]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: Make request operation type argument declarations consistent
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 147
4e4cbee9
CH
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
2a842aca
CH
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153};
154
155blk_status_t errno_to_blk_status(int errno)
156{
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165}
166EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168int blk_status_to_errno(blk_status_t status)
169{
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx > ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175}
176EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178static void print_req_error(struct request *req, blk_status_t status)
179{
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx > ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189}
190
5bb23a68 191static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 192 unsigned int nbytes, blk_status_t error)
1da177e4 193{
78d8e58a 194 if (error)
4e4cbee9 195 bio->bi_status = error;
797e7dbb 196
e8064021 197 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 198 bio_set_flag(bio, BIO_QUIET);
08bafc03 199
f79ea416 200 bio_advance(bio, nbytes);
7ba1ba12 201
143a87f4 202 /* don't actually finish bio if it's part of flush sequence */
e8064021 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 204 bio_endio(bio);
1da177e4 205}
1da177e4 206
1da177e4
LT
207void blk_dump_rq_flags(struct request *rq, char *msg)
208{
aebf526b
CH
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 211 (unsigned long long) rq->cmd_flags);
1da177e4 212
83096ebf
TH
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_dump_rq_flags);
220
3cca6dc1 221static void blk_delay_work(struct work_struct *work)
1da177e4 222{
3cca6dc1 223 struct request_queue *q;
1da177e4 224
3cca6dc1
JA
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
24ecfbe2 227 __blk_run_queue(q);
3cca6dc1 228 spin_unlock_irq(q->queue_lock);
1da177e4 229}
1da177e4
LT
230
231/**
3cca6dc1
JA
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
1da177e4
LT
235 *
236 * Description:
3cca6dc1
JA
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
70460571 239 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
240 */
241void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 242{
70460571
BVA
243 if (likely(!blk_queue_dead(q)))
244 queue_delayed_work(kblockd_workqueue, &q->delay_work,
245 msecs_to_jiffies(msecs));
2ad8b1ef 246}
3cca6dc1 247EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 248
21491412
JA
249/**
250 * blk_start_queue_async - asynchronously restart a previously stopped queue
251 * @q: The &struct request_queue in question
252 *
253 * Description:
254 * blk_start_queue_async() will clear the stop flag on the queue, and
255 * ensure that the request_fn for the queue is run from an async
256 * context.
257 **/
258void blk_start_queue_async(struct request_queue *q)
259{
260 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
261 blk_run_queue_async(q);
262}
263EXPORT_SYMBOL(blk_start_queue_async);
264
1da177e4
LT
265/**
266 * blk_start_queue - restart a previously stopped queue
165125e1 267 * @q: The &struct request_queue in question
1da177e4
LT
268 *
269 * Description:
270 * blk_start_queue() will clear the stop flag on the queue, and call
271 * the request_fn for the queue if it was in a stopped state when
272 * entered. Also see blk_stop_queue(). Queue lock must be held.
273 **/
165125e1 274void blk_start_queue(struct request_queue *q)
1da177e4 275{
a038e253
PBG
276 WARN_ON(!irqs_disabled());
277
75ad23bc 278 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 279 __blk_run_queue(q);
1da177e4 280}
1da177e4
LT
281EXPORT_SYMBOL(blk_start_queue);
282
283/**
284 * blk_stop_queue - stop a queue
165125e1 285 * @q: The &struct request_queue in question
1da177e4
LT
286 *
287 * Description:
288 * The Linux block layer assumes that a block driver will consume all
289 * entries on the request queue when the request_fn strategy is called.
290 * Often this will not happen, because of hardware limitations (queue
291 * depth settings). If a device driver gets a 'queue full' response,
292 * or if it simply chooses not to queue more I/O at one point, it can
293 * call this function to prevent the request_fn from being called until
294 * the driver has signalled it's ready to go again. This happens by calling
295 * blk_start_queue() to restart queue operations. Queue lock must be held.
296 **/
165125e1 297void blk_stop_queue(struct request_queue *q)
1da177e4 298{
136b5721 299 cancel_delayed_work(&q->delay_work);
75ad23bc 300 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
301}
302EXPORT_SYMBOL(blk_stop_queue);
303
304/**
305 * blk_sync_queue - cancel any pending callbacks on a queue
306 * @q: the queue
307 *
308 * Description:
309 * The block layer may perform asynchronous callback activity
310 * on a queue, such as calling the unplug function after a timeout.
311 * A block device may call blk_sync_queue to ensure that any
312 * such activity is cancelled, thus allowing it to release resources
59c51591 313 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
314 * that its ->make_request_fn will not re-add plugging prior to calling
315 * this function.
316 *
da527770 317 * This function does not cancel any asynchronous activity arising
da3dae54 318 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 319 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 320 *
1da177e4
LT
321 */
322void blk_sync_queue(struct request_queue *q)
323{
70ed28b9 324 del_timer_sync(&q->timeout);
f04c1fe7
ML
325
326 if (q->mq_ops) {
327 struct blk_mq_hw_ctx *hctx;
328 int i;
329
21c6e939 330 queue_for_each_hw_ctx(q, hctx, i)
9f993737 331 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
332 } else {
333 cancel_delayed_work_sync(&q->delay_work);
334 }
1da177e4
LT
335}
336EXPORT_SYMBOL(blk_sync_queue);
337
c246e80d
BVA
338/**
339 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
340 * @q: The queue to run
341 *
342 * Description:
343 * Invoke request handling on a queue if there are any pending requests.
344 * May be used to restart request handling after a request has completed.
345 * This variant runs the queue whether or not the queue has been
346 * stopped. Must be called with the queue lock held and interrupts
347 * disabled. See also @blk_run_queue.
348 */
349inline void __blk_run_queue_uncond(struct request_queue *q)
350{
351 if (unlikely(blk_queue_dead(q)))
352 return;
353
24faf6f6
BVA
354 /*
355 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
356 * the queue lock internally. As a result multiple threads may be
357 * running such a request function concurrently. Keep track of the
358 * number of active request_fn invocations such that blk_drain_queue()
359 * can wait until all these request_fn calls have finished.
360 */
361 q->request_fn_active++;
c246e80d 362 q->request_fn(q);
24faf6f6 363 q->request_fn_active--;
c246e80d 364}
a7928c15 365EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 366
1da177e4 367/**
80a4b58e 368 * __blk_run_queue - run a single device queue
1da177e4 369 * @q: The queue to run
80a4b58e
JA
370 *
371 * Description:
372 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 373 * held and interrupts disabled.
1da177e4 374 */
24ecfbe2 375void __blk_run_queue(struct request_queue *q)
1da177e4 376{
a538cd03
TH
377 if (unlikely(blk_queue_stopped(q)))
378 return;
379
c246e80d 380 __blk_run_queue_uncond(q);
75ad23bc
NP
381}
382EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 383
24ecfbe2
CH
384/**
385 * blk_run_queue_async - run a single device queue in workqueue context
386 * @q: The queue to run
387 *
388 * Description:
389 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 390 * of us. The caller must hold the queue lock.
24ecfbe2
CH
391 */
392void blk_run_queue_async(struct request_queue *q)
393{
70460571 394 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 395 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 396}
c21e6beb 397EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 398
75ad23bc
NP
399/**
400 * blk_run_queue - run a single device queue
401 * @q: The queue to run
80a4b58e
JA
402 *
403 * Description:
404 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 405 * May be used to restart queueing when a request has completed.
75ad23bc
NP
406 */
407void blk_run_queue(struct request_queue *q)
408{
409 unsigned long flags;
410
411 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 412 __blk_run_queue(q);
1da177e4
LT
413 spin_unlock_irqrestore(q->queue_lock, flags);
414}
415EXPORT_SYMBOL(blk_run_queue);
416
165125e1 417void blk_put_queue(struct request_queue *q)
483f4afc
AV
418{
419 kobject_put(&q->kobj);
420}
d86e0e83 421EXPORT_SYMBOL(blk_put_queue);
483f4afc 422
e3c78ca5 423/**
807592a4 424 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 425 * @q: queue to drain
c9a929dd 426 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 427 *
c9a929dd
TH
428 * Drain requests from @q. If @drain_all is set, all requests are drained.
429 * If not, only ELVPRIV requests are drained. The caller is responsible
430 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 431 */
807592a4
BVA
432static void __blk_drain_queue(struct request_queue *q, bool drain_all)
433 __releases(q->queue_lock)
434 __acquires(q->queue_lock)
e3c78ca5 435{
458f27a9
AH
436 int i;
437
807592a4
BVA
438 lockdep_assert_held(q->queue_lock);
439
e3c78ca5 440 while (true) {
481a7d64 441 bool drain = false;
e3c78ca5 442
b855b04a
TH
443 /*
444 * The caller might be trying to drain @q before its
445 * elevator is initialized.
446 */
447 if (q->elevator)
448 elv_drain_elevator(q);
449
5efd6113 450 blkcg_drain_queue(q);
e3c78ca5 451
4eabc941
TH
452 /*
453 * This function might be called on a queue which failed
b855b04a
TH
454 * driver init after queue creation or is not yet fully
455 * active yet. Some drivers (e.g. fd and loop) get unhappy
456 * in such cases. Kick queue iff dispatch queue has
457 * something on it and @q has request_fn set.
4eabc941 458 */
b855b04a 459 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 460 __blk_run_queue(q);
c9a929dd 461
8a5ecdd4 462 drain |= q->nr_rqs_elvpriv;
24faf6f6 463 drain |= q->request_fn_active;
481a7d64
TH
464
465 /*
466 * Unfortunately, requests are queued at and tracked from
467 * multiple places and there's no single counter which can
468 * be drained. Check all the queues and counters.
469 */
470 if (drain_all) {
e97c293c 471 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
472 drain |= !list_empty(&q->queue_head);
473 for (i = 0; i < 2; i++) {
8a5ecdd4 474 drain |= q->nr_rqs[i];
481a7d64 475 drain |= q->in_flight[i];
7c94e1c1
ML
476 if (fq)
477 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
478 }
479 }
e3c78ca5 480
481a7d64 481 if (!drain)
e3c78ca5 482 break;
807592a4
BVA
483
484 spin_unlock_irq(q->queue_lock);
485
e3c78ca5 486 msleep(10);
807592a4
BVA
487
488 spin_lock_irq(q->queue_lock);
e3c78ca5 489 }
458f27a9
AH
490
491 /*
492 * With queue marked dead, any woken up waiter will fail the
493 * allocation path, so the wakeup chaining is lost and we're
494 * left with hung waiters. We need to wake up those waiters.
495 */
496 if (q->request_fn) {
a051661c
TH
497 struct request_list *rl;
498
a051661c
TH
499 blk_queue_for_each_rl(rl, q)
500 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
501 wake_up_all(&rl->wait[i]);
458f27a9 502 }
e3c78ca5
TH
503}
504
d732580b
TH
505/**
506 * blk_queue_bypass_start - enter queue bypass mode
507 * @q: queue of interest
508 *
509 * In bypass mode, only the dispatch FIFO queue of @q is used. This
510 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 511 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
512 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
513 * inside queue or RCU read lock.
d732580b
TH
514 */
515void blk_queue_bypass_start(struct request_queue *q)
516{
517 spin_lock_irq(q->queue_lock);
776687bc 518 q->bypass_depth++;
d732580b
TH
519 queue_flag_set(QUEUE_FLAG_BYPASS, q);
520 spin_unlock_irq(q->queue_lock);
521
776687bc
TH
522 /*
523 * Queues start drained. Skip actual draining till init is
524 * complete. This avoids lenghty delays during queue init which
525 * can happen many times during boot.
526 */
527 if (blk_queue_init_done(q)) {
807592a4
BVA
528 spin_lock_irq(q->queue_lock);
529 __blk_drain_queue(q, false);
530 spin_unlock_irq(q->queue_lock);
531
b82d4b19
TH
532 /* ensure blk_queue_bypass() is %true inside RCU read lock */
533 synchronize_rcu();
534 }
d732580b
TH
535}
536EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
537
538/**
539 * blk_queue_bypass_end - leave queue bypass mode
540 * @q: queue of interest
541 *
542 * Leave bypass mode and restore the normal queueing behavior.
543 */
544void blk_queue_bypass_end(struct request_queue *q)
545{
546 spin_lock_irq(q->queue_lock);
547 if (!--q->bypass_depth)
548 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
549 WARN_ON_ONCE(q->bypass_depth < 0);
550 spin_unlock_irq(q->queue_lock);
551}
552EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
553
aed3ea94
JA
554void blk_set_queue_dying(struct request_queue *q)
555{
1b856086
BVA
556 spin_lock_irq(q->queue_lock);
557 queue_flag_set(QUEUE_FLAG_DYING, q);
558 spin_unlock_irq(q->queue_lock);
aed3ea94 559
d3cfb2a0
ML
560 /*
561 * When queue DYING flag is set, we need to block new req
562 * entering queue, so we call blk_freeze_queue_start() to
563 * prevent I/O from crossing blk_queue_enter().
564 */
565 blk_freeze_queue_start(q);
566
aed3ea94
JA
567 if (q->mq_ops)
568 blk_mq_wake_waiters(q);
569 else {
570 struct request_list *rl;
571
bbfc3c5d 572 spin_lock_irq(q->queue_lock);
aed3ea94
JA
573 blk_queue_for_each_rl(rl, q) {
574 if (rl->rq_pool) {
575 wake_up(&rl->wait[BLK_RW_SYNC]);
576 wake_up(&rl->wait[BLK_RW_ASYNC]);
577 }
578 }
bbfc3c5d 579 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
580 }
581}
582EXPORT_SYMBOL_GPL(blk_set_queue_dying);
583
c9a929dd
TH
584/**
585 * blk_cleanup_queue - shutdown a request queue
586 * @q: request queue to shutdown
587 *
c246e80d
BVA
588 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
589 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 590 */
6728cb0e 591void blk_cleanup_queue(struct request_queue *q)
483f4afc 592{
c9a929dd 593 spinlock_t *lock = q->queue_lock;
e3335de9 594
3f3299d5 595 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 596 mutex_lock(&q->sysfs_lock);
aed3ea94 597 blk_set_queue_dying(q);
c9a929dd 598 spin_lock_irq(lock);
6ecf23af 599
80fd9979 600 /*
3f3299d5 601 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
602 * that, unlike blk_queue_bypass_start(), we aren't performing
603 * synchronize_rcu() after entering bypass mode to avoid the delay
604 * as some drivers create and destroy a lot of queues while
605 * probing. This is still safe because blk_release_queue() will be
606 * called only after the queue refcnt drops to zero and nothing,
607 * RCU or not, would be traversing the queue by then.
