]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: Add a comment above queue_lockdep_assert_held()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 147
4e4cbee9
CH
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
2a842aca
CH
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153};
154
155blk_status_t errno_to_blk_status(int errno)
156{
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165}
166EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168int blk_status_to_errno(blk_status_t status)
169{
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx > ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175}
176EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178static void print_req_error(struct request *req, blk_status_t status)
179{
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx > ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189}
190
5bb23a68 191static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 192 unsigned int nbytes, blk_status_t error)
1da177e4 193{
78d8e58a 194 if (error)
4e4cbee9 195 bio->bi_status = error;
797e7dbb 196
e8064021 197 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 198 bio_set_flag(bio, BIO_QUIET);
08bafc03 199
f79ea416 200 bio_advance(bio, nbytes);
7ba1ba12 201
143a87f4 202 /* don't actually finish bio if it's part of flush sequence */
e8064021 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 204 bio_endio(bio);
1da177e4 205}
1da177e4 206
1da177e4
LT
207void blk_dump_rq_flags(struct request *rq, char *msg)
208{
aebf526b
CH
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 211 (unsigned long long) rq->cmd_flags);
1da177e4 212
83096ebf
TH
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_dump_rq_flags);
220
3cca6dc1 221static void blk_delay_work(struct work_struct *work)
1da177e4 222{
3cca6dc1 223 struct request_queue *q;
1da177e4 224
3cca6dc1
JA
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
24ecfbe2 227 __blk_run_queue(q);
3cca6dc1 228 spin_unlock_irq(q->queue_lock);
1da177e4 229}
1da177e4
LT
230
231/**
3cca6dc1
JA
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
1da177e4
LT
235 *
236 * Description:
3cca6dc1
JA
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
70460571 239 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
240 */
241void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 242{
70460571
BVA
243 if (likely(!blk_queue_dead(q)))
244 queue_delayed_work(kblockd_workqueue, &q->delay_work,
245 msecs_to_jiffies(msecs));
2ad8b1ef 246}
3cca6dc1 247EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 248
21491412
JA
249/**
250 * blk_start_queue_async - asynchronously restart a previously stopped queue
251 * @q: The &struct request_queue in question
252 *
253 * Description:
254 * blk_start_queue_async() will clear the stop flag on the queue, and
255 * ensure that the request_fn for the queue is run from an async
256 * context.
257 **/
258void blk_start_queue_async(struct request_queue *q)
259{
260 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
261 blk_run_queue_async(q);
262}
263EXPORT_SYMBOL(blk_start_queue_async);
264
1da177e4
LT
265/**
266 * blk_start_queue - restart a previously stopped queue
165125e1 267 * @q: The &struct request_queue in question
1da177e4
LT
268 *
269 * Description:
270 * blk_start_queue() will clear the stop flag on the queue, and call
271 * the request_fn for the queue if it was in a stopped state when
272 * entered. Also see blk_stop_queue(). Queue lock must be held.
273 **/
165125e1 274void blk_start_queue(struct request_queue *q)
1da177e4 275{
a038e253
PBG
276 WARN_ON(!irqs_disabled());
277
75ad23bc 278 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 279 __blk_run_queue(q);
1da177e4 280}
1da177e4
LT
281EXPORT_SYMBOL(blk_start_queue);
282
283/**
284 * blk_stop_queue - stop a queue
165125e1 285 * @q: The &struct request_queue in question
1da177e4
LT
286 *
287 * Description:
288 * The Linux block layer assumes that a block driver will consume all
289 * entries on the request queue when the request_fn strategy is called.
290 * Often this will not happen, because of hardware limitations (queue
291 * depth settings). If a device driver gets a 'queue full' response,
292 * or if it simply chooses not to queue more I/O at one point, it can
293 * call this function to prevent the request_fn from being called until
294 * the driver has signalled it's ready to go again. This happens by calling
295 * blk_start_queue() to restart queue operations. Queue lock must be held.
296 **/
165125e1 297void blk_stop_queue(struct request_queue *q)
1da177e4 298{
136b5721 299 cancel_delayed_work(&q->delay_work);
75ad23bc 300 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
301}
302EXPORT_SYMBOL(blk_stop_queue);
303
304/**
305 * blk_sync_queue - cancel any pending callbacks on a queue
306 * @q: the queue
307 *
308 * Description:
309 * The block layer may perform asynchronous callback activity
310 * on a queue, such as calling the unplug function after a timeout.
311 * A block device may call blk_sync_queue to ensure that any
312 * such activity is cancelled, thus allowing it to release resources
59c51591 313 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
314 * that its ->make_request_fn will not re-add plugging prior to calling
315 * this function.
316 *
da527770 317 * This function does not cancel any asynchronous activity arising
da3dae54 318 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 319 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 320 *
1da177e4
LT
321 */
322void blk_sync_queue(struct request_queue *q)
323{
70ed28b9 324 del_timer_sync(&q->timeout);
f04c1fe7
ML
325
326 if (q->mq_ops) {
327 struct blk_mq_hw_ctx *hctx;
328 int i;
329
21c6e939 330 queue_for_each_hw_ctx(q, hctx, i)
9f993737 331 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
332 } else {
333 cancel_delayed_work_sync(&q->delay_work);
334 }
1da177e4
LT
335}
336EXPORT_SYMBOL(blk_sync_queue);
337
c246e80d
BVA
338/**
339 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
340 * @q: The queue to run
341 *
342 * Description:
343 * Invoke request handling on a queue if there are any pending requests.
344 * May be used to restart request handling after a request has completed.
345 * This variant runs the queue whether or not the queue has been
346 * stopped. Must be called with the queue lock held and interrupts
347 * disabled. See also @blk_run_queue.
348 */
349inline void __blk_run_queue_uncond(struct request_queue *q)
350{
351 if (unlikely(blk_queue_dead(q)))
352 return;
353
24faf6f6
BVA
354 /*
355 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
356 * the queue lock internally. As a result multiple threads may be
357 * running such a request function concurrently. Keep track of the
358 * number of active request_fn invocations such that blk_drain_queue()
359 * can wait until all these request_fn calls have finished.
360 */
361 q->request_fn_active++;
c246e80d 362 q->request_fn(q);
24faf6f6 363 q->request_fn_active--;
c246e80d 364}
a7928c15 365EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 366
1da177e4 367/**
80a4b58e 368 * __blk_run_queue - run a single device queue
1da177e4 369 * @q: The queue to run
80a4b58e
JA
370 *
371 * Description:
372 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 373 * held and interrupts disabled.
1da177e4 374 */
24ecfbe2 375void __blk_run_queue(struct request_queue *q)
1da177e4 376{
a538cd03
TH
377 if (unlikely(blk_queue_stopped(q)))
378 return;
379
c246e80d 380 __blk_run_queue_uncond(q);
75ad23bc
NP
381}
382EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 383
24ecfbe2
CH
384/**
385 * blk_run_queue_async - run a single device queue in workqueue context
386 * @q: The queue to run
387 *
388 * Description:
389 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 390 * of us. The caller must hold the queue lock.
24ecfbe2
CH
391 */
392void blk_run_queue_async(struct request_queue *q)
393{
70460571 394 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 395 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 396}
c21e6beb 397EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 398
75ad23bc
NP
399/**
400 * blk_run_queue - run a single device queue
401 * @q: The queue to run
80a4b58e
JA
402 *
403 * Description:
404 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 405 * May be used to restart queueing when a request has completed.
75ad23bc
NP
406 */
407void blk_run_queue(struct request_queue *q)
408{
409 unsigned long flags;
410
411 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 412 __blk_run_queue(q);
1da177e4
LT
413 spin_unlock_irqrestore(q->queue_lock, flags);
414}
415EXPORT_SYMBOL(blk_run_queue);
416
165125e1 417void blk_put_queue(struct request_queue *q)
483f4afc
AV
418{
419 kobject_put(&q->kobj);
420}
d86e0e83 421EXPORT_SYMBOL(blk_put_queue);
483f4afc 422
e3c78ca5 423/**
807592a4 424 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 425 * @q: queue to drain
c9a929dd 426 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 427 *
c9a929dd
TH
428 * Drain requests from @q. If @drain_all is set, all requests are drained.
429 * If not, only ELVPRIV requests are drained. The caller is responsible
430 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 431 */
807592a4
BVA
432static void __blk_drain_queue(struct request_queue *q, bool drain_all)
433 __releases(q->queue_lock)
434 __acquires(q->queue_lock)
e3c78ca5 435{
458f27a9
AH
436 int i;
437
807592a4
BVA
438 lockdep_assert_held(q->queue_lock);
439
e3c78ca5 440 while (true) {
481a7d64 441 bool drain = false;
e3c78ca5 442
b855b04a
TH
443 /*
444 * The caller might be trying to drain @q before its
445 * elevator is initialized.
446 */
447 if (q->elevator)
448 elv_drain_elevator(q);
449
5efd6113 450 blkcg_drain_queue(q);
e3c78ca5 451
4eabc941
TH
452 /*
453 * This function might be called on a queue which failed
b855b04a
TH
454 * driver init after queue creation or is not yet fully
455 * active yet. Some drivers (e.g. fd and loop) get unhappy
456 * in such cases. Kick queue iff dispatch queue has
457 * something on it and @q has request_fn set.
4eabc941 458 */
b855b04a 459 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 460 __blk_run_queue(q);
c9a929dd 461
8a5ecdd4 462 drain |= q->nr_rqs_elvpriv;
24faf6f6 463 drain |= q->request_fn_active;
481a7d64
TH
464
465 /*
466 * Unfortunately, requests are queued at and tracked from
467 * multiple places and there's no single counter which can
468 * be drained. Check all the queues and counters.
469 */
470 if (drain_all) {
e97c293c 471 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
472 drain |= !list_empty(&q->queue_head);
473 for (i = 0; i < 2; i++) {
8a5ecdd4 474 drain |= q->nr_rqs[i];
481a7d64 475 drain |= q->in_flight[i];
7c94e1c1
ML
476 if (fq)
477 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
478 }
479 }
e3c78ca5 480
481a7d64 481 if (!drain)
e3c78ca5 482 break;
807592a4
BVA
483
484 spin_unlock_irq(q->queue_lock);
485
e3c78ca5 486 msleep(10);
807592a4
BVA
487
488 spin_lock_irq(q->queue_lock);
e3c78ca5 489 }
458f27a9
AH
490
491 /*
492 * With queue marked dead, any woken up waiter will fail the
493 * allocation path, so the wakeup chaining is lost and we're
494 * left with hung waiters. We need to wake up those waiters.
495 */
496 if (q->request_fn) {
a051661c
TH
497 struct request_list *rl;
498
a051661c
TH
499 blk_queue_for_each_rl(rl, q)
500 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
501 wake_up_all(&rl->wait[i]);
458f27a9 502 }
e3c78ca5
TH
503}
504
d732580b
TH
505/**
506 * blk_queue_bypass_start - enter queue bypass mode
507 * @q: queue of interest
508 *
509 * In bypass mode, only the dispatch FIFO queue of @q is used. This
510 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 511 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
512 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
513 * inside queue or RCU read lock.
d732580b
TH
514 */
515void blk_queue_bypass_start(struct request_queue *q)
516{
517 spin_lock_irq(q->queue_lock);
776687bc 518 q->bypass_depth++;
d732580b
TH
519 queue_flag_set(QUEUE_FLAG_BYPASS, q);
520 spin_unlock_irq(q->queue_lock);
521
776687bc
TH
522 /*
523 * Queues start drained. Skip actual draining till init is
524 * complete. This avoids lenghty delays during queue init which
525 * can happen many times during boot.
526 */
527 if (blk_queue_init_done(q)) {
807592a4
BVA
528 spin_lock_irq(q->queue_lock);
529 __blk_drain_queue(q, false);
530 spin_unlock_irq(q->queue_lock);
531
b82d4b19
TH
532 /* ensure blk_queue_bypass() is %true inside RCU read lock */
533 synchronize_rcu();
534 }
d732580b
TH
535}
536EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
537
538/**
539 * blk_queue_bypass_end - leave queue bypass mode
540 * @q: queue of interest
541 *
542 * Leave bypass mode and restore the normal queueing behavior.
543 */
544void blk_queue_bypass_end(struct request_queue *q)
545{
546 spin_lock_irq(q->queue_lock);
547 if (!--q->bypass_depth)
548 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
549 WARN_ON_ONCE(q->bypass_depth < 0);
550 spin_unlock_irq(q->queue_lock);
551}
552EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
553
aed3ea94
JA
554void blk_set_queue_dying(struct request_queue *q)
555{
1b856086
BVA
556 spin_lock_irq(q->queue_lock);
557 queue_flag_set(QUEUE_FLAG_DYING, q);
558 spin_unlock_irq(q->queue_lock);
aed3ea94 559
d3cfb2a0
ML
560 /*
561 * When queue DYING flag is set, we need to block new req
562 * entering queue, so we call blk_freeze_queue_start() to
563 * prevent I/O from crossing blk_queue_enter().
564 */
565 blk_freeze_queue_start(q);
566
aed3ea94
JA
567 if (q->mq_ops)
568 blk_mq_wake_waiters(q);
569 else {
570 struct request_list *rl;
571
bbfc3c5d 572 spin_lock_irq(q->queue_lock);
aed3ea94
JA
573 blk_queue_for_each_rl(rl, q) {
574 if (rl->rq_pool) {
575 wake_up(&rl->wait[BLK_RW_SYNC]);
576 wake_up(&rl->wait[BLK_RW_ASYNC]);
577 }
578 }
bbfc3c5d 579 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
580 }
581}
582EXPORT_SYMBOL_GPL(blk_set_queue_dying);
583
c9a929dd
TH
584/**
585 * blk_cleanup_queue - shutdown a request queue
586 * @q: request queue to shutdown
587 *
c246e80d
BVA
588 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
589 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 590 */
6728cb0e 591void blk_cleanup_queue(struct request_queue *q)
483f4afc 592{
c9a929dd 593 spinlock_t *lock = q->queue_lock;
e3335de9 594
3f3299d5 595 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 596 mutex_lock(&q->sysfs_lock);
aed3ea94 597 blk_set_queue_dying(q);
c9a929dd 598 spin_lock_irq(lock);
6ecf23af 599
80fd9979 600 /*
3f3299d5 601 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
602 * that, unlike blk_queue_bypass_start(), we aren't performing
603 * synchronize_rcu() after entering bypass mode to avoid the delay
604 * as some drivers create and destroy a lot of queues while
605 * probing. This is still safe because blk_release_queue() will be
606 * called only after the queue refcnt drops to zero and nothing,
607 * RCU or not, would be traversing the queue by then.
