]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
blk-mq: provide internal in-flight variant
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 147
4e4cbee9
CH
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
2a842aca
CH
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153};
154
155blk_status_t errno_to_blk_status(int errno)
156{
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165}
166EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168int blk_status_to_errno(blk_status_t status)
169{
170 int idx = (__force int)status;
171
34bd9c1c 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
173 return -EIO;
174 return blk_errors[idx].errno;
175}
176EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178static void print_req_error(struct request *req, blk_status_t status)
179{
180 int idx = (__force int)status;
181
34bd9c1c 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189}
190
5bb23a68 191static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 192 unsigned int nbytes, blk_status_t error)
1da177e4 193{
78d8e58a 194 if (error)
4e4cbee9 195 bio->bi_status = error;
797e7dbb 196
e8064021 197 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 198 bio_set_flag(bio, BIO_QUIET);
08bafc03 199
f79ea416 200 bio_advance(bio, nbytes);
7ba1ba12 201
143a87f4 202 /* don't actually finish bio if it's part of flush sequence */
e8064021 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 204 bio_endio(bio);
1da177e4 205}
1da177e4 206
1da177e4
LT
207void blk_dump_rq_flags(struct request *rq, char *msg)
208{
aebf526b
CH
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 211 (unsigned long long) rq->cmd_flags);
1da177e4 212
83096ebf
TH
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_dump_rq_flags);
220
3cca6dc1 221static void blk_delay_work(struct work_struct *work)
1da177e4 222{
3cca6dc1 223 struct request_queue *q;
1da177e4 224
3cca6dc1
JA
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
24ecfbe2 227 __blk_run_queue(q);
3cca6dc1 228 spin_unlock_irq(q->queue_lock);
1da177e4 229}
1da177e4
LT
230
231/**
3cca6dc1
JA
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
1da177e4
LT
235 *
236 * Description:
3cca6dc1
JA
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
2fff8a92 239 * restarted around the specified time.
3cca6dc1
JA
240 */
241void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 242{
2fff8a92 243 lockdep_assert_held(q->queue_lock);
332ebbf7 244 WARN_ON_ONCE(q->mq_ops);
2fff8a92 245
70460571
BVA
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
2ad8b1ef 249}
3cca6dc1 250EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 251
21491412
JA
252/**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261void blk_start_queue_async(struct request_queue *q)
262{
2fff8a92 263 lockdep_assert_held(q->queue_lock);
332ebbf7 264 WARN_ON_ONCE(q->mq_ops);
2fff8a92 265
21491412
JA
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268}
269EXPORT_SYMBOL(blk_start_queue_async);
270
1da177e4
LT
271/**
272 * blk_start_queue - restart a previously stopped queue
165125e1 273 * @q: The &struct request_queue in question
1da177e4
LT
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
2fff8a92 278 * entered. Also see blk_stop_queue().
1da177e4 279 **/
165125e1 280void blk_start_queue(struct request_queue *q)
1da177e4 281{
2fff8a92 282 lockdep_assert_held(q->queue_lock);
a038e253 283 WARN_ON(!irqs_disabled());
332ebbf7 284 WARN_ON_ONCE(q->mq_ops);
a038e253 285
75ad23bc 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 287 __blk_run_queue(q);
1da177e4 288}
1da177e4
LT
289EXPORT_SYMBOL(blk_start_queue);
290
291/**
292 * blk_stop_queue - stop a queue
165125e1 293 * @q: The &struct request_queue in question
1da177e4
LT
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 303 * blk_start_queue() to restart queue operations.
1da177e4 304 **/
165125e1 305void blk_stop_queue(struct request_queue *q)
1da177e4 306{
2fff8a92 307 lockdep_assert_held(q->queue_lock);
332ebbf7 308 WARN_ON_ONCE(q->mq_ops);
2fff8a92 309
136b5721 310 cancel_delayed_work(&q->delay_work);
75ad23bc 311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
312}
313EXPORT_SYMBOL(blk_stop_queue);
314
315/**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
59c51591 324 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
da527770 328 * This function does not cancel any asynchronous activity arising
da3dae54 329 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 330 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 331 *
1da177e4
LT
332 */
333void blk_sync_queue(struct request_queue *q)
334{
70ed28b9 335 del_timer_sync(&q->timeout);
f04c1fe7
ML
336
337 if (q->mq_ops) {
338 struct blk_mq_hw_ctx *hctx;
339 int i;
340
21c6e939 341 queue_for_each_hw_ctx(q, hctx, i)
9f993737 342 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
343 } else {
344 cancel_delayed_work_sync(&q->delay_work);
345 }
1da177e4
LT
346}
347EXPORT_SYMBOL(blk_sync_queue);
348
c246e80d
BVA
349/**
350 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
351 * @q: The queue to run
352 *
353 * Description:
354 * Invoke request handling on a queue if there are any pending requests.
355 * May be used to restart request handling after a request has completed.
356 * This variant runs the queue whether or not the queue has been
357 * stopped. Must be called with the queue lock held and interrupts
358 * disabled. See also @blk_run_queue.
359 */
360inline void __blk_run_queue_uncond(struct request_queue *q)
361{
2fff8a92 362 lockdep_assert_held(q->queue_lock);
332ebbf7 363 WARN_ON_ONCE(q->mq_ops);
2fff8a92 364
c246e80d
BVA
365 if (unlikely(blk_queue_dead(q)))
366 return;
367
24faf6f6
BVA
368 /*
369 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
370 * the queue lock internally. As a result multiple threads may be
371 * running such a request function concurrently. Keep track of the
372 * number of active request_fn invocations such that blk_drain_queue()
373 * can wait until all these request_fn calls have finished.
374 */
375 q->request_fn_active++;
c246e80d 376 q->request_fn(q);
24faf6f6 377 q->request_fn_active--;
c246e80d 378}
a7928c15 379EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 380
1da177e4 381/**
80a4b58e 382 * __blk_run_queue - run a single device queue
1da177e4 383 * @q: The queue to run
80a4b58e
JA
384 *
385 * Description:
2fff8a92 386 * See @blk_run_queue.
1da177e4 387 */
24ecfbe2 388void __blk_run_queue(struct request_queue *q)
1da177e4 389{
2fff8a92 390 lockdep_assert_held(q->queue_lock);
332ebbf7 391 WARN_ON_ONCE(q->mq_ops);
2fff8a92 392
a538cd03
TH
393 if (unlikely(blk_queue_stopped(q)))
394 return;
395
c246e80d 396 __blk_run_queue_uncond(q);
75ad23bc
NP
397}
398EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 399
24ecfbe2
CH
400/**
401 * blk_run_queue_async - run a single device queue in workqueue context
402 * @q: The queue to run
403 *
404 * Description:
405 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
406 * of us.
407 *
408 * Note:
409 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
410 * has canceled q->delay_work, callers must hold the queue lock to avoid
411 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
412 */
413void blk_run_queue_async(struct request_queue *q)
414{
2fff8a92 415 lockdep_assert_held(q->queue_lock);
332ebbf7 416 WARN_ON_ONCE(q->mq_ops);
2fff8a92 417
70460571 418 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 419 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 420}
c21e6beb 421EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 422
75ad23bc
NP
423/**
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
80a4b58e
JA
426 *
427 * Description:
428 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 429 * May be used to restart queueing when a request has completed.
75ad23bc
NP
430 */
431void blk_run_queue(struct request_queue *q)
432{
433 unsigned long flags;
434
332ebbf7
BVA
435 WARN_ON_ONCE(q->mq_ops);
436
75ad23bc 437 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 438 __blk_run_queue(q);
1da177e4
LT
439 spin_unlock_irqrestore(q->queue_lock, flags);
440}
441EXPORT_SYMBOL(blk_run_queue);
442
165125e1 443void blk_put_queue(struct request_queue *q)
483f4afc
AV
444{
445 kobject_put(&q->kobj);
446}
d86e0e83 447EXPORT_SYMBOL(blk_put_queue);
483f4afc 448
e3c78ca5 449/**
807592a4 450 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 451 * @q: queue to drain
c9a929dd 452 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 453 *
c9a929dd
TH
454 * Drain requests from @q. If @drain_all is set, all requests are drained.
455 * If not, only ELVPRIV requests are drained. The caller is responsible
456 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 457 */
807592a4
BVA
458static void __blk_drain_queue(struct request_queue *q, bool drain_all)
459 __releases(q->queue_lock)
460 __acquires(q->queue_lock)
e3c78ca5 461{
458f27a9
AH
462 int i;
463
807592a4 464 lockdep_assert_held(q->queue_lock);
332ebbf7 465 WARN_ON_ONCE(q->mq_ops);
807592a4 466
e3c78ca5 467 while (true) {
481a7d64 468 bool drain = false;
e3c78ca5 469
b855b04a
TH
470 /*
471 * The caller might be trying to drain @q before its
472 * elevator is initialized.
473 */
474 if (q->elevator)
475 elv_drain_elevator(q);
476
5efd6113 477 blkcg_drain_queue(q);
e3c78ca5 478
4eabc941
TH
479 /*
480 * This function might be called on a queue which failed
b855b04a
TH
481 * driver init after queue creation or is not yet fully
482 * active yet. Some drivers (e.g. fd and loop) get unhappy
483 * in such cases. Kick queue iff dispatch queue has
484 * something on it and @q has request_fn set.
4eabc941 485 */
b855b04a 486 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 487 __blk_run_queue(q);
c9a929dd 488
8a5ecdd4 489 drain |= q->nr_rqs_elvpriv;
24faf6f6 490 drain |= q->request_fn_active;
481a7d64
TH
491
492 /*
493 * Unfortunately, requests are queued at and tracked from
494 * multiple places and there's no single counter which can
495 * be drained. Check all the queues and counters.
496 */
497 if (drain_all) {
e97c293c 498 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
499 drain |= !list_empty(&q->queue_head);
500 for (i = 0; i < 2; i++) {
8a5ecdd4 501 drain |= q->nr_rqs[i];
481a7d64 502 drain |= q->in_flight[i];
7c94e1c1
ML
503 if (fq)
504 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
505 }
506 }
e3c78ca5 507
481a7d64 508 if (!drain)
e3c78ca5 509 break;
807592a4
BVA
510
511 spin_unlock_irq(q->queue_lock);
512
e3c78ca5 513 msleep(10);
807592a4
BVA
514
515 spin_lock_irq(q->queue_lock);
e3c78ca5 516 }
458f27a9
AH
517
518 /*
519 * With queue marked dead, any woken up waiter will fail the
520 * allocation path, so the wakeup chaining is lost and we're
521 * left with hung waiters. We need to wake up those waiters.
522 */
523 if (q->request_fn) {
a051661c
TH
524 struct request_list *rl;
525
a051661c
TH
526 blk_queue_for_each_rl(rl, q)
527 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
528 wake_up_all(&rl->wait[i]);
458f27a9 529 }
e3c78ca5
TH
530}
531
d732580b
TH
532/**
533 * blk_queue_bypass_start - enter queue bypass mode
534 * @q: queue of interest
535 *
536 * In bypass mode, only the dispatch FIFO queue of @q is used. This
537 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 538 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
539 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
540 * inside queue or RCU read lock.
d732580b
TH
541 */
542void blk_queue_bypass_start(struct request_queue *q)
543{
332ebbf7
BVA
544 WARN_ON_ONCE(q->mq_ops);
545
d732580b 546 spin_lock_irq(q->queue_lock);
776687bc 547 q->bypass_depth++;
d732580b
TH
548 queue_flag_set(QUEUE_FLAG_BYPASS, q);
549 spin_unlock_irq(q->queue_lock);
550
776687bc
TH
551 /*
552 * Queues start drained. Skip actual draining till init is
553 * complete. This avoids lenghty delays during queue init which
554 * can happen many times during boot.
555 */
556 if (blk_queue_init_done(q)) {
807592a4
BVA
557 spin_lock_irq(q->queue_lock);
558 __blk_drain_queue(q, false);
559 spin_unlock_irq(q->queue_lock);
560
b82d4b19
TH
561 /* ensure blk_queue_bypass() is %true inside RCU read lock */
562 synchronize_rcu();
563 }
d732580b
TH
564}
565EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
566
567/**
568 * blk_queue_bypass_end - leave queue bypass mode
569 * @q: queue of interest
570 *
571 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
572 *
573 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
574 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
575 */
576void blk_queue_bypass_end(struct request_queue *q)
577{
578 spin_lock_irq(q->queue_lock);
579 if (!--q->bypass_depth)
580 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
581 WARN_ON_ONCE(q->bypass_depth < 0);
582 spin_unlock_irq(q->queue_lock);
583}
584EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
585
aed3ea94
JA
586void blk_set_queue_dying(struct request_queue *q)
587{
1b856086
BVA
588 spin_lock_irq(q->queue_lock);
589 queue_flag_set(QUEUE_FLAG_DYING, q);
590 spin_unlock_irq(q->queue_lock);
aed3ea94 591
d3cfb2a0
ML
592 /*
593 * When queue DYING flag is set, we need to block new req
594 * entering queue, so we call blk_freeze_queue_start() to
595 * prevent I/O from crossing blk_queue_enter().
596 */
597 blk_freeze_queue_start(q);
598
aed3ea94
JA
599 if (q->mq_ops)
600 blk_mq_wake_waiters(q);
601 else {
602 struct request_list *rl;
603
bbfc3c5d 604 spin_lock_irq(q->queue_lock);
aed3ea94
JA
605 blk_queue_for_each_rl(rl, q) {
606 if (rl->rq_pool) {
607 wake_up(&rl->wait[BLK_RW_SYNC]);
608 wake_up(&rl->wait[BLK_RW_ASYNC]);
609 }
610 }
bbfc3c5d 611 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
612 }
613}
614EXPORT_SYMBOL_GPL(blk_set_queue_dying);
615
c9a929dd
TH
616/**
617 * blk_cleanup_queue - shutdown a request queue
618 * @q: request queue to shutdown
619 *
c246e80d
BVA
620 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
621 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 622 */
6728cb0e 623void blk_cleanup_queue(struct request_queue *q)
483f4afc 624{
c9a929dd 625 spinlock_t *lock = q->queue_lock;
e3335de9 626
3f3299d5 627 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 628 mutex_lock(&q->sysfs_lock);
aed3ea94 629 blk_set_queue_dying(q);
c9a929dd 630 spin_lock_irq(lock);
6ecf23af 631
80fd9979 632 /*
3f3299d5 633 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
634 * that, unlike blk_queue_bypass_start(), we aren't performing
635 * synchronize_rcu() after entering bypass mode to avoid the delay
636 * as some drivers create and destroy a lot of queues while
637 * probing. This is still safe because blk_release_queue() will be
638 * called only after the queue refcnt drops to zero and nothing,
639 * RCU or not, would be traversing the queue by then.
