]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
88f306b6
KS
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
a52633d8 30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
88f306b6
KS
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 42 *
5a505085 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 44 * ->tasklist_lock
6a46079c 45 * pte map lock
1da177e4
LT
46 */
47
48#include <linux/mm.h>
49#include <linux/pagemap.h>
50#include <linux/swap.h>
51#include <linux/swapops.h>
52#include <linux/slab.h>
53#include <linux/init.h>
5ad64688 54#include <linux/ksm.h>
1da177e4
LT
55#include <linux/rmap.h>
56#include <linux/rcupdate.h>
b95f1b31 57#include <linux/export.h>
8a9f3ccd 58#include <linux/memcontrol.h>
cddb8a5c 59#include <linux/mmu_notifier.h>
64cdd548 60#include <linux/migrate.h>
0fe6e20b 61#include <linux/hugetlb.h>
ef5d437f 62#include <linux/backing-dev.h>
33c3fc71 63#include <linux/page_idle.h>
1da177e4
LT
64
65#include <asm/tlbflush.h>
66
72b252ae
MG
67#include <trace/events/tlb.h>
68
b291f000
NP
69#include "internal.h"
70
fdd2e5f8 71static struct kmem_cache *anon_vma_cachep;
5beb4930 72static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
73
74static inline struct anon_vma *anon_vma_alloc(void)
75{
01d8b20d
PZ
76 struct anon_vma *anon_vma;
77
78 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
79 if (anon_vma) {
80 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
81 anon_vma->degree = 1; /* Reference for first vma */
82 anon_vma->parent = anon_vma;
01d8b20d
PZ
83 /*
84 * Initialise the anon_vma root to point to itself. If called
85 * from fork, the root will be reset to the parents anon_vma.
86 */
87 anon_vma->root = anon_vma;
88 }
89
90 return anon_vma;
fdd2e5f8
AB
91}
92
01d8b20d 93static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 94{
01d8b20d 95 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
96
97 /*
4fc3f1d6 98 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
99 * we can safely hold the lock without the anon_vma getting
100 * freed.
101 *
102 * Relies on the full mb implied by the atomic_dec_and_test() from
103 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 104 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 105 *
4fc3f1d6
IM
106 * page_lock_anon_vma_read() VS put_anon_vma()
107 * down_read_trylock() atomic_dec_and_test()
88c22088 108 * LOCK MB
4fc3f1d6 109 * atomic_read() rwsem_is_locked()
88c22088
PZ
110 *
111 * LOCK should suffice since the actual taking of the lock must
112 * happen _before_ what follows.
113 */
7f39dda9 114 might_sleep();
5a505085 115 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 116 anon_vma_lock_write(anon_vma);
08b52706 117 anon_vma_unlock_write(anon_vma);
88c22088
PZ
118 }
119
fdd2e5f8
AB
120 kmem_cache_free(anon_vma_cachep, anon_vma);
121}
1da177e4 122
dd34739c 123static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 124{
dd34739c 125 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
126}
127
e574b5fd 128static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
129{
130 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
131}
132
6583a843
KC
133static void anon_vma_chain_link(struct vm_area_struct *vma,
134 struct anon_vma_chain *avc,
135 struct anon_vma *anon_vma)
136{
137 avc->vma = vma;
138 avc->anon_vma = anon_vma;
139 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 140 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
141}
142
d9d332e0 143/**
d5a187da 144 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
145 * @vma: the memory region in question
146 *
147 * This makes sure the memory mapping described by 'vma' has
148 * an 'anon_vma' attached to it, so that we can associate the
149 * anonymous pages mapped into it with that anon_vma.
150 *
d5a187da
VB
151 * The common case will be that we already have one, which
152 * is handled inline by anon_vma_prepare(). But if
23a0790a 153 * not we either need to find an adjacent mapping that we
d9d332e0
LT
154 * can re-use the anon_vma from (very common when the only
155 * reason for splitting a vma has been mprotect()), or we
156 * allocate a new one.
157 *
158 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 159 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
160 * and that may actually touch the spinlock even in the newly
161 * allocated vma (it depends on RCU to make sure that the
162 * anon_vma isn't actually destroyed).
163 *
164 * As a result, we need to do proper anon_vma locking even
165 * for the new allocation. At the same time, we do not want
166 * to do any locking for the common case of already having
167 * an anon_vma.
168 *
169 * This must be called with the mmap_sem held for reading.
170 */
d5a187da 171int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 172{
d5a187da
VB
173 struct mm_struct *mm = vma->vm_mm;
174 struct anon_vma *anon_vma, *allocated;
5beb4930 175 struct anon_vma_chain *avc;
1da177e4
LT
176
177 might_sleep();
1da177e4 178
d5a187da
VB
179 avc = anon_vma_chain_alloc(GFP_KERNEL);
180 if (!avc)
181 goto out_enomem;
182
183 anon_vma = find_mergeable_anon_vma(vma);
184 allocated = NULL;
185 if (!anon_vma) {
186 anon_vma = anon_vma_alloc();
187 if (unlikely(!anon_vma))
188 goto out_enomem_free_avc;
189 allocated = anon_vma;
190 }
5beb4930 191
d5a187da
VB
192 anon_vma_lock_write(anon_vma);
193 /* page_table_lock to protect against threads */
194 spin_lock(&mm->page_table_lock);
195 if (likely(!vma->anon_vma)) {
196 vma->anon_vma = anon_vma;
197 anon_vma_chain_link(vma, avc, anon_vma);
198 /* vma reference or self-parent link for new root */
199 anon_vma->degree++;
d9d332e0 200 allocated = NULL;
d5a187da
VB
201 avc = NULL;
202 }
203 spin_unlock(&mm->page_table_lock);
204 anon_vma_unlock_write(anon_vma);
1da177e4 205
d5a187da
VB
206 if (unlikely(allocated))
207 put_anon_vma(allocated);
208 if (unlikely(avc))
209 anon_vma_chain_free(avc);
31f2b0eb 210
1da177e4 211 return 0;
5beb4930
RR
212
213 out_enomem_free_avc:
214 anon_vma_chain_free(avc);
215 out_enomem:
216 return -ENOMEM;
1da177e4
LT
217}
218
bb4aa396
LT
219/*
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222 * have the same vma.
223 *
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
226 */
227static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228{
229 struct anon_vma *new_root = anon_vma->root;
230 if (new_root != root) {
231 if (WARN_ON_ONCE(root))
5a505085 232 up_write(&root->rwsem);
bb4aa396 233 root = new_root;
5a505085 234 down_write(&root->rwsem);
bb4aa396
LT
235 }
236 return root;
237}
238
239static inline void unlock_anon_vma_root(struct anon_vma *root)
240{
241 if (root)
5a505085 242 up_write(&root->rwsem);
bb4aa396
LT
243}
244
5beb4930
RR
245/*
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
248 *
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
255 * page is mapped.
5beb4930
RR
256 */
257int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 258{
5beb4930 259 struct anon_vma_chain *avc, *pavc;
bb4aa396 260 struct anon_vma *root = NULL;
5beb4930 261
646d87b4 262 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
263 struct anon_vma *anon_vma;
264
dd34739c
LT
265 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 if (unlikely(!avc)) {
267 unlock_anon_vma_root(root);
268 root = NULL;
269 avc = anon_vma_chain_alloc(GFP_KERNEL);
270 if (!avc)
271 goto enomem_failure;
272 }
bb4aa396
LT
273 anon_vma = pavc->anon_vma;
274 root = lock_anon_vma_root(root, anon_vma);
275 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
276
277 /*
278 * Reuse existing anon_vma if its degree lower than two,
279 * that means it has no vma and only one anon_vma child.
