]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
nvme: make SG_IO support optional
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
1fa6aead 30#include <linux/kthread.h>
b60503ba
MW
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
77bf25ea 35#include <linux/mutex.h>
b60503ba 36#include <linux/pci.h>
be7b6275 37#include <linux/poison.h>
c3bfe717 38#include <linux/ptrace.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
e1e5e564 41#include <linux/t10-pi.h>
b60503ba 42#include <linux/types.h>
2f8e2c87 43#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 44#include <asm/unaligned.h>
797a796a 45
f11bb3e2
CH
46#include "nvme.h"
47
9d43cf64 48#define NVME_Q_DEPTH 1024
d31af0a3 49#define NVME_AQ_DEPTH 256
b60503ba
MW
50#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
adf68f21
CH
52
53/*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57#define NVME_NR_AEN_COMMANDS 1
58#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
9d43cf64 59
21d34711 60unsigned char admin_timeout = 60;
9d43cf64
KB
61module_param(admin_timeout, byte, 0644);
62MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 63
bd67608a
MW
64unsigned char nvme_io_timeout = 30;
65module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 66MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 67
5fd4ce1b 68unsigned char shutdown_timeout = 5;
2484f407
DM
69module_param(shutdown_timeout, byte, 0644);
70MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
71
58ffacb5
MW
72static int use_threaded_interrupts;
73module_param(use_threaded_interrupts, int, 0);
74
8ffaadf7
JD
75static bool use_cmb_sqes = true;
76module_param(use_cmb_sqes, bool, 0644);
77MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
1fa6aead
MW
79static LIST_HEAD(dev_list);
80static struct task_struct *nvme_thread;
9a6b9458 81static struct workqueue_struct *nvme_workq;
b9afca3e 82static wait_queue_head_t nvme_kthread_wait;
1fa6aead 83
1c63dc66
CH
84struct nvme_dev;
85struct nvme_queue;
86
4cc06521 87static int nvme_reset(struct nvme_dev *dev);
a0fa9647 88static void nvme_process_cq(struct nvme_queue *nvmeq);
5c8809e6 89static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
e1569a16 90static void nvme_dev_shutdown(struct nvme_dev *dev);
d4b4ff8e 91
4d115420
KB
92struct async_cmd_info {
93 struct kthread_work work;
94 struct kthread_worker *worker;
4d115420
KB
95 int status;
96 void *ctx;
97};
1fa6aead 98
1c63dc66
CH
99/*
100 * Represents an NVM Express device. Each nvme_dev is a PCI function.
101 */
102struct nvme_dev {
103 struct list_head node;
104 struct nvme_queue **queues;
105 struct blk_mq_tag_set tagset;
106 struct blk_mq_tag_set admin_tagset;
107 u32 __iomem *dbs;
108 struct device *dev;
109 struct dma_pool *prp_page_pool;
110 struct dma_pool *prp_small_pool;
111 unsigned queue_count;
112 unsigned online_queues;
113 unsigned max_qid;
114 int q_depth;
115 u32 db_stride;
1c63dc66
CH
116 struct msix_entry *entry;
117 void __iomem *bar;
1c63dc66 118 struct work_struct reset_work;
1c63dc66 119 struct work_struct scan_work;
5c8809e6 120 struct work_struct remove_work;
77bf25ea 121 struct mutex shutdown_lock;
1c63dc66 122 bool subsystem;
1c63dc66
CH
123 void __iomem *cmb;
124 dma_addr_t cmb_dma_addr;
125 u64 cmb_size;
126 u32 cmbsz;
fd634f41
CH
127 unsigned long flags;
128#define NVME_CTRL_RESETTING 0
1c63dc66
CH
129
130 struct nvme_ctrl ctrl;
131};
132
133static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
134{
135 return container_of(ctrl, struct nvme_dev, ctrl);
136}
137
b60503ba
MW
138/*
139 * An NVM Express queue. Each device has at least two (one for admin
140 * commands and one for I/O commands).
141 */
142struct nvme_queue {
143 struct device *q_dmadev;
091b6092 144 struct nvme_dev *dev;
3193f07b 145 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
146 spinlock_t q_lock;
147 struct nvme_command *sq_cmds;
8ffaadf7 148 struct nvme_command __iomem *sq_cmds_io;
b60503ba 149 volatile struct nvme_completion *cqes;
42483228 150 struct blk_mq_tags **tags;
b60503ba
MW
151 dma_addr_t sq_dma_addr;
152 dma_addr_t cq_dma_addr;
b60503ba
MW
153 u32 __iomem *q_db;
154 u16 q_depth;
6222d172 155 s16 cq_vector;
b60503ba
MW
156 u16 sq_head;
157 u16 sq_tail;
158 u16 cq_head;
c30341dc 159 u16 qid;
e9539f47
MW
160 u8 cq_phase;
161 u8 cqe_seen;
4d115420 162 struct async_cmd_info cmdinfo;
b60503ba
MW
163};
164
71bd150c
CH
165/*
166 * The nvme_iod describes the data in an I/O, including the list of PRP
167 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 168 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
169 * allocated to store the PRP list.
170 */
171struct nvme_iod {
f4800d6d
CH
172 struct nvme_queue *nvmeq;
173 int aborted;
71bd150c 174 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
175 int nents; /* Used in scatterlist */
176 int length; /* Of data, in bytes */
177 dma_addr_t first_dma;
bf684057 178 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
179 struct scatterlist *sg;
180 struct scatterlist inline_sg[0];
71bd150c
CH
181};
182
b60503ba
MW
183/*
184 * Check we didin't inadvertently grow the command struct
185 */
186static inline void _nvme_check_size(void)
187{
188 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
190 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
191 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
192 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 193 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 194 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
195 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
197 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
198 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 199 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
200}
201
ac3dd5bd
JA
202/*
203 * Max size of iod being embedded in the request payload
204 */
205#define NVME_INT_PAGES 2
5fd4ce1b 206#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
207
208/*
209 * Will slightly overestimate the number of pages needed. This is OK
210 * as it only leads to a small amount of wasted memory for the lifetime of
211 * the I/O.
212 */
213static int nvme_npages(unsigned size, struct nvme_dev *dev)
214{
5fd4ce1b
CH
215 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
216 dev->ctrl.page_size);
ac3dd5bd
JA
217 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
218}
219
f4800d6d
CH
220static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
221 unsigned int size, unsigned int nseg)
ac3dd5bd 222{
f4800d6d
CH
223 return sizeof(__le64 *) * nvme_npages(size, dev) +
224 sizeof(struct scatterlist) * nseg;
225}
ac3dd5bd 226
f4800d6d
CH
227static unsigned int nvme_cmd_size(struct nvme_dev *dev)
228{
229 return sizeof(struct nvme_iod) +
230 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
231}
232
a4aea562
MB
233static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
234 unsigned int hctx_idx)
e85248e5 235{
a4aea562
MB
236 struct nvme_dev *dev = data;
237 struct nvme_queue *nvmeq = dev->queues[0];
238
42483228
KB
239 WARN_ON(hctx_idx != 0);
240 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
241 WARN_ON(nvmeq->tags);
242
a4aea562 243 hctx->driver_data = nvmeq;
42483228 244 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 245 return 0;
e85248e5
MW
246}
247
4af0e21c
KB
248static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
249{
250 struct nvme_queue *nvmeq = hctx->driver_data;
251
252 nvmeq->tags = NULL;
253}
254
a4aea562
MB
255static int nvme_admin_init_request(void *data, struct request *req,
256 unsigned int hctx_idx, unsigned int rq_idx,
257 unsigned int numa_node)
22404274 258{
a4aea562 259 struct nvme_dev *dev = data;
f4800d6d 260 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
261 struct nvme_queue *nvmeq = dev->queues[0];
262
263 BUG_ON(!nvmeq);
f4800d6d 264 iod->nvmeq = nvmeq;
a4aea562 265 return 0;
22404274
KB
266}
267
a4aea562
MB
268static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
269 unsigned int hctx_idx)
b60503ba 270{
a4aea562 271 struct nvme_dev *dev = data;
42483228 272 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 273
42483228
KB
274 if (!nvmeq->tags)
275 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 276
42483228 277 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
278 hctx->driver_data = nvmeq;
279 return 0;
b60503ba
MW
280}
281
a4aea562
MB
282static int nvme_init_request(void *data, struct request *req,
283 unsigned int hctx_idx, unsigned int rq_idx,
284 unsigned int numa_node)
b60503ba 285{
a4aea562 286 struct nvme_dev *dev = data;
f4800d6d 287 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
288 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
289
290 BUG_ON(!nvmeq);
f4800d6d 291 iod->nvmeq = nvmeq;
a4aea562
MB
292 return 0;
293}
294
adf68f21
CH
295static void nvme_complete_async_event(struct nvme_dev *dev,
296 struct nvme_completion *cqe)
3c0cf138 297{
adf68f21
CH
298 u16 status = le16_to_cpu(cqe->status) >> 1;
299 u32 result = le32_to_cpu(cqe->result);
a4aea562
MB
300
301 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
adf68f21 302 ++dev->ctrl.event_limit;
a5768aa8
KB
303 if (status != NVME_SC_SUCCESS)
304 return;
305
306 switch (result & 0xff07) {
307 case NVME_AER_NOTICE_NS_CHANGED:
adf68f21
CH
308 dev_info(dev->dev, "rescanning\n");
309 queue_work(nvme_workq, &dev->scan_work);
a5768aa8 310 default:
