]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
mm: migrate: do not touch page->mem_cgroup of live pages
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
88f306b6
KS
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 42 *
5a505085 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 44 * ->tasklist_lock
6a46079c 45 * pte map lock
1da177e4
LT
46 */
47
48#include <linux/mm.h>
49#include <linux/pagemap.h>
50#include <linux/swap.h>
51#include <linux/swapops.h>
52#include <linux/slab.h>
53#include <linux/init.h>
5ad64688 54#include <linux/ksm.h>
1da177e4
LT
55#include <linux/rmap.h>
56#include <linux/rcupdate.h>
b95f1b31 57#include <linux/export.h>
8a9f3ccd 58#include <linux/memcontrol.h>
cddb8a5c 59#include <linux/mmu_notifier.h>
64cdd548 60#include <linux/migrate.h>
0fe6e20b 61#include <linux/hugetlb.h>
ef5d437f 62#include <linux/backing-dev.h>
33c3fc71 63#include <linux/page_idle.h>
1da177e4
LT
64
65#include <asm/tlbflush.h>
66
72b252ae
MG
67#include <trace/events/tlb.h>
68
b291f000
NP
69#include "internal.h"
70
fdd2e5f8 71static struct kmem_cache *anon_vma_cachep;
5beb4930 72static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
73
74static inline struct anon_vma *anon_vma_alloc(void)
75{
01d8b20d
PZ
76 struct anon_vma *anon_vma;
77
78 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
79 if (anon_vma) {
80 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
81 anon_vma->degree = 1; /* Reference for first vma */
82 anon_vma->parent = anon_vma;
01d8b20d
PZ
83 /*
84 * Initialise the anon_vma root to point to itself. If called
85 * from fork, the root will be reset to the parents anon_vma.
86 */
87 anon_vma->root = anon_vma;
88 }
89
90 return anon_vma;
fdd2e5f8
AB
91}
92
01d8b20d 93static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 94{
01d8b20d 95 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
96
97 /*
4fc3f1d6 98 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
99 * we can safely hold the lock without the anon_vma getting
100 * freed.
101 *
102 * Relies on the full mb implied by the atomic_dec_and_test() from
103 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 104 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 105 *
4fc3f1d6
IM
106 * page_lock_anon_vma_read() VS put_anon_vma()
107 * down_read_trylock() atomic_dec_and_test()
88c22088 108 * LOCK MB
4fc3f1d6 109 * atomic_read() rwsem_is_locked()
88c22088
PZ
110 *
111 * LOCK should suffice since the actual taking of the lock must
112 * happen _before_ what follows.
113 */
7f39dda9 114 might_sleep();
5a505085 115 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 116 anon_vma_lock_write(anon_vma);
08b52706 117 anon_vma_unlock_write(anon_vma);
88c22088
PZ
118 }
119
fdd2e5f8
AB
120 kmem_cache_free(anon_vma_cachep, anon_vma);
121}
1da177e4 122
dd34739c 123static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 124{
dd34739c 125 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
126}
127
e574b5fd 128static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
129{
130 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
131}
132
6583a843
KC
133static void anon_vma_chain_link(struct vm_area_struct *vma,
134 struct anon_vma_chain *avc,
135 struct anon_vma *anon_vma)
136{
137 avc->vma = vma;
138 avc->anon_vma = anon_vma;
139 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 140 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
141}
142
d9d332e0
LT
143/**
144 * anon_vma_prepare - attach an anon_vma to a memory region
145 * @vma: the memory region in question
146 *
147 * This makes sure the memory mapping described by 'vma' has
148 * an 'anon_vma' attached to it, so that we can associate the
149 * anonymous pages mapped into it with that anon_vma.
150 *
151 * The common case will be that we already have one, but if
23a0790a 152 * not we either need to find an adjacent mapping that we
d9d332e0
LT
153 * can re-use the anon_vma from (very common when the only
154 * reason for splitting a vma has been mprotect()), or we
155 * allocate a new one.
156 *
157 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 158 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
159 * and that may actually touch the spinlock even in the newly
160 * allocated vma (it depends on RCU to make sure that the
161 * anon_vma isn't actually destroyed).
162 *
163 * As a result, we need to do proper anon_vma locking even
164 * for the new allocation. At the same time, we do not want
165 * to do any locking for the common case of already having
166 * an anon_vma.
167 *
168 * This must be called with the mmap_sem held for reading.
169 */
1da177e4
LT
170int anon_vma_prepare(struct vm_area_struct *vma)
171{
172 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 173 struct anon_vma_chain *avc;
1da177e4
LT
174
175 might_sleep();
176 if (unlikely(!anon_vma)) {
177 struct mm_struct *mm = vma->vm_mm;
d9d332e0 178 struct anon_vma *allocated;
1da177e4 179
dd34739c 180 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
181 if (!avc)
182 goto out_enomem;
183
1da177e4 184 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
185 allocated = NULL;
186 if (!anon_vma) {
1da177e4
LT
187 anon_vma = anon_vma_alloc();
188 if (unlikely(!anon_vma))
5beb4930 189 goto out_enomem_free_avc;
1da177e4 190 allocated = anon_vma;
1da177e4
LT
191 }
192
4fc3f1d6 193 anon_vma_lock_write(anon_vma);
1da177e4
LT
194 /* page_table_lock to protect against threads */
195 spin_lock(&mm->page_table_lock);
196 if (likely(!vma->anon_vma)) {
197 vma->anon_vma = anon_vma;
6583a843 198 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208
KK
199 /* vma reference or self-parent link for new root */
200 anon_vma->degree++;
1da177e4 201 allocated = NULL;
31f2b0eb 202 avc = NULL;
1da177e4
LT
203 }
204 spin_unlock(&mm->page_table_lock);
08b52706 205 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
206
207 if (unlikely(allocated))
01d8b20d 208 put_anon_vma(allocated);
31f2b0eb 209 if (unlikely(avc))
5beb4930 210 anon_vma_chain_free(avc);
1da177e4
LT
211 }
212 return 0;
5beb4930
RR
213
214 out_enomem_free_avc:
215 anon_vma_chain_free(avc);
216 out_enomem:
217 return -ENOMEM;
1da177e4
LT
218}
219
bb4aa396
LT
220/*
221 * This is a useful helper function for locking the anon_vma root as
222 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
223 * have the same vma.
224 *
225 * Such anon_vma's should have the same root, so you'd expect to see
226 * just a single mutex_lock for the whole traversal.
227 */
228static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
229{
230 struct anon_vma *new_root = anon_vma->root;
231 if (new_root != root) {
232 if (WARN_ON_ONCE(root))
5a505085 233 up_write(&root->rwsem);
bb4aa396 234 root = new_root;
5a505085 235 down_write(&root->rwsem);
bb4aa396
LT
236 }
237 return root;
238}
239
240static inline void unlock_anon_vma_root(struct anon_vma *root)
241{
242 if (root)
5a505085 243 up_write(&root->rwsem);
bb4aa396
LT
244}
245
5beb4930
RR
246/*
247 * Attach the anon_vmas from src to dst.
248 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
249 *
250 * If dst->anon_vma is NULL this function tries to find and reuse existing
251 * anon_vma which has no vmas and only one child anon_vma. This prevents
252 * degradation of anon_vma hierarchy to endless linear chain in case of
253 * constantly forking task. On the other hand, an anon_vma with more than one
254 * child isn't reused even if there was no alive vma, thus rmap walker has a
255 * good chance of avoiding scanning the whole hierarchy when it searches where
256 * page is mapped.