280 *
281 * Do not chose parent anon_vma, otherwise first child
282 * will always reuse it. Root anon_vma is never reused:
283 * it has self-parent reference and at least one child.
284 */
285 if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 anon_vma->degree < 2)
287 dst->anon_vma = anon_vma;
5beb4930 288 }
7a3ef208
KK
289 if (dst->anon_vma)
290 dst->anon_vma->degree++;
bb4aa396 291 unlock_anon_vma_root(root);
5beb4930 292 return 0;
1da177e4 293
5beb4930 294 enomem_failure:
3fe89b3e
LY
295 /*
296 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 * decremented in unlink_anon_vmas().
298 * We can safely do this because callers of anon_vma_clone() don't care
299 * about dst->anon_vma if anon_vma_clone() failed.
300 */
301 dst->anon_vma = NULL;
5beb4930
RR
302 unlink_anon_vmas(dst);
303 return -ENOMEM;
1da177e4
LT
304}
305
5beb4930
RR
306/*
307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
308 * the corresponding VMA in the parent process is attached to.
309 * Returns 0 on success, non-zero on failure.
310 */
311int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 312{
5beb4930
RR
313 struct anon_vma_chain *avc;
314 struct anon_vma *anon_vma;
c4ea95d7 315 int error;
1da177e4 316
5beb4930
RR
317 /* Don't bother if the parent process has no anon_vma here. */
318 if (!pvma->anon_vma)
319 return 0;
320
7a3ef208
KK
321 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 vma->anon_vma = NULL;
323
5beb4930
RR
324 /*
325 * First, attach the new VMA to the parent VMA's anon_vmas,
326 * so rmap can find non-COWed pages in child processes.
327 */
c4ea95d7
DF
328 error = anon_vma_clone(vma, pvma);
329 if (error)
330 return error;
5beb4930 331
7a3ef208
KK
332 /* An existing anon_vma has been reused, all done then. */
333 if (vma->anon_vma)
334 return 0;
335
5beb4930
RR
336 /* Then add our own anon_vma. */
337 anon_vma = anon_vma_alloc();
338 if (!anon_vma)
339 goto out_error;
dd34739c 340 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
341 if (!avc)
342 goto out_error_free_anon_vma;
5c341ee1
RR
343
344 /*
345 * The root anon_vma's spinlock is the lock actually used when we
346 * lock any of the anon_vmas in this anon_vma tree.
347 */
348 anon_vma->root = pvma->anon_vma->root;
7a3ef208 349 anon_vma->parent = pvma->anon_vma;
76545066 350 /*
01d8b20d
PZ
351 * With refcounts, an anon_vma can stay around longer than the
352 * process it belongs to. The root anon_vma needs to be pinned until
353 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
354 */
355 get_anon_vma(anon_vma->root);
5beb4930
RR
356 /* Mark this anon_vma as the one where our new (COWed) pages go. */
357 vma->anon_vma = anon_vma;
4fc3f1d6 358 anon_vma_lock_write(anon_vma);
5c341ee1 359 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 360 anon_vma->parent->degree++;
08b52706 361 anon_vma_unlock_write(anon_vma);
5beb4930
RR
362
363 return 0;
364
365 out_error_free_anon_vma:
01d8b20d 366 put_anon_vma(anon_vma);
5beb4930 367 out_error:
4946d54c 368 unlink_anon_vmas(vma);
5beb4930 369 return -ENOMEM;
1da177e4
LT
370}
371
5beb4930
RR
372void unlink_anon_vmas(struct vm_area_struct *vma)
373{
374 struct anon_vma_chain *avc, *next;
eee2acba 375 struct anon_vma *root = NULL;
5beb4930 376
5c341ee1
RR
377 /*
378 * Unlink each anon_vma chained to the VMA. This list is ordered
379 * from newest to oldest, ensuring the root anon_vma gets freed last.
380 */
5beb4930 381 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
382 struct anon_vma *anon_vma = avc->anon_vma;
383
384 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 385 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
386
387 /*
388 * Leave empty anon_vmas on the list - we'll need
389 * to free them outside the lock.
390 */
7a3ef208
KK
391 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392 anon_vma->parent->degree--;
eee2acba 393 continue;
7a3ef208 394 }
eee2acba
PZ
395
396 list_del(&avc->same_vma);
397 anon_vma_chain_free(avc);
398 }
7a3ef208
KK
399 if (vma->anon_vma)
400 vma->anon_vma->degree--;
eee2acba
PZ
401 unlock_anon_vma_root(root);
402
403 /*
404 * Iterate the list once more, it now only contains empty and unlinked
405 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 406 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
407 */
408 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409 struct anon_vma *anon_vma = avc->anon_vma;
410
e4c5800a 411 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
412 put_anon_vma(anon_vma);
413
5beb4930
RR
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
417}
418
51cc5068 419static void anon_vma_ctor(void *data)
1da177e4 420{
a35afb83 421 struct anon_vma *anon_vma = data;
1da177e4 422
5a505085 423 init_rwsem(&anon_vma->rwsem);
83813267 424 atomic_set(&anon_vma->refcount, 0);
bf181b9f 425 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
426}
427
428void __init anon_vma_init(void)
429{
430 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5d097056
VD
431 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
432 anon_vma_ctor);
433 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
434 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
435}
436
437/*
6111e4ca
PZ
438 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
439 *
440 * Since there is no serialization what so ever against page_remove_rmap()
441 * the best this function can do is return a locked anon_vma that might
442 * have been relevant to this page.
443 *
444 * The page might have been remapped to a different anon_vma or the anon_vma
445 * returned may already be freed (and even reused).
446 *
bc658c96
PZ
447 * In case it was remapped to a different anon_vma, the new anon_vma will be a
448 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
449 * ensure that any anon_vma obtained from the page will still be valid for as
450 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
451 *
6111e4ca
PZ
452 * All users of this function must be very careful when walking the anon_vma
453 * chain and verify that the page in question is indeed mapped in it
454 * [ something equivalent to page_mapped_in_vma() ].
455 *
456 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
457 * that the anon_vma pointer from page->mapping is valid if there is a
458 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 459 */
746b18d4 460struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 461{
746b18d4 462 struct anon_vma *anon_vma = NULL;
1da177e4
LT
463 unsigned long anon_mapping;
464
465 rcu_read_lock();
4db0c3c2 466 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 467 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
468 goto out;
469 if (!page_mapped(page))
470 goto out;
471
472 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
473 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
474 anon_vma = NULL;
475 goto out;
476 }
f1819427
HD
477
478 /*
479 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
480 * freed. But if it has been unmapped, we have no security against the
481 * anon_vma structure being freed and reused (for another anon_vma:
482 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
483 * above cannot corrupt).
f1819427 484 */
746b18d4 485 if (!page_mapped(page)) {
7f39dda9 486 rcu_read_unlock();
746b18d4 487 put_anon_vma(anon_vma);
7f39dda9 488 return NULL;
746b18d4 489 }
1da177e4
LT
490out:
491 rcu_read_unlock();
746b18d4
PZ
492
493 return anon_vma;
494}
495
88c22088
PZ
496/*
497 * Similar to page_get_anon_vma() except it locks the anon_vma.