adf68f21 311 dev_warn(dev->dev, "async event result %08x\n", result);
a5768aa8 312 }
b60503ba
MW
313}
314
b60503ba 315/**
adf68f21 316 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
317 * @nvmeq: The queue to use
318 * @cmd: The command to send
319 *
320 * Safe to use from interrupt context
321 */
e3f879bf
SB
322static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
323 struct nvme_command *cmd)
b60503ba 324{
a4aea562
MB
325 u16 tail = nvmeq->sq_tail;
326
8ffaadf7
JD
327 if (nvmeq->sq_cmds_io)
328 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
329 else
330 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
331
b60503ba
MW
332 if (++tail == nvmeq->q_depth)
333 tail = 0;
7547881d 334 writel(tail, nvmeq->q_db);
b60503ba 335 nvmeq->sq_tail = tail;
b60503ba
MW
336}
337
f4800d6d 338static __le64 **iod_list(struct request *req)
b60503ba 339{
f4800d6d
CH
340 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
341 return (__le64 **)(iod->sg + req->nr_phys_segments);
b60503ba
MW
342}
343
f4800d6d 344static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 345{
f4800d6d
CH
346 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
347 int nseg = rq->nr_phys_segments;
348 unsigned size;
ac3dd5bd 349
f4800d6d
CH
350 if (rq->cmd_flags & REQ_DISCARD)
351 size = sizeof(struct nvme_dsm_range);
352 else
353 size = blk_rq_bytes(rq);
ac3dd5bd 354
f4800d6d
CH
355 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
356 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
357 if (!iod->sg)
358 return BLK_MQ_RQ_QUEUE_BUSY;
359 } else {
360 iod->sg = iod->inline_sg;
ac3dd5bd
JA
361 }
362
f4800d6d
CH
363 iod->aborted = 0;
364 iod->npages = -1;
365 iod->nents = 0;
366 iod->length = size;
367 return 0;
ac3dd5bd
JA
368}
369
f4800d6d 370static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 371{
f4800d6d 372 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 373 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 374 int i;
f4800d6d 375 __le64 **list = iod_list(req);
eca18b23
MW
376 dma_addr_t prp_dma = iod->first_dma;
377
378 if (iod->npages == 0)
379 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
380 for (i = 0; i < iod->npages; i++) {
381 __le64 *prp_list = list[i];
382 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
383 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
384 prp_dma = next_prp_dma;
385 }
ac3dd5bd 386
f4800d6d
CH
387 if (iod->sg != iod->inline_sg)
388 kfree(iod->sg);
b60503ba
MW
389}
390
52b68d7e 391#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
392static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
393{
394 if (be32_to_cpu(pi->ref_tag) == v)
395 pi->ref_tag = cpu_to_be32(p);
396}
397
398static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
399{
400 if (be32_to_cpu(pi->ref_tag) == p)
401 pi->ref_tag = cpu_to_be32(v);
402}
403
404/**
405 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
406 *
407 * The virtual start sector is the one that was originally submitted by the
408 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
409 * start sector may be different. Remap protection information to match the
410 * physical LBA on writes, and back to the original seed on reads.
411 *
412 * Type 0 and 3 do not have a ref tag, so no remapping required.
413 */
414static void nvme_dif_remap(struct request *req,
415 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
416{
417 struct nvme_ns *ns = req->rq_disk->private_data;
418 struct bio_integrity_payload *bip;
419 struct t10_pi_tuple *pi;
420 void *p, *pmap;
421 u32 i, nlb, ts, phys, virt;
422
423 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
424 return;
425
426 bip = bio_integrity(req->bio);
427 if (!bip)
428 return;
429
430 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
431
432 p = pmap;
433 virt = bip_get_seed(bip);
434 phys = nvme_block_nr(ns, blk_rq_pos(req));
435 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 436 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
437
438 for (i = 0; i < nlb; i++, virt++, phys++) {
439 pi = (struct t10_pi_tuple *)p;
440 dif_swap(phys, virt, pi);
441 p += ts;
442 }
443 kunmap_atomic(pmap);
444}
52b68d7e
KB
445#else /* CONFIG_BLK_DEV_INTEGRITY */
446static void nvme_dif_remap(struct request *req,
447 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
448{
449}
450static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
451{
452}
453static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
454{
455}
52b68d7e
KB
456#endif
457
f4800d6d 458static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
69d2b571 459 int total_len)
ff22b54f 460{
f4800d6d 461 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 462 struct dma_pool *pool;
eca18b23
MW
463 int length = total_len;
464 struct scatterlist *sg = iod->sg;
ff22b54f
MW
465 int dma_len = sg_dma_len(sg);
466 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 467 u32 page_size = dev->ctrl.page_size;
f137e0f1 468 int offset = dma_addr & (page_size - 1);
e025344c 469 __le64 *prp_list;
f4800d6d 470 __le64 **list = iod_list(req);
e025344c 471 dma_addr_t prp_dma;
eca18b23 472 int nprps, i;
ff22b54f 473
1d090624 474 length -= (page_size - offset);
ff22b54f 475 if (length <= 0)
69d2b571 476 return true;
ff22b54f 477
1d090624 478 dma_len -= (page_size - offset);
ff22b54f 479 if (dma_len) {
1d090624 480 dma_addr += (page_size - offset);
ff22b54f
MW
481 } else {
482 sg = sg_next(sg);
483 dma_addr = sg_dma_address(sg);
484 dma_len = sg_dma_len(sg);
485 }
486
1d090624 487 if (length <= page_size) {
edd10d33 488 iod->first_dma = dma_addr;
69d2b571 489 return true;
e025344c
SMM
490 }
491
1d090624 492 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
493 if (nprps <= (256 / 8)) {
494 pool = dev->prp_small_pool;
eca18b23 495 iod->npages = 0;
99802a7a
MW
496 } else {
497 pool = dev->prp_page_pool;
eca18b23 498 iod->npages = 1;
99802a7a
MW
499 }
500
69d2b571 501 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 502 if (!prp_list) {
edd10d33 503 iod->first_dma = dma_addr;
eca18b23 504 iod->npages = -1;
69d2b571 505 return false;
b77954cb 506 }
eca18b23
MW
507 list[0] = prp_list;
508 iod->first_dma = prp_dma;
e025344c
SMM
509 i = 0;
510 for (;;) {
1d090624 511 if (i == page_size >> 3) {
e025344c 512 __le64 *old_prp_list = prp_list;
69d2b571 513 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 514 if (!prp_list)
69d2b571 515 return false;
eca18b23 516 list[iod->npages++] = prp_list;
7523d834
MW
517 prp_list[0] = old_prp_list[i - 1];
518 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
519 i = 1;
e025344c
SMM
520 }
521 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
522 dma_len -= page_size;
523 dma_addr += page_size;
524 length -= page_size;
e025344c
SMM
525 if (length <= 0)
526 break;
527 if (dma_len > 0)
528 continue;
529 BUG_ON(dma_len < 0);
530 sg = sg_next(sg);
531 dma_addr = sg_dma_address(sg);
532 dma_len = sg_dma_len(sg);
ff22b54f
MW
533 }
534
69d2b571 535 return true;
ff22b54f
MW
536}
537
f4800d6d 538static int nvme_map_data(struct nvme_dev *dev, struct request *req,
ba1ca37e 539 struct nvme_command *cmnd)
d29ec824 540{
f4800d6d 541 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
542 struct request_queue *q = req->q;
543 enum dma_data_direction dma_dir = rq_data_dir(req) ?
544 DMA_TO_DEVICE : DMA_FROM_DEVICE;
545 int ret = BLK_MQ_RQ_QUEUE_ERROR;
546
547 sg_init_table(iod->sg, req->nr_phys_segments);
548 iod->nents = blk_rq_map_sg(q, req, iod->sg);
549 if (!iod->nents)
550 goto out;
551
552 ret = BLK_MQ_RQ_QUEUE_BUSY;
553 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
554 goto out;
555
f4800d6d 556 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
ba1ca37e
CH
557 goto out_unmap;
558
559 ret = BLK_MQ_RQ_QUEUE_ERROR;
560 if (blk_integrity_rq(req)) {
561 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
562 goto out_unmap;
563
bf684057
CH
564 sg_init_table(&iod->meta_sg, 1);
565 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 566 goto out_unmap;
d29ec824 567
ba1ca37e
CH
568 if (rq_data_dir(req))
569 nvme_dif_remap(req, nvme_dif_prep);
570
bf684057 571 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 572 goto out_unmap;
d29ec824
CH
573 }
574
ba1ca37e
CH
575 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
576 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
577 if (blk_integrity_rq(req))
bf684057 578 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e
CH
579 return BLK_MQ_RQ_QUEUE_OK;
580
581out_unmap:
582 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
583out:
584 return ret;
d29ec824
CH
585}
586
f4800d6d 587static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
d4f6c3ab 588{
f4800d6d 589 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
590 enum dma_data_direction dma_dir = rq_data_dir(req) ?
591 DMA_TO_DEVICE : DMA_FROM_DEVICE;
592
593 if (iod->nents) {
594 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
595 if (blk_integrity_rq(req)) {
596 if (!rq_data_dir(req))
597 nvme_dif_remap(req, nvme_dif_complete);
bf684057 598 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
d4f6c3ab
CH
599 }
600 }
601
f4800d6d 602 nvme_free_iod(dev, req);
d4f6c3ab
CH
603}
604
a4aea562
MB
605/*
606 * We reuse the small pool to allocate the 16-byte range here as it is not
607 * worth having a special pool for these or additional cases to handle freeing
608 * the iod.
