]> git.proxmox.com Git - mirror_edk2.git/blame - MdePkg/Include/Library/BaseLib.h
MdePkg/BaseLib: Add stack switch related definitions for IA32
[mirror_edk2.git] / MdePkg / Include / Library / BaseLib.h
CommitLineData
ac644614 1/** @file\r
50a64e5b 2 Provides string functions, linked list functions, math functions, synchronization\r
ae591c14 3 functions, file path functions, and CPU architecture-specific functions.\r
ac644614 4\r
b590e43a 5Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR>\r
9df063a0
HT
6Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>\r
7This program and the accompanying materials\r
50a64e5b 8are licensed and made available under the terms and conditions of the BSD License\r
9which accompanies this distribution. The full text of the license may be found at\r
af2dc6a7 10http://opensource.org/licenses/bsd-license.php.\r
ac644614 11\r
50a64e5b 12THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
13WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
ac644614 14\r
15**/\r
16\r
17#ifndef __BASE_LIB__\r
18#define __BASE_LIB__\r
19\r
1106ffe1 20//\r
1a2f870c 21// Definitions for architecture-specific types\r
1106ffe1 22//\r
ac644614 23#if defined (MDE_CPU_IA32)\r
fc30687f 24///\r
af2dc6a7 25/// The IA-32 architecture context buffer used by SetJump() and LongJump().\r
fc30687f 26///\r
ac644614 27typedef struct {\r
28 UINT32 Ebx;\r
29 UINT32 Esi;\r
30 UINT32 Edi;\r
31 UINT32 Ebp;\r
32 UINT32 Esp;\r
33 UINT32 Eip;\r
34} BASE_LIBRARY_JUMP_BUFFER;\r
35\r
36#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
37\r
aa4df547 38#endif // defined (MDE_CPU_IA32)\r
39\r
40#if defined (MDE_CPU_IPF)\r
ac644614 41\r
fc30687f 42///\r
af2dc6a7 43/// The Itanium architecture context buffer used by SetJump() and LongJump().\r
fc30687f 44///\r
ac644614 45typedef struct {\r
46 UINT64 F2[2];\r
47 UINT64 F3[2];\r
48 UINT64 F4[2];\r
49 UINT64 F5[2];\r
50 UINT64 F16[2];\r
51 UINT64 F17[2];\r
52 UINT64 F18[2];\r
53 UINT64 F19[2];\r
54 UINT64 F20[2];\r
55 UINT64 F21[2];\r
56 UINT64 F22[2];\r
57 UINT64 F23[2];\r
58 UINT64 F24[2];\r
59 UINT64 F25[2];\r
60 UINT64 F26[2];\r
61 UINT64 F27[2];\r
62 UINT64 F28[2];\r
63 UINT64 F29[2];\r
64 UINT64 F30[2];\r
65 UINT64 F31[2];\r
66 UINT64 R4;\r
67 UINT64 R5;\r
68 UINT64 R6;\r
69 UINT64 R7;\r
70 UINT64 SP;\r
71 UINT64 BR0;\r
72 UINT64 BR1;\r
73 UINT64 BR2;\r
74 UINT64 BR3;\r
75 UINT64 BR4;\r
76 UINT64 BR5;\r
77 UINT64 InitialUNAT;\r
78 UINT64 AfterSpillUNAT;\r
79 UINT64 PFS;\r
80 UINT64 BSP;\r
81 UINT64 Predicates;\r
82 UINT64 LoopCount;\r
83 UINT64 FPSR;\r
84} BASE_LIBRARY_JUMP_BUFFER;\r
85\r
86#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10\r
87\r
aa4df547 88#endif // defined (MDE_CPU_IPF)\r
89\r
90#if defined (MDE_CPU_X64)\r
fc30687f 91///\r
af2dc6a7 92/// The x64 architecture context buffer used by SetJump() and LongJump().\r
fc30687f 93///\r
ac644614 94typedef struct {\r
95 UINT64 Rbx;\r
96 UINT64 Rsp;\r
97 UINT64 Rbp;\r
98 UINT64 Rdi;\r
99 UINT64 Rsi;\r
100 UINT64 R12;\r
101 UINT64 R13;\r
102 UINT64 R14;\r
103 UINT64 R15;\r
104 UINT64 Rip;\r
9b9641c6 105 UINT64 MxCsr;\r
af2dc6a7 106 UINT8 XmmBuffer[160]; ///< XMM6-XMM15.\r
ac644614 107} BASE_LIBRARY_JUMP_BUFFER;\r
108\r
109#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
110\r
aa4df547 111#endif // defined (MDE_CPU_X64)\r
112\r
113#if defined (MDE_CPU_EBC)\r
fc30687f 114///\r
af2dc6a7 115/// The EBC context buffer used by SetJump() and LongJump().\r
fc30687f 116///\r
ac644614 117typedef struct {\r
118 UINT64 R0;\r
119 UINT64 R1;\r
120 UINT64 R2;\r
121 UINT64 R3;\r
122 UINT64 IP;\r
123} BASE_LIBRARY_JUMP_BUFFER;\r
124\r
125#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
126\r
aa4df547 127#endif // defined (MDE_CPU_EBC)\r
ac644614 128\r
ebd04fc2 129#if defined (MDE_CPU_ARM)\r
130\r
131typedef struct {\r
af2dc6a7 132 UINT32 R3; ///< A copy of R13.\r
01a54966 133 UINT32 R4;\r
134 UINT32 R5;\r
135 UINT32 R6;\r
136 UINT32 R7;\r
137 UINT32 R8;\r
138 UINT32 R9;\r
139 UINT32 R10;\r
140 UINT32 R11;\r
141 UINT32 R12;\r
142 UINT32 R14;\r
ebd04fc2 143} BASE_LIBRARY_JUMP_BUFFER;\r
144\r
145#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
146\r
147#endif // defined (MDE_CPU_ARM)\r
148\r
807e2604
HL
149#if defined (MDE_CPU_AARCH64)\r
150typedef struct {\r
151 // GP regs\r
152 UINT64 X19;\r
153 UINT64 X20;\r
154 UINT64 X21;\r
155 UINT64 X22;\r
156 UINT64 X23;\r
157 UINT64 X24;\r
158 UINT64 X25;\r
159 UINT64 X26;\r
160 UINT64 X27;\r
161 UINT64 X28;\r
162 UINT64 FP;\r
163 UINT64 LR;\r
164 UINT64 IP0;\r
165\r
166 // FP regs\r
167 UINT64 D8;\r
168 UINT64 D9;\r
169 UINT64 D10;\r
170 UINT64 D11;\r
171 UINT64 D12;\r
172 UINT64 D13;\r
173 UINT64 D14;\r
174 UINT64 D15;\r
175} BASE_LIBRARY_JUMP_BUFFER;\r
176\r
177#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
178\r
179#endif // defined (MDE_CPU_AARCH64)\r
180\r
181\r
ac644614 182//\r
183// String Services\r
184//\r
185\r
c058d59f
JY
186\r
187/**\r
188 Returns the length of a Null-terminated Unicode string.\r
189\r
328f84b1
JY
190 This function is similar as strlen_s defined in C11.\r
191\r
c058d59f
JY
192 If String is not aligned on a 16-bit boundary, then ASSERT().\r
193\r
194 @param String A pointer to a Null-terminated Unicode string.\r
195 @param MaxSize The maximum number of Destination Unicode\r
196 char, including terminating null char.\r
197\r
198 @retval 0 If String is NULL.\r
199 @retval MaxSize If there is no null character in the first MaxSize characters of String.\r
200 @return The number of characters that percede the terminating null character.\r
201\r
202**/\r
203UINTN\r
204EFIAPI\r
205StrnLenS (\r
206 IN CONST CHAR16 *String,\r
207 IN UINTN MaxSize\r
208 );\r
209\r
b590e43a
HW
210/**\r
211 Returns the size of a Null-terminated Unicode string in bytes, including the\r
212 Null terminator.\r
213\r
214 This function returns the size of the Null-terminated Unicode string\r
215 specified by String in bytes, including the Null terminator.\r
216\r
217 If String is not aligned on a 16-bit boundary, then ASSERT().\r
218\r
219 @param String A pointer to a Null-terminated Unicode string.\r
220 @param MaxSize The maximum number of Destination Unicode\r
221 char, including the Null terminator.\r
222\r
223 @retval 0 If String is NULL.\r
224 @retval (sizeof (CHAR16) * (MaxSize + 1))\r
225 If there is no Null terminator in the first MaxSize characters of\r
226 String.\r
227 @return The size of the Null-terminated Unicode string in bytes, including\r
228 the Null terminator.\r
229\r
230**/\r
231UINTN\r
232EFIAPI\r
233StrnSizeS (\r
234 IN CONST CHAR16 *String,\r
235 IN UINTN MaxSize\r
236 );\r
237\r
c058d59f
JY
238/**\r
239 Copies the string pointed to by Source (including the terminating null char)\r
240 to the array pointed to by Destination.\r
241\r
328f84b1
JY
242 This function is similar as strcpy_s defined in C11.\r
243\r
c058d59f
JY
244 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
245 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
0e93edbb 246 If an error would be returned, then the function will also ASSERT().\r
c058d59f 247\r
328f84b1
JY
248 If an error is returned, then the Destination is unmodified.\r
249\r
c058d59f
JY
250 @param Destination A pointer to a Null-terminated Unicode string.\r
251 @param DestMax The maximum number of Destination Unicode\r
252 char, including terminating null char.\r
253 @param Source A pointer to a Null-terminated Unicode string.\r
254\r
255 @retval RETURN_SUCCESS String is copied.\r
256 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
257 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
258 If Source is NULL.\r
259 If PcdMaximumUnicodeStringLength is not zero,\r
260 and DestMax is greater than \r
261 PcdMaximumUnicodeStringLength.\r
262 If DestMax is 0.\r
263 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
264**/\r
265RETURN_STATUS\r
266EFIAPI\r
267StrCpyS (\r
268 OUT CHAR16 *Destination,\r
269 IN UINTN DestMax,\r
270 IN CONST CHAR16 *Source\r
271 );\r
272\r
273/**\r
274 Copies not more than Length successive char from the string pointed to by\r
275 Source to the array pointed to by Destination. If no null char is copied from\r
276 Source, then Destination[Length] is always set to null.\r
277\r
328f84b1
JY
278 This function is similar as strncpy_s defined in C11.\r
279\r
c058d59f
JY
280 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
281 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
0e93edbb 282 If an error would be returned, then the function will also ASSERT().\r
c058d59f 283\r
328f84b1
JY
284 If an error is returned, then the Destination is unmodified.\r
285\r
c058d59f
JY
286 @param Destination A pointer to a Null-terminated Unicode string.\r
287 @param DestMax The maximum number of Destination Unicode\r
288 char, including terminating null char.\r
289 @param Source A pointer to a Null-terminated Unicode string.\r
290 @param Length The maximum number of Unicode characters to copy.\r
291\r
292 @retval RETURN_SUCCESS String is copied.\r
293 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than \r
294 MIN(StrLen(Source), Length).\r
295 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
296 If Source is NULL.\r
297 If PcdMaximumUnicodeStringLength is not zero,\r
298 and DestMax is greater than \r
299 PcdMaximumUnicodeStringLength.\r
300 If DestMax is 0.\r
301 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
302**/\r
303RETURN_STATUS\r
304EFIAPI\r
305StrnCpyS (\r
306 OUT CHAR16 *Destination,\r
307 IN UINTN DestMax,\r
308 IN CONST CHAR16 *Source,\r
309 IN UINTN Length\r
310 );\r
311\r
312/**\r
313 Appends a copy of the string pointed to by Source (including the terminating\r
314 null char) to the end of the string pointed to by Destination.\r
315\r
328f84b1
JY
316 This function is similar as strcat_s defined in C11.\r
317\r
c058d59f
JY
318 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
319 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
0e93edbb 320 If an error would be returned, then the function will also ASSERT().\r
c058d59f 321\r
328f84b1
JY
322 If an error is returned, then the Destination is unmodified.\r
323\r
c058d59f
JY
324 @param Destination A pointer to a Null-terminated Unicode string.\r
325 @param DestMax The maximum number of Destination Unicode\r
326 char, including terminating null char.\r
327 @param Source A pointer to a Null-terminated Unicode string.\r
328\r
329 @retval RETURN_SUCCESS String is appended.\r
330 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than \r
331 StrLen(Destination).\r
332 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
333 greater than StrLen(Source).\r
334 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
335 If Source is NULL.\r
336 If PcdMaximumUnicodeStringLength is not zero,\r
337 and DestMax is greater than \r
338 PcdMaximumUnicodeStringLength.\r
339 If DestMax is 0.\r
340 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
341**/\r
342RETURN_STATUS\r
343EFIAPI\r
344StrCatS (\r
345 IN OUT CHAR16 *Destination,\r
346 IN UINTN DestMax,\r
347 IN CONST CHAR16 *Source\r
348 );\r
349\r
350/**\r
351 Appends not more than Length successive char from the string pointed to by\r
352 Source to the end of the string pointed to by Destination. If no null char is\r
353 copied from Source, then Destination[StrLen(Destination) + Length] is always\r
354 set to null.\r
355\r
328f84b1
JY
356 This function is similar as strncat_s defined in C11.\r
357\r
c058d59f 358 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
0e93edbb
JY
359 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
360 If an error would be returned, then the function will also ASSERT().\r
c058d59f 361\r
328f84b1
JY
362 If an error is returned, then the Destination is unmodified.\r
363\r
c058d59f
JY
364 @param Destination A pointer to a Null-terminated Unicode string.\r
365 @param DestMax The maximum number of Destination Unicode\r
366 char, including terminating null char.\r
367 @param Source A pointer to a Null-terminated Unicode string.\r
368 @param Length The maximum number of Unicode characters to copy.\r
369\r
370 @retval RETURN_SUCCESS String is appended.\r
371 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than\r
372 StrLen(Destination).\r
373 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
374 greater than MIN(StrLen(Source), Length).\r
375 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
376 If Source is NULL.\r
377 If PcdMaximumUnicodeStringLength is not zero,\r
378 and DestMax is greater than \r
379 PcdMaximumUnicodeStringLength.\r
380 If DestMax is 0.\r
381 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
382**/\r
383RETURN_STATUS\r
384EFIAPI\r
385StrnCatS (\r
386 IN OUT CHAR16 *Destination,\r
387 IN UINTN DestMax,\r
388 IN CONST CHAR16 *Source,\r
389 IN UINTN Length\r
390 );\r
391\r
d8af3301
HW
392/**\r
393 Convert a Null-terminated Unicode decimal string to a value of type UINTN.\r
394\r
395 This function outputs a value of type UINTN by interpreting the contents of\r
396 the Unicode string specified by String as a decimal number. The format of the\r
397 input Unicode string String is:\r
398\r
399 [spaces] [decimal digits].\r
400\r
401 The valid decimal digit character is in the range [0-9]. The function will\r
402 ignore the pad space, which includes spaces or tab characters, before\r
403 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
404 be ignored. Then, the function stops at the first character that is a not a\r
405 valid decimal character or a Null-terminator, whichever one comes first.\r
406\r
407 If String is NULL, then ASSERT().\r
408 If Data is NULL, then ASSERT().\r
409 If String is not aligned in a 16-bit boundary, then ASSERT().\r
410 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
411 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
412 Null-terminator, then ASSERT().\r
413\r
414 If String has no valid decimal digits in the above format, then 0 is stored\r
415 at the location pointed to by Data.\r
416 If the number represented by String exceeds the range defined by UINTN, then\r
417 MAX_UINTN is stored at the location pointed to by Data.\r
418\r
419 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
420 is stored at the location pointed to by EndPointer. If String has no valid\r
421 decimal digits right after the optional pad spaces, the value of String is\r
422 stored at the location pointed to by EndPointer.\r
423\r
424 @param String Pointer to a Null-terminated Unicode string.\r
425 @param EndPointer Pointer to character that stops scan.\r
426 @param Data Pointer to the converted value.\r
427\r
428 @retval RETURN_SUCCESS Value is translated from String.\r
429 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
430 If Data is NULL.\r
431 If PcdMaximumUnicodeStringLength is not\r
432 zero, and String contains more than\r
433 PcdMaximumUnicodeStringLength Unicode\r
434 characters, not including the\r
435 Null-terminator.\r
436 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
437 the range defined by UINTN.\r
438\r
439**/\r
440RETURN_STATUS\r
441EFIAPI\r
442StrDecimalToUintnS (\r
443 IN CONST CHAR16 *String,\r
444 OUT CHAR16 **EndPointer, OPTIONAL\r
445 OUT UINTN *Data\r
446 );\r
447\r
448/**\r
449 Convert a Null-terminated Unicode decimal string to a value of type UINT64.\r
450\r
451 This function outputs a value of type UINT64 by interpreting the contents of\r
452 the Unicode string specified by String as a decimal number. The format of the\r
453 input Unicode string String is:\r
454\r
455 [spaces] [decimal digits].\r
456\r
457 The valid decimal digit character is in the range [0-9]. The function will\r
458 ignore the pad space, which includes spaces or tab characters, before\r
459 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
460 be ignored. Then, the function stops at the first character that is a not a\r
461 valid decimal character or a Null-terminator, whichever one comes first.\r
462\r
463 If String is NULL, then ASSERT().\r
464 If Data is NULL, then ASSERT().\r
465 If String is not aligned in a 16-bit boundary, then ASSERT().\r
466 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
467 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
468 Null-terminator, then ASSERT().\r
469\r
470 If String has no valid decimal digits in the above format, then 0 is stored\r
471 at the location pointed to by Data.\r
472 If the number represented by String exceeds the range defined by UINT64, then\r
473 MAX_UINT64 is stored at the location pointed to by Data.\r
474\r
475 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
476 is stored at the location pointed to by EndPointer. If String has no valid\r
477 decimal digits right after the optional pad spaces, the value of String is\r
478 stored at the location pointed to by EndPointer.\r
479\r
480 @param String Pointer to a Null-terminated Unicode string.\r
481 @param EndPointer Pointer to character that stops scan.\r
482 @param Data Pointer to the converted value.\r
483\r
484 @retval RETURN_SUCCESS Value is translated from String.\r
485 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
486 If Data is NULL.\r
487 If PcdMaximumUnicodeStringLength is not\r
488 zero, and String contains more than\r
489 PcdMaximumUnicodeStringLength Unicode\r
490 characters, not including the\r
491 Null-terminator.\r
492 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
493 the range defined by UINT64.\r
494\r
495**/\r
496RETURN_STATUS\r
497EFIAPI\r
498StrDecimalToUint64S (\r
499 IN CONST CHAR16 *String,\r
500 OUT CHAR16 **EndPointer, OPTIONAL\r
501 OUT UINT64 *Data\r
502 );\r
503\r
504/**\r
505 Convert a Null-terminated Unicode hexadecimal string to a value of type\r
506 UINTN.\r
507\r
508 This function outputs a value of type UINTN by interpreting the contents of\r
509 the Unicode string specified by String as a hexadecimal number. The format of\r
510 the input Unicode string String is:\r
511\r
512 [spaces][zeros][x][hexadecimal digits].\r
513\r
514 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
515 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
516 If "x" appears in the input string, it must be prefixed with at least one 0.\r
517 The function will ignore the pad space, which includes spaces or tab\r
518 characters, before [zeros], [x] or [hexadecimal digit]. The running zero\r
519 before [x] or [hexadecimal digit] will be ignored. Then, the decoding starts\r
520 after [x] or the first valid hexadecimal digit. Then, the function stops at\r
521 the first character that is a not a valid hexadecimal character or NULL,\r
522 whichever one comes first.\r
523\r
524 If String is NULL, then ASSERT().\r
525 If Data is NULL, then ASSERT().\r
526 If String is not aligned in a 16-bit boundary, then ASSERT().\r
527 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
528 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
529 Null-terminator, then ASSERT().\r
530\r
531 If String has no valid hexadecimal digits in the above format, then 0 is\r
532 stored at the location pointed to by Data.\r
533 If the number represented by String exceeds the range defined by UINTN, then\r
534 MAX_UINTN is stored at the location pointed to by Data.\r
535\r
536 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
537 is stored at the location pointed to by EndPointer. If String has no valid\r
538 hexadecimal digits right after the optional pad spaces, the value of String\r
539 is stored at the location pointed to by EndPointer.\r
540\r
541 @param String Pointer to a Null-terminated Unicode string.\r
542 @param EndPointer Pointer to character that stops scan.\r
543 @param Data Pointer to the converted value.\r
544\r
545 @retval RETURN_SUCCESS Value is translated from String.\r
546 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
547 If Data is NULL.\r
548 If PcdMaximumUnicodeStringLength is not\r
549 zero, and String contains more than\r
550 PcdMaximumUnicodeStringLength Unicode\r
551 characters, not including the\r
552 Null-terminator.\r
553 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
554 the range defined by UINTN.\r
555\r
556**/\r
557RETURN_STATUS\r
558EFIAPI\r
559StrHexToUintnS (\r
560 IN CONST CHAR16 *String,\r
561 OUT CHAR16 **EndPointer, OPTIONAL\r
562 OUT UINTN *Data\r
563 );\r
564\r
565/**\r
566 Convert a Null-terminated Unicode hexadecimal string to a value of type\r
567 UINT64.\r
568\r
569 This function outputs a value of type UINT64 by interpreting the contents of\r
570 the Unicode string specified by String as a hexadecimal number. The format of\r
571 the input Unicode string String is:\r
572\r
573 [spaces][zeros][x][hexadecimal digits].\r
574\r
575 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
576 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
577 If "x" appears in the input string, it must be prefixed with at least one 0.\r
578 The function will ignore the pad space, which includes spaces or tab\r
579 characters, before [zeros], [x] or [hexadecimal digit]. The running zero\r
580 before [x] or [hexadecimal digit] will be ignored. Then, the decoding starts\r
581 after [x] or the first valid hexadecimal digit. Then, the function stops at\r
582 the first character that is a not a valid hexadecimal character or NULL,\r
583 whichever one comes first.\r
584\r
585 If String is NULL, then ASSERT().\r
586 If Data is NULL, then ASSERT().\r
587 If String is not aligned in a 16-bit boundary, then ASSERT().\r
588 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
589 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
590 Null-terminator, then ASSERT().\r
591\r
592 If String has no valid hexadecimal digits in the above format, then 0 is\r
593 stored at the location pointed to by Data.\r
594 If the number represented by String exceeds the range defined by UINT64, then\r
595 MAX_UINT64 is stored at the location pointed to by Data.\r
596\r
597 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
598 is stored at the location pointed to by EndPointer. If String has no valid\r
599 hexadecimal digits right after the optional pad spaces, the value of String\r
600 is stored at the location pointed to by EndPointer.\r
601\r
602 @param String Pointer to a Null-terminated Unicode string.\r
603 @param EndPointer Pointer to character that stops scan.\r
604 @param Data Pointer to the converted value.\r
605\r
606 @retval RETURN_SUCCESS Value is translated from String.\r
607 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
608 If Data is NULL.\r
609 If PcdMaximumUnicodeStringLength is not\r
610 zero, and String contains more than\r
611 PcdMaximumUnicodeStringLength Unicode\r
612 characters, not including the\r
613 Null-terminator.\r
614 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
615 the range defined by UINT64.\r
616\r
617**/\r
618RETURN_STATUS\r
619EFIAPI\r
620StrHexToUint64S (\r
621 IN CONST CHAR16 *String,\r
622 OUT CHAR16 **EndPointer, OPTIONAL\r
623 OUT UINT64 *Data\r
624 );\r
625\r
c058d59f
JY
626/**\r
627 Returns the length of a Null-terminated Ascii string.\r
628\r
328f84b1
JY
629 This function is similar as strlen_s defined in C11.\r
630\r
c058d59f
JY
631 @param String A pointer to a Null-terminated Ascii string.\r
632 @param MaxSize The maximum number of Destination Ascii\r
633 char, including terminating null char.\r
634\r
635 @retval 0 If String is NULL.\r
636 @retval MaxSize If there is no null character in the first MaxSize characters of String.\r
637 @return The number of characters that percede the terminating null character.\r
638\r
639**/\r
640UINTN\r
641EFIAPI\r
642AsciiStrnLenS (\r
643 IN CONST CHAR8 *String,\r
644 IN UINTN MaxSize\r
645 );\r
646\r
b590e43a
HW
647/**\r
648 Returns the size of a Null-terminated Ascii string in bytes, including the\r
649 Null terminator.\r
650\r
651 This function returns the size of the Null-terminated Ascii string specified\r
652 by String in bytes, including the Null terminator.\r
653\r
654 @param String A pointer to a Null-terminated Ascii string.\r
655 @param MaxSize The maximum number of Destination Ascii\r
656 char, including the Null terminator.\r
657\r
658 @retval 0 If String is NULL.\r
659 @retval (sizeof (CHAR8) * (MaxSize + 1))\r
660 If there is no Null terminator in the first MaxSize characters of\r
661 String.\r
662 @return The size of the Null-terminated Ascii string in bytes, including the\r
663 Null terminator.\r
664\r
665**/\r
666UINTN\r
667EFIAPI\r
668AsciiStrnSizeS (\r
669 IN CONST CHAR8 *String,\r
670 IN UINTN MaxSize\r
671 );\r
672\r
c058d59f
JY
673/**\r
674 Copies the string pointed to by Source (including the terminating null char)\r
675 to the array pointed to by Destination.\r
676\r
328f84b1
JY
677 This function is similar as strcpy_s defined in C11.\r
678\r
0e93edbb
JY
679 If an error would be returned, then the function will also ASSERT().\r
680\r
328f84b1
JY
681 If an error is returned, then the Destination is unmodified.\r
682\r
c058d59f
JY
683 @param Destination A pointer to a Null-terminated Ascii string.\r
684 @param DestMax The maximum number of Destination Ascii\r
685 char, including terminating null char.\r
686 @param Source A pointer to a Null-terminated Ascii string.\r
687\r
688 @retval RETURN_SUCCESS String is copied.\r
689 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
690 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
691 If Source is NULL.\r
692 If PcdMaximumAsciiStringLength is not zero,\r
693 and DestMax is greater than \r
694 PcdMaximumAsciiStringLength.\r
695 If DestMax is 0.\r
696 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
697**/\r
698RETURN_STATUS\r
699EFIAPI\r
700AsciiStrCpyS (\r
701 OUT CHAR8 *Destination,\r
702 IN UINTN DestMax,\r
703 IN CONST CHAR8 *Source\r
704 );\r
705\r
706/**\r
707 Copies not more than Length successive char from the string pointed to by\r
708 Source to the array pointed to by Destination. If no null char is copied from\r
709 Source, then Destination[Length] is always set to null.\r
710\r
328f84b1
JY
711 This function is similar as strncpy_s defined in C11.\r
712\r
0e93edbb
JY
713 If an error would be returned, then the function will also ASSERT().\r
714\r
328f84b1
JY
715 If an error is returned, then the Destination is unmodified.\r
716\r
c058d59f
JY
717 @param Destination A pointer to a Null-terminated Ascii string.\r
718 @param DestMax The maximum number of Destination Ascii\r
719 char, including terminating null char.\r
720 @param Source A pointer to a Null-terminated Ascii string.\r
721 @param Length The maximum number of Ascii characters to copy.\r
722\r
723 @retval RETURN_SUCCESS String is copied.\r
724 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than \r
725 MIN(StrLen(Source), Length).\r
726 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
727 If Source is NULL.\r
728 If PcdMaximumAsciiStringLength is not zero,\r
729 and DestMax is greater than \r
730 PcdMaximumAsciiStringLength.\r
731 If DestMax is 0.\r
732 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
733**/\r
734RETURN_STATUS\r
735EFIAPI\r
736AsciiStrnCpyS (\r
737 OUT CHAR8 *Destination,\r
738 IN UINTN DestMax,\r
739 IN CONST CHAR8 *Source,\r
740 IN UINTN Length\r
741 );\r
742\r
743/**\r
744 Appends a copy of the string pointed to by Source (including the terminating\r
745 null char) to the end of the string pointed to by Destination.\r
746\r
328f84b1
JY
747 This function is similar as strcat_s defined in C11.\r
748\r
0e93edbb
JY
749 If an error would be returned, then the function will also ASSERT().\r
750\r
328f84b1
JY
751 If an error is returned, then the Destination is unmodified.\r
752\r
c058d59f
JY
753 @param Destination A pointer to a Null-terminated Ascii string.\r
754 @param DestMax The maximum number of Destination Ascii\r
755 char, including terminating null char.\r
756 @param Source A pointer to a Null-terminated Ascii string.\r
757\r
758 @retval RETURN_SUCCESS String is appended.\r
759 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than \r
760 StrLen(Destination).\r
761 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
762 greater than StrLen(Source).\r
763 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
764 If Source is NULL.\r
765 If PcdMaximumAsciiStringLength is not zero,\r
766 and DestMax is greater than \r
767 PcdMaximumAsciiStringLength.\r
768 If DestMax is 0.\r
769 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
770**/\r
771RETURN_STATUS\r
772EFIAPI\r
773AsciiStrCatS (\r
774 IN OUT CHAR8 *Destination,\r
775 IN UINTN DestMax,\r
776 IN CONST CHAR8 *Source\r
777 );\r
778\r
779/**\r
780 Appends not more than Length successive char from the string pointed to by\r
781 Source to the end of the string pointed to by Destination. If no null char is\r
782 copied from Source, then Destination[StrLen(Destination) + Length] is always\r
783 set to null.\r
784\r
328f84b1
JY
785 This function is similar as strncat_s defined in C11.\r
786\r
0e93edbb
JY
787 If an error would be returned, then the function will also ASSERT().\r
788\r
328f84b1
JY
789 If an error is returned, then the Destination is unmodified.\r
790\r
c058d59f
JY
791 @param Destination A pointer to a Null-terminated Ascii string.\r
792 @param DestMax The maximum number of Destination Ascii\r
793 char, including terminating null char.\r
794 @param Source A pointer to a Null-terminated Ascii string.\r
795 @param Length The maximum number of Ascii characters to copy.\r
796\r
797 @retval RETURN_SUCCESS String is appended.\r
798 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than\r
799 StrLen(Destination).\r
800 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
801 greater than MIN(StrLen(Source), Length).\r
802 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
803 If Source is NULL.\r
804 If PcdMaximumAsciiStringLength is not zero,\r
805 and DestMax is greater than \r
806 PcdMaximumAsciiStringLength.\r
807 If DestMax is 0.\r
808 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
809**/\r
810RETURN_STATUS\r
811EFIAPI\r
812AsciiStrnCatS (\r
813 IN OUT CHAR8 *Destination,\r
814 IN UINTN DestMax,\r
815 IN CONST CHAR8 *Source,\r
816 IN UINTN Length\r
817 );\r
818\r
d8af3301
HW
819/**\r
820 Convert a Null-terminated Ascii decimal string to a value of type UINTN.\r
821\r
822 This function outputs a value of type UINTN by interpreting the contents of\r
823 the Ascii string specified by String as a decimal number. The format of the\r
824 input Ascii string String is:\r
825\r
826 [spaces] [decimal digits].\r
827\r
828 The valid decimal digit character is in the range [0-9]. The function will\r
829 ignore the pad space, which includes spaces or tab characters, before\r
830 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
831 be ignored. Then, the function stops at the first character that is a not a\r
832 valid decimal character or a Null-terminator, whichever one comes first.\r
833\r
834 If String is NULL, then ASSERT().\r
835 If Data is NULL, then ASSERT().\r
836 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
837 PcdMaximumAsciiStringLength Ascii characters, not including the\r
838 Null-terminator, then ASSERT().\r
839\r
840 If String has no valid decimal digits in the above format, then 0 is stored\r
841 at the location pointed to by Data.\r
842 If the number represented by String exceeds the range defined by UINTN, then\r
843 MAX_UINTN is stored at the location pointed to by Data.\r
844\r
845 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
846 is stored at the location pointed to by EndPointer. If String has no valid\r
847 decimal digits right after the optional pad spaces, the value of String is\r
848 stored at the location pointed to by EndPointer.\r
849\r
850 @param String Pointer to a Null-terminated Ascii string.\r
851 @param EndPointer Pointer to character that stops scan.\r
852 @param Data Pointer to the converted value.\r
853\r
854 @retval RETURN_SUCCESS Value is translated from String.\r
855 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
856 If Data is NULL.\r
857 If PcdMaximumAsciiStringLength is not zero,\r
858 and String contains more than\r
859 PcdMaximumAsciiStringLength Ascii\r
860 characters, not including the\r
861 Null-terminator.\r
862 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
863 the range defined by UINTN.\r
864\r
865**/\r
866RETURN_STATUS\r
867EFIAPI\r
868AsciiStrDecimalToUintnS (\r
869 IN CONST CHAR8 *String,\r
870 OUT CHAR8 **EndPointer, OPTIONAL\r
871 OUT UINTN *Data\r
872 );\r
873\r
874/**\r
875 Convert a Null-terminated Ascii decimal string to a value of type UINT64.\r
876\r
877 This function outputs a value of type UINT64 by interpreting the contents of\r
878 the Ascii string specified by String as a decimal number. The format of the\r
879 input Ascii string String is:\r
880\r
881 [spaces] [decimal digits].\r
882\r
883 The valid decimal digit character is in the range [0-9]. The function will\r
884 ignore the pad space, which includes spaces or tab characters, before\r
885 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
886 be ignored. Then, the function stops at the first character that is a not a\r
887 valid decimal character or a Null-terminator, whichever one comes first.\r
888\r
889 If String is NULL, then ASSERT().\r
890 If Data is NULL, then ASSERT().\r
891 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
892 PcdMaximumAsciiStringLength Ascii characters, not including the\r
893 Null-terminator, then ASSERT().\r
894\r
895 If String has no valid decimal digits in the above format, then 0 is stored\r
896 at the location pointed to by Data.\r
897 If the number represented by String exceeds the range defined by UINT64, then\r
898 MAX_UINT64 is stored at the location pointed to by Data.\r
899\r
900 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
901 is stored at the location pointed to by EndPointer. If String has no valid\r
902 decimal digits right after the optional pad spaces, the value of String is\r
903 stored at the location pointed to by EndPointer.\r
904\r
905 @param String Pointer to a Null-terminated Ascii string.\r
906 @param EndPointer Pointer to character that stops scan.\r
907 @param Data Pointer to the converted value.\r
908\r
909 @retval RETURN_SUCCESS Value is translated from String.\r
910 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
911 If Data is NULL.\r
912 If PcdMaximumAsciiStringLength is not zero,\r
913 and String contains more than\r
914 PcdMaximumAsciiStringLength Ascii\r
915 characters, not including the\r
916 Null-terminator.\r
917 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
918 the range defined by UINT64.\r
919\r
920**/\r
921RETURN_STATUS\r
922EFIAPI\r
923AsciiStrDecimalToUint64S (\r
924 IN CONST CHAR8 *String,\r
925 OUT CHAR8 **EndPointer, OPTIONAL\r
926 OUT UINT64 *Data\r
927 );\r
928\r
929/**\r
930 Convert a Null-terminated Ascii hexadecimal string to a value of type UINTN.\r
931\r
932 This function outputs a value of type UINTN by interpreting the contents of\r
933 the Ascii string specified by String as a hexadecimal number. The format of\r
934 the input Ascii string String is:\r
935\r
936 [spaces][zeros][x][hexadecimal digits].\r
937\r
938 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
939 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If\r
940 "x" appears in the input string, it must be prefixed with at least one 0. The\r
941 function will ignore the pad space, which includes spaces or tab characters,\r
942 before [zeros], [x] or [hexadecimal digits]. The running zero before [x] or\r
943 [hexadecimal digits] will be ignored. Then, the decoding starts after [x] or\r