498 *
499 * Its a little more complex as it tries to keep the fast path to a single
500 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
501 * reference like with page_get_anon_vma() and then block on the mutex.
502 */
4fc3f1d6 503struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 504{
88c22088 505 struct anon_vma *anon_vma = NULL;
eee0f252 506 struct anon_vma *root_anon_vma;
88c22088 507 unsigned long anon_mapping;
746b18d4 508
88c22088 509 rcu_read_lock();
4db0c3c2 510 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
511 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
512 goto out;
513 if (!page_mapped(page))
514 goto out;
515
516 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 517 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 518 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 519 /*
eee0f252
HD
520 * If the page is still mapped, then this anon_vma is still
521 * its anon_vma, and holding the mutex ensures that it will
bc658c96 522 * not go away, see anon_vma_free().
88c22088 523 */
eee0f252 524 if (!page_mapped(page)) {
4fc3f1d6 525 up_read(&root_anon_vma->rwsem);
88c22088
PZ
526 anon_vma = NULL;
527 }
528 goto out;
529 }
746b18d4 530
88c22088
PZ
531 /* trylock failed, we got to sleep */
532 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
533 anon_vma = NULL;
534 goto out;
535 }
536
537 if (!page_mapped(page)) {
7f39dda9 538 rcu_read_unlock();
88c22088 539 put_anon_vma(anon_vma);
7f39dda9 540 return NULL;
88c22088
PZ
541 }
542
543 /* we pinned the anon_vma, its safe to sleep */
544 rcu_read_unlock();
4fc3f1d6 545 anon_vma_lock_read(anon_vma);
88c22088
PZ
546
547 if (atomic_dec_and_test(&anon_vma->refcount)) {
548 /*
549 * Oops, we held the last refcount, release the lock
550 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 551 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 552 */
4fc3f1d6 553 anon_vma_unlock_read(anon_vma);
88c22088
PZ
554 __put_anon_vma(anon_vma);
555 anon_vma = NULL;
556 }
557
558 return anon_vma;
559
560out:
561 rcu_read_unlock();
746b18d4 562 return anon_vma;
34bbd704
ON
563}
564
4fc3f1d6 565void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 566{
4fc3f1d6 567 anon_vma_unlock_read(anon_vma);
1da177e4
LT
568}
569
72b252ae 570#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
571/*
572 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
573 * important if a PTE was dirty when it was unmapped that it's flushed
574 * before any IO is initiated on the page to prevent lost writes. Similarly,
575 * it must be flushed before freeing to prevent data leakage.
576 */
577void try_to_unmap_flush(void)
578{
579 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
580 int cpu;
581
582 if (!tlb_ubc->flush_required)
583 return;
584
585 cpu = get_cpu();
586
858eaaa7
NA
587 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
588 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
589 local_flush_tlb();
590 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
72b252ae 591 }
858eaaa7
NA
592
593 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
594 flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
72b252ae
MG
595 cpumask_clear(&tlb_ubc->cpumask);
596 tlb_ubc->flush_required = false;
d950c947 597 tlb_ubc->writable = false;
72b252ae
MG
598 put_cpu();
599}
600
d950c947
MG
601/* Flush iff there are potentially writable TLB entries that can race with IO */
602void try_to_unmap_flush_dirty(void)
603{
604 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605
606 if (tlb_ubc->writable)
607 try_to_unmap_flush();
608}
609
c7ab0d2f 610static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
611{
612 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
613
614 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
615 tlb_ubc->flush_required = true;
d950c947
MG
616
617 /*
618 * If the PTE was dirty then it's best to assume it's writable. The
619 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
620 * before the page is queued for IO.
621 */
622 if (writable)
623 tlb_ubc->writable = true;
72b252ae
MG
624}
625
626/*
627 * Returns true if the TLB flush should be deferred to the end of a batch of
628 * unmap operations to reduce IPIs.
629 */
630static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
631{
632 bool should_defer = false;
633
634 if (!(flags & TTU_BATCH_FLUSH))
635 return false;
636
637 /* If remote CPUs need to be flushed then defer batch the flush */
638 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
639 should_defer = true;
640 put_cpu();
641
642 return should_defer;
643}
644#else
c7ab0d2f 645static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
646{
647}
648
649static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
650{
651 return false;
652}
653#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
654
1da177e4 655/*
bf89c8c8 656 * At what user virtual address is page expected in vma?
ab941e0f 657 * Caller should check the page is actually part of the vma.
1da177e4
LT
658 */
659unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
660{
86c2ad19 661 unsigned long address;
21d0d443 662 if (PageAnon(page)) {
4829b906
HD
663 struct anon_vma *page__anon_vma = page_anon_vma(page);
664 /*
665 * Note: swapoff's unuse_vma() is more efficient with this
666 * check, and needs it to match anon_vma when KSM is active.
667 */
668 if (!vma->anon_vma || !page__anon_vma ||
669 vma->anon_vma->root != page__anon_vma->root)
21d0d443 670 return -EFAULT;
27ba0644
KS
671 } else if (page->mapping) {
672 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
673 return -EFAULT;
674 } else
675 return -EFAULT;
86c2ad19
ML
676 address = __vma_address(page, vma);
677 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
678 return -EFAULT;
679 return address;
1da177e4
LT
680}
681
6219049a
BL
682pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
683{
684 pgd_t *pgd;
685 pud_t *pud;
686 pmd_t *pmd = NULL;
f72e7dcd 687 pmd_t pmde;
6219049a
BL
688
689 pgd = pgd_offset(mm, address);
690 if (!pgd_present(*pgd))
691 goto out;
692
693 pud = pud_offset(pgd, address);
694 if (!pud_present(*pud))
695 goto out;
696
697 pmd = pmd_offset(pud, address);
f72e7dcd 698 /*
8809aa2d 699 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
700 * without holding anon_vma lock for write. So when looking for a
701 * genuine pmde (in which to find pte), test present and !THP together.
702 */
e37c6982
CB
703 pmde = *pmd;
704 barrier();
f72e7dcd 705 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
706 pmd = NULL;
707out:
708 return pmd;
709}
710
8749cfea
VD
711struct page_referenced_arg {
712 int mapcount;
713 int referenced;
714 unsigned long vm_flags;
715 struct mem_cgroup *memcg;
716};
717/*
718 * arg: page_referenced_arg will be passed
719 */
720static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
721 unsigned long address, void *arg)
722{
8749cfea 723 struct page_referenced_arg *pra = arg;
8eaedede
KS
724 struct page_vma_mapped_walk pvmw = {
725 .page = page,
726 .vma = vma,
727 .address = address,
728 };
8749cfea
VD
729 int referenced = 0;
730
8eaedede
KS
731 while (page_vma_mapped_walk(&pvmw)) {
732 address = pvmw.address;
b20ce5e0 733
8eaedede
KS
734 if (vma->vm_flags & VM_LOCKED) {
735 page_vma_mapped_walk_done(&pvmw);
736 pra->vm_flags |= VM_LOCKED;
737 return SWAP_FAIL; /* To break the loop */
738 }
71e3aac0 739
8eaedede
KS
740 if (pvmw.pte) {
741 if (ptep_clear_flush_young_notify(vma, address,
742 pvmw.pte)) {
743 /*
744 * Don't treat a reference through
745 * a sequentially read mapping as such.
