]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/namespace.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
0818bf27 26#include <linux/bootmem.h>
9ea459e1 27#include <linux/task_work.h>
9164bb4a
IM
28#include <linux/sched/task.h>
29
07b20889 30#include "pnode.h"
948730b0 31#include "internal.h"
1da177e4 32
d2921684
EB
33/* Maximum number of mounts in a mount namespace */
34unsigned int sysctl_mount_max __read_mostly = 100000;
35
0818bf27
AV
36static unsigned int m_hash_mask __read_mostly;
37static unsigned int m_hash_shift __read_mostly;
38static unsigned int mp_hash_mask __read_mostly;
39static unsigned int mp_hash_shift __read_mostly;
40
41static __initdata unsigned long mhash_entries;
42static int __init set_mhash_entries(char *str)
43{
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48}
49__setup("mhash_entries=", set_mhash_entries);
50
51static __initdata unsigned long mphash_entries;
52static int __init set_mphash_entries(char *str)
53{
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58}
59__setup("mphash_entries=", set_mphash_entries);
13f14b4d 60
c7999c36 61static u64 event;
73cd49ec 62static DEFINE_IDA(mnt_id_ida);
719f5d7f 63static DEFINE_IDA(mnt_group_ida);
99b7db7b 64static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
65static int mnt_id_start = 0;
66static int mnt_group_start = 1;
1da177e4 67
38129a13 68static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 69static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 70static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 71static DECLARE_RWSEM(namespace_sem);
1da177e4 72
f87fd4c2 73/* /sys/fs */
00d26666
GKH
74struct kobject *fs_kobj;
75EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 76
99b7db7b
NP
77/*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
48a066e7 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 86
38129a13 87static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 88{
b58fed8b
RP
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93}
94
95static inline struct hlist_head *mp_hash(struct dentry *dentry)
96{
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
100}
101
b105e270 102static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
103{
104 int res;
105
106retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 108 spin_lock(&mnt_id_lock);
15169fe7 109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 112 spin_unlock(&mnt_id_lock);
73cd49ec
MS
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117}
118
b105e270 119static void mnt_free_id(struct mount *mnt)
73cd49ec 120{
15169fe7 121 int id = mnt->mnt_id;
99b7db7b 122 spin_lock(&mnt_id_lock);
f21f6220
AV
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
99b7db7b 126 spin_unlock(&mnt_id_lock);
73cd49ec
MS
127}
128
719f5d7f
MS
129/*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
4b8b21f4 134static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 135{
f21f6220
AV
136 int res;
137
719f5d7f
MS
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
f21f6220
AV
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
15169fe7 143 &mnt->mnt_group_id);
f21f6220 144 if (!res)
15169fe7 145 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
146
147 return res;
719f5d7f
MS
148}
149
150/*
151 * Release a peer group ID
152 */
4b8b21f4 153void mnt_release_group_id(struct mount *mnt)
719f5d7f 154{
15169fe7 155 int id = mnt->mnt_group_id;
f21f6220
AV
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
15169fe7 159 mnt->mnt_group_id = 0;
719f5d7f
MS
160}
161
b3e19d92
NP
162/*
163 * vfsmount lock must be held for read
164 */
83adc753 165static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
166{
167#ifdef CONFIG_SMP
68e8a9fe 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
169#else
170 preempt_disable();
68e8a9fe 171 mnt->mnt_count += n;
b3e19d92
NP
172 preempt_enable();
173#endif
174}
175
b3e19d92
NP
176/*
177 * vfsmount lock must be held for write
178 */
83adc753 179unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
180{
181#ifdef CONFIG_SMP
f03c6599 182 unsigned int count = 0;
b3e19d92
NP
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
68e8a9fe 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
187 }
188
189 return count;
190#else
68e8a9fe 191 return mnt->mnt_count;
b3e19d92
NP
192#endif
193}
194
87b95ce0
AV
195static void drop_mountpoint(struct fs_pin *p)
196{
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201}
202
b105e270 203static struct mount *alloc_vfsmnt(const char *name)
1da177e4 204{
c63181e6
AV
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
73cd49ec
MS
207 int err;
208
c63181e6 209 err = mnt_alloc_id(mnt);
88b38782
LZ
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
fcc139ae 214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 215 if (!mnt->mnt_devname)
88b38782 216 goto out_free_id;
73cd49ec
MS
217 }
218
b3e19d92 219#ifdef CONFIG_SMP
c63181e6
AV
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
b3e19d92
NP
222 goto out_free_devname;
223
c63181e6 224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 225#else
c63181e6
AV
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
b3e19d92
NP
228#endif
229
38129a13 230 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 239 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73 244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73 290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73 304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73 312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
1e75529e 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e 394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e 413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e 420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e 423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e 429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440int mnt_want_write_file(struct file *file)
441{
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449}
96029c4e 450EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
8366025e 452/**
eb04c282 453 * __mnt_drop_write - give up write access to a mount
8366025e
DH
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
eb04c282 458 * __mnt_want_write() call above.
8366025e 459 */
eb04c282 460void __mnt_drop_write(struct vfsmount *mnt)
8366025e 461{
d3ef3d73 462 preempt_disable();
83adc753 463 mnt_dec_writers(real_mount(mnt));
d3ef3d73 464 preempt_enable();
8366025e 465}
b6450630 466EXPORT_SYMBOL_GPL(__mnt_drop_write);
eb04c282
JK
467
468/**
469 * mnt_drop_write - give up write access to a mount
470 * @mnt: the mount on which to give up write access
471 *
472 * Tells the low-level filesystem that we are done performing writes to it and
473 * also allows filesystem to be frozen again. Must be matched with
474 * mnt_want_write() call above.
475 */
476void mnt_drop_write(struct vfsmount *mnt)
477{
478 __mnt_drop_write(mnt);
479 sb_end_write(mnt->mnt_sb);
480}
8366025e
DH
481EXPORT_SYMBOL_GPL(mnt_drop_write);
482
eb04c282
JK
483void __mnt_drop_write_file(struct file *file)
484{
485 __mnt_drop_write(file->f_path.mnt);
486}
487
2a79f17e
AV
488void mnt_drop_write_file(struct file *file)
489{
490 mnt_drop_write(file->f_path.mnt);
491}
492EXPORT_SYMBOL(mnt_drop_write_file);
493
83adc753 494static int mnt_make_readonly(struct mount *mnt)
8366025e 495{
3d733633
DH
496 int ret = 0;
497
719ea2fb 498 lock_mount_hash();
83adc753 499 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 500 /*
d3ef3d73 501 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
502 * should be visible before we do.
3d733633 503 */
d3ef3d73 504 smp_mb();
505
3d733633 506 /*
d3ef3d73 507 * With writers on hold, if this value is zero, then there are
508 * definitely no active writers (although held writers may subsequently
509 * increment the count, they'll have to wait, and decrement it after
510 * seeing MNT_READONLY).
511 *
512 * It is OK to have counter incremented on one CPU and decremented on
513 * another: the sum will add up correctly. The danger would be when we
514 * sum up each counter, if we read a counter before it is incremented,
515 * but then read another CPU's count which it has been subsequently
516 * decremented from -- we would see more decrements than we should.
517 * MNT_WRITE_HOLD protects against this scenario, because
518 * mnt_want_write first increments count, then smp_mb, then spins on
519 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
520 * we're counting up here.
3d733633 521 */
c6653a83 522 if (mnt_get_writers(mnt) > 0)
d3ef3d73 523 ret = -EBUSY;
524 else
83adc753 525 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 526 /*
527 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
528 * that become unheld will see MNT_READONLY.
529 */
530 smp_wmb();
83adc753 531 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 532 unlock_mount_hash();
3d733633 533 return ret;
8366025e 534}
8366025e 535
83adc753 536static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 537{
719ea2fb 538 lock_mount_hash();
83adc753 539 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 540 unlock_mount_hash();
2e4b7fcd
DH
541}
542
4ed5e82f
MS
543int sb_prepare_remount_readonly(struct super_block *sb)
544{
545 struct mount *mnt;
546 int err = 0;
547
8e8b8796
MS
548 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
549 if (atomic_long_read(&sb->s_remove_count))
550 return -EBUSY;
551
719ea2fb 552 lock_mount_hash();
4ed5e82f
MS
553 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
554 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
555 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
556 smp_mb();
557 if (mnt_get_writers(mnt) > 0) {
558 err = -EBUSY;
559 break;
560 }
561 }
562 }
8e8b8796
MS
563 if (!err && atomic_long_read(&sb->s_remove_count))
564 err = -EBUSY;
565
4ed5e82f
MS
566 if (!err) {
567 sb->s_readonly_remount = 1;
568 smp_wmb();
569 }
570 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
571 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
572 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
573 }
719ea2fb 574 unlock_mount_hash();
4ed5e82f
MS
575
576 return err;
577}
578
b105e270 579static void free_vfsmnt(struct mount *mnt)
1da177e4 580{
fcc139ae 581 kfree_const(mnt->mnt_devname);
d3ef3d73 582#ifdef CONFIG_SMP
68e8a9fe 583 free_percpu(mnt->mnt_pcp);
d3ef3d73 584#endif
b105e270 585 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
586}
587
8ffcb32e
DH
588static void delayed_free_vfsmnt(struct rcu_head *head)
589{
590 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
591}
592
48a066e7 593/* call under rcu_read_lock */
294d71ff 594int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
595{
596 struct mount *mnt;
597 if (read_seqretry(&mount_lock, seq))
294d71ff 598 return 1;
48a066e7 599 if (bastard == NULL)
294d71ff 600 return 0;
48a066e7
AV
601 mnt = real_mount(bastard);
602 mnt_add_count(mnt, 1);
603 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 604 return 0;
48a066e7
AV
605 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
606 mnt_add_count(mnt, -1);
294d71ff
AV
607 return 1;
608 }
609 return -1;
610}
611
612/* call under rcu_read_lock */
613bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
614{
615 int res = __legitimize_mnt(bastard, seq);
616 if (likely(!res))
617 return true;
618 if (unlikely(res < 0)) {
619 rcu_read_unlock();
620 mntput(bastard);
621 rcu_read_lock();
48a066e7 622 }
48a066e7
AV
623 return false;
624}
625
1da177e4 626/*
474279dc 627 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 628 * call under rcu_read_lock()
1da177e4 629 */
474279dc 630struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 631{
38129a13 632 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
633 struct mount *p;
634
38129a13 635 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
636 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
637 return p;
638 return NULL;
639}
640
a05964f3 641/*
f015f126
DH
642 * lookup_mnt - Return the first child mount mounted at path
643 *
644 * "First" means first mounted chronologically. If you create the
645 * following mounts:
646 *
647 * mount /dev/sda1 /mnt
648 * mount /dev/sda2 /mnt
649 * mount /dev/sda3 /mnt
650 *
651 * Then lookup_mnt() on the base /mnt dentry in the root mount will
652 * return successively the root dentry and vfsmount of /dev/sda1, then
653 * /dev/sda2, then /dev/sda3, then NULL.
654 *
655 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 656 */
ca71cf71 657struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 658{
c7105365 659 struct mount *child_mnt;
48a066e7
AV
660 struct vfsmount *m;
661 unsigned seq;
99b7db7b 662
48a066e7
AV
663 rcu_read_lock();
664 do {
665 seq = read_seqbegin(&mount_lock);
666 child_mnt = __lookup_mnt(path->mnt, path->dentry);
667 m = child_mnt ? &child_mnt->mnt : NULL;
668 } while (!legitimize_mnt(m, seq));
669 rcu_read_unlock();
670 return m;
a05964f3
RP
671}
672
7af1364f
EB
673/*
674 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
675 * current mount namespace.
676 *
677 * The common case is dentries are not mountpoints at all and that
678 * test is handled inline. For the slow case when we are actually
679 * dealing with a mountpoint of some kind, walk through all of the
680 * mounts in the current mount namespace and test to see if the dentry
681 * is a mountpoint.
682 *
683 * The mount_hashtable is not usable in the context because we
684 * need to identify all mounts that may be in the current mount
685 * namespace not just a mount that happens to have some specified
686 * parent mount.