608 */
6ecf23af
TH
609 q->bypass_depth++;
610 queue_flag_set(QUEUE_FLAG_BYPASS, q);
611
c9a929dd
TH
612 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
613 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 614 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
615 spin_unlock_irq(lock);
616 mutex_unlock(&q->sysfs_lock);
617
c246e80d
BVA
618 /*
619 * Drain all requests queued before DYING marking. Set DEAD flag to
620 * prevent that q->request_fn() gets invoked after draining finished.
621 */
3ef28e83 622 blk_freeze_queue(q);
9c1051aa
OS
623 spin_lock_irq(lock);
624 if (!q->mq_ops)
43a5e4e2 625 __blk_drain_queue(q, true);
c246e80d 626 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 627 spin_unlock_irq(lock);
c9a929dd 628
5a48fc14
DW
629 /* for synchronous bio-based driver finish in-flight integrity i/o */
630 blk_flush_integrity();
631
c9a929dd 632 /* @q won't process any more request, flush async actions */
dc3b17cc 633 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
634 blk_sync_queue(q);
635
45a9c9d9
BVA
636 if (q->mq_ops)
637 blk_mq_free_queue(q);
3ef28e83 638 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 639
5e5cfac0
AH
640 spin_lock_irq(lock);
641 if (q->queue_lock != &q->__queue_lock)
642 q->queue_lock = &q->__queue_lock;
643 spin_unlock_irq(lock);
644
c9a929dd 645 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
646 blk_put_queue(q);
647}
1da177e4
LT
648EXPORT_SYMBOL(blk_cleanup_queue);
649
271508db 650/* Allocate memory local to the request queue */
6d247d7f 651static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 652{
6d247d7f
CH
653 struct request_queue *q = data;
654
655 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
656}
657
6d247d7f 658static void free_request_simple(void *element, void *data)
271508db
DR
659{
660 kmem_cache_free(request_cachep, element);
661}
662
6d247d7f
CH
663static void *alloc_request_size(gfp_t gfp_mask, void *data)
664{
665 struct request_queue *q = data;
666 struct request *rq;
667
668 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
669 q->node);
670 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
671 kfree(rq);
672 rq = NULL;
673 }
674 return rq;
675}
676
677static void free_request_size(void *element, void *data)
678{
679 struct request_queue *q = data;
680
681 if (q->exit_rq_fn)
682 q->exit_rq_fn(q, element);
683 kfree(element);
684}
685
5b788ce3
TH
686int blk_init_rl(struct request_list *rl, struct request_queue *q,
687 gfp_t gfp_mask)
1da177e4 688{
1abec4fd
MS
689 if (unlikely(rl->rq_pool))
690 return 0;
691
5b788ce3 692 rl->q = q;
1faa16d2
JA
693 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
694 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
695 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
696 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 697
6d247d7f
CH
698 if (q->cmd_size) {
699 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
700 alloc_request_size, free_request_size,
701 q, gfp_mask, q->node);
702 } else {
703 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
704 alloc_request_simple, free_request_simple,
705 q, gfp_mask, q->node);
706 }
1da177e4
LT
707 if (!rl->rq_pool)
708 return -ENOMEM;
709
b425e504
BVA
710 if (rl != &q->root_rl)
711 WARN_ON_ONCE(!blk_get_queue(q));
712
1da177e4
LT
713 return 0;
714}
715
b425e504 716void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 717{
b425e504 718 if (rl->rq_pool) {
5b788ce3 719 mempool_destroy(rl->rq_pool);
b425e504
BVA
720 if (rl != &q->root_rl)
721 blk_put_queue(q);
722 }
5b788ce3
TH
723}
724
165125e1 725struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 726{
c304a51b 727 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
728}
729EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 730
6f3b0e8b 731int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
732{
733 while (true) {
734 int ret;
735
736 if (percpu_ref_tryget_live(&q->q_usage_counter))
737 return 0;
738
6f3b0e8b 739 if (nowait)
3ef28e83
DW
740 return -EBUSY;
741
5ed61d3f 742 /*
1671d522 743 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 744 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
745 * .q_usage_counter and reading .mq_freeze_depth or
746 * queue dying flag, otherwise the following wait may
747 * never return if the two reads are reordered.
5ed61d3f
ML
748 */
749 smp_rmb();
750
3ef28e83
DW
751 ret = wait_event_interruptible(q->mq_freeze_wq,
752 !atomic_read(&q->mq_freeze_depth) ||
753 blk_queue_dying(q));
754 if (blk_queue_dying(q))
755 return -ENODEV;
756 if (ret)
757 return ret;
758 }
759}
760
761void blk_queue_exit(struct request_queue *q)
762{
763 percpu_ref_put(&q->q_usage_counter);
764}
765
766static void blk_queue_usage_counter_release(struct percpu_ref *ref)
767{
768 struct request_queue *q =
769 container_of(ref, struct request_queue, q_usage_counter);
770
771 wake_up_all(&q->mq_freeze_wq);
772}
773
287922eb
CH
774static void blk_rq_timed_out_timer(unsigned long data)
775{
776 struct request_queue *q = (struct request_queue *)data;
777
778 kblockd_schedule_work(&q->timeout_work);
779}
780
165125e1 781struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 782{
165125e1 783 struct request_queue *q;
1946089a 784
8324aa91 785 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 786 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
787 if (!q)
788 return NULL;
789
00380a40 790 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 791 if (q->id < 0)
3d2936f4 792 goto fail_q;
a73f730d 793
93b27e72 794 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
795 if (!q->bio_split)
796 goto fail_id;
797
d03f6cdc
JK
798 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
799 if (!q->backing_dev_info)
800 goto fail_split;
801
a83b576c
JA
802 q->stats = blk_alloc_queue_stats();
803 if (!q->stats)
804 goto fail_stats;
805
dc3b17cc 806 q->backing_dev_info->ra_pages =
09cbfeaf 807 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
808 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
809 q->backing_dev_info->name = "block";
5151412d 810 q->node = node_id;
0989a025 811
dc3b17cc 812 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 813 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 814 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 815 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 816 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 817 INIT_LIST_HEAD(&q->icq_list);
4eef3049 818#ifdef CONFIG_BLK_CGROUP
e8989fae 819 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 820#endif
3cca6dc1 821 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 822
8324aa91 823 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 824
483f4afc 825 mutex_init(&q->sysfs_lock);
e7e72bf6 826 spin_lock_init(&q->__queue_lock);
483f4afc 827
c94a96ac
VG
828 /*
829 * By default initialize queue_lock to internal lock and driver can
830 * override it later if need be.
831 */
832 q->queue_lock = &q->__queue_lock;
833
b82d4b19
TH
834 /*
835 * A queue starts its life with bypass turned on to avoid
836 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
837 * init. The initial bypass will be finished when the queue is
838 * registered by blk_register_queue().
b82d4b19
TH
839 */
840 q->bypass_depth = 1;
841 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
842
320ae51f
JA
843 init_waitqueue_head(&q->mq_freeze_wq);
844
3ef28e83
DW
845 /*
846 * Init percpu_ref in atomic mode so that it's faster to shutdown.
847 * See blk_register_queue() for details.
848 */
849 if (percpu_ref_init(&q->q_usage_counter,
850 blk_queue_usage_counter_release,
851 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 852 goto fail_bdi;
f51b802c 853
3ef28e83
DW
854 if (blkcg_init_queue(q))
855 goto fail_ref;
856
1da177e4 857 return q;
a73f730d 858
3ef28e83
DW
859fail_ref:
860 percpu_ref_exit(&q->q_usage_counter);
fff4996b 861fail_bdi:
a83b576c
JA
862 blk_free_queue_stats(q->stats);
863fail_stats:
d03f6cdc 864 bdi_put(q->backing_dev_info);
54efd50b
KO
865fail_split:
866 bioset_free(q->bio_split);
a73f730d
TH
867fail_id:
868 ida_simple_remove(&blk_queue_ida, q->id);
869fail_q:
870 kmem_cache_free(blk_requestq_cachep, q);
871 return NULL;
1da177e4 872}
1946089a 873EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
874
875/**
876 * blk_init_queue - prepare a request queue for use with a block device
877 * @rfn: The function to be called to process requests that have been
878 * placed on the queue.
879 * @lock: Request queue spin lock
880 *
881 * Description:
882 * If a block device wishes to use the standard request handling procedures,
883 * which sorts requests and coalesces adjacent requests, then it must
884 * call blk_init_queue(). The function @rfn will be called when there
885 * are requests on the queue that need to be processed. If the device
886 * supports plugging, then @rfn may not be called immediately when requests
887 * are available on the queue, but may be called at some time later instead.
888 * Plugged queues are generally unplugged when a buffer belonging to one
889 * of the requests on the queue is needed, or due to memory pressure.
890 *
891 * @rfn is not required, or even expected, to remove all requests off the
892 * queue, but only as many as it can handle at a time. If it does leave
893 * requests on the queue, it is responsible for arranging that the requests
894 * get dealt with eventually.
895 *
896 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
897 * request queue; this lock will be taken also from interrupt context, so irq
898 * disabling is needed for it.
1da177e4 899 *
710027a4 900 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
901 * it didn't succeed.
902 *
903 * Note:
904 * blk_init_queue() must be paired with a blk_cleanup_queue() call
905 * when the block device is deactivated (such as at module unload).
906 **/
1946089a 907
165125e1 908struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 909{
c304a51b 910 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
911}
912EXPORT_SYMBOL(blk_init_queue);
913
165125e1 914struct request_queue *
1946089a
CL
915blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
916{
5ea708d1 917 struct request_queue *q;
1da177e4 918
5ea708d1
CH
919 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
920 if (!q)
c86d1b8a
MS
921 return NULL;
922
5ea708d1
CH
923 q->request_fn = rfn;
924 if (lock)
925 q->queue_lock = lock;
926 if (blk_init_allocated_queue(q) < 0) {
927 blk_cleanup_queue(q);
928 return NULL;
929 }
18741986 930
7982e90c 931 return q;
01effb0d
MS
932}
933EXPORT_SYMBOL(blk_init_queue_node);
934
dece1635 935static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 936
1da177e4 937
5ea708d1
CH
938int blk_init_allocated_queue(struct request_queue *q)
939{
6d247d7f 940 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 941 if (!q->fq)
5ea708d1 942 return -ENOMEM;
7982e90c 943
6d247d7f
CH
944 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
945 goto out_free_flush_queue;
7982e90c 946
a051661c 947 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 948 goto out_exit_flush_rq;
1da177e4 949
287922eb 950 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 951 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 952
f3b144aa
JA
953 /*
954 * This also sets hw/phys segments, boundary and size
955 */
c20e8de2 956 blk_queue_make_request(q, blk_queue_bio);
1da177e4 957
44ec9542
AS
958 q->sg_reserved_size = INT_MAX;
959
eb1c160b
TS
960 /* Protect q->elevator from elevator_change */
961 mutex_lock(&q->sysfs_lock);
962
b82d4b19 963 /* init elevator */
eb1c160b
TS
964 if (elevator_init(q, NULL)) {
965 mutex_unlock(&q->sysfs_lock);
6d247d7f 966 goto out_exit_flush_rq;
eb1c160b
TS
967 }
968
969 mutex_unlock(&q->sysfs_lock);
5ea708d1 970 return 0;
eb1c160b 971
6d247d7f
CH
972out_exit_flush_rq:
973 if (q->exit_rq_fn)
974 q->exit_rq_fn(q, q->fq->flush_rq);
975out_free_flush_queue:
ba483388 976 blk_free_flush_queue(q->fq);
5ea708d1 977 return -ENOMEM;
1da177e4 978}
5151412d 979EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 980
09ac46c4 981bool blk_get_queue(struct request_queue *q)
1da177e4 982{
3f3299d5 983 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
984 __blk_get_queue(q);
985 return true;
1da177e4
LT
986 }
987
09ac46c4 988 return false;
1da177e4 989}
d86e0e83 990EXPORT_SYMBOL(blk_get_queue);
1da177e4 991
5b788ce3 992static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 993{
e8064021 994 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 995 elv_put_request(rl->q, rq);
f1f8cc94 996 if (rq->elv.icq)
11a3122f 997 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
998 }
999
5b788ce3 1000 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1001}
1002
1da177e4
LT
1003/*
1004 * ioc_batching returns true if the ioc is a valid batching request and
1005 * should be given priority access to a request.
1006 */
165125e1 1007static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1008{
1009 if (!ioc)
1010 return 0;
1011
1012 /*
1013 * Make sure the process is able to allocate at least 1 request
1014 * even if the batch times out, otherwise we could theoretically
1015 * lose wakeups.
1016 */
1017 return ioc->nr_batch_requests == q->nr_batching ||
1018 (ioc->nr_batch_requests > 0
1019 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1020}
1021
1022/*
1023 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1024 * will cause the process to be a "batcher" on all queues in the system. This
1025 * is the behaviour we want though - once it gets a wakeup it should be given
1026 * a nice run.