5beb4930
RR
257 */
258int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 259{
5beb4930 260 struct anon_vma_chain *avc, *pavc;
bb4aa396 261 struct anon_vma *root = NULL;
5beb4930 262
646d87b4 263 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
264 struct anon_vma *anon_vma;
265
dd34739c
LT
266 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
267 if (unlikely(!avc)) {
268 unlock_anon_vma_root(root);
269 root = NULL;
270 avc = anon_vma_chain_alloc(GFP_KERNEL);
271 if (!avc)
272 goto enomem_failure;
273 }
bb4aa396
LT
274 anon_vma = pavc->anon_vma;
275 root = lock_anon_vma_root(root, anon_vma);
276 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
277
278 /*
279 * Reuse existing anon_vma if its degree lower than two,
280 * that means it has no vma and only one anon_vma child.
281 *
282 * Do not chose parent anon_vma, otherwise first child
283 * will always reuse it. Root anon_vma is never reused:
284 * it has self-parent reference and at least one child.
285 */
286 if (!dst->anon_vma && anon_vma != src->anon_vma &&
287 anon_vma->degree < 2)
288 dst->anon_vma = anon_vma;
5beb4930 289 }
7a3ef208
KK
290 if (dst->anon_vma)
291 dst->anon_vma->degree++;
bb4aa396 292 unlock_anon_vma_root(root);
5beb4930 293 return 0;
1da177e4 294
5beb4930 295 enomem_failure:
3fe89b3e
LY
296 /*
297 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
298 * decremented in unlink_anon_vmas().
299 * We can safely do this because callers of anon_vma_clone() don't care
300 * about dst->anon_vma if anon_vma_clone() failed.
301 */
302 dst->anon_vma = NULL;
5beb4930
RR
303 unlink_anon_vmas(dst);
304 return -ENOMEM;
1da177e4
LT
305}
306
5beb4930
RR
307/*
308 * Attach vma to its own anon_vma, as well as to the anon_vmas that
309 * the corresponding VMA in the parent process is attached to.
310 * Returns 0 on success, non-zero on failure.
311 */
312int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 313{
5beb4930
RR
314 struct anon_vma_chain *avc;
315 struct anon_vma *anon_vma;
c4ea95d7 316 int error;
1da177e4 317
5beb4930
RR
318 /* Don't bother if the parent process has no anon_vma here. */
319 if (!pvma->anon_vma)
320 return 0;
321
7a3ef208
KK
322 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
323 vma->anon_vma = NULL;
324
5beb4930
RR
325 /*
326 * First, attach the new VMA to the parent VMA's anon_vmas,
327 * so rmap can find non-COWed pages in child processes.
328 */
c4ea95d7
DF
329 error = anon_vma_clone(vma, pvma);
330 if (error)
331 return error;
5beb4930 332
7a3ef208
KK
333 /* An existing anon_vma has been reused, all done then. */
334 if (vma->anon_vma)
335 return 0;
336
5beb4930
RR
337 /* Then add our own anon_vma. */
338 anon_vma = anon_vma_alloc();
339 if (!anon_vma)
340 goto out_error;
dd34739c 341 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
342 if (!avc)
343 goto out_error_free_anon_vma;
5c341ee1
RR
344
345 /*
346 * The root anon_vma's spinlock is the lock actually used when we
347 * lock any of the anon_vmas in this anon_vma tree.
348 */
349 anon_vma->root = pvma->anon_vma->root;
7a3ef208 350 anon_vma->parent = pvma->anon_vma;
76545066 351 /*
01d8b20d
PZ
352 * With refcounts, an anon_vma can stay around longer than the
353 * process it belongs to. The root anon_vma needs to be pinned until
354 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
355 */
356 get_anon_vma(anon_vma->root);
5beb4930
RR
357 /* Mark this anon_vma as the one where our new (COWed) pages go. */
358 vma->anon_vma = anon_vma;
4fc3f1d6 359 anon_vma_lock_write(anon_vma);
5c341ee1 360 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 361 anon_vma->parent->degree++;
08b52706 362 anon_vma_unlock_write(anon_vma);
5beb4930
RR
363
364 return 0;
365
366 out_error_free_anon_vma:
01d8b20d 367 put_anon_vma(anon_vma);
5beb4930 368 out_error:
4946d54c 369 unlink_anon_vmas(vma);
5beb4930 370 return -ENOMEM;
1da177e4
LT
371}
372
5beb4930
RR
373void unlink_anon_vmas(struct vm_area_struct *vma)
374{
375 struct anon_vma_chain *avc, *next;
eee2acba 376 struct anon_vma *root = NULL;
5beb4930 377
5c341ee1
RR
378 /*
379 * Unlink each anon_vma chained to the VMA. This list is ordered
380 * from newest to oldest, ensuring the root anon_vma gets freed last.
381 */
5beb4930 382 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
383 struct anon_vma *anon_vma = avc->anon_vma;
384
385 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 386 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
387
388 /*
389 * Leave empty anon_vmas on the list - we'll need
390 * to free them outside the lock.
391 */
7a3ef208
KK
392 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
393 anon_vma->parent->degree--;
eee2acba 394 continue;
7a3ef208 395 }
eee2acba
PZ
396
397 list_del(&avc->same_vma);
398 anon_vma_chain_free(avc);
399 }
7a3ef208
KK
400 if (vma->anon_vma)
401 vma->anon_vma->degree--;
eee2acba
PZ
402 unlock_anon_vma_root(root);
403
404 /*
405 * Iterate the list once more, it now only contains empty and unlinked
406 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 407 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
408 */
409 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
410 struct anon_vma *anon_vma = avc->anon_vma;
411
7a3ef208 412 BUG_ON(anon_vma->degree);
eee2acba
PZ
413 put_anon_vma(anon_vma);
414
5beb4930
RR
415 list_del(&avc->same_vma);
416 anon_vma_chain_free(avc);
417 }
418}
419
51cc5068 420static void anon_vma_ctor(void *data)
1da177e4 421{
a35afb83 422 struct anon_vma *anon_vma = data;
1da177e4 423
5a505085 424 init_rwsem(&anon_vma->rwsem);
83813267 425 atomic_set(&anon_vma->refcount, 0);
bf181b9f 426 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
427}
428
429void __init anon_vma_init(void)
430{
431 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5d097056
VD
432 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
433 anon_vma_ctor);
434 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
435 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
436}
437
438/*
6111e4ca
PZ
439 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
440 *
441 * Since there is no serialization what so ever against page_remove_rmap()
442 * the best this function can do is return a locked anon_vma that might
443 * have been relevant to this page.
444 *
445 * The page might have been remapped to a different anon_vma or the anon_vma
446 * returned may already be freed (and even reused).
447 *
bc658c96
PZ
448 * In case it was remapped to a different anon_vma, the new anon_vma will be a
449 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
450 * ensure that any anon_vma obtained from the page will still be valid for as
451 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
452 *
6111e4ca
PZ
453 * All users of this function must be very careful when walking the anon_vma
454 * chain and verify that the page in question is indeed mapped in it
455 * [ something equivalent to page_mapped_in_vma() ].
456 *
457 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
458 * that the anon_vma pointer from page->mapping is valid if there is a
459 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 460 */
746b18d4 461struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 462{
746b18d4 463 struct anon_vma *anon_vma = NULL;
1da177e4
LT
464 unsigned long anon_mapping;
465
466 rcu_read_lock();
4db0c3c2 467 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 468 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
469 goto out;
470 if (!page_mapped(page))
471 goto out;
472
473 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
474 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 anon_vma = NULL;
476 goto out;
477 }
f1819427
HD
478
479 /*
480 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
481 * freed. But if it has been unmapped, we have no security against the
482 * anon_vma structure being freed and reused (for another anon_vma:
483 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
484 * above cannot corrupt).
f1819427 485 */
746b18d4 486 if (!page_mapped(page)) {
7f39dda9 487 rcu_read_unlock();
746b18d4 488 put_anon_vma(anon_vma);
7f39dda9 489 return NULL;
746b18d4 490 }
1da177e4
LT
491out:
492 rcu_read_unlock();
746b18d4
PZ
493
494 return anon_vma;
495}
496
88c22088
PZ
497/*
498 * Similar to page_get_anon_vma() except it locks the anon_vma.
