]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
7c0f6ba6 29#include <linux/uaccess.h>
1da177e4
LT
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
df4c0e36
AR
41#include <linux/kasan.h>
42
07f3f05c 43#include "internal.h"
b2dba1af 44#include "mount.h"
1da177e4 45
789680d1
NP
46/*
47 * Usage:
873feea0 48 * dcache->d_inode->i_lock protects:
946e51f2 49 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
19156840 54 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
b7ab39f6 60 * - d_count
da502956 61 * - d_unhashed()
2fd6b7f5
NP
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
946e51f2 64 * - d_u.d_alias, d_inode
789680d1
NP
65 *
66 * Ordering:
873feea0 67 * dentry->d_inode->i_lock
b5c84bf6 68 * dentry->d_lock
19156840 69 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
70 * dcache_hash_bucket lock
71 * s_anon lock
789680d1 72 *
da502956
NP
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
789680d1
NP
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
fa3536cc 84int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
74c3cbe3 87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 88
949854d0 89EXPORT_SYMBOL(rename_lock);
1da177e4 90
e18b890b 91static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 92
cdf01226
DH
93const struct qstr empty_name = QSTR_INIT("", 0);
94EXPORT_SYMBOL(empty_name);
95const struct qstr slash_name = QSTR_INIT("/", 1);
96EXPORT_SYMBOL(slash_name);
97
1da177e4
LT
98/*
99 * This is the single most critical data structure when it comes
100 * to the dcache: the hashtable for lookups. Somebody should try
101 * to make this good - I've just made it work.
102 *
103 * This hash-function tries to avoid losing too many bits of hash
104 * information, yet avoid using a prime hash-size or similar.
105 */
1da177e4 106
fa3536cc
ED
107static unsigned int d_hash_mask __read_mostly;
108static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 109
b07ad996 110static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 111
8387ff25 112static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 113{
703b5faf 114 return dentry_hashtable + (hash >> (32 - d_hash_shift));
ceb5bdc2
NP
115}
116
94bdd655
AV
117#define IN_LOOKUP_SHIFT 10
118static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
119
120static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
121 unsigned int hash)
122{
123 hash += (unsigned long) parent / L1_CACHE_BYTES;
124 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
125}
126
127
1da177e4
LT
128/* Statistics gathering. */
129struct dentry_stat_t dentry_stat = {
130 .age_limit = 45,
131};
132
3942c07c 133static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 134static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
135
136#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
137
138/*
139 * Here we resort to our own counters instead of using generic per-cpu counters
140 * for consistency with what the vfs inode code does. We are expected to harvest
141 * better code and performance by having our own specialized counters.
142 *
143 * Please note that the loop is done over all possible CPUs, not over all online
144 * CPUs. The reason for this is that we don't want to play games with CPUs going
145 * on and off. If one of them goes off, we will just keep their counters.
146 *
147 * glommer: See cffbc8a for details, and if you ever intend to change this,
148 * please update all vfs counters to match.
149 */
3942c07c 150static long get_nr_dentry(void)
3e880fb5
NP
151{
152 int i;
3942c07c 153 long sum = 0;
3e880fb5
NP
154 for_each_possible_cpu(i)
155 sum += per_cpu(nr_dentry, i);
156 return sum < 0 ? 0 : sum;
157}
158
62d36c77
DC
159static long get_nr_dentry_unused(void)
160{
161 int i;
162 long sum = 0;
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_unused, i);
165 return sum < 0 ? 0 : sum;
166}
167
1f7e0616 168int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
169 size_t *lenp, loff_t *ppos)
170{
3e880fb5 171 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 172 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 173 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
174}
175#endif
176
5483f18e
LT
177/*
178 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179 * The strings are both count bytes long, and count is non-zero.
180 */
e419b4cc
LT
181#ifdef CONFIG_DCACHE_WORD_ACCESS
182
183#include <asm/word-at-a-time.h>
184/*
185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186 * aligned allocation for this particular component. We don't
187 * strictly need the load_unaligned_zeropad() safety, but it
188 * doesn't hurt either.
189 *
190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191 * need the careful unaligned handling.
192 */
94753db5 193static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 194{
bfcfaa77 195 unsigned long a,b,mask;
bfcfaa77
LT
196
197 for (;;) {
12f8ad4b 198 a = *(unsigned long *)cs;
e419b4cc 199 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
200 if (tcount < sizeof(unsigned long))
201 break;
202 if (unlikely(a != b))
203 return 1;
204 cs += sizeof(unsigned long);
205 ct += sizeof(unsigned long);
206 tcount -= sizeof(unsigned long);
207 if (!tcount)
208 return 0;
209 }
a5c21dce 210 mask = bytemask_from_count(tcount);
bfcfaa77 211 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
212}
213
bfcfaa77 214#else
e419b4cc 215
94753db5 216static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 217{
5483f18e
LT
218 do {
219 if (*cs != *ct)
220 return 1;
221 cs++;
222 ct++;
223 tcount--;
224 } while (tcount);
225 return 0;
226}
227
e419b4cc
LT
228#endif
229
94753db5
LT
230static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
231{
94753db5
LT
232 /*
233 * Be careful about RCU walk racing with rename:
7252704b 234 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
235 *
236 * NOTE! Even if a rename will mean that the length
237 * was not loaded atomically, we don't care. The
238 * RCU walk will check the sequence count eventually,
239 * and catch it. And we won't overrun the buffer,
240 * because we're reading the name pointer atomically,
241 * and a dentry name is guaranteed to be properly
242 * terminated with a NUL byte.
243 *
244 * End result: even if 'len' is wrong, we'll exit
245 * early because the data cannot match (there can
246 * be no NUL in the ct/tcount data)
247 */
7252704b 248 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 249
6326c71f 250 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
251}
252
8d85b484
AV
253struct external_name {
254 union {
255 atomic_t count;
256 struct rcu_head head;
257 } u;
258 unsigned char name[];
259};
260
261static inline struct external_name *external_name(struct dentry *dentry)
262{
263 return container_of(dentry->d_name.name, struct external_name, name[0]);
264}
265
9c82ab9c 266static void __d_free(struct rcu_head *head)
1da177e4 267{
9c82ab9c
CH
268 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
269
8d85b484
AV
270 kmem_cache_free(dentry_cache, dentry);
271}
272
273static void __d_free_external(struct rcu_head *head)
274{
275 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 276 kfree(external_name(dentry));
1da177e4
LT
277 kmem_cache_free(dentry_cache, dentry);
278}
279
810bb172
AV
280static inline int dname_external(const struct dentry *dentry)
281{
282 return dentry->d_name.name != dentry->d_iname;
283}
284
49d31c2f
AV
285void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
286{
287 spin_lock(&dentry->d_lock);
288 if (unlikely(dname_external(dentry))) {
289 struct external_name *p = external_name(dentry);
290 atomic_inc(&p->u.count);
291 spin_unlock(&dentry->d_lock);
292 name->name = p->name;
293 } else {
294 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
295 spin_unlock(&dentry->d_lock);
296 name->name = name->inline_name;
297 }
298}
299EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301void release_dentry_name_snapshot(struct name_snapshot *name)
302{
303 if (unlikely(name->name != name->inline_name)) {
304 struct external_name *p;
305 p = container_of(name->name, struct external_name, name[0]);
306 if (unlikely(atomic_dec_and_test(&p->u.count)))
307 kfree_rcu(p, u.head);
308 }
309}
310EXPORT_SYMBOL(release_dentry_name_snapshot);
311
4bf46a27
DH
312static inline void __d_set_inode_and_type(struct dentry *dentry,
313 struct inode *inode,
314 unsigned type_flags)
315{
316 unsigned flags;
317
318 dentry->d_inode = inode;
4bf46a27
DH
319 flags = READ_ONCE(dentry->d_flags);
320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 flags |= type_flags;
322 WRITE_ONCE(dentry->d_flags, flags);
323}
324
4bf46a27
DH
325static inline void __d_clear_type_and_inode(struct dentry *dentry)
326{
327 unsigned flags = READ_ONCE(dentry->d_flags);
328
329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
331 dentry->d_inode = NULL;
332}
333
b4f0354e
AV
334static void dentry_free(struct dentry *dentry)
335{
946e51f2 336 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
337 if (unlikely(dname_external(dentry))) {
338 struct external_name *p = external_name(dentry);
339 if (likely(atomic_dec_and_test(&p->u.count))) {
340 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
341 return;
342 }
343 }
b4f0354e
AV
344 /* if dentry was never visible to RCU, immediate free is OK */
345 if (!(dentry->d_flags & DCACHE_RCUACCESS))
346 __d_free(&dentry->d_u.d_rcu);
347 else
348 call_rcu(&dentry->d_u.d_rcu, __d_free);
349}
350
1da177e4
LT
351/*
352 * Release the dentry's inode, using the filesystem
550dce01 353 * d_iput() operation if defined.
31e6b01f
NP
354 */
355static void dentry_unlink_inode(struct dentry * dentry)
356 __releases(dentry->d_lock)
873feea0 357 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
358{
359 struct inode *inode = dentry->d_inode;
550dce01 360 bool hashed = !d_unhashed(dentry);
a528aca7 361
550dce01
AV
362 if (hashed)
363 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 364 __d_clear_type_and_inode(dentry);
946e51f2 365 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
366 if (hashed)
367 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 368 spin_unlock(&dentry->d_lock);
873feea0 369 spin_unlock(&inode->i_lock);
31e6b01f
NP
370 if (!inode->i_nlink)
371 fsnotify_inoderemove(inode);
372 if (dentry->d_op && dentry->d_op->d_iput)
373 dentry->d_op->d_iput(dentry, inode);
374 else
375 iput(inode);
376}
377
89dc77bc
LT
378/*
379 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
380 * is in use - which includes both the "real" per-superblock
381 * LRU list _and_ the DCACHE_SHRINK_LIST use.
382 *
383 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
384 * on the shrink list (ie not on the superblock LRU list).
385 *
386 * The per-cpu "nr_dentry_unused" counters are updated with
387 * the DCACHE_LRU_LIST bit.
388 *
389 * These helper functions make sure we always follow the
390 * rules. d_lock must be held by the caller.
391 */
392#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
393static void d_lru_add(struct dentry *dentry)
394{
395 D_FLAG_VERIFY(dentry, 0);
396 dentry->d_flags |= DCACHE_LRU_LIST;
397 this_cpu_inc(nr_dentry_unused);
398 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
399}
400
401static void d_lru_del(struct dentry *dentry)
402{
403 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
404 dentry->d_flags &= ~DCACHE_LRU_LIST;
405 this_cpu_dec(nr_dentry_unused);
406 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
407}
408
409static void d_shrink_del(struct dentry *dentry)
410{
411 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
412 list_del_init(&dentry->d_lru);
413 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
414 this_cpu_dec(nr_dentry_unused);
415}
416
417static void d_shrink_add(struct dentry *dentry, struct list_head *list)
418{
419 D_FLAG_VERIFY(dentry, 0);
420 list_add(&dentry->d_lru, list);
421 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
422 this_cpu_inc(nr_dentry_unused);
423}
424
425/*
426 * These can only be called under the global LRU lock, ie during the
427 * callback for freeing the LRU list. "isolate" removes it from the
428 * LRU lists entirely, while shrink_move moves it to the indicated
429 * private list.
430 */
3f97b163 431static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
432{
433 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
434 dentry->d_flags &= ~DCACHE_LRU_LIST;
435 this_cpu_dec(nr_dentry_unused);
3f97b163 436 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
437}
438
3f97b163
VD
439static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
440 struct list_head *list)
89dc77bc
LT
441{
442 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
443 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 444 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
445}
446
da3bbdd4 447/*
f6041567 448 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
449 */
450static void dentry_lru_add(struct dentry *dentry)
451{
89dc77bc
LT
452 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
453 d_lru_add(dentry);
563f4001
JB
454 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
455 dentry->d_flags |= DCACHE_REFERENCED;
da3bbdd4
KM
456}
457
789680d1
NP
458/**
459 * d_drop - drop a dentry
460 * @dentry: dentry to drop
461 *
462 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
463 * be found through a VFS lookup any more. Note that this is different from
464 * deleting the dentry - d_delete will try to mark the dentry negative if
465 * possible, giving a successful _negative_ lookup, while d_drop will
466 * just make the cache lookup fail.
467 *
468 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
469 * reason (NFS timeouts or autofs deletes).
470 *
471 * __d_drop requires dentry->d_lock.
472 */
473void __d_drop(struct dentry *dentry)
474{
dea3667b 475 if (!d_unhashed(dentry)) {
b61625d2 476 struct hlist_bl_head *b;
7632e465
BF
477 /*
478 * Hashed dentries are normally on the dentry hashtable,
479 * with the exception of those newly allocated by
480 * d_obtain_alias, which are always IS_ROOT:
481 */
482 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
483 b = &dentry->d_sb->s_anon;
484 else
8387ff25 485 b = d_hash(dentry->d_name.hash);
b61625d2
AV
486
487 hlist_bl_lock(b);
488 __hlist_bl_del(&dentry->d_hash);
489 dentry->d_hash.pprev = NULL;
490 hlist_bl_unlock(b);
d614146d
AV
491 /* After this call, in-progress rcu-walk path lookup will fail. */
492 write_seqcount_invalidate(&dentry->d_seq);
789680d1
NP
493 }
494}
495EXPORT_SYMBOL(__d_drop);
496
497void d_drop(struct dentry *dentry)
498{
789680d1
NP
499 spin_lock(&dentry->d_lock);
500 __d_drop(dentry);
501 spin_unlock(&dentry->d_lock);
789680d1
NP
502}
503EXPORT_SYMBOL(d_drop);
504
ba65dc5e
AV
505static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
506{
507 struct dentry *next;
508 /*
509 * Inform d_walk() and shrink_dentry_list() that we are no longer
510 * attached to the dentry tree
511 */
512 dentry->d_flags |= DCACHE_DENTRY_KILLED;
513 if (unlikely(list_empty(&dentry->d_child)))
514 return;
515 __list_del_entry(&dentry->d_child);
516 /*
517 * Cursors can move around the list of children. While we'd been
518 * a normal list member, it didn't matter - ->d_child.next would've
519 * been updated. However, from now on it won't be and for the
520 * things like d_walk() it might end up with a nasty surprise.
521 * Normally d_walk() doesn't care about cursors moving around -
522 * ->d_lock on parent prevents that and since a cursor has no children
523 * of its own, we get through it without ever unlocking the parent.
524 * There is one exception, though - if we ascend from a child that
525 * gets killed as soon as we unlock it, the next sibling is found
526 * using the value left in its ->d_child.next. And if _that_
527 * pointed to a cursor, and cursor got moved (e.g. by lseek())
528 * before d_walk() regains parent->d_lock, we'll end up skipping
529 * everything the cursor had been moved past.
530 *
531 * Solution: make sure that the pointer left behind in ->d_child.next
532 * points to something that won't be moving around. I.e. skip the
533 * cursors.
534 */
535 while (dentry->d_child.next != &parent->d_subdirs) {
536 next = list_entry(dentry->d_child.next, struct dentry, d_child);
537 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
538 break;
539 dentry->d_child.next = next->d_child.next;
540 }
541}
542
e55fd011 543static void __dentry_kill(struct dentry *dentry)
77812a1e 544{
41edf278
AV
545 struct dentry *parent = NULL;
546 bool can_free = true;
41edf278 547 if (!IS_ROOT(dentry))
77812a1e 548 parent = dentry->d_parent;
31e6b01f 549
0d98439e
LT
550 /*
551 * The dentry is now unrecoverably dead to the world.
