]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
dentry_cmp(): use lockless_dereference() instead of smp_read_barrier_depends()
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
df4c0e36
AR
41#include <linux/kasan.h>
42
07f3f05c 43#include "internal.h"
b2dba1af 44#include "mount.h"
1da177e4 45
789680d1
NP
46/*
47 * Usage:
873feea0 48 * dcache->d_inode->i_lock protects:
946e51f2 49 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
19156840 54 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
b7ab39f6 60 * - d_count
da502956 61 * - d_unhashed()
2fd6b7f5
NP
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
946e51f2 64 * - d_u.d_alias, d_inode
789680d1
NP
65 *
66 * Ordering:
873feea0 67 * dentry->d_inode->i_lock
b5c84bf6 68 * dentry->d_lock
19156840 69 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
70 * dcache_hash_bucket lock
71 * s_anon lock
789680d1 72 *
da502956
NP
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
789680d1
NP
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
fa3536cc 84int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
74c3cbe3 87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 88
949854d0 89EXPORT_SYMBOL(rename_lock);
1da177e4 90
e18b890b 91static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 92
1da177e4
LT
93/*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
1da177e4 101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8966be90 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 108 unsigned int hash)
ceb5bdc2 109{
6d7d1a0d 110 hash += (unsigned long) parent / L1_CACHE_BYTES;
99d263d4 111 return dentry_hashtable + hash_32(hash, d_hash_shift);
ceb5bdc2
NP
112}
113
94bdd655
AV
114#define IN_LOOKUP_SHIFT 10
115static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
116
117static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
118 unsigned int hash)
119{
120 hash += (unsigned long) parent / L1_CACHE_BYTES;
121 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
122}
123
124
1da177e4
LT
125/* Statistics gathering. */
126struct dentry_stat_t dentry_stat = {
127 .age_limit = 45,
128};
129
3942c07c 130static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 131static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
132
133#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
134
135/*
136 * Here we resort to our own counters instead of using generic per-cpu counters
137 * for consistency with what the vfs inode code does. We are expected to harvest
138 * better code and performance by having our own specialized counters.
139 *
140 * Please note that the loop is done over all possible CPUs, not over all online
141 * CPUs. The reason for this is that we don't want to play games with CPUs going
142 * on and off. If one of them goes off, we will just keep their counters.
143 *
144 * glommer: See cffbc8a for details, and if you ever intend to change this,
145 * please update all vfs counters to match.
146 */
3942c07c 147static long get_nr_dentry(void)
3e880fb5
NP
148{
149 int i;
3942c07c 150 long sum = 0;
3e880fb5
NP
151 for_each_possible_cpu(i)
152 sum += per_cpu(nr_dentry, i);
153 return sum < 0 ? 0 : sum;
154}
155
62d36c77
DC
156static long get_nr_dentry_unused(void)
157{
158 int i;
159 long sum = 0;
160 for_each_possible_cpu(i)
161 sum += per_cpu(nr_dentry_unused, i);
162 return sum < 0 ? 0 : sum;
163}
164
1f7e0616 165int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
166 size_t *lenp, loff_t *ppos)
167{
3e880fb5 168 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 169 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 170 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
171}
172#endif
173
5483f18e
LT
174/*
175 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
176 * The strings are both count bytes long, and count is non-zero.
177 */
e419b4cc
LT
178#ifdef CONFIG_DCACHE_WORD_ACCESS
179
180#include <asm/word-at-a-time.h>
181/*
182 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
183 * aligned allocation for this particular component. We don't
184 * strictly need the load_unaligned_zeropad() safety, but it
185 * doesn't hurt either.
186 *
187 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
188 * need the careful unaligned handling.
189 */
94753db5 190static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 191{
bfcfaa77 192 unsigned long a,b,mask;
bfcfaa77
LT
193
194 for (;;) {
12f8ad4b 195 a = *(unsigned long *)cs;
e419b4cc 196 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
197 if (tcount < sizeof(unsigned long))
198 break;
199 if (unlikely(a != b))
200 return 1;
201 cs += sizeof(unsigned long);
202 ct += sizeof(unsigned long);
203 tcount -= sizeof(unsigned long);
204 if (!tcount)
205 return 0;
206 }
a5c21dce 207 mask = bytemask_from_count(tcount);
bfcfaa77 208 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
209}
210
bfcfaa77 211#else
e419b4cc 212
94753db5 213static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 214{
5483f18e
LT
215 do {
216 if (*cs != *ct)
217 return 1;
218 cs++;
219 ct++;
220 tcount--;
221 } while (tcount);
222 return 0;
223}
224
e419b4cc
LT
225#endif
226
94753db5
LT
227static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
228{
94753db5
LT
229 /*
230 * Be careful about RCU walk racing with rename:
ae0a843c 231 * use 'lockless_dereference' to fetch the name pointer.
94753db5
LT
232 *
233 * NOTE! Even if a rename will mean that the length
234 * was not loaded atomically, we don't care. The
235 * RCU walk will check the sequence count eventually,
236 * and catch it. And we won't overrun the buffer,
237 * because we're reading the name pointer atomically,
238 * and a dentry name is guaranteed to be properly
239 * terminated with a NUL byte.
240 *
241 * End result: even if 'len' is wrong, we'll exit
242 * early because the data cannot match (there can
243 * be no NUL in the ct/tcount data)
244 */
ae0a843c
HK
245 const unsigned char *cs = lockless_dereference(dentry->d_name.name);
246
6326c71f 247 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
248}
249
8d85b484
AV
250struct external_name {
251 union {
252 atomic_t count;
253 struct rcu_head head;
254 } u;
255 unsigned char name[];
256};
257
258static inline struct external_name *external_name(struct dentry *dentry)
259{
260 return container_of(dentry->d_name.name, struct external_name, name[0]);
261}
262
9c82ab9c 263static void __d_free(struct rcu_head *head)
1da177e4 264{
9c82ab9c
CH
265 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
266
8d85b484
AV
267 kmem_cache_free(dentry_cache, dentry);
268}
269
270static void __d_free_external(struct rcu_head *head)
271{
272 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 273 kfree(external_name(dentry));
1da177e4
LT
274 kmem_cache_free(dentry_cache, dentry);
275}
276
810bb172
AV
277static inline int dname_external(const struct dentry *dentry)
278{
279 return dentry->d_name.name != dentry->d_iname;
280}
281
4bf46a27
DH
282static inline void __d_set_inode_and_type(struct dentry *dentry,
283 struct inode *inode,
284 unsigned type_flags)
285{
286 unsigned flags;
287
288 dentry->d_inode = inode;
4bf46a27
DH
289 flags = READ_ONCE(dentry->d_flags);
290 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
291 flags |= type_flags;
292 WRITE_ONCE(dentry->d_flags, flags);
293}
294
4bf46a27
DH
295static inline void __d_clear_type_and_inode(struct dentry *dentry)
296{
297 unsigned flags = READ_ONCE(dentry->d_flags);
298
299 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
300 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
301 dentry->d_inode = NULL;
302}
303
b4f0354e
AV
304static void dentry_free(struct dentry *dentry)
305{
946e51f2 306 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
307 if (unlikely(dname_external(dentry))) {
308 struct external_name *p = external_name(dentry);
309 if (likely(atomic_dec_and_test(&p->u.count))) {
310 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
311 return;
312 }
313 }
b4f0354e
AV
314 /* if dentry was never visible to RCU, immediate free is OK */
315 if (!(dentry->d_flags & DCACHE_RCUACCESS))
316 __d_free(&dentry->d_u.d_rcu);
317 else
318 call_rcu(&dentry->d_u.d_rcu, __d_free);
319}
320
31e6b01f 321/**
a7c6f571 322 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
ff5fdb61 323 * @dentry: the target dentry
31e6b01f
NP
324 * After this call, in-progress rcu-walk path lookup will fail. This
325 * should be called after unhashing, and after changing d_inode (if
326 * the dentry has not already been unhashed).
327 */
a7c6f571 328static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
31e6b01f 329{
a7c6f571
PZ
330 lockdep_assert_held(&dentry->d_lock);
331 /* Go through am invalidation barrier */
332 write_seqcount_invalidate(&dentry->d_seq);
31e6b01f
NP
333}
334
1da177e4
LT
335/*
336 * Release the dentry's inode, using the filesystem
31e6b01f
NP
337 * d_iput() operation if defined. Dentry has no refcount
338 * and is unhashed.
1da177e4 339 */
858119e1 340static void dentry_iput(struct dentry * dentry)
31f3e0b3 341 __releases(dentry->d_lock)
873feea0 342 __releases(dentry->d_inode->i_lock)
1da177e4
LT
343{
344 struct inode *inode = dentry->d_inode;
345 if (inode) {
4bf46a27 346 __d_clear_type_and_inode(dentry);
946e51f2 347 hlist_del_init(&dentry->d_u.d_alias);
1da177e4 348 spin_unlock(&dentry->d_lock);
873feea0 349 spin_unlock(&inode->i_lock);
f805fbda
LT
350 if (!inode->i_nlink)
351 fsnotify_inoderemove(inode);
1da177e4
LT
352 if (dentry->d_op && dentry->d_op->d_iput)
353 dentry->d_op->d_iput(dentry, inode);
354 else
355 iput(inode);
356 } else {
357 spin_unlock(&dentry->d_lock);
1da177e4
LT
358 }
359}
360
31e6b01f
NP
361/*
362 * Release the dentry's inode, using the filesystem
363 * d_iput() operation if defined. dentry remains in-use.
364 */
365static void dentry_unlink_inode(struct dentry * dentry)
366 __releases(dentry->d_lock)
873feea0 367 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
368{
369 struct inode *inode = dentry->d_inode;
a528aca7
AV
370
371 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 372 __d_clear_type_and_inode(dentry);
946e51f2 373 hlist_del_init(&dentry->d_u.d_alias);
a528aca7 374 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 375 spin_unlock(&dentry->d_lock);
873feea0 376 spin_unlock(&inode->i_lock);
31e6b01f
NP
377 if (!inode->i_nlink)
378 fsnotify_inoderemove(inode);
379 if (dentry->d_op && dentry->d_op->d_iput)
380 dentry->d_op->d_iput(dentry, inode);
381 else
382 iput(inode);
383}
384
89dc77bc
LT
385/*
386 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
387 * is in use - which includes both the "real" per-superblock
388 * LRU list _and_ the DCACHE_SHRINK_LIST use.
389 *
390 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
391 * on the shrink list (ie not on the superblock LRU list).
392 *
393 * The per-cpu "nr_dentry_unused" counters are updated with
394 * the DCACHE_LRU_LIST bit.
395 *
396 * These helper functions make sure we always follow the
397 * rules. d_lock must be held by the caller.
398 */
399#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
400static void d_lru_add(struct dentry *dentry)
401{
402 D_FLAG_VERIFY(dentry, 0);
403 dentry->d_flags |= DCACHE_LRU_LIST;
404 this_cpu_inc(nr_dentry_unused);
405 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
406}
407
408static void d_lru_del(struct dentry *dentry)
409{
410 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
411 dentry->d_flags &= ~DCACHE_LRU_LIST;
412 this_cpu_dec(nr_dentry_unused);
413 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
414}
415
416static void d_shrink_del(struct dentry *dentry)
417{
418 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
419 list_del_init(&dentry->d_lru);
420 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
421 this_cpu_dec(nr_dentry_unused);
422}
423
424static void d_shrink_add(struct dentry *dentry, struct list_head *list)
425{
426 D_FLAG_VERIFY(dentry, 0);
427 list_add(&dentry->d_lru, list);
428 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
429 this_cpu_inc(nr_dentry_unused);
430}
431
432/*
433 * These can only be called under the global LRU lock, ie during the
434 * callback for freeing the LRU list. "isolate" removes it from the
435 * LRU lists entirely, while shrink_move moves it to the indicated
436 * private list.
437 */
3f97b163 438static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
439{
440 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441 dentry->d_flags &= ~DCACHE_LRU_LIST;
442 this_cpu_dec(nr_dentry_unused);
3f97b163 443 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
444}
445
3f97b163
VD
446static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
447 struct list_head *list)
89dc77bc
LT
448{
449 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
450 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 451 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
452}
453
da3bbdd4 454/*
f6041567 455 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
456 */
457static void dentry_lru_add(struct dentry *dentry)
458{
89dc77bc
LT
459 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
460 d_lru_add(dentry);
da3bbdd4
KM
461}
462
789680d1
NP
463/**
464 * d_drop - drop a dentry
465 * @dentry: dentry to drop
466 *
467 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
468 * be found through a VFS lookup any more. Note that this is different from
469 * deleting the dentry - d_delete will try to mark the dentry negative if
470 * possible, giving a successful _negative_ lookup, while d_drop will
471 * just make the cache lookup fail.
472 *
473 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
474 * reason (NFS timeouts or autofs deletes).
475 *
476 * __d_drop requires dentry->d_lock.
477 */
478void __d_drop(struct dentry *dentry)
479{
dea3667b 480 if (!d_unhashed(dentry)) {
b61625d2 481 struct hlist_bl_head *b;
7632e465
BF
482 /*
483 * Hashed dentries are normally on the dentry hashtable,
484 * with the exception of those newly allocated by
485 * d_obtain_alias, which are always IS_ROOT:
486 */
487 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
488 b = &dentry->d_sb->s_anon;
489 else
490 b = d_hash(dentry->d_parent, dentry->d_name.hash);
491
492 hlist_bl_lock(b);
493 __hlist_bl_del(&dentry->d_hash);
494 dentry->d_hash.pprev = NULL;
495 hlist_bl_unlock(b);
a7c6f571 496 dentry_rcuwalk_invalidate(dentry);
789680d1
NP
497 }
498}
499EXPORT_SYMBOL(__d_drop);
500
501void d_drop(struct dentry *dentry)
502{
789680d1
NP
503 spin_lock(&dentry->d_lock);
504 __d_drop(dentry);
505 spin_unlock(&dentry->d_lock);
789680d1
NP
506}
507EXPORT_SYMBOL(d_drop);
508
ba65dc5e
AV
509static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
510{
511 struct dentry *next;
512 /*
513 * Inform d_walk() and shrink_dentry_list() that we are no longer
514 * attached to the dentry tree
515 */
516 dentry->d_flags |= DCACHE_DENTRY_KILLED;
517 if (unlikely(list_empty(&dentry->d_child)))
518 return;
519 __list_del_entry(&dentry->d_child);
520 /*
521 * Cursors can move around the list of children. While we'd been
522 * a normal list member, it didn't matter - ->d_child.next would've
523 * been updated. However, from now on it won't be and for the
524 * things like d_walk() it might end up with a nasty surprise.
525 * Normally d_walk() doesn't care about cursors moving around -
526 * ->d_lock on parent prevents that and since a cursor has no children
527 * of its own, we get through it without ever unlocking the parent.
528 * There is one exception, though - if we ascend from a child that
529 * gets killed as soon as we unlock it, the next sibling is found
530 * using the value left in its ->d_child.next. And if _that_
531 * pointed to a cursor, and cursor got moved (e.g. by lseek())
532 * before d_walk() regains parent->d_lock, we'll end up skipping
533 * everything the cursor had been moved past.
534 *
535 * Solution: make sure that the pointer left behind in ->d_child.next
536 * points to something that won't be moving around. I.e. skip the
537 * cursors.