499 *
500 * Its a little more complex as it tries to keep the fast path to a single
501 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
502 * reference like with page_get_anon_vma() and then block on the mutex.
503 */
4fc3f1d6 504struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 505{
88c22088 506 struct anon_vma *anon_vma = NULL;
eee0f252 507 struct anon_vma *root_anon_vma;
88c22088 508 unsigned long anon_mapping;
746b18d4 509
88c22088 510 rcu_read_lock();
4db0c3c2 511 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
512 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
513 goto out;
514 if (!page_mapped(page))
515 goto out;
516
517 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 518 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 519 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 520 /*
eee0f252
HD
521 * If the page is still mapped, then this anon_vma is still
522 * its anon_vma, and holding the mutex ensures that it will
bc658c96 523 * not go away, see anon_vma_free().
88c22088 524 */
eee0f252 525 if (!page_mapped(page)) {
4fc3f1d6 526 up_read(&root_anon_vma->rwsem);
88c22088
PZ
527 anon_vma = NULL;
528 }
529 goto out;
530 }
746b18d4 531
88c22088
PZ
532 /* trylock failed, we got to sleep */
533 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
534 anon_vma = NULL;
535 goto out;
536 }
537
538 if (!page_mapped(page)) {
7f39dda9 539 rcu_read_unlock();
88c22088 540 put_anon_vma(anon_vma);
7f39dda9 541 return NULL;
88c22088
PZ
542 }
543
544 /* we pinned the anon_vma, its safe to sleep */
545 rcu_read_unlock();
4fc3f1d6 546 anon_vma_lock_read(anon_vma);
88c22088
PZ
547
548 if (atomic_dec_and_test(&anon_vma->refcount)) {
549 /*
550 * Oops, we held the last refcount, release the lock
551 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 552 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 553 */
4fc3f1d6 554 anon_vma_unlock_read(anon_vma);
88c22088
PZ
555 __put_anon_vma(anon_vma);
556 anon_vma = NULL;
557 }
558
559 return anon_vma;
560
561out:
562 rcu_read_unlock();
746b18d4 563 return anon_vma;
34bbd704
ON
564}
565
4fc3f1d6 566void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 567{
4fc3f1d6 568 anon_vma_unlock_read(anon_vma);
1da177e4
LT
569}
570
72b252ae
MG
571#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
572static void percpu_flush_tlb_batch_pages(void *data)
573{
574 /*
575 * All TLB entries are flushed on the assumption that it is
576 * cheaper to flush all TLBs and let them be refilled than
577 * flushing individual PFNs. Note that we do not track mm's
578 * to flush as that might simply be multiple full TLB flushes
579 * for no gain.
580 */
581 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
582 flush_tlb_local();
583}
584
585/*
586 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
587 * important if a PTE was dirty when it was unmapped that it's flushed
588 * before any IO is initiated on the page to prevent lost writes. Similarly,
589 * it must be flushed before freeing to prevent data leakage.
590 */
591void try_to_unmap_flush(void)
592{
593 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
594 int cpu;
595
596 if (!tlb_ubc->flush_required)
597 return;
598
599 cpu = get_cpu();
600
601 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
602
603 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
604 percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
605
606 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
607 smp_call_function_many(&tlb_ubc->cpumask,
608 percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
609 }
610 cpumask_clear(&tlb_ubc->cpumask);
611 tlb_ubc->flush_required = false;
d950c947 612 tlb_ubc->writable = false;
72b252ae
MG
613 put_cpu();
614}
615
d950c947
MG
616/* Flush iff there are potentially writable TLB entries that can race with IO */
617void try_to_unmap_flush_dirty(void)
618{
619 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
620
621 if (tlb_ubc->writable)
622 try_to_unmap_flush();
623}
624
72b252ae 625static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 626 struct page *page, bool writable)
72b252ae
MG
627{
628 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
629
630 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
631 tlb_ubc->flush_required = true;
d950c947
MG
632
633 /*
634 * If the PTE was dirty then it's best to assume it's writable. The
635 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
636 * before the page is queued for IO.
637 */
638 if (writable)
639 tlb_ubc->writable = true;
72b252ae
MG
640}
641
642/*
643 * Returns true if the TLB flush should be deferred to the end of a batch of
644 * unmap operations to reduce IPIs.
645 */
646static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
647{
648 bool should_defer = false;
649
650 if (!(flags & TTU_BATCH_FLUSH))
651 return false;
652
653 /* If remote CPUs need to be flushed then defer batch the flush */
654 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
655 should_defer = true;
656 put_cpu();
657
658 return should_defer;
659}
660#else
661static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 662 struct page *page, bool writable)
72b252ae
MG
663{
664}
665
666static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
667{
668 return false;
669}
670#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
671
1da177e4 672/*
bf89c8c8 673 * At what user virtual address is page expected in vma?
ab941e0f 674 * Caller should check the page is actually part of the vma.
1da177e4
LT
675 */
676unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
677{
86c2ad19 678 unsigned long address;
21d0d443 679 if (PageAnon(page)) {
4829b906
HD
680 struct anon_vma *page__anon_vma = page_anon_vma(page);
681 /*
682 * Note: swapoff's unuse_vma() is more efficient with this
683 * check, and needs it to match anon_vma when KSM is active.
684 */
685 if (!vma->anon_vma || !page__anon_vma ||
686 vma->anon_vma->root != page__anon_vma->root)
21d0d443 687 return -EFAULT;
27ba0644
KS
688 } else if (page->mapping) {
689 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
690 return -EFAULT;
691 } else
692 return -EFAULT;
86c2ad19
ML
693 address = __vma_address(page, vma);
694 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
695 return -EFAULT;
696 return address;
1da177e4
LT
697}
698
6219049a
BL
699pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
700{
701 pgd_t *pgd;
702 pud_t *pud;
703 pmd_t *pmd = NULL;
f72e7dcd 704 pmd_t pmde;
6219049a
BL
705
706 pgd = pgd_offset(mm, address);
707 if (!pgd_present(*pgd))
708 goto out;
709
710 pud = pud_offset(pgd, address);
711 if (!pud_present(*pud))
712 goto out;
713
714 pmd = pmd_offset(pud, address);
f72e7dcd 715 /*
8809aa2d 716 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
717 * without holding anon_vma lock for write. So when looking for a
718 * genuine pmde (in which to find pte), test present and !THP together.
719 */
e37c6982
CB
720 pmde = *pmd;
721 barrier();
f72e7dcd 722 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
723 pmd = NULL;
724out:
725 return pmd;
726}
727
81b4082d
ND
728/*
729 * Check that @page is mapped at @address into @mm.
730 *
479db0bf
NP
731 * If @sync is false, page_check_address may perform a racy check to avoid
732 * the page table lock when the pte is not present (helpful when reclaiming
733 * highly shared pages).
734 *
b8072f09 735 * On success returns with pte mapped and locked.
