]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
lightnvm: Use blk_init_request_from_bio() instead of open-coding it
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
5bb23a68
N
132static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
1da177e4 134{
78d8e58a 135 if (error)
4246a0b6 136 bio->bi_error = error;
797e7dbb 137
e8064021 138 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 139 bio_set_flag(bio, BIO_QUIET);
08bafc03 140
f79ea416 141 bio_advance(bio, nbytes);
7ba1ba12 142
143a87f4 143 /* don't actually finish bio if it's part of flush sequence */
e8064021 144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 145 bio_endio(bio);
1da177e4 146}
1da177e4 147
1da177e4
LT
148void blk_dump_rq_flags(struct request *rq, char *msg)
149{
aebf526b
CH
150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 152 (unsigned long long) rq->cmd_flags);
1da177e4 153
83096ebf
TH
154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
155 (unsigned long long)blk_rq_pos(rq),
156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
157 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
158 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 159}
1da177e4
LT
160EXPORT_SYMBOL(blk_dump_rq_flags);
161
3cca6dc1 162static void blk_delay_work(struct work_struct *work)
1da177e4 163{
3cca6dc1 164 struct request_queue *q;
1da177e4 165
3cca6dc1
JA
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
24ecfbe2 168 __blk_run_queue(q);
3cca6dc1 169 spin_unlock_irq(q->queue_lock);
1da177e4 170}
1da177e4
LT
171
172/**
3cca6dc1
JA
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
1da177e4
LT
176 *
177 * Description:
3cca6dc1
JA
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
70460571 180 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
181 */
182void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 183{
70460571
BVA
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
2ad8b1ef 187}
3cca6dc1 188EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 189
21491412
JA
190/**
191 * blk_start_queue_async - asynchronously restart a previously stopped queue
192 * @q: The &struct request_queue in question
193 *
194 * Description:
195 * blk_start_queue_async() will clear the stop flag on the queue, and
196 * ensure that the request_fn for the queue is run from an async
197 * context.
198 **/
199void blk_start_queue_async(struct request_queue *q)
200{
201 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 blk_run_queue_async(q);
203}
204EXPORT_SYMBOL(blk_start_queue_async);
205
1da177e4
LT
206/**
207 * blk_start_queue - restart a previously stopped queue
165125e1 208 * @q: The &struct request_queue in question
1da177e4
LT
209 *
210 * Description:
211 * blk_start_queue() will clear the stop flag on the queue, and call
212 * the request_fn for the queue if it was in a stopped state when
213 * entered. Also see blk_stop_queue(). Queue lock must be held.
214 **/
165125e1 215void blk_start_queue(struct request_queue *q)
1da177e4 216{
a038e253
PBG
217 WARN_ON(!irqs_disabled());
218
75ad23bc 219 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 220 __blk_run_queue(q);
1da177e4 221}
1da177e4
LT
222EXPORT_SYMBOL(blk_start_queue);
223
224/**
225 * blk_stop_queue - stop a queue
165125e1 226 * @q: The &struct request_queue in question
1da177e4
LT
227 *
228 * Description:
229 * The Linux block layer assumes that a block driver will consume all
230 * entries on the request queue when the request_fn strategy is called.
231 * Often this will not happen, because of hardware limitations (queue
232 * depth settings). If a device driver gets a 'queue full' response,
233 * or if it simply chooses not to queue more I/O at one point, it can
234 * call this function to prevent the request_fn from being called until
235 * the driver has signalled it's ready to go again. This happens by calling
236 * blk_start_queue() to restart queue operations. Queue lock must be held.
237 **/
165125e1 238void blk_stop_queue(struct request_queue *q)
1da177e4 239{
136b5721 240 cancel_delayed_work(&q->delay_work);
75ad23bc 241 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
242}
243EXPORT_SYMBOL(blk_stop_queue);
244
245/**
246 * blk_sync_queue - cancel any pending callbacks on a queue
247 * @q: the queue
248 *
249 * Description:
250 * The block layer may perform asynchronous callback activity
251 * on a queue, such as calling the unplug function after a timeout.
252 * A block device may call blk_sync_queue to ensure that any
253 * such activity is cancelled, thus allowing it to release resources
59c51591 254 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
255 * that its ->make_request_fn will not re-add plugging prior to calling
256 * this function.
257 *
da527770 258 * This function does not cancel any asynchronous activity arising
da3dae54 259 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 260 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 261 *
1da177e4
LT
262 */
263void blk_sync_queue(struct request_queue *q)
264{
70ed28b9 265 del_timer_sync(&q->timeout);
f04c1fe7
ML
266
267 if (q->mq_ops) {
268 struct blk_mq_hw_ctx *hctx;
269 int i;
270
70f4db63 271 queue_for_each_hw_ctx(q, hctx, i) {
27489a3c 272 cancel_work_sync(&hctx->run_work);
70f4db63
CH
273 cancel_delayed_work_sync(&hctx->delay_work);
274 }
f04c1fe7
ML
275 } else {
276 cancel_delayed_work_sync(&q->delay_work);
277 }
1da177e4
LT
278}
279EXPORT_SYMBOL(blk_sync_queue);
280
c246e80d
BVA
281/**
282 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
283 * @q: The queue to run
284 *
285 * Description:
286 * Invoke request handling on a queue if there are any pending requests.
287 * May be used to restart request handling after a request has completed.
288 * This variant runs the queue whether or not the queue has been
289 * stopped. Must be called with the queue lock held and interrupts
290 * disabled. See also @blk_run_queue.
291 */
292inline void __blk_run_queue_uncond(struct request_queue *q)
293{
294 if (unlikely(blk_queue_dead(q)))
295 return;
296
24faf6f6
BVA
297 /*
298 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
299 * the queue lock internally. As a result multiple threads may be
300 * running such a request function concurrently. Keep track of the
301 * number of active request_fn invocations such that blk_drain_queue()
302 * can wait until all these request_fn calls have finished.
303 */
304 q->request_fn_active++;
c246e80d 305 q->request_fn(q);
24faf6f6 306 q->request_fn_active--;
c246e80d 307}
a7928c15 308EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 309
1da177e4 310/**
80a4b58e 311 * __blk_run_queue - run a single device queue
1da177e4 312 * @q: The queue to run
80a4b58e
JA
313 *
314 * Description:
315 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 316 * held and interrupts disabled.
1da177e4 317 */
24ecfbe2 318void __blk_run_queue(struct request_queue *q)
1da177e4 319{
a538cd03
TH
320 if (unlikely(blk_queue_stopped(q)))
321 return;
322
c246e80d 323 __blk_run_queue_uncond(q);
75ad23bc
NP
324}
325EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 326
24ecfbe2
CH
327/**
328 * blk_run_queue_async - run a single device queue in workqueue context
329 * @q: The queue to run
330 *
331 * Description:
332 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 333 * of us. The caller must hold the queue lock.
24ecfbe2
CH
334 */
335void blk_run_queue_async(struct request_queue *q)
336{
70460571 337 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 338 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 339}
c21e6beb 340EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 341
75ad23bc
NP
342/**
343 * blk_run_queue - run a single device queue
344 * @q: The queue to run
80a4b58e
JA
345 *
346 * Description:
347 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 348 * May be used to restart queueing when a request has completed.
75ad23bc
NP
349 */
350void blk_run_queue(struct request_queue *q)
351{
352 unsigned long flags;
353
354 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 355 __blk_run_queue(q);
1da177e4
LT
356 spin_unlock_irqrestore(q->queue_lock, flags);
357}
358EXPORT_SYMBOL(blk_run_queue);
359
165125e1 360void blk_put_queue(struct request_queue *q)
483f4afc
AV
361{
362 kobject_put(&q->kobj);
363}
d86e0e83 364EXPORT_SYMBOL(blk_put_queue);
483f4afc 365
e3c78ca5 366/**
807592a4 367 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 368 * @q: queue to drain
c9a929dd 369 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 370 *
c9a929dd
TH
371 * Drain requests from @q. If @drain_all is set, all requests are drained.
372 * If not, only ELVPRIV requests are drained. The caller is responsible
373 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 374 */
807592a4
BVA
375static void __blk_drain_queue(struct request_queue *q, bool drain_all)
376 __releases(q->queue_lock)
377 __acquires(q->queue_lock)
e3c78ca5 378{
458f27a9
AH
379 int i;
380
807592a4
BVA
381 lockdep_assert_held(q->queue_lock);
382
e3c78ca5 383 while (true) {
481a7d64 384 bool drain = false;
e3c78ca5 385
b855b04a
TH
386 /*
387 * The caller might be trying to drain @q before its
388 * elevator is initialized.
389 */
390 if (q->elevator)
391 elv_drain_elevator(q);
392
5efd6113 393 blkcg_drain_queue(q);
e3c78ca5 394
4eabc941
TH
395 /*
396 * This function might be called on a queue which failed
b855b04a
TH
397 * driver init after queue creation or is not yet fully
398 * active yet. Some drivers (e.g. fd and loop) get unhappy
399 * in such cases. Kick queue iff dispatch queue has
400 * something on it and @q has request_fn set.
4eabc941 401 */
b855b04a 402 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 403 __blk_run_queue(q);
c9a929dd 404
8a5ecdd4 405 drain |= q->nr_rqs_elvpriv;
24faf6f6 406 drain |= q->request_fn_active;
481a7d64
TH
407
408 /*
409 * Unfortunately, requests are queued at and tracked from
410 * multiple places and there's no single counter which can
411 * be drained. Check all the queues and counters.
412 */
413 if (drain_all) {
e97c293c 414 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
415 drain |= !list_empty(&q->queue_head);
416 for (i = 0; i < 2; i++) {
8a5ecdd4 417 drain |= q->nr_rqs[i];
481a7d64 418 drain |= q->in_flight[i];
7c94e1c1
ML
419 if (fq)
420 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
421 }
422 }
e3c78ca5 423
481a7d64 424 if (!drain)
e3c78ca5 425 break;
807592a4
BVA
426
427 spin_unlock_irq(q->queue_lock);
428
e3c78ca5 429 msleep(10);
807592a4
BVA
430
431 spin_lock_irq(q->queue_lock);
e3c78ca5 432 }
458f27a9
AH
433
434 /*
435 * With queue marked dead, any woken up waiter will fail the
436 * allocation path, so the wakeup chaining is lost and we're
437 * left with hung waiters. We need to wake up those waiters.
438 */
439 if (q->request_fn) {
a051661c
TH
440 struct request_list *rl;
441
a051661c
TH
442 blk_queue_for_each_rl(rl, q)
443 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
444 wake_up_all(&rl->wait[i]);
458f27a9 445 }
e3c78ca5
TH
446}
447
d732580b
TH
448/**
449 * blk_queue_bypass_start - enter queue bypass mode
450 * @q: queue of interest
451 *
452 * In bypass mode, only the dispatch FIFO queue of @q is used. This
453 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 454 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
455 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
456 * inside queue or RCU read lock.
d732580b
TH
457 */
458void blk_queue_bypass_start(struct request_queue *q)
459{
460 spin_lock_irq(q->queue_lock);
776687bc 461 q->bypass_depth++;
d732580b
TH
462 queue_flag_set(QUEUE_FLAG_BYPASS, q);
463 spin_unlock_irq(q->queue_lock);
464
776687bc
TH
465 /*
466 * Queues start drained. Skip actual draining till init is
467 * complete. This avoids lenghty delays during queue init which
468 * can happen many times during boot.
469 */
470 if (blk_queue_init_done(q)) {
807592a4
BVA
471 spin_lock_irq(q->queue_lock);
472 __blk_drain_queue(q, false);
473 spin_unlock_irq(q->queue_lock);
474
b82d4b19
TH
475 /* ensure blk_queue_bypass() is %true inside RCU read lock */
476 synchronize_rcu();
477 }
d732580b
TH
478}
479EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
480
481/**
482 * blk_queue_bypass_end - leave queue bypass mode
483 * @q: queue of interest
484 *
485 * Leave bypass mode and restore the normal queueing behavior.
486 */
487void blk_queue_bypass_end(struct request_queue *q)
488{
489 spin_lock_irq(q->queue_lock);
490 if (!--q->bypass_depth)
491 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
492 WARN_ON_ONCE(q->bypass_depth < 0);
493 spin_unlock_irq(q->queue_lock);
494}
495EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
496
aed3ea94
JA
497void blk_set_queue_dying(struct request_queue *q)
498{
1b856086
BVA
499 spin_lock_irq(q->queue_lock);
500 queue_flag_set(QUEUE_FLAG_DYING, q);
501 spin_unlock_irq(q->queue_lock);
aed3ea94 502
d3cfb2a0
ML
503 /*
504 * When queue DYING flag is set, we need to block new req
505 * entering queue, so we call blk_freeze_queue_start() to
506 * prevent I/O from crossing blk_queue_enter().
507 */
508 blk_freeze_queue_start(q);
509
aed3ea94
JA
510 if (q->mq_ops)
511 blk_mq_wake_waiters(q);
512 else {
513 struct request_list *rl;
514
bbfc3c5d 515 spin_lock_irq(q->queue_lock);
aed3ea94
JA
516 blk_queue_for_each_rl(rl, q) {
517 if (rl->rq_pool) {
518 wake_up(&rl->wait[BLK_RW_SYNC]);
519 wake_up(&rl->wait[BLK_RW_ASYNC]);
520 }
521 }
bbfc3c5d 522 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
523 }
524}
525EXPORT_SYMBOL_GPL(blk_set_queue_dying);
526
c9a929dd
TH
527/**
528 * blk_cleanup_queue - shutdown a request queue
529 * @q: request queue to shutdown
530 *
c246e80d
BVA
531 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
532 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 533 */
6728cb0e 534void blk_cleanup_queue(struct request_queue *q)
483f4afc 535{
c9a929dd 536 spinlock_t *lock = q->queue_lock;
e3335de9 537
3f3299d5 538 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 539 mutex_lock(&q->sysfs_lock);
aed3ea94 540 blk_set_queue_dying(q);
c9a929dd 541 spin_lock_irq(lock);
6ecf23af 542
80fd9979 543 /*
3f3299d5 544 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
545 * that, unlike blk_queue_bypass_start(), we aren't performing
546 * synchronize_rcu() after entering bypass mode to avoid the delay
547 * as some drivers create and destroy a lot of queues while
548 * probing. This is still safe because blk_release_queue() will be
549 * called only after the queue refcnt drops to zero and nothing,
550 * RCU or not, would be traversing the queue by then.