944 the first valid hexadecimal digit. Then, the function stops at the first\r
945 character that is a not a valid hexadecimal character or Null-terminator,\r
946 whichever on comes first.\r
947\r
948 If String is NULL, then ASSERT().\r
949 If Data is NULL, then ASSERT().\r
950 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
951 PcdMaximumAsciiStringLength Ascii characters, not including the\r
952 Null-terminator, then ASSERT().\r
953\r
954 If String has no valid hexadecimal digits in the above format, then 0 is\r
955 stored at the location pointed to by Data.\r
956 If the number represented by String exceeds the range defined by UINTN, then\r
957 MAX_UINTN is stored at the location pointed to by Data.\r
958\r
959 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
960 is stored at the location pointed to by EndPointer. If String has no valid\r
961 hexadecimal digits right after the optional pad spaces, the value of String\r
962 is stored at the location pointed to by EndPointer.\r
963\r
964 @param String Pointer to a Null-terminated Ascii string.\r
965 @param EndPointer Pointer to character that stops scan.\r
966 @param Data Pointer to the converted value.\r
967\r
968 @retval RETURN_SUCCESS Value is translated from String.\r
969 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
970 If Data is NULL.\r
971 If PcdMaximumAsciiStringLength is not zero,\r
972 and String contains more than\r
973 PcdMaximumAsciiStringLength Ascii\r
974 characters, not including the\r
975 Null-terminator.\r
976 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
977 the range defined by UINTN.\r
978\r
979**/\r
980RETURN_STATUS\r
981EFIAPI\r
982AsciiStrHexToUintnS (\r
983 IN CONST CHAR8 *String,\r
984 OUT CHAR8 **EndPointer, OPTIONAL\r
985 OUT UINTN *Data\r
986 );\r
987\r
988/**\r
989 Convert a Null-terminated Ascii hexadecimal string to a value of type UINT64.\r
990\r
991 This function outputs a value of type UINT64 by interpreting the contents of\r
992 the Ascii string specified by String as a hexadecimal number. The format of\r
993 the input Ascii string String is:\r
994\r
995 [spaces][zeros][x][hexadecimal digits].\r
996\r
997 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
998 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If\r
999 "x" appears in the input string, it must be prefixed with at least one 0. The\r
1000 function will ignore the pad space, which includes spaces or tab characters,\r
1001 before [zeros], [x] or [hexadecimal digits]. The running zero before [x] or\r
1002 [hexadecimal digits] will be ignored. Then, the decoding starts after [x] or\r
1003 the first valid hexadecimal digit. Then, the function stops at the first\r
1004 character that is a not a valid hexadecimal character or Null-terminator,\r
1005 whichever on comes first.\r
1006\r
1007 If String is NULL, then ASSERT().\r
1008 If Data is NULL, then ASSERT().\r
1009 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
1010 PcdMaximumAsciiStringLength Ascii characters, not including the\r
1011 Null-terminator, then ASSERT().\r
1012\r
1013 If String has no valid hexadecimal digits in the above format, then 0 is\r
1014 stored at the location pointed to by Data.\r
1015 If the number represented by String exceeds the range defined by UINT64, then\r
1016 MAX_UINT64 is stored at the location pointed to by Data.\r
1017\r
1018 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
1019 is stored at the location pointed to by EndPointer. If String has no valid\r
1020 hexadecimal digits right after the optional pad spaces, the value of String\r
1021 is stored at the location pointed to by EndPointer.\r
1022\r
1023 @param String Pointer to a Null-terminated Ascii string.\r
1024 @param EndPointer Pointer to character that stops scan.\r
1025 @param Data Pointer to the converted value.\r
1026\r
1027 @retval RETURN_SUCCESS Value is translated from String.\r
1028 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1029 If Data is NULL.\r
1030 If PcdMaximumAsciiStringLength is not zero,\r
1031 and String contains more than\r
1032 PcdMaximumAsciiStringLength Ascii\r
1033 characters, not including the\r
1034 Null-terminator.\r
1035 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
1036 the range defined by UINT64.\r
1037\r
1038**/\r
1039RETURN_STATUS\r
1040EFIAPI\r
1041AsciiStrHexToUint64S (\r
1042 IN CONST CHAR8 *String,\r
1043 OUT CHAR8 **EndPointer, OPTIONAL\r
1044 OUT UINT64 *Data\r
1045 );\r
1046\r
c058d59f 1047\r
1bb390f1
ED
1048#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1049\r
ac644614 1050/**\r
ae591c14 1051 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1052\r
ac644614 1053 Copies one Null-terminated Unicode string to another Null-terminated Unicode\r
1054 string and returns the new Unicode string.\r
1055\r
1056 This function copies the contents of the Unicode string Source to the Unicode\r
1057 string Destination, and returns Destination. If Source and Destination\r
1058 overlap, then the results are undefined.\r
1059\r
1060 If Destination is NULL, then ASSERT().\r
1061 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1062 If Source is NULL, then ASSERT().\r
1063 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1064 If Source and Destination overlap, then ASSERT().\r
1065 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
1066 PcdMaximumUnicodeStringLength Unicode characters not including the\r
1067 Null-terminator, then ASSERT().\r
1068\r
af2dc6a7 1069 @param Destination The pointer to a Null-terminated Unicode string.\r
1070 @param Source The pointer to a Null-terminated Unicode string.\r
ac644614 1071\r
9aa049d9 1072 @return Destination.\r
ac644614 1073\r
1074**/\r
1075CHAR16 *\r
1076EFIAPI\r
1077StrCpy (\r
1078 OUT CHAR16 *Destination,\r
1079 IN CONST CHAR16 *Source\r
1080 );\r
1081\r
1082\r
1083/**\r
ae591c14 1084 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1085\r
af2dc6a7 1086 Copies up to a specified length from one Null-terminated Unicode string to \r
17f695ed 1087 another Null-terminated Unicode string and returns the new Unicode string.\r
ac644614 1088\r
1089 This function copies the contents of the Unicode string Source to the Unicode\r
1090 string Destination, and returns Destination. At most, Length Unicode\r
1091 characters are copied from Source to Destination. If Length is 0, then\r
1092 Destination is returned unmodified. If Length is greater that the number of\r
1093 Unicode characters in Source, then Destination is padded with Null Unicode\r
1094 characters. If Source and Destination overlap, then the results are\r
1095 undefined.\r
1096\r
1097 If Length > 0 and Destination is NULL, then ASSERT().\r
1098 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1099 If Length > 0 and Source is NULL, then ASSERT().\r
77f863ee 1100 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 1101 If Source and Destination overlap, then ASSERT().\r
50c247fd 1102 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
1103 PcdMaximumUnicodeStringLength, then ASSERT().\r
ac644614 1104 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
50c247fd 1105 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
1106 then ASSERT().\r
ac644614 1107\r
af2dc6a7 1108 @param Destination The pointer to a Null-terminated Unicode string.\r
1109 @param Source The pointer to a Null-terminated Unicode string.\r
1110 @param Length The maximum number of Unicode characters to copy.\r
ac644614 1111\r
9aa049d9 1112 @return Destination.\r
ac644614 1113\r
1114**/\r
1115CHAR16 *\r
1116EFIAPI\r
1117StrnCpy (\r
1118 OUT CHAR16 *Destination,\r
1119 IN CONST CHAR16 *Source,\r
1120 IN UINTN Length\r
1121 );\r
1bb390f1 1122#endif\r
ac644614 1123\r
1124/**\r
1125 Returns the length of a Null-terminated Unicode string.\r
1126\r
1127 This function returns the number of Unicode characters in the Null-terminated\r
1128 Unicode string specified by String.\r
1129\r
1130 If String is NULL, then ASSERT().\r
1131 If String is not aligned on a 16-bit boundary, then ASSERT().\r
1132 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1133 PcdMaximumUnicodeStringLength Unicode characters not including the\r
1134 Null-terminator, then ASSERT().\r
1135\r
1136 @param String Pointer to a Null-terminated Unicode string.\r
1137\r
1138 @return The length of String.\r
1139\r
1140**/\r
1141UINTN\r
1142EFIAPI\r
1143StrLen (\r
1144 IN CONST CHAR16 *String\r
1145 );\r
1146\r
1147\r
1148/**\r
1149 Returns the size of a Null-terminated Unicode string in bytes, including the\r
1150 Null terminator.\r
1151\r
17f695ed 1152 This function returns the size, in bytes, of the Null-terminated Unicode string \r
1153 specified by String.\r
ac644614 1154\r
1155 If String is NULL, then ASSERT().\r
1156 If String is not aligned on a 16-bit boundary, then ASSERT().\r
1157 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1158 PcdMaximumUnicodeStringLength Unicode characters not including the\r
1159 Null-terminator, then ASSERT().\r
1160\r
af2dc6a7 1161 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1162\r
1163 @return The size of String.\r
1164\r
1165**/\r
1166UINTN\r
1167EFIAPI\r
1168StrSize (\r
1169 IN CONST CHAR16 *String\r
1170 );\r
1171\r
1172\r
1173/**\r
1174 Compares two Null-terminated Unicode strings, and returns the difference\r
1175 between the first mismatched Unicode characters.\r
1176\r
1177 This function compares the Null-terminated Unicode string FirstString to the\r
1178 Null-terminated Unicode string SecondString. If FirstString is identical to\r
1179 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
1180 mismatched Unicode character in SecondString subtracted from the first\r
1181 mismatched Unicode character in FirstString.\r
1182\r
1183 If FirstString is NULL, then ASSERT().\r
1184 If FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
1185 If SecondString is NULL, then ASSERT().\r
1186 If SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
1187 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more\r
1188 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
1189 Null-terminator, then ASSERT().\r
1190 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more\r
af2dc6a7 1191 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1192 Null-terminator, then ASSERT().\r
1193\r
af2dc6a7 1194 @param FirstString The pointer to a Null-terminated Unicode string.\r
1195 @param SecondString The pointer to a Null-terminated Unicode string.\r
ac644614 1196\r
1106ffe1 1197 @retval 0 FirstString is identical to SecondString.\r
1198 @return others FirstString is not identical to SecondString.\r
ac644614 1199\r
1200**/\r
1201INTN\r
1202EFIAPI\r
1203StrCmp (\r
1204 IN CONST CHAR16 *FirstString,\r
1205 IN CONST CHAR16 *SecondString\r
1206 );\r
1207\r
1208\r
1209/**\r
17f695ed 1210 Compares up to a specified length the contents of two Null-terminated Unicode strings,\r
1211 and returns the difference between the first mismatched Unicode characters.\r
1212 \r
ac644614 1213 This function compares the Null-terminated Unicode string FirstString to the\r
1214 Null-terminated Unicode string SecondString. At most, Length Unicode\r
1215 characters will be compared. If Length is 0, then 0 is returned. If\r
1216 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
1217 value returned is the first mismatched Unicode character in SecondString\r
1218 subtracted from the first mismatched Unicode character in FirstString.\r
1219\r
1220 If Length > 0 and FirstString is NULL, then ASSERT().\r
77f863ee 1221 If Length > 0 and FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 1222 If Length > 0 and SecondString is NULL, then ASSERT().\r
77f863ee 1223 If Length > 0 and SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
50c247fd 1224 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than\r
1225 PcdMaximumUnicodeStringLength, then ASSERT().\r
1226 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more than\r
1227 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
1228 then ASSERT().\r
1229 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more than\r
1230 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
1231 then ASSERT().\r
ac644614 1232\r
af2dc6a7 1233 @param FirstString The pointer to a Null-terminated Unicode string.\r
1234 @param SecondString The pointer to a Null-terminated Unicode string.\r
1235 @param Length The maximum number of Unicode characters to compare.\r
ac644614 1236\r
1106ffe1 1237 @retval 0 FirstString is identical to SecondString.\r
1238 @return others FirstString is not identical to SecondString.\r
ac644614 1239\r
1240**/\r
1241INTN\r
1242EFIAPI\r
1243StrnCmp (\r
1244 IN CONST CHAR16 *FirstString,\r
1245 IN CONST CHAR16 *SecondString,\r
1246 IN UINTN Length\r
1247 );\r
1248\r
1249\r
1bb390f1
ED
1250#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1251\r
ac644614 1252/**\r
ae591c14 1253 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1254\r
ac644614 1255 Concatenates one Null-terminated Unicode string to another Null-terminated\r
1256 Unicode string, and returns the concatenated Unicode string.\r
1257\r
1258 This function concatenates two Null-terminated Unicode strings. The contents\r
1259 of Null-terminated Unicode string Source are concatenated to the end of\r
1260 Null-terminated Unicode string Destination. The Null-terminated concatenated\r
1261 Unicode String is returned. If Source and Destination overlap, then the\r
1262 results are undefined.\r
1263\r
1264 If Destination is NULL, then ASSERT().\r
77f863ee 1265 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 1266 If Source is NULL, then ASSERT().\r
77f863ee 1267 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 1268 If Source and Destination overlap, then ASSERT().\r
1269 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
af2dc6a7 1270 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1271 Null-terminator, then ASSERT().\r
1272 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
af2dc6a7 1273 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1274 Null-terminator, then ASSERT().\r
1275 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
1276 and Source results in a Unicode string with more than\r
af2dc6a7 1277 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1278 Null-terminator, then ASSERT().\r
1279\r
af2dc6a7 1280 @param Destination The pointer to a Null-terminated Unicode string.\r
1281 @param Source The pointer to a Null-terminated Unicode string.\r
ac644614 1282\r
9aa049d9 1283 @return Destination.\r
ac644614 1284\r
1285**/\r
1286CHAR16 *\r
1287EFIAPI\r
1288StrCat (\r
1289 IN OUT CHAR16 *Destination,\r
1290 IN CONST CHAR16 *Source\r
1291 );\r
1292\r
1293\r
1294/**\r
ae591c14 1295 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1296\r
17f695ed 1297 Concatenates up to a specified length one Null-terminated Unicode to the end \r
1298 of another Null-terminated Unicode string, and returns the concatenated \r
ac644614 1299 Unicode string.\r
1300\r
1301 This function concatenates two Null-terminated Unicode strings. The contents\r
1302 of Null-terminated Unicode string Source are concatenated to the end of\r
1303 Null-terminated Unicode string Destination, and Destination is returned. At\r
1304 most, Length Unicode characters are concatenated from Source to the end of\r
1305 Destination, and Destination is always Null-terminated. If Length is 0, then\r
1306 Destination is returned unmodified. If Source and Destination overlap, then\r
1307 the results are undefined.\r
1308\r
1309 If Destination is NULL, then ASSERT().\r
1310 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1311 If Length > 0 and Source is NULL, then ASSERT().\r
1312 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
1313 If Source and Destination overlap, then ASSERT().\r
50c247fd 1314 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
1315 PcdMaximumUnicodeStringLength, then ASSERT().\r
ac644614 1316 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
50c247fd 1317 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1318 Null-terminator, then ASSERT().\r
1319 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
50c247fd 1320 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 1321 Null-terminator, then ASSERT().\r
1322 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
50c247fd 1323 and Source results in a Unicode string with more than PcdMaximumUnicodeStringLength\r
1324 Unicode characters, not including the Null-terminator, then ASSERT().\r
ac644614 1325\r
af2dc6a7 1326 @param Destination The pointer to a Null-terminated Unicode string.\r
1327 @param Source The pointer to a Null-terminated Unicode string.\r
1328 @param Length The maximum number of Unicode characters to concatenate from\r
ac644614 1329 Source.\r
1330\r
9aa049d9 1331 @return Destination.\r
ac644614 1332\r
1333**/\r
1334CHAR16 *\r
1335EFIAPI\r
1336StrnCat (\r
1337 IN OUT CHAR16 *Destination,\r
1338 IN CONST CHAR16 *Source,\r
1339 IN UINTN Length\r
1340 );\r
1bb390f1 1341#endif\r
ac644614 1342\r
1343/**\r
9aa049d9 1344 Returns the first occurrence of a Null-terminated Unicode sub-string\r
ac644614 1345 in a Null-terminated Unicode string.\r
1346\r
1347 This function scans the contents of the Null-terminated Unicode string\r
1348 specified by String and returns the first occurrence of SearchString.\r
1349 If SearchString is not found in String, then NULL is returned. If\r
af2dc6a7 1350 the length of SearchString is zero, then String is returned.\r
ac644614 1351\r
1352 If String is NULL, then ASSERT().\r
1353 If String is not aligned on a 16-bit boundary, then ASSERT().\r
1354 If SearchString is NULL, then ASSERT().\r
1355 If SearchString is not aligned on a 16-bit boundary, then ASSERT().\r
1356\r
1357 If PcdMaximumUnicodeStringLength is not zero, and SearchString\r
1358 or String contains more than PcdMaximumUnicodeStringLength Unicode\r
af2dc6a7 1359 characters, not including the Null-terminator, then ASSERT().\r
ac644614 1360\r
af2dc6a7 1361 @param String The pointer to a Null-terminated Unicode string.\r
1362 @param SearchString The pointer to a Null-terminated Unicode string to search for.\r
ac644614 1363\r
1364 @retval NULL If the SearchString does not appear in String.\r
1106ffe1 1365 @return others If there is a match.\r
ac644614 1366\r
1367**/\r
1368CHAR16 *\r
1369EFIAPI\r
1370StrStr (\r
17f695ed 1371 IN CONST CHAR16 *String,\r
1372 IN CONST CHAR16 *SearchString\r
ac644614 1373 );\r
1374\r
1375/**\r
1376 Convert a Null-terminated Unicode decimal string to a value of\r
1377 type UINTN.\r
1378\r
1379 This function returns a value of type UINTN by interpreting the contents\r
1380 of the Unicode string specified by String as a decimal number. The format\r
1381 of the input Unicode string String is:\r
1382\r
1383 [spaces] [decimal digits].\r
1384\r
1385 The valid decimal digit character is in the range [0-9]. The\r
1386 function will ignore the pad space, which includes spaces or\r
1387 tab characters, before [decimal digits]. The running zero in the\r
1388 beginning of [decimal digits] will be ignored. Then, the function\r
1389 stops at the first character that is a not a valid decimal character\r
1390 or a Null-terminator, whichever one comes first.\r
1391\r
1392 If String is NULL, then ASSERT().\r
1393 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1394 If String has only pad spaces, then 0 is returned.\r
1395 If String has no pad spaces or valid decimal digits,\r
1396 then 0 is returned.\r
1397 If the number represented by String overflows according\r
ea2e0921 1398 to the range defined by UINTN, then MAX_UINTN is returned.\r
ac644614 1399\r
1400 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
1401 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
1402 the Null-terminator, then ASSERT().\r
1403\r
af2dc6a7 1404 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1405\r
38bbd3d9 1406 @retval Value translated from String.\r
ac644614 1407\r
1408**/\r
1409UINTN\r
1410EFIAPI\r
1411StrDecimalToUintn (\r
17f695ed 1412 IN CONST CHAR16 *String\r
ac644614 1413 );\r
1414\r
1415/**\r
1416 Convert a Null-terminated Unicode decimal string to a value of\r
1417 type UINT64.\r
1418\r
1419 This function returns a value of type UINT64 by interpreting the contents\r
1420 of the Unicode string specified by String as a decimal number. The format\r
1421 of the input Unicode string String is:\r
1422\r
1423 [spaces] [decimal digits].\r
1424\r
1425 The valid decimal digit character is in the range [0-9]. The\r
1426 function will ignore the pad space, which includes spaces or\r
1427 tab characters, before [decimal digits]. The running zero in the\r
1428 beginning of [decimal digits] will be ignored. Then, the function\r
1429 stops at the first character that is a not a valid decimal character\r
1430 or a Null-terminator, whichever one comes first.\r
1431\r
1432 If String is NULL, then ASSERT().\r
1433 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1434 If String has only pad spaces, then 0 is returned.\r
1435 If String has no pad spaces or valid decimal digits,\r
1436 then 0 is returned.\r
1437 If the number represented by String overflows according\r
ea2e0921 1438 to the range defined by UINT64, then MAX_UINT64 is returned.\r
ac644614 1439\r
1440 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
1441 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
1442 the Null-terminator, then ASSERT().\r
1443\r
af2dc6a7 1444 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1445\r
38bbd3d9 1446 @retval Value translated from String.\r
ac644614 1447\r
1448**/\r
1449UINT64\r
1450EFIAPI\r
1451StrDecimalToUint64 (\r
17f695ed 1452 IN CONST CHAR16 *String\r
ac644614 1453 );\r
1454 \r
1455\r
1456/**\r
1457 Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.\r
1458\r
1459 This function returns a value of type UINTN by interpreting the contents\r
1460 of the Unicode string specified by String as a hexadecimal number.\r
1461 The format of the input Unicode string String is:\r
1462\r
1463 [spaces][zeros][x][hexadecimal digits].\r
1464\r
1465 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1466 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
1467 If "x" appears in the input string, it must be prefixed with at least one 0.\r
1468 The function will ignore the pad space, which includes spaces or tab characters,\r
1469 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
1470 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
af2dc6a7 1471 first valid hexadecimal digit. Then, the function stops at the first character \r
1472 that is a not a valid hexadecimal character or NULL, whichever one comes first.\r
ac644614 1473\r
1474 If String is NULL, then ASSERT().\r
1475 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1476 If String has only pad spaces, then zero is returned.\r
1477 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
1478 then zero is returned.\r
1479 If the number represented by String overflows according to the range defined by\r
ea2e0921 1480 UINTN, then MAX_UINTN is returned.\r
ac644614 1481\r
1482 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1483 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
1484 then ASSERT().\r
1485\r
af2dc6a7 1486 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1487\r
38bbd3d9 1488 @retval Value translated from String.\r
ac644614 1489\r
1490**/\r
1491UINTN\r
1492EFIAPI\r
1493StrHexToUintn (\r
17f695ed 1494 IN CONST CHAR16 *String\r
ac644614 1495 );\r
1496\r
1497\r
1498/**\r
1499 Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.\r
1500\r
1501 This function returns a value of type UINT64 by interpreting the contents\r
1502 of the Unicode string specified by String as a hexadecimal number.\r
1503 The format of the input Unicode string String is\r
1504\r
1505 [spaces][zeros][x][hexadecimal digits].\r
1506\r
1507 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1508 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
1509 If "x" appears in the input string, it must be prefixed with at least one 0.\r
1510 The function will ignore the pad space, which includes spaces or tab characters,\r
1511 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
1512 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
1513 first valid hexadecimal digit. Then, the function stops at the first character that is\r
1514 a not a valid hexadecimal character or NULL, whichever one comes first.\r
1515\r
1516 If String is NULL, then ASSERT().\r
1517 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1518 If String has only pad spaces, then zero is returned.\r
1519 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
1520 then zero is returned.\r
1521 If the number represented by String overflows according to the range defined by\r
ea2e0921 1522 UINT64, then MAX_UINT64 is returned.\r
ac644614 1523\r
1524 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1525 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
1526 then ASSERT().\r
1527\r
af2dc6a7 1528 @param String The pointer to a Null-terminated Unicode string.\r
ac644614 1529\r
38bbd3d9 1530 @retval Value translated from String.\r
ac644614 1531\r
1532**/\r
1533UINT64\r
1534EFIAPI\r
1535StrHexToUint64 (\r
17f695ed 1536 IN CONST CHAR16 *String\r
ac644614 1537 );\r
1538\r
36396ea2
RN
1539/**\r
1540 Convert a Null-terminated Unicode string to IPv6 address and prefix length.\r
1541\r
1542 This function outputs a value of type IPv6_ADDRESS and may output a value\r
1543 of type UINT8 by interpreting the contents of the Unicode string specified\r
1544 by String. The format of the input Unicode string String is as follows:\r
1545\r
1546 X:X:X:X:X:X:X:X[/P]\r
1547\r
1548 X contains one to four hexadecimal digit characters in the range [0-9], [a-f] and\r
1549 [A-F]. X is converted to a value of type UINT16, whose low byte is stored in low\r
1550 memory address and high byte is stored in high memory address. P contains decimal\r
1551 digit characters in the range [0-9]. The running zero in the beginning of P will\r
1552 be ignored. /P is optional.\r
1553\r
1554 When /P is not in the String, the function stops at the first character that is\r
1555 not a valid hexadecimal digit character after eight X's are converted.\r
1556\r
1557 When /P is in the String, the function stops at the first character that is not\r
1558 a valid decimal digit character after P is converted.\r
1559\r
1560 "::" can be used to compress one or more groups of X when X contains only 0.\r
1561 The "::" can only appear once in the String.\r
1562\r
1563 If String is NULL, then ASSERT().\r
1564\r
1565 If Address is NULL, then ASSERT().\r
1566\r
1567 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1568\r
1569 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1570 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1571 Null-terminator, then ASSERT().\r
1572\r
1573 If EndPointer is not NULL and Address is translated from String, a pointer\r
1574 to the character that stopped the scan is stored at the location pointed to\r
1575 by EndPointer.\r
1576\r
1577 @param String Pointer to a Null-terminated Unicode string.\r
1578 @param EndPointer Pointer to character that stops scan.\r
1579 @param Address Pointer to the converted IPv6 address.\r
1580 @param PrefixLength Pointer to the converted IPv6 address prefix\r
1581 length. MAX_UINT8 is returned when /P is\r
1582 not in the String.\r
1583\r
1584 @retval RETURN_SUCCESS Address is translated from String.\r
1585 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1586 If Data is NULL.\r
1587 @retval RETURN_UNSUPPORTED If X contains more than four hexadecimal\r
1588 digit characters.\r
1589 If String contains "::" and number of X\r
1590 is not less than 8.\r
1591 If P starts with character that is not a\r
1592 valid decimal digit character.\r
1593 If the decimal number converted from P\r
1594 exceeds 128.\r
1595\r
1596**/\r
1597RETURN_STATUS\r
1598EFIAPI\r
1599StrToIpv6Address (\r
1600 IN CONST CHAR16 *String,\r
1601 OUT CHAR16 **EndPointer, OPTIONAL\r
1602 OUT IPv6_ADDRESS *Address,\r
1603 OUT UINT8 *PrefixLength OPTIONAL\r
1604 );\r
1605\r
1606/**\r
1607 Convert a Null-terminated Unicode string to IPv4 address and prefix length.\r
1608\r
1609 This function outputs a value of type IPv4_ADDRESS and may output a value\r
1610 of type UINT8 by interpreting the contents of the Unicode string specified\r
1611 by String. The format of the input Unicode string String is as follows:\r
1612\r
1613 D.D.D.D[/P]\r
1614\r
1615 D and P are decimal digit characters in the range [0-9]. The running zero in\r
1616 the beginning of D and P will be ignored. /P is optional.\r
1617\r
1618 When /P is not in the String, the function stops at the first character that is\r
1619 not a valid decimal digit character after four D's are converted.\r
1620\r
1621 When /P is in the String, the function stops at the first character that is not\r
1622 a valid decimal digit character after P is converted.\r
1623\r
1624 If String is NULL, then ASSERT().\r
1625\r
1626 If Address is NULL, then ASSERT().\r
1627\r
1628 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1629\r
1630 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1631 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1632 Null-terminator, then ASSERT().\r
1633\r
1634 If EndPointer is not NULL and Address is translated from String, a pointer\r
1635 to the character that stopped the scan is stored at the location pointed to\r
1636 by EndPointer.\r
1637\r
1638 @param String Pointer to a Null-terminated Unicode string.\r
1639 @param EndPointer Pointer to character that stops scan.\r
1640 @param Address Pointer to the converted IPv4 address.\r
1641 @param PrefixLength Pointer to the converted IPv4 address prefix\r
1642 length. MAX_UINT8 is returned when /P is\r
1643 not in the String.\r
1644\r
1645 @retval RETURN_SUCCESS Address is translated from String.\r
1646 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1647 If Data is NULL.\r
1648 @retval RETURN_UNSUPPORTED If String is not in the correct format.\r
1649 If any decimal number converted from D\r
1650 exceeds 255.\r
1651 If the decimal number converted from P\r
1652 exceeds 32.\r
1653\r
1654**/\r
1655RETURN_STATUS\r
1656EFIAPI\r
1657StrToIpv4Address (\r
1658 IN CONST CHAR16 *String,\r
1659 OUT CHAR16 **EndPointer, OPTIONAL\r
1660 OUT IPv4_ADDRESS *Address,\r
1661 OUT UINT8 *PrefixLength OPTIONAL\r
1662 );\r
1663\r
1664#define GUID_STRING_LENGTH 36\r
1665\r
1666/**\r
1667 Convert a Null-terminated Unicode GUID string to a value of type\r
1668 EFI_GUID.\r
1669\r
1670 This function outputs a GUID value by interpreting the contents of\r
1671 the Unicode string specified by String. The format of the input\r
1672 Unicode string String consists of 36 characters, as follows:\r
1673\r
1674 aabbccdd-eeff-gghh-iijj-kkllmmnnoopp\r
1675\r
1676 The pairs aa - pp are two characters in the range [0-9], [a-f] and\r
1677 [A-F], with each pair representing a single byte hexadecimal value.\r
1678\r
1679 The mapping between String and the EFI_GUID structure is as follows:\r
1680 aa Data1[24:31]\r
1681 bb Data1[16:23]\r
1682 cc Data1[8:15]\r
1683 dd Data1[0:7]\r
1684 ee Data2[8:15]\r
1685 ff Data2[0:7]\r
1686 gg Data3[8:15]\r
1687 hh Data3[0:7]\r
1688 ii Data4[0:7]\r
1689 jj Data4[8:15]\r
1690 kk Data4[16:23]\r
1691 ll Data4[24:31]\r
1692 mm Data4[32:39]\r
1693 nn Data4[40:47]\r
1694 oo Data4[48:55]\r
1695 pp Data4[56:63]\r
1696\r
1697 If String is NULL, then ASSERT().\r
1698 If Guid is NULL, then ASSERT().\r
1699 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1700\r
1701 @param String Pointer to a Null-terminated Unicode string.\r
1702 @param Guid Pointer to the converted GUID.\r
1703\r
1704 @retval RETURN_SUCCESS Guid is translated from String.\r
1705 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1706 If Data is NULL.\r
1707 @retval RETURN_UNSUPPORTED If String is not as the above format.\r
1708\r
1709**/\r
1710RETURN_STATUS\r
1711EFIAPI\r
1712StrToGuid (\r
1713 IN CONST CHAR16 *String,\r
1714 OUT GUID *Guid\r
1715 );\r
1716\r
1717/**\r
1718 Convert a Null-terminated Unicode hexadecimal string to a byte array.\r
1719\r
1720 This function outputs a byte array by interpreting the contents of\r
1721 the Unicode string specified by String in hexadecimal format. The format of\r
1722 the input Unicode string String is:\r
1723\r
1724 [XX]*\r
1725\r
1726 X is a hexadecimal digit character in the range [0-9], [a-f] and [A-F].\r
1727 The function decodes every two hexadecimal digit characters as one byte. The\r
1728 decoding stops after Length of characters and outputs Buffer containing\r
1729 (Length / 2) bytes.\r
1730\r
1731 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1732\r
1733 If String is NULL, then ASSERT().\r
1734\r
1735 If Buffer is NULL, then ASSERT().\r
1736\r
1737 If Length is not multiple of 2, then ASSERT().\r
1738\r
1739 If PcdMaximumUnicodeStringLength is not zero and Length is greater than\r
1740 PcdMaximumUnicodeStringLength, then ASSERT().\r
1741\r
1742 If MaxBufferSize is less than (Length / 2), then ASSERT().\r
1743\r
1744 @param String Pointer to a Null-terminated Unicode string.\r
1745 @param Length The number of Unicode characters to decode.\r
1746 @param Buffer Pointer to the converted bytes array.\r
1747 @param MaxBufferSize The maximum size of Buffer.\r
1748\r
1749 @retval RETURN_SUCCESS Buffer is translated from String.\r
1750 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1751 If Data is NULL.\r
1752 If Length is not multiple of 2.\r
1753 If PcdMaximumUnicodeStringLength is not zero,\r
1754 and Length is greater than\r
1755 PcdMaximumUnicodeStringLength.\r
1756 @retval RETURN_UNSUPPORTED If Length of characters from String contain\r
1757 a character that is not valid hexadecimal\r
1758 digit characters, or a Null-terminator.\r
1759 @retval RETURN_BUFFER_TOO_SMALL If MaxBufferSize is less than (Length / 2).\r
1760**/\r
1761RETURN_STATUS\r
1762EFIAPI\r
1763StrHexToBytes (\r
1764 IN CONST CHAR16 *String,\r
1765 IN UINTN Length,\r
1766 OUT UINT8 *Buffer,\r
1767 IN UINTN MaxBufferSize\r
1768 );\r
1769\r
415aa2f1
SZ
1770#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1771\r
ac644614 1772/**\r
415aa2f1
SZ
1773 [ATTENTION] This function is deprecated for security reason.\r
1774\r
17f695ed 1775 Convert a Null-terminated Unicode string to a Null-terminated\r
ac644614 1776 ASCII string and returns the ASCII string.\r
1777\r
1778 This function converts the content of the Unicode string Source\r
1779 to the ASCII string Destination by copying the lower 8 bits of\r
1780 each Unicode character. It returns Destination.\r
1781\r
d3e0289c 1782 The caller is responsible to make sure Destination points to a buffer with size\r
1783 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1784\r
ac644614 1785 If any Unicode characters in Source contain non-zero value in\r
1786 the upper 8 bits, then ASSERT().\r
1787\r
1788 If Destination is NULL, then ASSERT().\r
1789 If Source is NULL, then ASSERT().\r
1790 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1791 If Source and Destination overlap, then ASSERT().\r
1792\r
1793 If PcdMaximumUnicodeStringLength is not zero, and Source contains\r
1794 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
1795 the Null-terminator, then ASSERT().\r
1796\r
1797 If PcdMaximumAsciiStringLength is not zero, and Source contains more\r
1798 than PcdMaximumAsciiStringLength Unicode characters not including the\r
1799 Null-terminator, then ASSERT().\r
