]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
Merge tag 'devprop-fix-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
7c0f6ba6 29#include <linux/uaccess.h>
1da177e4
LT
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
df4c0e36
AR
41#include <linux/kasan.h>
42
07f3f05c 43#include "internal.h"
b2dba1af 44#include "mount.h"
1da177e4 45
789680d1
NP
46/*
47 * Usage:
873feea0 48 * dcache->d_inode->i_lock protects:
946e51f2 49 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
19156840 54 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
b7ab39f6 60 * - d_count
da502956 61 * - d_unhashed()
2fd6b7f5
NP
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
946e51f2 64 * - d_u.d_alias, d_inode
789680d1
NP
65 *
66 * Ordering:
873feea0 67 * dentry->d_inode->i_lock
b5c84bf6 68 * dentry->d_lock
19156840 69 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
70 * dcache_hash_bucket lock
71 * s_anon lock
789680d1 72 *
da502956
NP
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
789680d1
NP
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
fa3536cc 84int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
74c3cbe3 87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 88
949854d0 89EXPORT_SYMBOL(rename_lock);
1da177e4 90
e18b890b 91static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 92
1da177e4
LT
93/*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
1da177e4 101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8387ff25 107static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 108{
703b5faf 109 return dentry_hashtable + (hash >> (32 - d_hash_shift));
ceb5bdc2
NP
110}
111
94bdd655
AV
112#define IN_LOOKUP_SHIFT 10
113static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114
115static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 unsigned int hash)
117{
118 hash += (unsigned long) parent / L1_CACHE_BYTES;
119 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120}
121
122
1da177e4
LT
123/* Statistics gathering. */
124struct dentry_stat_t dentry_stat = {
125 .age_limit = 45,
126};
127
3942c07c 128static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 129static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
130
131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
132
133/*
134 * Here we resort to our own counters instead of using generic per-cpu counters
135 * for consistency with what the vfs inode code does. We are expected to harvest
136 * better code and performance by having our own specialized counters.
137 *
138 * Please note that the loop is done over all possible CPUs, not over all online
139 * CPUs. The reason for this is that we don't want to play games with CPUs going
140 * on and off. If one of them goes off, we will just keep their counters.
141 *
142 * glommer: See cffbc8a for details, and if you ever intend to change this,
143 * please update all vfs counters to match.
144 */
3942c07c 145static long get_nr_dentry(void)
3e880fb5
NP
146{
147 int i;
3942c07c 148 long sum = 0;
3e880fb5
NP
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry, i);
151 return sum < 0 ? 0 : sum;
152}
153
62d36c77
DC
154static long get_nr_dentry_unused(void)
155{
156 int i;
157 long sum = 0;
158 for_each_possible_cpu(i)
159 sum += per_cpu(nr_dentry_unused, i);
160 return sum < 0 ? 0 : sum;
161}
162
1f7e0616 163int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
164 size_t *lenp, loff_t *ppos)
165{
3e880fb5 166 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 167 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 168 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
169}
170#endif
171
5483f18e
LT
172/*
173 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174 * The strings are both count bytes long, and count is non-zero.
175 */
e419b4cc
LT
176#ifdef CONFIG_DCACHE_WORD_ACCESS
177
178#include <asm/word-at-a-time.h>
179/*
180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181 * aligned allocation for this particular component. We don't
182 * strictly need the load_unaligned_zeropad() safety, but it
183 * doesn't hurt either.
184 *
185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186 * need the careful unaligned handling.
187 */
94753db5 188static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 189{
bfcfaa77 190 unsigned long a,b,mask;
bfcfaa77
LT
191
192 for (;;) {
12f8ad4b 193 a = *(unsigned long *)cs;
e419b4cc 194 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
195 if (tcount < sizeof(unsigned long))
196 break;
197 if (unlikely(a != b))
198 return 1;
199 cs += sizeof(unsigned long);
200 ct += sizeof(unsigned long);
201 tcount -= sizeof(unsigned long);
202 if (!tcount)
203 return 0;
204 }
a5c21dce 205 mask = bytemask_from_count(tcount);
bfcfaa77 206 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
207}
208
bfcfaa77 209#else
e419b4cc 210
94753db5 211static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 212{
5483f18e
LT
213 do {
214 if (*cs != *ct)
215 return 1;
216 cs++;
217 ct++;
218 tcount--;
219 } while (tcount);
220 return 0;
221}
222
e419b4cc
LT
223#endif
224
94753db5
LT
225static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226{
94753db5
LT
227 /*
228 * Be careful about RCU walk racing with rename:
ae0a843c 229 * use 'lockless_dereference' to fetch the name pointer.
94753db5
LT
230 *
231 * NOTE! Even if a rename will mean that the length
232 * was not loaded atomically, we don't care. The
233 * RCU walk will check the sequence count eventually,
234 * and catch it. And we won't overrun the buffer,
235 * because we're reading the name pointer atomically,
236 * and a dentry name is guaranteed to be properly
237 * terminated with a NUL byte.
238 *
239 * End result: even if 'len' is wrong, we'll exit
240 * early because the data cannot match (there can
241 * be no NUL in the ct/tcount data)
242 */
ae0a843c
HK
243 const unsigned char *cs = lockless_dereference(dentry->d_name.name);
244
6326c71f 245 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
246}
247
8d85b484
AV
248struct external_name {
249 union {
250 atomic_t count;
251 struct rcu_head head;
252 } u;
253 unsigned char name[];
254};
255
256static inline struct external_name *external_name(struct dentry *dentry)
257{
258 return container_of(dentry->d_name.name, struct external_name, name[0]);
259}
260
9c82ab9c 261static void __d_free(struct rcu_head *head)
1da177e4 262{
9c82ab9c
CH
263 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264
8d85b484
AV
265 kmem_cache_free(dentry_cache, dentry);
266}
267
268static void __d_free_external(struct rcu_head *head)
269{
270 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 271 kfree(external_name(dentry));
1da177e4
LT
272 kmem_cache_free(dentry_cache, dentry);
273}
274
810bb172
AV
275static inline int dname_external(const struct dentry *dentry)
276{
277 return dentry->d_name.name != dentry->d_iname;
278}
279
49d31c2f
AV
280void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
281{
282 spin_lock(&dentry->d_lock);
283 if (unlikely(dname_external(dentry))) {
284 struct external_name *p = external_name(dentry);
285 atomic_inc(&p->u.count);
286 spin_unlock(&dentry->d_lock);
287 name->name = p->name;
288 } else {
289 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
290 spin_unlock(&dentry->d_lock);
291 name->name = name->inline_name;
292 }
293}
294EXPORT_SYMBOL(take_dentry_name_snapshot);
295
296void release_dentry_name_snapshot(struct name_snapshot *name)
297{
298 if (unlikely(name->name != name->inline_name)) {
299 struct external_name *p;
300 p = container_of(name->name, struct external_name, name[0]);
301 if (unlikely(atomic_dec_and_test(&p->u.count)))
302 kfree_rcu(p, u.head);
303 }
304}
305EXPORT_SYMBOL(release_dentry_name_snapshot);
306
4bf46a27
DH
307static inline void __d_set_inode_and_type(struct dentry *dentry,
308 struct inode *inode,
309 unsigned type_flags)
310{
311 unsigned flags;
312
313 dentry->d_inode = inode;
4bf46a27
DH
314 flags = READ_ONCE(dentry->d_flags);
315 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
316 flags |= type_flags;
317 WRITE_ONCE(dentry->d_flags, flags);
318}
319
4bf46a27
DH
320static inline void __d_clear_type_and_inode(struct dentry *dentry)
321{
322 unsigned flags = READ_ONCE(dentry->d_flags);
323
324 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
325 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
326 dentry->d_inode = NULL;
327}
328
b4f0354e
AV
329static void dentry_free(struct dentry *dentry)
330{
946e51f2 331 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
332 if (unlikely(dname_external(dentry))) {
333 struct external_name *p = external_name(dentry);
334 if (likely(atomic_dec_and_test(&p->u.count))) {
335 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
336 return;
337 }
338 }
b4f0354e
AV
339 /* if dentry was never visible to RCU, immediate free is OK */
340 if (!(dentry->d_flags & DCACHE_RCUACCESS))
341 __d_free(&dentry->d_u.d_rcu);
342 else
343 call_rcu(&dentry->d_u.d_rcu, __d_free);
344}
345
1da177e4
LT
346/*
347 * Release the dentry's inode, using the filesystem
550dce01 348 * d_iput() operation if defined.
31e6b01f
NP
349 */
350static void dentry_unlink_inode(struct dentry * dentry)
351 __releases(dentry->d_lock)
873feea0 352 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
353{
354 struct inode *inode = dentry->d_inode;
550dce01 355 bool hashed = !d_unhashed(dentry);
a528aca7 356
550dce01
AV
357 if (hashed)
358 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 359 __d_clear_type_and_inode(dentry);
946e51f2 360 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
361 if (hashed)
362 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 363 spin_unlock(&dentry->d_lock);
873feea0 364 spin_unlock(&inode->i_lock);
31e6b01f
NP
365 if (!inode->i_nlink)
366 fsnotify_inoderemove(inode);
367 if (dentry->d_op && dentry->d_op->d_iput)
368 dentry->d_op->d_iput(dentry, inode);
369 else
370 iput(inode);
371}
372
89dc77bc
LT
373/*
374 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
375 * is in use - which includes both the "real" per-superblock
376 * LRU list _and_ the DCACHE_SHRINK_LIST use.
377 *
378 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
379 * on the shrink list (ie not on the superblock LRU list).
380 *
381 * The per-cpu "nr_dentry_unused" counters are updated with
382 * the DCACHE_LRU_LIST bit.
383 *
384 * These helper functions make sure we always follow the
385 * rules. d_lock must be held by the caller.
386 */
387#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
388static void d_lru_add(struct dentry *dentry)
389{
390 D_FLAG_VERIFY(dentry, 0);
391 dentry->d_flags |= DCACHE_LRU_LIST;
392 this_cpu_inc(nr_dentry_unused);
393 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
394}
395
396static void d_lru_del(struct dentry *dentry)
397{
398 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
399 dentry->d_flags &= ~DCACHE_LRU_LIST;
400 this_cpu_dec(nr_dentry_unused);
401 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
402}
403
404static void d_shrink_del(struct dentry *dentry)
405{
406 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
407 list_del_init(&dentry->d_lru);
408 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409 this_cpu_dec(nr_dentry_unused);
410}
411
412static void d_shrink_add(struct dentry *dentry, struct list_head *list)
413{
414 D_FLAG_VERIFY(dentry, 0);
415 list_add(&dentry->d_lru, list);
416 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
417 this_cpu_inc(nr_dentry_unused);
418}
419
420/*
421 * These can only be called under the global LRU lock, ie during the
422 * callback for freeing the LRU list. "isolate" removes it from the
423 * LRU lists entirely, while shrink_move moves it to the indicated
424 * private list.
425 */
3f97b163 426static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
427{
428 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
429 dentry->d_flags &= ~DCACHE_LRU_LIST;
430 this_cpu_dec(nr_dentry_unused);
3f97b163 431 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
432}
433
3f97b163
VD
434static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
435 struct list_head *list)
89dc77bc
LT
436{
437 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
438 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 439 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
440}
441
da3bbdd4 442/*
f6041567 443 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
444 */
445static void dentry_lru_add(struct dentry *dentry)
446{
89dc77bc
LT
447 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
448 d_lru_add(dentry);
563f4001
JB
449 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
450 dentry->d_flags |= DCACHE_REFERENCED;
da3bbdd4
KM
451}
452
789680d1
NP
453/**
454 * d_drop - drop a dentry
455 * @dentry: dentry to drop
456 *
457 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
458 * be found through a VFS lookup any more. Note that this is different from
459 * deleting the dentry - d_delete will try to mark the dentry negative if
460 * possible, giving a successful _negative_ lookup, while d_drop will
461 * just make the cache lookup fail.
462 *
463 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
464 * reason (NFS timeouts or autofs deletes).
465 *
466 * __d_drop requires dentry->d_lock.
467 */
468void __d_drop(struct dentry *dentry)
469{
dea3667b 470 if (!d_unhashed(dentry)) {
b61625d2 471 struct hlist_bl_head *b;
7632e465
BF
472 /*
473 * Hashed dentries are normally on the dentry hashtable,
474 * with the exception of those newly allocated by
475 * d_obtain_alias, which are always IS_ROOT:
476 */
477 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
478 b = &dentry->d_sb->s_anon;
479 else
8387ff25 480 b = d_hash(dentry->d_name.hash);
b61625d2
AV
481
482 hlist_bl_lock(b);
483 __hlist_bl_del(&dentry->d_hash);
484 dentry->d_hash.pprev = NULL;
485 hlist_bl_unlock(b);
d614146d
AV
486 /* After this call, in-progress rcu-walk path lookup will fail. */
487 write_seqcount_invalidate(&dentry->d_seq);
789680d1
NP
488 }
489}
490EXPORT_SYMBOL(__d_drop);
491
492void d_drop(struct dentry *dentry)
493{
789680d1
NP
494 spin_lock(&dentry->d_lock);
495 __d_drop(dentry);
496 spin_unlock(&dentry->d_lock);
789680d1
NP
497}
498EXPORT_SYMBOL(d_drop);
499
ba65dc5e
AV
500static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
501{
502 struct dentry *next;
503 /*
504 * Inform d_walk() and shrink_dentry_list() that we are no longer
505 * attached to the dentry tree
506 */
507 dentry->d_flags |= DCACHE_DENTRY_KILLED;
508 if (unlikely(list_empty(&dentry->d_child)))
509 return;
510 __list_del_entry(&dentry->d_child);
511 /*
512 * Cursors can move around the list of children. While we'd been
513 * a normal list member, it didn't matter - ->d_child.next would've
514 * been updated. However, from now on it won't be and for the
515 * things like d_walk() it might end up with a nasty surprise.
516 * Normally d_walk() doesn't care about cursors moving around -
517 * ->d_lock on parent prevents that and since a cursor has no children
518 * of its own, we get through it without ever unlocking the parent.
519 * There is one exception, though - if we ascend from a child that
520 * gets killed as soon as we unlock it, the next sibling is found
521 * using the value left in its ->d_child.next. And if _that_
522 * pointed to a cursor, and cursor got moved (e.g. by lseek())
523 * before d_walk() regains parent->d_lock, we'll end up skipping
524 * everything the cursor had been moved past.
525 *
526 * Solution: make sure that the pointer left behind in ->d_child.next
527 * points to something that won't be moving around. I.e. skip the
528 * cursors.
529 */
530 while (dentry->d_child.next != &parent->d_subdirs) {
531 next = list_entry(dentry->d_child.next, struct dentry, d_child);
532 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
533 break;
534 dentry->d_child.next = next->d_child.next;
535 }
536}
537
e55fd011 538static void __dentry_kill(struct dentry *dentry)
77812a1e 539{
41edf278
AV
540 struct dentry *parent = NULL;
541 bool can_free = true;
41edf278 542 if (!IS_ROOT(dentry))
77812a1e 543 parent = dentry->d_parent;
31e6b01f 544
0d98439e
LT
545 /*
546 * The dentry is now unrecoverably dead to the world.