551 */
6ecf23af
TH
552 q->bypass_depth++;
553 queue_flag_set(QUEUE_FLAG_BYPASS, q);
554
c9a929dd
TH
555 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
556 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 557 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
558 spin_unlock_irq(lock);
559 mutex_unlock(&q->sysfs_lock);
560
c246e80d
BVA
561 /*
562 * Drain all requests queued before DYING marking. Set DEAD flag to
563 * prevent that q->request_fn() gets invoked after draining finished.
564 */
3ef28e83
DW
565 blk_freeze_queue(q);
566 spin_lock_irq(lock);
567 if (!q->mq_ops)
43a5e4e2 568 __blk_drain_queue(q, true);
c246e80d 569 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 570 spin_unlock_irq(lock);
c9a929dd 571
5a48fc14
DW
572 /* for synchronous bio-based driver finish in-flight integrity i/o */
573 blk_flush_integrity();
574
c9a929dd 575 /* @q won't process any more request, flush async actions */
dc3b17cc 576 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
577 blk_sync_queue(q);
578
45a9c9d9
BVA
579 if (q->mq_ops)
580 blk_mq_free_queue(q);
3ef28e83 581 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 582
5e5cfac0
AH
583 spin_lock_irq(lock);
584 if (q->queue_lock != &q->__queue_lock)
585 q->queue_lock = &q->__queue_lock;
586 spin_unlock_irq(lock);
587
c9a929dd 588 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
589 blk_put_queue(q);
590}
1da177e4
LT
591EXPORT_SYMBOL(blk_cleanup_queue);
592
271508db 593/* Allocate memory local to the request queue */
6d247d7f 594static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 595{
6d247d7f
CH
596 struct request_queue *q = data;
597
598 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
599}
600
6d247d7f 601static void free_request_simple(void *element, void *data)
271508db
DR
602{
603 kmem_cache_free(request_cachep, element);
604}
605
6d247d7f
CH
606static void *alloc_request_size(gfp_t gfp_mask, void *data)
607{
608 struct request_queue *q = data;
609 struct request *rq;
610
611 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
612 q->node);
613 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
614 kfree(rq);
615 rq = NULL;
616 }
617 return rq;
618}
619
620static void free_request_size(void *element, void *data)
621{
622 struct request_queue *q = data;
623
624 if (q->exit_rq_fn)
625 q->exit_rq_fn(q, element);
626 kfree(element);
627}
628
5b788ce3
TH
629int blk_init_rl(struct request_list *rl, struct request_queue *q,
630 gfp_t gfp_mask)
1da177e4 631{
1abec4fd
MS
632 if (unlikely(rl->rq_pool))
633 return 0;
634
5b788ce3 635 rl->q = q;
1faa16d2
JA
636 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
637 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
638 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
639 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 640
6d247d7f
CH
641 if (q->cmd_size) {
642 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
643 alloc_request_size, free_request_size,
644 q, gfp_mask, q->node);
645 } else {
646 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
647 alloc_request_simple, free_request_simple,
648 q, gfp_mask, q->node);
649 }
1da177e4
LT
650 if (!rl->rq_pool)
651 return -ENOMEM;
652
653 return 0;
654}
655
5b788ce3
TH
656void blk_exit_rl(struct request_list *rl)
657{
658 if (rl->rq_pool)
659 mempool_destroy(rl->rq_pool);
660}
661
165125e1 662struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 663{
c304a51b 664 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
665}
666EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 667
6f3b0e8b 668int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
669{
670 while (true) {
671 int ret;
672
673 if (percpu_ref_tryget_live(&q->q_usage_counter))
674 return 0;
675
6f3b0e8b 676 if (nowait)
3ef28e83
DW
677 return -EBUSY;
678
5ed61d3f 679 /*
1671d522 680 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 681 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
682 * .q_usage_counter and reading .mq_freeze_depth or
683 * queue dying flag, otherwise the following wait may
684 * never return if the two reads are reordered.
5ed61d3f
ML
685 */
686 smp_rmb();
687
3ef28e83
DW
688 ret = wait_event_interruptible(q->mq_freeze_wq,
689 !atomic_read(&q->mq_freeze_depth) ||
690 blk_queue_dying(q));
691 if (blk_queue_dying(q))
692 return -ENODEV;
693 if (ret)
694 return ret;
695 }
696}
697
698void blk_queue_exit(struct request_queue *q)
699{
700 percpu_ref_put(&q->q_usage_counter);
701}
702
703static void blk_queue_usage_counter_release(struct percpu_ref *ref)
704{
705 struct request_queue *q =
706 container_of(ref, struct request_queue, q_usage_counter);
707
708 wake_up_all(&q->mq_freeze_wq);
709}
710
287922eb
CH
711static void blk_rq_timed_out_timer(unsigned long data)
712{
713 struct request_queue *q = (struct request_queue *)data;
714
715 kblockd_schedule_work(&q->timeout_work);
716}
717
165125e1 718struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 719{
165125e1 720 struct request_queue *q;
1946089a 721
8324aa91 722 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 723 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
724 if (!q)
725 return NULL;
726
00380a40 727 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 728 if (q->id < 0)
3d2936f4 729 goto fail_q;
a73f730d 730
54efd50b
KO
731 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
732 if (!q->bio_split)
733 goto fail_id;
734
d03f6cdc
JK
735 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
736 if (!q->backing_dev_info)
737 goto fail_split;
738
a83b576c
JA
739 q->stats = blk_alloc_queue_stats();
740 if (!q->stats)
741 goto fail_stats;
742
dc3b17cc 743 q->backing_dev_info->ra_pages =
09cbfeaf 744 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
745 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
746 q->backing_dev_info->name = "block";
5151412d 747 q->node = node_id;
0989a025 748
dc3b17cc 749 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 750 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 751 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 752 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 753 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 754 INIT_LIST_HEAD(&q->icq_list);
4eef3049 755#ifdef CONFIG_BLK_CGROUP
e8989fae 756 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 757#endif
3cca6dc1 758 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 759
8324aa91 760 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 761
483f4afc 762 mutex_init(&q->sysfs_lock);
e7e72bf6 763 spin_lock_init(&q->__queue_lock);
483f4afc 764
c94a96ac
VG
765 /*
766 * By default initialize queue_lock to internal lock and driver can
767 * override it later if need be.
768 */
769 q->queue_lock = &q->__queue_lock;
770
b82d4b19
TH
771 /*
772 * A queue starts its life with bypass turned on to avoid
773 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
774 * init. The initial bypass will be finished when the queue is
775 * registered by blk_register_queue().
b82d4b19
TH
776 */
777 q->bypass_depth = 1;
778 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
779
320ae51f
JA
780 init_waitqueue_head(&q->mq_freeze_wq);
781
3ef28e83
DW
782 /*
783 * Init percpu_ref in atomic mode so that it's faster to shutdown.
784 * See blk_register_queue() for details.
785 */
786 if (percpu_ref_init(&q->q_usage_counter,
787 blk_queue_usage_counter_release,
788 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 789 goto fail_bdi;
f51b802c 790
3ef28e83
DW
791 if (blkcg_init_queue(q))
792 goto fail_ref;
793
1da177e4 794 return q;
a73f730d 795
3ef28e83
DW
796fail_ref:
797 percpu_ref_exit(&q->q_usage_counter);
fff4996b 798fail_bdi:
a83b576c
JA
799 blk_free_queue_stats(q->stats);
800fail_stats:
d03f6cdc 801 bdi_put(q->backing_dev_info);
54efd50b
KO
802fail_split:
803 bioset_free(q->bio_split);
a73f730d
TH
804fail_id:
805 ida_simple_remove(&blk_queue_ida, q->id);
806fail_q:
807 kmem_cache_free(blk_requestq_cachep, q);
808 return NULL;
1da177e4 809}
1946089a 810EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
811
812/**
813 * blk_init_queue - prepare a request queue for use with a block device
814 * @rfn: The function to be called to process requests that have been
815 * placed on the queue.
816 * @lock: Request queue spin lock
817 *
818 * Description:
819 * If a block device wishes to use the standard request handling procedures,
820 * which sorts requests and coalesces adjacent requests, then it must
821 * call blk_init_queue(). The function @rfn will be called when there
822 * are requests on the queue that need to be processed. If the device
823 * supports plugging, then @rfn may not be called immediately when requests
824 * are available on the queue, but may be called at some time later instead.
825 * Plugged queues are generally unplugged when a buffer belonging to one
826 * of the requests on the queue is needed, or due to memory pressure.
827 *
828 * @rfn is not required, or even expected, to remove all requests off the
829 * queue, but only as many as it can handle at a time. If it does leave
830 * requests on the queue, it is responsible for arranging that the requests
831 * get dealt with eventually.
832 *
833 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
834 * request queue; this lock will be taken also from interrupt context, so irq
835 * disabling is needed for it.
1da177e4 836 *
710027a4 837 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
838 * it didn't succeed.
839 *
840 * Note:
841 * blk_init_queue() must be paired with a blk_cleanup_queue() call
842 * when the block device is deactivated (such as at module unload).
843 **/
1946089a 844
165125e1 845struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 846{
c304a51b 847 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
848}
849EXPORT_SYMBOL(blk_init_queue);
850
165125e1 851struct request_queue *
1946089a
CL
852blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
853{
5ea708d1 854 struct request_queue *q;
1da177e4 855
5ea708d1
CH
856 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
857 if (!q)
c86d1b8a
MS
858 return NULL;
859
5ea708d1
CH
860 q->request_fn = rfn;
861 if (lock)
862 q->queue_lock = lock;
863 if (blk_init_allocated_queue(q) < 0) {
864 blk_cleanup_queue(q);
865 return NULL;
866 }
18741986 867
7982e90c 868 return q;
01effb0d
MS
869}
870EXPORT_SYMBOL(blk_init_queue_node);
871
dece1635 872static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 873
1da177e4 874
5ea708d1
CH
875int blk_init_allocated_queue(struct request_queue *q)
876{
6d247d7f 877 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 878 if (!q->fq)
5ea708d1 879 return -ENOMEM;
7982e90c 880
6d247d7f
CH
881 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
882 goto out_free_flush_queue;
7982e90c 883
a051661c 884 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 885 goto out_exit_flush_rq;
1da177e4 886
287922eb 887 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 888 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 889
f3b144aa
JA
890 /*
891 * This also sets hw/phys segments, boundary and size
892 */
c20e8de2 893 blk_queue_make_request(q, blk_queue_bio);
1da177e4 894
44ec9542
AS
895 q->sg_reserved_size = INT_MAX;
896
eb1c160b
TS
897 /* Protect q->elevator from elevator_change */
898 mutex_lock(&q->sysfs_lock);
899
b82d4b19 900 /* init elevator */
eb1c160b
TS
901 if (elevator_init(q, NULL)) {
902 mutex_unlock(&q->sysfs_lock);
6d247d7f 903 goto out_exit_flush_rq;
eb1c160b
TS
904 }
905
906 mutex_unlock(&q->sysfs_lock);
5ea708d1 907 return 0;
eb1c160b 908
6d247d7f
CH
909out_exit_flush_rq:
910 if (q->exit_rq_fn)
911 q->exit_rq_fn(q, q->fq->flush_rq);
912out_free_flush_queue:
ba483388 913 blk_free_flush_queue(q->fq);
5ea708d1 914 return -ENOMEM;
1da177e4 915}
5151412d 916EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 917
09ac46c4 918bool blk_get_queue(struct request_queue *q)
1da177e4 919{
3f3299d5 920 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
921 __blk_get_queue(q);
922 return true;
1da177e4
LT
923 }
924
09ac46c4 925 return false;
1da177e4 926}
d86e0e83 927EXPORT_SYMBOL(blk_get_queue);
1da177e4 928
5b788ce3 929static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 930{
e8064021 931 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 932 elv_put_request(rl->q, rq);
f1f8cc94 933 if (rq->elv.icq)
11a3122f 934 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
935 }
936
5b788ce3 937 mempool_free(rq, rl->rq_pool);
1da177e4
LT
938}
939
1da177e4
LT
940/*
941 * ioc_batching returns true if the ioc is a valid batching request and
942 * should be given priority access to a request.
943 */
165125e1 944static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
945{
946 if (!ioc)
947 return 0;
948
949 /*
950 * Make sure the process is able to allocate at least 1 request
951 * even if the batch times out, otherwise we could theoretically
952 * lose wakeups.
953 */
954 return ioc->nr_batch_requests == q->nr_batching ||
955 (ioc->nr_batch_requests > 0
956 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
957}
958
959/*
960 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
961 * will cause the process to be a "batcher" on all queues in the system. This
962 * is the behaviour we want though - once it gets a wakeup it should be given
963 * a nice run.
964 */
165125e1 965static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
966{
967 if (!ioc || ioc_batching(q, ioc))
968 return;
969
970 ioc->nr_batch_requests = q->nr_batching;
971 ioc->last_waited = jiffies;
972}
973
5b788ce3 974static void __freed_request(struct request_list *rl, int sync)
1da177e4 975{
5b788ce3 976 struct request_queue *q = rl->q;
1da177e4 977
d40f75a0
TH
978 if (rl->count[sync] < queue_congestion_off_threshold(q))
979 blk_clear_congested(rl, sync);
1da177e4 980
1faa16d2
JA
981 if (rl->count[sync] + 1 <= q->nr_requests) {
982 if (waitqueue_active(&rl->wait[sync]))
983 wake_up(&rl->wait[sync]);
1da177e4 984
5b788ce3 985 blk_clear_rl_full(rl, sync);
1da177e4
LT
986 }
987}
988
989/*
990 * A request has just been released. Account for it, update the full and
991 * congestion status, wake up any waiters. Called under q->queue_lock.