608 */
6ecf23af
TH
609 q->bypass_depth++;
610 queue_flag_set(QUEUE_FLAG_BYPASS, q);
611
c9a929dd
TH
612 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
613 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 614 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
615 spin_unlock_irq(lock);
616 mutex_unlock(&q->sysfs_lock);
617
c246e80d
BVA
618 /*
619 * Drain all requests queued before DYING marking. Set DEAD flag to
620 * prevent that q->request_fn() gets invoked after draining finished.
621 */
3ef28e83 622 blk_freeze_queue(q);
9c1051aa
OS
623 spin_lock_irq(lock);
624 if (!q->mq_ops)
43a5e4e2 625 __blk_drain_queue(q, true);
c246e80d 626 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 627 spin_unlock_irq(lock);
c9a929dd 628
5a48fc14
DW
629 /* for synchronous bio-based driver finish in-flight integrity i/o */
630 blk_flush_integrity();
631
c9a929dd 632 /* @q won't process any more request, flush async actions */
dc3b17cc 633 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
634 blk_sync_queue(q);
635
45a9c9d9
BVA
636 if (q->mq_ops)
637 blk_mq_free_queue(q);
3ef28e83 638 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 639
5e5cfac0
AH
640 spin_lock_irq(lock);
641 if (q->queue_lock != &q->__queue_lock)
642 q->queue_lock = &q->__queue_lock;
643 spin_unlock_irq(lock);
644
c9a929dd 645 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
646 blk_put_queue(q);
647}
1da177e4
LT
648EXPORT_SYMBOL(blk_cleanup_queue);
649
271508db 650/* Allocate memory local to the request queue */
6d247d7f 651static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 652{
6d247d7f
CH
653 struct request_queue *q = data;
654
655 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
656}
657
6d247d7f 658static void free_request_simple(void *element, void *data)
271508db
DR
659{
660 kmem_cache_free(request_cachep, element);
661}
662
6d247d7f
CH
663static void *alloc_request_size(gfp_t gfp_mask, void *data)
664{
665 struct request_queue *q = data;
666 struct request *rq;
667
668 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
669 q->node);
670 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
671 kfree(rq);
672 rq = NULL;
673 }
674 return rq;
675}
676
677static void free_request_size(void *element, void *data)
678{
679 struct request_queue *q = data;
680
681 if (q->exit_rq_fn)
682 q->exit_rq_fn(q, element);
683 kfree(element);
684}
685
5b788ce3
TH
686int blk_init_rl(struct request_list *rl, struct request_queue *q,
687 gfp_t gfp_mask)
1da177e4 688{
1abec4fd
MS
689 if (unlikely(rl->rq_pool))
690 return 0;
691
5b788ce3 692 rl->q = q;
1faa16d2
JA
693 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
694 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
695 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
696 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 697
6d247d7f
CH
698 if (q->cmd_size) {
699 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
700 alloc_request_size, free_request_size,
701 q, gfp_mask, q->node);
702 } else {
703 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
704 alloc_request_simple, free_request_simple,
705 q, gfp_mask, q->node);
706 }
1da177e4
LT
707 if (!rl->rq_pool)
708 return -ENOMEM;
709
b425e504
BVA
710 if (rl != &q->root_rl)
711 WARN_ON_ONCE(!blk_get_queue(q));
712
1da177e4
LT
713 return 0;
714}
715
b425e504 716void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 717{
b425e504 718 if (rl->rq_pool) {
5b788ce3 719 mempool_destroy(rl->rq_pool);
b425e504
BVA
720 if (rl != &q->root_rl)
721 blk_put_queue(q);
722 }
5b788ce3
TH
723}
724
165125e1 725struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 726{
c304a51b 727 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
728}
729EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 730
6f3b0e8b 731int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
732{
733 while (true) {
734 int ret;
735
736 if (percpu_ref_tryget_live(&q->q_usage_counter))
737 return 0;
738
6f3b0e8b 739 if (nowait)
3ef28e83
DW
740 return -EBUSY;
741
5ed61d3f 742 /*
1671d522 743 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 744 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
745 * .q_usage_counter and reading .mq_freeze_depth or
746 * queue dying flag, otherwise the following wait may
747 * never return if the two reads are reordered.
5ed61d3f
ML
748 */
749 smp_rmb();
750
3ef28e83
DW
751 ret = wait_event_interruptible(q->mq_freeze_wq,
752 !atomic_read(&q->mq_freeze_depth) ||
753 blk_queue_dying(q));
754 if (blk_queue_dying(q))
755 return -ENODEV;
756 if (ret)
757 return ret;
758 }
759}
760
761void blk_queue_exit(struct request_queue *q)
762{
763 percpu_ref_put(&q->q_usage_counter);
764}
765
766static void blk_queue_usage_counter_release(struct percpu_ref *ref)
767{
768 struct request_queue *q =
769 container_of(ref, struct request_queue, q_usage_counter);
770
771 wake_up_all(&q->mq_freeze_wq);
772}
773
287922eb
CH
774static void blk_rq_timed_out_timer(unsigned long data)
775{
776 struct request_queue *q = (struct request_queue *)data;
777
778 kblockd_schedule_work(&q->timeout_work);
779}
780
165125e1 781struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 782{
165125e1 783 struct request_queue *q;
1946089a 784
8324aa91 785 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 786 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
787 if (!q)
788 return NULL;
789
00380a40 790 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 791 if (q->id < 0)
3d2936f4 792 goto fail_q;
a73f730d 793
93b27e72 794 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
795 if (!q->bio_split)
796 goto fail_id;
797
d03f6cdc
JK
798 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
799 if (!q->backing_dev_info)
800 goto fail_split;
801
a83b576c
JA
802 q->stats = blk_alloc_queue_stats();
803 if (!q->stats)
804 goto fail_stats;
805
dc3b17cc 806 q->backing_dev_info->ra_pages =
09cbfeaf 807 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
808 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
809 q->backing_dev_info->name = "block";
5151412d 810 q->node = node_id;
0989a025 811
dc3b17cc 812 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 813 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 814 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 815 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 816 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 817 INIT_LIST_HEAD(&q->icq_list);
4eef3049 818#ifdef CONFIG_BLK_CGROUP
e8989fae 819 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 820#endif
3cca6dc1 821 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 822
8324aa91 823 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 824
483f4afc 825 mutex_init(&q->sysfs_lock);
e7e72bf6 826 spin_lock_init(&q->__queue_lock);
483f4afc 827
c94a96ac
VG
828 /*
829 * By default initialize queue_lock to internal lock and driver can
830 * override it later if need be.
831 */
832 q->queue_lock = &q->__queue_lock;
833
b82d4b19
TH
834 /*
835 * A queue starts its life with bypass turned on to avoid
836 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
837 * init. The initial bypass will be finished when the queue is
838 * registered by blk_register_queue().
b82d4b19
TH
839 */
840 q->bypass_depth = 1;
841 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
842
320ae51f
JA
843 init_waitqueue_head(&q->mq_freeze_wq);
844
3ef28e83
DW
845 /*
846 * Init percpu_ref in atomic mode so that it's faster to shutdown.
847 * See blk_register_queue() for details.
848 */
849 if (percpu_ref_init(&q->q_usage_counter,
850 blk_queue_usage_counter_release,
851 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 852 goto fail_bdi;
f51b802c 853
3ef28e83
DW
854 if (blkcg_init_queue(q))
855 goto fail_ref;
856
1da177e4 857 return q;
a73f730d 858
3ef28e83
DW
859fail_ref:
860 percpu_ref_exit(&q->q_usage_counter);
fff4996b 861fail_bdi:
a83b576c
JA
862 blk_free_queue_stats(q->stats);
863fail_stats:
d03f6cdc 864 bdi_put(q->backing_dev_info);
54efd50b
KO
865fail_split:
866 bioset_free(q->bio_split);
a73f730d
TH
867fail_id:
868 ida_simple_remove(&blk_queue_ida, q->id);
869fail_q:
870 kmem_cache_free(blk_requestq_cachep, q);
871 return NULL;
1da177e4 872}
1946089a 873EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
874
875/**
876 * blk_init_queue - prepare a request queue for use with a block device
877 * @rfn: The function to be called to process requests that have been
878 * placed on the queue.
879 * @lock: Request queue spin lock
880 *
881 * Description:
882 * If a block device wishes to use the standard request handling procedures,
883 * which sorts requests and coalesces adjacent requests, then it must
884 * call blk_init_queue(). The function @rfn will be called when there
885 * are requests on the queue that need to be processed. If the device
886 * supports plugging, then @rfn may not be called immediately when requests
887 * are available on the queue, but may be called at some time later instead.
888 * Plugged queues are generally unplugged when a buffer belonging to one
889 * of the requests on the queue is needed, or due to memory pressure.
890 *
891 * @rfn is not required, or even expected, to remove all requests off the
892 * queue, but only as many as it can handle at a time. If it does leave
893 * requests on the queue, it is responsible for arranging that the requests
894 * get dealt with eventually.
895 *
896 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
897 * request queue; this lock will be taken also from interrupt context, so irq
898 * disabling is needed for it.
1da177e4 899 *
710027a4 900 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
901 * it didn't succeed.
902 *
903 * Note:
904 * blk_init_queue() must be paired with a blk_cleanup_queue() call
905 * when the block device is deactivated (such as at module unload).
906 **/
1946089a 907
165125e1 908struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 909{
c304a51b 910 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
911}
912EXPORT_SYMBOL(blk_init_queue);
913
165125e1 914struct request_queue *
1946089a
CL
915blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
916{
5ea708d1 917 struct request_queue *q;
1da177e4 918
5ea708d1
CH
919 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
920 if (!q)
c86d1b8a
MS
921 return NULL;
922
5ea708d1
CH
923 q->request_fn = rfn;
924 if (lock)
925 q->queue_lock = lock;
926 if (blk_init_allocated_queue(q) < 0) {
927 blk_cleanup_queue(q);
928 return NULL;
929 }
18741986 930
7982e90c 931 return q;
01effb0d
MS
932}
933EXPORT_SYMBOL(blk_init_queue_node);
934
dece1635 935static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 936
1da177e4 937
5ea708d1
CH
938int blk_init_allocated_queue(struct request_queue *q)
939{
6d247d7f 940 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 941 if (!q->fq)
5ea708d1 942 return -ENOMEM;
7982e90c 943
6d247d7f
CH
944 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
945 goto out_free_flush_queue;
7982e90c 946
a051661c 947 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 948 goto out_exit_flush_rq;
1da177e4 949
287922eb 950 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 951 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 952
f3b144aa
JA
953 /*
954 * This also sets hw/phys segments, boundary and size
955 */
c20e8de2 956 blk_queue_make_request(q, blk_queue_bio);
1da177e4 957
44ec9542
AS
958 q->sg_reserved_size = INT_MAX;
959
eb1c160b
TS
960 /* Protect q->elevator from elevator_change */
961 mutex_lock(&q->sysfs_lock);
962
b82d4b19 963 /* init elevator */
eb1c160b
TS
964 if (elevator_init(q, NULL)) {
965 mutex_unlock(&q->sysfs_lock);
6d247d7f 966 goto out_exit_flush_rq;
eb1c160b
TS
967 }
968
969 mutex_unlock(&q->sysfs_lock);
5ea708d1 970 return 0;
eb1c160b 971
6d247d7f
CH
972out_exit_flush_rq:
973 if (q->exit_rq_fn)
974 q->exit_rq_fn(q, q->fq->flush_rq);
975out_free_flush_queue:
ba483388 976 blk_free_flush_queue(q->fq);
5ea708d1 977 return -ENOMEM;
1da177e4 978}
5151412d 979EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 980
09ac46c4 981bool blk_get_queue(struct request_queue *q)
1da177e4 982{
3f3299d5 983 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
984 __blk_get_queue(q);
985 return true;
1da177e4
LT
986 }
987
09ac46c4 988 return false;
1da177e4 989}
d86e0e83 990EXPORT_SYMBOL(blk_get_queue);
1da177e4 991
5b788ce3 992static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 993{
e8064021 994 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 995 elv_put_request(rl->q, rq);
f1f8cc94 996 if (rq->elv.icq)
11a3122f 997 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
998 }
999
5b788ce3 1000 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1001}
1002
1da177e4
LT
1003/*
1004 * ioc_batching returns true if the ioc is a valid batching request and
1005 * should be given priority access to a request.
1006 */
165125e1 1007static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1008{
1009 if (!ioc)
1010 return 0;
1011
1012 /*
1013 * Make sure the process is able to allocate at least 1 request
1014 * even if the batch times out, otherwise we could theoretically
1015 * lose wakeups.
1016 */
1017 return ioc->nr_batch_requests == q->nr_batching ||
1018 (ioc->nr_batch_requests > 0
1019 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1020}
1021
1022/*
1023 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1024 * will cause the process to be a "batcher" on all queues in the system. This
1025 * is the behaviour we want though - once it gets a wakeup it should be given
1026 * a nice run.