1800\r
af2dc6a7 1801 @param Source The pointer to a Null-terminated Unicode string.\r
1802 @param Destination The pointer to a Null-terminated ASCII string.\r
ac644614 1803\r
9aa049d9 1804 @return Destination.\r
ac644614 1805\r
1806**/\r
1807CHAR8 *\r
1808EFIAPI\r
1809UnicodeStrToAsciiStr (\r
17f695ed 1810 IN CONST CHAR16 *Source,\r
1811 OUT CHAR8 *Destination\r
ac644614 1812 );\r
1813\r
415aa2f1
SZ
1814#endif\r
1815\r
3ab41b7a
JY
1816/**\r
1817 Convert a Null-terminated Unicode string to a Null-terminated\r
1818 ASCII string.\r
1819\r
1820 This function is similar to AsciiStrCpyS.\r
1821\r
1822 This function converts the content of the Unicode string Source\r
1823 to the ASCII string Destination by copying the lower 8 bits of\r
1824 each Unicode character. The function terminates the ASCII string\r
1825 Destination by appending a Null-terminator character at the end.\r
1826\r
1827 The caller is responsible to make sure Destination points to a buffer with size\r
1828 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1829\r
1830 If any Unicode characters in Source contain non-zero value in\r
1831 the upper 8 bits, then ASSERT().\r
1832\r
1833 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1834 If an error would be returned, then the function will also ASSERT().\r
1835\r
1836 If an error is returned, then the Destination is unmodified.\r
1837\r
1838 @param Source The pointer to a Null-terminated Unicode string.\r
1839 @param Destination The pointer to a Null-terminated ASCII string.\r
1840 @param DestMax The maximum number of Destination Ascii\r
1841 char, including terminating null char.\r
1842\r
1843 @retval RETURN_SUCCESS String is converted.\r
1844 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
1845 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
1846 If Source is NULL.\r
1847 If PcdMaximumAsciiStringLength is not zero,\r
1848 and DestMax is greater than\r
1849 PcdMaximumAsciiStringLength.\r
1850 If PcdMaximumUnicodeStringLength is not zero,\r
1851 and DestMax is greater than\r
1852 PcdMaximumUnicodeStringLength.\r
1853 If DestMax is 0.\r
1854 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
1855\r
1856**/\r
1857RETURN_STATUS\r
1858EFIAPI\r
1859UnicodeStrToAsciiStrS (\r
1860 IN CONST CHAR16 *Source,\r
1861 OUT CHAR8 *Destination,\r
1862 IN UINTN DestMax\r
1863 );\r
ac644614 1864\r
02263214
HW
1865/**\r
1866 Convert not more than Length successive characters from a Null-terminated\r
1867 Unicode string to a Null-terminated Ascii string. If no null char is copied\r
1868 from Source, then Destination[Length] is always set to null.\r
1869\r
1870 This function converts not more than Length successive characters from the\r
1871 Unicode string Source to the Ascii string Destination by copying the lower 8\r
1872 bits of each Unicode character. The function terminates the Ascii string\r
1873 Destination by appending a Null-terminator character at the end.\r
1874\r
1875 The caller is responsible to make sure Destination points to a buffer with size\r
1876 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1877\r
1878 If any Unicode characters in Source contain non-zero value in the upper 8\r
1879 bits, then ASSERT().\r
1880 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1881 If an error would be returned, then the function will also ASSERT().\r
1882\r
1883 If an error is returned, then the Destination is unmodified.\r
1884\r
1885 @param Source The pointer to a Null-terminated Unicode string.\r
1886 @param Length The maximum number of Unicode characters to\r
1887 convert.\r
1888 @param Destination The pointer to a Null-terminated Ascii string.\r
1889 @param DestMax The maximum number of Destination Ascii\r
1890 char, including terminating null char.\r
1891 @param DestinationLength The number of Unicode characters converted.\r
1892\r
1893 @retval RETURN_SUCCESS String is converted.\r
1894 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
1895 If Source is NULL.\r
1896 If DestinationLength is NULL.\r
1897 If PcdMaximumAsciiStringLength is not zero,\r
1898 and Length or DestMax is greater than\r
1899 PcdMaximumAsciiStringLength.\r
1900 If PcdMaximumUnicodeStringLength is not\r
1901 zero, and Length or DestMax is greater than\r
1902 PcdMaximumUnicodeStringLength.\r
1903 If DestMax is 0.\r
1904 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than\r
1905 MIN(StrLen(Source), Length).\r
1906 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
1907\r
1908**/\r
1909RETURN_STATUS\r
1910EFIAPI\r
1911UnicodeStrnToAsciiStrS (\r
1912 IN CONST CHAR16 *Source,\r
1913 IN UINTN Length,\r
1914 OUT CHAR8 *Destination,\r
1915 IN UINTN DestMax,\r
1916 OUT UINTN *DestinationLength\r
1917 );\r
1918\r
1bb390f1
ED
1919#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1920\r
ac644614 1921/**\r
ae591c14 1922 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1923\r
ac644614 1924 Copies one Null-terminated ASCII string to another Null-terminated ASCII\r
1925 string and returns the new ASCII string.\r
1926\r
1927 This function copies the contents of the ASCII string Source to the ASCII\r
1928 string Destination, and returns Destination. If Source and Destination\r
1929 overlap, then the results are undefined.\r
1930\r
1931 If Destination is NULL, then ASSERT().\r
1932 If Source is NULL, then ASSERT().\r
1933 If Source and Destination overlap, then ASSERT().\r
1934 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
1935 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1936 then ASSERT().\r
1937\r
af2dc6a7 1938 @param Destination The pointer to a Null-terminated ASCII string.\r
1939 @param Source The pointer to a Null-terminated ASCII string.\r
ac644614 1940\r
1941 @return Destination\r
1942\r
1943**/\r
1944CHAR8 *\r
1945EFIAPI\r
1946AsciiStrCpy (\r
1947 OUT CHAR8 *Destination,\r
1948 IN CONST CHAR8 *Source\r
1949 );\r
1950\r
1951\r
1952/**\r
ae591c14 1953 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 1954\r
17f695ed 1955 Copies up to a specified length one Null-terminated ASCII string to another \r
1956 Null-terminated ASCII string and returns the new ASCII string.\r
ac644614 1957\r
1958 This function copies the contents of the ASCII string Source to the ASCII\r
1959 string Destination, and returns Destination. At most, Length ASCII characters\r
1960 are copied from Source to Destination. If Length is 0, then Destination is\r
1961 returned unmodified. If Length is greater that the number of ASCII characters\r
1962 in Source, then Destination is padded with Null ASCII characters. If Source\r
1963 and Destination overlap, then the results are undefined.\r
1964\r
1965 If Destination is NULL, then ASSERT().\r
1966 If Source is NULL, then ASSERT().\r
1967 If Source and Destination overlap, then ASSERT().\r
50c247fd 1968 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
1969 PcdMaximumAsciiStringLength, then ASSERT().\r
ac644614 1970 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
50c247fd 1971 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 1972 then ASSERT().\r
1973\r
af2dc6a7 1974 @param Destination The pointer to a Null-terminated ASCII string.\r
1975 @param Source The pointer to a Null-terminated ASCII string.\r
1976 @param Length The maximum number of ASCII characters to copy.\r
ac644614 1977\r
1978 @return Destination\r
1979\r
1980**/\r
1981CHAR8 *\r
1982EFIAPI\r
1983AsciiStrnCpy (\r
1984 OUT CHAR8 *Destination,\r
1985 IN CONST CHAR8 *Source,\r
1986 IN UINTN Length\r
1987 );\r
1bb390f1 1988#endif\r
ac644614 1989\r
1990/**\r
1991 Returns the length of a Null-terminated ASCII string.\r
1992\r
1993 This function returns the number of ASCII characters in the Null-terminated\r
1994 ASCII string specified by String.\r
1995\r
1996 If Length > 0 and Destination is NULL, then ASSERT().\r
1997 If Length > 0 and Source is NULL, then ASSERT().\r
1998 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
1999 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2000 then ASSERT().\r
2001\r
af2dc6a7 2002 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2003\r
2004 @return The length of String.\r
2005\r
2006**/\r
2007UINTN\r
2008EFIAPI\r
2009AsciiStrLen (\r
2010 IN CONST CHAR8 *String\r
2011 );\r
2012\r
2013\r
2014/**\r
2015 Returns the size of a Null-terminated ASCII string in bytes, including the\r
2016 Null terminator.\r
2017\r
2018 This function returns the size, in bytes, of the Null-terminated ASCII string\r
2019 specified by String.\r
2020\r
2021 If String is NULL, then ASSERT().\r
2022 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
2023 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2024 then ASSERT().\r
2025\r
af2dc6a7 2026 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2027\r
2028 @return The size of String.\r
2029\r
2030**/\r
2031UINTN\r
2032EFIAPI\r
2033AsciiStrSize (\r
2034 IN CONST CHAR8 *String\r
2035 );\r
2036\r
2037\r
2038/**\r
2039 Compares two Null-terminated ASCII strings, and returns the difference\r
2040 between the first mismatched ASCII characters.\r
2041\r
2042 This function compares the Null-terminated ASCII string FirstString to the\r
2043 Null-terminated ASCII string SecondString. If FirstString is identical to\r
2044 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
2045 mismatched ASCII character in SecondString subtracted from the first\r
2046 mismatched ASCII character in FirstString.\r
2047\r
2048 If FirstString is NULL, then ASSERT().\r
2049 If SecondString is NULL, then ASSERT().\r
2050 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
2051 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2052 then ASSERT().\r
2053 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
2054 than PcdMaximumAsciiStringLength ASCII characters not including the\r
2055 Null-terminator, then ASSERT().\r
2056\r
af2dc6a7 2057 @param FirstString The pointer to a Null-terminated ASCII string.\r
2058 @param SecondString The pointer to a Null-terminated ASCII string.\r
ac644614 2059\r
17f695ed 2060 @retval ==0 FirstString is identical to SecondString.\r
2061 @retval !=0 FirstString is not identical to SecondString.\r
ac644614 2062\r
2063**/\r
2064INTN\r
2065EFIAPI\r
2066AsciiStrCmp (\r
2067 IN CONST CHAR8 *FirstString,\r
2068 IN CONST CHAR8 *SecondString\r
2069 );\r
2070\r
2071\r
2072/**\r
2073 Performs a case insensitive comparison of two Null-terminated ASCII strings,\r
2074 and returns the difference between the first mismatched ASCII characters.\r
2075\r
2076 This function performs a case insensitive comparison of the Null-terminated\r
2077 ASCII string FirstString to the Null-terminated ASCII string SecondString. If\r
2078 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
2079 value returned is the first mismatched lower case ASCII character in\r
2080 SecondString subtracted from the first mismatched lower case ASCII character\r
2081 in FirstString.\r
2082\r
2083 If FirstString is NULL, then ASSERT().\r
2084 If SecondString is NULL, then ASSERT().\r
2085 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
2086 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2087 then ASSERT().\r
2088 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
2089 than PcdMaximumAsciiStringLength ASCII characters not including the\r
2090 Null-terminator, then ASSERT().\r
2091\r
af2dc6a7 2092 @param FirstString The pointer to a Null-terminated ASCII string.\r
2093 @param SecondString The pointer to a Null-terminated ASCII string.\r
ac644614 2094\r
17f695ed 2095 @retval ==0 FirstString is identical to SecondString using case insensitive\r
1106ffe1 2096 comparisons.\r
17f695ed 2097 @retval !=0 FirstString is not identical to SecondString using case\r
1106ffe1 2098 insensitive comparisons.\r
ac644614 2099\r
2100**/\r
2101INTN\r
2102EFIAPI\r
2103AsciiStriCmp (\r
2104 IN CONST CHAR8 *FirstString,\r
2105 IN CONST CHAR8 *SecondString\r
2106 );\r
2107\r
2108\r
2109/**\r
2110 Compares two Null-terminated ASCII strings with maximum lengths, and returns\r
2111 the difference between the first mismatched ASCII characters.\r
2112\r
2113 This function compares the Null-terminated ASCII string FirstString to the\r
2114 Null-terminated ASCII string SecondString. At most, Length ASCII characters\r
2115 will be compared. If Length is 0, then 0 is returned. If FirstString is\r
2116 identical to SecondString, then 0 is returned. Otherwise, the value returned\r
2117 is the first mismatched ASCII character in SecondString subtracted from the\r
2118 first mismatched ASCII character in FirstString.\r
2119\r
2120 If Length > 0 and FirstString is NULL, then ASSERT().\r
2121 If Length > 0 and SecondString is NULL, then ASSERT().\r
50c247fd 2122 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
2123 PcdMaximumAsciiStringLength, then ASSERT().\r
2124 If PcdMaximumAsciiStringLength is not zero, and FirstString contains more than\r
2125 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 2126 then ASSERT().\r
50c247fd 2127 If PcdMaximumAsciiStringLength is not zero, and SecondString contains more than\r
2128 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 2129 then ASSERT().\r
2130\r
af2dc6a7 2131 @param FirstString The pointer to a Null-terminated ASCII string.\r
2132 @param SecondString The pointer to a Null-terminated ASCII string.\r
2133 @param Length The maximum number of ASCII characters for compare.\r
ac644614 2134 \r
17f695ed 2135 @retval ==0 FirstString is identical to SecondString.\r
2136 @retval !=0 FirstString is not identical to SecondString.\r
ac644614 2137\r
2138**/\r
2139INTN\r
2140EFIAPI\r
2141AsciiStrnCmp (\r
2142 IN CONST CHAR8 *FirstString,\r
2143 IN CONST CHAR8 *SecondString,\r
2144 IN UINTN Length\r
2145 );\r
2146\r
2147\r
1bb390f1
ED
2148#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
2149\r
ac644614 2150/**\r
ae591c14 2151 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 2152\r
ac644614 2153 Concatenates one Null-terminated ASCII string to another Null-terminated\r
2154 ASCII string, and returns the concatenated ASCII string.\r
2155\r
2156 This function concatenates two Null-terminated ASCII strings. The contents of\r
2157 Null-terminated ASCII string Source are concatenated to the end of Null-\r
2158 terminated ASCII string Destination. The Null-terminated concatenated ASCII\r
2159 String is returned.\r
2160\r
2161 If Destination is NULL, then ASSERT().\r
2162 If Source is NULL, then ASSERT().\r
2163 If PcdMaximumAsciiStringLength is not zero and Destination contains more than\r
2164 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2165 then ASSERT().\r
2166 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
2167 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2168 then ASSERT().\r
2169 If PcdMaximumAsciiStringLength is not zero and concatenating Destination and\r
2170 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
2171 ASCII characters, then ASSERT().\r
2172\r
af2dc6a7 2173 @param Destination The pointer to a Null-terminated ASCII string.\r
2174 @param Source The pointer to a Null-terminated ASCII string.\r
ac644614 2175\r
2176 @return Destination\r
2177\r
2178**/\r
2179CHAR8 *\r
2180EFIAPI\r
2181AsciiStrCat (\r
2182 IN OUT CHAR8 *Destination,\r
2183 IN CONST CHAR8 *Source\r
2184 );\r
2185\r
2186\r
2187/**\r
ae591c14 2188 [ATTENTION] This function is deprecated for security reason.\r
1bb390f1 2189\r
17f695ed 2190 Concatenates up to a specified length one Null-terminated ASCII string to \r
2191 the end of another Null-terminated ASCII string, and returns the \r
2192 concatenated ASCII string.\r
ac644614 2193\r
2194 This function concatenates two Null-terminated ASCII strings. The contents\r
2195 of Null-terminated ASCII string Source are concatenated to the end of Null-\r
2196 terminated ASCII string Destination, and Destination is returned. At most,\r
2197 Length ASCII characters are concatenated from Source to the end of\r
2198 Destination, and Destination is always Null-terminated. If Length is 0, then\r
2199 Destination is returned unmodified. If Source and Destination overlap, then\r
2200 the results are undefined.\r
2201\r
2202 If Length > 0 and Destination is NULL, then ASSERT().\r
2203 If Length > 0 and Source is NULL, then ASSERT().\r
2204 If Source and Destination overlap, then ASSERT().\r
50c247fd 2205 If PcdMaximumAsciiStringLength is not zero, and Length is greater than\r
2206 PcdMaximumAsciiStringLength, then ASSERT().\r
ac644614 2207 If PcdMaximumAsciiStringLength is not zero, and Destination contains more than\r
50c247fd 2208 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 2209 then ASSERT().\r
2210 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
50c247fd 2211 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 2212 then ASSERT().\r
2213 If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and\r
2214 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
50c247fd 2215 ASCII characters, not including the Null-terminator, then ASSERT().\r
ac644614 2216\r
af2dc6a7 2217 @param Destination The pointer to a Null-terminated ASCII string.\r
2218 @param Source The pointer to a Null-terminated ASCII string.\r
2219 @param Length The maximum number of ASCII characters to concatenate from\r
ac644614 2220 Source.\r
2221\r
2222 @return Destination\r
2223\r
2224**/\r
2225CHAR8 *\r
2226EFIAPI\r
2227AsciiStrnCat (\r
2228 IN OUT CHAR8 *Destination,\r
2229 IN CONST CHAR8 *Source,\r
2230 IN UINTN Length\r
2231 );\r
1bb390f1 2232#endif\r
ac644614 2233\r
2234/**\r
9aa049d9 2235 Returns the first occurrence of a Null-terminated ASCII sub-string\r
ac644614 2236 in a Null-terminated ASCII string.\r
2237\r
2238 This function scans the contents of the ASCII string specified by String\r
2239 and returns the first occurrence of SearchString. If SearchString is not\r
2240 found in String, then NULL is returned. If the length of SearchString is zero,\r
2241 then String is returned.\r
2242\r
2243 If String is NULL, then ASSERT().\r
2244 If SearchString is NULL, then ASSERT().\r
2245\r
2246 If PcdMaximumAsciiStringLength is not zero, and SearchString or\r
2247 String contains more than PcdMaximumAsciiStringLength Unicode characters\r
2248 not including the Null-terminator, then ASSERT().\r
2249\r
af2dc6a7 2250 @param String The pointer to a Null-terminated ASCII string.\r
2251 @param SearchString The pointer to a Null-terminated ASCII string to search for.\r
ac644614 2252\r
2253 @retval NULL If the SearchString does not appear in String.\r
17f695ed 2254 @retval others If there is a match return the first occurrence of SearchingString.\r
9aa049d9 2255 If the length of SearchString is zero,return String.\r
ac644614 2256\r
2257**/\r
2258CHAR8 *\r
2259EFIAPI\r
2260AsciiStrStr (\r
17f695ed 2261 IN CONST CHAR8 *String,\r
2262 IN CONST CHAR8 *SearchString\r
ac644614 2263 );\r
2264\r
2265\r
2266/**\r
2267 Convert a Null-terminated ASCII decimal string to a value of type\r
2268 UINTN.\r
2269\r
2270 This function returns a value of type UINTN by interpreting the contents\r
2271 of the ASCII string String as a decimal number. The format of the input\r
2272 ASCII string String is:\r
2273\r
2274 [spaces] [decimal digits].\r
2275\r
2276 The valid decimal digit character is in the range [0-9]. The function will\r
2277 ignore the pad space, which includes spaces or tab characters, before the digits.\r
2278 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
2279 function stops at the first character that is a not a valid decimal character or\r
2280 Null-terminator, whichever on comes first.\r
2281\r
2282 If String has only pad spaces, then 0 is returned.\r
2283 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
2284 If the number represented by String overflows according to the range defined by\r
ea2e0921 2285 UINTN, then MAX_UINTN is returned.\r
ac644614 2286 If String is NULL, then ASSERT().\r
2287 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
2288 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2289 then ASSERT().\r
2290\r
af2dc6a7 2291 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2292\r
af2dc6a7 2293 @retval The value translated from String.\r
ac644614 2294\r
2295**/\r
2296UINTN\r
2297EFIAPI\r
2298AsciiStrDecimalToUintn (\r
2299 IN CONST CHAR8 *String\r
2300 );\r
2301\r
2302\r
2303/**\r
2304 Convert a Null-terminated ASCII decimal string to a value of type\r
2305 UINT64.\r
2306\r
2307 This function returns a value of type UINT64 by interpreting the contents\r
2308 of the ASCII string String as a decimal number. The format of the input\r
2309 ASCII string String is:\r
2310\r
2311 [spaces] [decimal digits].\r
2312\r
2313 The valid decimal digit character is in the range [0-9]. The function will\r
2314 ignore the pad space, which includes spaces or tab characters, before the digits.\r
2315 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
2316 function stops at the first character that is a not a valid decimal character or\r
2317 Null-terminator, whichever on comes first.\r
2318\r
2319 If String has only pad spaces, then 0 is returned.\r
2320 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
2321 If the number represented by String overflows according to the range defined by\r
ea2e0921 2322 UINT64, then MAX_UINT64 is returned.\r
ac644614 2323 If String is NULL, then ASSERT().\r
2324 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
2325 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2326 then ASSERT().\r
2327\r
af2dc6a7 2328 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2329\r
38bbd3d9 2330 @retval Value translated from String.\r
ac644614 2331\r
2332**/\r
2333UINT64\r
2334EFIAPI\r
2335AsciiStrDecimalToUint64 (\r
17f695ed 2336 IN CONST CHAR8 *String\r
ac644614 2337 );\r
2338\r
2339\r
2340/**\r
2341 Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.\r
2342\r
2343 This function returns a value of type UINTN by interpreting the contents of\r
2344 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
2345 string String is:\r
2346\r
2347 [spaces][zeros][x][hexadecimal digits].\r
2348\r
2349 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
2350 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
2351 appears in the input string, it must be prefixed with at least one 0. The function\r
2352 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
2353 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
2354 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
2355 digit. Then, the function stops at the first character that is a not a valid\r
2356 hexadecimal character or Null-terminator, whichever on comes first.\r
2357\r
2358 If String has only pad spaces, then 0 is returned.\r
2359 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
2360 0 is returned.\r
2361\r
2362 If the number represented by String overflows according to the range defined by UINTN,\r
ea2e0921 2363 then MAX_UINTN is returned.\r
ac644614 2364 If String is NULL, then ASSERT().\r
2365 If PcdMaximumAsciiStringLength is not zero,\r
2366 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
2367 the Null-terminator, then ASSERT().\r
2368\r
af2dc6a7 2369 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2370\r
38bbd3d9 2371 @retval Value translated from String.\r
ac644614 2372\r
2373**/\r
2374UINTN\r
2375EFIAPI\r
2376AsciiStrHexToUintn (\r
17f695ed 2377 IN CONST CHAR8 *String\r
ac644614 2378 );\r
2379\r
2380\r
2381/**\r
2382 Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.\r
2383\r
2384 This function returns a value of type UINT64 by interpreting the contents of\r
2385 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
2386 string String is:\r
2387\r
2388 [spaces][zeros][x][hexadecimal digits].\r
2389\r
2390 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
2391 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
2392 appears in the input string, it must be prefixed with at least one 0. The function\r
2393 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
2394 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
2395 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
2396 digit. Then, the function stops at the first character that is a not a valid\r
2397 hexadecimal character or Null-terminator, whichever on comes first.\r
2398\r
2399 If String has only pad spaces, then 0 is returned.\r
2400 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
2401 0 is returned.\r
2402\r
2403 If the number represented by String overflows according to the range defined by UINT64,\r
ea2e0921 2404 then MAX_UINT64 is returned.\r
ac644614 2405 If String is NULL, then ASSERT().\r
2406 If PcdMaximumAsciiStringLength is not zero,\r
2407 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
2408 the Null-terminator, then ASSERT().\r
2409\r
af2dc6a7 2410 @param String The pointer to a Null-terminated ASCII string.\r
ac644614 2411\r
38bbd3d9 2412 @retval Value translated from String.\r
ac644614 2413\r
2414**/\r
2415UINT64\r
2416EFIAPI\r
2417AsciiStrHexToUint64 (\r
17f695ed 2418 IN CONST CHAR8 *String\r
ac644614 2419 );\r
2420\r
fb4dd857
RN
2421/**\r
2422 Convert a Null-terminated ASCII string to IPv6 address and prefix length.\r
2423\r
2424 This function outputs a value of type IPv6_ADDRESS and may output a value\r
2425 of type UINT8 by interpreting the contents of the ASCII string specified\r
2426 by String. The format of the input ASCII string String is as follows:\r
2427\r
2428 X:X:X:X:X:X:X:X[/P]\r
2429\r
2430 X contains one to four hexadecimal digit characters in the range [0-9], [a-f] and\r
2431 [A-F]. X is converted to a value of type UINT16, whose low byte is stored in low\r
2432 memory address and high byte is stored in high memory address. P contains decimal\r
2433 digit characters in the range [0-9]. The running zero in the beginning of P will\r
2434 be ignored. /P is optional.\r
2435\r
2436 When /P is not in the String, the function stops at the first character that is\r
2437 not a valid hexadecimal digit character after eight X's are converted.\r
2438\r
2439 When /P is in the String, the function stops at the first character that is not\r
2440 a valid decimal digit character after P is converted.\r
2441\r
2442 "::" can be used to compress one or more groups of X when X contains only 0.\r
2443 The "::" can only appear once in the String.\r
2444\r
2445 If String is NULL, then ASSERT().\r
2446\r
2447 If Address is NULL, then ASSERT().\r
2448\r
2449 If EndPointer is not NULL and Address is translated from String, a pointer\r
2450 to the character that stopped the scan is stored at the location pointed to\r
2451 by EndPointer.\r
2452\r
2453 @param String Pointer to a Null-terminated ASCII string.\r
2454 @param EndPointer Pointer to character that stops scan.\r
2455 @param Address Pointer to the converted IPv6 address.\r
2456 @param PrefixLength Pointer to the converted IPv6 address prefix\r
2457 length. MAX_UINT8 is returned when /P is\r
2458 not in the String.\r
2459\r
2460 @retval RETURN_SUCCESS Address is translated from String.\r
2461 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
2462 If Data is NULL.\r
2463 @retval RETURN_UNSUPPORTED If X contains more than four hexadecimal\r
2464 digit characters.\r
2465 If String contains "::" and number of X\r
2466 is not less than 8.\r
2467 If P starts with character that is not a\r
2468 valid decimal digit character.\r
2469 If the decimal number converted from P\r
2470 exceeds 128.\r
2471\r
2472**/\r
2473RETURN_STATUS\r
2474EFIAPI\r
2475AsciiStrToIpv6Address (\r
2476 IN CONST CHAR8 *String,\r
2477 OUT CHAR8 **EndPointer, OPTIONAL\r
2478 OUT IPv6_ADDRESS *Address,\r
2479 OUT UINT8 *PrefixLength OPTIONAL\r
2480 );\r
2481\r
2482/**\r
2483 Convert a Null-terminated ASCII string to IPv4 address and prefix length.\r
2484\r
2485 This function outputs a value of type IPv4_ADDRESS and may output a value\r
2486 of type UINT8 by interpreting the contents of the ASCII string specified\r
2487 by String. The format of the input ASCII string String is as follows:\r
2488\r
2489 D.D.D.D[/P]\r
2490\r
2491 D and P are decimal digit characters in the range [0-9]. The running zero in\r
2492 the beginning of D and P will be ignored. /P is optional.\r
2493\r
2494 When /P is not in the String, the function stops at the first character that is\r
2495 not a valid decimal digit character after four D's are converted.\r
2496\r
2497 When /P is in the String, the function stops at the first character that is not\r
2498 a valid decimal digit character after P is converted.\r
2499\r
2500 If String is NULL, then ASSERT().\r
2501\r
2502 If Address is NULL, then ASSERT().\r
2503\r
2504 If EndPointer is not NULL and Address is translated from String, a pointer\r
2505 to the character that stopped the scan is stored at the location pointed to\r
2506 by EndPointer.\r
2507\r
2508 @param String Pointer to a Null-terminated ASCII string.\r
2509 @param EndPointer Pointer to character that stops scan.\r
2510 @param Address Pointer to the converted IPv4 address.\r
2511 @param PrefixLength Pointer to the converted IPv4 address prefix\r
2512 length. MAX_UINT8 is returned when /P is\r
2513 not in the String.\r
2514\r
2515 @retval RETURN_SUCCESS Address is translated from String.\r
2516 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
2517 If Data is NULL.\r
2518 @retval RETURN_UNSUPPORTED If String is not in the correct format.\r
2519 If any decimal number converted from D\r
2520 exceeds 255.\r
2521 If the decimal number converted from P\r
2522 exceeds 32.\r
2523\r
2524**/\r
2525RETURN_STATUS\r
2526EFIAPI\r
2527AsciiStrToIpv4Address (\r
2528 IN CONST CHAR8 *String,\r
2529 OUT CHAR8 **EndPointer, OPTIONAL\r
2530 OUT IPv4_ADDRESS *Address,\r
2531 OUT UINT8 *PrefixLength OPTIONAL\r
2532 );\r
2533\r
2534/**\r
2535 Convert a Null-terminated ASCII GUID string to a value of type\r
2536 EFI_GUID.\r
2537\r
2538 This function outputs a GUID value by interpreting the contents of\r
2539 the ASCII string specified by String. The format of the input\r
2540 ASCII string String consists of 36 characters, as follows:\r
2541\r
2542 aabbccdd-eeff-gghh-iijj-kkllmmnnoopp\r
2543\r
2544 The pairs aa - pp are two characters in the range [0-9], [a-f] and\r
2545 [A-F], with each pair representing a single byte hexadecimal value.\r
2546\r
2547 The mapping between String and the EFI_GUID structure is as follows:\r
2548 aa Data1[24:31]\r
2549 bb Data1[16:23]\r
2550 cc Data1[8:15]\r
2551 dd Data1[0:7]\r
2552 ee Data2[8:15]\r
2553 ff Data2[0:7]\r
2554 gg Data3[8:15]\r
2555 hh Data3[0:7]\r
2556 ii Data4[0:7]\r
2557 jj Data4[8:15]\r
2558 kk Data4[16:23]\r
2559 ll Data4[24:31]\r
2560 mm Data4[32:39]\r
2561 nn Data4[40:47]\r
2562 oo Data4[48:55]\r
2563 pp Data4[56:63]\r
2564\r
2565 If String is NULL, then ASSERT().\r
2566 If Guid is NULL, then ASSERT().\r
2567\r
2568 @param String Pointer to a Null-terminated ASCII string.\r
2569 @param Guid Pointer to the converted GUID.\r
2570\r
2571 @retval RETURN_SUCCESS Guid is translated from String.\r
2572 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
2573 If Data is NULL.\r
2574 @retval RETURN_UNSUPPORTED If String is not as the above format.\r
2575\r
2576**/\r
2577RETURN_STATUS\r
2578EFIAPI\r
2579AsciiStrToGuid (\r
2580 IN CONST CHAR8 *String,\r
2581 OUT GUID *Guid\r
2582 );\r
2583\r
2584/**\r
2585 Convert a Null-terminated ASCII hexadecimal string to a byte array.\r
2586\r
2587 This function outputs a byte array by interpreting the contents of\r
2588 the ASCII string specified by String in hexadecimal format. The format of\r
2589 the input ASCII string String is:\r
2590\r
2591 [XX]*\r
2592\r
2593 X is a hexadecimal digit character in the range [0-9], [a-f] and [A-F].\r
2594 The function decodes every two hexadecimal digit characters as one byte. The\r
2595 decoding stops after Length of characters and outputs Buffer containing\r
2596 (Length / 2) bytes.\r
2597\r
2598 If String is NULL, then ASSERT().\r
2599\r
2600 If Buffer is NULL, then ASSERT().\r
2601\r
2602 If Length is not multiple of 2, then ASSERT().\r
2603\r
2604 If PcdMaximumAsciiStringLength is not zero and Length is greater than\r
2605 PcdMaximumAsciiStringLength, then ASSERT().\r
2606\r
2607 If MaxBufferSize is less than (Length / 2), then ASSERT().\r
2608\r
2609 @param String Pointer to a Null-terminated ASCII string.\r
2610 @param Length The number of ASCII characters to decode.\r
2611 @param Buffer Pointer to the converted bytes array.\r
2612 @param MaxBufferSize The maximum size of Buffer.\r
2613\r
2614 @retval RETURN_SUCCESS Buffer is translated from String.\r
2615 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
2616 If Data is NULL.\r
2617 If Length is not multiple of 2.\r
2618 If PcdMaximumAsciiStringLength is not zero,\r
2619 and Length is greater than\r
2620 PcdMaximumAsciiStringLength.\r
2621 @retval RETURN_UNSUPPORTED If Length of characters from String contain\r
2622 a character that is not valid hexadecimal\r
2623 digit characters, or a Null-terminator.\r
2624 @retval RETURN_BUFFER_TOO_SMALL If MaxBufferSize is less than (Length / 2).\r
2625**/\r
2626RETURN_STATUS\r
2627EFIAPI\r
2628AsciiStrHexToBytes (\r
2629 IN CONST CHAR8 *String,\r
2630 IN UINTN Length,\r
2631 OUT UINT8 *Buffer,\r
2632 IN UINTN MaxBufferSize\r
2633 );\r
2634\r
415aa2f1 2635#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
ac644614 2636\r
2637/**\r
415aa2f1
SZ
2638 [ATTENTION] This function is deprecated for security reason.\r
2639\r
ac644614 2640 Convert one Null-terminated ASCII string to a Null-terminated\r
2641 Unicode string and returns the Unicode string.\r
2642\r
2643 This function converts the contents of the ASCII string Source to the Unicode\r
2644 string Destination, and returns Destination. The function terminates the\r
2645 Unicode string Destination by appending a Null-terminator character at the end.\r
2646 The caller is responsible to make sure Destination points to a buffer with size\r
2647 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
2648\r
2649 If Destination is NULL, then ASSERT().\r
2650 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
2651 If Source is NULL, then ASSERT().\r
2652 If Source and Destination overlap, then ASSERT().\r
2653 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
2654 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2655 then ASSERT().\r
2656 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
2657 PcdMaximumUnicodeStringLength ASCII characters not including the\r
2658 Null-terminator, then ASSERT().\r
2659\r
af2dc6a7 2660 @param Source The pointer to a Null-terminated ASCII string.\r
2661 @param Destination The pointer to a Null-terminated Unicode string.\r
ac644614 2662\r
9aa049d9 2663 @return Destination.\r
ac644614 2664\r
2665**/\r
2666CHAR16 *\r
2667EFIAPI\r
2668AsciiStrToUnicodeStr (\r
17f695ed 2669 IN CONST CHAR8 *Source,\r
2670 OUT CHAR16 *Destination\r
ac644614 2671 );\r
2672\r
415aa2f1
SZ
2673#endif\r
2674\r
3ab41b7a
JY
2675/**\r
2676 Convert one Null-terminated ASCII string to a Null-terminated\r
2677 Unicode string.\r
2678\r
2679 This function is similar to StrCpyS.\r
2680\r
2681 This function converts the contents of the ASCII string Source to the Unicode\r
2682 string Destination. The function terminates the Unicode string Destination by\r
2683 appending a Null-terminator character at the end.\r
2684\r
2685 The caller is responsible to make sure Destination points to a buffer with size\r
2686 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
2687\r
2688 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
2689 If an error would be returned, then the function will also ASSERT().\r