992 */
e8064021
CH
993static void freed_request(struct request_list *rl, bool sync,
994 req_flags_t rq_flags)
1da177e4 995{
5b788ce3 996 struct request_queue *q = rl->q;
1da177e4 997
8a5ecdd4 998 q->nr_rqs[sync]--;
1faa16d2 999 rl->count[sync]--;
e8064021 1000 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1001 q->nr_rqs_elvpriv--;
1da177e4 1002
5b788ce3 1003 __freed_request(rl, sync);
1da177e4 1004
1faa16d2 1005 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1006 __freed_request(rl, sync ^ 1);
1da177e4
LT
1007}
1008
e3a2b3f9
JA
1009int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1010{
1011 struct request_list *rl;
d40f75a0 1012 int on_thresh, off_thresh;
e3a2b3f9
JA
1013
1014 spin_lock_irq(q->queue_lock);
1015 q->nr_requests = nr;
1016 blk_queue_congestion_threshold(q);
d40f75a0
TH
1017 on_thresh = queue_congestion_on_threshold(q);
1018 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1019
d40f75a0
TH
1020 blk_queue_for_each_rl(rl, q) {
1021 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1022 blk_set_congested(rl, BLK_RW_SYNC);
1023 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1024 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1025
d40f75a0
TH
1026 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1027 blk_set_congested(rl, BLK_RW_ASYNC);
1028 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1029 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1030
e3a2b3f9
JA
1031 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1032 blk_set_rl_full(rl, BLK_RW_SYNC);
1033 } else {
1034 blk_clear_rl_full(rl, BLK_RW_SYNC);
1035 wake_up(&rl->wait[BLK_RW_SYNC]);
1036 }
1037
1038 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1039 blk_set_rl_full(rl, BLK_RW_ASYNC);
1040 } else {
1041 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1042 wake_up(&rl->wait[BLK_RW_ASYNC]);
1043 }
1044 }
1045
1046 spin_unlock_irq(q->queue_lock);
1047 return 0;
1048}
1049
da8303c6 1050/**
a06e05e6 1051 * __get_request - get a free request
5b788ce3 1052 * @rl: request list to allocate from
ef295ecf 1053 * @op: operation and flags
da8303c6
TH
1054 * @bio: bio to allocate request for (can be %NULL)
1055 * @gfp_mask: allocation mask
1056 *
1057 * Get a free request from @q. This function may fail under memory
1058 * pressure or if @q is dead.
1059 *
da3dae54 1060 * Must be called with @q->queue_lock held and,
a492f075
JL
1061 * Returns ERR_PTR on failure, with @q->queue_lock held.
1062 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1063 */
ef295ecf
CH
1064static struct request *__get_request(struct request_list *rl, unsigned int op,
1065 struct bio *bio, gfp_t gfp_mask)
1da177e4 1066{
5b788ce3 1067 struct request_queue *q = rl->q;
b679281a 1068 struct request *rq;
7f4b35d1
TH
1069 struct elevator_type *et = q->elevator->type;
1070 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1071 struct io_cq *icq = NULL;
ef295ecf 1072 const bool is_sync = op_is_sync(op);
75eb6c37 1073 int may_queue;
e8064021 1074 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1075
3f3299d5 1076 if (unlikely(blk_queue_dying(q)))
a492f075 1077 return ERR_PTR(-ENODEV);
da8303c6 1078
ef295ecf 1079 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1080 if (may_queue == ELV_MQUEUE_NO)
1081 goto rq_starved;
1082
1faa16d2
JA
1083 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1084 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1085 /*
1086 * The queue will fill after this allocation, so set
1087 * it as full, and mark this process as "batching".
1088 * This process will be allowed to complete a batch of
1089 * requests, others will be blocked.
1090 */
5b788ce3 1091 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1092 ioc_set_batching(q, ioc);
5b788ce3 1093 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1094 } else {
1095 if (may_queue != ELV_MQUEUE_MUST
1096 && !ioc_batching(q, ioc)) {
1097 /*
1098 * The queue is full and the allocating
1099 * process is not a "batcher", and not
1100 * exempted by the IO scheduler
1101 */
a492f075 1102 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1103 }
1104 }
1da177e4 1105 }
d40f75a0 1106 blk_set_congested(rl, is_sync);
1da177e4
LT
1107 }
1108
082cf69e
JA
1109 /*
1110 * Only allow batching queuers to allocate up to 50% over the defined
1111 * limit of requests, otherwise we could have thousands of requests
1112 * allocated with any setting of ->nr_requests
1113 */
1faa16d2 1114 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1115 return ERR_PTR(-ENOMEM);
fd782a4a 1116
8a5ecdd4 1117 q->nr_rqs[is_sync]++;
1faa16d2
JA
1118 rl->count[is_sync]++;
1119 rl->starved[is_sync] = 0;
cb98fc8b 1120
f1f8cc94
TH
1121 /*
1122 * Decide whether the new request will be managed by elevator. If
e8064021 1123 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1124 * prevent the current elevator from being destroyed until the new
1125 * request is freed. This guarantees icq's won't be destroyed and
1126 * makes creating new ones safe.
1127 *
e6f7f93d
CH
1128 * Flush requests do not use the elevator so skip initialization.
1129 * This allows a request to share the flush and elevator data.
1130 *
f1f8cc94
TH
1131 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1132 * it will be created after releasing queue_lock.
1133 */
e6f7f93d 1134 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1135 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1136 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1137 if (et->icq_cache && ioc)
1138 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1139 }
cb98fc8b 1140
f253b86b 1141 if (blk_queue_io_stat(q))
e8064021 1142 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1143 spin_unlock_irq(q->queue_lock);
1144
29e2b09a 1145 /* allocate and init request */
5b788ce3 1146 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1147 if (!rq)
b679281a 1148 goto fail_alloc;
1da177e4 1149
29e2b09a 1150 blk_rq_init(q, rq);
a051661c 1151 blk_rq_set_rl(rq, rl);
ef295ecf 1152 rq->cmd_flags = op;
e8064021 1153 rq->rq_flags = rq_flags;
29e2b09a 1154
aaf7c680 1155 /* init elvpriv */
e8064021 1156 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1157 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1158 if (ioc)
1159 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1160 if (!icq)
1161 goto fail_elvpriv;
29e2b09a 1162 }
aaf7c680
TH
1163
1164 rq->elv.icq = icq;
1165 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1166 goto fail_elvpriv;
1167
1168 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1169 if (icq)
1170 get_io_context(icq->ioc);
1171 }
aaf7c680 1172out:
88ee5ef1
JA
1173 /*
1174 * ioc may be NULL here, and ioc_batching will be false. That's
1175 * OK, if the queue is under the request limit then requests need
1176 * not count toward the nr_batch_requests limit. There will always
1177 * be some limit enforced by BLK_BATCH_TIME.
1178 */
1da177e4
LT
1179 if (ioc_batching(q, ioc))
1180 ioc->nr_batch_requests--;
6728cb0e 1181
e6a40b09 1182 trace_block_getrq(q, bio, op);
1da177e4 1183 return rq;
b679281a 1184
aaf7c680
TH
1185fail_elvpriv:
1186 /*
1187 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1188 * and may fail indefinitely under memory pressure and thus
1189 * shouldn't stall IO. Treat this request as !elvpriv. This will
1190 * disturb iosched and blkcg but weird is bettern than dead.
1191 */
7b2b10e0 1192 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1193 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1194
e8064021 1195 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1196 rq->elv.icq = NULL;
1197
1198 spin_lock_irq(q->queue_lock);
8a5ecdd4 1199 q->nr_rqs_elvpriv--;
aaf7c680
TH
1200 spin_unlock_irq(q->queue_lock);
1201 goto out;
1202
b679281a
TH
1203fail_alloc:
1204 /*
1205 * Allocation failed presumably due to memory. Undo anything we
1206 * might have messed up.
1207 *
1208 * Allocating task should really be put onto the front of the wait
1209 * queue, but this is pretty rare.
1210 */
1211 spin_lock_irq(q->queue_lock);
e8064021 1212 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1213
1214 /*
1215 * in the very unlikely event that allocation failed and no
1216 * requests for this direction was pending, mark us starved so that
1217 * freeing of a request in the other direction will notice
1218 * us. another possible fix would be to split the rq mempool into
1219 * READ and WRITE
1220 */
1221rq_starved:
1222 if (unlikely(rl->count[is_sync] == 0))
1223 rl->starved[is_sync] = 1;
a492f075 1224 return ERR_PTR(-ENOMEM);
1da177e4
LT
1225}
1226
da8303c6 1227/**
a06e05e6 1228 * get_request - get a free request
da8303c6 1229 * @q: request_queue to allocate request from
ef295ecf 1230 * @op: operation and flags
da8303c6 1231 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1232 * @gfp_mask: allocation mask
da8303c6 1233 *
d0164adc
MG
1234 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1235 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1236 *
da3dae54 1237 * Must be called with @q->queue_lock held and,
a492f075
JL
1238 * Returns ERR_PTR on failure, with @q->queue_lock held.
1239 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1240 */
ef295ecf
CH
1241static struct request *get_request(struct request_queue *q, unsigned int op,
1242 struct bio *bio, gfp_t gfp_mask)
1da177e4 1243{
ef295ecf 1244 const bool is_sync = op_is_sync(op);
a06e05e6 1245 DEFINE_WAIT(wait);
a051661c 1246 struct request_list *rl;
1da177e4 1247 struct request *rq;
a051661c
TH
1248
1249 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1250retry:
ef295ecf 1251 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1252 if (!IS_ERR(rq))
a06e05e6 1253 return rq;
1da177e4 1254
d0164adc 1255 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1256 blk_put_rl(rl);
a492f075 1257 return rq;
a051661c 1258 }
1da177e4 1259
a06e05e6
TH
1260 /* wait on @rl and retry */
1261 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1262 TASK_UNINTERRUPTIBLE);
1da177e4 1263
e6a40b09 1264 trace_block_sleeprq(q, bio, op);
1da177e4 1265
a06e05e6
TH
1266 spin_unlock_irq(q->queue_lock);
1267 io_schedule();
d6344532 1268
a06e05e6
TH
1269 /*
1270 * After sleeping, we become a "batching" process and will be able
1271 * to allocate at least one request, and up to a big batch of them
1272 * for a small period time. See ioc_batching, ioc_set_batching
1273 */
a06e05e6 1274 ioc_set_batching(q, current->io_context);
05caf8db 1275
a06e05e6
TH
1276 spin_lock_irq(q->queue_lock);
1277 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1278
a06e05e6 1279 goto retry;
1da177e4
LT
1280}
1281
320ae51f
JA
1282static struct request *blk_old_get_request(struct request_queue *q, int rw,
1283 gfp_t gfp_mask)
1da177e4
LT
1284{
1285 struct request *rq;
1286
7f4b35d1
TH
1287 /* create ioc upfront */
1288 create_io_context(gfp_mask, q->node);
1289
d6344532 1290 spin_lock_irq(q->queue_lock);
ef295ecf 1291 rq = get_request(q, rw, NULL, gfp_mask);
0c4de0f3 1292 if (IS_ERR(rq)) {
da8303c6 1293 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1294 return rq;
1295 }
1da177e4 1296
0c4de0f3
CH
1297 /* q->queue_lock is unlocked at this point */
1298 rq->__data_len = 0;
1299 rq->__sector = (sector_t) -1;
1300 rq->bio = rq->biotail = NULL;
1da177e4
LT
1301 return rq;
1302}
320ae51f
JA
1303
1304struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1305{
1306 if (q->mq_ops)
6f3b0e8b
CH
1307 return blk_mq_alloc_request(q, rw,
1308 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1309 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1310 else
1311 return blk_old_get_request(q, rw, gfp_mask);
1312}
1da177e4
LT
1313EXPORT_SYMBOL(blk_get_request);
1314
1315/**
1316 * blk_requeue_request - put a request back on queue
1317 * @q: request queue where request should be inserted
1318 * @rq: request to be inserted
1319 *
1320 * Description:
1321 * Drivers often keep queueing requests until the hardware cannot accept
1322 * more, when that condition happens we need to put the request back
1323 * on the queue. Must be called with queue lock held.
1324 */
165125e1 1325void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1326{
242f9dcb
JA
1327 blk_delete_timer(rq);
1328 blk_clear_rq_complete(rq);
5f3ea37c 1329 trace_block_rq_requeue(q, rq);
87760e5e 1330 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1331
e8064021 1332 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1333 blk_queue_end_tag(q, rq);
1334
ba396a6c
JB
1335 BUG_ON(blk_queued_rq(rq));
1336
1da177e4
LT
1337 elv_requeue_request(q, rq);
1338}
1da177e4
LT
1339EXPORT_SYMBOL(blk_requeue_request);
1340
73c10101
JA
1341static void add_acct_request(struct request_queue *q, struct request *rq,
1342 int where)
1343{
320ae51f 1344 blk_account_io_start(rq, true);
7eaceacc 1345 __elv_add_request(q, rq, where);
73c10101
JA
1346}
1347
074a7aca
TH
1348static void part_round_stats_single(int cpu, struct hd_struct *part,
1349 unsigned long now)
1350{
7276d02e
JA
1351 int inflight;
1352
074a7aca
TH
1353 if (now == part->stamp)
1354 return;
1355
7276d02e
JA
1356 inflight = part_in_flight(part);
1357 if (inflight) {
074a7aca 1358 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1359 inflight * (now - part->stamp));
074a7aca
TH
1360 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1361 }
1362 part->stamp = now;
1363}
1364
1365/**
496aa8a9
RD
1366 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1367 * @cpu: cpu number for stats access
1368 * @part: target partition
1da177e4
LT
1369 *
1370 * The average IO queue length and utilisation statistics are maintained
1371 * by observing the current state of the queue length and the amount of
1372 * time it has been in this state for.
