return The value of the MSR identified by Index.\r
7191\r
7192**/\r
7193UINT64\r
7194EFIAPI\r
7195AsmReadMsr64 (\r
7196 IN UINT32 Index\r
7197 );\r
7198\r
7199\r
7200/**\r
7201 Writes a 64-bit value to a Machine Specific Register(MSR), and returns the\r
7202 value.\r
7203\r
7204 Writes the 64-bit value specified by Value to the MSR specified by Index. The\r
7205 64-bit value written to the MSR is returned. No parameter checking is\r
7206 performed on Index or Value, and some of these may cause CPU exceptions. The\r
7207 caller must either guarantee that Index and Value are valid, or the caller\r
7208 must establish proper exception handlers. This function is only available on\r
030cd1a2 7209 IA-32 and x64.\r
ac644614 7210\r
7211 @param Index The 32-bit MSR index to write.\r
7212 @param Value The 64-bit value to write to the MSR.\r
7213\r
7214 @return Value\r
7215\r
7216**/\r
7217UINT64\r
7218EFIAPI\r
7219AsmWriteMsr64 (\r
7220 IN UINT32 Index,\r
7221 IN UINT64 Value\r
7222 );\r
7223\r
7224\r
7225/**\r
62991af2 7226 Reads a 64-bit MSR, performs a bitwise OR, and writes the result\r
ac644614 7227 back to the 64-bit MSR.\r
7228\r
62991af2 7229 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 7230 between the read result and the value specified by OrData, and writes the\r
7231 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
7232 returned. No parameter checking is performed on Index or OrData, and some of\r
7233 these may cause CPU exceptions. The caller must either guarantee that Index\r
7234 and OrData are valid, or the caller must establish proper exception handlers.\r
030cd1a2 7235 This function is only available on IA-32 and x64.\r
ac644614 7236\r
7237 @param Index The 32-bit MSR index to write.\r
7238 @param OrData The value to OR with the read value from the MSR.\r
7239\r
7240 @return The value written back to the MSR.\r
7241\r
7242**/\r
7243UINT64\r
7244EFIAPI\r
7245AsmMsrOr64 (\r
7246 IN UINT32 Index,\r
7247 IN UINT64 OrData\r
7248 );\r
7249\r
7250\r
7251/**\r
7252 Reads a 64-bit MSR, performs a bitwise AND, and writes the result back to the\r
7253 64-bit MSR.\r
7254\r
7255 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7256 read result and the value specified by OrData, and writes the result to the\r
7257 64-bit MSR specified by Index. The value written to the MSR is returned. No\r
7258 parameter checking is performed on Index or OrData, and some of these may\r
7259 cause CPU exceptions. The caller must either guarantee that Index and OrData\r
7260 are valid, or the caller must establish proper exception handlers. This\r
030cd1a2 7261 function is only available on IA-32 and x64.\r
ac644614 7262\r
7263 @param Index The 32-bit MSR index to write.\r
7264 @param AndData The value to AND with the read value from the MSR.\r
7265\r
7266 @return The value written back to the MSR.\r
7267\r
7268**/\r
7269UINT64\r
7270EFIAPI\r
7271AsmMsrAnd64 (\r
7272 IN UINT32 Index,\r
7273 IN UINT64 AndData\r
7274 );\r
7275\r
7276\r
7277/**\r
62991af2 7278 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise \r
ac644614 7279 OR, and writes the result back to the 64-bit MSR.\r
7280\r
7281 Reads the 64-bit MSR specified by Index, performs a bitwise AND between read\r
62991af2 7282 result and the value specified by AndData, performs a bitwise OR\r
ac644614 7283 between the result of the AND operation and the value specified by OrData,\r
7284 and writes the result to the 64-bit MSR specified by Index. The value written\r
7285 to the MSR is returned. No parameter checking is performed on Index, AndData,\r
7286 or OrData, and some of these may cause CPU exceptions. The caller must either\r
7287 guarantee that Index, AndData, and OrData are valid, or the caller must\r
7288 establish proper exception handlers. This function is only available on IA-32\r
030cd1a2 7289 and x64.\r
ac644614 7290\r
7291 @param Index The 32-bit MSR index to write.\r
7292 @param AndData The value to AND with the read value from the MSR.\r
7293 @param OrData The value to OR with the result of the AND operation.\r
7294\r
7295 @return The value written back to the MSR.\r
7296\r
7297**/\r
7298UINT64\r
7299EFIAPI\r
7300AsmMsrAndThenOr64 (\r
7301 IN UINT32 Index,\r
7302 IN UINT64 AndData,\r
7303 IN UINT64 OrData\r
7304 );\r
7305\r
7306\r
7307/**\r
7308 Reads a bit field of an MSR.\r
7309\r
7310 Reads the bit field in the 64-bit MSR. The bit field is specified by the\r
7311 StartBit and the EndBit. The value of the bit field is returned. The caller\r
7312 must either guarantee that Index is valid, or the caller must set up\r
7313 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 7314 on IA-32 and x64.\r
ac644614 7315\r
7316 If StartBit is greater than 63, then ASSERT().\r
7317 If EndBit is greater than 63, then ASSERT().\r
7318 If EndBit is less than StartBit, then ASSERT().\r
7319\r
7320 @param Index The 32-bit MSR index to read.\r
7321 @param StartBit The ordinal of the least significant bit in the bit field.\r
7322 Range 0..63.\r
7323 @param EndBit The ordinal of the most significant bit in the bit field.\r
7324 Range 0..63.\r
7325\r
7326 @return The value read from the MSR.\r
7327\r
7328**/\r
7329UINT64\r
7330EFIAPI\r
7331AsmMsrBitFieldRead64 (\r
7332 IN UINT32 Index,\r
7333 IN UINTN StartBit,\r
7334 IN UINTN EndBit\r
7335 );\r
7336\r
7337\r
7338/**\r
7339 Writes a bit field to an MSR.\r
7340\r
7341 Writes Value to a bit field in a 64-bit MSR. The bit field is specified by\r
7342 the StartBit and the EndBit. All other bits in the destination MSR are\r
62991af2 7343 preserved. The MSR written is returned. The caller must either guarantee \r
7344 that Index and the data written is valid, or the caller must set up exception \r
7345 handlers to catch the exceptions. This function is only available on IA-32 and x64.\r
ac644614 7346\r
7347 If StartBit is greater than 63, then ASSERT().\r
7348 If EndBit is greater than 63, then ASSERT().\r
7349 If EndBit is less than StartBit, then ASSERT().\r
94952554 7350 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7351\r
7352 @param Index The 32-bit MSR index to write.\r
7353 @param StartBit The ordinal of the least significant bit in the bit field.\r
7354 Range 0..63.\r
7355 @param EndBit The ordinal of the most significant bit in the bit field.\r
7356 Range 0..63.\r
7357 @param Value New value of the bit field.\r
7358\r
7359 @return The value written back to the MSR.\r
7360\r
7361**/\r
7362UINT64\r
7363EFIAPI\r
7364AsmMsrBitFieldWrite64 (\r
7365 IN UINT32 Index,\r
7366 IN UINTN StartBit,\r
7367 IN UINTN EndBit,\r
7368 IN UINT64 Value\r
7369 );\r
7370\r
7371\r
7372/**\r