81b4082d 736 */
e9a81a82 737pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 738 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 739{
81b4082d
ND
740 pmd_t *pmd;
741 pte_t *pte;
c0718806 742 spinlock_t *ptl;
81b4082d 743
0fe6e20b 744 if (unlikely(PageHuge(page))) {
98398c32 745 /* when pud is not present, pte will be NULL */
0fe6e20b 746 pte = huge_pte_offset(mm, address);
98398c32
JW
747 if (!pte)
748 return NULL;
749
cb900f41 750 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
751 goto check;
752 }
753
6219049a
BL
754 pmd = mm_find_pmd(mm, address);
755 if (!pmd)
c0718806
HD
756 return NULL;
757
c0718806
HD
758 pte = pte_offset_map(pmd, address);
759 /* Make a quick check before getting the lock */
479db0bf 760 if (!sync && !pte_present(*pte)) {
c0718806
HD
761 pte_unmap(pte);
762 return NULL;
763 }
764
4c21e2f2 765 ptl = pte_lockptr(mm, pmd);
0fe6e20b 766check:
c0718806
HD
767 spin_lock(ptl);
768 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
769 *ptlp = ptl;
770 return pte;
81b4082d 771 }
c0718806
HD
772 pte_unmap_unlock(pte, ptl);
773 return NULL;
81b4082d
ND
774}
775
b291f000
NP
776/**
777 * page_mapped_in_vma - check whether a page is really mapped in a VMA
778 * @page: the page to test
779 * @vma: the VMA to test
780 *
781 * Returns 1 if the page is mapped into the page tables of the VMA, 0
782 * if the page is not mapped into the page tables of this VMA. Only
783 * valid for normal file or anonymous VMAs.
784 */
6a46079c 785int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
786{
787 unsigned long address;
788 pte_t *pte;
789 spinlock_t *ptl;
790
86c2ad19
ML
791 address = __vma_address(page, vma);
792 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
793 return 0;
794 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
795 if (!pte) /* the page is not in this mm */
796 return 0;
797 pte_unmap_unlock(pte, ptl);
798
799 return 1;
800}
801
8749cfea 802#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1da177e4 803/*
8749cfea
VD
804 * Check that @page is mapped at @address into @mm. In contrast to
805 * page_check_address(), this function can handle transparent huge pages.
806 *
807 * On success returns true with pte mapped and locked. For PMD-mapped
808 * transparent huge pages *@ptep is set to NULL.
1da177e4 809 */
8749cfea
VD
810bool page_check_address_transhuge(struct page *page, struct mm_struct *mm,
811 unsigned long address, pmd_t **pmdp,
812 pte_t **ptep, spinlock_t **ptlp)
1da177e4 813{
b20ce5e0
KS
814 pgd_t *pgd;
815 pud_t *pud;
816 pmd_t *pmd;
817 pte_t *pte;
8749cfea 818 spinlock_t *ptl;
1da177e4 819
b20ce5e0
KS
820 if (unlikely(PageHuge(page))) {
821 /* when pud is not present, pte will be NULL */
822 pte = huge_pte_offset(mm, address);
823 if (!pte)
8749cfea 824 return false;
2da28bfd 825
b20ce5e0 826 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
8749cfea 827 pmd = NULL;
b20ce5e0
KS
828 goto check_pte;
829 }
830
831 pgd = pgd_offset(mm, address);
832 if (!pgd_present(*pgd))
8749cfea 833 return false;
b20ce5e0
KS
834 pud = pud_offset(pgd, address);
835 if (!pud_present(*pud))
8749cfea 836 return false;
b20ce5e0
KS
837 pmd = pmd_offset(pud, address);
838
839 if (pmd_trans_huge(*pmd)) {
b20ce5e0
KS
840 ptl = pmd_lock(mm, pmd);
841 if (!pmd_present(*pmd))
842 goto unlock_pmd;
843 if (unlikely(!pmd_trans_huge(*pmd))) {
117b0791 844 spin_unlock(ptl);
b20ce5e0
KS
845 goto map_pte;
846 }
847
848 if (pmd_page(*pmd) != page)
849 goto unlock_pmd;
850
8749cfea 851 pte = NULL;
b20ce5e0
KS
852 goto found;
853unlock_pmd:
854 spin_unlock(ptl);
8749cfea 855 return false;
71e3aac0 856 } else {
b20ce5e0 857 pmd_t pmde = *pmd;
71e3aac0 858
b20ce5e0
KS
859 barrier();
860 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
8749cfea 861 return false;
b20ce5e0
KS
862 }
863map_pte:
864 pte = pte_offset_map(pmd, address);
865 if (!pte_present(*pte)) {
866 pte_unmap(pte);
8749cfea 867 return false;
b20ce5e0 868 }
71e3aac0 869
b20ce5e0
KS
870 ptl = pte_lockptr(mm, pmd);
871check_pte:
872 spin_lock(ptl);
2da28bfd 873
b20ce5e0
KS
874 if (!pte_present(*pte)) {
875 pte_unmap_unlock(pte, ptl);
8749cfea 876 return false;
b20ce5e0
KS
877 }
878
879 /* THP can be referenced by any subpage */
880 if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
881 pte_unmap_unlock(pte, ptl);
8749cfea 882 return false;
b20ce5e0 883 }
8749cfea
VD
884found:
885 *ptep = pte;
886 *pmdp = pmd;
887 *ptlp = ptl;
888 return true;
889}
890#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
891
892struct page_referenced_arg {
893 int mapcount;
894 int referenced;
895 unsigned long vm_flags;
896 struct mem_cgroup *memcg;
897};
898/*
899 * arg: page_referenced_arg will be passed
900 */
901static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
902 unsigned long address, void *arg)
903{
904 struct mm_struct *mm = vma->vm_mm;
905 struct page_referenced_arg *pra = arg;
906 pmd_t *pmd;
907 pte_t *pte;
908 spinlock_t *ptl;
909 int referenced = 0;
910
911 if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl))
912 return SWAP_AGAIN;
b20ce5e0
KS
913
914 if (vma->vm_flags & VM_LOCKED) {
8749cfea
VD
915 if (pte)
916 pte_unmap(pte);
917 spin_unlock(ptl);
b20ce5e0
KS
918 pra->vm_flags |= VM_LOCKED;
919 return SWAP_FAIL; /* To break the loop */
71e3aac0
AA
920 }
921
8749cfea
VD
922 if (pte) {
923 if (ptep_clear_flush_young_notify(vma, address, pte)) {
924 /*
925 * Don't treat a reference through a sequentially read
926 * mapping as such. If the page has been used in
927 * another mapping, we will catch it; if this other
928 * mapping is already gone, the unmap path will have
929 * set PG_referenced or activated the page.
930 */
931 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
932 referenced++;
933 }
934 pte_unmap(pte);
935 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
936 if (pmdp_clear_flush_young_notify(vma, address, pmd))
b20ce5e0 937 referenced++;
8749cfea
VD
938 } else {
939 /* unexpected pmd-mapped page? */
940 WARN_ON_ONCE(1);
b20ce5e0 941 }
8749cfea 942 spin_unlock(ptl);
b20ce5e0 943
33c3fc71
VD
944 if (referenced)
945 clear_page_idle(page);
946 if (test_and_clear_page_young(page))
947 referenced++;
948
9f32624b
JK
949 if (referenced) {
950 pra->referenced++;
951 pra->vm_flags |= vma->vm_flags;
1da177e4 952 }
34bbd704 953
9f32624b
JK
954 pra->mapcount--;
955 if (!pra->mapcount)
956 return SWAP_SUCCESS; /* To break the loop */
957
958 return SWAP_AGAIN;
1da177e4
LT
959}
960
9f32624b 961static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 962{
9f32624b
JK
963 struct page_referenced_arg *pra = arg;
964 struct mem_cgroup *memcg = pra->memcg;
1da177e4 965
9f32624b
JK
966 if (!mm_match_cgroup(vma->vm_mm, memcg))
967 return true;
1da177e4 968
9f32624b 969 return false;
1da177e4
LT
970}
971
972/**
973 * page_referenced - test if the page was referenced
974 * @page: the page to test
975 * @is_locked: caller holds lock on the page
72835c86 976 * @memcg: target memory cgroup
6fe6b7e3 977 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
978 *
979 * Quick test_and_clear_referenced for all mappings to a page,
980 * returns the number of ptes which referenced the page.