1027 */
165125e1 1028static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1029{
1030 if (!ioc || ioc_batching(q, ioc))
1031 return;
1032
1033 ioc->nr_batch_requests = q->nr_batching;
1034 ioc->last_waited = jiffies;
1035}
1036
5b788ce3 1037static void __freed_request(struct request_list *rl, int sync)
1da177e4 1038{
5b788ce3 1039 struct request_queue *q = rl->q;
1da177e4 1040
d40f75a0
TH
1041 if (rl->count[sync] < queue_congestion_off_threshold(q))
1042 blk_clear_congested(rl, sync);
1da177e4 1043
1faa16d2
JA
1044 if (rl->count[sync] + 1 <= q->nr_requests) {
1045 if (waitqueue_active(&rl->wait[sync]))
1046 wake_up(&rl->wait[sync]);
1da177e4 1047
5b788ce3 1048 blk_clear_rl_full(rl, sync);
1da177e4
LT
1049 }
1050}
1051
1052/*
1053 * A request has just been released. Account for it, update the full and
1054 * congestion status, wake up any waiters. Called under q->queue_lock.
1055 */
e8064021
CH
1056static void freed_request(struct request_list *rl, bool sync,
1057 req_flags_t rq_flags)
1da177e4 1058{
5b788ce3 1059 struct request_queue *q = rl->q;
1da177e4 1060
8a5ecdd4 1061 q->nr_rqs[sync]--;
1faa16d2 1062 rl->count[sync]--;
e8064021 1063 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1064 q->nr_rqs_elvpriv--;
1da177e4 1065
5b788ce3 1066 __freed_request(rl, sync);
1da177e4 1067
1faa16d2 1068 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1069 __freed_request(rl, sync ^ 1);
1da177e4
LT
1070}
1071
e3a2b3f9
JA
1072int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1073{
1074 struct request_list *rl;
d40f75a0 1075 int on_thresh, off_thresh;
e3a2b3f9
JA
1076
1077 spin_lock_irq(q->queue_lock);
1078 q->nr_requests = nr;
1079 blk_queue_congestion_threshold(q);
d40f75a0
TH
1080 on_thresh = queue_congestion_on_threshold(q);
1081 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1082
d40f75a0
TH
1083 blk_queue_for_each_rl(rl, q) {
1084 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1085 blk_set_congested(rl, BLK_RW_SYNC);
1086 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1087 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1088
d40f75a0
TH
1089 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1090 blk_set_congested(rl, BLK_RW_ASYNC);
1091 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1092 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1093
e3a2b3f9
JA
1094 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1095 blk_set_rl_full(rl, BLK_RW_SYNC);
1096 } else {
1097 blk_clear_rl_full(rl, BLK_RW_SYNC);
1098 wake_up(&rl->wait[BLK_RW_SYNC]);
1099 }
1100
1101 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1102 blk_set_rl_full(rl, BLK_RW_ASYNC);
1103 } else {
1104 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1105 wake_up(&rl->wait[BLK_RW_ASYNC]);
1106 }
1107 }
1108
1109 spin_unlock_irq(q->queue_lock);
1110 return 0;
1111}
1112
da8303c6 1113/**
a06e05e6 1114 * __get_request - get a free request
5b788ce3 1115 * @rl: request list to allocate from
ef295ecf 1116 * @op: operation and flags
da8303c6
TH
1117 * @bio: bio to allocate request for (can be %NULL)
1118 * @gfp_mask: allocation mask
1119 *
1120 * Get a free request from @q. This function may fail under memory
1121 * pressure or if @q is dead.
1122 *
da3dae54 1123 * Must be called with @q->queue_lock held and,
a492f075
JL
1124 * Returns ERR_PTR on failure, with @q->queue_lock held.
1125 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1126 */
ef295ecf
CH
1127static struct request *__get_request(struct request_list *rl, unsigned int op,
1128 struct bio *bio, gfp_t gfp_mask)
1da177e4 1129{
5b788ce3 1130 struct request_queue *q = rl->q;
b679281a 1131 struct request *rq;
7f4b35d1
TH
1132 struct elevator_type *et = q->elevator->type;
1133 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1134 struct io_cq *icq = NULL;
ef295ecf 1135 const bool is_sync = op_is_sync(op);
75eb6c37 1136 int may_queue;
e8064021 1137 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1138
3f3299d5 1139 if (unlikely(blk_queue_dying(q)))
a492f075 1140 return ERR_PTR(-ENODEV);
da8303c6 1141
ef295ecf 1142 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1143 if (may_queue == ELV_MQUEUE_NO)
1144 goto rq_starved;
1145
1faa16d2
JA
1146 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1147 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1148 /*
1149 * The queue will fill after this allocation, so set
1150 * it as full, and mark this process as "batching".
1151 * This process will be allowed to complete a batch of
1152 * requests, others will be blocked.
1153 */
5b788ce3 1154 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1155 ioc_set_batching(q, ioc);
5b788ce3 1156 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1157 } else {
1158 if (may_queue != ELV_MQUEUE_MUST
1159 && !ioc_batching(q, ioc)) {
1160 /*
1161 * The queue is full and the allocating
1162 * process is not a "batcher", and not
1163 * exempted by the IO scheduler
1164 */
a492f075 1165 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1166 }
1167 }
1da177e4 1168 }
d40f75a0 1169 blk_set_congested(rl, is_sync);
1da177e4
LT
1170 }
1171
082cf69e
JA
1172 /*
1173 * Only allow batching queuers to allocate up to 50% over the defined
1174 * limit of requests, otherwise we could have thousands of requests
1175 * allocated with any setting of ->nr_requests
1176 */
1faa16d2 1177 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1178 return ERR_PTR(-ENOMEM);
fd782a4a 1179
8a5ecdd4 1180 q->nr_rqs[is_sync]++;
1faa16d2
JA
1181 rl->count[is_sync]++;
1182 rl->starved[is_sync] = 0;
cb98fc8b 1183
f1f8cc94
TH
1184 /*
1185 * Decide whether the new request will be managed by elevator. If
e8064021 1186 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1187 * prevent the current elevator from being destroyed until the new
1188 * request is freed. This guarantees icq's won't be destroyed and
1189 * makes creating new ones safe.
1190 *
e6f7f93d
CH
1191 * Flush requests do not use the elevator so skip initialization.
1192 * This allows a request to share the flush and elevator data.
1193 *
f1f8cc94
TH
1194 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1195 * it will be created after releasing queue_lock.
1196 */
e6f7f93d 1197 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1198 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1199 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1200 if (et->icq_cache && ioc)
1201 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1202 }
cb98fc8b 1203
f253b86b 1204 if (blk_queue_io_stat(q))
e8064021 1205 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1206 spin_unlock_irq(q->queue_lock);
1207
29e2b09a 1208 /* allocate and init request */
5b788ce3 1209 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1210 if (!rq)
b679281a 1211 goto fail_alloc;
1da177e4 1212
29e2b09a 1213 blk_rq_init(q, rq);
a051661c 1214 blk_rq_set_rl(rq, rl);
ef295ecf 1215 rq->cmd_flags = op;
e8064021 1216 rq->rq_flags = rq_flags;
29e2b09a 1217
aaf7c680 1218 /* init elvpriv */
e8064021 1219 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1220 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1221 if (ioc)
1222 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1223 if (!icq)
1224 goto fail_elvpriv;
29e2b09a 1225 }
aaf7c680
TH
1226
1227 rq->elv.icq = icq;
1228 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1229 goto fail_elvpriv;
1230
1231 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1232 if (icq)
1233 get_io_context(icq->ioc);
1234 }
aaf7c680 1235out:
88ee5ef1
JA
1236 /*
1237 * ioc may be NULL here, and ioc_batching will be false. That's
1238 * OK, if the queue is under the request limit then requests need
1239 * not count toward the nr_batch_requests limit. There will always
1240 * be some limit enforced by BLK_BATCH_TIME.
1241 */
1da177e4
LT
1242 if (ioc_batching(q, ioc))
1243 ioc->nr_batch_requests--;
6728cb0e 1244
e6a40b09 1245 trace_block_getrq(q, bio, op);
1da177e4 1246 return rq;
b679281a 1247
aaf7c680
TH
1248fail_elvpriv:
1249 /*
1250 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1251 * and may fail indefinitely under memory pressure and thus
1252 * shouldn't stall IO. Treat this request as !elvpriv. This will
1253 * disturb iosched and blkcg but weird is bettern than dead.
1254 */
7b2b10e0 1255 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1256 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1257
e8064021 1258 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1259 rq->elv.icq = NULL;
1260
1261 spin_lock_irq(q->queue_lock);
8a5ecdd4 1262 q->nr_rqs_elvpriv--;
aaf7c680
TH
1263 spin_unlock_irq(q->queue_lock);
1264 goto out;
1265
b679281a
TH
1266fail_alloc:
1267 /*
1268 * Allocation failed presumably due to memory. Undo anything we
1269 * might have messed up.
1270 *
1271 * Allocating task should really be put onto the front of the wait
1272 * queue, but this is pretty rare.
1273 */
1274 spin_lock_irq(q->queue_lock);
e8064021 1275 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1276
1277 /*
1278 * in the very unlikely event that allocation failed and no
1279 * requests for this direction was pending, mark us starved so that
1280 * freeing of a request in the other direction will notice
1281 * us. another possible fix would be to split the rq mempool into
1282 * READ and WRITE
1283 */
1284rq_starved:
1285 if (unlikely(rl->count[is_sync] == 0))
1286 rl->starved[is_sync] = 1;
a492f075 1287 return ERR_PTR(-ENOMEM);
1da177e4
LT
1288}
1289
da8303c6 1290/**
a06e05e6 1291 * get_request - get a free request
da8303c6 1292 * @q: request_queue to allocate request from
ef295ecf 1293 * @op: operation and flags
da8303c6 1294 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1295 * @gfp_mask: allocation mask
da8303c6 1296 *
d0164adc
MG
1297 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1298 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1299 *
da3dae54 1300 * Must be called with @q->queue_lock held and,
a492f075
JL
1301 * Returns ERR_PTR on failure, with @q->queue_lock held.
1302 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1303 */
ef295ecf
CH
1304static struct request *get_request(struct request_queue *q, unsigned int op,
1305 struct bio *bio, gfp_t gfp_mask)
1da177e4 1306{
ef295ecf 1307 const bool is_sync = op_is_sync(op);
a06e05e6 1308 DEFINE_WAIT(wait);
a051661c 1309 struct request_list *rl;
1da177e4 1310 struct request *rq;
a051661c
TH
1311
1312 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1313retry:
ef295ecf 1314 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1315 if (!IS_ERR(rq))
a06e05e6 1316 return rq;
1da177e4 1317
03a07c92
GR
1318 if (op & REQ_NOWAIT) {
1319 blk_put_rl(rl);
1320 return ERR_PTR(-EAGAIN);
1321 }
1322
d0164adc 1323 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1324 blk_put_rl(rl);
a492f075 1325 return rq;
a051661c 1326 }
1da177e4 1327
a06e05e6
TH
1328 /* wait on @rl and retry */
1329 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1330 TASK_UNINTERRUPTIBLE);
1da177e4 1331
e6a40b09 1332 trace_block_sleeprq(q, bio, op);
1da177e4 1333
a06e05e6
TH
1334 spin_unlock_irq(q->queue_lock);
1335 io_schedule();
d6344532 1336
a06e05e6
TH
1337 /*
1338 * After sleeping, we become a "batching" process and will be able
1339 * to allocate at least one request, and up to a big batch of them
1340 * for a small period time. See ioc_batching, ioc_set_batching
1341 */
a06e05e6 1342 ioc_set_batching(q, current->io_context);
05caf8db 1343
a06e05e6
TH
1344 spin_lock_irq(q->queue_lock);
1345 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1346
a06e05e6 1347 goto retry;
1da177e4
LT
1348}
1349
cd6ce148
BVA
1350static struct request *blk_old_get_request(struct request_queue *q,
1351 unsigned int op, gfp_t gfp_mask)
1da177e4
LT
1352{
1353 struct request *rq;
1354
7f4b35d1
TH
1355 /* create ioc upfront */
1356 create_io_context(gfp_mask, q->node);
1357
d6344532 1358 spin_lock_irq(q->queue_lock);
cd6ce148 1359 rq = get_request(q, op, NULL, gfp_mask);
0c4de0f3 1360 if (IS_ERR(rq)) {
da8303c6 1361 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1362 return rq;
1363 }
1da177e4 1364
0c4de0f3
CH
1365 /* q->queue_lock is unlocked at this point */
1366 rq->__data_len = 0;
1367 rq->__sector = (sector_t) -1;
1368 rq->bio = rq->biotail = NULL;
1da177e4
LT
1369 return rq;
1370}
320ae51f 1371
cd6ce148
BVA
1372struct request *blk_get_request(struct request_queue *q, unsigned int op,
1373 gfp_t gfp_mask)
320ae51f 1374{
d280bab3
BVA
1375 struct request *req;
1376
1377 if (q->mq_ops) {
1378 req = blk_mq_alloc_request(q, op,
6f3b0e8b
CH
1379 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1380 0 : BLK_MQ_REQ_NOWAIT);
d280bab3
BVA
1381 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1382 q->mq_ops->initialize_rq_fn(req);
1383 } else {
1384 req = blk_old_get_request(q, op, gfp_mask);
1385 if (!IS_ERR(req) && q->initialize_rq_fn)
1386 q->initialize_rq_fn(req);
1387 }
1388
1389 return req;
320ae51f 1390}
1da177e4
LT
1391EXPORT_SYMBOL(blk_get_request);
1392
1393/**
1394 * blk_requeue_request - put a request back on queue
1395 * @q: request queue where request should be inserted
1396 * @rq: request to be inserted
1397 *
1398 * Description:
1399 * Drivers often keep queueing requests until the hardware cannot accept
1400 * more, when that condition happens we need to put the request back
1401 * on the queue. Must be called with queue lock held.