547 */
548 lockref_mark_dead(&dentry->d_lockref);
549
f0023bc6 550 /*
f0023bc6
SW
551 * inform the fs via d_prune that this dentry is about to be
552 * unhashed and destroyed.
553 */
29266201 554 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
555 dentry->d_op->d_prune(dentry);
556
01b60351
AV
557 if (dentry->d_flags & DCACHE_LRU_LIST) {
558 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
559 d_lru_del(dentry);
01b60351 560 }
77812a1e
NP
561 /* if it was on the hash then remove it */
562 __d_drop(dentry);
ba65dc5e 563 dentry_unlist(dentry, parent);
03b3b889
AV
564 if (parent)
565 spin_unlock(&parent->d_lock);
550dce01
AV
566 if (dentry->d_inode)
567 dentry_unlink_inode(dentry);
568 else
569 spin_unlock(&dentry->d_lock);
03b3b889
AV
570 this_cpu_dec(nr_dentry);
571 if (dentry->d_op && dentry->d_op->d_release)
572 dentry->d_op->d_release(dentry);
573
41edf278
AV
574 spin_lock(&dentry->d_lock);
575 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
576 dentry->d_flags |= DCACHE_MAY_FREE;
577 can_free = false;
578 }
579 spin_unlock(&dentry->d_lock);
41edf278
AV
580 if (likely(can_free))
581 dentry_free(dentry);
e55fd011
AV
582}
583
584/*
585 * Finish off a dentry we've decided to kill.
586 * dentry->d_lock must be held, returns with it unlocked.
587 * If ref is non-zero, then decrement the refcount too.
588 * Returns dentry requiring refcount drop, or NULL if we're done.
589 */
8cbf74da 590static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
591 __releases(dentry->d_lock)
592{
593 struct inode *inode = dentry->d_inode;
594 struct dentry *parent = NULL;
595
596 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
597 goto failed;
598
599 if (!IS_ROOT(dentry)) {
600 parent = dentry->d_parent;
601 if (unlikely(!spin_trylock(&parent->d_lock))) {
602 if (inode)
603 spin_unlock(&inode->i_lock);
604 goto failed;
605 }
606 }
607
608 __dentry_kill(dentry);
03b3b889 609 return parent;
e55fd011
AV
610
611failed:
8cbf74da 612 spin_unlock(&dentry->d_lock);
e55fd011 613 return dentry; /* try again with same dentry */
77812a1e
NP
614}
615
046b961b
AV
616static inline struct dentry *lock_parent(struct dentry *dentry)
617{
618 struct dentry *parent = dentry->d_parent;
619 if (IS_ROOT(dentry))
620 return NULL;
360f5479 621 if (unlikely(dentry->d_lockref.count < 0))
c2338f2d 622 return NULL;
046b961b
AV
623 if (likely(spin_trylock(&parent->d_lock)))
624 return parent;
046b961b 625 rcu_read_lock();
c2338f2d 626 spin_unlock(&dentry->d_lock);
046b961b
AV
627again:
628 parent = ACCESS_ONCE(dentry->d_parent);
629 spin_lock(&parent->d_lock);
630 /*
631 * We can't blindly lock dentry until we are sure
632 * that we won't violate the locking order.
633 * Any changes of dentry->d_parent must have
634 * been done with parent->d_lock held, so
635 * spin_lock() above is enough of a barrier
636 * for checking if it's still our child.
637 */
638 if (unlikely(parent != dentry->d_parent)) {
639 spin_unlock(&parent->d_lock);
640 goto again;
641 }
642 rcu_read_unlock();
643 if (parent != dentry)
9f12600f 644 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
645 else
646 parent = NULL;
647 return parent;
648}
649
360f5479
LT
650/*
651 * Try to do a lockless dput(), and return whether that was successful.
652 *
653 * If unsuccessful, we return false, having already taken the dentry lock.
654 *
655 * The caller needs to hold the RCU read lock, so that the dentry is
656 * guaranteed to stay around even if the refcount goes down to zero!
657 */
658static inline bool fast_dput(struct dentry *dentry)
659{
660 int ret;
661 unsigned int d_flags;
662
663 /*
664 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 665 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
666 */
667 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
668 return lockref_put_or_lock(&dentry->d_lockref);
669
670 /*
671 * .. otherwise, we can try to just decrement the
672 * lockref optimistically.
673 */
674 ret = lockref_put_return(&dentry->d_lockref);
675
676 /*
677 * If the lockref_put_return() failed due to the lock being held
678 * by somebody else, the fast path has failed. We will need to
679 * get the lock, and then check the count again.
680 */
681 if (unlikely(ret < 0)) {
682 spin_lock(&dentry->d_lock);
683 if (dentry->d_lockref.count > 1) {
684 dentry->d_lockref.count--;
685 spin_unlock(&dentry->d_lock);
686 return 1;
687 }
688 return 0;
689 }
690
691 /*
692 * If we weren't the last ref, we're done.
693 */
694 if (ret)
695 return 1;
696
697 /*
698 * Careful, careful. The reference count went down
699 * to zero, but we don't hold the dentry lock, so
700 * somebody else could get it again, and do another
701 * dput(), and we need to not race with that.
702 *
703 * However, there is a very special and common case
704 * where we don't care, because there is nothing to
705 * do: the dentry is still hashed, it does not have
706 * a 'delete' op, and it's referenced and already on
707 * the LRU list.
708 *
709 * NOTE! Since we aren't locked, these values are
710 * not "stable". However, it is sufficient that at
711 * some point after we dropped the reference the
712 * dentry was hashed and the flags had the proper
713 * value. Other dentry users may have re-gotten
714 * a reference to the dentry and change that, but
715 * our work is done - we can leave the dentry
716 * around with a zero refcount.
717 */
718 smp_rmb();
719 d_flags = ACCESS_ONCE(dentry->d_flags);
75a6f82a 720 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
721
722 /* Nothing to do? Dropping the reference was all we needed? */
723 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
724 return 1;
725
726 /*
727 * Not the fast normal case? Get the lock. We've already decremented
728 * the refcount, but we'll need to re-check the situation after
729 * getting the lock.
730 */
731 spin_lock(&dentry->d_lock);
732
733 /*
734 * Did somebody else grab a reference to it in the meantime, and
735 * we're no longer the last user after all? Alternatively, somebody
736 * else could have killed it and marked it dead. Either way, we
737 * don't need to do anything else.
738 */
739 if (dentry->d_lockref.count) {
740 spin_unlock(&dentry->d_lock);
741 return 1;
742 }
743
744 /*
745 * Re-get the reference we optimistically dropped. We hold the
746 * lock, and we just tested that it was zero, so we can just
747 * set it to 1.
748 */
749 dentry->d_lockref.count = 1;
750 return 0;
751}
752
753
1da177e4
LT
754/*
755 * This is dput
756 *
757 * This is complicated by the fact that we do not want to put
758 * dentries that are no longer on any hash chain on the unused
759 * list: we'd much rather just get rid of them immediately.
760 *
761 * However, that implies that we have to traverse the dentry
762 * tree upwards to the parents which might _also_ now be
763 * scheduled for deletion (it may have been only waiting for
764 * its last child to go away).
765 *
766 * This tail recursion is done by hand as we don't want to depend
767 * on the compiler to always get this right (gcc generally doesn't).
768 * Real recursion would eat up our stack space.
769 */
770
771/*
772 * dput - release a dentry
773 * @dentry: dentry to release
774 *
775 * Release a dentry. This will drop the usage count and if appropriate
776 * call the dentry unlink method as well as removing it from the queues and
777 * releasing its resources. If the parent dentries were scheduled for release
778 * they too may now get deleted.
1da177e4 779 */
1da177e4
LT
780void dput(struct dentry *dentry)
781{
8aab6a27 782 if (unlikely(!dentry))
1da177e4
LT
783 return;
784
785repeat:
47be6184
WF
786 might_sleep();
787
360f5479
LT
788 rcu_read_lock();
789 if (likely(fast_dput(dentry))) {
790 rcu_read_unlock();
1da177e4 791 return;
360f5479
LT
792 }
793
794 /* Slow case: now with the dentry lock held */
795 rcu_read_unlock();
1da177e4 796
85c7f810
AV
797 WARN_ON(d_in_lookup(dentry));
798
8aab6a27
LT
799 /* Unreachable? Get rid of it */
800 if (unlikely(d_unhashed(dentry)))
801 goto kill_it;
802
75a6f82a
AV
803 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
804 goto kill_it;
805
8aab6a27 806 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 807 if (dentry->d_op->d_delete(dentry))
61f3dee4 808 goto kill_it;
1da177e4 809 }
265ac902 810
a4633357 811 dentry_lru_add(dentry);
265ac902 812
98474236 813 dentry->d_lockref.count--;
61f3dee4 814 spin_unlock(&dentry->d_lock);
1da177e4
LT
815 return;
816
d52b9086 817kill_it:
8cbf74da 818 dentry = dentry_kill(dentry);
47be6184
WF
819 if (dentry) {
820 cond_resched();
d52b9086 821 goto repeat;
47be6184 822 }
1da177e4 823}
ec4f8605 824EXPORT_SYMBOL(dput);
1da177e4 825
1da177e4 826
b5c84bf6 827/* This must be called with d_lock held */
dc0474be 828static inline void __dget_dlock(struct dentry *dentry)
23044507 829{
98474236 830 dentry->d_lockref.count++;
23044507
NP
831}
832
dc0474be 833static inline void __dget(struct dentry *dentry)
1da177e4 834{
98474236 835 lockref_get(&dentry->d_lockref);
1da177e4
LT
836}
837
b7ab39f6
NP
838struct dentry *dget_parent(struct dentry *dentry)
839{
df3d0bbc 840 int gotref;
b7ab39f6
NP
841 struct dentry *ret;
842
df3d0bbc
WL
843 /*
844 * Do optimistic parent lookup without any
845 * locking.
846 */
847 rcu_read_lock();
848 ret = ACCESS_ONCE(dentry->d_parent);
849 gotref = lockref_get_not_zero(&ret->d_lockref);
850 rcu_read_unlock();
851 if (likely(gotref)) {
852 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
853 return ret;
854 dput(ret);
855 }
856
b7ab39f6 857repeat:
a734eb45
NP
858 /*
859 * Don't need rcu_dereference because we re-check it was correct under
860 * the lock.
861 */
862 rcu_read_lock();
b7ab39f6 863 ret = dentry->d_parent;
a734eb45
NP
864 spin_lock(&ret->d_lock);
865 if (unlikely(ret != dentry->d_parent)) {
866 spin_unlock(&ret->d_lock);
867 rcu_read_unlock();
b7ab39f6
NP
868 goto repeat;
869 }
a734eb45 870 rcu_read_unlock();
98474236
WL
871 BUG_ON(!ret->d_lockref.count);
872 ret->d_lockref.count++;
b7ab39f6 873 spin_unlock(&ret->d_lock);
b7ab39f6
NP
874 return ret;
875}
876EXPORT_SYMBOL(dget_parent);
877
1da177e4
LT
878/**
879 * d_find_alias - grab a hashed alias of inode
880 * @inode: inode in question
1da177e4
LT
881 *
882 * If inode has a hashed alias, or is a directory and has any alias,
883 * acquire the reference to alias and return it. Otherwise return NULL.
884 * Notice that if inode is a directory there can be only one alias and
885 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
886 * of a filesystem, or if the directory was renamed and d_revalidate
887 * was the first vfs operation to notice.
1da177e4 888 *
21c0d8fd 889 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 890 * any other hashed alias over that one.
1da177e4 891 */
52ed46f0 892static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 893{
da502956 894 struct dentry *alias, *discon_alias;
1da177e4 895
da502956
NP
896again:
897 discon_alias = NULL;
946e51f2 898 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 899 spin_lock(&alias->d_lock);
1da177e4 900 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 901 if (IS_ROOT(alias) &&
da502956 902 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 903 discon_alias = alias;
52ed46f0 904 } else {
dc0474be 905 __dget_dlock(alias);
da502956
NP
906 spin_unlock(&alias->d_lock);
907 return alias;
908 }
909 }
910 spin_unlock(&alias->d_lock);
911 }
912 if (discon_alias) {
913 alias = discon_alias;
914 spin_lock(&alias->d_lock);
915 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
916 __dget_dlock(alias);
917 spin_unlock(&alias->d_lock);
918 return alias;
1da177e4 919 }
da502956
NP
920 spin_unlock(&alias->d_lock);
921 goto again;
1da177e4 922 }
da502956 923 return NULL;
1da177e4
LT
924}
925
da502956 926struct dentry *d_find_alias(struct inode *inode)
1da177e4 927{
214fda1f
DH
928 struct dentry *de = NULL;
929
b3d9b7a3 930 if (!hlist_empty(&inode->i_dentry)) {
873feea0 931 spin_lock(&inode->i_lock);
52ed46f0 932 de = __d_find_alias(inode);
873feea0 933 spin_unlock(&inode->i_lock);
214fda1f 934 }
1da177e4
LT
935 return de;
936}
ec4f8605 937EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
938
939/*
940 * Try to kill dentries associated with this inode.
941 * WARNING: you must own a reference to inode.
942 */
943void d_prune_aliases(struct inode *inode)
944{
0cdca3f9 945 struct dentry *dentry;
1da177e4 946restart:
873feea0 947 spin_lock(&inode->i_lock);
946e51f2 948 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 949 spin_lock(&dentry->d_lock);
98474236 950 if (!dentry->d_lockref.count) {
29355c39
AV
951 struct dentry *parent = lock_parent(dentry);
952 if (likely(!dentry->d_lockref.count)) {
953 __dentry_kill(dentry);
4a7795d3 954 dput(parent);
29355c39
AV
955 goto restart;
956 }
957 if (parent)
958 spin_unlock(&parent->d_lock);
1da177e4
LT
959 }
960 spin_unlock(&dentry->d_lock);
961 }
873feea0 962 spin_unlock(&inode->i_lock);
1da177e4 963}
ec4f8605 964EXPORT_SYMBOL(d_prune_aliases);
1da177e4 965
3049cfe2 966static void shrink_dentry_list(struct list_head *list)
1da177e4 967{
5c47e6d0 968 struct dentry *dentry, *parent;
da3bbdd4 969
60942f2f 970 while (!list_empty(list)) {
ff2fde99 971 struct inode *inode;
60942f2f 972 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 973 spin_lock(&dentry->d_lock);
046b961b
AV
974 parent = lock_parent(dentry);
975
dd1f6b2e
DC
976 /*
977 * The dispose list is isolated and dentries are not accounted
978 * to the LRU here, so we can simply remove it from the list
979 * here regardless of whether it is referenced or not.
980 */
89dc77bc 981 d_shrink_del(dentry);
dd1f6b2e 982
1da177e4
LT
983 /*
984 * We found an inuse dentry which was not removed from
dd1f6b2e 985 * the LRU because of laziness during lookup. Do not free it.