981 */
6fe6b7e3
WF
982int page_referenced(struct page *page,
983 int is_locked,
72835c86 984 struct mem_cgroup *memcg,
6fe6b7e3 985 unsigned long *vm_flags)
1da177e4 986{
9f32624b 987 int ret;
5ad64688 988 int we_locked = 0;
9f32624b 989 struct page_referenced_arg pra = {
b20ce5e0 990 .mapcount = total_mapcount(page),
9f32624b
JK
991 .memcg = memcg,
992 };
993 struct rmap_walk_control rwc = {
994 .rmap_one = page_referenced_one,
995 .arg = (void *)&pra,
996 .anon_lock = page_lock_anon_vma_read,
997 };
1da177e4 998
6fe6b7e3 999 *vm_flags = 0;
9f32624b
JK
1000 if (!page_mapped(page))
1001 return 0;
1002
1003 if (!page_rmapping(page))
1004 return 0;
1005
1006 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
1007 we_locked = trylock_page(page);
1008 if (!we_locked)
1009 return 1;
1da177e4 1010 }
9f32624b
JK
1011
1012 /*
1013 * If we are reclaiming on behalf of a cgroup, skip
1014 * counting on behalf of references from different
1015 * cgroups
1016 */
1017 if (memcg) {
1018 rwc.invalid_vma = invalid_page_referenced_vma;
1019 }
1020
1021 ret = rmap_walk(page, &rwc);
1022 *vm_flags = pra.vm_flags;
1023
1024 if (we_locked)
1025 unlock_page(page);
1026
1027 return pra.referenced;
1da177e4
LT
1028}
1029
1cb1729b 1030static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 1031 unsigned long address, void *arg)
d08b3851
PZ
1032{
1033 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 1034 pte_t *pte;
d08b3851
PZ
1035 spinlock_t *ptl;
1036 int ret = 0;
9853a407 1037 int *cleaned = arg;
d08b3851 1038
479db0bf 1039 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
1040 if (!pte)
1041 goto out;
1042
c2fda5fe
PZ
1043 if (pte_dirty(*pte) || pte_write(*pte)) {
1044 pte_t entry;
d08b3851 1045
c2fda5fe 1046 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 1047 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
1048 entry = pte_wrprotect(entry);
1049 entry = pte_mkclean(entry);
d6e88e67 1050 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
1051 ret = 1;
1052 }
d08b3851 1053
d08b3851 1054 pte_unmap_unlock(pte, ptl);
2ec74c3e 1055
9853a407 1056 if (ret) {
2ec74c3e 1057 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
1058 (*cleaned)++;
1059 }
d08b3851 1060out:
9853a407 1061 return SWAP_AGAIN;
d08b3851
PZ
1062}
1063
9853a407 1064static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1065{
9853a407 1066 if (vma->vm_flags & VM_SHARED)
871beb8c 1067 return false;
d08b3851 1068
871beb8c 1069 return true;
d08b3851
PZ
1070}
1071
1072int page_mkclean(struct page *page)
1073{
9853a407
JK
1074 int cleaned = 0;
1075 struct address_space *mapping;
1076 struct rmap_walk_control rwc = {
1077 .arg = (void *)&cleaned,
1078 .rmap_one = page_mkclean_one,
1079 .invalid_vma = invalid_mkclean_vma,
1080 };
d08b3851
PZ
1081
1082 BUG_ON(!PageLocked(page));
1083
9853a407
JK
1084 if (!page_mapped(page))
1085 return 0;
1086
1087 mapping = page_mapping(page);
1088 if (!mapping)
1089 return 0;
1090
1091 rmap_walk(page, &rwc);
d08b3851 1092
9853a407 1093 return cleaned;
d08b3851 1094}
60b59bea 1095EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 1096
c44b6743
RR
1097/**
1098 * page_move_anon_rmap - move a page to our anon_vma
1099 * @page: the page to move to our anon_vma
1100 * @vma: the vma the page belongs to
1101 * @address: the user virtual address mapped
1102 *
1103 * When a page belongs exclusively to one process after a COW event,
1104 * that page can be moved into the anon_vma that belongs to just that
1105 * process, so the rmap code will not search the parent or sibling
1106 * processes.
1107 */
1108void page_move_anon_rmap(struct page *page,
1109 struct vm_area_struct *vma, unsigned long address)
1110{
1111 struct anon_vma *anon_vma = vma->anon_vma;
1112
309381fe 1113 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1114 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 1115 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
1116
1117 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1118 /*
1119 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1120 * simultaneously, so a concurrent reader (eg page_referenced()'s
1121 * PageAnon()) will not see one without the other.
1122 */
1123 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1124}
1125
9617d95e 1126/**
4e1c1975
AK
1127 * __page_set_anon_rmap - set up new anonymous rmap
1128 * @page: Page to add to rmap
1129 * @vma: VM area to add page to.
1130 * @address: User virtual address of the mapping
e8a03feb 1131 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1132 */
1133static void __page_set_anon_rmap(struct page *page,
e8a03feb 1134 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1135{
e8a03feb 1136 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1137
e8a03feb 1138 BUG_ON(!anon_vma);
ea90002b 1139
4e1c1975
AK
1140 if (PageAnon(page))
1141 return;
1142
ea90002b 1143 /*
e8a03feb
RR
1144 * If the page isn't exclusively mapped into this vma,
1145 * we must use the _oldest_ possible anon_vma for the
1146 * page mapping!
ea90002b 1147 */
4e1c1975 1148 if (!exclusive)
288468c3 1149 anon_vma = anon_vma->root;
9617d95e 1150
9617d95e
NP
1151 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1152 page->mapping = (struct address_space *) anon_vma;
9617d95e 1153 page->index = linear_page_index(vma, address);
9617d95e
NP
1154}
1155
c97a9e10 1156/**
43d8eac4 1157 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1158 * @page: the page to add the mapping to
1159 * @vma: the vm area in which the mapping is added
1160 * @address: the user virtual address mapped
1161 */
1162static void __page_check_anon_rmap(struct page *page,
1163 struct vm_area_struct *vma, unsigned long address)
1164{
1165#ifdef CONFIG_DEBUG_VM
1166 /*
1167 * The page's anon-rmap details (mapping and index) are guaranteed to
1168 * be set up correctly at this point.
1169 *
1170 * We have exclusion against page_add_anon_rmap because the caller
1171 * always holds the page locked, except if called from page_dup_rmap,
1172 * in which case the page is already known to be setup.
1173 *
1174 * We have exclusion against page_add_new_anon_rmap because those pages
1175 * are initially only visible via the pagetables, and the pte is locked
1176 * over the call to page_add_new_anon_rmap.
1177 */
44ab57a0 1178 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
53f9263b 1179 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
c97a9e10
NP
1180#endif
1181}
1182
1da177e4
LT
1183/**
1184 * page_add_anon_rmap - add pte mapping to an anonymous page
1185 * @page: the page to add the mapping to
1186 * @vma: the vm area in which the mapping is added
1187 * @address: the user virtual address mapped
d281ee61 1188 * @compound: charge the page as compound or small page
1da177e4 1189 *
5ad64688 1190 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1191 * the anon_vma case: to serialize mapping,index checking after setting,
1192 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1193 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1194 */
1195void page_add_anon_rmap(struct page *page,
d281ee61 1196 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1197{
d281ee61 1198 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1199}
1200
1201/*
1202 * Special version of the above for do_swap_page, which often runs
1203 * into pages that are exclusively owned by the current process.
1204 * Everybody else should continue to use page_add_anon_rmap above.