1402 */
165125e1 1403void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1404{
242f9dcb
JA
1405 blk_delete_timer(rq);
1406 blk_clear_rq_complete(rq);
5f3ea37c 1407 trace_block_rq_requeue(q, rq);
87760e5e 1408 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1409
e8064021 1410 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1411 blk_queue_end_tag(q, rq);
1412
ba396a6c
JB
1413 BUG_ON(blk_queued_rq(rq));
1414
1da177e4
LT
1415 elv_requeue_request(q, rq);
1416}
1da177e4
LT
1417EXPORT_SYMBOL(blk_requeue_request);
1418
73c10101
JA
1419static void add_acct_request(struct request_queue *q, struct request *rq,
1420 int where)
1421{
320ae51f 1422 blk_account_io_start(rq, true);
7eaceacc 1423 __elv_add_request(q, rq, where);
73c10101
JA
1424}
1425
074a7aca
TH
1426static void part_round_stats_single(int cpu, struct hd_struct *part,
1427 unsigned long now)
1428{
7276d02e
JA
1429 int inflight;
1430
074a7aca
TH
1431 if (now == part->stamp)
1432 return;
1433
7276d02e
JA
1434 inflight = part_in_flight(part);
1435 if (inflight) {
074a7aca 1436 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1437 inflight * (now - part->stamp));
074a7aca
TH
1438 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1439 }
1440 part->stamp = now;
1441}
1442
1443/**
496aa8a9
RD
1444 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1445 * @cpu: cpu number for stats access
1446 * @part: target partition
1da177e4
LT
1447 *
1448 * The average IO queue length and utilisation statistics are maintained
1449 * by observing the current state of the queue length and the amount of
1450 * time it has been in this state for.
1451 *
1452 * Normally, that accounting is done on IO completion, but that can result
1453 * in more than a second's worth of IO being accounted for within any one
1454 * second, leading to >100% utilisation. To deal with that, we call this
1455 * function to do a round-off before returning the results when reading
1456 * /proc/diskstats. This accounts immediately for all queue usage up to
1457 * the current jiffies and restarts the counters again.
1458 */
c9959059 1459void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1460{
1461 unsigned long now = jiffies;
1462
074a7aca
TH
1463 if (part->partno)
1464 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1465 part_round_stats_single(cpu, part, now);
6f2576af 1466}
074a7aca 1467EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1468
47fafbc7 1469#ifdef CONFIG_PM
c8158819
LM
1470static void blk_pm_put_request(struct request *rq)
1471{
e8064021 1472 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1473 pm_runtime_mark_last_busy(rq->q->dev);
1474}
1475#else
1476static inline void blk_pm_put_request(struct request *rq) {}
1477#endif
1478
1da177e4
LT
1479/*
1480 * queue lock must be held
1481 */
165125e1 1482void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1483{
e8064021
CH
1484 req_flags_t rq_flags = req->rq_flags;
1485
1da177e4
LT
1486 if (unlikely(!q))
1487 return;
1da177e4 1488
6f5ba581
CH
1489 if (q->mq_ops) {
1490 blk_mq_free_request(req);
1491 return;
1492 }
1493
c8158819
LM
1494 blk_pm_put_request(req);
1495
8922e16c
TH
1496 elv_completed_request(q, req);
1497
1cd96c24
BH
1498 /* this is a bio leak */
1499 WARN_ON(req->bio != NULL);
1500
87760e5e
JA
1501 wbt_done(q->rq_wb, &req->issue_stat);
1502
1da177e4
LT
1503 /*
1504 * Request may not have originated from ll_rw_blk. if not,
1505 * it didn't come out of our reserved rq pools
1506 */
e8064021 1507 if (rq_flags & RQF_ALLOCED) {
a051661c 1508 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1509 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1510
1da177e4 1511 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1512 BUG_ON(ELV_ON_HASH(req));
1da177e4 1513
a051661c 1514 blk_free_request(rl, req);
e8064021 1515 freed_request(rl, sync, rq_flags);
a051661c 1516 blk_put_rl(rl);
1da177e4
LT
1517 }
1518}
6e39b69e
MC
1519EXPORT_SYMBOL_GPL(__blk_put_request);
1520
1da177e4
LT
1521void blk_put_request(struct request *req)
1522{
165125e1 1523 struct request_queue *q = req->q;
8922e16c 1524
320ae51f
JA
1525 if (q->mq_ops)
1526 blk_mq_free_request(req);
1527 else {
1528 unsigned long flags;
1529
1530 spin_lock_irqsave(q->queue_lock, flags);
1531 __blk_put_request(q, req);
1532 spin_unlock_irqrestore(q->queue_lock, flags);
1533 }
1da177e4 1534}
1da177e4
LT
1535EXPORT_SYMBOL(blk_put_request);
1536
320ae51f
JA
1537bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1538 struct bio *bio)
73c10101 1539{
1eff9d32 1540 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1541
73c10101
JA
1542 if (!ll_back_merge_fn(q, req, bio))
1543 return false;
1544
8c1cf6bb 1545 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1546
1547 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1548 blk_rq_set_mixed_merge(req);
1549
1550 req->biotail->bi_next = bio;
1551 req->biotail = bio;
4f024f37 1552 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1553 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1554
320ae51f 1555 blk_account_io_start(req, false);
73c10101
JA
1556 return true;
1557}
1558
320ae51f
JA
1559bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1560 struct bio *bio)
73c10101 1561{
1eff9d32 1562 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1563
73c10101
JA
1564 if (!ll_front_merge_fn(q, req, bio))
1565 return false;
1566
8c1cf6bb 1567 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1568
1569 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1570 blk_rq_set_mixed_merge(req);
1571
73c10101
JA
1572 bio->bi_next = req->bio;
1573 req->bio = bio;
1574
4f024f37
KO
1575 req->__sector = bio->bi_iter.bi_sector;
1576 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1577 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1578
320ae51f 1579 blk_account_io_start(req, false);
73c10101
JA
1580 return true;
1581}
1582
1e739730
CH
1583bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1584 struct bio *bio)
1585{
1586 unsigned short segments = blk_rq_nr_discard_segments(req);
1587
1588 if (segments >= queue_max_discard_segments(q))
1589 goto no_merge;
1590 if (blk_rq_sectors(req) + bio_sectors(bio) >
1591 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1592 goto no_merge;
1593
1594 req->biotail->bi_next = bio;
1595 req->biotail = bio;
1596 req->__data_len += bio->bi_iter.bi_size;
1597 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1598 req->nr_phys_segments = segments + 1;
1599
1600 blk_account_io_start(req, false);
1601 return true;
1602no_merge:
1603 req_set_nomerge(q, req);
1604 return false;
1605}
1606
bd87b589 1607/**
320ae51f 1608 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1609 * @q: request_queue new bio is being queued at
1610 * @bio: new bio being queued
1611 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1612 * @same_queue_rq: pointer to &struct request that gets filled in when
1613 * another request associated with @q is found on the plug list
1614 * (optional, may be %NULL)
bd87b589
TH
1615 *
1616 * Determine whether @bio being queued on @q can be merged with a request
1617 * on %current's plugged list. Returns %true if merge was successful,
1618 * otherwise %false.
1619 *
07c2bd37
TH
1620 * Plugging coalesces IOs from the same issuer for the same purpose without
1621 * going through @q->queue_lock. As such it's more of an issuing mechanism
1622 * than scheduling, and the request, while may have elvpriv data, is not
1623 * added on the elevator at this point. In addition, we don't have
1624 * reliable access to the elevator outside queue lock. Only check basic
1625 * merging parameters without querying the elevator.
da41a589
RE
1626 *
1627 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1628 */
320ae51f 1629bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1630 unsigned int *request_count,
1631 struct request **same_queue_rq)
73c10101
JA
1632{
1633 struct blk_plug *plug;
1634 struct request *rq;
92f399c7 1635 struct list_head *plug_list;
73c10101 1636
bd87b589 1637 plug = current->plug;
73c10101 1638 if (!plug)
34fe7c05 1639 return false;
56ebdaf2 1640 *request_count = 0;
73c10101 1641
92f399c7
SL
1642 if (q->mq_ops)
1643 plug_list = &plug->mq_list;
1644 else
1645 plug_list = &plug->list;
1646
1647 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1648 bool merged = false;
73c10101 1649
5b3f341f 1650 if (rq->q == q) {
1b2e19f1 1651 (*request_count)++;
5b3f341f
SL
1652 /*
1653 * Only blk-mq multiple hardware queues case checks the
1654 * rq in the same queue, there should be only one such
1655 * rq in a queue
1656 **/
1657 if (same_queue_rq)
1658 *same_queue_rq = rq;
1659 }
56ebdaf2 1660
07c2bd37 1661 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1662 continue;
1663
34fe7c05
CH
1664 switch (blk_try_merge(rq, bio)) {
1665 case ELEVATOR_BACK_MERGE:
1666 merged = bio_attempt_back_merge(q, rq, bio);
1667 break;
1668 case ELEVATOR_FRONT_MERGE:
1669 merged = bio_attempt_front_merge(q, rq, bio);
1670 break;
1e739730
CH
1671 case ELEVATOR_DISCARD_MERGE:
1672 merged = bio_attempt_discard_merge(q, rq, bio);
1673 break;
34fe7c05
CH
1674 default:
1675 break;
73c10101 1676 }
34fe7c05
CH
1677
1678 if (merged)
1679 return true;
73c10101 1680 }
34fe7c05
CH
1681
1682 return false;
73c10101
JA
1683}
1684
0809e3ac
JM
1685unsigned int blk_plug_queued_count(struct request_queue *q)
1686{
1687 struct blk_plug *plug;
1688 struct request *rq;
1689 struct list_head *plug_list;
1690 unsigned int ret = 0;
1691
1692 plug = current->plug;
1693 if (!plug)
1694 goto out;
1695
1696 if (q->mq_ops)
1697 plug_list = &plug->mq_list;
1698 else
1699 plug_list = &plug->list;
1700
1701 list_for_each_entry(rq, plug_list, queuelist) {
1702 if (rq->q == q)
1703 ret++;
1704 }
1705out:
1706 return ret;
1707}
1708
da8d7f07 1709void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1710{
0be0dee6
BVA
1711 struct io_context *ioc = rq_ioc(bio);
1712
1eff9d32 1713 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1714 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1715
4f024f37 1716 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1717 if (ioprio_valid(bio_prio(bio)))
1718 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1719 else if (ioc)
1720 req->ioprio = ioc->ioprio;
1721 else
1722 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
bc1c56fd 1723 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1724}
da8d7f07 1725EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1726
dece1635 1727static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1728{
73c10101 1729 struct blk_plug *plug;
34fe7c05 1730 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1731 struct request *req, *free;
56ebdaf2 1732 unsigned int request_count = 0;
87760e5e 1733 unsigned int wb_acct;
1da177e4 1734
1da177e4
LT
1735 /*
1736 * low level driver can indicate that it wants pages above a
1737 * certain limit bounced to low memory (ie for highmem, or even
1738 * ISA dma in theory)
1739 */
1740 blk_queue_bounce(q, &bio);
1741
af67c31f 1742 blk_queue_split(q, &bio);
23688bf4 1743
ffecfd1a 1744 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4e4cbee9 1745 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1746 bio_endio(bio);
dece1635 1747 return BLK_QC_T_NONE;
ffecfd1a
DW
1748 }
1749
f73f44eb 1750 if (op_is_flush(bio->bi_opf)) {
73c10101 1751 spin_lock_irq(q->queue_lock);
ae1b1539 1752 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1753 goto get_rq;
1754 }
1755
73c10101
JA
1756 /*
1757 * Check if we can merge with the plugged list before grabbing
1758 * any locks.
1759 */
0809e3ac
JM
1760 if (!blk_queue_nomerges(q)) {
1761 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1762 return BLK_QC_T_NONE;
0809e3ac
JM
1763 } else
1764 request_count = blk_plug_queued_count(q);
1da177e4 1765
73c10101 1766 spin_lock_irq(q->queue_lock);
2056a782 1767
34fe7c05
CH
1768 switch (elv_merge(q, &req, bio)) {
1769 case ELEVATOR_BACK_MERGE:
1770 if (!bio_attempt_back_merge(q, req, bio))
1771 break;
1772 elv_bio_merged(q, req, bio);
1773 free = attempt_back_merge(q, req);
1774 if (free)
1775 __blk_put_request(q, free);
1776 else
1777 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1778 goto out_unlock;
1779 case ELEVATOR_FRONT_MERGE:
1780 if (!bio_attempt_front_merge(q, req, bio))
1781 break;
1782 elv_bio_merged(q, req, bio);
1783 free = attempt_front_merge(q, req);
1784 if (free)
1785 __blk_put_request(q, free);
1786 else
1787 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1788 goto out_unlock;
1789 default:
1790 break;
1da177e4
LT
1791 }
1792
450991bc 1793get_rq:
87760e5e
JA
1794 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1795
1da177e4 1796 /*
450991bc 1797 * Grab a free request. This is might sleep but can not fail.
d6344532 1798 * Returns with the queue unlocked.
450991bc 1799 */
ef295ecf 1800 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1801 if (IS_ERR(req)) {
87760e5e 1802 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1803 if (PTR_ERR(req) == -ENOMEM)
1804 bio->bi_status = BLK_STS_RESOURCE;
1805 else
1806 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1807 bio_endio(bio);
da8303c6
TH
1808 goto out_unlock;
1809 }
d6344532 1810
87760e5e
JA
1811 wbt_track(&req->issue_stat, wb_acct);
1812
450991bc
NP
1813 /*
1814 * After dropping the lock and possibly sleeping here, our request
1815 * may now be mergeable after it had proven unmergeable (above).
1816 * We don't worry about that case for efficiency. It won't happen
1817 * often, and the elevators are able to handle it.
1da177e4 1818 */
da8d7f07 1819 blk_init_request_from_bio(req, bio);
1da177e4 1820
9562ad9a 1821 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1822 req->cpu = raw_smp_processor_id();
73c10101
JA
1823
1824 plug = current->plug;
721a9602 1825 if (plug) {
dc6d36c9
JA
1826 /*
1827 * If this is the first request added after a plug, fire
7aef2e78 1828 * of a plug trace.