609 */
ba1ca37e 610static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
f4800d6d 611 struct request *req, struct nvme_command *cmnd)
0e5e4f0e 612{
f4800d6d 613 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
614 struct nvme_dsm_range *range;
615
616 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
617 &iod->first_dma);
618 if (!range)
619 return BLK_MQ_RQ_QUEUE_BUSY;
f4800d6d 620 iod_list(req)[0] = (__le64 *)range;
ba1ca37e 621 iod->npages = 0;
0e5e4f0e 622
0e5e4f0e 623 range->cattr = cpu_to_le32(0);
a4aea562
MB
624 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
625 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 626
ba1ca37e
CH
627 memset(cmnd, 0, sizeof(*cmnd));
628 cmnd->dsm.opcode = nvme_cmd_dsm;
629 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
630 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
631 cmnd->dsm.nr = 0;
632 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
633 return BLK_MQ_RQ_QUEUE_OK;
0e5e4f0e
KB
634}
635
d29ec824
CH
636/*
637 * NOTE: ns is NULL when called on the admin queue.
638 */
a4aea562
MB
639static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
640 const struct blk_mq_queue_data *bd)
edd10d33 641{
a4aea562
MB
642 struct nvme_ns *ns = hctx->queue->queuedata;
643 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 644 struct nvme_dev *dev = nvmeq->dev;
a4aea562 645 struct request *req = bd->rq;
ba1ca37e
CH
646 struct nvme_command cmnd;
647 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 648
e1e5e564
KB
649 /*
650 * If formated with metadata, require the block layer provide a buffer
651 * unless this namespace is formated such that the metadata can be
652 * stripped/generated by the controller with PRACT=1.
653 */
d29ec824 654 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
655 if (!(ns->pi_type && ns->ms == 8) &&
656 req->cmd_type != REQ_TYPE_DRV_PRIV) {
eee417b0 657 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
658 return BLK_MQ_RQ_QUEUE_OK;
659 }
660 }
661
f4800d6d
CH
662 ret = nvme_init_iod(req, dev);
663 if (ret)
664 return ret;
a4aea562 665
a4aea562 666 if (req->cmd_flags & REQ_DISCARD) {
f4800d6d 667 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
ba1ca37e
CH
668 } else {
669 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
670 memcpy(&cmnd, req->cmd, sizeof(cmnd));
671 else if (req->cmd_flags & REQ_FLUSH)
672 nvme_setup_flush(ns, &cmnd);
673 else
674 nvme_setup_rw(ns, req, &cmnd);
a4aea562 675
ba1ca37e 676 if (req->nr_phys_segments)
f4800d6d 677 ret = nvme_map_data(dev, req, &cmnd);
edd10d33 678 }
1974b1ae 679
ba1ca37e
CH
680 if (ret)
681 goto out;
682
683 cmnd.common.command_id = req->tag;
aae239e1 684 blk_mq_start_request(req);
a4aea562 685
ba1ca37e
CH
686 spin_lock_irq(&nvmeq->q_lock);
687 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
688 nvme_process_cq(nvmeq);
689 spin_unlock_irq(&nvmeq->q_lock);
690 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 691out:
f4800d6d 692 nvme_free_iod(dev, req);
ba1ca37e 693 return ret;
b60503ba
MW
694}
695
eee417b0
CH
696static void nvme_complete_rq(struct request *req)
697{
f4800d6d
CH
698 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
699 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0
CH
700 int error = 0;
701
f4800d6d 702 nvme_unmap_data(dev, req);
eee417b0
CH
703
704 if (unlikely(req->errors)) {
705 if (nvme_req_needs_retry(req, req->errors)) {
706 nvme_requeue_req(req);
707 return;
708 }
709
710 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
711 error = req->errors;
712 else
713 error = nvme_error_status(req->errors);
714 }
715
f4800d6d 716 if (unlikely(iod->aborted)) {
eee417b0
CH
717 dev_warn(dev->dev,
718 "completing aborted command with status: %04x\n",
719 req->errors);
720 }
721
722 blk_mq_end_request(req, error);
723}
724
a0fa9647 725static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 726{
82123460 727 u16 head, phase;
b60503ba 728
b60503ba 729 head = nvmeq->cq_head;
82123460 730 phase = nvmeq->cq_phase;
b60503ba
MW
731
732 for (;;) {
b60503ba 733 struct nvme_completion cqe = nvmeq->cqes[head];
adf68f21 734 u16 status = le16_to_cpu(cqe.status);
eee417b0 735 struct request *req;
adf68f21
CH
736
737 if ((status & 1) != phase)
b60503ba
MW
738 break;
739 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
740 if (++head == nvmeq->q_depth) {
741 head = 0;
82123460 742 phase = !phase;
b60503ba 743 }
adf68f21 744
a0fa9647
JA
745 if (tag && *tag == cqe.command_id)
746 *tag = -1;
adf68f21 747
aae239e1
CH
748 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
749 dev_warn(nvmeq->q_dmadev,
750 "invalid id %d completed on queue %d\n",
751 cqe.command_id, le16_to_cpu(cqe.sq_id));
752 continue;
753 }
754
adf68f21
CH
755 /*
756 * AEN requests are special as they don't time out and can
757 * survive any kind of queue freeze and often don't respond to
758 * aborts. We don't even bother to allocate a struct request
759 * for them but rather special case them here.
760 */
761 if (unlikely(nvmeq->qid == 0 &&
762 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
763 nvme_complete_async_event(nvmeq->dev, &cqe);
764 continue;
765 }
766
eee417b0
CH
767 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
768 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
769 u32 result = le32_to_cpu(cqe.result);
770 req->special = (void *)(uintptr_t)result;
771 }
772 blk_mq_complete_request(req, status >> 1);
773
b60503ba
MW
774 }
775
776 /* If the controller ignores the cq head doorbell and continuously
777 * writes to the queue, it is theoretically possible to wrap around
778 * the queue twice and mistakenly return IRQ_NONE. Linux only
779 * requires that 0.1% of your interrupts are handled, so this isn't
780 * a big problem.
781 */
82123460 782 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 783 return;
b60503ba 784
604e8c8d
KB
785 if (likely(nvmeq->cq_vector >= 0))
786 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 787 nvmeq->cq_head = head;
82123460 788 nvmeq->cq_phase = phase;
b60503ba 789
e9539f47 790 nvmeq->cqe_seen = 1;
a0fa9647
JA
791}
792
793static void nvme_process_cq(struct nvme_queue *nvmeq)
794{
795 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
796}
797
798static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
799{
800 irqreturn_t result;
801 struct nvme_queue *nvmeq = data;
802 spin_lock(&nvmeq->q_lock);
e9539f47
MW
803 nvme_process_cq(nvmeq);
804 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
805 nvmeq->cqe_seen = 0;
58ffacb5
MW
806 spin_unlock(&nvmeq->q_lock);
807 return result;
808}
809
810static irqreturn_t nvme_irq_check(int irq, void *data)
811{
812 struct nvme_queue *nvmeq = data;
813 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
814 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
815 return IRQ_NONE;
816 return IRQ_WAKE_THREAD;
817}
818
a0fa9647
JA
819static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
820{
821 struct nvme_queue *nvmeq = hctx->driver_data;
822
823 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
824 nvmeq->cq_phase) {
825 spin_lock_irq(&nvmeq->q_lock);
826 __nvme_process_cq(nvmeq, &tag);
827 spin_unlock_irq(&nvmeq->q_lock);
828
829 if (tag == -1)
830 return 1;
831 }
832
833 return 0;
834}
835
adf68f21 836static void nvme_submit_async_event(struct nvme_dev *dev)
a4aea562 837{
a4aea562 838 struct nvme_command c;
a4aea562
MB
839
840 memset(&c, 0, sizeof(c));
841 c.common.opcode = nvme_admin_async_event;
adf68f21 842 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
a4aea562 843
adf68f21 844 __nvme_submit_cmd(dev->queues[0], &c);
a4aea562
MB
845}
846
d8f32166 847static void async_cmd_info_endio(struct request *req, int error)
4d115420 848{
d8f32166 849 struct async_cmd_info *cmdinfo = req->end_io_data;
a4aea562 850
d8f32166
CH
851 cmdinfo->status = req->errors;
852 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
853 blk_mq_free_request(req);
4d115420
KB
854}
855
b60503ba
MW
856static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
857{
b60503ba
MW
858 struct nvme_command c;
859
860 memset(&c, 0, sizeof(c));
861 c.delete_queue.opcode = opcode;
862 c.delete_queue.qid = cpu_to_le16(id);
863
1c63dc66 864 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
865}
866
867static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
868 struct nvme_queue *nvmeq)
869{
b60503ba
MW
870 struct nvme_command c;
871 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
872
d29ec824
CH
873 /*
874 * Note: we (ab)use the fact the the prp fields survive if no data
875 * is attached to the request.
876 */
b60503ba
MW
877 memset(&c, 0, sizeof(c));
878 c.create_cq.opcode = nvme_admin_create_cq;
879 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
880 c.create_cq.cqid = cpu_to_le16(qid);
881 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
882 c.create_cq.cq_flags = cpu_to_le16(flags);
883 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
884
1c63dc66 885 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
886}
887
888static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
889 struct nvme_queue *nvmeq)
890{
b60503ba
MW
891 struct nvme_command c;
892 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
893
d29ec824
CH
894 /*
895 * Note: we (ab)use the fact the the prp fields survive if no data
896 * is attached to the request.