552 */
553 lockref_mark_dead(&dentry->d_lockref);
554
f0023bc6 555 /*
f0023bc6
SW
556 * inform the fs via d_prune that this dentry is about to be
557 * unhashed and destroyed.
558 */
29266201 559 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
560 dentry->d_op->d_prune(dentry);
561
01b60351
AV
562 if (dentry->d_flags & DCACHE_LRU_LIST) {
563 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
564 d_lru_del(dentry);
01b60351 565 }
77812a1e
NP
566 /* if it was on the hash then remove it */
567 __d_drop(dentry);
ba65dc5e 568 dentry_unlist(dentry, parent);
03b3b889
AV
569 if (parent)
570 spin_unlock(&parent->d_lock);
550dce01
AV
571 if (dentry->d_inode)
572 dentry_unlink_inode(dentry);
573 else
574 spin_unlock(&dentry->d_lock);
03b3b889
AV
575 this_cpu_dec(nr_dentry);
576 if (dentry->d_op && dentry->d_op->d_release)
577 dentry->d_op->d_release(dentry);
578
41edf278
AV
579 spin_lock(&dentry->d_lock);
580 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
581 dentry->d_flags |= DCACHE_MAY_FREE;
582 can_free = false;
583 }
584 spin_unlock(&dentry->d_lock);
41edf278
AV
585 if (likely(can_free))
586 dentry_free(dentry);
e55fd011
AV
587}
588
589/*
590 * Finish off a dentry we've decided to kill.
591 * dentry->d_lock must be held, returns with it unlocked.
592 * If ref is non-zero, then decrement the refcount too.
593 * Returns dentry requiring refcount drop, or NULL if we're done.
594 */
8cbf74da 595static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
596 __releases(dentry->d_lock)
597{
598 struct inode *inode = dentry->d_inode;
599 struct dentry *parent = NULL;
600
601 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
602 goto failed;
603
604 if (!IS_ROOT(dentry)) {
605 parent = dentry->d_parent;
606 if (unlikely(!spin_trylock(&parent->d_lock))) {
607 if (inode)
608 spin_unlock(&inode->i_lock);
609 goto failed;
610 }
611 }
612
613 __dentry_kill(dentry);
03b3b889 614 return parent;
e55fd011
AV
615
616failed:
8cbf74da 617 spin_unlock(&dentry->d_lock);
e55fd011 618 return dentry; /* try again with same dentry */
77812a1e
NP
619}
620
046b961b
AV
621static inline struct dentry *lock_parent(struct dentry *dentry)
622{
623 struct dentry *parent = dentry->d_parent;
624 if (IS_ROOT(dentry))
625 return NULL;
360f5479 626 if (unlikely(dentry->d_lockref.count < 0))
c2338f2d 627 return NULL;
046b961b
AV
628 if (likely(spin_trylock(&parent->d_lock)))
629 return parent;
046b961b 630 rcu_read_lock();
c2338f2d 631 spin_unlock(&dentry->d_lock);
046b961b
AV
632again:
633 parent = ACCESS_ONCE(dentry->d_parent);
634 spin_lock(&parent->d_lock);
635 /*
636 * We can't blindly lock dentry until we are sure
637 * that we won't violate the locking order.
638 * Any changes of dentry->d_parent must have
639 * been done with parent->d_lock held, so
640 * spin_lock() above is enough of a barrier
641 * for checking if it's still our child.
642 */
643 if (unlikely(parent != dentry->d_parent)) {
644 spin_unlock(&parent->d_lock);
645 goto again;
646 }
647 rcu_read_unlock();
648 if (parent != dentry)
9f12600f 649 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
650 else
651 parent = NULL;
652 return parent;
653}
654
360f5479
LT
655/*
656 * Try to do a lockless dput(), and return whether that was successful.
657 *
658 * If unsuccessful, we return false, having already taken the dentry lock.
659 *
660 * The caller needs to hold the RCU read lock, so that the dentry is
661 * guaranteed to stay around even if the refcount goes down to zero!
662 */
663static inline bool fast_dput(struct dentry *dentry)
664{
665 int ret;
666 unsigned int d_flags;
667
668 /*
669 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 670 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
671 */
672 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
673 return lockref_put_or_lock(&dentry->d_lockref);
674
675 /*
676 * .. otherwise, we can try to just decrement the
677 * lockref optimistically.
678 */
679 ret = lockref_put_return(&dentry->d_lockref);
680
681 /*
682 * If the lockref_put_return() failed due to the lock being held
683 * by somebody else, the fast path has failed. We will need to
684 * get the lock, and then check the count again.
685 */
686 if (unlikely(ret < 0)) {
687 spin_lock(&dentry->d_lock);
688 if (dentry->d_lockref.count > 1) {
689 dentry->d_lockref.count--;
690 spin_unlock(&dentry->d_lock);
691 return 1;
692 }
693 return 0;
694 }
695
696 /*
697 * If we weren't the last ref, we're done.
698 */
699 if (ret)
700 return 1;
701
702 /*
703 * Careful, careful. The reference count went down
704 * to zero, but we don't hold the dentry lock, so
705 * somebody else could get it again, and do another
706 * dput(), and we need to not race with that.
707 *
708 * However, there is a very special and common case
709 * where we don't care, because there is nothing to
710 * do: the dentry is still hashed, it does not have
711 * a 'delete' op, and it's referenced and already on
712 * the LRU list.
713 *
714 * NOTE! Since we aren't locked, these values are
715 * not "stable". However, it is sufficient that at
716 * some point after we dropped the reference the
717 * dentry was hashed and the flags had the proper
718 * value. Other dentry users may have re-gotten
719 * a reference to the dentry and change that, but
720 * our work is done - we can leave the dentry
721 * around with a zero refcount.
722 */
723 smp_rmb();
724 d_flags = ACCESS_ONCE(dentry->d_flags);
75a6f82a 725 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
726
727 /* Nothing to do? Dropping the reference was all we needed? */
728 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
729 return 1;
730
731 /*
732 * Not the fast normal case? Get the lock. We've already decremented
733 * the refcount, but we'll need to re-check the situation after
734 * getting the lock.
735 */
736 spin_lock(&dentry->d_lock);
737
738 /*
739 * Did somebody else grab a reference to it in the meantime, and
740 * we're no longer the last user after all? Alternatively, somebody
741 * else could have killed it and marked it dead. Either way, we
742 * don't need to do anything else.
743 */
744 if (dentry->d_lockref.count) {
745 spin_unlock(&dentry->d_lock);
746 return 1;
747 }
748
749 /*
750 * Re-get the reference we optimistically dropped. We hold the
751 * lock, and we just tested that it was zero, so we can just
752 * set it to 1.
753 */
754 dentry->d_lockref.count = 1;
755 return 0;
756}
757
758
1da177e4
LT
759/*
760 * This is dput
761 *
762 * This is complicated by the fact that we do not want to put
763 * dentries that are no longer on any hash chain on the unused
764 * list: we'd much rather just get rid of them immediately.
765 *
766 * However, that implies that we have to traverse the dentry
767 * tree upwards to the parents which might _also_ now be
768 * scheduled for deletion (it may have been only waiting for
769 * its last child to go away).
770 *
771 * This tail recursion is done by hand as we don't want to depend
772 * on the compiler to always get this right (gcc generally doesn't).
773 * Real recursion would eat up our stack space.
774 */
775
776/*
777 * dput - release a dentry
778 * @dentry: dentry to release
779 *
780 * Release a dentry. This will drop the usage count and if appropriate
781 * call the dentry unlink method as well as removing it from the queues and
782 * releasing its resources. If the parent dentries were scheduled for release
783 * they too may now get deleted.
1da177e4 784 */
1da177e4
LT
785void dput(struct dentry *dentry)
786{
8aab6a27 787 if (unlikely(!dentry))
1da177e4
LT
788 return;
789
790repeat:
47be6184
WF
791 might_sleep();
792
360f5479
LT
793 rcu_read_lock();
794 if (likely(fast_dput(dentry))) {
795 rcu_read_unlock();
1da177e4 796 return;
360f5479
LT
797 }
798
799 /* Slow case: now with the dentry lock held */
800 rcu_read_unlock();
1da177e4 801
85c7f810
AV
802 WARN_ON(d_in_lookup(dentry));
803
8aab6a27
LT
804 /* Unreachable? Get rid of it */
805 if (unlikely(d_unhashed(dentry)))
806 goto kill_it;
807
75a6f82a
AV
808 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
809 goto kill_it;
810
8aab6a27 811 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 812 if (dentry->d_op->d_delete(dentry))
61f3dee4 813 goto kill_it;
1da177e4 814 }
265ac902 815
a4633357 816 dentry_lru_add(dentry);
265ac902 817
98474236 818 dentry->d_lockref.count--;
61f3dee4 819 spin_unlock(&dentry->d_lock);
1da177e4
LT
820 return;
821
d52b9086 822kill_it:
8cbf74da 823 dentry = dentry_kill(dentry);
47be6184
WF
824 if (dentry) {
825 cond_resched();
d52b9086 826 goto repeat;
47be6184 827 }
1da177e4 828}
ec4f8605 829EXPORT_SYMBOL(dput);
1da177e4 830
1da177e4 831
b5c84bf6 832/* This must be called with d_lock held */
dc0474be 833static inline void __dget_dlock(struct dentry *dentry)
23044507 834{
98474236 835 dentry->d_lockref.count++;
23044507
NP
836}
837
dc0474be 838static inline void __dget(struct dentry *dentry)
1da177e4 839{
98474236 840 lockref_get(&dentry->d_lockref);
1da177e4
LT
841}
842
b7ab39f6
NP
843struct dentry *dget_parent(struct dentry *dentry)
844{
df3d0bbc 845 int gotref;
b7ab39f6
NP
846 struct dentry *ret;
847
df3d0bbc
WL
848 /*
849 * Do optimistic parent lookup without any
850 * locking.
851 */
852 rcu_read_lock();
853 ret = ACCESS_ONCE(dentry->d_parent);
854 gotref = lockref_get_not_zero(&ret->d_lockref);
855 rcu_read_unlock();
856 if (likely(gotref)) {
857 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
858 return ret;
859 dput(ret);
860 }
861
b7ab39f6 862repeat:
a734eb45
NP
863 /*
864 * Don't need rcu_dereference because we re-check it was correct under
865 * the lock.
866 */
867 rcu_read_lock();
b7ab39f6 868 ret = dentry->d_parent;
a734eb45
NP
869 spin_lock(&ret->d_lock);
870 if (unlikely(ret != dentry->d_parent)) {
871 spin_unlock(&ret->d_lock);
872 rcu_read_unlock();
b7ab39f6
NP
873 goto repeat;
874 }
a734eb45 875 rcu_read_unlock();
98474236
WL
876 BUG_ON(!ret->d_lockref.count);
877 ret->d_lockref.count++;
b7ab39f6 878 spin_unlock(&ret->d_lock);
b7ab39f6
NP
879 return ret;
880}
881EXPORT_SYMBOL(dget_parent);
882
1da177e4
LT
883/**
884 * d_find_alias - grab a hashed alias of inode
885 * @inode: inode in question
1da177e4
LT
886 *
887 * If inode has a hashed alias, or is a directory and has any alias,
888 * acquire the reference to alias and return it. Otherwise return NULL.
889 * Notice that if inode is a directory there can be only one alias and
890 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
891 * of a filesystem, or if the directory was renamed and d_revalidate
892 * was the first vfs operation to notice.
1da177e4 893 *
21c0d8fd 894 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 895 * any other hashed alias over that one.
1da177e4 896 */
52ed46f0 897static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 898{
da502956 899 struct dentry *alias, *discon_alias;
1da177e4 900
da502956
NP
901again:
902 discon_alias = NULL;
946e51f2 903 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 904 spin_lock(&alias->d_lock);
1da177e4 905 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 906 if (IS_ROOT(alias) &&
da502956 907 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 908 discon_alias = alias;
52ed46f0 909 } else {
dc0474be 910 __dget_dlock(alias);
da502956
NP
911 spin_unlock(&alias->d_lock);
912 return alias;
913 }
914 }
915 spin_unlock(&alias->d_lock);
916 }
917 if (discon_alias) {
918 alias = discon_alias;
919 spin_lock(&alias->d_lock);
920 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
921 __dget_dlock(alias);
922 spin_unlock(&alias->d_lock);
923 return alias;
1da177e4 924 }
da502956
NP
925 spin_unlock(&alias->d_lock);
926 goto again;
1da177e4 927 }
da502956 928 return NULL;
1da177e4
LT
929}
930
da502956 931struct dentry *d_find_alias(struct inode *inode)
1da177e4 932{
214fda1f
DH
933 struct dentry *de = NULL;
934
b3d9b7a3 935 if (!hlist_empty(&inode->i_dentry)) {
873feea0 936 spin_lock(&inode->i_lock);
52ed46f0 937 de = __d_find_alias(inode);
873feea0 938 spin_unlock(&inode->i_lock);
214fda1f 939 }
1da177e4
LT
940 return de;
941}
ec4f8605 942EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
943
944/*
945 * Try to kill dentries associated with this inode.
946 * WARNING: you must own a reference to inode.
947 */
948void d_prune_aliases(struct inode *inode)
949{
0cdca3f9 950 struct dentry *dentry;
1da177e4 951restart:
873feea0 952 spin_lock(&inode->i_lock);
946e51f2 953 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 954 spin_lock(&dentry->d_lock);
98474236 955 if (!dentry->d_lockref.count) {
29355c39
AV
956 struct dentry *parent = lock_parent(dentry);
957 if (likely(!dentry->d_lockref.count)) {
958 __dentry_kill(dentry);
4a7795d3 959 dput(parent);
29355c39
AV
960 goto restart;
961 }
962 if (parent)
963 spin_unlock(&parent->d_lock);
1da177e4
LT
964 }
965 spin_unlock(&dentry->d_lock);
966 }
873feea0 967 spin_unlock(&inode->i_lock);
1da177e4 968}
ec4f8605 969EXPORT_SYMBOL(d_prune_aliases);
1da177e4 970
3049cfe2 971static void shrink_dentry_list(struct list_head *list)
1da177e4 972{
5c47e6d0 973 struct dentry *dentry, *parent;
da3bbdd4 974
60942f2f 975 while (!list_empty(list)) {
ff2fde99 976 struct inode *inode;
60942f2f 977 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 978 spin_lock(&dentry->d_lock);
046b961b
AV
979 parent = lock_parent(dentry);
980
dd1f6b2e
DC
981 /*
982 * The dispose list is isolated and dentries are not accounted
983 * to the LRU here, so we can simply remove it from the list
984 * here regardless of whether it is referenced or not.
985 */
89dc77bc 986 d_shrink_del(dentry);
dd1f6b2e 987
1da177e4
LT
988 /*
989 * We found an inuse dentry which was not removed from
dd1f6b2e 990 * the LRU because of laziness during lookup. Do not free it.