640 */
6ecf23af
TH
641 q->bypass_depth++;
642 queue_flag_set(QUEUE_FLAG_BYPASS, q);
643
c9a929dd
TH
644 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
645 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 646 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
647 spin_unlock_irq(lock);
648 mutex_unlock(&q->sysfs_lock);
649
c246e80d
BVA
650 /*
651 * Drain all requests queued before DYING marking. Set DEAD flag to
652 * prevent that q->request_fn() gets invoked after draining finished.
653 */
3ef28e83 654 blk_freeze_queue(q);
9c1051aa
OS
655 spin_lock_irq(lock);
656 if (!q->mq_ops)
43a5e4e2 657 __blk_drain_queue(q, true);
c246e80d 658 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 659 spin_unlock_irq(lock);
c9a929dd 660
5a48fc14
DW
661 /* for synchronous bio-based driver finish in-flight integrity i/o */
662 blk_flush_integrity();
663
c9a929dd 664 /* @q won't process any more request, flush async actions */
dc3b17cc 665 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
666 blk_sync_queue(q);
667
45a9c9d9
BVA
668 if (q->mq_ops)
669 blk_mq_free_queue(q);
3ef28e83 670 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 671
5e5cfac0
AH
672 spin_lock_irq(lock);
673 if (q->queue_lock != &q->__queue_lock)
674 q->queue_lock = &q->__queue_lock;
675 spin_unlock_irq(lock);
676
c9a929dd 677 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
678 blk_put_queue(q);
679}
1da177e4
LT
680EXPORT_SYMBOL(blk_cleanup_queue);
681
271508db 682/* Allocate memory local to the request queue */
6d247d7f 683static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 684{
6d247d7f
CH
685 struct request_queue *q = data;
686
687 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
688}
689
6d247d7f 690static void free_request_simple(void *element, void *data)
271508db
DR
691{
692 kmem_cache_free(request_cachep, element);
693}
694
6d247d7f
CH
695static void *alloc_request_size(gfp_t gfp_mask, void *data)
696{
697 struct request_queue *q = data;
698 struct request *rq;
699
700 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
701 q->node);
702 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
703 kfree(rq);
704 rq = NULL;
705 }
706 return rq;
707}
708
709static void free_request_size(void *element, void *data)
710{
711 struct request_queue *q = data;
712
713 if (q->exit_rq_fn)
714 q->exit_rq_fn(q, element);
715 kfree(element);
716}
717
5b788ce3
TH
718int blk_init_rl(struct request_list *rl, struct request_queue *q,
719 gfp_t gfp_mask)
1da177e4 720{
1abec4fd
MS
721 if (unlikely(rl->rq_pool))
722 return 0;
723
5b788ce3 724 rl->q = q;
1faa16d2
JA
725 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
726 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
727 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
728 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 729
6d247d7f
CH
730 if (q->cmd_size) {
731 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
732 alloc_request_size, free_request_size,
733 q, gfp_mask, q->node);
734 } else {
735 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
736 alloc_request_simple, free_request_simple,
737 q, gfp_mask, q->node);
738 }
1da177e4
LT
739 if (!rl->rq_pool)
740 return -ENOMEM;
741
b425e504
BVA
742 if (rl != &q->root_rl)
743 WARN_ON_ONCE(!blk_get_queue(q));
744
1da177e4
LT
745 return 0;
746}
747
b425e504 748void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 749{
b425e504 750 if (rl->rq_pool) {
5b788ce3 751 mempool_destroy(rl->rq_pool);
b425e504
BVA
752 if (rl != &q->root_rl)
753 blk_put_queue(q);
754 }
5b788ce3
TH
755}
756
165125e1 757struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 758{
c304a51b 759 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
760}
761EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 762
6f3b0e8b 763int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
764{
765 while (true) {
766 int ret;
767
768 if (percpu_ref_tryget_live(&q->q_usage_counter))
769 return 0;
770
6f3b0e8b 771 if (nowait)
3ef28e83
DW
772 return -EBUSY;
773
5ed61d3f 774 /*
1671d522 775 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 776 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
777 * .q_usage_counter and reading .mq_freeze_depth or
778 * queue dying flag, otherwise the following wait may
779 * never return if the two reads are reordered.
5ed61d3f
ML
780 */
781 smp_rmb();
782
3ef28e83
DW
783 ret = wait_event_interruptible(q->mq_freeze_wq,
784 !atomic_read(&q->mq_freeze_depth) ||
785 blk_queue_dying(q));
786 if (blk_queue_dying(q))
787 return -ENODEV;
788 if (ret)
789 return ret;
790 }
791}
792
793void blk_queue_exit(struct request_queue *q)
794{
795 percpu_ref_put(&q->q_usage_counter);
796}
797
798static void blk_queue_usage_counter_release(struct percpu_ref *ref)
799{
800 struct request_queue *q =
801 container_of(ref, struct request_queue, q_usage_counter);
802
803 wake_up_all(&q->mq_freeze_wq);
804}
805
287922eb
CH
806static void blk_rq_timed_out_timer(unsigned long data)
807{
808 struct request_queue *q = (struct request_queue *)data;
809
810 kblockd_schedule_work(&q->timeout_work);
811}
812
165125e1 813struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 814{
165125e1 815 struct request_queue *q;
1946089a 816
8324aa91 817 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 818 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
819 if (!q)
820 return NULL;
821
00380a40 822 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 823 if (q->id < 0)
3d2936f4 824 goto fail_q;
a73f730d 825
93b27e72 826 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
827 if (!q->bio_split)
828 goto fail_id;
829
d03f6cdc
JK
830 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
831 if (!q->backing_dev_info)
832 goto fail_split;
833
a83b576c
JA
834 q->stats = blk_alloc_queue_stats();
835 if (!q->stats)
836 goto fail_stats;
837
dc3b17cc 838 q->backing_dev_info->ra_pages =
09cbfeaf 839 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
840 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
841 q->backing_dev_info->name = "block";
5151412d 842 q->node = node_id;
0989a025 843
dc3b17cc 844 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 845 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 846 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 847 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 848 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 849 INIT_LIST_HEAD(&q->icq_list);
4eef3049 850#ifdef CONFIG_BLK_CGROUP
e8989fae 851 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 852#endif
3cca6dc1 853 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 854
8324aa91 855 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 856
483f4afc 857 mutex_init(&q->sysfs_lock);
e7e72bf6 858 spin_lock_init(&q->__queue_lock);
483f4afc 859
c94a96ac
VG
860 /*
861 * By default initialize queue_lock to internal lock and driver can
862 * override it later if need be.
863 */
864 q->queue_lock = &q->__queue_lock;
865
b82d4b19
TH
866 /*
867 * A queue starts its life with bypass turned on to avoid
868 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
869 * init. The initial bypass will be finished when the queue is
870 * registered by blk_register_queue().
b82d4b19
TH
871 */
872 q->bypass_depth = 1;
873 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
874
320ae51f
JA
875 init_waitqueue_head(&q->mq_freeze_wq);
876
3ef28e83
DW
877 /*
878 * Init percpu_ref in atomic mode so that it's faster to shutdown.
879 * See blk_register_queue() for details.
880 */
881 if (percpu_ref_init(&q->q_usage_counter,
882 blk_queue_usage_counter_release,
883 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 884 goto fail_bdi;
f51b802c 885
3ef28e83
DW
886 if (blkcg_init_queue(q))
887 goto fail_ref;
888
1da177e4 889 return q;
a73f730d 890
3ef28e83
DW
891fail_ref:
892 percpu_ref_exit(&q->q_usage_counter);
fff4996b 893fail_bdi:
a83b576c
JA
894 blk_free_queue_stats(q->stats);
895fail_stats:
d03f6cdc 896 bdi_put(q->backing_dev_info);
54efd50b
KO
897fail_split:
898 bioset_free(q->bio_split);
a73f730d
TH
899fail_id:
900 ida_simple_remove(&blk_queue_ida, q->id);
901fail_q:
902 kmem_cache_free(blk_requestq_cachep, q);
903 return NULL;
1da177e4 904}
1946089a 905EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
906
907/**
908 * blk_init_queue - prepare a request queue for use with a block device
909 * @rfn: The function to be called to process requests that have been
910 * placed on the queue.
911 * @lock: Request queue spin lock
912 *
913 * Description:
914 * If a block device wishes to use the standard request handling procedures,
915 * which sorts requests and coalesces adjacent requests, then it must
916 * call blk_init_queue(). The function @rfn will be called when there
917 * are requests on the queue that need to be processed. If the device
918 * supports plugging, then @rfn may not be called immediately when requests
919 * are available on the queue, but may be called at some time later instead.
920 * Plugged queues are generally unplugged when a buffer belonging to one
921 * of the requests on the queue is needed, or due to memory pressure.
922 *
923 * @rfn is not required, or even expected, to remove all requests off the
924 * queue, but only as many as it can handle at a time. If it does leave
925 * requests on the queue, it is responsible for arranging that the requests
926 * get dealt with eventually.
927 *
928 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
929 * request queue; this lock will be taken also from interrupt context, so irq
930 * disabling is needed for it.
1da177e4 931 *
710027a4 932 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
933 * it didn't succeed.
934 *
935 * Note:
936 * blk_init_queue() must be paired with a blk_cleanup_queue() call
937 * when the block device is deactivated (such as at module unload).
938 **/
1946089a 939
165125e1 940struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 941{
c304a51b 942 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
943}
944EXPORT_SYMBOL(blk_init_queue);
945
165125e1 946struct request_queue *
1946089a
CL
947blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
948{
5ea708d1 949 struct request_queue *q;
1da177e4 950
5ea708d1
CH
951 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
952 if (!q)
c86d1b8a
MS
953 return NULL;
954
5ea708d1
CH
955 q->request_fn = rfn;
956 if (lock)
957 q->queue_lock = lock;
958 if (blk_init_allocated_queue(q) < 0) {
959 blk_cleanup_queue(q);
960 return NULL;
961 }
18741986 962
7982e90c 963 return q;
01effb0d
MS
964}
965EXPORT_SYMBOL(blk_init_queue_node);
966
dece1635 967static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 968
1da177e4 969
5ea708d1
CH
970int blk_init_allocated_queue(struct request_queue *q)
971{
332ebbf7
BVA
972 WARN_ON_ONCE(q->mq_ops);
973
6d247d7f 974 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 975 if (!q->fq)
5ea708d1 976 return -ENOMEM;
7982e90c 977
6d247d7f
CH
978 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
979 goto out_free_flush_queue;
7982e90c 980
a051661c 981 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 982 goto out_exit_flush_rq;
1da177e4 983
287922eb 984 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 985 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 986
f3b144aa
JA
987 /*
988 * This also sets hw/phys segments, boundary and size
989 */
c20e8de2 990 blk_queue_make_request(q, blk_queue_bio);
1da177e4 991
44ec9542
AS
992 q->sg_reserved_size = INT_MAX;
993
eb1c160b
TS
994 /* Protect q->elevator from elevator_change */
995 mutex_lock(&q->sysfs_lock);
996
b82d4b19 997 /* init elevator */
eb1c160b
TS
998 if (elevator_init(q, NULL)) {
999 mutex_unlock(&q->sysfs_lock);
6d247d7f 1000 goto out_exit_flush_rq;
eb1c160b
TS
1001 }
1002
1003 mutex_unlock(&q->sysfs_lock);
5ea708d1 1004 return 0;
eb1c160b 1005
6d247d7f
CH
1006out_exit_flush_rq:
1007 if (q->exit_rq_fn)
1008 q->exit_rq_fn(q, q->fq->flush_rq);
1009out_free_flush_queue:
ba483388 1010 blk_free_flush_queue(q->fq);
5ea708d1 1011 return -ENOMEM;
1da177e4 1012}
5151412d 1013EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1014
09ac46c4 1015bool blk_get_queue(struct request_queue *q)
1da177e4 1016{
3f3299d5 1017 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1018 __blk_get_queue(q);
1019 return true;
1da177e4
LT
1020 }
1021
09ac46c4 1022 return false;
1da177e4 1023}
d86e0e83 1024EXPORT_SYMBOL(blk_get_queue);
1da177e4 1025
5b788ce3 1026static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1027{
e8064021 1028 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1029 elv_put_request(rl->q, rq);
f1f8cc94 1030 if (rq->elv.icq)
11a3122f 1031 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1032 }
1033
5b788ce3 1034 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1035}
1036
1da177e4
LT
1037/*
1038 * ioc_batching returns true if the ioc is a valid batching request and
1039 * should be given priority access to a request.
1040 */
165125e1 1041static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1042{
1043 if (!ioc)
1044 return 0;
1045
1046 /*
1047 * Make sure the process is able to allocate at least 1 request
1048 * even if the batch times out, otherwise we could theoretically
1049 * lose wakeups.
1050 */
1051 return ioc->nr_batch_requests == q->nr_batching ||
1052 (ioc->nr_batch_requests > 0
1053 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1054}
1055
1056/*
1057 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1058 * will cause the process to be a "batcher" on all queues in the system. This
1059 * is the behaviour we want though - once it gets a wakeup it should be given
1060 * a nice run.
1061 */
165125e1 1062static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1063{
1064 if (!ioc || ioc_batching(q, ioc))
1065 return;
1066
1067 ioc->nr_batch_requests = q->nr_batching;
1068 ioc->last_waited = jiffies;
1069}
1070
5b788ce3 1071static void __freed_request(struct request_list *rl, int sync)
1da177e4 1072{
5b788ce3 1073 struct request_queue *q = rl->q;
1da177e4 1074
d40f75a0
TH
1075 if (rl->count[sync] < queue_congestion_off_threshold(q))
1076 blk_clear_congested(rl, sync);
1da177e4 1077
1faa16d2
JA
1078 if (rl->count[sync] + 1 <= q->nr_requests) {
1079 if (waitqueue_active(&rl->wait[sync]))
1080 wake_up(&rl->wait[sync]);
1da177e4 1081
5b788ce3 1082 blk_clear_rl_full(rl, sync);
1da177e4
LT
1083 }
1084}
1085
1086/*
1087 * A request has just been released. Account for it, update the full and
1088 * congestion status, wake up any waiters. Called under q->queue_lock.