687 */
688bool __is_local_mountpoint(struct dentry *dentry)
689{
690 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
691 struct mount *mnt;
692 bool is_covered = false;
693
694 if (!d_mountpoint(dentry))
695 goto out;
696
697 down_read(&namespace_sem);
698 list_for_each_entry(mnt, &ns->list, mnt_list) {
699 is_covered = (mnt->mnt_mountpoint == dentry);
700 if (is_covered)
701 break;
702 }
703 up_read(&namespace_sem);
704out:
705 return is_covered;
706}
707
e2dfa935 708static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 709{
0818bf27 710 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
711 struct mountpoint *mp;
712
0818bf27 713 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
714 if (mp->m_dentry == dentry) {
715 /* might be worth a WARN_ON() */
716 if (d_unlinked(dentry))
717 return ERR_PTR(-ENOENT);
718 mp->m_count++;
719 return mp;
720 }
721 }
e2dfa935
EB
722 return NULL;
723}
724
3895dbf8 725static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 726{
3895dbf8 727 struct mountpoint *mp, *new = NULL;
e2dfa935 728 int ret;
84d17192 729
3895dbf8
EB
730 if (d_mountpoint(dentry)) {
731mountpoint:
732 read_seqlock_excl(&mount_lock);
733 mp = lookup_mountpoint(dentry);
734 read_sequnlock_excl(&mount_lock);
735 if (mp)
736 goto done;
737 }
738
739 if (!new)
740 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
741 if (!new)
84d17192
AV
742 return ERR_PTR(-ENOMEM);
743
3895dbf8
EB
744
745 /* Exactly one processes may set d_mounted */
eed81007 746 ret = d_set_mounted(dentry);
eed81007 747
3895dbf8
EB
748 /* Someone else set d_mounted? */
749 if (ret == -EBUSY)
750 goto mountpoint;
751
752 /* The dentry is not available as a mountpoint? */
753 mp = ERR_PTR(ret);
754 if (ret)
755 goto done;
756
757 /* Add the new mountpoint to the hash table */
758 read_seqlock_excl(&mount_lock);
759 new->m_dentry = dentry;
760 new->m_count = 1;
761 hlist_add_head(&new->m_hash, mp_hash(dentry));
762 INIT_HLIST_HEAD(&new->m_list);
763 read_sequnlock_excl(&mount_lock);
764
765 mp = new;
766 new = NULL;
767done:
768 kfree(new);
84d17192
AV
769 return mp;
770}
771
772static void put_mountpoint(struct mountpoint *mp)
773{
774 if (!--mp->m_count) {
775 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 776 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
777 spin_lock(&dentry->d_lock);
778 dentry->d_flags &= ~DCACHE_MOUNTED;
779 spin_unlock(&dentry->d_lock);
0818bf27 780 hlist_del(&mp->m_hash);
84d17192
AV
781 kfree(mp);
782 }
783}
784
143c8c91 785static inline int check_mnt(struct mount *mnt)
1da177e4 786{
6b3286ed 787 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
788}
789
99b7db7b
NP
790/*
791 * vfsmount lock must be held for write
792 */
6b3286ed 793static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
794{
795 if (ns) {
796 ns->event = ++event;
797 wake_up_interruptible(&ns->poll);
798 }
799}
800
99b7db7b
NP
801/*
802 * vfsmount lock must be held for write
803 */
6b3286ed 804static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
805{
806 if (ns && ns->event != event) {
807 ns->event = event;
808 wake_up_interruptible(&ns->poll);
809 }
810}
811
99b7db7b
NP
812/*
813 * vfsmount lock must be held for write
814 */
7bdb11de 815static void unhash_mnt(struct mount *mnt)
419148da 816{
0714a533 817 mnt->mnt_parent = mnt;
a73324da 818 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 819 list_del_init(&mnt->mnt_child);
38129a13 820 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 821 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
822 put_mountpoint(mnt->mnt_mp);
823 mnt->mnt_mp = NULL;
1da177e4
LT
824}
825
7bdb11de
EB
826/*
827 * vfsmount lock must be held for write
828 */
829static void detach_mnt(struct mount *mnt, struct path *old_path)
830{
831 old_path->dentry = mnt->mnt_mountpoint;
832 old_path->mnt = &mnt->mnt_parent->mnt;
833 unhash_mnt(mnt);
834}
835
6a46c573
EB
836/*
837 * vfsmount lock must be held for write
838 */
839static void umount_mnt(struct mount *mnt)
840{
841 /* old mountpoint will be dropped when we can do that */
842 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
843 unhash_mnt(mnt);
844}
845
99b7db7b
NP
846/*
847 * vfsmount lock must be held for write
848 */
84d17192
AV
849void mnt_set_mountpoint(struct mount *mnt,
850 struct mountpoint *mp,
44d964d6 851 struct mount *child_mnt)
b90fa9ae 852{
84d17192 853 mp->m_count++;
3a2393d7 854 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 855 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 856 child_mnt->mnt_parent = mnt;
84d17192 857 child_mnt->mnt_mp = mp;
0a5eb7c8 858 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
859}
860
1064f874
EB
861static void __attach_mnt(struct mount *mnt, struct mount *parent)
862{
863 hlist_add_head_rcu(&mnt->mnt_hash,
864 m_hash(&parent->mnt, mnt->mnt_mountpoint));
865 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
866}
867
99b7db7b
NP
868/*
869 * vfsmount lock must be held for write
870 */
84d17192
AV
871static void attach_mnt(struct mount *mnt,
872 struct mount *parent,
873 struct mountpoint *mp)
1da177e4 874{
84d17192 875 mnt_set_mountpoint(parent, mp, mnt);
1064f874 876 __attach_mnt(mnt, parent);
b90fa9ae
RP
877}
878
1064f874 879void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 880{
1064f874
EB
881 struct mountpoint *old_mp = mnt->mnt_mp;
882 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
883 struct mount *old_parent = mnt->mnt_parent;
884
885 list_del_init(&mnt->mnt_child);
886 hlist_del_init(&mnt->mnt_mp_list);
887 hlist_del_init_rcu(&mnt->mnt_hash);
888
889 attach_mnt(mnt, parent, mp);
890
891 put_mountpoint(old_mp);
892
893 /*
894 * Safely avoid even the suggestion this code might sleep or
895 * lock the mount hash by taking advantage of the knowledge that
896 * mnt_change_mountpoint will not release the final reference
897 * to a mountpoint.
898 *
899 * During mounting, the mount passed in as the parent mount will
900 * continue to use the old mountpoint and during unmounting, the
901 * old mountpoint will continue to exist until namespace_unlock,
902 * which happens well after mnt_change_mountpoint.
903 */
904 spin_lock(&old_mountpoint->d_lock);
905 old_mountpoint->d_lockref.count--;
906 spin_unlock(&old_mountpoint->d_lock);
907
908 mnt_add_count(old_parent, -1);
12a5b529
AV
909}
910
b90fa9ae 911/*
99b7db7b 912 * vfsmount lock must be held for write
b90fa9ae 913 */
1064f874 914static void commit_tree(struct mount *mnt)
b90fa9ae 915{
0714a533 916 struct mount *parent = mnt->mnt_parent;
83adc753 917 struct mount *m;
b90fa9ae 918 LIST_HEAD(head);
143c8c91 919 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 920
0714a533 921 BUG_ON(parent == mnt);
b90fa9ae 922
1a4eeaf2 923 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 924 list_for_each_entry(m, &head, mnt_list)
143c8c91 925 m->mnt_ns = n;
f03c6599 926
b90fa9ae
RP
927 list_splice(&head, n->list.prev);
928
d2921684
EB
929 n->mounts += n->pending_mounts;
930 n->pending_mounts = 0;
931
1064f874 932 __attach_mnt(mnt, parent);
6b3286ed 933 touch_mnt_namespace(n);
1da177e4
LT
934}
935
909b0a88 936static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 937{
6b41d536
AV
938 struct list_head *next = p->mnt_mounts.next;
939 if (next == &p->mnt_mounts) {
1da177e4 940 while (1) {
909b0a88 941 if (p == root)
1da177e4 942 return NULL;
6b41d536
AV
943 next = p->mnt_child.next;
944 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 945 break;
0714a533 946 p = p->mnt_parent;
1da177e4
LT
947 }
948 }
6b41d536 949 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
950}
951
315fc83e 952static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 953{
6b41d536
AV
954 struct list_head *prev = p->mnt_mounts.prev;
955 while (prev != &p->mnt_mounts) {
956 p = list_entry(prev, struct mount, mnt_child);
957 prev = p->mnt_mounts.prev;
9676f0c6
RP
958 }
959 return p;
960}
961
9d412a43
AV
962struct vfsmount *
963vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
964{
b105e270 965 struct mount *mnt;
9d412a43
AV
966 struct dentry *root;
967
968 if (!type)
969 return ERR_PTR(-ENODEV);
970
971 mnt = alloc_vfsmnt(name);
972 if (!mnt)
973 return ERR_PTR(-ENOMEM);
974
975 if (flags & MS_KERNMOUNT)
b105e270 976 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
977
978 root = mount_fs(type, flags, name, data);
979 if (IS_ERR(root)) {
8ffcb32e 980 mnt_free_id(mnt);
9d412a43
AV
981 free_vfsmnt(mnt);
982 return ERR_CAST(root);
983 }
984
b105e270
AV
985 mnt->mnt.mnt_root = root;
986 mnt->mnt.mnt_sb = root->d_sb;
a73324da 987 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 988 mnt->mnt_parent = mnt;
719ea2fb 989 lock_mount_hash();
39f7c4db 990 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 991 unlock_mount_hash();
b105e270 992 return &mnt->mnt;
9d412a43
AV
993}
994EXPORT_SYMBOL_GPL(vfs_kern_mount);
995
93faccbb
EB
996struct vfsmount *
997vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
998 const char *name, void *data)
999{
1000 /* Until it is worked out how to pass the user namespace
1001 * through from the parent mount to the submount don't support
1002 * unprivileged mounts with submounts.
1003 */
1004 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1005 return ERR_PTR(-EPERM);
1006
1007 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1008}
1009EXPORT_SYMBOL_GPL(vfs_submount);
1010
87129cc0 1011static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1012 int flag)
1da177e4 1013{
87129cc0 1014 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1015 struct mount *mnt;
1016 int err;
1da177e4 1017
be34d1a3
DH
1018 mnt = alloc_vfsmnt(old->mnt_devname);
1019 if (!mnt)
1020 return ERR_PTR(-ENOMEM);
719f5d7f 1021
7a472ef4 1022 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1023 mnt->mnt_group_id = 0; /* not a peer of original */
1024 else
1025 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1026
be34d1a3
DH
1027 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1028 err = mnt_alloc_group_id(mnt);
1029 if (err)
1030 goto out_free;
1da177e4 1031 }
be34d1a3 1032
f2ebb3a9 1033 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 1034 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
1035 if (flag & CL_UNPRIVILEGED) {
1036 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1037
1038 if (mnt->mnt.mnt_flags & MNT_READONLY)
1039 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1040
1041 if (mnt->mnt.mnt_flags & MNT_NODEV)
1042 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1043
1044 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1045 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1046
1047 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1048 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1049 }
132c94e3 1050
5ff9d8a6 1051 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1052 if ((flag & CL_UNPRIVILEGED) &&
1053 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1054 mnt->mnt.mnt_flags |= MNT_LOCKED;
1055
be34d1a3
DH
1056 atomic_inc(&sb->s_active);
1057 mnt->mnt.mnt_sb = sb;
1058 mnt->mnt.mnt_root = dget(root);
1059 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1060 mnt->mnt_parent = mnt;
719ea2fb 1061 lock_mount_hash();
be34d1a3 1062 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1063 unlock_mount_hash();
be34d1a3 1064
7a472ef4
EB
1065 if ((flag & CL_SLAVE) ||
1066 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1067 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1068 mnt->mnt_master = old;
1069 CLEAR_MNT_SHARED(mnt);
1070 } else if (!(flag & CL_PRIVATE)) {
1071 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1072 list_add(&mnt->mnt_share, &old->mnt_share);
1073 if (IS_MNT_SLAVE(old))
1074 list_add(&mnt->mnt_slave, &old->mnt_slave);
1075 mnt->mnt_master = old->mnt_master;
5235d448
AV
1076 } else {
1077 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1078 }
1079 if (flag & CL_MAKE_SHARED)
1080 set_mnt_shared(mnt);
1081
1082 /* stick the duplicate mount on the same expiry list
1083 * as the original if that was on one */
1084 if (flag & CL_EXPIRE) {
1085 if (!list_empty(&old->mnt_expire))
1086 list_add(&mnt->mnt_expire, &old->mnt_expire);
1087 }
1088
cb338d06 1089 return mnt;
719f5d7f
MS
1090
1091 out_free:
8ffcb32e 1092 mnt_free_id(mnt);
719f5d7f 1093 free_vfsmnt(mnt);
be34d1a3 1094 return ERR_PTR(err);
1da177e4
LT
1095}
1096
9ea459e1
AV
1097static void cleanup_mnt(struct mount *mnt)
1098{
1099 /*
1100 * This probably indicates that somebody messed
1101 * up a mnt_want/drop_write() pair. If this
1102 * happens, the filesystem was probably unable
1103 * to make r/w->r/o transitions.
1104 */
1105 /*
1106 * The locking used to deal with mnt_count decrement provides barriers,
1107 * so mnt_get_writers() below is safe.