538 */
539 while (dentry->d_child.next != &parent->d_subdirs) {
540 next = list_entry(dentry->d_child.next, struct dentry, d_child);
541 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
542 break;
543 dentry->d_child.next = next->d_child.next;
544 }
545}
546
e55fd011 547static void __dentry_kill(struct dentry *dentry)
77812a1e 548{
41edf278
AV
549 struct dentry *parent = NULL;
550 bool can_free = true;
41edf278 551 if (!IS_ROOT(dentry))
77812a1e 552 parent = dentry->d_parent;
31e6b01f 553
0d98439e
LT
554 /*
555 * The dentry is now unrecoverably dead to the world.
556 */
557 lockref_mark_dead(&dentry->d_lockref);
558
f0023bc6 559 /*
f0023bc6
SW
560 * inform the fs via d_prune that this dentry is about to be
561 * unhashed and destroyed.
562 */
29266201 563 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
564 dentry->d_op->d_prune(dentry);
565
01b60351
AV
566 if (dentry->d_flags & DCACHE_LRU_LIST) {
567 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
568 d_lru_del(dentry);
01b60351 569 }
77812a1e
NP
570 /* if it was on the hash then remove it */
571 __d_drop(dentry);
ba65dc5e 572 dentry_unlist(dentry, parent);
03b3b889
AV
573 if (parent)
574 spin_unlock(&parent->d_lock);
575 dentry_iput(dentry);
576 /*
577 * dentry_iput drops the locks, at which point nobody (except
578 * transient RCU lookups) can reach this dentry.
579 */
360f5479 580 BUG_ON(dentry->d_lockref.count > 0);
03b3b889
AV
581 this_cpu_dec(nr_dentry);
582 if (dentry->d_op && dentry->d_op->d_release)
583 dentry->d_op->d_release(dentry);
584
41edf278
AV
585 spin_lock(&dentry->d_lock);
586 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
587 dentry->d_flags |= DCACHE_MAY_FREE;
588 can_free = false;
589 }
590 spin_unlock(&dentry->d_lock);
41edf278
AV
591 if (likely(can_free))
592 dentry_free(dentry);
e55fd011
AV
593}
594
595/*
596 * Finish off a dentry we've decided to kill.
597 * dentry->d_lock must be held, returns with it unlocked.
598 * If ref is non-zero, then decrement the refcount too.
599 * Returns dentry requiring refcount drop, or NULL if we're done.
600 */
8cbf74da 601static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
602 __releases(dentry->d_lock)
603{
604 struct inode *inode = dentry->d_inode;
605 struct dentry *parent = NULL;
606
607 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
608 goto failed;
609
610 if (!IS_ROOT(dentry)) {
611 parent = dentry->d_parent;
612 if (unlikely(!spin_trylock(&parent->d_lock))) {
613 if (inode)
614 spin_unlock(&inode->i_lock);
615 goto failed;
616 }
617 }
618
619 __dentry_kill(dentry);
03b3b889 620 return parent;
e55fd011
AV
621
622failed:
8cbf74da
AV
623 spin_unlock(&dentry->d_lock);
624 cpu_relax();
e55fd011 625 return dentry; /* try again with same dentry */
77812a1e
NP
626}
627
046b961b
AV
628static inline struct dentry *lock_parent(struct dentry *dentry)
629{
630 struct dentry *parent = dentry->d_parent;
631 if (IS_ROOT(dentry))
632 return NULL;
360f5479 633 if (unlikely(dentry->d_lockref.count < 0))
c2338f2d 634 return NULL;
046b961b
AV
635 if (likely(spin_trylock(&parent->d_lock)))
636 return parent;
046b961b 637 rcu_read_lock();
c2338f2d 638 spin_unlock(&dentry->d_lock);
046b961b
AV
639again:
640 parent = ACCESS_ONCE(dentry->d_parent);
641 spin_lock(&parent->d_lock);
642 /*
643 * We can't blindly lock dentry until we are sure
644 * that we won't violate the locking order.
645 * Any changes of dentry->d_parent must have
646 * been done with parent->d_lock held, so
647 * spin_lock() above is enough of a barrier
648 * for checking if it's still our child.
649 */
650 if (unlikely(parent != dentry->d_parent)) {
651 spin_unlock(&parent->d_lock);
652 goto again;
653 }
654 rcu_read_unlock();
655 if (parent != dentry)
9f12600f 656 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
657 else
658 parent = NULL;
659 return parent;
660}
661
360f5479
LT
662/*
663 * Try to do a lockless dput(), and return whether that was successful.
664 *
665 * If unsuccessful, we return false, having already taken the dentry lock.
666 *
667 * The caller needs to hold the RCU read lock, so that the dentry is
668 * guaranteed to stay around even if the refcount goes down to zero!
669 */
670static inline bool fast_dput(struct dentry *dentry)
671{
672 int ret;
673 unsigned int d_flags;
674
675 /*
676 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 677 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
678 */
679 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
680 return lockref_put_or_lock(&dentry->d_lockref);
681
682 /*
683 * .. otherwise, we can try to just decrement the
684 * lockref optimistically.
685 */
686 ret = lockref_put_return(&dentry->d_lockref);
687
688 /*
689 * If the lockref_put_return() failed due to the lock being held
690 * by somebody else, the fast path has failed. We will need to
691 * get the lock, and then check the count again.
692 */
693 if (unlikely(ret < 0)) {
694 spin_lock(&dentry->d_lock);
695 if (dentry->d_lockref.count > 1) {
696 dentry->d_lockref.count--;
697 spin_unlock(&dentry->d_lock);
698 return 1;
699 }
700 return 0;
701 }
702
703 /*
704 * If we weren't the last ref, we're done.
705 */
706 if (ret)
707 return 1;
708
709 /*
710 * Careful, careful. The reference count went down
711 * to zero, but we don't hold the dentry lock, so
712 * somebody else could get it again, and do another
713 * dput(), and we need to not race with that.
714 *
715 * However, there is a very special and common case
716 * where we don't care, because there is nothing to
717 * do: the dentry is still hashed, it does not have
718 * a 'delete' op, and it's referenced and already on
719 * the LRU list.
720 *
721 * NOTE! Since we aren't locked, these values are
722 * not "stable". However, it is sufficient that at
723 * some point after we dropped the reference the
724 * dentry was hashed and the flags had the proper
725 * value. Other dentry users may have re-gotten
726 * a reference to the dentry and change that, but
727 * our work is done - we can leave the dentry
728 * around with a zero refcount.
729 */
730 smp_rmb();
731 d_flags = ACCESS_ONCE(dentry->d_flags);
75a6f82a 732 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
733
734 /* Nothing to do? Dropping the reference was all we needed? */
735 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
736 return 1;
737
738 /*
739 * Not the fast normal case? Get the lock. We've already decremented
740 * the refcount, but we'll need to re-check the situation after
741 * getting the lock.
742 */
743 spin_lock(&dentry->d_lock);
744
745 /*
746 * Did somebody else grab a reference to it in the meantime, and
747 * we're no longer the last user after all? Alternatively, somebody
748 * else could have killed it and marked it dead. Either way, we
749 * don't need to do anything else.
750 */
751 if (dentry->d_lockref.count) {
752 spin_unlock(&dentry->d_lock);
753 return 1;
754 }
755
756 /*
757 * Re-get the reference we optimistically dropped. We hold the
758 * lock, and we just tested that it was zero, so we can just
759 * set it to 1.
760 */
761 dentry->d_lockref.count = 1;
762 return 0;
763}
764
765
1da177e4
LT
766/*
767 * This is dput
768 *
769 * This is complicated by the fact that we do not want to put
770 * dentries that are no longer on any hash chain on the unused
771 * list: we'd much rather just get rid of them immediately.
772 *
773 * However, that implies that we have to traverse the dentry
774 * tree upwards to the parents which might _also_ now be
775 * scheduled for deletion (it may have been only waiting for
776 * its last child to go away).
777 *
778 * This tail recursion is done by hand as we don't want to depend
779 * on the compiler to always get this right (gcc generally doesn't).
780 * Real recursion would eat up our stack space.
781 */
782
783/*
784 * dput - release a dentry
785 * @dentry: dentry to release
786 *
787 * Release a dentry. This will drop the usage count and if appropriate
788 * call the dentry unlink method as well as removing it from the queues and
789 * releasing its resources. If the parent dentries were scheduled for release
790 * they too may now get deleted.
1da177e4 791 */
1da177e4
LT
792void dput(struct dentry *dentry)
793{
8aab6a27 794 if (unlikely(!dentry))
1da177e4
LT
795 return;
796
797repeat:
360f5479
LT
798 rcu_read_lock();
799 if (likely(fast_dput(dentry))) {
800 rcu_read_unlock();
1da177e4 801 return;
360f5479
LT
802 }
803
804 /* Slow case: now with the dentry lock held */
805 rcu_read_unlock();
1da177e4 806
85c7f810
AV
807 WARN_ON(d_in_lookup(dentry));
808
8aab6a27
LT
809 /* Unreachable? Get rid of it */
810 if (unlikely(d_unhashed(dentry)))
811 goto kill_it;
812
75a6f82a
AV
813 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
814 goto kill_it;
815
8aab6a27 816 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 817 if (dentry->d_op->d_delete(dentry))
61f3dee4 818 goto kill_it;
1da177e4 819 }
265ac902 820
358eec18
LT
821 if (!(dentry->d_flags & DCACHE_REFERENCED))
822 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 823 dentry_lru_add(dentry);
265ac902 824
98474236 825 dentry->d_lockref.count--;
61f3dee4 826 spin_unlock(&dentry->d_lock);
1da177e4
LT
827 return;
828
d52b9086 829kill_it:
8cbf74da 830 dentry = dentry_kill(dentry);
d52b9086
MS
831 if (dentry)
832 goto repeat;
1da177e4 833}
ec4f8605 834EXPORT_SYMBOL(dput);
1da177e4 835
1da177e4 836
b5c84bf6 837/* This must be called with d_lock held */
dc0474be 838static inline void __dget_dlock(struct dentry *dentry)
23044507 839{
98474236 840 dentry->d_lockref.count++;
23044507
NP
841}
842
dc0474be 843static inline void __dget(struct dentry *dentry)
1da177e4 844{
98474236 845 lockref_get(&dentry->d_lockref);
1da177e4
LT
846}
847
b7ab39f6
NP
848struct dentry *dget_parent(struct dentry *dentry)
849{
df3d0bbc 850 int gotref;
b7ab39f6
NP
851 struct dentry *ret;
852
df3d0bbc
WL
853 /*
854 * Do optimistic parent lookup without any
855 * locking.
856 */
857 rcu_read_lock();
858 ret = ACCESS_ONCE(dentry->d_parent);
859 gotref = lockref_get_not_zero(&ret->d_lockref);
860 rcu_read_unlock();
861 if (likely(gotref)) {
862 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
863 return ret;
864 dput(ret);
865 }
866
b7ab39f6 867repeat:
a734eb45
NP
868 /*
869 * Don't need rcu_dereference because we re-check it was correct under
870 * the lock.
871 */
872 rcu_read_lock();
b7ab39f6 873 ret = dentry->d_parent;
a734eb45
NP
874 spin_lock(&ret->d_lock);
875 if (unlikely(ret != dentry->d_parent)) {
876 spin_unlock(&ret->d_lock);
877 rcu_read_unlock();
b7ab39f6
NP
878 goto repeat;
879 }
a734eb45 880 rcu_read_unlock();
98474236
WL
881 BUG_ON(!ret->d_lockref.count);
882 ret->d_lockref.count++;
b7ab39f6 883 spin_unlock(&ret->d_lock);
b7ab39f6
NP
884 return ret;
885}
886EXPORT_SYMBOL(dget_parent);
887
1da177e4
LT
888/**
889 * d_find_alias - grab a hashed alias of inode
890 * @inode: inode in question
1da177e4
LT
891 *
892 * If inode has a hashed alias, or is a directory and has any alias,
893 * acquire the reference to alias and return it. Otherwise return NULL.
894 * Notice that if inode is a directory there can be only one alias and
895 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
896 * of a filesystem, or if the directory was renamed and d_revalidate
897 * was the first vfs operation to notice.
1da177e4 898 *
21c0d8fd 899 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 900 * any other hashed alias over that one.
1da177e4 901 */
52ed46f0 902static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 903{
da502956 904 struct dentry *alias, *discon_alias;
1da177e4 905
da502956
NP
906again:
907 discon_alias = NULL;
946e51f2 908 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 909 spin_lock(&alias->d_lock);
1da177e4 910 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 911 if (IS_ROOT(alias) &&
da502956 912 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 913 discon_alias = alias;
52ed46f0 914 } else {
dc0474be 915 __dget_dlock(alias);
da502956
NP
916 spin_unlock(&alias->d_lock);
917 return alias;
918 }
919 }
920 spin_unlock(&alias->d_lock);
921 }
922 if (discon_alias) {
923 alias = discon_alias;
924 spin_lock(&alias->d_lock);
925 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
926 __dget_dlock(alias);
927 spin_unlock(&alias->d_lock);
928 return alias;
1da177e4 929 }
da502956
NP
930 spin_unlock(&alias->d_lock);
931 goto again;
1da177e4 932 }
da502956 933 return NULL;
1da177e4
LT
934}
935
da502956 936struct dentry *d_find_alias(struct inode *inode)
1da177e4 937{
214fda1f
DH
938 struct dentry *de = NULL;
939
b3d9b7a3 940 if (!hlist_empty(&inode->i_dentry)) {
873feea0 941 spin_lock(&inode->i_lock);
52ed46f0 942 de = __d_find_alias(inode);
873feea0 943 spin_unlock(&inode->i_lock);
214fda1f 944 }
1da177e4
LT
945 return de;
946}
ec4f8605 947EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
948
949/*
950 * Try to kill dentries associated with this inode.
951 * WARNING: you must own a reference to inode.
952 */
953void d_prune_aliases(struct inode *inode)
954{
0cdca3f9 955 struct dentry *dentry;
1da177e4 956restart:
873feea0 957 spin_lock(&inode->i_lock);
946e51f2 958 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 959 spin_lock(&dentry->d_lock);
98474236 960 if (!dentry->d_lockref.count) {
29355c39
AV
961 struct dentry *parent = lock_parent(dentry);
962 if (likely(!dentry->d_lockref.count)) {
963 __dentry_kill(dentry);
4a7795d3 964 dput(parent);
29355c39
AV
965 goto restart;
966 }
967 if (parent)
968 spin_unlock(&parent->d_lock);
1da177e4
LT
969 }
970 spin_unlock(&dentry->d_lock);
971 }
873feea0 972 spin_unlock(&inode->i_lock);
1da177e4 973}
ec4f8605 974EXPORT_SYMBOL(d_prune_aliases);
1da177e4 975
3049cfe2 976static void shrink_dentry_list(struct list_head *list)
1da177e4 977{
5c47e6d0 978 struct dentry *dentry, *parent;
da3bbdd4 979
60942f2f 980 while (!list_empty(list)) {
ff2fde99 981 struct inode *inode;
60942f2f 982 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 983 spin_lock(&dentry->d_lock);
046b961b
AV
984 parent = lock_parent(dentry);
985
dd1f6b2e
DC
986 /*
987 * The dispose list is isolated and dentries are not accounted
988 * to the LRU here, so we can simply remove it from the list
989 * here regardless of whether it is referenced or not.
990 */
89dc77bc 991 d_shrink_del(dentry);
dd1f6b2e 992
1da177e4
LT
993 /*
994 * We found an inuse dentry which was not removed from
dd1f6b2e 995 * the LRU because of laziness during lookup. Do not free it.