897 */
b60503ba
MW
898 memset(&c, 0, sizeof(c));
899 c.create_sq.opcode = nvme_admin_create_sq;
900 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
901 c.create_sq.sqid = cpu_to_le16(qid);
902 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
903 c.create_sq.sq_flags = cpu_to_le16(flags);
904 c.create_sq.cqid = cpu_to_le16(qid);
905
1c63dc66 906 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
907}
908
909static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
910{
911 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
912}
913
914static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
915{
916 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
917}
918
e7a2a87d
CH
919static void abort_endio(struct request *req, int error)
920{
f4800d6d
CH
921 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
922 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d
CH
923 u32 result = (u32)(uintptr_t)req->special;
924 u16 status = req->errors;
925
926 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
927 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
928
929 blk_mq_free_request(req);
930}
931
31c7c7d2 932static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 933{
f4800d6d
CH
934 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
935 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 936 struct nvme_dev *dev = nvmeq->dev;
a4aea562 937 struct request *abort_req;
a4aea562 938 struct nvme_command cmd;
c30341dc 939
31c7c7d2 940 /*
fd634f41
CH
941 * Shutdown immediately if controller times out while starting. The
942 * reset work will see the pci device disabled when it gets the forced
943 * cancellation error. All outstanding requests are completed on
944 * shutdown, so we return BLK_EH_HANDLED.
945 */
946 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
947 dev_warn(dev->dev,
948 "I/O %d QID %d timeout, disable controller\n",
949 req->tag, nvmeq->qid);
950 nvme_dev_shutdown(dev);
951 req->errors = NVME_SC_CANCELLED;
952 return BLK_EH_HANDLED;
953 }
954
955 /*
956 * Shutdown the controller immediately and schedule a reset if the
957 * command was already aborted once before and still hasn't been
958 * returned to the driver, or if this is the admin queue.
31c7c7d2 959 */
f4800d6d 960 if (!nvmeq->qid || iod->aborted) {
e1569a16
KB
961 dev_warn(dev->dev,
962 "I/O %d QID %d timeout, reset controller\n",
963 req->tag, nvmeq->qid);
964 nvme_dev_shutdown(dev);
965 queue_work(nvme_workq, &dev->reset_work);
966
967 /*
968 * Mark the request as handled, since the inline shutdown
969 * forces all outstanding requests to complete.
970 */
971 req->errors = NVME_SC_CANCELLED;
972 return BLK_EH_HANDLED;
c30341dc
KB
973 }
974
f4800d6d 975 iod->aborted = 1;
c30341dc 976
e7a2a87d 977 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 978 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 979 return BLK_EH_RESET_TIMER;
6bf25d16 980 }
c30341dc
KB
981
982 memset(&cmd, 0, sizeof(cmd));
983 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 984 cmd.abort.cid = req->tag;
c30341dc 985 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 986
31c7c7d2
CH
987 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
988 req->tag, nvmeq->qid);
e7a2a87d
CH
989
990 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
991 BLK_MQ_REQ_NOWAIT);
992 if (IS_ERR(abort_req)) {
993 atomic_inc(&dev->ctrl.abort_limit);
994 return BLK_EH_RESET_TIMER;
995 }
996
997 abort_req->timeout = ADMIN_TIMEOUT;
998 abort_req->end_io_data = NULL;
999 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
31c7c7d2
CH
1000
1001 /*
1002 * The aborted req will be completed on receiving the abort req.
1003 * We enable the timer again. If hit twice, it'll cause a device reset,
1004 * as the device then is in a faulty state.
1005 */
1006 return BLK_EH_RESET_TIMER;
c30341dc
KB
1007}
1008
42483228 1009static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1010{
a4aea562 1011 struct nvme_queue *nvmeq = data;
aae239e1 1012 int status;
cef6a948
KB
1013
1014 if (!blk_mq_request_started(req))
1015 return;
a09115b2 1016
aae239e1
CH
1017 dev_warn(nvmeq->q_dmadev,
1018 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
a4aea562 1019
aae239e1 1020 status = NVME_SC_CANCELLED;
cef6a948 1021 if (blk_queue_dying(req->q))
aae239e1
CH
1022 status |= NVME_SC_DNR;
1023 blk_mq_complete_request(req, status);
a09115b2
MW
1024}
1025
a4aea562
MB
1026static void nvme_free_queue(struct nvme_queue *nvmeq)
1027{
9e866774
MW
1028 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1029 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1030 if (nvmeq->sq_cmds)
1031 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1032 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1033 kfree(nvmeq);
1034}
1035
a1a5ef99 1036static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1037{
1038 int i;
1039
a1a5ef99 1040 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1041 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1042 dev->queue_count--;
a4aea562 1043 dev->queues[i] = NULL;
f435c282 1044 nvme_free_queue(nvmeq);
121c7ad4 1045 }
22404274
KB
1046}
1047
4d115420
KB
1048/**
1049 * nvme_suspend_queue - put queue into suspended state
1050 * @nvmeq - queue to suspend
4d115420
KB
1051 */
1052static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1053{
2b25d981 1054 int vector;
b60503ba 1055
a09115b2 1056 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1057 if (nvmeq->cq_vector == -1) {
1058 spin_unlock_irq(&nvmeq->q_lock);
1059 return 1;
1060 }
1061 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1062 nvmeq->dev->online_queues--;
2b25d981 1063 nvmeq->cq_vector = -1;
a09115b2
MW
1064 spin_unlock_irq(&nvmeq->q_lock);
1065
1c63dc66
CH
1066 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1067 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1068
aba2080f
MW
1069 irq_set_affinity_hint(vector, NULL);
1070 free_irq(vector, nvmeq);
b60503ba 1071
4d115420
KB
1072 return 0;
1073}
b60503ba 1074
4d115420
KB
1075static void nvme_clear_queue(struct nvme_queue *nvmeq)
1076{
22404274 1077 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1078 if (nvmeq->tags && *nvmeq->tags)
1079 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1080 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1081}
1082
4d115420
KB
1083static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1084{
a4aea562 1085 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1086
1087 if (!nvmeq)
1088 return;
1089 if (nvme_suspend_queue(nvmeq))
1090 return;
1091
0e53d180
KB
1092 /* Don't tell the adapter to delete the admin queue.
1093 * Don't tell a removed adapter to delete IO queues. */
7a67cbea 1094 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
b60503ba
MW
1095 adapter_delete_sq(dev, qid);
1096 adapter_delete_cq(dev, qid);
1097 }
07836e65
KB
1098
1099 spin_lock_irq(&nvmeq->q_lock);
1100 nvme_process_cq(nvmeq);
1101 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1102}
1103
8ffaadf7
JD
1104static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1105 int entry_size)
1106{
1107 int q_depth = dev->q_depth;
5fd4ce1b
CH
1108 unsigned q_size_aligned = roundup(q_depth * entry_size,
1109 dev->ctrl.page_size);
8ffaadf7
JD
1110
1111 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1112 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1113 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1114 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1115
1116 /*
1117 * Ensure the reduced q_depth is above some threshold where it
1118 * would be better to map queues in system memory with the
1119 * original depth
1120 */
1121 if (q_depth < 64)
1122 return -ENOMEM;
1123 }
1124
1125 return q_depth;
1126}
1127
1128static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1129 int qid, int depth)
1130{
1131 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1132 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1133 dev->ctrl.page_size);
8ffaadf7
JD
1134 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1135 nvmeq->sq_cmds_io = dev->cmb + offset;
1136 } else {
1137 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1138 &nvmeq->sq_dma_addr, GFP_KERNEL);
1139 if (!nvmeq->sq_cmds)
1140 return -ENOMEM;
1141 }
1142
1143 return 0;
1144}
1145
b60503ba 1146static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1147 int depth)
b60503ba 1148{
a4aea562 1149 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1150 if (!nvmeq)
1151 return NULL;
1152
e75ec752 1153 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1154 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1155 if (!nvmeq->cqes)
1156 goto free_nvmeq;
b60503ba 1157
8ffaadf7 1158 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1159 goto free_cqdma;
1160
e75ec752 1161 nvmeq->q_dmadev = dev->dev;
091b6092 1162 nvmeq->dev = dev;
3193f07b 1163 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1164 dev->ctrl.instance, qid);
b60503ba
MW
1165 spin_lock_init(&nvmeq->q_lock);
1166 nvmeq->cq_head = 0;
82123460 1167 nvmeq->cq_phase = 1;
b80d5ccc 1168 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1169 nvmeq->q_depth = depth;
c30341dc 1170 nvmeq->qid = qid;
758dd7fd 1171 nvmeq->cq_vector = -1;
a4aea562 1172 dev->queues[qid] = nvmeq;
b60503ba 1173
36a7e993
JD
1174 /* make sure queue descriptor is set before queue count, for kthread */
1175 mb();
1176 dev->queue_count++;
1177
b60503ba
MW
1178 return nvmeq;
1179
1180 free_cqdma:
e75ec752 1181 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1182 nvmeq->cq_dma_addr);
1183 free_nvmeq:
1184 kfree(nvmeq);
1185 return NULL;
1186}
1187
3001082c
MW
1188static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1189 const char *name)
1190{
58ffacb5
MW
1191 if (use_threaded_interrupts)