1108 */
1109 WARN_ON(mnt_get_writers(mnt));
1110 if (unlikely(mnt->mnt_pins.first))
1111 mnt_pin_kill(mnt);
1112 fsnotify_vfsmount_delete(&mnt->mnt);
1113 dput(mnt->mnt.mnt_root);
1114 deactivate_super(mnt->mnt.mnt_sb);
1115 mnt_free_id(mnt);
1116 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1117}
1118
1119static void __cleanup_mnt(struct rcu_head *head)
1120{
1121 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1122}
1123
1124static LLIST_HEAD(delayed_mntput_list);
1125static void delayed_mntput(struct work_struct *unused)
1126{
1127 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1128 struct llist_node *next;
1129
1130 for (; node; node = next) {
1131 next = llist_next(node);
1132 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1133 }
1134}
1135static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1136
900148dc 1137static void mntput_no_expire(struct mount *mnt)
b3e19d92 1138{
48a066e7
AV
1139 rcu_read_lock();
1140 mnt_add_count(mnt, -1);
1141 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1142 rcu_read_unlock();
f03c6599 1143 return;
b3e19d92 1144 }
719ea2fb 1145 lock_mount_hash();
b3e19d92 1146 if (mnt_get_count(mnt)) {
48a066e7 1147 rcu_read_unlock();
719ea2fb 1148 unlock_mount_hash();
99b7db7b
NP
1149 return;
1150 }
48a066e7
AV
1151 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1152 rcu_read_unlock();
1153 unlock_mount_hash();
1154 return;
1155 }
1156 mnt->mnt.mnt_flags |= MNT_DOOMED;
1157 rcu_read_unlock();
962830df 1158
39f7c4db 1159 list_del(&mnt->mnt_instance);
ce07d891
EB
1160
1161 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1162 struct mount *p, *tmp;
1163 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1164 umount_mnt(p);
1165 }
1166 }
719ea2fb 1167 unlock_mount_hash();
649a795a 1168
9ea459e1
AV
1169 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1170 struct task_struct *task = current;
1171 if (likely(!(task->flags & PF_KTHREAD))) {
1172 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1173 if (!task_work_add(task, &mnt->mnt_rcu, true))
1174 return;
1175 }
1176 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1177 schedule_delayed_work(&delayed_mntput_work, 1);
1178 return;
1179 }
1180 cleanup_mnt(mnt);
b3e19d92 1181}
b3e19d92
NP
1182
1183void mntput(struct vfsmount *mnt)
1184{
1185 if (mnt) {
863d684f 1186 struct mount *m = real_mount(mnt);
b3e19d92 1187 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1188 if (unlikely(m->mnt_expiry_mark))
1189 m->mnt_expiry_mark = 0;
1190 mntput_no_expire(m);
b3e19d92
NP
1191 }
1192}
1193EXPORT_SYMBOL(mntput);
1194
1195struct vfsmount *mntget(struct vfsmount *mnt)
1196{
1197 if (mnt)
83adc753 1198 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1199 return mnt;
1200}
1201EXPORT_SYMBOL(mntget);
1202
c6609c0a
IK
1203/* path_is_mountpoint() - Check if path is a mount in the current
1204 * namespace.
1205 *
1206 * d_mountpoint() can only be used reliably to establish if a dentry is
1207 * not mounted in any namespace and that common case is handled inline.
1208 * d_mountpoint() isn't aware of the possibility there may be multiple
1209 * mounts using a given dentry in a different namespace. This function
1210 * checks if the passed in path is a mountpoint rather than the dentry
1211 * alone.
1212 */
1213bool path_is_mountpoint(const struct path *path)
1214{
1215 unsigned seq;
1216 bool res;
1217
1218 if (!d_mountpoint(path->dentry))
1219 return false;
1220
1221 rcu_read_lock();
1222 do {
1223 seq = read_seqbegin(&mount_lock);
1224 res = __path_is_mountpoint(path);
1225 } while (read_seqretry(&mount_lock, seq));
1226 rcu_read_unlock();
1227
1228 return res;
1229}
1230EXPORT_SYMBOL(path_is_mountpoint);
1231
ca71cf71 1232struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1233{
3064c356
AV
1234 struct mount *p;
1235 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1236 if (IS_ERR(p))
1237 return ERR_CAST(p);
1238 p->mnt.mnt_flags |= MNT_INTERNAL;
1239 return &p->mnt;
7b7b1ace 1240}
1da177e4 1241
a1a2c409 1242#ifdef CONFIG_PROC_FS
0226f492 1243/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1244static void *m_start(struct seq_file *m, loff_t *pos)
1245{
ede1bf0d 1246 struct proc_mounts *p = m->private;
1da177e4 1247
390c6843 1248 down_read(&namespace_sem);
c7999c36
AV
1249 if (p->cached_event == p->ns->event) {
1250 void *v = p->cached_mount;
1251 if (*pos == p->cached_index)
1252 return v;
1253 if (*pos == p->cached_index + 1) {
1254 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1255 return p->cached_mount = v;
1256 }
1257 }
1258
1259 p->cached_event = p->ns->event;
1260 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1261 p->cached_index = *pos;
1262 return p->cached_mount;
1da177e4
LT
1263}
1264
1265static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1266{
ede1bf0d 1267 struct proc_mounts *p = m->private;
b0765fb8 1268
c7999c36
AV
1269 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1270 p->cached_index = *pos;
1271 return p->cached_mount;
1da177e4
LT
1272}
1273
1274static void m_stop(struct seq_file *m, void *v)
1275{
390c6843 1276 up_read(&namespace_sem);
1da177e4
LT
1277}
1278
0226f492 1279static int m_show(struct seq_file *m, void *v)
2d4d4864 1280{
ede1bf0d 1281 struct proc_mounts *p = m->private;
1a4eeaf2 1282 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1283 return p->show(m, &r->mnt);
1da177e4
LT
1284}
1285
a1a2c409 1286const struct seq_operations mounts_op = {
1da177e4
LT
1287 .start = m_start,
1288 .next = m_next,
1289 .stop = m_stop,
0226f492 1290 .show = m_show,
b4629fe2 1291};
a1a2c409 1292#endif /* CONFIG_PROC_FS */
b4629fe2 1293
1da177e4
LT
1294/**
1295 * may_umount_tree - check if a mount tree is busy
1296 * @mnt: root of mount tree
1297 *
1298 * This is called to check if a tree of mounts has any
1299 * open files, pwds, chroots or sub mounts that are
1300 * busy.
1301 */
909b0a88 1302int may_umount_tree(struct vfsmount *m)
1da177e4 1303{
909b0a88 1304 struct mount *mnt = real_mount(m);
36341f64
RP
1305 int actual_refs = 0;
1306 int minimum_refs = 0;
315fc83e 1307 struct mount *p;
909b0a88 1308 BUG_ON(!m);
1da177e4 1309
b3e19d92 1310 /* write lock needed for mnt_get_count */
719ea2fb 1311 lock_mount_hash();
909b0a88 1312 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1313 actual_refs += mnt_get_count(p);
1da177e4 1314 minimum_refs += 2;
1da177e4 1315 }
719ea2fb 1316 unlock_mount_hash();
1da177e4
LT
1317
1318 if (actual_refs > minimum_refs)
e3474a8e 1319 return 0;
1da177e4 1320
e3474a8e 1321 return 1;
1da177e4
LT
1322}
1323
1324EXPORT_SYMBOL(may_umount_tree);
1325
1326/**
1327 * may_umount - check if a mount point is busy
1328 * @mnt: root of mount
1329 *
1330 * This is called to check if a mount point has any
1331 * open files, pwds, chroots or sub mounts. If the
1332 * mount has sub mounts this will return busy
1333 * regardless of whether the sub mounts are busy.
1334 *
1335 * Doesn't take quota and stuff into account. IOW, in some cases it will
1336 * give false negatives. The main reason why it's here is that we need
1337 * a non-destructive way to look for easily umountable filesystems.
1338 */
1339int may_umount(struct vfsmount *mnt)
1340{
e3474a8e 1341 int ret = 1;
8ad08d8a 1342 down_read(&namespace_sem);
719ea2fb 1343 lock_mount_hash();
1ab59738 1344 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1345 ret = 0;
719ea2fb 1346 unlock_mount_hash();
8ad08d8a 1347 up_read(&namespace_sem);
a05964f3 1348 return ret;
1da177e4
LT
1349}
1350
1351EXPORT_SYMBOL(may_umount);
1352
38129a13 1353static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1354
97216be0 1355static void namespace_unlock(void)
70fbcdf4 1356{
a3b3c562 1357 struct hlist_head head;
97216be0 1358
a3b3c562 1359 hlist_move_list(&unmounted, &head);
97216be0 1360
97216be0
AV
1361 up_write(&namespace_sem);
1362
a3b3c562
EB
1363 if (likely(hlist_empty(&head)))
1364 return;
1365
48a066e7
AV
1366 synchronize_rcu();
1367
87b95ce0 1368 group_pin_kill(&head);
70fbcdf4
RP
1369}
1370
97216be0 1371static inline void namespace_lock(void)
e3197d83 1372{
97216be0 1373 down_write(&namespace_sem);
e3197d83
AV
1374}
1375
e819f152
EB
1376enum umount_tree_flags {
1377 UMOUNT_SYNC = 1,
1378 UMOUNT_PROPAGATE = 2,
e0c9c0af 1379 UMOUNT_CONNECTED = 4,
e819f152 1380};
f2d0a123
EB
1381
1382static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1383{
1384 /* Leaving mounts connected is only valid for lazy umounts */
1385 if (how & UMOUNT_SYNC)
1386 return true;
1387
1388 /* A mount without a parent has nothing to be connected to */
1389 if (!mnt_has_parent(mnt))
1390 return true;
1391
1392 /* Because the reference counting rules change when mounts are
1393 * unmounted and connected, umounted mounts may not be
1394 * connected to mounted mounts.
1395 */
1396 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1397 return true;
1398
1399 /* Has it been requested that the mount remain connected? */
1400 if (how & UMOUNT_CONNECTED)
1401 return false;
1402
1403 /* Is the mount locked such that it needs to remain connected? */
1404 if (IS_MNT_LOCKED(mnt))
1405 return false;
1406
1407 /* By default disconnect the mount */
1408 return true;
1409}
1410
99b7db7b 1411/*
48a066e7 1412 * mount_lock must be held
99b7db7b
NP
1413 * namespace_sem must be held for write
1414 */
e819f152 1415static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1416{
c003b26f 1417 LIST_HEAD(tmp_list);
315fc83e 1418 struct mount *p;
1da177e4 1419
5d88457e
EB
1420 if (how & UMOUNT_PROPAGATE)
1421 propagate_mount_unlock(mnt);
1422
c003b26f 1423 /* Gather the mounts to umount */
590ce4bc
EB
1424 for (p = mnt; p; p = next_mnt(p, mnt)) {
1425 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1426 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1427 }
1da177e4 1428
411a938b 1429 /* Hide the mounts from mnt_mounts */
c003b26f 1430 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1431 list_del_init(&p->mnt_child);
c003b26f 1432 }
88b368f2 1433
c003b26f 1434 /* Add propogated mounts to the tmp_list */
e819f152 1435 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1436 propagate_umount(&tmp_list);
a05964f3 1437
c003b26f 1438 while (!list_empty(&tmp_list)) {
d2921684 1439 struct mnt_namespace *ns;
ce07d891 1440 bool disconnect;
c003b26f 1441 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1442 list_del_init(&p->mnt_expire);
1a4eeaf2 1443 list_del_init(&p->mnt_list);
d2921684
EB
1444 ns = p->mnt_ns;
1445 if (ns) {
1446 ns->mounts--;
1447 __touch_mnt_namespace(ns);
1448 }
143c8c91 1449 p->mnt_ns = NULL;
e819f152 1450 if (how & UMOUNT_SYNC)
48a066e7 1451 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1452
f2d0a123 1453 disconnect = disconnect_mount(p, how);
ce07d891
EB
1454
1455 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1456 disconnect ? &unmounted : NULL);
676da58d 1457 if (mnt_has_parent(p)) {
81b6b061 1458 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1459 if (!disconnect) {
1460 /* Don't forget about p */
1461 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1462 } else {
1463 umount_mnt(p);
1464 }
7c4b93d8 1465 }
0f0afb1d 1466 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1467 }
1468}
1469
b54b9be7 1470static void shrink_submounts(struct mount *mnt);
c35038be 1471
1ab59738 1472static int do_umount(struct mount *mnt, int flags)
1da177e4 1473{
1ab59738 1474 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1475 int retval;
1476
1ab59738 1477 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1478 if (retval)
1479 return retval;
1480
1481 /*
1482 * Allow userspace to request a mountpoint be expired rather than
1483 * unmounting unconditionally. Unmount only happens if:
1484 * (1) the mark is already set (the mark is cleared by mntput())
1485 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1486 */
1487 if (flags & MNT_EXPIRE) {
1ab59738 1488 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1489 flags & (MNT_FORCE | MNT_DETACH))
1490 return -EINVAL;
1491
b3e19d92
NP
1492 /*
1493 * probably don't strictly need the lock here if we examined
1494 * all race cases, but it's a slowpath.