1205 */
1206void do_page_add_anon_rmap(struct page *page,
d281ee61 1207 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1208{
53f9263b
KS
1209 bool compound = flags & RMAP_COMPOUND;
1210 bool first;
1211
e9b61f19
KS
1212 if (compound) {
1213 atomic_t *mapcount;
53f9263b 1214 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1215 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1216 mapcount = compound_mapcount_ptr(page);
1217 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1218 } else {
1219 first = atomic_inc_and_test(&page->_mapcount);
1220 }
1221
79134171 1222 if (first) {
d281ee61 1223 int nr = compound ? hpage_nr_pages(page) : 1;
bea04b07
JZ
1224 /*
1225 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1226 * these counters are not modified in interrupt context, and
1227 * pte lock(a spinlock) is held, which implies preemption
1228 * disabled.
1229 */
d281ee61 1230 if (compound) {
79134171
AA
1231 __inc_zone_page_state(page,
1232 NR_ANON_TRANSPARENT_HUGEPAGES);
d281ee61
KS
1233 }
1234 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
79134171 1235 }
5ad64688
HD
1236 if (unlikely(PageKsm(page)))
1237 return;
1238
309381fe 1239 VM_BUG_ON_PAGE(!PageLocked(page), page);
53f9263b 1240
5dbe0af4 1241 /* address might be in next vma when migration races vma_adjust */
5ad64688 1242 if (first)
d281ee61
KS
1243 __page_set_anon_rmap(page, vma, address,
1244 flags & RMAP_EXCLUSIVE);
69029cd5 1245 else
c97a9e10 1246 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1247}
1248
43d8eac4 1249/**
9617d95e
NP
1250 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1251 * @page: the page to add the mapping to
1252 * @vma: the vm area in which the mapping is added
1253 * @address: the user virtual address mapped
d281ee61 1254 * @compound: charge the page as compound or small page
9617d95e
NP
1255 *
1256 * Same as page_add_anon_rmap but must only be called on *new* pages.
1257 * This means the inc-and-test can be bypassed.
c97a9e10 1258 * Page does not have to be locked.
9617d95e
NP
1259 */
1260void page_add_new_anon_rmap(struct page *page,
d281ee61 1261 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1262{
d281ee61
KS
1263 int nr = compound ? hpage_nr_pages(page) : 1;
1264
81d1b09c 1265 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a 1266 SetPageSwapBacked(page);
d281ee61
KS
1267 if (compound) {
1268 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1269 /* increment count (starts at -1) */
1270 atomic_set(compound_mapcount_ptr(page), 0);
79134171 1271 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
53f9263b
KS
1272 } else {
1273 /* Anon THP always mapped first with PMD */
1274 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1275 /* increment count (starts at -1) */
1276 atomic_set(&page->_mapcount, 0);
d281ee61
KS
1277 }
1278 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
e8a03feb 1279 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1280}
1281
1da177e4
LT
1282/**
1283 * page_add_file_rmap - add pte mapping to a file page
1284 * @page: the page to add the mapping to
1285 *
b8072f09 1286 * The caller needs to hold the pte lock.
1da177e4
LT
1287 */
1288void page_add_file_rmap(struct page *page)
1289{
d7365e78 1290 struct mem_cgroup *memcg;
89c06bd5 1291
81f8c3a4 1292 memcg = lock_page_memcg(page);
d69b042f 1293 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1294 __inc_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1295 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1296 }
81f8c3a4 1297 unlock_page_memcg(memcg);
1da177e4
LT
1298}
1299
8186eb6a
JW
1300static void page_remove_file_rmap(struct page *page)
1301{
1302 struct mem_cgroup *memcg;
8186eb6a 1303
81f8c3a4 1304 memcg = lock_page_memcg(page);
8186eb6a 1305
53f9263b
KS
1306 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1307 if (unlikely(PageHuge(page))) {
1308 /* hugetlb pages are always mapped with pmds */
1309 atomic_dec(compound_mapcount_ptr(page));
8186eb6a 1310 goto out;
53f9263b 1311 }
8186eb6a 1312
53f9263b
KS
1313 /* page still mapped by someone else? */
1314 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1315 goto out;
1316
1317 /*
1318 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1319 * these counters are not modified in interrupt context, and
1320 * pte lock(a spinlock) is held, which implies preemption disabled.
1321 */
1322 __dec_zone_page_state(page, NR_FILE_MAPPED);
1323 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1324
1325 if (unlikely(PageMlocked(page)))
1326 clear_page_mlock(page);
1327out:
81f8c3a4 1328 unlock_page_memcg(memcg);
8186eb6a
JW
1329}
1330
53f9263b
KS
1331static void page_remove_anon_compound_rmap(struct page *page)
1332{
1333 int i, nr;
1334
1335 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1336 return;
1337
1338 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1339 if (unlikely(PageHuge(page)))
1340 return;
1341
1342 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1343 return;
1344
1345 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1346
1347 if (TestClearPageDoubleMap(page)) {
1348 /*
1349 * Subpages can be mapped with PTEs too. Check how many of
1350 * themi are still mapped.
1351 */
1352 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1353 if (atomic_add_negative(-1, &page[i]._mapcount))
1354 nr++;
1355 }
1356 } else {
1357 nr = HPAGE_PMD_NR;
1358 }
1359
e90309c9
KS
1360 if (unlikely(PageMlocked(page)))
1361 clear_page_mlock(page);
1362
9a982250 1363 if (nr) {
53f9263b 1364 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr);
9a982250
KS
1365 deferred_split_huge_page(page);
1366 }
53f9263b
KS
1367}
1368
1da177e4
LT
1369/**
1370 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1371 * @page: page to remove mapping from
1372 * @compound: uncharge the page as compound or small page
1da177e4 1373 *
b8072f09 1374 * The caller needs to hold the pte lock.
1da177e4 1375 */
d281ee61 1376void page_remove_rmap(struct page *page, bool compound)
1da177e4 1377{
8186eb6a 1378 if (!PageAnon(page)) {
d281ee61 1379 VM_BUG_ON_PAGE(compound && !PageHuge(page), page);
8186eb6a
JW
1380 page_remove_file_rmap(page);
1381 return;
1382 }
89c06bd5 1383
53f9263b
KS
1384 if (compound)
1385 return page_remove_anon_compound_rmap(page);
1386
b904dcfe
KM
1387 /* page still mapped by someone else? */
1388 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1389 return;
1390
0fe6e20b 1391 /*
bea04b07
JZ
1392 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1393 * these counters are not modified in interrupt context, and
bea04b07 1394 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1395 */
53f9263b 1396 __dec_zone_page_state(page, NR_ANON_PAGES);
8186eb6a 1397
e6c509f8
HD
1398 if (unlikely(PageMlocked(page)))
1399 clear_page_mlock(page);
8186eb6a 1400
9a982250
KS
1401 if (PageTransCompound(page))
1402 deferred_split_huge_page(compound_head(page));
1403
b904dcfe
KM
1404 /*
1405 * It would be tidy to reset the PageAnon mapping here,
1406 * but that might overwrite a racing page_add_anon_rmap
1407 * which increments mapcount after us but sets mapping
1408 * before us: so leave the reset to free_hot_cold_page,
1409 * and remember that it's only reliable while mapped.
1410 * Leaving it set also helps swapoff to reinstate ptes
1411 * faster for those pages still in swapcache.
1412 */
1da177e4
LT
1413}
1414
854e9ed0
MK
1415struct rmap_private {
1416 enum ttu_flags flags;
1417 int lazyfreed;
1418};
1419
1da177e4 1420/*
52629506 1421 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1422 */
ac769501 1423static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1424 unsigned long address, void *arg)
1da177e4
LT
1425{
1426 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1427 pte_t *pte;
1428 pte_t pteval;
c0718806 1429 spinlock_t *ptl;
1da177e4 1430 int ret = SWAP_AGAIN;
854e9ed0
MK
1431 struct rmap_private *rp = arg;
1432 enum ttu_flags flags = rp->flags;
1da177e4 1433
b87537d9
HD
1434 /* munlock has nothing to gain from examining un-locked vmas */
1435 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1436 goto out;
1437
479db0bf 1438 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1439 if (!pte)
81b4082d 1440 goto out;
1da177e4
LT
1441
1442 /*
1443 * If the page is mlock()d, we cannot swap it out.