2690\r
2691 If an error is returned, then the Destination is unmodified.\r
2692\r
2693 @param Source The pointer to a Null-terminated ASCII string.\r
2694 @param Destination The pointer to a Null-terminated Unicode string.\r
2695 @param DestMax The maximum number of Destination Unicode\r
2696 char, including terminating null char.\r
2697\r
2698 @retval RETURN_SUCCESS String is converted.\r
2699 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
2700 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
2701 If Source is NULL.\r
2702 If PcdMaximumUnicodeStringLength is not zero,\r
2703 and DestMax is greater than\r
2704 PcdMaximumUnicodeStringLength.\r
2705 If PcdMaximumAsciiStringLength is not zero,\r
2706 and DestMax is greater than\r
2707 PcdMaximumAsciiStringLength.\r
2708 If DestMax is 0.\r
2709 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
2710\r
2711**/\r
2712RETURN_STATUS\r
2713EFIAPI\r
2714AsciiStrToUnicodeStrS (\r
2715 IN CONST CHAR8 *Source,\r
2716 OUT CHAR16 *Destination,\r
2717 IN UINTN DestMax\r
2718 );\r
ac644614 2719\r
02263214
HW
2720/**\r
2721 Convert not more than Length successive characters from a Null-terminated\r
2722 Ascii string to a Null-terminated Unicode string. If no null char is copied\r
2723 from Source, then Destination[Length] is always set to null.\r
2724\r
2725 This function converts not more than Length successive characters from the\r
2726 Ascii string Source to the Unicode string Destination. The function\r
2727 terminates the Unicode string Destination by appending a Null-terminator\r
2728 character at the end.\r
2729\r
2730 The caller is responsible to make sure Destination points to a buffer with\r
2731 size not smaller than\r
2732 ((MIN(AsciiStrLen(Source), Length) + 1) * sizeof (CHAR8)) in bytes.\r
2733\r
2734 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
2735 If an error would be returned, then the function will also ASSERT().\r
2736\r
2737 If an error is returned, then Destination and DestinationLength are\r
2738 unmodified.\r
2739\r
2740 @param Source The pointer to a Null-terminated Ascii string.\r
2741 @param Length The maximum number of Ascii characters to convert.\r
2742 @param Destination The pointer to a Null-terminated Unicode string.\r
2743 @param DestMax The maximum number of Destination Unicode char,\r
2744 including terminating null char.\r
2745 @param DestinationLength The number of Ascii characters converted.\r
2746\r
2747 @retval RETURN_SUCCESS String is converted.\r
2748 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
2749 If Source is NULL.\r
2750 If DestinationLength is NULL.\r
2751 If PcdMaximumUnicodeStringLength is not\r
2752 zero, and Length or DestMax is greater than\r
2753 PcdMaximumUnicodeStringLength.\r
2754 If PcdMaximumAsciiStringLength is not zero,\r
2755 and Length or DestMax is greater than\r
2756 PcdMaximumAsciiStringLength.\r
2757 If DestMax is 0.\r
2758 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than\r
2759 MIN(AsciiStrLen(Source), Length).\r
2760 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
2761\r
2762**/\r
2763RETURN_STATUS\r
2764EFIAPI\r
2765AsciiStrnToUnicodeStrS (\r
2766 IN CONST CHAR8 *Source,\r
2767 IN UINTN Length,\r
2768 OUT CHAR16 *Destination,\r
2769 IN UINTN DestMax,\r
2770 OUT UINTN *DestinationLength\r
2771 );\r
2772\r
ac644614 2773/**\r
2774 Converts an 8-bit value to an 8-bit BCD value.\r
2775\r
2776 Converts the 8-bit value specified by Value to BCD. The BCD value is\r
2777 returned.\r
2778\r
2779 If Value >= 100, then ASSERT().\r
2780\r
2781 @param Value The 8-bit value to convert to BCD. Range 0..99.\r
2782\r
9aa049d9 2783 @return The BCD value.\r
ac644614 2784\r
2785**/\r
2786UINT8\r
2787EFIAPI\r
2788DecimalToBcd8 (\r
2789 IN UINT8 Value\r
2790 );\r
2791\r
2792\r
2793/**\r
2794 Converts an 8-bit BCD value to an 8-bit value.\r
2795\r
2796 Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit\r
2797 value is returned.\r
2798\r
2799 If Value >= 0xA0, then ASSERT().\r
2800 If (Value & 0x0F) >= 0x0A, then ASSERT().\r
2801\r
2802 @param Value The 8-bit BCD value to convert to an 8-bit value.\r
2803\r
2804 @return The 8-bit value is returned.\r
2805\r
2806**/\r
2807UINT8\r
2808EFIAPI\r
2809BcdToDecimal8 (\r
2810 IN UINT8 Value\r
2811 );\r
2812\r
ae591c14
DM
2813//\r
2814// File Path Manipulation Functions\r
2815//\r
2816\r
2817/**\r
6a623094 2818 Removes the last directory or file entry in a path.\r
ae591c14
DM
2819\r
2820 @param[in, out] Path The pointer to the path to modify.\r
2821\r
2822 @retval FALSE Nothing was found to remove.\r
2823 @retval TRUE A directory or file was removed.\r
2824**/\r
2825BOOLEAN\r
2826EFIAPI\r
2827PathRemoveLastItem(\r
2828 IN OUT CHAR16 *Path\r
2829 );\r
2830\r
2831/**\r
2832 Function to clean up paths.\r
2833 - Single periods in the path are removed.\r
2834 - Double periods in the path are removed along with a single parent directory.\r
2835 - Forward slashes L'/' are converted to backward slashes L'\'.\r
2836\r
2837 This will be done inline and the existing buffer may be larger than required\r
2838 upon completion.\r
2839\r
2840 @param[in] Path The pointer to the string containing the path.\r
2841\r
00b7cc0f 2842 @return Returns Path, otherwise returns NULL to indicate that an error has occurred.\r
ae591c14
DM
2843**/\r
2844CHAR16*\r
2845EFIAPI\r
2846PathCleanUpDirectories(\r
2847 IN CHAR16 *Path\r
909ac47b 2848 );\r
ac644614 2849\r
2850//\r
2851// Linked List Functions and Macros\r
2852//\r
2853\r
2854/**\r
2855 Initializes the head node of a doubly linked list that is declared as a\r
2856 global variable in a module.\r
2857\r
2858 Initializes the forward and backward links of a new linked list. After\r
2859 initializing a linked list with this macro, the other linked list functions\r
2860 may be used to add and remove nodes from the linked list. This macro results\r
2861 in smaller executables by initializing the linked list in the data section,\r
2862 instead if calling the InitializeListHead() function to perform the\r
2863 equivalent operation.\r
2864\r
77f863ee 2865 @param ListHead The head note of a list to initialize.\r
ac644614 2866\r
2867**/\r
17f695ed 2868#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&(ListHead), &(ListHead)}\r
ac644614 2869\r
2870\r
d0aef615
MH
2871/**\r
2872 Checks whether FirstEntry and SecondEntry are part of the same doubly-linked\r
2873 list.\r
2874\r
2875 If FirstEntry is NULL, then ASSERT().\r
2876 If FirstEntry->ForwardLink is NULL, then ASSERT().\r
2877 If FirstEntry->BackLink is NULL, then ASSERT().\r
2878 If SecondEntry is NULL, then ASSERT();\r
2879 If PcdMaximumLinkedListLength is not zero, and List contains more than\r
2880 PcdMaximumLinkedListLength nodes, then ASSERT().\r
2881\r
2882 @param FirstEntry A pointer to a node in a linked list.\r
2883 @param SecondEntry A pointer to the node to locate.\r
2884\r
2885 @retval TRUE SecondEntry is in the same doubly-linked list as FirstEntry.\r
2886 @retval FALSE SecondEntry isn't in the same doubly-linked list as FirstEntry,\r
2887 or FirstEntry is invalid.\r
2888\r
2889**/\r
2890BOOLEAN\r
2891EFIAPI\r
2892IsNodeInList (\r
2893 IN CONST LIST_ENTRY *FirstEntry,\r
2894 IN CONST LIST_ENTRY *SecondEntry\r
2895 );\r
2896\r
2897\r
ac644614 2898/**\r
2899 Initializes the head node of a doubly linked list, and returns the pointer to\r
2900 the head node of the doubly linked list.\r
2901\r
2902 Initializes the forward and backward links of a new linked list. After\r
2903 initializing a linked list with this function, the other linked list\r
2904 functions may be used to add and remove nodes from the linked list. It is up\r
2905 to the caller of this function to allocate the memory for ListHead.\r
2906\r
2907 If ListHead is NULL, then ASSERT().\r
2908\r
2909 @param ListHead A pointer to the head node of a new doubly linked list.\r
2910\r
2911 @return ListHead\r
2912\r
2913**/\r
2914LIST_ENTRY *\r
2915EFIAPI\r
2916InitializeListHead (\r
aa0583c7 2917 IN OUT LIST_ENTRY *ListHead\r
ac644614 2918 );\r
2919\r
2920\r
2921/**\r
2922 Adds a node to the beginning of a doubly linked list, and returns the pointer\r
2923 to the head node of the doubly linked list.\r
2924\r
2925 Adds the node Entry at the beginning of the doubly linked list denoted by\r
2926 ListHead, and returns ListHead.\r
2927\r
2928 If ListHead is NULL, then ASSERT().\r
2929 If Entry is NULL, then ASSERT().\r
17f695ed 2930 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
2931 InitializeListHead(), then ASSERT().\r
a71865b1 2932 If PcdMaximumLinkedListLength is not zero, and prior to insertion the number\r
ac644614 2933 of nodes in ListHead, including the ListHead node, is greater than or\r
2934 equal to PcdMaximumLinkedListLength, then ASSERT().\r
2935\r
2936 @param ListHead A pointer to the head node of a doubly linked list.\r
2937 @param Entry A pointer to a node that is to be inserted at the beginning\r
2938 of a doubly linked list.\r
2939\r
2940 @return ListHead\r
2941\r
2942**/\r
2943LIST_ENTRY *\r
2944EFIAPI\r
2945InsertHeadList (\r
aa0583c7 2946 IN OUT LIST_ENTRY *ListHead,\r
2947 IN OUT LIST_ENTRY *Entry\r
ac644614 2948 );\r
2949\r
2950\r
2951/**\r
2952 Adds a node to the end of a doubly linked list, and returns the pointer to\r
2953 the head node of the doubly linked list.\r
2954\r
2955 Adds the node Entry to the end of the doubly linked list denoted by ListHead,\r
2956 and returns ListHead.\r
2957\r
2958 If ListHead is NULL, then ASSERT().\r
2959 If Entry is NULL, then ASSERT().\r
17f695ed 2960 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
2961 InitializeListHead(), then ASSERT().\r
a71865b1 2962 If PcdMaximumLinkedListLength is not zero, and prior to insertion the number\r
ac644614 2963 of nodes in ListHead, including the ListHead node, is greater than or\r
2964 equal to PcdMaximumLinkedListLength, then ASSERT().\r
2965\r
2966 @param ListHead A pointer to the head node of a doubly linked list.\r
2967 @param Entry A pointer to a node that is to be added at the end of the\r
2968 doubly linked list.\r
2969\r
2970 @return ListHead\r
2971\r
2972**/\r
2973LIST_ENTRY *\r
2974EFIAPI\r
2975InsertTailList (\r
aa0583c7 2976 IN OUT LIST_ENTRY *ListHead,\r
2977 IN OUT LIST_ENTRY *Entry\r
ac644614 2978 );\r
2979\r
2980\r
2981/**\r
2982 Retrieves the first node of a doubly linked list.\r
2983\r
17f695ed 2984 Returns the first node of a doubly linked list. List must have been \r
2985 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
2986 If List is empty, then List is returned.\r
ac644614 2987\r
2988 If List is NULL, then ASSERT().\r
17f695ed 2989 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
2990 InitializeListHead(), then ASSERT().\r
a71865b1 2991 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
ac644614 2992 in List, including the List node, is greater than or equal to\r
2993 PcdMaximumLinkedListLength, then ASSERT().\r
2994\r
2995 @param List A pointer to the head node of a doubly linked list.\r
2996\r
2997 @return The first node of a doubly linked list.\r
e01a125f 2998 @retval List The list is empty.\r
ac644614 2999\r
3000**/\r
3001LIST_ENTRY *\r
3002EFIAPI\r
3003GetFirstNode (\r
3004 IN CONST LIST_ENTRY *List\r
3005 );\r
3006\r
3007\r
3008/**\r
3009 Retrieves the next node of a doubly linked list.\r
3010\r
17f695ed 3011 Returns the node of a doubly linked list that follows Node. \r
3012 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
3013 or InitializeListHead(). If List is empty, then List is returned.\r
ac644614 3014\r
3015 If List is NULL, then ASSERT().\r
3016 If Node is NULL, then ASSERT().\r
17f695ed 3017 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
3018 InitializeListHead(), then ASSERT().\r
a71865b1
LG
3019 If PcdMaximumLinkedListLength is not zero, and List contains more than\r
3020 PcdMaximumLinkedListLength nodes, then ASSERT().\r
1081f624 3021 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
ac644614 3022\r
3023 @param List A pointer to the head node of a doubly linked list.\r
3024 @param Node A pointer to a node in the doubly linked list.\r
3025\r
af2dc6a7 3026 @return The pointer to the next node if one exists. Otherwise List is returned.\r
ac644614 3027\r
3028**/\r
3029LIST_ENTRY *\r
3030EFIAPI\r
3031GetNextNode (\r
3032 IN CONST LIST_ENTRY *List,\r
3033 IN CONST LIST_ENTRY *Node\r
3034 );\r
3035\r
cbca8de5 3036 \r
3037/**\r
3038 Retrieves the previous node of a doubly linked list.\r
3039 \r
3040 Returns the node of a doubly linked list that precedes Node. \r
3041 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
3042 or InitializeListHead(). If List is empty, then List is returned.\r
3043 \r
3044 If List is NULL, then ASSERT().\r
3045 If Node is NULL, then ASSERT().\r
3046 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
3047 InitializeListHead(), then ASSERT().\r
a71865b1
LG
3048 If PcdMaximumLinkedListLength is not zero, and List contains more than\r
3049 PcdMaximumLinkedListLength nodes, then ASSERT().\r
cbca8de5 3050 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
3051 \r
3052 @param List A pointer to the head node of a doubly linked list.\r
3053 @param Node A pointer to a node in the doubly linked list.\r
3054 \r
af2dc6a7 3055 @return The pointer to the previous node if one exists. Otherwise List is returned.\r
cbca8de5 3056 \r
3057**/\r
3058LIST_ENTRY *\r
3059EFIAPI\r
3060GetPreviousNode (\r
3061 IN CONST LIST_ENTRY *List,\r
3062 IN CONST LIST_ENTRY *Node\r
3063 );\r
ac644614 3064\r
cbca8de5 3065 \r
ac644614 3066/**\r
3067 Checks to see if a doubly linked list is empty or not.\r
3068\r
3069 Checks to see if the doubly linked list is empty. If the linked list contains\r
3070 zero nodes, this function returns TRUE. Otherwise, it returns FALSE.\r
3071\r
3072 If ListHead is NULL, then ASSERT().\r
17f695ed 3073 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
3074 InitializeListHead(), then ASSERT().\r
a71865b1 3075 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
ac644614 3076 in List, including the List node, is greater than or equal to\r
3077 PcdMaximumLinkedListLength, then ASSERT().\r
3078\r
3079 @param ListHead A pointer to the head node of a doubly linked list.\r
3080\r
3081 @retval TRUE The linked list is empty.\r
3082 @retval FALSE The linked list is not empty.\r
3083\r
3084**/\r
3085BOOLEAN\r
3086EFIAPI\r
3087IsListEmpty (\r
3088 IN CONST LIST_ENTRY *ListHead\r
3089 );\r
3090\r
3091\r
3092/**\r
aa0583c7 3093 Determines if a node in a doubly linked list is the head node of a the same\r
3094 doubly linked list. This function is typically used to terminate a loop that\r
3095 traverses all the nodes in a doubly linked list starting with the head node.\r
ac644614 3096\r
aa0583c7 3097 Returns TRUE if Node is equal to List. Returns FALSE if Node is one of the\r
3098 nodes in the doubly linked list specified by List. List must have been\r
17f695ed 3099 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
ac644614 3100\r
3101 If List is NULL, then ASSERT().\r
3102 If Node is NULL, then ASSERT().\r
17f695ed 3103 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), \r
3104 then ASSERT().\r
a71865b1 3105 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
ac644614 3106 in List, including the List node, is greater than or equal to\r
3107 PcdMaximumLinkedListLength, then ASSERT().\r
1081f624 3108 If PcdVerifyNodeInList is TRUE and Node is not a node in List the and Node is not equal \r
3109 to List, then ASSERT().\r
ac644614 3110\r
3111 @param List A pointer to the head node of a doubly linked list.\r
3112 @param Node A pointer to a node in the doubly linked list.\r
3113\r
1955808d
LG
3114 @retval TRUE Node is the head of the doubly-linked list pointed by List.\r
3115 @retval FALSE Node is not the head of the doubly-linked list pointed by List.\r
ac644614 3116\r
3117**/\r
3118BOOLEAN\r
3119EFIAPI\r
3120IsNull (\r
3121 IN CONST LIST_ENTRY *List,\r
3122 IN CONST LIST_ENTRY *Node\r
3123 );\r
3124\r
3125\r
3126/**\r
3127 Determines if a node the last node in a doubly linked list.\r
3128\r
3129 Returns TRUE if Node is the last node in the doubly linked list specified by\r
3130 List. Otherwise, FALSE is returned. List must have been initialized with\r
17f695ed 3131 INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
ac644614 3132\r
3133 If List is NULL, then ASSERT().\r
3134 If Node is NULL, then ASSERT().\r
17f695ed 3135 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
3136 InitializeListHead(), then ASSERT().\r
a71865b1 3137 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
ac644614 3138 in List, including the List node, is greater than or equal to\r
3139 PcdMaximumLinkedListLength, then ASSERT().\r
1081f624 3140 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
ac644614 3141\r
3142 @param List A pointer to the head node of a doubly linked list.\r
3143 @param Node A pointer to a node in the doubly linked list.\r
3144\r
3145 @retval TRUE Node is the last node in the linked list.\r
3146 @retval FALSE Node is not the last node in the linked list.\r
3147\r
3148**/\r
3149BOOLEAN\r
3150EFIAPI\r
3151IsNodeAtEnd (\r
3152 IN CONST LIST_ENTRY *List,\r
3153 IN CONST LIST_ENTRY *Node\r
3154 );\r
3155\r
3156\r
3157/**\r
3158 Swaps the location of two nodes in a doubly linked list, and returns the\r
3159 first node after the swap.\r
3160\r
3161 If FirstEntry is identical to SecondEntry, then SecondEntry is returned.\r
3162 Otherwise, the location of the FirstEntry node is swapped with the location\r
3163 of the SecondEntry node in a doubly linked list. SecondEntry must be in the\r
3164 same double linked list as FirstEntry and that double linked list must have\r
17f695ed 3165 been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). \r
3166 SecondEntry is returned after the nodes are swapped.\r
ac644614 3167\r
3168 If FirstEntry is NULL, then ASSERT().\r
3169 If SecondEntry is NULL, then ASSERT().\r
1081f624 3170 If PcdVerifyNodeInList is TRUE and SecondEntry and FirstEntry are not in the \r
3171 same linked list, then ASSERT().\r
ac644614 3172 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
3173 linked list containing the FirstEntry and SecondEntry nodes, including\r
3174 the FirstEntry and SecondEntry nodes, is greater than or equal to\r
3175 PcdMaximumLinkedListLength, then ASSERT().\r
3176\r
3177 @param FirstEntry A pointer to a node in a linked list.\r
3178 @param SecondEntry A pointer to another node in the same linked list.\r
38bbd3d9 3179 \r
9aa049d9 3180 @return SecondEntry.\r
ac644614 3181\r
3182**/\r
3183LIST_ENTRY *\r
3184EFIAPI\r
3185SwapListEntries (\r
aa0583c7 3186 IN OUT LIST_ENTRY *FirstEntry,\r
3187 IN OUT LIST_ENTRY *SecondEntry\r
ac644614 3188 );\r
3189\r
3190\r
3191/**\r
3192 Removes a node from a doubly linked list, and returns the node that follows\r
3193 the removed node.\r
3194\r
3195 Removes the node Entry from a doubly linked list. It is up to the caller of\r
3196 this function to release the memory used by this node if that is required. On\r
3197 exit, the node following Entry in the doubly linked list is returned. If\r
3198 Entry is the only node in the linked list, then the head node of the linked\r
3199 list is returned.\r
3200\r
3201 If Entry is NULL, then ASSERT().\r
3202 If Entry is the head node of an empty list, then ASSERT().\r
3203 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
3204 linked list containing Entry, including the Entry node, is greater than\r
3205 or equal to PcdMaximumLinkedListLength, then ASSERT().\r
3206\r
9aa049d9 3207 @param Entry A pointer to a node in a linked list.\r
ac644614 3208\r
9aa049d9 3209 @return Entry.\r
ac644614 3210\r
3211**/\r
3212LIST_ENTRY *\r
3213EFIAPI\r
3214RemoveEntryList (\r
3215 IN CONST LIST_ENTRY *Entry\r
3216 );\r
3217\r
3218//\r
3219// Math Services\r
3220//\r
3221\r
3222/**\r
3223 Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled\r
3224 with zeros. The shifted value is returned.\r
3225\r
3226 This function shifts the 64-bit value Operand to the left by Count bits. The\r
3227 low Count bits are set to zero. The shifted value is returned.\r
3228\r
3229 If Count is greater than 63, then ASSERT().\r
3230\r
3231 @param Operand The 64-bit operand to shift left.\r
3232 @param Count The number of bits to shift left.\r
3233\r
9aa049d9 3234 @return Operand << Count.\r
ac644614 3235\r
3236**/\r
3237UINT64\r
3238EFIAPI\r
3239LShiftU64 (\r
3240 IN UINT64 Operand,\r
3241 IN UINTN Count\r
3242 );\r
3243\r
3244\r
3245/**\r
3246 Shifts a 64-bit integer right between 0 and 63 bits. This high bits are\r
3247 filled with zeros. The shifted value is returned.\r
3248\r
3249 This function shifts the 64-bit value Operand to the right by Count bits. The\r
3250 high Count bits are set to zero. The shifted value is returned.\r
3251\r
3252 If Count is greater than 63, then ASSERT().\r
3253\r
3254 @param Operand The 64-bit operand to shift right.\r
3255 @param Count The number of bits to shift right.\r
3256\r
3257 @return Operand >> Count\r
3258\r
3259**/\r
3260UINT64\r
3261EFIAPI\r
3262RShiftU64 (\r
3263 IN UINT64 Operand,\r
3264 IN UINTN Count\r
3265 );\r
3266\r
3267\r
3268/**\r
3269 Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled\r
3270 with original integer's bit 63. The shifted value is returned.\r
3271\r
3272 This function shifts the 64-bit value Operand to the right by Count bits. The\r
3273 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
3274\r
3275 If Count is greater than 63, then ASSERT().\r
3276\r
3277 @param Operand The 64-bit operand to shift right.\r
3278 @param Count The number of bits to shift right.\r
3279\r
3280 @return Operand >> Count\r
3281\r
3282**/\r
3283UINT64\r
3284EFIAPI\r
3285ARShiftU64 (\r
3286 IN UINT64 Operand,\r
3287 IN UINTN Count\r
3288 );\r
3289\r
3290\r
3291/**\r
3292 Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits\r
3293 with the high bits that were rotated.\r
3294\r
3295 This function rotates the 32-bit value Operand to the left by Count bits. The\r
3296 low Count bits are fill with the high Count bits of Operand. The rotated\r
3297 value is returned.\r
3298\r
3299 If Count is greater than 31, then ASSERT().\r
3300\r
3301 @param Operand The 32-bit operand to rotate left.\r
3302 @param Count The number of bits to rotate left.\r
3303\r
17f695ed 3304 @return Operand << Count\r
ac644614 3305\r
3306**/\r
3307UINT32\r
3308EFIAPI\r
3309LRotU32 (\r
3310 IN UINT32 Operand,\r
3311 IN UINTN Count\r
3312 );\r
3313\r
3314\r
3315/**\r
3316 Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits\r
3317 with the low bits that were rotated.\r
3318\r
3319 This function rotates the 32-bit value Operand to the right by Count bits.\r
3320 The high Count bits are fill with the low Count bits of Operand. The rotated\r
3321 value is returned.\r
3322\r
3323 If Count is greater than 31, then ASSERT().\r
3324\r
3325 @param Operand The 32-bit operand to rotate right.\r
3326 @param Count The number of bits to rotate right.\r
3327\r
2fe241a2 3328 @return Operand >> Count\r
ac644614 3329\r
3330**/\r
3331UINT32\r
3332EFIAPI\r
3333RRotU32 (\r
3334 IN UINT32 Operand,\r
3335 IN UINTN Count\r
3336 );\r
3337\r
3338\r
3339/**\r
3340 Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits\r
3341 with the high bits that were rotated.\r
3342\r
3343 This function rotates the 64-bit value Operand to the left by Count bits. The\r
3344 low Count bits are fill with the high Count bits of Operand. The rotated\r
3345 value is returned.\r
3346\r
3347 If Count is greater than 63, then ASSERT().\r
3348\r
3349 @param Operand The 64-bit operand to rotate left.\r
3350 @param Count The number of bits to rotate left.\r
3351\r
17f695ed 3352 @return Operand << Count\r
ac644614 3353\r
3354**/\r
3355UINT64\r
3356EFIAPI\r
3357LRotU64 (\r
3358 IN UINT64 Operand,\r
3359 IN UINTN Count\r
3360 );\r
3361\r
3362\r
3363/**\r
3364 Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits\r
3365 with the high low bits that were rotated.\r
3366\r
3367 This function rotates the 64-bit value Operand to the right by Count bits.\r
3368 The high Count bits are fill with the low Count bits of Operand. The rotated\r
3369 value is returned.\r
3370\r
3371 If Count is greater than 63, then ASSERT().\r
3372\r
3373 @param Operand The 64-bit operand to rotate right.\r
3374 @param Count The number of bits to rotate right.\r
3375\r
17f695ed 3376 @return Operand >> Count\r
ac644614 3377\r
3378**/\r
3379UINT64\r
3380EFIAPI\r
3381RRotU64 (\r
3382 IN UINT64 Operand,\r
3383 IN UINTN Count\r
3384 );\r
3385\r
3386\r
3387/**\r
3388 Returns the bit position of the lowest bit set in a 32-bit value.\r
3389\r
3390 This function computes the bit position of the lowest bit set in the 32-bit\r
3391 value specified by Operand. If Operand is zero, then -1 is returned.\r
3392 Otherwise, a value between 0 and 31 is returned.\r
3393\r
3394 @param Operand The 32-bit operand to evaluate.\r
3395\r
9aa049d9 3396 @retval 0..31 The lowest bit set in Operand was found.\r
17f695ed 3397 @retval -1 Operand is zero.\r
ac644614 3398\r
3399**/\r
3400INTN\r
3401EFIAPI\r
3402LowBitSet32 (\r
3403 IN UINT32 Operand\r
3404 );\r
3405\r
3406\r
3407/**\r
3408 Returns the bit position of the lowest bit set in a 64-bit value.\r
3409\r
3410 This function computes the bit position of the lowest bit set in the 64-bit\r
3411 value specified by Operand. If Operand is zero, then -1 is returned.\r
3412 Otherwise, a value between 0 and 63 is returned.\r
3413\r
3414 @param Operand The 64-bit operand to evaluate.\r
3415\r
9aa049d9 3416 @retval 0..63 The lowest bit set in Operand was found.\r
17f695ed 3417 @retval -1 Operand is zero.\r
3418\r
ac644614 3419\r
3420**/\r
3421INTN\r
3422EFIAPI\r
3423LowBitSet64 (\r
3424 IN UINT64 Operand\r
3425 );\r
3426\r
3427\r
3428/**\r
3429 Returns the bit position of the highest bit set in a 32-bit value. Equivalent\r
3430 to log2(x).\r
3431\r
3432 This function computes the bit position of the highest bit set in the 32-bit\r
3433 value specified by Operand. If Operand is zero, then -1 is returned.\r
3434 Otherwise, a value between 0 and 31 is returned.\r
3435\r
3436 @param Operand The 32-bit operand to evaluate.\r
3437\r
9aa049d9 3438 @retval 0..31 Position of the highest bit set in Operand if found.\r
17f695ed 3439 @retval -1 Operand is zero.\r
ac644614 3440\r
3441**/\r
3442INTN\r
3443EFIAPI\r
3444HighBitSet32 (\r
3445 IN UINT32 Operand\r
3446 );\r
3447\r
3448\r
3449/**\r
3450 Returns the bit position of the highest bit set in a 64-bit value. Equivalent\r
3451 to log2(x).\r
3452\r
3453 This function computes the bit position of the highest bit set in the 64-bit\r
3454 value specified by Operand. If Operand is zero, then -1 is returned.\r
3455 Otherwise, a value between 0 and 63 is returned.\r
3456\r
3457 @param Operand The 64-bit operand to evaluate.\r
3458\r
9aa049d9 3459 @retval 0..63 Position of the highest bit set in Operand if found.\r
17f695ed 3460 @retval -1 Operand is zero.\r
ac644614 3461\r
3462**/\r
3463INTN\r
3464EFIAPI\r
3465HighBitSet64 (\r
3466 IN UINT64 Operand\r
3467 );\r
3468\r
3469\r
3470/**\r
3471 Returns the value of the highest bit set in a 32-bit value. Equivalent to\r
17f695ed 3472 1 << log2(x).\r
ac644614 3473\r
3474 This function computes the value of the highest bit set in the 32-bit value\r
3475 specified by Operand. If Operand is zero, then zero is returned.\r
3476\r
3477 @param Operand The 32-bit operand to evaluate.\r
3478\r
3479 @return 1 << HighBitSet32(Operand)\r
3480 @retval 0 Operand is zero.\r
3481\r
3482**/\r
3483UINT32\r
3484EFIAPI\r
3485GetPowerOfTwo32 (\r
3486 IN UINT32 Operand\r
3487 );\r
3488\r
3489\r
3490/**\r
3491 Returns the value of the highest bit set in a 64-bit value. Equivalent to\r
17f695ed 3492 1 << log2(x).\r
ac644614 3493\r
3494 This function computes the value of the highest bit set in the 64-bit value\r
3495 specified by Operand. If Operand is zero, then zero is returned.\r
3496\r
3497 @param Operand The 64-bit operand to evaluate.\r
3498\r
3499 @return 1 << HighBitSet64(Operand)\r
3500 @retval 0 Operand is zero.\r
3501\r
3502**/\r
3503UINT64\r
3504EFIAPI\r
3505GetPowerOfTwo64 (\r
3506 IN UINT64 Operand\r
3507 );\r
3508\r
3509\r
3510/**\r
af2dc6a7 3511 Switches the endianness of a 16-bit integer.\r
ac644614 3512\r
3513 This function swaps the bytes in a 16-bit unsigned value to switch the value\r
3514 from little endian to big endian or vice versa. The byte swapped value is\r
3515 returned.\r
3516\r
2a53dabf 3517 @param Value A 16-bit unsigned value.\r
ac644614 3518\r
efb23117 3519 @return The byte swapped Value.\r
ac644614 3520\r
3521**/\r
3522UINT16\r
3523EFIAPI\r
3524SwapBytes16 (\r
3525 IN UINT16 Value\r
3526 );\r
3527\r
3528\r
3529/**\r
af2dc6a7 3530 Switches the endianness of a 32-bit integer.\r
ac644614 3531\r
3532 This function swaps the bytes in a 32-bit unsigned value to switch the value\r
3533 from little endian to big endian or vice versa. The byte swapped value is\r
3534 returned.\r
3535\r
2a53dabf 3536 @param Value A 32-bit unsigned value.\r
ac644614 3537\r
efb23117 3538 @return The byte swapped Value.\r
ac644614 3539\r
3540**/\r
3541UINT32\r
3542EFIAPI\r
3543SwapBytes32 (\r
3544 IN UINT32 Value\r
3545 );\r
3546\r
3547\r
3548/**\r
af2dc6a7 3549 Switches the endianness of a 64-bit integer.\r
ac644614 3550\r
3551 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
3552 from little endian to big endian or vice versa. The byte swapped value is\r
3553 returned.\r
3554\r
2a53dabf 3555 @param Value A 64-bit unsigned value.\r
ac644614 3556\r
efb23117 3557 @return The byte swapped Value.\r
ac644614 3558\r
3559**/\r
3560UINT64\r
3561EFIAPI\r
3562SwapBytes64 (\r
3563 IN UINT64 Value\r
3564 );\r
3565\r
3566\r
3567/**\r
3568 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and\r
3569 generates a 64-bit unsigned result.\r
3570\r
3571 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit\r
3572 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
3573 bit unsigned result is returned.\r
3574\r
ac644614 3575 @param Multiplicand A 64-bit unsigned value.\r
3576 @param Multiplier A 32-bit unsigned value.\r
3577\r
3578 @return Multiplicand * Multiplier\r
3579\r
3580**/\r
3581UINT64\r
3582EFIAPI\r
3583MultU64x32 (\r
3584 IN UINT64 Multiplicand,\r
3585 IN UINT32 Multiplier\r
3586 );\r
3587\r
3588\r
3589/**\r
3590 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and\r
3591 generates a 64-bit unsigned result.\r
3592\r
3593 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
3594 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
3595 bit unsigned result is returned.\r
3596\r
ac644614 3597 @param Multiplicand A 64-bit unsigned value.\r
3598 @param Multiplier A 64-bit unsigned value.\r
3599\r
af2dc6a7 3600 @return Multiplicand * Multiplier.\r
ac644614 3601\r
3602**/\r
3603UINT64\r
3604EFIAPI\r
3605MultU64x64 (\r
3606 IN UINT64 Multiplicand,\r
3607 IN UINT64 Multiplier\r
3608 );\r
3609\r
3610\r
3611/**\r
3612 Multiples a 64-bit signed integer by a 64-bit signed integer and generates a\r
3613 64-bit signed result.\r
3614\r
3615 This function multiples the 64-bit signed value Multiplicand by the 64-bit\r
3616 signed value Multiplier and generates a 64-bit signed result. This 64-bit\r
3617 signed result is returned.\r
3618\r
ac644614 3619 @param Multiplicand A 64-bit signed value.\r
3620 @param Multiplier A 64-bit signed value.\r
3621\r
3622 @return Multiplicand * Multiplier\r
3623\r
3624**/\r
3625INT64\r
3626EFIAPI\r
3627MultS64x64 (\r
3628 IN INT64 Multiplicand,\r
3629 IN INT64 Multiplier\r
3630 );\r
3631\r
3632\r
3633/**\r
3634 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
3635 a 64-bit unsigned result.\r
3636\r
3637 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
3638 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
3639 function returns the 64-bit unsigned quotient.\r
3640\r
3641 If Divisor is 0, then ASSERT().\r
3642\r
3643 @param Dividend A 64-bit unsigned value.\r
3644 @param Divisor A 32-bit unsigned value.\r
3645\r
af2dc6a7 3646 @return Dividend / Divisor.\r
ac644614 3647\r
3648**/\r
3649UINT64\r
3650EFIAPI\r
3651DivU64x32 (\r
3652 IN UINT64 Dividend,\r
3653 IN UINT32 Divisor\r
3654 );\r
3655\r
3656\r
3657/**\r
3658 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
3659 a 32-bit unsigned remainder.\r
3660\r
3661 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
3662 unsigned value Divisor and generates a 32-bit remainder. This function\r
3663 returns the 32-bit unsigned remainder.\r
3664\r
3665 If Divisor is 0, then ASSERT().\r
3666\r
3667 @param Dividend A 64-bit unsigned value.\r
3668 @param Divisor A 32-bit unsigned value.\r
3669\r
af2dc6a7 3670 @return Dividend % Divisor.\r
ac644614 3671\r
3672**/\r
3673UINT32\r
3674EFIAPI\r
3675ModU64x32 (\r
3676 IN UINT64 Dividend,\r
3677 IN UINT32 Divisor\r
3678 );\r
3679\r
3680\r
3681/**\r
3682 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
3683 a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
3684\r
3685 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
3686 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
3687 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
3688 This function returns the 64-bit unsigned quotient.\r
3689\r
3690 If Divisor is 0, then ASSERT().\r
3691\r
3692 @param Dividend A 64-bit unsigned value.\r
3693 @param Divisor A 32-bit unsigned value.\r
3694 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
3695 optional and may be NULL.\r
3696\r
af2dc6a7 3697 @return Dividend / Divisor.\r
ac644614 3698\r
3699**/\r
3700UINT64\r
3701EFIAPI\r
3702DivU64x32Remainder (\r
3703 IN UINT64 Dividend,\r
3704 IN UINT32 Divisor,\r
3705 OUT UINT32 *Remainder OPTIONAL\r
3706 );\r
3707\r
3708\r
3709/**\r
3710 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates\r
3711 a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
3712\r
3713 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
3714 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
3715 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
3716 This function returns the 64-bit unsigned quotient.\r
3717\r
3718 If Divisor is 0, then ASSERT().\r
3719\r
3720 @param Dividend A 64-bit unsigned value.\r
3721 @param Divisor A 64-bit unsigned value.\r
3722 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
3723 optional and may be NULL.\r
3724\r
af2dc6a7 3725 @return Dividend / Divisor.\r
ac644614 3726\r
3727**/\r
3728UINT64\r
3729EFIAPI\r
3730DivU64x64Remainder (\r
3731 IN UINT64 Dividend,\r
3732 IN UINT64 Divisor,\r
3733 OUT UINT64 *Remainder OPTIONAL\r
3734 );\r
3735\r
3736\r
3737/**\r
3738 Divides a 64-bit signed integer by a 64-bit signed integer and generates a\r
3739 64-bit signed result and a optional 64-bit signed remainder.\r
3740\r
3741 This function divides the 64-bit signed value Dividend by the 64-bit signed\r
3742 value Divisor and generates a 64-bit signed quotient. If Remainder is not\r
3743 NULL, then the 64-bit signed remainder is returned in Remainder. This\r
3744 function returns the 64-bit signed quotient.\r
3745\r
9aa049d9 3746 It is the caller's responsibility to not call this function with a Divisor of 0.\r
17f695ed 3747 If Divisor is 0, then the quotient and remainder should be assumed to be \r
3748 the largest negative integer.\r
3749\r
ac644614 3750 If Divisor is 0, then ASSERT().\r
3751\r
3752 @param Dividend A 64-bit signed value.\r
3753 @param Divisor A 64-bit signed value.\r
3754 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
3755 optional and may be NULL.\r
3756\r
af2dc6a7 3757 @return Dividend / Divisor.\r