1373 *
1374 * Normally, that accounting is done on IO completion, but that can result
1375 * in more than a second's worth of IO being accounted for within any one
1376 * second, leading to >100% utilisation. To deal with that, we call this
1377 * function to do a round-off before returning the results when reading
1378 * /proc/diskstats. This accounts immediately for all queue usage up to
1379 * the current jiffies and restarts the counters again.
1380 */
c9959059 1381void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1382{
1383 unsigned long now = jiffies;
1384
074a7aca
TH
1385 if (part->partno)
1386 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1387 part_round_stats_single(cpu, part, now);
6f2576af 1388}
074a7aca 1389EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1390
47fafbc7 1391#ifdef CONFIG_PM
c8158819
LM
1392static void blk_pm_put_request(struct request *rq)
1393{
e8064021 1394 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1395 pm_runtime_mark_last_busy(rq->q->dev);
1396}
1397#else
1398static inline void blk_pm_put_request(struct request *rq) {}
1399#endif
1400
1da177e4
LT
1401/*
1402 * queue lock must be held
1403 */
165125e1 1404void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1405{
e8064021
CH
1406 req_flags_t rq_flags = req->rq_flags;
1407
1da177e4
LT
1408 if (unlikely(!q))
1409 return;
1da177e4 1410
6f5ba581
CH
1411 if (q->mq_ops) {
1412 blk_mq_free_request(req);
1413 return;
1414 }
1415
c8158819
LM
1416 blk_pm_put_request(req);
1417
8922e16c
TH
1418 elv_completed_request(q, req);
1419
1cd96c24
BH
1420 /* this is a bio leak */
1421 WARN_ON(req->bio != NULL);
1422
87760e5e
JA
1423 wbt_done(q->rq_wb, &req->issue_stat);
1424
1da177e4
LT
1425 /*
1426 * Request may not have originated from ll_rw_blk. if not,
1427 * it didn't come out of our reserved rq pools
1428 */
e8064021 1429 if (rq_flags & RQF_ALLOCED) {
a051661c 1430 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1431 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1432
1da177e4 1433 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1434 BUG_ON(ELV_ON_HASH(req));
1da177e4 1435
a051661c 1436 blk_free_request(rl, req);
e8064021 1437 freed_request(rl, sync, rq_flags);
a051661c 1438 blk_put_rl(rl);
1da177e4
LT
1439 }
1440}
6e39b69e
MC
1441EXPORT_SYMBOL_GPL(__blk_put_request);
1442
1da177e4
LT
1443void blk_put_request(struct request *req)
1444{
165125e1 1445 struct request_queue *q = req->q;
8922e16c 1446
320ae51f
JA
1447 if (q->mq_ops)
1448 blk_mq_free_request(req);
1449 else {
1450 unsigned long flags;
1451
1452 spin_lock_irqsave(q->queue_lock, flags);
1453 __blk_put_request(q, req);
1454 spin_unlock_irqrestore(q->queue_lock, flags);
1455 }
1da177e4 1456}
1da177e4
LT
1457EXPORT_SYMBOL(blk_put_request);
1458
320ae51f
JA
1459bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1460 struct bio *bio)
73c10101 1461{
1eff9d32 1462 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1463
73c10101
JA
1464 if (!ll_back_merge_fn(q, req, bio))
1465 return false;
1466
8c1cf6bb 1467 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1468
1469 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1470 blk_rq_set_mixed_merge(req);
1471
1472 req->biotail->bi_next = bio;
1473 req->biotail = bio;
4f024f37 1474 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1475 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1476
320ae51f 1477 blk_account_io_start(req, false);
73c10101
JA
1478 return true;
1479}
1480
320ae51f
JA
1481bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1482 struct bio *bio)
73c10101 1483{
1eff9d32 1484 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1485
73c10101
JA
1486 if (!ll_front_merge_fn(q, req, bio))
1487 return false;
1488
8c1cf6bb 1489 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1490
1491 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1492 blk_rq_set_mixed_merge(req);
1493
73c10101
JA
1494 bio->bi_next = req->bio;
1495 req->bio = bio;
1496
4f024f37
KO
1497 req->__sector = bio->bi_iter.bi_sector;
1498 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1499 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1500
320ae51f 1501 blk_account_io_start(req, false);
73c10101
JA
1502 return true;
1503}
1504
1e739730
CH
1505bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1506 struct bio *bio)
1507{
1508 unsigned short segments = blk_rq_nr_discard_segments(req);
1509
1510 if (segments >= queue_max_discard_segments(q))
1511 goto no_merge;
1512 if (blk_rq_sectors(req) + bio_sectors(bio) >
1513 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1514 goto no_merge;
1515
1516 req->biotail->bi_next = bio;
1517 req->biotail = bio;
1518 req->__data_len += bio->bi_iter.bi_size;
1519 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1520 req->nr_phys_segments = segments + 1;
1521
1522 blk_account_io_start(req, false);
1523 return true;
1524no_merge:
1525 req_set_nomerge(q, req);
1526 return false;
1527}
1528
bd87b589 1529/**
320ae51f 1530 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1531 * @q: request_queue new bio is being queued at
1532 * @bio: new bio being queued
1533 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1534 * @same_queue_rq: pointer to &struct request that gets filled in when
1535 * another request associated with @q is found on the plug list
1536 * (optional, may be %NULL)
bd87b589
TH
1537 *
1538 * Determine whether @bio being queued on @q can be merged with a request
1539 * on %current's plugged list. Returns %true if merge was successful,
1540 * otherwise %false.
1541 *
07c2bd37
TH
1542 * Plugging coalesces IOs from the same issuer for the same purpose without
1543 * going through @q->queue_lock. As such it's more of an issuing mechanism
1544 * than scheduling, and the request, while may have elvpriv data, is not
1545 * added on the elevator at this point. In addition, we don't have
1546 * reliable access to the elevator outside queue lock. Only check basic
1547 * merging parameters without querying the elevator.
da41a589
RE
1548 *
1549 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1550 */
320ae51f 1551bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1552 unsigned int *request_count,
1553 struct request **same_queue_rq)
73c10101
JA
1554{
1555 struct blk_plug *plug;
1556 struct request *rq;
92f399c7 1557 struct list_head *plug_list;
73c10101 1558
bd87b589 1559 plug = current->plug;
73c10101 1560 if (!plug)
34fe7c05 1561 return false;
56ebdaf2 1562 *request_count = 0;
73c10101 1563
92f399c7
SL
1564 if (q->mq_ops)
1565 plug_list = &plug->mq_list;
1566 else
1567 plug_list = &plug->list;
1568
1569 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1570 bool merged = false;
73c10101 1571
5b3f341f 1572 if (rq->q == q) {
1b2e19f1 1573 (*request_count)++;
5b3f341f
SL
1574 /*
1575 * Only blk-mq multiple hardware queues case checks the
1576 * rq in the same queue, there should be only one such
1577 * rq in a queue
1578 **/
1579 if (same_queue_rq)
1580 *same_queue_rq = rq;
1581 }
56ebdaf2 1582
07c2bd37 1583 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1584 continue;
1585
34fe7c05
CH
1586 switch (blk_try_merge(rq, bio)) {
1587 case ELEVATOR_BACK_MERGE:
1588 merged = bio_attempt_back_merge(q, rq, bio);
1589 break;
1590 case ELEVATOR_FRONT_MERGE:
1591 merged = bio_attempt_front_merge(q, rq, bio);
1592 break;
1e739730
CH
1593 case ELEVATOR_DISCARD_MERGE:
1594 merged = bio_attempt_discard_merge(q, rq, bio);
1595 break;
34fe7c05
CH
1596 default:
1597 break;
73c10101 1598 }
34fe7c05
CH
1599
1600 if (merged)
1601 return true;
73c10101 1602 }
34fe7c05
CH
1603
1604 return false;
73c10101
JA
1605}
1606
0809e3ac
JM
1607unsigned int blk_plug_queued_count(struct request_queue *q)
1608{
1609 struct blk_plug *plug;
1610 struct request *rq;
1611 struct list_head *plug_list;
1612 unsigned int ret = 0;
1613
1614 plug = current->plug;
1615 if (!plug)
1616 goto out;
1617
1618 if (q->mq_ops)
1619 plug_list = &plug->mq_list;
1620 else
1621 plug_list = &plug->list;
1622
1623 list_for_each_entry(rq, plug_list, queuelist) {
1624 if (rq->q == q)
1625 ret++;
1626 }
1627out:
1628 return ret;
1629}
1630
da8d7f07 1631void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1632{
1eff9d32 1633 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1634 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1635
52d9e675 1636 req->errors = 0;
4f024f37 1637 req->__sector = bio->bi_iter.bi_sector;
85003a44 1638 blk_rq_set_prio(req, rq_ioc(bio));
5dc8b362
AM
1639 if (ioprio_valid(bio_prio(bio)))
1640 req->ioprio = bio_prio(bio);
bc1c56fd 1641 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1642}
da8d7f07 1643EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1644
dece1635 1645static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1646{
73c10101 1647 struct blk_plug *plug;
34fe7c05 1648 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1649 struct request *req, *free;
56ebdaf2 1650 unsigned int request_count = 0;
87760e5e 1651 unsigned int wb_acct;
1da177e4 1652
1da177e4
LT
1653 /*
1654 * low level driver can indicate that it wants pages above a
1655 * certain limit bounced to low memory (ie for highmem, or even
1656 * ISA dma in theory)
1657 */
1658 blk_queue_bounce(q, &bio);
1659
23688bf4
JN
1660 blk_queue_split(q, &bio, q->bio_split);
1661
ffecfd1a 1662 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1663 bio->bi_error = -EIO;
1664 bio_endio(bio);
dece1635 1665 return BLK_QC_T_NONE;
ffecfd1a
DW
1666 }
1667
f73f44eb 1668 if (op_is_flush(bio->bi_opf)) {
73c10101 1669 spin_lock_irq(q->queue_lock);
ae1b1539 1670 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1671 goto get_rq;
1672 }
1673
73c10101
JA
1674 /*
1675 * Check if we can merge with the plugged list before grabbing
1676 * any locks.
1677 */
0809e3ac
JM
1678 if (!blk_queue_nomerges(q)) {
1679 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1680 return BLK_QC_T_NONE;
0809e3ac
JM
1681 } else
1682 request_count = blk_plug_queued_count(q);
1da177e4 1683
73c10101 1684 spin_lock_irq(q->queue_lock);
2056a782 1685
34fe7c05
CH
1686 switch (elv_merge(q, &req, bio)) {
1687 case ELEVATOR_BACK_MERGE:
1688 if (!bio_attempt_back_merge(q, req, bio))
1689 break;
1690 elv_bio_merged(q, req, bio);
1691 free = attempt_back_merge(q, req);
1692 if (free)
1693 __blk_put_request(q, free);
1694 else
1695 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1696 goto out_unlock;
1697 case ELEVATOR_FRONT_MERGE:
1698 if (!bio_attempt_front_merge(q, req, bio))
1699 break;
1700 elv_bio_merged(q, req, bio);
1701 free = attempt_front_merge(q, req);
1702 if (free)
1703 __blk_put_request(q, free);
1704 else
1705 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1706 goto out_unlock;
1707 default:
1708 break;
1da177e4
LT
1709 }
1710
450991bc 1711get_rq:
87760e5e
JA
1712 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1713
1da177e4 1714 /*
450991bc 1715 * Grab a free request. This is might sleep but can not fail.
d6344532 1716 * Returns with the queue unlocked.
450991bc 1717 */
ef295ecf 1718 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1719 if (IS_ERR(req)) {
87760e5e 1720 __wbt_done(q->rq_wb, wb_acct);
4246a0b6
CH
1721 bio->bi_error = PTR_ERR(req);
1722 bio_endio(bio);
da8303c6
TH
1723 goto out_unlock;
1724 }
d6344532 1725
87760e5e
JA
1726 wbt_track(&req->issue_stat, wb_acct);
1727
450991bc
NP
1728 /*
1729 * After dropping the lock and possibly sleeping here, our request
1730 * may now be mergeable after it had proven unmergeable (above).
1731 * We don't worry about that case for efficiency. It won't happen
1732 * often, and the elevators are able to handle it.
1da177e4 1733 */
da8d7f07 1734 blk_init_request_from_bio(req, bio);
1da177e4 1735
9562ad9a 1736 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1737 req->cpu = raw_smp_processor_id();
73c10101
JA
1738
1739 plug = current->plug;
721a9602 1740 if (plug) {
dc6d36c9
JA
1741 /*
1742 * If this is the first request added after a plug, fire
7aef2e78 1743 * of a plug trace.
0a6219a9
ML
1744 *
1745 * @request_count may become stale because of schedule
1746 * out, so check plug list again.
dc6d36c9 1747 */
0a6219a9 1748 if (!request_count || list_empty(&plug->list))
dc6d36c9 1749 trace_block_plug(q);
3540d5e8 1750 else {
50d24c34
SL
1751 struct request *last = list_entry_rq(plug->list.prev);
1752 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1753 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1754 blk_flush_plug_list(plug, false);
019ceb7d
SL
1755 trace_block_plug(q);
1756 }
73c10101 1757 }
73c10101 1758 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1759 blk_account_io_start(req, true);
73c10101
JA
1760 } else {
1761 spin_lock_irq(q->queue_lock);
1762 add_acct_request(q, req, where);
24ecfbe2 1763 __blk_run_queue(q);
73c10101
JA
1764out_unlock:
1765 spin_unlock_irq(q->queue_lock);
1766 }
dece1635
JA
1767
1768 return BLK_QC_T_NONE;
1da177e4
LT
1769}
1770
1771/*
1772 * If bio->bi_dev is a partition, remap the location
1773 */
1774static inline void blk_partition_remap(struct bio *bio)
1775{
1776 struct block_device *bdev = bio->bi_bdev;
1777
778889d8
ST
1778 /*
1779 * Zone reset does not include bi_size so bio_sectors() is always 0.