1da177e4 991 */
360f5479 992 if (dentry->d_lockref.count > 0) {
da3bbdd4 993 spin_unlock(&dentry->d_lock);
046b961b
AV
994 if (parent)
995 spin_unlock(&parent->d_lock);
1da177e4
LT
996 continue;
997 }
77812a1e 998
64fd72e0
AV
999
1000 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1001 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1002 spin_unlock(&dentry->d_lock);
046b961b
AV
1003 if (parent)
1004 spin_unlock(&parent->d_lock);
64fd72e0
AV
1005 if (can_free)
1006 dentry_free(dentry);
1007 continue;
1008 }
1009
ff2fde99
AV
1010 inode = dentry->d_inode;
1011 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 1012 d_shrink_add(dentry, list);
dd1f6b2e 1013 spin_unlock(&dentry->d_lock);
046b961b
AV
1014 if (parent)
1015 spin_unlock(&parent->d_lock);
5c47e6d0 1016 continue;
dd1f6b2e 1017 }
ff2fde99 1018
ff2fde99 1019 __dentry_kill(dentry);
046b961b 1020
5c47e6d0
AV
1021 /*
1022 * We need to prune ancestors too. This is necessary to prevent
1023 * quadratic behavior of shrink_dcache_parent(), but is also
1024 * expected to be beneficial in reducing dentry cache
1025 * fragmentation.
1026 */
1027 dentry = parent;
b2b80195
AV
1028 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1029 parent = lock_parent(dentry);
1030 if (dentry->d_lockref.count != 1) {
1031 dentry->d_lockref.count--;
1032 spin_unlock(&dentry->d_lock);
1033 if (parent)
1034 spin_unlock(&parent->d_lock);
1035 break;
1036 }
1037 inode = dentry->d_inode; /* can't be NULL */
1038 if (unlikely(!spin_trylock(&inode->i_lock))) {
1039 spin_unlock(&dentry->d_lock);
1040 if (parent)
1041 spin_unlock(&parent->d_lock);
1042 cpu_relax();
1043 continue;
1044 }
1045 __dentry_kill(dentry);
1046 dentry = parent;
1047 }
da3bbdd4 1048 }
3049cfe2
CH
1049}
1050
3f97b163
VD
1051static enum lru_status dentry_lru_isolate(struct list_head *item,
1052 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1053{
1054 struct list_head *freeable = arg;
1055 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1056
1057
1058 /*
1059 * we are inverting the lru lock/dentry->d_lock here,
1060 * so use a trylock. If we fail to get the lock, just skip
1061 * it
1062 */
1063 if (!spin_trylock(&dentry->d_lock))
1064 return LRU_SKIP;
1065
1066 /*
1067 * Referenced dentries are still in use. If they have active
1068 * counts, just remove them from the LRU. Otherwise give them
1069 * another pass through the LRU.
1070 */
1071 if (dentry->d_lockref.count) {
3f97b163 1072 d_lru_isolate(lru, dentry);
f6041567
DC
1073 spin_unlock(&dentry->d_lock);
1074 return LRU_REMOVED;
1075 }
1076
1077 if (dentry->d_flags & DCACHE_REFERENCED) {
1078 dentry->d_flags &= ~DCACHE_REFERENCED;
1079 spin_unlock(&dentry->d_lock);
1080
1081 /*
1082 * The list move itself will be made by the common LRU code. At
1083 * this point, we've dropped the dentry->d_lock but keep the
1084 * lru lock. This is safe to do, since every list movement is
1085 * protected by the lru lock even if both locks are held.
1086 *
1087 * This is guaranteed by the fact that all LRU management
1088 * functions are intermediated by the LRU API calls like
1089 * list_lru_add and list_lru_del. List movement in this file
1090 * only ever occur through this functions or through callbacks
1091 * like this one, that are called from the LRU API.
1092 *
1093 * The only exceptions to this are functions like
1094 * shrink_dentry_list, and code that first checks for the
1095 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1096 * operating only with stack provided lists after they are
1097 * properly isolated from the main list. It is thus, always a
1098 * local access.
1099 */
1100 return LRU_ROTATE;
1101 }
1102
3f97b163 1103 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1104 spin_unlock(&dentry->d_lock);
1105
1106 return LRU_REMOVED;
1107}
1108
3049cfe2 1109/**
b48f03b3
DC
1110 * prune_dcache_sb - shrink the dcache
1111 * @sb: superblock
503c358c 1112 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1113 *
503c358c
VD
1114 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1115 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1116 * function.
3049cfe2 1117 *
b48f03b3
DC
1118 * This function may fail to free any resources if all the dentries are in
1119 * use.
3049cfe2 1120 */
503c358c 1121long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1122{
f6041567
DC
1123 LIST_HEAD(dispose);
1124 long freed;
3049cfe2 1125
503c358c
VD
1126 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1127 dentry_lru_isolate, &dispose);
f6041567 1128 shrink_dentry_list(&dispose);
0a234c6d 1129 return freed;
da3bbdd4 1130}
23044507 1131
4e717f5c 1132static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1133 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1134{
4e717f5c
GC
1135 struct list_head *freeable = arg;
1136 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1137
4e717f5c
GC
1138 /*
1139 * we are inverting the lru lock/dentry->d_lock here,
1140 * so use a trylock. If we fail to get the lock, just skip
1141 * it
1142 */
1143 if (!spin_trylock(&dentry->d_lock))
1144 return LRU_SKIP;
1145
3f97b163 1146 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1147 spin_unlock(&dentry->d_lock);
ec33679d 1148
4e717f5c 1149 return LRU_REMOVED;
da3bbdd4
KM
1150}
1151
4e717f5c 1152
1da177e4
LT
1153/**
1154 * shrink_dcache_sb - shrink dcache for a superblock
1155 * @sb: superblock
1156 *
3049cfe2
CH
1157 * Shrink the dcache for the specified super block. This is used to free
1158 * the dcache before unmounting a file system.
1da177e4 1159 */
3049cfe2 1160void shrink_dcache_sb(struct super_block *sb)
1da177e4 1161{
4e717f5c
GC
1162 long freed;
1163
1164 do {
1165 LIST_HEAD(dispose);
1166
1167 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1168 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1169
4e717f5c
GC
1170 this_cpu_sub(nr_dentry_unused, freed);
1171 shrink_dentry_list(&dispose);
b17c070f
ST
1172 cond_resched();
1173 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1174}
ec4f8605 1175EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1176
db14fc3a
MS
1177/**
1178 * enum d_walk_ret - action to talke during tree walk
1179 * @D_WALK_CONTINUE: contrinue walk
1180 * @D_WALK_QUIT: quit walk
1181 * @D_WALK_NORETRY: quit when retry is needed
1182 * @D_WALK_SKIP: skip this dentry and its children
1183 */
1184enum d_walk_ret {
1185 D_WALK_CONTINUE,
1186 D_WALK_QUIT,
1187 D_WALK_NORETRY,
1188 D_WALK_SKIP,
1189};
c826cb7d 1190
1da177e4 1191/**
db14fc3a
MS
1192 * d_walk - walk the dentry tree
1193 * @parent: start of walk
1194 * @data: data passed to @enter() and @finish()
1195 * @enter: callback when first entering the dentry
1196 * @finish: callback when successfully finished the walk
1da177e4 1197 *
db14fc3a 1198 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1199 */
b6450630 1200void d_walk(struct dentry *parent, void *data,
db14fc3a
MS
1201 enum d_walk_ret (*enter)(void *, struct dentry *),
1202 void (*finish)(void *))
1da177e4 1203{
949854d0 1204 struct dentry *this_parent;
1da177e4 1205 struct list_head *next;
48f5ec21 1206 unsigned seq = 0;
db14fc3a
MS
1207 enum d_walk_ret ret;
1208 bool retry = true;
949854d0 1209
58db63d0 1210again:
48f5ec21 1211 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1212 this_parent = parent;
2fd6b7f5 1213 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1214
1215 ret = enter(data, this_parent);
1216 switch (ret) {
1217 case D_WALK_CONTINUE:
1218 break;
1219 case D_WALK_QUIT:
1220 case D_WALK_SKIP:
1221 goto out_unlock;
1222 case D_WALK_NORETRY:
1223 retry = false;
1224 break;
1225 }
1da177e4
LT
1226repeat:
1227 next = this_parent->d_subdirs.next;
1228resume:
1229 while (next != &this_parent->d_subdirs) {
1230 struct list_head *tmp = next;
946e51f2 1231 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1232 next = tmp->next;
2fd6b7f5 1233
ba65dc5e
AV
1234 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1235 continue;
1236
2fd6b7f5 1237 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1238
1239 ret = enter(data, dentry);
1240 switch (ret) {
1241 case D_WALK_CONTINUE:
1242 break;
1243 case D_WALK_QUIT:
2fd6b7f5 1244 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1245 goto out_unlock;
1246 case D_WALK_NORETRY:
1247 retry = false;
1248 break;
1249 case D_WALK_SKIP:
1250 spin_unlock(&dentry->d_lock);
1251 continue;
2fd6b7f5 1252 }
db14fc3a 1253
1da177e4 1254 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1255 spin_unlock(&this_parent->d_lock);
1256 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1257 this_parent = dentry;
2fd6b7f5 1258 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1259 goto repeat;
1260 }
2fd6b7f5 1261 spin_unlock(&dentry->d_lock);
1da177e4
LT
1262 }
1263 /*
1264 * All done at this level ... ascend and resume the search.
1265 */
ca5358ef
AV
1266 rcu_read_lock();
1267ascend:
1da177e4 1268 if (this_parent != parent) {
c826cb7d 1269 struct dentry *child = this_parent;
31dec132
AV
1270 this_parent = child->d_parent;
1271
31dec132
AV
1272 spin_unlock(&child->d_lock);
1273 spin_lock(&this_parent->d_lock);
1274
ca5358ef
AV
1275 /* might go back up the wrong parent if we have had a rename. */
1276 if (need_seqretry(&rename_lock, seq))
949854d0 1277 goto rename_retry;
2159184e
AV
1278 /* go into the first sibling still alive */
1279 do {
1280 next = child->d_child.next;
ca5358ef
AV
1281 if (next == &this_parent->d_subdirs)
1282 goto ascend;
1283 child = list_entry(next, struct dentry, d_child);
2159184e 1284 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1285 rcu_read_unlock();
1da177e4
LT
1286 goto resume;
1287 }
ca5358ef 1288 if (need_seqretry(&rename_lock, seq))
949854d0 1289 goto rename_retry;
ca5358ef 1290 rcu_read_unlock();
db14fc3a
MS
1291 if (finish)
1292 finish(data);
1293
1294out_unlock:
1295 spin_unlock(&this_parent->d_lock);
48f5ec21 1296 done_seqretry(&rename_lock, seq);
db14fc3a 1297 return;
58db63d0
NP
1298
1299rename_retry:
ca5358ef
AV
1300 spin_unlock(&this_parent->d_lock);
1301 rcu_read_unlock();
1302 BUG_ON(seq & 1);
db14fc3a
MS
1303 if (!retry)
1304 return;
48f5ec21 1305 seq = 1;
58db63d0 1306 goto again;
1da177e4 1307}
b6450630 1308EXPORT_SYMBOL_GPL(d_walk);
db14fc3a 1309
01619491
IK
1310struct check_mount {
1311 struct vfsmount *mnt;
1312 unsigned int mounted;
1313};
1314
1315static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1316{
1317 struct check_mount *info = data;
1318 struct path path = { .mnt = info->mnt, .dentry = dentry };
1319
1320 if (likely(!d_mountpoint(dentry)))
1321 return D_WALK_CONTINUE;
1322 if (__path_is_mountpoint(&path)) {
1323 info->mounted = 1;
1324 return D_WALK_QUIT;
1325 }
1326 return D_WALK_CONTINUE;
1327}
1328
1329/**
1330 * path_has_submounts - check for mounts over a dentry in the
1331 * current namespace.
1332 * @parent: path to check.
1333 *
1334 * Return true if the parent or its subdirectories contain
1335 * a mount point in the current namespace.
1336 */
1337int path_has_submounts(const struct path *parent)
1338{
1339 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1340
1341 read_seqlock_excl(&mount_lock);
1342 d_walk(parent->dentry, &data, path_check_mount, NULL);
1343 read_sequnlock_excl(&mount_lock);
1344
1345 return data.mounted;
1346}
1347EXPORT_SYMBOL(path_has_submounts);
1348
eed81007
MS
1349/*
1350 * Called by mount code to set a mountpoint and check if the mountpoint is
1351 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1352 * subtree can become unreachable).
1353 *
1ffe46d1 1354 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1355 * this reason take rename_lock and d_lock on dentry and ancestors.
1356 */
1357int d_set_mounted(struct dentry *dentry)
1358{
1359 struct dentry *p;
1360 int ret = -ENOENT;
1361 write_seqlock(&rename_lock);
1362 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1363 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1364 spin_lock(&p->d_lock);
1365 if (unlikely(d_unhashed(p))) {
1366 spin_unlock(&p->d_lock);
1367 goto out;
1368 }
1369 spin_unlock(&p->d_lock);
1370 }
1371 spin_lock(&dentry->d_lock);
1372 if (!d_unlinked(dentry)) {
3895dbf8
EB
1373 ret = -EBUSY;
1374 if (!d_mountpoint(dentry)) {
1375 dentry->d_flags |= DCACHE_MOUNTED;
1376 ret = 0;
1377 }
eed81007
MS
1378 }
1379 spin_unlock(&dentry->d_lock);
1380out:
1381 write_sequnlock(&rename_lock);
1382 return ret;
1383}
1384
1da177e4 1385/*
fd517909 1386 * Search the dentry child list of the specified parent,
1da177e4
LT
1387 * and move any unused dentries to the end of the unused
1388 * list for prune_dcache(). We descend to the next level
1389 * whenever the d_subdirs list is non-empty and continue
1390 * searching.
1391 *
1392 * It returns zero iff there are no unused children,
1393 * otherwise it returns the number of children moved to
1394 * the end of the unused list. This may not be the total
1395 * number of unused children, because select_parent can
1396 * drop the lock and return early due to latency
1397 * constraints.
1398 */
1da177e4 1399
db14fc3a
MS
1400struct select_data {
1401 struct dentry *start;
1402 struct list_head dispose;
1403 int found;
1404};
23044507 1405
db14fc3a
MS
1406static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1407{
1408 struct select_data *data = _data;
1409 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1410
db14fc3a
MS
1411 if (data->start == dentry)
1412 goto out;
2fd6b7f5 1413
fe91522a 1414 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1415 data->found++;
fe91522a
AV
1416 } else {
1417 if (dentry->d_flags & DCACHE_LRU_LIST)
1418 d_lru_del(dentry);
1419 if (!dentry->d_lockref.count) {
1420 d_shrink_add(dentry, &data->dispose);
1421 data->found++;
1422 }
1da177e4 1423 }
db14fc3a
MS
1424 /*
1425 * We can return to the caller if we have found some (this
1426 * ensures forward progress). We'll be coming back to find
1427 * the rest.
1428 */
fe91522a
AV
1429 if (!list_empty(&data->dispose))
1430 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1431out:
db14fc3a 1432 return ret;
1da177e4
LT
1433}
1434
1435/**
1436 * shrink_dcache_parent - prune dcache
1437 * @parent: parent of entries to prune
1438 *
1439 * Prune the dcache to remove unused children of the parent dentry.
