]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
88f306b6
KS
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
a52633d8 30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
88f306b6
KS
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 42 *
5a505085 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 44 * ->tasklist_lock
6a46079c 45 * pte map lock
1da177e4
LT
46 */
47
48#include <linux/mm.h>
6e84f315 49#include <linux/sched/mm.h>
1da177e4
LT
50#include <linux/pagemap.h>
51#include <linux/swap.h>
52#include <linux/swapops.h>
53#include <linux/slab.h>
54#include <linux/init.h>
5ad64688 55#include <linux/ksm.h>
1da177e4
LT
56#include <linux/rmap.h>
57#include <linux/rcupdate.h>
b95f1b31 58#include <linux/export.h>
8a9f3ccd 59#include <linux/memcontrol.h>
cddb8a5c 60#include <linux/mmu_notifier.h>
64cdd548 61#include <linux/migrate.h>
0fe6e20b 62#include <linux/hugetlb.h>
ef5d437f 63#include <linux/backing-dev.h>
33c3fc71 64#include <linux/page_idle.h>
1da177e4
LT
65
66#include <asm/tlbflush.h>
67
72b252ae
MG
68#include <trace/events/tlb.h>
69
b291f000
NP
70#include "internal.h"
71
fdd2e5f8 72static struct kmem_cache *anon_vma_cachep;
5beb4930 73static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
74
75static inline struct anon_vma *anon_vma_alloc(void)
76{
01d8b20d
PZ
77 struct anon_vma *anon_vma;
78
79 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
80 if (anon_vma) {
81 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
82 anon_vma->degree = 1; /* Reference for first vma */
83 anon_vma->parent = anon_vma;
01d8b20d
PZ
84 /*
85 * Initialise the anon_vma root to point to itself. If called
86 * from fork, the root will be reset to the parents anon_vma.
87 */
88 anon_vma->root = anon_vma;
89 }
90
91 return anon_vma;
fdd2e5f8
AB
92}
93
01d8b20d 94static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 95{
01d8b20d 96 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
97
98 /*
4fc3f1d6 99 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
100 * we can safely hold the lock without the anon_vma getting
101 * freed.
102 *
103 * Relies on the full mb implied by the atomic_dec_and_test() from
104 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 105 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 106 *
4fc3f1d6
IM
107 * page_lock_anon_vma_read() VS put_anon_vma()
108 * down_read_trylock() atomic_dec_and_test()
88c22088 109 * LOCK MB
4fc3f1d6 110 * atomic_read() rwsem_is_locked()
88c22088
PZ
111 *
112 * LOCK should suffice since the actual taking of the lock must
113 * happen _before_ what follows.
114 */
7f39dda9 115 might_sleep();
5a505085 116 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 117 anon_vma_lock_write(anon_vma);
08b52706 118 anon_vma_unlock_write(anon_vma);
88c22088
PZ
119 }
120
fdd2e5f8
AB
121 kmem_cache_free(anon_vma_cachep, anon_vma);
122}
1da177e4 123
dd34739c 124static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 125{
dd34739c 126 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
127}
128
e574b5fd 129static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
130{
131 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
132}
133
6583a843
KC
134static void anon_vma_chain_link(struct vm_area_struct *vma,
135 struct anon_vma_chain *avc,
136 struct anon_vma *anon_vma)
137{
138 avc->vma = vma;
139 avc->anon_vma = anon_vma;
140 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 141 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
142}
143
d9d332e0 144/**
d5a187da 145 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
146 * @vma: the memory region in question
147 *
148 * This makes sure the memory mapping described by 'vma' has
149 * an 'anon_vma' attached to it, so that we can associate the
150 * anonymous pages mapped into it with that anon_vma.
151 *
d5a187da
VB
152 * The common case will be that we already have one, which
153 * is handled inline by anon_vma_prepare(). But if
23a0790a 154 * not we either need to find an adjacent mapping that we
d9d332e0
LT
155 * can re-use the anon_vma from (very common when the only
156 * reason for splitting a vma has been mprotect()), or we
157 * allocate a new one.
158 *
159 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 160 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
161 * and that may actually touch the spinlock even in the newly
162 * allocated vma (it depends on RCU to make sure that the
163 * anon_vma isn't actually destroyed).
164 *
165 * As a result, we need to do proper anon_vma locking even
166 * for the new allocation. At the same time, we do not want
167 * to do any locking for the common case of already having
168 * an anon_vma.
169 *
170 * This must be called with the mmap_sem held for reading.
171 */
d5a187da 172int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 173{
d5a187da
VB
174 struct mm_struct *mm = vma->vm_mm;
175 struct anon_vma *anon_vma, *allocated;
5beb4930 176 struct anon_vma_chain *avc;
1da177e4
LT
177
178 might_sleep();
1da177e4 179
d5a187da
VB
180 avc = anon_vma_chain_alloc(GFP_KERNEL);
181 if (!avc)
182 goto out_enomem;
183
184 anon_vma = find_mergeable_anon_vma(vma);
185 allocated = NULL;
186 if (!anon_vma) {
187 anon_vma = anon_vma_alloc();
188 if (unlikely(!anon_vma))
189 goto out_enomem_free_avc;
190 allocated = anon_vma;
191 }
5beb4930 192
d5a187da
VB
193 anon_vma_lock_write(anon_vma);
194 /* page_table_lock to protect against threads */
195 spin_lock(&mm->page_table_lock);
196 if (likely(!vma->anon_vma)) {
197 vma->anon_vma = anon_vma;
198 anon_vma_chain_link(vma, avc, anon_vma);
199 /* vma reference or self-parent link for new root */
200 anon_vma->degree++;
d9d332e0 201 allocated = NULL;
d5a187da
VB
202 avc = NULL;
203 }
204 spin_unlock(&mm->page_table_lock);
205 anon_vma_unlock_write(anon_vma);
1da177e4 206
d5a187da
VB
207 if (unlikely(allocated))
208 put_anon_vma(allocated);
209 if (unlikely(avc))
210 anon_vma_chain_free(avc);
31f2b0eb 211
1da177e4 212 return 0;
5beb4930
RR
213
214 out_enomem_free_avc:
215 anon_vma_chain_free(avc);
216 out_enomem:
217 return -ENOMEM;
1da177e4
LT
218}
219
bb4aa396
LT
220/*
221 * This is a useful helper function for locking the anon_vma root as
222 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
223 * have the same vma.
224 *
225 * Such anon_vma's should have the same root, so you'd expect to see
226 * just a single mutex_lock for the whole traversal.
227 */
228static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
229{
230 struct anon_vma *new_root = anon_vma->root;
231 if (new_root != root) {
232 if (WARN_ON_ONCE(root))
5a505085 233 up_write(&root->rwsem);
bb4aa396 234 root = new_root;
5a505085 235 down_write(&root->rwsem);
bb4aa396
LT
236 }
237 return root;
238}
239
240static inline void unlock_anon_vma_root(struct anon_vma *root)
241{
242 if (root)
5a505085 243 up_write(&root->rwsem);
bb4aa396
LT
244}
245
5beb4930
RR
246/*
247 * Attach the anon_vmas from src to dst.
248 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
249 *
250 * If dst->anon_vma is NULL this function tries to find and reuse existing
251 * anon_vma which has no vmas and only one child anon_vma. This prevents
252 * degradation of anon_vma hierarchy to endless linear chain in case of
253 * constantly forking task. On the other hand, an anon_vma with more than one
254 * child isn't reused even if there was no alive vma, thus rmap walker has a
255 * good chance of avoiding scanning the whole hierarchy when it searches where
256 * page is mapped.