1495 */
719ea2fb 1496 lock_mount_hash();
83adc753 1497 if (mnt_get_count(mnt) != 2) {
719ea2fb 1498 unlock_mount_hash();
1da177e4 1499 return -EBUSY;
b3e19d92 1500 }
719ea2fb 1501 unlock_mount_hash();
1da177e4 1502
863d684f 1503 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1504 return -EAGAIN;
1505 }
1506
1507 /*
1508 * If we may have to abort operations to get out of this
1509 * mount, and they will themselves hold resources we must
1510 * allow the fs to do things. In the Unix tradition of
1511 * 'Gee thats tricky lets do it in userspace' the umount_begin
1512 * might fail to complete on the first run through as other tasks
1513 * must return, and the like. Thats for the mount program to worry
1514 * about for the moment.
1515 */
1516
42faad99 1517 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1518 sb->s_op->umount_begin(sb);
42faad99 1519 }
1da177e4
LT
1520
1521 /*
1522 * No sense to grab the lock for this test, but test itself looks
1523 * somewhat bogus. Suggestions for better replacement?
1524 * Ho-hum... In principle, we might treat that as umount + switch
1525 * to rootfs. GC would eventually take care of the old vfsmount.
1526 * Actually it makes sense, especially if rootfs would contain a
1527 * /reboot - static binary that would close all descriptors and
1528 * call reboot(9). Then init(8) could umount root and exec /reboot.
1529 */
1ab59738 1530 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1531 /*
1532 * Special case for "unmounting" root ...
1533 * we just try to remount it readonly.
1534 */
193f41d6 1535 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1536 return -EPERM;
1da177e4 1537 down_write(&sb->s_umount);
4aa98cf7 1538 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1539 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1540 up_write(&sb->s_umount);
1541 return retval;
1542 }
1543
97216be0 1544 namespace_lock();
719ea2fb 1545 lock_mount_hash();
5addc5dd 1546 event++;
1da177e4 1547
48a066e7 1548 if (flags & MNT_DETACH) {
1a4eeaf2 1549 if (!list_empty(&mnt->mnt_list))
e819f152 1550 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1551 retval = 0;
48a066e7
AV
1552 } else {
1553 shrink_submounts(mnt);
1554 retval = -EBUSY;
1555 if (!propagate_mount_busy(mnt, 2)) {
1556 if (!list_empty(&mnt->mnt_list))
e819f152 1557 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1558 retval = 0;
1559 }
1da177e4 1560 }
719ea2fb 1561 unlock_mount_hash();
e3197d83 1562 namespace_unlock();
1da177e4
LT
1563 return retval;
1564}
1565
80b5dce8
EB
1566/*
1567 * __detach_mounts - lazily unmount all mounts on the specified dentry
1568 *
1569 * During unlink, rmdir, and d_drop it is possible to loose the path
1570 * to an existing mountpoint, and wind up leaking the mount.
1571 * detach_mounts allows lazily unmounting those mounts instead of
1572 * leaking them.
1573 *
1574 * The caller may hold dentry->d_inode->i_mutex.
1575 */
1576void __detach_mounts(struct dentry *dentry)
1577{
1578 struct mountpoint *mp;
1579 struct mount *mnt;
1580
1581 namespace_lock();
3895dbf8 1582 lock_mount_hash();
80b5dce8 1583 mp = lookup_mountpoint(dentry);
f53e5797 1584 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1585 goto out_unlock;
1586
e06b933e 1587 event++;
80b5dce8
EB
1588 while (!hlist_empty(&mp->m_list)) {
1589 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1590 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1591 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1592 umount_mnt(mnt);
ce07d891 1593 }
e0c9c0af 1594 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1595 }
80b5dce8
EB
1596 put_mountpoint(mp);
1597out_unlock:
3895dbf8 1598 unlock_mount_hash();
80b5dce8
EB
1599 namespace_unlock();
1600}
1601
dd111b31 1602/*
9b40bc90
AV
1603 * Is the caller allowed to modify his namespace?
1604 */
1605static inline bool may_mount(void)
1606{
1607 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1608}
1609
9e8925b6
JL
1610static inline bool may_mandlock(void)
1611{
1612#ifndef CONFIG_MANDATORY_FILE_LOCKING
1613 return false;
1614#endif
95ace754 1615 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1616}
1617
1da177e4
LT
1618/*
1619 * Now umount can handle mount points as well as block devices.
1620 * This is important for filesystems which use unnamed block devices.
1621 *
1622 * We now support a flag for forced unmount like the other 'big iron'
1623 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1624 */
1625
bdc480e3 1626SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1627{
2d8f3038 1628 struct path path;
900148dc 1629 struct mount *mnt;
1da177e4 1630 int retval;
db1f05bb 1631 int lookup_flags = 0;
1da177e4 1632
db1f05bb
MS
1633 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1634 return -EINVAL;
1635
9b40bc90
AV
1636 if (!may_mount())
1637 return -EPERM;
1638
db1f05bb
MS
1639 if (!(flags & UMOUNT_NOFOLLOW))
1640 lookup_flags |= LOOKUP_FOLLOW;
1641
197df04c 1642 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1643 if (retval)
1644 goto out;
900148dc 1645 mnt = real_mount(path.mnt);
1da177e4 1646 retval = -EINVAL;
2d8f3038 1647 if (path.dentry != path.mnt->mnt_root)
1da177e4 1648 goto dput_and_out;
143c8c91 1649 if (!check_mnt(mnt))
1da177e4 1650 goto dput_and_out;
5ff9d8a6
EB
1651 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1652 goto dput_and_out;
b2f5d4dc
EB
1653 retval = -EPERM;
1654 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1655 goto dput_and_out;
1da177e4 1656
900148dc 1657 retval = do_umount(mnt, flags);
1da177e4 1658dput_and_out:
429731b1 1659 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1660 dput(path.dentry);
900148dc 1661 mntput_no_expire(mnt);
1da177e4
LT
1662out:
1663 return retval;
1664}
1665
1666#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1667
1668/*
b58fed8b 1669 * The 2.0 compatible umount. No flags.
1da177e4 1670 */
bdc480e3 1671SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1672{
b58fed8b 1673 return sys_umount(name, 0);
1da177e4
LT
1674}
1675
1676#endif
1677
4ce5d2b1 1678static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1679{
4ce5d2b1 1680 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1681 return dentry->d_op == &ns_dentry_operations &&
1682 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1683}
1684
58be2825
AV
1685struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1686{
1687 return container_of(ns, struct mnt_namespace, ns);
1688}
1689
4ce5d2b1
EB
1690static bool mnt_ns_loop(struct dentry *dentry)
1691{
1692 /* Could bind mounting the mount namespace inode cause a
1693 * mount namespace loop?
1694 */
1695 struct mnt_namespace *mnt_ns;
1696 if (!is_mnt_ns_file(dentry))
1697 return false;
1698
f77c8014 1699 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1700 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1701}
1702
87129cc0 1703struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1704 int flag)
1da177e4 1705{
84d17192 1706 struct mount *res, *p, *q, *r, *parent;
1da177e4 1707
4ce5d2b1
EB
1708 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1709 return ERR_PTR(-EINVAL);
1710
1711 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1712 return ERR_PTR(-EINVAL);
9676f0c6 1713
36341f64 1714 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1715 if (IS_ERR(q))
1716 return q;
1717
a73324da 1718 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1719
1720 p = mnt;
6b41d536 1721 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1722 struct mount *s;
7ec02ef1 1723 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1724 continue;
1725
909b0a88 1726 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1727 if (!(flag & CL_COPY_UNBINDABLE) &&
1728 IS_MNT_UNBINDABLE(s)) {
1729 s = skip_mnt_tree(s);
1730 continue;
1731 }
1732 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1733 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1734 s = skip_mnt_tree(s);
1735 continue;
1736 }
0714a533
AV
1737 while (p != s->mnt_parent) {
1738 p = p->mnt_parent;
1739 q = q->mnt_parent;
1da177e4 1740 }
87129cc0 1741 p = s;
84d17192 1742 parent = q;
87129cc0 1743 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1744 if (IS_ERR(q))
1745 goto out;
719ea2fb 1746 lock_mount_hash();
1a4eeaf2 1747 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1748 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1749 unlock_mount_hash();
1da177e4
LT
1750 }
1751 }
1752 return res;
be34d1a3 1753out:
1da177e4 1754 if (res) {
719ea2fb 1755 lock_mount_hash();
e819f152 1756 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1757 unlock_mount_hash();
1da177e4 1758 }
be34d1a3 1759 return q;
1da177e4
LT
1760}
1761
be34d1a3
DH
1762/* Caller should check returned pointer for errors */
1763
ca71cf71 1764struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1765{
cb338d06 1766 struct mount *tree;
97216be0 1767 namespace_lock();
cd4a4017
EB
1768 if (!check_mnt(real_mount(path->mnt)))
1769 tree = ERR_PTR(-EINVAL);
1770 else
1771 tree = copy_tree(real_mount(path->mnt), path->dentry,
1772 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1773 namespace_unlock();
be34d1a3 1774 if (IS_ERR(tree))
52e220d3 1775 return ERR_CAST(tree);
be34d1a3 1776 return &tree->mnt;
8aec0809
AV
1777}
1778
1779void drop_collected_mounts(struct vfsmount *mnt)
1780{
97216be0 1781 namespace_lock();
719ea2fb 1782 lock_mount_hash();
e819f152 1783 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1784 unlock_mount_hash();
3ab6abee 1785 namespace_unlock();
8aec0809
AV
1786}
1787
c771d683
MS
1788/**
1789 * clone_private_mount - create a private clone of a path
1790 *
1791 * This creates a new vfsmount, which will be the clone of @path. The new will
1792 * not be attached anywhere in the namespace and will be private (i.e. changes
1793 * to the originating mount won't be propagated into this).
1794 *
1795 * Release with mntput().
1796 */
ca71cf71 1797struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1798{
1799 struct mount *old_mnt = real_mount(path->mnt);
1800 struct mount *new_mnt;
1801
1802 if (IS_MNT_UNBINDABLE(old_mnt))
1803 return ERR_PTR(-EINVAL);
1804
c771d683 1805 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1806 if (IS_ERR(new_mnt))
1807 return ERR_CAST(new_mnt);
1808
1809 return &new_mnt->mnt;
1810}
1811EXPORT_SYMBOL_GPL(clone_private_mount);
1812
1f707137
AV
1813int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1814 struct vfsmount *root)
1815{
1a4eeaf2 1816 struct mount *mnt;
1f707137
AV
1817 int res = f(root, arg);
1818 if (res)
1819 return res;
1a4eeaf2
AV
1820 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1821 res = f(&mnt->mnt, arg);
1f707137
AV
1822 if (res)
1823 return res;
1824 }
1825 return 0;
1826}
b6450630 1827EXPORT_SYMBOL_GPL(iterate_mounts);
1f707137 1828
4b8b21f4 1829static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1830{
315fc83e 1831 struct mount *p;
719f5d7f 1832
909b0a88 1833 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1834 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1835 mnt_release_group_id(p);
719f5d7f
MS
1836 }
1837}
1838
4b8b21f4 1839static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1840{
315fc83e 1841 struct mount *p;
719f5d7f 1842
909b0a88 1843 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1844 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1845 int err = mnt_alloc_group_id(p);
719f5d7f 1846 if (err) {
4b8b21f4 1847 cleanup_group_ids(mnt, p);
719f5d7f
MS
1848 return err;
1849 }
1850 }
1851 }
1852
1853 return 0;
1854}
1855
d2921684
EB
1856int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1857{
1858 unsigned int max = READ_ONCE(sysctl_mount_max);
1859 unsigned int mounts = 0, old, pending, sum;
1860 struct mount *p;
1861
1862 for (p = mnt; p; p = next_mnt(p, mnt))
1863 mounts++;
1864
1865 old = ns->mounts;
1866 pending = ns->pending_mounts;
1867 sum = old + pending;
1868 if ((old > sum) ||
1869 (pending > sum) ||
1870 (max < sum) ||
1871 (mounts > (max - sum)))
1872 return -ENOSPC;
1873
1874 ns->pending_mounts = pending + mounts;
1875 return 0;
1876}
1877
b90fa9ae
RP
1878/*
1879 * @source_mnt : mount tree to be attached
21444403
RP
1880 * @nd : place the mount tree @source_mnt is attached
1881 * @parent_nd : if non-null, detach the source_mnt from its parent and
1882 * store the parent mount and mountpoint dentry.
1883 * (done when source_mnt is moved)
b90fa9ae
RP
1884 *
1885 * NOTE: in the table below explains the semantics when a source mount
1886 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1887 * ---------------------------------------------------------------------------
1888 * | BIND MOUNT OPERATION |
1889 * |**************************************************************************
1890 * | source-->| shared | private | slave | unbindable |
1891 * | dest | | | | |
1892 * | | | | | | |
1893 * | v | | | | |
1894 * |**************************************************************************
1895 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1896 * | | | | | |
1897 * |non-shared| shared (+) | private | slave (*) | invalid |
1898 * ***************************************************************************
b90fa9ae
RP
1899 * A bind operation clones the source mount and mounts the clone on the
1900 * destination mount.