1027 */
165125e1 1028static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1029{
1030 if (!ioc || ioc_batching(q, ioc))
1031 return;
1032
1033 ioc->nr_batch_requests = q->nr_batching;
1034 ioc->last_waited = jiffies;
1035}
1036
5b788ce3 1037static void __freed_request(struct request_list *rl, int sync)
1da177e4 1038{
5b788ce3 1039 struct request_queue *q = rl->q;
1da177e4 1040
d40f75a0
TH
1041 if (rl->count[sync] < queue_congestion_off_threshold(q))
1042 blk_clear_congested(rl, sync);
1da177e4 1043
1faa16d2
JA
1044 if (rl->count[sync] + 1 <= q->nr_requests) {
1045 if (waitqueue_active(&rl->wait[sync]))
1046 wake_up(&rl->wait[sync]);
1da177e4 1047
5b788ce3 1048 blk_clear_rl_full(rl, sync);
1da177e4
LT
1049 }
1050}
1051
1052/*
1053 * A request has just been released. Account for it, update the full and
1054 * congestion status, wake up any waiters. Called under q->queue_lock.
1055 */
e8064021
CH
1056static void freed_request(struct request_list *rl, bool sync,
1057 req_flags_t rq_flags)
1da177e4 1058{
5b788ce3 1059 struct request_queue *q = rl->q;
1da177e4 1060
8a5ecdd4 1061 q->nr_rqs[sync]--;
1faa16d2 1062 rl->count[sync]--;
e8064021 1063 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1064 q->nr_rqs_elvpriv--;
1da177e4 1065
5b788ce3 1066 __freed_request(rl, sync);
1da177e4 1067
1faa16d2 1068 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1069 __freed_request(rl, sync ^ 1);
1da177e4
LT
1070}
1071
e3a2b3f9
JA
1072int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1073{
1074 struct request_list *rl;
d40f75a0 1075 int on_thresh, off_thresh;
e3a2b3f9
JA
1076
1077 spin_lock_irq(q->queue_lock);
1078 q->nr_requests = nr;
1079 blk_queue_congestion_threshold(q);
d40f75a0
TH
1080 on_thresh = queue_congestion_on_threshold(q);
1081 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1082
d40f75a0
TH
1083 blk_queue_for_each_rl(rl, q) {
1084 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1085 blk_set_congested(rl, BLK_RW_SYNC);
1086 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1087 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1088
d40f75a0
TH
1089 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1090 blk_set_congested(rl, BLK_RW_ASYNC);
1091 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1092 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1093
e3a2b3f9
JA
1094 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1095 blk_set_rl_full(rl, BLK_RW_SYNC);
1096 } else {
1097 blk_clear_rl_full(rl, BLK_RW_SYNC);
1098 wake_up(&rl->wait[BLK_RW_SYNC]);
1099 }
1100
1101 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1102 blk_set_rl_full(rl, BLK_RW_ASYNC);
1103 } else {
1104 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1105 wake_up(&rl->wait[BLK_RW_ASYNC]);
1106 }
1107 }
1108
1109 spin_unlock_irq(q->queue_lock);
1110 return 0;
1111}
1112
da8303c6 1113/**
a06e05e6 1114 * __get_request - get a free request
5b788ce3 1115 * @rl: request list to allocate from
ef295ecf 1116 * @op: operation and flags
da8303c6
TH
1117 * @bio: bio to allocate request for (can be %NULL)
1118 * @gfp_mask: allocation mask
1119 *
1120 * Get a free request from @q. This function may fail under memory
1121 * pressure or if @q is dead.
1122 *
da3dae54 1123 * Must be called with @q->queue_lock held and,
a492f075
JL
1124 * Returns ERR_PTR on failure, with @q->queue_lock held.
1125 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1126 */
ef295ecf
CH
1127static struct request *__get_request(struct request_list *rl, unsigned int op,
1128 struct bio *bio, gfp_t gfp_mask)
1da177e4 1129{
5b788ce3 1130 struct request_queue *q = rl->q;
b679281a 1131 struct request *rq;
7f4b35d1
TH
1132 struct elevator_type *et = q->elevator->type;
1133 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1134 struct io_cq *icq = NULL;
ef295ecf 1135 const bool is_sync = op_is_sync(op);
75eb6c37 1136 int may_queue;
e8064021 1137 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1138
3f3299d5 1139 if (unlikely(blk_queue_dying(q)))
a492f075 1140 return ERR_PTR(-ENODEV);
da8303c6 1141
ef295ecf 1142 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1143 if (may_queue == ELV_MQUEUE_NO)
1144 goto rq_starved;
1145
1faa16d2
JA
1146 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1147 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1148 /*
1149 * The queue will fill after this allocation, so set
1150 * it as full, and mark this process as "batching".
1151 * This process will be allowed to complete a batch of
1152 * requests, others will be blocked.
1153 */
5b788ce3 1154 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1155 ioc_set_batching(q, ioc);
5b788ce3 1156 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1157 } else {
1158 if (may_queue != ELV_MQUEUE_MUST
1159 && !ioc_batching(q, ioc)) {
1160 /*
1161 * The queue is full and the allocating
1162 * process is not a "batcher", and not
1163 * exempted by the IO scheduler
1164 */
a492f075 1165 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1166 }
1167 }
1da177e4 1168 }
d40f75a0 1169 blk_set_congested(rl, is_sync);
1da177e4
LT
1170 }
1171
082cf69e
JA
1172 /*
1173 * Only allow batching queuers to allocate up to 50% over the defined
1174 * limit of requests, otherwise we could have thousands of requests
1175 * allocated with any setting of ->nr_requests
1176 */
1faa16d2 1177 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1178 return ERR_PTR(-ENOMEM);
fd782a4a 1179
8a5ecdd4 1180 q->nr_rqs[is_sync]++;
1faa16d2
JA
1181 rl->count[is_sync]++;
1182 rl->starved[is_sync] = 0;
cb98fc8b 1183
f1f8cc94
TH
1184 /*
1185 * Decide whether the new request will be managed by elevator. If
e8064021 1186 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1187 * prevent the current elevator from being destroyed until the new
1188 * request is freed. This guarantees icq's won't be destroyed and
1189 * makes creating new ones safe.
1190 *
e6f7f93d
CH
1191 * Flush requests do not use the elevator so skip initialization.
1192 * This allows a request to share the flush and elevator data.
1193 *
f1f8cc94
TH
1194 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1195 * it will be created after releasing queue_lock.
1196 */
e6f7f93d 1197 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1198 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1199 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1200 if (et->icq_cache && ioc)
1201 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1202 }
cb98fc8b 1203
f253b86b 1204 if (blk_queue_io_stat(q))
e8064021 1205 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1206 spin_unlock_irq(q->queue_lock);
1207
29e2b09a 1208 /* allocate and init request */
5b788ce3 1209 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1210 if (!rq)
b679281a 1211 goto fail_alloc;
1da177e4 1212
29e2b09a 1213 blk_rq_init(q, rq);
a051661c 1214 blk_rq_set_rl(rq, rl);
ef295ecf 1215 rq->cmd_flags = op;
e8064021 1216 rq->rq_flags = rq_flags;
29e2b09a 1217
aaf7c680 1218 /* init elvpriv */
e8064021 1219 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1220 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1221 if (ioc)
1222 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1223 if (!icq)
1224 goto fail_elvpriv;
29e2b09a 1225 }
aaf7c680
TH
1226
1227 rq->elv.icq = icq;
1228 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1229 goto fail_elvpriv;
1230
1231 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1232 if (icq)
1233 get_io_context(icq->ioc);
1234 }
aaf7c680 1235out:
88ee5ef1
JA
1236 /*
1237 * ioc may be NULL here, and ioc_batching will be false. That's
1238 * OK, if the queue is under the request limit then requests need
1239 * not count toward the nr_batch_requests limit. There will always
1240 * be some limit enforced by BLK_BATCH_TIME.
1241 */
1da177e4
LT
1242 if (ioc_batching(q, ioc))
1243 ioc->nr_batch_requests--;
6728cb0e 1244
e6a40b09 1245 trace_block_getrq(q, bio, op);
1da177e4 1246 return rq;
b679281a 1247
aaf7c680
TH
1248fail_elvpriv:
1249 /*
1250 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1251 * and may fail indefinitely under memory pressure and thus
1252 * shouldn't stall IO. Treat this request as !elvpriv. This will
1253 * disturb iosched and blkcg but weird is bettern than dead.
1254 */
7b2b10e0 1255 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1256 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1257
e8064021 1258 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1259 rq->elv.icq = NULL;
1260
1261 spin_lock_irq(q->queue_lock);
8a5ecdd4 1262 q->nr_rqs_elvpriv--;
aaf7c680
TH
1263 spin_unlock_irq(q->queue_lock);
1264 goto out;
1265
b679281a
TH
1266fail_alloc:
1267 /*
1268 * Allocation failed presumably due to memory. Undo anything we
1269 * might have messed up.
1270 *
1271 * Allocating task should really be put onto the front of the wait
1272 * queue, but this is pretty rare.
1273 */
1274 spin_lock_irq(q->queue_lock);
e8064021 1275 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1276
1277 /*
1278 * in the very unlikely event that allocation failed and no
1279 * requests for this direction was pending, mark us starved so that
1280 * freeing of a request in the other direction will notice
1281 * us. another possible fix would be to split the rq mempool into
1282 * READ and WRITE
1283 */
1284rq_starved:
1285 if (unlikely(rl->count[is_sync] == 0))
1286 rl->starved[is_sync] = 1;
a492f075 1287 return ERR_PTR(-ENOMEM);
1da177e4
LT
1288}
1289
da8303c6 1290/**
a06e05e6 1291 * get_request - get a free request
da8303c6 1292 * @q: request_queue to allocate request from
ef295ecf 1293 * @op: operation and flags
da8303c6 1294 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1295 * @gfp_mask: allocation mask
da8303c6 1296 *
d0164adc
MG
1297 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1298 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1299 *
da3dae54 1300 * Must be called with @q->queue_lock held and,
a492f075
JL
1301 * Returns ERR_PTR on failure, with @q->queue_lock held.
1302 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1303 */
ef295ecf
CH
1304static struct request *get_request(struct request_queue *q, unsigned int op,
1305 struct bio *bio, gfp_t gfp_mask)
1da177e4 1306{
ef295ecf 1307 const bool is_sync = op_is_sync(op);
a06e05e6 1308 DEFINE_WAIT(wait);
a051661c 1309 struct request_list *rl;
1da177e4 1310 struct request *rq;
a051661c
TH
1311
1312 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1313retry:
ef295ecf 1314 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1315 if (!IS_ERR(rq))
a06e05e6 1316 return rq;
1da177e4 1317
03a07c92
GR
1318 if (op & REQ_NOWAIT) {
1319 blk_put_rl(rl);
1320 return ERR_PTR(-EAGAIN);
1321 }
1322
d0164adc 1323 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1324 blk_put_rl(rl);
a492f075 1325 return rq;
a051661c 1326 }
1da177e4 1327
a06e05e6
TH
1328 /* wait on @rl and retry */
1329 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1330 TASK_UNINTERRUPTIBLE);
1da177e4 1331
e6a40b09 1332 trace_block_sleeprq(q, bio, op);
1da177e4 1333
a06e05e6
TH
1334 spin_unlock_irq(q->queue_lock);
1335 io_schedule();
d6344532 1336
a06e05e6
TH
1337 /*
1338 * After sleeping, we become a "batching" process and will be able
1339 * to allocate at least one request, and up to a big batch of them
1340 * for a small period time. See ioc_batching, ioc_set_batching
1341 */
a06e05e6 1342 ioc_set_batching(q, current->io_context);
05caf8db 1343
a06e05e6
TH
1344 spin_lock_irq(q->queue_lock);
1345 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1346
a06e05e6 1347 goto retry;
1da177e4
LT
1348}
1349
cd6ce148
BVA
1350static struct request *blk_old_get_request(struct request_queue *q,
1351 unsigned int op, gfp_t gfp_mask)
1da177e4
LT
1352{
1353 struct request *rq;
1354
7f4b35d1
TH
1355 /* create ioc upfront */
1356 create_io_context(gfp_mask, q->node);
1357
d6344532 1358 spin_lock_irq(q->queue_lock);
cd6ce148 1359 rq = get_request(q, op, NULL, gfp_mask);
0c4de0f3 1360 if (IS_ERR(rq)) {
da8303c6 1361 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1362 return rq;
1363 }
1da177e4 1364
0c4de0f3
CH
1365 /* q->queue_lock is unlocked at this point */
1366 rq->__data_len = 0;
1367 rq->__sector = (sector_t) -1;
1368 rq->bio = rq->biotail = NULL;
1da177e4
LT
1369 return rq;
1370}
320ae51f 1371
cd6ce148
BVA
1372struct request *blk_get_request(struct request_queue *q, unsigned int op,
1373 gfp_t gfp_mask)
320ae51f
JA
1374{
1375 if (q->mq_ops)
cd6ce148 1376 return blk_mq_alloc_request(q, op,
6f3b0e8b
CH
1377 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1378 0 : BLK_MQ_REQ_NOWAIT);
320ae51f 1379 else
cd6ce148 1380 return blk_old_get_request(q, op, gfp_mask);
320ae51f 1381}
1da177e4
LT
1382EXPORT_SYMBOL(blk_get_request);
1383
1384/**
1385 * blk_requeue_request - put a request back on queue
1386 * @q: request queue where request should be inserted
1387 * @rq: request to be inserted
1388 *
1389 * Description:
1390 * Drivers often keep queueing requests until the hardware cannot accept
1391 * more, when that condition happens we need to put the request back
1392 * on the queue. Must be called with queue lock held.