5beb4930
RR
257 */
258int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 259{
5beb4930 260 struct anon_vma_chain *avc, *pavc;
bb4aa396 261 struct anon_vma *root = NULL;
5beb4930 262
646d87b4 263 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
264 struct anon_vma *anon_vma;
265
dd34739c
LT
266 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
267 if (unlikely(!avc)) {
268 unlock_anon_vma_root(root);
269 root = NULL;
270 avc = anon_vma_chain_alloc(GFP_KERNEL);
271 if (!avc)
272 goto enomem_failure;
273 }
bb4aa396
LT
274 anon_vma = pavc->anon_vma;
275 root = lock_anon_vma_root(root, anon_vma);
276 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
277
278 /*
279 * Reuse existing anon_vma if its degree lower than two,
280 * that means it has no vma and only one anon_vma child.
281 *
282 * Do not chose parent anon_vma, otherwise first child
283 * will always reuse it. Root anon_vma is never reused:
284 * it has self-parent reference and at least one child.
285 */
286 if (!dst->anon_vma && anon_vma != src->anon_vma &&
287 anon_vma->degree < 2)
288 dst->anon_vma = anon_vma;
5beb4930 289 }
7a3ef208
KK
290 if (dst->anon_vma)
291 dst->anon_vma->degree++;
bb4aa396 292 unlock_anon_vma_root(root);
5beb4930 293 return 0;
1da177e4 294
5beb4930 295 enomem_failure:
3fe89b3e
LY
296 /*
297 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
298 * decremented in unlink_anon_vmas().
299 * We can safely do this because callers of anon_vma_clone() don't care
300 * about dst->anon_vma if anon_vma_clone() failed.
301 */
302 dst->anon_vma = NULL;
5beb4930
RR
303 unlink_anon_vmas(dst);
304 return -ENOMEM;
1da177e4
LT
305}
306
5beb4930
RR
307/*
308 * Attach vma to its own anon_vma, as well as to the anon_vmas that
309 * the corresponding VMA in the parent process is attached to.
310 * Returns 0 on success, non-zero on failure.
311 */
312int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 313{
5beb4930
RR
314 struct anon_vma_chain *avc;
315 struct anon_vma *anon_vma;
c4ea95d7 316 int error;
1da177e4 317
5beb4930
RR
318 /* Don't bother if the parent process has no anon_vma here. */
319 if (!pvma->anon_vma)
320 return 0;
321
7a3ef208
KK
322 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
323 vma->anon_vma = NULL;
324
5beb4930
RR
325 /*
326 * First, attach the new VMA to the parent VMA's anon_vmas,
327 * so rmap can find non-COWed pages in child processes.
328 */
c4ea95d7
DF
329 error = anon_vma_clone(vma, pvma);
330 if (error)
331 return error;
5beb4930 332
7a3ef208
KK
333 /* An existing anon_vma has been reused, all done then. */
334 if (vma->anon_vma)
335 return 0;
336
5beb4930
RR
337 /* Then add our own anon_vma. */
338 anon_vma = anon_vma_alloc();
339 if (!anon_vma)
340 goto out_error;
dd34739c 341 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
342 if (!avc)
343 goto out_error_free_anon_vma;
5c341ee1
RR
344
345 /*
346 * The root anon_vma's spinlock is the lock actually used when we
347 * lock any of the anon_vmas in this anon_vma tree.
348 */
349 anon_vma->root = pvma->anon_vma->root;
7a3ef208 350 anon_vma->parent = pvma->anon_vma;
76545066 351 /*
01d8b20d
PZ
352 * With refcounts, an anon_vma can stay around longer than the
353 * process it belongs to. The root anon_vma needs to be pinned until
354 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
355 */
356 get_anon_vma(anon_vma->root);
5beb4930
RR
357 /* Mark this anon_vma as the one where our new (COWed) pages go. */
358 vma->anon_vma = anon_vma;
4fc3f1d6 359 anon_vma_lock_write(anon_vma);
5c341ee1 360 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 361 anon_vma->parent->degree++;
08b52706 362 anon_vma_unlock_write(anon_vma);
5beb4930
RR
363
364 return 0;
365
366 out_error_free_anon_vma:
01d8b20d 367 put_anon_vma(anon_vma);
5beb4930 368 out_error:
4946d54c 369 unlink_anon_vmas(vma);
5beb4930 370 return -ENOMEM;
1da177e4
LT
371}
372
5beb4930
RR
373void unlink_anon_vmas(struct vm_area_struct *vma)
374{
375 struct anon_vma_chain *avc, *next;
eee2acba 376 struct anon_vma *root = NULL;
5beb4930 377
5c341ee1
RR
378 /*
379 * Unlink each anon_vma chained to the VMA. This list is ordered
380 * from newest to oldest, ensuring the root anon_vma gets freed last.
381 */
5beb4930 382 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
383 struct anon_vma *anon_vma = avc->anon_vma;
384
385 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 386 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
387
388 /*
389 * Leave empty anon_vmas on the list - we'll need
390 * to free them outside the lock.
391 */
7a3ef208
KK
392 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
393 anon_vma->parent->degree--;
eee2acba 394 continue;
7a3ef208 395 }
eee2acba
PZ
396
397 list_del(&avc->same_vma);
398 anon_vma_chain_free(avc);
399 }
7a3ef208
KK
400 if (vma->anon_vma)
401 vma->anon_vma->degree--;
eee2acba
PZ
402 unlock_anon_vma_root(root);
403
404 /*
405 * Iterate the list once more, it now only contains empty and unlinked
406 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 407 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
408 */
409 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
410 struct anon_vma *anon_vma = avc->anon_vma;
411
e4c5800a 412 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
413 put_anon_vma(anon_vma);
414
5beb4930
RR
415 list_del(&avc->same_vma);
416 anon_vma_chain_free(avc);
417 }
418}
419
51cc5068 420static void anon_vma_ctor(void *data)
1da177e4 421{
a35afb83 422 struct anon_vma *anon_vma = data;
1da177e4 423
5a505085 424 init_rwsem(&anon_vma->rwsem);
83813267 425 atomic_set(&anon_vma->refcount, 0);
bf181b9f 426 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
427}
428
429void __init anon_vma_init(void)
430{
431 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5d097056
VD
432 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
433 anon_vma_ctor);
434 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
435 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
436}
437
438/*
6111e4ca
PZ
439 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
440 *
441 * Since there is no serialization what so ever against page_remove_rmap()
442 * the best this function can do is return a locked anon_vma that might
443 * have been relevant to this page.
444 *
445 * The page might have been remapped to a different anon_vma or the anon_vma
446 * returned may already be freed (and even reused).
447 *
bc658c96
PZ
448 * In case it was remapped to a different anon_vma, the new anon_vma will be a
449 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
450 * ensure that any anon_vma obtained from the page will still be valid for as
451 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
452 *
6111e4ca
PZ
453 * All users of this function must be very careful when walking the anon_vma
454 * chain and verify that the page in question is indeed mapped in it
455 * [ something equivalent to page_mapped_in_vma() ].