62991af2 7373 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and\r
ac644614 7374 writes the result back to the bit field in the 64-bit MSR.\r
7375\r
62991af2 7376 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 7377 between the read result and the value specified by OrData, and writes the\r
7378 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
7379 returned. Extra left bits in OrData are stripped. The caller must either\r
7380 guarantee that Index and the data written is valid, or the caller must set up\r
7381 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 7382 on IA-32 and x64.\r
ac644614 7383\r
7384 If StartBit is greater than 63, then ASSERT().\r
7385 If EndBit is greater than 63, then ASSERT().\r
7386 If EndBit is less than StartBit, then ASSERT().\r
94952554 7387 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7388\r
7389 @param Index The 32-bit MSR index to write.\r
7390 @param StartBit The ordinal of the least significant bit in the bit field.\r
7391 Range 0..63.\r
7392 @param EndBit The ordinal of the most significant bit in the bit field.\r
7393 Range 0..63.\r
7394 @param OrData The value to OR with the read value from the bit field.\r
7395\r
7396 @return The value written back to the MSR.\r
7397\r
7398**/\r
7399UINT64\r
7400EFIAPI\r
7401AsmMsrBitFieldOr64 (\r
7402 IN UINT32 Index,\r
7403 IN UINTN StartBit,\r
7404 IN UINTN EndBit,\r
7405 IN UINT64 OrData\r
7406 );\r
7407\r
7408\r
7409/**\r
7410 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
7411 result back to the bit field in the 64-bit MSR.\r
7412\r
7413 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7414 read result and the value specified by AndData, and writes the result to the\r
7415 64-bit MSR specified by Index. The value written to the MSR is returned.\r
7416 Extra left bits in AndData are stripped. The caller must either guarantee\r
7417 that Index and the data written is valid, or the caller must set up exception\r
7418 handlers to catch the exceptions. This function is only available on IA-32\r
030cd1a2 7419 and x64.\r
ac644614 7420\r
7421 If StartBit is greater than 63, then ASSERT().\r
7422 If EndBit is greater than 63, then ASSERT().\r
7423 If EndBit is less than StartBit, then ASSERT().\r
94952554 7424 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7425\r
7426 @param Index The 32-bit MSR index to write.\r
7427 @param StartBit The ordinal of the least significant bit in the bit field.\r
7428 Range 0..63.\r
7429 @param EndBit The ordinal of the most significant bit in the bit field.\r
7430 Range 0..63.\r
7431 @param AndData The value to AND with the read value from the bit field.\r
7432\r
7433 @return The value written back to the MSR.\r
7434\r
7435**/\r
7436UINT64\r
7437EFIAPI\r
7438AsmMsrBitFieldAnd64 (\r
7439 IN UINT32 Index,\r
7440 IN UINTN StartBit,\r
7441 IN UINTN EndBit,\r
7442 IN UINT64 AndData\r
7443 );\r
7444\r
7445\r
7446/**\r
7447 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
62991af2 7448 bitwise OR, and writes the result back to the bit field in the\r
ac644614 7449 64-bit MSR.\r
7450\r
7451 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by\r
62991af2 7452 a bitwise OR between the read result and the value specified by\r
ac644614 7453 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
7454 value written to the MSR is returned. Extra left bits in both AndData and\r
7455 OrData are stripped. The caller must either guarantee that Index and the data\r
7456 written is valid, or the caller must set up exception handlers to catch the\r
030cd1a2 7457 exceptions. This function is only available on IA-32 and x64.\r
ac644614 7458\r
7459 If StartBit is greater than 63, then ASSERT().\r
7460 If EndBit is greater than 63, then ASSERT().\r
7461 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
7462 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7463 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7464\r
7465 @param Index The 32-bit MSR index to write.\r
7466 @param StartBit The ordinal of the least significant bit in the bit field.\r
7467 Range 0..63.\r
7468 @param EndBit The ordinal of the most significant bit in the bit field.\r
7469 Range 0..63.\r
7470 @param AndData The value to AND with the read value from the bit field.\r
7471 @param OrData The value to OR with the result of the AND operation.\r
7472\r
7473 @return The value written back to the MSR.\r
7474\r
7475**/\r
7476UINT64\r
7477EFIAPI\r
7478AsmMsrBitFieldAndThenOr64 (\r
7479 IN UINT32 Index,\r
7480 IN UINTN StartBit,\r
7481 IN UINTN EndBit,\r
7482 IN UINT64 AndData,\r
7483 IN UINT64 OrData\r
7484 );\r
7485\r
7486\r
7487/**\r
7488 Reads the current value of the EFLAGS register.\r
7489\r
7490 Reads and returns the current value of the EFLAGS register. This function is\r
030cd1a2 7491 only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a\r
7492 64-bit value on x64.\r
ac644614 7493\r
030cd1a2 7494 @return EFLAGS on IA-32 or RFLAGS on x64.\r
ac644614 7495\r
7496**/\r
7497UINTN\r
7498EFIAPI\r
7499AsmReadEflags (\r
7500 VOID\r
7501 );\r
7502\r
7503\r
7504/**\r
7505 Reads the current value of the Control Register 0 (CR0).\r
7506\r
7507 Reads and returns the current value of CR0. This function is only available\r
030cd1a2 7508 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7509 x64.\r
ac644614 7510\r
7511 @return The value of the Control Register 0 (CR0).\r
7512\r
7513**/\r
7514UINTN\r
7515EFIAPI\r
7516AsmReadCr0 (\r
7517 VOID\r
7518 );\r
7519\r
7520\r
7521/**\r
7522 Reads the current value of the Control Register 2 (CR2).\r
7523\r
7524 Reads and returns the current value of CR2. This function is only available\r
030cd1a2 7525 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7526 x64.\r
ac644614 7527\r
7528 @return The value of the Control Register 2 (CR2).\r
7529\r
7530**/\r
7531UINTN\r
7532EFIAPI\r
7533AsmReadCr2 (\r
7534 VOID\r
7535 );\r
7536\r
7537\r
7538/**\r
7539 Reads the current value of the Control Register 3 (CR3).\r
7540\r
7541 Reads and returns the current value of CR3. This function is only available\r
030cd1a2 7542 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7543 x64.\r
ac644614 7544\r
7545 @return The value of the Control Register 3 (CR3).\r
7546\r
7547**/\r
7548UINTN\r
7549EFIAPI\r
7550AsmReadCr3 (\r
7551 VOID\r
7552 );\r
7553\r
7554\r
7555/**\r
7556 Reads the current value of the Control Register 4 (CR4).\r
7557\r
7558 Reads and returns the current value of CR4. This function is only available\r
030cd1a2 7559 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7560 x64.\r
ac644614 7561\r
7562 @return The value of the Control Register 4 (CR4).\r
7563\r
7564**/\r
7565UINTN\r
7566EFIAPI\r