1901 *
1902 * (++) the cloned mount is propagated to all the mounts in the propagation
1903 * tree of the destination mount and the cloned mount is added to
1904 * the peer group of the source mount.
1905 * (+) the cloned mount is created under the destination mount and is marked
1906 * as shared. The cloned mount is added to the peer group of the source
1907 * mount.
5afe0022
RP
1908 * (+++) the mount is propagated to all the mounts in the propagation tree
1909 * of the destination mount and the cloned mount is made slave
1910 * of the same master as that of the source mount. The cloned mount
1911 * is marked as 'shared and slave'.
1912 * (*) the cloned mount is made a slave of the same master as that of the
1913 * source mount.
1914 *
9676f0c6
RP
1915 * ---------------------------------------------------------------------------
1916 * | MOVE MOUNT OPERATION |
1917 * |**************************************************************************
1918 * | source-->| shared | private | slave | unbindable |
1919 * | dest | | | | |
1920 * | | | | | | |
1921 * | v | | | | |
1922 * |**************************************************************************
1923 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1924 * | | | | | |
1925 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1926 * ***************************************************************************
5afe0022
RP
1927 *
1928 * (+) the mount is moved to the destination. And is then propagated to
1929 * all the mounts in the propagation tree of the destination mount.
21444403 1930 * (+*) the mount is moved to the destination.
5afe0022
RP
1931 * (+++) the mount is moved to the destination and is then propagated to
1932 * all the mounts belonging to the destination mount's propagation tree.
1933 * the mount is marked as 'shared and slave'.
1934 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1935 *
1936 * if the source mount is a tree, the operations explained above is
1937 * applied to each mount in the tree.
1938 * Must be called without spinlocks held, since this function can sleep
1939 * in allocations.
1940 */
0fb54e50 1941static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1942 struct mount *dest_mnt,
1943 struct mountpoint *dest_mp,
1944 struct path *parent_path)
b90fa9ae 1945{
38129a13 1946 HLIST_HEAD(tree_list);
d2921684 1947 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 1948 struct mountpoint *smp;
315fc83e 1949 struct mount *child, *p;
38129a13 1950 struct hlist_node *n;
719f5d7f 1951 int err;
b90fa9ae 1952
1064f874
EB
1953 /* Preallocate a mountpoint in case the new mounts need
1954 * to be tucked under other mounts.
1955 */
1956 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1957 if (IS_ERR(smp))
1958 return PTR_ERR(smp);
1959
d2921684
EB
1960 /* Is there space to add these mounts to the mount namespace? */
1961 if (!parent_path) {
1962 err = count_mounts(ns, source_mnt);
1963 if (err)
1964 goto out;
1965 }
1966
fc7be130 1967 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1968 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1969 if (err)
1970 goto out;
0b1b901b 1971 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1972 lock_mount_hash();
0b1b901b
AV
1973 if (err)
1974 goto out_cleanup_ids;
909b0a88 1975 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1976 set_mnt_shared(p);
0b1b901b
AV
1977 } else {
1978 lock_mount_hash();
b90fa9ae 1979 }
1a390689 1980 if (parent_path) {
0fb54e50 1981 detach_mnt(source_mnt, parent_path);
84d17192 1982 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1983 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1984 } else {
84d17192 1985 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 1986 commit_tree(source_mnt);
21444403 1987 }
b90fa9ae 1988
38129a13 1989 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1990 struct mount *q;
38129a13 1991 hlist_del_init(&child->mnt_hash);
1064f874
EB
1992 q = __lookup_mnt(&child->mnt_parent->mnt,
1993 child->mnt_mountpoint);
1994 if (q)
1995 mnt_change_mountpoint(child, smp, q);
1996 commit_tree(child);
b90fa9ae 1997 }
1064f874 1998 put_mountpoint(smp);
719ea2fb 1999 unlock_mount_hash();
99b7db7b 2000
b90fa9ae 2001 return 0;
719f5d7f
MS
2002
2003 out_cleanup_ids:
f2ebb3a9
AV
2004 while (!hlist_empty(&tree_list)) {
2005 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2006 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2007 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2008 }
2009 unlock_mount_hash();
0b1b901b 2010 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2011 out:
d2921684 2012 ns->pending_mounts = 0;
1064f874
EB
2013
2014 read_seqlock_excl(&mount_lock);
2015 put_mountpoint(smp);
2016 read_sequnlock_excl(&mount_lock);
2017
719f5d7f 2018 return err;
b90fa9ae
RP
2019}
2020
84d17192 2021static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2022{
2023 struct vfsmount *mnt;
84d17192 2024 struct dentry *dentry = path->dentry;
b12cea91 2025retry:
5955102c 2026 inode_lock(dentry->d_inode);
84d17192 2027 if (unlikely(cant_mount(dentry))) {
5955102c 2028 inode_unlock(dentry->d_inode);
84d17192 2029 return ERR_PTR(-ENOENT);
b12cea91 2030 }
97216be0 2031 namespace_lock();
b12cea91 2032 mnt = lookup_mnt(path);
84d17192 2033 if (likely(!mnt)) {
3895dbf8 2034 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2035 if (IS_ERR(mp)) {
97216be0 2036 namespace_unlock();
5955102c 2037 inode_unlock(dentry->d_inode);
84d17192
AV
2038 return mp;
2039 }
2040 return mp;
2041 }
97216be0 2042 namespace_unlock();
5955102c 2043 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2044 path_put(path);
2045 path->mnt = mnt;
84d17192 2046 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2047 goto retry;
2048}
2049
84d17192 2050static void unlock_mount(struct mountpoint *where)
b12cea91 2051{
84d17192 2052 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2053
2054 read_seqlock_excl(&mount_lock);
84d17192 2055 put_mountpoint(where);
3895dbf8
EB
2056 read_sequnlock_excl(&mount_lock);
2057
328e6d90 2058 namespace_unlock();
5955102c 2059 inode_unlock(dentry->d_inode);
b12cea91
AV
2060}
2061
84d17192 2062static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2063{
95bc5f25 2064 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
2065 return -EINVAL;
2066
e36cb0b8
DH
2067 if (d_is_dir(mp->m_dentry) !=
2068 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2069 return -ENOTDIR;
2070
84d17192 2071 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2072}
2073
7a2e8a8f
VA
2074/*
2075 * Sanity check the flags to change_mnt_propagation.
2076 */
2077
2078static int flags_to_propagation_type(int flags)
2079{
7c6e984d 2080 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2081
2082 /* Fail if any non-propagation flags are set */
2083 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2084 return 0;
2085 /* Only one propagation flag should be set */
2086 if (!is_power_of_2(type))
2087 return 0;
2088 return type;
2089}
2090
07b20889
RP
2091/*
2092 * recursively change the type of the mountpoint.
2093 */
0a0d8a46 2094static int do_change_type(struct path *path, int flag)
07b20889 2095{
315fc83e 2096 struct mount *m;
4b8b21f4 2097 struct mount *mnt = real_mount(path->mnt);
07b20889 2098 int recurse = flag & MS_REC;
7a2e8a8f 2099 int type;
719f5d7f 2100 int err = 0;
07b20889 2101
2d92ab3c 2102 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2103 return -EINVAL;
2104
7a2e8a8f
VA
2105 type = flags_to_propagation_type(flag);
2106 if (!type)
2107 return -EINVAL;
2108
97216be0 2109 namespace_lock();
719f5d7f
MS
2110 if (type == MS_SHARED) {
2111 err = invent_group_ids(mnt, recurse);
2112 if (err)
2113 goto out_unlock;
2114 }
2115
719ea2fb 2116 lock_mount_hash();
909b0a88 2117 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2118 change_mnt_propagation(m, type);
719ea2fb 2119 unlock_mount_hash();
719f5d7f
MS
2120
2121 out_unlock:
97216be0 2122 namespace_unlock();
719f5d7f 2123 return err;
07b20889
RP
2124}
2125
5ff9d8a6
EB
2126static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2127{
2128 struct mount *child;
2129 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2130 if (!is_subdir(child->mnt_mountpoint, dentry))
2131 continue;
2132
2133 if (child->mnt.mnt_flags & MNT_LOCKED)
2134 return true;
2135 }
2136 return false;
2137}
2138
1da177e4
LT
2139/*
2140 * do loopback mount.
2141 */
808d4e3c 2142static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2143 int recurse)
1da177e4 2144{
2d92ab3c 2145 struct path old_path;
84d17192
AV
2146 struct mount *mnt = NULL, *old, *parent;
2147 struct mountpoint *mp;
57eccb83 2148 int err;
1da177e4
LT
2149 if (!old_name || !*old_name)
2150 return -EINVAL;
815d405c 2151 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2152 if (err)
2153 return err;
2154
8823c079 2155 err = -EINVAL;
4ce5d2b1 2156 if (mnt_ns_loop(old_path.dentry))
dd111b31 2157 goto out;
8823c079 2158
84d17192
AV
2159 mp = lock_mount(path);
2160 err = PTR_ERR(mp);
2161 if (IS_ERR(mp))
b12cea91
AV
2162 goto out;
2163
87129cc0 2164 old = real_mount(old_path.mnt);
84d17192 2165 parent = real_mount(path->mnt);
87129cc0 2166
1da177e4 2167 err = -EINVAL;
fc7be130 2168 if (IS_MNT_UNBINDABLE(old))
b12cea91 2169 goto out2;
9676f0c6 2170
e149ed2b
AV
2171 if (!check_mnt(parent))
2172 goto out2;
2173
2174 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2175 goto out2;
1da177e4 2176
5ff9d8a6
EB
2177 if (!recurse && has_locked_children(old, old_path.dentry))
2178 goto out2;
2179
ccd48bc7 2180 if (recurse)
4ce5d2b1 2181 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2182 else
87129cc0 2183 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2184
be34d1a3
DH
2185 if (IS_ERR(mnt)) {
2186 err = PTR_ERR(mnt);
e9c5d8a5 2187 goto out2;
be34d1a3 2188 }
ccd48bc7 2189
5ff9d8a6
EB
2190 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2191
84d17192 2192 err = graft_tree(mnt, parent, mp);
ccd48bc7 2193 if (err) {
719ea2fb 2194 lock_mount_hash();
e819f152 2195 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2196 unlock_mount_hash();
5b83d2c5 2197 }
b12cea91 2198out2:
84d17192 2199 unlock_mount(mp);
ccd48bc7 2200out:
2d92ab3c 2201 path_put(&old_path);
1da177e4
LT
2202 return err;
2203}
2204
2e4b7fcd
DH
2205static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2206{
2207 int error = 0;
2208 int readonly_request = 0;
2209
2210 if (ms_flags & MS_RDONLY)
2211 readonly_request = 1;
2212 if (readonly_request == __mnt_is_readonly(mnt))
2213 return 0;
2214
2215 if (readonly_request)
83adc753 2216 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2217 else
83adc753 2218 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2219 return error;
2220}
2221
1da177e4
LT
2222/*
2223 * change filesystem flags. dir should be a physical root of filesystem.
2224 * If you've mounted a non-root directory somewhere and want to do remount
2225 * on it - tough luck.
2226 */
0a0d8a46 2227static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2228 void *data)
2229{
2230 int err;
2d92ab3c 2231 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2232 struct mount *mnt = real_mount(path->mnt);
1da177e4 2233
143c8c91 2234 if (!check_mnt(mnt))
1da177e4
LT
2235 return -EINVAL;
2236
2d92ab3c 2237 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2238 return -EINVAL;
2239
07b64558
EB
2240 /* Don't allow changing of locked mnt flags.
2241 *
2242 * No locks need to be held here while testing the various
2243 * MNT_LOCK flags because those flags can never be cleared
2244 * once they are set.