1da177e4 996 */
360f5479 997 if (dentry->d_lockref.count > 0) {
da3bbdd4 998 spin_unlock(&dentry->d_lock);
046b961b
AV
999 if (parent)
1000 spin_unlock(&parent->d_lock);
1da177e4
LT
1001 continue;
1002 }
77812a1e 1003
64fd72e0
AV
1004
1005 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1006 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1007 spin_unlock(&dentry->d_lock);
046b961b
AV
1008 if (parent)
1009 spin_unlock(&parent->d_lock);
64fd72e0
AV
1010 if (can_free)
1011 dentry_free(dentry);
1012 continue;
1013 }
1014
ff2fde99
AV
1015 inode = dentry->d_inode;
1016 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 1017 d_shrink_add(dentry, list);
dd1f6b2e 1018 spin_unlock(&dentry->d_lock);
046b961b
AV
1019 if (parent)
1020 spin_unlock(&parent->d_lock);
5c47e6d0 1021 continue;
dd1f6b2e 1022 }
ff2fde99 1023
ff2fde99 1024 __dentry_kill(dentry);
046b961b 1025
5c47e6d0
AV
1026 /*
1027 * We need to prune ancestors too. This is necessary to prevent
1028 * quadratic behavior of shrink_dcache_parent(), but is also
1029 * expected to be beneficial in reducing dentry cache
1030 * fragmentation.
1031 */
1032 dentry = parent;
b2b80195
AV
1033 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1034 parent = lock_parent(dentry);
1035 if (dentry->d_lockref.count != 1) {
1036 dentry->d_lockref.count--;
1037 spin_unlock(&dentry->d_lock);
1038 if (parent)
1039 spin_unlock(&parent->d_lock);
1040 break;
1041 }
1042 inode = dentry->d_inode; /* can't be NULL */
1043 if (unlikely(!spin_trylock(&inode->i_lock))) {
1044 spin_unlock(&dentry->d_lock);
1045 if (parent)
1046 spin_unlock(&parent->d_lock);
1047 cpu_relax();
1048 continue;
1049 }
1050 __dentry_kill(dentry);
1051 dentry = parent;
1052 }
da3bbdd4 1053 }
3049cfe2
CH
1054}
1055
3f97b163
VD
1056static enum lru_status dentry_lru_isolate(struct list_head *item,
1057 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1058{
1059 struct list_head *freeable = arg;
1060 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1061
1062
1063 /*
1064 * we are inverting the lru lock/dentry->d_lock here,
1065 * so use a trylock. If we fail to get the lock, just skip
1066 * it
1067 */
1068 if (!spin_trylock(&dentry->d_lock))
1069 return LRU_SKIP;
1070
1071 /*
1072 * Referenced dentries are still in use. If they have active
1073 * counts, just remove them from the LRU. Otherwise give them
1074 * another pass through the LRU.
1075 */
1076 if (dentry->d_lockref.count) {
3f97b163 1077 d_lru_isolate(lru, dentry);
f6041567
DC
1078 spin_unlock(&dentry->d_lock);
1079 return LRU_REMOVED;
1080 }
1081
1082 if (dentry->d_flags & DCACHE_REFERENCED) {
1083 dentry->d_flags &= ~DCACHE_REFERENCED;
1084 spin_unlock(&dentry->d_lock);
1085
1086 /*
1087 * The list move itself will be made by the common LRU code. At
1088 * this point, we've dropped the dentry->d_lock but keep the
1089 * lru lock. This is safe to do, since every list movement is
1090 * protected by the lru lock even if both locks are held.
1091 *
1092 * This is guaranteed by the fact that all LRU management
1093 * functions are intermediated by the LRU API calls like
1094 * list_lru_add and list_lru_del. List movement in this file
1095 * only ever occur through this functions or through callbacks
1096 * like this one, that are called from the LRU API.
1097 *
1098 * The only exceptions to this are functions like
1099 * shrink_dentry_list, and code that first checks for the
1100 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1101 * operating only with stack provided lists after they are
1102 * properly isolated from the main list. It is thus, always a
1103 * local access.
1104 */
1105 return LRU_ROTATE;
1106 }
1107
3f97b163 1108 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1109 spin_unlock(&dentry->d_lock);
1110
1111 return LRU_REMOVED;
1112}
1113
3049cfe2 1114/**
b48f03b3
DC
1115 * prune_dcache_sb - shrink the dcache
1116 * @sb: superblock
503c358c 1117 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1118 *
503c358c
VD
1119 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1120 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1121 * function.
3049cfe2 1122 *
b48f03b3
DC
1123 * This function may fail to free any resources if all the dentries are in
1124 * use.
3049cfe2 1125 */
503c358c 1126long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1127{
f6041567
DC
1128 LIST_HEAD(dispose);
1129 long freed;
3049cfe2 1130
503c358c
VD
1131 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1132 dentry_lru_isolate, &dispose);
f6041567 1133 shrink_dentry_list(&dispose);
0a234c6d 1134 return freed;
da3bbdd4 1135}
23044507 1136
4e717f5c 1137static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1138 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1139{
4e717f5c
GC
1140 struct list_head *freeable = arg;
1141 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1142
4e717f5c
GC
1143 /*
1144 * we are inverting the lru lock/dentry->d_lock here,
1145 * so use a trylock. If we fail to get the lock, just skip
1146 * it
1147 */
1148 if (!spin_trylock(&dentry->d_lock))
1149 return LRU_SKIP;
1150
3f97b163 1151 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1152 spin_unlock(&dentry->d_lock);
ec33679d 1153
4e717f5c 1154 return LRU_REMOVED;
da3bbdd4
KM
1155}
1156
4e717f5c 1157
1da177e4
LT
1158/**
1159 * shrink_dcache_sb - shrink dcache for a superblock
1160 * @sb: superblock
1161 *
3049cfe2
CH
1162 * Shrink the dcache for the specified super block. This is used to free
1163 * the dcache before unmounting a file system.
1da177e4 1164 */
3049cfe2 1165void shrink_dcache_sb(struct super_block *sb)
1da177e4 1166{
4e717f5c
GC
1167 long freed;
1168
1169 do {
1170 LIST_HEAD(dispose);
1171
1172 freed = list_lru_walk(&sb->s_dentry_lru,
1173 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 1174
4e717f5c
GC
1175 this_cpu_sub(nr_dentry_unused, freed);
1176 shrink_dentry_list(&dispose);
1177 } while (freed > 0);
1da177e4 1178}
ec4f8605 1179EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1180
db14fc3a
MS
1181/**
1182 * enum d_walk_ret - action to talke during tree walk
1183 * @D_WALK_CONTINUE: contrinue walk
1184 * @D_WALK_QUIT: quit walk
1185 * @D_WALK_NORETRY: quit when retry is needed
1186 * @D_WALK_SKIP: skip this dentry and its children
1187 */
1188enum d_walk_ret {
1189 D_WALK_CONTINUE,
1190 D_WALK_QUIT,
1191 D_WALK_NORETRY,
1192 D_WALK_SKIP,
1193};
c826cb7d 1194
1da177e4 1195/**
db14fc3a
MS
1196 * d_walk - walk the dentry tree
1197 * @parent: start of walk
1198 * @data: data passed to @enter() and @finish()
1199 * @enter: callback when first entering the dentry
1200 * @finish: callback when successfully finished the walk
1da177e4 1201 *
db14fc3a 1202 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1203 */
db14fc3a
MS
1204static void d_walk(struct dentry *parent, void *data,
1205 enum d_walk_ret (*enter)(void *, struct dentry *),
1206 void (*finish)(void *))
1da177e4 1207{
949854d0 1208 struct dentry *this_parent;
1da177e4 1209 struct list_head *next;
48f5ec21 1210 unsigned seq = 0;
db14fc3a
MS
1211 enum d_walk_ret ret;
1212 bool retry = true;
949854d0 1213
58db63d0 1214again:
48f5ec21 1215 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1216 this_parent = parent;
2fd6b7f5 1217 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1218
1219 ret = enter(data, this_parent);
1220 switch (ret) {
1221 case D_WALK_CONTINUE:
1222 break;
1223 case D_WALK_QUIT:
1224 case D_WALK_SKIP:
1225 goto out_unlock;
1226 case D_WALK_NORETRY:
1227 retry = false;
1228 break;
1229 }
1da177e4
LT
1230repeat:
1231 next = this_parent->d_subdirs.next;
1232resume:
1233 while (next != &this_parent->d_subdirs) {
1234 struct list_head *tmp = next;
946e51f2 1235 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1236 next = tmp->next;
2fd6b7f5 1237
ba65dc5e
AV
1238 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1239 continue;
1240
2fd6b7f5 1241 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1242
1243 ret = enter(data, dentry);
1244 switch (ret) {
1245 case D_WALK_CONTINUE:
1246 break;
1247 case D_WALK_QUIT:
2fd6b7f5 1248 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1249 goto out_unlock;
1250 case D_WALK_NORETRY:
1251 retry = false;
1252 break;
1253 case D_WALK_SKIP:
1254 spin_unlock(&dentry->d_lock);
1255 continue;
2fd6b7f5 1256 }
db14fc3a 1257
1da177e4 1258 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1259 spin_unlock(&this_parent->d_lock);
1260 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1261 this_parent = dentry;
2fd6b7f5 1262 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1263 goto repeat;
1264 }
2fd6b7f5 1265 spin_unlock(&dentry->d_lock);
1da177e4
LT
1266 }
1267 /*
1268 * All done at this level ... ascend and resume the search.
1269 */
ca5358ef
AV
1270 rcu_read_lock();
1271ascend:
1da177e4 1272 if (this_parent != parent) {
c826cb7d 1273 struct dentry *child = this_parent;
31dec132
AV
1274 this_parent = child->d_parent;
1275
31dec132
AV
1276 spin_unlock(&child->d_lock);
1277 spin_lock(&this_parent->d_lock);
1278
ca5358ef
AV
1279 /* might go back up the wrong parent if we have had a rename. */
1280 if (need_seqretry(&rename_lock, seq))
949854d0 1281 goto rename_retry;
2159184e
AV
1282 /* go into the first sibling still alive */
1283 do {
1284 next = child->d_child.next;
ca5358ef
AV
1285 if (next == &this_parent->d_subdirs)
1286 goto ascend;
1287 child = list_entry(next, struct dentry, d_child);
2159184e 1288 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1289 rcu_read_unlock();
1da177e4
LT
1290 goto resume;
1291 }
ca5358ef 1292 if (need_seqretry(&rename_lock, seq))
949854d0 1293 goto rename_retry;
ca5358ef 1294 rcu_read_unlock();
db14fc3a
MS
1295 if (finish)
1296 finish(data);
1297
1298out_unlock:
1299 spin_unlock(&this_parent->d_lock);
48f5ec21 1300 done_seqretry(&rename_lock, seq);
db14fc3a 1301 return;
58db63d0
NP
1302
1303rename_retry:
ca5358ef
AV
1304 spin_unlock(&this_parent->d_lock);
1305 rcu_read_unlock();
1306 BUG_ON(seq & 1);
db14fc3a
MS
1307 if (!retry)
1308 return;
48f5ec21 1309 seq = 1;
58db63d0 1310 goto again;
1da177e4 1311}
db14fc3a
MS
1312
1313/*
1314 * Search for at least 1 mount point in the dentry's subdirs.
1315 * We descend to the next level whenever the d_subdirs
1316 * list is non-empty and continue searching.
1317 */
1318
db14fc3a
MS
1319static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1320{
1321 int *ret = data;
1322 if (d_mountpoint(dentry)) {
1323 *ret = 1;
1324 return D_WALK_QUIT;
1325 }
1326 return D_WALK_CONTINUE;
1327}
1328
69c88dc7
RD
1329/**
1330 * have_submounts - check for mounts over a dentry
1331 * @parent: dentry to check.
1332 *
1333 * Return true if the parent or its subdirectories contain
1334 * a mount point
1335 */
db14fc3a
MS
1336int have_submounts(struct dentry *parent)
1337{
1338 int ret = 0;
1339
1340 d_walk(parent, &ret, check_mount, NULL);
1341
1342 return ret;
1343}
ec4f8605 1344EXPORT_SYMBOL(have_submounts);
1da177e4 1345
eed81007
MS
1346/*
1347 * Called by mount code to set a mountpoint and check if the mountpoint is
1348 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1349 * subtree can become unreachable).
1350 *
1ffe46d1 1351 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1352 * this reason take rename_lock and d_lock on dentry and ancestors.
1353 */
1354int d_set_mounted(struct dentry *dentry)
1355{
1356 struct dentry *p;
1357 int ret = -ENOENT;
1358 write_seqlock(&rename_lock);
1359 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1360 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1361 spin_lock(&p->d_lock);
1362 if (unlikely(d_unhashed(p))) {
1363 spin_unlock(&p->d_lock);
1364 goto out;
1365 }
1366 spin_unlock(&p->d_lock);
1367 }
1368 spin_lock(&dentry->d_lock);
1369 if (!d_unlinked(dentry)) {
1370 dentry->d_flags |= DCACHE_MOUNTED;
1371 ret = 0;
1372 }
1373 spin_unlock(&dentry->d_lock);
1374out:
1375 write_sequnlock(&rename_lock);
1376 return ret;
1377}
1378
1da177e4 1379/*
fd517909 1380 * Search the dentry child list of the specified parent,
1da177e4
LT
1381 * and move any unused dentries to the end of the unused
1382 * list for prune_dcache(). We descend to the next level
1383 * whenever the d_subdirs list is non-empty and continue
1384 * searching.
1385 *
1386 * It returns zero iff there are no unused children,
1387 * otherwise it returns the number of children moved to
1388 * the end of the unused list. This may not be the total
1389 * number of unused children, because select_parent can
1390 * drop the lock and return early due to latency
1391 * constraints.
1392 */
1da177e4 1393
db14fc3a
MS
1394struct select_data {
1395 struct dentry *start;
1396 struct list_head dispose;
1397 int found;
1398};
23044507 1399
db14fc3a
MS
1400static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1401{
1402 struct select_data *data = _data;
1403 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1404
db14fc3a
MS
1405 if (data->start == dentry)
1406 goto out;
2fd6b7f5 1407
fe91522a 1408 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1409 data->found++;
fe91522a
AV
1410 } else {
1411 if (dentry->d_flags & DCACHE_LRU_LIST)
1412 d_lru_del(dentry);
1413 if (!dentry->d_lockref.count) {
1414 d_shrink_add(dentry, &data->dispose);
1415 data->found++;
1416 }
1da177e4 1417 }
db14fc3a
MS
1418 /*
1419 * We can return to the caller if we have found some (this
1420 * ensures forward progress). We'll be coming back to find
1421 * the rest.
1422 */
fe91522a
AV
1423 if (!list_empty(&data->dispose))
1424 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1425out:
db14fc3a 1426 return ret;
1da177e4
LT
1427}
1428
1429/**
1430 * shrink_dcache_parent - prune dcache
1431 * @parent: parent of entries to prune
1432 *
1433 * Prune the dcache to remove unused children of the parent dentry.
1434 */
db14fc3a 1435void shrink_dcache_parent(struct dentry *parent)
1da177e4 1436{
db14fc3a
MS
1437 for (;;) {
1438 struct select_data data;
1da177e4 1439
db14fc3a
MS
1440 INIT_LIST_HEAD(&data.dispose);
1441 data.start = parent;
1442 data.found = 0;
1443
1444 d_walk(parent, &data, select_collect, NULL);
1445 if (!data.found)
1446 break;
1447
1448 shrink_dentry_list(&data.dispose);
421348f1
GT
1449 cond_resched();
1450 }
1da177e4 1451}
ec4f8605 1452EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1453
9c8c10e2 1454static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1455{
9c8c10e2
AV
1456 /* it has busy descendents; complain about those instead */
1457 if (!list_empty(&dentry->d_subdirs))
1458 return D_WALK_CONTINUE;
42c32608 1459
9c8c10e2
AV
1460 /* root with refcount 1 is fine */
1461 if (dentry == _data && dentry->d_lockref.count == 1)
1462 return D_WALK_CONTINUE;
1463
1464 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1465 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1466 dentry,
1467 dentry->d_inode ?