1393 */
165125e1 1394void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1395{
242f9dcb
JA
1396 blk_delete_timer(rq);
1397 blk_clear_rq_complete(rq);
5f3ea37c 1398 trace_block_rq_requeue(q, rq);
87760e5e 1399 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1400
e8064021 1401 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1402 blk_queue_end_tag(q, rq);
1403
ba396a6c
JB
1404 BUG_ON(blk_queued_rq(rq));
1405
1da177e4
LT
1406 elv_requeue_request(q, rq);
1407}
1da177e4
LT
1408EXPORT_SYMBOL(blk_requeue_request);
1409
73c10101
JA
1410static void add_acct_request(struct request_queue *q, struct request *rq,
1411 int where)
1412{
320ae51f 1413 blk_account_io_start(rq, true);
7eaceacc 1414 __elv_add_request(q, rq, where);
73c10101
JA
1415}
1416
074a7aca
TH
1417static void part_round_stats_single(int cpu, struct hd_struct *part,
1418 unsigned long now)
1419{
7276d02e
JA
1420 int inflight;
1421
074a7aca
TH
1422 if (now == part->stamp)
1423 return;
1424
7276d02e
JA
1425 inflight = part_in_flight(part);
1426 if (inflight) {
074a7aca 1427 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1428 inflight * (now - part->stamp));
074a7aca
TH
1429 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1430 }
1431 part->stamp = now;
1432}
1433
1434/**
496aa8a9
RD
1435 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1436 * @cpu: cpu number for stats access
1437 * @part: target partition
1da177e4
LT
1438 *
1439 * The average IO queue length and utilisation statistics are maintained
1440 * by observing the current state of the queue length and the amount of
1441 * time it has been in this state for.
1442 *
1443 * Normally, that accounting is done on IO completion, but that can result
1444 * in more than a second's worth of IO being accounted for within any one
1445 * second, leading to >100% utilisation. To deal with that, we call this
1446 * function to do a round-off before returning the results when reading
1447 * /proc/diskstats. This accounts immediately for all queue usage up to
1448 * the current jiffies and restarts the counters again.
1449 */
c9959059 1450void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1451{
1452 unsigned long now = jiffies;
1453
074a7aca
TH
1454 if (part->partno)
1455 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1456 part_round_stats_single(cpu, part, now);
6f2576af 1457}
074a7aca 1458EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1459
47fafbc7 1460#ifdef CONFIG_PM
c8158819
LM
1461static void blk_pm_put_request(struct request *rq)
1462{
e8064021 1463 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1464 pm_runtime_mark_last_busy(rq->q->dev);
1465}
1466#else
1467static inline void blk_pm_put_request(struct request *rq) {}
1468#endif
1469
1da177e4
LT
1470/*
1471 * queue lock must be held
1472 */
165125e1 1473void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1474{
e8064021
CH
1475 req_flags_t rq_flags = req->rq_flags;
1476
1da177e4
LT
1477 if (unlikely(!q))
1478 return;
1da177e4 1479
6f5ba581
CH
1480 if (q->mq_ops) {
1481 blk_mq_free_request(req);
1482 return;
1483 }
1484
c8158819
LM
1485 blk_pm_put_request(req);
1486
8922e16c
TH
1487 elv_completed_request(q, req);
1488
1cd96c24
BH
1489 /* this is a bio leak */
1490 WARN_ON(req->bio != NULL);
1491
87760e5e
JA
1492 wbt_done(q->rq_wb, &req->issue_stat);
1493
1da177e4
LT
1494 /*
1495 * Request may not have originated from ll_rw_blk. if not,
1496 * it didn't come out of our reserved rq pools
1497 */
e8064021 1498 if (rq_flags & RQF_ALLOCED) {
a051661c 1499 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1500 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1501
1da177e4 1502 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1503 BUG_ON(ELV_ON_HASH(req));
1da177e4 1504
a051661c 1505 blk_free_request(rl, req);
e8064021 1506 freed_request(rl, sync, rq_flags);
a051661c 1507 blk_put_rl(rl);
1da177e4
LT
1508 }
1509}
6e39b69e
MC
1510EXPORT_SYMBOL_GPL(__blk_put_request);
1511
1da177e4
LT
1512void blk_put_request(struct request *req)
1513{
165125e1 1514 struct request_queue *q = req->q;
8922e16c 1515
320ae51f
JA
1516 if (q->mq_ops)
1517 blk_mq_free_request(req);
1518 else {
1519 unsigned long flags;
1520
1521 spin_lock_irqsave(q->queue_lock, flags);
1522 __blk_put_request(q, req);
1523 spin_unlock_irqrestore(q->queue_lock, flags);
1524 }
1da177e4 1525}
1da177e4
LT
1526EXPORT_SYMBOL(blk_put_request);
1527
320ae51f
JA
1528bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1529 struct bio *bio)
73c10101 1530{
1eff9d32 1531 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1532
73c10101
JA
1533 if (!ll_back_merge_fn(q, req, bio))
1534 return false;
1535
8c1cf6bb 1536 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1537
1538 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1539 blk_rq_set_mixed_merge(req);
1540
1541 req->biotail->bi_next = bio;
1542 req->biotail = bio;
4f024f37 1543 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1544 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1545
320ae51f 1546 blk_account_io_start(req, false);
73c10101
JA
1547 return true;
1548}
1549
320ae51f
JA
1550bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1551 struct bio *bio)
73c10101 1552{
1eff9d32 1553 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1554
73c10101
JA
1555 if (!ll_front_merge_fn(q, req, bio))
1556 return false;
1557
8c1cf6bb 1558 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1559
1560 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1561 blk_rq_set_mixed_merge(req);
1562
73c10101
JA
1563 bio->bi_next = req->bio;
1564 req->bio = bio;
1565
4f024f37
KO
1566 req->__sector = bio->bi_iter.bi_sector;
1567 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1568 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1569
320ae51f 1570 blk_account_io_start(req, false);
73c10101
JA
1571 return true;
1572}
1573
1e739730
CH
1574bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1575 struct bio *bio)
1576{
1577 unsigned short segments = blk_rq_nr_discard_segments(req);
1578
1579 if (segments >= queue_max_discard_segments(q))
1580 goto no_merge;
1581 if (blk_rq_sectors(req) + bio_sectors(bio) >
1582 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1583 goto no_merge;
1584
1585 req->biotail->bi_next = bio;
1586 req->biotail = bio;
1587 req->__data_len += bio->bi_iter.bi_size;
1588 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1589 req->nr_phys_segments = segments + 1;
1590
1591 blk_account_io_start(req, false);
1592 return true;
1593no_merge:
1594 req_set_nomerge(q, req);
1595 return false;
1596}
1597
bd87b589 1598/**
320ae51f 1599 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1600 * @q: request_queue new bio is being queued at
1601 * @bio: new bio being queued
1602 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1603 * @same_queue_rq: pointer to &struct request that gets filled in when
1604 * another request associated with @q is found on the plug list
1605 * (optional, may be %NULL)
bd87b589
TH
1606 *
1607 * Determine whether @bio being queued on @q can be merged with a request
1608 * on %current's plugged list. Returns %true if merge was successful,
1609 * otherwise %false.
1610 *
07c2bd37
TH
1611 * Plugging coalesces IOs from the same issuer for the same purpose without
1612 * going through @q->queue_lock. As such it's more of an issuing mechanism
1613 * than scheduling, and the request, while may have elvpriv data, is not
1614 * added on the elevator at this point. In addition, we don't have
1615 * reliable access to the elevator outside queue lock. Only check basic
1616 * merging parameters without querying the elevator.
da41a589
RE
1617 *
1618 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1619 */
320ae51f 1620bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1621 unsigned int *request_count,
1622 struct request **same_queue_rq)
73c10101
JA
1623{
1624 struct blk_plug *plug;
1625 struct request *rq;
92f399c7 1626 struct list_head *plug_list;
73c10101 1627
bd87b589 1628 plug = current->plug;
73c10101 1629 if (!plug)
34fe7c05 1630 return false;
56ebdaf2 1631 *request_count = 0;
73c10101 1632
92f399c7
SL
1633 if (q->mq_ops)
1634 plug_list = &plug->mq_list;
1635 else
1636 plug_list = &plug->list;
1637
1638 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1639 bool merged = false;
73c10101 1640
5b3f341f 1641 if (rq->q == q) {
1b2e19f1 1642 (*request_count)++;
5b3f341f
SL
1643 /*
1644 * Only blk-mq multiple hardware queues case checks the
1645 * rq in the same queue, there should be only one such
1646 * rq in a queue
1647 **/
1648 if (same_queue_rq)
1649 *same_queue_rq = rq;
1650 }
56ebdaf2 1651
07c2bd37 1652 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1653 continue;
1654
34fe7c05
CH
1655 switch (blk_try_merge(rq, bio)) {
1656 case ELEVATOR_BACK_MERGE:
1657 merged = bio_attempt_back_merge(q, rq, bio);
1658 break;
1659 case ELEVATOR_FRONT_MERGE:
1660 merged = bio_attempt_front_merge(q, rq, bio);
1661 break;
1e739730
CH
1662 case ELEVATOR_DISCARD_MERGE:
1663 merged = bio_attempt_discard_merge(q, rq, bio);
1664 break;
34fe7c05
CH
1665 default:
1666 break;
73c10101 1667 }
34fe7c05
CH
1668
1669 if (merged)
1670 return true;
73c10101 1671 }
34fe7c05
CH
1672
1673 return false;
73c10101
JA
1674}
1675
0809e3ac
JM
1676unsigned int blk_plug_queued_count(struct request_queue *q)
1677{
1678 struct blk_plug *plug;
1679 struct request *rq;
1680 struct list_head *plug_list;
1681 unsigned int ret = 0;
1682
1683 plug = current->plug;
1684 if (!plug)
1685 goto out;
1686
1687 if (q->mq_ops)
1688 plug_list = &plug->mq_list;
1689 else
1690 plug_list = &plug->list;
1691
1692 list_for_each_entry(rq, plug_list, queuelist) {
1693 if (rq->q == q)
1694 ret++;
1695 }
1696out:
1697 return ret;
1698}
1699
da8d7f07 1700void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1701{
0be0dee6
BVA
1702 struct io_context *ioc = rq_ioc(bio);
1703
1eff9d32 1704 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1705 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1706
4f024f37 1707 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1708 if (ioprio_valid(bio_prio(bio)))
1709 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1710 else if (ioc)
1711 req->ioprio = ioc->ioprio;
1712 else
1713 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
bc1c56fd 1714 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1715}
da8d7f07 1716EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1717
dece1635 1718static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1719{
73c10101 1720 struct blk_plug *plug;
34fe7c05 1721 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1722 struct request *req, *free;
56ebdaf2 1723 unsigned int request_count = 0;
87760e5e 1724 unsigned int wb_acct;
1da177e4 1725
1da177e4
LT
1726 /*
1727 * low level driver can indicate that it wants pages above a
1728 * certain limit bounced to low memory (ie for highmem, or even
1729 * ISA dma in theory)
1730 */
1731 blk_queue_bounce(q, &bio);
1732
af67c31f 1733 blk_queue_split(q, &bio);
23688bf4 1734
ffecfd1a 1735 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4e4cbee9 1736 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1737 bio_endio(bio);
dece1635 1738 return BLK_QC_T_NONE;
ffecfd1a
DW
1739 }
1740
f73f44eb 1741 if (op_is_flush(bio->bi_opf)) {
73c10101 1742 spin_lock_irq(q->queue_lock);
ae1b1539 1743 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1744 goto get_rq;
1745 }
1746
73c10101
JA
1747 /*
1748 * Check if we can merge with the plugged list before grabbing
1749 * any locks.
1750 */
0809e3ac
JM
1751 if (!blk_queue_nomerges(q)) {
1752 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1753 return BLK_QC_T_NONE;
0809e3ac
JM
1754 } else
1755 request_count = blk_plug_queued_count(q);
1da177e4 1756
73c10101 1757 spin_lock_irq(q->queue_lock);
2056a782 1758
34fe7c05
CH
1759 switch (elv_merge(q, &req, bio)) {
1760 case ELEVATOR_BACK_MERGE:
1761 if (!bio_attempt_back_merge(q, req, bio))
1762 break;
1763 elv_bio_merged(q, req, bio);
1764 free = attempt_back_merge(q, req);
1765 if (free)
1766 __blk_put_request(q, free);
1767 else
1768 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1769 goto out_unlock;
1770 case ELEVATOR_FRONT_MERGE:
1771 if (!bio_attempt_front_merge(q, req, bio))
1772 break;
1773 elv_bio_merged(q, req, bio);
1774 free = attempt_front_merge(q, req);
1775 if (free)
1776 __blk_put_request(q, free);
1777 else
1778 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1779 goto out_unlock;
1780 default:
1781 break;
1da177e4
LT
1782 }
1783
450991bc 1784get_rq:
87760e5e
JA
1785 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1786
1da177e4 1787 /*
450991bc 1788 * Grab a free request. This is might sleep but can not fail.
d6344532 1789 * Returns with the queue unlocked.
450991bc 1790 */
ef295ecf 1791 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1792 if (IS_ERR(req)) {
87760e5e 1793 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1794 if (PTR_ERR(req) == -ENOMEM)
1795 bio->bi_status = BLK_STS_RESOURCE;
1796 else
1797 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1798 bio_endio(bio);
da8303c6
TH
1799 goto out_unlock;
1800 }
d6344532 1801
87760e5e
JA
1802 wbt_track(&req->issue_stat, wb_acct);
1803
450991bc
NP
1804 /*
1805 * After dropping the lock and possibly sleeping here, our request
1806 * may now be mergeable after it had proven unmergeable (above).
1807 * We don't worry about that case for efficiency. It won't happen
1808 * often, and the elevators are able to handle it.
1da177e4 1809 */
da8d7f07 1810 blk_init_request_from_bio(req, bio);
1da177e4 1811
9562ad9a 1812 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1813 req->cpu = raw_smp_processor_id();
73c10101
JA
1814
1815 plug = current->plug;
721a9602 1816 if (plug) {
dc6d36c9
JA
1817 /*
1818 * If this is the first request added after a plug, fire
7aef2e78 1819 * of a plug trace.