1192 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1193 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1194 name, nvmeq);
3001082c 1195 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1196 IRQF_SHARED, name, nvmeq);
3001082c
MW
1197}
1198
22404274 1199static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1200{
22404274 1201 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1202
7be50e93 1203 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1204 nvmeq->sq_tail = 0;
1205 nvmeq->cq_head = 0;
1206 nvmeq->cq_phase = 1;
b80d5ccc 1207 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1208 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1209 dev->online_queues++;
7be50e93 1210 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1211}
1212
1213static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1214{
1215 struct nvme_dev *dev = nvmeq->dev;
1216 int result;
3f85d50b 1217
2b25d981 1218 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1219 result = adapter_alloc_cq(dev, qid, nvmeq);
1220 if (result < 0)
22404274 1221 return result;
b60503ba
MW
1222
1223 result = adapter_alloc_sq(dev, qid, nvmeq);
1224 if (result < 0)
1225 goto release_cq;
1226
3193f07b 1227 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1228 if (result < 0)
1229 goto release_sq;
1230
22404274 1231 nvme_init_queue(nvmeq, qid);
22404274 1232 return result;
b60503ba
MW
1233
1234 release_sq:
1235 adapter_delete_sq(dev, qid);
1236 release_cq:
1237 adapter_delete_cq(dev, qid);
22404274 1238 return result;
b60503ba
MW
1239}
1240
a4aea562 1241static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1242 .queue_rq = nvme_queue_rq,
eee417b0 1243 .complete = nvme_complete_rq,
a4aea562
MB
1244 .map_queue = blk_mq_map_queue,
1245 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1246 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1247 .init_request = nvme_admin_init_request,
1248 .timeout = nvme_timeout,
1249};
1250
1251static struct blk_mq_ops nvme_mq_ops = {
1252 .queue_rq = nvme_queue_rq,
eee417b0 1253 .complete = nvme_complete_rq,
a4aea562
MB
1254 .map_queue = blk_mq_map_queue,
1255 .init_hctx = nvme_init_hctx,
1256 .init_request = nvme_init_request,
1257 .timeout = nvme_timeout,
a0fa9647 1258 .poll = nvme_poll,
a4aea562
MB
1259};
1260
ea191d2f
KB
1261static void nvme_dev_remove_admin(struct nvme_dev *dev)
1262{
1c63dc66
CH
1263 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1264 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1265 blk_mq_free_tag_set(&dev->admin_tagset);
1266 }
1267}
1268
a4aea562
MB
1269static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1270{
1c63dc66 1271 if (!dev->ctrl.admin_q) {
a4aea562
MB
1272 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1273 dev->admin_tagset.nr_hw_queues = 1;
adf68f21 1274 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH;
a4aea562 1275 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1276 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1277 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1278 dev->admin_tagset.driver_data = dev;
1279
1280 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1281 return -ENOMEM;
1282
1c63dc66
CH
1283 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1284 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1285 blk_mq_free_tag_set(&dev->admin_tagset);
1286 return -ENOMEM;
1287 }
1c63dc66 1288 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1289 nvme_dev_remove_admin(dev);
1c63dc66 1290 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1291 return -ENODEV;
1292 }
0fb59cbc 1293 } else
1c63dc66 1294 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
a4aea562
MB
1295
1296 return 0;
1297}
1298
8d85fce7 1299static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1300{
ba47e386 1301 int result;
b60503ba 1302 u32 aqa;
7a67cbea 1303 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1304 struct nvme_queue *nvmeq;
1305
7a67cbea 1306 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1307 NVME_CAP_NSSRC(cap) : 0;
1308
7a67cbea
CH
1309 if (dev->subsystem &&
1310 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1311 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1312
5fd4ce1b 1313 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1314 if (result < 0)
1315 return result;
b60503ba 1316
a4aea562 1317 nvmeq = dev->queues[0];
cd638946 1318 if (!nvmeq) {
2b25d981 1319 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1320 if (!nvmeq)
1321 return -ENOMEM;
cd638946 1322 }
b60503ba
MW
1323
1324 aqa = nvmeq->q_depth - 1;
1325 aqa |= aqa << 16;
1326
7a67cbea
CH
1327 writel(aqa, dev->bar + NVME_REG_AQA);
1328 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1329 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1330
5fd4ce1b 1331 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1332 if (result)
a4aea562
MB
1333 goto free_nvmeq;
1334
2b25d981 1335 nvmeq->cq_vector = 0;
3193f07b 1336 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1337 if (result) {
1338 nvmeq->cq_vector = -1;
0fb59cbc 1339 goto free_nvmeq;
758dd7fd 1340 }
025c557a 1341
b60503ba 1342 return result;
a4aea562 1343
a4aea562
MB
1344 free_nvmeq:
1345 nvme_free_queues(dev, 0);
1346 return result;
b60503ba
MW
1347}
1348
1fa6aead
MW
1349static int nvme_kthread(void *data)
1350{
d4b4ff8e 1351 struct nvme_dev *dev, *next;
1fa6aead
MW
1352
1353 while (!kthread_should_stop()) {
564a232c 1354 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 1355 spin_lock(&dev_list_lock);
d4b4ff8e 1356 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 1357 int i;
7a67cbea 1358 u32 csts = readl(dev->bar + NVME_REG_CSTS);
dfbac8c7 1359
846cc05f
CH
1360 /*
1361 * Skip controllers currently under reset.
1362 */
1363 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1364 continue;
1365
dfbac8c7
KB
1366 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1367 csts & NVME_CSTS_CFS) {
846cc05f 1368 if (queue_work(nvme_workq, &dev->reset_work)) {
90667892
CH
1369 dev_warn(dev->dev,
1370 "Failed status: %x, reset controller\n",
7a67cbea 1371 readl(dev->bar + NVME_REG_CSTS));
90667892 1372 }
d4b4ff8e
KB
1373 continue;
1374 }
1fa6aead 1375 for (i = 0; i < dev->queue_count; i++) {
a4aea562 1376 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1377 if (!nvmeq)
1378 continue;
1fa6aead 1379 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 1380 nvme_process_cq(nvmeq);
6fccf938 1381
adf68f21
CH
1382 while (i == 0 && dev->ctrl.event_limit > 0)
1383 nvme_submit_async_event(dev);
1fa6aead
MW
1384 spin_unlock_irq(&nvmeq->q_lock);
1385 }
1386 }
1387 spin_unlock(&dev_list_lock);
acb7aa0d 1388 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
1389 }
1390 return 0;
1391}
1392
749941f2 1393static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1394{
a4aea562 1395 unsigned i;
749941f2 1396 int ret = 0;
42f61420 1397
749941f2
CH
1398 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1399 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1400 ret = -ENOMEM;
42f61420 1401 break;
749941f2
CH
1402 }
1403 }
42f61420 1404
749941f2
CH
1405 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1406 ret = nvme_create_queue(dev->queues[i], i);
1407 if (ret) {
2659e57b 1408 nvme_free_queues(dev, i);
42f61420 1409 break;
2659e57b 1410 }
749941f2
CH
1411 }
1412
1413 /*
1414 * Ignore failing Create SQ/CQ commands, we can continue with less
1415 * than the desired aount of queues, and even a controller without
1416 * I/O queues an still be used to issue admin commands. This might
1417 * be useful to upgrade a buggy firmware for example.
1418 */
1419 return ret >= 0 ? 0 : ret;
42f61420
KB
1420}
1421
8ffaadf7
JD
1422static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1423{
1424 u64 szu, size, offset;
1425 u32 cmbloc;
1426 resource_size_t bar_size;
1427 struct pci_dev *pdev = to_pci_dev(dev->dev);
1428 void __iomem *cmb;
1429 dma_addr_t dma_addr;
1430
1431 if (!use_cmb_sqes)
1432 return NULL;
1433
7a67cbea 1434 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1435 if (!(NVME_CMB_SZ(dev->cmbsz)))
1436 return NULL;
1437
7a67cbea 1438 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1439
1440 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1441 size = szu * NVME_CMB_SZ(dev->cmbsz);
1442 offset = szu * NVME_CMB_OFST(cmbloc);
1443 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1444
1445 if (offset > bar_size)
1446 return NULL;
1447
1448 /*
1449 * Controllers may support a CMB size larger than their BAR,
1450 * for example, due to being behind a bridge. Reduce the CMB to
1451 * the reported size of the BAR
1452 */
1453 if (size > bar_size - offset)
1454 size = bar_size - offset;
1455
1456 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1457 cmb = ioremap_wc(dma_addr, size);
1458 if (!cmb)
1459 return NULL;
1460
1461 dev->cmb_dma_addr = dma_addr;
1462 dev->cmb_size = size;
1463 return cmb;
1464}
1465
1466static inline void nvme_release_cmb(struct nvme_dev *dev)
1467{
1468 if (dev->cmb) {
1469 iounmap(dev->cmb);
1470 dev->cmb = NULL;
1471 }
1472}
1473
9d713c2b
KB
1474static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1475{
b80d5ccc 1476 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1477}
1478
8d85fce7 1479static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1480{
a4aea562 1481 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1482 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1483 int result, i, vecs, nr_io_queues, size;
b60503ba 1484
42f61420 1485 nr_io_queues = num_possible_cpus();
9a0be7ab
CH
1486 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1487 if (result < 0)
1b23484b 1488 return result;
9a0be7ab
CH
1489
1490 /*
1491 * Degraded controllers might return an error when setting the queue
1492 * count. We still want to be able to bring them online and offer
1493 * access to the admin queue, as that might be only way to fix them up.