1468 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1469 dentry,
42c32608
AV
1470 dentry->d_lockref.count,
1471 dentry->d_sb->s_type->name,
1472 dentry->d_sb->s_id);
9c8c10e2
AV
1473 WARN_ON(1);
1474 return D_WALK_CONTINUE;
1475}
1476
1477static void do_one_tree(struct dentry *dentry)
1478{
1479 shrink_dcache_parent(dentry);
1480 d_walk(dentry, dentry, umount_check, NULL);
1481 d_drop(dentry);
1482 dput(dentry);
42c32608
AV
1483}
1484
1485/*
1486 * destroy the dentries attached to a superblock on unmounting
1487 */
1488void shrink_dcache_for_umount(struct super_block *sb)
1489{
1490 struct dentry *dentry;
1491
9c8c10e2 1492 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1493
1494 dentry = sb->s_root;
1495 sb->s_root = NULL;
9c8c10e2 1496 do_one_tree(dentry);
42c32608
AV
1497
1498 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1499 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1500 do_one_tree(dentry);
42c32608
AV
1501 }
1502}
1503
8ed936b5
EB
1504struct detach_data {
1505 struct select_data select;
1506 struct dentry *mountpoint;
1507};
1508static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1509{
8ed936b5 1510 struct detach_data *data = _data;
848ac114
MS
1511
1512 if (d_mountpoint(dentry)) {
8ed936b5
EB
1513 __dget_dlock(dentry);
1514 data->mountpoint = dentry;
848ac114
MS
1515 return D_WALK_QUIT;
1516 }
1517
8ed936b5 1518 return select_collect(&data->select, dentry);
848ac114
MS
1519}
1520
1521static void check_and_drop(void *_data)
1522{
8ed936b5 1523 struct detach_data *data = _data;
848ac114 1524
8ed936b5
EB
1525 if (!data->mountpoint && !data->select.found)
1526 __d_drop(data->select.start);
848ac114
MS
1527}
1528
1529/**
1ffe46d1
EB
1530 * d_invalidate - detach submounts, prune dcache, and drop
1531 * @dentry: dentry to invalidate (aka detach, prune and drop)
1532 *
1ffe46d1 1533 * no dcache lock.
848ac114 1534 *
8ed936b5
EB
1535 * The final d_drop is done as an atomic operation relative to
1536 * rename_lock ensuring there are no races with d_set_mounted. This
1537 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1538 */
5542aa2f 1539void d_invalidate(struct dentry *dentry)
848ac114 1540{
1ffe46d1
EB
1541 /*
1542 * If it's already been dropped, return OK.
1543 */
1544 spin_lock(&dentry->d_lock);
1545 if (d_unhashed(dentry)) {
1546 spin_unlock(&dentry->d_lock);
5542aa2f 1547 return;
1ffe46d1
EB
1548 }
1549 spin_unlock(&dentry->d_lock);
1550
848ac114
MS
1551 /* Negative dentries can be dropped without further checks */
1552 if (!dentry->d_inode) {
1553 d_drop(dentry);
5542aa2f 1554 return;
848ac114
MS
1555 }
1556
1557 for (;;) {
8ed936b5 1558 struct detach_data data;
848ac114 1559
8ed936b5
EB
1560 data.mountpoint = NULL;
1561 INIT_LIST_HEAD(&data.select.dispose);
1562 data.select.start = dentry;
1563 data.select.found = 0;
1564
1565 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1566
8ed936b5
EB
1567 if (data.select.found)
1568 shrink_dentry_list(&data.select.dispose);
848ac114 1569
8ed936b5
EB
1570 if (data.mountpoint) {
1571 detach_mounts(data.mountpoint);
1572 dput(data.mountpoint);
1573 }
848ac114 1574
8ed936b5 1575 if (!data.mountpoint && !data.select.found)
848ac114
MS
1576 break;
1577
1578 cond_resched();
1579 }
848ac114 1580}
1ffe46d1 1581EXPORT_SYMBOL(d_invalidate);
848ac114 1582
1da177e4 1583/**
a4464dbc
AV
1584 * __d_alloc - allocate a dcache entry
1585 * @sb: filesystem it will belong to
1da177e4
LT
1586 * @name: qstr of the name
1587 *
1588 * Allocates a dentry. It returns %NULL if there is insufficient memory
1589 * available. On a success the dentry is returned. The name passed in is
1590 * copied and the copy passed in may be reused after this call.
1591 */
1592
a4464dbc 1593struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1594{
1595 struct dentry *dentry;
1596 char *dname;
1597
e12ba74d 1598 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1599 if (!dentry)
1600 return NULL;
1601
6326c71f
LT
1602 /*
1603 * We guarantee that the inline name is always NUL-terminated.
1604 * This way the memcpy() done by the name switching in rename
1605 * will still always have a NUL at the end, even if we might
1606 * be overwriting an internal NUL character
1607 */
1608 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd
AV
1609 if (unlikely(!name)) {
1610 static const struct qstr anon = QSTR_INIT("/", 1);
1611 name = &anon;
1612 dname = dentry->d_iname;
1613 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1614 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1615 struct external_name *p = kmalloc(size + name->len,
1616 GFP_KERNEL_ACCOUNT);
8d85b484 1617 if (!p) {
1da177e4
LT
1618 kmem_cache_free(dentry_cache, dentry);
1619 return NULL;
1620 }
8d85b484
AV
1621 atomic_set(&p->u.count, 1);
1622 dname = p->name;
df4c0e36
AR
1623 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1624 kasan_unpoison_shadow(dname,
1625 round_up(name->len + 1, sizeof(unsigned long)));
1da177e4
LT
1626 } else {
1627 dname = dentry->d_iname;
1628 }
1da177e4
LT
1629
1630 dentry->d_name.len = name->len;
1631 dentry->d_name.hash = name->hash;
1632 memcpy(dname, name->name, name->len);
1633 dname[name->len] = 0;
1634
6326c71f
LT
1635 /* Make sure we always see the terminating NUL character */
1636 smp_wmb();
1637 dentry->d_name.name = dname;
1638
98474236 1639 dentry->d_lockref.count = 1;
dea3667b 1640 dentry->d_flags = 0;
1da177e4 1641 spin_lock_init(&dentry->d_lock);
31e6b01f 1642 seqcount_init(&dentry->d_seq);
1da177e4 1643 dentry->d_inode = NULL;
a4464dbc
AV
1644 dentry->d_parent = dentry;
1645 dentry->d_sb = sb;
1da177e4
LT
1646 dentry->d_op = NULL;
1647 dentry->d_fsdata = NULL;
ceb5bdc2 1648 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1649 INIT_LIST_HEAD(&dentry->d_lru);
1650 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1651 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1652 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1653 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1654
3e880fb5 1655 this_cpu_inc(nr_dentry);
312d3ca8 1656
1da177e4
LT
1657 return dentry;
1658}
a4464dbc
AV
1659
1660/**
1661 * d_alloc - allocate a dcache entry
1662 * @parent: parent of entry to allocate
1663 * @name: qstr of the name
1664 *
1665 * Allocates a dentry. It returns %NULL if there is insufficient memory
1666 * available. On a success the dentry is returned. The name passed in is
1667 * copied and the copy passed in may be reused after this call.
1668 */
1669struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1670{
1671 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1672 if (!dentry)
1673 return NULL;
3d56c25e 1674 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1675 spin_lock(&parent->d_lock);
1676 /*
1677 * don't need child lock because it is not subject
1678 * to concurrency here
1679 */
1680 __dget_dlock(parent);
1681 dentry->d_parent = parent;
946e51f2 1682 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1683 spin_unlock(&parent->d_lock);
1684
1685 return dentry;
1686}
ec4f8605 1687EXPORT_SYMBOL(d_alloc);
1da177e4 1688
ba65dc5e
AV
1689struct dentry *d_alloc_cursor(struct dentry * parent)
1690{
1691 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1692 if (dentry) {
1693 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1694 dentry->d_parent = dget(parent);
1695 }
1696 return dentry;
1697}
1698
e1a24bb0
BF
1699/**
1700 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1701 * @sb: the superblock
1702 * @name: qstr of the name
1703 *
1704 * For a filesystem that just pins its dentries in memory and never
1705 * performs lookups at all, return an unhashed IS_ROOT dentry.
1706 */
4b936885
NP
1707struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1708{
e1a24bb0 1709 return __d_alloc(sb, name);
4b936885
NP
1710}
1711EXPORT_SYMBOL(d_alloc_pseudo);
1712
1da177e4
LT
1713struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1714{
1715 struct qstr q;
1716
1717 q.name = name;
fcfd2fbf 1718 q.hash_len = hashlen_string(name);
1da177e4
LT
1719 return d_alloc(parent, &q);
1720}
ef26ca97 1721EXPORT_SYMBOL(d_alloc_name);
1da177e4 1722
fb045adb
NP
1723void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1724{
6f7f7caa
LT
1725 WARN_ON_ONCE(dentry->d_op);
1726 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1727 DCACHE_OP_COMPARE |
1728 DCACHE_OP_REVALIDATE |
ecf3d1f1 1729 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1730 DCACHE_OP_DELETE |
d101a125
MS
1731 DCACHE_OP_SELECT_INODE |
1732 DCACHE_OP_REAL));
fb045adb
NP
1733 dentry->d_op = op;
1734 if (!op)
1735 return;
1736 if (op->d_hash)
1737 dentry->d_flags |= DCACHE_OP_HASH;
1738 if (op->d_compare)
1739 dentry->d_flags |= DCACHE_OP_COMPARE;
1740 if (op->d_revalidate)
1741 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1742 if (op->d_weak_revalidate)
1743 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1744 if (op->d_delete)
1745 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1746 if (op->d_prune)
1747 dentry->d_flags |= DCACHE_OP_PRUNE;
4bacc9c9
DH
1748 if (op->d_select_inode)
1749 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
d101a125
MS
1750 if (op->d_real)
1751 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1752
1753}
1754EXPORT_SYMBOL(d_set_d_op);
1755
df1a085a
DH
1756
1757/*
1758 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1759 * @dentry - The dentry to mark
1760 *
1761 * Mark a dentry as falling through to the lower layer (as set with
1762 * d_pin_lower()). This flag may be recorded on the medium.
1763 */
1764void d_set_fallthru(struct dentry *dentry)
1765{
1766 spin_lock(&dentry->d_lock);
1767 dentry->d_flags |= DCACHE_FALLTHRU;
1768 spin_unlock(&dentry->d_lock);
1769}
1770EXPORT_SYMBOL(d_set_fallthru);
1771
b18825a7
DH
1772static unsigned d_flags_for_inode(struct inode *inode)
1773{
44bdb5e5 1774 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1775
1776 if (!inode)
1777 return DCACHE_MISS_TYPE;
1778
1779 if (S_ISDIR(inode->i_mode)) {
1780 add_flags = DCACHE_DIRECTORY_TYPE;
1781 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1782 if (unlikely(!inode->i_op->lookup))
1783 add_flags = DCACHE_AUTODIR_TYPE;
1784 else
1785 inode->i_opflags |= IOP_LOOKUP;
1786 }
44bdb5e5
DH
1787 goto type_determined;
1788 }
1789
1790 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1791 if (unlikely(inode->i_op->get_link)) {
b18825a7 1792 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1793 goto type_determined;
1794 }
1795 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1796 }
1797
44bdb5e5
DH
1798 if (unlikely(!S_ISREG(inode->i_mode)))
1799 add_flags = DCACHE_SPECIAL_TYPE;
1800
1801type_determined:
b18825a7
DH
1802 if (unlikely(IS_AUTOMOUNT(inode)))
1803 add_flags |= DCACHE_NEED_AUTOMOUNT;
1804 return add_flags;
1805}
1806
360da900
OH
1807static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1808{
b18825a7 1809 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1810 WARN_ON(d_in_lookup(dentry));
b18825a7 1811
b23fb0a6 1812 spin_lock(&dentry->d_lock);
de689f5e 1813 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1814 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1815 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1816 raw_write_seqcount_end(&dentry->d_seq);
affda484 1817 fsnotify_update_flags(dentry);
b23fb0a6 1818 spin_unlock(&dentry->d_lock);
360da900
OH
1819}
1820
1da177e4
LT
1821/**
1822 * d_instantiate - fill in inode information for a dentry
1823 * @entry: dentry to complete
1824 * @inode: inode to attach to this dentry
1825 *
1826 * Fill in inode information in the entry.
1827 *
1828 * This turns negative dentries into productive full members
1829 * of society.
1830 *
1831 * NOTE! This assumes that the inode count has been incremented
1832 * (or otherwise set) by the caller to indicate that it is now
1833 * in use by the dcache.
1834 */
1835
1836void d_instantiate(struct dentry *entry, struct inode * inode)
1837{
946e51f2 1838 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1839 if (inode) {
b9680917 1840 security_d_instantiate(entry, inode);
873feea0 1841 spin_lock(&inode->i_lock);
de689f5e 1842 __d_instantiate(entry, inode);
873feea0 1843 spin_unlock(&inode->i_lock);
de689f5e 1844 }
1da177e4 1845}
ec4f8605 1846EXPORT_SYMBOL(d_instantiate);
1da177e4 1847
b70a80e7
MS
1848/**
1849 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1850 * @entry: dentry to complete
1851 * @inode: inode to attach to this dentry
1852 *
1853 * Fill in inode information in the entry. If a directory alias is found, then
1854 * return an error (and drop inode). Together with d_materialise_unique() this
1855 * guarantees that a directory inode may never have more than one alias.
1856 */
1857int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1858{
946e51f2 1859 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1860
b9680917 1861 security_d_instantiate(entry, inode);
b70a80e7
MS
1862 spin_lock(&inode->i_lock);
1863 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1864 spin_unlock(&inode->i_lock);
1865 iput(inode);
1866 return -EBUSY;
1867 }
1868 __d_instantiate(entry, inode);
1869 spin_unlock(&inode->i_lock);
b70a80e7
MS
1870
1871 return 0;
1872}
1873EXPORT_SYMBOL(d_instantiate_no_diralias);
1874
adc0e91a
AV
1875struct dentry *d_make_root(struct inode *root_inode)
1876{
1877 struct dentry *res = NULL;
1878
1879 if (root_inode) {
798434bd 1880 res = __d_alloc(root_inode->i_sb, NULL);
adc0e91a
AV
1881 if (res)
1882 d_instantiate(res, root_inode);
1883 else
1884 iput(root_inode);
1885 }
1886 return res;
1887}
1888EXPORT_SYMBOL(d_make_root);
1889
d891eedb
BF
1890static struct dentry * __d_find_any_alias(struct inode *inode)
1891{
1892 struct dentry *alias;
1893
b3d9b7a3 1894 if (hlist_empty(&inode->i_dentry))
d891eedb 1895 return NULL;
946e51f2 1896 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1897 __dget(alias);
1898 return alias;
1899}
1900
46f72b34
SW
1901/**
1902 * d_find_any_alias - find any alias for a given inode
1903 * @inode: inode to find an alias for
1904 *
1905 * If any aliases exist for the given inode, take and return a
1906 * reference for one of them. If no aliases exist, return %NULL.