1440 */
db14fc3a 1441void shrink_dcache_parent(struct dentry *parent)
1da177e4 1442{
db14fc3a
MS
1443 for (;;) {
1444 struct select_data data;
1da177e4 1445
db14fc3a
MS
1446 INIT_LIST_HEAD(&data.dispose);
1447 data.start = parent;
1448 data.found = 0;
1449
1450 d_walk(parent, &data, select_collect, NULL);
1451 if (!data.found)
1452 break;
1453
1454 shrink_dentry_list(&data.dispose);
421348f1
GT
1455 cond_resched();
1456 }
1da177e4 1457}
ec4f8605 1458EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1459
9c8c10e2 1460static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1461{
9c8c10e2
AV
1462 /* it has busy descendents; complain about those instead */
1463 if (!list_empty(&dentry->d_subdirs))
1464 return D_WALK_CONTINUE;
42c32608 1465
9c8c10e2
AV
1466 /* root with refcount 1 is fine */
1467 if (dentry == _data && dentry->d_lockref.count == 1)
1468 return D_WALK_CONTINUE;
1469
1470 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1471 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1472 dentry,
1473 dentry->d_inode ?
1474 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1475 dentry,
42c32608
AV
1476 dentry->d_lockref.count,
1477 dentry->d_sb->s_type->name,
1478 dentry->d_sb->s_id);
9c8c10e2
AV
1479 WARN_ON(1);
1480 return D_WALK_CONTINUE;
1481}
1482
1483static void do_one_tree(struct dentry *dentry)
1484{
1485 shrink_dcache_parent(dentry);
1486 d_walk(dentry, dentry, umount_check, NULL);
1487 d_drop(dentry);
1488 dput(dentry);
42c32608
AV
1489}
1490
1491/*
1492 * destroy the dentries attached to a superblock on unmounting
1493 */
1494void shrink_dcache_for_umount(struct super_block *sb)
1495{
1496 struct dentry *dentry;
1497
9c8c10e2 1498 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1499
1500 dentry = sb->s_root;
1501 sb->s_root = NULL;
9c8c10e2 1502 do_one_tree(dentry);
42c32608
AV
1503
1504 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1505 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1506 do_one_tree(dentry);
42c32608
AV
1507 }
1508}
1509
8ed936b5
EB
1510struct detach_data {
1511 struct select_data select;
1512 struct dentry *mountpoint;
1513};
1514static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1515{
8ed936b5 1516 struct detach_data *data = _data;
848ac114
MS
1517
1518 if (d_mountpoint(dentry)) {
8ed936b5
EB
1519 __dget_dlock(dentry);
1520 data->mountpoint = dentry;
848ac114
MS
1521 return D_WALK_QUIT;
1522 }
1523
8ed936b5 1524 return select_collect(&data->select, dentry);
848ac114
MS
1525}
1526
1527static void check_and_drop(void *_data)
1528{
8ed936b5 1529 struct detach_data *data = _data;
848ac114 1530
81be24d2 1531 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1532 __d_drop(data->select.start);
848ac114
MS
1533}
1534
1535/**
1ffe46d1
EB
1536 * d_invalidate - detach submounts, prune dcache, and drop
1537 * @dentry: dentry to invalidate (aka detach, prune and drop)
1538 *
1ffe46d1 1539 * no dcache lock.
848ac114 1540 *
8ed936b5
EB
1541 * The final d_drop is done as an atomic operation relative to
1542 * rename_lock ensuring there are no races with d_set_mounted. This
1543 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1544 */
5542aa2f 1545void d_invalidate(struct dentry *dentry)
848ac114 1546{
1ffe46d1
EB
1547 /*
1548 * If it's already been dropped, return OK.
1549 */
1550 spin_lock(&dentry->d_lock);
1551 if (d_unhashed(dentry)) {
1552 spin_unlock(&dentry->d_lock);
5542aa2f 1553 return;
1ffe46d1
EB
1554 }
1555 spin_unlock(&dentry->d_lock);
1556
848ac114
MS
1557 /* Negative dentries can be dropped without further checks */
1558 if (!dentry->d_inode) {
1559 d_drop(dentry);
5542aa2f 1560 return;
848ac114
MS
1561 }
1562
1563 for (;;) {
8ed936b5 1564 struct detach_data data;
848ac114 1565
8ed936b5
EB
1566 data.mountpoint = NULL;
1567 INIT_LIST_HEAD(&data.select.dispose);
1568 data.select.start = dentry;
1569 data.select.found = 0;
1570
1571 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1572
81be24d2 1573 if (!list_empty(&data.select.dispose))
8ed936b5 1574 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1575 else if (!data.mountpoint)
1576 return;
848ac114 1577
8ed936b5
EB
1578 if (data.mountpoint) {
1579 detach_mounts(data.mountpoint);
1580 dput(data.mountpoint);
1581 }
848ac114
MS
1582 cond_resched();
1583 }
848ac114 1584}
1ffe46d1 1585EXPORT_SYMBOL(d_invalidate);
848ac114 1586
1da177e4 1587/**
a4464dbc
AV
1588 * __d_alloc - allocate a dcache entry
1589 * @sb: filesystem it will belong to
1da177e4
LT
1590 * @name: qstr of the name
1591 *
1592 * Allocates a dentry. It returns %NULL if there is insufficient memory
1593 * available. On a success the dentry is returned. The name passed in is
1594 * copied and the copy passed in may be reused after this call.
1595 */
1596
a4464dbc 1597struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1598{
1599 struct dentry *dentry;
1600 char *dname;
285b102d 1601 int err;
1da177e4 1602
e12ba74d 1603 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1604 if (!dentry)
1605 return NULL;
1606
6326c71f
LT
1607 /*
1608 * We guarantee that the inline name is always NUL-terminated.
1609 * This way the memcpy() done by the name switching in rename
1610 * will still always have a NUL at the end, even if we might
1611 * be overwriting an internal NUL character
1612 */
1613 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1614 if (unlikely(!name)) {
cdf01226 1615 name = &slash_name;
798434bd
AV
1616 dname = dentry->d_iname;
1617 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1618 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1619 struct external_name *p = kmalloc(size + name->len,
1620 GFP_KERNEL_ACCOUNT);
8d85b484 1621 if (!p) {
1da177e4
LT
1622 kmem_cache_free(dentry_cache, dentry);
1623 return NULL;
1624 }
8d85b484
AV
1625 atomic_set(&p->u.count, 1);
1626 dname = p->name;
df4c0e36
AR
1627 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1628 kasan_unpoison_shadow(dname,
1629 round_up(name->len + 1, sizeof(unsigned long)));
1da177e4
LT
1630 } else {
1631 dname = dentry->d_iname;
1632 }
1da177e4
LT
1633
1634 dentry->d_name.len = name->len;
1635 dentry->d_name.hash = name->hash;
1636 memcpy(dname, name->name, name->len);
1637 dname[name->len] = 0;
1638
6326c71f
LT
1639 /* Make sure we always see the terminating NUL character */
1640 smp_wmb();
1641 dentry->d_name.name = dname;
1642
98474236 1643 dentry->d_lockref.count = 1;
dea3667b 1644 dentry->d_flags = 0;
1da177e4 1645 spin_lock_init(&dentry->d_lock);
31e6b01f 1646 seqcount_init(&dentry->d_seq);
1da177e4 1647 dentry->d_inode = NULL;
a4464dbc
AV
1648 dentry->d_parent = dentry;
1649 dentry->d_sb = sb;
1da177e4
LT
1650 dentry->d_op = NULL;
1651 dentry->d_fsdata = NULL;
ceb5bdc2 1652 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1653 INIT_LIST_HEAD(&dentry->d_lru);
1654 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1655 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1656 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1657 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1658
285b102d
MS
1659 if (dentry->d_op && dentry->d_op->d_init) {
1660 err = dentry->d_op->d_init(dentry);
1661 if (err) {
1662 if (dname_external(dentry))
1663 kfree(external_name(dentry));
1664 kmem_cache_free(dentry_cache, dentry);
1665 return NULL;
1666 }
1667 }
1668
3e880fb5 1669 this_cpu_inc(nr_dentry);
312d3ca8 1670
1da177e4
LT
1671 return dentry;
1672}
a4464dbc
AV
1673
1674/**
1675 * d_alloc - allocate a dcache entry
1676 * @parent: parent of entry to allocate
1677 * @name: qstr of the name
1678 *
1679 * Allocates a dentry. It returns %NULL if there is insufficient memory
1680 * available. On a success the dentry is returned. The name passed in is
1681 * copied and the copy passed in may be reused after this call.
1682 */
1683struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1684{
1685 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1686 if (!dentry)
1687 return NULL;
3d56c25e 1688 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1689 spin_lock(&parent->d_lock);
1690 /*
1691 * don't need child lock because it is not subject
1692 * to concurrency here
1693 */
1694 __dget_dlock(parent);
1695 dentry->d_parent = parent;
946e51f2 1696 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1697 spin_unlock(&parent->d_lock);
1698
1699 return dentry;
1700}
ec4f8605 1701EXPORT_SYMBOL(d_alloc);
1da177e4 1702
ba65dc5e
AV
1703struct dentry *d_alloc_cursor(struct dentry * parent)
1704{
1705 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1706 if (dentry) {
1707 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1708 dentry->d_parent = dget(parent);
1709 }
1710 return dentry;
1711}
1712
e1a24bb0
BF
1713/**
1714 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1715 * @sb: the superblock
1716 * @name: qstr of the name
1717 *
1718 * For a filesystem that just pins its dentries in memory and never
1719 * performs lookups at all, return an unhashed IS_ROOT dentry.
1720 */
4b936885
NP
1721struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1722{
e1a24bb0 1723 return __d_alloc(sb, name);
4b936885
NP
1724}
1725EXPORT_SYMBOL(d_alloc_pseudo);
1726
1da177e4
LT
1727struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1728{
1729 struct qstr q;
1730
1731 q.name = name;
8387ff25 1732 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1733 return d_alloc(parent, &q);
1734}
ef26ca97 1735EXPORT_SYMBOL(d_alloc_name);
1da177e4 1736
fb045adb
NP
1737void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1738{
6f7f7caa
LT
1739 WARN_ON_ONCE(dentry->d_op);
1740 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1741 DCACHE_OP_COMPARE |
1742 DCACHE_OP_REVALIDATE |
ecf3d1f1 1743 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1744 DCACHE_OP_DELETE |
d101a125 1745 DCACHE_OP_REAL));
fb045adb
NP
1746 dentry->d_op = op;
1747 if (!op)
1748 return;
1749 if (op->d_hash)
1750 dentry->d_flags |= DCACHE_OP_HASH;
1751 if (op->d_compare)
1752 dentry->d_flags |= DCACHE_OP_COMPARE;
1753 if (op->d_revalidate)
1754 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1755 if (op->d_weak_revalidate)
1756 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1757 if (op->d_delete)
1758 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1759 if (op->d_prune)
1760 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1761 if (op->d_real)
1762 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1763
1764}
1765EXPORT_SYMBOL(d_set_d_op);
1766
df1a085a
DH
1767
1768/*
1769 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1770 * @dentry - The dentry to mark
1771 *
1772 * Mark a dentry as falling through to the lower layer (as set with
1773 * d_pin_lower()). This flag may be recorded on the medium.
1774 */
1775void d_set_fallthru(struct dentry *dentry)
1776{
1777 spin_lock(&dentry->d_lock);
1778 dentry->d_flags |= DCACHE_FALLTHRU;
1779 spin_unlock(&dentry->d_lock);
1780}
1781EXPORT_SYMBOL(d_set_fallthru);
1782
b18825a7
DH
1783static unsigned d_flags_for_inode(struct inode *inode)
1784{
44bdb5e5 1785 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1786
1787 if (!inode)
1788 return DCACHE_MISS_TYPE;
1789
1790 if (S_ISDIR(inode->i_mode)) {
1791 add_flags = DCACHE_DIRECTORY_TYPE;
1792 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1793 if (unlikely(!inode->i_op->lookup))
1794 add_flags = DCACHE_AUTODIR_TYPE;
1795 else
1796 inode->i_opflags |= IOP_LOOKUP;
1797 }
44bdb5e5
DH
1798 goto type_determined;
1799 }
1800
1801 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1802 if (unlikely(inode->i_op->get_link)) {
b18825a7 1803 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1804 goto type_determined;
1805 }
1806 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1807 }
1808
44bdb5e5
DH
1809 if (unlikely(!S_ISREG(inode->i_mode)))
1810 add_flags = DCACHE_SPECIAL_TYPE;
1811
1812type_determined:
b18825a7
DH
1813 if (unlikely(IS_AUTOMOUNT(inode)))
1814 add_flags |= DCACHE_NEED_AUTOMOUNT;
1815 return add_flags;
1816}
1817
360da900
OH
1818static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1819{
b18825a7 1820 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1821 WARN_ON(d_in_lookup(dentry));
b18825a7 1822
b23fb0a6 1823 spin_lock(&dentry->d_lock);
de689f5e 1824 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1825 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1826 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1827 raw_write_seqcount_end(&dentry->d_seq);
affda484 1828 fsnotify_update_flags(dentry);
b23fb0a6 1829 spin_unlock(&dentry->d_lock);
360da900
OH
1830}
1831
1da177e4
LT
1832/**
1833 * d_instantiate - fill in inode information for a dentry
1834 * @entry: dentry to complete
1835 * @inode: inode to attach to this dentry
1836 *
1837 * Fill in inode information in the entry.
1838 *
1839 * This turns negative dentries into productive full members
1840 * of society.
1841 *
1842 * NOTE! This assumes that the inode count has been incremented
1843 * (or otherwise set) by the caller to indicate that it is now
1844 * in use by the dcache.
1845 */
1846
1847void d_instantiate(struct dentry *entry, struct inode * inode)
1848{
946e51f2 1849 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1850 if (inode) {
b9680917 1851 security_d_instantiate(entry, inode);
873feea0 1852 spin_lock(&inode->i_lock);
de689f5e 1853 __d_instantiate(entry, inode);
873feea0 1854 spin_unlock(&inode->i_lock);
de689f5e 1855 }
1da177e4 1856}
ec4f8605 1857EXPORT_SYMBOL(d_instantiate);
1da177e4 1858
b70a80e7
MS
1859/**
1860 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1861 * @entry: dentry to complete
1862 * @inode: inode to attach to this dentry
1863 *
1864 * Fill in inode information in the entry. If a directory alias is found, then
1865 * return an error (and drop inode). Together with d_materialise_unique() this
1866 * guarantees that a directory inode may never have more than one alias.
1867 */
1868int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1869{
946e51f2 1870 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1871
b9680917 1872 security_d_instantiate(entry, inode);
b70a80e7
MS
1873 spin_lock(&inode->i_lock);
1874 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1875 spin_unlock(&inode->i_lock);
1876 iput(inode);
1877 return -EBUSY;
1878 }
1879 __d_instantiate(entry, inode);
1880 spin_unlock(&inode->i_lock);
b70a80e7
MS
1881
1882 return 0;
1883}
1884EXPORT_SYMBOL(d_instantiate_no_diralias);
1885
adc0e91a
AV
1886struct dentry *d_make_root(struct inode *root_inode)
1887{
1888 struct dentry *res = NULL;
1889
1890 if (root_inode) {
798434bd 1891 res = __d_alloc(root_inode->i_sb, NULL);
adc0e91a
AV
1892 if (res)
1893 d_instantiate(res, root_inode);
1894 else
1895 iput(root_inode);
1896 }
1897 return res;
1898}
1899EXPORT_SYMBOL(d_make_root);
1900
d891eedb
BF
1901static struct dentry * __d_find_any_alias(struct inode *inode)
1902{
1903 struct dentry *alias;
1904
b3d9b7a3 1905 if (hlist_empty(&inode->i_dentry))
d891eedb 1906 return NULL;
946e51f2 1907 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1908 __dget(alias);
1909 return alias;
1910}
1911
46f72b34
SW
1912/**
1913 * d_find_any_alias - find any alias for a given inode
1914 * @inode: inode to find an alias for
1915 *
1916 * If any aliases exist for the given inode, take and return a
1917 * reference for one of them. If no aliases exist, return %NULL.