746 * If the page has been used in another mapping,
747 * we will catch it; if this other mapping is
748 * already gone, the unmap path will have set
749 * PG_referenced or activated the page.
750 */
751 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
752 referenced++;
753 }
754 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
755 if (pmdp_clear_flush_young_notify(vma, address,
756 pvmw.pmd))
8749cfea 757 referenced++;
8eaedede
KS
758 } else {
759 /* unexpected pmd-mapped page? */
760 WARN_ON_ONCE(1);
8749cfea 761 }
8eaedede
KS
762
763 pra->mapcount--;
b20ce5e0 764 }
b20ce5e0 765
33c3fc71
VD
766 if (referenced)
767 clear_page_idle(page);
768 if (test_and_clear_page_young(page))
769 referenced++;
770
9f32624b
JK
771 if (referenced) {
772 pra->referenced++;
773 pra->vm_flags |= vma->vm_flags;
1da177e4 774 }
34bbd704 775
9f32624b
JK
776 if (!pra->mapcount)
777 return SWAP_SUCCESS; /* To break the loop */
778
779 return SWAP_AGAIN;
1da177e4
LT
780}
781
9f32624b 782static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 783{
9f32624b
JK
784 struct page_referenced_arg *pra = arg;
785 struct mem_cgroup *memcg = pra->memcg;
1da177e4 786
9f32624b
JK
787 if (!mm_match_cgroup(vma->vm_mm, memcg))
788 return true;
1da177e4 789
9f32624b 790 return false;
1da177e4
LT
791}
792
793/**
794 * page_referenced - test if the page was referenced
795 * @page: the page to test
796 * @is_locked: caller holds lock on the page
72835c86 797 * @memcg: target memory cgroup
6fe6b7e3 798 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
799 *
800 * Quick test_and_clear_referenced for all mappings to a page,
801 * returns the number of ptes which referenced the page.
802 */
6fe6b7e3
WF
803int page_referenced(struct page *page,
804 int is_locked,
72835c86 805 struct mem_cgroup *memcg,
6fe6b7e3 806 unsigned long *vm_flags)
1da177e4 807{
9f32624b 808 int ret;
5ad64688 809 int we_locked = 0;
9f32624b 810 struct page_referenced_arg pra = {
b20ce5e0 811 .mapcount = total_mapcount(page),
9f32624b
JK
812 .memcg = memcg,
813 };
814 struct rmap_walk_control rwc = {
815 .rmap_one = page_referenced_one,
816 .arg = (void *)&pra,
817 .anon_lock = page_lock_anon_vma_read,
818 };
1da177e4 819
6fe6b7e3 820 *vm_flags = 0;
9f32624b
JK
821 if (!page_mapped(page))
822 return 0;
823
824 if (!page_rmapping(page))
825 return 0;
826
827 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
828 we_locked = trylock_page(page);
829 if (!we_locked)
830 return 1;
1da177e4 831 }
9f32624b
JK
832
833 /*
834 * If we are reclaiming on behalf of a cgroup, skip
835 * counting on behalf of references from different
836 * cgroups
837 */
838 if (memcg) {
839 rwc.invalid_vma = invalid_page_referenced_vma;
840 }
841
842 ret = rmap_walk(page, &rwc);
843 *vm_flags = pra.vm_flags;
844
845 if (we_locked)
846 unlock_page(page);
847
848 return pra.referenced;
1da177e4
LT
849}
850
1cb1729b 851static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 852 unsigned long address, void *arg)
d08b3851 853{
f27176cf
KS
854 struct page_vma_mapped_walk pvmw = {
855 .page = page,
856 .vma = vma,
857 .address = address,
858 .flags = PVMW_SYNC,
859 };
9853a407 860 int *cleaned = arg;
d08b3851 861
f27176cf
KS
862 while (page_vma_mapped_walk(&pvmw)) {
863 int ret = 0;
864 address = pvmw.address;
865 if (pvmw.pte) {
866 pte_t entry;
867 pte_t *pte = pvmw.pte;
868
869 if (!pte_dirty(*pte) && !pte_write(*pte))
870 continue;
871
872 flush_cache_page(vma, address, pte_pfn(*pte));
873 entry = ptep_clear_flush(vma, address, pte);
874 entry = pte_wrprotect(entry);
875 entry = pte_mkclean(entry);
876 set_pte_at(vma->vm_mm, address, pte, entry);
877 ret = 1;
878 } else {
879#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
880 pmd_t *pmd = pvmw.pmd;
881 pmd_t entry;
882
883 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
884 continue;
885
886 flush_cache_page(vma, address, page_to_pfn(page));
887 entry = pmdp_huge_clear_flush(vma, address, pmd);
888 entry = pmd_wrprotect(entry);
889 entry = pmd_mkclean(entry);
890 set_pmd_at(vma->vm_mm, address, pmd, entry);
891 ret = 1;
892#else
893 /* unexpected pmd-mapped page? */
894 WARN_ON_ONCE(1);
895#endif
896 }
d08b3851 897
f27176cf
KS
898 if (ret) {
899 mmu_notifier_invalidate_page(vma->vm_mm, address);
900 (*cleaned)++;
901 }
c2fda5fe 902 }
d08b3851 903
9853a407 904 return SWAP_AGAIN;
d08b3851
PZ
905}
906
9853a407 907static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 908{
9853a407 909 if (vma->vm_flags & VM_SHARED)
871beb8c 910 return false;
d08b3851 911
871beb8c 912 return true;
d08b3851
PZ
913}
914
915int page_mkclean(struct page *page)
916{
9853a407
JK
917 int cleaned = 0;
918 struct address_space *mapping;
919 struct rmap_walk_control rwc = {
920 .arg = (void *)&cleaned,
921 .rmap_one = page_mkclean_one,
922 .invalid_vma = invalid_mkclean_vma,
923 };
d08b3851
PZ
924
925 BUG_ON(!PageLocked(page));
926
9853a407
JK
927 if (!page_mapped(page))
928 return 0;
929
930 mapping = page_mapping(page);
931 if (!mapping)
932 return 0;
933
934 rmap_walk(page, &rwc);
d08b3851 935
9853a407 936 return cleaned;
d08b3851 937}
60b59bea 938EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 939
c44b6743
RR
940/**
941 * page_move_anon_rmap - move a page to our anon_vma
942 * @page: the page to move to our anon_vma
943 * @vma: the vma the page belongs to
c44b6743
RR
944 *
945 * When a page belongs exclusively to one process after a COW event,
946 * that page can be moved into the anon_vma that belongs to just that
947 * process, so the rmap code will not search the parent or sibling
948 * processes.
949 */
5a49973d 950void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
951{
952 struct anon_vma *anon_vma = vma->anon_vma;
953
5a49973d
HD
954 page = compound_head(page);
955
309381fe 956 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 957 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
958
959 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
960 /*
961 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
962 * simultaneously, so a concurrent reader (eg page_referenced()'s
963 * PageAnon()) will not see one without the other.
964 */
965 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
966}
967
9617d95e 968/**
4e1c1975
AK
969 * __page_set_anon_rmap - set up new anonymous rmap
970 * @page: Page to add to rmap
971 * @vma: VM area to add page to.