7567AsmReadCr4 (\r
7568 VOID\r
7569 );\r
7570\r
7571\r
7572/**\r
7573 Writes a value to Control Register 0 (CR0).\r
7574\r
7575 Writes and returns a new value to CR0. This function is only available on\r
030cd1a2 7576 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7577\r
7578 @param Cr0 The value to write to CR0.\r
7579\r
7580 @return The value written to CR0.\r
7581\r
7582**/\r
7583UINTN\r
7584EFIAPI\r
7585AsmWriteCr0 (\r
7586 UINTN Cr0\r
7587 );\r
7588\r
7589\r
7590/**\r
7591 Writes a value to Control Register 2 (CR2).\r
7592\r
7593 Writes and returns a new value to CR2. This function is only available on\r
030cd1a2 7594 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7595\r
7596 @param Cr2 The value to write to CR2.\r
7597\r
7598 @return The value written to CR2.\r
7599\r
7600**/\r
7601UINTN\r
7602EFIAPI\r
7603AsmWriteCr2 (\r
7604 UINTN Cr2\r
7605 );\r
7606\r
7607\r
7608/**\r
7609 Writes a value to Control Register 3 (CR3).\r
7610\r
7611 Writes and returns a new value to CR3. This function is only available on\r
030cd1a2 7612 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7613\r
7614 @param Cr3 The value to write to CR3.\r
7615\r
7616 @return The value written to CR3.\r
7617\r
7618**/\r
7619UINTN\r
7620EFIAPI\r
7621AsmWriteCr3 (\r
7622 UINTN Cr3\r
7623 );\r
7624\r
7625\r
7626/**\r
7627 Writes a value to Control Register 4 (CR4).\r
7628\r
7629 Writes and returns a new value to CR4. This function is only available on\r
030cd1a2 7630 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7631\r
7632 @param Cr4 The value to write to CR4.\r
7633\r
7634 @return The value written to CR4.\r
7635\r
7636**/\r
7637UINTN\r
7638EFIAPI\r
7639AsmWriteCr4 (\r
7640 UINTN Cr4\r
7641 );\r
7642\r
7643\r
7644/**\r
7645 Reads the current value of Debug Register 0 (DR0).\r
7646\r
7647 Reads and returns the current value of DR0. This function is only available\r
030cd1a2 7648 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7649 x64.\r
ac644614 7650\r
7651 @return The value of Debug Register 0 (DR0).\r
7652\r
7653**/\r
7654UINTN\r
7655EFIAPI\r
7656AsmReadDr0 (\r
7657 VOID\r
7658 );\r
7659\r
7660\r
7661/**\r
7662 Reads the current value of Debug Register 1 (DR1).\r
7663\r
7664 Reads and returns the current value of DR1. This function is only available\r
030cd1a2 7665 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7666 x64.\r
ac644614 7667\r
7668 @return The value of Debug Register 1 (DR1).\r
7669\r
7670**/\r
7671UINTN\r
7672EFIAPI\r
7673AsmReadDr1 (\r
7674 VOID\r
7675 );\r
7676\r
7677\r
7678/**\r
7679 Reads the current value of Debug Register 2 (DR2).\r
7680\r
7681 Reads and returns the current value of DR2. This function is only available\r
030cd1a2 7682 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7683 x64.\r
ac644614 7684\r
7685 @return The value of Debug Register 2 (DR2).\r
7686\r
7687**/\r
7688UINTN\r
7689EFIAPI\r
7690AsmReadDr2 (\r
7691 VOID\r
7692 );\r
7693\r
7694\r
7695/**\r
7696 Reads the current value of Debug Register 3 (DR3).\r
7697\r
7698 Reads and returns the current value of DR3. This function is only available\r
030cd1a2 7699 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7700 x64.\r
ac644614 7701\r
7702 @return The value of Debug Register 3 (DR3).\r
7703\r
7704**/\r
7705UINTN\r
7706EFIAPI\r
7707AsmReadDr3 (\r
7708 VOID\r
7709 );\r
7710\r
7711\r
7712/**\r
7713 Reads the current value of Debug Register 4 (DR4).\r
7714\r
7715 Reads and returns the current value of DR4. This function is only available\r
030cd1a2 7716 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7717 x64.\r
ac644614 7718\r
7719 @return The value of Debug Register 4 (DR4).\r
7720\r
7721**/\r
7722UINTN\r
7723EFIAPI\r
7724AsmReadDr4 (\r
7725 VOID\r
7726 );\r
7727\r
7728\r
7729/**\r
7730 Reads the current value of Debug Register 5 (DR5).\r
7731\r
7732 Reads and returns the current value of DR5. This function is only available\r
030cd1a2 7733 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7734 x64.\r
ac644614 7735\r
7736 @return The value of Debug Register 5 (DR5).\r
7737\r
7738**/\r
7739UINTN\r
7740EFIAPI\r
7741AsmReadDr5 (\r
7742 VOID\r
7743 );\r
7744\r
7745\r
7746/**\r
7747 Reads the current value of Debug Register 6 (DR6).\r
7748\r
7749 Reads and returns the current value of DR6. This function is only available\r
030cd1a2 7750 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7751 x64.\r
ac644614 7752\r
7753 @return The value of Debug Register 6 (DR6).\r
7754\r
7755**/\r
7756UINTN\r
7757EFIAPI\r
7758AsmReadDr6 (\r
7759 VOID\r
7760 );\r
7761\r
7762\r
7763/**\r
7764 Reads the current value of Debug Register 7 (DR7).\r
7765\r
7766 Reads and returns the current value of DR7. This function is only available\r
030cd1a2 7767 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7768 x64.\r
ac644614 7769\r
7770 @return The value of Debug Register 7 (DR7).\r
7771\r
7772**/\r
7773UINTN\r
7774EFIAPI\r
7775AsmReadDr7 (\r
7776 VOID\r
7777 );\r
7778\r
7779\r
7780/**\r
7781 Writes a value to Debug Register 0 (DR0).\r
7782\r
7783 Writes and returns a new value to DR0. This function is only available on\r
030cd1a2 7784 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7785\r
7786 @param Dr0 The value to write to Dr0.\r
7787\r
7788 @return The value written to Debug Register 0 (DR0).\r
7789\r
7790**/\r
7791UINTN\r
7792EFIAPI\r
7793AsmWriteDr0 (\r
7794 UINTN Dr0\r
7795 );\r
7796\r
7797\r
7798/**\r
7799 Writes a value to Debug Register 1 (DR1).\r
7800\r
7801 Writes and returns a new value to DR1. This function is only available on\r
030cd1a2 7802 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7803\r
7804 @param Dr1 The value to write to Dr1.\r
7805\r
7806 @return The value written to Debug Register 1 (DR1).\r
7807\r
7808**/\r
7809UINTN\r
7810EFIAPI\r
7811AsmWriteDr1 (\r
7812 UINTN Dr1\r
7813 );\r
7814\r
7815\r
7816/**\r
7817 Writes a value to Debug Register 2 (DR2).\r
7818\r
7819 Writes and returns a new value to DR2. This function is only available on\r
030cd1a2 7820 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7821\r
7822 @param Dr2 The value to write to Dr2.\r
7823\r
7824 @return The value written to Debug Register 2 (DR2).\r
7825\r
7826**/\r
7827UINTN\r
7828EFIAPI\r
7829AsmWriteDr2 (\r
7830 UINTN Dr2\r
7831 );\r
7832\r
7833\r
7834/**\r
7835 Writes a value to Debug Register 3 (DR3).\r
7836\r
7837 Writes and returns a new value to DR3. This function is only available on\r
030cd1a2 7838 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7839\r
7840 @param Dr3 The value to write to Dr3.\r
7841\r
7842 @return The value written to Debug Register 3 (DR3).\r
7843\r
7844**/\r
7845UINTN\r