1089 */
e8064021
CH
1090static void freed_request(struct request_list *rl, bool sync,
1091 req_flags_t rq_flags)
1da177e4 1092{
5b788ce3 1093 struct request_queue *q = rl->q;
1da177e4 1094
8a5ecdd4 1095 q->nr_rqs[sync]--;
1faa16d2 1096 rl->count[sync]--;
e8064021 1097 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1098 q->nr_rqs_elvpriv--;
1da177e4 1099
5b788ce3 1100 __freed_request(rl, sync);
1da177e4 1101
1faa16d2 1102 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1103 __freed_request(rl, sync ^ 1);
1da177e4
LT
1104}
1105
e3a2b3f9
JA
1106int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1107{
1108 struct request_list *rl;
d40f75a0 1109 int on_thresh, off_thresh;
e3a2b3f9 1110
332ebbf7
BVA
1111 WARN_ON_ONCE(q->mq_ops);
1112
e3a2b3f9
JA
1113 spin_lock_irq(q->queue_lock);
1114 q->nr_requests = nr;
1115 blk_queue_congestion_threshold(q);
d40f75a0
TH
1116 on_thresh = queue_congestion_on_threshold(q);
1117 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1118
d40f75a0
TH
1119 blk_queue_for_each_rl(rl, q) {
1120 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1121 blk_set_congested(rl, BLK_RW_SYNC);
1122 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1123 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1124
d40f75a0
TH
1125 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1126 blk_set_congested(rl, BLK_RW_ASYNC);
1127 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1128 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1129
e3a2b3f9
JA
1130 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1131 blk_set_rl_full(rl, BLK_RW_SYNC);
1132 } else {
1133 blk_clear_rl_full(rl, BLK_RW_SYNC);
1134 wake_up(&rl->wait[BLK_RW_SYNC]);
1135 }
1136
1137 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1138 blk_set_rl_full(rl, BLK_RW_ASYNC);
1139 } else {
1140 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1141 wake_up(&rl->wait[BLK_RW_ASYNC]);
1142 }
1143 }
1144
1145 spin_unlock_irq(q->queue_lock);
1146 return 0;
1147}
1148
da8303c6 1149/**
a06e05e6 1150 * __get_request - get a free request
5b788ce3 1151 * @rl: request list to allocate from
ef295ecf 1152 * @op: operation and flags
da8303c6
TH
1153 * @bio: bio to allocate request for (can be %NULL)
1154 * @gfp_mask: allocation mask
1155 *
1156 * Get a free request from @q. This function may fail under memory
1157 * pressure or if @q is dead.
1158 *
da3dae54 1159 * Must be called with @q->queue_lock held and,
a492f075
JL
1160 * Returns ERR_PTR on failure, with @q->queue_lock held.
1161 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1162 */
ef295ecf
CH
1163static struct request *__get_request(struct request_list *rl, unsigned int op,
1164 struct bio *bio, gfp_t gfp_mask)
1da177e4 1165{
5b788ce3 1166 struct request_queue *q = rl->q;
b679281a 1167 struct request *rq;
7f4b35d1
TH
1168 struct elevator_type *et = q->elevator->type;
1169 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1170 struct io_cq *icq = NULL;
ef295ecf 1171 const bool is_sync = op_is_sync(op);
75eb6c37 1172 int may_queue;
e8064021 1173 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1174
2fff8a92
BVA
1175 lockdep_assert_held(q->queue_lock);
1176
3f3299d5 1177 if (unlikely(blk_queue_dying(q)))
a492f075 1178 return ERR_PTR(-ENODEV);
da8303c6 1179
ef295ecf 1180 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1181 if (may_queue == ELV_MQUEUE_NO)
1182 goto rq_starved;
1183
1faa16d2
JA
1184 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1185 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1186 /*
1187 * The queue will fill after this allocation, so set
1188 * it as full, and mark this process as "batching".
1189 * This process will be allowed to complete a batch of
1190 * requests, others will be blocked.
1191 */
5b788ce3 1192 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1193 ioc_set_batching(q, ioc);
5b788ce3 1194 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1195 } else {
1196 if (may_queue != ELV_MQUEUE_MUST
1197 && !ioc_batching(q, ioc)) {
1198 /*
1199 * The queue is full and the allocating
1200 * process is not a "batcher", and not
1201 * exempted by the IO scheduler
1202 */
a492f075 1203 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1204 }
1205 }
1da177e4 1206 }
d40f75a0 1207 blk_set_congested(rl, is_sync);
1da177e4
LT
1208 }
1209
082cf69e
JA
1210 /*
1211 * Only allow batching queuers to allocate up to 50% over the defined
1212 * limit of requests, otherwise we could have thousands of requests
1213 * allocated with any setting of ->nr_requests
1214 */
1faa16d2 1215 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1216 return ERR_PTR(-ENOMEM);
fd782a4a 1217
8a5ecdd4 1218 q->nr_rqs[is_sync]++;
1faa16d2
JA
1219 rl->count[is_sync]++;
1220 rl->starved[is_sync] = 0;
cb98fc8b 1221
f1f8cc94
TH
1222 /*
1223 * Decide whether the new request will be managed by elevator. If
e8064021 1224 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1225 * prevent the current elevator from being destroyed until the new
1226 * request is freed. This guarantees icq's won't be destroyed and
1227 * makes creating new ones safe.
1228 *
e6f7f93d
CH
1229 * Flush requests do not use the elevator so skip initialization.
1230 * This allows a request to share the flush and elevator data.
1231 *
f1f8cc94
TH
1232 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1233 * it will be created after releasing queue_lock.
1234 */
e6f7f93d 1235 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1236 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1237 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1238 if (et->icq_cache && ioc)
1239 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1240 }
cb98fc8b 1241
f253b86b 1242 if (blk_queue_io_stat(q))
e8064021 1243 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1244 spin_unlock_irq(q->queue_lock);
1245
29e2b09a 1246 /* allocate and init request */
5b788ce3 1247 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1248 if (!rq)
b679281a 1249 goto fail_alloc;
1da177e4 1250
29e2b09a 1251 blk_rq_init(q, rq);
a051661c 1252 blk_rq_set_rl(rq, rl);
ef295ecf 1253 rq->cmd_flags = op;
e8064021 1254 rq->rq_flags = rq_flags;
29e2b09a 1255
aaf7c680 1256 /* init elvpriv */
e8064021 1257 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1258 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1259 if (ioc)
1260 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1261 if (!icq)
1262 goto fail_elvpriv;
29e2b09a 1263 }
aaf7c680
TH
1264
1265 rq->elv.icq = icq;
1266 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1267 goto fail_elvpriv;
1268
1269 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1270 if (icq)
1271 get_io_context(icq->ioc);
1272 }
aaf7c680 1273out:
88ee5ef1
JA
1274 /*
1275 * ioc may be NULL here, and ioc_batching will be false. That's
1276 * OK, if the queue is under the request limit then requests need
1277 * not count toward the nr_batch_requests limit. There will always
1278 * be some limit enforced by BLK_BATCH_TIME.
1279 */
1da177e4
LT
1280 if (ioc_batching(q, ioc))
1281 ioc->nr_batch_requests--;
6728cb0e 1282
e6a40b09 1283 trace_block_getrq(q, bio, op);
1da177e4 1284 return rq;
b679281a 1285
aaf7c680
TH
1286fail_elvpriv:
1287 /*
1288 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1289 * and may fail indefinitely under memory pressure and thus
1290 * shouldn't stall IO. Treat this request as !elvpriv. This will
1291 * disturb iosched and blkcg but weird is bettern than dead.
1292 */
7b2b10e0 1293 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1294 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1295
e8064021 1296 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1297 rq->elv.icq = NULL;
1298
1299 spin_lock_irq(q->queue_lock);
8a5ecdd4 1300 q->nr_rqs_elvpriv--;
aaf7c680
TH
1301 spin_unlock_irq(q->queue_lock);
1302 goto out;
1303
b679281a
TH
1304fail_alloc:
1305 /*
1306 * Allocation failed presumably due to memory. Undo anything we
1307 * might have messed up.
1308 *
1309 * Allocating task should really be put onto the front of the wait
1310 * queue, but this is pretty rare.
1311 */
1312 spin_lock_irq(q->queue_lock);
e8064021 1313 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1314
1315 /*
1316 * in the very unlikely event that allocation failed and no
1317 * requests for this direction was pending, mark us starved so that
1318 * freeing of a request in the other direction will notice
1319 * us. another possible fix would be to split the rq mempool into
1320 * READ and WRITE
1321 */
1322rq_starved:
1323 if (unlikely(rl->count[is_sync] == 0))
1324 rl->starved[is_sync] = 1;
a492f075 1325 return ERR_PTR(-ENOMEM);
1da177e4
LT
1326}
1327
da8303c6 1328/**
a06e05e6 1329 * get_request - get a free request
da8303c6 1330 * @q: request_queue to allocate request from
ef295ecf 1331 * @op: operation and flags
da8303c6 1332 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1333 * @gfp_mask: allocation mask
da8303c6 1334 *
d0164adc
MG
1335 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1336 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1337 *
da3dae54 1338 * Must be called with @q->queue_lock held and,
a492f075
JL
1339 * Returns ERR_PTR on failure, with @q->queue_lock held.
1340 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1341 */
ef295ecf
CH
1342static struct request *get_request(struct request_queue *q, unsigned int op,
1343 struct bio *bio, gfp_t gfp_mask)
1da177e4 1344{
ef295ecf 1345 const bool is_sync = op_is_sync(op);
a06e05e6 1346 DEFINE_WAIT(wait);
a051661c 1347 struct request_list *rl;
1da177e4 1348 struct request *rq;
a051661c 1349
2fff8a92 1350 lockdep_assert_held(q->queue_lock);
332ebbf7 1351 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1352
a051661c 1353 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1354retry:
ef295ecf 1355 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1356 if (!IS_ERR(rq))
a06e05e6 1357 return rq;
1da177e4 1358
03a07c92
GR
1359 if (op & REQ_NOWAIT) {
1360 blk_put_rl(rl);
1361 return ERR_PTR(-EAGAIN);
1362 }
1363
d0164adc 1364 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1365 blk_put_rl(rl);
a492f075 1366 return rq;
a051661c 1367 }
1da177e4 1368
a06e05e6
TH
1369 /* wait on @rl and retry */
1370 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1371 TASK_UNINTERRUPTIBLE);
1da177e4 1372
e6a40b09 1373 trace_block_sleeprq(q, bio, op);
1da177e4 1374
a06e05e6
TH
1375 spin_unlock_irq(q->queue_lock);
1376 io_schedule();
d6344532 1377
a06e05e6
TH
1378 /*
1379 * After sleeping, we become a "batching" process and will be able
1380 * to allocate at least one request, and up to a big batch of them
1381 * for a small period time. See ioc_batching, ioc_set_batching
1382 */
a06e05e6 1383 ioc_set_batching(q, current->io_context);
05caf8db 1384
a06e05e6
TH
1385 spin_lock_irq(q->queue_lock);
1386 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1387
a06e05e6 1388 goto retry;
1da177e4
LT
1389}
1390
cd6ce148
BVA
1391static struct request *blk_old_get_request(struct request_queue *q,
1392 unsigned int op, gfp_t gfp_mask)
1da177e4
LT
1393{
1394 struct request *rq;
1395
332ebbf7
BVA
1396 WARN_ON_ONCE(q->mq_ops);
1397
7f4b35d1
TH
1398 /* create ioc upfront */
1399 create_io_context(gfp_mask, q->node);
1400
d6344532 1401 spin_lock_irq(q->queue_lock);
cd6ce148 1402 rq = get_request(q, op, NULL, gfp_mask);
0c4de0f3 1403 if (IS_ERR(rq)) {
da8303c6 1404 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1405 return rq;
1406 }
1da177e4 1407
0c4de0f3
CH
1408 /* q->queue_lock is unlocked at this point */
1409 rq->__data_len = 0;
1410 rq->__sector = (sector_t) -1;
1411 rq->bio = rq->biotail = NULL;
1da177e4
LT
1412 return rq;
1413}
320ae51f 1414
cd6ce148
BVA
1415struct request *blk_get_request(struct request_queue *q, unsigned int op,
1416 gfp_t gfp_mask)
320ae51f 1417{
d280bab3
BVA
1418 struct request *req;
1419
1420 if (q->mq_ops) {
1421 req = blk_mq_alloc_request(q, op,
6f3b0e8b
CH
1422 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1423 0 : BLK_MQ_REQ_NOWAIT);
d280bab3
BVA
1424 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1425 q->mq_ops->initialize_rq_fn(req);
1426 } else {
1427 req = blk_old_get_request(q, op, gfp_mask);
1428 if (!IS_ERR(req) && q->initialize_rq_fn)
1429 q->initialize_rq_fn(req);
1430 }
1431
1432 return req;
320ae51f 1433}
1da177e4
LT
1434EXPORT_SYMBOL(blk_get_request);
1435
1436/**
1437 * blk_requeue_request - put a request back on queue
1438 * @q: request queue where request should be inserted
1439 * @rq: request to be inserted
1440 *
1441 * Description:
1442 * Drivers often keep queueing requests until the hardware cannot accept
1443 * more, when that condition happens we need to put the request back
1444 * on the queue. Must be called with queue lock held.