0a6219a9
ML
1820 *
1821 * @request_count may become stale because of schedule
1822 * out, so check plug list again.
dc6d36c9 1823 */
0a6219a9 1824 if (!request_count || list_empty(&plug->list))
dc6d36c9 1825 trace_block_plug(q);
3540d5e8 1826 else {
50d24c34
SL
1827 struct request *last = list_entry_rq(plug->list.prev);
1828 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1829 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1830 blk_flush_plug_list(plug, false);
019ceb7d
SL
1831 trace_block_plug(q);
1832 }
73c10101 1833 }
73c10101 1834 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1835 blk_account_io_start(req, true);
73c10101
JA
1836 } else {
1837 spin_lock_irq(q->queue_lock);
1838 add_acct_request(q, req, where);
24ecfbe2 1839 __blk_run_queue(q);
73c10101
JA
1840out_unlock:
1841 spin_unlock_irq(q->queue_lock);
1842 }
dece1635
JA
1843
1844 return BLK_QC_T_NONE;
1da177e4
LT
1845}
1846
1847/*
1848 * If bio->bi_dev is a partition, remap the location
1849 */
1850static inline void blk_partition_remap(struct bio *bio)
1851{
1852 struct block_device *bdev = bio->bi_bdev;
1853
778889d8
ST
1854 /*
1855 * Zone reset does not include bi_size so bio_sectors() is always 0.
1856 * Include a test for the reset op code and perform the remap if needed.
1857 */
1858 if (bdev != bdev->bd_contains &&
1859 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1860 struct hd_struct *p = bdev->bd_part;
1861
4f024f37 1862 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1863 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1864
d07335e5
MS
1865 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1866 bdev->bd_dev,
4f024f37 1867 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1868 }
1869}
1870
1da177e4
LT
1871static void handle_bad_sector(struct bio *bio)
1872{
1873 char b[BDEVNAME_SIZE];
1874
1875 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1876 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1877 bdevname(bio->bi_bdev, b),
1eff9d32 1878 bio->bi_opf,
f73a1c7d 1879 (unsigned long long)bio_end_sector(bio),
77304d2a 1880 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1881}
1882
c17bb495
AM
1883#ifdef CONFIG_FAIL_MAKE_REQUEST
1884
1885static DECLARE_FAULT_ATTR(fail_make_request);
1886
1887static int __init setup_fail_make_request(char *str)
1888{
1889 return setup_fault_attr(&fail_make_request, str);
1890}
1891__setup("fail_make_request=", setup_fail_make_request);
1892
b2c9cd37 1893static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1894{
b2c9cd37 1895 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1896}
1897
1898static int __init fail_make_request_debugfs(void)
1899{
dd48c085
AM
1900 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1901 NULL, &fail_make_request);
1902
21f9fcd8 1903 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1904}
1905
1906late_initcall(fail_make_request_debugfs);
1907
1908#else /* CONFIG_FAIL_MAKE_REQUEST */
1909
b2c9cd37
AM
1910static inline bool should_fail_request(struct hd_struct *part,
1911 unsigned int bytes)
c17bb495 1912{
b2c9cd37 1913 return false;
c17bb495
AM
1914}
1915
1916#endif /* CONFIG_FAIL_MAKE_REQUEST */
1917
c07e2b41
JA
1918/*
1919 * Check whether this bio extends beyond the end of the device.
1920 */
1921static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1922{
1923 sector_t maxsector;
1924
1925 if (!nr_sectors)
1926 return 0;
1927
1928 /* Test device or partition size, when known. */
77304d2a 1929 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1930 if (maxsector) {
4f024f37 1931 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1932
1933 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1934 /*
1935 * This may well happen - the kernel calls bread()
1936 * without checking the size of the device, e.g., when
1937 * mounting a device.
1938 */
1939 handle_bad_sector(bio);
1940 return 1;
1941 }
1942 }
1943
1944 return 0;
1945}
1946
27a84d54
CH
1947static noinline_for_stack bool
1948generic_make_request_checks(struct bio *bio)
1da177e4 1949{
165125e1 1950 struct request_queue *q;
5a7bbad2 1951 int nr_sectors = bio_sectors(bio);
4e4cbee9 1952 blk_status_t status = BLK_STS_IOERR;
5a7bbad2
CH
1953 char b[BDEVNAME_SIZE];
1954 struct hd_struct *part;
1da177e4
LT
1955
1956 might_sleep();
1da177e4 1957
c07e2b41
JA
1958 if (bio_check_eod(bio, nr_sectors))
1959 goto end_io;
1da177e4 1960
5a7bbad2
CH
1961 q = bdev_get_queue(bio->bi_bdev);
1962 if (unlikely(!q)) {
1963 printk(KERN_ERR
1964 "generic_make_request: Trying to access "
1965 "nonexistent block-device %s (%Lu)\n",
1966 bdevname(bio->bi_bdev, b),
4f024f37 1967 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1968 goto end_io;
1969 }
c17bb495 1970
03a07c92
GR
1971 /*
1972 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
1973 * if queue is not a request based queue.
1974 */
1975
1976 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
1977 goto not_supported;
1978
5a7bbad2 1979 part = bio->bi_bdev->bd_part;
4f024f37 1980 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1981 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1982 bio->bi_iter.bi_size))
5a7bbad2 1983 goto end_io;
2056a782 1984
5a7bbad2
CH
1985 /*
1986 * If this device has partitions, remap block n
1987 * of partition p to block n+start(p) of the disk.
1988 */
1989 blk_partition_remap(bio);
2056a782 1990
5a7bbad2
CH
1991 if (bio_check_eod(bio, nr_sectors))
1992 goto end_io;
1e87901e 1993
5a7bbad2
CH
1994 /*
1995 * Filter flush bio's early so that make_request based
1996 * drivers without flush support don't have to worry
1997 * about them.
1998 */
f3a8ab7d 1999 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2000 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2001 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2002 if (!nr_sectors) {
4e4cbee9 2003 status = BLK_STS_OK;
51fd77bd
JA
2004 goto end_io;
2005 }
5a7bbad2 2006 }
5ddfe969 2007
288dab8a
CH
2008 switch (bio_op(bio)) {
2009 case REQ_OP_DISCARD:
2010 if (!blk_queue_discard(q))
2011 goto not_supported;
2012 break;
2013 case REQ_OP_SECURE_ERASE:
2014 if (!blk_queue_secure_erase(q))
2015 goto not_supported;
2016 break;
2017 case REQ_OP_WRITE_SAME:
2018 if (!bdev_write_same(bio->bi_bdev))
2019 goto not_supported;
58886785 2020 break;
2d253440
ST
2021 case REQ_OP_ZONE_REPORT:
2022 case REQ_OP_ZONE_RESET:
2023 if (!bdev_is_zoned(bio->bi_bdev))
2024 goto not_supported;
288dab8a 2025 break;
a6f0788e
CK
2026 case REQ_OP_WRITE_ZEROES:
2027 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
2028 goto not_supported;
2029 break;
288dab8a
CH
2030 default:
2031 break;
5a7bbad2 2032 }
01edede4 2033
7f4b35d1
TH
2034 /*
2035 * Various block parts want %current->io_context and lazy ioc
2036 * allocation ends up trading a lot of pain for a small amount of
2037 * memory. Just allocate it upfront. This may fail and block
2038 * layer knows how to live with it.
2039 */
2040 create_io_context(GFP_ATOMIC, q->node);
2041
ae118896
TH
2042 if (!blkcg_bio_issue_check(q, bio))
2043 return false;
27a84d54 2044
fbbaf700
N
2045 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2046 trace_block_bio_queue(q, bio);
2047 /* Now that enqueuing has been traced, we need to trace
2048 * completion as well.
2049 */
2050 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2051 }
27a84d54 2052 return true;
a7384677 2053
288dab8a 2054not_supported:
4e4cbee9 2055 status = BLK_STS_NOTSUPP;
a7384677 2056end_io:
4e4cbee9 2057 bio->bi_status = status;
4246a0b6 2058 bio_endio(bio);
27a84d54 2059 return false;
1da177e4
LT
2060}
2061
27a84d54
CH
2062/**
2063 * generic_make_request - hand a buffer to its device driver for I/O
2064 * @bio: The bio describing the location in memory and on the device.
2065 *
2066 * generic_make_request() is used to make I/O requests of block
2067 * devices. It is passed a &struct bio, which describes the I/O that needs
2068 * to be done.
2069 *
2070 * generic_make_request() does not return any status. The
2071 * success/failure status of the request, along with notification of
2072 * completion, is delivered asynchronously through the bio->bi_end_io
2073 * function described (one day) else where.
2074 *
2075 * The caller of generic_make_request must make sure that bi_io_vec
2076 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2077 * set to describe the device address, and the
2078 * bi_end_io and optionally bi_private are set to describe how
2079 * completion notification should be signaled.
2080 *
2081 * generic_make_request and the drivers it calls may use bi_next if this
2082 * bio happens to be merged with someone else, and may resubmit the bio to
2083 * a lower device by calling into generic_make_request recursively, which
2084 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2085 */
dece1635 2086blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2087{
f5fe1b51
N
2088 /*
2089 * bio_list_on_stack[0] contains bios submitted by the current
2090 * make_request_fn.
2091 * bio_list_on_stack[1] contains bios that were submitted before
2092 * the current make_request_fn, but that haven't been processed
2093 * yet.
2094 */
2095 struct bio_list bio_list_on_stack[2];
dece1635 2096 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2097
27a84d54 2098 if (!generic_make_request_checks(bio))
dece1635 2099 goto out;
27a84d54
CH
2100
2101 /*
2102 * We only want one ->make_request_fn to be active at a time, else
2103 * stack usage with stacked devices could be a problem. So use
2104 * current->bio_list to keep a list of requests submited by a
2105 * make_request_fn function. current->bio_list is also used as a
2106 * flag to say if generic_make_request is currently active in this
2107 * task or not. If it is NULL, then no make_request is active. If
2108 * it is non-NULL, then a make_request is active, and new requests
2109 * should be added at the tail
2110 */
bddd87c7 2111 if (current->bio_list) {
f5fe1b51 2112 bio_list_add(&current->bio_list[0], bio);
dece1635 2113 goto out;
d89d8796 2114 }
27a84d54 2115
d89d8796
NB
2116 /* following loop may be a bit non-obvious, and so deserves some
2117 * explanation.
2118 * Before entering the loop, bio->bi_next is NULL (as all callers
2119 * ensure that) so we have a list with a single bio.
2120 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2121 * we assign bio_list to a pointer to the bio_list_on_stack,
2122 * thus initialising the bio_list of new bios to be
27a84d54 2123 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2124 * through a recursive call to generic_make_request. If it
2125 * did, we find a non-NULL value in bio_list and re-enter the loop
2126 * from the top. In this case we really did just take the bio
bddd87c7 2127 * of the top of the list (no pretending) and so remove it from
27a84d54 2128 * bio_list, and call into ->make_request() again.
d89d8796
NB
2129 */
2130 BUG_ON(bio->bi_next);
f5fe1b51
N
2131 bio_list_init(&bio_list_on_stack[0]);
2132 current->bio_list = bio_list_on_stack;
d89d8796 2133 do {
27a84d54
CH
2134 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2135
03a07c92 2136 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
79bd9959
N
2137 struct bio_list lower, same;
2138
2139 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2140 bio_list_on_stack[1] = bio_list_on_stack[0];
2141 bio_list_init(&bio_list_on_stack[0]);
dece1635 2142 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2143
2144 blk_queue_exit(q);
27a84d54 2145
79bd9959
N
2146 /* sort new bios into those for a lower level
2147 * and those for the same level
2148 */
2149 bio_list_init(&lower);
2150 bio_list_init(&same);
f5fe1b51 2151 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
79bd9959
N
2152 if (q == bdev_get_queue(bio->bi_bdev))
2153 bio_list_add(&same, bio);
2154 else
2155 bio_list_add(&lower, bio);
2156 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2157 bio_list_merge(&bio_list_on_stack[0], &lower);
2158 bio_list_merge(&bio_list_on_stack[0], &same);
2159 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2160 } else {
03a07c92
GR
2161 if (unlikely(!blk_queue_dying(q) &&
2162 (bio->bi_opf & REQ_NOWAIT)))
2163 bio_wouldblock_error(bio);
2164 else
2165 bio_io_error(bio);
3ef28e83 2166 }
f5fe1b51 2167 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2168 } while (bio);
bddd87c7 2169 current->bio_list = NULL; /* deactivate */
dece1635
JA
2170
2171out:
2172 return ret;
d89d8796 2173}
1da177e4
LT
2174EXPORT_SYMBOL(generic_make_request);
2175
2176/**
710027a4 2177 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2178 * @bio: The &struct bio which describes the I/O
2179 *
2180 * submit_bio() is very similar in purpose to generic_make_request(), and
2181 * uses that function to do most of the work. Both are fairly rough
710027a4 2182 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2183 *
2184 */
4e49ea4a 2185blk_qc_t submit_bio(struct bio *bio)
1da177e4 2186{
bf2de6f5
JA
2187 /*
2188 * If it's a regular read/write or a barrier with data attached,
2189 * go through the normal accounting stuff before submission.
2190 */
e2a60da7 2191 if (bio_has_data(bio)) {
4363ac7c
MP
2192 unsigned int count;
2193
95fe6c1a 2194 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2195 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2196 else
2197 count = bio_sectors(bio);
2198
a8ebb056 2199 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2200 count_vm_events(PGPGOUT, count);
2201 } else {
4f024f37 2202 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2203 count_vm_events(PGPGIN, count);
2204 }
2205
2206 if (unlikely(block_dump)) {
2207 char b[BDEVNAME_SIZE];
8dcbdc74 2208 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2209 current->comm, task_pid_nr(current),
a8ebb056 2210 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2211 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2212 bdevname(bio->bi_bdev, b),
2213 count);
bf2de6f5 2214 }
1da177e4
LT
2215 }
2216
dece1635 2217 return generic_make_request(bio);
1da177e4 2218}
1da177e4
LT
2219EXPORT_SYMBOL(submit_bio);
2220
82124d60 2221/**
bf4e6b4e
HR
2222 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2223 * for new the queue limits
82124d60
KU
2224 * @q: the queue
2225 * @rq: the request being checked
2226 *
2227 * Description:
2228 * @rq may have been made based on weaker limitations of upper-level queues
2229 * in request stacking drivers, and it may violate the limitation of @q.
2230 * Since the block layer and the underlying device driver trust @rq
2231 * after it is inserted to @q, it should be checked against @q before
2232 * the insertion using this generic function.