456 *
457 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
458 * that the anon_vma pointer from page->mapping is valid if there is a
459 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 460 */
746b18d4 461struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 462{
746b18d4 463 struct anon_vma *anon_vma = NULL;
1da177e4
LT
464 unsigned long anon_mapping;
465
466 rcu_read_lock();
4db0c3c2 467 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 468 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
469 goto out;
470 if (!page_mapped(page))
471 goto out;
472
473 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
474 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 anon_vma = NULL;
476 goto out;
477 }
f1819427
HD
478
479 /*
480 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
481 * freed. But if it has been unmapped, we have no security against the
482 * anon_vma structure being freed and reused (for another anon_vma:
483 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
484 * above cannot corrupt).
f1819427 485 */
746b18d4 486 if (!page_mapped(page)) {
7f39dda9 487 rcu_read_unlock();
746b18d4 488 put_anon_vma(anon_vma);
7f39dda9 489 return NULL;
746b18d4 490 }
1da177e4
LT
491out:
492 rcu_read_unlock();
746b18d4
PZ
493
494 return anon_vma;
495}
496
88c22088
PZ
497/*
498 * Similar to page_get_anon_vma() except it locks the anon_vma.
499 *
500 * Its a little more complex as it tries to keep the fast path to a single
501 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
502 * reference like with page_get_anon_vma() and then block on the mutex.
503 */
4fc3f1d6 504struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 505{
88c22088 506 struct anon_vma *anon_vma = NULL;
eee0f252 507 struct anon_vma *root_anon_vma;
88c22088 508 unsigned long anon_mapping;
746b18d4 509
88c22088 510 rcu_read_lock();
4db0c3c2 511 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
512 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
513 goto out;
514 if (!page_mapped(page))
515 goto out;
516
517 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 518 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 519 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 520 /*
eee0f252
HD
521 * If the page is still mapped, then this anon_vma is still
522 * its anon_vma, and holding the mutex ensures that it will
bc658c96 523 * not go away, see anon_vma_free().
88c22088 524 */
eee0f252 525 if (!page_mapped(page)) {
4fc3f1d6 526 up_read(&root_anon_vma->rwsem);
88c22088
PZ
527 anon_vma = NULL;
528 }
529 goto out;
530 }
746b18d4 531
88c22088
PZ
532 /* trylock failed, we got to sleep */
533 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
534 anon_vma = NULL;
535 goto out;
536 }
537
538 if (!page_mapped(page)) {
7f39dda9 539 rcu_read_unlock();
88c22088 540 put_anon_vma(anon_vma);
7f39dda9 541 return NULL;
88c22088
PZ
542 }
543
544 /* we pinned the anon_vma, its safe to sleep */
545 rcu_read_unlock();
4fc3f1d6 546 anon_vma_lock_read(anon_vma);
88c22088
PZ
547
548 if (atomic_dec_and_test(&anon_vma->refcount)) {
549 /*
550 * Oops, we held the last refcount, release the lock
551 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 552 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 553 */
4fc3f1d6 554 anon_vma_unlock_read(anon_vma);
88c22088
PZ
555 __put_anon_vma(anon_vma);
556 anon_vma = NULL;
557 }
558
559 return anon_vma;
560
561out:
562 rcu_read_unlock();
746b18d4 563 return anon_vma;
34bbd704
ON
564}
565
4fc3f1d6 566void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 567{
4fc3f1d6 568 anon_vma_unlock_read(anon_vma);
1da177e4
LT
569}
570
72b252ae 571#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
572/*
573 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
574 * important if a PTE was dirty when it was unmapped that it's flushed
575 * before any IO is initiated on the page to prevent lost writes. Similarly,
576 * it must be flushed before freeing to prevent data leakage.
577 */
578void try_to_unmap_flush(void)
579{
580 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
581 int cpu;
582
583 if (!tlb_ubc->flush_required)
584 return;
585
586 cpu = get_cpu();
587
858eaaa7
NA
588 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
589 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
590 local_flush_tlb();
591 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
72b252ae 592 }
858eaaa7
NA
593
594 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
595 flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
72b252ae
MG
596 cpumask_clear(&tlb_ubc->cpumask);
597 tlb_ubc->flush_required = false;
d950c947 598 tlb_ubc->writable = false;
72b252ae
MG
599 put_cpu();
600}
601
d950c947
MG
602/* Flush iff there are potentially writable TLB entries that can race with IO */
603void try_to_unmap_flush_dirty(void)
604{
605 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
606
607 if (tlb_ubc->writable)
608 try_to_unmap_flush();
609}
610
c7ab0d2f 611static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
612{
613 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
614
615 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
616 tlb_ubc->flush_required = true;
d950c947
MG
617
618 /*
619 * If the PTE was dirty then it's best to assume it's writable. The
620 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
621 * before the page is queued for IO.
622 */
623 if (writable)
624 tlb_ubc->writable = true;
72b252ae
MG
625}
626
627/*
628 * Returns true if the TLB flush should be deferred to the end of a batch of
629 * unmap operations to reduce IPIs.
630 */
631static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
632{
633 bool should_defer = false;
634
635 if (!(flags & TTU_BATCH_FLUSH))
636 return false;
637
638 /* If remote CPUs need to be flushed then defer batch the flush */
639 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
640 should_defer = true;
641 put_cpu();
642
643 return should_defer;
644}
645#else
c7ab0d2f 646static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
647{
648}
649
650static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
651{
652 return false;
653}
654#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
655
1da177e4 656/*
bf89c8c8 657 * At what user virtual address is page expected in vma?
ab941e0f 658 * Caller should check the page is actually part of the vma.
1da177e4
LT
659 */
660unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
661{
86c2ad19 662 unsigned long address;
21d0d443 663 if (PageAnon(page)) {
4829b906
HD
664 struct anon_vma *page__anon_vma = page_anon_vma(page);
665 /*
666 * Note: swapoff's unuse_vma() is more efficient with this
667 * check, and needs it to match anon_vma when KSM is active.
668 */
669 if (!vma->anon_vma || !page__anon_vma ||
670 vma->anon_vma->root != page__anon_vma->root)
21d0d443 671 return -EFAULT;
27ba0644
KS
672 } else if (page->mapping) {
673 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
674 return -EFAULT;
675 } else
676 return -EFAULT;
86c2ad19
ML
677 address = __vma_address(page, vma);
678 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
679 return -EFAULT;
680 return address;
1da177e4
LT
681}
682
6219049a
BL
683pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
684{
685 pgd_t *pgd;
686 pud_t *pud;
687 pmd_t *pmd = NULL;
f72e7dcd 688 pmd_t pmde;
6219049a
BL
689
690 pgd = pgd_offset(mm, address);
691 if (!pgd_present(*pgd))
692 goto out;
693
694 pud = pud_offset(pgd, address);
695 if (!pud_present(*pud))
696 goto out;
697
698 pmd = pmd_offset(pud, address);
f72e7dcd 699 /*
8809aa2d 700 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
701 * without holding anon_vma lock for write. So when looking for a
702 * genuine pmde (in which to find pte), test present and !THP together.
703 */
e37c6982
CB
704 pmde = *pmd;
705 barrier();
f72e7dcd 706 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
707 pmd = NULL;
708out:
709 return pmd;
710}
711
8749cfea
VD
712struct page_referenced_arg {
713 int mapcount;
714 int referenced;
715 unsigned long vm_flags;
716 struct mem_cgroup *memcg;
717};
718/*
719 * arg: page_referenced_arg will be passed
720 */
721static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
722 unsigned long address, void *arg)
723{
8749cfea 724 struct page_referenced_arg *pra = arg;
8eaedede
KS
725 struct page_vma_mapped_walk pvmw = {
726 .page = page,
727 .vma = vma,
728 .address = address,
729 };
8749cfea
VD
730 int referenced = 0;
731
8eaedede
KS
732 while (page_vma_mapped_walk(&pvmw)) {
733 address = pvmw.address;
b20ce5e0 734
8eaedede
KS
735 if (vma->vm_flags & VM_LOCKED) {
736 page_vma_mapped_walk_done(&pvmw);
737 pra->vm_flags |= VM_LOCKED;
738 return SWAP_FAIL; /* To break the loop */
739 }
71e3aac0 740
8eaedede
KS
741 if (pvmw.pte) {
742 if (ptep_clear_flush_young_notify(vma, address,
743 pvmw.pte)) {
744 /*
745 * Don't treat a reference through
746 * a sequentially read mapping as such.