1445 */
165125e1 1446void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1447{
2fff8a92 1448 lockdep_assert_held(q->queue_lock);
332ebbf7 1449 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1450
242f9dcb
JA
1451 blk_delete_timer(rq);
1452 blk_clear_rq_complete(rq);
5f3ea37c 1453 trace_block_rq_requeue(q, rq);
87760e5e 1454 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1455
e8064021 1456 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1457 blk_queue_end_tag(q, rq);
1458
ba396a6c
JB
1459 BUG_ON(blk_queued_rq(rq));
1460
1da177e4
LT
1461 elv_requeue_request(q, rq);
1462}
1da177e4
LT
1463EXPORT_SYMBOL(blk_requeue_request);
1464
73c10101
JA
1465static void add_acct_request(struct request_queue *q, struct request *rq,
1466 int where)
1467{
320ae51f 1468 blk_account_io_start(rq, true);
7eaceacc 1469 __elv_add_request(q, rq, where);
73c10101
JA
1470}
1471
d62e26b3
JA
1472static void part_round_stats_single(struct request_queue *q, int cpu,
1473 struct hd_struct *part, unsigned long now)
074a7aca 1474{
0609e0ef 1475 int inflight[2];
7276d02e 1476
074a7aca
TH
1477 if (now == part->stamp)
1478 return;
1479
0609e0ef
JA
1480 part_in_flight(q, part, inflight);
1481 if (inflight[0]) {
074a7aca 1482 __part_stat_add(cpu, part, time_in_queue,
0609e0ef 1483 inflight[0] * (now - part->stamp));
074a7aca
TH
1484 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1485 }
1486 part->stamp = now;
1487}
1488
1489/**
496aa8a9 1490 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1491 * @q: target block queue
496aa8a9
RD
1492 * @cpu: cpu number for stats access
1493 * @part: target partition
1da177e4
LT
1494 *
1495 * The average IO queue length and utilisation statistics are maintained
1496 * by observing the current state of the queue length and the amount of
1497 * time it has been in this state for.
1498 *
1499 * Normally, that accounting is done on IO completion, but that can result
1500 * in more than a second's worth of IO being accounted for within any one
1501 * second, leading to >100% utilisation. To deal with that, we call this
1502 * function to do a round-off before returning the results when reading
1503 * /proc/diskstats. This accounts immediately for all queue usage up to
1504 * the current jiffies and restarts the counters again.
1505 */
d62e26b3 1506void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af
JM
1507{
1508 unsigned long now = jiffies;
1509
074a7aca 1510 if (part->partno)
d62e26b3
JA
1511 part_round_stats_single(q, cpu, &part_to_disk(part)->part0,
1512 now);
1513 part_round_stats_single(q, cpu, part, now);
6f2576af 1514}
074a7aca 1515EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1516
47fafbc7 1517#ifdef CONFIG_PM
c8158819
LM
1518static void blk_pm_put_request(struct request *rq)
1519{
e8064021 1520 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1521 pm_runtime_mark_last_busy(rq->q->dev);
1522}
1523#else
1524static inline void blk_pm_put_request(struct request *rq) {}
1525#endif
1526
165125e1 1527void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1528{
e8064021
CH
1529 req_flags_t rq_flags = req->rq_flags;
1530
1da177e4
LT
1531 if (unlikely(!q))
1532 return;
1da177e4 1533
6f5ba581
CH
1534 if (q->mq_ops) {
1535 blk_mq_free_request(req);
1536 return;
1537 }
1538
2fff8a92
BVA
1539 lockdep_assert_held(q->queue_lock);
1540
c8158819
LM
1541 blk_pm_put_request(req);
1542
8922e16c
TH
1543 elv_completed_request(q, req);
1544
1cd96c24
BH
1545 /* this is a bio leak */
1546 WARN_ON(req->bio != NULL);
1547
87760e5e
JA
1548 wbt_done(q->rq_wb, &req->issue_stat);
1549
1da177e4
LT
1550 /*
1551 * Request may not have originated from ll_rw_blk. if not,
1552 * it didn't come out of our reserved rq pools
1553 */
e8064021 1554 if (rq_flags & RQF_ALLOCED) {
a051661c 1555 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1556 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1557
1da177e4 1558 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1559 BUG_ON(ELV_ON_HASH(req));
1da177e4 1560
a051661c 1561 blk_free_request(rl, req);
e8064021 1562 freed_request(rl, sync, rq_flags);
a051661c 1563 blk_put_rl(rl);
1da177e4
LT
1564 }
1565}
6e39b69e
MC
1566EXPORT_SYMBOL_GPL(__blk_put_request);
1567
1da177e4
LT
1568void blk_put_request(struct request *req)
1569{
165125e1 1570 struct request_queue *q = req->q;
8922e16c 1571
320ae51f
JA
1572 if (q->mq_ops)
1573 blk_mq_free_request(req);
1574 else {
1575 unsigned long flags;
1576
1577 spin_lock_irqsave(q->queue_lock, flags);
1578 __blk_put_request(q, req);
1579 spin_unlock_irqrestore(q->queue_lock, flags);
1580 }
1da177e4 1581}
1da177e4
LT
1582EXPORT_SYMBOL(blk_put_request);
1583
320ae51f
JA
1584bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1585 struct bio *bio)
73c10101 1586{
1eff9d32 1587 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1588
73c10101
JA
1589 if (!ll_back_merge_fn(q, req, bio))
1590 return false;
1591
8c1cf6bb 1592 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1593
1594 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1595 blk_rq_set_mixed_merge(req);
1596
1597 req->biotail->bi_next = bio;
1598 req->biotail = bio;
4f024f37 1599 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1600 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1601
320ae51f 1602 blk_account_io_start(req, false);
73c10101
JA
1603 return true;
1604}
1605
320ae51f
JA
1606bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1607 struct bio *bio)
73c10101 1608{
1eff9d32 1609 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1610
73c10101
JA
1611 if (!ll_front_merge_fn(q, req, bio))
1612 return false;
1613
8c1cf6bb 1614 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1615
1616 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1617 blk_rq_set_mixed_merge(req);
1618
73c10101
JA
1619 bio->bi_next = req->bio;
1620 req->bio = bio;
1621
4f024f37
KO
1622 req->__sector = bio->bi_iter.bi_sector;
1623 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1624 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1625
320ae51f 1626 blk_account_io_start(req, false);
73c10101
JA
1627 return true;
1628}
1629
1e739730
CH
1630bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1631 struct bio *bio)
1632{
1633 unsigned short segments = blk_rq_nr_discard_segments(req);
1634
1635 if (segments >= queue_max_discard_segments(q))
1636 goto no_merge;
1637 if (blk_rq_sectors(req) + bio_sectors(bio) >
1638 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1639 goto no_merge;
1640
1641 req->biotail->bi_next = bio;
1642 req->biotail = bio;
1643 req->__data_len += bio->bi_iter.bi_size;
1644 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1645 req->nr_phys_segments = segments + 1;
1646
1647 blk_account_io_start(req, false);
1648 return true;
1649no_merge:
1650 req_set_nomerge(q, req);
1651 return false;
1652}
1653
bd87b589 1654/**
320ae51f 1655 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1656 * @q: request_queue new bio is being queued at
1657 * @bio: new bio being queued
1658 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1659 * @same_queue_rq: pointer to &struct request that gets filled in when
1660 * another request associated with @q is found on the plug list
1661 * (optional, may be %NULL)
bd87b589
TH
1662 *
1663 * Determine whether @bio being queued on @q can be merged with a request
1664 * on %current's plugged list. Returns %true if merge was successful,
1665 * otherwise %false.
1666 *
07c2bd37
TH
1667 * Plugging coalesces IOs from the same issuer for the same purpose without
1668 * going through @q->queue_lock. As such it's more of an issuing mechanism
1669 * than scheduling, and the request, while may have elvpriv data, is not
1670 * added on the elevator at this point. In addition, we don't have
1671 * reliable access to the elevator outside queue lock. Only check basic
1672 * merging parameters without querying the elevator.
da41a589
RE
1673 *
1674 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1675 */
320ae51f 1676bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1677 unsigned int *request_count,
1678 struct request **same_queue_rq)
73c10101
JA
1679{
1680 struct blk_plug *plug;
1681 struct request *rq;
92f399c7 1682 struct list_head *plug_list;
73c10101 1683
bd87b589 1684 plug = current->plug;
73c10101 1685 if (!plug)
34fe7c05 1686 return false;
56ebdaf2 1687 *request_count = 0;
73c10101 1688
92f399c7
SL
1689 if (q->mq_ops)
1690 plug_list = &plug->mq_list;
1691 else
1692 plug_list = &plug->list;
1693
1694 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1695 bool merged = false;
73c10101 1696
5b3f341f 1697 if (rq->q == q) {
1b2e19f1 1698 (*request_count)++;
5b3f341f
SL
1699 /*
1700 * Only blk-mq multiple hardware queues case checks the
1701 * rq in the same queue, there should be only one such
1702 * rq in a queue
1703 **/
1704 if (same_queue_rq)
1705 *same_queue_rq = rq;
1706 }
56ebdaf2 1707
07c2bd37 1708 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1709 continue;
1710
34fe7c05
CH
1711 switch (blk_try_merge(rq, bio)) {
1712 case ELEVATOR_BACK_MERGE:
1713 merged = bio_attempt_back_merge(q, rq, bio);
1714 break;
1715 case ELEVATOR_FRONT_MERGE:
1716 merged = bio_attempt_front_merge(q, rq, bio);
1717 break;
1e739730
CH
1718 case ELEVATOR_DISCARD_MERGE:
1719 merged = bio_attempt_discard_merge(q, rq, bio);
1720 break;
34fe7c05
CH
1721 default:
1722 break;
73c10101 1723 }
34fe7c05
CH
1724
1725 if (merged)
1726 return true;
73c10101 1727 }
34fe7c05
CH
1728
1729 return false;
73c10101
JA
1730}
1731
0809e3ac
JM
1732unsigned int blk_plug_queued_count(struct request_queue *q)
1733{
1734 struct blk_plug *plug;
1735 struct request *rq;
1736 struct list_head *plug_list;
1737 unsigned int ret = 0;
1738
1739 plug = current->plug;
1740 if (!plug)
1741 goto out;
1742
1743 if (q->mq_ops)
1744 plug_list = &plug->mq_list;
1745 else
1746 plug_list = &plug->list;
1747
1748 list_for_each_entry(rq, plug_list, queuelist) {
1749 if (rq->q == q)
1750 ret++;
1751 }
1752out:
1753 return ret;
1754}
1755
da8d7f07 1756void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1757{
0be0dee6
BVA
1758 struct io_context *ioc = rq_ioc(bio);
1759
1eff9d32 1760 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1761 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1762
4f024f37 1763 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1764 if (ioprio_valid(bio_prio(bio)))
1765 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1766 else if (ioc)
1767 req->ioprio = ioc->ioprio;
1768 else
1769 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1770 req->write_hint = bio->bi_write_hint;
bc1c56fd 1771 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1772}
da8d7f07 1773EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1774
dece1635 1775static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1776{
73c10101 1777 struct blk_plug *plug;
34fe7c05 1778 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1779 struct request *req, *free;
56ebdaf2 1780 unsigned int request_count = 0;
87760e5e 1781 unsigned int wb_acct;
1da177e4 1782
1da177e4
LT
1783 /*
1784 * low level driver can indicate that it wants pages above a
1785 * certain limit bounced to low memory (ie for highmem, or even
1786 * ISA dma in theory)
1787 */
1788 blk_queue_bounce(q, &bio);
1789
af67c31f 1790 blk_queue_split(q, &bio);
23688bf4 1791
e23947bd 1792 if (!bio_integrity_prep(bio))
dece1635 1793 return BLK_QC_T_NONE;
ffecfd1a 1794
f73f44eb 1795 if (op_is_flush(bio->bi_opf)) {
73c10101 1796 spin_lock_irq(q->queue_lock);
ae1b1539 1797 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1798 goto get_rq;
1799 }
1800
73c10101
JA
1801 /*
1802 * Check if we can merge with the plugged list before grabbing
1803 * any locks.
1804 */
0809e3ac
JM
1805 if (!blk_queue_nomerges(q)) {
1806 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1807 return BLK_QC_T_NONE;
0809e3ac
JM
1808 } else
1809 request_count = blk_plug_queued_count(q);
1da177e4 1810
73c10101 1811 spin_lock_irq(q->queue_lock);
2056a782 1812
34fe7c05
CH
1813 switch (elv_merge(q, &req, bio)) {
1814 case ELEVATOR_BACK_MERGE:
1815 if (!bio_attempt_back_merge(q, req, bio))
1816 break;
1817 elv_bio_merged(q, req, bio);
1818 free = attempt_back_merge(q, req);
1819 if (free)
1820 __blk_put_request(q, free);
1821 else
1822 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1823 goto out_unlock;
1824 case ELEVATOR_FRONT_MERGE:
1825 if (!bio_attempt_front_merge(q, req, bio))
1826 break;
1827 elv_bio_merged(q, req, bio);
1828 free = attempt_front_merge(q, req);
1829 if (free)
1830 __blk_put_request(q, free);
1831 else
1832 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1833 goto out_unlock;
1834 default:
1835 break;
1da177e4
LT
1836 }
1837
450991bc 1838get_rq:
87760e5e
JA
1839 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1840
1da177e4 1841 /*
450991bc 1842 * Grab a free request. This is might sleep but can not fail.
d6344532 1843 * Returns with the queue unlocked.
450991bc 1844 */
ef295ecf 1845 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1846 if (IS_ERR(req)) {
87760e5e 1847 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1848 if (PTR_ERR(req) == -ENOMEM)
1849 bio->bi_status = BLK_STS_RESOURCE;
1850 else
1851 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1852 bio_endio(bio);
da8303c6
TH
1853 goto out_unlock;
1854 }
d6344532 1855
87760e5e
JA
1856 wbt_track(&req->issue_stat, wb_acct);
1857
450991bc
NP
1858 /*
1859 * After dropping the lock and possibly sleeping here, our request
1860 * may now be mergeable after it had proven unmergeable (above).
1861 * We don't worry about that case for efficiency. It won't happen
1862 * often, and the elevators are able to handle it.
1da177e4 1863 */
da8d7f07 1864 blk_init_request_from_bio(req, bio);
1da177e4 1865
9562ad9a 1866 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1867 req->cpu = raw_smp_processor_id();
73c10101
JA
1868
1869 plug = current->plug;
721a9602 1870 if (plug) {
dc6d36c9
JA
1871 /*
1872 * If this is the first request added after a plug, fire
7aef2e78 1873 * of a plug trace.