1da177e4 986 */
360f5479 987 if (dentry->d_lockref.count > 0) {
da3bbdd4 988 spin_unlock(&dentry->d_lock);
046b961b
AV
989 if (parent)
990 spin_unlock(&parent->d_lock);
1da177e4
LT
991 continue;
992 }
77812a1e 993
64fd72e0
AV
994
995 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
996 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
997 spin_unlock(&dentry->d_lock);
046b961b
AV
998 if (parent)
999 spin_unlock(&parent->d_lock);
64fd72e0
AV
1000 if (can_free)
1001 dentry_free(dentry);
1002 continue;
1003 }
1004
ff2fde99
AV
1005 inode = dentry->d_inode;
1006 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 1007 d_shrink_add(dentry, list);
dd1f6b2e 1008 spin_unlock(&dentry->d_lock);
046b961b
AV
1009 if (parent)
1010 spin_unlock(&parent->d_lock);
5c47e6d0 1011 continue;
dd1f6b2e 1012 }
ff2fde99 1013
ff2fde99 1014 __dentry_kill(dentry);
046b961b 1015
5c47e6d0
AV
1016 /*
1017 * We need to prune ancestors too. This is necessary to prevent
1018 * quadratic behavior of shrink_dcache_parent(), but is also
1019 * expected to be beneficial in reducing dentry cache
1020 * fragmentation.
1021 */
1022 dentry = parent;
b2b80195
AV
1023 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1024 parent = lock_parent(dentry);
1025 if (dentry->d_lockref.count != 1) {
1026 dentry->d_lockref.count--;
1027 spin_unlock(&dentry->d_lock);
1028 if (parent)
1029 spin_unlock(&parent->d_lock);
1030 break;
1031 }
1032 inode = dentry->d_inode; /* can't be NULL */
1033 if (unlikely(!spin_trylock(&inode->i_lock))) {
1034 spin_unlock(&dentry->d_lock);
1035 if (parent)
1036 spin_unlock(&parent->d_lock);
1037 cpu_relax();
1038 continue;
1039 }
1040 __dentry_kill(dentry);
1041 dentry = parent;
1042 }
da3bbdd4 1043 }
3049cfe2
CH
1044}
1045
3f97b163
VD
1046static enum lru_status dentry_lru_isolate(struct list_head *item,
1047 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1048{
1049 struct list_head *freeable = arg;
1050 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1051
1052
1053 /*
1054 * we are inverting the lru lock/dentry->d_lock here,
1055 * so use a trylock. If we fail to get the lock, just skip
1056 * it
1057 */
1058 if (!spin_trylock(&dentry->d_lock))
1059 return LRU_SKIP;
1060
1061 /*
1062 * Referenced dentries are still in use. If they have active
1063 * counts, just remove them from the LRU. Otherwise give them
1064 * another pass through the LRU.
1065 */
1066 if (dentry->d_lockref.count) {
3f97b163 1067 d_lru_isolate(lru, dentry);
f6041567
DC
1068 spin_unlock(&dentry->d_lock);
1069 return LRU_REMOVED;
1070 }
1071
1072 if (dentry->d_flags & DCACHE_REFERENCED) {
1073 dentry->d_flags &= ~DCACHE_REFERENCED;
1074 spin_unlock(&dentry->d_lock);
1075
1076 /*
1077 * The list move itself will be made by the common LRU code. At
1078 * this point, we've dropped the dentry->d_lock but keep the
1079 * lru lock. This is safe to do, since every list movement is
1080 * protected by the lru lock even if both locks are held.
1081 *
1082 * This is guaranteed by the fact that all LRU management
1083 * functions are intermediated by the LRU API calls like
1084 * list_lru_add and list_lru_del. List movement in this file
1085 * only ever occur through this functions or through callbacks
1086 * like this one, that are called from the LRU API.
1087 *
1088 * The only exceptions to this are functions like
1089 * shrink_dentry_list, and code that first checks for the
1090 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1091 * operating only with stack provided lists after they are
1092 * properly isolated from the main list. It is thus, always a
1093 * local access.
1094 */
1095 return LRU_ROTATE;
1096 }
1097
3f97b163 1098 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1099 spin_unlock(&dentry->d_lock);
1100
1101 return LRU_REMOVED;
1102}
1103
3049cfe2 1104/**
b48f03b3
DC
1105 * prune_dcache_sb - shrink the dcache
1106 * @sb: superblock
503c358c 1107 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1108 *
503c358c
VD
1109 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1110 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1111 * function.
3049cfe2 1112 *
b48f03b3
DC
1113 * This function may fail to free any resources if all the dentries are in
1114 * use.
3049cfe2 1115 */
503c358c 1116long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1117{
f6041567
DC
1118 LIST_HEAD(dispose);
1119 long freed;
3049cfe2 1120
503c358c
VD
1121 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1122 dentry_lru_isolate, &dispose);
f6041567 1123 shrink_dentry_list(&dispose);
0a234c6d 1124 return freed;
da3bbdd4 1125}
23044507 1126
4e717f5c 1127static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1128 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1129{
4e717f5c
GC
1130 struct list_head *freeable = arg;
1131 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1132
4e717f5c
GC
1133 /*
1134 * we are inverting the lru lock/dentry->d_lock here,
1135 * so use a trylock. If we fail to get the lock, just skip
1136 * it
1137 */
1138 if (!spin_trylock(&dentry->d_lock))
1139 return LRU_SKIP;
1140
3f97b163 1141 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1142 spin_unlock(&dentry->d_lock);
ec33679d 1143
4e717f5c 1144 return LRU_REMOVED;
da3bbdd4
KM
1145}
1146
4e717f5c 1147
1da177e4
LT
1148/**
1149 * shrink_dcache_sb - shrink dcache for a superblock
1150 * @sb: superblock
1151 *
3049cfe2
CH
1152 * Shrink the dcache for the specified super block. This is used to free
1153 * the dcache before unmounting a file system.
1da177e4 1154 */
3049cfe2 1155void shrink_dcache_sb(struct super_block *sb)
1da177e4 1156{
4e717f5c
GC
1157 long freed;
1158
1159 do {
1160 LIST_HEAD(dispose);
1161
1162 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1163 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1164
4e717f5c
GC
1165 this_cpu_sub(nr_dentry_unused, freed);
1166 shrink_dentry_list(&dispose);
b17c070f
ST
1167 cond_resched();
1168 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1169}
ec4f8605 1170EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1171
db14fc3a
MS
1172/**
1173 * enum d_walk_ret - action to talke during tree walk
1174 * @D_WALK_CONTINUE: contrinue walk
1175 * @D_WALK_QUIT: quit walk
1176 * @D_WALK_NORETRY: quit when retry is needed
1177 * @D_WALK_SKIP: skip this dentry and its children
1178 */
1179enum d_walk_ret {
1180 D_WALK_CONTINUE,
1181 D_WALK_QUIT,
1182 D_WALK_NORETRY,
1183 D_WALK_SKIP,
1184};
c826cb7d 1185
1da177e4 1186/**
db14fc3a
MS
1187 * d_walk - walk the dentry tree
1188 * @parent: start of walk
1189 * @data: data passed to @enter() and @finish()
1190 * @enter: callback when first entering the dentry
1191 * @finish: callback when successfully finished the walk
1da177e4 1192 *
db14fc3a 1193 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1194 */
db14fc3a
MS
1195static void d_walk(struct dentry *parent, void *data,
1196 enum d_walk_ret (*enter)(void *, struct dentry *),
1197 void (*finish)(void *))
1da177e4 1198{
949854d0 1199 struct dentry *this_parent;
1da177e4 1200 struct list_head *next;
48f5ec21 1201 unsigned seq = 0;
db14fc3a
MS
1202 enum d_walk_ret ret;
1203 bool retry = true;
949854d0 1204
58db63d0 1205again:
48f5ec21 1206 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1207 this_parent = parent;
2fd6b7f5 1208 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1209
1210 ret = enter(data, this_parent);
1211 switch (ret) {
1212 case D_WALK_CONTINUE:
1213 break;
1214 case D_WALK_QUIT:
1215 case D_WALK_SKIP:
1216 goto out_unlock;
1217 case D_WALK_NORETRY:
1218 retry = false;
1219 break;
1220 }
1da177e4
LT
1221repeat:
1222 next = this_parent->d_subdirs.next;
1223resume:
1224 while (next != &this_parent->d_subdirs) {
1225 struct list_head *tmp = next;
946e51f2 1226 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1227 next = tmp->next;
2fd6b7f5 1228
ba65dc5e
AV
1229 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1230 continue;
1231
2fd6b7f5 1232 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1233
1234 ret = enter(data, dentry);
1235 switch (ret) {
1236 case D_WALK_CONTINUE:
1237 break;
1238 case D_WALK_QUIT:
2fd6b7f5 1239 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1240 goto out_unlock;
1241 case D_WALK_NORETRY:
1242 retry = false;
1243 break;
1244 case D_WALK_SKIP:
1245 spin_unlock(&dentry->d_lock);
1246 continue;
2fd6b7f5 1247 }
db14fc3a 1248
1da177e4 1249 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1250 spin_unlock(&this_parent->d_lock);
1251 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1252 this_parent = dentry;
2fd6b7f5 1253 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1254 goto repeat;
1255 }
2fd6b7f5 1256 spin_unlock(&dentry->d_lock);
1da177e4
LT
1257 }
1258 /*
1259 * All done at this level ... ascend and resume the search.
1260 */
ca5358ef
AV
1261 rcu_read_lock();
1262ascend:
1da177e4 1263 if (this_parent != parent) {
c826cb7d 1264 struct dentry *child = this_parent;
31dec132
AV
1265 this_parent = child->d_parent;
1266
31dec132
AV
1267 spin_unlock(&child->d_lock);
1268 spin_lock(&this_parent->d_lock);
1269
ca5358ef
AV
1270 /* might go back up the wrong parent if we have had a rename. */
1271 if (need_seqretry(&rename_lock, seq))
949854d0 1272 goto rename_retry;
2159184e
AV
1273 /* go into the first sibling still alive */
1274 do {
1275 next = child->d_child.next;
ca5358ef
AV
1276 if (next == &this_parent->d_subdirs)
1277 goto ascend;
1278 child = list_entry(next, struct dentry, d_child);
2159184e 1279 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1280 rcu_read_unlock();
1da177e4
LT
1281 goto resume;
1282 }
ca5358ef 1283 if (need_seqretry(&rename_lock, seq))
949854d0 1284 goto rename_retry;
ca5358ef 1285 rcu_read_unlock();
db14fc3a
MS
1286 if (finish)
1287 finish(data);
1288
1289out_unlock:
1290 spin_unlock(&this_parent->d_lock);
48f5ec21 1291 done_seqretry(&rename_lock, seq);
db14fc3a 1292 return;
58db63d0
NP
1293
1294rename_retry:
ca5358ef
AV
1295 spin_unlock(&this_parent->d_lock);
1296 rcu_read_unlock();
1297 BUG_ON(seq & 1);
db14fc3a
MS
1298 if (!retry)
1299 return;
48f5ec21 1300 seq = 1;
58db63d0 1301 goto again;
1da177e4 1302}
db14fc3a 1303
01619491
IK
1304struct check_mount {
1305 struct vfsmount *mnt;
1306 unsigned int mounted;
1307};
1308
1309static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1310{
1311 struct check_mount *info = data;
1312 struct path path = { .mnt = info->mnt, .dentry = dentry };
1313
1314 if (likely(!d_mountpoint(dentry)))
1315 return D_WALK_CONTINUE;
1316 if (__path_is_mountpoint(&path)) {
1317 info->mounted = 1;
1318 return D_WALK_QUIT;
1319 }
1320 return D_WALK_CONTINUE;
1321}
1322
1323/**
1324 * path_has_submounts - check for mounts over a dentry in the
1325 * current namespace.
1326 * @parent: path to check.
1327 *
1328 * Return true if the parent or its subdirectories contain
1329 * a mount point in the current namespace.
1330 */
1331int path_has_submounts(const struct path *parent)
1332{
1333 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1334
1335 read_seqlock_excl(&mount_lock);
1336 d_walk(parent->dentry, &data, path_check_mount, NULL);
1337 read_sequnlock_excl(&mount_lock);
1338
1339 return data.mounted;
1340}
1341EXPORT_SYMBOL(path_has_submounts);
1342
eed81007
MS
1343/*
1344 * Called by mount code to set a mountpoint and check if the mountpoint is
1345 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1346 * subtree can become unreachable).
1347 *
1ffe46d1 1348 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1349 * this reason take rename_lock and d_lock on dentry and ancestors.
1350 */
1351int d_set_mounted(struct dentry *dentry)
1352{
1353 struct dentry *p;
1354 int ret = -ENOENT;
1355 write_seqlock(&rename_lock);
1356 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1357 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1358 spin_lock(&p->d_lock);
1359 if (unlikely(d_unhashed(p))) {
1360 spin_unlock(&p->d_lock);
1361 goto out;
1362 }
1363 spin_unlock(&p->d_lock);
1364 }
1365 spin_lock(&dentry->d_lock);
1366 if (!d_unlinked(dentry)) {
3895dbf8
EB
1367 ret = -EBUSY;
1368 if (!d_mountpoint(dentry)) {
1369 dentry->d_flags |= DCACHE_MOUNTED;
1370 ret = 0;
1371 }
eed81007
MS
1372 }
1373 spin_unlock(&dentry->d_lock);
1374out:
1375 write_sequnlock(&rename_lock);
1376 return ret;
1377}
1378
1da177e4 1379/*
fd517909 1380 * Search the dentry child list of the specified parent,
1da177e4
LT
1381 * and move any unused dentries to the end of the unused
1382 * list for prune_dcache(). We descend to the next level
1383 * whenever the d_subdirs list is non-empty and continue
1384 * searching.
1385 *
1386 * It returns zero iff there are no unused children,
1387 * otherwise it returns the number of children moved to
1388 * the end of the unused list. This may not be the total
1389 * number of unused children, because select_parent can
1390 * drop the lock and return early due to latency
1391 * constraints.
1392 */
1da177e4 1393
db14fc3a
MS
1394struct select_data {
1395 struct dentry *start;
1396 struct list_head dispose;
1397 int found;
1398};
23044507 1399
db14fc3a
MS
1400static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1401{
1402 struct select_data *data = _data;
1403 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1404
db14fc3a
MS
1405 if (data->start == dentry)
1406 goto out;
2fd6b7f5 1407
fe91522a 1408 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1409 data->found++;
fe91522a
AV
1410 } else {
1411 if (dentry->d_flags & DCACHE_LRU_LIST)
1412 d_lru_del(dentry);
1413 if (!dentry->d_lockref.count) {
1414 d_shrink_add(dentry, &data->dispose);
1415 data->found++;
1416 }
1da177e4 1417 }
db14fc3a
MS
1418 /*
1419 * We can return to the caller if we have found some (this
1420 * ensures forward progress). We'll be coming back to find
1421 * the rest.
1422 */
fe91522a
AV
1423 if (!list_empty(&data->dispose))
1424 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1425out:
db14fc3a 1426 return ret;
1da177e4
LT
1427}
1428
1429/**
1430 * shrink_dcache_parent - prune dcache
1431 * @parent: parent of entries to prune
1432 *
1433 * Prune the dcache to remove unused children of the parent dentry.