2245 */
2246 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2247 !(mnt_flags & MNT_READONLY)) {
2248 return -EPERM;
2249 }
9566d674
EB
2250 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2251 !(mnt_flags & MNT_NODEV)) {
67690f93 2252 return -EPERM;
9566d674
EB
2253 }
2254 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2255 !(mnt_flags & MNT_NOSUID)) {
2256 return -EPERM;
2257 }
2258 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2259 !(mnt_flags & MNT_NOEXEC)) {
2260 return -EPERM;
2261 }
2262 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2263 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2264 return -EPERM;
2265 }
2266
ff36fe2c
EP
2267 err = security_sb_remount(sb, data);
2268 if (err)
2269 return err;
2270
1da177e4 2271 down_write(&sb->s_umount);
2e4b7fcd 2272 if (flags & MS_BIND)
2d92ab3c 2273 err = change_mount_flags(path->mnt, flags);
193f41d6 2274 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
57eccb83 2275 err = -EPERM;
4aa98cf7 2276 else
2e4b7fcd 2277 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2278 if (!err) {
719ea2fb 2279 lock_mount_hash();
a6138db8 2280 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2281 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2282 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2283 unlock_mount_hash();
0e55a7cc 2284 }
6339dab8 2285 up_write(&sb->s_umount);
1da177e4
LT
2286 return err;
2287}
2288
cbbe362c 2289static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2290{
315fc83e 2291 struct mount *p;
909b0a88 2292 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2293 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2294 return 1;
2295 }
2296 return 0;
2297}
2298
808d4e3c 2299static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2300{
2d92ab3c 2301 struct path old_path, parent_path;
676da58d 2302 struct mount *p;
0fb54e50 2303 struct mount *old;
84d17192 2304 struct mountpoint *mp;
57eccb83 2305 int err;
1da177e4
LT
2306 if (!old_name || !*old_name)
2307 return -EINVAL;
2d92ab3c 2308 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2309 if (err)
2310 return err;
2311
84d17192
AV
2312 mp = lock_mount(path);
2313 err = PTR_ERR(mp);
2314 if (IS_ERR(mp))
cc53ce53
DH
2315 goto out;
2316
143c8c91 2317 old = real_mount(old_path.mnt);
fc7be130 2318 p = real_mount(path->mnt);
143c8c91 2319
1da177e4 2320 err = -EINVAL;
fc7be130 2321 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2322 goto out1;
2323
5ff9d8a6
EB
2324 if (old->mnt.mnt_flags & MNT_LOCKED)
2325 goto out1;
2326
1da177e4 2327 err = -EINVAL;
2d92ab3c 2328 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2329 goto out1;
1da177e4 2330
676da58d 2331 if (!mnt_has_parent(old))
21444403 2332 goto out1;
1da177e4 2333
e36cb0b8
DH
2334 if (d_is_dir(path->dentry) !=
2335 d_is_dir(old_path.dentry))
21444403
RP
2336 goto out1;
2337 /*
2338 * Don't move a mount residing in a shared parent.
2339 */
fc7be130 2340 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2341 goto out1;
9676f0c6
RP
2342 /*
2343 * Don't move a mount tree containing unbindable mounts to a destination
2344 * mount which is shared.
2345 */
fc7be130 2346 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2347 goto out1;
1da177e4 2348 err = -ELOOP;
fc7be130 2349 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2350 if (p == old)
21444403 2351 goto out1;
1da177e4 2352
84d17192 2353 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2354 if (err)
21444403 2355 goto out1;
1da177e4
LT
2356
2357 /* if the mount is moved, it should no longer be expire
2358 * automatically */
6776db3d 2359 list_del_init(&old->mnt_expire);
1da177e4 2360out1:
84d17192 2361 unlock_mount(mp);
1da177e4 2362out:
1da177e4 2363 if (!err)
1a390689 2364 path_put(&parent_path);
2d92ab3c 2365 path_put(&old_path);
1da177e4
LT
2366 return err;
2367}
2368
9d412a43
AV
2369static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2370{
2371 int err;
2372 const char *subtype = strchr(fstype, '.');
2373 if (subtype) {
2374 subtype++;
2375 err = -EINVAL;
2376 if (!subtype[0])
2377 goto err;
2378 } else
2379 subtype = "";
2380
2381 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2382 err = -ENOMEM;
2383 if (!mnt->mnt_sb->s_subtype)
2384 goto err;
2385 return mnt;
2386
2387 err:
2388 mntput(mnt);
2389 return ERR_PTR(err);
2390}
2391
9d412a43
AV
2392/*
2393 * add a mount into a namespace's mount tree
2394 */
95bc5f25 2395static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2396{
84d17192
AV
2397 struct mountpoint *mp;
2398 struct mount *parent;
9d412a43
AV
2399 int err;
2400
f2ebb3a9 2401 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2402
84d17192
AV
2403 mp = lock_mount(path);
2404 if (IS_ERR(mp))
2405 return PTR_ERR(mp);
9d412a43 2406
84d17192 2407 parent = real_mount(path->mnt);
9d412a43 2408 err = -EINVAL;
84d17192 2409 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2410 /* that's acceptable only for automounts done in private ns */
2411 if (!(mnt_flags & MNT_SHRINKABLE))
2412 goto unlock;
2413 /* ... and for those we'd better have mountpoint still alive */
84d17192 2414 if (!parent->mnt_ns)
156cacb1
AV
2415 goto unlock;
2416 }
9d412a43
AV
2417
2418 /* Refuse the same filesystem on the same mount point */
2419 err = -EBUSY;
95bc5f25 2420 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2421 path->mnt->mnt_root == path->dentry)
2422 goto unlock;
2423
2424 err = -EINVAL;
e36cb0b8 2425 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2426 goto unlock;
2427
95bc5f25 2428 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2429 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2430
2431unlock:
84d17192 2432 unlock_mount(mp);
9d412a43
AV
2433 return err;
2434}
b1e75df4 2435
8654df4e 2436static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2437
1da177e4
LT
2438/*
2439 * create a new mount for userspace and request it to be added into the
2440 * namespace's tree
2441 */
0c55cfc4 2442static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2443 int mnt_flags, const char *name, void *data)
1da177e4 2444{
0c55cfc4 2445 struct file_system_type *type;
1da177e4 2446 struct vfsmount *mnt;
15f9a3f3 2447 int err;
1da177e4 2448
0c55cfc4 2449 if (!fstype)
1da177e4
LT
2450 return -EINVAL;
2451
0c55cfc4
EB
2452 type = get_fs_type(fstype);
2453 if (!type)
2454 return -ENODEV;
2455
0c55cfc4
EB
2456 mnt = vfs_kern_mount(type, flags, name, data);
2457 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2458 !mnt->mnt_sb->s_subtype)
2459 mnt = fs_set_subtype(mnt, fstype);
2460
2461 put_filesystem(type);
1da177e4
LT
2462 if (IS_ERR(mnt))
2463 return PTR_ERR(mnt);
2464
8654df4e
EB
2465 if (mount_too_revealing(mnt, &mnt_flags)) {
2466 mntput(mnt);
2467 return -EPERM;
2468 }
2469
95bc5f25 2470 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2471 if (err)
2472 mntput(mnt);
2473 return err;
1da177e4
LT
2474}
2475
19a167af
AV
2476int finish_automount(struct vfsmount *m, struct path *path)
2477{
6776db3d 2478 struct mount *mnt = real_mount(m);
19a167af
AV
2479 int err;
2480 /* The new mount record should have at least 2 refs to prevent it being
2481 * expired before we get a chance to add it
2482 */
6776db3d 2483 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2484
2485 if (m->mnt_sb == path->mnt->mnt_sb &&
2486 m->mnt_root == path->dentry) {
b1e75df4
AV
2487 err = -ELOOP;
2488 goto fail;
19a167af
AV
2489 }
2490
95bc5f25 2491 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2492 if (!err)
2493 return 0;
2494fail:
2495 /* remove m from any expiration list it may be on */
6776db3d 2496 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2497 namespace_lock();
6776db3d 2498 list_del_init(&mnt->mnt_expire);
97216be0 2499 namespace_unlock();
19a167af 2500 }
b1e75df4
AV
2501 mntput(m);
2502 mntput(m);
19a167af
AV
2503 return err;
2504}
2505
ea5b778a
DH
2506/**
2507 * mnt_set_expiry - Put a mount on an expiration list
2508 * @mnt: The mount to list.
2509 * @expiry_list: The list to add the mount to.
2510 */
2511void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2512{
97216be0 2513 namespace_lock();
ea5b778a 2514
6776db3d 2515 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2516
97216be0 2517 namespace_unlock();
ea5b778a
DH
2518}
2519EXPORT_SYMBOL(mnt_set_expiry);
2520
1da177e4
LT
2521/*
2522 * process a list of expirable mountpoints with the intent of discarding any
2523 * mountpoints that aren't in use and haven't been touched since last we came
2524 * here
2525 */
2526void mark_mounts_for_expiry(struct list_head *mounts)
2527{
761d5c38 2528 struct mount *mnt, *next;
1da177e4
LT
2529 LIST_HEAD(graveyard);
2530
2531 if (list_empty(mounts))
2532 return;
2533
97216be0 2534 namespace_lock();
719ea2fb 2535 lock_mount_hash();
1da177e4
LT
2536
2537 /* extract from the expiration list every vfsmount that matches the
2538 * following criteria:
2539 * - only referenced by its parent vfsmount
2540 * - still marked for expiry (marked on the last call here; marks are
2541 * cleared by mntput())
2542 */
6776db3d 2543 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2544 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2545 propagate_mount_busy(mnt, 1))
1da177e4 2546 continue;
6776db3d 2547 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2548 }
bcc5c7d2 2549 while (!list_empty(&graveyard)) {
6776db3d 2550 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2551 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2552 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2553 }
719ea2fb 2554 unlock_mount_hash();
3ab6abee 2555 namespace_unlock();
5528f911
TM
2556}
2557
2558EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2559
2560/*
2561 * Ripoff of 'select_parent()'
2562 *
2563 * search the list of submounts for a given mountpoint, and move any
2564 * shrinkable submounts to the 'graveyard' list.
2565 */
692afc31 2566static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2567{
692afc31 2568 struct mount *this_parent = parent;
5528f911
TM
2569 struct list_head *next;
2570 int found = 0;
2571
2572repeat:
6b41d536 2573 next = this_parent->mnt_mounts.next;
5528f911 2574resume:
6b41d536 2575 while (next != &this_parent->mnt_mounts) {
5528f911 2576 struct list_head *tmp = next;
6b41d536 2577 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2578
2579 next = tmp->next;
692afc31 2580 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2581 continue;
5528f911
TM
2582 /*
2583 * Descend a level if the d_mounts list is non-empty.
2584 */
6b41d536 2585 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2586 this_parent = mnt;
2587 goto repeat;
2588 }
1da177e4 2589
1ab59738 2590 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2591 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2592 found++;
2593 }
1da177e4 2594 }
5528f911
TM
2595 /*
2596 * All done at this level ... ascend and resume the search
2597 */
2598 if (this_parent != parent) {
6b41d536 2599 next = this_parent->mnt_child.next;
0714a533 2600 this_parent = this_parent->mnt_parent;
5528f911
TM
2601 goto resume;
2602 }
2603 return found;
2604}
2605
2606/*
2607 * process a list of expirable mountpoints with the intent of discarding any
2608 * submounts of a specific parent mountpoint
99b7db7b 2609 *
48a066e7 2610 * mount_lock must be held for write
5528f911 2611 */
b54b9be7 2612static void shrink_submounts(struct mount *mnt)
5528f911
TM
2613{
2614 LIST_HEAD(graveyard);
761d5c38 2615 struct mount *m;
5528f911 2616
5528f911 2617 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2618 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2619 while (!list_empty(&graveyard)) {
761d5c38 2620 m = list_first_entry(&graveyard, struct mount,
6776db3d 2621 mnt_expire);
143c8c91 2622 touch_mnt_namespace(m->mnt_ns);
e819f152 2623 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2624 }
2625 }
1da177e4
LT
2626}
2627
1da177e4
LT
2628/*
2629 * Some copy_from_user() implementations do not return the exact number of
2630 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2631 * Note that this function differs from copy_from_user() in that it will oops
2632 * on bad values of `to', rather than returning a short copy.
2633 */
b58fed8b
RP
2634static long exact_copy_from_user(void *to, const void __user * from,
2635 unsigned long n)
1da177e4
LT
2636{
2637 char *t = to;
2638 const char __user *f = from;
2639 char c;
2640
2641 if (!access_ok(VERIFY_READ, from, n))
2642 return n;
2643
2644 while (n) {
2645 if (__get_user(c, f)) {
2646 memset(t, 0, n);
2647 break;
2648 }
2649 *t++ = c;
2650 f++;
2651 n--;
2652 }
2653 return n;
2654}
2655
b40ef869 2656void *copy_mount_options(const void __user * data)
1da177e4
LT
2657{
2658 int i;
1da177e4 2659 unsigned long size;
b40ef869 2660 char *copy;
b58fed8b 2661
1da177e4 2662 if (!data)
b40ef869 2663 return NULL;
1da177e4 2664
b40ef869
AV
2665 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2666 if (!copy)
2667 return ERR_PTR(-ENOMEM);
1da177e4
LT
2668
2669 /* We only care that *some* data at the address the user
2670 * gave us is valid. Just in case, we'll zero
2671 * the remainder of the page.
2672 */
2673 /* copy_from_user cannot cross TASK_SIZE ! */
2674 size = TASK_SIZE - (unsigned long)data;
2675 if (size > PAGE_SIZE)
2676 size = PAGE_SIZE;
2677
b40ef869 2678 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2679 if (!i) {
b40ef869
AV
2680 kfree(copy);
2681 return ERR_PTR(-EFAULT);
1da177e4
LT
2682 }
2683 if (i != PAGE_SIZE)
b40ef869
AV
2684 memset(copy + i, 0, PAGE_SIZE - i);
2685 return copy;
1da177e4
LT
2686}
2687
b8850d1f 2688char *copy_mount_string(const void __user *data)
eca6f534 2689{
b8850d1f 2690 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2691}
2692
1da177e4
LT
2693/*
2694 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2695 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2696 *
2697 * data is a (void *) that can point to any structure up to
2698 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2699 * information (or be NULL).