972 * @address: User virtual address of the mapping
e8a03feb 973 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
974 */
975static void __page_set_anon_rmap(struct page *page,
e8a03feb 976 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 977{
e8a03feb 978 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 979
e8a03feb 980 BUG_ON(!anon_vma);
ea90002b 981
4e1c1975
AK
982 if (PageAnon(page))
983 return;
984
ea90002b 985 /*
e8a03feb
RR
986 * If the page isn't exclusively mapped into this vma,
987 * we must use the _oldest_ possible anon_vma for the
988 * page mapping!
ea90002b 989 */
4e1c1975 990 if (!exclusive)
288468c3 991 anon_vma = anon_vma->root;
9617d95e 992
9617d95e
NP
993 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
994 page->mapping = (struct address_space *) anon_vma;
9617d95e 995 page->index = linear_page_index(vma, address);
9617d95e
NP
996}
997
c97a9e10 998/**
43d8eac4 999 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1000 * @page: the page to add the mapping to
1001 * @vma: the vm area in which the mapping is added
1002 * @address: the user virtual address mapped
1003 */
1004static void __page_check_anon_rmap(struct page *page,
1005 struct vm_area_struct *vma, unsigned long address)
1006{
1007#ifdef CONFIG_DEBUG_VM
1008 /*
1009 * The page's anon-rmap details (mapping and index) are guaranteed to
1010 * be set up correctly at this point.
1011 *
1012 * We have exclusion against page_add_anon_rmap because the caller
1013 * always holds the page locked, except if called from page_dup_rmap,
1014 * in which case the page is already known to be setup.
1015 *
1016 * We have exclusion against page_add_new_anon_rmap because those pages
1017 * are initially only visible via the pagetables, and the pte is locked
1018 * over the call to page_add_new_anon_rmap.
1019 */
44ab57a0 1020 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
53f9263b 1021 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
c97a9e10
NP
1022#endif
1023}
1024
1da177e4
LT
1025/**
1026 * page_add_anon_rmap - add pte mapping to an anonymous page
1027 * @page: the page to add the mapping to
1028 * @vma: the vm area in which the mapping is added
1029 * @address: the user virtual address mapped
d281ee61 1030 * @compound: charge the page as compound or small page
1da177e4 1031 *
5ad64688 1032 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1033 * the anon_vma case: to serialize mapping,index checking after setting,
1034 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1035 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1036 */
1037void page_add_anon_rmap(struct page *page,
d281ee61 1038 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1039{
d281ee61 1040 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1041}
1042
1043/*
1044 * Special version of the above for do_swap_page, which often runs
1045 * into pages that are exclusively owned by the current process.
1046 * Everybody else should continue to use page_add_anon_rmap above.
1047 */
1048void do_page_add_anon_rmap(struct page *page,
d281ee61 1049 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1050{
53f9263b
KS
1051 bool compound = flags & RMAP_COMPOUND;
1052 bool first;
1053
e9b61f19
KS
1054 if (compound) {
1055 atomic_t *mapcount;
53f9263b 1056 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1057 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1058 mapcount = compound_mapcount_ptr(page);
1059 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1060 } else {
1061 first = atomic_inc_and_test(&page->_mapcount);
1062 }
1063
79134171 1064 if (first) {
d281ee61 1065 int nr = compound ? hpage_nr_pages(page) : 1;
bea04b07
JZ
1066 /*
1067 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1068 * these counters are not modified in interrupt context, and
1069 * pte lock(a spinlock) is held, which implies preemption
1070 * disabled.
1071 */
65c45377 1072 if (compound)
11fb9989 1073 __inc_node_page_state(page, NR_ANON_THPS);
4b9d0fab 1074 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
79134171 1075 }
5ad64688
HD
1076 if (unlikely(PageKsm(page)))
1077 return;
1078
309381fe 1079 VM_BUG_ON_PAGE(!PageLocked(page), page);
53f9263b 1080
5dbe0af4 1081 /* address might be in next vma when migration races vma_adjust */
5ad64688 1082 if (first)
d281ee61
KS
1083 __page_set_anon_rmap(page, vma, address,
1084 flags & RMAP_EXCLUSIVE);
69029cd5 1085 else
c97a9e10 1086 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1087}
1088
43d8eac4 1089/**
9617d95e
NP
1090 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1091 * @page: the page to add the mapping to
1092 * @vma: the vm area in which the mapping is added
1093 * @address: the user virtual address mapped
d281ee61 1094 * @compound: charge the page as compound or small page
9617d95e
NP
1095 *
1096 * Same as page_add_anon_rmap but must only be called on *new* pages.
1097 * This means the inc-and-test can be bypassed.
c97a9e10 1098 * Page does not have to be locked.
9617d95e
NP
1099 */
1100void page_add_new_anon_rmap(struct page *page,
d281ee61 1101 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1102{
d281ee61
KS
1103 int nr = compound ? hpage_nr_pages(page) : 1;
1104
81d1b09c 1105 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1106 __SetPageSwapBacked(page);
d281ee61
KS
1107 if (compound) {
1108 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1109 /* increment count (starts at -1) */
1110 atomic_set(compound_mapcount_ptr(page), 0);
11fb9989 1111 __inc_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1112 } else {
1113 /* Anon THP always mapped first with PMD */
1114 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1115 /* increment count (starts at -1) */
1116 atomic_set(&page->_mapcount, 0);
d281ee61 1117 }
4b9d0fab 1118 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
e8a03feb 1119 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1120}
1121
1da177e4
LT
1122/**
1123 * page_add_file_rmap - add pte mapping to a file page
1124 * @page: the page to add the mapping to
1125 *
b8072f09 1126 * The caller needs to hold the pte lock.
1da177e4 1127 */
dd78fedd 1128void page_add_file_rmap(struct page *page, bool compound)
1da177e4 1129{
dd78fedd
KS
1130 int i, nr = 1;
1131
1132 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1133 lock_page_memcg(page);
dd78fedd
KS
1134 if (compound && PageTransHuge(page)) {
1135 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1136 if (atomic_inc_and_test(&page[i]._mapcount))
1137 nr++;
1138 }
1139 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1140 goto out;
65c45377 1141 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
11fb9989 1142 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
dd78fedd 1143 } else {
c8efc390
KS
1144 if (PageTransCompound(page) && page_mapping(page)) {
1145 VM_WARN_ON_ONCE(!PageLocked(page));
1146
9a73f61b
KS
1147 SetPageDoubleMap(compound_head(page));
1148 if (PageMlocked(page))
1149 clear_page_mlock(compound_head(page));
1150 }
dd78fedd
KS
1151 if (!atomic_inc_and_test(&page->_mapcount))
1152 goto out;
d69b042f 1153 }
50658e2e 1154 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
dd78fedd
KS
1155 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1156out:
62cccb8c 1157 unlock_page_memcg(page);
1da177e4
LT
1158}
1159
dd78fedd 1160static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1161{
dd78fedd
KS
1162 int i, nr = 1;
1163
57dea93a 1164 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
62cccb8c 1165 lock_page_memcg(page);
8186eb6a 1166
53f9263b
KS
1167 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1168 if (unlikely(PageHuge(page))) {
1169 /* hugetlb pages are always mapped with pmds */
1170 atomic_dec(compound_mapcount_ptr(page));
8186eb6a 1171 goto out;
53f9263b 1172 }
8186eb6a 1173
53f9263b 1174 /* page still mapped by someone else? */
dd78fedd
KS
1175 if (compound && PageTransHuge(page)) {
1176 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1177 if (atomic_add_negative(-1, &page[i]._mapcount))
1178 nr++;
1179 }
1180 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1181 goto out;
65c45377 1182 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
11fb9989 1183 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
dd78fedd
KS
1184 } else {
1185 if (!atomic_add_negative(-1, &page->_mapcount))
1186 goto out;
1187 }
8186eb6a
JW
1188
1189 /*
50658e2e 1190 * We use the irq-unsafe __{inc|mod}_zone_page_state because
8186eb6a
JW
1191 * these counters are not modified in interrupt context, and
1192 * pte lock(a spinlock) is held, which implies preemption disabled.