ac644614 3758\r
3759**/\r
3760INT64\r
3761EFIAPI\r
3762DivS64x64Remainder (\r
3763 IN INT64 Dividend,\r
3764 IN INT64 Divisor,\r
3765 OUT INT64 *Remainder OPTIONAL\r
3766 );\r
3767\r
3768\r
3769/**\r
3770 Reads a 16-bit value from memory that may be unaligned.\r
3771\r
3772 This function returns the 16-bit value pointed to by Buffer. The function\r
3773 guarantees that the read operation does not produce an alignment fault.\r
3774\r
3775 If the Buffer is NULL, then ASSERT().\r
3776\r
af2dc6a7 3777 @param Buffer The pointer to a 16-bit value that may be unaligned.\r
ac644614 3778\r
5385a579 3779 @return The 16-bit value read from Buffer.\r
ac644614 3780\r
3781**/\r
3782UINT16\r
3783EFIAPI\r
3784ReadUnaligned16 (\r
5385a579 3785 IN CONST UINT16 *Buffer\r
ac644614 3786 );\r
3787\r
3788\r
3789/**\r
3790 Writes a 16-bit value to memory that may be unaligned.\r
3791\r
3792 This function writes the 16-bit value specified by Value to Buffer. Value is\r
3793 returned. The function guarantees that the write operation does not produce\r
3794 an alignment fault.\r
3795\r
3796 If the Buffer is NULL, then ASSERT().\r
3797\r
af2dc6a7 3798 @param Buffer The pointer to a 16-bit value that may be unaligned.\r
ac644614 3799 @param Value 16-bit value to write to Buffer.\r
3800\r
5385a579 3801 @return The 16-bit value to write to Buffer.\r
ac644614 3802\r
3803**/\r
3804UINT16\r
3805EFIAPI\r
3806WriteUnaligned16 (\r
5385a579 3807 OUT UINT16 *Buffer,\r
3808 IN UINT16 Value\r
ac644614 3809 );\r
3810\r
3811\r
3812/**\r
3813 Reads a 24-bit value from memory that may be unaligned.\r
3814\r
3815 This function returns the 24-bit value pointed to by Buffer. The function\r
3816 guarantees that the read operation does not produce an alignment fault.\r
3817\r
3818 If the Buffer is NULL, then ASSERT().\r
3819\r
af2dc6a7 3820 @param Buffer The pointer to a 24-bit value that may be unaligned.\r
ac644614 3821\r
5385a579 3822 @return The 24-bit value read from Buffer.\r
ac644614 3823\r
3824**/\r
3825UINT32\r
3826EFIAPI\r
3827ReadUnaligned24 (\r
5385a579 3828 IN CONST UINT32 *Buffer\r
ac644614 3829 );\r
3830\r
3831\r
3832/**\r
3833 Writes a 24-bit value to memory that may be unaligned.\r
3834\r
3835 This function writes the 24-bit value specified by Value to Buffer. Value is\r
3836 returned. The function guarantees that the write operation does not produce\r
3837 an alignment fault.\r
3838\r
3839 If the Buffer is NULL, then ASSERT().\r
3840\r
af2dc6a7 3841 @param Buffer The pointer to a 24-bit value that may be unaligned.\r
ac644614 3842 @param Value 24-bit value to write to Buffer.\r
3843\r
5385a579 3844 @return The 24-bit value to write to Buffer.\r
ac644614 3845\r
3846**/\r
3847UINT32\r
3848EFIAPI\r
3849WriteUnaligned24 (\r
5385a579 3850 OUT UINT32 *Buffer,\r
3851 IN UINT32 Value\r
ac644614 3852 );\r
3853\r
3854\r
3855/**\r
3856 Reads a 32-bit value from memory that may be unaligned.\r
3857\r
3858 This function returns the 32-bit value pointed to by Buffer. The function\r
3859 guarantees that the read operation does not produce an alignment fault.\r
3860\r
3861 If the Buffer is NULL, then ASSERT().\r
3862\r
af2dc6a7 3863 @param Buffer The pointer to a 32-bit value that may be unaligned.\r
ac644614 3864\r
5385a579 3865 @return The 32-bit value read from Buffer.\r
ac644614 3866\r
3867**/\r
3868UINT32\r
3869EFIAPI\r
3870ReadUnaligned32 (\r
5385a579 3871 IN CONST UINT32 *Buffer\r
ac644614 3872 );\r
3873\r
3874\r
3875/**\r
3876 Writes a 32-bit value to memory that may be unaligned.\r
3877\r
3878 This function writes the 32-bit value specified by Value to Buffer. Value is\r
3879 returned. The function guarantees that the write operation does not produce\r
3880 an alignment fault.\r
3881\r
3882 If the Buffer is NULL, then ASSERT().\r
3883\r
af2dc6a7 3884 @param Buffer The pointer to a 32-bit value that may be unaligned.\r
ac644614 3885 @param Value 32-bit value to write to Buffer.\r
3886\r
5385a579 3887 @return The 32-bit value to write to Buffer.\r
ac644614 3888\r
3889**/\r
3890UINT32\r
3891EFIAPI\r
3892WriteUnaligned32 (\r
5385a579 3893 OUT UINT32 *Buffer,\r
3894 IN UINT32 Value\r
ac644614 3895 );\r
3896\r
3897\r
3898/**\r
3899 Reads a 64-bit value from memory that may be unaligned.\r
3900\r
3901 This function returns the 64-bit value pointed to by Buffer. The function\r
3902 guarantees that the read operation does not produce an alignment fault.\r
3903\r
3904 If the Buffer is NULL, then ASSERT().\r
3905\r
af2dc6a7 3906 @param Buffer The pointer to a 64-bit value that may be unaligned.\r
ac644614 3907\r
5385a579 3908 @return The 64-bit value read from Buffer.\r
ac644614 3909\r
3910**/\r
3911UINT64\r
3912EFIAPI\r
3913ReadUnaligned64 (\r
5385a579 3914 IN CONST UINT64 *Buffer\r
ac644614 3915 );\r
3916\r
3917\r
3918/**\r
3919 Writes a 64-bit value to memory that may be unaligned.\r
3920\r
3921 This function writes the 64-bit value specified by Value to Buffer. Value is\r
3922 returned. The function guarantees that the write operation does not produce\r
3923 an alignment fault.\r
3924\r
3925 If the Buffer is NULL, then ASSERT().\r
3926\r
af2dc6a7 3927 @param Buffer The pointer to a 64-bit value that may be unaligned.\r
ac644614 3928 @param Value 64-bit value to write to Buffer.\r
3929\r
5385a579 3930 @return The 64-bit value to write to Buffer.\r
ac644614 3931\r
3932**/\r
3933UINT64\r
3934EFIAPI\r
3935WriteUnaligned64 (\r
5385a579 3936 OUT UINT64 *Buffer,\r
3937 IN UINT64 Value\r
ac644614 3938 );\r
3939\r
3940\r
3941//\r
3942// Bit Field Functions\r
3943//\r
3944\r
3945/**\r
3946 Returns a bit field from an 8-bit value.\r
3947\r
3948 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
3949\r
3950 If 8-bit operations are not supported, then ASSERT().\r
3951 If StartBit is greater than 7, then ASSERT().\r
3952 If EndBit is greater than 7, then ASSERT().\r
3953 If EndBit is less than StartBit, then ASSERT().\r
3954\r
3955 @param Operand Operand on which to perform the bitfield operation.\r
3956 @param StartBit The ordinal of the least significant bit in the bit field.\r
3957 Range 0..7.\r
3958 @param EndBit The ordinal of the most significant bit in the bit field.\r
3959 Range 0..7.\r
3960\r
3961 @return The bit field read.\r
3962\r
3963**/\r
3964UINT8\r
3965EFIAPI\r
3966BitFieldRead8 (\r
3967 IN UINT8 Operand,\r
3968 IN UINTN StartBit,\r
3969 IN UINTN EndBit\r
3970 );\r
3971\r
3972\r
3973/**\r
3974 Writes a bit field to an 8-bit value, and returns the result.\r
3975\r
3976 Writes Value to the bit field specified by the StartBit and the EndBit in\r
3977 Operand. All other bits in Operand are preserved. The new 8-bit value is\r
3978 returned.\r
3979\r
3980 If 8-bit operations are not supported, then ASSERT().\r
3981 If StartBit is greater than 7, then ASSERT().\r
3982 If EndBit is greater than 7, then ASSERT().\r
3983 If EndBit is less than StartBit, then ASSERT().\r
94952554 3984 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 3985\r
3986 @param Operand Operand on which to perform the bitfield operation.\r
3987 @param StartBit The ordinal of the least significant bit in the bit field.\r
3988 Range 0..7.\r
3989 @param EndBit The ordinal of the most significant bit in the bit field.\r
3990 Range 0..7.\r
3991 @param Value New value of the bit field.\r
3992\r
3993 @return The new 8-bit value.\r
3994\r
3995**/\r
3996UINT8\r
3997EFIAPI\r
3998BitFieldWrite8 (\r
3999 IN UINT8 Operand,\r
4000 IN UINTN StartBit,\r
4001 IN UINTN EndBit,\r
4002 IN UINT8 Value\r
4003 );\r
4004\r
4005\r
4006/**\r
4007 Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the\r
4008 result.\r
4009\r
62991af2 4010 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 4011 and EndBit in Operand and the value specified by OrData. All other bits in\r
4012 Operand are preserved. The new 8-bit value is returned.\r
4013\r
4014 If 8-bit operations are not supported, then ASSERT().\r
4015 If StartBit is greater than 7, then ASSERT().\r
4016 If EndBit is greater than 7, then ASSERT().\r
4017 If EndBit is less than StartBit, then ASSERT().\r
94952554 4018 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4019\r
4020 @param Operand Operand on which to perform the bitfield operation.\r
4021 @param StartBit The ordinal of the least significant bit in the bit field.\r
4022 Range 0..7.\r
4023 @param EndBit The ordinal of the most significant bit in the bit field.\r
4024 Range 0..7.\r
4025 @param OrData The value to OR with the read value from the value\r
4026\r
4027 @return The new 8-bit value.\r
4028\r
4029**/\r
4030UINT8\r
4031EFIAPI\r
4032BitFieldOr8 (\r
4033 IN UINT8 Operand,\r
4034 IN UINTN StartBit,\r
4035 IN UINTN EndBit,\r
4036 IN UINT8 OrData\r
4037 );\r
4038\r
4039\r
4040/**\r
4041 Reads a bit field from an 8-bit value, performs a bitwise AND, and returns\r
4042 the result.\r
4043\r
4044 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4045 in Operand and the value specified by AndData. All other bits in Operand are\r
4046 preserved. The new 8-bit value is returned.\r
4047\r
4048 If 8-bit operations are not supported, then ASSERT().\r
4049 If StartBit is greater than 7, then ASSERT().\r
4050 If EndBit is greater than 7, then ASSERT().\r
4051 If EndBit is less than StartBit, then ASSERT().\r
94952554 4052 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4053\r
4054 @param Operand Operand on which to perform the bitfield operation.\r
4055 @param StartBit The ordinal of the least significant bit in the bit field.\r
4056 Range 0..7.\r
4057 @param EndBit The ordinal of the most significant bit in the bit field.\r
4058 Range 0..7.\r
4059 @param AndData The value to AND with the read value from the value.\r
4060\r
4061 @return The new 8-bit value.\r
4062\r
4063**/\r
4064UINT8\r
4065EFIAPI\r
4066BitFieldAnd8 (\r
4067 IN UINT8 Operand,\r
4068 IN UINTN StartBit,\r
4069 IN UINTN EndBit,\r
4070 IN UINT8 AndData\r
4071 );\r
4072\r
4073\r
4074/**\r
4075 Reads a bit field from an 8-bit value, performs a bitwise AND followed by a\r
4076 bitwise OR, and returns the result.\r
4077\r
4078 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 4079 in Operand and the value specified by AndData, followed by a bitwise \r
4080 OR with value specified by OrData. All other bits in Operand are\r
ac644614 4081 preserved. The new 8-bit value is returned.\r
4082\r
4083 If 8-bit operations are not supported, then ASSERT().\r
4084 If StartBit is greater than 7, then ASSERT().\r
4085 If EndBit is greater than 7, then ASSERT().\r
4086 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
4087 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4088 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4089\r
4090 @param Operand Operand on which to perform the bitfield operation.\r
4091 @param StartBit The ordinal of the least significant bit in the bit field.\r
4092 Range 0..7.\r
4093 @param EndBit The ordinal of the most significant bit in the bit field.\r
4094 Range 0..7.\r
4095 @param AndData The value to AND with the read value from the value.\r
4096 @param OrData The value to OR with the result of the AND operation.\r
4097\r
4098 @return The new 8-bit value.\r
4099\r
4100**/\r
4101UINT8\r
4102EFIAPI\r
4103BitFieldAndThenOr8 (\r
4104 IN UINT8 Operand,\r
4105 IN UINTN StartBit,\r
4106 IN UINTN EndBit,\r
4107 IN UINT8 AndData,\r
4108 IN UINT8 OrData\r
4109 );\r
4110\r
4111\r
4112/**\r
4113 Returns a bit field from a 16-bit value.\r
4114\r
4115 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
4116\r
4117 If 16-bit operations are not supported, then ASSERT().\r
4118 If StartBit is greater than 15, then ASSERT().\r
4119 If EndBit is greater than 15, then ASSERT().\r
4120 If EndBit is less than StartBit, then ASSERT().\r
4121\r
4122 @param Operand Operand on which to perform the bitfield operation.\r
4123 @param StartBit The ordinal of the least significant bit in the bit field.\r
4124 Range 0..15.\r
4125 @param EndBit The ordinal of the most significant bit in the bit field.\r
4126 Range 0..15.\r
4127\r
4128 @return The bit field read.\r
4129\r
4130**/\r
4131UINT16\r
4132EFIAPI\r
4133BitFieldRead16 (\r
4134 IN UINT16 Operand,\r
4135 IN UINTN StartBit,\r
4136 IN UINTN EndBit\r
4137 );\r
4138\r
4139\r
4140/**\r
4141 Writes a bit field to a 16-bit value, and returns the result.\r
4142\r
4143 Writes Value to the bit field specified by the StartBit and the EndBit in\r
4144 Operand. All other bits in Operand are preserved. The new 16-bit value is\r
4145 returned.\r
4146\r
4147 If 16-bit operations are not supported, then ASSERT().\r
4148 If StartBit is greater than 15, then ASSERT().\r
4149 If EndBit is greater than 15, then ASSERT().\r
4150 If EndBit is less than StartBit, then ASSERT().\r
94952554 4151 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4152\r
4153 @param Operand Operand on which to perform the bitfield operation.\r
4154 @param StartBit The ordinal of the least significant bit in the bit field.\r
4155 Range 0..15.\r
4156 @param EndBit The ordinal of the most significant bit in the bit field.\r
4157 Range 0..15.\r
4158 @param Value New value of the bit field.\r
4159\r
4160 @return The new 16-bit value.\r
4161\r
4162**/\r
4163UINT16\r
4164EFIAPI\r
4165BitFieldWrite16 (\r
4166 IN UINT16 Operand,\r
4167 IN UINTN StartBit,\r
4168 IN UINTN EndBit,\r
4169 IN UINT16 Value\r
4170 );\r
4171\r
4172\r
4173/**\r
4174 Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the\r
4175 result.\r
4176\r
62991af2 4177 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 4178 and EndBit in Operand and the value specified by OrData. All other bits in\r
4179 Operand are preserved. The new 16-bit value is returned.\r
4180\r
4181 If 16-bit operations are not supported, then ASSERT().\r
4182 If StartBit is greater than 15, then ASSERT().\r
4183 If EndBit is greater than 15, then ASSERT().\r
4184 If EndBit is less than StartBit, then ASSERT().\r
94952554 4185 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4186\r
4187 @param Operand Operand on which to perform the bitfield operation.\r
4188 @param StartBit The ordinal of the least significant bit in the bit field.\r
4189 Range 0..15.\r
4190 @param EndBit The ordinal of the most significant bit in the bit field.\r
4191 Range 0..15.\r
4192 @param OrData The value to OR with the read value from the value\r
4193\r
4194 @return The new 16-bit value.\r
4195\r
4196**/\r
4197UINT16\r
4198EFIAPI\r
4199BitFieldOr16 (\r
4200 IN UINT16 Operand,\r
4201 IN UINTN StartBit,\r
4202 IN UINTN EndBit,\r
4203 IN UINT16 OrData\r
4204 );\r
4205\r
4206\r
4207/**\r
4208 Reads a bit field from a 16-bit value, performs a bitwise AND, and returns\r
4209 the result.\r
4210\r
4211 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4212 in Operand and the value specified by AndData. All other bits in Operand are\r
4213 preserved. The new 16-bit value is returned.\r
4214\r
4215 If 16-bit operations are not supported, then ASSERT().\r
4216 If StartBit is greater than 15, then ASSERT().\r
4217 If EndBit is greater than 15, then ASSERT().\r
4218 If EndBit is less than StartBit, then ASSERT().\r
94952554 4219 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4220\r
4221 @param Operand Operand on which to perform the bitfield operation.\r
4222 @param StartBit The ordinal of the least significant bit in the bit field.\r
4223 Range 0..15.\r
4224 @param EndBit The ordinal of the most significant bit in the bit field.\r
4225 Range 0..15.\r
4226 @param AndData The value to AND with the read value from the value\r
4227\r
4228 @return The new 16-bit value.\r
4229\r
4230**/\r
4231UINT16\r
4232EFIAPI\r
4233BitFieldAnd16 (\r
4234 IN UINT16 Operand,\r
4235 IN UINTN StartBit,\r
4236 IN UINTN EndBit,\r
4237 IN UINT16 AndData\r
4238 );\r
4239\r
4240\r
4241/**\r
4242 Reads a bit field from a 16-bit value, performs a bitwise AND followed by a\r
4243 bitwise OR, and returns the result.\r
4244\r
4245 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 4246 in Operand and the value specified by AndData, followed by a bitwise \r
4247 OR with value specified by OrData. All other bits in Operand are\r
ac644614 4248 preserved. The new 16-bit value is returned.\r
4249\r
4250 If 16-bit operations are not supported, then ASSERT().\r
4251 If StartBit is greater than 15, then ASSERT().\r
4252 If EndBit is greater than 15, then ASSERT().\r
4253 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
4254 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4255 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4256\r
4257 @param Operand Operand on which to perform the bitfield operation.\r
4258 @param StartBit The ordinal of the least significant bit in the bit field.\r
4259 Range 0..15.\r
4260 @param EndBit The ordinal of the most significant bit in the bit field.\r
4261 Range 0..15.\r
4262 @param AndData The value to AND with the read value from the value.\r
4263 @param OrData The value to OR with the result of the AND operation.\r
4264\r
4265 @return The new 16-bit value.\r
4266\r
4267**/\r
4268UINT16\r
4269EFIAPI\r
4270BitFieldAndThenOr16 (\r
4271 IN UINT16 Operand,\r
4272 IN UINTN StartBit,\r
4273 IN UINTN EndBit,\r
4274 IN UINT16 AndData,\r
4275 IN UINT16 OrData\r
4276 );\r
4277\r
4278\r
4279/**\r
4280 Returns a bit field from a 32-bit value.\r
4281\r
4282 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
4283\r
4284 If 32-bit operations are not supported, then ASSERT().\r
4285 If StartBit is greater than 31, then ASSERT().\r
4286 If EndBit is greater than 31, then ASSERT().\r
4287 If EndBit is less than StartBit, then ASSERT().\r
4288\r
4289 @param Operand Operand on which to perform the bitfield operation.\r
4290 @param StartBit The ordinal of the least significant bit in the bit field.\r
4291 Range 0..31.\r
4292 @param EndBit The ordinal of the most significant bit in the bit field.\r
4293 Range 0..31.\r
4294\r
4295 @return The bit field read.\r
4296\r
4297**/\r
4298UINT32\r
4299EFIAPI\r
4300BitFieldRead32 (\r
4301 IN UINT32 Operand,\r
4302 IN UINTN StartBit,\r
4303 IN UINTN EndBit\r
4304 );\r
4305\r
4306\r
4307/**\r
4308 Writes a bit field to a 32-bit value, and returns the result.\r
4309\r
4310 Writes Value to the bit field specified by the StartBit and the EndBit in\r
4311 Operand. All other bits in Operand are preserved. The new 32-bit value is\r
4312 returned.\r
4313\r
4314 If 32-bit operations are not supported, then ASSERT().\r
4315 If StartBit is greater than 31, then ASSERT().\r
4316 If EndBit is greater than 31, then ASSERT().\r
4317 If EndBit is less than StartBit, then ASSERT().\r
94952554 4318 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4319\r
4320 @param Operand Operand on which to perform the bitfield operation.\r
4321 @param StartBit The ordinal of the least significant bit in the bit field.\r
4322 Range 0..31.\r
4323 @param EndBit The ordinal of the most significant bit in the bit field.\r
4324 Range 0..31.\r
4325 @param Value New value of the bit field.\r
4326\r
4327 @return The new 32-bit value.\r
4328\r
4329**/\r
4330UINT32\r
4331EFIAPI\r
4332BitFieldWrite32 (\r
4333 IN UINT32 Operand,\r
4334 IN UINTN StartBit,\r
4335 IN UINTN EndBit,\r
4336 IN UINT32 Value\r
4337 );\r
4338\r
4339\r
4340/**\r
4341 Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the\r
4342 result.\r
4343\r
62991af2 4344 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 4345 and EndBit in Operand and the value specified by OrData. All other bits in\r
4346 Operand are preserved. The new 32-bit value is returned.\r
4347\r
4348 If 32-bit operations are not supported, then ASSERT().\r
4349 If StartBit is greater than 31, then ASSERT().\r
4350 If EndBit is greater than 31, then ASSERT().\r
4351 If EndBit is less than StartBit, then ASSERT().\r
94952554 4352 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4353\r
4354 @param Operand Operand on which to perform the bitfield operation.\r
4355 @param StartBit The ordinal of the least significant bit in the bit field.\r
4356 Range 0..31.\r
4357 @param EndBit The ordinal of the most significant bit in the bit field.\r
4358 Range 0..31.\r
af2dc6a7 4359 @param OrData The value to OR with the read value from the value.\r
ac644614 4360\r
4361 @return The new 32-bit value.\r
4362\r
4363**/\r
4364UINT32\r
4365EFIAPI\r
4366BitFieldOr32 (\r
4367 IN UINT32 Operand,\r
4368 IN UINTN StartBit,\r
4369 IN UINTN EndBit,\r
4370 IN UINT32 OrData\r
4371 );\r
4372\r
4373\r
4374/**\r
4375 Reads a bit field from a 32-bit value, performs a bitwise AND, and returns\r
4376 the result.\r
4377\r
4378 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4379 in Operand and the value specified by AndData. All other bits in Operand are\r
4380 preserved. The new 32-bit value is returned.\r
4381\r
4382 If 32-bit operations are not supported, then ASSERT().\r
4383 If StartBit is greater than 31, then ASSERT().\r
4384 If EndBit is greater than 31, then ASSERT().\r
4385 If EndBit is less than StartBit, then ASSERT().\r
94952554 4386 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4387\r
4388 @param Operand Operand on which to perform the bitfield operation.\r
4389 @param StartBit The ordinal of the least significant bit in the bit field.\r
4390 Range 0..31.\r
4391 @param EndBit The ordinal of the most significant bit in the bit field.\r
4392 Range 0..31.\r
4393 @param AndData The value to AND with the read value from the value\r
4394\r
4395 @return The new 32-bit value.\r
4396\r
4397**/\r
4398UINT32\r
4399EFIAPI\r
4400BitFieldAnd32 (\r
4401 IN UINT32 Operand,\r
4402 IN UINTN StartBit,\r
4403 IN UINTN EndBit,\r
4404 IN UINT32 AndData\r
4405 );\r
4406\r
4407\r
4408/**\r
4409 Reads a bit field from a 32-bit value, performs a bitwise AND followed by a\r
4410 bitwise OR, and returns the result.\r
4411\r
4412 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 4413 in Operand and the value specified by AndData, followed by a bitwise \r
4414 OR with value specified by OrData. All other bits in Operand are\r
ac644614 4415 preserved. The new 32-bit value is returned.\r
4416\r
4417 If 32-bit operations are not supported, then ASSERT().\r
4418 If StartBit is greater than 31, then ASSERT().\r
4419 If EndBit is greater than 31, then ASSERT().\r
4420 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
4421 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4422 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4423\r
4424 @param Operand Operand on which to perform the bitfield operation.\r
4425 @param StartBit The ordinal of the least significant bit in the bit field.\r
4426 Range 0..31.\r
4427 @param EndBit The ordinal of the most significant bit in the bit field.\r
4428 Range 0..31.\r
4429 @param AndData The value to AND with the read value from the value.\r
4430 @param OrData The value to OR with the result of the AND operation.\r
4431\r
4432 @return The new 32-bit value.\r
4433\r
4434**/\r
4435UINT32\r
4436EFIAPI\r
4437BitFieldAndThenOr32 (\r
4438 IN UINT32 Operand,\r
4439 IN UINTN StartBit,\r
4440 IN UINTN EndBit,\r
4441 IN UINT32 AndData,\r
4442 IN UINT32 OrData\r
4443 );\r
4444\r
4445\r
4446/**\r
4447 Returns a bit field from a 64-bit value.\r
4448\r
4449 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
4450\r
4451 If 64-bit operations are not supported, then ASSERT().\r
4452 If StartBit is greater than 63, then ASSERT().\r
4453 If EndBit is greater than 63, then ASSERT().\r
4454 If EndBit is less than StartBit, then ASSERT().\r
4455\r
4456 @param Operand Operand on which to perform the bitfield operation.\r
4457 @param StartBit The ordinal of the least significant bit in the bit field.\r
4458 Range 0..63.\r
4459 @param EndBit The ordinal of the most significant bit in the bit field.\r
4460 Range 0..63.\r
4461\r
4462 @return The bit field read.\r
4463\r
4464**/\r
4465UINT64\r
4466EFIAPI\r
4467BitFieldRead64 (\r
4468 IN UINT64 Operand,\r
4469 IN UINTN StartBit,\r
4470 IN UINTN EndBit\r
4471 );\r
4472\r
4473\r
4474/**\r
4475 Writes a bit field to a 64-bit value, and returns the result.\r
4476\r
4477 Writes Value to the bit field specified by the StartBit and the EndBit in\r
4478 Operand. All other bits in Operand are preserved. The new 64-bit value is\r
4479 returned.\r
4480\r
4481 If 64-bit operations are not supported, then ASSERT().\r
4482 If StartBit is greater than 63, then ASSERT().\r
4483 If EndBit is greater than 63, then ASSERT().\r
4484 If EndBit is less than StartBit, then ASSERT().\r
94952554 4485 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4486\r
4487 @param Operand Operand on which to perform the bitfield operation.\r
4488 @param StartBit The ordinal of the least significant bit in the bit field.\r
4489 Range 0..63.\r
4490 @param EndBit The ordinal of the most significant bit in the bit field.\r
4491 Range 0..63.\r
4492 @param Value New value of the bit field.\r
4493\r
4494 @return The new 64-bit value.\r
4495\r
4496**/\r
4497UINT64\r
4498EFIAPI\r
4499BitFieldWrite64 (\r
4500 IN UINT64 Operand,\r
4501 IN UINTN StartBit,\r
4502 IN UINTN EndBit,\r
4503 IN UINT64 Value\r
4504 );\r
4505\r
4506\r
4507/**\r
4508 Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the\r
4509 result.\r
4510\r
62991af2 4511 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 4512 and EndBit in Operand and the value specified by OrData. All other bits in\r
4513 Operand are preserved. The new 64-bit value is returned.\r
4514\r
4515 If 64-bit operations are not supported, then ASSERT().\r
4516 If StartBit is greater than 63, then ASSERT().\r
4517 If EndBit is greater than 63, then ASSERT().\r
4518 If EndBit is less than StartBit, then ASSERT().\r
94952554 4519 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4520\r
4521 @param Operand Operand on which to perform the bitfield operation.\r
4522 @param StartBit The ordinal of the least significant bit in the bit field.\r
4523 Range 0..63.\r
4524 @param EndBit The ordinal of the most significant bit in the bit field.\r
4525 Range 0..63.\r
4526 @param OrData The value to OR with the read value from the value\r
4527\r
4528 @return The new 64-bit value.\r
4529\r
4530**/\r
4531UINT64\r
4532EFIAPI\r
4533BitFieldOr64 (\r
4534 IN UINT64 Operand,\r
4535 IN UINTN StartBit,\r
4536 IN UINTN EndBit,\r
4537 IN UINT64 OrData\r
4538 );\r
4539\r
4540\r
4541/**\r
4542 Reads a bit field from a 64-bit value, performs a bitwise AND, and returns\r
4543 the result.\r
4544\r
4545 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4546 in Operand and the value specified by AndData. All other bits in Operand are\r
4547 preserved. The new 64-bit value is returned.\r
4548\r
4549 If 64-bit operations are not supported, then ASSERT().\r
4550 If StartBit is greater than 63, then ASSERT().\r
4551 If EndBit is greater than 63, then ASSERT().\r
4552 If EndBit is less than StartBit, then ASSERT().\r
94952554 4553 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4554\r
4555 @param Operand Operand on which to perform the bitfield operation.\r
4556 @param StartBit The ordinal of the least significant bit in the bit field.\r
4557 Range 0..63.\r
4558 @param EndBit The ordinal of the most significant bit in the bit field.\r
4559 Range 0..63.\r
4560 @param AndData The value to AND with the read value from the value\r
4561\r
4562 @return The new 64-bit value.\r
4563\r
4564**/\r
4565UINT64\r
4566EFIAPI\r
4567BitFieldAnd64 (\r
4568 IN UINT64 Operand,\r
4569 IN UINTN StartBit,\r
4570 IN UINTN EndBit,\r
4571 IN UINT64 AndData\r
4572 );\r
4573\r
4574\r
4575/**\r
4576 Reads a bit field from a 64-bit value, performs a bitwise AND followed by a\r
4577 bitwise OR, and returns the result.\r
4578\r
4579 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 4580 in Operand and the value specified by AndData, followed by a bitwise \r
4581 OR with value specified by OrData. All other bits in Operand are\r
ac644614 4582 preserved. The new 64-bit value is returned.\r
4583\r
4584 If 64-bit operations are not supported, then ASSERT().\r
4585 If StartBit is greater than 63, then ASSERT().\r
4586 If EndBit is greater than 63, then ASSERT().\r
4587 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
4588 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4589 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 4590\r
4591 @param Operand Operand on which to perform the bitfield operation.\r
4592 @param StartBit The ordinal of the least significant bit in the bit field.\r
4593 Range 0..63.\r
4594 @param EndBit The ordinal of the most significant bit in the bit field.\r
4595 Range 0..63.\r
4596 @param AndData The value to AND with the read value from the value.\r
4597 @param OrData The value to OR with the result of the AND operation.\r
4598\r
4599 @return The new 64-bit value.\r
4600\r
4601**/\r
4602UINT64\r
4603EFIAPI\r
4604BitFieldAndThenOr64 (\r
4605 IN UINT64 Operand,\r
4606 IN UINTN StartBit,\r
4607 IN UINTN EndBit,\r
4608 IN UINT64 AndData,\r
4609 IN UINT64 OrData\r
4610 );\r
4611\r
ac644614 4612//\r
4613// Base Library Checksum Functions\r
4614//\r
4615\r
4616/**\r
17f695ed 4617 Returns the sum of all elements in a buffer in unit of UINT8.\r
ac644614 4618 During calculation, the carry bits are dropped.\r
4619\r
4620 This function calculates the sum of all elements in a buffer\r
4621 in unit of UINT8. The carry bits in result of addition are dropped.\r
4622 The result is returned as UINT8. If Length is Zero, then Zero is\r
4623 returned.\r
4624\r
4625 If Buffer is NULL, then ASSERT().\r
4626 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4627\r
af2dc6a7 4628 @param Buffer The pointer to the buffer to carry out the sum operation.\r
17f695ed 4629 @param Length The size, in bytes, of Buffer.\r
ac644614 4630\r
4631 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4632\r
4633**/\r
4634UINT8\r
4635EFIAPI\r
4636CalculateSum8 (\r
ee6c452c 4637 IN CONST UINT8 *Buffer,\r
4638 IN UINTN Length\r
ac644614 4639 );\r
4640\r
4641\r
4642/**\r
4643 Returns the two's complement checksum of all elements in a buffer\r
4644 of 8-bit values.\r
4645\r
4646 This function first calculates the sum of the 8-bit values in the\r
4647 buffer specified by Buffer and Length. The carry bits in the result\r
4648 of addition are dropped. Then, the two's complement of the sum is\r
4649 returned. If Length is 0, then 0 is returned.\r
4650\r
4651 If Buffer is NULL, then ASSERT().\r
4652 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4653\r
af2dc6a7 4654 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
1106ffe1 4655 @param Length The size, in bytes, of Buffer.\r
ac644614 4656\r
af2dc6a7 4657 @return Checksum The two's complement checksum of Buffer.\r
ac644614 4658\r
4659**/\r
4660UINT8\r
4661EFIAPI\r
4662CalculateCheckSum8 (\r
ee6c452c 4663 IN CONST UINT8 *Buffer,\r
4664 IN UINTN Length\r
ac644614 4665 );\r
4666\r
4667\r
4668/**\r
4669 Returns the sum of all elements in a buffer of 16-bit values. During\r
4670 calculation, the carry bits are dropped.\r
4671\r
4672 This function calculates the sum of the 16-bit values in the buffer\r
4673 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
4674 The 16-bit result is returned. If Length is 0, then 0 is returned.\r
4675\r
4676 If Buffer is NULL, then ASSERT().\r
4677 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
4678 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
4679 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4680\r
af2dc6a7 4681 @param Buffer The pointer to the buffer to carry out the sum operation.\r
1106ffe1 4682 @param Length The size, in bytes, of Buffer.\r
ac644614 4683\r
4684 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4685\r
4686**/\r
4687UINT16\r
4688EFIAPI\r
4689CalculateSum16 (\r
ee6c452c 4690 IN CONST UINT16 *Buffer,\r
4691 IN UINTN Length\r
ac644614 4692 );\r
4693\r
4694\r
4695/**\r
4696 Returns the two's complement checksum of all elements in a buffer of\r
4697 16-bit values.\r
4698\r
4699 This function first calculates the sum of the 16-bit values in the buffer\r
4700 specified by Buffer and Length. The carry bits in the result of addition\r
4701 are dropped. Then, the two's complement of the sum is returned. If Length\r
4702 is 0, then 0 is returned.\r
4703\r
4704 If Buffer is NULL, then ASSERT().\r
4705 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
4706 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
4707 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4708\r
af2dc6a7 4709 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
1106ffe1 4710 @param Length The size, in bytes, of Buffer.\r
ac644614 4711\r
af2dc6a7 4712 @return Checksum The two's complement checksum of Buffer.\r
ac644614 4713\r
4714**/\r
4715UINT16\r
4716EFIAPI\r
4717CalculateCheckSum16 (\r
ee6c452c 4718 IN CONST UINT16 *Buffer,\r
4719 IN UINTN Length\r
ac644614 4720 );\r
4721\r
4722\r
4723/**\r
17f695ed 4724 Returns the sum of all elements in a buffer of 32-bit values. During\r
ac644614 4725 calculation, the carry bits are dropped.\r
4726\r
4727 This function calculates the sum of the 32-bit values in the buffer\r
4728 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
17f695ed 4729 The 32-bit result is returned. If Length is 0, then 0 is returned.\r
ac644614 4730\r
4731 If Buffer is NULL, then ASSERT().\r
4732 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
4733 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
4734 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4735\r
af2dc6a7 4736 @param Buffer The pointer to the buffer to carry out the sum operation.\r
1106ffe1 4737 @param Length The size, in bytes, of Buffer.\r
ac644614 4738\r
4739 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4740\r
4741**/\r
4742UINT32\r
4743EFIAPI\r
4744CalculateSum32 (\r
ee6c452c 4745 IN CONST UINT32 *Buffer,\r
4746 IN UINTN Length\r
ac644614 4747 );\r
4748\r
4749\r
4750/**\r
4751 Returns the two's complement checksum of all elements in a buffer of\r
4752 32-bit values.\r
4753\r
4754 This function first calculates the sum of the 32-bit values in the buffer\r
4755 specified by Buffer and Length. The carry bits in the result of addition\r
4756 are dropped. Then, the two's complement of the sum is returned. If Length\r
4757 is 0, then 0 is returned.\r
4758\r
4759 If Buffer is NULL, then ASSERT().\r
4760 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
4761 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
4762 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4763\r
af2dc6a7 4764 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
1106ffe1 4765 @param Length The size, in bytes, of Buffer.\r
ac644614 4766\r
af2dc6a7 4767 @return Checksum The two's complement checksum of Buffer.\r
ac644614 4768\r
4769**/\r
4770UINT32\r
4771EFIAPI\r
4772CalculateCheckSum32 (\r
ee6c452c 4773 IN CONST UINT32 *Buffer,\r
4774 IN UINTN Length\r
ac644614 4775 );\r
4776\r
4777\r
4778/**\r
4779 Returns the sum of all elements in a buffer of 64-bit values. During\r
4780 calculation, the carry bits are dropped.\r
4781\r
4782 This function calculates the sum of the 64-bit values in the buffer\r
4783 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
4784 The 64-bit result is returned. If Length is 0, then 0 is returned.\r
4785\r
4786 If Buffer is NULL, then ASSERT().\r
4787 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
4788 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
4789 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4790\r
af2dc6a7 4791 @param Buffer The pointer to the buffer to carry out the sum operation.\r
1106ffe1 4792 @param Length The size, in bytes, of Buffer.\r
ac644614 4793\r
4794 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4795\r