747 * If the page has been used in another mapping,
748 * we will catch it; if this other mapping is
749 * already gone, the unmap path will have set
750 * PG_referenced or activated the page.
751 */
752 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
753 referenced++;
754 }
755 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
756 if (pmdp_clear_flush_young_notify(vma, address,
757 pvmw.pmd))
8749cfea 758 referenced++;
8eaedede
KS
759 } else {
760 /* unexpected pmd-mapped page? */
761 WARN_ON_ONCE(1);
8749cfea 762 }
8eaedede
KS
763
764 pra->mapcount--;
b20ce5e0 765 }
b20ce5e0 766
33c3fc71
VD
767 if (referenced)
768 clear_page_idle(page);
769 if (test_and_clear_page_young(page))
770 referenced++;
771
9f32624b
JK
772 if (referenced) {
773 pra->referenced++;
774 pra->vm_flags |= vma->vm_flags;
1da177e4 775 }
34bbd704 776
9f32624b
JK
777 if (!pra->mapcount)
778 return SWAP_SUCCESS; /* To break the loop */
779
780 return SWAP_AGAIN;
1da177e4
LT
781}
782
9f32624b 783static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 784{
9f32624b
JK
785 struct page_referenced_arg *pra = arg;
786 struct mem_cgroup *memcg = pra->memcg;
1da177e4 787
9f32624b
JK
788 if (!mm_match_cgroup(vma->vm_mm, memcg))
789 return true;
1da177e4 790
9f32624b 791 return false;
1da177e4
LT
792}
793
794/**
795 * page_referenced - test if the page was referenced
796 * @page: the page to test
797 * @is_locked: caller holds lock on the page
72835c86 798 * @memcg: target memory cgroup
6fe6b7e3 799 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
800 *
801 * Quick test_and_clear_referenced for all mappings to a page,
802 * returns the number of ptes which referenced the page.
803 */
6fe6b7e3
WF
804int page_referenced(struct page *page,
805 int is_locked,
72835c86 806 struct mem_cgroup *memcg,
6fe6b7e3 807 unsigned long *vm_flags)
1da177e4 808{
9f32624b 809 int ret;
5ad64688 810 int we_locked = 0;
9f32624b 811 struct page_referenced_arg pra = {
b20ce5e0 812 .mapcount = total_mapcount(page),
9f32624b
JK
813 .memcg = memcg,
814 };
815 struct rmap_walk_control rwc = {
816 .rmap_one = page_referenced_one,
817 .arg = (void *)&pra,
818 .anon_lock = page_lock_anon_vma_read,
819 };
1da177e4 820
6fe6b7e3 821 *vm_flags = 0;
9f32624b
JK
822 if (!page_mapped(page))
823 return 0;
824
825 if (!page_rmapping(page))
826 return 0;
827
828 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
829 we_locked = trylock_page(page);
830 if (!we_locked)
831 return 1;
1da177e4 832 }
9f32624b
JK
833
834 /*
835 * If we are reclaiming on behalf of a cgroup, skip
836 * counting on behalf of references from different
837 * cgroups
838 */
839 if (memcg) {
840 rwc.invalid_vma = invalid_page_referenced_vma;
841 }
842
843 ret = rmap_walk(page, &rwc);
844 *vm_flags = pra.vm_flags;
845
846 if (we_locked)
847 unlock_page(page);
848
849 return pra.referenced;
1da177e4
LT
850}
851
1cb1729b 852static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 853 unsigned long address, void *arg)
d08b3851 854{
f27176cf
KS
855 struct page_vma_mapped_walk pvmw = {
856 .page = page,
857 .vma = vma,
858 .address = address,
859 .flags = PVMW_SYNC,
860 };
9853a407 861 int *cleaned = arg;
d08b3851 862
f27176cf
KS
863 while (page_vma_mapped_walk(&pvmw)) {
864 int ret = 0;
865 address = pvmw.address;
866 if (pvmw.pte) {
867 pte_t entry;
868 pte_t *pte = pvmw.pte;
869
870 if (!pte_dirty(*pte) && !pte_write(*pte))
871 continue;
872
873 flush_cache_page(vma, address, pte_pfn(*pte));
874 entry = ptep_clear_flush(vma, address, pte);
875 entry = pte_wrprotect(entry);
876 entry = pte_mkclean(entry);
877 set_pte_at(vma->vm_mm, address, pte, entry);
878 ret = 1;
879 } else {
880#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
881 pmd_t *pmd = pvmw.pmd;
882 pmd_t entry;
883
884 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
885 continue;
886
887 flush_cache_page(vma, address, page_to_pfn(page));
888 entry = pmdp_huge_clear_flush(vma, address, pmd);
889 entry = pmd_wrprotect(entry);
890 entry = pmd_mkclean(entry);
891 set_pmd_at(vma->vm_mm, address, pmd, entry);
892 ret = 1;
893#else
894 /* unexpected pmd-mapped page? */
895 WARN_ON_ONCE(1);
896#endif
897 }
d08b3851 898
f27176cf
KS
899 if (ret) {
900 mmu_notifier_invalidate_page(vma->vm_mm, address);
901 (*cleaned)++;
902 }
c2fda5fe 903 }
d08b3851 904
9853a407 905 return SWAP_AGAIN;
d08b3851
PZ
906}
907
9853a407 908static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 909{
9853a407 910 if (vma->vm_flags & VM_SHARED)
871beb8c 911 return false;
d08b3851 912
871beb8c 913 return true;
d08b3851
PZ
914}
915
916int page_mkclean(struct page *page)
917{
9853a407
JK
918 int cleaned = 0;
919 struct address_space *mapping;
920 struct rmap_walk_control rwc = {
921 .arg = (void *)&cleaned,
922 .rmap_one = page_mkclean_one,
923 .invalid_vma = invalid_mkclean_vma,
924 };
d08b3851
PZ
925
926 BUG_ON(!PageLocked(page));
927
9853a407
JK
928 if (!page_mapped(page))
929 return 0;
930
931 mapping = page_mapping(page);
932 if (!mapping)
933 return 0;
934
935 rmap_walk(page, &rwc);
d08b3851 936
9853a407 937 return cleaned;
d08b3851 938}
60b59bea 939EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 940
c44b6743
RR
941/**
942 * page_move_anon_rmap - move a page to our anon_vma
943 * @page: the page to move to our anon_vma
944 * @vma: the vma the page belongs to
c44b6743
RR
945 *
946 * When a page belongs exclusively to one process after a COW event,
947 * that page can be moved into the anon_vma that belongs to just that
948 * process, so the rmap code will not search the parent or sibling
949 * processes.
950 */
5a49973d 951void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
952{
953 struct anon_vma *anon_vma = vma->anon_vma;
954
5a49973d
HD
955 page = compound_head(page);
956
309381fe 957 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 958 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
959
960 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
961 /*
962 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
963 * simultaneously, so a concurrent reader (eg page_referenced()'s
964 * PageAnon()) will not see one without the other.