7846EFIAPI\r
7847AsmWriteDr3 (\r
7848 UINTN Dr3\r
7849 );\r
7850\r
7851\r
7852/**\r
7853 Writes a value to Debug Register 4 (DR4).\r
7854\r
7855 Writes and returns a new value to DR4. This function is only available on\r
030cd1a2 7856 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7857\r
7858 @param Dr4 The value to write to Dr4.\r
7859\r
7860 @return The value written to Debug Register 4 (DR4).\r
7861\r
7862**/\r
7863UINTN\r
7864EFIAPI\r
7865AsmWriteDr4 (\r
7866 UINTN Dr4\r
7867 );\r
7868\r
7869\r
7870/**\r
7871 Writes a value to Debug Register 5 (DR5).\r
7872\r
7873 Writes and returns a new value to DR5. This function is only available on\r
030cd1a2 7874 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7875\r
7876 @param Dr5 The value to write to Dr5.\r
7877\r
7878 @return The value written to Debug Register 5 (DR5).\r
7879\r
7880**/\r
7881UINTN\r
7882EFIAPI\r
7883AsmWriteDr5 (\r
7884 UINTN Dr5\r
7885 );\r
7886\r
7887\r
7888/**\r
7889 Writes a value to Debug Register 6 (DR6).\r
7890\r
7891 Writes and returns a new value to DR6. This function is only available on\r
030cd1a2 7892 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7893\r
7894 @param Dr6 The value to write to Dr6.\r
7895\r
7896 @return The value written to Debug Register 6 (DR6).\r
7897\r
7898**/\r
7899UINTN\r
7900EFIAPI\r
7901AsmWriteDr6 (\r
7902 UINTN Dr6\r
7903 );\r
7904\r
7905\r
7906/**\r
7907 Writes a value to Debug Register 7 (DR7).\r
7908\r
7909 Writes and returns a new value to DR7. This function is only available on\r
030cd1a2 7910 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7911\r
7912 @param Dr7 The value to write to Dr7.\r
7913\r
7914 @return The value written to Debug Register 7 (DR7).\r
7915\r
7916**/\r
7917UINTN\r
7918EFIAPI\r
7919AsmWriteDr7 (\r
7920 UINTN Dr7\r
7921 );\r
7922\r
7923\r
7924/**\r
7925 Reads the current value of Code Segment Register (CS).\r
7926\r
7927 Reads and returns the current value of CS. This function is only available on\r
030cd1a2 7928 IA-32 and x64.\r
ac644614 7929\r
7930 @return The current value of CS.\r
7931\r
7932**/\r
7933UINT16\r
7934EFIAPI\r
7935AsmReadCs (\r
7936 VOID\r
7937 );\r
7938\r
7939\r
7940/**\r
7941 Reads the current value of Data Segment Register (DS).\r
7942\r
7943 Reads and returns the current value of DS. This function is only available on\r
030cd1a2 7944 IA-32 and x64.\r
ac644614 7945\r
7946 @return The current value of DS.\r
7947\r
7948**/\r
7949UINT16\r
7950EFIAPI\r
7951AsmReadDs (\r
7952 VOID\r
7953 );\r
7954\r
7955\r
7956/**\r
7957 Reads the current value of Extra Segment Register (ES).\r
7958\r
7959 Reads and returns the current value of ES. This function is only available on\r
030cd1a2 7960 IA-32 and x64.\r
ac644614 7961\r
7962 @return The current value of ES.\r
7963\r
7964**/\r
7965UINT16\r
7966EFIAPI\r
7967AsmReadEs (\r
7968 VOID\r
7969 );\r
7970\r
7971\r
7972/**\r
7973 Reads the current value of FS Data Segment Register (FS).\r
7974\r
7975 Reads and returns the current value of FS. This function is only available on\r
030cd1a2 7976 IA-32 and x64.\r
ac644614 7977\r
7978 @return The current value of FS.\r
7979\r
7980**/\r
7981UINT16\r
7982EFIAPI\r
7983AsmReadFs (\r
7984 VOID\r
7985 );\r
7986\r
7987\r
7988/**\r
7989 Reads the current value of GS Data Segment Register (GS).\r
7990\r
7991 Reads and returns the current value of GS. This function is only available on\r
030cd1a2 7992 IA-32 and x64.\r
ac644614 7993\r
7994 @return The current value of GS.\r
7995\r
7996**/\r
7997UINT16\r
7998EFIAPI\r
7999AsmReadGs (\r
8000 VOID\r
8001 );\r
8002\r
8003\r
8004/**\r
8005 Reads the current value of Stack Segment Register (SS).\r
8006\r
8007 Reads and returns the current value of SS. This function is only available on\r
030cd1a2 8008 IA-32 and x64.\r
ac644614 8009\r
8010 @return The current value of SS.\r
8011\r
8012**/\r
8013UINT16\r
8014EFIAPI\r
8015AsmReadSs (\r
8016 VOID\r
8017 );\r
8018\r
8019\r
8020/**\r
8021 Reads the current value of Task Register (TR).\r
8022\r
8023 Reads and returns the current value of TR. This function is only available on\r
030cd1a2 8024 IA-32 and x64.\r
ac644614 8025\r
8026 @return The current value of TR.\r
8027\r
8028**/\r
8029UINT16\r
8030EFIAPI\r
8031AsmReadTr (\r
8032 VOID\r
8033 );\r
8034\r
8035\r
8036/**\r
8037 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
8038\r
8039 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
030cd1a2 8040 function is only available on IA-32 and x64.\r
ac644614 8041\r
8042 If Gdtr is NULL, then ASSERT().\r
8043\r
af2dc6a7 8044 @param Gdtr The pointer to a GDTR descriptor.\r
ac644614 8045\r
8046**/\r
8047VOID\r
8048EFIAPI\r
8049AsmReadGdtr (\r
8050 OUT IA32_DESCRIPTOR *Gdtr\r
8051 );\r
8052\r
8053\r
8054/**\r
8055 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
8056\r
8057 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
030cd1a2 8058 only available on IA-32 and x64.\r
ac644614 8059\r
8060 If Gdtr is NULL, then ASSERT().\r
8061\r
af2dc6a7 8062 @param Gdtr The pointer to a GDTR descriptor.\r
ac644614 8063\r
8064**/\r
8065VOID\r
8066EFIAPI\r
8067AsmWriteGdtr (\r
8068 IN CONST IA32_DESCRIPTOR *Gdtr\r
8069 );\r
8070\r
8071\r
8072/**\r
17f695ed 8073 Reads the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
ac644614 8074\r
8075 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
030cd1a2 8076 function is only available on IA-32 and x64.\r
ac644614 8077\r
8078 If Idtr is NULL, then ASSERT().\r
8079\r
af2dc6a7 8080 @param Idtr The pointer to a IDTR descriptor.\r
ac644614 8081\r
8082**/\r
8083VOID\r
8084EFIAPI\r
8085AsmReadIdtr (\r
8086 OUT IA32_DESCRIPTOR *Idtr\r
8087 );\r
8088\r
8089\r
8090/**\r
17f695ed 8091 Writes the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
ac644614 8092\r
8093 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
030cd1a2 8094 only available on IA-32 and x64.\r
ac644614 8095\r
8096 If Idtr is NULL, then ASSERT().\r
8097\r
af2dc6a7 8098 @param Idtr The pointer to a IDTR descriptor.\r
ac644614 8099\r
8100**/\r
8101VOID\r
8102EFIAPI\r
8103AsmWriteIdtr (\r
8104 IN CONST IA32_DESCRIPTOR *Idtr\r
8105 );\r
8106\r
8107\r
8108/**\r
8109 Reads the current Local Descriptor Table Register(LDTR) selector.\r
8110\r
8111 Reads and returns the current 16-bit LDTR descriptor value. This function is\r
030cd1a2 8112 only available on IA-32 and x64.\r
ac644614 8113\r
8114 @return The current selector of LDT.\r
8115\r
8116**/\r
8117UINT16\r
8118EFIAPI\r
8119AsmReadLdtr (\r
8120 VOID\r
8121 );\r
8122\r
8123\r
8124/**\r
17f695ed 8125 Writes the current Local Descriptor Table Register (LDTR) selector.\r
ac644614 8126\r
8127 Writes and the current LDTR descriptor specified by Ldtr. This function is\r