1907 */
1908struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1909{
1910 struct dentry *de;
1911
1912 spin_lock(&inode->i_lock);
1913 de = __d_find_any_alias(inode);
1914 spin_unlock(&inode->i_lock);
1915 return de;
1916}
46f72b34 1917EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1918
49c7dd28 1919static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1920{
9308a612
CH
1921 struct dentry *tmp;
1922 struct dentry *res;
b18825a7 1923 unsigned add_flags;
4ea3ada2
CH
1924
1925 if (!inode)
44003728 1926 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1927 if (IS_ERR(inode))
1928 return ERR_CAST(inode);
1929
d891eedb 1930 res = d_find_any_alias(inode);
9308a612
CH
1931 if (res)
1932 goto out_iput;
1933
798434bd 1934 tmp = __d_alloc(inode->i_sb, NULL);
9308a612
CH
1935 if (!tmp) {
1936 res = ERR_PTR(-ENOMEM);
1937 goto out_iput;
4ea3ada2 1938 }
b5c84bf6 1939
b9680917 1940 security_d_instantiate(tmp, inode);
873feea0 1941 spin_lock(&inode->i_lock);
d891eedb 1942 res = __d_find_any_alias(inode);
9308a612 1943 if (res) {
873feea0 1944 spin_unlock(&inode->i_lock);
9308a612
CH
1945 dput(tmp);
1946 goto out_iput;
1947 }
1948
1949 /* attach a disconnected dentry */
1a0a397e
BF
1950 add_flags = d_flags_for_inode(inode);
1951
1952 if (disconnected)
1953 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1954
9308a612 1955 spin_lock(&tmp->d_lock);
4bf46a27 1956 __d_set_inode_and_type(tmp, inode, add_flags);
946e51f2 1957 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1879fd6a 1958 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1959 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1960 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1961 spin_unlock(&tmp->d_lock);
873feea0 1962 spin_unlock(&inode->i_lock);
9308a612 1963
9308a612
CH
1964 return tmp;
1965
1966 out_iput:
1967 iput(inode);
1968 return res;
4ea3ada2 1969}
1a0a397e
BF
1970
1971/**
1972 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1973 * @inode: inode to allocate the dentry for
1974 *
1975 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1976 * similar open by handle operations. The returned dentry may be anonymous,
1977 * or may have a full name (if the inode was already in the cache).
1978 *
1979 * When called on a directory inode, we must ensure that the inode only ever
1980 * has one dentry. If a dentry is found, that is returned instead of
1981 * allocating a new one.
1982 *
1983 * On successful return, the reference to the inode has been transferred
1984 * to the dentry. In case of an error the reference on the inode is released.
1985 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1986 * be passed in and the error will be propagated to the return value,
1987 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1988 */
1989struct dentry *d_obtain_alias(struct inode *inode)
1990{
1991 return __d_obtain_alias(inode, 1);
1992}
adc48720 1993EXPORT_SYMBOL(d_obtain_alias);
1da177e4 1994
1a0a397e
BF
1995/**
1996 * d_obtain_root - find or allocate a dentry for a given inode
1997 * @inode: inode to allocate the dentry for
1998 *
1999 * Obtain an IS_ROOT dentry for the root of a filesystem.
2000 *
2001 * We must ensure that directory inodes only ever have one dentry. If a
2002 * dentry is found, that is returned instead of allocating a new one.
2003 *
2004 * On successful return, the reference to the inode has been transferred
2005 * to the dentry. In case of an error the reference on the inode is
2006 * released. A %NULL or IS_ERR inode may be passed in and will be the
2007 * error will be propagate to the return value, with a %NULL @inode
2008 * replaced by ERR_PTR(-ESTALE).
2009 */
2010struct dentry *d_obtain_root(struct inode *inode)
2011{
2012 return __d_obtain_alias(inode, 0);
2013}
2014EXPORT_SYMBOL(d_obtain_root);
2015
9403540c
BN
2016/**
2017 * d_add_ci - lookup or allocate new dentry with case-exact name
2018 * @inode: the inode case-insensitive lookup has found
2019 * @dentry: the negative dentry that was passed to the parent's lookup func
2020 * @name: the case-exact name to be associated with the returned dentry
2021 *
2022 * This is to avoid filling the dcache with case-insensitive names to the
2023 * same inode, only the actual correct case is stored in the dcache for
2024 * case-insensitive filesystems.
2025 *
2026 * For a case-insensitive lookup match and if the the case-exact dentry
2027 * already exists in in the dcache, use it and return it.
2028 *
2029 * If no entry exists with the exact case name, allocate new dentry with
2030 * the exact case, and return the spliced entry.
2031 */
e45b590b 2032struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2033 struct qstr *name)
2034{
d9171b93 2035 struct dentry *found, *res;
9403540c 2036
b6520c81
CH
2037 /*
2038 * First check if a dentry matching the name already exists,
2039 * if not go ahead and create it now.
2040 */
9403540c 2041 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2042 if (found) {
2043 iput(inode);
2044 return found;
2045 }
2046 if (d_in_lookup(dentry)) {
2047 found = d_alloc_parallel(dentry->d_parent, name,
2048 dentry->d_wait);
2049 if (IS_ERR(found) || !d_in_lookup(found)) {
2050 iput(inode);
2051 return found;
9403540c 2052 }
d9171b93
AV
2053 } else {
2054 found = d_alloc(dentry->d_parent, name);
2055 if (!found) {
2056 iput(inode);
2057 return ERR_PTR(-ENOMEM);
2058 }
2059 }
2060 res = d_splice_alias(inode, found);
2061 if (res) {
2062 dput(found);
2063 return res;
9403540c 2064 }
4f522a24 2065 return found;
9403540c 2066}
ec4f8605 2067EXPORT_SYMBOL(d_add_ci);
1da177e4 2068
12f8ad4b
LT
2069/*
2070 * Do the slow-case of the dentry name compare.
2071 *
2072 * Unlike the dentry_cmp() function, we need to atomically
da53be12 2073 * load the name and length information, so that the
12f8ad4b
LT
2074 * filesystem can rely on them, and can use the 'name' and
2075 * 'len' information without worrying about walking off the
2076 * end of memory etc.
2077 *
2078 * Thus the read_seqcount_retry() and the "duplicate" info
2079 * in arguments (the low-level filesystem should not look
2080 * at the dentry inode or name contents directly, since
2081 * rename can change them while we're in RCU mode).
2082 */
2083enum slow_d_compare {
2084 D_COMP_OK,
2085 D_COMP_NOMATCH,
2086 D_COMP_SEQRETRY,
2087};
2088
2089static noinline enum slow_d_compare slow_dentry_cmp(
2090 const struct dentry *parent,
12f8ad4b
LT
2091 struct dentry *dentry,
2092 unsigned int seq,
2093 const struct qstr *name)
2094{
2095 int tlen = dentry->d_name.len;
2096 const char *tname = dentry->d_name.name;
12f8ad4b
LT
2097
2098 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2099 cpu_relax();
2100 return D_COMP_SEQRETRY;
2101 }
da53be12 2102 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
2103 return D_COMP_NOMATCH;
2104 return D_COMP_OK;
2105}
2106
31e6b01f
NP
2107/**
2108 * __d_lookup_rcu - search for a dentry (racy, store-free)
2109 * @parent: parent dentry
2110 * @name: qstr of name we wish to find
1f1e6e52 2111 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2112 * Returns: dentry, or NULL
2113 *
2114 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2115 * resolution (store-free path walking) design described in
2116 * Documentation/filesystems/path-lookup.txt.
2117 *
2118 * This is not to be used outside core vfs.
2119 *
2120 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2121 * held, and rcu_read_lock held. The returned dentry must not be stored into
2122 * without taking d_lock and checking d_seq sequence count against @seq
2123 * returned here.
2124 *
15570086 2125 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2126 * function.
2127 *
2128 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2129 * the returned dentry, so long as its parent's seqlock is checked after the
2130 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2131 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2132 *
2133 * NOTE! The caller *has* to check the resulting dentry against the sequence
2134 * number we've returned before using any of the resulting dentry state!
31e6b01f 2135 */
8966be90
LT
2136struct dentry *__d_lookup_rcu(const struct dentry *parent,
2137 const struct qstr *name,
da53be12 2138 unsigned *seqp)
31e6b01f 2139{
26fe5750 2140 u64 hashlen = name->hash_len;
31e6b01f 2141 const unsigned char *str = name->name;
26fe5750 2142 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2143 struct hlist_bl_node *node;
31e6b01f
NP
2144 struct dentry *dentry;
2145
2146 /*
2147 * Note: There is significant duplication with __d_lookup_rcu which is
2148 * required to prevent single threaded performance regressions
2149 * especially on architectures where smp_rmb (in seqcounts) are costly.
2150 * Keep the two functions in sync.
2151 */
2152
2153 /*
2154 * The hash list is protected using RCU.
2155 *
2156 * Carefully use d_seq when comparing a candidate dentry, to avoid
2157 * races with d_move().
2158 *
2159 * It is possible that concurrent renames can mess up our list
2160 * walk here and result in missing our dentry, resulting in the
2161 * false-negative result. d_lookup() protects against concurrent
2162 * renames using rename_lock seqlock.
2163 *
b0a4bb83 2164 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2165 */
b07ad996 2166 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2167 unsigned seq;
31e6b01f 2168
31e6b01f 2169seqretry:
12f8ad4b
LT
2170 /*
2171 * The dentry sequence count protects us from concurrent
da53be12 2172 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2173 *
2174 * The caller must perform a seqcount check in order
da53be12 2175 * to do anything useful with the returned dentry.
12f8ad4b
LT
2176 *
2177 * NOTE! We do a "raw" seqcount_begin here. That means that
2178 * we don't wait for the sequence count to stabilize if it
2179 * is in the middle of a sequence change. If we do the slow
2180 * dentry compare, we will do seqretries until it is stable,
2181 * and if we end up with a successful lookup, we actually
2182 * want to exit RCU lookup anyway.
2183 */
2184 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2185 if (dentry->d_parent != parent)
2186 continue;
2e321806
LT
2187 if (d_unhashed(dentry))
2188 continue;
12f8ad4b 2189
830c0f0e 2190 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2191 if (dentry->d_name.hash != hashlen_hash(hashlen))
2192 continue;
da53be12
LT
2193 *seqp = seq;
2194 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2195 case D_COMP_OK:
2196 return dentry;
2197 case D_COMP_NOMATCH:
31e6b01f 2198 continue;
12f8ad4b
LT
2199 default:
2200 goto seqretry;
2201 }
31e6b01f 2202 }
12f8ad4b 2203
26fe5750 2204 if (dentry->d_name.hash_len != hashlen)
ee983e89 2205 continue;
da53be12 2206 *seqp = seq;
26fe5750 2207 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2208 return dentry;
31e6b01f
NP
2209 }
2210 return NULL;
2211}
2212
1da177e4
LT
2213/**
2214 * d_lookup - search for a dentry
2215 * @parent: parent dentry
2216 * @name: qstr of name we wish to find
b04f784e 2217 * Returns: dentry, or NULL
1da177e4 2218 *
b04f784e
NP
2219 * d_lookup searches the children of the parent dentry for the name in
2220 * question. If the dentry is found its reference count is incremented and the
2221 * dentry is returned. The caller must use dput to free the entry when it has
2222 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2223 */
da2d8455 2224struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2225{
31e6b01f 2226 struct dentry *dentry;
949854d0 2227 unsigned seq;
1da177e4 2228
b8314f93
DY
2229 do {
2230 seq = read_seqbegin(&rename_lock);
2231 dentry = __d_lookup(parent, name);
2232 if (dentry)
1da177e4
LT
2233 break;
2234 } while (read_seqretry(&rename_lock, seq));
2235 return dentry;
2236}
ec4f8605 2237EXPORT_SYMBOL(d_lookup);
1da177e4 2238
31e6b01f 2239/**
b04f784e
NP
2240 * __d_lookup - search for a dentry (racy)
2241 * @parent: parent dentry
2242 * @name: qstr of name we wish to find
2243 * Returns: dentry, or NULL
2244 *
2245 * __d_lookup is like d_lookup, however it may (rarely) return a
2246 * false-negative result due to unrelated rename activity.
2247 *
2248 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2249 * however it must be used carefully, eg. with a following d_lookup in
2250 * the case of failure.
2251 *
2252 * __d_lookup callers must be commented.
2253 */
a713ca2a 2254struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2255{
2256 unsigned int len = name->len;
2257 unsigned int hash = name->hash;
2258 const unsigned char *str = name->name;
b07ad996 2259 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2260 struct hlist_bl_node *node;
31e6b01f 2261 struct dentry *found = NULL;
665a7583 2262 struct dentry *dentry;
1da177e4 2263
31e6b01f
NP
2264 /*
2265 * Note: There is significant duplication with __d_lookup_rcu which is
2266 * required to prevent single threaded performance regressions
2267 * especially on architectures where smp_rmb (in seqcounts) are costly.
2268 * Keep the two functions in sync.
2269 */
2270
b04f784e
NP
2271 /*
2272 * The hash list is protected using RCU.
2273 *
2274 * Take d_lock when comparing a candidate dentry, to avoid races
2275 * with d_move().
2276 *
2277 * It is possible that concurrent renames can mess up our list
2278 * walk here and result in missing our dentry, resulting in the
2279 * false-negative result. d_lookup() protects against concurrent
2280 * renames using rename_lock seqlock.
2281 *
b0a4bb83 2282 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2283 */
1da177e4
LT
2284 rcu_read_lock();
2285
b07ad996 2286 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2287
1da177e4
LT
2288 if (dentry->d_name.hash != hash)
2289 continue;
1da177e4
LT
2290
2291 spin_lock(&dentry->d_lock);
1da177e4
LT
2292 if (dentry->d_parent != parent)
2293 goto next;
d0185c08
LT
2294 if (d_unhashed(dentry))
2295 goto next;
2296
1da177e4
LT
2297 /*
2298 * It is safe to compare names since d_move() cannot
2299 * change the qstr (protected by d_lock).
2300 */
fb045adb 2301 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2302 int tlen = dentry->d_name.len;
2303 const char *tname = dentry->d_name.name;
da53be12 2304 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2305 goto next;
2306 } else {
ee983e89
LT
2307 if (dentry->d_name.len != len)
2308 goto next;
12f8ad4b 2309 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2310 goto next;
2311 }
2312
98474236 2313 dentry->d_lockref.count++;
d0185c08 2314 found = dentry;
1da177e4
LT
2315 spin_unlock(&dentry->d_lock);
2316 break;
2317next:
2318 spin_unlock(&dentry->d_lock);
2319 }
2320 rcu_read_unlock();
2321
2322 return found;
2323}
2324
3e7e241f
EB
2325/**
2326 * d_hash_and_lookup - hash the qstr then search for a dentry
2327 * @dir: Directory to search in
2328 * @name: qstr of name we wish to find
2329 *
4f522a24 2330 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2331 */
2332struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2333{
3e7e241f
EB
2334 /*
2335 * Check for a fs-specific hash function. Note that we must
2336 * calculate the standard hash first, as the d_op->d_hash()
2337 * routine may choose to leave the hash value unchanged.
2338 */
2339 name->hash = full_name_hash(name->name, name->len);
fb045adb 2340 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2341 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2342 if (unlikely(err < 0))
2343 return ERR_PTR(err);
3e7e241f 2344 }
4f522a24 2345 return d_lookup(dir, name);
3e7e241f 2346}
4f522a24 2347EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2348
1da177e4
LT
2349/*
2350 * When a file is deleted, we have two options:
2351 * - turn this dentry into a negative dentry
2352 * - unhash this dentry and free it.