965 */
966 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
967}
968
9617d95e 969/**
4e1c1975
AK
970 * __page_set_anon_rmap - set up new anonymous rmap
971 * @page: Page to add to rmap
972 * @vma: VM area to add page to.
973 * @address: User virtual address of the mapping
e8a03feb 974 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
975 */
976static void __page_set_anon_rmap(struct page *page,
e8a03feb 977 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 978{
e8a03feb 979 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 980
e8a03feb 981 BUG_ON(!anon_vma);
ea90002b 982
4e1c1975
AK
983 if (PageAnon(page))
984 return;
985
ea90002b 986 /*
e8a03feb
RR
987 * If the page isn't exclusively mapped into this vma,
988 * we must use the _oldest_ possible anon_vma for the
989 * page mapping!
ea90002b 990 */
4e1c1975 991 if (!exclusive)
288468c3 992 anon_vma = anon_vma->root;
9617d95e 993
9617d95e
NP
994 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
995 page->mapping = (struct address_space *) anon_vma;
9617d95e 996 page->index = linear_page_index(vma, address);
9617d95e
NP
997}
998
c97a9e10 999/**
43d8eac4 1000 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1001 * @page: the page to add the mapping to
1002 * @vma: the vm area in which the mapping is added
1003 * @address: the user virtual address mapped
1004 */
1005static void __page_check_anon_rmap(struct page *page,
1006 struct vm_area_struct *vma, unsigned long address)
1007{
1008#ifdef CONFIG_DEBUG_VM
1009 /*
1010 * The page's anon-rmap details (mapping and index) are guaranteed to
1011 * be set up correctly at this point.
1012 *
1013 * We have exclusion against page_add_anon_rmap because the caller
1014 * always holds the page locked, except if called from page_dup_rmap,
1015 * in which case the page is already known to be setup.
1016 *
1017 * We have exclusion against page_add_new_anon_rmap because those pages
1018 * are initially only visible via the pagetables, and the pte is locked
1019 * over the call to page_add_new_anon_rmap.
1020 */
44ab57a0 1021 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
53f9263b 1022 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
c97a9e10
NP
1023#endif
1024}
1025
1da177e4
LT
1026/**
1027 * page_add_anon_rmap - add pte mapping to an anonymous page
1028 * @page: the page to add the mapping to
1029 * @vma: the vm area in which the mapping is added
1030 * @address: the user virtual address mapped
d281ee61 1031 * @compound: charge the page as compound or small page
1da177e4 1032 *
5ad64688 1033 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1034 * the anon_vma case: to serialize mapping,index checking after setting,
1035 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1036 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1037 */
1038void page_add_anon_rmap(struct page *page,
d281ee61 1039 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1040{
d281ee61 1041 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1042}
1043
1044/*
1045 * Special version of the above for do_swap_page, which often runs
1046 * into pages that are exclusively owned by the current process.
1047 * Everybody else should continue to use page_add_anon_rmap above.
1048 */
1049void do_page_add_anon_rmap(struct page *page,
d281ee61 1050 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1051{
53f9263b
KS
1052 bool compound = flags & RMAP_COMPOUND;
1053 bool first;
1054
e9b61f19
KS
1055 if (compound) {
1056 atomic_t *mapcount;
53f9263b 1057 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1058 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1059 mapcount = compound_mapcount_ptr(page);
1060 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1061 } else {
1062 first = atomic_inc_and_test(&page->_mapcount);
1063 }
1064
79134171 1065 if (first) {
d281ee61 1066 int nr = compound ? hpage_nr_pages(page) : 1;
bea04b07
JZ
1067 /*
1068 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1069 * these counters are not modified in interrupt context, and
1070 * pte lock(a spinlock) is held, which implies preemption
1071 * disabled.
1072 */
65c45377 1073 if (compound)
11fb9989 1074 __inc_node_page_state(page, NR_ANON_THPS);
4b9d0fab 1075 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
79134171 1076 }
5ad64688
HD
1077 if (unlikely(PageKsm(page)))
1078 return;
1079
309381fe 1080 VM_BUG_ON_PAGE(!PageLocked(page), page);
53f9263b 1081
5dbe0af4 1082 /* address might be in next vma when migration races vma_adjust */
5ad64688 1083 if (first)
d281ee61
KS
1084 __page_set_anon_rmap(page, vma, address,
1085 flags & RMAP_EXCLUSIVE);
69029cd5 1086 else
c97a9e10 1087 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1088}
1089
43d8eac4 1090/**
9617d95e
NP
1091 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1092 * @page: the page to add the mapping to
1093 * @vma: the vm area in which the mapping is added
1094 * @address: the user virtual address mapped
d281ee61 1095 * @compound: charge the page as compound or small page
9617d95e
NP
1096 *
1097 * Same as page_add_anon_rmap but must only be called on *new* pages.
1098 * This means the inc-and-test can be bypassed.
c97a9e10 1099 * Page does not have to be locked.
9617d95e
NP
1100 */
1101void page_add_new_anon_rmap(struct page *page,
d281ee61 1102 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1103{
d281ee61
KS
1104 int nr = compound ? hpage_nr_pages(page) : 1;
1105
81d1b09c 1106 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1107 __SetPageSwapBacked(page);
d281ee61
KS
1108 if (compound) {
1109 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1110 /* increment count (starts at -1) */
1111 atomic_set(compound_mapcount_ptr(page), 0);
11fb9989 1112 __inc_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1113 } else {
1114 /* Anon THP always mapped first with PMD */
1115 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1116 /* increment count (starts at -1) */
1117 atomic_set(&page->_mapcount, 0);
d281ee61 1118 }
4b9d0fab 1119 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
e8a03feb 1120 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1121}
1122
1da177e4
LT
1123/**
1124 * page_add_file_rmap - add pte mapping to a file page
1125 * @page: the page to add the mapping to
1126 *
b8072f09 1127 * The caller needs to hold the pte lock.
1da177e4 1128 */
dd78fedd 1129void page_add_file_rmap(struct page *page, bool compound)
1da177e4 1130{
dd78fedd
KS
1131 int i, nr = 1;
1132
1133 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1134 lock_page_memcg(page);
dd78fedd
KS
1135 if (compound && PageTransHuge(page)) {
1136 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1137 if (atomic_inc_and_test(&page[i]._mapcount))
1138 nr++;
1139 }
1140 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1141 goto out;
65c45377 1142 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
11fb9989 1143 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
dd78fedd 1144 } else {
c8efc390
KS
1145 if (PageTransCompound(page) && page_mapping(page)) {
1146 VM_WARN_ON_ONCE(!PageLocked(page));
1147
9a73f61b
KS
1148 SetPageDoubleMap(compound_head(page));
1149 if (PageMlocked(page))
1150 clear_page_mlock(compound_head(page));
1151 }
dd78fedd
KS
1152 if (!atomic_inc_and_test(&page->_mapcount))
1153 goto out;
d69b042f 1154 }
50658e2e 1155 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
dd78fedd
KS
1156 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1157out:
62cccb8c 1158 unlock_page_memcg(page);
1da177e4
LT
1159}
1160
dd78fedd 1161static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1162{
dd78fedd
KS
1163 int i, nr = 1;
1164
57dea93a 1165 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
62cccb8c 1166 lock_page_memcg(page);
8186eb6a 1167
53f9263b
KS
1168 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1169 if (unlikely(PageHuge(page))) {
1170 /* hugetlb pages are always mapped with pmds */
1171 atomic_dec(compound_mapcount_ptr(page));
8186eb6a 1172 goto out;
53f9263b 1173 }
8186eb6a 1174
53f9263b 1175 /* page still mapped by someone else? */
dd78fedd
KS
1176 if (compound && PageTransHuge(page)) {
1177 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1178 if (atomic_add_negative(-1, &page[i]._mapcount))
1179 nr++;
1180 }
1181 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1182 goto out;
65c45377 1183 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
11fb9989 1184 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
dd78fedd
KS
1185 } else {
1186 if (!atomic_add_negative(-1, &page->_mapcount))
1187 goto out;
1188 }
8186eb6a
JW
1189
1190 /*
50658e2e 1191 * We use the irq-unsafe __{inc|mod}_zone_page_state because
8186eb6a
JW
1192 * these counters are not modified in interrupt context, and
1193 * pte lock(a spinlock) is held, which implies preemption disabled.