2233 *
82124d60 2234 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2235 * limits when retrying requests on other queues. Those requests need
2236 * to be checked against the new queue limits again during dispatch.
82124d60 2237 */
bf4e6b4e
HR
2238static int blk_cloned_rq_check_limits(struct request_queue *q,
2239 struct request *rq)
82124d60 2240{
8fe0d473 2241 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2242 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2243 return -EIO;
2244 }
2245
2246 /*
2247 * queue's settings related to segment counting like q->bounce_pfn
2248 * may differ from that of other stacking queues.
2249 * Recalculate it to check the request correctly on this queue's
2250 * limitation.
2251 */
2252 blk_recalc_rq_segments(rq);
8a78362c 2253 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2254 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2255 return -EIO;
2256 }
2257
2258 return 0;
2259}
82124d60
KU
2260
2261/**
2262 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2263 * @q: the queue to submit the request
2264 * @rq: the request being queued
2265 */
2a842aca 2266blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2267{
2268 unsigned long flags;
4853abaa 2269 int where = ELEVATOR_INSERT_BACK;
82124d60 2270
bf4e6b4e 2271 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2272 return BLK_STS_IOERR;
82124d60 2273
b2c9cd37
AM
2274 if (rq->rq_disk &&
2275 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2276 return BLK_STS_IOERR;
82124d60 2277
7fb4898e
KB
2278 if (q->mq_ops) {
2279 if (blk_queue_io_stat(q))
2280 blk_account_io_start(rq, true);
bd6737f1 2281 blk_mq_sched_insert_request(rq, false, true, false, false);
2a842aca 2282 return BLK_STS_OK;
7fb4898e
KB
2283 }
2284
82124d60 2285 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2286 if (unlikely(blk_queue_dying(q))) {
8ba61435 2287 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2288 return BLK_STS_IOERR;
8ba61435 2289 }
82124d60
KU
2290
2291 /*
2292 * Submitting request must be dequeued before calling this function
2293 * because it will be linked to another request_queue
2294 */
2295 BUG_ON(blk_queued_rq(rq));
2296
f73f44eb 2297 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2298 where = ELEVATOR_INSERT_FLUSH;
2299
2300 add_acct_request(q, rq, where);
e67b77c7
JM
2301 if (where == ELEVATOR_INSERT_FLUSH)
2302 __blk_run_queue(q);
82124d60
KU
2303 spin_unlock_irqrestore(q->queue_lock, flags);
2304
2a842aca 2305 return BLK_STS_OK;
82124d60
KU
2306}
2307EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2308
80a761fd
TH
2309/**
2310 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2311 * @rq: request to examine
2312 *
2313 * Description:
2314 * A request could be merge of IOs which require different failure
2315 * handling. This function determines the number of bytes which
2316 * can be failed from the beginning of the request without
2317 * crossing into area which need to be retried further.
2318 *
2319 * Return:
2320 * The number of bytes to fail.
2321 *
2322 * Context:
2323 * queue_lock must be held.
2324 */
2325unsigned int blk_rq_err_bytes(const struct request *rq)
2326{
2327 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2328 unsigned int bytes = 0;
2329 struct bio *bio;
2330
e8064021 2331 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2332 return blk_rq_bytes(rq);
2333
2334 /*
2335 * Currently the only 'mixing' which can happen is between
2336 * different fastfail types. We can safely fail portions
2337 * which have all the failfast bits that the first one has -
2338 * the ones which are at least as eager to fail as the first
2339 * one.
2340 */
2341 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2342 if ((bio->bi_opf & ff) != ff)
80a761fd 2343 break;
4f024f37 2344 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2345 }
2346
2347 /* this could lead to infinite loop */
2348 BUG_ON(blk_rq_bytes(rq) && !bytes);
2349 return bytes;
2350}
2351EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2352
320ae51f 2353void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2354{
c2553b58 2355 if (blk_do_io_stat(req)) {
bc58ba94
JA
2356 const int rw = rq_data_dir(req);
2357 struct hd_struct *part;
2358 int cpu;
2359
2360 cpu = part_stat_lock();
09e099d4 2361 part = req->part;
bc58ba94
JA
2362 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2363 part_stat_unlock();
2364 }
2365}
2366
320ae51f 2367void blk_account_io_done(struct request *req)
bc58ba94 2368{
bc58ba94 2369 /*
dd4c133f
TH
2370 * Account IO completion. flush_rq isn't accounted as a
2371 * normal IO on queueing nor completion. Accounting the
2372 * containing request is enough.
bc58ba94 2373 */
e8064021 2374 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2375 unsigned long duration = jiffies - req->start_time;
2376 const int rw = rq_data_dir(req);
2377 struct hd_struct *part;
2378 int cpu;
2379
2380 cpu = part_stat_lock();
09e099d4 2381 part = req->part;
bc58ba94
JA
2382
2383 part_stat_inc(cpu, part, ios[rw]);
2384 part_stat_add(cpu, part, ticks[rw], duration);
2385 part_round_stats(cpu, part);
316d315b 2386 part_dec_in_flight(part, rw);
bc58ba94 2387
6c23a968 2388 hd_struct_put(part);
bc58ba94
JA
2389 part_stat_unlock();
2390 }
2391}
2392
47fafbc7 2393#ifdef CONFIG_PM
c8158819
LM
2394/*
2395 * Don't process normal requests when queue is suspended
2396 * or in the process of suspending/resuming
2397 */
2398static struct request *blk_pm_peek_request(struct request_queue *q,
2399 struct request *rq)
2400{
2401 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2402 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2403 return NULL;
2404 else
2405 return rq;
2406}
2407#else
2408static inline struct request *blk_pm_peek_request(struct request_queue *q,
2409 struct request *rq)
2410{
2411 return rq;
2412}
2413#endif
2414
320ae51f
JA
2415void blk_account_io_start(struct request *rq, bool new_io)
2416{
2417 struct hd_struct *part;
2418 int rw = rq_data_dir(rq);
2419 int cpu;
2420
2421 if (!blk_do_io_stat(rq))
2422 return;
2423
2424 cpu = part_stat_lock();
2425
2426 if (!new_io) {
2427 part = rq->part;
2428 part_stat_inc(cpu, part, merges[rw]);
2429 } else {
2430 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2431 if (!hd_struct_try_get(part)) {
2432 /*
2433 * The partition is already being removed,
2434 * the request will be accounted on the disk only
2435 *
2436 * We take a reference on disk->part0 although that
2437 * partition will never be deleted, so we can treat
2438 * it as any other partition.
2439 */
2440 part = &rq->rq_disk->part0;
2441 hd_struct_get(part);
2442 }
2443 part_round_stats(cpu, part);
2444 part_inc_in_flight(part, rw);
2445 rq->part = part;
2446 }
2447
2448 part_stat_unlock();
2449}
2450
3bcddeac 2451/**
9934c8c0
TH
2452 * blk_peek_request - peek at the top of a request queue
2453 * @q: request queue to peek at
2454 *
2455 * Description:
2456 * Return the request at the top of @q. The returned request
2457 * should be started using blk_start_request() before LLD starts
2458 * processing it.
2459 *
2460 * Return:
2461 * Pointer to the request at the top of @q if available. Null
2462 * otherwise.
2463 *
2464 * Context:
2465 * queue_lock must be held.
2466 */
2467struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2468{
2469 struct request *rq;
2470 int ret;
2471
2472 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2473
2474 rq = blk_pm_peek_request(q, rq);
2475 if (!rq)
2476 break;
2477
e8064021 2478 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2479 /*
2480 * This is the first time the device driver
2481 * sees this request (possibly after
2482 * requeueing). Notify IO scheduler.
2483 */
e8064021 2484 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2485 elv_activate_rq(q, rq);
2486
2487 /*
2488 * just mark as started even if we don't start
2489 * it, a request that has been delayed should
2490 * not be passed by new incoming requests
2491 */
e8064021 2492 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2493 trace_block_rq_issue(q, rq);
2494 }
2495
2496 if (!q->boundary_rq || q->boundary_rq == rq) {
2497 q->end_sector = rq_end_sector(rq);
2498 q->boundary_rq = NULL;
2499 }
2500
e8064021 2501 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2502 break;
2503
2e46e8b2 2504 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2505 /*
2506 * make sure space for the drain appears we
2507 * know we can do this because max_hw_segments
2508 * has been adjusted to be one fewer than the
2509 * device can handle
2510 */
2511 rq->nr_phys_segments++;
2512 }
2513
2514 if (!q->prep_rq_fn)
2515 break;
2516
2517 ret = q->prep_rq_fn(q, rq);
2518 if (ret == BLKPREP_OK) {
2519 break;
2520 } else if (ret == BLKPREP_DEFER) {
2521 /*
2522 * the request may have been (partially) prepped.
2523 * we need to keep this request in the front to
e8064021 2524 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2525 * prevent other fs requests from passing this one.
2526 */
2e46e8b2 2527 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2528 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2529 /*
2530 * remove the space for the drain we added
2531 * so that we don't add it again
2532 */
2533 --rq->nr_phys_segments;
2534 }
2535
2536 rq = NULL;
2537 break;
0fb5b1fb 2538 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2539 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2540 /*
2541 * Mark this request as started so we don't trigger
2542 * any debug logic in the end I/O path.
2543 */
2544 blk_start_request(rq);
2a842aca
CH
2545 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2546 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2547 } else {
2548 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2549 break;
2550 }
2551 }
2552
2553 return rq;
2554}
9934c8c0 2555EXPORT_SYMBOL(blk_peek_request);
158dbda0 2556
9934c8c0 2557void blk_dequeue_request(struct request *rq)
158dbda0 2558{
9934c8c0
TH
2559 struct request_queue *q = rq->q;
2560
158dbda0
TH
2561 BUG_ON(list_empty(&rq->queuelist));
2562 BUG_ON(ELV_ON_HASH(rq));
2563
2564 list_del_init(&rq->queuelist);
2565
2566 /*
2567 * the time frame between a request being removed from the lists
2568 * and to it is freed is accounted as io that is in progress at
2569 * the driver side.
2570 */
9195291e 2571 if (blk_account_rq(rq)) {
0a7ae2ff 2572 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2573 set_io_start_time_ns(rq);
2574 }
158dbda0
TH
2575}
2576
9934c8c0
TH
2577/**
2578 * blk_start_request - start request processing on the driver
2579 * @req: request to dequeue
2580 *
2581 * Description:
2582 * Dequeue @req and start timeout timer on it. This hands off the
2583 * request to the driver.
2584 *
2585 * Block internal functions which don't want to start timer should
2586 * call blk_dequeue_request().
2587 *
2588 * Context:
2589 * queue_lock must be held.
2590 */
2591void blk_start_request(struct request *req)
2592{
2593 blk_dequeue_request(req);
2594
cf43e6be 2595 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2596 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2597 req->rq_flags |= RQF_STATS;
87760e5e 2598 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2599 }
2600
4912aa6c 2601 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2602 blk_add_timer(req);
2603}
2604EXPORT_SYMBOL(blk_start_request);
2605
2606/**
2607 * blk_fetch_request - fetch a request from a request queue
2608 * @q: request queue to fetch a request from
2609 *
2610 * Description:
2611 * Return the request at the top of @q. The request is started on
2612 * return and LLD can start processing it immediately.
2613 *
2614 * Return:
2615 * Pointer to the request at the top of @q if available. Null
2616 * otherwise.
2617 *
2618 * Context:
2619 * queue_lock must be held.
2620 */
2621struct request *blk_fetch_request(struct request_queue *q)
2622{
2623 struct request *rq;
2624
2625 rq = blk_peek_request(q);
2626 if (rq)
2627 blk_start_request(rq);
2628 return rq;
2629}
2630EXPORT_SYMBOL(blk_fetch_request);
2631
3bcddeac 2632/**
2e60e022 2633 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2634 * @req: the request being processed
2a842aca 2635 * @error: block status code
8ebf9756 2636 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2637 *
2638 * Description:
8ebf9756
RD
2639 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2640 * the request structure even if @req doesn't have leftover.
2641 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2642 *
2643 * This special helper function is only for request stacking drivers
2644 * (e.g. request-based dm) so that they can handle partial completion.
2645 * Actual device drivers should use blk_end_request instead.
2646 *
2647 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2648 * %false return from this function.
3bcddeac
KU
2649 *
2650 * Return:
2e60e022
TH
2651 * %false - this request doesn't have any more data
2652 * %true - this request has more data
3bcddeac 2653 **/
2a842aca
CH
2654bool blk_update_request(struct request *req, blk_status_t error,
2655 unsigned int nr_bytes)
1da177e4 2656{
f79ea416 2657 int total_bytes;
1da177e4 2658
2a842aca 2659 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2660
2e60e022
TH
2661 if (!req->bio)
2662 return false;
2663
2a842aca
CH
2664 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2665 !(req->rq_flags & RQF_QUIET)))
2666 print_req_error(req, error);
1da177e4 2667
bc58ba94 2668 blk_account_io_completion(req, nr_bytes);
d72d904a 2669
f79ea416
KO
2670 total_bytes = 0;
2671 while (req->bio) {
2672 struct bio *bio = req->bio;
4f024f37 2673 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2674
4f024f37 2675 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2676 req->bio = bio->bi_next;
1da177e4 2677
fbbaf700
N
2678 /* Completion has already been traced */
2679 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2680 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2681
f79ea416
KO
2682 total_bytes += bio_bytes;
2683 nr_bytes -= bio_bytes;
1da177e4 2684
f79ea416
KO
2685 if (!nr_bytes)
2686 break;
1da177e4
LT
2687 }
2688
2689 /*
2690 * completely done
2691 */
2e60e022
TH
2692 if (!req->bio) {
2693 /*
2694 * Reset counters so that the request stacking driver
2695 * can find how many bytes remain in the request
2696 * later.