0a6219a9
ML
1829 *
1830 * @request_count may become stale because of schedule
1831 * out, so check plug list again.
dc6d36c9 1832 */
0a6219a9 1833 if (!request_count || list_empty(&plug->list))
dc6d36c9 1834 trace_block_plug(q);
3540d5e8 1835 else {
50d24c34
SL
1836 struct request *last = list_entry_rq(plug->list.prev);
1837 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1838 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1839 blk_flush_plug_list(plug, false);
019ceb7d
SL
1840 trace_block_plug(q);
1841 }
73c10101 1842 }
73c10101 1843 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1844 blk_account_io_start(req, true);
73c10101
JA
1845 } else {
1846 spin_lock_irq(q->queue_lock);
1847 add_acct_request(q, req, where);
24ecfbe2 1848 __blk_run_queue(q);
73c10101
JA
1849out_unlock:
1850 spin_unlock_irq(q->queue_lock);
1851 }
dece1635
JA
1852
1853 return BLK_QC_T_NONE;
1da177e4
LT
1854}
1855
1856/*
1857 * If bio->bi_dev is a partition, remap the location
1858 */
1859static inline void blk_partition_remap(struct bio *bio)
1860{
1861 struct block_device *bdev = bio->bi_bdev;
1862
778889d8
ST
1863 /*
1864 * Zone reset does not include bi_size so bio_sectors() is always 0.
1865 * Include a test for the reset op code and perform the remap if needed.
1866 */
1867 if (bdev != bdev->bd_contains &&
1868 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1869 struct hd_struct *p = bdev->bd_part;
1870
4f024f37 1871 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1872 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1873
d07335e5
MS
1874 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1875 bdev->bd_dev,
4f024f37 1876 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1877 }
1878}
1879
1da177e4
LT
1880static void handle_bad_sector(struct bio *bio)
1881{
1882 char b[BDEVNAME_SIZE];
1883
1884 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1885 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1886 bdevname(bio->bi_bdev, b),
1eff9d32 1887 bio->bi_opf,
f73a1c7d 1888 (unsigned long long)bio_end_sector(bio),
77304d2a 1889 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1890}
1891
c17bb495
AM
1892#ifdef CONFIG_FAIL_MAKE_REQUEST
1893
1894static DECLARE_FAULT_ATTR(fail_make_request);
1895
1896static int __init setup_fail_make_request(char *str)
1897{
1898 return setup_fault_attr(&fail_make_request, str);
1899}
1900__setup("fail_make_request=", setup_fail_make_request);
1901
b2c9cd37 1902static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1903{
b2c9cd37 1904 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1905}
1906
1907static int __init fail_make_request_debugfs(void)
1908{
dd48c085
AM
1909 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1910 NULL, &fail_make_request);
1911
21f9fcd8 1912 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1913}
1914
1915late_initcall(fail_make_request_debugfs);
1916
1917#else /* CONFIG_FAIL_MAKE_REQUEST */
1918
b2c9cd37
AM
1919static inline bool should_fail_request(struct hd_struct *part,
1920 unsigned int bytes)
c17bb495 1921{
b2c9cd37 1922 return false;
c17bb495
AM
1923}
1924
1925#endif /* CONFIG_FAIL_MAKE_REQUEST */
1926
c07e2b41
JA
1927/*
1928 * Check whether this bio extends beyond the end of the device.
1929 */
1930static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1931{
1932 sector_t maxsector;
1933
1934 if (!nr_sectors)
1935 return 0;
1936
1937 /* Test device or partition size, when known. */
77304d2a 1938 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1939 if (maxsector) {
4f024f37 1940 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1941
1942 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1943 /*
1944 * This may well happen - the kernel calls bread()
1945 * without checking the size of the device, e.g., when
1946 * mounting a device.
1947 */
1948 handle_bad_sector(bio);
1949 return 1;
1950 }
1951 }
1952
1953 return 0;
1954}
1955
27a84d54
CH
1956static noinline_for_stack bool
1957generic_make_request_checks(struct bio *bio)
1da177e4 1958{
165125e1 1959 struct request_queue *q;
5a7bbad2 1960 int nr_sectors = bio_sectors(bio);
4e4cbee9 1961 blk_status_t status = BLK_STS_IOERR;
5a7bbad2
CH
1962 char b[BDEVNAME_SIZE];
1963 struct hd_struct *part;
1da177e4
LT
1964
1965 might_sleep();
1da177e4 1966
c07e2b41
JA
1967 if (bio_check_eod(bio, nr_sectors))
1968 goto end_io;
1da177e4 1969
5a7bbad2
CH
1970 q = bdev_get_queue(bio->bi_bdev);
1971 if (unlikely(!q)) {
1972 printk(KERN_ERR
1973 "generic_make_request: Trying to access "
1974 "nonexistent block-device %s (%Lu)\n",
1975 bdevname(bio->bi_bdev, b),
4f024f37 1976 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1977 goto end_io;
1978 }
c17bb495 1979
03a07c92
GR
1980 /*
1981 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
1982 * if queue is not a request based queue.
1983 */
1984
1985 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
1986 goto not_supported;
1987
5a7bbad2 1988 part = bio->bi_bdev->bd_part;
4f024f37 1989 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1990 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1991 bio->bi_iter.bi_size))
5a7bbad2 1992 goto end_io;
2056a782 1993
5a7bbad2
CH
1994 /*
1995 * If this device has partitions, remap block n
1996 * of partition p to block n+start(p) of the disk.
1997 */
1998 blk_partition_remap(bio);
2056a782 1999
5a7bbad2
CH
2000 if (bio_check_eod(bio, nr_sectors))
2001 goto end_io;
1e87901e 2002
5a7bbad2
CH
2003 /*
2004 * Filter flush bio's early so that make_request based
2005 * drivers without flush support don't have to worry
2006 * about them.
2007 */
f3a8ab7d 2008 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2009 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2010 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2011 if (!nr_sectors) {
4e4cbee9 2012 status = BLK_STS_OK;
51fd77bd
JA
2013 goto end_io;
2014 }
5a7bbad2 2015 }
5ddfe969 2016
288dab8a
CH
2017 switch (bio_op(bio)) {
2018 case REQ_OP_DISCARD:
2019 if (!blk_queue_discard(q))
2020 goto not_supported;
2021 break;
2022 case REQ_OP_SECURE_ERASE:
2023 if (!blk_queue_secure_erase(q))
2024 goto not_supported;
2025 break;
2026 case REQ_OP_WRITE_SAME:
2027 if (!bdev_write_same(bio->bi_bdev))
2028 goto not_supported;
58886785 2029 break;
2d253440
ST
2030 case REQ_OP_ZONE_REPORT:
2031 case REQ_OP_ZONE_RESET:
2032 if (!bdev_is_zoned(bio->bi_bdev))
2033 goto not_supported;
288dab8a 2034 break;
a6f0788e
CK
2035 case REQ_OP_WRITE_ZEROES:
2036 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
2037 goto not_supported;
2038 break;
288dab8a
CH
2039 default:
2040 break;
5a7bbad2 2041 }
01edede4 2042
7f4b35d1
TH
2043 /*
2044 * Various block parts want %current->io_context and lazy ioc
2045 * allocation ends up trading a lot of pain for a small amount of
2046 * memory. Just allocate it upfront. This may fail and block
2047 * layer knows how to live with it.
2048 */
2049 create_io_context(GFP_ATOMIC, q->node);
2050
ae118896
TH
2051 if (!blkcg_bio_issue_check(q, bio))
2052 return false;
27a84d54 2053
fbbaf700
N
2054 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2055 trace_block_bio_queue(q, bio);
2056 /* Now that enqueuing has been traced, we need to trace
2057 * completion as well.
2058 */
2059 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2060 }
27a84d54 2061 return true;
a7384677 2062
288dab8a 2063not_supported:
4e4cbee9 2064 status = BLK_STS_NOTSUPP;
a7384677 2065end_io:
4e4cbee9 2066 bio->bi_status = status;
4246a0b6 2067 bio_endio(bio);
27a84d54 2068 return false;
1da177e4
LT
2069}
2070
27a84d54
CH
2071/**
2072 * generic_make_request - hand a buffer to its device driver for I/O
2073 * @bio: The bio describing the location in memory and on the device.
2074 *
2075 * generic_make_request() is used to make I/O requests of block
2076 * devices. It is passed a &struct bio, which describes the I/O that needs
2077 * to be done.
2078 *
2079 * generic_make_request() does not return any status. The
2080 * success/failure status of the request, along with notification of
2081 * completion, is delivered asynchronously through the bio->bi_end_io
2082 * function described (one day) else where.
2083 *
2084 * The caller of generic_make_request must make sure that bi_io_vec
2085 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2086 * set to describe the device address, and the
2087 * bi_end_io and optionally bi_private are set to describe how
2088 * completion notification should be signaled.
2089 *
2090 * generic_make_request and the drivers it calls may use bi_next if this
2091 * bio happens to be merged with someone else, and may resubmit the bio to
2092 * a lower device by calling into generic_make_request recursively, which
2093 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2094 */
dece1635 2095blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2096{
f5fe1b51
N
2097 /*
2098 * bio_list_on_stack[0] contains bios submitted by the current
2099 * make_request_fn.
2100 * bio_list_on_stack[1] contains bios that were submitted before
2101 * the current make_request_fn, but that haven't been processed
2102 * yet.
2103 */
2104 struct bio_list bio_list_on_stack[2];
dece1635 2105 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2106
27a84d54 2107 if (!generic_make_request_checks(bio))
dece1635 2108 goto out;
27a84d54
CH
2109
2110 /*
2111 * We only want one ->make_request_fn to be active at a time, else
2112 * stack usage with stacked devices could be a problem. So use
2113 * current->bio_list to keep a list of requests submited by a
2114 * make_request_fn function. current->bio_list is also used as a
2115 * flag to say if generic_make_request is currently active in this
2116 * task or not. If it is NULL, then no make_request is active. If
2117 * it is non-NULL, then a make_request is active, and new requests
2118 * should be added at the tail
2119 */
bddd87c7 2120 if (current->bio_list) {
f5fe1b51 2121 bio_list_add(&current->bio_list[0], bio);
dece1635 2122 goto out;
d89d8796 2123 }
27a84d54 2124
d89d8796
NB
2125 /* following loop may be a bit non-obvious, and so deserves some
2126 * explanation.
2127 * Before entering the loop, bio->bi_next is NULL (as all callers
2128 * ensure that) so we have a list with a single bio.
2129 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2130 * we assign bio_list to a pointer to the bio_list_on_stack,
2131 * thus initialising the bio_list of new bios to be
27a84d54 2132 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2133 * through a recursive call to generic_make_request. If it
2134 * did, we find a non-NULL value in bio_list and re-enter the loop
2135 * from the top. In this case we really did just take the bio
bddd87c7 2136 * of the top of the list (no pretending) and so remove it from
27a84d54 2137 * bio_list, and call into ->make_request() again.
d89d8796
NB
2138 */
2139 BUG_ON(bio->bi_next);
f5fe1b51
N
2140 bio_list_init(&bio_list_on_stack[0]);
2141 current->bio_list = bio_list_on_stack;
d89d8796 2142 do {
27a84d54
CH
2143 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2144
03a07c92 2145 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
79bd9959
N
2146 struct bio_list lower, same;
2147
2148 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2149 bio_list_on_stack[1] = bio_list_on_stack[0];
2150 bio_list_init(&bio_list_on_stack[0]);
dece1635 2151 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2152
2153 blk_queue_exit(q);
27a84d54 2154
79bd9959
N
2155 /* sort new bios into those for a lower level
2156 * and those for the same level
2157 */
2158 bio_list_init(&lower);
2159 bio_list_init(&same);
f5fe1b51 2160 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
79bd9959
N
2161 if (q == bdev_get_queue(bio->bi_bdev))
2162 bio_list_add(&same, bio);
2163 else
2164 bio_list_add(&lower, bio);
2165 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2166 bio_list_merge(&bio_list_on_stack[0], &lower);
2167 bio_list_merge(&bio_list_on_stack[0], &same);
2168 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2169 } else {
03a07c92
GR
2170 if (unlikely(!blk_queue_dying(q) &&
2171 (bio->bi_opf & REQ_NOWAIT)))
2172 bio_wouldblock_error(bio);
2173 else
2174 bio_io_error(bio);
3ef28e83 2175 }
f5fe1b51 2176 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2177 } while (bio);
bddd87c7 2178 current->bio_list = NULL; /* deactivate */
dece1635
JA
2179
2180out:
2181 return ret;
d89d8796 2182}
1da177e4
LT
2183EXPORT_SYMBOL(generic_make_request);
2184
2185/**
710027a4 2186 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2187 * @bio: The &struct bio which describes the I/O
2188 *
2189 * submit_bio() is very similar in purpose to generic_make_request(), and
2190 * uses that function to do most of the work. Both are fairly rough
710027a4 2191 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2192 *
2193 */
4e49ea4a 2194blk_qc_t submit_bio(struct bio *bio)
1da177e4 2195{
bf2de6f5
JA
2196 /*
2197 * If it's a regular read/write or a barrier with data attached,
2198 * go through the normal accounting stuff before submission.
2199 */
e2a60da7 2200 if (bio_has_data(bio)) {
4363ac7c
MP
2201 unsigned int count;
2202
95fe6c1a 2203 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2204 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2205 else
2206 count = bio_sectors(bio);
2207
a8ebb056 2208 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2209 count_vm_events(PGPGOUT, count);
2210 } else {
4f024f37 2211 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2212 count_vm_events(PGPGIN, count);
2213 }
2214
2215 if (unlikely(block_dump)) {
2216 char b[BDEVNAME_SIZE];
8dcbdc74 2217 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2218 current->comm, task_pid_nr(current),
a8ebb056 2219 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2220 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2221 bdevname(bio->bi_bdev, b),
2222 count);
bf2de6f5 2223 }
1da177e4
LT
2224 }
2225
dece1635 2226 return generic_make_request(bio);
1da177e4 2227}
1da177e4
LT
2228EXPORT_SYMBOL(submit_bio);
2229
82124d60 2230/**
bf4e6b4e
HR
2231 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2232 * for new the queue limits
82124d60
KU
2233 * @q: the queue
2234 * @rq: the request being checked
2235 *
2236 * Description:
2237 * @rq may have been made based on weaker limitations of upper-level queues
2238 * in request stacking drivers, and it may violate the limitation of @q.