1434 */
db14fc3a 1435void shrink_dcache_parent(struct dentry *parent)
1da177e4 1436{
db14fc3a
MS
1437 for (;;) {
1438 struct select_data data;
1da177e4 1439
db14fc3a
MS
1440 INIT_LIST_HEAD(&data.dispose);
1441 data.start = parent;
1442 data.found = 0;
1443
1444 d_walk(parent, &data, select_collect, NULL);
1445 if (!data.found)
1446 break;
1447
1448 shrink_dentry_list(&data.dispose);
421348f1
GT
1449 cond_resched();
1450 }
1da177e4 1451}
ec4f8605 1452EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1453
9c8c10e2 1454static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1455{
9c8c10e2
AV
1456 /* it has busy descendents; complain about those instead */
1457 if (!list_empty(&dentry->d_subdirs))
1458 return D_WALK_CONTINUE;
42c32608 1459
9c8c10e2
AV
1460 /* root with refcount 1 is fine */
1461 if (dentry == _data && dentry->d_lockref.count == 1)
1462 return D_WALK_CONTINUE;
1463
1464 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1465 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1466 dentry,
1467 dentry->d_inode ?
1468 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1469 dentry,
42c32608
AV
1470 dentry->d_lockref.count,
1471 dentry->d_sb->s_type->name,
1472 dentry->d_sb->s_id);
9c8c10e2
AV
1473 WARN_ON(1);
1474 return D_WALK_CONTINUE;
1475}
1476
1477static void do_one_tree(struct dentry *dentry)
1478{
1479 shrink_dcache_parent(dentry);
1480 d_walk(dentry, dentry, umount_check, NULL);
1481 d_drop(dentry);
1482 dput(dentry);
42c32608
AV
1483}
1484
1485/*
1486 * destroy the dentries attached to a superblock on unmounting
1487 */
1488void shrink_dcache_for_umount(struct super_block *sb)
1489{
1490 struct dentry *dentry;
1491
9c8c10e2 1492 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1493
1494 dentry = sb->s_root;
1495 sb->s_root = NULL;
9c8c10e2 1496 do_one_tree(dentry);
42c32608
AV
1497
1498 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1499 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1500 do_one_tree(dentry);
42c32608
AV
1501 }
1502}
1503
8ed936b5
EB
1504struct detach_data {
1505 struct select_data select;
1506 struct dentry *mountpoint;
1507};
1508static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1509{
8ed936b5 1510 struct detach_data *data = _data;
848ac114
MS
1511
1512 if (d_mountpoint(dentry)) {
8ed936b5
EB
1513 __dget_dlock(dentry);
1514 data->mountpoint = dentry;
848ac114
MS
1515 return D_WALK_QUIT;
1516 }
1517
8ed936b5 1518 return select_collect(&data->select, dentry);
848ac114
MS
1519}
1520
1521static void check_and_drop(void *_data)
1522{
8ed936b5 1523 struct detach_data *data = _data;
848ac114 1524
81be24d2 1525 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1526 __d_drop(data->select.start);
848ac114
MS
1527}
1528
1529/**
1ffe46d1
EB
1530 * d_invalidate - detach submounts, prune dcache, and drop
1531 * @dentry: dentry to invalidate (aka detach, prune and drop)
1532 *
1ffe46d1 1533 * no dcache lock.
848ac114 1534 *
8ed936b5
EB
1535 * The final d_drop is done as an atomic operation relative to
1536 * rename_lock ensuring there are no races with d_set_mounted. This
1537 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1538 */
5542aa2f 1539void d_invalidate(struct dentry *dentry)
848ac114 1540{
1ffe46d1
EB
1541 /*
1542 * If it's already been dropped, return OK.
1543 */
1544 spin_lock(&dentry->d_lock);
1545 if (d_unhashed(dentry)) {
1546 spin_unlock(&dentry->d_lock);
5542aa2f 1547 return;
1ffe46d1
EB
1548 }
1549 spin_unlock(&dentry->d_lock);
1550
848ac114
MS
1551 /* Negative dentries can be dropped without further checks */
1552 if (!dentry->d_inode) {
1553 d_drop(dentry);
5542aa2f 1554 return;
848ac114
MS
1555 }
1556
1557 for (;;) {
8ed936b5 1558 struct detach_data data;
848ac114 1559
8ed936b5
EB
1560 data.mountpoint = NULL;
1561 INIT_LIST_HEAD(&data.select.dispose);
1562 data.select.start = dentry;
1563 data.select.found = 0;
1564
1565 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1566
81be24d2 1567 if (!list_empty(&data.select.dispose))
8ed936b5 1568 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1569 else if (!data.mountpoint)
1570 return;
848ac114 1571
8ed936b5
EB
1572 if (data.mountpoint) {
1573 detach_mounts(data.mountpoint);
1574 dput(data.mountpoint);
1575 }
848ac114
MS
1576 cond_resched();
1577 }
848ac114 1578}
1ffe46d1 1579EXPORT_SYMBOL(d_invalidate);
848ac114 1580
1da177e4 1581/**
a4464dbc
AV
1582 * __d_alloc - allocate a dcache entry
1583 * @sb: filesystem it will belong to
1da177e4
LT
1584 * @name: qstr of the name
1585 *
1586 * Allocates a dentry. It returns %NULL if there is insufficient memory
1587 * available. On a success the dentry is returned. The name passed in is
1588 * copied and the copy passed in may be reused after this call.
1589 */
1590
a4464dbc 1591struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1592{
1593 struct dentry *dentry;
1594 char *dname;
285b102d 1595 int err;
1da177e4 1596
e12ba74d 1597 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1598 if (!dentry)
1599 return NULL;
1600
6326c71f
LT
1601 /*
1602 * We guarantee that the inline name is always NUL-terminated.
1603 * This way the memcpy() done by the name switching in rename
1604 * will still always have a NUL at the end, even if we might
1605 * be overwriting an internal NUL character
1606 */
1607 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd
AV
1608 if (unlikely(!name)) {
1609 static const struct qstr anon = QSTR_INIT("/", 1);
1610 name = &anon;
1611 dname = dentry->d_iname;
1612 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1613 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1614 struct external_name *p = kmalloc(size + name->len,
1615 GFP_KERNEL_ACCOUNT);
8d85b484 1616 if (!p) {
1da177e4
LT
1617 kmem_cache_free(dentry_cache, dentry);
1618 return NULL;
1619 }
8d85b484
AV
1620 atomic_set(&p->u.count, 1);
1621 dname = p->name;
df4c0e36
AR
1622 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1623 kasan_unpoison_shadow(dname,
1624 round_up(name->len + 1, sizeof(unsigned long)));
1da177e4
LT
1625 } else {
1626 dname = dentry->d_iname;
1627 }
1da177e4
LT
1628
1629 dentry->d_name.len = name->len;
1630 dentry->d_name.hash = name->hash;
1631 memcpy(dname, name->name, name->len);
1632 dname[name->len] = 0;
1633
6326c71f
LT
1634 /* Make sure we always see the terminating NUL character */
1635 smp_wmb();
1636 dentry->d_name.name = dname;
1637
98474236 1638 dentry->d_lockref.count = 1;
dea3667b 1639 dentry->d_flags = 0;
1da177e4 1640 spin_lock_init(&dentry->d_lock);
31e6b01f 1641 seqcount_init(&dentry->d_seq);
1da177e4 1642 dentry->d_inode = NULL;
a4464dbc
AV
1643 dentry->d_parent = dentry;
1644 dentry->d_sb = sb;
1da177e4
LT
1645 dentry->d_op = NULL;
1646 dentry->d_fsdata = NULL;
ceb5bdc2 1647 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1648 INIT_LIST_HEAD(&dentry->d_lru);
1649 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1650 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1651 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1652 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1653
285b102d
MS
1654 if (dentry->d_op && dentry->d_op->d_init) {
1655 err = dentry->d_op->d_init(dentry);
1656 if (err) {
1657 if (dname_external(dentry))
1658 kfree(external_name(dentry));
1659 kmem_cache_free(dentry_cache, dentry);
1660 return NULL;
1661 }
1662 }
1663
3e880fb5 1664 this_cpu_inc(nr_dentry);
312d3ca8 1665
1da177e4
LT
1666 return dentry;
1667}
a4464dbc
AV
1668
1669/**
1670 * d_alloc - allocate a dcache entry
1671 * @parent: parent of entry to allocate
1672 * @name: qstr of the name
1673 *
1674 * Allocates a dentry. It returns %NULL if there is insufficient memory
1675 * available. On a success the dentry is returned. The name passed in is
1676 * copied and the copy passed in may be reused after this call.
1677 */
1678struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1679{
1680 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1681 if (!dentry)
1682 return NULL;
3d56c25e 1683 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1684 spin_lock(&parent->d_lock);
1685 /*
1686 * don't need child lock because it is not subject
1687 * to concurrency here
1688 */
1689 __dget_dlock(parent);
1690 dentry->d_parent = parent;
946e51f2 1691 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1692 spin_unlock(&parent->d_lock);
1693
1694 return dentry;
1695}
ec4f8605 1696EXPORT_SYMBOL(d_alloc);
1da177e4 1697
ba65dc5e
AV
1698struct dentry *d_alloc_cursor(struct dentry * parent)
1699{
1700 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1701 if (dentry) {
1702 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1703 dentry->d_parent = dget(parent);
1704 }
1705 return dentry;
1706}
1707
e1a24bb0
BF
1708/**
1709 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1710 * @sb: the superblock
1711 * @name: qstr of the name
1712 *
1713 * For a filesystem that just pins its dentries in memory and never
1714 * performs lookups at all, return an unhashed IS_ROOT dentry.
1715 */
4b936885
NP
1716struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1717{
e1a24bb0 1718 return __d_alloc(sb, name);
4b936885
NP
1719}
1720EXPORT_SYMBOL(d_alloc_pseudo);
1721
1da177e4
LT
1722struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1723{
1724 struct qstr q;
1725
1726 q.name = name;
8387ff25 1727 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1728 return d_alloc(parent, &q);
1729}
ef26ca97 1730EXPORT_SYMBOL(d_alloc_name);
1da177e4 1731
fb045adb
NP
1732void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1733{
6f7f7caa
LT
1734 WARN_ON_ONCE(dentry->d_op);
1735 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1736 DCACHE_OP_COMPARE |
1737 DCACHE_OP_REVALIDATE |
ecf3d1f1 1738 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1739 DCACHE_OP_DELETE |
d101a125 1740 DCACHE_OP_REAL));
fb045adb
NP
1741 dentry->d_op = op;
1742 if (!op)
1743 return;
1744 if (op->d_hash)
1745 dentry->d_flags |= DCACHE_OP_HASH;
1746 if (op->d_compare)
1747 dentry->d_flags |= DCACHE_OP_COMPARE;
1748 if (op->d_revalidate)
1749 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1750 if (op->d_weak_revalidate)
1751 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1752 if (op->d_delete)
1753 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1754 if (op->d_prune)
1755 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1756 if (op->d_real)
1757 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1758
1759}
1760EXPORT_SYMBOL(d_set_d_op);
1761
df1a085a
DH
1762
1763/*
1764 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1765 * @dentry - The dentry to mark
1766 *
1767 * Mark a dentry as falling through to the lower layer (as set with
1768 * d_pin_lower()). This flag may be recorded on the medium.
1769 */
1770void d_set_fallthru(struct dentry *dentry)
1771{
1772 spin_lock(&dentry->d_lock);
1773 dentry->d_flags |= DCACHE_FALLTHRU;
1774 spin_unlock(&dentry->d_lock);
1775}
1776EXPORT_SYMBOL(d_set_fallthru);
1777
b18825a7
DH
1778static unsigned d_flags_for_inode(struct inode *inode)
1779{
44bdb5e5 1780 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1781
1782 if (!inode)
1783 return DCACHE_MISS_TYPE;
1784
1785 if (S_ISDIR(inode->i_mode)) {
1786 add_flags = DCACHE_DIRECTORY_TYPE;
1787 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1788 if (unlikely(!inode->i_op->lookup))
1789 add_flags = DCACHE_AUTODIR_TYPE;
1790 else
1791 inode->i_opflags |= IOP_LOOKUP;
1792 }
44bdb5e5
DH
1793 goto type_determined;
1794 }
1795
1796 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1797 if (unlikely(inode->i_op->get_link)) {
b18825a7 1798 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1799 goto type_determined;
1800 }
1801 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1802 }
1803
44bdb5e5
DH
1804 if (unlikely(!S_ISREG(inode->i_mode)))
1805 add_flags = DCACHE_SPECIAL_TYPE;
1806
1807type_determined:
b18825a7
DH
1808 if (unlikely(IS_AUTOMOUNT(inode)))
1809 add_flags |= DCACHE_NEED_AUTOMOUNT;
1810 return add_flags;
1811}
1812
360da900
OH
1813static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1814{
b18825a7 1815 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1816 WARN_ON(d_in_lookup(dentry));
b18825a7 1817
b23fb0a6 1818 spin_lock(&dentry->d_lock);
de689f5e 1819 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1820 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1821 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1822 raw_write_seqcount_end(&dentry->d_seq);
affda484 1823 fsnotify_update_flags(dentry);
b23fb0a6 1824 spin_unlock(&dentry->d_lock);
360da900
OH
1825}
1826
1da177e4
LT
1827/**
1828 * d_instantiate - fill in inode information for a dentry
1829 * @entry: dentry to complete
1830 * @inode: inode to attach to this dentry
1831 *
1832 * Fill in inode information in the entry.
1833 *
1834 * This turns negative dentries into productive full members
1835 * of society.
1836 *
1837 * NOTE! This assumes that the inode count has been incremented
1838 * (or otherwise set) by the caller to indicate that it is now
1839 * in use by the dcache.
1840 */
1841
1842void d_instantiate(struct dentry *entry, struct inode * inode)
1843{
946e51f2 1844 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1845 if (inode) {
b9680917 1846 security_d_instantiate(entry, inode);
873feea0 1847 spin_lock(&inode->i_lock);
de689f5e 1848 __d_instantiate(entry, inode);
873feea0 1849 spin_unlock(&inode->i_lock);
de689f5e 1850 }
1da177e4 1851}
ec4f8605 1852EXPORT_SYMBOL(d_instantiate);
1da177e4 1853
b70a80e7
MS
1854/**
1855 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1856 * @entry: dentry to complete
1857 * @inode: inode to attach to this dentry
1858 *
1859 * Fill in inode information in the entry. If a directory alias is found, then
1860 * return an error (and drop inode). Together with d_materialise_unique() this
1861 * guarantees that a directory inode may never have more than one alias.
1862 */
1863int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1864{
946e51f2 1865 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1866
b9680917 1867 security_d_instantiate(entry, inode);
b70a80e7
MS
1868 spin_lock(&inode->i_lock);
1869 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1870 spin_unlock(&inode->i_lock);
1871 iput(inode);
1872 return -EBUSY;
1873 }
1874 __d_instantiate(entry, inode);
1875 spin_unlock(&inode->i_lock);
b70a80e7
MS
1876
1877 return 0;
1878}
1879EXPORT_SYMBOL(d_instantiate_no_diralias);
1880
adc0e91a
AV
1881struct dentry *d_make_root(struct inode *root_inode)
1882{
1883 struct dentry *res = NULL;
1884
1885 if (root_inode) {
798434bd 1886 res = __d_alloc(root_inode->i_sb, NULL);
adc0e91a
AV
1887 if (res)
1888 d_instantiate(res, root_inode);
1889 else
1890 iput(root_inode);
1891 }
1892 return res;
1893}
1894EXPORT_SYMBOL(d_make_root);
1895
d891eedb
BF
1896static struct dentry * __d_find_any_alias(struct inode *inode)
1897{
1898 struct dentry *alias;
1899
b3d9b7a3 1900 if (hlist_empty(&inode->i_dentry))
d891eedb 1901 return NULL;
946e51f2 1902 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1903 __dget(alias);
1904 return alias;
1905}
1906
46f72b34
SW
1907/**
1908 * d_find_any_alias - find any alias for a given inode
1909 * @inode: inode to find an alias for
1910 *
1911 * If any aliases exist for the given inode, take and return a
1912 * reference for one of them. If no aliases exist, return %NULL.