030cd1a2 8128 only available on IA-32 and x64.\r
ac644614 8129\r
8130 @param Ldtr 16-bit LDTR selector value.\r
8131\r
8132**/\r
8133VOID\r
8134EFIAPI\r
8135AsmWriteLdtr (\r
8136 IN UINT16 Ldtr\r
8137 );\r
8138\r
8139\r
8140/**\r
8141 Save the current floating point/SSE/SSE2 context to a buffer.\r
8142\r
8143 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
8144 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
030cd1a2 8145 available on IA-32 and x64.\r
ac644614 8146\r
8147 If Buffer is NULL, then ASSERT().\r
8148 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
8149\r
af2dc6a7 8150 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
ac644614 8151\r
8152**/\r
8153VOID\r
8154EFIAPI\r
8155AsmFxSave (\r
8156 OUT IA32_FX_BUFFER *Buffer\r
8157 );\r
8158\r
8159\r
8160/**\r
8161 Restores the current floating point/SSE/SSE2 context from a buffer.\r
8162\r
8163 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
8164 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
030cd1a2 8165 only available on IA-32 and x64.\r
ac644614 8166\r
8167 If Buffer is NULL, then ASSERT().\r
8168 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
8169 If Buffer was not saved with AsmFxSave(), then ASSERT().\r
8170\r
af2dc6a7 8171 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
ac644614 8172\r
8173**/\r
8174VOID\r
8175EFIAPI\r
8176AsmFxRestore (\r
8177 IN CONST IA32_FX_BUFFER *Buffer\r
8178 );\r
8179\r
8180\r
8181/**\r
8182 Reads the current value of 64-bit MMX Register #0 (MM0).\r
8183\r
8184 Reads and returns the current value of MM0. This function is only available\r
030cd1a2 8185 on IA-32 and x64.\r
ac644614 8186\r
8187 @return The current value of MM0.\r
8188\r
8189**/\r
8190UINT64\r
8191EFIAPI\r
8192AsmReadMm0 (\r
8193 VOID\r
8194 );\r
8195\r
8196\r
8197/**\r
8198 Reads the current value of 64-bit MMX Register #1 (MM1).\r
8199\r
8200 Reads and returns the current value of MM1. This function is only available\r
030cd1a2 8201 on IA-32 and x64.\r
ac644614 8202\r
8203 @return The current value of MM1.\r
8204\r
8205**/\r
8206UINT64\r
8207EFIAPI\r
8208AsmReadMm1 (\r
8209 VOID\r
8210 );\r
8211\r
8212\r
8213/**\r
8214 Reads the current value of 64-bit MMX Register #2 (MM2).\r
8215\r
8216 Reads and returns the current value of MM2. This function is only available\r
030cd1a2 8217 on IA-32 and x64.\r
ac644614 8218\r
8219 @return The current value of MM2.\r
8220\r
8221**/\r
8222UINT64\r
8223EFIAPI\r
8224AsmReadMm2 (\r
8225 VOID\r
8226 );\r
8227\r
8228\r
8229/**\r
8230 Reads the current value of 64-bit MMX Register #3 (MM3).\r
8231\r
8232 Reads and returns the current value of MM3. This function is only available\r
030cd1a2 8233 on IA-32 and x64.\r
ac644614 8234\r
8235 @return The current value of MM3.\r
8236\r
8237**/\r
8238UINT64\r
8239EFIAPI\r
8240AsmReadMm3 (\r
8241 VOID\r
8242 );\r
8243\r
8244\r
8245/**\r
8246 Reads the current value of 64-bit MMX Register #4 (MM4).\r
8247\r
8248 Reads and returns the current value of MM4. This function is only available\r
030cd1a2 8249 on IA-32 and x64.\r
ac644614 8250\r
8251 @return The current value of MM4.\r
8252\r
8253**/\r
8254UINT64\r
8255EFIAPI\r
8256AsmReadMm4 (\r
8257 VOID\r
8258 );\r
8259\r
8260\r
8261/**\r
8262 Reads the current value of 64-bit MMX Register #5 (MM5).\r
8263\r
8264 Reads and returns the current value of MM5. This function is only available\r
030cd1a2 8265 on IA-32 and x64.\r
ac644614 8266\r
8267 @return The current value of MM5.\r
8268\r
8269**/\r
8270UINT64\r
8271EFIAPI\r
8272AsmReadMm5 (\r
8273 VOID\r
8274 );\r
8275\r
8276\r
8277/**\r
8278 Reads the current value of 64-bit MMX Register #6 (MM6).\r
8279\r
8280 Reads and returns the current value of MM6. This function is only available\r
030cd1a2 8281 on IA-32 and x64.\r
ac644614 8282\r
8283 @return The current value of MM6.\r
8284\r
8285**/\r
8286UINT64\r
8287EFIAPI\r
8288AsmReadMm6 (\r
8289 VOID\r
8290 );\r
8291\r
8292\r
8293/**\r
8294 Reads the current value of 64-bit MMX Register #7 (MM7).\r
8295\r
8296 Reads and returns the current value of MM7. This function is only available\r
030cd1a2 8297 on IA-32 and x64.\r
ac644614 8298\r
8299 @return The current value of MM7.\r
8300\r
8301**/\r
8302UINT64\r
8303EFIAPI\r
8304AsmReadMm7 (\r
8305 VOID\r
8306 );\r
8307\r
8308\r
8309/**\r
8310 Writes the current value of 64-bit MMX Register #0 (MM0).\r
8311\r
8312 Writes the current value of MM0. This function is only available on IA32 and\r
030cd1a2 8313 x64.\r
ac644614 8314\r
8315 @param Value The 64-bit value to write to MM0.\r
8316\r
8317**/\r
8318VOID\r
8319EFIAPI\r
8320AsmWriteMm0 (\r
8321 IN UINT64 Value\r
8322 );\r
8323\r
8324\r
8325/**\r
8326 Writes the current value of 64-bit MMX Register #1 (MM1).\r
8327\r
8328 Writes the current value of MM1. This function is only available on IA32 and\r
030cd1a2 8329 x64.\r
ac644614 8330\r
8331 @param Value The 64-bit value to write to MM1.\r
8332\r
8333**/\r
8334VOID\r
8335EFIAPI\r
8336AsmWriteMm1 (\r
8337 IN UINT64 Value\r
8338 );\r
8339\r
8340\r
8341/**\r
8342 Writes the current value of 64-bit MMX Register #2 (MM2).\r
8343\r
8344 Writes the current value of MM2. This function is only available on IA32 and\r
030cd1a2 8345 x64.\r
ac644614 8346\r
8347 @param Value The 64-bit value to write to MM2.\r
8348\r
8349**/\r
8350VOID\r
8351EFIAPI\r
8352AsmWriteMm2 (\r
8353 IN UINT64 Value\r
8354 );\r
8355\r
8356\r
8357/**\r
8358 Writes the current value of 64-bit MMX Register #3 (MM3).\r
8359\r
8360 Writes the current value of MM3. This function is only available on IA32 and\r
030cd1a2 8361 x64.\r
ac644614 8362\r
8363 @param Value The 64-bit value to write to MM3.\r
8364\r
8365**/\r
8366VOID\r
8367EFIAPI\r
8368AsmWriteMm3 (\r
8369 IN UINT64 Value\r
8370 );\r
8371\r
8372\r
8373/**\r
8374 Writes the current value of 64-bit MMX Register #4 (MM4).\r
8375\r
8376 Writes the current value of MM4. This function is only available on IA32 and\r
030cd1a2 8377 x64.\r
ac644614 8378\r
8379 @param Value The 64-bit value to write to MM4.\r
8380\r
8381**/\r
8382VOID\r
8383EFIAPI\r
8384AsmWriteMm4 (\r
8385 IN UINT64 Value\r
8386 );\r
8387\r
8388\r
8389/**\r
8390 Writes the current value of 64-bit MMX Register #5 (MM5).\r
8391\r
8392 Writes the current value of MM5. This function is only available on IA32 and\r
030cd1a2 8393 x64.\r
ac644614 8394\r
8395 @param Value The 64-bit value to write to MM5.\r
8396\r
8397**/\r
8398VOID\r
8399EFIAPI\r
8400AsmWriteMm5 (\r
8401 IN UINT64 Value\r
8402 );\r
8403\r
8404\r
8405/**\r
8406 Writes the current value of 64-bit MMX Register #6 (MM6).\r
8407\r
8408 Writes the current value of MM6. This function is only available on IA32 and\r