1780 * Include a test for the reset op code and perform the remap if needed.
1781 */
1782 if (bdev != bdev->bd_contains &&
1783 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1784 struct hd_struct *p = bdev->bd_part;
1785
4f024f37 1786 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1787 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1788
d07335e5
MS
1789 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1790 bdev->bd_dev,
4f024f37 1791 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1792 }
1793}
1794
1da177e4
LT
1795static void handle_bad_sector(struct bio *bio)
1796{
1797 char b[BDEVNAME_SIZE];
1798
1799 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1800 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1801 bdevname(bio->bi_bdev, b),
1eff9d32 1802 bio->bi_opf,
f73a1c7d 1803 (unsigned long long)bio_end_sector(bio),
77304d2a 1804 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1805}
1806
c17bb495
AM
1807#ifdef CONFIG_FAIL_MAKE_REQUEST
1808
1809static DECLARE_FAULT_ATTR(fail_make_request);
1810
1811static int __init setup_fail_make_request(char *str)
1812{
1813 return setup_fault_attr(&fail_make_request, str);
1814}
1815__setup("fail_make_request=", setup_fail_make_request);
1816
b2c9cd37 1817static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1818{
b2c9cd37 1819 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1820}
1821
1822static int __init fail_make_request_debugfs(void)
1823{
dd48c085
AM
1824 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1825 NULL, &fail_make_request);
1826
21f9fcd8 1827 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1828}
1829
1830late_initcall(fail_make_request_debugfs);
1831
1832#else /* CONFIG_FAIL_MAKE_REQUEST */
1833
b2c9cd37
AM
1834static inline bool should_fail_request(struct hd_struct *part,
1835 unsigned int bytes)
c17bb495 1836{
b2c9cd37 1837 return false;
c17bb495
AM
1838}
1839
1840#endif /* CONFIG_FAIL_MAKE_REQUEST */
1841
c07e2b41
JA
1842/*
1843 * Check whether this bio extends beyond the end of the device.
1844 */
1845static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1846{
1847 sector_t maxsector;
1848
1849 if (!nr_sectors)
1850 return 0;
1851
1852 /* Test device or partition size, when known. */
77304d2a 1853 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1854 if (maxsector) {
4f024f37 1855 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1856
1857 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1858 /*
1859 * This may well happen - the kernel calls bread()
1860 * without checking the size of the device, e.g., when
1861 * mounting a device.
1862 */
1863 handle_bad_sector(bio);
1864 return 1;
1865 }
1866 }
1867
1868 return 0;
1869}
1870
27a84d54
CH
1871static noinline_for_stack bool
1872generic_make_request_checks(struct bio *bio)
1da177e4 1873{
165125e1 1874 struct request_queue *q;
5a7bbad2 1875 int nr_sectors = bio_sectors(bio);
51fd77bd 1876 int err = -EIO;
5a7bbad2
CH
1877 char b[BDEVNAME_SIZE];
1878 struct hd_struct *part;
1da177e4
LT
1879
1880 might_sleep();
1da177e4 1881
c07e2b41
JA
1882 if (bio_check_eod(bio, nr_sectors))
1883 goto end_io;
1da177e4 1884
5a7bbad2
CH
1885 q = bdev_get_queue(bio->bi_bdev);
1886 if (unlikely(!q)) {
1887 printk(KERN_ERR
1888 "generic_make_request: Trying to access "
1889 "nonexistent block-device %s (%Lu)\n",
1890 bdevname(bio->bi_bdev, b),
4f024f37 1891 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1892 goto end_io;
1893 }
c17bb495 1894
5a7bbad2 1895 part = bio->bi_bdev->bd_part;
4f024f37 1896 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1897 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1898 bio->bi_iter.bi_size))
5a7bbad2 1899 goto end_io;
2056a782 1900
5a7bbad2
CH
1901 /*
1902 * If this device has partitions, remap block n
1903 * of partition p to block n+start(p) of the disk.
1904 */
1905 blk_partition_remap(bio);
2056a782 1906
5a7bbad2
CH
1907 if (bio_check_eod(bio, nr_sectors))
1908 goto end_io;
1e87901e 1909
5a7bbad2
CH
1910 /*
1911 * Filter flush bio's early so that make_request based
1912 * drivers without flush support don't have to worry
1913 * about them.
1914 */
f3a8ab7d 1915 if (op_is_flush(bio->bi_opf) &&
c888a8f9 1916 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 1917 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2
CH
1918 if (!nr_sectors) {
1919 err = 0;
51fd77bd
JA
1920 goto end_io;
1921 }
5a7bbad2 1922 }
5ddfe969 1923
288dab8a
CH
1924 switch (bio_op(bio)) {
1925 case REQ_OP_DISCARD:
1926 if (!blk_queue_discard(q))
1927 goto not_supported;
1928 break;
1929 case REQ_OP_SECURE_ERASE:
1930 if (!blk_queue_secure_erase(q))
1931 goto not_supported;
1932 break;
1933 case REQ_OP_WRITE_SAME:
1934 if (!bdev_write_same(bio->bi_bdev))
1935 goto not_supported;
58886785 1936 break;
2d253440
ST
1937 case REQ_OP_ZONE_REPORT:
1938 case REQ_OP_ZONE_RESET:
1939 if (!bdev_is_zoned(bio->bi_bdev))
1940 goto not_supported;
288dab8a 1941 break;
a6f0788e
CK
1942 case REQ_OP_WRITE_ZEROES:
1943 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1944 goto not_supported;
1945 break;
288dab8a
CH
1946 default:
1947 break;
5a7bbad2 1948 }
01edede4 1949
7f4b35d1
TH
1950 /*
1951 * Various block parts want %current->io_context and lazy ioc
1952 * allocation ends up trading a lot of pain for a small amount of
1953 * memory. Just allocate it upfront. This may fail and block
1954 * layer knows how to live with it.
1955 */
1956 create_io_context(GFP_ATOMIC, q->node);
1957
ae118896
TH
1958 if (!blkcg_bio_issue_check(q, bio))
1959 return false;
27a84d54 1960
fbbaf700
N
1961 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1962 trace_block_bio_queue(q, bio);
1963 /* Now that enqueuing has been traced, we need to trace
1964 * completion as well.
1965 */
1966 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1967 }
27a84d54 1968 return true;
a7384677 1969
288dab8a
CH
1970not_supported:
1971 err = -EOPNOTSUPP;
a7384677 1972end_io:
4246a0b6
CH
1973 bio->bi_error = err;
1974 bio_endio(bio);
27a84d54 1975 return false;
1da177e4
LT
1976}
1977
27a84d54
CH
1978/**
1979 * generic_make_request - hand a buffer to its device driver for I/O
1980 * @bio: The bio describing the location in memory and on the device.
1981 *
1982 * generic_make_request() is used to make I/O requests of block
1983 * devices. It is passed a &struct bio, which describes the I/O that needs
1984 * to be done.
1985 *
1986 * generic_make_request() does not return any status. The
1987 * success/failure status of the request, along with notification of
1988 * completion, is delivered asynchronously through the bio->bi_end_io
1989 * function described (one day) else where.
1990 *
1991 * The caller of generic_make_request must make sure that bi_io_vec
1992 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1993 * set to describe the device address, and the
1994 * bi_end_io and optionally bi_private are set to describe how
1995 * completion notification should be signaled.
1996 *
1997 * generic_make_request and the drivers it calls may use bi_next if this
1998 * bio happens to be merged with someone else, and may resubmit the bio to
1999 * a lower device by calling into generic_make_request recursively, which
2000 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2001 */
dece1635 2002blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2003{
f5fe1b51
N
2004 /*
2005 * bio_list_on_stack[0] contains bios submitted by the current
2006 * make_request_fn.
2007 * bio_list_on_stack[1] contains bios that were submitted before
2008 * the current make_request_fn, but that haven't been processed
2009 * yet.
2010 */
2011 struct bio_list bio_list_on_stack[2];
dece1635 2012 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2013
27a84d54 2014 if (!generic_make_request_checks(bio))
dece1635 2015 goto out;
27a84d54
CH
2016
2017 /*
2018 * We only want one ->make_request_fn to be active at a time, else
2019 * stack usage with stacked devices could be a problem. So use
2020 * current->bio_list to keep a list of requests submited by a
2021 * make_request_fn function. current->bio_list is also used as a
2022 * flag to say if generic_make_request is currently active in this
2023 * task or not. If it is NULL, then no make_request is active. If
2024 * it is non-NULL, then a make_request is active, and new requests
2025 * should be added at the tail
2026 */
bddd87c7 2027 if (current->bio_list) {
f5fe1b51 2028 bio_list_add(&current->bio_list[0], bio);
dece1635 2029 goto out;
d89d8796 2030 }
27a84d54 2031
d89d8796
NB
2032 /* following loop may be a bit non-obvious, and so deserves some
2033 * explanation.
2034 * Before entering the loop, bio->bi_next is NULL (as all callers
2035 * ensure that) so we have a list with a single bio.
2036 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2037 * we assign bio_list to a pointer to the bio_list_on_stack,
2038 * thus initialising the bio_list of new bios to be
27a84d54 2039 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2040 * through a recursive call to generic_make_request. If it
2041 * did, we find a non-NULL value in bio_list and re-enter the loop
2042 * from the top. In this case we really did just take the bio
bddd87c7 2043 * of the top of the list (no pretending) and so remove it from
27a84d54 2044 * bio_list, and call into ->make_request() again.
d89d8796
NB
2045 */
2046 BUG_ON(bio->bi_next);
f5fe1b51
N
2047 bio_list_init(&bio_list_on_stack[0]);
2048 current->bio_list = bio_list_on_stack;
d89d8796 2049 do {
27a84d54
CH
2050 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2051
6f3b0e8b 2052 if (likely(blk_queue_enter(q, false) == 0)) {
79bd9959
N
2053 struct bio_list lower, same;
2054
2055 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2056 bio_list_on_stack[1] = bio_list_on_stack[0];
2057 bio_list_init(&bio_list_on_stack[0]);
dece1635 2058 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2059
2060 blk_queue_exit(q);
27a84d54 2061
79bd9959
N
2062 /* sort new bios into those for a lower level
2063 * and those for the same level
2064 */
2065 bio_list_init(&lower);
2066 bio_list_init(&same);
f5fe1b51 2067 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
79bd9959
N
2068 if (q == bdev_get_queue(bio->bi_bdev))
2069 bio_list_add(&same, bio);
2070 else
2071 bio_list_add(&lower, bio);
2072 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2073 bio_list_merge(&bio_list_on_stack[0], &lower);
2074 bio_list_merge(&bio_list_on_stack[0], &same);
2075 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2076 } else {
3ef28e83 2077 bio_io_error(bio);
3ef28e83 2078 }
f5fe1b51 2079 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2080 } while (bio);
bddd87c7 2081 current->bio_list = NULL; /* deactivate */
dece1635
JA
2082
2083out:
2084 return ret;
d89d8796 2085}
1da177e4
LT
2086EXPORT_SYMBOL(generic_make_request);
2087
2088/**
710027a4 2089 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2090 * @bio: The &struct bio which describes the I/O
2091 *
2092 * submit_bio() is very similar in purpose to generic_make_request(), and
2093 * uses that function to do most of the work. Both are fairly rough
710027a4 2094 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2095 *
2096 */
4e49ea4a 2097blk_qc_t submit_bio(struct bio *bio)
1da177e4 2098{
bf2de6f5
JA
2099 /*
2100 * If it's a regular read/write or a barrier with data attached,
2101 * go through the normal accounting stuff before submission.
2102 */
e2a60da7 2103 if (bio_has_data(bio)) {
4363ac7c
MP
2104 unsigned int count;
2105
95fe6c1a 2106 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2107 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2108 else
2109 count = bio_sectors(bio);
2110
a8ebb056 2111 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2112 count_vm_events(PGPGOUT, count);
2113 } else {
4f024f37 2114 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2115 count_vm_events(PGPGIN, count);
2116 }
2117
2118 if (unlikely(block_dump)) {
2119 char b[BDEVNAME_SIZE];
8dcbdc74 2120 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2121 current->comm, task_pid_nr(current),
a8ebb056 2122 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2123 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2124 bdevname(bio->bi_bdev, b),
2125 count);
bf2de6f5 2126 }
1da177e4
LT
2127 }
2128
dece1635 2129 return generic_make_request(bio);
1da177e4 2130}
1da177e4
LT
2131EXPORT_SYMBOL(submit_bio);
2132
82124d60 2133/**
bf4e6b4e
HR
2134 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2135 * for new the queue limits
82124d60
KU
2136 * @q: the queue
2137 * @rq: the request being checked
2138 *
2139 * Description:
2140 * @rq may have been made based on weaker limitations of upper-level queues
2141 * in request stacking drivers, and it may violate the limitation of @q.
2142 * Since the block layer and the underlying device driver trust @rq
2143 * after it is inserted to @q, it should be checked against @q before
2144 * the insertion using this generic function.
2145 *
82124d60 2146 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2147 * limits when retrying requests on other queues. Those requests need
2148 * to be checked against the new queue limits again during dispatch.
82124d60 2149 */
bf4e6b4e
HR
2150static int blk_cloned_rq_check_limits(struct request_queue *q,
2151 struct request *rq)
82124d60 2152{
8fe0d473 2153 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2154 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2155 return -EIO;
2156 }
2157
2158 /*
2159 * queue's settings related to segment counting like q->bounce_pfn
2160 * may differ from that of other stacking queues.
2161 * Recalculate it to check the request correctly on this queue's
2162 * limitation.