1918 */
1919struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1920{
1921 struct dentry *de;
1922
1923 spin_lock(&inode->i_lock);
1924 de = __d_find_any_alias(inode);
1925 spin_unlock(&inode->i_lock);
1926 return de;
1927}
46f72b34 1928EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1929
49c7dd28 1930static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1931{
9308a612
CH
1932 struct dentry *tmp;
1933 struct dentry *res;
b18825a7 1934 unsigned add_flags;
4ea3ada2
CH
1935
1936 if (!inode)
44003728 1937 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1938 if (IS_ERR(inode))
1939 return ERR_CAST(inode);
1940
d891eedb 1941 res = d_find_any_alias(inode);
9308a612
CH
1942 if (res)
1943 goto out_iput;
1944
798434bd 1945 tmp = __d_alloc(inode->i_sb, NULL);
9308a612
CH
1946 if (!tmp) {
1947 res = ERR_PTR(-ENOMEM);
1948 goto out_iput;
4ea3ada2 1949 }
b5c84bf6 1950
b9680917 1951 security_d_instantiate(tmp, inode);
873feea0 1952 spin_lock(&inode->i_lock);
d891eedb 1953 res = __d_find_any_alias(inode);
9308a612 1954 if (res) {
873feea0 1955 spin_unlock(&inode->i_lock);
9308a612
CH
1956 dput(tmp);
1957 goto out_iput;
1958 }
1959
1960 /* attach a disconnected dentry */
1a0a397e
BF
1961 add_flags = d_flags_for_inode(inode);
1962
1963 if (disconnected)
1964 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1965
9308a612 1966 spin_lock(&tmp->d_lock);
4bf46a27 1967 __d_set_inode_and_type(tmp, inode, add_flags);
946e51f2 1968 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1879fd6a 1969 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1970 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1971 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1972 spin_unlock(&tmp->d_lock);
873feea0 1973 spin_unlock(&inode->i_lock);
9308a612 1974
9308a612
CH
1975 return tmp;
1976
1977 out_iput:
1978 iput(inode);
1979 return res;
4ea3ada2 1980}
1a0a397e
BF
1981
1982/**
1983 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1984 * @inode: inode to allocate the dentry for
1985 *
1986 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1987 * similar open by handle operations. The returned dentry may be anonymous,
1988 * or may have a full name (if the inode was already in the cache).
1989 *
1990 * When called on a directory inode, we must ensure that the inode only ever
1991 * has one dentry. If a dentry is found, that is returned instead of
1992 * allocating a new one.
1993 *
1994 * On successful return, the reference to the inode has been transferred
1995 * to the dentry. In case of an error the reference on the inode is released.
1996 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1997 * be passed in and the error will be propagated to the return value,
1998 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1999 */
2000struct dentry *d_obtain_alias(struct inode *inode)
2001{
2002 return __d_obtain_alias(inode, 1);
2003}
adc48720 2004EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2005
1a0a397e
BF
2006/**
2007 * d_obtain_root - find or allocate a dentry for a given inode
2008 * @inode: inode to allocate the dentry for
2009 *
2010 * Obtain an IS_ROOT dentry for the root of a filesystem.
2011 *
2012 * We must ensure that directory inodes only ever have one dentry. If a
2013 * dentry is found, that is returned instead of allocating a new one.
2014 *
2015 * On successful return, the reference to the inode has been transferred
2016 * to the dentry. In case of an error the reference on the inode is
2017 * released. A %NULL or IS_ERR inode may be passed in and will be the
2018 * error will be propagate to the return value, with a %NULL @inode
2019 * replaced by ERR_PTR(-ESTALE).
2020 */
2021struct dentry *d_obtain_root(struct inode *inode)
2022{
2023 return __d_obtain_alias(inode, 0);
2024}
2025EXPORT_SYMBOL(d_obtain_root);
2026
9403540c
BN
2027/**
2028 * d_add_ci - lookup or allocate new dentry with case-exact name
2029 * @inode: the inode case-insensitive lookup has found
2030 * @dentry: the negative dentry that was passed to the parent's lookup func
2031 * @name: the case-exact name to be associated with the returned dentry
2032 *
2033 * This is to avoid filling the dcache with case-insensitive names to the
2034 * same inode, only the actual correct case is stored in the dcache for
2035 * case-insensitive filesystems.
2036 *
2037 * For a case-insensitive lookup match and if the the case-exact dentry
2038 * already exists in in the dcache, use it and return it.
2039 *
2040 * If no entry exists with the exact case name, allocate new dentry with
2041 * the exact case, and return the spliced entry.
2042 */
e45b590b 2043struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2044 struct qstr *name)
2045{
d9171b93 2046 struct dentry *found, *res;
9403540c 2047
b6520c81
CH
2048 /*
2049 * First check if a dentry matching the name already exists,
2050 * if not go ahead and create it now.
2051 */
9403540c 2052 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2053 if (found) {
2054 iput(inode);
2055 return found;
2056 }
2057 if (d_in_lookup(dentry)) {
2058 found = d_alloc_parallel(dentry->d_parent, name,
2059 dentry->d_wait);
2060 if (IS_ERR(found) || !d_in_lookup(found)) {
2061 iput(inode);
2062 return found;
9403540c 2063 }
d9171b93
AV
2064 } else {
2065 found = d_alloc(dentry->d_parent, name);
2066 if (!found) {
2067 iput(inode);
2068 return ERR_PTR(-ENOMEM);
2069 }
2070 }
2071 res = d_splice_alias(inode, found);
2072 if (res) {
2073 dput(found);
2074 return res;
9403540c 2075 }
4f522a24 2076 return found;
9403540c 2077}
ec4f8605 2078EXPORT_SYMBOL(d_add_ci);
1da177e4 2079
12f8ad4b 2080
d4c91a8f
AV
2081static inline bool d_same_name(const struct dentry *dentry,
2082 const struct dentry *parent,
2083 const struct qstr *name)
12f8ad4b 2084{
d4c91a8f
AV
2085 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2086 if (dentry->d_name.len != name->len)
2087 return false;
2088 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2089 }
6fa67e70 2090 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2091 dentry->d_name.len, dentry->d_name.name,
2092 name) == 0;
12f8ad4b
LT
2093}
2094
31e6b01f
NP
2095/**
2096 * __d_lookup_rcu - search for a dentry (racy, store-free)
2097 * @parent: parent dentry
2098 * @name: qstr of name we wish to find
1f1e6e52 2099 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2100 * Returns: dentry, or NULL
2101 *
2102 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2103 * resolution (store-free path walking) design described in
2104 * Documentation/filesystems/path-lookup.txt.
2105 *
2106 * This is not to be used outside core vfs.
2107 *
2108 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2109 * held, and rcu_read_lock held. The returned dentry must not be stored into
2110 * without taking d_lock and checking d_seq sequence count against @seq
2111 * returned here.
2112 *
15570086 2113 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2114 * function.
2115 *
2116 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2117 * the returned dentry, so long as its parent's seqlock is checked after the
2118 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2119 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2120 *
2121 * NOTE! The caller *has* to check the resulting dentry against the sequence
2122 * number we've returned before using any of the resulting dentry state!
31e6b01f 2123 */
8966be90
LT
2124struct dentry *__d_lookup_rcu(const struct dentry *parent,
2125 const struct qstr *name,
da53be12 2126 unsigned *seqp)
31e6b01f 2127{
26fe5750 2128 u64 hashlen = name->hash_len;
31e6b01f 2129 const unsigned char *str = name->name;
8387ff25 2130 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2131 struct hlist_bl_node *node;
31e6b01f
NP
2132 struct dentry *dentry;
2133
2134 /*
2135 * Note: There is significant duplication with __d_lookup_rcu which is
2136 * required to prevent single threaded performance regressions
2137 * especially on architectures where smp_rmb (in seqcounts) are costly.
2138 * Keep the two functions in sync.
2139 */
2140
2141 /*
2142 * The hash list is protected using RCU.
2143 *
2144 * Carefully use d_seq when comparing a candidate dentry, to avoid
2145 * races with d_move().
2146 *
2147 * It is possible that concurrent renames can mess up our list
2148 * walk here and result in missing our dentry, resulting in the
2149 * false-negative result. d_lookup() protects against concurrent
2150 * renames using rename_lock seqlock.
2151 *
b0a4bb83 2152 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2153 */
b07ad996 2154 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2155 unsigned seq;
31e6b01f 2156
31e6b01f 2157seqretry:
12f8ad4b
LT
2158 /*
2159 * The dentry sequence count protects us from concurrent
da53be12 2160 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2161 *
2162 * The caller must perform a seqcount check in order
da53be12 2163 * to do anything useful with the returned dentry.
12f8ad4b
LT
2164 *
2165 * NOTE! We do a "raw" seqcount_begin here. That means that
2166 * we don't wait for the sequence count to stabilize if it
2167 * is in the middle of a sequence change. If we do the slow
2168 * dentry compare, we will do seqretries until it is stable,
2169 * and if we end up with a successful lookup, we actually
2170 * want to exit RCU lookup anyway.
d4c91a8f
AV
2171 *
2172 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2173 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2174 */
2175 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2176 if (dentry->d_parent != parent)
2177 continue;
2e321806
LT
2178 if (d_unhashed(dentry))
2179 continue;
12f8ad4b 2180
830c0f0e 2181 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2182 int tlen;
2183 const char *tname;
26fe5750
LT
2184 if (dentry->d_name.hash != hashlen_hash(hashlen))
2185 continue;
d4c91a8f
AV
2186 tlen = dentry->d_name.len;
2187 tname = dentry->d_name.name;
2188 /* we want a consistent (name,len) pair */
2189 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2190 cpu_relax();
12f8ad4b
LT
2191 goto seqretry;
2192 }
6fa67e70 2193 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2194 tlen, tname, name) != 0)
2195 continue;
2196 } else {
2197 if (dentry->d_name.hash_len != hashlen)
2198 continue;
2199 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2200 continue;
31e6b01f 2201 }
da53be12 2202 *seqp = seq;
d4c91a8f 2203 return dentry;
31e6b01f
NP
2204 }
2205 return NULL;
2206}
2207
1da177e4
LT
2208/**
2209 * d_lookup - search for a dentry
2210 * @parent: parent dentry
2211 * @name: qstr of name we wish to find
b04f784e 2212 * Returns: dentry, or NULL
1da177e4 2213 *
b04f784e
NP
2214 * d_lookup searches the children of the parent dentry for the name in
2215 * question. If the dentry is found its reference count is incremented and the
2216 * dentry is returned. The caller must use dput to free the entry when it has
2217 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2218 */
da2d8455 2219struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2220{
31e6b01f 2221 struct dentry *dentry;
949854d0 2222 unsigned seq;
1da177e4 2223
b8314f93
DY
2224 do {
2225 seq = read_seqbegin(&rename_lock);
2226 dentry = __d_lookup(parent, name);
2227 if (dentry)
1da177e4
LT
2228 break;
2229 } while (read_seqretry(&rename_lock, seq));
2230 return dentry;
2231}
ec4f8605 2232EXPORT_SYMBOL(d_lookup);
1da177e4 2233
31e6b01f 2234/**
b04f784e
NP
2235 * __d_lookup - search for a dentry (racy)
2236 * @parent: parent dentry
2237 * @name: qstr of name we wish to find
2238 * Returns: dentry, or NULL
2239 *
2240 * __d_lookup is like d_lookup, however it may (rarely) return a
2241 * false-negative result due to unrelated rename activity.
2242 *
2243 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2244 * however it must be used carefully, eg. with a following d_lookup in
2245 * the case of failure.
2246 *
2247 * __d_lookup callers must be commented.
2248 */
a713ca2a 2249struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2250{
1da177e4 2251 unsigned int hash = name->hash;
8387ff25 2252 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2253 struct hlist_bl_node *node;
31e6b01f 2254 struct dentry *found = NULL;
665a7583 2255 struct dentry *dentry;
1da177e4 2256
31e6b01f
NP
2257 /*
2258 * Note: There is significant duplication with __d_lookup_rcu which is
2259 * required to prevent single threaded performance regressions
2260 * especially on architectures where smp_rmb (in seqcounts) are costly.
2261 * Keep the two functions in sync.
2262 */
2263
b04f784e
NP
2264 /*
2265 * The hash list is protected using RCU.
2266 *
2267 * Take d_lock when comparing a candidate dentry, to avoid races
2268 * with d_move().
2269 *
2270 * It is possible that concurrent renames can mess up our list
2271 * walk here and result in missing our dentry, resulting in the
2272 * false-negative result. d_lookup() protects against concurrent
2273 * renames using rename_lock seqlock.
2274 *
b0a4bb83 2275 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2276 */
1da177e4
LT
2277 rcu_read_lock();
2278
b07ad996 2279 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2280
1da177e4
LT
2281 if (dentry->d_name.hash != hash)
2282 continue;
1da177e4
LT
2283
2284 spin_lock(&dentry->d_lock);
1da177e4
LT
2285 if (dentry->d_parent != parent)
2286 goto next;
d0185c08
LT
2287 if (d_unhashed(dentry))
2288 goto next;
2289
d4c91a8f
AV
2290 if (!d_same_name(dentry, parent, name))
2291 goto next;
1da177e4 2292
98474236 2293 dentry->d_lockref.count++;
d0185c08 2294 found = dentry;
1da177e4
LT
2295 spin_unlock(&dentry->d_lock);
2296 break;
2297next:
2298 spin_unlock(&dentry->d_lock);
2299 }
2300 rcu_read_unlock();
2301
2302 return found;
2303}
2304
3e7e241f
EB
2305/**
2306 * d_hash_and_lookup - hash the qstr then search for a dentry
2307 * @dir: Directory to search in
2308 * @name: qstr of name we wish to find
2309 *
4f522a24 2310 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2311 */
2312struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2313{
3e7e241f
EB
2314 /*
2315 * Check for a fs-specific hash function. Note that we must
2316 * calculate the standard hash first, as the d_op->d_hash()
2317 * routine may choose to leave the hash value unchanged.
2318 */
8387ff25 2319 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2320 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2321 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2322 if (unlikely(err < 0))
2323 return ERR_PTR(err);
3e7e241f 2324 }
4f522a24 2325 return d_lookup(dir, name);
3e7e241f 2326}
4f522a24 2327EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2328
1da177e4
LT
2329/*
2330 * When a file is deleted, we have two options:
2331 * - turn this dentry into a negative dentry
2332 * - unhash this dentry and free it.