1194 */
50658e2e 1195 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
62cccb8c 1196 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
8186eb6a
JW
1197
1198 if (unlikely(PageMlocked(page)))
1199 clear_page_mlock(page);
1200out:
62cccb8c 1201 unlock_page_memcg(page);
8186eb6a
JW
1202}
1203
53f9263b
KS
1204static void page_remove_anon_compound_rmap(struct page *page)
1205{
1206 int i, nr;
1207
1208 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1209 return;
1210
1211 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1212 if (unlikely(PageHuge(page)))
1213 return;
1214
1215 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1216 return;
1217
11fb9989 1218 __dec_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1219
1220 if (TestClearPageDoubleMap(page)) {
1221 /*
1222 * Subpages can be mapped with PTEs too. Check how many of
1223 * themi are still mapped.
1224 */
1225 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1226 if (atomic_add_negative(-1, &page[i]._mapcount))
1227 nr++;
1228 }
1229 } else {
1230 nr = HPAGE_PMD_NR;
1231 }
1232
e90309c9
KS
1233 if (unlikely(PageMlocked(page)))
1234 clear_page_mlock(page);
1235
9a982250 1236 if (nr) {
4b9d0fab 1237 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
9a982250
KS
1238 deferred_split_huge_page(page);
1239 }
53f9263b
KS
1240}
1241
1da177e4
LT
1242/**
1243 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1244 * @page: page to remove mapping from
1245 * @compound: uncharge the page as compound or small page
1da177e4 1246 *
b8072f09 1247 * The caller needs to hold the pte lock.
1da177e4 1248 */
d281ee61 1249void page_remove_rmap(struct page *page, bool compound)
1da177e4 1250{
dd78fedd
KS
1251 if (!PageAnon(page))
1252 return page_remove_file_rmap(page, compound);
89c06bd5 1253
53f9263b
KS
1254 if (compound)
1255 return page_remove_anon_compound_rmap(page);
1256
b904dcfe
KM
1257 /* page still mapped by someone else? */
1258 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1259 return;
1260
0fe6e20b 1261 /*
bea04b07
JZ
1262 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1263 * these counters are not modified in interrupt context, and
bea04b07 1264 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1265 */
4b9d0fab 1266 __dec_node_page_state(page, NR_ANON_MAPPED);
8186eb6a 1267
e6c509f8
HD
1268 if (unlikely(PageMlocked(page)))
1269 clear_page_mlock(page);
8186eb6a 1270
9a982250
KS
1271 if (PageTransCompound(page))
1272 deferred_split_huge_page(compound_head(page));
1273
b904dcfe
KM
1274 /*
1275 * It would be tidy to reset the PageAnon mapping here,
1276 * but that might overwrite a racing page_add_anon_rmap
1277 * which increments mapcount after us but sets mapping
1278 * before us: so leave the reset to free_hot_cold_page,
1279 * and remember that it's only reliable while mapped.
1280 * Leaving it set also helps swapoff to reinstate ptes
1281 * faster for those pages still in swapcache.
1282 */
1da177e4
LT
1283}
1284
854e9ed0
MK
1285struct rmap_private {
1286 enum ttu_flags flags;
1287 int lazyfreed;
1288};
1289
1da177e4 1290/*
52629506 1291 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1292 */
ac769501 1293static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1294 unsigned long address, void *arg)
1da177e4
LT
1295{
1296 struct mm_struct *mm = vma->vm_mm;
c7ab0d2f
KS
1297 struct page_vma_mapped_walk pvmw = {
1298 .page = page,
1299 .vma = vma,
1300 .address = address,
1301 };
1da177e4 1302 pte_t pteval;
c7ab0d2f 1303 struct page *subpage;
1da177e4 1304 int ret = SWAP_AGAIN;
854e9ed0
MK
1305 struct rmap_private *rp = arg;
1306 enum ttu_flags flags = rp->flags;
1da177e4 1307
b87537d9
HD
1308 /* munlock has nothing to gain from examining un-locked vmas */
1309 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
c7ab0d2f 1310 return SWAP_AGAIN;
b87537d9 1311
fec89c10
KS
1312 if (flags & TTU_SPLIT_HUGE_PMD) {
1313 split_huge_pmd_address(vma, address,
1314 flags & TTU_MIGRATION, page);
fec89c10
KS
1315 }
1316
c7ab0d2f
KS
1317 while (page_vma_mapped_walk(&pvmw)) {
1318 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1319 address = pvmw.address;
1da177e4 1320
c7ab0d2f
KS
1321 /* Unexpected PMD-mapped THP? */
1322 VM_BUG_ON_PAGE(!pvmw.pte, page);
1323
1324 /*
1325 * If the page is mlock()d, we cannot swap it out.
1326 * If it's recently referenced (perhaps page_referenced
1327 * skipped over this mm) then we should reactivate it.
1328 */
1329 if (!(flags & TTU_IGNORE_MLOCK)) {
1330 if (vma->vm_flags & VM_LOCKED) {
1331 /* PTE-mapped THP are never mlocked */
1332 if (!PageTransCompound(page)) {
1333 /*
1334 * Holding pte lock, we do *not* need
1335 * mmap_sem here
1336 */
1337 mlock_vma_page(page);
1338 }
1339 ret = SWAP_MLOCK;
1340 page_vma_mapped_walk_done(&pvmw);
1341 break;
9a73f61b 1342 }
c7ab0d2f
KS
1343 if (flags & TTU_MUNLOCK)
1344 continue;
b87537d9 1345 }
c7ab0d2f
KS
1346
1347 if (!(flags & TTU_IGNORE_ACCESS)) {
1348 if (ptep_clear_flush_young_notify(vma, address,
1349 pvmw.pte)) {
1350 ret = SWAP_FAIL;
1351 page_vma_mapped_walk_done(&pvmw);
1352 break;
1353 }
b291f000 1354 }
1da177e4 1355
c7ab0d2f
KS
1356 /* Nuke the page table entry. */
1357 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1358 if (should_defer_flush(mm, flags)) {
1359 /*
1360 * We clear the PTE but do not flush so potentially
1361 * a remote CPU could still be writing to the page.
1362 * If the entry was previously clean then the
1363 * architecture must guarantee that a clear->dirty
1364 * transition on a cached TLB entry is written through
1365 * and traps if the PTE is unmapped.