1444 * If it's recently referenced (perhaps page_referenced
1445 * skipped over this mm) then we should reactivate it.
1446 */
14fa31b8 1447 if (!(flags & TTU_IGNORE_MLOCK)) {
b87537d9
HD
1448 if (vma->vm_flags & VM_LOCKED) {
1449 /* Holding pte lock, we do *not* need mmap_sem here */
1450 mlock_vma_page(page);
1451 ret = SWAP_MLOCK;
1452 goto out_unmap;
1453 }
daa5ba76 1454 if (flags & TTU_MUNLOCK)
53f79acb 1455 goto out_unmap;
14fa31b8
AK
1456 }
1457 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1458 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1459 ret = SWAP_FAIL;
1460 goto out_unmap;
1461 }
1462 }
1da177e4 1463
1da177e4
LT
1464 /* Nuke the page table entry. */
1465 flush_cache_page(vma, address, page_to_pfn(page));
72b252ae
MG
1466 if (should_defer_flush(mm, flags)) {
1467 /*
1468 * We clear the PTE but do not flush so potentially a remote
1469 * CPU could still be writing to the page. If the entry was
1470 * previously clean then the architecture must guarantee that
1471 * a clear->dirty transition on a cached TLB entry is written
1472 * through and traps if the PTE is unmapped.
1473 */
1474 pteval = ptep_get_and_clear(mm, address, pte);
1475
d950c947 1476 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
72b252ae
MG
1477 } else {
1478 pteval = ptep_clear_flush(vma, address, pte);
1479 }
1da177e4
LT
1480
1481 /* Move the dirty bit to the physical page now the pte is gone. */
1482 if (pte_dirty(pteval))
1483 set_page_dirty(page);
1484
365e9c87
HD
1485 /* Update high watermark before we lower rss */
1486 update_hiwater_rss(mm);
1487
888b9f7c 1488 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5d317b2b
NH
1489 if (PageHuge(page)) {
1490 hugetlb_count_sub(1 << compound_order(page), mm);
1491 } else {
eca56ff9 1492 dec_mm_counter(mm, mm_counter(page));
5f24ae58 1493 }
888b9f7c 1494 set_pte_at(mm, address, pte,
5f24ae58 1495 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1496 } else if (pte_unused(pteval)) {
1497 /*
1498 * The guest indicated that the page content is of no
1499 * interest anymore. Simply discard the pte, vmscan
1500 * will take care of the rest.
1501 */
eca56ff9 1502 dec_mm_counter(mm, mm_counter(page));
470f119f
HD
1503 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1504 swp_entry_t entry;
1505 pte_t swp_pte;
1506 /*
1507 * Store the pfn of the page in a special migration
1508 * pte. do_swap_page() will wait until the migration
1509 * pte is removed and then restart fault handling.
1510 */
1511 entry = make_migration_entry(page, pte_write(pteval));
1512 swp_pte = swp_entry_to_pte(entry);
1513 if (pte_soft_dirty(pteval))
1514 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1515 set_pte_at(mm, address, pte, swp_pte);
888b9f7c 1516 } else if (PageAnon(page)) {
4c21e2f2 1517 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1518 pte_t swp_pte;
470f119f
HD
1519 /*
1520 * Store the swap location in the pte.
1521 * See handle_pte_fault() ...
1522 */
1523 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
854e9ed0
MK
1524
1525 if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1526 /* It's a freeable page by MADV_FREE */
1527 dec_mm_counter(mm, MM_ANONPAGES);
1528 rp->lazyfreed++;
1529 goto discard;
1530 }
1531
470f119f
HD
1532 if (swap_duplicate(entry) < 0) {
1533 set_pte_at(mm, address, pte, pteval);
1534 ret = SWAP_FAIL;
1535 goto out_unmap;
1536 }
1537 if (list_empty(&mm->mmlist)) {
1538 spin_lock(&mmlist_lock);
1539 if (list_empty(&mm->mmlist))
1540 list_add(&mm->mmlist, &init_mm.mmlist);
1541 spin_unlock(&mmlist_lock);
1da177e4 1542 }
470f119f
HD
1543 dec_mm_counter(mm, MM_ANONPAGES);
1544 inc_mm_counter(mm, MM_SWAPENTS);
179ef71c
CG
1545 swp_pte = swp_entry_to_pte(entry);
1546 if (pte_soft_dirty(pteval))
1547 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1548 set_pte_at(mm, address, pte, swp_pte);
04e62a29 1549 } else
eca56ff9 1550 dec_mm_counter(mm, mm_counter_file(page));
1da177e4 1551
854e9ed0 1552discard:
d281ee61 1553 page_remove_rmap(page, PageHuge(page));
1da177e4
LT
1554 page_cache_release(page);
1555
1556out_unmap:
c0718806 1557 pte_unmap_unlock(pte, ptl);
b87537d9 1558 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
2ec74c3e 1559 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1560out:
1561 return ret;
1da177e4
LT
1562}
1563
71e3aac0 1564bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1565{
1566 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1567
1568 if (!maybe_stack)
1569 return false;
1570
1571 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1572 VM_STACK_INCOMPLETE_SETUP)
1573 return true;
1574
1575 return false;
1576}
1577
52629506
JK
1578static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1579{
1580 return is_vma_temporary_stack(vma);
1581}
1582
52629506
JK
1583static int page_not_mapped(struct page *page)
1584{
1585 return !page_mapped(page);
1586};
1587
1da177e4
LT
1588/**
1589 * try_to_unmap - try to remove all page table mappings to a page
1590 * @page: the page to get unmapped
14fa31b8 1591 * @flags: action and flags
1da177e4
LT
1592 *
1593 * Tries to remove all the page table entries which are mapping this
1594 * page, used in the pageout path. Caller must hold the page lock.
1595 * Return values are:
1596 *
1597 * SWAP_SUCCESS - we succeeded in removing all mappings
1598 * SWAP_AGAIN - we missed a mapping, try again later
1599 * SWAP_FAIL - the page is unswappable
b291f000 1600 * SWAP_MLOCK - page is mlocked.
1da177e4 1601 */
14fa31b8 1602int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1603{
1604 int ret;
854e9ed0
MK
1605 struct rmap_private rp = {
1606 .flags = flags,
1607 .lazyfreed = 0,
1608 };
1609
52629506
JK
1610 struct rmap_walk_control rwc = {
1611 .rmap_one = try_to_unmap_one,
854e9ed0 1612 .arg = &rp,
52629506 1613 .done = page_not_mapped,
52629506
JK
1614 .anon_lock = page_lock_anon_vma_read,
1615 };
1da177e4 1616
309381fe 1617 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1618
52629506
JK
1619 /*
1620 * During exec, a temporary VMA is setup and later moved.
1621 * The VMA is moved under the anon_vma lock but not the
1622 * page tables leading to a race where migration cannot
1623 * find the migration ptes. Rather than increasing the
1624 * locking requirements of exec(), migration skips
1625 * temporary VMAs until after exec() completes.
1626 */
daa5ba76 1627 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1628 rwc.invalid_vma = invalid_migration_vma;
1629
1630 ret = rmap_walk(page, &rwc);
1631
854e9ed0 1632 if (ret != SWAP_MLOCK && !page_mapped(page)) {
1da177e4 1633 ret = SWAP_SUCCESS;
854e9ed0
MK
1634 if (rp.lazyfreed && !PageDirty(page))
1635 ret = SWAP_LZFREE;
1636 }
1da177e4
LT
1637 return ret;
1638}
81b4082d 1639
b291f000
NP
1640/**
1641 * try_to_munlock - try to munlock a page
1642 * @page: the page to be munlocked
1643 *
1644 * Called from munlock code. Checks all of the VMAs mapping the page
1645 * to make sure nobody else has this page mlocked. The page will be
1646 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1647 *
1648 * Return values are:
1649 *
53f79acb 1650 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1651 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1652 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1653 * SWAP_MLOCK - page is now mlocked.