1494 */
1495 if (result > 0) {
1496 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1497 nr_io_queues = 0;
1498 result = 0;
1499 }
b60503ba 1500
8ffaadf7
JD
1501 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1502 result = nvme_cmb_qdepth(dev, nr_io_queues,
1503 sizeof(struct nvme_command));
1504 if (result > 0)
1505 dev->q_depth = result;
1506 else
1507 nvme_release_cmb(dev);
1508 }
1509
9d713c2b
KB
1510 size = db_bar_size(dev, nr_io_queues);
1511 if (size > 8192) {
f1938f6e 1512 iounmap(dev->bar);
9d713c2b
KB
1513 do {
1514 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1515 if (dev->bar)
1516 break;
1517 if (!--nr_io_queues)
1518 return -ENOMEM;
1519 size = db_bar_size(dev, nr_io_queues);
1520 } while (1);
7a67cbea 1521 dev->dbs = dev->bar + 4096;
5a92e700 1522 adminq->q_db = dev->dbs;
f1938f6e
MW
1523 }
1524
9d713c2b 1525 /* Deregister the admin queue's interrupt */
3193f07b 1526 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1527
e32efbfc
JA
1528 /*
1529 * If we enable msix early due to not intx, disable it again before
1530 * setting up the full range we need.
1531 */
1532 if (!pdev->irq)
1533 pci_disable_msix(pdev);
1534
be577fab 1535 for (i = 0; i < nr_io_queues; i++)
1b23484b 1536 dev->entry[i].entry = i;
be577fab
AG
1537 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1538 if (vecs < 0) {
1539 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1540 if (vecs < 0) {
1541 vecs = 1;
1542 } else {
1543 for (i = 0; i < vecs; i++)
1544 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1545 }
1546 }
1547
063a8096
MW
1548 /*
1549 * Should investigate if there's a performance win from allocating
1550 * more queues than interrupt vectors; it might allow the submission
1551 * path to scale better, even if the receive path is limited by the
1552 * number of interrupts.
1553 */
1554 nr_io_queues = vecs;
42f61420 1555 dev->max_qid = nr_io_queues;
063a8096 1556
3193f07b 1557 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1558 if (result) {
1559 adminq->cq_vector = -1;
22404274 1560 goto free_queues;
758dd7fd 1561 }
1b23484b 1562
cd638946 1563 /* Free previously allocated queues that are no longer usable */
42f61420 1564 nvme_free_queues(dev, nr_io_queues + 1);
749941f2 1565 return nvme_create_io_queues(dev);
b60503ba 1566
22404274 1567 free_queues:
a1a5ef99 1568 nvme_free_queues(dev, 1);
22404274 1569 return result;
b60503ba
MW
1570}
1571
bda4e0fb
KB
1572static void nvme_set_irq_hints(struct nvme_dev *dev)
1573{
1574 struct nvme_queue *nvmeq;
1575 int i;
1576
1577 for (i = 0; i < dev->online_queues; i++) {
1578 nvmeq = dev->queues[i];
1579
1580 if (!nvmeq->tags || !(*nvmeq->tags))
1581 continue;
1582
1583 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1584 blk_mq_tags_cpumask(*nvmeq->tags));
1585 }
1586}
1587
a5768aa8
KB
1588static void nvme_dev_scan(struct work_struct *work)
1589{
1590 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
a5768aa8
KB
1591
1592 if (!dev->tagset.tags)
1593 return;
5bae7f73 1594 nvme_scan_namespaces(&dev->ctrl);
bda4e0fb 1595 nvme_set_irq_hints(dev);
a5768aa8
KB
1596}
1597
422ef0c7
MW
1598/*
1599 * Return: error value if an error occurred setting up the queues or calling
1600 * Identify Device. 0 if these succeeded, even if adding some of the
1601 * namespaces failed. At the moment, these failures are silent. TBD which
1602 * failures should be reported.
1603 */
8d85fce7 1604static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1605{
5bae7f73 1606 if (!dev->ctrl.tagset) {
ffe7704d
KB
1607 dev->tagset.ops = &nvme_mq_ops;
1608 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1609 dev->tagset.timeout = NVME_IO_TIMEOUT;
1610 dev->tagset.numa_node = dev_to_node(dev->dev);
1611 dev->tagset.queue_depth =
a4aea562 1612 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1613 dev->tagset.cmd_size = nvme_cmd_size(dev);
1614 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1615 dev->tagset.driver_data = dev;
b60503ba 1616
ffe7704d
KB
1617 if (blk_mq_alloc_tag_set(&dev->tagset))
1618 return 0;
5bae7f73 1619 dev->ctrl.tagset = &dev->tagset;
ffe7704d 1620 }
92f7a162 1621 queue_work(nvme_workq, &dev->scan_work);
e1e5e564 1622 return 0;
b60503ba
MW
1623}
1624
0877cb0d
KB
1625static int nvme_dev_map(struct nvme_dev *dev)
1626{
42f61420 1627 u64 cap;
0877cb0d 1628 int bars, result = -ENOMEM;
e75ec752 1629 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1630
1631 if (pci_enable_device_mem(pdev))
1632 return result;
1633
1634 dev->entry[0].vector = pdev->irq;
1635 pci_set_master(pdev);
1636 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
1637 if (!bars)
1638 goto disable_pci;
1639
0877cb0d
KB
1640 if (pci_request_selected_regions(pdev, bars, "nvme"))
1641 goto disable_pci;
1642
e75ec752
CH
1643 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1644 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1645 goto disable;
0877cb0d 1646
0877cb0d
KB
1647 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1648 if (!dev->bar)
1649 goto disable;
e32efbfc 1650
7a67cbea 1651 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180
KB
1652 result = -ENODEV;
1653 goto unmap;
1654 }
e32efbfc
JA
1655
1656 /*
1657 * Some devices don't advertse INTx interrupts, pre-enable a single
1658 * MSIX vec for setup. We'll adjust this later.
1659 */
1660 if (!pdev->irq) {
1661 result = pci_enable_msix(pdev, dev->entry, 1);
1662 if (result < 0)
1663 goto unmap;
1664 }
1665
7a67cbea
CH
1666 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1667
42f61420
KB
1668 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1669 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea
CH
1670 dev->dbs = dev->bar + 4096;
1671 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1672 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1673
a0a3408e
KB
1674 pci_enable_pcie_error_reporting(pdev);
1675 pci_save_state(pdev);
0877cb0d
KB
1676 return 0;
1677
0e53d180
KB
1678 unmap:
1679 iounmap(dev->bar);
1680 dev->bar = NULL;
0877cb0d
KB
1681 disable:
1682 pci_release_regions(pdev);
1683 disable_pci:
1684 pci_disable_device(pdev);
1685 return result;
1686}
1687
1688static void nvme_dev_unmap(struct nvme_dev *dev)
1689{
e75ec752
CH
1690 struct pci_dev *pdev = to_pci_dev(dev->dev);
1691
1692 if (pdev->msi_enabled)
1693 pci_disable_msi(pdev);
1694 else if (pdev->msix_enabled)
1695 pci_disable_msix(pdev);
0877cb0d
KB
1696
1697 if (dev->bar) {
1698 iounmap(dev->bar);
1699 dev->bar = NULL;
e75ec752 1700 pci_release_regions(pdev);
0877cb0d
KB
1701 }
1702
a0a3408e
KB
1703 if (pci_is_enabled(pdev)) {
1704 pci_disable_pcie_error_reporting(pdev);
e75ec752 1705 pci_disable_device(pdev);
a0a3408e 1706 }
0877cb0d
KB
1707}
1708
4d115420
KB
1709struct nvme_delq_ctx {
1710 struct task_struct *waiter;
1711 struct kthread_worker *worker;
1712 atomic_t refcount;
1713};
1714
1715static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1716{
1717 dq->waiter = current;
1718 mb();
1719
1720 for (;;) {
1721 set_current_state(TASK_KILLABLE);
1722 if (!atomic_read(&dq->refcount))
1723 break;
1724 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1725 fatal_signal_pending(current)) {
0fb59cbc
KB
1726 /*
1727 * Disable the controller first since we can't trust it
1728 * at this point, but leave the admin queue enabled
1729 * until all queue deletion requests are flushed.
1730 * FIXME: This may take a while if there are more h/w
1731 * queues than admin tags.