2163 */
2164 blk_recalc_rq_segments(rq);
8a78362c 2165 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2166 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2167 return -EIO;
2168 }
2169
2170 return 0;
2171}
82124d60
KU
2172
2173/**
2174 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2175 * @q: the queue to submit the request
2176 * @rq: the request being queued
2177 */
2178int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2179{
2180 unsigned long flags;
4853abaa 2181 int where = ELEVATOR_INSERT_BACK;
82124d60 2182
bf4e6b4e 2183 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2184 return -EIO;
2185
b2c9cd37
AM
2186 if (rq->rq_disk &&
2187 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2188 return -EIO;
82124d60 2189
7fb4898e
KB
2190 if (q->mq_ops) {
2191 if (blk_queue_io_stat(q))
2192 blk_account_io_start(rq, true);
bd6737f1 2193 blk_mq_sched_insert_request(rq, false, true, false, false);
7fb4898e
KB
2194 return 0;
2195 }
2196
82124d60 2197 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2198 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2199 spin_unlock_irqrestore(q->queue_lock, flags);
2200 return -ENODEV;
2201 }
82124d60
KU
2202
2203 /*
2204 * Submitting request must be dequeued before calling this function
2205 * because it will be linked to another request_queue
2206 */
2207 BUG_ON(blk_queued_rq(rq));
2208
f73f44eb 2209 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2210 where = ELEVATOR_INSERT_FLUSH;
2211
2212 add_acct_request(q, rq, where);
e67b77c7
JM
2213 if (where == ELEVATOR_INSERT_FLUSH)
2214 __blk_run_queue(q);
82124d60
KU
2215 spin_unlock_irqrestore(q->queue_lock, flags);
2216
2217 return 0;
2218}
2219EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2220
80a761fd
TH
2221/**
2222 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2223 * @rq: request to examine
2224 *
2225 * Description:
2226 * A request could be merge of IOs which require different failure
2227 * handling. This function determines the number of bytes which
2228 * can be failed from the beginning of the request without
2229 * crossing into area which need to be retried further.
2230 *
2231 * Return:
2232 * The number of bytes to fail.
2233 *
2234 * Context:
2235 * queue_lock must be held.
2236 */
2237unsigned int blk_rq_err_bytes(const struct request *rq)
2238{
2239 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2240 unsigned int bytes = 0;
2241 struct bio *bio;
2242
e8064021 2243 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2244 return blk_rq_bytes(rq);
2245
2246 /*
2247 * Currently the only 'mixing' which can happen is between
2248 * different fastfail types. We can safely fail portions
2249 * which have all the failfast bits that the first one has -
2250 * the ones which are at least as eager to fail as the first
2251 * one.
2252 */
2253 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2254 if ((bio->bi_opf & ff) != ff)
80a761fd 2255 break;
4f024f37 2256 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2257 }
2258
2259 /* this could lead to infinite loop */
2260 BUG_ON(blk_rq_bytes(rq) && !bytes);
2261 return bytes;
2262}
2263EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2264
320ae51f 2265void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2266{
c2553b58 2267 if (blk_do_io_stat(req)) {
bc58ba94
JA
2268 const int rw = rq_data_dir(req);
2269 struct hd_struct *part;
2270 int cpu;
2271
2272 cpu = part_stat_lock();
09e099d4 2273 part = req->part;
bc58ba94
JA
2274 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2275 part_stat_unlock();
2276 }
2277}
2278
320ae51f 2279void blk_account_io_done(struct request *req)
bc58ba94 2280{
bc58ba94 2281 /*
dd4c133f
TH
2282 * Account IO completion. flush_rq isn't accounted as a
2283 * normal IO on queueing nor completion. Accounting the
2284 * containing request is enough.
bc58ba94 2285 */
e8064021 2286 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2287 unsigned long duration = jiffies - req->start_time;
2288 const int rw = rq_data_dir(req);
2289 struct hd_struct *part;
2290 int cpu;
2291
2292 cpu = part_stat_lock();
09e099d4 2293 part = req->part;
bc58ba94
JA
2294
2295 part_stat_inc(cpu, part, ios[rw]);
2296 part_stat_add(cpu, part, ticks[rw], duration);
2297 part_round_stats(cpu, part);
316d315b 2298 part_dec_in_flight(part, rw);
bc58ba94 2299
6c23a968 2300 hd_struct_put(part);
bc58ba94
JA
2301 part_stat_unlock();
2302 }
2303}
2304
47fafbc7 2305#ifdef CONFIG_PM
c8158819
LM
2306/*
2307 * Don't process normal requests when queue is suspended
2308 * or in the process of suspending/resuming
2309 */
2310static struct request *blk_pm_peek_request(struct request_queue *q,
2311 struct request *rq)
2312{
2313 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2314 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2315 return NULL;
2316 else
2317 return rq;
2318}
2319#else
2320static inline struct request *blk_pm_peek_request(struct request_queue *q,
2321 struct request *rq)
2322{
2323 return rq;
2324}
2325#endif
2326
320ae51f
JA
2327void blk_account_io_start(struct request *rq, bool new_io)
2328{
2329 struct hd_struct *part;
2330 int rw = rq_data_dir(rq);
2331 int cpu;
2332
2333 if (!blk_do_io_stat(rq))
2334 return;
2335
2336 cpu = part_stat_lock();
2337
2338 if (!new_io) {
2339 part = rq->part;
2340 part_stat_inc(cpu, part, merges[rw]);
2341 } else {
2342 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2343 if (!hd_struct_try_get(part)) {
2344 /*
2345 * The partition is already being removed,
2346 * the request will be accounted on the disk only
2347 *
2348 * We take a reference on disk->part0 although that
2349 * partition will never be deleted, so we can treat
2350 * it as any other partition.
2351 */
2352 part = &rq->rq_disk->part0;
2353 hd_struct_get(part);
2354 }
2355 part_round_stats(cpu, part);
2356 part_inc_in_flight(part, rw);
2357 rq->part = part;
2358 }
2359
2360 part_stat_unlock();
2361}
2362
3bcddeac 2363/**
9934c8c0
TH
2364 * blk_peek_request - peek at the top of a request queue
2365 * @q: request queue to peek at
2366 *
2367 * Description:
2368 * Return the request at the top of @q. The returned request
2369 * should be started using blk_start_request() before LLD starts
2370 * processing it.
2371 *
2372 * Return:
2373 * Pointer to the request at the top of @q if available. Null
2374 * otherwise.
2375 *
2376 * Context:
2377 * queue_lock must be held.
2378 */
2379struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2380{
2381 struct request *rq;
2382 int ret;
2383
2384 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2385
2386 rq = blk_pm_peek_request(q, rq);
2387 if (!rq)
2388 break;
2389
e8064021 2390 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2391 /*
2392 * This is the first time the device driver
2393 * sees this request (possibly after
2394 * requeueing). Notify IO scheduler.
2395 */
e8064021 2396 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2397 elv_activate_rq(q, rq);
2398
2399 /*
2400 * just mark as started even if we don't start
2401 * it, a request that has been delayed should
2402 * not be passed by new incoming requests
2403 */
e8064021 2404 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2405 trace_block_rq_issue(q, rq);
2406 }
2407
2408 if (!q->boundary_rq || q->boundary_rq == rq) {
2409 q->end_sector = rq_end_sector(rq);
2410 q->boundary_rq = NULL;
2411 }
2412
e8064021 2413 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2414 break;
2415
2e46e8b2 2416 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2417 /*
2418 * make sure space for the drain appears we
2419 * know we can do this because max_hw_segments
2420 * has been adjusted to be one fewer than the
2421 * device can handle
2422 */
2423 rq->nr_phys_segments++;
2424 }
2425
2426 if (!q->prep_rq_fn)
2427 break;
2428
2429 ret = q->prep_rq_fn(q, rq);
2430 if (ret == BLKPREP_OK) {
2431 break;
2432 } else if (ret == BLKPREP_DEFER) {
2433 /*
2434 * the request may have been (partially) prepped.
2435 * we need to keep this request in the front to
e8064021 2436 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2437 * prevent other fs requests from passing this one.
2438 */
2e46e8b2 2439 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2440 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2441 /*
2442 * remove the space for the drain we added
2443 * so that we don't add it again
2444 */
2445 --rq->nr_phys_segments;
2446 }
2447
2448 rq = NULL;
2449 break;
0fb5b1fb
MP
2450 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2451 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2452
e8064021 2453 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2454 /*
2455 * Mark this request as started so we don't trigger
2456 * any debug logic in the end I/O path.
2457 */
2458 blk_start_request(rq);
0fb5b1fb 2459 __blk_end_request_all(rq, err);
158dbda0
TH
2460 } else {
2461 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2462 break;
2463 }
2464 }
2465
2466 return rq;
2467}
9934c8c0 2468EXPORT_SYMBOL(blk_peek_request);
158dbda0 2469
9934c8c0 2470void blk_dequeue_request(struct request *rq)
158dbda0 2471{
9934c8c0
TH
2472 struct request_queue *q = rq->q;
2473
158dbda0
TH
2474 BUG_ON(list_empty(&rq->queuelist));
2475 BUG_ON(ELV_ON_HASH(rq));
2476
2477 list_del_init(&rq->queuelist);
2478
2479 /*
2480 * the time frame between a request being removed from the lists
2481 * and to it is freed is accounted as io that is in progress at
2482 * the driver side.
2483 */
9195291e 2484 if (blk_account_rq(rq)) {
0a7ae2ff 2485 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2486 set_io_start_time_ns(rq);
2487 }
158dbda0
TH
2488}
2489
9934c8c0
TH
2490/**
2491 * blk_start_request - start request processing on the driver
2492 * @req: request to dequeue
2493 *
2494 * Description:
2495 * Dequeue @req and start timeout timer on it. This hands off the
2496 * request to the driver.
2497 *
2498 * Block internal functions which don't want to start timer should
2499 * call blk_dequeue_request().
2500 *
2501 * Context:
2502 * queue_lock must be held.
2503 */
2504void blk_start_request(struct request *req)
2505{
2506 blk_dequeue_request(req);
2507
cf43e6be 2508 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2509 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2510 req->rq_flags |= RQF_STATS;
87760e5e 2511 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2512 }
2513
4912aa6c 2514 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2515 blk_add_timer(req);
2516}
2517EXPORT_SYMBOL(blk_start_request);
2518
2519/**
2520 * blk_fetch_request - fetch a request from a request queue
2521 * @q: request queue to fetch a request from
2522 *
2523 * Description:
2524 * Return the request at the top of @q. The request is started on
2525 * return and LLD can start processing it immediately.
2526 *
2527 * Return:
2528 * Pointer to the request at the top of @q if available. Null
2529 * otherwise.
2530 *
2531 * Context:
2532 * queue_lock must be held.
2533 */
2534struct request *blk_fetch_request(struct request_queue *q)
2535{
2536 struct request *rq;
2537
2538 rq = blk_peek_request(q);
2539 if (rq)
2540 blk_start_request(rq);
2541 return rq;
2542}
2543EXPORT_SYMBOL(blk_fetch_request);
2544
3bcddeac 2545/**
2e60e022 2546 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2547 * @req: the request being processed
710027a4 2548 * @error: %0 for success, < %0 for error
8ebf9756 2549 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2550 *
2551 * Description:
8ebf9756
RD
2552 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2553 * the request structure even if @req doesn't have leftover.
2554 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2555 *
2556 * This special helper function is only for request stacking drivers
2557 * (e.g. request-based dm) so that they can handle partial completion.
2558 * Actual device drivers should use blk_end_request instead.
2559 *
2560 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2561 * %false return from this function.
3bcddeac
KU
2562 *
2563 * Return:
2e60e022
TH
2564 * %false - this request doesn't have any more data
2565 * %true - this request has more data
3bcddeac 2566 **/
2e60e022 2567bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2568{
f79ea416 2569 int total_bytes;
1da177e4 2570
4a0efdc9
HR
2571 trace_block_rq_complete(req->q, req, nr_bytes);
2572
2e60e022
TH
2573 if (!req->bio)
2574 return false;
2575
1da177e4 2576 /*
6f41469c
TH
2577 * For fs requests, rq is just carrier of independent bio's
2578 * and each partial completion should be handled separately.
2579 * Reset per-request error on each partial completion.
2580 *
2581 * TODO: tj: This is too subtle. It would be better to let
2582 * low level drivers do what they see fit.
1da177e4 2583 */
57292b58 2584 if (!blk_rq_is_passthrough(req))
1da177e4
LT
2585 req->errors = 0;
2586
57292b58 2587 if (error && !blk_rq_is_passthrough(req) &&
e8064021 2588 !(req->rq_flags & RQF_QUIET)) {
79775567
HR
2589 char *error_type;
2590
2591 switch (error) {
2592 case -ENOLINK:
2593 error_type = "recoverable transport";
2594 break;
2595 case -EREMOTEIO:
2596 error_type = "critical target";
2597 break;
2598 case -EBADE:
2599 error_type = "critical nexus";
2600 break;
d1ffc1f8
HR
2601 case -ETIMEDOUT:
2602 error_type = "timeout";
2603 break;
a9d6ceb8
HR
2604 case -ENOSPC:
2605 error_type = "critical space allocation";
2606 break;
7e782af5
HR
2607 case -ENODATA:
2608 error_type = "critical medium";
2609 break;
79775567
HR
2610 case -EIO:
2611 default:
2612 error_type = "I/O";
2613 break;
2614 }
ef3ecb66
RE
2615 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2616 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2617 req->rq_disk->disk_name : "?",
2618 (unsigned long long)blk_rq_pos(req));
2619
1da177e4
LT
2620 }
2621
bc58ba94 2622 blk_account_io_completion(req, nr_bytes);
d72d904a 2623
f79ea416
KO
2624 total_bytes = 0;
2625 while (req->bio) {
2626 struct bio *bio = req->bio;
4f024f37 2627 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2628
4f024f37 2629 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2630 req->bio = bio->bi_next;
1da177e4 2631
fbbaf700
N
2632 /* Completion has already been traced */
2633 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2634 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2635
f79ea416
KO
2636 total_bytes += bio_bytes;
2637 nr_bytes -= bio_bytes;
1da177e4 2638
f79ea416
KO
2639 if (!nr_bytes)
2640 break;
1da177e4
LT
2641 }
2642
2643 /*
2644 * completely done
2645 */
2e60e022
TH
2646 if (!req->bio) {
2647 /*
2648 * Reset counters so that the request stacking driver
2649 * can find how many bytes remain in the request
2650 * later.