0a6219a9
ML
1874 *
1875 * @request_count may become stale because of schedule
1876 * out, so check plug list again.
dc6d36c9 1877 */
0a6219a9 1878 if (!request_count || list_empty(&plug->list))
dc6d36c9 1879 trace_block_plug(q);
3540d5e8 1880 else {
50d24c34
SL
1881 struct request *last = list_entry_rq(plug->list.prev);
1882 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1883 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1884 blk_flush_plug_list(plug, false);
019ceb7d
SL
1885 trace_block_plug(q);
1886 }
73c10101 1887 }
73c10101 1888 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1889 blk_account_io_start(req, true);
73c10101
JA
1890 } else {
1891 spin_lock_irq(q->queue_lock);
1892 add_acct_request(q, req, where);
24ecfbe2 1893 __blk_run_queue(q);
73c10101
JA
1894out_unlock:
1895 spin_unlock_irq(q->queue_lock);
1896 }
dece1635
JA
1897
1898 return BLK_QC_T_NONE;
1da177e4
LT
1899}
1900
1901/*
1902 * If bio->bi_dev is a partition, remap the location
1903 */
1904static inline void blk_partition_remap(struct bio *bio)
1905{
1906 struct block_device *bdev = bio->bi_bdev;
1907
778889d8
ST
1908 /*
1909 * Zone reset does not include bi_size so bio_sectors() is always 0.
1910 * Include a test for the reset op code and perform the remap if needed.
1911 */
1912 if (bdev != bdev->bd_contains &&
1913 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1914 struct hd_struct *p = bdev->bd_part;
1915
4f024f37 1916 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1917 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1918
d07335e5
MS
1919 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1920 bdev->bd_dev,
4f024f37 1921 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1922 }
1923}
1924
1da177e4
LT
1925static void handle_bad_sector(struct bio *bio)
1926{
1927 char b[BDEVNAME_SIZE];
1928
1929 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1930 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1931 bdevname(bio->bi_bdev, b),
1eff9d32 1932 bio->bi_opf,
f73a1c7d 1933 (unsigned long long)bio_end_sector(bio),
77304d2a 1934 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1935}
1936
c17bb495
AM
1937#ifdef CONFIG_FAIL_MAKE_REQUEST
1938
1939static DECLARE_FAULT_ATTR(fail_make_request);
1940
1941static int __init setup_fail_make_request(char *str)
1942{
1943 return setup_fault_attr(&fail_make_request, str);
1944}
1945__setup("fail_make_request=", setup_fail_make_request);
1946
b2c9cd37 1947static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1948{
b2c9cd37 1949 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1950}
1951
1952static int __init fail_make_request_debugfs(void)
1953{
dd48c085
AM
1954 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1955 NULL, &fail_make_request);
1956
21f9fcd8 1957 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1958}
1959
1960late_initcall(fail_make_request_debugfs);
1961
1962#else /* CONFIG_FAIL_MAKE_REQUEST */
1963
b2c9cd37
AM
1964static inline bool should_fail_request(struct hd_struct *part,
1965 unsigned int bytes)
c17bb495 1966{
b2c9cd37 1967 return false;
c17bb495
AM
1968}
1969
1970#endif /* CONFIG_FAIL_MAKE_REQUEST */
1971
c07e2b41
JA
1972/*
1973 * Check whether this bio extends beyond the end of the device.
1974 */
1975static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1976{
1977 sector_t maxsector;
1978
1979 if (!nr_sectors)
1980 return 0;
1981
1982 /* Test device or partition size, when known. */
77304d2a 1983 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1984 if (maxsector) {
4f024f37 1985 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1986
1987 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1988 /*
1989 * This may well happen - the kernel calls bread()
1990 * without checking the size of the device, e.g., when
1991 * mounting a device.
1992 */
1993 handle_bad_sector(bio);
1994 return 1;
1995 }
1996 }
1997
1998 return 0;
1999}
2000
27a84d54
CH
2001static noinline_for_stack bool
2002generic_make_request_checks(struct bio *bio)
1da177e4 2003{
165125e1 2004 struct request_queue *q;
5a7bbad2 2005 int nr_sectors = bio_sectors(bio);
4e4cbee9 2006 blk_status_t status = BLK_STS_IOERR;
5a7bbad2
CH
2007 char b[BDEVNAME_SIZE];
2008 struct hd_struct *part;
1da177e4
LT
2009
2010 might_sleep();
1da177e4 2011
c07e2b41
JA
2012 if (bio_check_eod(bio, nr_sectors))
2013 goto end_io;
1da177e4 2014
5a7bbad2
CH
2015 q = bdev_get_queue(bio->bi_bdev);
2016 if (unlikely(!q)) {
2017 printk(KERN_ERR
2018 "generic_make_request: Trying to access "
2019 "nonexistent block-device %s (%Lu)\n",
2020 bdevname(bio->bi_bdev, b),
4f024f37 2021 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
2022 goto end_io;
2023 }
c17bb495 2024
03a07c92
GR
2025 /*
2026 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2027 * if queue is not a request based queue.
2028 */
2029
2030 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2031 goto not_supported;
2032
5a7bbad2 2033 part = bio->bi_bdev->bd_part;
4f024f37 2034 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 2035 should_fail_request(&part_to_disk(part)->part0,
4f024f37 2036 bio->bi_iter.bi_size))
5a7bbad2 2037 goto end_io;
2056a782 2038
5a7bbad2
CH
2039 /*
2040 * If this device has partitions, remap block n
2041 * of partition p to block n+start(p) of the disk.
2042 */
2043 blk_partition_remap(bio);
2056a782 2044
5a7bbad2
CH
2045 if (bio_check_eod(bio, nr_sectors))
2046 goto end_io;
1e87901e 2047
5a7bbad2
CH
2048 /*
2049 * Filter flush bio's early so that make_request based
2050 * drivers without flush support don't have to worry
2051 * about them.
2052 */
f3a8ab7d 2053 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2054 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2055 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2056 if (!nr_sectors) {
4e4cbee9 2057 status = BLK_STS_OK;
51fd77bd
JA
2058 goto end_io;
2059 }
5a7bbad2 2060 }
5ddfe969 2061
288dab8a
CH
2062 switch (bio_op(bio)) {
2063 case REQ_OP_DISCARD:
2064 if (!blk_queue_discard(q))
2065 goto not_supported;
2066 break;
2067 case REQ_OP_SECURE_ERASE:
2068 if (!blk_queue_secure_erase(q))
2069 goto not_supported;
2070 break;
2071 case REQ_OP_WRITE_SAME:
2072 if (!bdev_write_same(bio->bi_bdev))
2073 goto not_supported;
58886785 2074 break;
2d253440
ST
2075 case REQ_OP_ZONE_REPORT:
2076 case REQ_OP_ZONE_RESET:
2077 if (!bdev_is_zoned(bio->bi_bdev))
2078 goto not_supported;
288dab8a 2079 break;
a6f0788e
CK
2080 case REQ_OP_WRITE_ZEROES:
2081 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
2082 goto not_supported;
2083 break;
288dab8a
CH
2084 default:
2085 break;
5a7bbad2 2086 }
01edede4 2087
7f4b35d1
TH
2088 /*
2089 * Various block parts want %current->io_context and lazy ioc
2090 * allocation ends up trading a lot of pain for a small amount of
2091 * memory. Just allocate it upfront. This may fail and block
2092 * layer knows how to live with it.
2093 */
2094 create_io_context(GFP_ATOMIC, q->node);
2095
ae118896
TH
2096 if (!blkcg_bio_issue_check(q, bio))
2097 return false;
27a84d54 2098
fbbaf700
N
2099 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2100 trace_block_bio_queue(q, bio);
2101 /* Now that enqueuing has been traced, we need to trace
2102 * completion as well.
2103 */
2104 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2105 }
27a84d54 2106 return true;
a7384677 2107
288dab8a 2108not_supported:
4e4cbee9 2109 status = BLK_STS_NOTSUPP;
a7384677 2110end_io:
4e4cbee9 2111 bio->bi_status = status;
4246a0b6 2112 bio_endio(bio);
27a84d54 2113 return false;
1da177e4
LT
2114}
2115
27a84d54
CH
2116/**
2117 * generic_make_request - hand a buffer to its device driver for I/O
2118 * @bio: The bio describing the location in memory and on the device.
2119 *
2120 * generic_make_request() is used to make I/O requests of block
2121 * devices. It is passed a &struct bio, which describes the I/O that needs
2122 * to be done.
2123 *
2124 * generic_make_request() does not return any status. The
2125 * success/failure status of the request, along with notification of
2126 * completion, is delivered asynchronously through the bio->bi_end_io
2127 * function described (one day) else where.
2128 *
2129 * The caller of generic_make_request must make sure that bi_io_vec
2130 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2131 * set to describe the device address, and the
2132 * bi_end_io and optionally bi_private are set to describe how
2133 * completion notification should be signaled.
2134 *
2135 * generic_make_request and the drivers it calls may use bi_next if this
2136 * bio happens to be merged with someone else, and may resubmit the bio to
2137 * a lower device by calling into generic_make_request recursively, which
2138 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2139 */
dece1635 2140blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2141{
f5fe1b51
N
2142 /*
2143 * bio_list_on_stack[0] contains bios submitted by the current
2144 * make_request_fn.
2145 * bio_list_on_stack[1] contains bios that were submitted before
2146 * the current make_request_fn, but that haven't been processed
2147 * yet.
2148 */
2149 struct bio_list bio_list_on_stack[2];
dece1635 2150 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2151
27a84d54 2152 if (!generic_make_request_checks(bio))
dece1635 2153 goto out;
27a84d54
CH
2154
2155 /*
2156 * We only want one ->make_request_fn to be active at a time, else
2157 * stack usage with stacked devices could be a problem. So use
2158 * current->bio_list to keep a list of requests submited by a
2159 * make_request_fn function. current->bio_list is also used as a
2160 * flag to say if generic_make_request is currently active in this
2161 * task or not. If it is NULL, then no make_request is active. If
2162 * it is non-NULL, then a make_request is active, and new requests
2163 * should be added at the tail
2164 */
bddd87c7 2165 if (current->bio_list) {
f5fe1b51 2166 bio_list_add(&current->bio_list[0], bio);
dece1635 2167 goto out;
d89d8796 2168 }
27a84d54 2169
d89d8796
NB
2170 /* following loop may be a bit non-obvious, and so deserves some
2171 * explanation.
2172 * Before entering the loop, bio->bi_next is NULL (as all callers
2173 * ensure that) so we have a list with a single bio.
2174 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2175 * we assign bio_list to a pointer to the bio_list_on_stack,
2176 * thus initialising the bio_list of new bios to be
27a84d54 2177 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2178 * through a recursive call to generic_make_request. If it
2179 * did, we find a non-NULL value in bio_list and re-enter the loop
2180 * from the top. In this case we really did just take the bio
bddd87c7 2181 * of the top of the list (no pretending) and so remove it from
27a84d54 2182 * bio_list, and call into ->make_request() again.
d89d8796
NB
2183 */
2184 BUG_ON(bio->bi_next);
f5fe1b51
N
2185 bio_list_init(&bio_list_on_stack[0]);
2186 current->bio_list = bio_list_on_stack;
d89d8796 2187 do {
27a84d54
CH
2188 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2189
03a07c92 2190 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
79bd9959
N
2191 struct bio_list lower, same;
2192
2193 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2194 bio_list_on_stack[1] = bio_list_on_stack[0];
2195 bio_list_init(&bio_list_on_stack[0]);
dece1635 2196 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2197
2198 blk_queue_exit(q);
27a84d54 2199
79bd9959
N
2200 /* sort new bios into those for a lower level
2201 * and those for the same level
2202 */
2203 bio_list_init(&lower);
2204 bio_list_init(&same);
f5fe1b51 2205 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
79bd9959
N
2206 if (q == bdev_get_queue(bio->bi_bdev))
2207 bio_list_add(&same, bio);
2208 else
2209 bio_list_add(&lower, bio);
2210 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2211 bio_list_merge(&bio_list_on_stack[0], &lower);
2212 bio_list_merge(&bio_list_on_stack[0], &same);
2213 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2214 } else {
03a07c92
GR
2215 if (unlikely(!blk_queue_dying(q) &&
2216 (bio->bi_opf & REQ_NOWAIT)))
2217 bio_wouldblock_error(bio);
2218 else
2219 bio_io_error(bio);
3ef28e83 2220 }
f5fe1b51 2221 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2222 } while (bio);
bddd87c7 2223 current->bio_list = NULL; /* deactivate */
dece1635
JA
2224
2225out:
2226 return ret;
d89d8796 2227}
1da177e4
LT
2228EXPORT_SYMBOL(generic_make_request);
2229
2230/**
710027a4 2231 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2232 * @bio: The &struct bio which describes the I/O
2233 *
2234 * submit_bio() is very similar in purpose to generic_make_request(), and
2235 * uses that function to do most of the work. Both are fairly rough
710027a4 2236 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2237 *
2238 */
4e49ea4a 2239blk_qc_t submit_bio(struct bio *bio)
1da177e4 2240{
bf2de6f5
JA
2241 /*
2242 * If it's a regular read/write or a barrier with data attached,
2243 * go through the normal accounting stuff before submission.
2244 */
e2a60da7 2245 if (bio_has_data(bio)) {
4363ac7c
MP
2246 unsigned int count;
2247
95fe6c1a 2248 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2249 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2250 else
2251 count = bio_sectors(bio);
2252
a8ebb056 2253 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2254 count_vm_events(PGPGOUT, count);
2255 } else {
4f024f37 2256 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2257 count_vm_events(PGPGIN, count);
2258 }
2259
2260 if (unlikely(block_dump)) {
2261 char b[BDEVNAME_SIZE];
8dcbdc74 2262 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2263 current->comm, task_pid_nr(current),
a8ebb056 2264 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2265 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2266 bdevname(bio->bi_bdev, b),
2267 count);
bf2de6f5 2268 }
1da177e4
LT
2269 }
2270
dece1635 2271 return generic_make_request(bio);
1da177e4 2272}
1da177e4
LT
2273EXPORT_SYMBOL(submit_bio);
2274
82124d60 2275/**
bf4e6b4e
HR
2276 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2277 * for new the queue limits
82124d60
KU
2278 * @q: the queue
2279 * @rq: the request being checked
2280 *
2281 * Description:
2282 * @rq may have been made based on weaker limitations of upper-level queues
2283 * in request stacking drivers, and it may violate the limitation of @q.