1732 */
4d115420 1733 set_current_state(TASK_RUNNING);
5fd4ce1b 1734 nvme_disable_ctrl(&dev->ctrl,
7a67cbea 1735 lo_hi_readq(dev->bar + NVME_REG_CAP));
0fb59cbc 1736 nvme_clear_queue(dev->queues[0]);
4d115420 1737 flush_kthread_worker(dq->worker);
0fb59cbc 1738 nvme_disable_queue(dev, 0);
4d115420
KB
1739 return;
1740 }
1741 }
1742 set_current_state(TASK_RUNNING);
1743}
1744
1745static void nvme_put_dq(struct nvme_delq_ctx *dq)
1746{
1747 atomic_dec(&dq->refcount);
1748 if (dq->waiter)
1749 wake_up_process(dq->waiter);
1750}
1751
1752static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1753{
1754 atomic_inc(&dq->refcount);
1755 return dq;
1756}
1757
1758static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1759{
1760 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420 1761 nvme_put_dq(dq);
604e8c8d
KB
1762
1763 spin_lock_irq(&nvmeq->q_lock);
1764 nvme_process_cq(nvmeq);
1765 spin_unlock_irq(&nvmeq->q_lock);
4d115420
KB
1766}
1767
1768static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1769 kthread_work_func_t fn)
1770{
d8f32166 1771 struct request *req;
4d115420
KB
1772 struct nvme_command c;
1773
1774 memset(&c, 0, sizeof(c));
1775 c.delete_queue.opcode = opcode;
1776 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1777
1778 init_kthread_work(&nvmeq->cmdinfo.work, fn);
d8f32166
CH
1779
1780 req = nvme_alloc_request(nvmeq->dev->ctrl.admin_q, &c, 0);
1781 if (IS_ERR(req))
1782 return PTR_ERR(req);
1783
1784 req->timeout = ADMIN_TIMEOUT;
1785 req->end_io_data = &nvmeq->cmdinfo;
1786 blk_execute_rq_nowait(req->q, NULL, req, 0, async_cmd_info_endio);
1787 return 0;
4d115420
KB
1788}
1789
1790static void nvme_del_cq_work_handler(struct kthread_work *work)
1791{
1792 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1793 cmdinfo.work);
1794 nvme_del_queue_end(nvmeq);
1795}
1796
1797static int nvme_delete_cq(struct nvme_queue *nvmeq)
1798{
1799 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1800 nvme_del_cq_work_handler);
1801}
1802
1803static void nvme_del_sq_work_handler(struct kthread_work *work)
1804{
1805 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1806 cmdinfo.work);
1807 int status = nvmeq->cmdinfo.status;
1808
1809 if (!status)
1810 status = nvme_delete_cq(nvmeq);
1811 if (status)
1812 nvme_del_queue_end(nvmeq);
1813}
1814
1815static int nvme_delete_sq(struct nvme_queue *nvmeq)
1816{
1817 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1818 nvme_del_sq_work_handler);
1819}
1820
1821static void nvme_del_queue_start(struct kthread_work *work)
1822{
1823 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1824 cmdinfo.work);
4d115420
KB
1825 if (nvme_delete_sq(nvmeq))
1826 nvme_del_queue_end(nvmeq);
1827}
1828
1829static void nvme_disable_io_queues(struct nvme_dev *dev)
1830{
1831 int i;
1832 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1833 struct nvme_delq_ctx dq;
1834 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1c63dc66 1835 &worker, "nvme%d", dev->ctrl.instance);
4d115420
KB
1836
1837 if (IS_ERR(kworker_task)) {
e75ec752 1838 dev_err(dev->dev,
4d115420
KB
1839 "Failed to create queue del task\n");
1840 for (i = dev->queue_count - 1; i > 0; i--)
1841 nvme_disable_queue(dev, i);
1842 return;
1843 }
1844
1845 dq.waiter = NULL;
1846 atomic_set(&dq.refcount, 0);
1847 dq.worker = &worker;
1848 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 1849 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
1850
1851 if (nvme_suspend_queue(nvmeq))
1852 continue;
1853 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
1854 nvmeq->cmdinfo.worker = dq.worker;
1855 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
1856 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
1857 }
1858 nvme_wait_dq(&dq, dev);
1859 kthread_stop(kworker_task);
1860}
1861
7385014c
CH
1862static int nvme_dev_list_add(struct nvme_dev *dev)
1863{
1864 bool start_thread = false;
1865
1866 spin_lock(&dev_list_lock);
1867 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1868 start_thread = true;
1869 nvme_thread = NULL;
1870 }
1871 list_add(&dev->node, &dev_list);
1872 spin_unlock(&dev_list_lock);
1873
1874 if (start_thread) {
1875 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1876 wake_up_all(&nvme_kthread_wait);
1877 } else
1878 wait_event_killable(nvme_kthread_wait, nvme_thread);
1879
1880 if (IS_ERR_OR_NULL(nvme_thread))
1881 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
1882
1883 return 0;
1884}
1885
b9afca3e
DM
1886/*
1887* Remove the node from the device list and check
1888* for whether or not we need to stop the nvme_thread.
1889*/
1890static void nvme_dev_list_remove(struct nvme_dev *dev)
1891{
1892 struct task_struct *tmp = NULL;
1893
1894 spin_lock(&dev_list_lock);
1895 list_del_init(&dev->node);
1896 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
1897 tmp = nvme_thread;
1898 nvme_thread = NULL;
1899 }
1900 spin_unlock(&dev_list_lock);
1901
1902 if (tmp)
1903 kthread_stop(tmp);
1904}
1905
f0b50732 1906static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 1907{
22404274 1908 int i;
7c1b2450 1909 u32 csts = -1;
22404274 1910
b9afca3e 1911 nvme_dev_list_remove(dev);
1fa6aead 1912
77bf25ea 1913 mutex_lock(&dev->shutdown_lock);
c9d3bf88 1914 if (dev->bar) {
363c9aac 1915 nvme_freeze_queues(&dev->ctrl);
7a67cbea 1916 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1917 }
7c1b2450 1918 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 1919 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 1920 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 1921 nvme_suspend_queue(nvmeq);
4d115420
KB
1922 }
1923 } else {
1924 nvme_disable_io_queues(dev);
5fd4ce1b 1925 nvme_shutdown_ctrl(&dev->ctrl);
4d115420
KB
1926 nvme_disable_queue(dev, 0);
1927 }
f0b50732 1928 nvme_dev_unmap(dev);
07836e65
KB
1929
1930 for (i = dev->queue_count - 1; i >= 0; i--)
1931 nvme_clear_queue(dev->queues[i]);
77bf25ea 1932 mutex_unlock(&dev->shutdown_lock);
f0b50732
KB
1933}
1934
091b6092
MW
1935static int nvme_setup_prp_pools(struct nvme_dev *dev)
1936{
e75ec752 1937 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1938 PAGE_SIZE, PAGE_SIZE, 0);
1939 if (!dev->prp_page_pool)
1940 return -ENOMEM;
1941
99802a7a 1942 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1943 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1944 256, 256, 0);
1945 if (!dev->prp_small_pool) {
1946 dma_pool_destroy(dev->prp_page_pool);
1947 return -ENOMEM;
1948 }
091b6092
MW
1949 return 0;
1950}
1951
1952static void nvme_release_prp_pools(struct nvme_dev *dev)
1953{
1954 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1955 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1956}
1957
1673f1f0 1958static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1959{
1673f1f0 1960 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1961
e75ec752 1962 put_device(dev->dev);
4af0e21c
KB
1963 if (dev->tagset.tags)
1964 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1965 if (dev->ctrl.admin_q)
1966 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
1967 kfree(dev->queues);
1968 kfree(dev->entry);
1969 kfree(dev);
1970}
1971
fd634f41 1972static void nvme_reset_work(struct work_struct *work)
f0b50732 1973{
fd634f41 1974 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
3cf519b5 1975 int result;
f0b50732 1976
fd634f41
CH
1977 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1978 goto out;
1979
1980 /*
1981 * If we're called to reset a live controller first shut it down before
1982 * moving on.
1983 */
1984 if (dev->bar)
1985 nvme_dev_shutdown(dev);
1986
1987 set_bit(NVME_CTRL_RESETTING, &dev->flags);
1988
f0b50732
KB
1989 result = nvme_dev_map(dev);
1990 if (result)
3cf519b5 1991 goto out;
f0b50732
KB
1992
1993 result = nvme_configure_admin_queue(dev);
1994 if (result)
1995 goto unmap;
1996
a4aea562 1997 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1998 result = nvme_alloc_admin_tags(dev);
1999 if (result)
2000 goto disable;
b9afca3e 2001
ce4541f4
CH
2002 result = nvme_init_identify(&dev->ctrl);
2003 if (result)
2004 goto free_tags;
2005
f0b50732 2006 result = nvme_setup_io_queues(dev);
badc34d4 2007 if (result)
0fb59cbc 2008 goto free_tags;
f0b50732 2009
adf68f21 2010 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
3cf519b5 2011
7385014c
CH
2012 result = nvme_dev_list_add(dev);
2013 if (result)
2014 goto remove;
2015
2659e57b
CH
2016 /*
2017 * Keep the controller around but remove all namespaces if we don't have
2018 * any working I/O queue.