030cd1a2 8409 x64.\r
ac644614 8410\r
8411 @param Value The 64-bit value to write to MM6.\r
8412\r
8413**/\r
8414VOID\r
8415EFIAPI\r
8416AsmWriteMm6 (\r
8417 IN UINT64 Value\r
8418 );\r
8419\r
8420\r
8421/**\r
8422 Writes the current value of 64-bit MMX Register #7 (MM7).\r
8423\r
8424 Writes the current value of MM7. This function is only available on IA32 and\r
030cd1a2 8425 x64.\r
ac644614 8426\r
8427 @param Value The 64-bit value to write to MM7.\r
8428\r
8429**/\r
8430VOID\r
8431EFIAPI\r
8432AsmWriteMm7 (\r
8433 IN UINT64 Value\r
8434 );\r
8435\r
8436\r
8437/**\r
8438 Reads the current value of Time Stamp Counter (TSC).\r
8439\r
8440 Reads and returns the current value of TSC. This function is only available\r
030cd1a2 8441 on IA-32 and x64.\r
ac644614 8442\r
8443 @return The current value of TSC\r
8444\r
8445**/\r
8446UINT64\r
8447EFIAPI\r
8448AsmReadTsc (\r
8449 VOID\r
8450 );\r
8451\r
8452\r
8453/**\r
8454 Reads the current value of a Performance Counter (PMC).\r
8455\r
8456 Reads and returns the current value of performance counter specified by\r
030cd1a2 8457 Index. This function is only available on IA-32 and x64.\r
ac644614 8458\r
8459 @param Index The 32-bit Performance Counter index to read.\r
8460\r
8461 @return The value of the PMC specified by Index.\r
8462\r
8463**/\r
8464UINT64\r
8465EFIAPI\r
8466AsmReadPmc (\r
8467 IN UINT32 Index\r
8468 );\r
8469\r
8470\r
8471/**\r
8472 Sets up a monitor buffer that is used by AsmMwait().\r
8473\r
8474 Executes a MONITOR instruction with the register state specified by Eax, Ecx\r
030cd1a2 8475 and Edx. Returns Eax. This function is only available on IA-32 and x64.\r
ac644614 8476\r
8477 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
8478 instruction.\r
8479 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
8480 instruction.\r
8481 @param Edx The value to load into EDX or RDX before executing the MONITOR\r
8482 instruction.\r
8483\r
8484 @return Eax\r
8485\r
8486**/\r
8487UINTN\r
8488EFIAPI\r
8489AsmMonitor (\r
8490 IN UINTN Eax,\r
8491 IN UINTN Ecx,\r
8492 IN UINTN Edx\r
8493 );\r
8494\r
8495\r
8496/**\r
8497 Executes an MWAIT instruction.\r
8498\r
8499 Executes an MWAIT instruction with the register state specified by Eax and\r
030cd1a2 8500 Ecx. Returns Eax. This function is only available on IA-32 and x64.\r
ac644614 8501\r
8502 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
8503 instruction.\r
8504 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
8505 instruction.\r
8506\r
8507 @return Eax\r
8508\r
8509**/\r
8510UINTN\r
8511EFIAPI\r
8512AsmMwait (\r
8513 IN UINTN Eax,\r
8514 IN UINTN Ecx\r
8515 );\r
8516\r
8517\r
8518/**\r
8519 Executes a WBINVD instruction.\r
8520\r
8521 Executes a WBINVD instruction. This function is only available on IA-32 and\r
030cd1a2 8522 x64.\r
ac644614 8523\r
8524**/\r
8525VOID\r
8526EFIAPI\r
8527AsmWbinvd (\r
8528 VOID\r
8529 );\r
8530\r
8531\r
8532/**\r
8533 Executes a INVD instruction.\r
8534\r
8535 Executes a INVD instruction. This function is only available on IA-32 and\r
030cd1a2 8536 x64.\r
ac644614 8537\r
8538**/\r
8539VOID\r
8540EFIAPI\r
8541AsmInvd (\r
8542 VOID\r
8543 );\r
8544\r
8545\r
8546/**\r
8547 Flushes a cache line from all the instruction and data caches within the\r
8548 coherency domain of the CPU.\r
8549\r
8550 Flushed the cache line specified by LinearAddress, and returns LinearAddress.\r
030cd1a2 8551 This function is only available on IA-32 and x64.\r
ac644614 8552\r
8553 @param LinearAddress The address of the cache line to flush. If the CPU is\r
8554 in a physical addressing mode, then LinearAddress is a\r
8555 physical address. If the CPU is in a virtual\r
8556 addressing mode, then LinearAddress is a virtual\r
8557 address.\r
8558\r
af2dc6a7 8559 @return LinearAddress.\r
ac644614 8560**/\r
8561VOID *\r
8562EFIAPI\r
8563AsmFlushCacheLine (\r
8564 IN VOID *LinearAddress\r
8565 );\r
8566\r
8567\r
8568/**\r
8569 Enables the 32-bit paging mode on the CPU.\r
8570\r
8571 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
8572 must be properly initialized prior to calling this service. This function\r
8573 assumes the current execution mode is 32-bit protected mode. This function is\r
8574 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
8575 transferred to the function specified by EntryPoint using the new stack\r
8576 specified by NewStack and passing in the parameters specified by Context1 and\r
8577 Context2. Context1 and Context2 are optional and may be NULL. The function\r
8578 EntryPoint must never return.\r
8579\r
8580 If the current execution mode is not 32-bit protected mode, then ASSERT().\r
8581 If EntryPoint is NULL, then ASSERT().\r
8582 If NewStack is NULL, then ASSERT().\r
8583\r
8584 There are a number of constraints that must be followed before calling this\r
8585 function:\r
8586 1) Interrupts must be disabled.\r
8587 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
8588 means all descriptors must have a base of 0 and a limit of 4GB.\r
8589 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
8590 descriptors.\r
8591 4) CR3 must point to valid page tables that will be used once the transition\r
8592 is complete, and those page tables must guarantee that the pages for this\r
8593 function and the stack are identity mapped.\r
8594\r
8595 @param EntryPoint A pointer to function to call with the new stack after\r
8596 paging is enabled.\r
8597 @param Context1 A pointer to the context to pass into the EntryPoint\r
8598 function as the first parameter after paging is enabled.\r
8599 @param Context2 A pointer to the context to pass into the EntryPoint\r
8600 function as the second parameter after paging is enabled.\r
8601 @param NewStack A pointer to the new stack to use for the EntryPoint\r
8602 function after paging is enabled.\r
8603\r
8604**/\r
8605VOID\r
8606EFIAPI\r
8607AsmEnablePaging32 (\r
8608 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
8609 IN VOID *Context1, OPTIONAL\r
8610 IN VOID *Context2, OPTIONAL\r
8611 IN VOID *NewStack\r
8612 );\r
8613\r
8614\r
8615/**\r
8616 Disables the 32-bit paging mode on the CPU.\r
8617\r
8618 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
8619 mode. This function assumes the current execution mode is 32-paged protected\r
8620 mode. This function is only available on IA-32. After the 32-bit paging mode\r
8621 is disabled, control is transferred to the function specified by EntryPoint\r
8622 using the new stack specified by NewStack and passing in the parameters\r
8623 specified by Context1 and Context2. Context1 and Context2 are optional and\r
8624 may be NULL. The function EntryPoint must never return.\r