1366 */
1367 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1368
1369 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1370 } else {
1371 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1372 }
72b252ae 1373
c7ab0d2f
KS
1374 /* Move the dirty bit to the page. Now the pte is gone. */
1375 if (pte_dirty(pteval))
1376 set_page_dirty(page);
1da177e4 1377
c7ab0d2f
KS
1378 /* Update high watermark before we lower rss */
1379 update_hiwater_rss(mm);
1da177e4 1380
c7ab0d2f
KS
1381 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1382 if (PageHuge(page)) {
1383 int nr = 1 << compound_order(page);
1384 hugetlb_count_sub(nr, mm);
1385 } else {
1386 dec_mm_counter(mm, mm_counter(page));
1387 }
365e9c87 1388
c7ab0d2f
KS
1389 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1390 set_pte_at(mm, address, pvmw.pte, pteval);
1391 } else if (pte_unused(pteval)) {
1392 /*
1393 * The guest indicated that the page content is of no
1394 * interest anymore. Simply discard the pte, vmscan
1395 * will take care of the rest.
1396 */
eca56ff9 1397 dec_mm_counter(mm, mm_counter(page));
c7ab0d2f
KS
1398 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1399 (flags & TTU_MIGRATION)) {
1400 swp_entry_t entry;
1401 pte_t swp_pte;
1402 /*
1403 * Store the pfn of the page in a special migration
1404 * pte. do_swap_page() will wait until the migration
1405 * pte is removed and then restart fault handling.
1406 */
1407 entry = make_migration_entry(subpage,
1408 pte_write(pteval));
1409 swp_pte = swp_entry_to_pte(entry);
1410 if (pte_soft_dirty(pteval))
1411 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1412 set_pte_at(mm, address, pvmw.pte, swp_pte);
1413 } else if (PageAnon(page)) {
1414 swp_entry_t entry = { .val = page_private(subpage) };
1415 pte_t swp_pte;
1416 /*
1417 * Store the swap location in the pte.
1418 * See handle_pte_fault() ...
1419 */
1420 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1421
1422 if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1423 /* It's a freeable page by MADV_FREE */
1424 dec_mm_counter(mm, MM_ANONPAGES);
1425 rp->lazyfreed++;
1426 goto discard;
1427 }
854e9ed0 1428
c7ab0d2f
KS
1429 if (swap_duplicate(entry) < 0) {
1430 set_pte_at(mm, address, pvmw.pte, pteval);
1431 ret = SWAP_FAIL;
1432 page_vma_mapped_walk_done(&pvmw);
1433 break;
1434 }
1435 if (list_empty(&mm->mmlist)) {
1436 spin_lock(&mmlist_lock);
1437 if (list_empty(&mm->mmlist))
1438 list_add(&mm->mmlist, &init_mm.mmlist);
1439 spin_unlock(&mmlist_lock);
1440 }
854e9ed0 1441 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1442 inc_mm_counter(mm, MM_SWAPENTS);
1443 swp_pte = swp_entry_to_pte(entry);
1444 if (pte_soft_dirty(pteval))
1445 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1446 set_pte_at(mm, address, pvmw.pte, swp_pte);
1447 } else
1448 dec_mm_counter(mm, mm_counter_file(page));
854e9ed0 1449discard:
c7ab0d2f
KS
1450 page_remove_rmap(subpage, PageHuge(page));
1451 put_page(page);
2ec74c3e 1452 mmu_notifier_invalidate_page(mm, address);
c7ab0d2f 1453 }
caed0f48 1454 return ret;
1da177e4
LT
1455}
1456
71e3aac0 1457bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1458{
1459 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1460
1461 if (!maybe_stack)
1462 return false;
1463
1464 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1465 VM_STACK_INCOMPLETE_SETUP)
1466 return true;
1467
1468 return false;
1469}
1470
52629506
JK
1471static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1472{
1473 return is_vma_temporary_stack(vma);
1474}
1475
2a52bcbc 1476static int page_mapcount_is_zero(struct page *page)
52629506 1477{
c7ab0d2f 1478 return !total_mapcount(page);
2a52bcbc 1479}
52629506 1480
1da177e4
LT
1481/**
1482 * try_to_unmap - try to remove all page table mappings to a page
1483 * @page: the page to get unmapped
14fa31b8 1484 * @flags: action and flags
1da177e4
LT
1485 *
1486 * Tries to remove all the page table entries which are mapping this
1487 * page, used in the pageout path. Caller must hold the page lock.
1488 * Return values are:
1489 *
1490 * SWAP_SUCCESS - we succeeded in removing all mappings
1491 * SWAP_AGAIN - we missed a mapping, try again later
1492 * SWAP_FAIL - the page is unswappable
b291f000 1493 * SWAP_MLOCK - page is mlocked.
1da177e4 1494 */
14fa31b8 1495int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1496{
1497 int ret;
854e9ed0
MK
1498 struct rmap_private rp = {
1499 .flags = flags,
1500 .lazyfreed = 0,
1501 };
1502
52629506
JK
1503 struct rmap_walk_control rwc = {
1504 .rmap_one = try_to_unmap_one,
854e9ed0 1505 .arg = &rp,
2a52bcbc 1506 .done = page_mapcount_is_zero,
52629506
JK
1507 .anon_lock = page_lock_anon_vma_read,
1508 };
1da177e4 1509
52629506
JK
1510 /*
1511 * During exec, a temporary VMA is setup and later moved.
1512 * The VMA is moved under the anon_vma lock but not the
1513 * page tables leading to a race where migration cannot
1514 * find the migration ptes. Rather than increasing the
1515 * locking requirements of exec(), migration skips
1516 * temporary VMAs until after exec() completes.
1517 */
daa5ba76 1518 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1519 rwc.invalid_vma = invalid_migration_vma;
1520
2a52bcbc
KS
1521 if (flags & TTU_RMAP_LOCKED)
1522 ret = rmap_walk_locked(page, &rwc);
1523 else
1524 ret = rmap_walk(page, &rwc);
52629506 1525
2a52bcbc 1526 if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1da177e4 1527 ret = SWAP_SUCCESS;
854e9ed0
MK
1528 if (rp.lazyfreed && !PageDirty(page))
1529 ret = SWAP_LZFREE;
1530 }
1da177e4
LT
1531 return ret;
1532}
81b4082d 1533
2a52bcbc
KS
1534static int page_not_mapped(struct page *page)
1535{
1536 return !page_mapped(page);
1537};
1538
b291f000
NP
1539/**
1540 * try_to_munlock - try to munlock a page
1541 * @page: the page to be munlocked
1542 *
1543 * Called from munlock code. Checks all of the VMAs mapping the page
1544 * to make sure nobody else has this page mlocked. The page will be
1545 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1546 *
1547 * Return values are:
1548 *
53f79acb 1549 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1550 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1551 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1552 * SWAP_MLOCK - page is now mlocked.