2284 * Since the block layer and the underlying device driver trust @rq
2285 * after it is inserted to @q, it should be checked against @q before
2286 * the insertion using this generic function.
2287 *
82124d60 2288 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2289 * limits when retrying requests on other queues. Those requests need
2290 * to be checked against the new queue limits again during dispatch.
82124d60 2291 */
bf4e6b4e
HR
2292static int blk_cloned_rq_check_limits(struct request_queue *q,
2293 struct request *rq)
82124d60 2294{
8fe0d473 2295 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2296 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2297 return -EIO;
2298 }
2299
2300 /*
2301 * queue's settings related to segment counting like q->bounce_pfn
2302 * may differ from that of other stacking queues.
2303 * Recalculate it to check the request correctly on this queue's
2304 * limitation.
2305 */
2306 blk_recalc_rq_segments(rq);
8a78362c 2307 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2308 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2309 return -EIO;
2310 }
2311
2312 return 0;
2313}
82124d60
KU
2314
2315/**
2316 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2317 * @q: the queue to submit the request
2318 * @rq: the request being queued
2319 */
2a842aca 2320blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2321{
2322 unsigned long flags;
4853abaa 2323 int where = ELEVATOR_INSERT_BACK;
82124d60 2324
bf4e6b4e 2325 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2326 return BLK_STS_IOERR;
82124d60 2327
b2c9cd37
AM
2328 if (rq->rq_disk &&
2329 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2330 return BLK_STS_IOERR;
82124d60 2331
7fb4898e
KB
2332 if (q->mq_ops) {
2333 if (blk_queue_io_stat(q))
2334 blk_account_io_start(rq, true);
bd6737f1 2335 blk_mq_sched_insert_request(rq, false, true, false, false);
2a842aca 2336 return BLK_STS_OK;
7fb4898e
KB
2337 }
2338
82124d60 2339 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2340 if (unlikely(blk_queue_dying(q))) {
8ba61435 2341 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2342 return BLK_STS_IOERR;
8ba61435 2343 }
82124d60
KU
2344
2345 /*
2346 * Submitting request must be dequeued before calling this function
2347 * because it will be linked to another request_queue
2348 */
2349 BUG_ON(blk_queued_rq(rq));
2350
f73f44eb 2351 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2352 where = ELEVATOR_INSERT_FLUSH;
2353
2354 add_acct_request(q, rq, where);
e67b77c7
JM
2355 if (where == ELEVATOR_INSERT_FLUSH)
2356 __blk_run_queue(q);
82124d60
KU
2357 spin_unlock_irqrestore(q->queue_lock, flags);
2358
2a842aca 2359 return BLK_STS_OK;
82124d60
KU
2360}
2361EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2362
80a761fd
TH
2363/**
2364 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2365 * @rq: request to examine
2366 *
2367 * Description:
2368 * A request could be merge of IOs which require different failure
2369 * handling. This function determines the number of bytes which
2370 * can be failed from the beginning of the request without
2371 * crossing into area which need to be retried further.
2372 *
2373 * Return:
2374 * The number of bytes to fail.
80a761fd
TH
2375 */
2376unsigned int blk_rq_err_bytes(const struct request *rq)
2377{
2378 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2379 unsigned int bytes = 0;
2380 struct bio *bio;
2381
e8064021 2382 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2383 return blk_rq_bytes(rq);
2384
2385 /*
2386 * Currently the only 'mixing' which can happen is between
2387 * different fastfail types. We can safely fail portions
2388 * which have all the failfast bits that the first one has -
2389 * the ones which are at least as eager to fail as the first
2390 * one.
2391 */
2392 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2393 if ((bio->bi_opf & ff) != ff)
80a761fd 2394 break;
4f024f37 2395 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2396 }
2397
2398 /* this could lead to infinite loop */
2399 BUG_ON(blk_rq_bytes(rq) && !bytes);
2400 return bytes;
2401}
2402EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2403
320ae51f 2404void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2405{
c2553b58 2406 if (blk_do_io_stat(req)) {
bc58ba94
JA
2407 const int rw = rq_data_dir(req);
2408 struct hd_struct *part;
2409 int cpu;
2410
2411 cpu = part_stat_lock();
09e099d4 2412 part = req->part;
bc58ba94
JA
2413 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2414 part_stat_unlock();
2415 }
2416}
2417
320ae51f 2418void blk_account_io_done(struct request *req)
bc58ba94 2419{
bc58ba94 2420 /*
dd4c133f
TH
2421 * Account IO completion. flush_rq isn't accounted as a
2422 * normal IO on queueing nor completion. Accounting the
2423 * containing request is enough.
bc58ba94 2424 */
e8064021 2425 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2426 unsigned long duration = jiffies - req->start_time;
2427 const int rw = rq_data_dir(req);
2428 struct hd_struct *part;
2429 int cpu;
2430
2431 cpu = part_stat_lock();
09e099d4 2432 part = req->part;
bc58ba94
JA
2433
2434 part_stat_inc(cpu, part, ios[rw]);
2435 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2436 part_round_stats(req->q, cpu, part);
2437 part_dec_in_flight(req->q, part, rw);
bc58ba94 2438
6c23a968 2439 hd_struct_put(part);
bc58ba94
JA
2440 part_stat_unlock();
2441 }
2442}
2443
47fafbc7 2444#ifdef CONFIG_PM
c8158819
LM
2445/*
2446 * Don't process normal requests when queue is suspended
2447 * or in the process of suspending/resuming
2448 */
2449static struct request *blk_pm_peek_request(struct request_queue *q,
2450 struct request *rq)
2451{
2452 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2453 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2454 return NULL;
2455 else
2456 return rq;
2457}
2458#else
2459static inline struct request *blk_pm_peek_request(struct request_queue *q,
2460 struct request *rq)
2461{
2462 return rq;
2463}
2464#endif
2465
320ae51f
JA
2466void blk_account_io_start(struct request *rq, bool new_io)
2467{
2468 struct hd_struct *part;
2469 int rw = rq_data_dir(rq);
2470 int cpu;
2471
2472 if (!blk_do_io_stat(rq))
2473 return;
2474
2475 cpu = part_stat_lock();
2476
2477 if (!new_io) {
2478 part = rq->part;
2479 part_stat_inc(cpu, part, merges[rw]);
2480 } else {
2481 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2482 if (!hd_struct_try_get(part)) {
2483 /*
2484 * The partition is already being removed,
2485 * the request will be accounted on the disk only
2486 *
2487 * We take a reference on disk->part0 although that
2488 * partition will never be deleted, so we can treat
2489 * it as any other partition.
2490 */
2491 part = &rq->rq_disk->part0;
2492 hd_struct_get(part);
2493 }
d62e26b3
JA
2494 part_round_stats(rq->q, cpu, part);
2495 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2496 rq->part = part;
2497 }
2498
2499 part_stat_unlock();
2500}
2501
3bcddeac 2502/**
9934c8c0
TH
2503 * blk_peek_request - peek at the top of a request queue
2504 * @q: request queue to peek at
2505 *
2506 * Description:
2507 * Return the request at the top of @q. The returned request
2508 * should be started using blk_start_request() before LLD starts
2509 * processing it.
2510 *
2511 * Return:
2512 * Pointer to the request at the top of @q if available. Null
2513 * otherwise.
9934c8c0
TH
2514 */
2515struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2516{
2517 struct request *rq;
2518 int ret;
2519
2fff8a92 2520 lockdep_assert_held(q->queue_lock);
332ebbf7 2521 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2522
158dbda0 2523 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2524
2525 rq = blk_pm_peek_request(q, rq);
2526 if (!rq)
2527 break;
2528
e8064021 2529 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2530 /*
2531 * This is the first time the device driver
2532 * sees this request (possibly after
2533 * requeueing). Notify IO scheduler.
2534 */
e8064021 2535 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2536 elv_activate_rq(q, rq);
2537
2538 /*
2539 * just mark as started even if we don't start
2540 * it, a request that has been delayed should
2541 * not be passed by new incoming requests
2542 */
e8064021 2543 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2544 trace_block_rq_issue(q, rq);
2545 }
2546
2547 if (!q->boundary_rq || q->boundary_rq == rq) {
2548 q->end_sector = rq_end_sector(rq);
2549 q->boundary_rq = NULL;
2550 }
2551
e8064021 2552 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2553 break;
2554
2e46e8b2 2555 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2556 /*
2557 * make sure space for the drain appears we
2558 * know we can do this because max_hw_segments
2559 * has been adjusted to be one fewer than the
2560 * device can handle
2561 */
2562 rq->nr_phys_segments++;
2563 }
2564
2565 if (!q->prep_rq_fn)
2566 break;
2567
2568 ret = q->prep_rq_fn(q, rq);
2569 if (ret == BLKPREP_OK) {
2570 break;
2571 } else if (ret == BLKPREP_DEFER) {
2572 /*
2573 * the request may have been (partially) prepped.
2574 * we need to keep this request in the front to
e8064021 2575 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2576 * prevent other fs requests from passing this one.
2577 */
2e46e8b2 2578 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2579 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2580 /*
2581 * remove the space for the drain we added
2582 * so that we don't add it again
2583 */
2584 --rq->nr_phys_segments;
2585 }
2586
2587 rq = NULL;
2588 break;
0fb5b1fb 2589 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2590 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2591 /*
2592 * Mark this request as started so we don't trigger
2593 * any debug logic in the end I/O path.
2594 */
2595 blk_start_request(rq);
2a842aca
CH
2596 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2597 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2598 } else {
2599 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2600 break;
2601 }
2602 }
2603
2604 return rq;
2605}
9934c8c0 2606EXPORT_SYMBOL(blk_peek_request);
158dbda0 2607
9934c8c0 2608void blk_dequeue_request(struct request *rq)
158dbda0 2609{
9934c8c0
TH
2610 struct request_queue *q = rq->q;
2611
158dbda0
TH
2612 BUG_ON(list_empty(&rq->queuelist));
2613 BUG_ON(ELV_ON_HASH(rq));
2614
2615 list_del_init(&rq->queuelist);
2616
2617 /*
2618 * the time frame between a request being removed from the lists
2619 * and to it is freed is accounted as io that is in progress at
2620 * the driver side.
2621 */
9195291e 2622 if (blk_account_rq(rq)) {
0a7ae2ff 2623 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2624 set_io_start_time_ns(rq);
2625 }
158dbda0
TH
2626}
2627
9934c8c0
TH
2628/**
2629 * blk_start_request - start request processing on the driver
2630 * @req: request to dequeue
2631 *
2632 * Description:
2633 * Dequeue @req and start timeout timer on it. This hands off the
2634 * request to the driver.
2635 *
2636 * Block internal functions which don't want to start timer should
2637 * call blk_dequeue_request().
9934c8c0
TH
2638 */
2639void blk_start_request(struct request *req)
2640{
2fff8a92 2641 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2642 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2643
9934c8c0
TH
2644 blk_dequeue_request(req);
2645
cf43e6be 2646 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2647 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2648 req->rq_flags |= RQF_STATS;
87760e5e 2649 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2650 }
2651
4912aa6c 2652 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2653 blk_add_timer(req);
2654}
2655EXPORT_SYMBOL(blk_start_request);
2656
2657/**
2658 * blk_fetch_request - fetch a request from a request queue
2659 * @q: request queue to fetch a request from
2660 *
2661 * Description:
2662 * Return the request at the top of @q. The request is started on
2663 * return and LLD can start processing it immediately.
2664 *
2665 * Return:
2666 * Pointer to the request at the top of @q if available. Null
2667 * otherwise.
9934c8c0
TH
2668 */
2669struct request *blk_fetch_request(struct request_queue *q)
2670{
2671 struct request *rq;
2672
2fff8a92 2673 lockdep_assert_held(q->queue_lock);
332ebbf7 2674 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2675
9934c8c0
TH
2676 rq = blk_peek_request(q);
2677 if (rq)
2678 blk_start_request(rq);
2679 return rq;
2680}
2681EXPORT_SYMBOL(blk_fetch_request);
2682
3bcddeac 2683/**
2e60e022 2684 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2685 * @req: the request being processed
2a842aca 2686 * @error: block status code
8ebf9756 2687 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2688 *
2689 * Description:
8ebf9756
RD
2690 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2691 * the request structure even if @req doesn't have leftover.
2692 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2693 *
2694 * This special helper function is only for request stacking drivers
2695 * (e.g. request-based dm) so that they can handle partial completion.
2696 * Actual device drivers should use blk_end_request instead.
2697 *
2698 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2699 * %false return from this function.
3bcddeac
KU
2700 *
2701 * Return:
2e60e022
TH
2702 * %false - this request doesn't have any more data
2703 * %true - this request has more data
3bcddeac 2704 **/
2a842aca
CH
2705bool blk_update_request(struct request *req, blk_status_t error,
2706 unsigned int nr_bytes)
1da177e4 2707{
f79ea416 2708 int total_bytes;
1da177e4 2709
2a842aca 2710 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2711
2e60e022
TH
2712 if (!req->bio)
2713 return false;
2714
2a842aca
CH
2715 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2716 !(req->rq_flags & RQF_QUIET)))
2717 print_req_error(req, error);
1da177e4 2718
bc58ba94 2719 blk_account_io_completion(req, nr_bytes);
d72d904a 2720
f79ea416
KO
2721 total_bytes = 0;
2722 while (req->bio) {
2723 struct bio *bio = req->bio;
4f024f37 2724 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2725
4f024f37 2726 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2727 req->bio = bio->bi_next;
1da177e4 2728
fbbaf700
N
2729 /* Completion has already been traced */
2730 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2731 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2732
f79ea416
KO
2733 total_bytes += bio_bytes;
2734 nr_bytes -= bio_bytes;
1da177e4 2735
f79ea416
KO
2736 if (!nr_bytes)
2737 break;
1da177e4
LT
2738 }
2739
2740 /*
2741 * completely done
2742 */
2e60e022
TH
2743 if (!req->bio) {
2744 /*
2745 * Reset counters so that the request stacking driver
2746 * can find how many bytes remain in the request
2747 * later.