2651 */
a2dec7b3 2652 req->__data_len = 0;
2e60e022
TH
2653 return false;
2654 }
1da177e4 2655
f9d03f96
CH
2656 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2657
a2dec7b3 2658 req->__data_len -= total_bytes;
2e46e8b2
TH
2659
2660 /* update sector only for requests with clear definition of sector */
57292b58 2661 if (!blk_rq_is_passthrough(req))
a2dec7b3 2662 req->__sector += total_bytes >> 9;
2e46e8b2 2663
80a761fd 2664 /* mixed attributes always follow the first bio */
e8064021 2665 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2666 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2667 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2668 }
2669
2e46e8b2
TH
2670 /*
2671 * If total number of sectors is less than the first segment
2672 * size, something has gone terribly wrong.
2673 */
2674 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2675 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2676 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2677 }
2678
2679 /* recalculate the number of segments */
1da177e4 2680 blk_recalc_rq_segments(req);
2e46e8b2 2681
2e60e022 2682 return true;
1da177e4 2683}
2e60e022 2684EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2685
2e60e022
TH
2686static bool blk_update_bidi_request(struct request *rq, int error,
2687 unsigned int nr_bytes,
2688 unsigned int bidi_bytes)
5efccd17 2689{
2e60e022
TH
2690 if (blk_update_request(rq, error, nr_bytes))
2691 return true;
5efccd17 2692
2e60e022
TH
2693 /* Bidi request must be completed as a whole */
2694 if (unlikely(blk_bidi_rq(rq)) &&
2695 blk_update_request(rq->next_rq, error, bidi_bytes))
2696 return true;
5efccd17 2697
e2e1a148
JA
2698 if (blk_queue_add_random(rq->q))
2699 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2700
2701 return false;
1da177e4
LT
2702}
2703
28018c24
JB
2704/**
2705 * blk_unprep_request - unprepare a request
2706 * @req: the request
2707 *
2708 * This function makes a request ready for complete resubmission (or
2709 * completion). It happens only after all error handling is complete,
2710 * so represents the appropriate moment to deallocate any resources
2711 * that were allocated to the request in the prep_rq_fn. The queue
2712 * lock is held when calling this.
2713 */
2714void blk_unprep_request(struct request *req)
2715{
2716 struct request_queue *q = req->q;
2717
e8064021 2718 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2719 if (q->unprep_rq_fn)
2720 q->unprep_rq_fn(q, req);
2721}
2722EXPORT_SYMBOL_GPL(blk_unprep_request);
2723
1da177e4
LT
2724/*
2725 * queue lock must be held
2726 */
12120077 2727void blk_finish_request(struct request *req, int error)
1da177e4 2728{
cf43e6be
JA
2729 struct request_queue *q = req->q;
2730
2731 if (req->rq_flags & RQF_STATS)
34dbad5d 2732 blk_stat_add(req);
cf43e6be 2733
e8064021 2734 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2735 blk_queue_end_tag(q, req);
b8286239 2736
ba396a6c 2737 BUG_ON(blk_queued_rq(req));
1da177e4 2738
57292b58 2739 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2740 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2741
e78042e5
MA
2742 blk_delete_timer(req);
2743
e8064021 2744 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2745 blk_unprep_request(req);
2746
bc58ba94 2747 blk_account_io_done(req);
b8286239 2748
87760e5e
JA
2749 if (req->end_io) {
2750 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2751 req->end_io(req, error);
87760e5e 2752 } else {
b8286239
KU
2753 if (blk_bidi_rq(req))
2754 __blk_put_request(req->next_rq->q, req->next_rq);
2755
cf43e6be 2756 __blk_put_request(q, req);
b8286239 2757 }
1da177e4 2758}
12120077 2759EXPORT_SYMBOL(blk_finish_request);
1da177e4 2760
3b11313a 2761/**
2e60e022
TH
2762 * blk_end_bidi_request - Complete a bidi request
2763 * @rq: the request to complete
2764 * @error: %0 for success, < %0 for error
2765 * @nr_bytes: number of bytes to complete @rq
2766 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2767 *
2768 * Description:
e3a04fe3 2769 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2770 * Drivers that supports bidi can safely call this member for any
2771 * type of request, bidi or uni. In the later case @bidi_bytes is
2772 * just ignored.
336cdb40
KU
2773 *
2774 * Return:
2e60e022
TH
2775 * %false - we are done with this request
2776 * %true - still buffers pending for this request
a0cd1285 2777 **/
b1f74493 2778static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2779 unsigned int nr_bytes, unsigned int bidi_bytes)
2780{
336cdb40 2781 struct request_queue *q = rq->q;
2e60e022 2782 unsigned long flags;
32fab448 2783
2e60e022
TH
2784 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2785 return true;
32fab448 2786
336cdb40 2787 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2788 blk_finish_request(rq, error);
336cdb40
KU
2789 spin_unlock_irqrestore(q->queue_lock, flags);
2790
2e60e022 2791 return false;
32fab448
KU
2792}
2793
336cdb40 2794/**
2e60e022
TH
2795 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2796 * @rq: the request to complete
710027a4 2797 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2798 * @nr_bytes: number of bytes to complete @rq
2799 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2800 *
2801 * Description:
2e60e022
TH
2802 * Identical to blk_end_bidi_request() except that queue lock is
2803 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2804 *
2805 * Return:
2e60e022
TH
2806 * %false - we are done with this request
2807 * %true - still buffers pending for this request
336cdb40 2808 **/
d0fac025 2809static bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2810 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2811{
2e60e022
TH
2812 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2813 return true;
336cdb40 2814
2e60e022 2815 blk_finish_request(rq, error);
336cdb40 2816
2e60e022 2817 return false;
336cdb40 2818}
e19a3ab0
KU
2819
2820/**
2821 * blk_end_request - Helper function for drivers to complete the request.
2822 * @rq: the request being processed
710027a4 2823 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2824 * @nr_bytes: number of bytes to complete
2825 *
2826 * Description:
2827 * Ends I/O on a number of bytes attached to @rq.
2828 * If @rq has leftover, sets it up for the next range of segments.
2829 *
2830 * Return:
b1f74493
FT
2831 * %false - we are done with this request
2832 * %true - still buffers pending for this request
e19a3ab0 2833 **/
b1f74493 2834bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2835{
b1f74493 2836 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2837}
56ad1740 2838EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2839
2840/**
b1f74493
FT
2841 * blk_end_request_all - Helper function for drives to finish the request.
2842 * @rq: the request to finish
8ebf9756 2843 * @error: %0 for success, < %0 for error
336cdb40
KU
2844 *
2845 * Description:
b1f74493
FT
2846 * Completely finish @rq.
2847 */
2848void blk_end_request_all(struct request *rq, int error)
336cdb40 2849{
b1f74493
FT
2850 bool pending;
2851 unsigned int bidi_bytes = 0;
336cdb40 2852
b1f74493
FT
2853 if (unlikely(blk_bidi_rq(rq)))
2854 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2855
b1f74493
FT
2856 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2857 BUG_ON(pending);
2858}
56ad1740 2859EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2860
e3a04fe3 2861/**
b1f74493
FT
2862 * __blk_end_request - Helper function for drivers to complete the request.
2863 * @rq: the request being processed
2864 * @error: %0 for success, < %0 for error
2865 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2866 *
2867 * Description:
b1f74493 2868 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2869 *
2870 * Return:
b1f74493
FT
2871 * %false - we are done with this request
2872 * %true - still buffers pending for this request
e3a04fe3 2873 **/
b1f74493 2874bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2875{
b1f74493 2876 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2877}
56ad1740 2878EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2879
32fab448 2880/**
b1f74493
FT
2881 * __blk_end_request_all - Helper function for drives to finish the request.
2882 * @rq: the request to finish
8ebf9756 2883 * @error: %0 for success, < %0 for error
32fab448
KU
2884 *
2885 * Description:
b1f74493 2886 * Completely finish @rq. Must be called with queue lock held.
32fab448 2887 */
b1f74493 2888void __blk_end_request_all(struct request *rq, int error)
32fab448 2889{
b1f74493
FT
2890 bool pending;
2891 unsigned int bidi_bytes = 0;
2892
2893 if (unlikely(blk_bidi_rq(rq)))
2894 bidi_bytes = blk_rq_bytes(rq->next_rq);
2895
2896 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2897 BUG_ON(pending);
32fab448 2898}
56ad1740 2899EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2900
e19a3ab0 2901/**
b1f74493
FT
2902 * __blk_end_request_cur - Helper function to finish the current request chunk.
2903 * @rq: the request to finish the current chunk for
8ebf9756 2904 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2905 *
2906 * Description:
b1f74493
FT
2907 * Complete the current consecutively mapped chunk from @rq. Must
2908 * be called with queue lock held.
e19a3ab0
KU
2909 *
2910 * Return:
b1f74493
FT
2911 * %false - we are done with this request
2912 * %true - still buffers pending for this request
2913 */
2914bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2915{
b1f74493 2916 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2917}
56ad1740 2918EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2919
86db1e29
JA
2920void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2921 struct bio *bio)
1da177e4 2922{
b4f42e28 2923 if (bio_has_data(bio))
fb2dce86 2924 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2925
4f024f37 2926 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2927 rq->bio = rq->biotail = bio;
1da177e4 2928
66846572
N
2929 if (bio->bi_bdev)
2930 rq->rq_disk = bio->bi_bdev->bd_disk;
2931}
1da177e4 2932
2d4dc890
IL
2933#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2934/**
2935 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2936 * @rq: the request to be flushed
2937 *
2938 * Description:
2939 * Flush all pages in @rq.
2940 */
2941void rq_flush_dcache_pages(struct request *rq)
2942{
2943 struct req_iterator iter;
7988613b 2944 struct bio_vec bvec;
2d4dc890
IL
2945
2946 rq_for_each_segment(bvec, rq, iter)
7988613b 2947 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2948}
2949EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2950#endif
2951
ef9e3fac
KU
2952/**
2953 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2954 * @q : the queue of the device being checked
2955 *
2956 * Description:
2957 * Check if underlying low-level drivers of a device are busy.
2958 * If the drivers want to export their busy state, they must set own
2959 * exporting function using blk_queue_lld_busy() first.
2960 *
2961 * Basically, this function is used only by request stacking drivers
2962 * to stop dispatching requests to underlying devices when underlying
2963 * devices are busy. This behavior helps more I/O merging on the queue
2964 * of the request stacking driver and prevents I/O throughput regression
2965 * on burst I/O load.
2966 *
2967 * Return:
2968 * 0 - Not busy (The request stacking driver should dispatch request)
2969 * 1 - Busy (The request stacking driver should stop dispatching request)
2970 */
2971int blk_lld_busy(struct request_queue *q)
2972{
2973 if (q->lld_busy_fn)
2974 return q->lld_busy_fn(q);
2975
2976 return 0;
2977}
2978EXPORT_SYMBOL_GPL(blk_lld_busy);
2979
78d8e58a
MS
2980/**
2981 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2982 * @rq: the clone request to be cleaned up
2983 *
2984 * Description:
2985 * Free all bios in @rq for a cloned request.
2986 */
2987void blk_rq_unprep_clone(struct request *rq)
2988{
2989 struct bio *bio;
2990
2991 while ((bio = rq->bio) != NULL) {
2992 rq->bio = bio->bi_next;
2993
2994 bio_put(bio);
2995 }
2996}
2997EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2998
2999/*
3000 * Copy attributes of the original request to the clone request.
3001 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3002 */
3003static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3004{
3005 dst->cpu = src->cpu;
b0fd271d
KU
3006 dst->__sector = blk_rq_pos(src);
3007 dst->__data_len = blk_rq_bytes(src);
3008 dst->nr_phys_segments = src->nr_phys_segments;
3009 dst->ioprio = src->ioprio;
3010 dst->extra_len = src->extra_len;
78d8e58a
MS
3011}
3012
3013/**
3014 * blk_rq_prep_clone - Helper function to setup clone request
3015 * @rq: the request to be setup
3016 * @rq_src: original request to be cloned
3017 * @bs: bio_set that bios for clone are allocated from
3018 * @gfp_mask: memory allocation mask for bio
3019 * @bio_ctr: setup function to be called for each clone bio.
3020 * Returns %0 for success, non %0 for failure.
3021 * @data: private data to be passed to @bio_ctr
3022 *
3023 * Description:
3024 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3025 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3026 * are not copied, and copying such parts is the caller's responsibility.
3027 * Also, pages which the original bios are pointing to are not copied
3028 * and the cloned bios just point same pages.
3029 * So cloned bios must be completed before original bios, which means
3030 * the caller must complete @rq before @rq_src.
3031 */
3032int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3033 struct bio_set *bs, gfp_t gfp_mask,
3034 int (*bio_ctr)(struct bio *, struct bio *, void *),
3035 void *data)
3036{
3037 struct bio *bio, *bio_src;
3038
3039 if (!bs)
3040 bs = fs_bio_set;
3041
3042 __rq_for_each_bio(bio_src, rq_src) {
3043 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3044 if (!bio)
3045 goto free_and_out;
3046
3047 if (bio_ctr && bio_ctr(bio, bio_src, data))
3048 goto free_and_out;
3049
3050 if (rq->bio) {
3051 rq->biotail->bi_next = bio;
3052 rq->biotail = bio;
3053 } else
3054 rq->bio = rq->biotail = bio;
3055 }
3056
3057 __blk_rq_prep_clone(rq, rq_src);
3058
3059 return 0;
3060
3061free_and_out:
3062 if (bio)
3063 bio_put(bio);
3064 blk_rq_unprep_clone(rq);
3065
3066 return -ENOMEM;
b0fd271d
KU
3067}
3068EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3069
59c3d45e 3070int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3071{
3072 return queue_work(kblockd_workqueue, work);
3073}
1da177e4
LT
3074EXPORT_SYMBOL(kblockd_schedule_work);
3075
ee63cfa7
JA
3076int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3077{
3078 return queue_work_on(cpu, kblockd_workqueue, work);
3079}
3080EXPORT_SYMBOL(kblockd_schedule_work_on);
3081
59c3d45e
JA
3082int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3083 unsigned long delay)
e43473b7
VG
3084{
3085 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3086}
3087EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3088
8ab14595
JA
3089int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3090 unsigned long delay)
3091{
3092 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3093}
3094EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3095
75df7136
SJ
3096/**
3097 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3098 * @plug: The &struct blk_plug that needs to be initialized
3099 *
3100 * Description:
3101 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3102 * pending I/O should the task end up blocking between blk_start_plug() and
3103 * blk_finish_plug(). This is important from a performance perspective, but
3104 * also ensures that we don't deadlock. For instance, if the task is blocking
3105 * for a memory allocation, memory reclaim could end up wanting to free a
3106 * page belonging to that request that is currently residing in our private
3107 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3108 * this kind of deadlock.