2353 *
2354 * Usually, we want to just turn this into
2355 * a negative dentry, but if anybody else is
2356 * currently using the dentry or the inode
2357 * we can't do that and we fall back on removing
2358 * it from the hash queues and waiting for
2359 * it to be deleted later when it has no users
2360 */
2361
2362/**
2363 * d_delete - delete a dentry
2364 * @dentry: The dentry to delete
2365 *
2366 * Turn the dentry into a negative dentry if possible, otherwise
2367 * remove it from the hash queues so it can be deleted later
2368 */
2369
2370void d_delete(struct dentry * dentry)
2371{
873feea0 2372 struct inode *inode;
7a91bf7f 2373 int isdir = 0;
1da177e4
LT
2374 /*
2375 * Are we the only user?
2376 */
357f8e65 2377again:
1da177e4 2378 spin_lock(&dentry->d_lock);
873feea0
NP
2379 inode = dentry->d_inode;
2380 isdir = S_ISDIR(inode->i_mode);
98474236 2381 if (dentry->d_lockref.count == 1) {
1fe0c023 2382 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2383 spin_unlock(&dentry->d_lock);
2384 cpu_relax();
2385 goto again;
2386 }
13e3c5e5 2387 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2388 dentry_unlink_inode(dentry);
7a91bf7f 2389 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2390 return;
2391 }
2392
2393 if (!d_unhashed(dentry))
2394 __d_drop(dentry);
2395
2396 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2397
2398 fsnotify_nameremove(dentry, isdir);
1da177e4 2399}
ec4f8605 2400EXPORT_SYMBOL(d_delete);
1da177e4 2401
b07ad996 2402static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2403{
ceb5bdc2 2404 BUG_ON(!d_unhashed(entry));
1879fd6a 2405 hlist_bl_lock(b);
b07ad996 2406 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2407 hlist_bl_unlock(b);
1da177e4
LT
2408}
2409
770bfad8
DH
2410static void _d_rehash(struct dentry * entry)
2411{
2412 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2413}
2414
1da177e4
LT
2415/**
2416 * d_rehash - add an entry back to the hash
2417 * @entry: dentry to add to the hash
2418 *
2419 * Adds a dentry to the hash according to its name.
2420 */
2421
2422void d_rehash(struct dentry * entry)
2423{
1da177e4 2424 spin_lock(&entry->d_lock);
770bfad8 2425 _d_rehash(entry);
1da177e4 2426 spin_unlock(&entry->d_lock);
1da177e4 2427}
ec4f8605 2428EXPORT_SYMBOL(d_rehash);
1da177e4 2429
84e710da
AV
2430static inline unsigned start_dir_add(struct inode *dir)
2431{
2432
2433 for (;;) {
2434 unsigned n = dir->i_dir_seq;
2435 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2436 return n;
2437 cpu_relax();
2438 }
2439}
2440
2441static inline void end_dir_add(struct inode *dir, unsigned n)
2442{
2443 smp_store_release(&dir->i_dir_seq, n + 2);
2444}
2445
d9171b93
AV
2446static void d_wait_lookup(struct dentry *dentry)
2447{
2448 if (d_in_lookup(dentry)) {
2449 DECLARE_WAITQUEUE(wait, current);
2450 add_wait_queue(dentry->d_wait, &wait);
2451 do {
2452 set_current_state(TASK_UNINTERRUPTIBLE);
2453 spin_unlock(&dentry->d_lock);
2454 schedule();
2455 spin_lock(&dentry->d_lock);
2456 } while (d_in_lookup(dentry));
2457 }
2458}
2459
94bdd655 2460struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2461 const struct qstr *name,
2462 wait_queue_head_t *wq)
94bdd655
AV
2463{
2464 unsigned int len = name->len;
2465 unsigned int hash = name->hash;
2466 const unsigned char *str = name->name;
2467 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2468 struct hlist_bl_node *node;
2469 struct dentry *new = d_alloc(parent, name);
2470 struct dentry *dentry;
2471 unsigned seq, r_seq, d_seq;
2472
2473 if (unlikely(!new))
2474 return ERR_PTR(-ENOMEM);
2475
2476retry:
2477 rcu_read_lock();
2478 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2479 r_seq = read_seqbegin(&rename_lock);
2480 dentry = __d_lookup_rcu(parent, name, &d_seq);
2481 if (unlikely(dentry)) {
2482 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2483 rcu_read_unlock();
2484 goto retry;
2485 }
2486 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2487 rcu_read_unlock();
2488 dput(dentry);
2489 goto retry;
2490 }
2491 rcu_read_unlock();
2492 dput(new);
2493 return dentry;
2494 }
2495 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2496 rcu_read_unlock();
2497 goto retry;
2498 }
2499 hlist_bl_lock(b);
2500 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2501 hlist_bl_unlock(b);
2502 rcu_read_unlock();
2503 goto retry;
2504 }
94bdd655
AV
2505 /*
2506 * No changes for the parent since the beginning of d_lookup().
2507 * Since all removals from the chain happen with hlist_bl_lock(),
2508 * any potential in-lookup matches are going to stay here until
2509 * we unlock the chain. All fields are stable in everything
2510 * we encounter.
2511 */
2512 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2513 if (dentry->d_name.hash != hash)
2514 continue;
2515 if (dentry->d_parent != parent)
2516 continue;
94bdd655
AV
2517 if (parent->d_flags & DCACHE_OP_COMPARE) {
2518 int tlen = dentry->d_name.len;
2519 const char *tname = dentry->d_name.name;
2520 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2521 continue;
2522 } else {
2523 if (dentry->d_name.len != len)
2524 continue;
2525 if (dentry_cmp(dentry, str, len))
2526 continue;
2527 }
94bdd655 2528 hlist_bl_unlock(b);
e7d6ef97
AV
2529 /* now we can try to grab a reference */
2530 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2531 rcu_read_unlock();
2532 goto retry;
2533 }
2534
2535 rcu_read_unlock();
2536 /*
2537 * somebody is likely to be still doing lookup for it;
2538 * wait for them to finish
2539 */
d9171b93
AV
2540 spin_lock(&dentry->d_lock);
2541 d_wait_lookup(dentry);
2542 /*
2543 * it's not in-lookup anymore; in principle we should repeat
2544 * everything from dcache lookup, but it's likely to be what
2545 * d_lookup() would've found anyway. If it is, just return it;
2546 * otherwise we really have to repeat the whole thing.
2547 */
2548 if (unlikely(dentry->d_name.hash != hash))
2549 goto mismatch;
2550 if (unlikely(dentry->d_parent != parent))
2551 goto mismatch;
2552 if (unlikely(d_unhashed(dentry)))
2553 goto mismatch;
2554 if (parent->d_flags & DCACHE_OP_COMPARE) {
2555 int tlen = dentry->d_name.len;
2556 const char *tname = dentry->d_name.name;
2557 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2558 goto mismatch;
2559 } else {
2560 if (unlikely(dentry->d_name.len != len))
2561 goto mismatch;
2562 if (unlikely(dentry_cmp(dentry, str, len)))
2563 goto mismatch;
2564 }
2565 /* OK, it *is* a hashed match; return it */
2566 spin_unlock(&dentry->d_lock);
94bdd655
AV
2567 dput(new);
2568 return dentry;
2569 }
e7d6ef97 2570 rcu_read_unlock();
94bdd655
AV
2571 /* we can't take ->d_lock here; it's OK, though. */
2572 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2573 new->d_wait = wq;
94bdd655
AV
2574 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2575 hlist_bl_unlock(b);
2576 return new;
d9171b93
AV
2577mismatch:
2578 spin_unlock(&dentry->d_lock);
2579 dput(dentry);
2580 goto retry;
94bdd655
AV
2581}
2582EXPORT_SYMBOL(d_alloc_parallel);
2583
85c7f810
AV
2584void __d_lookup_done(struct dentry *dentry)
2585{
94bdd655
AV
2586 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2587 dentry->d_name.hash);
2588 hlist_bl_lock(b);
85c7f810 2589 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2590 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2591 wake_up_all(dentry->d_wait);
2592 dentry->d_wait = NULL;
94bdd655
AV
2593 hlist_bl_unlock(b);
2594 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2595 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2596}
2597EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2598
2599/* inode->i_lock held if inode is non-NULL */
2600
2601static inline void __d_add(struct dentry *dentry, struct inode *inode)
2602{
84e710da
AV
2603 struct inode *dir = NULL;
2604 unsigned n;
0568d705 2605 spin_lock(&dentry->d_lock);
84e710da
AV
2606 if (unlikely(d_in_lookup(dentry))) {
2607 dir = dentry->d_parent->d_inode;
2608 n = start_dir_add(dir);
85c7f810 2609 __d_lookup_done(dentry);
84e710da 2610 }
ed782b5a 2611 if (inode) {
0568d705
AV
2612 unsigned add_flags = d_flags_for_inode(inode);
2613 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2614 raw_write_seqcount_begin(&dentry->d_seq);
2615 __d_set_inode_and_type(dentry, inode, add_flags);
2616 raw_write_seqcount_end(&dentry->d_seq);
affda484 2617 fsnotify_update_flags(dentry);
ed782b5a 2618 }
0568d705 2619 _d_rehash(dentry);
84e710da
AV
2620 if (dir)
2621 end_dir_add(dir, n);
0568d705
AV
2622 spin_unlock(&dentry->d_lock);
2623 if (inode)
2624 spin_unlock(&inode->i_lock);
ed782b5a
AV
2625}
2626
34d0d19d
AV
2627/**
2628 * d_add - add dentry to hash queues
2629 * @entry: dentry to add
2630 * @inode: The inode to attach to this dentry
2631 *
2632 * This adds the entry to the hash queues and initializes @inode.
2633 * The entry was actually filled in earlier during d_alloc().
2634 */
2635
2636void d_add(struct dentry *entry, struct inode *inode)
2637{
b9680917
AV
2638 if (inode) {
2639 security_d_instantiate(entry, inode);
ed782b5a 2640 spin_lock(&inode->i_lock);
b9680917 2641 }
ed782b5a 2642 __d_add(entry, inode);
34d0d19d
AV
2643}
2644EXPORT_SYMBOL(d_add);
2645
668d0cd5
AV
2646/**
2647 * d_exact_alias - find and hash an exact unhashed alias
2648 * @entry: dentry to add
2649 * @inode: The inode to go with this dentry
2650 *
2651 * If an unhashed dentry with the same name/parent and desired
2652 * inode already exists, hash and return it. Otherwise, return
2653 * NULL.
2654 *
2655 * Parent directory should be locked.
2656 */
2657struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2658{
2659 struct dentry *alias;
2660 int len = entry->d_name.len;
2661 const char *name = entry->d_name.name;
2662 unsigned int hash = entry->d_name.hash;
2663
2664 spin_lock(&inode->i_lock);
2665 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2666 /*
2667 * Don't need alias->d_lock here, because aliases with
2668 * d_parent == entry->d_parent are not subject to name or
2669 * parent changes, because the parent inode i_mutex is held.
2670 */
2671 if (alias->d_name.hash != hash)
2672 continue;
2673 if (alias->d_parent != entry->d_parent)
2674 continue;
2675 if (alias->d_name.len != len)
2676 continue;
2677 if (dentry_cmp(alias, name, len))
2678 continue;
2679 spin_lock(&alias->d_lock);
2680 if (!d_unhashed(alias)) {
2681 spin_unlock(&alias->d_lock);
2682 alias = NULL;
2683 } else {
2684 __dget_dlock(alias);
2685 _d_rehash(alias);
2686 spin_unlock(&alias->d_lock);
2687 }
2688 spin_unlock(&inode->i_lock);
2689 return alias;
2690 }
2691 spin_unlock(&inode->i_lock);
2692 return NULL;
2693}
2694EXPORT_SYMBOL(d_exact_alias);
2695
fb2d5b86
NP
2696/**
2697 * dentry_update_name_case - update case insensitive dentry with a new name
2698 * @dentry: dentry to be updated
2699 * @name: new name
2700 *
2701 * Update a case insensitive dentry with new case of name.
2702 *
2703 * dentry must have been returned by d_lookup with name @name. Old and new
2704 * name lengths must match (ie. no d_compare which allows mismatched name
2705 * lengths).
2706 *
2707 * Parent inode i_mutex must be held over d_lookup and into this call (to
2708 * keep renames and concurrent inserts, and readdir(2) away).
2709 */
2710void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2711{
5955102c 2712 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2713 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2714
fb2d5b86 2715 spin_lock(&dentry->d_lock);
31e6b01f 2716 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2717 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2718 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2719 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2720}
2721EXPORT_SYMBOL(dentry_update_name_case);
2722
8d85b484 2723static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2724{
8d85b484
AV
2725 if (unlikely(dname_external(target))) {
2726 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2727 /*
2728 * Both external: swap the pointers
2729 */
9a8d5bb4 2730 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2731 } else {
2732 /*
2733 * dentry:internal, target:external. Steal target's
2734 * storage and make target internal.
2735 */
321bcf92
BF
2736 memcpy(target->d_iname, dentry->d_name.name,
2737 dentry->d_name.len + 1);
1da177e4
LT
2738 dentry->d_name.name = target->d_name.name;
2739 target->d_name.name = target->d_iname;
2740 }
2741 } else {
8d85b484 2742 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2743 /*
2744 * dentry:external, target:internal. Give dentry's
2745 * storage to target and make dentry internal
2746 */
2747 memcpy(dentry->d_iname, target->d_name.name,
2748 target->d_name.len + 1);
2749 target->d_name.name = dentry->d_name.name;
2750 dentry->d_name.name = dentry->d_iname;
2751 } else {
2752 /*
da1ce067 2753 * Both are internal.
1da177e4 2754 */
da1ce067
MS
2755 unsigned int i;
2756 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
08d4f772
MP
2757 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2758 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
da1ce067
MS
2759 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2760 swap(((long *) &dentry->d_iname)[i],
2761 ((long *) &target->d_iname)[i]);
2762 }
1da177e4
LT
2763 }
2764 }
a28ddb87 2765 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2766}
2767
8d85b484
AV
2768static void copy_name(struct dentry *dentry, struct dentry *target)
2769{
2770 struct external_name *old_name = NULL;
2771 if (unlikely(dname_external(dentry)))
2772 old_name = external_name(dentry);
2773 if (unlikely(dname_external(target))) {
2774 atomic_inc(&external_name(target)->u.count);
2775 dentry->d_name = target->d_name;
2776 } else {
2777 memcpy(dentry->d_iname, target->d_name.name,
2778 target->d_name.len + 1);
2779 dentry->d_name.name = dentry->d_iname;
2780 dentry->d_name.hash_len = target->d_name.hash_len;
2781 }
2782 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2783 kfree_rcu(old_name, u.head);
2784}
2785
2fd6b7f5
NP
2786static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2787{
2788 /*
2789 * XXXX: do we really need to take target->d_lock?
2790 */
2791 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2792 spin_lock(&target->d_parent->d_lock);
2793 else {
2794 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2795 spin_lock(&dentry->d_parent->d_lock);
2796 spin_lock_nested(&target->d_parent->d_lock,
2797 DENTRY_D_LOCK_NESTED);
2798 } else {
2799 spin_lock(&target->d_parent->d_lock);
2800 spin_lock_nested(&dentry->d_parent->d_lock,
2801 DENTRY_D_LOCK_NESTED);
2802 }
2803 }
2804 if (target < dentry) {
2805 spin_lock_nested(&target->d_lock, 2);
2806 spin_lock_nested(&dentry->d_lock, 3);
2807 } else {
2808 spin_lock_nested(&dentry->d_lock, 2);
2809 spin_lock_nested(&target->d_lock, 3);
2810 }
2811}
2812
986c0194 2813static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2814{
2815 if (target->d_parent != dentry->d_parent)
2816 spin_unlock(&dentry->d_parent->d_lock);
2817 if (target->d_parent != target)
2818 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2819 spin_unlock(&target->d_lock);
2820 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2821}
2822
1da177e4 2823/*
2fd6b7f5
NP
2824 * When switching names, the actual string doesn't strictly have to
2825 * be preserved in the target - because we're dropping the target
2826 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2827 * the new name before we switch, unless we are going to rehash
2828 * it. Note that if we *do* unhash the target, we are not allowed
2829 * to rehash it without giving it a new name/hash key - whether
2830 * we swap or overwrite the names here, resulting name won't match
2831 * the reality in filesystem; it's only there for d_path() purposes.