1913 */
1914struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1915{
1916 struct dentry *de;
1917
1918 spin_lock(&inode->i_lock);
1919 de = __d_find_any_alias(inode);
1920 spin_unlock(&inode->i_lock);
1921 return de;
1922}
46f72b34 1923EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1924
49c7dd28 1925static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1926{
9308a612
CH
1927 struct dentry *tmp;
1928 struct dentry *res;
b18825a7 1929 unsigned add_flags;
4ea3ada2
CH
1930
1931 if (!inode)
44003728 1932 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1933 if (IS_ERR(inode))
1934 return ERR_CAST(inode);
1935
d891eedb 1936 res = d_find_any_alias(inode);
9308a612
CH
1937 if (res)
1938 goto out_iput;
1939
798434bd 1940 tmp = __d_alloc(inode->i_sb, NULL);
9308a612
CH
1941 if (!tmp) {
1942 res = ERR_PTR(-ENOMEM);
1943 goto out_iput;
4ea3ada2 1944 }
b5c84bf6 1945
b9680917 1946 security_d_instantiate(tmp, inode);
873feea0 1947 spin_lock(&inode->i_lock);
d891eedb 1948 res = __d_find_any_alias(inode);
9308a612 1949 if (res) {
873feea0 1950 spin_unlock(&inode->i_lock);
9308a612
CH
1951 dput(tmp);
1952 goto out_iput;
1953 }
1954
1955 /* attach a disconnected dentry */
1a0a397e
BF
1956 add_flags = d_flags_for_inode(inode);
1957
1958 if (disconnected)
1959 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1960
9308a612 1961 spin_lock(&tmp->d_lock);
4bf46a27 1962 __d_set_inode_and_type(tmp, inode, add_flags);
946e51f2 1963 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1879fd6a 1964 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1965 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1966 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1967 spin_unlock(&tmp->d_lock);
873feea0 1968 spin_unlock(&inode->i_lock);
9308a612 1969
9308a612
CH
1970 return tmp;
1971
1972 out_iput:
1973 iput(inode);
1974 return res;
4ea3ada2 1975}
1a0a397e
BF
1976
1977/**
1978 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1979 * @inode: inode to allocate the dentry for
1980 *
1981 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1982 * similar open by handle operations. The returned dentry may be anonymous,
1983 * or may have a full name (if the inode was already in the cache).
1984 *
1985 * When called on a directory inode, we must ensure that the inode only ever
1986 * has one dentry. If a dentry is found, that is returned instead of
1987 * allocating a new one.
1988 *
1989 * On successful return, the reference to the inode has been transferred
1990 * to the dentry. In case of an error the reference on the inode is released.
1991 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1992 * be passed in and the error will be propagated to the return value,
1993 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1994 */
1995struct dentry *d_obtain_alias(struct inode *inode)
1996{
1997 return __d_obtain_alias(inode, 1);
1998}
adc48720 1999EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2000
1a0a397e
BF
2001/**
2002 * d_obtain_root - find or allocate a dentry for a given inode
2003 * @inode: inode to allocate the dentry for
2004 *
2005 * Obtain an IS_ROOT dentry for the root of a filesystem.
2006 *
2007 * We must ensure that directory inodes only ever have one dentry. If a
2008 * dentry is found, that is returned instead of allocating a new one.
2009 *
2010 * On successful return, the reference to the inode has been transferred
2011 * to the dentry. In case of an error the reference on the inode is
2012 * released. A %NULL or IS_ERR inode may be passed in and will be the
2013 * error will be propagate to the return value, with a %NULL @inode
2014 * replaced by ERR_PTR(-ESTALE).
2015 */
2016struct dentry *d_obtain_root(struct inode *inode)
2017{
2018 return __d_obtain_alias(inode, 0);
2019}
2020EXPORT_SYMBOL(d_obtain_root);
2021
9403540c
BN
2022/**
2023 * d_add_ci - lookup or allocate new dentry with case-exact name
2024 * @inode: the inode case-insensitive lookup has found
2025 * @dentry: the negative dentry that was passed to the parent's lookup func
2026 * @name: the case-exact name to be associated with the returned dentry
2027 *
2028 * This is to avoid filling the dcache with case-insensitive names to the
2029 * same inode, only the actual correct case is stored in the dcache for
2030 * case-insensitive filesystems.
2031 *
2032 * For a case-insensitive lookup match and if the the case-exact dentry
2033 * already exists in in the dcache, use it and return it.
2034 *
2035 * If no entry exists with the exact case name, allocate new dentry with
2036 * the exact case, and return the spliced entry.
2037 */
e45b590b 2038struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2039 struct qstr *name)
2040{
d9171b93 2041 struct dentry *found, *res;
9403540c 2042
b6520c81
CH
2043 /*
2044 * First check if a dentry matching the name already exists,
2045 * if not go ahead and create it now.
2046 */
9403540c 2047 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2048 if (found) {
2049 iput(inode);
2050 return found;
2051 }
2052 if (d_in_lookup(dentry)) {
2053 found = d_alloc_parallel(dentry->d_parent, name,
2054 dentry->d_wait);
2055 if (IS_ERR(found) || !d_in_lookup(found)) {
2056 iput(inode);
2057 return found;
9403540c 2058 }
d9171b93
AV
2059 } else {
2060 found = d_alloc(dentry->d_parent, name);
2061 if (!found) {
2062 iput(inode);
2063 return ERR_PTR(-ENOMEM);
2064 }
2065 }
2066 res = d_splice_alias(inode, found);
2067 if (res) {
2068 dput(found);
2069 return res;
9403540c 2070 }
4f522a24 2071 return found;
9403540c 2072}
ec4f8605 2073EXPORT_SYMBOL(d_add_ci);
1da177e4 2074
12f8ad4b 2075
d4c91a8f
AV
2076static inline bool d_same_name(const struct dentry *dentry,
2077 const struct dentry *parent,
2078 const struct qstr *name)
12f8ad4b 2079{
d4c91a8f
AV
2080 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2081 if (dentry->d_name.len != name->len)
2082 return false;
2083 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2084 }
6fa67e70 2085 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2086 dentry->d_name.len, dentry->d_name.name,
2087 name) == 0;
12f8ad4b
LT
2088}
2089
31e6b01f
NP
2090/**
2091 * __d_lookup_rcu - search for a dentry (racy, store-free)
2092 * @parent: parent dentry
2093 * @name: qstr of name we wish to find
1f1e6e52 2094 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2095 * Returns: dentry, or NULL
2096 *
2097 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2098 * resolution (store-free path walking) design described in
2099 * Documentation/filesystems/path-lookup.txt.
2100 *
2101 * This is not to be used outside core vfs.
2102 *
2103 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2104 * held, and rcu_read_lock held. The returned dentry must not be stored into
2105 * without taking d_lock and checking d_seq sequence count against @seq
2106 * returned here.
2107 *
15570086 2108 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2109 * function.
2110 *
2111 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2112 * the returned dentry, so long as its parent's seqlock is checked after the
2113 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2114 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2115 *
2116 * NOTE! The caller *has* to check the resulting dentry against the sequence
2117 * number we've returned before using any of the resulting dentry state!
31e6b01f 2118 */
8966be90
LT
2119struct dentry *__d_lookup_rcu(const struct dentry *parent,
2120 const struct qstr *name,
da53be12 2121 unsigned *seqp)
31e6b01f 2122{
26fe5750 2123 u64 hashlen = name->hash_len;
31e6b01f 2124 const unsigned char *str = name->name;
8387ff25 2125 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2126 struct hlist_bl_node *node;
31e6b01f
NP
2127 struct dentry *dentry;
2128
2129 /*
2130 * Note: There is significant duplication with __d_lookup_rcu which is
2131 * required to prevent single threaded performance regressions
2132 * especially on architectures where smp_rmb (in seqcounts) are costly.
2133 * Keep the two functions in sync.
2134 */
2135
2136 /*
2137 * The hash list is protected using RCU.
2138 *
2139 * Carefully use d_seq when comparing a candidate dentry, to avoid
2140 * races with d_move().
2141 *
2142 * It is possible that concurrent renames can mess up our list
2143 * walk here and result in missing our dentry, resulting in the
2144 * false-negative result. d_lookup() protects against concurrent
2145 * renames using rename_lock seqlock.
2146 *
b0a4bb83 2147 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2148 */
b07ad996 2149 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2150 unsigned seq;
31e6b01f 2151
31e6b01f 2152seqretry:
12f8ad4b
LT
2153 /*
2154 * The dentry sequence count protects us from concurrent
da53be12 2155 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2156 *
2157 * The caller must perform a seqcount check in order
da53be12 2158 * to do anything useful with the returned dentry.
12f8ad4b
LT
2159 *
2160 * NOTE! We do a "raw" seqcount_begin here. That means that
2161 * we don't wait for the sequence count to stabilize if it
2162 * is in the middle of a sequence change. If we do the slow
2163 * dentry compare, we will do seqretries until it is stable,
2164 * and if we end up with a successful lookup, we actually
2165 * want to exit RCU lookup anyway.
d4c91a8f
AV
2166 *
2167 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2168 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2169 */
2170 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2171 if (dentry->d_parent != parent)
2172 continue;
2e321806
LT
2173 if (d_unhashed(dentry))
2174 continue;
12f8ad4b 2175
830c0f0e 2176 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2177 int tlen;
2178 const char *tname;
26fe5750
LT
2179 if (dentry->d_name.hash != hashlen_hash(hashlen))
2180 continue;
d4c91a8f
AV
2181 tlen = dentry->d_name.len;
2182 tname = dentry->d_name.name;
2183 /* we want a consistent (name,len) pair */
2184 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2185 cpu_relax();
12f8ad4b
LT
2186 goto seqretry;
2187 }
6fa67e70 2188 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2189 tlen, tname, name) != 0)
2190 continue;
2191 } else {
2192 if (dentry->d_name.hash_len != hashlen)
2193 continue;
2194 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2195 continue;
31e6b01f 2196 }
da53be12 2197 *seqp = seq;
d4c91a8f 2198 return dentry;
31e6b01f
NP
2199 }
2200 return NULL;
2201}
2202
1da177e4
LT
2203/**
2204 * d_lookup - search for a dentry
2205 * @parent: parent dentry
2206 * @name: qstr of name we wish to find
b04f784e 2207 * Returns: dentry, or NULL
1da177e4 2208 *
b04f784e
NP
2209 * d_lookup searches the children of the parent dentry for the name in
2210 * question. If the dentry is found its reference count is incremented and the
2211 * dentry is returned. The caller must use dput to free the entry when it has
2212 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2213 */
da2d8455 2214struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2215{
31e6b01f 2216 struct dentry *dentry;
949854d0 2217 unsigned seq;
1da177e4 2218
b8314f93
DY
2219 do {
2220 seq = read_seqbegin(&rename_lock);
2221 dentry = __d_lookup(parent, name);
2222 if (dentry)
1da177e4
LT
2223 break;
2224 } while (read_seqretry(&rename_lock, seq));
2225 return dentry;
2226}
ec4f8605 2227EXPORT_SYMBOL(d_lookup);
1da177e4 2228
31e6b01f 2229/**
b04f784e
NP
2230 * __d_lookup - search for a dentry (racy)
2231 * @parent: parent dentry
2232 * @name: qstr of name we wish to find
2233 * Returns: dentry, or NULL
2234 *
2235 * __d_lookup is like d_lookup, however it may (rarely) return a
2236 * false-negative result due to unrelated rename activity.
2237 *
2238 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2239 * however it must be used carefully, eg. with a following d_lookup in
2240 * the case of failure.
2241 *
2242 * __d_lookup callers must be commented.
2243 */
a713ca2a 2244struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2245{
1da177e4 2246 unsigned int hash = name->hash;
8387ff25 2247 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2248 struct hlist_bl_node *node;
31e6b01f 2249 struct dentry *found = NULL;
665a7583 2250 struct dentry *dentry;
1da177e4 2251
31e6b01f
NP
2252 /*
2253 * Note: There is significant duplication with __d_lookup_rcu which is
2254 * required to prevent single threaded performance regressions
2255 * especially on architectures where smp_rmb (in seqcounts) are costly.
2256 * Keep the two functions in sync.
2257 */
2258
b04f784e
NP
2259 /*
2260 * The hash list is protected using RCU.
2261 *
2262 * Take d_lock when comparing a candidate dentry, to avoid races
2263 * with d_move().
2264 *
2265 * It is possible that concurrent renames can mess up our list
2266 * walk here and result in missing our dentry, resulting in the
2267 * false-negative result. d_lookup() protects against concurrent
2268 * renames using rename_lock seqlock.
2269 *
b0a4bb83 2270 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2271 */
1da177e4
LT
2272 rcu_read_lock();
2273
b07ad996 2274 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2275
1da177e4
LT
2276 if (dentry->d_name.hash != hash)
2277 continue;
1da177e4
LT
2278
2279 spin_lock(&dentry->d_lock);
1da177e4
LT
2280 if (dentry->d_parent != parent)
2281 goto next;
d0185c08
LT
2282 if (d_unhashed(dentry))
2283 goto next;
2284
d4c91a8f
AV
2285 if (!d_same_name(dentry, parent, name))
2286 goto next;
1da177e4 2287
98474236 2288 dentry->d_lockref.count++;
d0185c08 2289 found = dentry;
1da177e4
LT
2290 spin_unlock(&dentry->d_lock);
2291 break;
2292next:
2293 spin_unlock(&dentry->d_lock);
2294 }
2295 rcu_read_unlock();
2296
2297 return found;
2298}
2299
3e7e241f
EB
2300/**
2301 * d_hash_and_lookup - hash the qstr then search for a dentry
2302 * @dir: Directory to search in
2303 * @name: qstr of name we wish to find
2304 *
4f522a24 2305 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2306 */
2307struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2308{
3e7e241f
EB
2309 /*
2310 * Check for a fs-specific hash function. Note that we must
2311 * calculate the standard hash first, as the d_op->d_hash()
2312 * routine may choose to leave the hash value unchanged.
2313 */
8387ff25 2314 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2315 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2316 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2317 if (unlikely(err < 0))
2318 return ERR_PTR(err);
3e7e241f 2319 }
4f522a24 2320 return d_lookup(dir, name);
3e7e241f 2321}
4f522a24 2322EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2323
1da177e4
LT
2324/*
2325 * When a file is deleted, we have two options:
2326 * - turn this dentry into a negative dentry
2327 * - unhash this dentry and free it.