3109 */
73c10101
JA
3110void blk_start_plug(struct blk_plug *plug)
3111{
3112 struct task_struct *tsk = current;
3113
dd6cf3e1
SL
3114 /*
3115 * If this is a nested plug, don't actually assign it.
3116 */
3117 if (tsk->plug)
3118 return;
3119
73c10101 3120 INIT_LIST_HEAD(&plug->list);
320ae51f 3121 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3122 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3123 /*
dd6cf3e1
SL
3124 * Store ordering should not be needed here, since a potential
3125 * preempt will imply a full memory barrier
73c10101 3126 */
dd6cf3e1 3127 tsk->plug = plug;
73c10101
JA
3128}
3129EXPORT_SYMBOL(blk_start_plug);
3130
3131static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3132{
3133 struct request *rqa = container_of(a, struct request, queuelist);
3134 struct request *rqb = container_of(b, struct request, queuelist);
3135
975927b9
JM
3136 return !(rqa->q < rqb->q ||
3137 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3138}
3139
49cac01e
JA
3140/*
3141 * If 'from_schedule' is true, then postpone the dispatch of requests
3142 * until a safe kblockd context. We due this to avoid accidental big
3143 * additional stack usage in driver dispatch, in places where the originally
3144 * plugger did not intend it.
3145 */
f6603783 3146static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3147 bool from_schedule)
99e22598 3148 __releases(q->queue_lock)
94b5eb28 3149{
49cac01e 3150 trace_block_unplug(q, depth, !from_schedule);
99e22598 3151
70460571 3152 if (from_schedule)
24ecfbe2 3153 blk_run_queue_async(q);
70460571 3154 else
24ecfbe2 3155 __blk_run_queue(q);
70460571 3156 spin_unlock(q->queue_lock);
94b5eb28
JA
3157}
3158
74018dc3 3159static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3160{
3161 LIST_HEAD(callbacks);
3162
2a7d5559
SL
3163 while (!list_empty(&plug->cb_list)) {
3164 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3165
2a7d5559
SL
3166 while (!list_empty(&callbacks)) {
3167 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3168 struct blk_plug_cb,
3169 list);
2a7d5559 3170 list_del(&cb->list);
74018dc3 3171 cb->callback(cb, from_schedule);
2a7d5559 3172 }
048c9374
N
3173 }
3174}
3175
9cbb1750
N
3176struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3177 int size)
3178{
3179 struct blk_plug *plug = current->plug;
3180 struct blk_plug_cb *cb;
3181
3182 if (!plug)
3183 return NULL;
3184
3185 list_for_each_entry(cb, &plug->cb_list, list)
3186 if (cb->callback == unplug && cb->data == data)
3187 return cb;
3188
3189 /* Not currently on the callback list */
3190 BUG_ON(size < sizeof(*cb));
3191 cb = kzalloc(size, GFP_ATOMIC);
3192 if (cb) {
3193 cb->data = data;
3194 cb->callback = unplug;
3195 list_add(&cb->list, &plug->cb_list);
3196 }
3197 return cb;
3198}
3199EXPORT_SYMBOL(blk_check_plugged);
3200
49cac01e 3201void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3202{
3203 struct request_queue *q;
3204 unsigned long flags;
3205 struct request *rq;
109b8129 3206 LIST_HEAD(list);
94b5eb28 3207 unsigned int depth;
73c10101 3208
74018dc3 3209 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3210
3211 if (!list_empty(&plug->mq_list))
3212 blk_mq_flush_plug_list(plug, from_schedule);
3213
73c10101
JA
3214 if (list_empty(&plug->list))
3215 return;
3216
109b8129
N
3217 list_splice_init(&plug->list, &list);
3218
422765c2 3219 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3220
3221 q = NULL;
94b5eb28 3222 depth = 0;
18811272
JA
3223
3224 /*
3225 * Save and disable interrupts here, to avoid doing it for every
3226 * queue lock we have to take.
3227 */
73c10101 3228 local_irq_save(flags);
109b8129
N
3229 while (!list_empty(&list)) {
3230 rq = list_entry_rq(list.next);
73c10101 3231 list_del_init(&rq->queuelist);
73c10101
JA
3232 BUG_ON(!rq->q);
3233 if (rq->q != q) {
99e22598
JA
3234 /*
3235 * This drops the queue lock
3236 */
3237 if (q)
49cac01e 3238 queue_unplugged(q, depth, from_schedule);
73c10101 3239 q = rq->q;
94b5eb28 3240 depth = 0;
73c10101
JA
3241 spin_lock(q->queue_lock);
3242 }
8ba61435
TH
3243
3244 /*
3245 * Short-circuit if @q is dead
3246 */
3f3299d5 3247 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3248 __blk_end_request_all(rq, -ENODEV);
3249 continue;
3250 }
3251
73c10101
JA
3252 /*
3253 * rq is already accounted, so use raw insert
3254 */
f73f44eb 3255 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3256 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3257 else
3258 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3259
3260 depth++;
73c10101
JA
3261 }
3262
99e22598
JA
3263 /*
3264 * This drops the queue lock
3265 */
3266 if (q)
49cac01e 3267 queue_unplugged(q, depth, from_schedule);
73c10101 3268
73c10101
JA
3269 local_irq_restore(flags);
3270}
73c10101
JA
3271
3272void blk_finish_plug(struct blk_plug *plug)
3273{
dd6cf3e1
SL
3274 if (plug != current->plug)
3275 return;
f6603783 3276 blk_flush_plug_list(plug, false);
73c10101 3277
dd6cf3e1 3278 current->plug = NULL;
73c10101 3279}
88b996cd 3280EXPORT_SYMBOL(blk_finish_plug);
73c10101 3281
47fafbc7 3282#ifdef CONFIG_PM
6c954667
LM
3283/**
3284 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3285 * @q: the queue of the device
3286 * @dev: the device the queue belongs to
3287 *
3288 * Description:
3289 * Initialize runtime-PM-related fields for @q and start auto suspend for
3290 * @dev. Drivers that want to take advantage of request-based runtime PM
3291 * should call this function after @dev has been initialized, and its
3292 * request queue @q has been allocated, and runtime PM for it can not happen
3293 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3294 * cases, driver should call this function before any I/O has taken place.
3295 *
3296 * This function takes care of setting up using auto suspend for the device,
3297 * the autosuspend delay is set to -1 to make runtime suspend impossible
3298 * until an updated value is either set by user or by driver. Drivers do
3299 * not need to touch other autosuspend settings.
3300 *
3301 * The block layer runtime PM is request based, so only works for drivers
3302 * that use request as their IO unit instead of those directly use bio's.
3303 */
3304void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3305{
3306 q->dev = dev;
3307 q->rpm_status = RPM_ACTIVE;
3308 pm_runtime_set_autosuspend_delay(q->dev, -1);
3309 pm_runtime_use_autosuspend(q->dev);
3310}
3311EXPORT_SYMBOL(blk_pm_runtime_init);
3312
3313/**
3314 * blk_pre_runtime_suspend - Pre runtime suspend check
3315 * @q: the queue of the device
3316 *
3317 * Description:
3318 * This function will check if runtime suspend is allowed for the device
3319 * by examining if there are any requests pending in the queue. If there
3320 * are requests pending, the device can not be runtime suspended; otherwise,
3321 * the queue's status will be updated to SUSPENDING and the driver can
3322 * proceed to suspend the device.
3323 *
3324 * For the not allowed case, we mark last busy for the device so that
3325 * runtime PM core will try to autosuspend it some time later.
3326 *
3327 * This function should be called near the start of the device's
3328 * runtime_suspend callback.
3329 *
3330 * Return:
3331 * 0 - OK to runtime suspend the device
3332 * -EBUSY - Device should not be runtime suspended
3333 */
3334int blk_pre_runtime_suspend(struct request_queue *q)
3335{
3336 int ret = 0;
3337
4fd41a85
KX
3338 if (!q->dev)
3339 return ret;
3340
6c954667
LM
3341 spin_lock_irq(q->queue_lock);
3342 if (q->nr_pending) {
3343 ret = -EBUSY;
3344 pm_runtime_mark_last_busy(q->dev);
3345 } else {
3346 q->rpm_status = RPM_SUSPENDING;
3347 }
3348 spin_unlock_irq(q->queue_lock);
3349 return ret;
3350}
3351EXPORT_SYMBOL(blk_pre_runtime_suspend);
3352
3353/**
3354 * blk_post_runtime_suspend - Post runtime suspend processing
3355 * @q: the queue of the device
3356 * @err: return value of the device's runtime_suspend function
3357 *
3358 * Description:
3359 * Update the queue's runtime status according to the return value of the
3360 * device's runtime suspend function and mark last busy for the device so
3361 * that PM core will try to auto suspend the device at a later time.
3362 *
3363 * This function should be called near the end of the device's
3364 * runtime_suspend callback.
3365 */
3366void blk_post_runtime_suspend(struct request_queue *q, int err)
3367{
4fd41a85
KX
3368 if (!q->dev)
3369 return;
3370
6c954667
LM
3371 spin_lock_irq(q->queue_lock);
3372 if (!err) {
3373 q->rpm_status = RPM_SUSPENDED;
3374 } else {
3375 q->rpm_status = RPM_ACTIVE;
3376 pm_runtime_mark_last_busy(q->dev);
3377 }
3378 spin_unlock_irq(q->queue_lock);
3379}
3380EXPORT_SYMBOL(blk_post_runtime_suspend);
3381
3382/**
3383 * blk_pre_runtime_resume - Pre runtime resume processing
3384 * @q: the queue of the device
3385 *
3386 * Description:
3387 * Update the queue's runtime status to RESUMING in preparation for the
3388 * runtime resume of the device.
3389 *
3390 * This function should be called near the start of the device's
3391 * runtime_resume callback.
3392 */
3393void blk_pre_runtime_resume(struct request_queue *q)
3394{
4fd41a85
KX
3395 if (!q->dev)
3396 return;
3397
6c954667
LM
3398 spin_lock_irq(q->queue_lock);
3399 q->rpm_status = RPM_RESUMING;
3400 spin_unlock_irq(q->queue_lock);
3401}
3402EXPORT_SYMBOL(blk_pre_runtime_resume);
3403
3404/**
3405 * blk_post_runtime_resume - Post runtime resume processing
3406 * @q: the queue of the device
3407 * @err: return value of the device's runtime_resume function
3408 *
3409 * Description:
3410 * Update the queue's runtime status according to the return value of the
3411 * device's runtime_resume function. If it is successfully resumed, process
3412 * the requests that are queued into the device's queue when it is resuming
3413 * and then mark last busy and initiate autosuspend for it.
3414 *
3415 * This function should be called near the end of the device's
3416 * runtime_resume callback.
3417 */
3418void blk_post_runtime_resume(struct request_queue *q, int err)
3419{
4fd41a85
KX
3420 if (!q->dev)
3421 return;
3422
6c954667
LM
3423 spin_lock_irq(q->queue_lock);
3424 if (!err) {
3425 q->rpm_status = RPM_ACTIVE;
3426 __blk_run_queue(q);
3427 pm_runtime_mark_last_busy(q->dev);
c60855cd 3428 pm_request_autosuspend(q->dev);
6c954667
LM
3429 } else {
3430 q->rpm_status = RPM_SUSPENDED;
3431 }
3432 spin_unlock_irq(q->queue_lock);
3433}
3434EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3435
3436/**
3437 * blk_set_runtime_active - Force runtime status of the queue to be active
3438 * @q: the queue of the device
3439 *
3440 * If the device is left runtime suspended during system suspend the resume
3441 * hook typically resumes the device and corrects runtime status
3442 * accordingly. However, that does not affect the queue runtime PM status
3443 * which is still "suspended". This prevents processing requests from the
3444 * queue.
3445 *
3446 * This function can be used in driver's resume hook to correct queue
3447 * runtime PM status and re-enable peeking requests from the queue. It
3448 * should be called before first request is added to the queue.
3449 */
3450void blk_set_runtime_active(struct request_queue *q)
3451{
3452 spin_lock_irq(q->queue_lock);
3453 q->rpm_status = RPM_ACTIVE;
3454 pm_runtime_mark_last_busy(q->dev);
3455 pm_request_autosuspend(q->dev);
3456 spin_unlock_irq(q->queue_lock);
3457}
3458EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3459#endif
3460
1da177e4
LT
3461int __init blk_dev_init(void)
3462{
ef295ecf
CH
3463 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3464 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3465 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3466 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3467 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3468
89b90be2
TH
3469 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3470 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3471 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3472 if (!kblockd_workqueue)
3473 panic("Failed to create kblockd\n");
3474
3475 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3476 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3477
c2789bd4 3478 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3479 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3480
18fbda91
OS
3481#ifdef CONFIG_DEBUG_FS
3482 blk_debugfs_root = debugfs_create_dir("block", NULL);
3483#endif
3484
d38ecf93 3485 return 0;
1da177e4 3486}