2333 *
2334 * Usually, we want to just turn this into
2335 * a negative dentry, but if anybody else is
2336 * currently using the dentry or the inode
2337 * we can't do that and we fall back on removing
2338 * it from the hash queues and waiting for
2339 * it to be deleted later when it has no users
2340 */
2341
2342/**
2343 * d_delete - delete a dentry
2344 * @dentry: The dentry to delete
2345 *
2346 * Turn the dentry into a negative dentry if possible, otherwise
2347 * remove it from the hash queues so it can be deleted later
2348 */
2349
2350void d_delete(struct dentry * dentry)
2351{
873feea0 2352 struct inode *inode;
7a91bf7f 2353 int isdir = 0;
1da177e4
LT
2354 /*
2355 * Are we the only user?
2356 */
357f8e65 2357again:
1da177e4 2358 spin_lock(&dentry->d_lock);
873feea0
NP
2359 inode = dentry->d_inode;
2360 isdir = S_ISDIR(inode->i_mode);
98474236 2361 if (dentry->d_lockref.count == 1) {
1fe0c023 2362 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2363 spin_unlock(&dentry->d_lock);
2364 cpu_relax();
2365 goto again;
2366 }
13e3c5e5 2367 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2368 dentry_unlink_inode(dentry);
7a91bf7f 2369 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2370 return;
2371 }
2372
2373 if (!d_unhashed(dentry))
2374 __d_drop(dentry);
2375
2376 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2377
2378 fsnotify_nameremove(dentry, isdir);
1da177e4 2379}
ec4f8605 2380EXPORT_SYMBOL(d_delete);
1da177e4 2381
15d3c589 2382static void __d_rehash(struct dentry *entry)
1da177e4 2383{
15d3c589 2384 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
ceb5bdc2 2385 BUG_ON(!d_unhashed(entry));
1879fd6a 2386 hlist_bl_lock(b);
b07ad996 2387 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2388 hlist_bl_unlock(b);
1da177e4
LT
2389}
2390
2391/**
2392 * d_rehash - add an entry back to the hash
2393 * @entry: dentry to add to the hash
2394 *
2395 * Adds a dentry to the hash according to its name.
2396 */
2397
2398void d_rehash(struct dentry * entry)
2399{
1da177e4 2400 spin_lock(&entry->d_lock);
15d3c589 2401 __d_rehash(entry);
1da177e4 2402 spin_unlock(&entry->d_lock);
1da177e4 2403}
ec4f8605 2404EXPORT_SYMBOL(d_rehash);
1da177e4 2405
84e710da
AV
2406static inline unsigned start_dir_add(struct inode *dir)
2407{
2408
2409 for (;;) {
2410 unsigned n = dir->i_dir_seq;
2411 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2412 return n;
2413 cpu_relax();
2414 }
2415}
2416
2417static inline void end_dir_add(struct inode *dir, unsigned n)
2418{
2419 smp_store_release(&dir->i_dir_seq, n + 2);
2420}
2421
d9171b93
AV
2422static void d_wait_lookup(struct dentry *dentry)
2423{
2424 if (d_in_lookup(dentry)) {
2425 DECLARE_WAITQUEUE(wait, current);
2426 add_wait_queue(dentry->d_wait, &wait);
2427 do {
2428 set_current_state(TASK_UNINTERRUPTIBLE);
2429 spin_unlock(&dentry->d_lock);
2430 schedule();
2431 spin_lock(&dentry->d_lock);
2432 } while (d_in_lookup(dentry));
2433 }
2434}
2435
94bdd655 2436struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2437 const struct qstr *name,
2438 wait_queue_head_t *wq)
94bdd655 2439{
94bdd655 2440 unsigned int hash = name->hash;
94bdd655
AV
2441 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2442 struct hlist_bl_node *node;
2443 struct dentry *new = d_alloc(parent, name);
2444 struct dentry *dentry;
2445 unsigned seq, r_seq, d_seq;
2446
2447 if (unlikely(!new))
2448 return ERR_PTR(-ENOMEM);
2449
2450retry:
2451 rcu_read_lock();
2452 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2453 r_seq = read_seqbegin(&rename_lock);
2454 dentry = __d_lookup_rcu(parent, name, &d_seq);
2455 if (unlikely(dentry)) {
2456 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2457 rcu_read_unlock();
2458 goto retry;
2459 }
2460 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2461 rcu_read_unlock();
2462 dput(dentry);
2463 goto retry;
2464 }
2465 rcu_read_unlock();
2466 dput(new);
2467 return dentry;
2468 }
2469 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2470 rcu_read_unlock();
2471 goto retry;
2472 }
2473 hlist_bl_lock(b);
2474 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2475 hlist_bl_unlock(b);
2476 rcu_read_unlock();
2477 goto retry;
2478 }
94bdd655
AV
2479 /*
2480 * No changes for the parent since the beginning of d_lookup().
2481 * Since all removals from the chain happen with hlist_bl_lock(),
2482 * any potential in-lookup matches are going to stay here until
2483 * we unlock the chain. All fields are stable in everything
2484 * we encounter.
2485 */
2486 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2487 if (dentry->d_name.hash != hash)
2488 continue;
2489 if (dentry->d_parent != parent)
2490 continue;
d4c91a8f
AV
2491 if (!d_same_name(dentry, parent, name))
2492 continue;
94bdd655 2493 hlist_bl_unlock(b);
e7d6ef97
AV
2494 /* now we can try to grab a reference */
2495 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2496 rcu_read_unlock();
2497 goto retry;
2498 }
2499
2500 rcu_read_unlock();
2501 /*
2502 * somebody is likely to be still doing lookup for it;
2503 * wait for them to finish
2504 */
d9171b93
AV
2505 spin_lock(&dentry->d_lock);
2506 d_wait_lookup(dentry);
2507 /*
2508 * it's not in-lookup anymore; in principle we should repeat
2509 * everything from dcache lookup, but it's likely to be what
2510 * d_lookup() would've found anyway. If it is, just return it;
2511 * otherwise we really have to repeat the whole thing.
2512 */
2513 if (unlikely(dentry->d_name.hash != hash))
2514 goto mismatch;
2515 if (unlikely(dentry->d_parent != parent))
2516 goto mismatch;
2517 if (unlikely(d_unhashed(dentry)))
2518 goto mismatch;
d4c91a8f
AV
2519 if (unlikely(!d_same_name(dentry, parent, name)))
2520 goto mismatch;
d9171b93
AV
2521 /* OK, it *is* a hashed match; return it */
2522 spin_unlock(&dentry->d_lock);
94bdd655
AV
2523 dput(new);
2524 return dentry;
2525 }
e7d6ef97 2526 rcu_read_unlock();
94bdd655
AV
2527 /* we can't take ->d_lock here; it's OK, though. */
2528 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2529 new->d_wait = wq;
94bdd655
AV
2530 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2531 hlist_bl_unlock(b);
2532 return new;
d9171b93
AV
2533mismatch:
2534 spin_unlock(&dentry->d_lock);
2535 dput(dentry);
2536 goto retry;
94bdd655
AV
2537}
2538EXPORT_SYMBOL(d_alloc_parallel);
2539
85c7f810
AV
2540void __d_lookup_done(struct dentry *dentry)
2541{
94bdd655
AV
2542 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2543 dentry->d_name.hash);
2544 hlist_bl_lock(b);
85c7f810 2545 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2546 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2547 wake_up_all(dentry->d_wait);
2548 dentry->d_wait = NULL;
94bdd655
AV
2549 hlist_bl_unlock(b);
2550 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2551 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2552}
2553EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2554
2555/* inode->i_lock held if inode is non-NULL */
2556
2557static inline void __d_add(struct dentry *dentry, struct inode *inode)
2558{
84e710da
AV
2559 struct inode *dir = NULL;
2560 unsigned n;
0568d705 2561 spin_lock(&dentry->d_lock);
84e710da
AV
2562 if (unlikely(d_in_lookup(dentry))) {
2563 dir = dentry->d_parent->d_inode;
2564 n = start_dir_add(dir);
85c7f810 2565 __d_lookup_done(dentry);
84e710da 2566 }
ed782b5a 2567 if (inode) {
0568d705
AV
2568 unsigned add_flags = d_flags_for_inode(inode);
2569 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2570 raw_write_seqcount_begin(&dentry->d_seq);
2571 __d_set_inode_and_type(dentry, inode, add_flags);
2572 raw_write_seqcount_end(&dentry->d_seq);
affda484 2573 fsnotify_update_flags(dentry);
ed782b5a 2574 }
15d3c589 2575 __d_rehash(dentry);
84e710da
AV
2576 if (dir)
2577 end_dir_add(dir, n);
0568d705
AV
2578 spin_unlock(&dentry->d_lock);
2579 if (inode)
2580 spin_unlock(&inode->i_lock);
ed782b5a
AV
2581}
2582
34d0d19d
AV
2583/**
2584 * d_add - add dentry to hash queues
2585 * @entry: dentry to add
2586 * @inode: The inode to attach to this dentry
2587 *
2588 * This adds the entry to the hash queues and initializes @inode.
2589 * The entry was actually filled in earlier during d_alloc().
2590 */
2591
2592void d_add(struct dentry *entry, struct inode *inode)
2593{
b9680917
AV
2594 if (inode) {
2595 security_d_instantiate(entry, inode);
ed782b5a 2596 spin_lock(&inode->i_lock);
b9680917 2597 }
ed782b5a 2598 __d_add(entry, inode);
34d0d19d
AV
2599}
2600EXPORT_SYMBOL(d_add);
2601
668d0cd5
AV
2602/**
2603 * d_exact_alias - find and hash an exact unhashed alias
2604 * @entry: dentry to add
2605 * @inode: The inode to go with this dentry
2606 *
2607 * If an unhashed dentry with the same name/parent and desired
2608 * inode already exists, hash and return it. Otherwise, return
2609 * NULL.
2610 *
2611 * Parent directory should be locked.
2612 */
2613struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2614{
2615 struct dentry *alias;
668d0cd5
AV
2616 unsigned int hash = entry->d_name.hash;
2617
2618 spin_lock(&inode->i_lock);
2619 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2620 /*
2621 * Don't need alias->d_lock here, because aliases with
2622 * d_parent == entry->d_parent are not subject to name or
2623 * parent changes, because the parent inode i_mutex is held.
2624 */
2625 if (alias->d_name.hash != hash)
2626 continue;
2627 if (alias->d_parent != entry->d_parent)
2628 continue;
d4c91a8f 2629 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2630 continue;
2631 spin_lock(&alias->d_lock);
2632 if (!d_unhashed(alias)) {
2633 spin_unlock(&alias->d_lock);
2634 alias = NULL;
2635 } else {
2636 __dget_dlock(alias);
15d3c589 2637 __d_rehash(alias);
668d0cd5
AV
2638 spin_unlock(&alias->d_lock);
2639 }
2640 spin_unlock(&inode->i_lock);
2641 return alias;
2642 }
2643 spin_unlock(&inode->i_lock);
2644 return NULL;
2645}
2646EXPORT_SYMBOL(d_exact_alias);
2647
fb2d5b86
NP
2648/**
2649 * dentry_update_name_case - update case insensitive dentry with a new name
2650 * @dentry: dentry to be updated
2651 * @name: new name
2652 *
2653 * Update a case insensitive dentry with new case of name.
2654 *
2655 * dentry must have been returned by d_lookup with name @name. Old and new
2656 * name lengths must match (ie. no d_compare which allows mismatched name
2657 * lengths).
2658 *
2659 * Parent inode i_mutex must be held over d_lookup and into this call (to
2660 * keep renames and concurrent inserts, and readdir(2) away).
2661 */
9aba36de 2662void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2663{
5955102c 2664 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2665 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2666
fb2d5b86 2667 spin_lock(&dentry->d_lock);
31e6b01f 2668 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2669 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2670 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2671 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2672}
2673EXPORT_SYMBOL(dentry_update_name_case);
2674
8d85b484 2675static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2676{
8d85b484
AV
2677 if (unlikely(dname_external(target))) {
2678 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2679 /*
2680 * Both external: swap the pointers
2681 */
9a8d5bb4 2682 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2683 } else {
2684 /*
2685 * dentry:internal, target:external. Steal target's
2686 * storage and make target internal.
2687 */
321bcf92
BF
2688 memcpy(target->d_iname, dentry->d_name.name,
2689 dentry->d_name.len + 1);
1da177e4
LT
2690 dentry->d_name.name = target->d_name.name;
2691 target->d_name.name = target->d_iname;
2692 }
2693 } else {
8d85b484 2694 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2695 /*
2696 * dentry:external, target:internal. Give dentry's
2697 * storage to target and make dentry internal
2698 */
2699 memcpy(dentry->d_iname, target->d_name.name,
2700 target->d_name.len + 1);
2701 target->d_name.name = dentry->d_name.name;
2702 dentry->d_name.name = dentry->d_iname;
2703 } else {
2704 /*
da1ce067 2705 * Both are internal.
1da177e4 2706 */
da1ce067
MS
2707 unsigned int i;
2708 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
08d4f772
MP
2709 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2710 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
da1ce067
MS
2711 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2712 swap(((long *) &dentry->d_iname)[i],
2713 ((long *) &target->d_iname)[i]);
2714 }
1da177e4
LT
2715 }
2716 }
a28ddb87 2717 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2718}
2719
8d85b484
AV
2720static void copy_name(struct dentry *dentry, struct dentry *target)
2721{
2722 struct external_name *old_name = NULL;
2723 if (unlikely(dname_external(dentry)))
2724 old_name = external_name(dentry);
2725 if (unlikely(dname_external(target))) {
2726 atomic_inc(&external_name(target)->u.count);
2727 dentry->d_name = target->d_name;
2728 } else {
2729 memcpy(dentry->d_iname, target->d_name.name,
2730 target->d_name.len + 1);
2731 dentry->d_name.name = dentry->d_iname;
2732 dentry->d_name.hash_len = target->d_name.hash_len;
2733 }
2734 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2735 kfree_rcu(old_name, u.head);
2736}
2737
2fd6b7f5
NP
2738static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2739{
2740 /*
2741 * XXXX: do we really need to take target->d_lock?
2742 */
2743 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2744 spin_lock(&target->d_parent->d_lock);
2745 else {
2746 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2747 spin_lock(&dentry->d_parent->d_lock);
2748 spin_lock_nested(&target->d_parent->d_lock,
2749 DENTRY_D_LOCK_NESTED);
2750 } else {
2751 spin_lock(&target->d_parent->d_lock);
2752 spin_lock_nested(&dentry->d_parent->d_lock,
2753 DENTRY_D_LOCK_NESTED);
2754 }
2755 }
2756 if (target < dentry) {
2757 spin_lock_nested(&target->d_lock, 2);
2758 spin_lock_nested(&dentry->d_lock, 3);
2759 } else {
2760 spin_lock_nested(&dentry->d_lock, 2);
2761 spin_lock_nested(&target->d_lock, 3);
2762 }
2763}
2764
986c0194 2765static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2766{
2767 if (target->d_parent != dentry->d_parent)
2768 spin_unlock(&dentry->d_parent->d_lock);
2769 if (target->d_parent != target)
2770 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2771 spin_unlock(&target->d_lock);
2772 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2773}
2774
1da177e4 2775/*
2fd6b7f5
NP
2776 * When switching names, the actual string doesn't strictly have to
2777 * be preserved in the target - because we're dropping the target
2778 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2779 * the new name before we switch, unless we are going to rehash
2780 * it. Note that if we *do* unhash the target, we are not allowed
2781 * to rehash it without giving it a new name/hash key - whether
2782 * we swap or overwrite the names here, resulting name won't match
2783 * the reality in filesystem; it's only there for d_path() purposes.