2019 */
3cf519b5
CH
2020 if (dev->online_queues < 2) {
2021 dev_warn(dev->dev, "IO queues not created\n");
5bae7f73 2022 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 2023 } else {
363c9aac 2024 nvme_unfreeze_queues(&dev->ctrl);
3cf519b5
CH
2025 nvme_dev_add(dev);
2026 }
2027
fd634f41 2028 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
3cf519b5 2029 return;
f0b50732 2030
7385014c
CH
2031 remove:
2032 nvme_dev_list_remove(dev);
0fb59cbc
KB
2033 free_tags:
2034 nvme_dev_remove_admin(dev);
1c63dc66
CH
2035 blk_put_queue(dev->ctrl.admin_q);
2036 dev->ctrl.admin_q = NULL;
4af0e21c 2037 dev->queues[0]->tags = NULL;
f0b50732 2038 disable:
a1a5ef99 2039 nvme_disable_queue(dev, 0);
f0b50732
KB
2040 unmap:
2041 nvme_dev_unmap(dev);
3cf519b5 2042 out:
5c8809e6 2043 nvme_remove_dead_ctrl(dev);
f0b50732
KB
2044}
2045
5c8809e6 2046static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2047{
5c8809e6 2048 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2049 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2050
2051 if (pci_get_drvdata(pdev))
c81f4975 2052 pci_stop_and_remove_bus_device_locked(pdev);
1673f1f0 2053 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2054}
2055
5c8809e6 2056static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
de3eff2b 2057{
5c8809e6 2058 dev_warn(dev->dev, "Removing after probe failure\n");
1673f1f0 2059 kref_get(&dev->ctrl.kref);
5c8809e6 2060 if (!schedule_work(&dev->remove_work))
1673f1f0 2061 nvme_put_ctrl(&dev->ctrl);
de3eff2b
KB
2062}
2063
4cc06521
KB
2064static int nvme_reset(struct nvme_dev *dev)
2065{
1c63dc66 2066 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521
KB
2067 return -ENODEV;
2068
846cc05f
CH
2069 if (!queue_work(nvme_workq, &dev->reset_work))
2070 return -EBUSY;
4cc06521 2071
846cc05f 2072 flush_work(&dev->reset_work);
846cc05f 2073 return 0;
4cc06521
KB
2074}
2075
1c63dc66
CH
2076static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2077{
2078 *val = readl(to_nvme_dev(ctrl)->bar + off);
2079 return 0;
2080}
2081
5fd4ce1b
CH
2082static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2083{
2084 writel(val, to_nvme_dev(ctrl)->bar + off);
2085 return 0;
2086}
2087
7fd8930f
CH
2088static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2089{
2090 *val = readq(to_nvme_dev(ctrl)->bar + off);
2091 return 0;
2092}
2093
5bae7f73
CH
2094static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2095{
2096 struct nvme_dev *dev = to_nvme_dev(ctrl);
2097
2098 return !dev->bar || dev->online_queues < 2;
2099}
2100
f3ca80fc
CH
2101static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2102{
2103 return nvme_reset(to_nvme_dev(ctrl));
2104}
2105
1c63dc66
CH
2106static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2107 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2108 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2109 .reg_read64 = nvme_pci_reg_read64,
5bae7f73 2110 .io_incapable = nvme_pci_io_incapable,
f3ca80fc 2111 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 2112 .free_ctrl = nvme_pci_free_ctrl,
1c63dc66
CH
2113};
2114
8d85fce7 2115static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2116{
a4aea562 2117 int node, result = -ENOMEM;
b60503ba
MW
2118 struct nvme_dev *dev;
2119
a4aea562
MB
2120 node = dev_to_node(&pdev->dev);
2121 if (node == NUMA_NO_NODE)
2122 set_dev_node(&pdev->dev, 0);
2123
2124 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2125 if (!dev)
2126 return -ENOMEM;
a4aea562
MB
2127 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2128 GFP_KERNEL, node);
b60503ba
MW
2129 if (!dev->entry)
2130 goto free;
a4aea562
MB
2131 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2132 GFP_KERNEL, node);
b60503ba
MW
2133 if (!dev->queues)
2134 goto free;
2135
e75ec752 2136 dev->dev = get_device(&pdev->dev);
9a6b9458 2137 pci_set_drvdata(pdev, dev);
1c63dc66 2138
f3ca80fc
CH
2139 INIT_LIST_HEAD(&dev->node);
2140 INIT_WORK(&dev->scan_work, nvme_dev_scan);
f3ca80fc 2141 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 2142 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2143 mutex_init(&dev->shutdown_lock);
1c63dc66 2144
f3ca80fc 2145 result = nvme_setup_prp_pools(dev);
cd58ad7d 2146 if (result)
a96d4f5c 2147 goto put_pci;
b60503ba 2148
f3ca80fc
CH
2149 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2150 id->driver_data);
091b6092 2151 if (result)
2e1d8448 2152 goto release_pools;
740216fc 2153
92f7a162 2154 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
2155 return 0;
2156
0877cb0d 2157 release_pools:
091b6092 2158 nvme_release_prp_pools(dev);
a96d4f5c 2159 put_pci:
e75ec752 2160 put_device(dev->dev);
b60503ba
MW
2161 free:
2162 kfree(dev->queues);
2163 kfree(dev->entry);
2164 kfree(dev);
2165 return result;
2166}
2167
f0d54a54
KB
2168static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2169{
a6739479 2170 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2171
a6739479
KB
2172 if (prepare)
2173 nvme_dev_shutdown(dev);
2174 else
92f7a162 2175 queue_work(nvme_workq, &dev->reset_work);
f0d54a54
KB
2176}
2177
09ece142
KB
2178static void nvme_shutdown(struct pci_dev *pdev)
2179{
2180 struct nvme_dev *dev = pci_get_drvdata(pdev);
2181 nvme_dev_shutdown(dev);
2182}
2183
8d85fce7 2184static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2185{
2186 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
2187
2188 spin_lock(&dev_list_lock);
2189 list_del_init(&dev->node);
2190 spin_unlock(&dev_list_lock);
2191
2192 pci_set_drvdata(pdev, NULL);
2193 flush_work(&dev->reset_work);
a5768aa8 2194 flush_work(&dev->scan_work);
5bae7f73 2195 nvme_remove_namespaces(&dev->ctrl);
53029b04 2196 nvme_uninit_ctrl(&dev->ctrl);
3399a3f7 2197 nvme_dev_shutdown(dev);
a4aea562 2198 nvme_dev_remove_admin(dev);
a1a5ef99 2199 nvme_free_queues(dev, 0);
8ffaadf7 2200 nvme_release_cmb(dev);
9a6b9458 2201 nvme_release_prp_pools(dev);
1673f1f0 2202 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2203}
2204
671a6018 2205#ifdef CONFIG_PM_SLEEP
cd638946
KB
2206static int nvme_suspend(struct device *dev)
2207{
2208 struct pci_dev *pdev = to_pci_dev(dev);
2209 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2210
2211 nvme_dev_shutdown(ndev);
2212 return 0;
2213}
2214
2215static int nvme_resume(struct device *dev)
2216{
2217 struct pci_dev *pdev = to_pci_dev(dev);
2218 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2219
92f7a162 2220 queue_work(nvme_workq, &ndev->reset_work);
9a6b9458 2221 return 0;
cd638946 2222}
671a6018 2223#endif
cd638946
KB
2224
2225static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2226
a0a3408e
KB
2227static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2228 pci_channel_state_t state)
2229{
2230 struct nvme_dev *dev = pci_get_drvdata(pdev);
2231
2232 /*
2233 * A frozen channel requires a reset. When detected, this method will
2234 * shutdown the controller to quiesce. The controller will be restarted
2235 * after the slot reset through driver's slot_reset callback.
2236 */
2237 dev_warn(&pdev->dev, "error detected: state:%d\n", state);
2238 switch (state) {
2239 case pci_channel_io_normal:
2240 return PCI_ERS_RESULT_CAN_RECOVER;
2241 case pci_channel_io_frozen:
2242 nvme_dev_shutdown(dev);
2243 return PCI_ERS_RESULT_NEED_RESET;
2244 case pci_channel_io_perm_failure:
2245 return PCI_ERS_RESULT_DISCONNECT;
2246 }
2247 return PCI_ERS_RESULT_NEED_RESET;
2248}
2249
2250static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2251{
2252 struct nvme_dev *dev = pci_get_drvdata(pdev);
2253
2254 dev_info(&pdev->dev, "restart after slot reset\n");
2255 pci_restore_state(pdev);
2256 queue_work(nvme_workq, &dev->reset_work);
2257 return PCI_ERS_RESULT_RECOVERED;
2258}
2259
2260static void nvme_error_resume(struct pci_dev *pdev)
2261{
2262 pci_cleanup_aer_uncorrect_error_status(pdev);
2263}
2264
1d352035 2265static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2266 .error_detected = nvme_error_detected,
b60503ba
MW
2267 .slot_reset = nvme_slot_reset,
2268 .resume = nvme_error_resume,
f0d54a54 2269 .reset_notify = nvme_reset_notify,
b60503ba
MW
2270};
2271
2272/* Move to pci_ids.h later */
2273#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2274
6eb0d698 2275static const struct pci_device_id nvme_id_table[] = {
106198ed
CH
2276 { PCI_VDEVICE(INTEL, 0x0953),
2277 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
540c801c
KB
2278 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2279 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
b60503ba 2280 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2281 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2282 { 0, }
2283};
2284MODULE_DEVICE_TABLE(pci, nvme_id_table);
2285
2286static struct pci_driver nvme_driver = {
2287 .name = "nvme",
2288 .id_table = nvme_id_table,
2289 .probe = nvme_probe,
8d85fce7 2290 .remove = nvme_remove,
09ece142 2291 .shutdown = nvme_shutdown,
cd638946
KB
2292 .driver = {
2293 .pm = &nvme_dev_pm_ops,
2294 },
b60503ba
MW
2295 .err_handler = &nvme_err_handler,
2296};
2297
2298static int __init nvme_init(void)
2299{
0ac13140 2300 int result;
1fa6aead 2301
b9afca3e 2302 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 2303
92f7a162 2304 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2305 if (!nvme_workq)
b9afca3e 2306 return -ENOMEM;
9a6b9458 2307
5bae7f73 2308 result = nvme_core_init();
5c42ea16 2309 if (result < 0)
9a6b9458 2310 goto kill_workq;
b60503ba 2311
f3db22fe
KB
2312 result = pci_register_driver(&nvme_driver);
2313 if (result)
f3ca80fc 2314 goto core_exit;
1fa6aead 2315 return 0;
b60503ba 2316
f3ca80fc 2317 core_exit:
5bae7f73 2318 nvme_core_exit();
9a6b9458
KB
2319 kill_workq:
2320 destroy_workqueue(nvme_workq);
b60503ba
MW
2321 return result;
2322}
2323
2324static void __exit nvme_exit(void)
2325{
2326 pci_unregister_driver(&nvme_driver);
5bae7f73 2327 nvme_core_exit();
9a6b9458 2328 destroy_workqueue(nvme_workq);
b9afca3e 2329 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 2330 _nvme_check_size();
b60503ba
MW
2331}
2332
2333MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2334MODULE_LICENSE("GPL");
c78b4713 2335MODULE_VERSION("1.0");
b60503ba
MW
2336module_init(nvme_init);
2337module_exit(nvme_exit);