2697 */
a2dec7b3 2698 req->__data_len = 0;
2e60e022
TH
2699 return false;
2700 }
1da177e4 2701
a2dec7b3 2702 req->__data_len -= total_bytes;
2e46e8b2
TH
2703
2704 /* update sector only for requests with clear definition of sector */
57292b58 2705 if (!blk_rq_is_passthrough(req))
a2dec7b3 2706 req->__sector += total_bytes >> 9;
2e46e8b2 2707
80a761fd 2708 /* mixed attributes always follow the first bio */
e8064021 2709 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2710 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2711 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2712 }
2713
ed6565e7
CH
2714 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2715 /*
2716 * If total number of sectors is less than the first segment
2717 * size, something has gone terribly wrong.
2718 */
2719 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2720 blk_dump_rq_flags(req, "request botched");
2721 req->__data_len = blk_rq_cur_bytes(req);
2722 }
2e46e8b2 2723
ed6565e7
CH
2724 /* recalculate the number of segments */
2725 blk_recalc_rq_segments(req);
2726 }
2e46e8b2 2727
2e60e022 2728 return true;
1da177e4 2729}
2e60e022 2730EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2731
2a842aca 2732static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
2733 unsigned int nr_bytes,
2734 unsigned int bidi_bytes)
5efccd17 2735{
2e60e022
TH
2736 if (blk_update_request(rq, error, nr_bytes))
2737 return true;
5efccd17 2738
2e60e022
TH
2739 /* Bidi request must be completed as a whole */
2740 if (unlikely(blk_bidi_rq(rq)) &&
2741 blk_update_request(rq->next_rq, error, bidi_bytes))
2742 return true;
5efccd17 2743
e2e1a148
JA
2744 if (blk_queue_add_random(rq->q))
2745 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2746
2747 return false;
1da177e4
LT
2748}
2749
28018c24
JB
2750/**
2751 * blk_unprep_request - unprepare a request
2752 * @req: the request
2753 *
2754 * This function makes a request ready for complete resubmission (or
2755 * completion). It happens only after all error handling is complete,
2756 * so represents the appropriate moment to deallocate any resources
2757 * that were allocated to the request in the prep_rq_fn. The queue
2758 * lock is held when calling this.
2759 */
2760void blk_unprep_request(struct request *req)
2761{
2762 struct request_queue *q = req->q;
2763
e8064021 2764 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2765 if (q->unprep_rq_fn)
2766 q->unprep_rq_fn(q, req);
2767}
2768EXPORT_SYMBOL_GPL(blk_unprep_request);
2769
1da177e4
LT
2770/*
2771 * queue lock must be held
2772 */
2a842aca 2773void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 2774{
cf43e6be
JA
2775 struct request_queue *q = req->q;
2776
2777 if (req->rq_flags & RQF_STATS)
34dbad5d 2778 blk_stat_add(req);
cf43e6be 2779
e8064021 2780 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2781 blk_queue_end_tag(q, req);
b8286239 2782
ba396a6c 2783 BUG_ON(blk_queued_rq(req));
1da177e4 2784
57292b58 2785 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2786 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2787
e78042e5
MA
2788 blk_delete_timer(req);
2789
e8064021 2790 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2791 blk_unprep_request(req);
2792
bc58ba94 2793 blk_account_io_done(req);
b8286239 2794
87760e5e
JA
2795 if (req->end_io) {
2796 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2797 req->end_io(req, error);
87760e5e 2798 } else {
b8286239
KU
2799 if (blk_bidi_rq(req))
2800 __blk_put_request(req->next_rq->q, req->next_rq);
2801
cf43e6be 2802 __blk_put_request(q, req);
b8286239 2803 }
1da177e4 2804}
12120077 2805EXPORT_SYMBOL(blk_finish_request);
1da177e4 2806
3b11313a 2807/**
2e60e022
TH
2808 * blk_end_bidi_request - Complete a bidi request
2809 * @rq: the request to complete
2a842aca 2810 * @error: block status code
2e60e022
TH
2811 * @nr_bytes: number of bytes to complete @rq
2812 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2813 *
2814 * Description:
e3a04fe3 2815 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2816 * Drivers that supports bidi can safely call this member for any
2817 * type of request, bidi or uni. In the later case @bidi_bytes is
2818 * just ignored.
336cdb40
KU
2819 *
2820 * Return:
2e60e022
TH
2821 * %false - we are done with this request
2822 * %true - still buffers pending for this request
a0cd1285 2823 **/
2a842aca 2824static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
2825 unsigned int nr_bytes, unsigned int bidi_bytes)
2826{
336cdb40 2827 struct request_queue *q = rq->q;
2e60e022 2828 unsigned long flags;
32fab448 2829
2e60e022
TH
2830 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2831 return true;
32fab448 2832
336cdb40 2833 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2834 blk_finish_request(rq, error);
336cdb40
KU
2835 spin_unlock_irqrestore(q->queue_lock, flags);
2836
2e60e022 2837 return false;
32fab448
KU
2838}
2839
336cdb40 2840/**
2e60e022
TH
2841 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2842 * @rq: the request to complete
2a842aca 2843 * @error: block status code
e3a04fe3
KU
2844 * @nr_bytes: number of bytes to complete @rq
2845 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2846 *
2847 * Description:
2e60e022
TH
2848 * Identical to blk_end_bidi_request() except that queue lock is
2849 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2850 *
2851 * Return:
2e60e022
TH
2852 * %false - we are done with this request
2853 * %true - still buffers pending for this request
336cdb40 2854 **/
2a842aca 2855static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 2856 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2857{
2e60e022
TH
2858 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2859 return true;
336cdb40 2860
2e60e022 2861 blk_finish_request(rq, error);
336cdb40 2862
2e60e022 2863 return false;
336cdb40 2864}
e19a3ab0
KU
2865
2866/**
2867 * blk_end_request - Helper function for drivers to complete the request.
2868 * @rq: the request being processed
2a842aca 2869 * @error: block status code
e19a3ab0
KU
2870 * @nr_bytes: number of bytes to complete
2871 *
2872 * Description:
2873 * Ends I/O on a number of bytes attached to @rq.
2874 * If @rq has leftover, sets it up for the next range of segments.
2875 *
2876 * Return:
b1f74493
FT
2877 * %false - we are done with this request
2878 * %true - still buffers pending for this request
e19a3ab0 2879 **/
2a842aca
CH
2880bool blk_end_request(struct request *rq, blk_status_t error,
2881 unsigned int nr_bytes)
e19a3ab0 2882{
b1f74493 2883 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2884}
56ad1740 2885EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2886
2887/**
b1f74493
FT
2888 * blk_end_request_all - Helper function for drives to finish the request.
2889 * @rq: the request to finish
2a842aca 2890 * @error: block status code
336cdb40
KU
2891 *
2892 * Description:
b1f74493
FT
2893 * Completely finish @rq.
2894 */
2a842aca 2895void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 2896{
b1f74493
FT
2897 bool pending;
2898 unsigned int bidi_bytes = 0;
336cdb40 2899
b1f74493
FT
2900 if (unlikely(blk_bidi_rq(rq)))
2901 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2902
b1f74493
FT
2903 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2904 BUG_ON(pending);
2905}
56ad1740 2906EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2907
e3a04fe3 2908/**
b1f74493
FT
2909 * __blk_end_request - Helper function for drivers to complete the request.
2910 * @rq: the request being processed
2a842aca 2911 * @error: block status code
b1f74493 2912 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2913 *
2914 * Description:
b1f74493 2915 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2916 *
2917 * Return:
b1f74493
FT
2918 * %false - we are done with this request
2919 * %true - still buffers pending for this request
e3a04fe3 2920 **/
2a842aca
CH
2921bool __blk_end_request(struct request *rq, blk_status_t error,
2922 unsigned int nr_bytes)
e3a04fe3 2923{
b1f74493 2924 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2925}
56ad1740 2926EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2927
32fab448 2928/**
b1f74493
FT
2929 * __blk_end_request_all - Helper function for drives to finish the request.
2930 * @rq: the request to finish
2a842aca 2931 * @error: block status code
32fab448
KU
2932 *
2933 * Description:
b1f74493 2934 * Completely finish @rq. Must be called with queue lock held.
32fab448 2935 */
2a842aca 2936void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 2937{
b1f74493
FT
2938 bool pending;
2939 unsigned int bidi_bytes = 0;
2940
2941 if (unlikely(blk_bidi_rq(rq)))
2942 bidi_bytes = blk_rq_bytes(rq->next_rq);
2943
2944 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2945 BUG_ON(pending);
32fab448 2946}
56ad1740 2947EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2948
e19a3ab0 2949/**
b1f74493
FT
2950 * __blk_end_request_cur - Helper function to finish the current request chunk.
2951 * @rq: the request to finish the current chunk for
2a842aca 2952 * @error: block status code
e19a3ab0
KU
2953 *
2954 * Description:
b1f74493
FT
2955 * Complete the current consecutively mapped chunk from @rq. Must
2956 * be called with queue lock held.
e19a3ab0
KU
2957 *
2958 * Return:
b1f74493
FT
2959 * %false - we are done with this request
2960 * %true - still buffers pending for this request
2961 */
2a842aca 2962bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 2963{
b1f74493 2964 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2965}
56ad1740 2966EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2967
86db1e29
JA
2968void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2969 struct bio *bio)
1da177e4 2970{
b4f42e28 2971 if (bio_has_data(bio))
fb2dce86 2972 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2973
4f024f37 2974 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2975 rq->bio = rq->biotail = bio;
1da177e4 2976
66846572
N
2977 if (bio->bi_bdev)
2978 rq->rq_disk = bio->bi_bdev->bd_disk;
2979}
1da177e4 2980
2d4dc890
IL
2981#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2982/**
2983 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2984 * @rq: the request to be flushed
2985 *
2986 * Description:
2987 * Flush all pages in @rq.
2988 */
2989void rq_flush_dcache_pages(struct request *rq)
2990{
2991 struct req_iterator iter;
7988613b 2992 struct bio_vec bvec;
2d4dc890
IL
2993
2994 rq_for_each_segment(bvec, rq, iter)
7988613b 2995 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2996}
2997EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2998#endif
2999
ef9e3fac
KU
3000/**
3001 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3002 * @q : the queue of the device being checked
3003 *
3004 * Description:
3005 * Check if underlying low-level drivers of a device are busy.
3006 * If the drivers want to export their busy state, they must set own
3007 * exporting function using blk_queue_lld_busy() first.
3008 *
3009 * Basically, this function is used only by request stacking drivers
3010 * to stop dispatching requests to underlying devices when underlying
3011 * devices are busy. This behavior helps more I/O merging on the queue
3012 * of the request stacking driver and prevents I/O throughput regression
3013 * on burst I/O load.
3014 *
3015 * Return:
3016 * 0 - Not busy (The request stacking driver should dispatch request)
3017 * 1 - Busy (The request stacking driver should stop dispatching request)
3018 */
3019int blk_lld_busy(struct request_queue *q)
3020{
3021 if (q->lld_busy_fn)
3022 return q->lld_busy_fn(q);
3023
3024 return 0;
3025}
3026EXPORT_SYMBOL_GPL(blk_lld_busy);
3027
78d8e58a
MS
3028/**
3029 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3030 * @rq: the clone request to be cleaned up
3031 *
3032 * Description:
3033 * Free all bios in @rq for a cloned request.
3034 */
3035void blk_rq_unprep_clone(struct request *rq)
3036{
3037 struct bio *bio;
3038
3039 while ((bio = rq->bio) != NULL) {
3040 rq->bio = bio->bi_next;
3041
3042 bio_put(bio);
3043 }
3044}
3045EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3046
3047/*
3048 * Copy attributes of the original request to the clone request.
3049 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3050 */
3051static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3052{
3053 dst->cpu = src->cpu;
b0fd271d
KU
3054 dst->__sector = blk_rq_pos(src);
3055 dst->__data_len = blk_rq_bytes(src);
3056 dst->nr_phys_segments = src->nr_phys_segments;
3057 dst->ioprio = src->ioprio;
3058 dst->extra_len = src->extra_len;
78d8e58a
MS
3059}
3060
3061/**
3062 * blk_rq_prep_clone - Helper function to setup clone request
3063 * @rq: the request to be setup
3064 * @rq_src: original request to be cloned
3065 * @bs: bio_set that bios for clone are allocated from
3066 * @gfp_mask: memory allocation mask for bio
3067 * @bio_ctr: setup function to be called for each clone bio.
3068 * Returns %0 for success, non %0 for failure.
3069 * @data: private data to be passed to @bio_ctr
3070 *
3071 * Description:
3072 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3073 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3074 * are not copied, and copying such parts is the caller's responsibility.
3075 * Also, pages which the original bios are pointing to are not copied
3076 * and the cloned bios just point same pages.
3077 * So cloned bios must be completed before original bios, which means
3078 * the caller must complete @rq before @rq_src.
3079 */
3080int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3081 struct bio_set *bs, gfp_t gfp_mask,
3082 int (*bio_ctr)(struct bio *, struct bio *, void *),
3083 void *data)
3084{
3085 struct bio *bio, *bio_src;
3086
3087 if (!bs)
3088 bs = fs_bio_set;
3089
3090 __rq_for_each_bio(bio_src, rq_src) {
3091 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3092 if (!bio)
3093 goto free_and_out;
3094
3095 if (bio_ctr && bio_ctr(bio, bio_src, data))
3096 goto free_and_out;
3097
3098 if (rq->bio) {
3099 rq->biotail->bi_next = bio;
3100 rq->biotail = bio;
3101 } else
3102 rq->bio = rq->biotail = bio;
3103 }
3104
3105 __blk_rq_prep_clone(rq, rq_src);
3106
3107 return 0;
3108
3109free_and_out:
3110 if (bio)
3111 bio_put(bio);
3112 blk_rq_unprep_clone(rq);
3113
3114 return -ENOMEM;
b0fd271d
KU
3115}
3116EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3117
59c3d45e 3118int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3119{
3120 return queue_work(kblockd_workqueue, work);
3121}
1da177e4
LT
3122EXPORT_SYMBOL(kblockd_schedule_work);
3123
ee63cfa7
JA
3124int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3125{
3126 return queue_work_on(cpu, kblockd_workqueue, work);
3127}
3128EXPORT_SYMBOL(kblockd_schedule_work_on);
3129
818cd1cb
JA
3130int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3131 unsigned long delay)
3132{
3133 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3134}
3135EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3136
59c3d45e
JA
3137int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3138 unsigned long delay)
e43473b7
VG
3139{
3140 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3141}
3142EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3143
8ab14595
JA
3144int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3145 unsigned long delay)
3146{
3147 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3148}
3149EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3150
75df7136
SJ
3151/**
3152 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3153 * @plug: The &struct blk_plug that needs to be initialized
3154 *
3155 * Description:
3156 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3157 * pending I/O should the task end up blocking between blk_start_plug() and
3158 * blk_finish_plug(). This is important from a performance perspective, but
3159 * also ensures that we don't deadlock. For instance, if the task is blocking
3160 * for a memory allocation, memory reclaim could end up wanting to free a
3161 * page belonging to that request that is currently residing in our private
3162 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3163 * this kind of deadlock.