2239 * Since the block layer and the underlying device driver trust @rq
2240 * after it is inserted to @q, it should be checked against @q before
2241 * the insertion using this generic function.
2242 *
82124d60 2243 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2244 * limits when retrying requests on other queues. Those requests need
2245 * to be checked against the new queue limits again during dispatch.
82124d60 2246 */
bf4e6b4e
HR
2247static int blk_cloned_rq_check_limits(struct request_queue *q,
2248 struct request *rq)
82124d60 2249{
8fe0d473 2250 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2251 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2252 return -EIO;
2253 }
2254
2255 /*
2256 * queue's settings related to segment counting like q->bounce_pfn
2257 * may differ from that of other stacking queues.
2258 * Recalculate it to check the request correctly on this queue's
2259 * limitation.
2260 */
2261 blk_recalc_rq_segments(rq);
8a78362c 2262 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2263 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2264 return -EIO;
2265 }
2266
2267 return 0;
2268}
82124d60
KU
2269
2270/**
2271 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2272 * @q: the queue to submit the request
2273 * @rq: the request being queued
2274 */
2a842aca 2275blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2276{
2277 unsigned long flags;
4853abaa 2278 int where = ELEVATOR_INSERT_BACK;
82124d60 2279
bf4e6b4e 2280 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2281 return BLK_STS_IOERR;
82124d60 2282
b2c9cd37
AM
2283 if (rq->rq_disk &&
2284 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2285 return BLK_STS_IOERR;
82124d60 2286
7fb4898e
KB
2287 if (q->mq_ops) {
2288 if (blk_queue_io_stat(q))
2289 blk_account_io_start(rq, true);
bd6737f1 2290 blk_mq_sched_insert_request(rq, false, true, false, false);
2a842aca 2291 return BLK_STS_OK;
7fb4898e
KB
2292 }
2293
82124d60 2294 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2295 if (unlikely(blk_queue_dying(q))) {
8ba61435 2296 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2297 return BLK_STS_IOERR;
8ba61435 2298 }
82124d60
KU
2299
2300 /*
2301 * Submitting request must be dequeued before calling this function
2302 * because it will be linked to another request_queue
2303 */
2304 BUG_ON(blk_queued_rq(rq));
2305
f73f44eb 2306 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2307 where = ELEVATOR_INSERT_FLUSH;
2308
2309 add_acct_request(q, rq, where);
e67b77c7
JM
2310 if (where == ELEVATOR_INSERT_FLUSH)
2311 __blk_run_queue(q);
82124d60
KU
2312 spin_unlock_irqrestore(q->queue_lock, flags);
2313
2a842aca 2314 return BLK_STS_OK;
82124d60
KU
2315}
2316EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2317
80a761fd
TH
2318/**
2319 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2320 * @rq: request to examine
2321 *
2322 * Description:
2323 * A request could be merge of IOs which require different failure
2324 * handling. This function determines the number of bytes which
2325 * can be failed from the beginning of the request without
2326 * crossing into area which need to be retried further.
2327 *
2328 * Return:
2329 * The number of bytes to fail.
2330 *
2331 * Context:
2332 * queue_lock must be held.
2333 */
2334unsigned int blk_rq_err_bytes(const struct request *rq)
2335{
2336 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2337 unsigned int bytes = 0;
2338 struct bio *bio;
2339
e8064021 2340 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2341 return blk_rq_bytes(rq);
2342
2343 /*
2344 * Currently the only 'mixing' which can happen is between
2345 * different fastfail types. We can safely fail portions
2346 * which have all the failfast bits that the first one has -
2347 * the ones which are at least as eager to fail as the first
2348 * one.
2349 */
2350 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2351 if ((bio->bi_opf & ff) != ff)
80a761fd 2352 break;
4f024f37 2353 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2354 }
2355
2356 /* this could lead to infinite loop */
2357 BUG_ON(blk_rq_bytes(rq) && !bytes);
2358 return bytes;
2359}
2360EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2361
320ae51f 2362void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2363{
c2553b58 2364 if (blk_do_io_stat(req)) {
bc58ba94
JA
2365 const int rw = rq_data_dir(req);
2366 struct hd_struct *part;
2367 int cpu;
2368
2369 cpu = part_stat_lock();
09e099d4 2370 part = req->part;
bc58ba94
JA
2371 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2372 part_stat_unlock();
2373 }
2374}
2375
320ae51f 2376void blk_account_io_done(struct request *req)
bc58ba94 2377{
bc58ba94 2378 /*
dd4c133f
TH
2379 * Account IO completion. flush_rq isn't accounted as a
2380 * normal IO on queueing nor completion. Accounting the
2381 * containing request is enough.
bc58ba94 2382 */
e8064021 2383 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2384 unsigned long duration = jiffies - req->start_time;
2385 const int rw = rq_data_dir(req);
2386 struct hd_struct *part;
2387 int cpu;
2388
2389 cpu = part_stat_lock();
09e099d4 2390 part = req->part;
bc58ba94
JA
2391
2392 part_stat_inc(cpu, part, ios[rw]);
2393 part_stat_add(cpu, part, ticks[rw], duration);
2394 part_round_stats(cpu, part);
316d315b 2395 part_dec_in_flight(part, rw);
bc58ba94 2396
6c23a968 2397 hd_struct_put(part);
bc58ba94
JA
2398 part_stat_unlock();
2399 }
2400}
2401
47fafbc7 2402#ifdef CONFIG_PM
c8158819
LM
2403/*
2404 * Don't process normal requests when queue is suspended
2405 * or in the process of suspending/resuming
2406 */
2407static struct request *blk_pm_peek_request(struct request_queue *q,
2408 struct request *rq)
2409{
2410 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2411 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2412 return NULL;
2413 else
2414 return rq;
2415}
2416#else
2417static inline struct request *blk_pm_peek_request(struct request_queue *q,
2418 struct request *rq)
2419{
2420 return rq;
2421}
2422#endif
2423
320ae51f
JA
2424void blk_account_io_start(struct request *rq, bool new_io)
2425{
2426 struct hd_struct *part;
2427 int rw = rq_data_dir(rq);
2428 int cpu;
2429
2430 if (!blk_do_io_stat(rq))
2431 return;
2432
2433 cpu = part_stat_lock();
2434
2435 if (!new_io) {
2436 part = rq->part;
2437 part_stat_inc(cpu, part, merges[rw]);
2438 } else {
2439 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2440 if (!hd_struct_try_get(part)) {
2441 /*
2442 * The partition is already being removed,
2443 * the request will be accounted on the disk only
2444 *
2445 * We take a reference on disk->part0 although that
2446 * partition will never be deleted, so we can treat
2447 * it as any other partition.
2448 */
2449 part = &rq->rq_disk->part0;
2450 hd_struct_get(part);
2451 }
2452 part_round_stats(cpu, part);
2453 part_inc_in_flight(part, rw);
2454 rq->part = part;
2455 }
2456
2457 part_stat_unlock();
2458}
2459
3bcddeac 2460/**
9934c8c0
TH
2461 * blk_peek_request - peek at the top of a request queue
2462 * @q: request queue to peek at
2463 *
2464 * Description:
2465 * Return the request at the top of @q. The returned request
2466 * should be started using blk_start_request() before LLD starts
2467 * processing it.
2468 *
2469 * Return:
2470 * Pointer to the request at the top of @q if available. Null
2471 * otherwise.
2472 *
2473 * Context:
2474 * queue_lock must be held.
2475 */
2476struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2477{
2478 struct request *rq;
2479 int ret;
2480
2481 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2482
2483 rq = blk_pm_peek_request(q, rq);
2484 if (!rq)
2485 break;
2486
e8064021 2487 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2488 /*
2489 * This is the first time the device driver
2490 * sees this request (possibly after
2491 * requeueing). Notify IO scheduler.
2492 */
e8064021 2493 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2494 elv_activate_rq(q, rq);
2495
2496 /*
2497 * just mark as started even if we don't start
2498 * it, a request that has been delayed should
2499 * not be passed by new incoming requests
2500 */
e8064021 2501 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2502 trace_block_rq_issue(q, rq);
2503 }
2504
2505 if (!q->boundary_rq || q->boundary_rq == rq) {
2506 q->end_sector = rq_end_sector(rq);
2507 q->boundary_rq = NULL;
2508 }
2509
e8064021 2510 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2511 break;
2512
2e46e8b2 2513 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2514 /*
2515 * make sure space for the drain appears we
2516 * know we can do this because max_hw_segments
2517 * has been adjusted to be one fewer than the
2518 * device can handle
2519 */
2520 rq->nr_phys_segments++;
2521 }
2522
2523 if (!q->prep_rq_fn)
2524 break;
2525
2526 ret = q->prep_rq_fn(q, rq);
2527 if (ret == BLKPREP_OK) {
2528 break;
2529 } else if (ret == BLKPREP_DEFER) {
2530 /*
2531 * the request may have been (partially) prepped.
2532 * we need to keep this request in the front to
e8064021 2533 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2534 * prevent other fs requests from passing this one.
2535 */
2e46e8b2 2536 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2537 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2538 /*
2539 * remove the space for the drain we added
2540 * so that we don't add it again
2541 */
2542 --rq->nr_phys_segments;
2543 }
2544
2545 rq = NULL;
2546 break;
0fb5b1fb 2547 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2548 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2549 /*
2550 * Mark this request as started so we don't trigger
2551 * any debug logic in the end I/O path.
2552 */
2553 blk_start_request(rq);
2a842aca
CH
2554 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2555 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2556 } else {
2557 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2558 break;
2559 }
2560 }
2561
2562 return rq;
2563}
9934c8c0 2564EXPORT_SYMBOL(blk_peek_request);
158dbda0 2565
9934c8c0 2566void blk_dequeue_request(struct request *rq)
158dbda0 2567{
9934c8c0
TH
2568 struct request_queue *q = rq->q;
2569
158dbda0
TH
2570 BUG_ON(list_empty(&rq->queuelist));
2571 BUG_ON(ELV_ON_HASH(rq));
2572
2573 list_del_init(&rq->queuelist);
2574
2575 /*
2576 * the time frame between a request being removed from the lists
2577 * and to it is freed is accounted as io that is in progress at
2578 * the driver side.
2579 */
9195291e 2580 if (blk_account_rq(rq)) {
0a7ae2ff 2581 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2582 set_io_start_time_ns(rq);
2583 }
158dbda0
TH
2584}
2585
9934c8c0
TH
2586/**
2587 * blk_start_request - start request processing on the driver
2588 * @req: request to dequeue
2589 *
2590 * Description:
2591 * Dequeue @req and start timeout timer on it. This hands off the
2592 * request to the driver.
2593 *
2594 * Block internal functions which don't want to start timer should
2595 * call blk_dequeue_request().
2596 *
2597 * Context:
2598 * queue_lock must be held.
2599 */
2600void blk_start_request(struct request *req)
2601{
2602 blk_dequeue_request(req);
2603
cf43e6be 2604 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2605 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2606 req->rq_flags |= RQF_STATS;
87760e5e 2607 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2608 }
2609
4912aa6c 2610 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2611 blk_add_timer(req);
2612}
2613EXPORT_SYMBOL(blk_start_request);
2614
2615/**
2616 * blk_fetch_request - fetch a request from a request queue
2617 * @q: request queue to fetch a request from
2618 *
2619 * Description:
2620 * Return the request at the top of @q. The request is started on
2621 * return and LLD can start processing it immediately.
2622 *
2623 * Return:
2624 * Pointer to the request at the top of @q if available. Null
2625 * otherwise.
2626 *
2627 * Context:
2628 * queue_lock must be held.
2629 */
2630struct request *blk_fetch_request(struct request_queue *q)
2631{
2632 struct request *rq;
2633
2634 rq = blk_peek_request(q);
2635 if (rq)
2636 blk_start_request(rq);
2637 return rq;
2638}
2639EXPORT_SYMBOL(blk_fetch_request);
2640
3bcddeac 2641/**
2e60e022 2642 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2643 * @req: the request being processed
2a842aca 2644 * @error: block status code
8ebf9756 2645 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2646 *
2647 * Description:
8ebf9756
RD
2648 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2649 * the request structure even if @req doesn't have leftover.
2650 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2651 *
2652 * This special helper function is only for request stacking drivers
2653 * (e.g. request-based dm) so that they can handle partial completion.
2654 * Actual device drivers should use blk_end_request instead.
2655 *
2656 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2657 * %false return from this function.
3bcddeac
KU
2658 *
2659 * Return:
2e60e022
TH
2660 * %false - this request doesn't have any more data
2661 * %true - this request has more data
3bcddeac 2662 **/
2a842aca
CH
2663bool blk_update_request(struct request *req, blk_status_t error,
2664 unsigned int nr_bytes)
1da177e4 2665{
f79ea416 2666 int total_bytes;
1da177e4 2667
2a842aca 2668 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2669
2e60e022
TH
2670 if (!req->bio)
2671 return false;
2672
2a842aca
CH
2673 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2674 !(req->rq_flags & RQF_QUIET)))
2675 print_req_error(req, error);
1da177e4 2676
bc58ba94 2677 blk_account_io_completion(req, nr_bytes);
d72d904a 2678
f79ea416
KO
2679 total_bytes = 0;
2680 while (req->bio) {
2681 struct bio *bio = req->bio;
4f024f37 2682 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2683
4f024f37 2684 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2685 req->bio = bio->bi_next;
1da177e4 2686
fbbaf700
N
2687 /* Completion has already been traced */
2688 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2689 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2690
f79ea416
KO
2691 total_bytes += bio_bytes;
2692 nr_bytes -= bio_bytes;
1da177e4 2693
f79ea416
KO
2694 if (!nr_bytes)
2695 break;
1da177e4
LT
2696 }
2697
2698 /*
2699 * completely done
2700 */
2e60e022
TH
2701 if (!req->bio) {
2702 /*
2703 * Reset counters so that the request stacking driver
2704 * can find how many bytes remain in the request
2705 * later.