4796**/\r
4797UINT64\r
4798EFIAPI\r
4799CalculateSum64 (\r
ee6c452c 4800 IN CONST UINT64 *Buffer,\r
4801 IN UINTN Length\r
ac644614 4802 );\r
4803\r
4804\r
4805/**\r
4806 Returns the two's complement checksum of all elements in a buffer of\r
4807 64-bit values.\r
4808\r
4809 This function first calculates the sum of the 64-bit values in the buffer\r
4810 specified by Buffer and Length. The carry bits in the result of addition\r
4811 are dropped. Then, the two's complement of the sum is returned. If Length\r
4812 is 0, then 0 is returned.\r
4813\r
4814 If Buffer is NULL, then ASSERT().\r
4815 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
4816 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
4817 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4818\r
af2dc6a7 4819 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
1106ffe1 4820 @param Length The size, in bytes, of Buffer.\r
ac644614 4821\r
af2dc6a7 4822 @return Checksum The two's complement checksum of Buffer.\r
ac644614 4823\r
4824**/\r
4825UINT64\r
4826EFIAPI\r
4827CalculateCheckSum64 (\r
ee6c452c 4828 IN CONST UINT64 *Buffer,\r
4829 IN UINTN Length\r
ac644614 4830 );\r
4831\r
0a8e6f79
LG
4832/**\r
4833 Computes and returns a 32-bit CRC for a data buffer.\r
4834 CRC32 value bases on ITU-T V.42.\r
4835\r
4836 If Buffer is NULL, then ASSERT().\r
4837 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4838\r
4839 @param[in] Buffer A pointer to the buffer on which the 32-bit CRC is to be computed.\r
4840 @param[in] Length The number of bytes in the buffer Data.\r
4841\r
4842 @retval Crc32 The 32-bit CRC was computed for the data buffer.\r
4843\r
4844**/\r
4845UINT32\r
4846EFIAPI\r
4847CalculateCrc32(\r
4848 IN VOID *Buffer,\r
4849 IN UINTN Length\r
4850 );\r
ac644614 4851\r
d75f9fc2 4852//\r
4853// Base Library CPU Functions\r
4854//\r
4855\r
4856/**\r
4857 Function entry point used when a stack switch is requested with SwitchStack()\r
4858\r
4859 @param Context1 Context1 parameter passed into SwitchStack().\r
4860 @param Context2 Context2 parameter passed into SwitchStack().\r
4861\r
4862**/\r
ac644614 4863typedef\r
4864VOID\r
9810cdd8 4865(EFIAPI *SWITCH_STACK_ENTRY_POINT)(\r
ac644614 4866 IN VOID *Context1, OPTIONAL\r
4867 IN VOID *Context2 OPTIONAL\r
4868 );\r
4869\r
4870\r
4871/**\r
4872 Used to serialize load and store operations.\r
4873\r
4874 All loads and stores that proceed calls to this function are guaranteed to be\r
4875 globally visible when this function returns.\r
4876\r
4877**/\r
4878VOID\r
4879EFIAPI\r
4880MemoryFence (\r
4881 VOID\r
4882 );\r
4883\r
4884\r
4885/**\r
4886 Saves the current CPU context that can be restored with a call to LongJump()\r
4887 and returns 0.\r
4888\r
4889 Saves the current CPU context in the buffer specified by JumpBuffer and\r
4890 returns 0. The initial call to SetJump() must always return 0. Subsequent\r
4891 calls to LongJump() cause a non-zero value to be returned by SetJump().\r
4892\r
4893 If JumpBuffer is NULL, then ASSERT().\r
1a2f870c 4894 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
17f695ed 4895 \r
4896 NOTE: The structure BASE_LIBRARY_JUMP_BUFFER is CPU architecture specific.\r
4897 The same structure must never be used for more than one CPU architecture context.\r
4898 For example, a BASE_LIBRARY_JUMP_BUFFER allocated by an IA-32 module must never be used from an x64 module. \r
4899 SetJump()/LongJump() is not currently supported for the EBC processor type. \r
ac644614 4900\r
4901 @param JumpBuffer A pointer to CPU context buffer.\r
4902\r
4903 @retval 0 Indicates a return from SetJump().\r
4904\r
4905**/\r
4906UINTN\r
4907EFIAPI\r
4908SetJump (\r
4909 OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
4910 );\r
4911\r
4912\r
4913/**\r
4914 Restores the CPU context that was saved with SetJump().\r
4915\r
4916 Restores the CPU context from the buffer specified by JumpBuffer. This\r
4917 function never returns to the caller. Instead is resumes execution based on\r
4918 the state of JumpBuffer.\r
4919\r
4920 If JumpBuffer is NULL, then ASSERT().\r
1a2f870c 4921 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
ac644614 4922 If Value is 0, then ASSERT().\r
4923\r
4924 @param JumpBuffer A pointer to CPU context buffer.\r
4925 @param Value The value to return when the SetJump() context is\r
4926 restored and must be non-zero.\r
4927\r
4928**/\r
4929VOID\r
4930EFIAPI\r
4931LongJump (\r
4932 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
4933 IN UINTN Value\r
4934 );\r
4935\r
4936\r
4937/**\r
4938 Enables CPU interrupts.\r
4939\r
ac644614 4940**/\r
4941VOID\r
4942EFIAPI\r
4943EnableInterrupts (\r
4944 VOID\r
4945 );\r
4946\r
4947\r
4948/**\r
4949 Disables CPU interrupts.\r
4950\r
ac644614 4951**/\r
4952VOID\r
4953EFIAPI\r
4954DisableInterrupts (\r
4955 VOID\r
4956 );\r
4957\r
4958\r
4959/**\r
4960 Disables CPU interrupts and returns the interrupt state prior to the disable\r
4961 operation.\r
4962\r
ac644614 4963 @retval TRUE CPU interrupts were enabled on entry to this call.\r
4964 @retval FALSE CPU interrupts were disabled on entry to this call.\r
4965\r
4966**/\r
4967BOOLEAN\r
4968EFIAPI\r
4969SaveAndDisableInterrupts (\r
4970 VOID\r
4971 );\r
4972\r
4973\r
4974/**\r
4975 Enables CPU interrupts for the smallest window required to capture any\r
4976 pending interrupts.\r
4977\r
ac644614 4978**/\r
4979VOID\r
4980EFIAPI\r
4981EnableDisableInterrupts (\r
4982 VOID\r
4983 );\r
4984\r
4985\r
4986/**\r
4987 Retrieves the current CPU interrupt state.\r
4988\r
af2dc6a7 4989 Returns TRUE if interrupts are currently enabled. Otherwise\r
38bbd3d9 4990 returns FALSE.\r
ac644614 4991\r
4992 @retval TRUE CPU interrupts are enabled.\r
4993 @retval FALSE CPU interrupts are disabled.\r
4994\r
4995**/\r
4996BOOLEAN\r
4997EFIAPI\r
4998GetInterruptState (\r
4999 VOID\r
5000 );\r
5001\r
5002\r
5003/**\r
5004 Set the current CPU interrupt state.\r
5005\r
5006 Sets the current CPU interrupt state to the state specified by\r
5007 InterruptState. If InterruptState is TRUE, then interrupts are enabled. If\r
5008 InterruptState is FALSE, then interrupts are disabled. InterruptState is\r
5009 returned.\r
5010\r
5011 @param InterruptState TRUE if interrupts should enabled. FALSE if\r
5012 interrupts should be disabled.\r
5013\r
5014 @return InterruptState\r
5015\r
5016**/\r
5017BOOLEAN\r
5018EFIAPI\r
5019SetInterruptState (\r
5020 IN BOOLEAN InterruptState\r
5021 );\r
5022\r
5023\r
5024/**\r
5025 Requests CPU to pause for a short period of time.\r
5026\r
5027 Requests CPU to pause for a short period of time. Typically used in MP\r
5028 systems to prevent memory starvation while waiting for a spin lock.\r
5029\r
5030**/\r
5031VOID\r
5032EFIAPI\r
5033CpuPause (\r
5034 VOID\r
5035 );\r
5036\r
5037\r
5038/**\r
5039 Transfers control to a function starting with a new stack.\r
5040\r
5041 Transfers control to the function specified by EntryPoint using the\r
5042 new stack specified by NewStack and passing in the parameters specified\r
5043 by Context1 and Context2. Context1 and Context2 are optional and may\r
5044 be NULL. The function EntryPoint must never return. This function\r
5045 supports a variable number of arguments following the NewStack parameter.\r
1a2f870c 5046 These additional arguments are ignored on IA-32, x64, and EBC architectures.\r
5047 Itanium processors expect one additional parameter of type VOID * that specifies\r
ac644614 5048 the new backing store pointer.\r
5049\r
5050 If EntryPoint is NULL, then ASSERT().\r
5051 If NewStack is NULL, then ASSERT().\r
5052\r
5053 @param EntryPoint A pointer to function to call with the new stack.\r
5054 @param Context1 A pointer to the context to pass into the EntryPoint\r
5055 function.\r
5056 @param Context2 A pointer to the context to pass into the EntryPoint\r
5057 function.\r
5058 @param NewStack A pointer to the new stack to use for the EntryPoint\r
5059 function.\r
af2dc6a7 5060 @param ... This variable argument list is ignored for IA-32, x64, and \r
5061 EBC architectures. For Itanium processors, this variable \r
5062 argument list is expected to contain a single parameter of \r
5063 type VOID * that specifies the new backing store pointer.\r
42eedea9 5064\r
ac644614 5065\r
5066**/\r
5067VOID\r
5068EFIAPI\r
5069SwitchStack (\r
5070 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
5071 IN VOID *Context1, OPTIONAL\r
5072 IN VOID *Context2, OPTIONAL\r
5073 IN VOID *NewStack,\r
5074 ...\r
5075 );\r
5076\r
5077\r
5078/**\r
5079 Generates a breakpoint on the CPU.\r
5080\r
5081 Generates a breakpoint on the CPU. The breakpoint must be implemented such\r
5082 that code can resume normal execution after the breakpoint.\r
5083\r
5084**/\r
5085VOID\r
5086EFIAPI\r
5087CpuBreakpoint (\r
5088 VOID\r
5089 );\r
5090\r
5091\r
5092/**\r
5093 Executes an infinite loop.\r
5094\r
5095 Forces the CPU to execute an infinite loop. A debugger may be used to skip\r
5096 past the loop and the code that follows the loop must execute properly. This\r
5097 implies that the infinite loop must not cause the code that follow it to be\r
5098 optimized away.\r
5099\r
5100**/\r
5101VOID\r
5102EFIAPI\r
5103CpuDeadLoop (\r
5104 VOID\r
5105 );\r
2fe241a2 5106 \r
ac644614 5107#if defined (MDE_CPU_IPF)\r
5108\r
5109/**\r
5110 Flush a range of cache lines in the cache coherency domain of the calling\r
5111 CPU.\r
5112\r
cc39b88b 5113 Flushes the cache lines specified by Address and Length. If Address is not aligned \r
5114 on a cache line boundary, then entire cache line containing Address is flushed. \r
5115 If Address + Length is not aligned on a cache line boundary, then the entire cache \r
5116 line containing Address + Length - 1 is flushed. This function may choose to flush \r
5117 the entire cache if that is more efficient than flushing the specified range. If \r
5118 Length is 0, the no cache lines are flushed. Address is returned. \r
1a2f870c 5119 This function is only available on Itanium processors.\r
ac644614 5120\r
5121 If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().\r
5122\r
5123 @param Address The base address of the instruction lines to invalidate. If\r
5124 the CPU is in a physical addressing mode, then Address is a\r
5125 physical address. If the CPU is in a virtual addressing mode,\r
5126 then Address is a virtual address.\r
5127\r
5128 @param Length The number of bytes to invalidate from the instruction cache.\r
5129\r
cc39b88b 5130 @return Address.\r
ac644614 5131\r
5132**/\r
5133VOID *\r
5134EFIAPI\r
cc39b88b 5135AsmFlushCacheRange (\r
ac644614 5136 IN VOID *Address,\r
5137 IN UINTN Length\r
5138 );\r
5139\r
5140\r
5141/**\r
af2dc6a7 5142 Executes an FC instruction.\r
5143 Executes an FC instruction on the cache line specified by Address.\r
ac644614 5144 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
1a2f870c 5145 An implementation may flush a larger region. This function is only available on Itanium processors.\r
ac644614 5146\r
ee6c452c 5147 @param Address The Address of cache line to be flushed.\r
ac644614 5148\r
5149 @return The address of FC instruction executed.\r
5150\r
5151**/\r
5152UINT64\r
5153EFIAPI\r
5154AsmFc (\r
5155 IN UINT64 Address\r
5156 );\r
5157\r
5158\r
5159/**\r
af2dc6a7 5160 Executes an FC.I instruction.\r
5161 Executes an FC.I instruction on the cache line specified by Address.\r
ac644614 5162 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
1a2f870c 5163 An implementation may flush a larger region. This function is only available on Itanium processors.\r
ac644614 5164\r
ee6c452c 5165 @param Address The Address of cache line to be flushed.\r
ac644614 5166\r
af2dc6a7 5167 @return The address of the FC.I instruction executed.\r
ac644614 5168\r
5169**/\r
5170UINT64\r
5171EFIAPI\r
5172AsmFci (\r
5173 IN UINT64 Address\r
5174 );\r
5175\r
5176\r
5177/**\r
5178 Reads the current value of a Processor Identifier Register (CPUID).\r
17f695ed 5179 \r
5180 Reads and returns the current value of Processor Identifier Register specified by Index. \r
ac644614 5181 The Index of largest implemented CPUID (One less than the number of implemented CPUID\r
5182 registers) is determined by CPUID [3] bits {7:0}.\r
5183 No parameter checking is performed on Index. If the Index value is beyond the\r
5184 implemented CPUID register range, a Reserved Register/Field fault may occur. The caller\r
5185 must either guarantee that Index is valid, or the caller must set up fault handlers to\r
1a2f870c 5186 catch the faults. This function is only available on Itanium processors.\r
ac644614 5187\r
ee6c452c 5188 @param Index The 8-bit Processor Identifier Register index to read.\r
ac644614 5189\r
5190 @return The current value of Processor Identifier Register specified by Index.\r
5191\r
5192**/\r
5193UINT64\r
5194EFIAPI\r
5195AsmReadCpuid (\r
5196 IN UINT8 Index\r
5197 );\r
5198\r
5199\r
5200/**\r
5201 Reads the current value of 64-bit Processor Status Register (PSR).\r
1a2f870c 5202 This function is only available on Itanium processors.\r
ac644614 5203\r
5204 @return The current value of PSR.\r
5205\r
5206**/\r
5207UINT64\r
5208EFIAPI\r
5209AsmReadPsr (\r
5210 VOID\r
5211 );\r
5212\r
5213\r
5214/**\r
5215 Writes the current value of 64-bit Processor Status Register (PSR).\r
22388319 5216\r
ac644614 5217 No parameter checking is performed on Value. All bits of Value corresponding to\r
22388319 5218 reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur.\r
5219 The caller must either guarantee that Value is valid, or the caller must set up\r
1a2f870c 5220 fault handlers to catch the faults. This function is only available on Itanium processors.\r
ac644614 5221\r
ee6c452c 5222 @param Value The 64-bit value to write to PSR.\r
ac644614 5223\r
5224 @return The 64-bit value written to the PSR.\r
5225\r
5226**/\r
5227UINT64\r
5228EFIAPI\r
5229AsmWritePsr (\r
5230 IN UINT64 Value\r
5231 );\r
5232\r
5233\r
5234/**\r
5235 Reads the current value of 64-bit Kernel Register #0 (KR0).\r
2fe241a2 5236 \r
5237 Reads and returns the current value of KR0. \r
1a2f870c 5238 This function is only available on Itanium processors.\r
ac644614 5239\r
5240 @return The current value of KR0.\r
5241\r
5242**/\r
5243UINT64\r
5244EFIAPI\r
5245AsmReadKr0 (\r
5246 VOID\r
5247 );\r
5248\r
5249\r
5250/**\r
5251 Reads the current value of 64-bit Kernel Register #1 (KR1).\r
2fe241a2 5252\r
5253 Reads and returns the current value of KR1. \r
1a2f870c 5254 This function is only available on Itanium processors.\r
ac644614 5255\r
5256 @return The current value of KR1.\r
5257\r
5258**/\r
5259UINT64\r
5260EFIAPI\r
5261AsmReadKr1 (\r
5262 VOID\r
5263 );\r
5264\r
5265\r
5266/**\r
5267 Reads the current value of 64-bit Kernel Register #2 (KR2).\r
2fe241a2 5268\r
5269 Reads and returns the current value of KR2. \r
1a2f870c 5270 This function is only available on Itanium processors.\r
ac644614 5271\r
5272 @return The current value of KR2.\r
5273\r
5274**/\r
5275UINT64\r
5276EFIAPI\r
5277AsmReadKr2 (\r
5278 VOID\r
5279 );\r
5280\r
5281\r
5282/**\r
5283 Reads the current value of 64-bit Kernel Register #3 (KR3).\r
2fe241a2 5284\r
5285 Reads and returns the current value of KR3. \r
1a2f870c 5286 This function is only available on Itanium processors.\r
ac644614 5287\r
5288 @return The current value of KR3.\r
5289\r
5290**/\r
5291UINT64\r
5292EFIAPI\r
5293AsmReadKr3 (\r
5294 VOID\r
5295 );\r
5296\r
5297\r
5298/**\r
5299 Reads the current value of 64-bit Kernel Register #4 (KR4).\r
ac644614 5300\r
2fe241a2 5301 Reads and returns the current value of KR4. \r
1a2f870c 5302 This function is only available on Itanium processors.\r
2fe241a2 5303 \r
ac644614 5304 @return The current value of KR4.\r
5305\r
5306**/\r
5307UINT64\r
5308EFIAPI\r
5309AsmReadKr4 (\r
5310 VOID\r
5311 );\r
5312\r
5313\r
5314/**\r
5315 Reads the current value of 64-bit Kernel Register #5 (KR5).\r
2fe241a2 5316\r
5317 Reads and returns the current value of KR5. \r
1a2f870c 5318 This function is only available on Itanium processors.\r
ac644614 5319\r
5320 @return The current value of KR5.\r
5321\r
5322**/\r
5323UINT64\r
5324EFIAPI\r
5325AsmReadKr5 (\r
5326 VOID\r
5327 );\r
5328\r
5329\r
5330/**\r
5331 Reads the current value of 64-bit Kernel Register #6 (KR6).\r
2fe241a2 5332\r
5333 Reads and returns the current value of KR6. \r
1a2f870c 5334 This function is only available on Itanium processors.\r
ac644614 5335\r
5336 @return The current value of KR6.\r
5337\r
5338**/\r
5339UINT64\r
5340EFIAPI\r
5341AsmReadKr6 (\r
5342 VOID\r
5343 );\r
5344\r
5345\r
5346/**\r
5347 Reads the current value of 64-bit Kernel Register #7 (KR7).\r
2fe241a2 5348\r
5349 Reads and returns the current value of KR7. \r
1a2f870c 5350 This function is only available on Itanium processors.\r
ac644614 5351\r
5352 @return The current value of KR7.\r
5353\r
5354**/\r
5355UINT64\r
5356EFIAPI\r
5357AsmReadKr7 (\r
5358 VOID\r
5359 );\r
5360\r
5361\r
5362/**\r
5363 Write the current value of 64-bit Kernel Register #0 (KR0).\r
2fe241a2 5364 \r
5365 Writes the current value of KR0. The 64-bit value written to \r
1a2f870c 5366 the KR0 is returned. This function is only available on Itanium processors.\r
ac644614 5367\r
ee6c452c 5368 @param Value The 64-bit value to write to KR0.\r
ac644614 5369\r
5370 @return The 64-bit value written to the KR0.\r
5371\r
5372**/\r
5373UINT64\r
5374EFIAPI\r
5375AsmWriteKr0 (\r
5376 IN UINT64 Value\r
5377 );\r
5378\r
5379\r
5380/**\r
5381 Write the current value of 64-bit Kernel Register #1 (KR1).\r
2fe241a2 5382\r
5383 Writes the current value of KR1. The 64-bit value written to \r
1a2f870c 5384 the KR1 is returned. This function is only available on Itanium processors.\r
ac644614 5385\r
ee6c452c 5386 @param Value The 64-bit value to write to KR1.\r
ac644614 5387\r
5388 @return The 64-bit value written to the KR1.\r
5389\r
5390**/\r
5391UINT64\r
5392EFIAPI\r
5393AsmWriteKr1 (\r
5394 IN UINT64 Value\r
5395 );\r
5396\r
5397\r
5398/**\r
5399 Write the current value of 64-bit Kernel Register #2 (KR2).\r
2fe241a2 5400\r
5401 Writes the current value of KR2. The 64-bit value written to \r
1a2f870c 5402 the KR2 is returned. This function is only available on Itanium processors.\r
ac644614 5403\r
ee6c452c 5404 @param Value The 64-bit value to write to KR2.\r
ac644614 5405\r
5406 @return The 64-bit value written to the KR2.\r
5407\r
5408**/\r
5409UINT64\r
5410EFIAPI\r
5411AsmWriteKr2 (\r
5412 IN UINT64 Value\r
5413 );\r
5414\r
5415\r
5416/**\r
5417 Write the current value of 64-bit Kernel Register #3 (KR3).\r
2fe241a2 5418\r
5419 Writes the current value of KR3. The 64-bit value written to \r
1a2f870c 5420 the KR3 is returned. This function is only available on Itanium processors.\r
ac644614 5421\r
ee6c452c 5422 @param Value The 64-bit value to write to KR3.\r
ac644614 5423\r
5424 @return The 64-bit value written to the KR3.\r
5425\r
5426**/\r
5427UINT64\r
5428EFIAPI\r
5429AsmWriteKr3 (\r
5430 IN UINT64 Value\r
5431 );\r
5432\r
5433\r
5434/**\r
5435 Write the current value of 64-bit Kernel Register #4 (KR4).\r
2fe241a2 5436\r
5437 Writes the current value of KR4. The 64-bit value written to \r
1a2f870c 5438 the KR4 is returned. This function is only available on Itanium processors.\r
ac644614 5439\r
ee6c452c 5440 @param Value The 64-bit value to write to KR4.\r
ac644614 5441\r
5442 @return The 64-bit value written to the KR4.\r
5443\r
5444**/\r
5445UINT64\r
5446EFIAPI\r
5447AsmWriteKr4 (\r
5448 IN UINT64 Value\r
5449 );\r
5450\r
5451\r
5452/**\r
5453 Write the current value of 64-bit Kernel Register #5 (KR5).\r
2fe241a2 5454\r
5455 Writes the current value of KR5. The 64-bit value written to \r
1a2f870c 5456 the KR5 is returned. This function is only available on Itanium processors.\r
ac644614 5457\r
ee6c452c 5458 @param Value The 64-bit value to write to KR5.\r
ac644614 5459\r
5460 @return The 64-bit value written to the KR5.\r
5461\r
5462**/\r
5463UINT64\r
5464EFIAPI\r
5465AsmWriteKr5 (\r
5466 IN UINT64 Value\r
5467 );\r
5468\r
5469\r
5470/**\r
5471 Write the current value of 64-bit Kernel Register #6 (KR6).\r
2fe241a2 5472\r
5473 Writes the current value of KR6. The 64-bit value written to \r
1a2f870c 5474 the KR6 is returned. This function is only available on Itanium processors.\r
ac644614 5475\r
ee6c452c 5476 @param Value The 64-bit value to write to KR6.\r
ac644614 5477\r
5478 @return The 64-bit value written to the KR6.\r
5479\r
5480**/\r
5481UINT64\r
5482EFIAPI\r
5483AsmWriteKr6 (\r
5484 IN UINT64 Value\r
5485 );\r
5486\r
5487\r
5488/**\r
5489 Write the current value of 64-bit Kernel Register #7 (KR7).\r
2fe241a2 5490\r
5491 Writes the current value of KR7. The 64-bit value written to \r
1a2f870c 5492 the KR7 is returned. This function is only available on Itanium processors.\r
ac644614 5493\r
ee6c452c 5494 @param Value The 64-bit value to write to KR7.\r
ac644614 5495\r
5496 @return The 64-bit value written to the KR7.\r
5497\r
5498**/\r
5499UINT64\r
5500EFIAPI\r
5501AsmWriteKr7 (\r
5502 IN UINT64 Value\r
5503 );\r
5504\r
5505\r
5506/**\r
5507 Reads the current value of Interval Timer Counter Register (ITC).\r
2fe241a2 5508 \r
5509 Reads and returns the current value of ITC.\r
1a2f870c 5510 This function is only available on Itanium processors.\r
ac644614 5511\r
5512 @return The current value of ITC.\r
5513\r
5514**/\r
5515UINT64\r
5516EFIAPI\r
5517AsmReadItc (\r
5518 VOID\r
5519 );\r
5520\r
5521\r
5522/**\r
5523 Reads the current value of Interval Timer Vector Register (ITV).\r
2fe241a2 5524 \r
5525 Reads and returns the current value of ITV. \r
1a2f870c 5526 This function is only available on Itanium processors.\r
ac644614 5527\r
5528 @return The current value of ITV.\r
5529\r
5530**/\r
5531UINT64\r
5532EFIAPI\r
5533AsmReadItv (\r
5534 VOID\r
5535 );\r
5536\r
5537\r
5538/**\r
5539 Reads the current value of Interval Timer Match Register (ITM).\r
2fe241a2 5540 \r
5541 Reads and returns the current value of ITM.\r
1a2f870c 5542 This function is only available on Itanium processors.\r
ac644614 5543\r
5544 @return The current value of ITM.\r
5545**/\r
5546UINT64\r
5547EFIAPI\r
5548AsmReadItm (\r
5549 VOID\r
5550 );\r
5551\r
5552\r
5553/**\r
5554 Writes the current value of 64-bit Interval Timer Counter Register (ITC).\r
2fe241a2 5555 \r
5556 Writes the current value of ITC. The 64-bit value written to the ITC is returned. \r
1a2f870c 5557 This function is only available on Itanium processors.\r
ac644614 5558\r
ee6c452c 5559 @param Value The 64-bit value to write to ITC.\r
ac644614 5560\r
5561 @return The 64-bit value written to the ITC.\r
5562\r
5563**/\r
5564UINT64\r
5565EFIAPI\r
5566AsmWriteItc (\r
5567 IN UINT64 Value\r
5568 );\r
5569\r
5570\r
5571/**\r
5572 Writes the current value of 64-bit Interval Timer Match Register (ITM).\r
2fe241a2 5573 \r
5574 Writes the current value of ITM. The 64-bit value written to the ITM is returned. \r
1a2f870c 5575 This function is only available on Itanium processors.\r
ac644614 5576\r
ee6c452c 5577 @param Value The 64-bit value to write to ITM.\r
ac644614 5578\r
5579 @return The 64-bit value written to the ITM.\r
5580\r
5581**/\r
5582UINT64\r
5583EFIAPI\r
5584AsmWriteItm (\r
5585 IN UINT64 Value\r
5586 );\r
5587\r
5588\r
5589/**\r
5590 Writes the current value of 64-bit Interval Timer Vector Register (ITV).\r
2fe241a2 5591 \r
5592 Writes the current value of ITV. The 64-bit value written to the ITV is returned. \r
ac644614 5593 No parameter checking is performed on Value. All bits of Value corresponding to\r
5594 reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur.\r
5595 The caller must either guarantee that Value is valid, or the caller must set up\r
5596 fault handlers to catch the faults.\r
1a2f870c 5597 This function is only available on Itanium processors.\r
ac644614 5598\r
ee6c452c 5599 @param Value The 64-bit value to write to ITV.\r
ac644614 5600\r
5601 @return The 64-bit value written to the ITV.\r
5602\r
5603**/\r
5604UINT64\r
5605EFIAPI\r
5606AsmWriteItv (\r
5607 IN UINT64 Value\r
5608 );\r
5609\r
5610\r
5611/**\r
5612 Reads the current value of Default Control Register (DCR).\r
2fe241a2 5613 \r
1a2f870c 5614 Reads and returns the current value of DCR. This function is only available on Itanium processors.\r
ac644614 5615\r
5616 @return The current value of DCR.\r
5617\r
5618**/\r
5619UINT64\r
5620EFIAPI\r
5621AsmReadDcr (\r
5622 VOID\r
5623 );\r
5624\r
5625\r
5626/**\r
5627 Reads the current value of Interruption Vector Address Register (IVA).\r
2fe241a2 5628 \r
1a2f870c 5629 Reads and returns the current value of IVA. This function is only available on Itanium processors.\r
ac644614 5630\r
5631 @return The current value of IVA.\r
5632**/\r
5633UINT64\r
5634EFIAPI\r
5635AsmReadIva (\r
5636 VOID\r
5637 );\r
5638\r
5639\r
5640/**\r
5641 Reads the current value of Page Table Address Register (PTA).\r
2fe241a2 5642 \r
1a2f870c 5643 Reads and returns the current value of PTA. This function is only available on Itanium processors.\r
ac644614 5644\r
5645 @return The current value of PTA.\r
5646\r
5647**/\r
5648UINT64\r
5649EFIAPI\r
5650AsmReadPta (\r
5651 VOID\r
5652 );\r
5653\r
5654\r
5655/**\r
5656 Writes the current value of 64-bit Default Control Register (DCR).\r
2fe241a2 5657 \r
5658 Writes the current value of DCR. The 64-bit value written to the DCR is returned. \r
ac644614 5659 No parameter checking is performed on Value. All bits of Value corresponding to\r
5660 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
5661 The caller must either guarantee that Value is valid, or the caller must set up\r
5662 fault handlers to catch the faults.\r
1a2f870c 5663 This function is only available on Itanium processors.\r
ac644614 5664\r
ee6c452c 5665 @param Value The 64-bit value to write to DCR.\r
ac644614 5666\r
5667 @return The 64-bit value written to the DCR.\r
5668\r
5669**/\r
5670UINT64\r
5671EFIAPI\r
5672AsmWriteDcr (\r
5673 IN UINT64 Value\r
5674 );\r
5675\r
5676\r
5677/**\r
5678 Writes the current value of 64-bit Interruption Vector Address Register (IVA).\r
2fe241a2 5679 \r
5680 Writes the current value of IVA. The 64-bit value written to the IVA is returned. \r
ac644614 5681 The size of vector table is 32 K bytes and is 32 K bytes aligned\r
5682 the low 15 bits of Value is ignored when written.\r
1a2f870c 5683 This function is only available on Itanium processors.\r
ac644614 5684\r
ee6c452c 5685 @param Value The 64-bit value to write to IVA.\r
ac644614 5686\r
5687 @return The 64-bit value written to the IVA.\r
5688\r
5689**/\r
5690UINT64\r
5691EFIAPI\r
5692AsmWriteIva (\r
5693 IN UINT64 Value\r
5694 );\r
5695\r
5696\r
5697/**\r
5698 Writes the current value of 64-bit Page Table Address Register (PTA).\r
2fe241a2 5699 \r
5700 Writes the current value of PTA. The 64-bit value written to the PTA is returned. \r
ac644614 5701 No parameter checking is performed on Value. All bits of Value corresponding to\r
5702 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
5703 The caller must either guarantee that Value is valid, or the caller must set up\r
5704 fault handlers to catch the faults.\r
1a2f870c 5705 This function is only available on Itanium processors.\r
ac644614 5706\r
ee6c452c 5707 @param Value The 64-bit value to write to PTA.\r
ac644614 5708\r
5709 @return The 64-bit value written to the PTA.\r
5710**/\r
5711UINT64\r
5712EFIAPI\r
5713AsmWritePta (\r
5714 IN UINT64 Value\r
5715 );\r
5716\r
5717\r
5718/**\r
5719 Reads the current value of Local Interrupt ID Register (LID).\r
2fe241a2 5720 \r
1a2f870c 5721 Reads and returns the current value of LID. This function is only available on Itanium processors.\r
ac644614 5722\r
5723 @return The current value of LID.\r
5724\r
5725**/\r
5726UINT64\r
5727EFIAPI\r
5728AsmReadLid (\r
5729 VOID\r
5730 );\r
5731\r
5732\r
5733/**\r
5734 Reads the current value of External Interrupt Vector Register (IVR).\r
2fe241a2 5735 \r
1a2f870c 5736 Reads and returns the current value of IVR. This function is only available on Itanium processors. \r
ac644614 5737\r
5738 @return The current value of IVR.\r
5739\r
5740**/\r
5741UINT64\r
5742EFIAPI\r
5743AsmReadIvr (\r
5744 VOID\r
5745 );\r
5746\r
5747\r
5748/**\r
5749 Reads the current value of Task Priority Register (TPR).\r
2fe241a2 5750 \r
1a2f870c 5751 Reads and returns the current value of TPR. This function is only available on Itanium processors. \r
ac644614 5752\r
5753 @return The current value of TPR.\r
5754\r
5755**/\r
5756UINT64\r
5757EFIAPI\r
5758AsmReadTpr (\r
5759 VOID\r
5760 );\r
5761\r
5762\r
5763/**\r
5764 Reads the current value of External Interrupt Request Register #0 (IRR0).\r
2fe241a2 5765 \r
1a2f870c 5766 Reads and returns the current value of IRR0. This function is only available on Itanium processors. \r
ac644614 5767\r
5768 @return The current value of IRR0.\r
5769\r
5770**/\r
5771UINT64\r
5772EFIAPI\r
5773AsmReadIrr0 (\r
5774 VOID\r
5775 );\r
5776\r
5777\r
5778/**\r
5779 Reads the current value of External Interrupt Request Register #1 (IRR1).\r
2fe241a2 5780 \r
1a2f870c 5781 Reads and returns the current value of IRR1. This function is only available on Itanium processors. \r
ac644614 5782\r
5783 @return The current value of IRR1.\r
5784\r
5785**/\r
5786UINT64\r
5787EFIAPI\r
5788AsmReadIrr1 (\r
5789 VOID\r
5790 );\r
5791\r
5792\r
5793/**\r
5794 Reads the current value of External Interrupt Request Register #2 (IRR2).\r
2fe241a2 5795 \r
1a2f870c 5796 Reads and returns the current value of IRR2. This function is only available on Itanium processors.\r
ac644614 5797\r
5798 @return The current value of IRR2.\r
5799\r
5800**/\r
5801UINT64\r
5802EFIAPI\r
5803AsmReadIrr2 (\r
5804 VOID\r
5805 );\r
5806\r
5807\r
5808/**\r
5809 Reads the current value of External Interrupt Request Register #3 (IRR3).\r
2fe241a2 5810 \r
1a2f870c 5811 Reads and returns the current value of IRR3. This function is only available on Itanium processors. \r
ac644614 5812\r
5813 @return The current value of IRR3.\r
5814\r
5815**/\r
5816UINT64\r
5817EFIAPI\r
5818AsmReadIrr3 (\r
5819 VOID\r
5820 );\r
5821\r
5822\r
5823/**\r
5824 Reads the current value of Performance Monitor Vector Register (PMV).\r
2fe241a2 5825 \r
1a2f870c 5826 Reads and returns the current value of PMV. This function is only available on Itanium processors. \r
ac644614 5827\r
5828 @return The current value of PMV.\r
5829\r
5830**/\r
5831UINT64\r
5832EFIAPI\r
5833AsmReadPmv (\r
5834 VOID\r
5835 );\r
5836\r
5837\r
5838/**\r
5839 Reads the current value of Corrected Machine Check Vector Register (CMCV).\r
2fe241a2 5840 \r
1a2f870c 5841 Reads and returns the current value of CMCV. This function is only available on Itanium processors.\r
ac644614 5842\r
5843 @return The current value of CMCV.\r
5844\r
5845**/\r
5846UINT64\r
5847EFIAPI\r
5848AsmReadCmcv (\r
5849 VOID\r
5850 );\r
5851\r
5852\r
5853/**\r
5854 Reads the current value of Local Redirection Register #0 (LRR0).\r
2fe241a2 5855 \r
1a2f870c 5856 Reads and returns the current value of LRR0. This function is only available on Itanium processors. \r
ac644614 5857\r
5858 @return The current value of LRR0.\r
5859\r
5860**/\r
5861UINT64\r
5862EFIAPI\r
5863AsmReadLrr0 (\r
5864 VOID\r
5865 );\r
5866\r
5867\r
5868/**\r
5869 Reads the current value of Local Redirection Register #1 (LRR1).\r
2fe241a2 5870 \r
1a2f870c 5871 Reads and returns the current value of LRR1. This function is only available on Itanium processors.\r
ac644614 5872\r
5873 @return The current value of LRR1.\r
5874\r
5875**/\r
5876UINT64\r
5877EFIAPI\r
5878AsmReadLrr1 (\r
5879 VOID\r
5880 );\r
5881\r
5882\r
5883/**\r
5884 Writes the current value of 64-bit Page Local Interrupt ID Register (LID).\r
2fe241a2 5885 \r
5886 Writes the current value of LID. The 64-bit value written to the LID is returned. \r
ac644614 5887 No parameter checking is performed on Value. All bits of Value corresponding to\r
5888 reserved fields of LID must be 0 or a Reserved Register/Field fault may occur.\r
5889 The caller must either guarantee that Value is valid, or the caller must set up\r
5890 fault handlers to catch the faults.\r
1a2f870c 5891 This function is only available on Itanium processors.\r
ac644614 5892\r
ee6c452c 5893 @param Value The 64-bit value to write to LID.\r
ac644614 5894\r
5895 @return The 64-bit value written to the LID.\r
5896\r
5897**/\r
5898UINT64\r
5899EFIAPI\r
5900AsmWriteLid (\r
5901 IN UINT64 Value\r
5902 );\r
5903\r
5904\r
5905/**\r
5906 Writes the current value of 64-bit Task Priority Register (TPR).\r
2fe241a2 5907 \r
5908 Writes the current value of TPR. The 64-bit value written to the TPR is returned. \r
ac644614 5909 No parameter checking is performed on Value. All bits of Value corresponding to\r
5910 reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur.\r
5911 The caller must either guarantee that Value is valid, or the caller must set up\r
5912 fault handlers to catch the faults.\r
1a2f870c 5913 This function is only available on Itanium processors.\r
ac644614 5914\r
ee6c452c 5915 @param Value The 64-bit value to write to TPR.\r
ac644614 5916\r
5917 @return The 64-bit value written to the TPR.\r
5918\r
5919**/\r
5920UINT64\r
5921EFIAPI\r
5922AsmWriteTpr (\r
5923 IN UINT64 Value\r
5924 );\r
5925\r
5926\r
5927/**\r
5928 Performs a write operation on End OF External Interrupt Register (EOI).\r
2fe241a2 5929 \r
1a2f870c 5930 Writes a value of 0 to the EOI Register. This function is only available on Itanium processors.\r
ac644614 5931\r
5932**/\r
5933VOID\r
5934EFIAPI\r
5935AsmWriteEoi (\r
5936 VOID\r
5937 );\r
5938\r
5939\r
5940/**\r
5941 Writes the current value of 64-bit Performance Monitor Vector Register (PMV).\r
2fe241a2 5942 \r
5943 Writes the current value of PMV. The 64-bit value written to the PMV is returned. \r
ac644614 5944 No parameter checking is performed on Value. All bits of Value corresponding\r
5945 to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur.\r
5946 The caller must either guarantee that Value is valid, or the caller must set up\r
5947 fault handlers to catch the faults.\r
1a2f870c 5948 This function is only available on Itanium processors.\r
ac644614 5949\r
ee6c452c 5950 @param Value The 64-bit value to write to PMV.\r
ac644614 5951\r
5952 @return The 64-bit value written to the PMV.\r
5953\r
5954**/\r
5955UINT64\r
5956EFIAPI\r
5957AsmWritePmv (\r
5958 IN UINT64 Value\r
5959 );\r
5960\r
5961\r
5962/**\r
5963 Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).\r
2fe241a2 5964 \r
5965 Writes the current value of CMCV. The 64-bit value written to the CMCV is returned. \r
ac644614 5966 No parameter checking is performed on Value. All bits of Value corresponding\r
5967 to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur.\r
5968 The caller must either guarantee that Value is valid, or the caller must set up\r
5969 fault handlers to catch the faults.\r
1a2f870c 5970 This function is only available on Itanium processors.\r
ac644614 5971\r
ee6c452c 5972 @param Value The 64-bit value to write to CMCV.\r
ac644614 5973\r
5974 @return The 64-bit value written to the CMCV.\r
5975\r
5976**/\r
5977UINT64\r
5978EFIAPI\r
5979AsmWriteCmcv (\r
5980 IN UINT64 Value\r
5981 );\r
5982\r
5983\r
5984/**\r
5985 Writes the current value of 64-bit Local Redirection Register #0 (LRR0).\r
2fe241a2 5986 \r
5987 Writes the current value of LRR0. The 64-bit value written to the LRR0 is returned. \r
ac644614 5988 No parameter checking is performed on Value. All bits of Value corresponding\r
5989 to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur.\r
5990 The caller must either guarantee that Value is valid, or the caller must set up\r