1654 */
1655int try_to_munlock(struct page *page)
1656{
e8351ac9 1657 int ret;
854e9ed0
MK
1658 struct rmap_private rp = {
1659 .flags = TTU_MUNLOCK,
1660 .lazyfreed = 0,
1661 };
1662
e8351ac9
JK
1663 struct rmap_walk_control rwc = {
1664 .rmap_one = try_to_unmap_one,
854e9ed0 1665 .arg = &rp,
e8351ac9 1666 .done = page_not_mapped,
e8351ac9
JK
1667 .anon_lock = page_lock_anon_vma_read,
1668
1669 };
1670
309381fe 1671 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1672
e8351ac9
JK
1673 ret = rmap_walk(page, &rwc);
1674 return ret;
b291f000 1675}
e9995ef9 1676
01d8b20d 1677void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1678{
01d8b20d 1679 struct anon_vma *root = anon_vma->root;
76545066 1680
624483f3 1681 anon_vma_free(anon_vma);
01d8b20d
PZ
1682 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1683 anon_vma_free(root);
76545066 1684}
76545066 1685
0dd1c7bb
JK
1686static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1687 struct rmap_walk_control *rwc)
faecd8dd
JK
1688{
1689 struct anon_vma *anon_vma;
1690
0dd1c7bb
JK
1691 if (rwc->anon_lock)
1692 return rwc->anon_lock(page);
1693
faecd8dd
JK
1694 /*
1695 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1696 * because that depends on page_mapped(); but not all its usages
1697 * are holding mmap_sem. Users without mmap_sem are required to
1698 * take a reference count to prevent the anon_vma disappearing
1699 */
1700 anon_vma = page_anon_vma(page);
1701 if (!anon_vma)
1702 return NULL;
1703
1704 anon_vma_lock_read(anon_vma);
1705 return anon_vma;
1706}
1707
e9995ef9 1708/*
e8351ac9
JK
1709 * rmap_walk_anon - do something to anonymous page using the object-based
1710 * rmap method
1711 * @page: the page to be handled
1712 * @rwc: control variable according to each walk type
1713 *
1714 * Find all the mappings of a page using the mapping pointer and the vma chains
1715 * contained in the anon_vma struct it points to.
1716 *
1717 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1718 * where the page was found will be held for write. So, we won't recheck
1719 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1720 * LOCKED.
e9995ef9 1721 */
051ac83a 1722static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1723{
1724 struct anon_vma *anon_vma;
b258d860 1725 pgoff_t pgoff;
5beb4930 1726 struct anon_vma_chain *avc;
e9995ef9
HD
1727 int ret = SWAP_AGAIN;
1728
0dd1c7bb 1729 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1730 if (!anon_vma)
1731 return ret;
faecd8dd 1732
b258d860 1733 pgoff = page_to_pgoff(page);
bf181b9f 1734 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1735 struct vm_area_struct *vma = avc->vma;
e9995ef9 1736 unsigned long address = vma_address(page, vma);
0dd1c7bb 1737
ad12695f
AA
1738 cond_resched();
1739
0dd1c7bb
JK
1740 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1741 continue;
1742
051ac83a 1743 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1744 if (ret != SWAP_AGAIN)
1745 break;
0dd1c7bb
JK
1746 if (rwc->done && rwc->done(page))
1747 break;
e9995ef9 1748 }
4fc3f1d6 1749 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1750 return ret;
1751}
1752
e8351ac9
JK
1753/*
1754 * rmap_walk_file - do something to file page using the object-based rmap method
1755 * @page: the page to be handled
1756 * @rwc: control variable according to each walk type
1757 *
1758 * Find all the mappings of a page using the mapping pointer and the vma chains
1759 * contained in the address_space struct it points to.
1760 *
1761 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1762 * where the page was found will be held for write. So, we won't recheck
1763 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1764 * LOCKED.
1765 */
051ac83a 1766static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1767{
1768 struct address_space *mapping = page->mapping;
b258d860 1769 pgoff_t pgoff;
e9995ef9 1770 struct vm_area_struct *vma;
e9995ef9
HD
1771 int ret = SWAP_AGAIN;
1772
9f32624b
JK
1773 /*
1774 * The page lock not only makes sure that page->mapping cannot
1775 * suddenly be NULLified by truncation, it makes sure that the
1776 * structure at mapping cannot be freed and reused yet,
c8c06efa 1777 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1778 */
81d1b09c 1779 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1780
e9995ef9
HD
1781 if (!mapping)
1782 return ret;
3dec0ba0 1783
b258d860 1784 pgoff = page_to_pgoff(page);
3dec0ba0 1785 i_mmap_lock_read(mapping);
6b2dbba8 1786 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1787 unsigned long address = vma_address(page, vma);
0dd1c7bb 1788
ad12695f
AA
1789 cond_resched();
1790
0dd1c7bb
JK
1791 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1792 continue;
1793
051ac83a 1794 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1795 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1796 goto done;
1797 if (rwc->done && rwc->done(page))
1798 goto done;
e9995ef9 1799 }
0dd1c7bb 1800
0dd1c7bb 1801done:
3dec0ba0 1802 i_mmap_unlock_read(mapping);
e9995ef9
HD
1803 return ret;
1804}
1805
051ac83a 1806int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1807{
e9995ef9 1808 if (unlikely(PageKsm(page)))
051ac83a 1809 return rmap_walk_ksm(page, rwc);
e9995ef9 1810 else if (PageAnon(page))
051ac83a 1811 return rmap_walk_anon(page, rwc);
e9995ef9 1812 else
051ac83a 1813 return rmap_walk_file(page, rwc);
e9995ef9 1814}
0fe6e20b 1815
e3390f67 1816#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1817/*
1818 * The following three functions are for anonymous (private mapped) hugepages.
1819 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1820 * and no lru code, because we handle hugepages differently from common pages.
1821 */
1822static void __hugepage_set_anon_rmap(struct page *page,
1823 struct vm_area_struct *vma, unsigned long address, int exclusive)
1824{
1825 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1826
0fe6e20b 1827 BUG_ON(!anon_vma);
433abed6
NH
1828
1829 if (PageAnon(page))
1830 return;
1831 if (!exclusive)
1832 anon_vma = anon_vma->root;
1833
0fe6e20b
NH
1834 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1835 page->mapping = (struct address_space *) anon_vma;
1836 page->index = linear_page_index(vma, address);
1837}
1838
1839void hugepage_add_anon_rmap(struct page *page,
1840 struct vm_area_struct *vma, unsigned long address)
1841{
1842 struct anon_vma *anon_vma = vma->anon_vma;
1843 int first;
a850ea30
NH
1844
1845 BUG_ON(!PageLocked(page));
0fe6e20b 1846 BUG_ON(!anon_vma);
5dbe0af4 1847 /* address might be in next vma when migration races vma_adjust */
53f9263b 1848 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b
NH
1849 if (first)
1850 __hugepage_set_anon_rmap(page, vma, address, 0);
1851}
1852
1853void hugepage_add_new_anon_rmap(struct page *page,
1854 struct vm_area_struct *vma, unsigned long address)
1855{
1856 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 1857 atomic_set(compound_mapcount_ptr(page), 0);
0fe6e20b
NH
1858 __hugepage_set_anon_rmap(page, vma, address, 1);
1859}
e3390f67 1860#endif /* CONFIG_HUGETLB_PAGE */