2784 * Note that all of this is happening under rename_lock, so the
2785 * any hash lookup seeing it in the middle of manipulations will
2786 * be discarded anyway. So we do not care what happens to the hash
2787 * key in that case.
1da177e4 2788 */
9eaef27b 2789/*
18367501 2790 * __d_move - move a dentry
1da177e4
LT
2791 * @dentry: entry to move
2792 * @target: new dentry
da1ce067 2793 * @exchange: exchange the two dentries
1da177e4
LT
2794 *
2795 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2796 * dcache entries should not be moved in this way. Caller must hold
2797 * rename_lock, the i_mutex of the source and target directories,
2798 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2799 */
da1ce067
MS
2800static void __d_move(struct dentry *dentry, struct dentry *target,
2801 bool exchange)
1da177e4 2802{
84e710da
AV
2803 struct inode *dir = NULL;
2804 unsigned n;
1da177e4
LT
2805 if (!dentry->d_inode)
2806 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2807
2fd6b7f5
NP
2808 BUG_ON(d_ancestor(dentry, target));
2809 BUG_ON(d_ancestor(target, dentry));
2810
2fd6b7f5 2811 dentry_lock_for_move(dentry, target);
84e710da
AV
2812 if (unlikely(d_in_lookup(target))) {
2813 dir = target->d_parent->d_inode;
2814 n = start_dir_add(dir);
85c7f810 2815 __d_lookup_done(target);
84e710da 2816 }
1da177e4 2817
31e6b01f 2818 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2819 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2820
15d3c589 2821 /* unhash both */
ceb5bdc2 2822 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
ceb5bdc2 2823 __d_drop(dentry);
1da177e4
LT
2824 __d_drop(target);
2825
1da177e4 2826 /* Switch the names.. */
8d85b484
AV
2827 if (exchange)
2828 swap_names(dentry, target);
2829 else
2830 copy_name(dentry, target);
1da177e4 2831
15d3c589
AV
2832 /* rehash in new place(s) */
2833 __d_rehash(dentry);
2834 if (exchange)
2835 __d_rehash(target);
2836
63cf427a 2837 /* ... and switch them in the tree */
1da177e4 2838 if (IS_ROOT(dentry)) {
63cf427a 2839 /* splicing a tree */
3d56c25e 2840 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2841 dentry->d_parent = target->d_parent;
2842 target->d_parent = target;
946e51f2
AV
2843 list_del_init(&target->d_child);
2844 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2845 } else {
63cf427a 2846 /* swapping two dentries */
9a8d5bb4 2847 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2848 list_move(&target->d_child, &target->d_parent->d_subdirs);
2849 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2850 if (exchange)
affda484
AV
2851 fsnotify_update_flags(target);
2852 fsnotify_update_flags(dentry);
1da177e4
LT
2853 }
2854
31e6b01f
NP
2855 write_seqcount_end(&target->d_seq);
2856 write_seqcount_end(&dentry->d_seq);
2857
84e710da
AV
2858 if (dir)
2859 end_dir_add(dir, n);
986c0194 2860 dentry_unlock_for_move(dentry, target);
18367501
AV
2861}
2862
2863/*
2864 * d_move - move a dentry
2865 * @dentry: entry to move
2866 * @target: new dentry
2867 *
2868 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2869 * dcache entries should not be moved in this way. See the locking
2870 * requirements for __d_move.
18367501
AV
2871 */
2872void d_move(struct dentry *dentry, struct dentry *target)
2873{
2874 write_seqlock(&rename_lock);
da1ce067 2875 __d_move(dentry, target, false);
1da177e4 2876 write_sequnlock(&rename_lock);
9eaef27b 2877}
ec4f8605 2878EXPORT_SYMBOL(d_move);
1da177e4 2879
da1ce067
MS
2880/*
2881 * d_exchange - exchange two dentries
2882 * @dentry1: first dentry
2883 * @dentry2: second dentry
2884 */
2885void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2886{
2887 write_seqlock(&rename_lock);
2888
2889 WARN_ON(!dentry1->d_inode);
2890 WARN_ON(!dentry2->d_inode);
2891 WARN_ON(IS_ROOT(dentry1));
2892 WARN_ON(IS_ROOT(dentry2));
2893
2894 __d_move(dentry1, dentry2, true);
2895
2896 write_sequnlock(&rename_lock);
2897}
b6450630 2898EXPORT_SYMBOL_GPL(d_exchange);
da1ce067 2899
e2761a11
OH
2900/**
2901 * d_ancestor - search for an ancestor
2902 * @p1: ancestor dentry
2903 * @p2: child dentry
2904 *
2905 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2906 * an ancestor of p2, else NULL.
9eaef27b 2907 */
e2761a11 2908struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2909{
2910 struct dentry *p;
2911
871c0067 2912 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2913 if (p->d_parent == p1)
e2761a11 2914 return p;
9eaef27b 2915 }
e2761a11 2916 return NULL;
9eaef27b
TM
2917}
2918
2919/*
2920 * This helper attempts to cope with remotely renamed directories
2921 *
2922 * It assumes that the caller is already holding
a03e283b 2923 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2924 *
2925 * Note: If ever the locking in lock_rename() changes, then please
2926 * remember to update this too...
9eaef27b 2927 */
b5ae6b15 2928static int __d_unalias(struct inode *inode,
873feea0 2929 struct dentry *dentry, struct dentry *alias)
9eaef27b 2930{
9902af79
AV
2931 struct mutex *m1 = NULL;
2932 struct rw_semaphore *m2 = NULL;
3d330dc1 2933 int ret = -ESTALE;
9eaef27b
TM
2934
2935 /* If alias and dentry share a parent, then no extra locks required */
2936 if (alias->d_parent == dentry->d_parent)
2937 goto out_unalias;
2938
9eaef27b 2939 /* See lock_rename() */
9eaef27b
TM
2940 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2941 goto out_err;
2942 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2943 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2944 goto out_err;
9902af79 2945 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2946out_unalias:
8ed936b5 2947 __d_move(alias, dentry, false);
b5ae6b15 2948 ret = 0;
9eaef27b 2949out_err:
9eaef27b 2950 if (m2)
9902af79 2951 up_read(m2);
9eaef27b
TM
2952 if (m1)
2953 mutex_unlock(m1);
2954 return ret;
2955}
2956
3f70bd51
BF
2957/**
2958 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2959 * @inode: the inode which may have a disconnected dentry
2960 * @dentry: a negative dentry which we want to point to the inode.
2961 *
da093a9b
BF
2962 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2963 * place of the given dentry and return it, else simply d_add the inode
2964 * to the dentry and return NULL.
3f70bd51 2965 *
908790fa
BF
2966 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2967 * we should error out: directories can't have multiple aliases.
2968 *
3f70bd51
BF
2969 * This is needed in the lookup routine of any filesystem that is exportable
2970 * (via knfsd) so that we can build dcache paths to directories effectively.
2971 *
2972 * If a dentry was found and moved, then it is returned. Otherwise NULL
2973 * is returned. This matches the expected return value of ->lookup.
2974 *
2975 * Cluster filesystems may call this function with a negative, hashed dentry.
2976 * In that case, we know that the inode will be a regular file, and also this
2977 * will only occur during atomic_open. So we need to check for the dentry
2978 * being already hashed only in the final case.
2979 */
2980struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2981{
3f70bd51
BF
2982 if (IS_ERR(inode))
2983 return ERR_CAST(inode);
2984
770bfad8
DH
2985 BUG_ON(!d_unhashed(dentry));
2986
de689f5e 2987 if (!inode)
b5ae6b15 2988 goto out;
de689f5e 2989
b9680917 2990 security_d_instantiate(dentry, inode);
873feea0 2991 spin_lock(&inode->i_lock);
9eaef27b 2992 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2993 struct dentry *new = __d_find_any_alias(inode);
2994 if (unlikely(new)) {
a03e283b
EB
2995 /* The reference to new ensures it remains an alias */
2996 spin_unlock(&inode->i_lock);
18367501 2997 write_seqlock(&rename_lock);
b5ae6b15
AV
2998 if (unlikely(d_ancestor(new, dentry))) {
2999 write_sequnlock(&rename_lock);
b5ae6b15
AV
3000 dput(new);
3001 new = ERR_PTR(-ELOOP);
3002 pr_warn_ratelimited(
3003 "VFS: Lookup of '%s' in %s %s"
3004 " would have caused loop\n",
3005 dentry->d_name.name,
3006 inode->i_sb->s_type->name,
3007 inode->i_sb->s_id);
3008 } else if (!IS_ROOT(new)) {
3009 int err = __d_unalias(inode, dentry, new);
18367501 3010 write_sequnlock(&rename_lock);
b5ae6b15
AV
3011 if (err) {
3012 dput(new);
3013 new = ERR_PTR(err);
3014 }
18367501 3015 } else {
b5ae6b15
AV
3016 __d_move(new, dentry, false);
3017 write_sequnlock(&rename_lock);
dd179946 3018 }
b5ae6b15
AV
3019 iput(inode);
3020 return new;
9eaef27b 3021 }
770bfad8 3022 }
b5ae6b15 3023out:
ed782b5a 3024 __d_add(dentry, inode);
b5ae6b15 3025 return NULL;
770bfad8 3026}
b5ae6b15 3027EXPORT_SYMBOL(d_splice_alias);
770bfad8 3028
cdd16d02 3029static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3030{
3031 *buflen -= namelen;
3032 if (*buflen < 0)
3033 return -ENAMETOOLONG;
3034 *buffer -= namelen;
3035 memcpy(*buffer, str, namelen);
3036 return 0;
3037}
3038
232d2d60
WL
3039/**
3040 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3041 * @buffer: buffer pointer
3042 * @buflen: allocated length of the buffer
3043 * @name: name string and length qstr structure
232d2d60
WL
3044 *
3045 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3046 * make sure that either the old or the new name pointer and length are
3047 * fetched. However, there may be mismatch between length and pointer.
3048 * The length cannot be trusted, we need to copy it byte-by-byte until
3049 * the length is reached or a null byte is found. It also prepends "/" at
3050 * the beginning of the name. The sequence number check at the caller will
3051 * retry it again when a d_move() does happen. So any garbage in the buffer
3052 * due to mismatched pointer and length will be discarded.
6d13f694
AV
3053 *
3054 * Data dependency barrier is needed to make sure that we see that terminating
3055 * NUL. Alpha strikes again, film at 11...
232d2d60 3056 */
9aba36de 3057static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
cdd16d02 3058{
232d2d60
WL
3059 const char *dname = ACCESS_ONCE(name->name);
3060 u32 dlen = ACCESS_ONCE(name->len);
3061 char *p;
3062
6d13f694
AV
3063 smp_read_barrier_depends();
3064
232d2d60 3065 *buflen -= dlen + 1;
e825196d
AV
3066 if (*buflen < 0)
3067 return -ENAMETOOLONG;
232d2d60
WL
3068 p = *buffer -= dlen + 1;
3069 *p++ = '/';
3070 while (dlen--) {
3071 char c = *dname++;
3072 if (!c)
3073 break;
3074 *p++ = c;
3075 }
3076 return 0;
cdd16d02
MS
3077}
3078
1da177e4 3079/**
208898c1 3080 * prepend_path - Prepend path string to a buffer
9d1bc601 3081 * @path: the dentry/vfsmount to report
02125a82 3082 * @root: root vfsmnt/dentry
f2eb6575
MS
3083 * @buffer: pointer to the end of the buffer
3084 * @buflen: pointer to buffer length
552ce544 3085 *
18129977
WL
3086 * The function will first try to write out the pathname without taking any
3087 * lock other than the RCU read lock to make sure that dentries won't go away.
3088 * It only checks the sequence number of the global rename_lock as any change
3089 * in the dentry's d_seq will be preceded by changes in the rename_lock
3090 * sequence number. If the sequence number had been changed, it will restart
3091 * the whole pathname back-tracing sequence again by taking the rename_lock.
3092 * In this case, there is no need to take the RCU read lock as the recursive
3093 * parent pointer references will keep the dentry chain alive as long as no
3094 * rename operation is performed.
1da177e4 3095 */
02125a82
AV
3096static int prepend_path(const struct path *path,
3097 const struct path *root,
f2eb6575 3098 char **buffer, int *buflen)
1da177e4 3099{
ede4cebc
AV
3100 struct dentry *dentry;
3101 struct vfsmount *vfsmnt;
3102 struct mount *mnt;
f2eb6575 3103 int error = 0;
48a066e7 3104 unsigned seq, m_seq = 0;
232d2d60
WL
3105 char *bptr;
3106 int blen;
6092d048 3107
48f5ec21 3108 rcu_read_lock();
48a066e7
AV
3109restart_mnt:
3110 read_seqbegin_or_lock(&mount_lock, &m_seq);
3111 seq = 0;
4ec6c2ae 3112 rcu_read_lock();
232d2d60
WL
3113restart:
3114 bptr = *buffer;
3115 blen = *buflen;
48a066e7 3116 error = 0;
ede4cebc
AV
3117 dentry = path->dentry;
3118 vfsmnt = path->mnt;
3119 mnt = real_mount(vfsmnt);
232d2d60 3120 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3121 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3122 struct dentry * parent;
3123
1da177e4 3124 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 3125 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
cde93be4
EB
3126 /* Escaped? */
3127 if (dentry != vfsmnt->mnt_root) {
3128 bptr = *buffer;
3129 blen = *buflen;
3130 error = 3;
3131 break;
3132 }
552ce544 3133 /* Global root? */
48a066e7
AV
3134 if (mnt != parent) {
3135 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3136 mnt = parent;
232d2d60
WL
3137 vfsmnt = &mnt->mnt;
3138 continue;
3139 }
232d2d60
WL
3140 if (!error)
3141 error = is_mounted(vfsmnt) ? 1 : 2;
3142 break;
1da177e4
LT
3143 }
3144 parent = dentry->d_parent;
3145 prefetch(parent);
232d2d60 3146 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3147 if (error)
3148 break;
3149
1da177e4
LT
3150 dentry = parent;
3151 }
48f5ec21
AV
3152 if (!(seq & 1))
3153 rcu_read_unlock();
3154 if (need_seqretry(&rename_lock, seq)) {
3155 seq = 1;
232d2d60 3156 goto restart;
48f5ec21
AV
3157 }
3158 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3159
3160 if (!(m_seq & 1))
3161 rcu_read_unlock();
48a066e7
AV
3162 if (need_seqretry(&mount_lock, m_seq)) {
3163 m_seq = 1;
3164 goto restart_mnt;
3165 }
3166 done_seqretry(&mount_lock, m_seq);
1da177e4 3167
232d2d60
WL
3168 if (error >= 0 && bptr == *buffer) {
3169 if (--blen < 0)
3170 error = -ENAMETOOLONG;
3171 else
3172 *--bptr = '/';
3173 }
3174 *buffer = bptr;
3175 *buflen = blen;
7ea600b5 3176 return error;
f2eb6575 3177}
be285c71 3178
f2eb6575
MS
3179/**
3180 * __d_path - return the path of a dentry
3181 * @path: the dentry/vfsmount to report
02125a82 3182 * @root: root vfsmnt/dentry
cd956a1c 3183 * @buf: buffer to return value in
f2eb6575
MS
3184 * @buflen: buffer length
3185 *
ffd1f4ed 3186 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3187 *
3188 * Returns a pointer into the buffer or an error code if the
3189 * path was too long.