1553 */
1554int try_to_munlock(struct page *page)
1555{
e8351ac9 1556 int ret;
854e9ed0
MK
1557 struct rmap_private rp = {
1558 .flags = TTU_MUNLOCK,
1559 .lazyfreed = 0,
1560 };
1561
e8351ac9
JK
1562 struct rmap_walk_control rwc = {
1563 .rmap_one = try_to_unmap_one,
854e9ed0 1564 .arg = &rp,
e8351ac9 1565 .done = page_not_mapped,
e8351ac9
JK
1566 .anon_lock = page_lock_anon_vma_read,
1567
1568 };
1569
309381fe 1570 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1571
e8351ac9
JK
1572 ret = rmap_walk(page, &rwc);
1573 return ret;
b291f000 1574}
e9995ef9 1575
01d8b20d 1576void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1577{
01d8b20d 1578 struct anon_vma *root = anon_vma->root;
76545066 1579
624483f3 1580 anon_vma_free(anon_vma);
01d8b20d
PZ
1581 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1582 anon_vma_free(root);
76545066 1583}
76545066 1584
0dd1c7bb
JK
1585static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1586 struct rmap_walk_control *rwc)
faecd8dd
JK
1587{
1588 struct anon_vma *anon_vma;
1589
0dd1c7bb
JK
1590 if (rwc->anon_lock)
1591 return rwc->anon_lock(page);
1592
faecd8dd
JK
1593 /*
1594 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1595 * because that depends on page_mapped(); but not all its usages
1596 * are holding mmap_sem. Users without mmap_sem are required to
1597 * take a reference count to prevent the anon_vma disappearing
1598 */
1599 anon_vma = page_anon_vma(page);
1600 if (!anon_vma)
1601 return NULL;
1602
1603 anon_vma_lock_read(anon_vma);
1604 return anon_vma;
1605}
1606
e9995ef9 1607/*
e8351ac9
JK
1608 * rmap_walk_anon - do something to anonymous page using the object-based
1609 * rmap method
1610 * @page: the page to be handled
1611 * @rwc: control variable according to each walk type
1612 *
1613 * Find all the mappings of a page using the mapping pointer and the vma chains
1614 * contained in the anon_vma struct it points to.
1615 *
1616 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1617 * where the page was found will be held for write. So, we won't recheck
1618 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1619 * LOCKED.
e9995ef9 1620 */
b9773199
KS
1621static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1622 bool locked)
e9995ef9
HD
1623{
1624 struct anon_vma *anon_vma;
a8fa41ad 1625 pgoff_t pgoff_start, pgoff_end;
5beb4930 1626 struct anon_vma_chain *avc;
e9995ef9
HD
1627 int ret = SWAP_AGAIN;
1628
b9773199
KS
1629 if (locked) {
1630 anon_vma = page_anon_vma(page);
1631 /* anon_vma disappear under us? */
1632 VM_BUG_ON_PAGE(!anon_vma, page);
1633 } else {
1634 anon_vma = rmap_walk_anon_lock(page, rwc);
1635 }
e9995ef9
HD
1636 if (!anon_vma)
1637 return ret;
faecd8dd 1638
a8fa41ad
KS
1639 pgoff_start = page_to_pgoff(page);
1640 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1641 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1642 pgoff_start, pgoff_end) {
5beb4930 1643 struct vm_area_struct *vma = avc->vma;
e9995ef9 1644 unsigned long address = vma_address(page, vma);
0dd1c7bb 1645
ad12695f
AA
1646 cond_resched();
1647
0dd1c7bb
JK
1648 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1649 continue;
1650
051ac83a 1651 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1652 if (ret != SWAP_AGAIN)
1653 break;
0dd1c7bb
JK
1654 if (rwc->done && rwc->done(page))
1655 break;
e9995ef9 1656 }
b9773199
KS
1657
1658 if (!locked)
1659 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1660 return ret;
1661}
1662
e8351ac9
JK
1663/*
1664 * rmap_walk_file - do something to file page using the object-based rmap method
1665 * @page: the page to be handled
1666 * @rwc: control variable according to each walk type
1667 *
1668 * Find all the mappings of a page using the mapping pointer and the vma chains
1669 * contained in the address_space struct it points to.
1670 *
1671 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1672 * where the page was found will be held for write. So, we won't recheck
1673 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1674 * LOCKED.
1675 */
b9773199
KS
1676static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1677 bool locked)
e9995ef9 1678{
b9773199 1679 struct address_space *mapping = page_mapping(page);
a8fa41ad 1680 pgoff_t pgoff_start, pgoff_end;
e9995ef9 1681 struct vm_area_struct *vma;
e9995ef9
HD
1682 int ret = SWAP_AGAIN;
1683
9f32624b
JK
1684 /*
1685 * The page lock not only makes sure that page->mapping cannot
1686 * suddenly be NULLified by truncation, it makes sure that the
1687 * structure at mapping cannot be freed and reused yet,
c8c06efa 1688 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1689 */
81d1b09c 1690 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1691
e9995ef9
HD
1692 if (!mapping)
1693 return ret;
3dec0ba0 1694
a8fa41ad
KS
1695 pgoff_start = page_to_pgoff(page);
1696 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
b9773199
KS
1697 if (!locked)
1698 i_mmap_lock_read(mapping);
a8fa41ad
KS
1699 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1700 pgoff_start, pgoff_end) {
e9995ef9 1701 unsigned long address = vma_address(page, vma);
0dd1c7bb 1702
ad12695f
AA
1703 cond_resched();
1704
0dd1c7bb
JK
1705 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1706 continue;
1707
051ac83a 1708 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1709 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1710 goto done;
1711 if (rwc->done && rwc->done(page))
1712 goto done;
e9995ef9 1713 }
0dd1c7bb 1714
0dd1c7bb 1715done:
b9773199
KS
1716 if (!locked)
1717 i_mmap_unlock_read(mapping);
e9995ef9
HD
1718 return ret;
1719}
1720
051ac83a 1721int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1722{
e9995ef9 1723 if (unlikely(PageKsm(page)))
051ac83a 1724 return rmap_walk_ksm(page, rwc);
e9995ef9 1725 else if (PageAnon(page))
b9773199
KS
1726 return rmap_walk_anon(page, rwc, false);
1727 else
1728 return rmap_walk_file(page, rwc, false);
1729}
1730
1731/* Like rmap_walk, but caller holds relevant rmap lock */
1732int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1733{
1734 /* no ksm support for now */
1735 VM_BUG_ON_PAGE(PageKsm(page), page);
1736 if (PageAnon(page))
1737 return rmap_walk_anon(page, rwc, true);
e9995ef9 1738 else
b9773199 1739 return rmap_walk_file(page, rwc, true);
e9995ef9 1740}
0fe6e20b 1741
e3390f67 1742#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1743/*
1744 * The following three functions are for anonymous (private mapped) hugepages.
1745 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1746 * and no lru code, because we handle hugepages differently from common pages.
1747 */
1748static void __hugepage_set_anon_rmap(struct page *page,
1749 struct vm_area_struct *vma, unsigned long address, int exclusive)
1750{
1751 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1752
0fe6e20b 1753 BUG_ON(!anon_vma);
433abed6
NH
1754
1755 if (PageAnon(page))
1756 return;
1757 if (!exclusive)
1758 anon_vma = anon_vma->root;
1759
0fe6e20b
NH
1760 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1761 page->mapping = (struct address_space *) anon_vma;
1762 page->index = linear_page_index(vma, address);
1763}
1764
1765void hugepage_add_anon_rmap(struct page *page,
1766 struct vm_area_struct *vma, unsigned long address)
1767{
1768 struct anon_vma *anon_vma = vma->anon_vma;
1769 int first;
a850ea30
NH
1770
1771 BUG_ON(!PageLocked(page));
0fe6e20b 1772 BUG_ON(!anon_vma);
5dbe0af4 1773 /* address might be in next vma when migration races vma_adjust */
53f9263b 1774 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b
NH
1775 if (first)
1776 __hugepage_set_anon_rmap(page, vma, address, 0);
1777}
1778
1779void hugepage_add_new_anon_rmap(struct page *page,
1780 struct vm_area_struct *vma, unsigned long address)
1781{
1782 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 1783 atomic_set(compound_mapcount_ptr(page), 0);
0fe6e20b
NH
1784 __hugepage_set_anon_rmap(page, vma, address, 1);
1785}
e3390f67 1786#endif /* CONFIG_HUGETLB_PAGE */