2328 *
2329 * Usually, we want to just turn this into
2330 * a negative dentry, but if anybody else is
2331 * currently using the dentry or the inode
2332 * we can't do that and we fall back on removing
2333 * it from the hash queues and waiting for
2334 * it to be deleted later when it has no users
2335 */
2336
2337/**
2338 * d_delete - delete a dentry
2339 * @dentry: The dentry to delete
2340 *
2341 * Turn the dentry into a negative dentry if possible, otherwise
2342 * remove it from the hash queues so it can be deleted later
2343 */
2344
2345void d_delete(struct dentry * dentry)
2346{
873feea0 2347 struct inode *inode;
7a91bf7f 2348 int isdir = 0;
1da177e4
LT
2349 /*
2350 * Are we the only user?
2351 */
357f8e65 2352again:
1da177e4 2353 spin_lock(&dentry->d_lock);
873feea0
NP
2354 inode = dentry->d_inode;
2355 isdir = S_ISDIR(inode->i_mode);
98474236 2356 if (dentry->d_lockref.count == 1) {
1fe0c023 2357 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2358 spin_unlock(&dentry->d_lock);
2359 cpu_relax();
2360 goto again;
2361 }
13e3c5e5 2362 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2363 dentry_unlink_inode(dentry);
7a91bf7f 2364 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2365 return;
2366 }
2367
2368 if (!d_unhashed(dentry))
2369 __d_drop(dentry);
2370
2371 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2372
2373 fsnotify_nameremove(dentry, isdir);
1da177e4 2374}
ec4f8605 2375EXPORT_SYMBOL(d_delete);
1da177e4 2376
15d3c589 2377static void __d_rehash(struct dentry *entry)
1da177e4 2378{
15d3c589 2379 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
ceb5bdc2 2380 BUG_ON(!d_unhashed(entry));
1879fd6a 2381 hlist_bl_lock(b);
b07ad996 2382 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2383 hlist_bl_unlock(b);
1da177e4
LT
2384}
2385
2386/**
2387 * d_rehash - add an entry back to the hash
2388 * @entry: dentry to add to the hash
2389 *
2390 * Adds a dentry to the hash according to its name.
2391 */
2392
2393void d_rehash(struct dentry * entry)
2394{
1da177e4 2395 spin_lock(&entry->d_lock);
15d3c589 2396 __d_rehash(entry);
1da177e4 2397 spin_unlock(&entry->d_lock);
1da177e4 2398}
ec4f8605 2399EXPORT_SYMBOL(d_rehash);
1da177e4 2400
84e710da
AV
2401static inline unsigned start_dir_add(struct inode *dir)
2402{
2403
2404 for (;;) {
2405 unsigned n = dir->i_dir_seq;
2406 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2407 return n;
2408 cpu_relax();
2409 }
2410}
2411
2412static inline void end_dir_add(struct inode *dir, unsigned n)
2413{
2414 smp_store_release(&dir->i_dir_seq, n + 2);
2415}
2416
d9171b93
AV
2417static void d_wait_lookup(struct dentry *dentry)
2418{
2419 if (d_in_lookup(dentry)) {
2420 DECLARE_WAITQUEUE(wait, current);
2421 add_wait_queue(dentry->d_wait, &wait);
2422 do {
2423 set_current_state(TASK_UNINTERRUPTIBLE);
2424 spin_unlock(&dentry->d_lock);
2425 schedule();
2426 spin_lock(&dentry->d_lock);
2427 } while (d_in_lookup(dentry));
2428 }
2429}
2430
94bdd655 2431struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2432 const struct qstr *name,
2433 wait_queue_head_t *wq)
94bdd655 2434{
94bdd655 2435 unsigned int hash = name->hash;
94bdd655
AV
2436 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2437 struct hlist_bl_node *node;
2438 struct dentry *new = d_alloc(parent, name);
2439 struct dentry *dentry;
2440 unsigned seq, r_seq, d_seq;
2441
2442 if (unlikely(!new))
2443 return ERR_PTR(-ENOMEM);
2444
2445retry:
2446 rcu_read_lock();
2447 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2448 r_seq = read_seqbegin(&rename_lock);
2449 dentry = __d_lookup_rcu(parent, name, &d_seq);
2450 if (unlikely(dentry)) {
2451 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2452 rcu_read_unlock();
2453 goto retry;
2454 }
2455 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2456 rcu_read_unlock();
2457 dput(dentry);
2458 goto retry;
2459 }
2460 rcu_read_unlock();
2461 dput(new);
2462 return dentry;
2463 }
2464 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2465 rcu_read_unlock();
2466 goto retry;
2467 }
2468 hlist_bl_lock(b);
2469 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2470 hlist_bl_unlock(b);
2471 rcu_read_unlock();
2472 goto retry;
2473 }
94bdd655
AV
2474 /*
2475 * No changes for the parent since the beginning of d_lookup().
2476 * Since all removals from the chain happen with hlist_bl_lock(),
2477 * any potential in-lookup matches are going to stay here until
2478 * we unlock the chain. All fields are stable in everything
2479 * we encounter.
2480 */
2481 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2482 if (dentry->d_name.hash != hash)
2483 continue;
2484 if (dentry->d_parent != parent)
2485 continue;
d4c91a8f
AV
2486 if (!d_same_name(dentry, parent, name))
2487 continue;
94bdd655 2488 hlist_bl_unlock(b);
e7d6ef97
AV
2489 /* now we can try to grab a reference */
2490 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2491 rcu_read_unlock();
2492 goto retry;
2493 }
2494
2495 rcu_read_unlock();
2496 /*
2497 * somebody is likely to be still doing lookup for it;
2498 * wait for them to finish
2499 */
d9171b93
AV
2500 spin_lock(&dentry->d_lock);
2501 d_wait_lookup(dentry);
2502 /*
2503 * it's not in-lookup anymore; in principle we should repeat
2504 * everything from dcache lookup, but it's likely to be what
2505 * d_lookup() would've found anyway. If it is, just return it;
2506 * otherwise we really have to repeat the whole thing.
2507 */
2508 if (unlikely(dentry->d_name.hash != hash))
2509 goto mismatch;
2510 if (unlikely(dentry->d_parent != parent))
2511 goto mismatch;
2512 if (unlikely(d_unhashed(dentry)))
2513 goto mismatch;
d4c91a8f
AV
2514 if (unlikely(!d_same_name(dentry, parent, name)))
2515 goto mismatch;
d9171b93
AV
2516 /* OK, it *is* a hashed match; return it */
2517 spin_unlock(&dentry->d_lock);
94bdd655
AV
2518 dput(new);
2519 return dentry;
2520 }
e7d6ef97 2521 rcu_read_unlock();
94bdd655
AV
2522 /* we can't take ->d_lock here; it's OK, though. */
2523 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2524 new->d_wait = wq;
94bdd655
AV
2525 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2526 hlist_bl_unlock(b);
2527 return new;
d9171b93
AV
2528mismatch:
2529 spin_unlock(&dentry->d_lock);
2530 dput(dentry);
2531 goto retry;
94bdd655
AV
2532}
2533EXPORT_SYMBOL(d_alloc_parallel);
2534
85c7f810
AV
2535void __d_lookup_done(struct dentry *dentry)
2536{
94bdd655
AV
2537 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2538 dentry->d_name.hash);
2539 hlist_bl_lock(b);
85c7f810 2540 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2541 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2542 wake_up_all(dentry->d_wait);
2543 dentry->d_wait = NULL;
94bdd655
AV
2544 hlist_bl_unlock(b);
2545 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2546 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2547}
2548EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2549
2550/* inode->i_lock held if inode is non-NULL */
2551
2552static inline void __d_add(struct dentry *dentry, struct inode *inode)
2553{
84e710da
AV
2554 struct inode *dir = NULL;
2555 unsigned n;
0568d705 2556 spin_lock(&dentry->d_lock);
84e710da
AV
2557 if (unlikely(d_in_lookup(dentry))) {
2558 dir = dentry->d_parent->d_inode;
2559 n = start_dir_add(dir);
85c7f810 2560 __d_lookup_done(dentry);
84e710da 2561 }
ed782b5a 2562 if (inode) {
0568d705
AV
2563 unsigned add_flags = d_flags_for_inode(inode);
2564 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2565 raw_write_seqcount_begin(&dentry->d_seq);
2566 __d_set_inode_and_type(dentry, inode, add_flags);
2567 raw_write_seqcount_end(&dentry->d_seq);
affda484 2568 fsnotify_update_flags(dentry);
ed782b5a 2569 }
15d3c589 2570 __d_rehash(dentry);
84e710da
AV
2571 if (dir)
2572 end_dir_add(dir, n);
0568d705
AV
2573 spin_unlock(&dentry->d_lock);
2574 if (inode)
2575 spin_unlock(&inode->i_lock);
ed782b5a
AV
2576}
2577
34d0d19d
AV
2578/**
2579 * d_add - add dentry to hash queues
2580 * @entry: dentry to add
2581 * @inode: The inode to attach to this dentry
2582 *
2583 * This adds the entry to the hash queues and initializes @inode.
2584 * The entry was actually filled in earlier during d_alloc().
2585 */
2586
2587void d_add(struct dentry *entry, struct inode *inode)
2588{
b9680917
AV
2589 if (inode) {
2590 security_d_instantiate(entry, inode);
ed782b5a 2591 spin_lock(&inode->i_lock);
b9680917 2592 }
ed782b5a 2593 __d_add(entry, inode);
34d0d19d
AV
2594}
2595EXPORT_SYMBOL(d_add);
2596
668d0cd5
AV
2597/**
2598 * d_exact_alias - find and hash an exact unhashed alias
2599 * @entry: dentry to add
2600 * @inode: The inode to go with this dentry
2601 *
2602 * If an unhashed dentry with the same name/parent and desired
2603 * inode already exists, hash and return it. Otherwise, return
2604 * NULL.
2605 *
2606 * Parent directory should be locked.
2607 */
2608struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2609{
2610 struct dentry *alias;
668d0cd5
AV
2611 unsigned int hash = entry->d_name.hash;
2612
2613 spin_lock(&inode->i_lock);
2614 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2615 /*
2616 * Don't need alias->d_lock here, because aliases with
2617 * d_parent == entry->d_parent are not subject to name or
2618 * parent changes, because the parent inode i_mutex is held.
2619 */
2620 if (alias->d_name.hash != hash)
2621 continue;
2622 if (alias->d_parent != entry->d_parent)
2623 continue;
d4c91a8f 2624 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2625 continue;
2626 spin_lock(&alias->d_lock);
2627 if (!d_unhashed(alias)) {
2628 spin_unlock(&alias->d_lock);
2629 alias = NULL;
2630 } else {
2631 __dget_dlock(alias);
15d3c589 2632 __d_rehash(alias);
668d0cd5
AV
2633 spin_unlock(&alias->d_lock);
2634 }
2635 spin_unlock(&inode->i_lock);
2636 return alias;
2637 }
2638 spin_unlock(&inode->i_lock);
2639 return NULL;
2640}
2641EXPORT_SYMBOL(d_exact_alias);
2642
fb2d5b86
NP
2643/**
2644 * dentry_update_name_case - update case insensitive dentry with a new name
2645 * @dentry: dentry to be updated
2646 * @name: new name
2647 *
2648 * Update a case insensitive dentry with new case of name.
2649 *
2650 * dentry must have been returned by d_lookup with name @name. Old and new
2651 * name lengths must match (ie. no d_compare which allows mismatched name
2652 * lengths).
2653 *
2654 * Parent inode i_mutex must be held over d_lookup and into this call (to
2655 * keep renames and concurrent inserts, and readdir(2) away).
2656 */
9aba36de 2657void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2658{
5955102c 2659 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2660 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2661
fb2d5b86 2662 spin_lock(&dentry->d_lock);
31e6b01f 2663 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2664 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2665 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2666 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2667}
2668EXPORT_SYMBOL(dentry_update_name_case);
2669
8d85b484 2670static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2671{
8d85b484
AV
2672 if (unlikely(dname_external(target))) {
2673 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2674 /*
2675 * Both external: swap the pointers
2676 */
9a8d5bb4 2677 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2678 } else {
2679 /*
2680 * dentry:internal, target:external. Steal target's
2681 * storage and make target internal.
2682 */
321bcf92
BF
2683 memcpy(target->d_iname, dentry->d_name.name,
2684 dentry->d_name.len + 1);
1da177e4
LT
2685 dentry->d_name.name = target->d_name.name;
2686 target->d_name.name = target->d_iname;
2687 }
2688 } else {
8d85b484 2689 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2690 /*
2691 * dentry:external, target:internal. Give dentry's
2692 * storage to target and make dentry internal
2693 */
2694 memcpy(dentry->d_iname, target->d_name.name,
2695 target->d_name.len + 1);
2696 target->d_name.name = dentry->d_name.name;
2697 dentry->d_name.name = dentry->d_iname;
2698 } else {
2699 /*
da1ce067 2700 * Both are internal.
1da177e4 2701 */
da1ce067
MS
2702 unsigned int i;
2703 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
08d4f772
MP
2704 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2705 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
da1ce067
MS
2706 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2707 swap(((long *) &dentry->d_iname)[i],
2708 ((long *) &target->d_iname)[i]);
2709 }
1da177e4
LT
2710 }
2711 }
a28ddb87 2712 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2713}
2714
8d85b484
AV
2715static void copy_name(struct dentry *dentry, struct dentry *target)
2716{
2717 struct external_name *old_name = NULL;
2718 if (unlikely(dname_external(dentry)))
2719 old_name = external_name(dentry);
2720 if (unlikely(dname_external(target))) {
2721 atomic_inc(&external_name(target)->u.count);
2722 dentry->d_name = target->d_name;
2723 } else {
2724 memcpy(dentry->d_iname, target->d_name.name,
2725 target->d_name.len + 1);
2726 dentry->d_name.name = dentry->d_iname;
2727 dentry->d_name.hash_len = target->d_name.hash_len;
2728 }
2729 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2730 kfree_rcu(old_name, u.head);
2731}
2732
2fd6b7f5
NP
2733static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2734{
2735 /*
2736 * XXXX: do we really need to take target->d_lock?
2737 */
2738 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2739 spin_lock(&target->d_parent->d_lock);
2740 else {
2741 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2742 spin_lock(&dentry->d_parent->d_lock);
2743 spin_lock_nested(&target->d_parent->d_lock,
2744 DENTRY_D_LOCK_NESTED);
2745 } else {
2746 spin_lock(&target->d_parent->d_lock);
2747 spin_lock_nested(&dentry->d_parent->d_lock,
2748 DENTRY_D_LOCK_NESTED);
2749 }
2750 }
2751 if (target < dentry) {
2752 spin_lock_nested(&target->d_lock, 2);
2753 spin_lock_nested(&dentry->d_lock, 3);
2754 } else {
2755 spin_lock_nested(&dentry->d_lock, 2);
2756 spin_lock_nested(&target->d_lock, 3);
2757 }
2758}
2759
986c0194 2760static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2761{
2762 if (target->d_parent != dentry->d_parent)
2763 spin_unlock(&dentry->d_parent->d_lock);
2764 if (target->d_parent != target)
2765 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2766 spin_unlock(&target->d_lock);
2767 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2768}
2769
1da177e4 2770/*
2fd6b7f5
NP
2771 * When switching names, the actual string doesn't strictly have to
2772 * be preserved in the target - because we're dropping the target
2773 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2774 * the new name before we switch, unless we are going to rehash
2775 * it. Note that if we *do* unhash the target, we are not allowed
2776 * to rehash it without giving it a new name/hash key - whether
2777 * we swap or overwrite the names here, resulting name won't match
2778 * the reality in filesystem; it's only there for d_path() purposes.