1193 */
50658e2e 1194 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
62cccb8c 1195 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
8186eb6a
JW
1196
1197 if (unlikely(PageMlocked(page)))
1198 clear_page_mlock(page);
1199out:
62cccb8c 1200 unlock_page_memcg(page);
8186eb6a
JW
1201}
1202
53f9263b
KS
1203static void page_remove_anon_compound_rmap(struct page *page)
1204{
1205 int i, nr;
1206
1207 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1208 return;
1209
1210 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1211 if (unlikely(PageHuge(page)))
1212 return;
1213
1214 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1215 return;
1216
11fb9989 1217 __dec_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1218
1219 if (TestClearPageDoubleMap(page)) {
1220 /*
1221 * Subpages can be mapped with PTEs too. Check how many of
1222 * themi are still mapped.
1223 */
1224 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1225 if (atomic_add_negative(-1, &page[i]._mapcount))
1226 nr++;
1227 }
1228 } else {
1229 nr = HPAGE_PMD_NR;
1230 }
1231
e90309c9
KS
1232 if (unlikely(PageMlocked(page)))
1233 clear_page_mlock(page);
1234
9a982250 1235 if (nr) {
4b9d0fab 1236 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
9a982250
KS
1237 deferred_split_huge_page(page);
1238 }
53f9263b
KS
1239}
1240
1da177e4
LT
1241/**
1242 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1243 * @page: page to remove mapping from
1244 * @compound: uncharge the page as compound or small page
1da177e4 1245 *
b8072f09 1246 * The caller needs to hold the pte lock.
1da177e4 1247 */
d281ee61 1248void page_remove_rmap(struct page *page, bool compound)
1da177e4 1249{
dd78fedd
KS
1250 if (!PageAnon(page))
1251 return page_remove_file_rmap(page, compound);
89c06bd5 1252
53f9263b
KS
1253 if (compound)
1254 return page_remove_anon_compound_rmap(page);
1255
b904dcfe
KM
1256 /* page still mapped by someone else? */
1257 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1258 return;
1259
0fe6e20b 1260 /*
bea04b07
JZ
1261 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1262 * these counters are not modified in interrupt context, and
bea04b07 1263 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1264 */
4b9d0fab 1265 __dec_node_page_state(page, NR_ANON_MAPPED);
8186eb6a 1266
e6c509f8
HD
1267 if (unlikely(PageMlocked(page)))
1268 clear_page_mlock(page);
8186eb6a 1269
9a982250
KS
1270 if (PageTransCompound(page))
1271 deferred_split_huge_page(compound_head(page));
1272
b904dcfe
KM
1273 /*
1274 * It would be tidy to reset the PageAnon mapping here,
1275 * but that might overwrite a racing page_add_anon_rmap
1276 * which increments mapcount after us but sets mapping
1277 * before us: so leave the reset to free_hot_cold_page,
1278 * and remember that it's only reliable while mapped.
1279 * Leaving it set also helps swapoff to reinstate ptes
1280 * faster for those pages still in swapcache.
1281 */
1da177e4
LT
1282}
1283
854e9ed0
MK
1284struct rmap_private {
1285 enum ttu_flags flags;
1286 int lazyfreed;
1287};
1288
1da177e4 1289/*
52629506 1290 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1291 */
ac769501 1292static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1293 unsigned long address, void *arg)
1da177e4
LT
1294{
1295 struct mm_struct *mm = vma->vm_mm;
c7ab0d2f
KS
1296 struct page_vma_mapped_walk pvmw = {
1297 .page = page,
1298 .vma = vma,
1299 .address = address,
1300 };
1da177e4 1301 pte_t pteval;
c7ab0d2f 1302 struct page *subpage;
1da177e4 1303 int ret = SWAP_AGAIN;
854e9ed0
MK
1304 struct rmap_private *rp = arg;
1305 enum ttu_flags flags = rp->flags;
1da177e4 1306
b87537d9
HD
1307 /* munlock has nothing to gain from examining un-locked vmas */
1308 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
c7ab0d2f 1309 return SWAP_AGAIN;
b87537d9 1310
fec89c10
KS
1311 if (flags & TTU_SPLIT_HUGE_PMD) {
1312 split_huge_pmd_address(vma, address,
1313 flags & TTU_MIGRATION, page);
fec89c10
KS
1314 }
1315
c7ab0d2f
KS
1316 while (page_vma_mapped_walk(&pvmw)) {
1317 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1318 address = pvmw.address;
1da177e4 1319
c7ab0d2f
KS
1320 /* Unexpected PMD-mapped THP? */
1321 VM_BUG_ON_PAGE(!pvmw.pte, page);
1322
1323 /*
1324 * If the page is mlock()d, we cannot swap it out.
1325 * If it's recently referenced (perhaps page_referenced
1326 * skipped over this mm) then we should reactivate it.
1327 */
1328 if (!(flags & TTU_IGNORE_MLOCK)) {
1329 if (vma->vm_flags & VM_LOCKED) {
1330 /* PTE-mapped THP are never mlocked */
1331 if (!PageTransCompound(page)) {
1332 /*
1333 * Holding pte lock, we do *not* need
1334 * mmap_sem here
1335 */
1336 mlock_vma_page(page);
1337 }
1338 ret = SWAP_MLOCK;
1339 page_vma_mapped_walk_done(&pvmw);
1340 break;
9a73f61b 1341 }
c7ab0d2f
KS
1342 if (flags & TTU_MUNLOCK)
1343 continue;
b87537d9 1344 }
c7ab0d2f
KS
1345
1346 if (!(flags & TTU_IGNORE_ACCESS)) {
1347 if (ptep_clear_flush_young_notify(vma, address,
1348 pvmw.pte)) {
1349 ret = SWAP_FAIL;
1350 page_vma_mapped_walk_done(&pvmw);
1351 break;
1352 }
b291f000 1353 }
1da177e4 1354
c7ab0d2f
KS
1355 /* Nuke the page table entry. */
1356 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1357 if (should_defer_flush(mm, flags)) {
1358 /*
1359 * We clear the PTE but do not flush so potentially
1360 * a remote CPU could still be writing to the page.
1361 * If the entry was previously clean then the
1362 * architecture must guarantee that a clear->dirty
1363 * transition on a cached TLB entry is written through
1364 * and traps if the PTE is unmapped.
1365 */
1366 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1367
1368 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1369 } else {
1370 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1371 }
72b252ae 1372
c7ab0d2f
KS
1373 /* Move the dirty bit to the page. Now the pte is gone. */
1374 if (pte_dirty(pteval))
1375 set_page_dirty(page);
1da177e4 1376
c7ab0d2f
KS
1377 /* Update high watermark before we lower rss */
1378 update_hiwater_rss(mm);
1da177e4 1379
c7ab0d2f
KS
1380 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1381 if (PageHuge(page)) {
1382 int nr = 1 << compound_order(page);
1383 hugetlb_count_sub(nr, mm);
1384 } else {
1385 dec_mm_counter(mm, mm_counter(page));
1386 }
365e9c87 1387
c7ab0d2f
KS
1388 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1389 set_pte_at(mm, address, pvmw.pte, pteval);
1390 } else if (pte_unused(pteval)) {
1391 /*
1392 * The guest indicated that the page content is of no
1393 * interest anymore. Simply discard the pte, vmscan
1394 * will take care of the rest.