2706 */
a2dec7b3 2707 req->__data_len = 0;
2e60e022
TH
2708 return false;
2709 }
1da177e4 2710
a2dec7b3 2711 req->__data_len -= total_bytes;
2e46e8b2
TH
2712
2713 /* update sector only for requests with clear definition of sector */
57292b58 2714 if (!blk_rq_is_passthrough(req))
a2dec7b3 2715 req->__sector += total_bytes >> 9;
2e46e8b2 2716
80a761fd 2717 /* mixed attributes always follow the first bio */
e8064021 2718 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2719 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2720 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2721 }
2722
ed6565e7
CH
2723 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2724 /*
2725 * If total number of sectors is less than the first segment
2726 * size, something has gone terribly wrong.
2727 */
2728 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2729 blk_dump_rq_flags(req, "request botched");
2730 req->__data_len = blk_rq_cur_bytes(req);
2731 }
2e46e8b2 2732
ed6565e7
CH
2733 /* recalculate the number of segments */
2734 blk_recalc_rq_segments(req);
2735 }
2e46e8b2 2736
2e60e022 2737 return true;
1da177e4 2738}
2e60e022 2739EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2740
2a842aca 2741static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
2742 unsigned int nr_bytes,
2743 unsigned int bidi_bytes)
5efccd17 2744{
2e60e022
TH
2745 if (blk_update_request(rq, error, nr_bytes))
2746 return true;
5efccd17 2747
2e60e022
TH
2748 /* Bidi request must be completed as a whole */
2749 if (unlikely(blk_bidi_rq(rq)) &&
2750 blk_update_request(rq->next_rq, error, bidi_bytes))
2751 return true;
5efccd17 2752
e2e1a148
JA
2753 if (blk_queue_add_random(rq->q))
2754 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2755
2756 return false;
1da177e4
LT
2757}
2758
28018c24
JB
2759/**
2760 * blk_unprep_request - unprepare a request
2761 * @req: the request
2762 *
2763 * This function makes a request ready for complete resubmission (or
2764 * completion). It happens only after all error handling is complete,
2765 * so represents the appropriate moment to deallocate any resources
2766 * that were allocated to the request in the prep_rq_fn. The queue
2767 * lock is held when calling this.
2768 */
2769void blk_unprep_request(struct request *req)
2770{
2771 struct request_queue *q = req->q;
2772
e8064021 2773 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2774 if (q->unprep_rq_fn)
2775 q->unprep_rq_fn(q, req);
2776}
2777EXPORT_SYMBOL_GPL(blk_unprep_request);
2778
1da177e4
LT
2779/*
2780 * queue lock must be held
2781 */
2a842aca 2782void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 2783{
cf43e6be
JA
2784 struct request_queue *q = req->q;
2785
2786 if (req->rq_flags & RQF_STATS)
34dbad5d 2787 blk_stat_add(req);
cf43e6be 2788
e8064021 2789 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2790 blk_queue_end_tag(q, req);
b8286239 2791
ba396a6c 2792 BUG_ON(blk_queued_rq(req));
1da177e4 2793
57292b58 2794 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2795 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2796
e78042e5
MA
2797 blk_delete_timer(req);
2798
e8064021 2799 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2800 blk_unprep_request(req);
2801
bc58ba94 2802 blk_account_io_done(req);
b8286239 2803
87760e5e
JA
2804 if (req->end_io) {
2805 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2806 req->end_io(req, error);
87760e5e 2807 } else {
b8286239
KU
2808 if (blk_bidi_rq(req))
2809 __blk_put_request(req->next_rq->q, req->next_rq);
2810
cf43e6be 2811 __blk_put_request(q, req);
b8286239 2812 }
1da177e4 2813}
12120077 2814EXPORT_SYMBOL(blk_finish_request);
1da177e4 2815
3b11313a 2816/**
2e60e022
TH
2817 * blk_end_bidi_request - Complete a bidi request
2818 * @rq: the request to complete
2a842aca 2819 * @error: block status code
2e60e022
TH
2820 * @nr_bytes: number of bytes to complete @rq
2821 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2822 *
2823 * Description:
e3a04fe3 2824 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2825 * Drivers that supports bidi can safely call this member for any
2826 * type of request, bidi or uni. In the later case @bidi_bytes is
2827 * just ignored.
336cdb40
KU
2828 *
2829 * Return:
2e60e022
TH
2830 * %false - we are done with this request
2831 * %true - still buffers pending for this request
a0cd1285 2832 **/
2a842aca 2833static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
2834 unsigned int nr_bytes, unsigned int bidi_bytes)
2835{
336cdb40 2836 struct request_queue *q = rq->q;
2e60e022 2837 unsigned long flags;
32fab448 2838
2e60e022
TH
2839 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2840 return true;
32fab448 2841
336cdb40 2842 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2843 blk_finish_request(rq, error);
336cdb40
KU
2844 spin_unlock_irqrestore(q->queue_lock, flags);
2845
2e60e022 2846 return false;
32fab448
KU
2847}
2848
336cdb40 2849/**
2e60e022
TH
2850 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2851 * @rq: the request to complete
2a842aca 2852 * @error: block status code
e3a04fe3
KU
2853 * @nr_bytes: number of bytes to complete @rq
2854 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2855 *
2856 * Description:
2e60e022
TH
2857 * Identical to blk_end_bidi_request() except that queue lock is
2858 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2859 *
2860 * Return:
2e60e022
TH
2861 * %false - we are done with this request
2862 * %true - still buffers pending for this request
336cdb40 2863 **/
2a842aca 2864static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 2865 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2866{
2e60e022
TH
2867 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2868 return true;
336cdb40 2869
2e60e022 2870 blk_finish_request(rq, error);
336cdb40 2871
2e60e022 2872 return false;
336cdb40 2873}
e19a3ab0
KU
2874
2875/**
2876 * blk_end_request - Helper function for drivers to complete the request.
2877 * @rq: the request being processed
2a842aca 2878 * @error: block status code
e19a3ab0
KU
2879 * @nr_bytes: number of bytes to complete
2880 *
2881 * Description:
2882 * Ends I/O on a number of bytes attached to @rq.
2883 * If @rq has leftover, sets it up for the next range of segments.
2884 *
2885 * Return:
b1f74493
FT
2886 * %false - we are done with this request
2887 * %true - still buffers pending for this request
e19a3ab0 2888 **/
2a842aca
CH
2889bool blk_end_request(struct request *rq, blk_status_t error,
2890 unsigned int nr_bytes)
e19a3ab0 2891{
b1f74493 2892 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2893}
56ad1740 2894EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2895
2896/**
b1f74493
FT
2897 * blk_end_request_all - Helper function for drives to finish the request.
2898 * @rq: the request to finish
2a842aca 2899 * @error: block status code
336cdb40
KU
2900 *
2901 * Description:
b1f74493
FT
2902 * Completely finish @rq.
2903 */
2a842aca 2904void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 2905{
b1f74493
FT
2906 bool pending;
2907 unsigned int bidi_bytes = 0;
336cdb40 2908
b1f74493
FT
2909 if (unlikely(blk_bidi_rq(rq)))
2910 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2911
b1f74493
FT
2912 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2913 BUG_ON(pending);
2914}
56ad1740 2915EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2916
e3a04fe3 2917/**
b1f74493
FT
2918 * __blk_end_request - Helper function for drivers to complete the request.
2919 * @rq: the request being processed
2a842aca 2920 * @error: block status code
b1f74493 2921 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2922 *
2923 * Description:
b1f74493 2924 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2925 *
2926 * Return:
b1f74493
FT
2927 * %false - we are done with this request
2928 * %true - still buffers pending for this request
e3a04fe3 2929 **/
2a842aca
CH
2930bool __blk_end_request(struct request *rq, blk_status_t error,
2931 unsigned int nr_bytes)
e3a04fe3 2932{
b1f74493 2933 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2934}
56ad1740 2935EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2936
32fab448 2937/**
b1f74493
FT
2938 * __blk_end_request_all - Helper function for drives to finish the request.
2939 * @rq: the request to finish
2a842aca 2940 * @error: block status code
32fab448
KU
2941 *
2942 * Description:
b1f74493 2943 * Completely finish @rq. Must be called with queue lock held.
32fab448 2944 */
2a842aca 2945void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 2946{
b1f74493
FT
2947 bool pending;
2948 unsigned int bidi_bytes = 0;
2949
2950 if (unlikely(blk_bidi_rq(rq)))
2951 bidi_bytes = blk_rq_bytes(rq->next_rq);
2952
2953 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2954 BUG_ON(pending);
32fab448 2955}
56ad1740 2956EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2957
e19a3ab0 2958/**
b1f74493
FT
2959 * __blk_end_request_cur - Helper function to finish the current request chunk.
2960 * @rq: the request to finish the current chunk for
2a842aca 2961 * @error: block status code
e19a3ab0
KU
2962 *
2963 * Description:
b1f74493
FT
2964 * Complete the current consecutively mapped chunk from @rq. Must
2965 * be called with queue lock held.
e19a3ab0
KU
2966 *
2967 * Return:
b1f74493
FT
2968 * %false - we are done with this request
2969 * %true - still buffers pending for this request
2970 */
2a842aca 2971bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 2972{
b1f74493 2973 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2974}
56ad1740 2975EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2976
86db1e29
JA
2977void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2978 struct bio *bio)
1da177e4 2979{
b4f42e28 2980 if (bio_has_data(bio))
fb2dce86 2981 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2982
4f024f37 2983 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2984 rq->bio = rq->biotail = bio;
1da177e4 2985
66846572
N
2986 if (bio->bi_bdev)
2987 rq->rq_disk = bio->bi_bdev->bd_disk;
2988}
1da177e4 2989
2d4dc890
IL
2990#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2991/**
2992 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2993 * @rq: the request to be flushed
2994 *
2995 * Description:
2996 * Flush all pages in @rq.
2997 */
2998void rq_flush_dcache_pages(struct request *rq)
2999{
3000 struct req_iterator iter;
7988613b 3001 struct bio_vec bvec;
2d4dc890
IL
3002
3003 rq_for_each_segment(bvec, rq, iter)
7988613b 3004 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3005}
3006EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3007#endif
3008
ef9e3fac
KU
3009/**
3010 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3011 * @q : the queue of the device being checked
3012 *
3013 * Description:
3014 * Check if underlying low-level drivers of a device are busy.
3015 * If the drivers want to export their busy state, they must set own
3016 * exporting function using blk_queue_lld_busy() first.
3017 *
3018 * Basically, this function is used only by request stacking drivers
3019 * to stop dispatching requests to underlying devices when underlying
3020 * devices are busy. This behavior helps more I/O merging on the queue
3021 * of the request stacking driver and prevents I/O throughput regression
3022 * on burst I/O load.
3023 *
3024 * Return:
3025 * 0 - Not busy (The request stacking driver should dispatch request)
3026 * 1 - Busy (The request stacking driver should stop dispatching request)
3027 */
3028int blk_lld_busy(struct request_queue *q)
3029{
3030 if (q->lld_busy_fn)
3031 return q->lld_busy_fn(q);
3032
3033 return 0;
3034}
3035EXPORT_SYMBOL_GPL(blk_lld_busy);
3036
78d8e58a
MS
3037/**
3038 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3039 * @rq: the clone request to be cleaned up
3040 *
3041 * Description:
3042 * Free all bios in @rq for a cloned request.
3043 */
3044void blk_rq_unprep_clone(struct request *rq)
3045{
3046 struct bio *bio;
3047
3048 while ((bio = rq->bio) != NULL) {
3049 rq->bio = bio->bi_next;
3050
3051 bio_put(bio);
3052 }
3053}
3054EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3055
3056/*
3057 * Copy attributes of the original request to the clone request.
3058 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3059 */
3060static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3061{
3062 dst->cpu = src->cpu;
b0fd271d
KU
3063 dst->__sector = blk_rq_pos(src);
3064 dst->__data_len = blk_rq_bytes(src);
3065 dst->nr_phys_segments = src->nr_phys_segments;
3066 dst->ioprio = src->ioprio;
3067 dst->extra_len = src->extra_len;
78d8e58a
MS
3068}
3069
3070/**
3071 * blk_rq_prep_clone - Helper function to setup clone request
3072 * @rq: the request to be setup
3073 * @rq_src: original request to be cloned
3074 * @bs: bio_set that bios for clone are allocated from
3075 * @gfp_mask: memory allocation mask for bio
3076 * @bio_ctr: setup function to be called for each clone bio.
3077 * Returns %0 for success, non %0 for failure.
3078 * @data: private data to be passed to @bio_ctr
3079 *
3080 * Description:
3081 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3082 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3083 * are not copied, and copying such parts is the caller's responsibility.
3084 * Also, pages which the original bios are pointing to are not copied
3085 * and the cloned bios just point same pages.
3086 * So cloned bios must be completed before original bios, which means
3087 * the caller must complete @rq before @rq_src.
3088 */
3089int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3090 struct bio_set *bs, gfp_t gfp_mask,
3091 int (*bio_ctr)(struct bio *, struct bio *, void *),
3092 void *data)
3093{
3094 struct bio *bio, *bio_src;
3095
3096 if (!bs)
3097 bs = fs_bio_set;
3098
3099 __rq_for_each_bio(bio_src, rq_src) {
3100 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3101 if (!bio)
3102 goto free_and_out;
3103
3104 if (bio_ctr && bio_ctr(bio, bio_src, data))
3105 goto free_and_out;
3106
3107 if (rq->bio) {
3108 rq->biotail->bi_next = bio;
3109 rq->biotail = bio;
3110 } else
3111 rq->bio = rq->biotail = bio;
3112 }
3113
3114 __blk_rq_prep_clone(rq, rq_src);
3115
3116 return 0;
3117
3118free_and_out:
3119 if (bio)
3120 bio_put(bio);
3121 blk_rq_unprep_clone(rq);
3122
3123 return -ENOMEM;
b0fd271d
KU
3124}
3125EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3126
59c3d45e 3127int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3128{
3129 return queue_work(kblockd_workqueue, work);
3130}
1da177e4
LT
3131EXPORT_SYMBOL(kblockd_schedule_work);
3132
ee63cfa7
JA
3133int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3134{
3135 return queue_work_on(cpu, kblockd_workqueue, work);
3136}
3137EXPORT_SYMBOL(kblockd_schedule_work_on);
3138
818cd1cb
JA
3139int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3140 unsigned long delay)
3141{
3142 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3143}
3144EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3145
59c3d45e
JA
3146int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3147 unsigned long delay)
e43473b7
VG
3148{
3149 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3150}
3151EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3152
8ab14595
JA
3153int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3154 unsigned long delay)
3155{
3156 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3157}
3158EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3159
75df7136
SJ
3160/**
3161 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3162 * @plug: The &struct blk_plug that needs to be initialized
3163 *
3164 * Description:
3165 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3166 * pending I/O should the task end up blocking between blk_start_plug() and
3167 * blk_finish_plug(). This is important from a performance perspective, but
3168 * also ensures that we don't deadlock. For instance, if the task is blocking
3169 * for a memory allocation, memory reclaim could end up wanting to free a
3170 * page belonging to that request that is currently residing in our private
3171 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3172 * this kind of deadlock.