2748 */
a2dec7b3 2749 req->__data_len = 0;
2e60e022
TH
2750 return false;
2751 }
1da177e4 2752
a2dec7b3 2753 req->__data_len -= total_bytes;
2e46e8b2
TH
2754
2755 /* update sector only for requests with clear definition of sector */
57292b58 2756 if (!blk_rq_is_passthrough(req))
a2dec7b3 2757 req->__sector += total_bytes >> 9;
2e46e8b2 2758
80a761fd 2759 /* mixed attributes always follow the first bio */
e8064021 2760 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2761 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2762 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2763 }
2764
ed6565e7
CH
2765 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2766 /*
2767 * If total number of sectors is less than the first segment
2768 * size, something has gone terribly wrong.
2769 */
2770 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2771 blk_dump_rq_flags(req, "request botched");
2772 req->__data_len = blk_rq_cur_bytes(req);
2773 }
2e46e8b2 2774
ed6565e7
CH
2775 /* recalculate the number of segments */
2776 blk_recalc_rq_segments(req);
2777 }
2e46e8b2 2778
2e60e022 2779 return true;
1da177e4 2780}
2e60e022 2781EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2782
2a842aca 2783static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
2784 unsigned int nr_bytes,
2785 unsigned int bidi_bytes)
5efccd17 2786{
2e60e022
TH
2787 if (blk_update_request(rq, error, nr_bytes))
2788 return true;
5efccd17 2789
2e60e022
TH
2790 /* Bidi request must be completed as a whole */
2791 if (unlikely(blk_bidi_rq(rq)) &&
2792 blk_update_request(rq->next_rq, error, bidi_bytes))
2793 return true;
5efccd17 2794
e2e1a148
JA
2795 if (blk_queue_add_random(rq->q))
2796 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2797
2798 return false;
1da177e4
LT
2799}
2800
28018c24
JB
2801/**
2802 * blk_unprep_request - unprepare a request
2803 * @req: the request
2804 *
2805 * This function makes a request ready for complete resubmission (or
2806 * completion). It happens only after all error handling is complete,
2807 * so represents the appropriate moment to deallocate any resources
2808 * that were allocated to the request in the prep_rq_fn. The queue
2809 * lock is held when calling this.
2810 */
2811void blk_unprep_request(struct request *req)
2812{
2813 struct request_queue *q = req->q;
2814
e8064021 2815 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2816 if (q->unprep_rq_fn)
2817 q->unprep_rq_fn(q, req);
2818}
2819EXPORT_SYMBOL_GPL(blk_unprep_request);
2820
2a842aca 2821void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 2822{
cf43e6be
JA
2823 struct request_queue *q = req->q;
2824
2fff8a92 2825 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2826 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2827
cf43e6be 2828 if (req->rq_flags & RQF_STATS)
34dbad5d 2829 blk_stat_add(req);
cf43e6be 2830
e8064021 2831 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2832 blk_queue_end_tag(q, req);
b8286239 2833
ba396a6c 2834 BUG_ON(blk_queued_rq(req));
1da177e4 2835
57292b58 2836 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2837 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2838
e78042e5
MA
2839 blk_delete_timer(req);
2840
e8064021 2841 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2842 blk_unprep_request(req);
2843
bc58ba94 2844 blk_account_io_done(req);
b8286239 2845
87760e5e
JA
2846 if (req->end_io) {
2847 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2848 req->end_io(req, error);
87760e5e 2849 } else {
b8286239
KU
2850 if (blk_bidi_rq(req))
2851 __blk_put_request(req->next_rq->q, req->next_rq);
2852
cf43e6be 2853 __blk_put_request(q, req);
b8286239 2854 }
1da177e4 2855}
12120077 2856EXPORT_SYMBOL(blk_finish_request);
1da177e4 2857
3b11313a 2858/**
2e60e022
TH
2859 * blk_end_bidi_request - Complete a bidi request
2860 * @rq: the request to complete
2a842aca 2861 * @error: block status code
2e60e022
TH
2862 * @nr_bytes: number of bytes to complete @rq
2863 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2864 *
2865 * Description:
e3a04fe3 2866 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2867 * Drivers that supports bidi can safely call this member for any
2868 * type of request, bidi or uni. In the later case @bidi_bytes is
2869 * just ignored.
336cdb40
KU
2870 *
2871 * Return:
2e60e022
TH
2872 * %false - we are done with this request
2873 * %true - still buffers pending for this request
a0cd1285 2874 **/
2a842aca 2875static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
2876 unsigned int nr_bytes, unsigned int bidi_bytes)
2877{
336cdb40 2878 struct request_queue *q = rq->q;
2e60e022 2879 unsigned long flags;
32fab448 2880
332ebbf7
BVA
2881 WARN_ON_ONCE(q->mq_ops);
2882
2e60e022
TH
2883 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2884 return true;
32fab448 2885
336cdb40 2886 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2887 blk_finish_request(rq, error);
336cdb40
KU
2888 spin_unlock_irqrestore(q->queue_lock, flags);
2889
2e60e022 2890 return false;
32fab448
KU
2891}
2892
336cdb40 2893/**
2e60e022
TH
2894 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2895 * @rq: the request to complete
2a842aca 2896 * @error: block status code
e3a04fe3
KU
2897 * @nr_bytes: number of bytes to complete @rq
2898 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2899 *
2900 * Description:
2e60e022
TH
2901 * Identical to blk_end_bidi_request() except that queue lock is
2902 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2903 *
2904 * Return:
2e60e022
TH
2905 * %false - we are done with this request
2906 * %true - still buffers pending for this request
336cdb40 2907 **/
2a842aca 2908static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 2909 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2910{
2fff8a92 2911 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 2912 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 2913
2e60e022
TH
2914 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2915 return true;
336cdb40 2916
2e60e022 2917 blk_finish_request(rq, error);
336cdb40 2918
2e60e022 2919 return false;
336cdb40 2920}
e19a3ab0
KU
2921
2922/**
2923 * blk_end_request - Helper function for drivers to complete the request.
2924 * @rq: the request being processed
2a842aca 2925 * @error: block status code
e19a3ab0
KU
2926 * @nr_bytes: number of bytes to complete
2927 *
2928 * Description:
2929 * Ends I/O on a number of bytes attached to @rq.
2930 * If @rq has leftover, sets it up for the next range of segments.
2931 *
2932 * Return:
b1f74493
FT
2933 * %false - we are done with this request
2934 * %true - still buffers pending for this request
e19a3ab0 2935 **/
2a842aca
CH
2936bool blk_end_request(struct request *rq, blk_status_t error,
2937 unsigned int nr_bytes)
e19a3ab0 2938{
332ebbf7 2939 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 2940 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2941}
56ad1740 2942EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2943
2944/**
b1f74493
FT
2945 * blk_end_request_all - Helper function for drives to finish the request.
2946 * @rq: the request to finish
2a842aca 2947 * @error: block status code
336cdb40
KU
2948 *
2949 * Description:
b1f74493
FT
2950 * Completely finish @rq.
2951 */
2a842aca 2952void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 2953{
b1f74493
FT
2954 bool pending;
2955 unsigned int bidi_bytes = 0;
336cdb40 2956
b1f74493
FT
2957 if (unlikely(blk_bidi_rq(rq)))
2958 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2959
b1f74493
FT
2960 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2961 BUG_ON(pending);
2962}
56ad1740 2963EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2964
e3a04fe3 2965/**
b1f74493
FT
2966 * __blk_end_request - Helper function for drivers to complete the request.
2967 * @rq: the request being processed
2a842aca 2968 * @error: block status code
b1f74493 2969 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2970 *
2971 * Description:
b1f74493 2972 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2973 *
2974 * Return:
b1f74493
FT
2975 * %false - we are done with this request
2976 * %true - still buffers pending for this request
e3a04fe3 2977 **/
2a842aca
CH
2978bool __blk_end_request(struct request *rq, blk_status_t error,
2979 unsigned int nr_bytes)
e3a04fe3 2980{
2fff8a92 2981 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 2982 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 2983
b1f74493 2984 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2985}
56ad1740 2986EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2987
32fab448 2988/**
b1f74493
FT
2989 * __blk_end_request_all - Helper function for drives to finish the request.
2990 * @rq: the request to finish
2a842aca 2991 * @error: block status code
32fab448
KU
2992 *
2993 * Description:
b1f74493 2994 * Completely finish @rq. Must be called with queue lock held.
32fab448 2995 */
2a842aca 2996void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 2997{
b1f74493
FT
2998 bool pending;
2999 unsigned int bidi_bytes = 0;
3000
2fff8a92 3001 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3002 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3003
b1f74493
FT
3004 if (unlikely(blk_bidi_rq(rq)))
3005 bidi_bytes = blk_rq_bytes(rq->next_rq);
3006
3007 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3008 BUG_ON(pending);
32fab448 3009}
56ad1740 3010EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3011
e19a3ab0 3012/**
b1f74493
FT
3013 * __blk_end_request_cur - Helper function to finish the current request chunk.
3014 * @rq: the request to finish the current chunk for
2a842aca 3015 * @error: block status code
e19a3ab0
KU
3016 *
3017 * Description:
b1f74493
FT
3018 * Complete the current consecutively mapped chunk from @rq. Must
3019 * be called with queue lock held.
e19a3ab0
KU
3020 *
3021 * Return:
b1f74493
FT
3022 * %false - we are done with this request
3023 * %true - still buffers pending for this request
3024 */
2a842aca 3025bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3026{
b1f74493 3027 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3028}
56ad1740 3029EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3030
86db1e29
JA
3031void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3032 struct bio *bio)
1da177e4 3033{
b4f42e28 3034 if (bio_has_data(bio))
fb2dce86 3035 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 3036
4f024f37 3037 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3038 rq->bio = rq->biotail = bio;
1da177e4 3039
66846572
N
3040 if (bio->bi_bdev)
3041 rq->rq_disk = bio->bi_bdev->bd_disk;
3042}
1da177e4 3043
2d4dc890
IL
3044#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3045/**
3046 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3047 * @rq: the request to be flushed
3048 *
3049 * Description:
3050 * Flush all pages in @rq.
3051 */
3052void rq_flush_dcache_pages(struct request *rq)
3053{
3054 struct req_iterator iter;
7988613b 3055 struct bio_vec bvec;
2d4dc890
IL
3056
3057 rq_for_each_segment(bvec, rq, iter)
7988613b 3058 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3059}
3060EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3061#endif
3062
ef9e3fac
KU
3063/**
3064 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3065 * @q : the queue of the device being checked
3066 *
3067 * Description:
3068 * Check if underlying low-level drivers of a device are busy.
3069 * If the drivers want to export their busy state, they must set own
3070 * exporting function using blk_queue_lld_busy() first.
3071 *
3072 * Basically, this function is used only by request stacking drivers
3073 * to stop dispatching requests to underlying devices when underlying
3074 * devices are busy. This behavior helps more I/O merging on the queue
3075 * of the request stacking driver and prevents I/O throughput regression
3076 * on burst I/O load.
3077 *
3078 * Return:
3079 * 0 - Not busy (The request stacking driver should dispatch request)
3080 * 1 - Busy (The request stacking driver should stop dispatching request)
3081 */
3082int blk_lld_busy(struct request_queue *q)
3083{
3084 if (q->lld_busy_fn)
3085 return q->lld_busy_fn(q);
3086
3087 return 0;
3088}
3089EXPORT_SYMBOL_GPL(blk_lld_busy);
3090
78d8e58a
MS
3091/**
3092 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3093 * @rq: the clone request to be cleaned up
3094 *
3095 * Description:
3096 * Free all bios in @rq for a cloned request.
3097 */
3098void blk_rq_unprep_clone(struct request *rq)
3099{
3100 struct bio *bio;
3101
3102 while ((bio = rq->bio) != NULL) {
3103 rq->bio = bio->bi_next;
3104
3105 bio_put(bio);
3106 }
3107}
3108EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3109
3110/*
3111 * Copy attributes of the original request to the clone request.
3112 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3113 */
3114static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3115{
3116 dst->cpu = src->cpu;
b0fd271d
KU
3117 dst->__sector = blk_rq_pos(src);
3118 dst->__data_len = blk_rq_bytes(src);
3119 dst->nr_phys_segments = src->nr_phys_segments;
3120 dst->ioprio = src->ioprio;
3121 dst->extra_len = src->extra_len;
78d8e58a
MS
3122}
3123
3124/**
3125 * blk_rq_prep_clone - Helper function to setup clone request
3126 * @rq: the request to be setup
3127 * @rq_src: original request to be cloned
3128 * @bs: bio_set that bios for clone are allocated from
3129 * @gfp_mask: memory allocation mask for bio
3130 * @bio_ctr: setup function to be called for each clone bio.
3131 * Returns %0 for success, non %0 for failure.
3132 * @data: private data to be passed to @bio_ctr
3133 *
3134 * Description:
3135 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3136 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3137 * are not copied, and copying such parts is the caller's responsibility.
3138 * Also, pages which the original bios are pointing to are not copied
3139 * and the cloned bios just point same pages.
3140 * So cloned bios must be completed before original bios, which means
3141 * the caller must complete @rq before @rq_src.
3142 */
3143int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3144 struct bio_set *bs, gfp_t gfp_mask,
3145 int (*bio_ctr)(struct bio *, struct bio *, void *),
3146 void *data)
3147{
3148 struct bio *bio, *bio_src;
3149
3150 if (!bs)
3151 bs = fs_bio_set;
3152
3153 __rq_for_each_bio(bio_src, rq_src) {
3154 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3155 if (!bio)
3156 goto free_and_out;
3157
3158 if (bio_ctr && bio_ctr(bio, bio_src, data))
3159 goto free_and_out;
3160
3161 if (rq->bio) {
3162 rq->biotail->bi_next = bio;
3163 rq->biotail = bio;
3164 } else
3165 rq->bio = rq->biotail = bio;
3166 }
3167
3168 __blk_rq_prep_clone(rq, rq_src);
3169
3170 return 0;
3171
3172free_and_out:
3173 if (bio)
3174 bio_put(bio);
3175 blk_rq_unprep_clone(rq);
3176
3177 return -ENOMEM;
b0fd271d
KU
3178}
3179EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3180
59c3d45e 3181int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3182{
3183 return queue_work(kblockd_workqueue, work);
3184}
1da177e4
LT
3185EXPORT_SYMBOL(kblockd_schedule_work);
3186
ee63cfa7
JA
3187int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3188{
3189 return queue_work_on(cpu, kblockd_workqueue, work);
3190}
3191EXPORT_SYMBOL(kblockd_schedule_work_on);
3192
818cd1cb
JA
3193int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3194 unsigned long delay)
3195{
3196 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3197}
3198EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3199
59c3d45e
JA
3200int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3201 unsigned long delay)
e43473b7
VG
3202{
3203 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3204}
3205EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3206
8ab14595
JA
3207int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3208 unsigned long delay)
3209{
3210 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3211}
3212EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3213
75df7136
SJ
3214/**
3215 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3216 * @plug: The &struct blk_plug that needs to be initialized
3217 *
3218 * Description:
3219 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3220 * pending I/O should the task end up blocking between blk_start_plug() and
3221 * blk_finish_plug(). This is important from a performance perspective, but
3222 * also ensures that we don't deadlock. For instance, if the task is blocking
3223 * for a memory allocation, memory reclaim could end up wanting to free a
3224 * page belonging to that request that is currently residing in our private
3225 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3226 * this kind of deadlock.