1395 */
eca56ff9 1396 dec_mm_counter(mm, mm_counter(page));
c7ab0d2f
KS
1397 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1398 (flags & TTU_MIGRATION)) {
1399 swp_entry_t entry;
1400 pte_t swp_pte;
1401 /*
1402 * Store the pfn of the page in a special migration
1403 * pte. do_swap_page() will wait until the migration
1404 * pte is removed and then restart fault handling.
1405 */
1406 entry = make_migration_entry(subpage,
1407 pte_write(pteval));
1408 swp_pte = swp_entry_to_pte(entry);
1409 if (pte_soft_dirty(pteval))
1410 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1411 set_pte_at(mm, address, pvmw.pte, swp_pte);
1412 } else if (PageAnon(page)) {
1413 swp_entry_t entry = { .val = page_private(subpage) };
1414 pte_t swp_pte;
1415 /*
1416 * Store the swap location in the pte.
1417 * See handle_pte_fault() ...
1418 */
1419 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1420
1421 if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1422 /* It's a freeable page by MADV_FREE */
1423 dec_mm_counter(mm, MM_ANONPAGES);
1424 rp->lazyfreed++;
1425 goto discard;
1426 }
854e9ed0 1427
c7ab0d2f
KS
1428 if (swap_duplicate(entry) < 0) {
1429 set_pte_at(mm, address, pvmw.pte, pteval);
1430 ret = SWAP_FAIL;
1431 page_vma_mapped_walk_done(&pvmw);
1432 break;
1433 }
1434 if (list_empty(&mm->mmlist)) {
1435 spin_lock(&mmlist_lock);
1436 if (list_empty(&mm->mmlist))
1437 list_add(&mm->mmlist, &init_mm.mmlist);
1438 spin_unlock(&mmlist_lock);
1439 }
854e9ed0 1440 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1441 inc_mm_counter(mm, MM_SWAPENTS);
1442 swp_pte = swp_entry_to_pte(entry);
1443 if (pte_soft_dirty(pteval))
1444 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1445 set_pte_at(mm, address, pvmw.pte, swp_pte);
1446 } else
1447 dec_mm_counter(mm, mm_counter_file(page));
854e9ed0 1448discard:
c7ab0d2f
KS
1449 page_remove_rmap(subpage, PageHuge(page));
1450 put_page(page);
2ec74c3e 1451 mmu_notifier_invalidate_page(mm, address);
c7ab0d2f 1452 }
caed0f48 1453 return ret;
1da177e4
LT
1454}
1455
71e3aac0 1456bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1457{
1458 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1459
1460 if (!maybe_stack)
1461 return false;
1462
1463 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1464 VM_STACK_INCOMPLETE_SETUP)
1465 return true;
1466
1467 return false;
1468}
1469
52629506
JK
1470static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1471{
1472 return is_vma_temporary_stack(vma);
1473}
1474
2a52bcbc 1475static int page_mapcount_is_zero(struct page *page)
52629506 1476{
c7ab0d2f 1477 return !total_mapcount(page);
2a52bcbc 1478}
52629506 1479
1da177e4
LT
1480/**
1481 * try_to_unmap - try to remove all page table mappings to a page
1482 * @page: the page to get unmapped
14fa31b8 1483 * @flags: action and flags
1da177e4
LT
1484 *
1485 * Tries to remove all the page table entries which are mapping this
1486 * page, used in the pageout path. Caller must hold the page lock.
1487 * Return values are:
1488 *
1489 * SWAP_SUCCESS - we succeeded in removing all mappings
1490 * SWAP_AGAIN - we missed a mapping, try again later
1491 * SWAP_FAIL - the page is unswappable
b291f000 1492 * SWAP_MLOCK - page is mlocked.
1da177e4 1493 */
14fa31b8 1494int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1495{
1496 int ret;
854e9ed0
MK
1497 struct rmap_private rp = {
1498 .flags = flags,
1499 .lazyfreed = 0,
1500 };
1501
52629506
JK
1502 struct rmap_walk_control rwc = {
1503 .rmap_one = try_to_unmap_one,
854e9ed0 1504 .arg = &rp,
2a52bcbc 1505 .done = page_mapcount_is_zero,
52629506
JK
1506 .anon_lock = page_lock_anon_vma_read,
1507 };
1da177e4 1508
52629506
JK
1509 /*
1510 * During exec, a temporary VMA is setup and later moved.
1511 * The VMA is moved under the anon_vma lock but not the
1512 * page tables leading to a race where migration cannot
1513 * find the migration ptes. Rather than increasing the
1514 * locking requirements of exec(), migration skips
1515 * temporary VMAs until after exec() completes.
1516 */
daa5ba76 1517 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1518 rwc.invalid_vma = invalid_migration_vma;
1519
2a52bcbc
KS
1520 if (flags & TTU_RMAP_LOCKED)
1521 ret = rmap_walk_locked(page, &rwc);
1522 else
1523 ret = rmap_walk(page, &rwc);
52629506 1524
2a52bcbc 1525 if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1da177e4 1526 ret = SWAP_SUCCESS;
854e9ed0
MK
1527 if (rp.lazyfreed && !PageDirty(page))
1528 ret = SWAP_LZFREE;
1529 }
1da177e4
LT
1530 return ret;
1531}
81b4082d 1532
2a52bcbc
KS
1533static int page_not_mapped(struct page *page)
1534{
1535 return !page_mapped(page);
1536};
1537
b291f000
NP
1538/**
1539 * try_to_munlock - try to munlock a page
1540 * @page: the page to be munlocked
1541 *
1542 * Called from munlock code. Checks all of the VMAs mapping the page
1543 * to make sure nobody else has this page mlocked. The page will be
1544 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1545 *
1546 * Return values are:
1547 *
53f79acb 1548 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1549 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1550 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1551 * SWAP_MLOCK - page is now mlocked.
1552 */
1553int try_to_munlock(struct page *page)
1554{
e8351ac9 1555 int ret;
854e9ed0
MK
1556 struct rmap_private rp = {
1557 .flags = TTU_MUNLOCK,
1558 .lazyfreed = 0,
1559 };
1560
e8351ac9
JK
1561 struct rmap_walk_control rwc = {
1562 .rmap_one = try_to_unmap_one,
854e9ed0 1563 .arg = &rp,
e8351ac9 1564 .done = page_not_mapped,
e8351ac9
JK
1565 .anon_lock = page_lock_anon_vma_read,
1566
1567 };
1568
309381fe 1569 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1570
e8351ac9
JK
1571 ret = rmap_walk(page, &rwc);
1572 return ret;
b291f000 1573}
e9995ef9 1574
01d8b20d 1575void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1576{
01d8b20d 1577 struct anon_vma *root = anon_vma->root;
76545066 1578
624483f3 1579 anon_vma_free(anon_vma);
01d8b20d
PZ
1580 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1581 anon_vma_free(root);
76545066 1582}
76545066 1583
0dd1c7bb
JK
1584static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1585 struct rmap_walk_control *rwc)
faecd8dd
JK
1586{
1587 struct anon_vma *anon_vma;
1588
0dd1c7bb
JK
1589 if (rwc->anon_lock)
1590 return rwc->anon_lock(page);
1591
faecd8dd
JK
1592 /*
1593 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1594 * because that depends on page_mapped(); but not all its usages
1595 * are holding mmap_sem. Users without mmap_sem are required to
1596 * take a reference count to prevent the anon_vma disappearing
1597 */
1598 anon_vma = page_anon_vma(page);
1599 if (!anon_vma)
1600 return NULL;
1601
1602 anon_vma_lock_read(anon_vma);
1603 return anon_vma;
1604}
1605
e9995ef9 1606/*
e8351ac9
JK
1607 * rmap_walk_anon - do something to anonymous page using the object-based
1608 * rmap method
1609 * @page: the page to be handled
1610 * @rwc: control variable according to each walk type
1611 *
1612 * Find all the mappings of a page using the mapping pointer and the vma chains
1613 * contained in the anon_vma struct it points to.