3190 *
be148247 3191 * "buflen" should be positive.
f2eb6575 3192 *
02125a82 3193 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3194 */
02125a82
AV
3195char *__d_path(const struct path *path,
3196 const struct path *root,
f2eb6575
MS
3197 char *buf, int buflen)
3198{
3199 char *res = buf + buflen;
3200 int error;
3201
3202 prepend(&res, &buflen, "\0", 1);
f2eb6575 3203 error = prepend_path(path, root, &res, &buflen);
be148247 3204
02125a82
AV
3205 if (error < 0)
3206 return ERR_PTR(error);
3207 if (error > 0)
3208 return NULL;
3209 return res;
3210}
3211
3212char *d_absolute_path(const struct path *path,
3213 char *buf, int buflen)
3214{
3215 struct path root = {};
3216 char *res = buf + buflen;
3217 int error;
3218
3219 prepend(&res, &buflen, "\0", 1);
02125a82 3220 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3221
3222 if (error > 1)
3223 error = -EINVAL;
3224 if (error < 0)
f2eb6575 3225 return ERR_PTR(error);
f2eb6575 3226 return res;
1da177e4
LT
3227}
3228
ffd1f4ed
MS
3229/*
3230 * same as __d_path but appends "(deleted)" for unlinked files.
3231 */
02125a82
AV
3232static int path_with_deleted(const struct path *path,
3233 const struct path *root,
3234 char **buf, int *buflen)
ffd1f4ed
MS
3235{
3236 prepend(buf, buflen, "\0", 1);
3237 if (d_unlinked(path->dentry)) {
3238 int error = prepend(buf, buflen, " (deleted)", 10);
3239 if (error)
3240 return error;
3241 }
3242
3243 return prepend_path(path, root, buf, buflen);
3244}
3245
8df9d1a4
MS
3246static int prepend_unreachable(char **buffer, int *buflen)
3247{
3248 return prepend(buffer, buflen, "(unreachable)", 13);
3249}
3250
68f0d9d9
LT
3251static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3252{
3253 unsigned seq;
3254
3255 do {
3256 seq = read_seqcount_begin(&fs->seq);
3257 *root = fs->root;
3258 } while (read_seqcount_retry(&fs->seq, seq));
3259}
3260
a03a8a70
JB
3261/**
3262 * d_path - return the path of a dentry
cf28b486 3263 * @path: path to report
a03a8a70
JB
3264 * @buf: buffer to return value in
3265 * @buflen: buffer length
3266 *
3267 * Convert a dentry into an ASCII path name. If the entry has been deleted
3268 * the string " (deleted)" is appended. Note that this is ambiguous.
3269 *
52afeefb
AV
3270 * Returns a pointer into the buffer or an error code if the path was
3271 * too long. Note: Callers should use the returned pointer, not the passed
3272 * in buffer, to use the name! The implementation often starts at an offset
3273 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3274 *
31f3e0b3 3275 * "buflen" should be positive.
a03a8a70 3276 */
20d4fdc1 3277char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3278{
ffd1f4ed 3279 char *res = buf + buflen;
6ac08c39 3280 struct path root;
ffd1f4ed 3281 int error;
1da177e4 3282
c23fbb6b
ED
3283 /*
3284 * We have various synthetic filesystems that never get mounted. On
3285 * these filesystems dentries are never used for lookup purposes, and
3286 * thus don't need to be hashed. They also don't need a name until a
3287 * user wants to identify the object in /proc/pid/fd/. The little hack
3288 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3289 *
3290 * Some pseudo inodes are mountable. When they are mounted
3291 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3292 * and instead have d_path return the mounted path.
c23fbb6b 3293 */
f48cfddc
EB
3294 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3295 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3296 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3297
68f0d9d9
LT
3298 rcu_read_lock();
3299 get_fs_root_rcu(current->fs, &root);
02125a82 3300 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3301 rcu_read_unlock();
3302
02125a82 3303 if (error < 0)
ffd1f4ed 3304 res = ERR_PTR(error);
1da177e4
LT
3305 return res;
3306}
ec4f8605 3307EXPORT_SYMBOL(d_path);
1da177e4 3308
c23fbb6b
ED
3309/*
3310 * Helper function for dentry_operations.d_dname() members
3311 */
3312char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3313 const char *fmt, ...)
3314{
3315 va_list args;
3316 char temp[64];
3317 int sz;
3318
3319 va_start(args, fmt);
3320 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3321 va_end(args);
3322
3323 if (sz > sizeof(temp) || sz > buflen)
3324 return ERR_PTR(-ENAMETOOLONG);
3325
3326 buffer += buflen - sz;
3327 return memcpy(buffer, temp, sz);
3328}
3329
118b2302
AV
3330char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3331{
3332 char *end = buffer + buflen;
3333 /* these dentries are never renamed, so d_lock is not needed */
3334 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3335 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3336 prepend(&end, &buflen, "/", 1))
3337 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3338 return end;
118b2302 3339}
31bbe16f 3340EXPORT_SYMBOL(simple_dname);
118b2302 3341
6092d048
RP
3342/*
3343 * Write full pathname from the root of the filesystem into the buffer.
3344 */
f6500801 3345static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3346{
f6500801 3347 struct dentry *dentry;
232d2d60
WL
3348 char *end, *retval;
3349 int len, seq = 0;
3350 int error = 0;
6092d048 3351
f6500801
AV
3352 if (buflen < 2)
3353 goto Elong;
3354
48f5ec21 3355 rcu_read_lock();
232d2d60 3356restart:
f6500801 3357 dentry = d;
232d2d60
WL
3358 end = buf + buflen;
3359 len = buflen;
3360 prepend(&end, &len, "\0", 1);
6092d048
RP
3361 /* Get '/' right */
3362 retval = end-1;
3363 *retval = '/';
232d2d60 3364 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3365 while (!IS_ROOT(dentry)) {
3366 struct dentry *parent = dentry->d_parent;
6092d048 3367
6092d048 3368 prefetch(parent);
232d2d60
WL
3369 error = prepend_name(&end, &len, &dentry->d_name);
3370 if (error)
3371 break;
6092d048
RP
3372
3373 retval = end;
3374 dentry = parent;
3375 }
48f5ec21
AV
3376 if (!(seq & 1))
3377 rcu_read_unlock();
3378 if (need_seqretry(&rename_lock, seq)) {
3379 seq = 1;
232d2d60 3380 goto restart;
48f5ec21
AV
3381 }
3382 done_seqretry(&rename_lock, seq);
232d2d60
WL
3383 if (error)
3384 goto Elong;
c103135c
AV
3385 return retval;
3386Elong:
3387 return ERR_PTR(-ENAMETOOLONG);
3388}
ec2447c2
NP
3389
3390char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3391{
232d2d60 3392 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3393}
3394EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3395
3396char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3397{
3398 char *p = NULL;
3399 char *retval;
3400
c103135c
AV
3401 if (d_unlinked(dentry)) {
3402 p = buf + buflen;
3403 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3404 goto Elong;
3405 buflen++;
3406 }
3407 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3408 if (!IS_ERR(retval) && p)
3409 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3410 return retval;
3411Elong:
6092d048
RP
3412 return ERR_PTR(-ENAMETOOLONG);
3413}
3414
8b19e341
LT
3415static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3416 struct path *pwd)
5762482f 3417{
8b19e341
LT
3418 unsigned seq;
3419
3420 do {
3421 seq = read_seqcount_begin(&fs->seq);
3422 *root = fs->root;
3423 *pwd = fs->pwd;
3424 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3425}
3426
1da177e4
LT
3427/*
3428 * NOTE! The user-level library version returns a
3429 * character pointer. The kernel system call just
3430 * returns the length of the buffer filled (which
3431 * includes the ending '\0' character), or a negative
3432 * error value. So libc would do something like
3433 *
3434 * char *getcwd(char * buf, size_t size)
3435 * {
3436 * int retval;
3437 *
3438 * retval = sys_getcwd(buf, size);
3439 * if (retval >= 0)
3440 * return buf;
3441 * errno = -retval;
3442 * return NULL;
3443 * }
3444 */
3cdad428 3445SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3446{
552ce544 3447 int error;
6ac08c39 3448 struct path pwd, root;
3272c544 3449 char *page = __getname();
1da177e4
LT
3450
3451 if (!page)
3452 return -ENOMEM;
3453
8b19e341
LT
3454 rcu_read_lock();
3455 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3456
552ce544 3457 error = -ENOENT;
f3da392e 3458 if (!d_unlinked(pwd.dentry)) {
552ce544 3459 unsigned long len;
3272c544
LT
3460 char *cwd = page + PATH_MAX;
3461 int buflen = PATH_MAX;
1da177e4 3462
8df9d1a4 3463 prepend(&cwd, &buflen, "\0", 1);
02125a82 3464 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3465 rcu_read_unlock();
552ce544 3466
02125a82 3467 if (error < 0)
552ce544
LT
3468 goto out;
3469
8df9d1a4 3470 /* Unreachable from current root */
02125a82 3471 if (error > 0) {
8df9d1a4
MS
3472 error = prepend_unreachable(&cwd, &buflen);
3473 if (error)
3474 goto out;
3475 }
3476
552ce544 3477 error = -ERANGE;
3272c544 3478 len = PATH_MAX + page - cwd;
552ce544
LT
3479 if (len <= size) {
3480 error = len;
3481 if (copy_to_user(buf, cwd, len))
3482 error = -EFAULT;
3483 }
949854d0 3484 } else {
ff812d72 3485 rcu_read_unlock();
949854d0 3486 }
1da177e4
LT
3487
3488out:
3272c544 3489 __putname(page);
1da177e4
LT
3490 return error;
3491}
3492
3493/*
3494 * Test whether new_dentry is a subdirectory of old_dentry.
3495 *
3496 * Trivially implemented using the dcache structure
3497 */
3498
3499/**
3500 * is_subdir - is new dentry a subdirectory of old_dentry
3501 * @new_dentry: new dentry
3502 * @old_dentry: old dentry
3503 *
a6e5787f
YB
3504 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3505 * Returns false otherwise.
1da177e4
LT
3506 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3507 */
3508
a6e5787f 3509bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3510{
a6e5787f 3511 bool result;
949854d0 3512 unsigned seq;
1da177e4 3513
e2761a11 3514 if (new_dentry == old_dentry)
a6e5787f 3515 return true;
e2761a11 3516
e2761a11 3517 do {
1da177e4 3518 /* for restarting inner loop in case of seq retry */
1da177e4 3519 seq = read_seqbegin(&rename_lock);
949854d0
NP
3520 /*
3521 * Need rcu_readlock to protect against the d_parent trashing
3522 * due to d_move
3523 */
3524 rcu_read_lock();
e2761a11 3525 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3526 result = true;
e2761a11 3527 else
a6e5787f 3528 result = false;
949854d0 3529 rcu_read_unlock();
1da177e4 3530 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3531
3532 return result;
3533}
3534
db14fc3a 3535static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3536{
db14fc3a
MS
3537 struct dentry *root = data;
3538 if (dentry != root) {
3539 if (d_unhashed(dentry) || !dentry->d_inode)
3540 return D_WALK_SKIP;
1da177e4 3541
01ddc4ed
MS
3542 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3543 dentry->d_flags |= DCACHE_GENOCIDE;
3544 dentry->d_lockref.count--;
3545 }
1da177e4 3546 }
db14fc3a
MS
3547 return D_WALK_CONTINUE;
3548}
58db63d0 3549
db14fc3a
MS
3550void d_genocide(struct dentry *parent)
3551{
3552 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3553}
3554
60545d0d 3555void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3556{
60545d0d
AV
3557 inode_dec_link_count(inode);
3558 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3559 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3560 !d_unlinked(dentry));
3561 spin_lock(&dentry->d_parent->d_lock);
3562 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3563 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3564 (unsigned long long)inode->i_ino);
3565 spin_unlock(&dentry->d_lock);
3566 spin_unlock(&dentry->d_parent->d_lock);
3567 d_instantiate(dentry, inode);
1da177e4 3568}
60545d0d 3569EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3570
3571static __initdata unsigned long dhash_entries;
3572static int __init set_dhash_entries(char *str)
3573{
3574 if (!str)
3575 return 0;
3576 dhash_entries = simple_strtoul(str, &str, 0);
3577 return 1;
3578}
3579__setup("dhash_entries=", set_dhash_entries);
3580
3581static void __init dcache_init_early(void)
3582{
1da177e4
LT
3583 /* If hashes are distributed across NUMA nodes, defer
3584 * hash allocation until vmalloc space is available.
3585 */
3586 if (hashdist)
3587 return;
3588
3589 dentry_hashtable =
3590 alloc_large_system_hash("Dentry cache",
b07ad996 3591 sizeof(struct hlist_bl_head),
1da177e4
LT
3592 dhash_entries,
3593 13,
3d375d78 3594 HASH_EARLY | HASH_ZERO,
1da177e4
LT
3595 &d_hash_shift,
3596 &d_hash_mask,
31fe62b9 3597 0,
1da177e4 3598 0);
1da177e4
LT
3599}
3600
74bf17cf 3601static void __init dcache_init(void)
1da177e4 3602{
3d375d78 3603 /*
1da177e4
LT
3604 * A constructor could be added for stable state like the lists,
3605 * but it is probably not worth it because of the cache nature
3d375d78 3606 * of the dcache.
1da177e4 3607 */
0a31bd5f 3608 dentry_cache = KMEM_CACHE(dentry,
5d097056 3609 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
1da177e4
LT
3610
3611 /* Hash may have been set up in dcache_init_early */
3612 if (!hashdist)
3613 return;
3614
3615 dentry_hashtable =
3616 alloc_large_system_hash("Dentry cache",
b07ad996 3617 sizeof(struct hlist_bl_head),
1da177e4
LT
3618 dhash_entries,
3619 13,
3d375d78 3620 HASH_ZERO,
1da177e4
LT
3621 &d_hash_shift,
3622 &d_hash_mask,
31fe62b9 3623 0,
1da177e4 3624 0);
1da177e4
LT
3625}
3626
3627/* SLAB cache for __getname() consumers */
e18b890b 3628struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3629EXPORT_SYMBOL(names_cachep);
1da177e4 3630
1da177e4
LT
3631EXPORT_SYMBOL(d_genocide);
3632
1da177e4
LT
3633void __init vfs_caches_init_early(void)
3634{
6916363f
SAS
3635 int i;
3636
3637 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3638 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3639
1da177e4
LT
3640 dcache_init_early();
3641 inode_init_early();
3642}
3643
4248b0da 3644void __init vfs_caches_init(void)
1da177e4 3645{
1da177e4 3646 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3647 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3648
74bf17cf
DC
3649 dcache_init();
3650 inode_init();
4248b0da
MG
3651 files_init();
3652 files_maxfiles_init();
74bf17cf 3653 mnt_init();
1da177e4
LT
3654 bdev_cache_init();
3655 chrdev_init();
3656}