8625\r
8626 If the current execution mode is not 32-bit paged mode, then ASSERT().\r
8627 If EntryPoint is NULL, then ASSERT().\r
8628 If NewStack is NULL, then ASSERT().\r
8629\r
8630 There are a number of constraints that must be followed before calling this\r
8631 function:\r
8632 1) Interrupts must be disabled.\r
8633 2) The caller must be in 32-bit paged mode.\r
8634 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
8635 4) CR3 must point to valid page tables that guarantee that the pages for\r
8636 this function and the stack are identity mapped.\r
8637\r
8638 @param EntryPoint A pointer to function to call with the new stack after\r
8639 paging is disabled.\r
8640 @param Context1 A pointer to the context to pass into the EntryPoint\r
8641 function as the first parameter after paging is disabled.\r
8642 @param Context2 A pointer to the context to pass into the EntryPoint\r
8643 function as the second parameter after paging is\r
8644 disabled.\r
8645 @param NewStack A pointer to the new stack to use for the EntryPoint\r
8646 function after paging is disabled.\r
8647\r
8648**/\r
8649VOID\r
8650EFIAPI\r
8651AsmDisablePaging32 (\r
8652 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
8653 IN VOID *Context1, OPTIONAL\r
8654 IN VOID *Context2, OPTIONAL\r
8655 IN VOID *NewStack\r
8656 );\r
8657\r
8658\r
8659/**\r
8660 Enables the 64-bit paging mode on the CPU.\r
8661\r
8662 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
8663 must be properly initialized prior to calling this service. This function\r
8664 assumes the current execution mode is 32-bit protected mode with flat\r
8665 descriptors. This function is only available on IA-32. After the 64-bit\r
8666 paging mode is enabled, control is transferred to the function specified by\r
8667 EntryPoint using the new stack specified by NewStack and passing in the\r
8668 parameters specified by Context1 and Context2. Context1 and Context2 are\r
8669 optional and may be 0. The function EntryPoint must never return.\r
8670\r
8671 If the current execution mode is not 32-bit protected mode with flat\r
8672 descriptors, then ASSERT().\r
8673 If EntryPoint is 0, then ASSERT().\r
8674 If NewStack is 0, then ASSERT().\r
8675\r
17f695ed 8676 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
ac644614 8677 is called. The descriptor in the GDT that this selector\r
8678 references must be setup for long mode.\r
8679 @param EntryPoint The 64-bit virtual address of the function to call with\r
8680 the new stack after paging is enabled.\r
8681 @param Context1 The 64-bit virtual address of the context to pass into\r
8682 the EntryPoint function as the first parameter after\r
8683 paging is enabled.\r
8684 @param Context2 The 64-bit virtual address of the context to pass into\r
8685 the EntryPoint function as the second parameter after\r
8686 paging is enabled.\r
8687 @param NewStack The 64-bit virtual address of the new stack to use for\r
8688 the EntryPoint function after paging is enabled.\r
8689\r
8690**/\r
8691VOID\r
8692EFIAPI\r
8693AsmEnablePaging64 (\r
17f695ed 8694 IN UINT16 Cs,\r
ac644614 8695 IN UINT64 EntryPoint,\r
8696 IN UINT64 Context1, OPTIONAL\r
8697 IN UINT64 Context2, OPTIONAL\r
8698 IN UINT64 NewStack\r
8699 );\r
8700\r
8701\r
8702/**\r
8703 Disables the 64-bit paging mode on the CPU.\r
8704\r
8705 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
8706 mode. This function assumes the current execution mode is 64-paging mode.\r
030cd1a2 8707 This function is only available on x64. After the 64-bit paging mode is\r
ac644614 8708 disabled, control is transferred to the function specified by EntryPoint\r
8709 using the new stack specified by NewStack and passing in the parameters\r
8710 specified by Context1 and Context2. Context1 and Context2 are optional and\r
8711 may be 0. The function EntryPoint must never return.\r
8712\r
8713 If the current execution mode is not 64-bit paged mode, then ASSERT().\r
8714 If EntryPoint is 0, then ASSERT().\r
8715 If NewStack is 0, then ASSERT().\r
8716\r
17f695ed 8717 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
ac644614 8718 is called. The descriptor in the GDT that this selector\r
8719 references must be setup for 32-bit protected mode.\r
8720 @param EntryPoint The 64-bit virtual address of the function to call with\r
8721 the new stack after paging is disabled.\r
8722 @param Context1 The 64-bit virtual address of the context to pass into\r
8723 the EntryPoint function as the first parameter after\r
8724 paging is disabled.\r
8725 @param Context2 The 64-bit virtual address of the context to pass into\r
8726 the EntryPoint function as the second parameter after\r
8727 paging is disabled.\r
8728 @param NewStack The 64-bit virtual address of the new stack to use for\r
8729 the EntryPoint function after paging is disabled.\r
8730\r
8731**/\r
8732VOID\r
8733EFIAPI\r
8734AsmDisablePaging64 (\r
17f695ed 8735 IN UINT16 Cs,\r
ac644614 8736 IN UINT32 EntryPoint,\r
8737 IN UINT32 Context1, OPTIONAL\r
8738 IN UINT32 Context2, OPTIONAL\r
8739 IN UINT32 NewStack\r
8740 );\r
8741\r
8742\r
8743//\r
8744// 16-bit thunking services\r
8745//\r
8746\r
8747/**\r
8748 Retrieves the properties for 16-bit thunk functions.\r
8749\r
8750 Computes the size of the buffer and stack below 1MB required to use the\r
8751 AsmPrepareThunk16(), AsmThunk16() and AsmPrepareAndThunk16() functions. This\r
8752 buffer size is returned in RealModeBufferSize, and the stack size is returned\r
8753 in ExtraStackSize. If parameters are passed to the 16-bit real mode code,\r
8754 then the actual minimum stack size is ExtraStackSize plus the maximum number\r
8755 of bytes that need to be passed to the 16-bit real mode code.\r
52fa075c 8756 \r
ac644614 8757 If RealModeBufferSize is NULL, then ASSERT().\r
8758 If ExtraStackSize is NULL, then ASSERT().\r
8759\r
8760 @param RealModeBufferSize A pointer to the size of the buffer below 1MB\r
8761 required to use the 16-bit thunk functions.\r
8762 @param ExtraStackSize A pointer to the extra size of stack below 1MB\r
8763 that the 16-bit thunk functions require for\r
8764 temporary storage in the transition to and from\r
8765 16-bit real mode.\r
8766\r
8767**/\r
8768VOID\r
8769EFIAPI\r
8770AsmGetThunk16Properties (\r
8771 OUT UINT32 *RealModeBufferSize,\r
8772 OUT UINT32 *ExtraStackSize\r
8773 );\r
8774\r
8775\r
8776/**\r
8777 Prepares all structures a code required to use AsmThunk16().\r
8778\r
8779 Prepares all structures and code required to use AsmThunk16().\r
52fa075c 8780 \r
8243b089 8781 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