3227 */
73c10101
JA
3228void blk_start_plug(struct blk_plug *plug)
3229{
3230 struct task_struct *tsk = current;
3231
dd6cf3e1
SL
3232 /*
3233 * If this is a nested plug, don't actually assign it.
3234 */
3235 if (tsk->plug)
3236 return;
3237
73c10101 3238 INIT_LIST_HEAD(&plug->list);
320ae51f 3239 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3240 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3241 /*
dd6cf3e1
SL
3242 * Store ordering should not be needed here, since a potential
3243 * preempt will imply a full memory barrier
73c10101 3244 */
dd6cf3e1 3245 tsk->plug = plug;
73c10101
JA
3246}
3247EXPORT_SYMBOL(blk_start_plug);
3248
3249static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3250{
3251 struct request *rqa = container_of(a, struct request, queuelist);
3252 struct request *rqb = container_of(b, struct request, queuelist);
3253
975927b9
JM
3254 return !(rqa->q < rqb->q ||
3255 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3256}
3257
49cac01e
JA
3258/*
3259 * If 'from_schedule' is true, then postpone the dispatch of requests
3260 * until a safe kblockd context. We due this to avoid accidental big
3261 * additional stack usage in driver dispatch, in places where the originally
3262 * plugger did not intend it.
3263 */
f6603783 3264static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3265 bool from_schedule)
99e22598 3266 __releases(q->queue_lock)
94b5eb28 3267{
2fff8a92
BVA
3268 lockdep_assert_held(q->queue_lock);
3269
49cac01e 3270 trace_block_unplug(q, depth, !from_schedule);
99e22598 3271
70460571 3272 if (from_schedule)
24ecfbe2 3273 blk_run_queue_async(q);
70460571 3274 else
24ecfbe2 3275 __blk_run_queue(q);
70460571 3276 spin_unlock(q->queue_lock);
94b5eb28
JA
3277}
3278
74018dc3 3279static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3280{
3281 LIST_HEAD(callbacks);
3282
2a7d5559
SL
3283 while (!list_empty(&plug->cb_list)) {
3284 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3285
2a7d5559
SL
3286 while (!list_empty(&callbacks)) {
3287 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3288 struct blk_plug_cb,
3289 list);
2a7d5559 3290 list_del(&cb->list);
74018dc3 3291 cb->callback(cb, from_schedule);
2a7d5559 3292 }
048c9374
N
3293 }
3294}
3295
9cbb1750
N
3296struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3297 int size)
3298{
3299 struct blk_plug *plug = current->plug;
3300 struct blk_plug_cb *cb;
3301
3302 if (!plug)
3303 return NULL;
3304
3305 list_for_each_entry(cb, &plug->cb_list, list)
3306 if (cb->callback == unplug && cb->data == data)
3307 return cb;
3308
3309 /* Not currently on the callback list */
3310 BUG_ON(size < sizeof(*cb));
3311 cb = kzalloc(size, GFP_ATOMIC);
3312 if (cb) {
3313 cb->data = data;
3314 cb->callback = unplug;
3315 list_add(&cb->list, &plug->cb_list);
3316 }
3317 return cb;
3318}
3319EXPORT_SYMBOL(blk_check_plugged);
3320
49cac01e 3321void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3322{
3323 struct request_queue *q;
3324 unsigned long flags;
3325 struct request *rq;
109b8129 3326 LIST_HEAD(list);
94b5eb28 3327 unsigned int depth;
73c10101 3328
74018dc3 3329 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3330
3331 if (!list_empty(&plug->mq_list))
3332 blk_mq_flush_plug_list(plug, from_schedule);
3333
73c10101
JA
3334 if (list_empty(&plug->list))
3335 return;
3336
109b8129
N
3337 list_splice_init(&plug->list, &list);
3338
422765c2 3339 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3340
3341 q = NULL;
94b5eb28 3342 depth = 0;
18811272
JA
3343
3344 /*
3345 * Save and disable interrupts here, to avoid doing it for every
3346 * queue lock we have to take.
3347 */
73c10101 3348 local_irq_save(flags);
109b8129
N
3349 while (!list_empty(&list)) {
3350 rq = list_entry_rq(list.next);
73c10101 3351 list_del_init(&rq->queuelist);
73c10101
JA
3352 BUG_ON(!rq->q);
3353 if (rq->q != q) {
99e22598
JA
3354 /*
3355 * This drops the queue lock
3356 */
3357 if (q)
49cac01e 3358 queue_unplugged(q, depth, from_schedule);
73c10101 3359 q = rq->q;
94b5eb28 3360 depth = 0;
73c10101
JA
3361 spin_lock(q->queue_lock);
3362 }
8ba61435
TH
3363
3364 /*
3365 * Short-circuit if @q is dead
3366 */
3f3299d5 3367 if (unlikely(blk_queue_dying(q))) {
2a842aca 3368 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3369 continue;
3370 }
3371
73c10101
JA
3372 /*
3373 * rq is already accounted, so use raw insert
3374 */
f73f44eb 3375 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3376 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3377 else
3378 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3379
3380 depth++;
73c10101
JA
3381 }
3382
99e22598
JA
3383 /*
3384 * This drops the queue lock
3385 */
3386 if (q)
49cac01e 3387 queue_unplugged(q, depth, from_schedule);
73c10101 3388
73c10101
JA
3389 local_irq_restore(flags);
3390}
73c10101
JA
3391
3392void blk_finish_plug(struct blk_plug *plug)
3393{
dd6cf3e1
SL
3394 if (plug != current->plug)
3395 return;
f6603783 3396 blk_flush_plug_list(plug, false);
73c10101 3397
dd6cf3e1 3398 current->plug = NULL;
73c10101 3399}
88b996cd 3400EXPORT_SYMBOL(blk_finish_plug);
73c10101 3401
47fafbc7 3402#ifdef CONFIG_PM
6c954667
LM
3403/**
3404 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3405 * @q: the queue of the device
3406 * @dev: the device the queue belongs to
3407 *
3408 * Description:
3409 * Initialize runtime-PM-related fields for @q and start auto suspend for
3410 * @dev. Drivers that want to take advantage of request-based runtime PM
3411 * should call this function after @dev has been initialized, and its
3412 * request queue @q has been allocated, and runtime PM for it can not happen
3413 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3414 * cases, driver should call this function before any I/O has taken place.
3415 *
3416 * This function takes care of setting up using auto suspend for the device,
3417 * the autosuspend delay is set to -1 to make runtime suspend impossible
3418 * until an updated value is either set by user or by driver. Drivers do
3419 * not need to touch other autosuspend settings.
3420 *
3421 * The block layer runtime PM is request based, so only works for drivers
3422 * that use request as their IO unit instead of those directly use bio's.
3423 */
3424void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3425{
765e40b6
CH
3426 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3427 if (q->mq_ops)
3428 return;
3429
6c954667
LM
3430 q->dev = dev;
3431 q->rpm_status = RPM_ACTIVE;
3432 pm_runtime_set_autosuspend_delay(q->dev, -1);
3433 pm_runtime_use_autosuspend(q->dev);
3434}
3435EXPORT_SYMBOL(blk_pm_runtime_init);
3436
3437/**
3438 * blk_pre_runtime_suspend - Pre runtime suspend check
3439 * @q: the queue of the device
3440 *
3441 * Description:
3442 * This function will check if runtime suspend is allowed for the device
3443 * by examining if there are any requests pending in the queue. If there
3444 * are requests pending, the device can not be runtime suspended; otherwise,
3445 * the queue's status will be updated to SUSPENDING and the driver can
3446 * proceed to suspend the device.
3447 *
3448 * For the not allowed case, we mark last busy for the device so that
3449 * runtime PM core will try to autosuspend it some time later.
3450 *
3451 * This function should be called near the start of the device's
3452 * runtime_suspend callback.
3453 *
3454 * Return:
3455 * 0 - OK to runtime suspend the device
3456 * -EBUSY - Device should not be runtime suspended
3457 */
3458int blk_pre_runtime_suspend(struct request_queue *q)
3459{
3460 int ret = 0;
3461
4fd41a85
KX
3462 if (!q->dev)
3463 return ret;
3464
6c954667
LM
3465 spin_lock_irq(q->queue_lock);
3466 if (q->nr_pending) {
3467 ret = -EBUSY;
3468 pm_runtime_mark_last_busy(q->dev);
3469 } else {
3470 q->rpm_status = RPM_SUSPENDING;
3471 }
3472 spin_unlock_irq(q->queue_lock);
3473 return ret;
3474}
3475EXPORT_SYMBOL(blk_pre_runtime_suspend);
3476
3477/**
3478 * blk_post_runtime_suspend - Post runtime suspend processing
3479 * @q: the queue of the device
3480 * @err: return value of the device's runtime_suspend function
3481 *
3482 * Description:
3483 * Update the queue's runtime status according to the return value of the
3484 * device's runtime suspend function and mark last busy for the device so
3485 * that PM core will try to auto suspend the device at a later time.
3486 *
3487 * This function should be called near the end of the device's
3488 * runtime_suspend callback.
3489 */
3490void blk_post_runtime_suspend(struct request_queue *q, int err)
3491{
4fd41a85
KX
3492 if (!q->dev)
3493 return;
3494
6c954667
LM
3495 spin_lock_irq(q->queue_lock);
3496 if (!err) {
3497 q->rpm_status = RPM_SUSPENDED;
3498 } else {
3499 q->rpm_status = RPM_ACTIVE;
3500 pm_runtime_mark_last_busy(q->dev);
3501 }
3502 spin_unlock_irq(q->queue_lock);
3503}
3504EXPORT_SYMBOL(blk_post_runtime_suspend);
3505
3506/**
3507 * blk_pre_runtime_resume - Pre runtime resume processing
3508 * @q: the queue of the device
3509 *
3510 * Description:
3511 * Update the queue's runtime status to RESUMING in preparation for the
3512 * runtime resume of the device.
3513 *
3514 * This function should be called near the start of the device's
3515 * runtime_resume callback.
3516 */
3517void blk_pre_runtime_resume(struct request_queue *q)
3518{
4fd41a85
KX
3519 if (!q->dev)
3520 return;
3521
6c954667
LM
3522 spin_lock_irq(q->queue_lock);
3523 q->rpm_status = RPM_RESUMING;
3524 spin_unlock_irq(q->queue_lock);
3525}
3526EXPORT_SYMBOL(blk_pre_runtime_resume);
3527
3528/**
3529 * blk_post_runtime_resume - Post runtime resume processing
3530 * @q: the queue of the device
3531 * @err: return value of the device's runtime_resume function
3532 *
3533 * Description:
3534 * Update the queue's runtime status according to the return value of the
3535 * device's runtime_resume function. If it is successfully resumed, process
3536 * the requests that are queued into the device's queue when it is resuming
3537 * and then mark last busy and initiate autosuspend for it.
3538 *
3539 * This function should be called near the end of the device's
3540 * runtime_resume callback.
3541 */
3542void blk_post_runtime_resume(struct request_queue *q, int err)
3543{
4fd41a85
KX
3544 if (!q->dev)
3545 return;
3546
6c954667
LM
3547 spin_lock_irq(q->queue_lock);
3548 if (!err) {
3549 q->rpm_status = RPM_ACTIVE;
3550 __blk_run_queue(q);
3551 pm_runtime_mark_last_busy(q->dev);
c60855cd 3552 pm_request_autosuspend(q->dev);
6c954667
LM
3553 } else {
3554 q->rpm_status = RPM_SUSPENDED;
3555 }
3556 spin_unlock_irq(q->queue_lock);
3557}
3558EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3559
3560/**
3561 * blk_set_runtime_active - Force runtime status of the queue to be active
3562 * @q: the queue of the device
3563 *
3564 * If the device is left runtime suspended during system suspend the resume
3565 * hook typically resumes the device and corrects runtime status
3566 * accordingly. However, that does not affect the queue runtime PM status
3567 * which is still "suspended". This prevents processing requests from the
3568 * queue.
3569 *
3570 * This function can be used in driver's resume hook to correct queue
3571 * runtime PM status and re-enable peeking requests from the queue. It
3572 * should be called before first request is added to the queue.
3573 */
3574void blk_set_runtime_active(struct request_queue *q)
3575{
3576 spin_lock_irq(q->queue_lock);
3577 q->rpm_status = RPM_ACTIVE;
3578 pm_runtime_mark_last_busy(q->dev);
3579 pm_request_autosuspend(q->dev);
3580 spin_unlock_irq(q->queue_lock);
3581}
3582EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3583#endif
3584
1da177e4
LT
3585int __init blk_dev_init(void)
3586{
ef295ecf
CH
3587 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3588 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3589 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3590 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3591 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3592
89b90be2
TH
3593 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3594 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3595 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3596 if (!kblockd_workqueue)
3597 panic("Failed to create kblockd\n");
3598
3599 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3600 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3601
c2789bd4 3602 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3603 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3604
18fbda91
OS
3605#ifdef CONFIG_DEBUG_FS
3606 blk_debugfs_root = debugfs_create_dir("block", NULL);
3607#endif
3608
d38ecf93 3609 return 0;
1da177e4 3610}