5991 fault handlers to catch the faults.\r
1a2f870c 5992 This function is only available on Itanium processors.\r
ac644614 5993\r
ee6c452c 5994 @param Value The 64-bit value to write to LRR0.\r
ac644614 5995\r
5996 @return The 64-bit value written to the LRR0.\r
5997\r
5998**/\r
5999UINT64\r
6000EFIAPI\r
6001AsmWriteLrr0 (\r
6002 IN UINT64 Value\r
6003 );\r
6004\r
6005\r
6006/**\r
6007 Writes the current value of 64-bit Local Redirection Register #1 (LRR1).\r
2fe241a2 6008 \r
6009 Writes the current value of LRR1. The 64-bit value written to the LRR1 is returned. \r
ac644614 6010 No parameter checking is performed on Value. All bits of Value corresponding\r
6011 to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur.\r
6012 The caller must either guarantee that Value is valid, or the caller must\r
6013 set up fault handlers to catch the faults.\r
1a2f870c 6014 This function is only available on Itanium processors.\r
ac644614 6015\r
ee6c452c 6016 @param Value The 64-bit value to write to LRR1.\r
ac644614 6017\r
6018 @return The 64-bit value written to the LRR1.\r
6019\r
6020**/\r
6021UINT64\r
6022EFIAPI\r
6023AsmWriteLrr1 (\r
6024 IN UINT64 Value\r
6025 );\r
6026\r
6027\r
6028/**\r
6029 Reads the current value of Instruction Breakpoint Register (IBR).\r
6030 \r
6031 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
6032 registers contain breakpoint addresses, and the odd numbered registers contain\r
af2dc6a7 6033 breakpoint mask conditions. At least four instruction registers pairs are implemented\r
ac644614 6034 on all processor models. Implemented registers are contiguous starting with\r
6035 register 0. No parameter checking is performed on Index, and if the Index value\r
6036 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
6037 occur. The caller must either guarantee that Index is valid, or the caller must\r
6038 set up fault handlers to catch the faults.\r
1a2f870c 6039 This function is only available on Itanium processors.\r
ac644614 6040\r
ee6c452c 6041 @param Index The 8-bit Instruction Breakpoint Register index to read.\r
ac644614 6042\r
6043 @return The current value of Instruction Breakpoint Register specified by Index.\r
6044\r
6045**/\r
6046UINT64\r
6047EFIAPI\r
6048AsmReadIbr (\r
6049 IN UINT8 Index\r
6050 );\r
6051\r
6052\r
6053/**\r
6054 Reads the current value of Data Breakpoint Register (DBR).\r
6055\r
6056 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
6057 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
af2dc6a7 6058 mask conditions. At least four data registers pairs are implemented on all processor\r
ac644614 6059 models. Implemented registers are contiguous starting with register 0.\r
6060 No parameter checking is performed on Index. If the Index value is beyond\r
6061 the implemented DBR register range, a Reserved Register/Field fault may occur.\r
6062 The caller must either guarantee that Index is valid, or the caller must set up\r
6063 fault handlers to catch the faults.\r
1a2f870c 6064 This function is only available on Itanium processors.\r
ac644614 6065\r
ee6c452c 6066 @param Index The 8-bit Data Breakpoint Register index to read.\r
ac644614 6067\r
6068 @return The current value of Data Breakpoint Register specified by Index.\r
6069\r
6070**/\r
6071UINT64\r
6072EFIAPI\r
6073AsmReadDbr (\r
6074 IN UINT8 Index\r
6075 );\r
6076\r
6077\r
6078/**\r
6079 Reads the current value of Performance Monitor Configuration Register (PMC).\r
6080\r
af2dc6a7 6081 All processor implementations provide at least four performance counters\r
6082 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow\r
ac644614 6083 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
6084 additional implementation-dependent PMC and PMD to increase the number of\r
6085 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
6086 register set is implementation dependent. No parameter checking is performed\r
6087 on Index. If the Index value is beyond the implemented PMC register range,\r
6088 zero value will be returned.\r
1a2f870c 6089 This function is only available on Itanium processors.\r
ac644614 6090\r
ee6c452c 6091 @param Index The 8-bit Performance Monitor Configuration Register index to read.\r
ac644614 6092\r
2fe241a2 6093 @return The current value of Performance Monitor Configuration Register\r
6094 specified by Index.\r
ac644614 6095\r
6096**/\r
6097UINT64\r
6098EFIAPI\r
6099AsmReadPmc (\r
6100 IN UINT8 Index\r
6101 );\r
6102\r
6103\r
6104/**\r
6105 Reads the current value of Performance Monitor Data Register (PMD).\r
6106\r
6107 All processor implementations provide at least 4 performance counters\r
6108 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter\r
6109 overflow status registers (PMC [0]... PMC [3]). Processor implementations may\r
6110 provide additional implementation-dependent PMC and PMD to increase the number\r
6111 of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
6112 register set is implementation dependent. No parameter checking is performed\r
6113 on Index. If the Index value is beyond the implemented PMD register range,\r
6114 zero value will be returned.\r
1a2f870c 6115 This function is only available on Itanium processors.\r
ac644614 6116\r
ee6c452c 6117 @param Index The 8-bit Performance Monitor Data Register index to read.\r
ac644614 6118\r
6119 @return The current value of Performance Monitor Data Register specified by Index.\r
6120\r
6121**/\r
6122UINT64\r
6123EFIAPI\r
6124AsmReadPmd (\r
6125 IN UINT8 Index\r
6126 );\r
6127\r
6128\r
6129/**\r
6130 Writes the current value of 64-bit Instruction Breakpoint Register (IBR).\r
6131\r
6132 Writes current value of Instruction Breakpoint Register specified by Index.\r
6133 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
6134 registers contain breakpoint addresses, and odd numbered registers contain\r
af2dc6a7 6135 breakpoint mask conditions. At least four instruction registers pairs are implemented\r
ac644614 6136 on all processor models. Implemented registers are contiguous starting with\r
6137 register 0. No parameter checking is performed on Index. If the Index value\r
6138 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
6139 occur. The caller must either guarantee that Index is valid, or the caller must\r
6140 set up fault handlers to catch the faults.\r
1a2f870c 6141 This function is only available on Itanium processors.\r
ac644614 6142\r
ee6c452c 6143 @param Index The 8-bit Instruction Breakpoint Register index to write.\r
6144 @param Value The 64-bit value to write to IBR.\r
ac644614 6145\r
6146 @return The 64-bit value written to the IBR.\r
6147\r
6148**/\r
6149UINT64\r
6150EFIAPI\r
6151AsmWriteIbr (\r
6152 IN UINT8 Index,\r
6153 IN UINT64 Value\r
6154 );\r
6155\r
6156\r
6157/**\r
6158 Writes the current value of 64-bit Data Breakpoint Register (DBR).\r
6159\r
6160 Writes current value of Data Breakpoint Register specified by Index.\r
6161 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
6162 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
af2dc6a7 6163 mask conditions. At least four data registers pairs are implemented on all processor\r
ac644614 6164 models. Implemented registers are contiguous starting with register 0. No parameter\r
6165 checking is performed on Index. If the Index value is beyond the implemented\r
6166 DBR register range, a Reserved Register/Field fault may occur. The caller must\r
6167 either guarantee that Index is valid, or the caller must set up fault handlers to\r
6168 catch the faults.\r
1a2f870c 6169 This function is only available on Itanium processors.\r
ac644614 6170\r
ee6c452c 6171 @param Index The 8-bit Data Breakpoint Register index to write.\r
6172 @param Value The 64-bit value to write to DBR.\r
ac644614 6173\r
6174 @return The 64-bit value written to the DBR.\r
6175\r
6176**/\r
6177UINT64\r
6178EFIAPI\r
6179AsmWriteDbr (\r
6180 IN UINT8 Index,\r
6181 IN UINT64 Value\r
6182 );\r
6183\r
6184\r
6185/**\r
6186 Writes the current value of 64-bit Performance Monitor Configuration Register (PMC).\r
6187\r
6188 Writes current value of Performance Monitor Configuration Register specified by Index.\r
af2dc6a7 6189 All processor implementations provide at least four performance counters\r
6190 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow status\r
ac644614 6191 registers (PMC [0]... PMC [3]). Processor implementations may provide additional\r
6192 implementation-dependent PMC and PMD to increase the number of 'generic' performance\r
6193 counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation\r
6194 dependent. No parameter checking is performed on Index. If the Index value is\r
6195 beyond the implemented PMC register range, the write is ignored.\r
1a2f870c 6196 This function is only available on Itanium processors.\r
ac644614 6197\r
ee6c452c 6198 @param Index The 8-bit Performance Monitor Configuration Register index to write.\r
6199 @param Value The 64-bit value to write to PMC.\r
ac644614 6200\r
6201 @return The 64-bit value written to the PMC.\r
6202\r
6203**/\r
6204UINT64\r
6205EFIAPI\r
6206AsmWritePmc (\r
6207 IN UINT8 Index,\r
6208 IN UINT64 Value\r
6209 );\r
6210\r
6211\r
6212/**\r
6213 Writes the current value of 64-bit Performance Monitor Data Register (PMD).\r
6214\r
6215 Writes current value of Performance Monitor Data Register specified by Index.\r
af2dc6a7 6216 All processor implementations provide at least four performance counters\r
6217 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow\r
ac644614 6218 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
6219 additional implementation-dependent PMC and PMD to increase the number of 'generic'\r
6220 performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set\r
6221 is implementation dependent. No parameter checking is performed on Index. If the\r
6222 Index value is beyond the implemented PMD register range, the write is ignored.\r
1a2f870c 6223 This function is only available on Itanium processors.\r
ac644614 6224\r
ee6c452c 6225 @param Index The 8-bit Performance Monitor Data Register index to write.\r
6226 @param Value The 64-bit value to write to PMD.\r
ac644614 6227\r
6228 @return The 64-bit value written to the PMD.\r
6229\r
6230**/\r
6231UINT64\r
6232EFIAPI\r
6233AsmWritePmd (\r
6234 IN UINT8 Index,\r
6235 IN UINT64 Value\r
6236 );\r
6237\r
6238\r
6239/**\r
6240 Reads the current value of 64-bit Global Pointer (GP).\r
6241\r
6242 Reads and returns the current value of GP.\r
1a2f870c 6243 This function is only available on Itanium processors.\r
ac644614 6244\r
6245 @return The current value of GP.\r
6246\r
6247**/\r
6248UINT64\r
6249EFIAPI\r
6250AsmReadGp (\r
6251 VOID\r
6252 );\r
6253\r
6254\r
6255/**\r
6256 Write the current value of 64-bit Global Pointer (GP).\r
6257\r
6258 Writes the current value of GP. The 64-bit value written to the GP is returned.\r
6259 No parameter checking is performed on Value.\r
1a2f870c 6260 This function is only available on Itanium processors.\r
ac644614 6261\r
6262 @param Value The 64-bit value to write to GP.\r
6263\r
6264 @return The 64-bit value written to the GP.\r
6265\r
6266**/\r
6267UINT64\r
6268EFIAPI\r
6269AsmWriteGp (\r
6270 IN UINT64 Value\r
6271 );\r
6272\r
6273\r
6274/**\r
6275 Reads the current value of 64-bit Stack Pointer (SP).\r
6276\r
6277 Reads and returns the current value of SP.\r
1a2f870c 6278 This function is only available on Itanium processors.\r
ac644614 6279\r
6280 @return The current value of SP.\r
6281\r
6282**/\r
6283UINT64\r
6284EFIAPI\r
6285AsmReadSp (\r
6286 VOID\r
6287 );\r
6288\r
6289\r
aad6137d 6290///\r
af2dc6a7 6291/// Valid Index value for AsmReadControlRegister().\r
aad6137d 6292///\r
6293#define IPF_CONTROL_REGISTER_DCR 0\r
6294#define IPF_CONTROL_REGISTER_ITM 1\r
6295#define IPF_CONTROL_REGISTER_IVA 2\r
6296#define IPF_CONTROL_REGISTER_PTA 8\r
6297#define IPF_CONTROL_REGISTER_IPSR 16\r
6298#define IPF_CONTROL_REGISTER_ISR 17\r
6299#define IPF_CONTROL_REGISTER_IIP 19\r
6300#define IPF_CONTROL_REGISTER_IFA 20\r
6301#define IPF_CONTROL_REGISTER_ITIR 21\r
6302#define IPF_CONTROL_REGISTER_IIPA 22\r
6303#define IPF_CONTROL_REGISTER_IFS 23\r
6304#define IPF_CONTROL_REGISTER_IIM 24\r
6305#define IPF_CONTROL_REGISTER_IHA 25\r
6306#define IPF_CONTROL_REGISTER_LID 64\r
6307#define IPF_CONTROL_REGISTER_IVR 65\r
6308#define IPF_CONTROL_REGISTER_TPR 66\r
6309#define IPF_CONTROL_REGISTER_EOI 67\r
6310#define IPF_CONTROL_REGISTER_IRR0 68\r
6311#define IPF_CONTROL_REGISTER_IRR1 69\r
6312#define IPF_CONTROL_REGISTER_IRR2 70\r
6313#define IPF_CONTROL_REGISTER_IRR3 71\r
6314#define IPF_CONTROL_REGISTER_ITV 72\r
6315#define IPF_CONTROL_REGISTER_PMV 73\r
6316#define IPF_CONTROL_REGISTER_CMCV 74\r
6317#define IPF_CONTROL_REGISTER_LRR0 80\r
6318#define IPF_CONTROL_REGISTER_LRR1 81\r
6319\r
6320/**\r
6321 Reads a 64-bit control register.\r
6322\r
af2dc6a7 6323 Reads and returns the control register specified by Index. The valid Index valued \r
6324 are defined above in "Related Definitions".\r
6325 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only \r
6326 available on Itanium processors.\r
aad6137d 6327\r
6328 @param Index The index of the control register to read.\r
6329\r
6330 @return The control register specified by Index.\r
6331\r
6332**/\r
6333UINT64\r
6334EFIAPI\r
6335AsmReadControlRegister (\r
6336 IN UINT64 Index\r
6337 );\r
6338\r
6339\r
6340///\r
af2dc6a7 6341/// Valid Index value for AsmReadApplicationRegister().\r
aad6137d 6342///\r
6343#define IPF_APPLICATION_REGISTER_K0 0\r
6344#define IPF_APPLICATION_REGISTER_K1 1\r
6345#define IPF_APPLICATION_REGISTER_K2 2\r
6346#define IPF_APPLICATION_REGISTER_K3 3\r
6347#define IPF_APPLICATION_REGISTER_K4 4\r
6348#define IPF_APPLICATION_REGISTER_K5 5\r
6349#define IPF_APPLICATION_REGISTER_K6 6\r
6350#define IPF_APPLICATION_REGISTER_K7 7\r
6351#define IPF_APPLICATION_REGISTER_RSC 16\r
6352#define IPF_APPLICATION_REGISTER_BSP 17\r
6353#define IPF_APPLICATION_REGISTER_BSPSTORE 18\r
6354#define IPF_APPLICATION_REGISTER_RNAT 19\r
6355#define IPF_APPLICATION_REGISTER_FCR 21\r
6356#define IPF_APPLICATION_REGISTER_EFLAG 24\r
6357#define IPF_APPLICATION_REGISTER_CSD 25\r
6358#define IPF_APPLICATION_REGISTER_SSD 26\r
6359#define IPF_APPLICATION_REGISTER_CFLG 27\r
6360#define IPF_APPLICATION_REGISTER_FSR 28\r
6361#define IPF_APPLICATION_REGISTER_FIR 29\r
6362#define IPF_APPLICATION_REGISTER_FDR 30\r
6363#define IPF_APPLICATION_REGISTER_CCV 32\r
6364#define IPF_APPLICATION_REGISTER_UNAT 36\r
6365#define IPF_APPLICATION_REGISTER_FPSR 40\r
6366#define IPF_APPLICATION_REGISTER_ITC 44\r
6367#define IPF_APPLICATION_REGISTER_PFS 64\r
6368#define IPF_APPLICATION_REGISTER_LC 65\r
6369#define IPF_APPLICATION_REGISTER_EC 66\r
6370\r
6371/**\r
6372 Reads a 64-bit application register.\r
6373\r
af2dc6a7 6374 Reads and returns the application register specified by Index. The valid Index \r
6375 valued are defined above in "Related Definitions".\r
6376 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only \r
6377 available on Itanium processors.\r
aad6137d 6378\r
6379 @param Index The index of the application register to read.\r
6380\r
6381 @return The application register specified by Index.\r
6382\r
6383**/\r
6384UINT64\r
6385EFIAPI\r
6386AsmReadApplicationRegister (\r
6387 IN UINT64 Index\r
6388 );\r
6389\r
6390\r
59e0bb0c 6391/**\r
6392 Reads the current value of a Machine Specific Register (MSR).\r
6393\r
6394 Reads and returns the current value of the Machine Specific Register specified by Index. No\r
6395 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
6396 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
6397 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
1a2f870c 6398 only available on Itanium processors.\r
59e0bb0c 6399\r
6400 @param Index The 8-bit Machine Specific Register index to read.\r
6401\r
6402 @return The current value of the Machine Specific Register specified by Index. \r
6403\r
6404**/\r
6405UINT64\r
6406EFIAPI\r
6407AsmReadMsr (\r
6408 IN UINT8 Index \r
6409 );\r
6410\r
6411\r
6412/**\r
6413 Writes the current value of a Machine Specific Register (MSR).\r
6414\r
6415 Writes Value to the Machine Specific Register specified by Index. Value is returned. No\r
6416 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
6417 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
6418 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
1a2f870c 6419 only available on Itanium processors.\r
59e0bb0c 6420\r
6421 @param Index The 8-bit Machine Specific Register index to write.\r
6422 @param Value The 64-bit value to write to the Machine Specific Register.\r
6423\r
6424 @return The 64-bit value to write to the Machine Specific Register. \r
6425\r
6426**/\r
6427UINT64\r
6428EFIAPI\r
6429AsmWriteMsr (\r
6430 IN UINT8 Index, \r
6431 IN UINT64 Value \r
6432 );\r
6433\r
6434\r
ac644614 6435/**\r
6436 Determines if the CPU is currently executing in virtual, physical, or mixed mode.\r
6437\r
6438 Determines the current execution mode of the CPU.\r
6439 If the CPU is in virtual mode(PSR.RT=1, PSR.DT=1, PSR.IT=1), then 1 is returned.\r
6440 If the CPU is in physical mode(PSR.RT=0, PSR.DT=0, PSR.IT=0), then 0 is returned.\r
6441 If the CPU is not in physical mode or virtual mode, then it is in mixed mode,\r
6442 and -1 is returned.\r
1a2f870c 6443 This function is only available on Itanium processors.\r
ac644614 6444\r
17f695ed 6445 @retval 1 The CPU is in virtual mode.\r
6446 @retval 0 The CPU is in physical mode.\r
6447 @retval -1 The CPU is in mixed mode.\r
ac644614 6448\r
6449**/\r
6450INT64\r
6451EFIAPI\r
6452AsmCpuVirtual (\r
6453 VOID\r
6454 );\r
6455\r
6456\r
6457/**\r
6458 Makes a PAL procedure call.\r
6459\r
6460 This is a wrapper function to make a PAL procedure call. Based on the Index\r
6461 value this API will make static or stacked PAL call. The following table\r
6462 describes the usage of PAL Procedure Index Assignment. Architected procedures\r
6463 may be designated as required or optional. If a PAL procedure is specified\r
6464 as optional, a unique return code of 0xFFFFFFFFFFFFFFFF is returned in the\r
6465 Status field of the PAL_CALL_RETURN structure.\r
6466 This indicates that the procedure is not present in this PAL implementation.\r
6467 It is the caller's responsibility to check for this return code after calling\r
6468 any optional PAL procedure.\r
6469 No parameter checking is performed on the 5 input parameters, but there are\r
6470 some common rules that the caller should follow when making a PAL call. Any\r
6471 address passed to PAL as buffers for return parameters must be 8-byte aligned.\r
6472 Unaligned addresses may cause undefined results. For those parameters defined\r
6473 as reserved or some fields defined as reserved must be zero filled or the invalid\r
6474 argument return value may be returned or undefined result may occur during the\r
6475 execution of the procedure. If the PalEntryPoint does not point to a valid\r
6476 PAL entry point then the system behavior is undefined. This function is only\r
1a2f870c 6477 available on Itanium processors.\r
ac644614 6478\r
ee6c452c 6479 @param PalEntryPoint The PAL procedure calls entry point.\r
6480 @param Index The PAL procedure Index number.\r
6481 @param Arg2 The 2nd parameter for PAL procedure calls.\r
6482 @param Arg3 The 3rd parameter for PAL procedure calls.\r
6483 @param Arg4 The 4th parameter for PAL procedure calls.\r
ac644614 6484\r
6485 @return structure returned from the PAL Call procedure, including the status and return value.\r
6486\r
6487**/\r
6488PAL_CALL_RETURN\r
6489EFIAPI\r
6490AsmPalCall (\r
6491 IN UINT64 PalEntryPoint,\r
6492 IN UINT64 Index,\r
6493 IN UINT64 Arg2,\r
6494 IN UINT64 Arg3,\r
6495 IN UINT64 Arg4\r
6496 );\r
fd163050 6497#endif\r
ac644614 6498\r
fd163050 6499#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
1106ffe1 6500///\r
af2dc6a7 6501/// IA32 and x64 Specific Functions.\r
6502/// Byte packed structure for 16-bit Real Mode EFLAGS.\r
1106ffe1 6503///\r
ac644614 6504typedef union {\r
6505 struct {\r
af2dc6a7 6506 UINT32 CF:1; ///< Carry Flag.\r
6507 UINT32 Reserved_0:1; ///< Reserved.\r
6508 UINT32 PF:1; ///< Parity Flag.\r
6509 UINT32 Reserved_1:1; ///< Reserved.\r
6510 UINT32 AF:1; ///< Auxiliary Carry Flag.\r
6511 UINT32 Reserved_2:1; ///< Reserved.\r
6512 UINT32 ZF:1; ///< Zero Flag.\r
6513 UINT32 SF:1; ///< Sign Flag.\r
6514 UINT32 TF:1; ///< Trap Flag.\r
6515 UINT32 IF:1; ///< Interrupt Enable Flag.\r
6516 UINT32 DF:1; ///< Direction Flag.\r
6517 UINT32 OF:1; ///< Overflow Flag.\r
6518 UINT32 IOPL:2; ///< I/O Privilege Level.\r
6519 UINT32 NT:1; ///< Nested Task.\r
6520 UINT32 Reserved_3:1; ///< Reserved.\r
ac644614 6521 } Bits;\r
6522 UINT16 Uint16;\r
6523} IA32_FLAGS16;\r
6524\r
1106ffe1 6525///\r
af2dc6a7 6526/// Byte packed structure for EFLAGS/RFLAGS.\r
6527/// 32-bits on IA-32.\r
6528/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
1106ffe1 6529///\r
ac644614 6530typedef union {\r
6531 struct {\r
af2dc6a7 6532 UINT32 CF:1; ///< Carry Flag.\r
6533 UINT32 Reserved_0:1; ///< Reserved.\r
6534 UINT32 PF:1; ///< Parity Flag.\r
6535 UINT32 Reserved_1:1; ///< Reserved.\r
6536 UINT32 AF:1; ///< Auxiliary Carry Flag.\r
6537 UINT32 Reserved_2:1; ///< Reserved.\r
6538 UINT32 ZF:1; ///< Zero Flag.\r
6539 UINT32 SF:1; ///< Sign Flag.\r
6540 UINT32 TF:1; ///< Trap Flag.\r
6541 UINT32 IF:1; ///< Interrupt Enable Flag.\r
6542 UINT32 DF:1; ///< Direction Flag.\r
6543 UINT32 OF:1; ///< Overflow Flag.\r
6544 UINT32 IOPL:2; ///< I/O Privilege Level.\r
6545 UINT32 NT:1; ///< Nested Task.\r
6546 UINT32 Reserved_3:1; ///< Reserved.\r
6547 UINT32 RF:1; ///< Resume Flag.\r
6548 UINT32 VM:1; ///< Virtual 8086 Mode.\r
6549 UINT32 AC:1; ///< Alignment Check.\r
6550 UINT32 VIF:1; ///< Virtual Interrupt Flag.\r
6551 UINT32 VIP:1; ///< Virtual Interrupt Pending.\r
6552 UINT32 ID:1; ///< ID Flag.\r
6553 UINT32 Reserved_4:10; ///< Reserved.\r
ac644614 6554 } Bits;\r
6555 UINTN UintN;\r
6556} IA32_EFLAGS32;\r
6557\r
1106ffe1 6558///\r
af2dc6a7 6559/// Byte packed structure for Control Register 0 (CR0).\r
6560/// 32-bits on IA-32.\r
6561/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
1106ffe1 6562///\r
ac644614 6563typedef union {\r
6564 struct {\r
af2dc6a7 6565 UINT32 PE:1; ///< Protection Enable.\r
6566 UINT32 MP:1; ///< Monitor Coprocessor.\r
6567 UINT32 EM:1; ///< Emulation.\r
6568 UINT32 TS:1; ///< Task Switched.\r
6569 UINT32 ET:1; ///< Extension Type.\r
6570 UINT32 NE:1; ///< Numeric Error.\r
6571 UINT32 Reserved_0:10; ///< Reserved.\r
6572 UINT32 WP:1; ///< Write Protect.\r
6573 UINT32 Reserved_1:1; ///< Reserved.\r
6574 UINT32 AM:1; ///< Alignment Mask.\r
6575 UINT32 Reserved_2:10; ///< Reserved.\r
6576 UINT32 NW:1; ///< Mot Write-through.\r
6577 UINT32 CD:1; ///< Cache Disable.\r
6578 UINT32 PG:1; ///< Paging.\r
ac644614 6579 } Bits;\r
6580 UINTN UintN;\r
6581} IA32_CR0;\r
6582\r
1106ffe1 6583///\r
af2dc6a7 6584/// Byte packed structure for Control Register 4 (CR4).\r
6585/// 32-bits on IA-32.\r
6586/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
1106ffe1 6587///\r
ac644614 6588typedef union {\r
6589 struct {\r
af2dc6a7 6590 UINT32 VME:1; ///< Virtual-8086 Mode Extensions.\r
6591 UINT32 PVI:1; ///< Protected-Mode Virtual Interrupts.\r
6592 UINT32 TSD:1; ///< Time Stamp Disable.\r
6593 UINT32 DE:1; ///< Debugging Extensions.\r
6594 UINT32 PSE:1; ///< Page Size Extensions.\r
6595 UINT32 PAE:1; ///< Physical Address Extension.\r
6596 UINT32 MCE:1; ///< Machine Check Enable.\r
6597 UINT32 PGE:1; ///< Page Global Enable.\r
2a53dabf 6598 UINT32 PCE:1; ///< Performance Monitoring Counter\r
af2dc6a7 6599 ///< Enable.\r
2a53dabf
LG
6600 UINT32 OSFXSR:1; ///< Operating System Support for\r
6601 ///< FXSAVE and FXRSTOR instructions\r
6602 UINT32 OSXMMEXCPT:1; ///< Operating System Support for\r
6603 ///< Unmasked SIMD Floating Point\r
af2dc6a7 6604 ///< Exceptions.\r
6605 UINT32 Reserved_0:2; ///< Reserved.\r
2a53dabf 6606 UINT32 VMXE:1; ///< VMX Enable\r
af2dc6a7 6607 UINT32 Reserved_1:18; ///< Reserved.\r
ac644614 6608 } Bits;\r
6609 UINTN UintN;\r
6610} IA32_CR4;\r
6611\r
6088db38 6612///\r
6613/// Byte packed structure for a segment descriptor in a GDT/LDT.\r
6614///\r
6615typedef union {\r
6616 struct {\r
6617 UINT32 LimitLow:16;\r
6618 UINT32 BaseLow:16;\r
6619 UINT32 BaseMid:8;\r
6620 UINT32 Type:4;\r
6621 UINT32 S:1;\r
6622 UINT32 DPL:2;\r
6623 UINT32 P:1;\r
6624 UINT32 LimitHigh:4;\r
6625 UINT32 AVL:1;\r
6626 UINT32 L:1;\r
6627 UINT32 DB:1;\r
6628 UINT32 G:1;\r
6629 UINT32 BaseHigh:8;\r
6630 } Bits;\r
6631 UINT64 Uint64;\r
6632} IA32_SEGMENT_DESCRIPTOR;\r
6633\r
1106ffe1 6634///\r
af2dc6a7 6635/// Byte packed structure for an IDTR, GDTR, LDTR descriptor.\r
1106ffe1 6636///\r
ac644614 6637#pragma pack (1)\r
6638typedef struct {\r
6639 UINT16 Limit;\r
6640 UINTN Base;\r
6641} IA32_DESCRIPTOR;\r
6642#pragma pack ()\r
6643\r
6644#define IA32_IDT_GATE_TYPE_TASK 0x85\r
6645#define IA32_IDT_GATE_TYPE_INTERRUPT_16 0x86\r
6646#define IA32_IDT_GATE_TYPE_TRAP_16 0x87\r
6647#define IA32_IDT_GATE_TYPE_INTERRUPT_32 0x8E\r
6648#define IA32_IDT_GATE_TYPE_TRAP_32 0x8F\r
6649\r
364a5474
JW
6650#define IA32_GDT_TYPE_TSS 0x9\r
6651#define IA32_GDT_ALIGNMENT 8\r
6f4aad3b 6652\r
6653#if defined (MDE_CPU_IA32)\r
1106ffe1 6654///\r
af2dc6a7 6655/// Byte packed structure for an IA-32 Interrupt Gate Descriptor.\r
1106ffe1 6656///\r
dc317713 6657typedef union {\r
6658 struct {\r
af2dc6a7 6659 UINT32 OffsetLow:16; ///< Offset bits 15..0.\r
6660 UINT32 Selector:16; ///< Selector.\r
6661 UINT32 Reserved_0:8; ///< Reserved.\r
6662 UINT32 GateType:8; ///< Gate Type. See #defines above.\r
6663 UINT32 OffsetHigh:16; ///< Offset bits 31..16.\r
dc317713 6664 } Bits;\r
6665 UINT64 Uint64;\r
6666} IA32_IDT_GATE_DESCRIPTOR;\r
6667\r
364a5474
JW
6668#pragma pack (1)\r
6669//\r
6670// IA32 Task-State Segment Definition\r
6671//\r
6672typedef struct {\r
6673 UINT16 PreviousTaskLink;\r
6674 UINT16 Reserved_2;\r
6675 UINT32 ESP0;\r
6676 UINT16 SS0;\r
6677 UINT16 Reserved_10;\r
6678 UINT32 ESP1;\r
6679 UINT16 SS1;\r
6680 UINT16 Reserved_18;\r
6681 UINT32 ESP2;\r
6682 UINT16 SS2;\r
6683 UINT16 Reserved_26;\r
6684 UINT32 CR3;\r
6685 UINT32 EIP;\r
6686 UINT32 EFLAGS;\r
6687 UINT32 EAX;\r
6688 UINT32 ECX;\r
6689 UINT32 EDX;\r
6690 UINT32 EBX;\r
6691 UINT32 ESP;\r
6692 UINT32 EBP;\r
6693 UINT32 ESI;\r
6694 UINT32 EDI;\r
6695 UINT16 ES;\r
6696 UINT16 Reserved_74;\r
6697 UINT16 CS;\r
6698 UINT16 Reserved_78;\r
6699 UINT16 SS;\r
6700 UINT16 Reserved_82;\r
6701 UINT16 DS;\r
6702 UINT16 Reserved_86;\r
6703 UINT16 FS;\r
6704 UINT16 Reserved_90;\r
6705 UINT16 GS;\r
6706 UINT16 Reserved_94;\r
6707 UINT16 LDTSegmentSelector;\r
6708 UINT16 Reserved_98;\r
6709 UINT16 T;\r
6710 UINT16 IOMapBaseAddress;\r
6711} IA32_TASK_STATE_SEGMENT;\r
6712\r
6713typedef union {\r
6714 struct {\r
6715 UINT32 LimitLow:16; ///< Segment Limit 15..00\r
6716 UINT32 BaseLow:16; ///< Base Address 15..00\r
6717 UINT32 BaseMid:8; ///< Base Address 23..16\r
6718 UINT32 Type:4; ///< Type (1 0 B 1)\r
6719 UINT32 Reserved_43:1; ///< 0\r
6720 UINT32 DPL:2; ///< Descriptor Privilege Level\r
6721 UINT32 P:1; ///< Segment Present\r
6722 UINT32 LimitHigh:4; ///< Segment Limit 19..16\r
6723 UINT32 AVL:1; ///< Available for use by system software\r
6724 UINT32 Reserved_52:2; ///< 0 0\r
6725 UINT32 G:1; ///< Granularity\r
6726 UINT32 BaseHigh:8; ///< Base Address 31..24\r
6727 } Bits;\r
6728 UINT64 Uint64;\r
6729} IA32_TSS_DESCRIPTOR;\r
6730#pragma pack ()\r
6731\r
dc317713 6732#endif\r
6733\r
6734#if defined (MDE_CPU_X64)\r
6f4aad3b 6735///\r
af2dc6a7 6736/// Byte packed structure for an x64 Interrupt Gate Descriptor.\r
6f4aad3b 6737///\r
ac644614 6738typedef union {\r
6739 struct {\r
af2dc6a7 6740 UINT32 OffsetLow:16; ///< Offset bits 15..0.\r
6741 UINT32 Selector:16; ///< Selector.\r
6742 UINT32 Reserved_0:8; ///< Reserved.\r
6743 UINT32 GateType:8; ///< Gate Type. See #defines above.\r
6744 UINT32 OffsetHigh:16; ///< Offset bits 31..16.\r
6745 UINT32 OffsetUpper:32; ///< Offset bits 63..32.\r
6746 UINT32 Reserved_1:32; ///< Reserved.\r
ac644614 6747 } Bits;\r
6f4aad3b 6748 struct {\r
6749 UINT64 Uint64;\r
6750 UINT64 Uint64_1;\r
6751 } Uint128; \r
ac644614 6752} IA32_IDT_GATE_DESCRIPTOR;\r
6753\r
364a5474
JW
6754#pragma pack (1)\r
6755//\r
6756// IA32 Task-State Segment Definition\r
6757//\r
6758typedef struct {\r
6759 UINT32 Reserved_0;\r
6760 UINT64 RSP0;\r
6761 UINT64 RSP1;\r
6762 UINT64 RSP2;\r
6763 UINT64 Reserved_28;\r
6764 UINT64 IST[7];\r
6765 UINT64 Reserved_92;\r
6766 UINT16 Reserved_100;\r
6767 UINT16 IOMapBaseAddress;\r
6768} IA32_TASK_STATE_SEGMENT;\r
6769\r
6770typedef union {\r
6771 struct {\r
6772 UINT32 LimitLow:16; ///< Segment Limit 15..00\r
6773 UINT32 BaseLow:16; ///< Base Address 15..00\r
6774 UINT32 BaseMidl:8; ///< Base Address 23..16\r
6775 UINT32 Type:4; ///< Type (1 0 B 1)\r
6776 UINT32 Reserved_43:1; ///< 0\r
6777 UINT32 DPL:2; ///< Descriptor Privilege Level\r
6778 UINT32 P:1; ///< Segment Present\r
6779 UINT32 LimitHigh:4; ///< Segment Limit 19..16\r
6780 UINT32 AVL:1; ///< Available for use by system software\r
6781 UINT32 Reserved_52:2; ///< 0 0\r
6782 UINT32 G:1; ///< Granularity\r
6783 UINT32 BaseMidh:8; ///< Base Address 31..24\r
6784 UINT32 BaseHigh:32; ///< Base Address 63..32\r
6785 UINT32 Reserved_96:32; ///< Reserved\r
6786 } Bits;\r
6787 struct {\r
6788 UINT64 Uint64;\r
6789 UINT64 Uint64_1;\r
6790 } Uint128;\r
6791} IA32_TSS_DESCRIPTOR;\r
6792#pragma pack ()\r
6793\r
dc317713 6794#endif\r
6795\r
1106ffe1 6796///\r
af2dc6a7 6797/// Byte packed structure for an FP/SSE/SSE2 context.\r
1106ffe1 6798///\r
ac644614 6799typedef struct {\r
6800 UINT8 Buffer[512];\r
6801} IA32_FX_BUFFER;\r
6802\r
1106ffe1 6803///\r
af2dc6a7 6804/// Structures for the 16-bit real mode thunks.\r
1106ffe1 6805///\r
ac644614 6806typedef struct {\r
6807 UINT32 Reserved1;\r
6808 UINT32 Reserved2;\r
6809 UINT32 Reserved3;\r
6810 UINT32 Reserved4;\r
6811 UINT8 BL;\r
6812 UINT8 BH;\r
6813 UINT16 Reserved5;\r
6814 UINT8 DL;\r
6815 UINT8 DH;\r
6816 UINT16 Reserved6;\r
6817 UINT8 CL;\r
6818 UINT8 CH;\r
6819 UINT16 Reserved7;\r
6820 UINT8 AL;\r
6821 UINT8 AH;\r
6822 UINT16 Reserved8;\r
6823} IA32_BYTE_REGS;\r
6824\r
6825typedef struct {\r
6826 UINT16 DI;\r
6827 UINT16 Reserved1;\r
6828 UINT16 SI;\r
6829 UINT16 Reserved2;\r
6830 UINT16 BP;\r
6831 UINT16 Reserved3;\r
6832 UINT16 SP;\r
6833 UINT16 Reserved4;\r
6834 UINT16 BX;\r
6835 UINT16 Reserved5;\r
6836 UINT16 DX;\r
6837 UINT16 Reserved6;\r
6838 UINT16 CX;\r
6839 UINT16 Reserved7;\r
6840 UINT16 AX;\r
6841 UINT16 Reserved8;\r
6842} IA32_WORD_REGS;\r
6843\r
6844typedef struct {\r
6845 UINT32 EDI;\r
6846 UINT32 ESI;\r
6847 UINT32 EBP;\r
6848 UINT32 ESP;\r
6849 UINT32 EBX;\r
6850 UINT32 EDX;\r
6851 UINT32 ECX;\r
6852 UINT32 EAX;\r
6853 UINT16 DS;\r
6854 UINT16 ES;\r
6855 UINT16 FS;\r
6856 UINT16 GS;\r
6857 IA32_EFLAGS32 EFLAGS;\r
6858 UINT32 Eip;\r
6859 UINT16 CS;\r
6860 UINT16 SS;\r
6861} IA32_DWORD_REGS;\r
6862\r
6863typedef union {\r
6864 IA32_DWORD_REGS E;\r
6865 IA32_WORD_REGS X;\r
6866 IA32_BYTE_REGS H;\r
6867} IA32_REGISTER_SET;\r
6868\r
1106ffe1 6869///\r
af2dc6a7 6870/// Byte packed structure for an 16-bit real mode thunks.\r
1106ffe1 6871///\r
ac644614 6872typedef struct {\r
6873 IA32_REGISTER_SET *RealModeState;\r
6874 VOID *RealModeBuffer;\r
6875 UINT32 RealModeBufferSize;\r
6876 UINT32 ThunkAttributes;\r
6877} THUNK_CONTEXT;\r
6878\r
6879#define THUNK_ATTRIBUTE_BIG_REAL_MODE 0x00000001\r
6880#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 0x00000002\r
6881#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL 0x00000004\r
6882\r
6883/**\r
6884 Retrieves CPUID information.\r
6885\r
6886 Executes the CPUID instruction with EAX set to the value specified by Index.\r
6887 This function always returns Index.\r
6888 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
6889 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
6890 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
6891 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
030cd1a2 6892 This function is only available on IA-32 and x64.\r
ac644614 6893\r
6894 @param Index The 32-bit value to load into EAX prior to invoking the CPUID\r
6895 instruction.\r
af2dc6a7 6896 @param Eax The pointer to the 32-bit EAX value returned by the CPUID\r
ac644614 6897 instruction. This is an optional parameter that may be NULL.\r
af2dc6a7 6898 @param Ebx The pointer to the 32-bit EBX value returned by the CPUID\r
ac644614 6899 instruction. This is an optional parameter that may be NULL.\r
af2dc6a7 6900 @param Ecx The pointer to the 32-bit ECX value returned by the CPUID\r
ac644614 6901 instruction. This is an optional parameter that may be NULL.\r
af2dc6a7 6902 @param Edx The pointer to the 32-bit EDX value returned by the CPUID\r
ac644614 6903 instruction. This is an optional parameter that may be NULL.\r
6904\r
2fe241a2 6905 @return Index.\r
ac644614 6906\r
6907**/\r
6908UINT32\r
6909EFIAPI\r
6910AsmCpuid (\r
6911 IN UINT32 Index,\r
6912 OUT UINT32 *Eax, OPTIONAL\r
6913 OUT UINT32 *Ebx, OPTIONAL\r
6914 OUT UINT32 *Ecx, OPTIONAL\r
6915 OUT UINT32 *Edx OPTIONAL\r
6916 );\r
6917\r
6918\r
6919/**\r
6920 Retrieves CPUID information using an extended leaf identifier.\r
6921\r
6922 Executes the CPUID instruction with EAX set to the value specified by Index\r
6923 and ECX set to the value specified by SubIndex. This function always returns\r
6924 Index. This function is only available on IA-32 and x64.\r
6925\r
6926 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
6927 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
6928 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
6929 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
6930\r
6931 @param Index The 32-bit value to load into EAX prior to invoking the\r
6932 CPUID instruction.\r
6933 @param SubIndex The 32-bit value to load into ECX prior to invoking the\r
6934 CPUID instruction.\r
af2dc6a7 6935 @param Eax The pointer to the 32-bit EAX value returned by the CPUID\r
ac644614 6936 instruction. This is an optional parameter that may be\r
6937 NULL.\r
af2dc6a7 6938 @param Ebx The pointer to the 32-bit EBX value returned by the CPUID\r
ac644614 6939 instruction. This is an optional parameter that may be\r
6940 NULL.\r
af2dc6a7 6941 @param Ecx The pointer to the 32-bit ECX value returned by the CPUID\r
ac644614 6942 instruction. This is an optional parameter that may be\r
6943 NULL.\r
af2dc6a7 6944 @param Edx The pointer to the 32-bit EDX value returned by the CPUID\r
ac644614 6945 instruction. This is an optional parameter that may be\r
6946 NULL.\r
6947\r
2fe241a2 6948 @return Index.\r
ac644614 6949\r
6950**/\r
6951UINT32\r
6952EFIAPI\r
6953AsmCpuidEx (\r
6954 IN UINT32 Index,\r
6955 IN UINT32 SubIndex,\r
6956 OUT UINT32 *Eax, OPTIONAL\r
6957 OUT UINT32 *Ebx, OPTIONAL\r
6958 OUT UINT32 *Ecx, OPTIONAL\r
6959 OUT UINT32 *Edx OPTIONAL\r
6960 );\r
6961\r
6962\r
be5f1614 6963/**\r
6964 Set CD bit and clear NW bit of CR0 followed by a WBINVD.\r
6965\r
6966 Disables the caches by setting the CD bit of CR0 to 1, clearing the NW bit of CR0 to 0,\r
6967 and executing a WBINVD instruction. This function is only available on IA-32 and x64.\r
6968\r
6969**/\r
6970VOID\r
6971EFIAPI\r
6972AsmDisableCache (\r
6973 VOID\r
6974 );\r
6975\r
6976\r
6977/**\r
6978 Perform a WBINVD and clear both the CD and NW bits of CR0.\r
6979\r
6980 Enables the caches by executing a WBINVD instruction and then clear both the CD and NW\r