2832 * Note that all of this is happening under rename_lock, so the
2833 * any hash lookup seeing it in the middle of manipulations will
2834 * be discarded anyway. So we do not care what happens to the hash
2835 * key in that case.
1da177e4 2836 */
9eaef27b 2837/*
18367501 2838 * __d_move - move a dentry
1da177e4
LT
2839 * @dentry: entry to move
2840 * @target: new dentry
da1ce067 2841 * @exchange: exchange the two dentries
1da177e4
LT
2842 *
2843 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2844 * dcache entries should not be moved in this way. Caller must hold
2845 * rename_lock, the i_mutex of the source and target directories,
2846 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2847 */
da1ce067
MS
2848static void __d_move(struct dentry *dentry, struct dentry *target,
2849 bool exchange)
1da177e4 2850{
84e710da
AV
2851 struct inode *dir = NULL;
2852 unsigned n;
1da177e4
LT
2853 if (!dentry->d_inode)
2854 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2855
2fd6b7f5
NP
2856 BUG_ON(d_ancestor(dentry, target));
2857 BUG_ON(d_ancestor(target, dentry));
2858
2fd6b7f5 2859 dentry_lock_for_move(dentry, target);
84e710da
AV
2860 if (unlikely(d_in_lookup(target))) {
2861 dir = target->d_parent->d_inode;
2862 n = start_dir_add(dir);
85c7f810 2863 __d_lookup_done(target);
84e710da 2864 }
1da177e4 2865
31e6b01f 2866 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2867 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2868
ceb5bdc2
NP
2869 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2870
2871 /*
2872 * Move the dentry to the target hash queue. Don't bother checking
2873 * for the same hash queue because of how unlikely it is.
2874 */
2875 __d_drop(dentry);
789680d1 2876 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2877
da1ce067
MS
2878 /*
2879 * Unhash the target (d_delete() is not usable here). If exchanging
2880 * the two dentries, then rehash onto the other's hash queue.
2881 */
1da177e4 2882 __d_drop(target);
da1ce067
MS
2883 if (exchange) {
2884 __d_rehash(target,
2885 d_hash(dentry->d_parent, dentry->d_name.hash));
2886 }
1da177e4 2887
1da177e4 2888 /* Switch the names.. */
8d85b484
AV
2889 if (exchange)
2890 swap_names(dentry, target);
2891 else
2892 copy_name(dentry, target);
1da177e4 2893
63cf427a 2894 /* ... and switch them in the tree */
1da177e4 2895 if (IS_ROOT(dentry)) {
63cf427a 2896 /* splicing a tree */
3d56c25e 2897 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2898 dentry->d_parent = target->d_parent;
2899 target->d_parent = target;
946e51f2
AV
2900 list_del_init(&target->d_child);
2901 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2902 } else {
63cf427a 2903 /* swapping two dentries */
9a8d5bb4 2904 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2905 list_move(&target->d_child, &target->d_parent->d_subdirs);
2906 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2907 if (exchange)
affda484
AV
2908 fsnotify_update_flags(target);
2909 fsnotify_update_flags(dentry);
1da177e4
LT
2910 }
2911
31e6b01f
NP
2912 write_seqcount_end(&target->d_seq);
2913 write_seqcount_end(&dentry->d_seq);
2914
84e710da
AV
2915 if (dir)
2916 end_dir_add(dir, n);
986c0194 2917 dentry_unlock_for_move(dentry, target);
18367501
AV
2918}
2919
2920/*
2921 * d_move - move a dentry
2922 * @dentry: entry to move
2923 * @target: new dentry
2924 *
2925 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2926 * dcache entries should not be moved in this way. See the locking
2927 * requirements for __d_move.
18367501
AV
2928 */
2929void d_move(struct dentry *dentry, struct dentry *target)
2930{
2931 write_seqlock(&rename_lock);
da1ce067 2932 __d_move(dentry, target, false);
1da177e4 2933 write_sequnlock(&rename_lock);
9eaef27b 2934}
ec4f8605 2935EXPORT_SYMBOL(d_move);
1da177e4 2936
da1ce067
MS
2937/*
2938 * d_exchange - exchange two dentries
2939 * @dentry1: first dentry
2940 * @dentry2: second dentry
2941 */
2942void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2943{
2944 write_seqlock(&rename_lock);
2945
2946 WARN_ON(!dentry1->d_inode);
2947 WARN_ON(!dentry2->d_inode);
2948 WARN_ON(IS_ROOT(dentry1));
2949 WARN_ON(IS_ROOT(dentry2));
2950
2951 __d_move(dentry1, dentry2, true);
2952
2953 write_sequnlock(&rename_lock);
2954}
2955
e2761a11
OH
2956/**
2957 * d_ancestor - search for an ancestor
2958 * @p1: ancestor dentry
2959 * @p2: child dentry
2960 *
2961 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2962 * an ancestor of p2, else NULL.
9eaef27b 2963 */
e2761a11 2964struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2965{
2966 struct dentry *p;
2967
871c0067 2968 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2969 if (p->d_parent == p1)
e2761a11 2970 return p;
9eaef27b 2971 }
e2761a11 2972 return NULL;
9eaef27b
TM
2973}
2974
2975/*
2976 * This helper attempts to cope with remotely renamed directories
2977 *
2978 * It assumes that the caller is already holding
a03e283b 2979 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2980 *
2981 * Note: If ever the locking in lock_rename() changes, then please
2982 * remember to update this too...
9eaef27b 2983 */
b5ae6b15 2984static int __d_unalias(struct inode *inode,
873feea0 2985 struct dentry *dentry, struct dentry *alias)
9eaef27b 2986{
9902af79
AV
2987 struct mutex *m1 = NULL;
2988 struct rw_semaphore *m2 = NULL;
3d330dc1 2989 int ret = -ESTALE;
9eaef27b
TM
2990
2991 /* If alias and dentry share a parent, then no extra locks required */
2992 if (alias->d_parent == dentry->d_parent)
2993 goto out_unalias;
2994
9eaef27b 2995 /* See lock_rename() */
9eaef27b
TM
2996 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2997 goto out_err;
2998 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2999 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 3000 goto out_err;
9902af79 3001 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 3002out_unalias:
8ed936b5 3003 __d_move(alias, dentry, false);
b5ae6b15 3004 ret = 0;
9eaef27b 3005out_err:
9eaef27b 3006 if (m2)
9902af79 3007 up_read(m2);
9eaef27b
TM
3008 if (m1)
3009 mutex_unlock(m1);
3010 return ret;
3011}
3012
3f70bd51
BF
3013/**
3014 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3015 * @inode: the inode which may have a disconnected dentry
3016 * @dentry: a negative dentry which we want to point to the inode.
3017 *
da093a9b
BF
3018 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3019 * place of the given dentry and return it, else simply d_add the inode
3020 * to the dentry and return NULL.
3f70bd51 3021 *
908790fa
BF
3022 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3023 * we should error out: directories can't have multiple aliases.
3024 *
3f70bd51
BF
3025 * This is needed in the lookup routine of any filesystem that is exportable
3026 * (via knfsd) so that we can build dcache paths to directories effectively.
3027 *
3028 * If a dentry was found and moved, then it is returned. Otherwise NULL
3029 * is returned. This matches the expected return value of ->lookup.
3030 *
3031 * Cluster filesystems may call this function with a negative, hashed dentry.
3032 * In that case, we know that the inode will be a regular file, and also this
3033 * will only occur during atomic_open. So we need to check for the dentry
3034 * being already hashed only in the final case.
3035 */
3036struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3037{
3f70bd51
BF
3038 if (IS_ERR(inode))
3039 return ERR_CAST(inode);
3040
770bfad8
DH
3041 BUG_ON(!d_unhashed(dentry));
3042
de689f5e 3043 if (!inode)
b5ae6b15 3044 goto out;
de689f5e 3045
b9680917 3046 security_d_instantiate(dentry, inode);
873feea0 3047 spin_lock(&inode->i_lock);
9eaef27b 3048 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3049 struct dentry *new = __d_find_any_alias(inode);
3050 if (unlikely(new)) {
a03e283b
EB
3051 /* The reference to new ensures it remains an alias */
3052 spin_unlock(&inode->i_lock);
18367501 3053 write_seqlock(&rename_lock);
b5ae6b15
AV
3054 if (unlikely(d_ancestor(new, dentry))) {
3055 write_sequnlock(&rename_lock);
b5ae6b15
AV
3056 dput(new);
3057 new = ERR_PTR(-ELOOP);
3058 pr_warn_ratelimited(
3059 "VFS: Lookup of '%s' in %s %s"
3060 " would have caused loop\n",
3061 dentry->d_name.name,
3062 inode->i_sb->s_type->name,
3063 inode->i_sb->s_id);
3064 } else if (!IS_ROOT(new)) {
3065 int err = __d_unalias(inode, dentry, new);
18367501 3066 write_sequnlock(&rename_lock);
b5ae6b15
AV
3067 if (err) {
3068 dput(new);
3069 new = ERR_PTR(err);
3070 }
18367501 3071 } else {
b5ae6b15
AV
3072 __d_move(new, dentry, false);
3073 write_sequnlock(&rename_lock);
dd179946 3074 }
b5ae6b15
AV
3075 iput(inode);
3076 return new;
9eaef27b 3077 }
770bfad8 3078 }
b5ae6b15 3079out:
ed782b5a 3080 __d_add(dentry, inode);
b5ae6b15 3081 return NULL;
770bfad8 3082}
b5ae6b15 3083EXPORT_SYMBOL(d_splice_alias);
770bfad8 3084
cdd16d02 3085static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3086{
3087 *buflen -= namelen;
3088 if (*buflen < 0)
3089 return -ENAMETOOLONG;
3090 *buffer -= namelen;
3091 memcpy(*buffer, str, namelen);
3092 return 0;
3093}
3094
232d2d60
WL
3095/**
3096 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3097 * @buffer: buffer pointer
3098 * @buflen: allocated length of the buffer
3099 * @name: name string and length qstr structure
232d2d60
WL
3100 *
3101 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3102 * make sure that either the old or the new name pointer and length are
3103 * fetched. However, there may be mismatch between length and pointer.
3104 * The length cannot be trusted, we need to copy it byte-by-byte until
3105 * the length is reached or a null byte is found. It also prepends "/" at
3106 * the beginning of the name. The sequence number check at the caller will
3107 * retry it again when a d_move() does happen. So any garbage in the buffer
3108 * due to mismatched pointer and length will be discarded.
6d13f694
AV
3109 *
3110 * Data dependency barrier is needed to make sure that we see that terminating
3111 * NUL. Alpha strikes again, film at 11...
232d2d60 3112 */
cdd16d02
MS
3113static int prepend_name(char **buffer, int *buflen, struct qstr *name)
3114{
232d2d60
WL
3115 const char *dname = ACCESS_ONCE(name->name);
3116 u32 dlen = ACCESS_ONCE(name->len);
3117 char *p;
3118
6d13f694
AV
3119 smp_read_barrier_depends();
3120
232d2d60 3121 *buflen -= dlen + 1;
e825196d
AV
3122 if (*buflen < 0)
3123 return -ENAMETOOLONG;
232d2d60
WL
3124 p = *buffer -= dlen + 1;
3125 *p++ = '/';
3126 while (dlen--) {
3127 char c = *dname++;
3128 if (!c)
3129 break;
3130 *p++ = c;
3131 }
3132 return 0;
cdd16d02
MS
3133}
3134
1da177e4 3135/**
208898c1 3136 * prepend_path - Prepend path string to a buffer
9d1bc601 3137 * @path: the dentry/vfsmount to report
02125a82 3138 * @root: root vfsmnt/dentry
f2eb6575
MS
3139 * @buffer: pointer to the end of the buffer
3140 * @buflen: pointer to buffer length
552ce544 3141 *
18129977
WL
3142 * The function will first try to write out the pathname without taking any
3143 * lock other than the RCU read lock to make sure that dentries won't go away.
3144 * It only checks the sequence number of the global rename_lock as any change
3145 * in the dentry's d_seq will be preceded by changes in the rename_lock
3146 * sequence number. If the sequence number had been changed, it will restart
3147 * the whole pathname back-tracing sequence again by taking the rename_lock.
3148 * In this case, there is no need to take the RCU read lock as the recursive
3149 * parent pointer references will keep the dentry chain alive as long as no
3150 * rename operation is performed.
1da177e4 3151 */
02125a82
AV
3152static int prepend_path(const struct path *path,
3153 const struct path *root,
f2eb6575 3154 char **buffer, int *buflen)
1da177e4 3155{
ede4cebc
AV
3156 struct dentry *dentry;
3157 struct vfsmount *vfsmnt;
3158 struct mount *mnt;
f2eb6575 3159 int error = 0;
48a066e7 3160 unsigned seq, m_seq = 0;
232d2d60
WL
3161 char *bptr;
3162 int blen;
6092d048 3163
48f5ec21 3164 rcu_read_lock();
48a066e7
AV
3165restart_mnt:
3166 read_seqbegin_or_lock(&mount_lock, &m_seq);
3167 seq = 0;
4ec6c2ae 3168 rcu_read_lock();
232d2d60
WL
3169restart:
3170 bptr = *buffer;
3171 blen = *buflen;
48a066e7 3172 error = 0;
ede4cebc
AV
3173 dentry = path->dentry;
3174 vfsmnt = path->mnt;
3175 mnt = real_mount(vfsmnt);
232d2d60 3176 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3177 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3178 struct dentry * parent;
3179
1da177e4 3180 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 3181 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
cde93be4
EB
3182 /* Escaped? */
3183 if (dentry != vfsmnt->mnt_root) {
3184 bptr = *buffer;
3185 blen = *buflen;
3186 error = 3;
3187 break;
3188 }
552ce544 3189 /* Global root? */
48a066e7
AV
3190 if (mnt != parent) {
3191 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3192 mnt = parent;
232d2d60
WL
3193 vfsmnt = &mnt->mnt;
3194 continue;
3195 }
232d2d60
WL
3196 if (!error)
3197 error = is_mounted(vfsmnt) ? 1 : 2;
3198 break;
1da177e4
LT
3199 }
3200 parent = dentry->d_parent;
3201 prefetch(parent);
232d2d60 3202 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3203 if (error)
3204 break;
3205
1da177e4
LT
3206 dentry = parent;
3207 }
48f5ec21
AV
3208 if (!(seq & 1))
3209 rcu_read_unlock();
3210 if (need_seqretry(&rename_lock, seq)) {
3211 seq = 1;
232d2d60 3212 goto restart;
48f5ec21
AV
3213 }
3214 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3215
3216 if (!(m_seq & 1))
3217 rcu_read_unlock();
48a066e7
AV
3218 if (need_seqretry(&mount_lock, m_seq)) {
3219 m_seq = 1;
3220 goto restart_mnt;
3221 }
3222 done_seqretry(&mount_lock, m_seq);
1da177e4 3223
232d2d60
WL
3224 if (error >= 0 && bptr == *buffer) {
3225 if (--blen < 0)
3226 error = -ENAMETOOLONG;
3227 else
3228 *--bptr = '/';
3229 }
3230 *buffer = bptr;
3231 *buflen = blen;
7ea600b5 3232 return error;
f2eb6575 3233}
be285c71 3234
f2eb6575
MS
3235/**
3236 * __d_path - return the path of a dentry
3237 * @path: the dentry/vfsmount to report
02125a82 3238 * @root: root vfsmnt/dentry
cd956a1c 3239 * @buf: buffer to return value in
f2eb6575
MS
3240 * @buflen: buffer length
3241 *
ffd1f4ed 3242 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3243 *
3244 * Returns a pointer into the buffer or an error code if the
3245 * path was too long.