2700 *
2701 * Pre-0.97 versions of mount() didn't have a flags word.
2702 * When the flags word was introduced its top half was required
2703 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2704 * Therefore, if this magic number is present, it carries no information
2705 * and must be discarded.
2706 */
5e6123f3 2707long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2708 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2709{
2d92ab3c 2710 struct path path;
1da177e4
LT
2711 int retval = 0;
2712 int mnt_flags = 0;
2713
2714 /* Discard magic */
2715 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2716 flags &= ~MS_MGC_MSK;
2717
2718 /* Basic sanity checks */
1da177e4
LT
2719 if (data_page)
2720 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2721
a27ab9f2 2722 /* ... and get the mountpoint */
5e6123f3 2723 retval = user_path(dir_name, &path);
a27ab9f2
TH
2724 if (retval)
2725 return retval;
2726
2727 retval = security_sb_mount(dev_name, &path,
2728 type_page, flags, data_page);
0d5cadb8
AV
2729 if (!retval && !may_mount())
2730 retval = -EPERM;
9e8925b6
JL
2731 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2732 retval = -EPERM;
a27ab9f2
TH
2733 if (retval)
2734 goto dput_out;
2735
613cbe3d
AK
2736 /* Default to relatime unless overriden */
2737 if (!(flags & MS_NOATIME))
2738 mnt_flags |= MNT_RELATIME;
0a1c01c9 2739
1da177e4
LT
2740 /* Separate the per-mountpoint flags */
2741 if (flags & MS_NOSUID)
2742 mnt_flags |= MNT_NOSUID;
2743 if (flags & MS_NODEV)
2744 mnt_flags |= MNT_NODEV;
2745 if (flags & MS_NOEXEC)
2746 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2747 if (flags & MS_NOATIME)
2748 mnt_flags |= MNT_NOATIME;
2749 if (flags & MS_NODIRATIME)
2750 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2751 if (flags & MS_STRICTATIME)
2752 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2753 if (flags & MS_RDONLY)
2754 mnt_flags |= MNT_READONLY;
fc33a7bb 2755
ffbc6f0e
EB
2756 /* The default atime for remount is preservation */
2757 if ((flags & MS_REMOUNT) &&
2758 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2759 MS_STRICTATIME)) == 0)) {
2760 mnt_flags &= ~MNT_ATIME_MASK;
2761 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2762 }
2763
7a4dec53 2764 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57 2765 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
93faccbb 2766 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
1da177e4 2767
1da177e4 2768 if (flags & MS_REMOUNT)
2d92ab3c 2769 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2770 data_page);
2771 else if (flags & MS_BIND)
2d92ab3c 2772 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2773 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2774 retval = do_change_type(&path, flags);
1da177e4 2775 else if (flags & MS_MOVE)
2d92ab3c 2776 retval = do_move_mount(&path, dev_name);
1da177e4 2777 else
2d92ab3c 2778 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2779 dev_name, data_page);
2780dput_out:
2d92ab3c 2781 path_put(&path);
1da177e4
LT
2782 return retval;
2783}
2784
537f7ccb
EB
2785static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2786{
2787 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2788}
2789
2790static void dec_mnt_namespaces(struct ucounts *ucounts)
2791{
2792 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2793}
2794
771b1371
EB
2795static void free_mnt_ns(struct mnt_namespace *ns)
2796{
6344c433 2797 ns_free_inum(&ns->ns);
537f7ccb 2798 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2799 put_user_ns(ns->user_ns);
2800 kfree(ns);
2801}
2802
8823c079
EB
2803/*
2804 * Assign a sequence number so we can detect when we attempt to bind
2805 * mount a reference to an older mount namespace into the current
2806 * mount namespace, preventing reference counting loops. A 64bit
2807 * number incrementing at 10Ghz will take 12,427 years to wrap which
2808 * is effectively never, so we can ignore the possibility.
2809 */
2810static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2811
771b1371 2812static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2813{
2814 struct mnt_namespace *new_ns;
537f7ccb 2815 struct ucounts *ucounts;
98f842e6 2816 int ret;
cf8d2c11 2817
537f7ccb
EB
2818 ucounts = inc_mnt_namespaces(user_ns);
2819 if (!ucounts)
df75e774 2820 return ERR_PTR(-ENOSPC);
537f7ccb 2821
cf8d2c11 2822 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2823 if (!new_ns) {
2824 dec_mnt_namespaces(ucounts);
cf8d2c11 2825 return ERR_PTR(-ENOMEM);
537f7ccb 2826 }
6344c433 2827 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2828 if (ret) {
2829 kfree(new_ns);
537f7ccb 2830 dec_mnt_namespaces(ucounts);
98f842e6
EB
2831 return ERR_PTR(ret);
2832 }
33c42940 2833 new_ns->ns.ops = &mntns_operations;
8823c079 2834 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2835 atomic_set(&new_ns->count, 1);
2836 new_ns->root = NULL;
2837 INIT_LIST_HEAD(&new_ns->list);
2838 init_waitqueue_head(&new_ns->poll);
2839 new_ns->event = 0;
771b1371 2840 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2841 new_ns->ucounts = ucounts;
d2921684
EB
2842 new_ns->mounts = 0;
2843 new_ns->pending_mounts = 0;
cf8d2c11
TM
2844 return new_ns;
2845}
2846
0766f788 2847__latent_entropy
9559f689
AV
2848struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2849 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2850{
6b3286ed 2851 struct mnt_namespace *new_ns;
7f2da1e7 2852 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2853 struct mount *p, *q;
9559f689 2854 struct mount *old;
cb338d06 2855 struct mount *new;
7a472ef4 2856 int copy_flags;
1da177e4 2857
9559f689
AV
2858 BUG_ON(!ns);
2859
2860 if (likely(!(flags & CLONE_NEWNS))) {
2861 get_mnt_ns(ns);
2862 return ns;
2863 }
2864
2865 old = ns->root;
2866
771b1371 2867 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2868 if (IS_ERR(new_ns))
2869 return new_ns;
1da177e4 2870
97216be0 2871 namespace_lock();
1da177e4 2872 /* First pass: copy the tree topology */
4ce5d2b1 2873 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2874 if (user_ns != ns->user_ns)
132c94e3 2875 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2876 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2877 if (IS_ERR(new)) {
328e6d90 2878 namespace_unlock();
771b1371 2879 free_mnt_ns(new_ns);
be34d1a3 2880 return ERR_CAST(new);
1da177e4 2881 }
be08d6d2 2882 new_ns->root = new;
1a4eeaf2 2883 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2884
2885 /*
2886 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2887 * as belonging to new namespace. We have already acquired a private
2888 * fs_struct, so tsk->fs->lock is not needed.
2889 */
909b0a88 2890 p = old;
cb338d06 2891 q = new;
1da177e4 2892 while (p) {
143c8c91 2893 q->mnt_ns = new_ns;
d2921684 2894 new_ns->mounts++;
9559f689
AV
2895 if (new_fs) {
2896 if (&p->mnt == new_fs->root.mnt) {
2897 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2898 rootmnt = &p->mnt;
1da177e4 2899 }
9559f689
AV
2900 if (&p->mnt == new_fs->pwd.mnt) {
2901 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2902 pwdmnt = &p->mnt;
1da177e4 2903 }
1da177e4 2904 }
909b0a88
AV
2905 p = next_mnt(p, old);
2906 q = next_mnt(q, new);
4ce5d2b1
EB
2907 if (!q)
2908 break;
2909 while (p->mnt.mnt_root != q->mnt.mnt_root)
2910 p = next_mnt(p, old);
1da177e4 2911 }
328e6d90 2912 namespace_unlock();
1da177e4 2913
1da177e4 2914 if (rootmnt)
f03c6599 2915 mntput(rootmnt);
1da177e4 2916 if (pwdmnt)
f03c6599 2917 mntput(pwdmnt);
1da177e4 2918
741a2951 2919 return new_ns;
1da177e4
LT
2920}
2921
cf8d2c11
TM
2922/**
2923 * create_mnt_ns - creates a private namespace and adds a root filesystem
2924 * @mnt: pointer to the new root filesystem mountpoint
2925 */
1a4eeaf2 2926static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2927{
771b1371 2928 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2929 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2930 struct mount *mnt = real_mount(m);
2931 mnt->mnt_ns = new_ns;
be08d6d2 2932 new_ns->root = mnt;
d2921684 2933 new_ns->mounts++;
b1983cd8 2934 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2935 } else {
1a4eeaf2 2936 mntput(m);
cf8d2c11
TM
2937 }
2938 return new_ns;
2939}
cf8d2c11 2940
ea441d11
AV
2941struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2942{
2943 struct mnt_namespace *ns;
d31da0f0 2944 struct super_block *s;
ea441d11
AV
2945 struct path path;
2946 int err;
2947
2948 ns = create_mnt_ns(mnt);
2949 if (IS_ERR(ns))
2950 return ERR_CAST(ns);
2951
2952 err = vfs_path_lookup(mnt->mnt_root, mnt,
2953 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2954
2955 put_mnt_ns(ns);
2956
2957 if (err)
2958 return ERR_PTR(err);
2959
2960 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2961 s = path.mnt->mnt_sb;
2962 atomic_inc(&s->s_active);
ea441d11
AV
2963 mntput(path.mnt);
2964 /* lock the sucker */
d31da0f0 2965 down_write(&s->s_umount);
ea441d11
AV
2966 /* ... and return the root of (sub)tree on it */
2967 return path.dentry;
2968}
2969EXPORT_SYMBOL(mount_subtree);
2970
bdc480e3
HC
2971SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2972 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2973{
eca6f534
VN
2974 int ret;
2975 char *kernel_type;
eca6f534 2976 char *kernel_dev;
b40ef869 2977 void *options;
1da177e4 2978
b8850d1f
TG
2979 kernel_type = copy_mount_string(type);
2980 ret = PTR_ERR(kernel_type);
2981 if (IS_ERR(kernel_type))
eca6f534 2982 goto out_type;
1da177e4 2983
b8850d1f
TG
2984 kernel_dev = copy_mount_string(dev_name);
2985 ret = PTR_ERR(kernel_dev);
2986 if (IS_ERR(kernel_dev))
eca6f534 2987 goto out_dev;
1da177e4 2988
b40ef869
AV
2989 options = copy_mount_options(data);
2990 ret = PTR_ERR(options);
2991 if (IS_ERR(options))
eca6f534 2992 goto out_data;
1da177e4 2993
b40ef869 2994 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 2995
b40ef869 2996 kfree(options);
eca6f534
VN
2997out_data:
2998 kfree(kernel_dev);
2999out_dev:
eca6f534
VN
3000 kfree(kernel_type);
3001out_type:
3002 return ret;
1da177e4
LT
3003}
3004
afac7cba
AV
3005/*
3006 * Return true if path is reachable from root
3007 *
48a066e7 3008 * namespace_sem or mount_lock is held
afac7cba 3009 */
643822b4 3010bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3011 const struct path *root)
3012{
643822b4 3013 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3014 dentry = mnt->mnt_mountpoint;
0714a533 3015 mnt = mnt->mnt_parent;
afac7cba 3016 }
643822b4 3017 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3018}
3019
640eb7e7 3020bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3021{
25ab4c9b 3022 bool res;
48a066e7 3023 read_seqlock_excl(&mount_lock);
643822b4 3024 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3025 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3026 return res;
3027}
3028EXPORT_SYMBOL(path_is_under);
3029
1da177e4
LT
3030/*
3031 * pivot_root Semantics:
3032 * Moves the root file system of the current process to the directory put_old,
3033 * makes new_root as the new root file system of the current process, and sets
3034 * root/cwd of all processes which had them on the current root to new_root.
3035 *
3036 * Restrictions:
3037 * The new_root and put_old must be directories, and must not be on the
3038 * same file system as the current process root. The put_old must be
3039 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3040 * pointed to by put_old must yield the same directory as new_root. No other
3041 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3042 *
4a0d11fa
NB
3043 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3044 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3045 * in this situation.
3046 *
1da177e4
LT
3047 * Notes:
3048 * - we don't move root/cwd if they are not at the root (reason: if something
3049 * cared enough to change them, it's probably wrong to force them elsewhere)
3050 * - it's okay to pick a root that isn't the root of a file system, e.g.
3051 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3052 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3053 * first.