8782 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
ac644614 8783\r
8784 If ThunkContext is NULL, then ASSERT().\r
8785\r
8786 @param ThunkContext A pointer to the context structure that describes the\r
8787 16-bit real mode code to call.\r
8788\r
8789**/\r
8790VOID\r
8791EFIAPI\r
8792AsmPrepareThunk16 (\r
1445300f 8793 IN OUT THUNK_CONTEXT *ThunkContext\r
ac644614 8794 );\r
8795\r
8796\r
8797/**\r
8798 Transfers control to a 16-bit real mode entry point and returns the results.\r
8799\r
8800 Transfers control to a 16-bit real mode entry point and returns the results.\r
17f695ed 8801 AsmPrepareThunk16() must be called with ThunkContext before this function is used.\r
8802 This function must be called with interrupts disabled.\r
8803\r
8804 The register state from the RealModeState field of ThunkContext is restored just prior \r
8805 to calling the 16-bit real mode entry point. This includes the EFLAGS field of RealModeState, \r
8806 which is used to set the interrupt state when a 16-bit real mode entry point is called.\r
8807 Control is transferred to the 16-bit real mode entry point specified by the CS and Eip fields of RealModeState.\r
8808 The stack is initialized to the SS and ESP fields of RealModeState. Any parameters passed to \r
8809 the 16-bit real mode code must be populated by the caller at SS:ESP prior to calling this function. \r
8810 The 16-bit real mode entry point is invoked with a 16-bit CALL FAR instruction,\r
8811 so when accessing stack contents, the 16-bit real mode code must account for the 16-bit segment \r
8812 and 16-bit offset of the return address that were pushed onto the stack. The 16-bit real mode entry \r
8813 point must exit with a RETF instruction. The register state is captured into RealModeState immediately \r
8814 after the RETF instruction is executed.\r
8815 \r
8816 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
8817 or any of the 16-bit real mode code makes a SW interrupt, then the caller is responsible for making sure \r
8818 the IDT at address 0 is initialized to handle any HW or SW interrupts that may occur while in 16-bit real mode. \r
8819 \r
8820 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
8821 then the caller is responsible for making sure the 8259 PIC is in a state compatible with 16-bit real mode. \r
8822 This includes the base vectors, the interrupt masks, and the edge/level trigger mode.\r
8823 \r
8824 If THUNK_ATTRIBUTE_BIG_REAL_MODE is set in the ThunkAttributes field of ThunkContext, then the user code \r
8825 is invoked in big real mode. Otherwise, the user code is invoked in 16-bit real mode with 64KB segment limits.\r
8826 \r
8827 If neither THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 nor THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
8828 ThunkAttributes, then it is assumed that the user code did not enable the A20 mask, and no attempt is made to \r
8829 disable the A20 mask.\r
8830 \r
8831 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is set and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is clear in \r
8832 ThunkAttributes, then attempt to use the INT 15 service to disable the A20 mask. If this INT 15 call fails, \r
8833 then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
8834 \r
8835 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is clear and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is set in \r
8836 ThunkAttributes, then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
8837 \r
ac644614 8838 If ThunkContext is NULL, then ASSERT().\r
8839 If AsmPrepareThunk16() was not previously called with ThunkContext, then ASSERT().\r
17f695ed 8840 If both THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
8841 ThunkAttributes, then ASSERT().\r
ac644614 8842\r
8243b089 8843 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
af2dc6a7 8844 virtual to physical mappings for ThunkContext.RealModeBuffer are mapped 1:1.\r
52fa075c 8845\r
ac644614 8846 @param ThunkContext A pointer to the context structure that describes the\r
8847 16-bit real mode code to call.\r
8848\r
8849**/\r
8850VOID\r
8851EFIAPI\r
8852AsmThunk16 (\r
8853 IN OUT THUNK_CONTEXT *ThunkContext\r
8854 );\r
8855\r
8856\r
8857/**\r
8858 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
8859 control to a 16-bit real mode entry point, and returns the results.\r
8860\r
8861 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
8862 control to a 16-bit real mode entry point, and returns the results. If the\r
8863 caller only need to perform a single 16-bit real mode thunk, then this\r
8864 service should be used. If the caller intends to make more than one 16-bit\r
8865 real mode thunk, then it is more efficient if AsmPrepareThunk16() is called\r
8866 once and AsmThunk16() can be called for each 16-bit real mode thunk.\r
8867\r
8243b089 8868 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
8869 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
52fa075c 8870\r
17f695ed 8871 See AsmPrepareThunk16() and AsmThunk16() for the detailed description and ASSERT() conditions.\r
ac644614 8872\r
8873 @param ThunkContext A pointer to the context structure that describes the\r
8874 16-bit real mode code to call.\r
8875\r
8876**/\r
8877VOID\r
8878EFIAPI\r
8879AsmPrepareAndThunk16 (\r
8880 IN OUT THUNK_CONTEXT *ThunkContext\r
8881 );\r
8882\r
3cfc7813
QL
8883/**\r
8884 Generates a 16-bit random number through RDRAND instruction.\r
8885\r
8886 if Rand is NULL, then ASSERT().\r
8887\r
8888 @param[out] Rand Buffer pointer to store the random result.\r
8889\r
8890 @retval TRUE RDRAND call was successful.\r
8891 @retval FALSE Failed attempts to call RDRAND.\r
8892\r
8893 **/\r
8894BOOLEAN\r
8895EFIAPI\r
8896AsmRdRand16 (\r
8897 OUT UINT16 *Rand\r
8898 );\r
8899\r
8900/**\r
8901 Generates a 32-bit random number through RDRAND instruction.\r
8902\r
8903 if Rand is NULL, then ASSERT().\r
8904\r
8905 @param[out] Rand Buffer pointer to store the random result.\r
8906\r
8907 @retval TRUE RDRAND call was successful.\r
8908 @retval FALSE Failed attempts to call RDRAND.\r
8909\r
8910**/\r
8911BOOLEAN\r
8912EFIAPI\r
8913AsmRdRand32 (\r
8914 OUT UINT32 *Rand\r
8915 );\r
8916\r
8917/**\r
8918 Generates a 64-bit random number through RDRAND instruction.\r
8919\r
8920 if Rand is NULL, then ASSERT().\r
8921\r
8922 @param[out] Rand Buffer pointer to store the random result.\r
8923\r
8924 @retval TRUE RDRAND call was successful.\r
8925 @retval FALSE Failed attempts to call RDRAND.\r
8926\r
8927**/\r
8928BOOLEAN\r
8929EFIAPI\r
8930AsmRdRand64 (\r
8931 OUT UINT64 *Rand\r
8932 );\r
8933\r
ac644614 8934#endif\r
e3a7917f 8935#endif\r
ac644614 8936\r
8937\r