2779 * Note that all of this is happening under rename_lock, so the
2780 * any hash lookup seeing it in the middle of manipulations will
2781 * be discarded anyway. So we do not care what happens to the hash
2782 * key in that case.
1da177e4 2783 */
9eaef27b 2784/*
18367501 2785 * __d_move - move a dentry
1da177e4
LT
2786 * @dentry: entry to move
2787 * @target: new dentry
da1ce067 2788 * @exchange: exchange the two dentries
1da177e4
LT
2789 *
2790 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2791 * dcache entries should not be moved in this way. Caller must hold
2792 * rename_lock, the i_mutex of the source and target directories,
2793 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2794 */
da1ce067
MS
2795static void __d_move(struct dentry *dentry, struct dentry *target,
2796 bool exchange)
1da177e4 2797{
84e710da
AV
2798 struct inode *dir = NULL;
2799 unsigned n;
1da177e4
LT
2800 if (!dentry->d_inode)
2801 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2802
2fd6b7f5
NP
2803 BUG_ON(d_ancestor(dentry, target));
2804 BUG_ON(d_ancestor(target, dentry));
2805
2fd6b7f5 2806 dentry_lock_for_move(dentry, target);
84e710da
AV
2807 if (unlikely(d_in_lookup(target))) {
2808 dir = target->d_parent->d_inode;
2809 n = start_dir_add(dir);
85c7f810 2810 __d_lookup_done(target);
84e710da 2811 }
1da177e4 2812
31e6b01f 2813 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2814 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2815
15d3c589 2816 /* unhash both */
ceb5bdc2 2817 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
ceb5bdc2 2818 __d_drop(dentry);
1da177e4
LT
2819 __d_drop(target);
2820
1da177e4 2821 /* Switch the names.. */
8d85b484
AV
2822 if (exchange)
2823 swap_names(dentry, target);
2824 else
2825 copy_name(dentry, target);
1da177e4 2826
15d3c589
AV
2827 /* rehash in new place(s) */
2828 __d_rehash(dentry);
2829 if (exchange)
2830 __d_rehash(target);
2831
63cf427a 2832 /* ... and switch them in the tree */
1da177e4 2833 if (IS_ROOT(dentry)) {
63cf427a 2834 /* splicing a tree */
3d56c25e 2835 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2836 dentry->d_parent = target->d_parent;
2837 target->d_parent = target;
946e51f2
AV
2838 list_del_init(&target->d_child);
2839 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2840 } else {
63cf427a 2841 /* swapping two dentries */
9a8d5bb4 2842 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2843 list_move(&target->d_child, &target->d_parent->d_subdirs);
2844 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2845 if (exchange)
affda484
AV
2846 fsnotify_update_flags(target);
2847 fsnotify_update_flags(dentry);
1da177e4
LT
2848 }
2849
31e6b01f
NP
2850 write_seqcount_end(&target->d_seq);
2851 write_seqcount_end(&dentry->d_seq);
2852
84e710da
AV
2853 if (dir)
2854 end_dir_add(dir, n);
986c0194 2855 dentry_unlock_for_move(dentry, target);
18367501
AV
2856}
2857
2858/*
2859 * d_move - move a dentry
2860 * @dentry: entry to move
2861 * @target: new dentry
2862 *
2863 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2864 * dcache entries should not be moved in this way. See the locking
2865 * requirements for __d_move.
18367501
AV
2866 */
2867void d_move(struct dentry *dentry, struct dentry *target)
2868{
2869 write_seqlock(&rename_lock);
da1ce067 2870 __d_move(dentry, target, false);
1da177e4 2871 write_sequnlock(&rename_lock);
9eaef27b 2872}
ec4f8605 2873EXPORT_SYMBOL(d_move);
1da177e4 2874
da1ce067
MS
2875/*
2876 * d_exchange - exchange two dentries
2877 * @dentry1: first dentry
2878 * @dentry2: second dentry
2879 */
2880void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2881{
2882 write_seqlock(&rename_lock);
2883
2884 WARN_ON(!dentry1->d_inode);
2885 WARN_ON(!dentry2->d_inode);
2886 WARN_ON(IS_ROOT(dentry1));
2887 WARN_ON(IS_ROOT(dentry2));
2888
2889 __d_move(dentry1, dentry2, true);
2890
2891 write_sequnlock(&rename_lock);
2892}
2893
e2761a11
OH
2894/**
2895 * d_ancestor - search for an ancestor
2896 * @p1: ancestor dentry
2897 * @p2: child dentry
2898 *
2899 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2900 * an ancestor of p2, else NULL.
9eaef27b 2901 */
e2761a11 2902struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2903{
2904 struct dentry *p;
2905
871c0067 2906 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2907 if (p->d_parent == p1)
e2761a11 2908 return p;
9eaef27b 2909 }
e2761a11 2910 return NULL;
9eaef27b
TM
2911}
2912
2913/*
2914 * This helper attempts to cope with remotely renamed directories
2915 *
2916 * It assumes that the caller is already holding
a03e283b 2917 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2918 *
2919 * Note: If ever the locking in lock_rename() changes, then please
2920 * remember to update this too...
9eaef27b 2921 */
b5ae6b15 2922static int __d_unalias(struct inode *inode,
873feea0 2923 struct dentry *dentry, struct dentry *alias)
9eaef27b 2924{
9902af79
AV
2925 struct mutex *m1 = NULL;
2926 struct rw_semaphore *m2 = NULL;
3d330dc1 2927 int ret = -ESTALE;
9eaef27b
TM
2928
2929 /* If alias and dentry share a parent, then no extra locks required */
2930 if (alias->d_parent == dentry->d_parent)
2931 goto out_unalias;
2932
9eaef27b 2933 /* See lock_rename() */
9eaef27b
TM
2934 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2935 goto out_err;
2936 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2937 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2938 goto out_err;
9902af79 2939 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2940out_unalias:
8ed936b5 2941 __d_move(alias, dentry, false);
b5ae6b15 2942 ret = 0;
9eaef27b 2943out_err:
9eaef27b 2944 if (m2)
9902af79 2945 up_read(m2);
9eaef27b
TM
2946 if (m1)
2947 mutex_unlock(m1);
2948 return ret;
2949}
2950
3f70bd51
BF
2951/**
2952 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2953 * @inode: the inode which may have a disconnected dentry
2954 * @dentry: a negative dentry which we want to point to the inode.
2955 *
da093a9b
BF
2956 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2957 * place of the given dentry and return it, else simply d_add the inode
2958 * to the dentry and return NULL.
3f70bd51 2959 *
908790fa
BF
2960 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2961 * we should error out: directories can't have multiple aliases.
2962 *
3f70bd51
BF
2963 * This is needed in the lookup routine of any filesystem that is exportable
2964 * (via knfsd) so that we can build dcache paths to directories effectively.
2965 *
2966 * If a dentry was found and moved, then it is returned. Otherwise NULL
2967 * is returned. This matches the expected return value of ->lookup.
2968 *
2969 * Cluster filesystems may call this function with a negative, hashed dentry.
2970 * In that case, we know that the inode will be a regular file, and also this
2971 * will only occur during atomic_open. So we need to check for the dentry
2972 * being already hashed only in the final case.
2973 */
2974struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2975{
3f70bd51
BF
2976 if (IS_ERR(inode))
2977 return ERR_CAST(inode);
2978
770bfad8
DH
2979 BUG_ON(!d_unhashed(dentry));
2980
de689f5e 2981 if (!inode)
b5ae6b15 2982 goto out;
de689f5e 2983
b9680917 2984 security_d_instantiate(dentry, inode);
873feea0 2985 spin_lock(&inode->i_lock);
9eaef27b 2986 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2987 struct dentry *new = __d_find_any_alias(inode);
2988 if (unlikely(new)) {
a03e283b
EB
2989 /* The reference to new ensures it remains an alias */
2990 spin_unlock(&inode->i_lock);
18367501 2991 write_seqlock(&rename_lock);
b5ae6b15
AV
2992 if (unlikely(d_ancestor(new, dentry))) {
2993 write_sequnlock(&rename_lock);
b5ae6b15
AV
2994 dput(new);
2995 new = ERR_PTR(-ELOOP);
2996 pr_warn_ratelimited(
2997 "VFS: Lookup of '%s' in %s %s"
2998 " would have caused loop\n",
2999 dentry->d_name.name,
3000 inode->i_sb->s_type->name,
3001 inode->i_sb->s_id);
3002 } else if (!IS_ROOT(new)) {
3003 int err = __d_unalias(inode, dentry, new);
18367501 3004 write_sequnlock(&rename_lock);
b5ae6b15
AV
3005 if (err) {
3006 dput(new);
3007 new = ERR_PTR(err);
3008 }
18367501 3009 } else {
b5ae6b15
AV
3010 __d_move(new, dentry, false);
3011 write_sequnlock(&rename_lock);
dd179946 3012 }
b5ae6b15
AV
3013 iput(inode);
3014 return new;
9eaef27b 3015 }
770bfad8 3016 }
b5ae6b15 3017out:
ed782b5a 3018 __d_add(dentry, inode);
b5ae6b15 3019 return NULL;
770bfad8 3020}
b5ae6b15 3021EXPORT_SYMBOL(d_splice_alias);
770bfad8 3022
cdd16d02 3023static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3024{
3025 *buflen -= namelen;
3026 if (*buflen < 0)
3027 return -ENAMETOOLONG;
3028 *buffer -= namelen;
3029 memcpy(*buffer, str, namelen);
3030 return 0;
3031}
3032
232d2d60
WL
3033/**
3034 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3035 * @buffer: buffer pointer
3036 * @buflen: allocated length of the buffer
3037 * @name: name string and length qstr structure
232d2d60
WL
3038 *
3039 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3040 * make sure that either the old or the new name pointer and length are
3041 * fetched. However, there may be mismatch between length and pointer.
3042 * The length cannot be trusted, we need to copy it byte-by-byte until
3043 * the length is reached or a null byte is found. It also prepends "/" at
3044 * the beginning of the name. The sequence number check at the caller will
3045 * retry it again when a d_move() does happen. So any garbage in the buffer
3046 * due to mismatched pointer and length will be discarded.
6d13f694
AV
3047 *
3048 * Data dependency barrier is needed to make sure that we see that terminating
3049 * NUL. Alpha strikes again, film at 11...
232d2d60 3050 */
9aba36de 3051static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
cdd16d02 3052{
232d2d60
WL
3053 const char *dname = ACCESS_ONCE(name->name);
3054 u32 dlen = ACCESS_ONCE(name->len);
3055 char *p;
3056
6d13f694
AV
3057 smp_read_barrier_depends();
3058
232d2d60 3059 *buflen -= dlen + 1;
e825196d
AV
3060 if (*buflen < 0)
3061 return -ENAMETOOLONG;
232d2d60
WL
3062 p = *buffer -= dlen + 1;
3063 *p++ = '/';
3064 while (dlen--) {
3065 char c = *dname++;
3066 if (!c)
3067 break;
3068 *p++ = c;
3069 }
3070 return 0;
cdd16d02
MS
3071}
3072
1da177e4 3073/**
208898c1 3074 * prepend_path - Prepend path string to a buffer
9d1bc601 3075 * @path: the dentry/vfsmount to report
02125a82 3076 * @root: root vfsmnt/dentry
f2eb6575
MS
3077 * @buffer: pointer to the end of the buffer
3078 * @buflen: pointer to buffer length
552ce544 3079 *
18129977
WL
3080 * The function will first try to write out the pathname without taking any
3081 * lock other than the RCU read lock to make sure that dentries won't go away.
3082 * It only checks the sequence number of the global rename_lock as any change
3083 * in the dentry's d_seq will be preceded by changes in the rename_lock
3084 * sequence number. If the sequence number had been changed, it will restart
3085 * the whole pathname back-tracing sequence again by taking the rename_lock.
3086 * In this case, there is no need to take the RCU read lock as the recursive
3087 * parent pointer references will keep the dentry chain alive as long as no
3088 * rename operation is performed.
1da177e4 3089 */
02125a82
AV
3090static int prepend_path(const struct path *path,
3091 const struct path *root,
f2eb6575 3092 char **buffer, int *buflen)
1da177e4 3093{
ede4cebc
AV
3094 struct dentry *dentry;
3095 struct vfsmount *vfsmnt;
3096 struct mount *mnt;
f2eb6575 3097 int error = 0;
48a066e7 3098 unsigned seq, m_seq = 0;
232d2d60
WL
3099 char *bptr;
3100 int blen;
6092d048 3101
48f5ec21 3102 rcu_read_lock();
48a066e7
AV
3103restart_mnt:
3104 read_seqbegin_or_lock(&mount_lock, &m_seq);
3105 seq = 0;
4ec6c2ae 3106 rcu_read_lock();
232d2d60
WL
3107restart:
3108 bptr = *buffer;
3109 blen = *buflen;
48a066e7 3110 error = 0;
ede4cebc
AV
3111 dentry = path->dentry;
3112 vfsmnt = path->mnt;
3113 mnt = real_mount(vfsmnt);
232d2d60 3114 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3115 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3116 struct dentry * parent;
3117
1da177e4 3118 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 3119 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
cde93be4
EB
3120 /* Escaped? */
3121 if (dentry != vfsmnt->mnt_root) {
3122 bptr = *buffer;
3123 blen = *buflen;
3124 error = 3;
3125 break;
3126 }
552ce544 3127 /* Global root? */
48a066e7
AV
3128 if (mnt != parent) {
3129 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3130 mnt = parent;
232d2d60
WL
3131 vfsmnt = &mnt->mnt;
3132 continue;
3133 }
232d2d60
WL
3134 if (!error)
3135 error = is_mounted(vfsmnt) ? 1 : 2;
3136 break;
1da177e4
LT
3137 }
3138 parent = dentry->d_parent;
3139 prefetch(parent);
232d2d60 3140 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3141 if (error)
3142 break;
3143
1da177e4
LT
3144 dentry = parent;
3145 }
48f5ec21
AV
3146 if (!(seq & 1))
3147 rcu_read_unlock();
3148 if (need_seqretry(&rename_lock, seq)) {
3149 seq = 1;
232d2d60 3150 goto restart;
48f5ec21
AV
3151 }
3152 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3153
3154 if (!(m_seq & 1))
3155 rcu_read_unlock();
48a066e7
AV
3156 if (need_seqretry(&mount_lock, m_seq)) {
3157 m_seq = 1;
3158 goto restart_mnt;
3159 }
3160 done_seqretry(&mount_lock, m_seq);
1da177e4 3161
232d2d60
WL
3162 if (error >= 0 && bptr == *buffer) {
3163 if (--blen < 0)
3164 error = -ENAMETOOLONG;
3165 else
3166 *--bptr = '/';
3167 }
3168 *buffer = bptr;
3169 *buflen = blen;
7ea600b5 3170 return error;
f2eb6575 3171}
be285c71 3172
f2eb6575
MS
3173/**
3174 * __d_path - return the path of a dentry
3175 * @path: the dentry/vfsmount to report
02125a82 3176 * @root: root vfsmnt/dentry
cd956a1c 3177 * @buf: buffer to return value in
f2eb6575
MS
3178 * @buflen: buffer length
3179 *
ffd1f4ed 3180 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3181 *
3182 * Returns a pointer into the buffer or an error code if the
3183 * path was too long.