3054 */
3480b257
HC
3055SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3056 const char __user *, put_old)
1da177e4 3057{
2d8f3038 3058 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3059 struct mount *new_mnt, *root_mnt, *old_mnt;
3060 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3061 int error;
3062
9b40bc90 3063 if (!may_mount())
1da177e4
LT
3064 return -EPERM;
3065
2d8f3038 3066 error = user_path_dir(new_root, &new);
1da177e4
LT
3067 if (error)
3068 goto out0;
1da177e4 3069
2d8f3038 3070 error = user_path_dir(put_old, &old);
1da177e4
LT
3071 if (error)
3072 goto out1;
3073
2d8f3038 3074 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3075 if (error)
3076 goto out2;
1da177e4 3077
f7ad3c6b 3078 get_fs_root(current->fs, &root);
84d17192
AV
3079 old_mp = lock_mount(&old);
3080 error = PTR_ERR(old_mp);
3081 if (IS_ERR(old_mp))
b12cea91
AV
3082 goto out3;
3083
1da177e4 3084 error = -EINVAL;
419148da
AV
3085 new_mnt = real_mount(new.mnt);
3086 root_mnt = real_mount(root.mnt);
84d17192
AV
3087 old_mnt = real_mount(old.mnt);
3088 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3089 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3090 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3091 goto out4;
143c8c91 3092 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3093 goto out4;
5ff9d8a6
EB
3094 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3095 goto out4;
1da177e4 3096 error = -ENOENT;
f3da392e 3097 if (d_unlinked(new.dentry))
b12cea91 3098 goto out4;
1da177e4 3099 error = -EBUSY;
84d17192 3100 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3101 goto out4; /* loop, on the same file system */
1da177e4 3102 error = -EINVAL;
8c3ee42e 3103 if (root.mnt->mnt_root != root.dentry)
b12cea91 3104 goto out4; /* not a mountpoint */
676da58d 3105 if (!mnt_has_parent(root_mnt))
b12cea91 3106 goto out4; /* not attached */
84d17192 3107 root_mp = root_mnt->mnt_mp;
2d8f3038 3108 if (new.mnt->mnt_root != new.dentry)
b12cea91 3109 goto out4; /* not a mountpoint */
676da58d 3110 if (!mnt_has_parent(new_mnt))
b12cea91 3111 goto out4; /* not attached */
4ac91378 3112 /* make sure we can reach put_old from new_root */
84d17192 3113 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3114 goto out4;
0d082601
EB
3115 /* make certain new is below the root */
3116 if (!is_path_reachable(new_mnt, new.dentry, &root))
3117 goto out4;
84d17192 3118 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3119 lock_mount_hash();
419148da
AV
3120 detach_mnt(new_mnt, &parent_path);
3121 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3122 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3123 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3124 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3125 }
4ac91378 3126 /* mount old root on put_old */
84d17192 3127 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3128 /* mount new_root on / */
84d17192 3129 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3130 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3131 /* A moved mount should not expire automatically */
3132 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3133 put_mountpoint(root_mp);
719ea2fb 3134 unlock_mount_hash();
2d8f3038 3135 chroot_fs_refs(&root, &new);
1da177e4 3136 error = 0;
b12cea91 3137out4:
84d17192 3138 unlock_mount(old_mp);
b12cea91
AV
3139 if (!error) {
3140 path_put(&root_parent);
3141 path_put(&parent_path);
3142 }
3143out3:
8c3ee42e 3144 path_put(&root);
b12cea91 3145out2:
2d8f3038 3146 path_put(&old);
1da177e4 3147out1:
2d8f3038 3148 path_put(&new);
1da177e4 3149out0:
1da177e4 3150 return error;
1da177e4
LT
3151}
3152
3153static void __init init_mount_tree(void)
3154{
3155 struct vfsmount *mnt;
6b3286ed 3156 struct mnt_namespace *ns;
ac748a09 3157 struct path root;
0c55cfc4 3158 struct file_system_type *type;
1da177e4 3159
0c55cfc4
EB
3160 type = get_fs_type("rootfs");
3161 if (!type)
3162 panic("Can't find rootfs type");
3163 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3164 put_filesystem(type);
1da177e4
LT
3165 if (IS_ERR(mnt))
3166 panic("Can't create rootfs");
b3e19d92 3167
3b22edc5
TM
3168 ns = create_mnt_ns(mnt);
3169 if (IS_ERR(ns))
1da177e4 3170 panic("Can't allocate initial namespace");
6b3286ed
KK
3171
3172 init_task.nsproxy->mnt_ns = ns;
3173 get_mnt_ns(ns);
3174
be08d6d2
AV
3175 root.mnt = mnt;
3176 root.dentry = mnt->mnt_root;
da362b09 3177 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3178
3179 set_fs_pwd(current->fs, &root);
3180 set_fs_root(current->fs, &root);
1da177e4
LT
3181}
3182
74bf17cf 3183void __init mnt_init(void)
1da177e4 3184{
15a67dd8 3185 int err;
1da177e4 3186
7d6fec45 3187 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3188 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3189
0818bf27 3190 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3191 sizeof(struct hlist_head),
0818bf27 3192 mhash_entries, 19,
3d375d78 3193 HASH_ZERO,
0818bf27
AV
3194 &m_hash_shift, &m_hash_mask, 0, 0);
3195 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3196 sizeof(struct hlist_head),
3197 mphash_entries, 19,
3d375d78 3198 HASH_ZERO,
0818bf27 3199 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3200
84d17192 3201 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3202 panic("Failed to allocate mount hash table\n");
3203
4b93dc9b
TH
3204 kernfs_init();
3205
15a67dd8
RD
3206 err = sysfs_init();
3207 if (err)
3208 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3209 __func__, err);
00d26666
GKH
3210 fs_kobj = kobject_create_and_add("fs", NULL);
3211 if (!fs_kobj)
8e24eea7 3212 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3213 init_rootfs();
3214 init_mount_tree();
3215}
3216
616511d0 3217void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3218{
d498b25a 3219 if (!atomic_dec_and_test(&ns->count))
616511d0 3220 return;
7b00ed6f 3221 drop_collected_mounts(&ns->root->mnt);
771b1371 3222 free_mnt_ns(ns);
1da177e4 3223}
9d412a43
AV
3224
3225struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3226{
423e0ab0
TC
3227 struct vfsmount *mnt;
3228 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3229 if (!IS_ERR(mnt)) {
3230 /*
3231 * it is a longterm mount, don't release mnt until
3232 * we unmount before file sys is unregistered
3233 */
f7a99c5b 3234 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3235 }
3236 return mnt;
9d412a43
AV
3237}
3238EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3239
3240void kern_unmount(struct vfsmount *mnt)
3241{
3242 /* release long term mount so mount point can be released */
3243 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3244 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3245 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3246 mntput(mnt);
3247 }
3248}
3249EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3250
3251bool our_mnt(struct vfsmount *mnt)
3252{
143c8c91 3253 return check_mnt(real_mount(mnt));
02125a82 3254}
8823c079 3255
3151527e
EB
3256bool current_chrooted(void)
3257{
3258 /* Does the current process have a non-standard root */
3259 struct path ns_root;
3260 struct path fs_root;
3261 bool chrooted;
3262
3263 /* Find the namespace root */
3264 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3265 ns_root.dentry = ns_root.mnt->mnt_root;
3266 path_get(&ns_root);
3267 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3268 ;
3269
3270 get_fs_root(current->fs, &fs_root);
3271
3272 chrooted = !path_equal(&fs_root, &ns_root);
3273
3274 path_put(&fs_root);
3275 path_put(&ns_root);
3276
3277 return chrooted;
3278}
3279
8654df4e
EB
3280static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3281 int *new_mnt_flags)
87a8ebd6 3282{
8c6cf9cc 3283 int new_flags = *new_mnt_flags;
87a8ebd6 3284 struct mount *mnt;
e51db735 3285 bool visible = false;
87a8ebd6 3286
44bb4385 3287 down_read(&namespace_sem);
87a8ebd6 3288 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3289 struct mount *child;
77b1a97d
EB
3290 int mnt_flags;
3291
8654df4e 3292 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3293 continue;
3294
7e96c1b0
EB
3295 /* This mount is not fully visible if it's root directory
3296 * is not the root directory of the filesystem.
3297 */
3298 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3299 continue;
3300
a1935c17 3301 /* A local view of the mount flags */
77b1a97d 3302 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3303
695e9df0
EB
3304 /* Don't miss readonly hidden in the superblock flags */
3305 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3306 mnt_flags |= MNT_LOCK_READONLY;
3307
8c6cf9cc
EB
3308 /* Verify the mount flags are equal to or more permissive
3309 * than the proposed new mount.
3310 */
77b1a97d 3311 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3312 !(new_flags & MNT_READONLY))
3313 continue;
77b1a97d
EB
3314 if ((mnt_flags & MNT_LOCK_ATIME) &&
3315 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3316 continue;
3317
ceeb0e5d
EB
3318 /* This mount is not fully visible if there are any
3319 * locked child mounts that cover anything except for
3320 * empty directories.
e51db735
EB
3321 */
3322 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3323 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3324 /* Only worry about locked mounts */
d71ed6c9 3325 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3326 continue;
7236c85e
EB
3327 /* Is the directory permanetly empty? */
3328 if (!is_empty_dir_inode(inode))
e51db735 3329 goto next;
87a8ebd6 3330 }
8c6cf9cc 3331 /* Preserve the locked attributes */
77b1a97d 3332 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3333 MNT_LOCK_ATIME);
e51db735
EB
3334 visible = true;
3335 goto found;
3336 next: ;
87a8ebd6 3337 }
e51db735 3338found:
44bb4385 3339 up_read(&namespace_sem);
e51db735 3340 return visible;
87a8ebd6
EB
3341}
3342
8654df4e
EB
3343static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3344{
a1935c17 3345 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3346 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3347 unsigned long s_iflags;
3348
3349 if (ns->user_ns == &init_user_ns)
3350 return false;
3351
3352 /* Can this filesystem be too revealing? */
3353 s_iflags = mnt->mnt_sb->s_iflags;
3354 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3355 return false;
3356
a1935c17
EB
3357 if ((s_iflags & required_iflags) != required_iflags) {
3358 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3359 required_iflags);
3360 return true;
3361 }
3362
8654df4e
EB
3363 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3364}
3365
380cf5ba
AL
3366bool mnt_may_suid(struct vfsmount *mnt)
3367{
3368 /*
3369 * Foreign mounts (accessed via fchdir or through /proc
3370 * symlinks) are always treated as if they are nosuid. This
3371 * prevents namespaces from trusting potentially unsafe
3372 * suid/sgid bits, file caps, or security labels that originate
3373 * in other namespaces.
3374 */
3375 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3376 current_in_userns(mnt->mnt_sb->s_user_ns);
3377}
3378
64964528 3379static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3380{
58be2825 3381 struct ns_common *ns = NULL;
8823c079
EB
3382 struct nsproxy *nsproxy;
3383
728dba3a
EB
3384 task_lock(task);
3385 nsproxy = task->nsproxy;
8823c079 3386 if (nsproxy) {
58be2825
AV
3387 ns = &nsproxy->mnt_ns->ns;
3388 get_mnt_ns(to_mnt_ns(ns));
8823c079 3389 }
728dba3a 3390 task_unlock(task);
8823c079
EB
3391
3392 return ns;
3393}
3394
64964528 3395static void mntns_put(struct ns_common *ns)
8823c079 3396{
58be2825 3397 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3398}
3399
64964528 3400static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3401{
3402 struct fs_struct *fs = current->fs;
4f757f3c 3403 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3404 struct path root;
4f757f3c 3405 int err;
8823c079 3406
0c55cfc4 3407 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3408 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3409 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3410 return -EPERM;
8823c079
EB
3411
3412 if (fs->users != 1)
3413 return -EINVAL;
3414
3415 get_mnt_ns(mnt_ns);
4f757f3c 3416 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3417 nsproxy->mnt_ns = mnt_ns;
3418
3419 /* Find the root */
4f757f3c
AV
3420 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3421 "/", LOOKUP_DOWN, &root);
3422 if (err) {
3423 /* revert to old namespace */
3424 nsproxy->mnt_ns = old_mnt_ns;
3425 put_mnt_ns(mnt_ns);
3426 return err;
3427 }
8823c079 3428
4068367c
AV
3429 put_mnt_ns(old_mnt_ns);
3430
8823c079
EB
3431 /* Update the pwd and root */
3432 set_fs_pwd(fs, &root);
3433 set_fs_root(fs, &root);
3434
3435 path_put(&root);
3436 return 0;
3437}
3438
bcac25a5
AV
3439static struct user_namespace *mntns_owner(struct ns_common *ns)
3440{
3441 return to_mnt_ns(ns)->user_ns;
3442}
3443
8823c079
EB
3444const struct proc_ns_operations mntns_operations = {
3445 .name = "mnt",
3446 .type = CLONE_NEWNS,
3447 .get = mntns_get,
3448 .put = mntns_put,
3449 .install = mntns_install,
bcac25a5 3450 .owner = mntns_owner,
8823c079 3451};