3173 */
73c10101
JA
3174void blk_start_plug(struct blk_plug *plug)
3175{
3176 struct task_struct *tsk = current;
3177
dd6cf3e1
SL
3178 /*
3179 * If this is a nested plug, don't actually assign it.
3180 */
3181 if (tsk->plug)
3182 return;
3183
73c10101 3184 INIT_LIST_HEAD(&plug->list);
320ae51f 3185 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3186 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3187 /*
dd6cf3e1
SL
3188 * Store ordering should not be needed here, since a potential
3189 * preempt will imply a full memory barrier
73c10101 3190 */
dd6cf3e1 3191 tsk->plug = plug;
73c10101
JA
3192}
3193EXPORT_SYMBOL(blk_start_plug);
3194
3195static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3196{
3197 struct request *rqa = container_of(a, struct request, queuelist);
3198 struct request *rqb = container_of(b, struct request, queuelist);
3199
975927b9
JM
3200 return !(rqa->q < rqb->q ||
3201 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3202}
3203
49cac01e
JA
3204/*
3205 * If 'from_schedule' is true, then postpone the dispatch of requests
3206 * until a safe kblockd context. We due this to avoid accidental big
3207 * additional stack usage in driver dispatch, in places where the originally
3208 * plugger did not intend it.
3209 */
f6603783 3210static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3211 bool from_schedule)
99e22598 3212 __releases(q->queue_lock)
94b5eb28 3213{
49cac01e 3214 trace_block_unplug(q, depth, !from_schedule);
99e22598 3215
70460571 3216 if (from_schedule)
24ecfbe2 3217 blk_run_queue_async(q);
70460571 3218 else
24ecfbe2 3219 __blk_run_queue(q);
70460571 3220 spin_unlock(q->queue_lock);
94b5eb28
JA
3221}
3222
74018dc3 3223static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3224{
3225 LIST_HEAD(callbacks);
3226
2a7d5559
SL
3227 while (!list_empty(&plug->cb_list)) {
3228 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3229
2a7d5559
SL
3230 while (!list_empty(&callbacks)) {
3231 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3232 struct blk_plug_cb,
3233 list);
2a7d5559 3234 list_del(&cb->list);
74018dc3 3235 cb->callback(cb, from_schedule);
2a7d5559 3236 }
048c9374
N
3237 }
3238}
3239
9cbb1750
N
3240struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3241 int size)
3242{
3243 struct blk_plug *plug = current->plug;
3244 struct blk_plug_cb *cb;
3245
3246 if (!plug)
3247 return NULL;
3248
3249 list_for_each_entry(cb, &plug->cb_list, list)
3250 if (cb->callback == unplug && cb->data == data)
3251 return cb;
3252
3253 /* Not currently on the callback list */
3254 BUG_ON(size < sizeof(*cb));
3255 cb = kzalloc(size, GFP_ATOMIC);
3256 if (cb) {
3257 cb->data = data;
3258 cb->callback = unplug;
3259 list_add(&cb->list, &plug->cb_list);
3260 }
3261 return cb;
3262}
3263EXPORT_SYMBOL(blk_check_plugged);
3264
49cac01e 3265void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3266{
3267 struct request_queue *q;
3268 unsigned long flags;
3269 struct request *rq;
109b8129 3270 LIST_HEAD(list);
94b5eb28 3271 unsigned int depth;
73c10101 3272
74018dc3 3273 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3274
3275 if (!list_empty(&plug->mq_list))
3276 blk_mq_flush_plug_list(plug, from_schedule);
3277
73c10101
JA
3278 if (list_empty(&plug->list))
3279 return;
3280
109b8129
N
3281 list_splice_init(&plug->list, &list);
3282
422765c2 3283 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3284
3285 q = NULL;
94b5eb28 3286 depth = 0;
18811272
JA
3287
3288 /*
3289 * Save and disable interrupts here, to avoid doing it for every
3290 * queue lock we have to take.
3291 */
73c10101 3292 local_irq_save(flags);
109b8129
N
3293 while (!list_empty(&list)) {
3294 rq = list_entry_rq(list.next);
73c10101 3295 list_del_init(&rq->queuelist);
73c10101
JA
3296 BUG_ON(!rq->q);
3297 if (rq->q != q) {
99e22598
JA
3298 /*
3299 * This drops the queue lock
3300 */
3301 if (q)
49cac01e 3302 queue_unplugged(q, depth, from_schedule);
73c10101 3303 q = rq->q;
94b5eb28 3304 depth = 0;
73c10101
JA
3305 spin_lock(q->queue_lock);
3306 }
8ba61435
TH
3307
3308 /*
3309 * Short-circuit if @q is dead
3310 */
3f3299d5 3311 if (unlikely(blk_queue_dying(q))) {
2a842aca 3312 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3313 continue;
3314 }
3315
73c10101
JA
3316 /*
3317 * rq is already accounted, so use raw insert
3318 */
f73f44eb 3319 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3320 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3321 else
3322 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3323
3324 depth++;
73c10101
JA
3325 }
3326
99e22598
JA
3327 /*
3328 * This drops the queue lock
3329 */
3330 if (q)
49cac01e 3331 queue_unplugged(q, depth, from_schedule);
73c10101 3332
73c10101
JA
3333 local_irq_restore(flags);
3334}
73c10101
JA
3335
3336void blk_finish_plug(struct blk_plug *plug)
3337{
dd6cf3e1
SL
3338 if (plug != current->plug)
3339 return;
f6603783 3340 blk_flush_plug_list(plug, false);
73c10101 3341
dd6cf3e1 3342 current->plug = NULL;
73c10101 3343}
88b996cd 3344EXPORT_SYMBOL(blk_finish_plug);
73c10101 3345
47fafbc7 3346#ifdef CONFIG_PM
6c954667
LM
3347/**
3348 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3349 * @q: the queue of the device
3350 * @dev: the device the queue belongs to
3351 *
3352 * Description:
3353 * Initialize runtime-PM-related fields for @q and start auto suspend for
3354 * @dev. Drivers that want to take advantage of request-based runtime PM
3355 * should call this function after @dev has been initialized, and its
3356 * request queue @q has been allocated, and runtime PM for it can not happen
3357 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3358 * cases, driver should call this function before any I/O has taken place.
3359 *
3360 * This function takes care of setting up using auto suspend for the device,
3361 * the autosuspend delay is set to -1 to make runtime suspend impossible
3362 * until an updated value is either set by user or by driver. Drivers do
3363 * not need to touch other autosuspend settings.
3364 *
3365 * The block layer runtime PM is request based, so only works for drivers
3366 * that use request as their IO unit instead of those directly use bio's.
3367 */
3368void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3369{
3370 q->dev = dev;
3371 q->rpm_status = RPM_ACTIVE;
3372 pm_runtime_set_autosuspend_delay(q->dev, -1);
3373 pm_runtime_use_autosuspend(q->dev);
3374}
3375EXPORT_SYMBOL(blk_pm_runtime_init);
3376
3377/**
3378 * blk_pre_runtime_suspend - Pre runtime suspend check
3379 * @q: the queue of the device
3380 *
3381 * Description:
3382 * This function will check if runtime suspend is allowed for the device
3383 * by examining if there are any requests pending in the queue. If there
3384 * are requests pending, the device can not be runtime suspended; otherwise,
3385 * the queue's status will be updated to SUSPENDING and the driver can
3386 * proceed to suspend the device.
3387 *
3388 * For the not allowed case, we mark last busy for the device so that
3389 * runtime PM core will try to autosuspend it some time later.
3390 *
3391 * This function should be called near the start of the device's
3392 * runtime_suspend callback.
3393 *
3394 * Return:
3395 * 0 - OK to runtime suspend the device
3396 * -EBUSY - Device should not be runtime suspended
3397 */
3398int blk_pre_runtime_suspend(struct request_queue *q)
3399{
3400 int ret = 0;
3401
4fd41a85
KX
3402 if (!q->dev)
3403 return ret;
3404
6c954667
LM
3405 spin_lock_irq(q->queue_lock);
3406 if (q->nr_pending) {
3407 ret = -EBUSY;
3408 pm_runtime_mark_last_busy(q->dev);
3409 } else {
3410 q->rpm_status = RPM_SUSPENDING;
3411 }
3412 spin_unlock_irq(q->queue_lock);
3413 return ret;
3414}
3415EXPORT_SYMBOL(blk_pre_runtime_suspend);
3416
3417/**
3418 * blk_post_runtime_suspend - Post runtime suspend processing
3419 * @q: the queue of the device
3420 * @err: return value of the device's runtime_suspend function
3421 *
3422 * Description:
3423 * Update the queue's runtime status according to the return value of the
3424 * device's runtime suspend function and mark last busy for the device so
3425 * that PM core will try to auto suspend the device at a later time.
3426 *
3427 * This function should be called near the end of the device's
3428 * runtime_suspend callback.
3429 */
3430void blk_post_runtime_suspend(struct request_queue *q, int err)
3431{
4fd41a85
KX
3432 if (!q->dev)
3433 return;
3434
6c954667
LM
3435 spin_lock_irq(q->queue_lock);
3436 if (!err) {
3437 q->rpm_status = RPM_SUSPENDED;
3438 } else {
3439 q->rpm_status = RPM_ACTIVE;
3440 pm_runtime_mark_last_busy(q->dev);
3441 }
3442 spin_unlock_irq(q->queue_lock);
3443}
3444EXPORT_SYMBOL(blk_post_runtime_suspend);
3445
3446/**
3447 * blk_pre_runtime_resume - Pre runtime resume processing
3448 * @q: the queue of the device
3449 *
3450 * Description:
3451 * Update the queue's runtime status to RESUMING in preparation for the
3452 * runtime resume of the device.
3453 *
3454 * This function should be called near the start of the device's
3455 * runtime_resume callback.
3456 */
3457void blk_pre_runtime_resume(struct request_queue *q)
3458{
4fd41a85
KX
3459 if (!q->dev)
3460 return;
3461
6c954667
LM
3462 spin_lock_irq(q->queue_lock);
3463 q->rpm_status = RPM_RESUMING;
3464 spin_unlock_irq(q->queue_lock);
3465}
3466EXPORT_SYMBOL(blk_pre_runtime_resume);
3467
3468/**
3469 * blk_post_runtime_resume - Post runtime resume processing
3470 * @q: the queue of the device
3471 * @err: return value of the device's runtime_resume function
3472 *
3473 * Description:
3474 * Update the queue's runtime status according to the return value of the
3475 * device's runtime_resume function. If it is successfully resumed, process
3476 * the requests that are queued into the device's queue when it is resuming
3477 * and then mark last busy and initiate autosuspend for it.
3478 *
3479 * This function should be called near the end of the device's
3480 * runtime_resume callback.
3481 */
3482void blk_post_runtime_resume(struct request_queue *q, int err)
3483{
4fd41a85
KX
3484 if (!q->dev)
3485 return;
3486
6c954667
LM
3487 spin_lock_irq(q->queue_lock);
3488 if (!err) {
3489 q->rpm_status = RPM_ACTIVE;
3490 __blk_run_queue(q);
3491 pm_runtime_mark_last_busy(q->dev);
c60855cd 3492 pm_request_autosuspend(q->dev);
6c954667
LM
3493 } else {
3494 q->rpm_status = RPM_SUSPENDED;
3495 }
3496 spin_unlock_irq(q->queue_lock);
3497}
3498EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3499
3500/**
3501 * blk_set_runtime_active - Force runtime status of the queue to be active
3502 * @q: the queue of the device
3503 *
3504 * If the device is left runtime suspended during system suspend the resume
3505 * hook typically resumes the device and corrects runtime status
3506 * accordingly. However, that does not affect the queue runtime PM status
3507 * which is still "suspended". This prevents processing requests from the
3508 * queue.
3509 *
3510 * This function can be used in driver's resume hook to correct queue
3511 * runtime PM status and re-enable peeking requests from the queue. It
3512 * should be called before first request is added to the queue.
3513 */
3514void blk_set_runtime_active(struct request_queue *q)
3515{
3516 spin_lock_irq(q->queue_lock);
3517 q->rpm_status = RPM_ACTIVE;
3518 pm_runtime_mark_last_busy(q->dev);
3519 pm_request_autosuspend(q->dev);
3520 spin_unlock_irq(q->queue_lock);
3521}
3522EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3523#endif
3524
1da177e4
LT
3525int __init blk_dev_init(void)
3526{
ef295ecf
CH
3527 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3528 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3529 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3530 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3531 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3532
89b90be2
TH
3533 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3534 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3535 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3536 if (!kblockd_workqueue)
3537 panic("Failed to create kblockd\n");
3538
3539 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3540 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3541
c2789bd4 3542 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3543 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3544
18fbda91
OS
3545#ifdef CONFIG_DEBUG_FS
3546 blk_debugfs_root = debugfs_create_dir("block", NULL);
3547#endif
3548
d38ecf93 3549 return 0;
1da177e4 3550}