3184 *
be148247 3185 * "buflen" should be positive.
f2eb6575 3186 *
02125a82 3187 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3188 */
02125a82
AV
3189char *__d_path(const struct path *path,
3190 const struct path *root,
f2eb6575
MS
3191 char *buf, int buflen)
3192{
3193 char *res = buf + buflen;
3194 int error;
3195
3196 prepend(&res, &buflen, "\0", 1);
f2eb6575 3197 error = prepend_path(path, root, &res, &buflen);
be148247 3198
02125a82
AV
3199 if (error < 0)
3200 return ERR_PTR(error);
3201 if (error > 0)
3202 return NULL;
3203 return res;
3204}
3205
3206char *d_absolute_path(const struct path *path,
3207 char *buf, int buflen)
3208{
3209 struct path root = {};
3210 char *res = buf + buflen;
3211 int error;
3212
3213 prepend(&res, &buflen, "\0", 1);
02125a82 3214 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3215
3216 if (error > 1)
3217 error = -EINVAL;
3218 if (error < 0)
f2eb6575 3219 return ERR_PTR(error);
f2eb6575 3220 return res;
1da177e4
LT
3221}
3222
ffd1f4ed
MS
3223/*
3224 * same as __d_path but appends "(deleted)" for unlinked files.
3225 */
02125a82
AV
3226static int path_with_deleted(const struct path *path,
3227 const struct path *root,
3228 char **buf, int *buflen)
ffd1f4ed
MS
3229{
3230 prepend(buf, buflen, "\0", 1);
3231 if (d_unlinked(path->dentry)) {
3232 int error = prepend(buf, buflen, " (deleted)", 10);
3233 if (error)
3234 return error;
3235 }
3236
3237 return prepend_path(path, root, buf, buflen);
3238}
3239
8df9d1a4
MS
3240static int prepend_unreachable(char **buffer, int *buflen)
3241{
3242 return prepend(buffer, buflen, "(unreachable)", 13);
3243}
3244
68f0d9d9
LT
3245static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3246{
3247 unsigned seq;
3248
3249 do {
3250 seq = read_seqcount_begin(&fs->seq);
3251 *root = fs->root;
3252 } while (read_seqcount_retry(&fs->seq, seq));
3253}
3254
a03a8a70
JB
3255/**
3256 * d_path - return the path of a dentry
cf28b486 3257 * @path: path to report
a03a8a70
JB
3258 * @buf: buffer to return value in
3259 * @buflen: buffer length
3260 *
3261 * Convert a dentry into an ASCII path name. If the entry has been deleted
3262 * the string " (deleted)" is appended. Note that this is ambiguous.
3263 *
52afeefb
AV
3264 * Returns a pointer into the buffer or an error code if the path was
3265 * too long. Note: Callers should use the returned pointer, not the passed
3266 * in buffer, to use the name! The implementation often starts at an offset
3267 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3268 *
31f3e0b3 3269 * "buflen" should be positive.
a03a8a70 3270 */
20d4fdc1 3271char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3272{
ffd1f4ed 3273 char *res = buf + buflen;
6ac08c39 3274 struct path root;
ffd1f4ed 3275 int error;
1da177e4 3276
c23fbb6b
ED
3277 /*
3278 * We have various synthetic filesystems that never get mounted. On
3279 * these filesystems dentries are never used for lookup purposes, and
3280 * thus don't need to be hashed. They also don't need a name until a
3281 * user wants to identify the object in /proc/pid/fd/. The little hack
3282 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3283 *
3284 * Some pseudo inodes are mountable. When they are mounted
3285 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3286 * and instead have d_path return the mounted path.
c23fbb6b 3287 */
f48cfddc
EB
3288 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3289 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3290 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3291
68f0d9d9
LT
3292 rcu_read_lock();
3293 get_fs_root_rcu(current->fs, &root);
02125a82 3294 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3295 rcu_read_unlock();
3296
02125a82 3297 if (error < 0)
ffd1f4ed 3298 res = ERR_PTR(error);
1da177e4
LT
3299 return res;
3300}
ec4f8605 3301EXPORT_SYMBOL(d_path);
1da177e4 3302
c23fbb6b
ED
3303/*
3304 * Helper function for dentry_operations.d_dname() members
3305 */
3306char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3307 const char *fmt, ...)
3308{
3309 va_list args;
3310 char temp[64];
3311 int sz;
3312
3313 va_start(args, fmt);
3314 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3315 va_end(args);
3316
3317 if (sz > sizeof(temp) || sz > buflen)
3318 return ERR_PTR(-ENAMETOOLONG);
3319
3320 buffer += buflen - sz;
3321 return memcpy(buffer, temp, sz);
3322}
3323
118b2302
AV
3324char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3325{
3326 char *end = buffer + buflen;
3327 /* these dentries are never renamed, so d_lock is not needed */
3328 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3329 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3330 prepend(&end, &buflen, "/", 1))
3331 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3332 return end;
118b2302 3333}
31bbe16f 3334EXPORT_SYMBOL(simple_dname);
118b2302 3335
6092d048
RP
3336/*
3337 * Write full pathname from the root of the filesystem into the buffer.
3338 */
f6500801 3339static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3340{
f6500801 3341 struct dentry *dentry;
232d2d60
WL
3342 char *end, *retval;
3343 int len, seq = 0;
3344 int error = 0;
6092d048 3345
f6500801
AV
3346 if (buflen < 2)
3347 goto Elong;
3348
48f5ec21 3349 rcu_read_lock();
232d2d60 3350restart:
f6500801 3351 dentry = d;
232d2d60
WL
3352 end = buf + buflen;
3353 len = buflen;
3354 prepend(&end, &len, "\0", 1);
6092d048
RP
3355 /* Get '/' right */
3356 retval = end-1;
3357 *retval = '/';
232d2d60 3358 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3359 while (!IS_ROOT(dentry)) {
3360 struct dentry *parent = dentry->d_parent;
6092d048 3361
6092d048 3362 prefetch(parent);
232d2d60
WL
3363 error = prepend_name(&end, &len, &dentry->d_name);
3364 if (error)
3365 break;
6092d048
RP
3366
3367 retval = end;
3368 dentry = parent;
3369 }
48f5ec21
AV
3370 if (!(seq & 1))
3371 rcu_read_unlock();
3372 if (need_seqretry(&rename_lock, seq)) {
3373 seq = 1;
232d2d60 3374 goto restart;
48f5ec21
AV
3375 }
3376 done_seqretry(&rename_lock, seq);
232d2d60
WL
3377 if (error)
3378 goto Elong;
c103135c
AV
3379 return retval;
3380Elong:
3381 return ERR_PTR(-ENAMETOOLONG);
3382}
ec2447c2
NP
3383
3384char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3385{
232d2d60 3386 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3387}
3388EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3389
3390char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3391{
3392 char *p = NULL;
3393 char *retval;
3394
c103135c
AV
3395 if (d_unlinked(dentry)) {
3396 p = buf + buflen;
3397 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3398 goto Elong;
3399 buflen++;
3400 }
3401 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3402 if (!IS_ERR(retval) && p)
3403 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3404 return retval;
3405Elong:
6092d048
RP
3406 return ERR_PTR(-ENAMETOOLONG);
3407}
3408
8b19e341
LT
3409static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3410 struct path *pwd)
5762482f 3411{
8b19e341
LT
3412 unsigned seq;
3413
3414 do {
3415 seq = read_seqcount_begin(&fs->seq);
3416 *root = fs->root;
3417 *pwd = fs->pwd;
3418 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3419}
3420
1da177e4
LT
3421/*
3422 * NOTE! The user-level library version returns a
3423 * character pointer. The kernel system call just
3424 * returns the length of the buffer filled (which
3425 * includes the ending '\0' character), or a negative
3426 * error value. So libc would do something like
3427 *
3428 * char *getcwd(char * buf, size_t size)
3429 * {
3430 * int retval;
3431 *
3432 * retval = sys_getcwd(buf, size);
3433 * if (retval >= 0)
3434 * return buf;
3435 * errno = -retval;
3436 * return NULL;
3437 * }
3438 */
3cdad428 3439SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3440{
552ce544 3441 int error;
6ac08c39 3442 struct path pwd, root;
3272c544 3443 char *page = __getname();
1da177e4
LT
3444
3445 if (!page)
3446 return -ENOMEM;
3447
8b19e341
LT
3448 rcu_read_lock();
3449 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3450
552ce544 3451 error = -ENOENT;
f3da392e 3452 if (!d_unlinked(pwd.dentry)) {
552ce544 3453 unsigned long len;
3272c544
LT
3454 char *cwd = page + PATH_MAX;
3455 int buflen = PATH_MAX;
1da177e4 3456
8df9d1a4 3457 prepend(&cwd, &buflen, "\0", 1);
02125a82 3458 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3459 rcu_read_unlock();
552ce544 3460
02125a82 3461 if (error < 0)
552ce544
LT
3462 goto out;
3463
8df9d1a4 3464 /* Unreachable from current root */
02125a82 3465 if (error > 0) {
8df9d1a4
MS
3466 error = prepend_unreachable(&cwd, &buflen);
3467 if (error)
3468 goto out;
3469 }
3470
552ce544 3471 error = -ERANGE;
3272c544 3472 len = PATH_MAX + page - cwd;
552ce544
LT
3473 if (len <= size) {
3474 error = len;
3475 if (copy_to_user(buf, cwd, len))
3476 error = -EFAULT;
3477 }
949854d0 3478 } else {
ff812d72 3479 rcu_read_unlock();
949854d0 3480 }
1da177e4
LT
3481
3482out:
3272c544 3483 __putname(page);
1da177e4
LT
3484 return error;
3485}
3486
3487/*
3488 * Test whether new_dentry is a subdirectory of old_dentry.
3489 *
3490 * Trivially implemented using the dcache structure
3491 */
3492
3493/**
3494 * is_subdir - is new dentry a subdirectory of old_dentry
3495 * @new_dentry: new dentry
3496 * @old_dentry: old dentry
3497 *
a6e5787f
YB
3498 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3499 * Returns false otherwise.
1da177e4
LT
3500 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3501 */
3502
a6e5787f 3503bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3504{
a6e5787f 3505 bool result;
949854d0 3506 unsigned seq;
1da177e4 3507
e2761a11 3508 if (new_dentry == old_dentry)
a6e5787f 3509 return true;
e2761a11 3510
e2761a11 3511 do {
1da177e4 3512 /* for restarting inner loop in case of seq retry */
1da177e4 3513 seq = read_seqbegin(&rename_lock);
949854d0
NP
3514 /*
3515 * Need rcu_readlock to protect against the d_parent trashing
3516 * due to d_move
3517 */
3518 rcu_read_lock();
e2761a11 3519 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3520 result = true;
e2761a11 3521 else
a6e5787f 3522 result = false;
949854d0 3523 rcu_read_unlock();
1da177e4 3524 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3525
3526 return result;
3527}
3528
db14fc3a 3529static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3530{
db14fc3a
MS
3531 struct dentry *root = data;
3532 if (dentry != root) {
3533 if (d_unhashed(dentry) || !dentry->d_inode)
3534 return D_WALK_SKIP;
1da177e4 3535
01ddc4ed
MS
3536 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3537 dentry->d_flags |= DCACHE_GENOCIDE;
3538 dentry->d_lockref.count--;
3539 }
1da177e4 3540 }
db14fc3a
MS
3541 return D_WALK_CONTINUE;
3542}
58db63d0 3543
db14fc3a
MS
3544void d_genocide(struct dentry *parent)
3545{
3546 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3547}
3548
60545d0d 3549void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3550{
60545d0d
AV
3551 inode_dec_link_count(inode);
3552 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3553 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3554 !d_unlinked(dentry));
3555 spin_lock(&dentry->d_parent->d_lock);
3556 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3557 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3558 (unsigned long long)inode->i_ino);
3559 spin_unlock(&dentry->d_lock);
3560 spin_unlock(&dentry->d_parent->d_lock);
3561 d_instantiate(dentry, inode);
1da177e4 3562}
60545d0d 3563EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3564
3565static __initdata unsigned long dhash_entries;
3566static int __init set_dhash_entries(char *str)
3567{
3568 if (!str)
3569 return 0;
3570 dhash_entries = simple_strtoul(str, &str, 0);
3571 return 1;
3572}
3573__setup("dhash_entries=", set_dhash_entries);
3574
3575static void __init dcache_init_early(void)
3576{
1da177e4
LT
3577 /* If hashes are distributed across NUMA nodes, defer
3578 * hash allocation until vmalloc space is available.
3579 */
3580 if (hashdist)
3581 return;
3582
3583 dentry_hashtable =
3584 alloc_large_system_hash("Dentry cache",
b07ad996 3585 sizeof(struct hlist_bl_head),
1da177e4
LT
3586 dhash_entries,
3587 13,
3d375d78 3588 HASH_EARLY | HASH_ZERO,
1da177e4
LT
3589 &d_hash_shift,
3590 &d_hash_mask,
31fe62b9 3591 0,
1da177e4 3592 0);
1da177e4
LT
3593}
3594
74bf17cf 3595static void __init dcache_init(void)
1da177e4 3596{
3d375d78 3597 /*
1da177e4
LT
3598 * A constructor could be added for stable state like the lists,
3599 * but it is probably not worth it because of the cache nature
3d375d78 3600 * of the dcache.
1da177e4 3601 */
0a31bd5f 3602 dentry_cache = KMEM_CACHE(dentry,
5d097056 3603 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
1da177e4
LT
3604
3605 /* Hash may have been set up in dcache_init_early */
3606 if (!hashdist)
3607 return;
3608
3609 dentry_hashtable =
3610 alloc_large_system_hash("Dentry cache",
b07ad996 3611 sizeof(struct hlist_bl_head),
1da177e4
LT
3612 dhash_entries,
3613 13,
3d375d78 3614 HASH_ZERO,
1da177e4
LT
3615 &d_hash_shift,
3616 &d_hash_mask,
31fe62b9 3617 0,
1da177e4 3618 0);
1da177e4
LT
3619}
3620
3621/* SLAB cache for __getname() consumers */
e18b890b 3622struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3623EXPORT_SYMBOL(names_cachep);
1da177e4 3624
1da177e4
LT
3625EXPORT_SYMBOL(d_genocide);
3626
1da177e4
LT
3627void __init vfs_caches_init_early(void)
3628{
6916363f
SAS
3629 int i;
3630
3631 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3632 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3633
1da177e4
LT
3634 dcache_init_early();
3635 inode_init_early();
3636}
3637
4248b0da 3638void __init vfs_caches_init(void)
1da177e4 3639{
1da177e4 3640 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3641 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3642
74bf17cf
DC
3643 dcache_init();
3644 inode_init();
4248b0da
MG
3645 files_init();
3646 files_maxfiles_init();
74bf17cf 3647 mnt_init();
1da177e4
LT
3648 bdev_cache_init();
3649 chrdev_init();
3650}