3164 */
73c10101
JA
3165void blk_start_plug(struct blk_plug *plug)
3166{
3167 struct task_struct *tsk = current;
3168
dd6cf3e1
SL
3169 /*
3170 * If this is a nested plug, don't actually assign it.
3171 */
3172 if (tsk->plug)
3173 return;
3174
73c10101 3175 INIT_LIST_HEAD(&plug->list);
320ae51f 3176 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3177 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3178 /*
dd6cf3e1
SL
3179 * Store ordering should not be needed here, since a potential
3180 * preempt will imply a full memory barrier
73c10101 3181 */
dd6cf3e1 3182 tsk->plug = plug;
73c10101
JA
3183}
3184EXPORT_SYMBOL(blk_start_plug);
3185
3186static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3187{
3188 struct request *rqa = container_of(a, struct request, queuelist);
3189 struct request *rqb = container_of(b, struct request, queuelist);
3190
975927b9
JM
3191 return !(rqa->q < rqb->q ||
3192 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3193}
3194
49cac01e
JA
3195/*
3196 * If 'from_schedule' is true, then postpone the dispatch of requests
3197 * until a safe kblockd context. We due this to avoid accidental big
3198 * additional stack usage in driver dispatch, in places where the originally
3199 * plugger did not intend it.
3200 */
f6603783 3201static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3202 bool from_schedule)
99e22598 3203 __releases(q->queue_lock)
94b5eb28 3204{
49cac01e 3205 trace_block_unplug(q, depth, !from_schedule);
99e22598 3206
70460571 3207 if (from_schedule)
24ecfbe2 3208 blk_run_queue_async(q);
70460571 3209 else
24ecfbe2 3210 __blk_run_queue(q);
70460571 3211 spin_unlock(q->queue_lock);
94b5eb28
JA
3212}
3213
74018dc3 3214static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3215{
3216 LIST_HEAD(callbacks);
3217
2a7d5559
SL
3218 while (!list_empty(&plug->cb_list)) {
3219 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3220
2a7d5559
SL
3221 while (!list_empty(&callbacks)) {
3222 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3223 struct blk_plug_cb,
3224 list);
2a7d5559 3225 list_del(&cb->list);
74018dc3 3226 cb->callback(cb, from_schedule);
2a7d5559 3227 }
048c9374
N
3228 }
3229}
3230
9cbb1750
N
3231struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3232 int size)
3233{
3234 struct blk_plug *plug = current->plug;
3235 struct blk_plug_cb *cb;
3236
3237 if (!plug)
3238 return NULL;
3239
3240 list_for_each_entry(cb, &plug->cb_list, list)
3241 if (cb->callback == unplug && cb->data == data)
3242 return cb;
3243
3244 /* Not currently on the callback list */
3245 BUG_ON(size < sizeof(*cb));
3246 cb = kzalloc(size, GFP_ATOMIC);
3247 if (cb) {
3248 cb->data = data;
3249 cb->callback = unplug;
3250 list_add(&cb->list, &plug->cb_list);
3251 }
3252 return cb;
3253}
3254EXPORT_SYMBOL(blk_check_plugged);
3255
49cac01e 3256void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3257{
3258 struct request_queue *q;
3259 unsigned long flags;
3260 struct request *rq;
109b8129 3261 LIST_HEAD(list);
94b5eb28 3262 unsigned int depth;
73c10101 3263
74018dc3 3264 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3265
3266 if (!list_empty(&plug->mq_list))
3267 blk_mq_flush_plug_list(plug, from_schedule);
3268
73c10101
JA
3269 if (list_empty(&plug->list))
3270 return;
3271
109b8129
N
3272 list_splice_init(&plug->list, &list);
3273
422765c2 3274 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3275
3276 q = NULL;
94b5eb28 3277 depth = 0;
18811272
JA
3278
3279 /*
3280 * Save and disable interrupts here, to avoid doing it for every
3281 * queue lock we have to take.
3282 */
73c10101 3283 local_irq_save(flags);
109b8129
N
3284 while (!list_empty(&list)) {
3285 rq = list_entry_rq(list.next);
73c10101 3286 list_del_init(&rq->queuelist);
73c10101
JA
3287 BUG_ON(!rq->q);
3288 if (rq->q != q) {
99e22598
JA
3289 /*
3290 * This drops the queue lock
3291 */
3292 if (q)
49cac01e 3293 queue_unplugged(q, depth, from_schedule);
73c10101 3294 q = rq->q;
94b5eb28 3295 depth = 0;
73c10101
JA
3296 spin_lock(q->queue_lock);
3297 }
8ba61435
TH
3298
3299 /*
3300 * Short-circuit if @q is dead
3301 */
3f3299d5 3302 if (unlikely(blk_queue_dying(q))) {
2a842aca 3303 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3304 continue;
3305 }
3306
73c10101
JA
3307 /*
3308 * rq is already accounted, so use raw insert
3309 */
f73f44eb 3310 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3311 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3312 else
3313 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3314
3315 depth++;
73c10101
JA
3316 }
3317
99e22598
JA
3318 /*
3319 * This drops the queue lock
3320 */
3321 if (q)
49cac01e 3322 queue_unplugged(q, depth, from_schedule);
73c10101 3323
73c10101
JA
3324 local_irq_restore(flags);
3325}
73c10101
JA
3326
3327void blk_finish_plug(struct blk_plug *plug)
3328{
dd6cf3e1
SL
3329 if (plug != current->plug)
3330 return;
f6603783 3331 blk_flush_plug_list(plug, false);
73c10101 3332
dd6cf3e1 3333 current->plug = NULL;
73c10101 3334}
88b996cd 3335EXPORT_SYMBOL(blk_finish_plug);
73c10101 3336
47fafbc7 3337#ifdef CONFIG_PM
6c954667
LM
3338/**
3339 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3340 * @q: the queue of the device
3341 * @dev: the device the queue belongs to
3342 *
3343 * Description:
3344 * Initialize runtime-PM-related fields for @q and start auto suspend for
3345 * @dev. Drivers that want to take advantage of request-based runtime PM
3346 * should call this function after @dev has been initialized, and its
3347 * request queue @q has been allocated, and runtime PM for it can not happen
3348 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3349 * cases, driver should call this function before any I/O has taken place.
3350 *
3351 * This function takes care of setting up using auto suspend for the device,
3352 * the autosuspend delay is set to -1 to make runtime suspend impossible
3353 * until an updated value is either set by user or by driver. Drivers do
3354 * not need to touch other autosuspend settings.
3355 *
3356 * The block layer runtime PM is request based, so only works for drivers
3357 * that use request as their IO unit instead of those directly use bio's.
3358 */
3359void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3360{
3361 q->dev = dev;
3362 q->rpm_status = RPM_ACTIVE;
3363 pm_runtime_set_autosuspend_delay(q->dev, -1);
3364 pm_runtime_use_autosuspend(q->dev);
3365}
3366EXPORT_SYMBOL(blk_pm_runtime_init);
3367
3368/**
3369 * blk_pre_runtime_suspend - Pre runtime suspend check
3370 * @q: the queue of the device
3371 *
3372 * Description:
3373 * This function will check if runtime suspend is allowed for the device
3374 * by examining if there are any requests pending in the queue. If there
3375 * are requests pending, the device can not be runtime suspended; otherwise,
3376 * the queue's status will be updated to SUSPENDING and the driver can
3377 * proceed to suspend the device.
3378 *
3379 * For the not allowed case, we mark last busy for the device so that
3380 * runtime PM core will try to autosuspend it some time later.
3381 *
3382 * This function should be called near the start of the device's
3383 * runtime_suspend callback.
3384 *
3385 * Return:
3386 * 0 - OK to runtime suspend the device
3387 * -EBUSY - Device should not be runtime suspended
3388 */
3389int blk_pre_runtime_suspend(struct request_queue *q)
3390{
3391 int ret = 0;
3392
4fd41a85
KX
3393 if (!q->dev)
3394 return ret;
3395
6c954667
LM
3396 spin_lock_irq(q->queue_lock);
3397 if (q->nr_pending) {
3398 ret = -EBUSY;
3399 pm_runtime_mark_last_busy(q->dev);
3400 } else {
3401 q->rpm_status = RPM_SUSPENDING;
3402 }
3403 spin_unlock_irq(q->queue_lock);
3404 return ret;
3405}
3406EXPORT_SYMBOL(blk_pre_runtime_suspend);
3407
3408/**
3409 * blk_post_runtime_suspend - Post runtime suspend processing
3410 * @q: the queue of the device
3411 * @err: return value of the device's runtime_suspend function
3412 *
3413 * Description:
3414 * Update the queue's runtime status according to the return value of the
3415 * device's runtime suspend function and mark last busy for the device so
3416 * that PM core will try to auto suspend the device at a later time.
3417 *
3418 * This function should be called near the end of the device's
3419 * runtime_suspend callback.
3420 */
3421void blk_post_runtime_suspend(struct request_queue *q, int err)
3422{
4fd41a85
KX
3423 if (!q->dev)
3424 return;
3425
6c954667
LM
3426 spin_lock_irq(q->queue_lock);
3427 if (!err) {
3428 q->rpm_status = RPM_SUSPENDED;
3429 } else {
3430 q->rpm_status = RPM_ACTIVE;
3431 pm_runtime_mark_last_busy(q->dev);
3432 }
3433 spin_unlock_irq(q->queue_lock);
3434}
3435EXPORT_SYMBOL(blk_post_runtime_suspend);
3436
3437/**
3438 * blk_pre_runtime_resume - Pre runtime resume processing
3439 * @q: the queue of the device
3440 *
3441 * Description:
3442 * Update the queue's runtime status to RESUMING in preparation for the
3443 * runtime resume of the device.
3444 *
3445 * This function should be called near the start of the device's
3446 * runtime_resume callback.
3447 */
3448void blk_pre_runtime_resume(struct request_queue *q)
3449{
4fd41a85
KX
3450 if (!q->dev)
3451 return;
3452
6c954667
LM
3453 spin_lock_irq(q->queue_lock);
3454 q->rpm_status = RPM_RESUMING;
3455 spin_unlock_irq(q->queue_lock);
3456}
3457EXPORT_SYMBOL(blk_pre_runtime_resume);
3458
3459/**
3460 * blk_post_runtime_resume - Post runtime resume processing
3461 * @q: the queue of the device
3462 * @err: return value of the device's runtime_resume function
3463 *
3464 * Description:
3465 * Update the queue's runtime status according to the return value of the
3466 * device's runtime_resume function. If it is successfully resumed, process
3467 * the requests that are queued into the device's queue when it is resuming
3468 * and then mark last busy and initiate autosuspend for it.
3469 *
3470 * This function should be called near the end of the device's
3471 * runtime_resume callback.
3472 */
3473void blk_post_runtime_resume(struct request_queue *q, int err)
3474{
4fd41a85
KX
3475 if (!q->dev)
3476 return;
3477
6c954667
LM
3478 spin_lock_irq(q->queue_lock);
3479 if (!err) {
3480 q->rpm_status = RPM_ACTIVE;
3481 __blk_run_queue(q);
3482 pm_runtime_mark_last_busy(q->dev);
c60855cd 3483 pm_request_autosuspend(q->dev);
6c954667
LM
3484 } else {
3485 q->rpm_status = RPM_SUSPENDED;
3486 }
3487 spin_unlock_irq(q->queue_lock);
3488}
3489EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3490
3491/**
3492 * blk_set_runtime_active - Force runtime status of the queue to be active
3493 * @q: the queue of the device
3494 *
3495 * If the device is left runtime suspended during system suspend the resume
3496 * hook typically resumes the device and corrects runtime status
3497 * accordingly. However, that does not affect the queue runtime PM status
3498 * which is still "suspended". This prevents processing requests from the
3499 * queue.
3500 *
3501 * This function can be used in driver's resume hook to correct queue
3502 * runtime PM status and re-enable peeking requests from the queue. It
3503 * should be called before first request is added to the queue.
3504 */
3505void blk_set_runtime_active(struct request_queue *q)
3506{
3507 spin_lock_irq(q->queue_lock);
3508 q->rpm_status = RPM_ACTIVE;
3509 pm_runtime_mark_last_busy(q->dev);
3510 pm_request_autosuspend(q->dev);
3511 spin_unlock_irq(q->queue_lock);
3512}
3513EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3514#endif
3515
1da177e4
LT
3516int __init blk_dev_init(void)
3517{
ef295ecf
CH
3518 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3519 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3520 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3521 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3522 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3523
89b90be2
TH
3524 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3525 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3526 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3527 if (!kblockd_workqueue)
3528 panic("Failed to create kblockd\n");
3529
3530 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3531 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3532
c2789bd4 3533 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3534 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3535
18fbda91
OS
3536#ifdef CONFIG_DEBUG_FS
3537 blk_debugfs_root = debugfs_create_dir("block", NULL);
3538#endif
3539
d38ecf93 3540 return 0;
1da177e4 3541}