3246 *
be148247 3247 * "buflen" should be positive.
f2eb6575 3248 *
02125a82 3249 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3250 */
02125a82
AV
3251char *__d_path(const struct path *path,
3252 const struct path *root,
f2eb6575
MS
3253 char *buf, int buflen)
3254{
3255 char *res = buf + buflen;
3256 int error;
3257
3258 prepend(&res, &buflen, "\0", 1);
f2eb6575 3259 error = prepend_path(path, root, &res, &buflen);
be148247 3260
02125a82
AV
3261 if (error < 0)
3262 return ERR_PTR(error);
3263 if (error > 0)
3264 return NULL;
3265 return res;
3266}
3267
3268char *d_absolute_path(const struct path *path,
3269 char *buf, int buflen)
3270{
3271 struct path root = {};
3272 char *res = buf + buflen;
3273 int error;
3274
3275 prepend(&res, &buflen, "\0", 1);
02125a82 3276 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3277
3278 if (error > 1)
3279 error = -EINVAL;
3280 if (error < 0)
f2eb6575 3281 return ERR_PTR(error);
f2eb6575 3282 return res;
1da177e4
LT
3283}
3284
ffd1f4ed
MS
3285/*
3286 * same as __d_path but appends "(deleted)" for unlinked files.
3287 */
02125a82
AV
3288static int path_with_deleted(const struct path *path,
3289 const struct path *root,
3290 char **buf, int *buflen)
ffd1f4ed
MS
3291{
3292 prepend(buf, buflen, "\0", 1);
3293 if (d_unlinked(path->dentry)) {
3294 int error = prepend(buf, buflen, " (deleted)", 10);
3295 if (error)
3296 return error;
3297 }
3298
3299 return prepend_path(path, root, buf, buflen);
3300}
3301
8df9d1a4
MS
3302static int prepend_unreachable(char **buffer, int *buflen)
3303{
3304 return prepend(buffer, buflen, "(unreachable)", 13);
3305}
3306
68f0d9d9
LT
3307static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3308{
3309 unsigned seq;
3310
3311 do {
3312 seq = read_seqcount_begin(&fs->seq);
3313 *root = fs->root;
3314 } while (read_seqcount_retry(&fs->seq, seq));
3315}
3316
a03a8a70
JB
3317/**
3318 * d_path - return the path of a dentry
cf28b486 3319 * @path: path to report
a03a8a70
JB
3320 * @buf: buffer to return value in
3321 * @buflen: buffer length
3322 *
3323 * Convert a dentry into an ASCII path name. If the entry has been deleted
3324 * the string " (deleted)" is appended. Note that this is ambiguous.
3325 *
52afeefb
AV
3326 * Returns a pointer into the buffer or an error code if the path was
3327 * too long. Note: Callers should use the returned pointer, not the passed
3328 * in buffer, to use the name! The implementation often starts at an offset
3329 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3330 *
31f3e0b3 3331 * "buflen" should be positive.
a03a8a70 3332 */
20d4fdc1 3333char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3334{
ffd1f4ed 3335 char *res = buf + buflen;
6ac08c39 3336 struct path root;
ffd1f4ed 3337 int error;
1da177e4 3338
c23fbb6b
ED
3339 /*
3340 * We have various synthetic filesystems that never get mounted. On
3341 * these filesystems dentries are never used for lookup purposes, and
3342 * thus don't need to be hashed. They also don't need a name until a
3343 * user wants to identify the object in /proc/pid/fd/. The little hack
3344 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3345 *
3346 * Some pseudo inodes are mountable. When they are mounted
3347 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3348 * and instead have d_path return the mounted path.
c23fbb6b 3349 */
f48cfddc
EB
3350 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3351 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3352 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3353
68f0d9d9
LT
3354 rcu_read_lock();
3355 get_fs_root_rcu(current->fs, &root);
02125a82 3356 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3357 rcu_read_unlock();
3358
02125a82 3359 if (error < 0)
ffd1f4ed 3360 res = ERR_PTR(error);
1da177e4
LT
3361 return res;
3362}
ec4f8605 3363EXPORT_SYMBOL(d_path);
1da177e4 3364
c23fbb6b
ED
3365/*
3366 * Helper function for dentry_operations.d_dname() members
3367 */
3368char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3369 const char *fmt, ...)
3370{
3371 va_list args;
3372 char temp[64];
3373 int sz;
3374
3375 va_start(args, fmt);
3376 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3377 va_end(args);
3378
3379 if (sz > sizeof(temp) || sz > buflen)
3380 return ERR_PTR(-ENAMETOOLONG);
3381
3382 buffer += buflen - sz;
3383 return memcpy(buffer, temp, sz);
3384}
3385
118b2302
AV
3386char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3387{
3388 char *end = buffer + buflen;
3389 /* these dentries are never renamed, so d_lock is not needed */
3390 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3391 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3392 prepend(&end, &buflen, "/", 1))
3393 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3394 return end;
118b2302 3395}
31bbe16f 3396EXPORT_SYMBOL(simple_dname);
118b2302 3397
6092d048
RP
3398/*
3399 * Write full pathname from the root of the filesystem into the buffer.
3400 */
f6500801 3401static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3402{
f6500801 3403 struct dentry *dentry;
232d2d60
WL
3404 char *end, *retval;
3405 int len, seq = 0;
3406 int error = 0;
6092d048 3407
f6500801
AV
3408 if (buflen < 2)
3409 goto Elong;
3410
48f5ec21 3411 rcu_read_lock();
232d2d60 3412restart:
f6500801 3413 dentry = d;
232d2d60
WL
3414 end = buf + buflen;
3415 len = buflen;
3416 prepend(&end, &len, "\0", 1);
6092d048
RP
3417 /* Get '/' right */
3418 retval = end-1;
3419 *retval = '/';
232d2d60 3420 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3421 while (!IS_ROOT(dentry)) {
3422 struct dentry *parent = dentry->d_parent;
6092d048 3423
6092d048 3424 prefetch(parent);
232d2d60
WL
3425 error = prepend_name(&end, &len, &dentry->d_name);
3426 if (error)
3427 break;
6092d048
RP
3428
3429 retval = end;
3430 dentry = parent;
3431 }
48f5ec21
AV
3432 if (!(seq & 1))
3433 rcu_read_unlock();
3434 if (need_seqretry(&rename_lock, seq)) {
3435 seq = 1;
232d2d60 3436 goto restart;
48f5ec21
AV
3437 }
3438 done_seqretry(&rename_lock, seq);
232d2d60
WL
3439 if (error)
3440 goto Elong;
c103135c
AV
3441 return retval;
3442Elong:
3443 return ERR_PTR(-ENAMETOOLONG);
3444}
ec2447c2
NP
3445
3446char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3447{
232d2d60 3448 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3449}
3450EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3451
3452char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3453{
3454 char *p = NULL;
3455 char *retval;
3456
c103135c
AV
3457 if (d_unlinked(dentry)) {
3458 p = buf + buflen;
3459 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3460 goto Elong;
3461 buflen++;
3462 }
3463 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3464 if (!IS_ERR(retval) && p)
3465 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3466 return retval;
3467Elong:
6092d048
RP
3468 return ERR_PTR(-ENAMETOOLONG);
3469}
3470
8b19e341
LT
3471static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3472 struct path *pwd)
5762482f 3473{
8b19e341
LT
3474 unsigned seq;
3475
3476 do {
3477 seq = read_seqcount_begin(&fs->seq);
3478 *root = fs->root;
3479 *pwd = fs->pwd;
3480 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3481}
3482
1da177e4
LT
3483/*
3484 * NOTE! The user-level library version returns a
3485 * character pointer. The kernel system call just
3486 * returns the length of the buffer filled (which
3487 * includes the ending '\0' character), or a negative
3488 * error value. So libc would do something like
3489 *
3490 * char *getcwd(char * buf, size_t size)
3491 * {
3492 * int retval;
3493 *
3494 * retval = sys_getcwd(buf, size);
3495 * if (retval >= 0)
3496 * return buf;
3497 * errno = -retval;
3498 * return NULL;
3499 * }
3500 */
3cdad428 3501SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3502{
552ce544 3503 int error;
6ac08c39 3504 struct path pwd, root;
3272c544 3505 char *page = __getname();
1da177e4
LT
3506
3507 if (!page)
3508 return -ENOMEM;
3509
8b19e341
LT
3510 rcu_read_lock();
3511 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3512
552ce544 3513 error = -ENOENT;
f3da392e 3514 if (!d_unlinked(pwd.dentry)) {
552ce544 3515 unsigned long len;
3272c544
LT
3516 char *cwd = page + PATH_MAX;
3517 int buflen = PATH_MAX;
1da177e4 3518
8df9d1a4 3519 prepend(&cwd, &buflen, "\0", 1);
02125a82 3520 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3521 rcu_read_unlock();
552ce544 3522
02125a82 3523 if (error < 0)
552ce544
LT
3524 goto out;
3525
8df9d1a4 3526 /* Unreachable from current root */
02125a82 3527 if (error > 0) {
8df9d1a4
MS
3528 error = prepend_unreachable(&cwd, &buflen);
3529 if (error)
3530 goto out;
3531 }
3532
552ce544 3533 error = -ERANGE;
3272c544 3534 len = PATH_MAX + page - cwd;
552ce544
LT
3535 if (len <= size) {
3536 error = len;
3537 if (copy_to_user(buf, cwd, len))
3538 error = -EFAULT;
3539 }
949854d0 3540 } else {
ff812d72 3541 rcu_read_unlock();
949854d0 3542 }
1da177e4
LT
3543
3544out:
3272c544 3545 __putname(page);
1da177e4
LT
3546 return error;
3547}
3548
3549/*
3550 * Test whether new_dentry is a subdirectory of old_dentry.
3551 *
3552 * Trivially implemented using the dcache structure
3553 */
3554
3555/**
3556 * is_subdir - is new dentry a subdirectory of old_dentry
3557 * @new_dentry: new dentry
3558 * @old_dentry: old dentry
3559 *
a6e5787f
YB
3560 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3561 * Returns false otherwise.
1da177e4
LT
3562 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3563 */
3564
a6e5787f 3565bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3566{
a6e5787f 3567 bool result;
949854d0 3568 unsigned seq;
1da177e4 3569
e2761a11 3570 if (new_dentry == old_dentry)
a6e5787f 3571 return true;
e2761a11 3572
e2761a11 3573 do {
1da177e4 3574 /* for restarting inner loop in case of seq retry */
1da177e4 3575 seq = read_seqbegin(&rename_lock);
949854d0
NP
3576 /*
3577 * Need rcu_readlock to protect against the d_parent trashing
3578 * due to d_move
3579 */
3580 rcu_read_lock();
e2761a11 3581 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3582 result = true;
e2761a11 3583 else
a6e5787f 3584 result = false;
949854d0 3585 rcu_read_unlock();
1da177e4 3586 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3587
3588 return result;
3589}
3590
db14fc3a 3591static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3592{
db14fc3a
MS
3593 struct dentry *root = data;
3594 if (dentry != root) {
3595 if (d_unhashed(dentry) || !dentry->d_inode)
3596 return D_WALK_SKIP;
1da177e4 3597
01ddc4ed
MS
3598 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3599 dentry->d_flags |= DCACHE_GENOCIDE;
3600 dentry->d_lockref.count--;
3601 }
1da177e4 3602 }
db14fc3a
MS
3603 return D_WALK_CONTINUE;
3604}
58db63d0 3605
db14fc3a
MS
3606void d_genocide(struct dentry *parent)
3607{
3608 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3609}
3610
60545d0d 3611void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3612{
60545d0d
AV
3613 inode_dec_link_count(inode);
3614 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3615 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3616 !d_unlinked(dentry));
3617 spin_lock(&dentry->d_parent->d_lock);
3618 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3619 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3620 (unsigned long long)inode->i_ino);
3621 spin_unlock(&dentry->d_lock);
3622 spin_unlock(&dentry->d_parent->d_lock);
3623 d_instantiate(dentry, inode);
1da177e4 3624}
60545d0d 3625EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3626
3627static __initdata unsigned long dhash_entries;
3628static int __init set_dhash_entries(char *str)
3629{
3630 if (!str)
3631 return 0;
3632 dhash_entries = simple_strtoul(str, &str, 0);
3633 return 1;
3634}
3635__setup("dhash_entries=", set_dhash_entries);
3636
3637static void __init dcache_init_early(void)
3638{
074b8517 3639 unsigned int loop;
1da177e4
LT
3640
3641 /* If hashes are distributed across NUMA nodes, defer
3642 * hash allocation until vmalloc space is available.
3643 */
3644 if (hashdist)
3645 return;
3646
3647 dentry_hashtable =
3648 alloc_large_system_hash("Dentry cache",
b07ad996 3649 sizeof(struct hlist_bl_head),
1da177e4
LT
3650 dhash_entries,
3651 13,
3652 HASH_EARLY,
3653 &d_hash_shift,
3654 &d_hash_mask,
31fe62b9 3655 0,
1da177e4
LT
3656 0);
3657
074b8517 3658 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3659 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3660}
3661
74bf17cf 3662static void __init dcache_init(void)
1da177e4 3663{
074b8517 3664 unsigned int loop;
1da177e4
LT
3665
3666 /*
3667 * A constructor could be added for stable state like the lists,
3668 * but it is probably not worth it because of the cache nature
3669 * of the dcache.
3670 */
0a31bd5f 3671 dentry_cache = KMEM_CACHE(dentry,
5d097056 3672 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
1da177e4
LT
3673
3674 /* Hash may have been set up in dcache_init_early */
3675 if (!hashdist)
3676 return;
3677
3678 dentry_hashtable =
3679 alloc_large_system_hash("Dentry cache",
b07ad996 3680 sizeof(struct hlist_bl_head),
1da177e4
LT
3681 dhash_entries,
3682 13,
3683 0,
3684 &d_hash_shift,
3685 &d_hash_mask,
31fe62b9 3686 0,
1da177e4
LT
3687 0);
3688
074b8517 3689 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3690 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3691}
3692
3693/* SLAB cache for __getname() consumers */
e18b890b 3694struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3695EXPORT_SYMBOL(names_cachep);
1da177e4 3696
1da177e4
LT
3697EXPORT_SYMBOL(d_genocide);
3698
1da177e4
LT
3699void __init vfs_caches_init_early(void)
3700{
3701 dcache_init_early();
3702 inode_init_early();
3703}
3704
4248b0da 3705void __init vfs_caches_init(void)
1da177e4 3706{
1da177e4 3707 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3708 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3709
74bf17cf
DC
3710 dcache_init();
3711 inode_init();
4248b0da
MG
3712 files_init();
3713 files_maxfiles_init();
74bf17cf 3714 mnt_init();
1da177e4
LT
3715 bdev_cache_init();
3716 chrdev_init();
3717}