1614 *
1615 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1616 * where the page was found will be held for write. So, we won't recheck
1617 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1618 * LOCKED.
e9995ef9 1619 */
b9773199
KS
1620static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1621 bool locked)
e9995ef9
HD
1622{
1623 struct anon_vma *anon_vma;
a8fa41ad 1624 pgoff_t pgoff_start, pgoff_end;
5beb4930 1625 struct anon_vma_chain *avc;
e9995ef9
HD
1626 int ret = SWAP_AGAIN;
1627
b9773199
KS
1628 if (locked) {
1629 anon_vma = page_anon_vma(page);
1630 /* anon_vma disappear under us? */
1631 VM_BUG_ON_PAGE(!anon_vma, page);
1632 } else {
1633 anon_vma = rmap_walk_anon_lock(page, rwc);
1634 }
e9995ef9
HD
1635 if (!anon_vma)
1636 return ret;
faecd8dd 1637
a8fa41ad
KS
1638 pgoff_start = page_to_pgoff(page);
1639 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1640 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1641 pgoff_start, pgoff_end) {
5beb4930 1642 struct vm_area_struct *vma = avc->vma;
e9995ef9 1643 unsigned long address = vma_address(page, vma);
0dd1c7bb 1644
ad12695f
AA
1645 cond_resched();
1646
0dd1c7bb
JK
1647 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1648 continue;
1649
051ac83a 1650 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1651 if (ret != SWAP_AGAIN)
1652 break;
0dd1c7bb
JK
1653 if (rwc->done && rwc->done(page))
1654 break;
e9995ef9 1655 }
b9773199
KS
1656
1657 if (!locked)
1658 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1659 return ret;
1660}
1661
e8351ac9
JK
1662/*
1663 * rmap_walk_file - do something to file page using the object-based rmap method
1664 * @page: the page to be handled
1665 * @rwc: control variable according to each walk type
1666 *
1667 * Find all the mappings of a page using the mapping pointer and the vma chains
1668 * contained in the address_space struct it points to.
1669 *
1670 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1671 * where the page was found will be held for write. So, we won't recheck
1672 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1673 * LOCKED.
1674 */
b9773199
KS
1675static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1676 bool locked)
e9995ef9 1677{
b9773199 1678 struct address_space *mapping = page_mapping(page);
a8fa41ad 1679 pgoff_t pgoff_start, pgoff_end;
e9995ef9 1680 struct vm_area_struct *vma;
e9995ef9
HD
1681 int ret = SWAP_AGAIN;
1682
9f32624b
JK
1683 /*
1684 * The page lock not only makes sure that page->mapping cannot
1685 * suddenly be NULLified by truncation, it makes sure that the
1686 * structure at mapping cannot be freed and reused yet,
c8c06efa 1687 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1688 */
81d1b09c 1689 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1690
e9995ef9
HD
1691 if (!mapping)
1692 return ret;
3dec0ba0 1693
a8fa41ad
KS
1694 pgoff_start = page_to_pgoff(page);
1695 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
b9773199
KS
1696 if (!locked)
1697 i_mmap_lock_read(mapping);
a8fa41ad
KS
1698 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1699 pgoff_start, pgoff_end) {
e9995ef9 1700 unsigned long address = vma_address(page, vma);
0dd1c7bb 1701
ad12695f
AA
1702 cond_resched();
1703
0dd1c7bb
JK
1704 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1705 continue;
1706
051ac83a 1707 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1708 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1709 goto done;
1710 if (rwc->done && rwc->done(page))
1711 goto done;
e9995ef9 1712 }
0dd1c7bb 1713
0dd1c7bb 1714done:
b9773199
KS
1715 if (!locked)
1716 i_mmap_unlock_read(mapping);
e9995ef9
HD
1717 return ret;
1718}
1719
051ac83a 1720int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1721{
e9995ef9 1722 if (unlikely(PageKsm(page)))
051ac83a 1723 return rmap_walk_ksm(page, rwc);
e9995ef9 1724 else if (PageAnon(page))
b9773199
KS
1725 return rmap_walk_anon(page, rwc, false);
1726 else
1727 return rmap_walk_file(page, rwc, false);
1728}
1729
1730/* Like rmap_walk, but caller holds relevant rmap lock */
1731int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1732{
1733 /* no ksm support for now */
1734 VM_BUG_ON_PAGE(PageKsm(page), page);
1735 if (PageAnon(page))
1736 return rmap_walk_anon(page, rwc, true);
e9995ef9 1737 else
b9773199 1738 return rmap_walk_file(page, rwc, true);
e9995ef9 1739}
0fe6e20b 1740
e3390f67 1741#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1742/*
1743 * The following three functions are for anonymous (private mapped) hugepages.
1744 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1745 * and no lru code, because we handle hugepages differently from common pages.
1746 */
1747static void __hugepage_set_anon_rmap(struct page *page,
1748 struct vm_area_struct *vma, unsigned long address, int exclusive)
1749{
1750 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1751
0fe6e20b 1752 BUG_ON(!anon_vma);
433abed6
NH
1753
1754 if (PageAnon(page))
1755 return;
1756 if (!exclusive)
1757 anon_vma = anon_vma->root;
1758
0fe6e20b
NH
1759 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1760 page->mapping = (struct address_space *) anon_vma;
1761 page->index = linear_page_index(vma, address);
1762}
1763
1764void hugepage_add_anon_rmap(struct page *page,
1765 struct vm_area_struct *vma, unsigned long address)
1766{
1767 struct anon_vma *anon_vma = vma->anon_vma;
1768 int first;
a850ea30
NH
1769
1770 BUG_ON(!PageLocked(page));
0fe6e20b 1771 BUG_ON(!anon_vma);
5dbe0af4 1772 /* address might be in next vma when migration races vma_adjust */
53f9263b 1773 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b
NH
1774 if (first)
1775 __hugepage_set_anon_rmap(page, vma, address, 0);
1776}
1777
1778void hugepage_add_new_anon_rmap(struct page *page,
1779 struct vm_area_struct *vma, unsigned long address)
1780{
1781 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 1782 atomic_set(compound_mapcount_ptr(page), 0);
0fe6e20b
NH
1783 __hugepage_set_anon_rmap(page, vma, address, 1);
1784}
e3390f67 1785#endif /* CONFIG_HUGETLB_PAGE */