6981 bits of CR0 to 0. This function is only available on IA-32 and x64.\r
6982\r
6983**/\r
6984VOID\r
6985EFIAPI\r
6986AsmEnableCache (\r
6987 VOID\r
6988 );\r
6989\r
6990\r
ac644614 6991/**\r
6992 Returns the lower 32-bits of a Machine Specific Register(MSR).\r
6993\r
6994 Reads and returns the lower 32-bits of the MSR specified by Index.\r
6995 No parameter checking is performed on Index, and some Index values may cause\r
6996 CPU exceptions. The caller must either guarantee that Index is valid, or the\r
6997 caller must set up exception handlers to catch the exceptions. This function\r
030cd1a2 6998 is only available on IA-32 and x64.\r
ac644614 6999\r
7000 @param Index The 32-bit MSR index to read.\r
7001\r
7002 @return The lower 32 bits of the MSR identified by Index.\r
7003\r
7004**/\r
7005UINT32\r
7006EFIAPI\r
7007AsmReadMsr32 (\r
7008 IN UINT32 Index\r
7009 );\r
7010\r
7011\r
7012/**\r
17f695ed 7013 Writes a 32-bit value to a Machine Specific Register(MSR), and returns the value.\r
7014 The upper 32-bits of the MSR are set to zero.\r
ac644614 7015\r
7016 Writes the 32-bit value specified by Value to the MSR specified by Index. The\r
7017 upper 32-bits of the MSR write are set to zero. The 32-bit value written to\r
7018 the MSR is returned. No parameter checking is performed on Index or Value,\r
7019 and some of these may cause CPU exceptions. The caller must either guarantee\r
7020 that Index and Value are valid, or the caller must establish proper exception\r
030cd1a2 7021 handlers. This function is only available on IA-32 and x64.\r
ac644614 7022\r
7023 @param Index The 32-bit MSR index to write.\r
7024 @param Value The 32-bit value to write to the MSR.\r
7025\r
7026 @return Value\r
7027\r
7028**/\r
7029UINT32\r
7030EFIAPI\r
7031AsmWriteMsr32 (\r
7032 IN UINT32 Index,\r
7033 IN UINT32 Value\r
7034 );\r
7035\r
7036\r
7037/**\r
62991af2 7038 Reads a 64-bit MSR, performs a bitwise OR on the lower 32-bits, and\r
ac644614 7039 writes the result back to the 64-bit MSR.\r
7040\r
62991af2 7041 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 7042 between the lower 32-bits of the read result and the value specified by\r
7043 OrData, and writes the result to the 64-bit MSR specified by Index. The lower\r
7044 32-bits of the value written to the MSR is returned. No parameter checking is\r
7045 performed on Index or OrData, and some of these may cause CPU exceptions. The\r
7046 caller must either guarantee that Index and OrData are valid, or the caller\r
7047 must establish proper exception handlers. This function is only available on\r
030cd1a2 7048 IA-32 and x64.\r
ac644614 7049\r
7050 @param Index The 32-bit MSR index to write.\r
7051 @param OrData The value to OR with the read value from the MSR.\r
7052\r
7053 @return The lower 32-bit value written to the MSR.\r
7054\r
7055**/\r
7056UINT32\r
7057EFIAPI\r
7058AsmMsrOr32 (\r
7059 IN UINT32 Index,\r
7060 IN UINT32 OrData\r
7061 );\r
7062\r
7063\r
7064/**\r
7065 Reads a 64-bit MSR, performs a bitwise AND on the lower 32-bits, and writes\r
7066 the result back to the 64-bit MSR.\r
7067\r
7068 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7069 lower 32-bits of the read result and the value specified by AndData, and\r
7070 writes the result to the 64-bit MSR specified by Index. The lower 32-bits of\r
7071 the value written to the MSR is returned. No parameter checking is performed\r
7072 on Index or AndData, and some of these may cause CPU exceptions. The caller\r
7073 must either guarantee that Index and AndData are valid, or the caller must\r
7074 establish proper exception handlers. This function is only available on IA-32\r
030cd1a2 7075 and x64.\r
ac644614 7076\r
7077 @param Index The 32-bit MSR index to write.\r
7078 @param AndData The value to AND with the read value from the MSR.\r
7079\r
7080 @return The lower 32-bit value written to the MSR.\r
7081\r
7082**/\r
7083UINT32\r
7084EFIAPI\r
7085AsmMsrAnd32 (\r
7086 IN UINT32 Index,\r
7087 IN UINT32 AndData\r
7088 );\r
7089\r
7090\r
7091/**\r
62991af2 7092 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise OR\r
ac644614 7093 on the lower 32-bits, and writes the result back to the 64-bit MSR.\r
7094\r
7095 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7096 lower 32-bits of the read result and the value specified by AndData\r
62991af2 7097 preserving the upper 32-bits, performs a bitwise OR between the\r
ac644614 7098 result of the AND operation and the value specified by OrData, and writes the\r
7099 result to the 64-bit MSR specified by Address. The lower 32-bits of the value\r
7100 written to the MSR is returned. No parameter checking is performed on Index,\r
7101 AndData, or OrData, and some of these may cause CPU exceptions. The caller\r
7102 must either guarantee that Index, AndData, and OrData are valid, or the\r
7103 caller must establish proper exception handlers. This function is only\r
030cd1a2 7104 available on IA-32 and x64.\r
ac644614 7105\r
7106 @param Index The 32-bit MSR index to write.\r
7107 @param AndData The value to AND with the read value from the MSR.\r
7108 @param OrData The value to OR with the result of the AND operation.\r
7109\r
7110 @return The lower 32-bit value written to the MSR.\r
7111\r
7112**/\r
7113UINT32\r
7114EFIAPI\r
7115AsmMsrAndThenOr32 (\r
7116 IN UINT32 Index,\r
7117 IN UINT32 AndData,\r
7118 IN UINT32 OrData\r
7119 );\r
7120\r
7121\r
7122/**\r
7123 Reads a bit field of an MSR.\r
7124\r
7125 Reads the bit field in the lower 32-bits of a 64-bit MSR. The bit field is\r
7126 specified by the StartBit and the EndBit. The value of the bit field is\r
7127 returned. The caller must either guarantee that Index is valid, or the caller\r
7128 must set up exception handlers to catch the exceptions. This function is only\r
030cd1a2 7129 available on IA-32 and x64.\r
ac644614 7130\r
7131 If StartBit is greater than 31, then ASSERT().\r
7132 If EndBit is greater than 31, then ASSERT().\r
7133 If EndBit is less than StartBit, then ASSERT().\r
7134\r
7135 @param Index The 32-bit MSR index to read.\r
7136 @param StartBit The ordinal of the least significant bit in the bit field.\r
7137 Range 0..31.\r
7138 @param EndBit The ordinal of the most significant bit in the bit field.\r
7139 Range 0..31.\r
7140\r
7141 @return The bit field read from the MSR.\r
7142\r
7143**/\r
7144UINT32\r
7145EFIAPI\r
7146AsmMsrBitFieldRead32 (\r
7147 IN UINT32 Index,\r
7148 IN UINTN StartBit,\r
7149 IN UINTN EndBit\r
7150 );\r
7151\r
7152\r
7153/**\r
7154 Writes a bit field to an MSR.\r
7155\r
2fe241a2 7156 Writes Value to a bit field in the lower 32-bits of a 64-bit MSR. The bit\r
ac644614 7157 field is specified by the StartBit and the EndBit. All other bits in the\r
7158 destination MSR are preserved. The lower 32-bits of the MSR written is\r
62991af2 7159 returned. The caller must either guarantee that Index and the data written \r
7160 is valid, or the caller must set up exception handlers to catch the exceptions. \r
7161 This function is only available on IA-32 and x64.\r
ac644614 7162\r
7163 If StartBit is greater than 31, then ASSERT().\r
7164 If EndBit is greater than 31, then ASSERT().\r
7165 If EndBit is less than StartBit, then ASSERT().\r
94952554 7166 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7167\r
7168 @param Index The 32-bit MSR index to write.\r
7169 @param StartBit The ordinal of the least significant bit in the bit field.\r
7170 Range 0..31.\r
7171 @param EndBit The ordinal of the most significant bit in the bit field.\r
7172 Range 0..31.\r
7173 @param Value New value of the bit field.\r
7174\r
7175 @return The lower 32-bit of the value written to the MSR.\r
7176\r
7177**/\r
7178UINT32\r
7179EFIAPI\r
7180AsmMsrBitFieldWrite32 (\r
7181 IN UINT32 Index,\r
7182 IN UINTN StartBit,\r
7183 IN UINTN EndBit,\r
7184 IN UINT32 Value\r
7185 );\r
7186\r
7187\r
7188/**\r
7189 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the\r
7190 result back to the bit field in the 64-bit MSR.\r
7191\r
62991af2 7192 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 7193 between the read result and the value specified by OrData, and writes the\r
7194 result to the 64-bit MSR specified by Index. The lower 32-bits of the value\r
7195 written to the MSR are returned. Extra left bits in OrData are stripped. The\r
7196 caller must either guarantee that Index and the data written is valid, or\r
7197 the caller must set up exception handlers to catch the exceptions. This\r
030cd1a2 7198 function is only available on IA-32 and x64.\r
ac644614 7199\r
7200 If StartBit is greater than 31, then ASSERT().\r
7201 If EndBit is greater than 31, then ASSERT().\r
7202 If EndBit is less than StartBit, then ASSERT().\r
94952554 7203 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7204\r
7205 @param Index The 32-bit MSR index to write.\r
7206 @param StartBit The ordinal of the least significant bit in the bit field.\r
7207 Range 0..31.\r
7208 @param EndBit The ordinal of the most significant bit in the bit field.\r
7209 Range 0..31.\r
7210 @param OrData The value to OR with the read value from the MSR.\r
7211\r
7212 @return The lower 32-bit of the value written to the MSR.\r
7213\r
7214**/\r
7215UINT32\r
7216EFIAPI\r
7217AsmMsrBitFieldOr32 (\r
7218 IN UINT32 Index,\r
7219 IN UINTN StartBit,\r
7220 IN UINTN EndBit,\r
7221 IN UINT32 OrData\r
7222 );\r
7223\r
7224\r
7225/**\r
7226 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
7227 result back to the bit field in the 64-bit MSR.\r
7228\r
7229 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7230 read result and the value specified by AndData, and writes the result to the\r
7231 64-bit MSR specified by Index. The lower 32-bits of the value written to the\r
7232 MSR are returned. Extra left bits in AndData are stripped. The caller must\r
7233 either guarantee that Index and the data written is valid, or the caller must\r
7234 set up exception handlers to catch the exceptions. This function is only\r
030cd1a2 7235 available on IA-32 and x64.\r
ac644614 7236\r
7237 If StartBit is greater than 31, then ASSERT().\r
7238 If EndBit is greater than 31, then ASSERT().\r
7239 If EndBit is less than StartBit, then ASSERT().\r
94952554 7240 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7241\r
7242 @param Index The 32-bit MSR index to write.\r
7243 @param StartBit The ordinal of the least significant bit in the bit field.\r
7244 Range 0..31.\r
7245 @param EndBit The ordinal of the most significant bit in the bit field.\r
7246 Range 0..31.\r
7247 @param AndData The value to AND with the read value from the MSR.\r
7248\r
7249 @return The lower 32-bit of the value written to the MSR.\r
7250\r
7251**/\r
7252UINT32\r
7253EFIAPI\r
7254AsmMsrBitFieldAnd32 (\r
7255 IN UINT32 Index,\r
7256 IN UINTN StartBit,\r
7257 IN UINTN EndBit,\r
7258 IN UINT32 AndData\r
7259 );\r
7260\r
7261\r
7262/**\r
7263 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
62991af2 7264 bitwise OR, and writes the result back to the bit field in the\r
ac644614 7265 64-bit MSR.\r
7266\r
7267 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by a\r
62991af2 7268 bitwise OR between the read result and the value specified by\r
ac644614 7269 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
7270 lower 32-bits of the value written to the MSR are returned. Extra left bits\r
7271 in both AndData and OrData are stripped. The caller must either guarantee\r
7272 that Index and the data written is valid, or the caller must set up exception\r
7273 handlers to catch the exceptions. This function is only available on IA-32\r
030cd1a2 7274 and x64.\r
ac644614 7275\r
7276 If StartBit is greater than 31, then ASSERT().\r
7277 If EndBit is greater than 31, then ASSERT().\r
7278 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
7279 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7280 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7281\r
7282 @param Index The 32-bit MSR index to write.\r
7283 @param StartBit The ordinal of the least significant bit in the bit field.\r
7284 Range 0..31.\r
7285 @param EndBit The ordinal of the most significant bit in the bit field.\r
7286 Range 0..31.\r
7287 @param AndData The value to AND with the read value from the MSR.\r
7288 @param OrData The value to OR with the result of the AND operation.\r
7289\r
7290 @return The lower 32-bit of the value written to the MSR.\r
7291\r
7292**/\r
7293UINT32\r
7294EFIAPI\r
7295AsmMsrBitFieldAndThenOr32 (\r
7296 IN UINT32 Index,\r
7297 IN UINTN StartBit,\r
7298 IN UINTN EndBit,\r
7299 IN UINT32 AndData,\r
7300 IN UINT32 OrData\r
7301 );\r
7302\r
7303\r
7304/**\r
7305 Returns a 64-bit Machine Specific Register(MSR).\r
7306\r
7307 Reads and returns the 64-bit MSR specified by Index. No parameter checking is\r
7308 performed on Index, and some Index values may cause CPU exceptions. The\r
7309 caller must either guarantee that Index is valid, or the caller must set up\r
7310 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 7311 on IA-32 and x64.\r
ac644614 7312\r
7313 @param Index The 32-bit MSR index to read.\r
7314\r
7315 @return The value of the MSR identified by Index.\r
7316\r
7317**/\r
7318UINT64\r
7319EFIAPI\r
7320AsmReadMsr64 (\r
7321 IN UINT32 Index\r
7322 );\r
7323\r
7324\r
7325/**\r
7326 Writes a 64-bit value to a Machine Specific Register(MSR), and returns the\r
7327 value.\r
7328\r
7329 Writes the 64-bit value specified by Value to the MSR specified by Index. The\r
7330 64-bit value written to the MSR is returned. No parameter checking is\r
7331 performed on Index or Value, and some of these may cause CPU exceptions. The\r
7332 caller must either guarantee that Index and Value are valid, or the caller\r
7333 must establish proper exception handlers. This function is only available on\r
030cd1a2 7334 IA-32 and x64.\r
ac644614 7335\r
7336 @param Index The 32-bit MSR index to write.\r
7337 @param Value The 64-bit value to write to the MSR.\r
7338\r
7339 @return Value\r
7340\r
7341**/\r
7342UINT64\r
7343EFIAPI\r
7344AsmWriteMsr64 (\r
7345 IN UINT32 Index,\r
7346 IN UINT64 Value\r
7347 );\r
7348\r
7349\r
7350/**\r
62991af2 7351 Reads a 64-bit MSR, performs a bitwise OR, and writes the result\r
ac644614 7352 back to the 64-bit MSR.\r
7353\r
62991af2 7354 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 7355 between the read result and the value specified by OrData, and writes the\r
7356 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
7357 returned. No parameter checking is performed on Index or OrData, and some of\r
7358 these may cause CPU exceptions. The caller must either guarantee that Index\r
7359 and OrData are valid, or the caller must establish proper exception handlers.\r
030cd1a2 7360 This function is only available on IA-32 and x64.\r
ac644614 7361\r
7362 @param Index The 32-bit MSR index to write.\r
7363 @param OrData The value to OR with the read value from the MSR.\r
7364\r
7365 @return The value written back to the MSR.\r
7366\r
7367**/\r
7368UINT64\r
7369EFIAPI\r
7370AsmMsrOr64 (\r
7371 IN UINT32 Index,\r
7372 IN UINT64 OrData\r
7373 );\r
7374\r
7375\r
7376/**\r
7377 Reads a 64-bit MSR, performs a bitwise AND, and writes the result back to the\r
7378 64-bit MSR.\r
7379\r
7380 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7381 read result and the value specified by OrData, and writes the result to the\r
7382 64-bit MSR specified by Index. The value written to the MSR is returned. No\r
7383 parameter checking is performed on Index or OrData, and some of these may\r
7384 cause CPU exceptions. The caller must either guarantee that Index and OrData\r
7385 are valid, or the caller must establish proper exception handlers. This\r
030cd1a2 7386 function is only available on IA-32 and x64.\r
ac644614 7387\r
7388 @param Index The 32-bit MSR index to write.\r
7389 @param AndData The value to AND with the read value from the MSR.\r
7390\r
7391 @return The value written back to the MSR.\r
7392\r
7393**/\r
7394UINT64\r
7395EFIAPI\r
7396AsmMsrAnd64 (\r
7397 IN UINT32 Index,\r
7398 IN UINT64 AndData\r
7399 );\r
7400\r
7401\r
7402/**\r
62991af2 7403 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise \r
ac644614 7404 OR, and writes the result back to the 64-bit MSR.\r
7405\r
7406 Reads the 64-bit MSR specified by Index, performs a bitwise AND between read\r
62991af2 7407 result and the value specified by AndData, performs a bitwise OR\r
ac644614 7408 between the result of the AND operation and the value specified by OrData,\r
7409 and writes the result to the 64-bit MSR specified by Index. The value written\r
7410 to the MSR is returned. No parameter checking is performed on Index, AndData,\r
7411 or OrData, and some of these may cause CPU exceptions. The caller must either\r
7412 guarantee that Index, AndData, and OrData are valid, or the caller must\r
7413 establish proper exception handlers. This function is only available on IA-32\r
030cd1a2 7414 and x64.\r
ac644614 7415\r
7416 @param Index The 32-bit MSR index to write.\r
7417 @param AndData The value to AND with the read value from the MSR.\r
7418 @param OrData The value to OR with the result of the AND operation.\r
7419\r
7420 @return The value written back to the MSR.\r
7421\r
7422**/\r
7423UINT64\r
7424EFIAPI\r
7425AsmMsrAndThenOr64 (\r
7426 IN UINT32 Index,\r
7427 IN UINT64 AndData,\r
7428 IN UINT64 OrData\r
7429 );\r
7430\r
7431\r
7432/**\r
7433 Reads a bit field of an MSR.\r
7434\r
7435 Reads the bit field in the 64-bit MSR. The bit field is specified by the\r
7436 StartBit and the EndBit. The value of the bit field is returned. The caller\r
7437 must either guarantee that Index is valid, or the caller must set up\r
7438 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 7439 on IA-32 and x64.\r
ac644614 7440\r
7441 If StartBit is greater than 63, then ASSERT().\r
7442 If EndBit is greater than 63, then ASSERT().\r
7443 If EndBit is less than StartBit, then ASSERT().\r
7444\r
7445 @param Index The 32-bit MSR index to read.\r
7446 @param StartBit The ordinal of the least significant bit in the bit field.\r
7447 Range 0..63.\r
7448 @param EndBit The ordinal of the most significant bit in the bit field.\r
7449 Range 0..63.\r
7450\r
7451 @return The value read from the MSR.\r
7452\r
7453**/\r
7454UINT64\r
7455EFIAPI\r
7456AsmMsrBitFieldRead64 (\r
7457 IN UINT32 Index,\r
7458 IN UINTN StartBit,\r
7459 IN UINTN EndBit\r
7460 );\r
7461\r
7462\r
7463/**\r
7464 Writes a bit field to an MSR.\r
7465\r
7466 Writes Value to a bit field in a 64-bit MSR. The bit field is specified by\r
7467 the StartBit and the EndBit. All other bits in the destination MSR are\r
62991af2 7468 preserved. The MSR written is returned. The caller must either guarantee \r
7469 that Index and the data written is valid, or the caller must set up exception \r
7470 handlers to catch the exceptions. This function is only available on IA-32 and x64.\r
ac644614 7471\r
7472 If StartBit is greater than 63, then ASSERT().\r
7473 If EndBit is greater than 63, then ASSERT().\r
7474 If EndBit is less than StartBit, then ASSERT().\r
94952554 7475 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7476\r
7477 @param Index The 32-bit MSR index to write.\r
7478 @param StartBit The ordinal of the least significant bit in the bit field.\r
7479 Range 0..63.\r
7480 @param EndBit The ordinal of the most significant bit in the bit field.\r
7481 Range 0..63.\r
7482 @param Value New value of the bit field.\r
7483\r
7484 @return The value written back to the MSR.\r
7485\r
7486**/\r
7487UINT64\r
7488EFIAPI\r
7489AsmMsrBitFieldWrite64 (\r
7490 IN UINT32 Index,\r
7491 IN UINTN StartBit,\r
7492 IN UINTN EndBit,\r
7493 IN UINT64 Value\r
7494 );\r
7495\r
7496\r
7497/**\r
62991af2 7498 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and\r
ac644614 7499 writes the result back to the bit field in the 64-bit MSR.\r
7500\r
62991af2 7501 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 7502 between the read result and the value specified by OrData, and writes the\r
7503 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
7504 returned. Extra left bits in OrData are stripped. The caller must either\r
7505 guarantee that Index and the data written is valid, or the caller must set up\r
7506 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 7507 on IA-32 and x64.\r
ac644614 7508\r
7509 If StartBit is greater than 63, then ASSERT().\r
7510 If EndBit is greater than 63, then ASSERT().\r
7511 If EndBit is less than StartBit, then ASSERT().\r
94952554 7512 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7513\r
7514 @param Index The 32-bit MSR index to write.\r
7515 @param StartBit The ordinal of the least significant bit in the bit field.\r
7516 Range 0..63.\r
7517 @param EndBit The ordinal of the most significant bit in the bit field.\r
7518 Range 0..63.\r
7519 @param OrData The value to OR with the read value from the bit field.\r
7520\r
7521 @return The value written back to the MSR.\r
7522\r
7523**/\r
7524UINT64\r
7525EFIAPI\r
7526AsmMsrBitFieldOr64 (\r
7527 IN UINT32 Index,\r
7528 IN UINTN StartBit,\r
7529 IN UINTN EndBit,\r
7530 IN UINT64 OrData\r
7531 );\r
7532\r
7533\r
7534/**\r
7535 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
7536 result back to the bit field in the 64-bit MSR.\r
7537\r
7538 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7539 read result and the value specified by AndData, and writes the result to the\r
7540 64-bit MSR specified by Index. The value written to the MSR is returned.\r
7541 Extra left bits in AndData are stripped. The caller must either guarantee\r
7542 that Index and the data written is valid, or the caller must set up exception\r
7543 handlers to catch the exceptions. This function is only available on IA-32\r
030cd1a2 7544 and x64.\r
ac644614 7545\r
7546 If StartBit is greater than 63, then ASSERT().\r
7547 If EndBit is greater than 63, then ASSERT().\r
7548 If EndBit is less than StartBit, then ASSERT().\r
94952554 7549 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7550\r
7551 @param Index The 32-bit MSR index to write.\r
7552 @param StartBit The ordinal of the least significant bit in the bit field.\r
7553 Range 0..63.\r
7554 @param EndBit The ordinal of the most significant bit in the bit field.\r
7555 Range 0..63.\r
7556 @param AndData The value to AND with the read value from the bit field.\r
7557\r
7558 @return The value written back to the MSR.\r
7559\r
7560**/\r
7561UINT64\r
7562EFIAPI\r
7563AsmMsrBitFieldAnd64 (\r
7564 IN UINT32 Index,\r
7565 IN UINTN StartBit,\r
7566 IN UINTN EndBit,\r
7567 IN UINT64 AndData\r
7568 );\r
7569\r
7570\r
7571/**\r
7572 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
62991af2 7573 bitwise OR, and writes the result back to the bit field in the\r
ac644614 7574 64-bit MSR.\r
7575\r
7576 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by\r
62991af2 7577 a bitwise OR between the read result and the value specified by\r
ac644614 7578 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
7579 value written to the MSR is returned. Extra left bits in both AndData and\r
7580 OrData are stripped. The caller must either guarantee that Index and the data\r
7581 written is valid, or the caller must set up exception handlers to catch the\r
030cd1a2 7582 exceptions. This function is only available on IA-32 and x64.\r
ac644614 7583\r
7584 If StartBit is greater than 63, then ASSERT().\r
7585 If EndBit is greater than 63, then ASSERT().\r
7586 If EndBit is less than StartBit, then ASSERT().\r
94952554
LG
7587 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7588 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
ac644614 7589\r
7590 @param Index The 32-bit MSR index to write.\r
7591 @param StartBit The ordinal of the least significant bit in the bit field.\r
7592 Range 0..63.\r
7593 @param EndBit The ordinal of the most significant bit in the bit field.\r
7594 Range 0..63.\r
7595 @param AndData The value to AND with the read value from the bit field.\r
7596 @param OrData The value to OR with the result of the AND operation.\r
7597\r
7598 @return The value written back to the MSR.\r
7599\r
7600**/\r
7601UINT64\r
7602EFIAPI\r
7603AsmMsrBitFieldAndThenOr64 (\r
7604 IN UINT32 Index,\r
7605 IN UINTN StartBit,\r
7606 IN UINTN EndBit,\r
7607 IN UINT64 AndData,\r
7608 IN UINT64 OrData\r
7609 );\r
7610\r
7611\r
7612/**\r
7613 Reads the current value of the EFLAGS register.\r
7614\r
7615 Reads and returns the current value of the EFLAGS register. This function is\r
030cd1a2 7616 only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a\r
7617 64-bit value on x64.\r
ac644614 7618\r
030cd1a2 7619 @return EFLAGS on IA-32 or RFLAGS on x64.\r
ac644614 7620\r
7621**/\r
7622UINTN\r
7623EFIAPI\r
7624AsmReadEflags (\r
7625 VOID\r
7626 );\r
7627\r
7628\r
7629/**\r
7630 Reads the current value of the Control Register 0 (CR0).\r
7631\r
7632 Reads and returns the current value of CR0. This function is only available\r
030cd1a2 7633 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7634 x64.\r
ac644614 7635\r
7636 @return The value of the Control Register 0 (CR0).\r
7637\r
7638**/\r
7639UINTN\r
7640EFIAPI\r
7641AsmReadCr0 (\r
7642 VOID\r
7643 );\r
7644\r
7645\r
7646/**\r
7647 Reads the current value of the Control Register 2 (CR2).\r
7648\r
7649 Reads and returns the current value of CR2. This function is only available\r
030cd1a2 7650 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7651 x64.\r
ac644614 7652\r
7653 @return The value of the Control Register 2 (CR2).\r
7654\r
7655**/\r
7656UINTN\r
7657EFIAPI\r
7658AsmReadCr2 (\r
7659 VOID\r
7660 );\r
7661\r
7662\r
7663/**\r
7664 Reads the current value of the Control Register 3 (CR3).\r
7665\r
7666 Reads and returns the current value of CR3. This function is only available\r
030cd1a2 7667 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7668 x64.\r
ac644614 7669\r
7670 @return The value of the Control Register 3 (CR3).\r
7671\r
7672**/\r
7673UINTN\r
7674EFIAPI\r
7675AsmReadCr3 (\r
7676 VOID\r
7677 );\r
7678\r
7679\r
7680/**\r
7681 Reads the current value of the Control Register 4 (CR4).\r
7682\r
7683 Reads and returns the current value of CR4. This function is only available\r
030cd1a2 7684 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7685 x64.\r
ac644614 7686\r
7687 @return The value of the Control Register 4 (CR4).\r
7688\r
7689**/\r
7690UINTN\r
7691EFIAPI\r
7692AsmReadCr4 (\r
7693 VOID\r
7694 );\r
7695\r
7696\r
7697/**\r
7698 Writes a value to Control Register 0 (CR0).\r
7699\r
7700 Writes and returns a new value to CR0. This function is only available on\r
030cd1a2 7701 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7702\r
7703 @param Cr0 The value to write to CR0.\r
7704\r
7705 @return The value written to CR0.\r
7706\r
7707**/\r
7708UINTN\r
7709EFIAPI\r
7710AsmWriteCr0 (\r
7711 UINTN Cr0\r
7712 );\r
7713\r
7714\r
7715/**\r
7716 Writes a value to Control Register 2 (CR2).\r
7717\r
7718 Writes and returns a new value to CR2. This function is only available on\r
030cd1a2 7719 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7720\r
7721 @param Cr2 The value to write to CR2.\r
7722\r
7723 @return The value written to CR2.\r
7724\r
7725**/\r
7726UINTN\r
7727EFIAPI\r
7728AsmWriteCr2 (\r
7729 UINTN Cr2\r
7730 );\r
7731\r
7732\r
7733/**\r
7734 Writes a value to Control Register 3 (CR3).\r
7735\r
7736 Writes and returns a new value to CR3. This function is only available on\r
030cd1a2 7737 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7738\r
7739 @param Cr3 The value to write to CR3.\r
7740\r
7741 @return The value written to CR3.\r
7742\r
7743**/\r
7744UINTN\r
7745EFIAPI\r
7746AsmWriteCr3 (\r
7747 UINTN Cr3\r
7748 );\r
7749\r
7750\r
7751/**\r
7752 Writes a value to Control Register 4 (CR4).\r
7753\r
7754 Writes and returns a new value to CR4. This function is only available on\r
030cd1a2 7755 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7756\r
7757 @param Cr4 The value to write to CR4.\r
7758\r
7759 @return The value written to CR4.\r
7760\r
7761**/\r
7762UINTN\r
7763EFIAPI\r
7764AsmWriteCr4 (\r
7765 UINTN Cr4\r
7766 );\r
7767\r
7768\r
7769/**\r
7770 Reads the current value of Debug Register 0 (DR0).\r
7771\r
7772 Reads and returns the current value of DR0. This function is only available\r
030cd1a2 7773 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7774 x64.\r
ac644614 7775\r
7776 @return The value of Debug Register 0 (DR0).\r
7777\r
7778**/\r
7779UINTN\r
7780EFIAPI\r
7781AsmReadDr0 (\r
7782 VOID\r
7783 );\r
7784\r
7785\r
7786/**\r
7787 Reads the current value of Debug Register 1 (DR1).\r
7788\r
7789 Reads and returns the current value of DR1. This function is only available\r
030cd1a2 7790 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7791 x64.\r
ac644614 7792\r
7793 @return The value of Debug Register 1 (DR1).\r
7794\r
7795**/\r
7796UINTN\r
7797EFIAPI\r
7798AsmReadDr1 (\r
7799 VOID\r
7800 );\r
7801\r
7802\r
7803/**\r
7804 Reads the current value of Debug Register 2 (DR2).\r
7805\r
7806 Reads and returns the current value of DR2. This function is only available\r
030cd1a2 7807 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7808 x64.\r
ac644614 7809\r
7810 @return The value of Debug Register 2 (DR2).\r
7811\r
7812**/\r
7813UINTN\r
7814EFIAPI\r
7815AsmReadDr2 (\r
7816 VOID\r
7817 );\r
7818\r
7819\r
7820/**\r
7821 Reads the current value of Debug Register 3 (DR3).\r
7822\r
7823 Reads and returns the current value of DR3. This function is only available\r
030cd1a2 7824 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7825 x64.\r
ac644614 7826\r
7827 @return The value of Debug Register 3 (DR3).\r
7828\r
7829**/\r
7830UINTN\r
7831EFIAPI\r
7832AsmReadDr3 (\r
7833 VOID\r
7834 );\r
7835\r
7836\r
7837/**\r
7838 Reads the current value of Debug Register 4 (DR4).\r
7839\r
7840 Reads and returns the current value of DR4. This function is only available\r
030cd1a2 7841 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7842 x64.\r
ac644614 7843\r
7844 @return The value of Debug Register 4 (DR4).\r
7845\r
7846**/\r
7847UINTN\r
7848EFIAPI\r
7849AsmReadDr4 (\r
7850 VOID\r
7851 );\r
7852\r
7853\r
7854/**\r
7855 Reads the current value of Debug Register 5 (DR5).\r
7856\r
7857 Reads and returns the current value of DR5. This function is only available\r
030cd1a2 7858 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7859 x64.\r
ac644614 7860\r
7861 @return The value of Debug Register 5 (DR5).\r
7862\r
7863**/\r
7864UINTN\r
7865EFIAPI\r
7866AsmReadDr5 (\r
7867 VOID\r
7868 );\r
7869\r
7870\r
7871/**\r
7872 Reads the current value of Debug Register 6 (DR6).\r
7873\r
7874 Reads and returns the current value of DR6. This function is only available\r
030cd1a2 7875 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7876 x64.\r
ac644614 7877\r
7878 @return The value of Debug Register 6 (DR6).\r
7879\r
7880**/\r
7881UINTN\r
7882EFIAPI\r
7883AsmReadDr6 (\r
7884 VOID\r
7885 );\r
7886\r
7887\r
7888/**\r
7889 Reads the current value of Debug Register 7 (DR7).\r
7890\r
7891 Reads and returns the current value of DR7. This function is only available\r
030cd1a2 7892 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7893 x64.\r
ac644614 7894\r
7895 @return The value of Debug Register 7 (DR7).\r
7896\r
7897**/\r
7898UINTN\r
7899EFIAPI\r
7900AsmReadDr7 (\r
7901 VOID\r
7902 );\r
7903\r
7904\r
7905/**\r
7906 Writes a value to Debug Register 0 (DR0).\r
7907\r
7908 Writes and returns a new value to DR0. This function is only available on\r
030cd1a2 7909 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7910\r
7911 @param Dr0 The value to write to Dr0.\r
7912\r
7913 @return The value written to Debug Register 0 (DR0).\r
7914\r
7915**/\r
7916UINTN\r
7917EFIAPI\r
7918AsmWriteDr0 (\r
7919 UINTN Dr0\r
7920 );\r
7921\r
7922\r
7923/**\r
7924 Writes a value to Debug Register 1 (DR1).\r
7925\r
7926 Writes and returns a new value to DR1. This function is only available on\r
030cd1a2 7927 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7928\r
7929 @param Dr1 The value to write to Dr1.\r
7930\r
7931 @return The value written to Debug Register 1 (DR1).\r
7932\r
7933**/\r
7934UINTN\r
7935EFIAPI\r
7936AsmWriteDr1 (\r
7937 UINTN Dr1\r
7938 );\r
7939\r
7940\r
7941/**\r
7942 Writes a value to Debug Register 2 (DR2).\r
7943\r
7944 Writes and returns a new value to DR2. This function is only available on\r
030cd1a2 7945 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7946\r
7947 @param Dr2 The value to write to Dr2.\r
7948\r
7949 @return The value written to Debug Register 2 (DR2).\r
7950\r
7951**/\r
7952UINTN\r
7953EFIAPI\r
7954AsmWriteDr2 (\r
7955 UINTN Dr2\r
7956 );\r
7957\r
7958\r
7959/**\r
7960 Writes a value to Debug Register 3 (DR3).\r
7961\r
7962 Writes and returns a new value to DR3. This function is only available on\r
030cd1a2 7963 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7964\r
7965 @param Dr3 The value to write to Dr3.\r
7966\r
7967 @return The value written to Debug Register 3 (DR3).\r
7968\r
7969**/\r
7970UINTN\r
7971EFIAPI\r
7972AsmWriteDr3 (\r
7973 UINTN Dr3\r
7974 );\r
7975\r
7976\r
7977/**\r
7978 Writes a value to Debug Register 4 (DR4).\r
7979\r
7980 Writes and returns a new value to DR4. This function is only available on\r
030cd1a2 7981 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 7982\r
7983 @param Dr4 The value to write to Dr4.\r
7984\r
7985 @return The value written to Debug Register 4 (DR4).\r
7986\r
7987**/\r
7988UINTN\r
7989EFIAPI\r
7990AsmWriteDr4 (\r
7991 UINTN Dr4\r
7992 );\r
7993\r
7994\r
7995/**\r
7996 Writes a value to Debug Register 5 (DR5).\r
7997\r
7998 Writes and returns a new value to DR5. This function is only available on\r
030cd1a2 7999 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 8000\r
8001 @param Dr5 The value to write to Dr5.\r
8002\r
8003 @return The value written to Debug Register 5 (DR5).\r
8004\r
8005**/\r
8006UINTN\r
8007EFIAPI\r
8008AsmWriteDr5 (\r
8009 UINTN Dr5\r
8010 );\r
8011\r
8012\r
8013/**\r
8014 Writes a value to Debug Register 6 (DR6).\r
8015\r
8016 Writes and returns a new value to DR6. This function is only available on\r
030cd1a2 8017 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 8018\r
8019 @param Dr6 The value to write to Dr6.\r
8020\r
8021 @return The value written to Debug Register 6 (DR6).\r
8022\r
8023**/\r
8024UINTN\r
8025EFIAPI\r
8026AsmWriteDr6 (\r
8027 UINTN Dr6\r
8028 );\r
8029\r
8030\r
8031/**\r
8032 Writes a value to Debug Register 7 (DR7).\r
8033\r
8034 Writes and returns a new value to DR7. This function is only available on\r
030cd1a2 8035 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 8036\r
8037 @param Dr7 The value to write to Dr7.\r
8038\r
8039 @return The value written to Debug Register 7 (DR7).\r
8040\r
8041**/\r
8042UINTN\r
8043EFIAPI\r
8044AsmWriteDr7 (\r
8045 UINTN Dr7\r
8046 );\r
8047\r
8048\r
8049/**\r
8050 Reads the current value of Code Segment Register (CS).\r
8051\r
8052 Reads and returns the current value of CS. This function is only available on\r
030cd1a2 8053 IA-32 and x64.\r
ac644614 8054\r
8055 @return The current value of CS.\r
8056\r
8057**/\r
8058UINT16\r
8059EFIAPI\r
8060AsmReadCs (\r
8061 VOID\r
8062 );\r
8063\r
8064\r
8065/**\r
8066 Reads the current value of Data Segment Register (DS).\r
8067\r
8068 Reads and returns the current value of DS. This function is only available on\r
030cd1a2 8069 IA-32 and x64.\r
ac644614 8070\r
8071 @return The current value of DS.\r
8072\r
8073**/\r
8074UINT16\r
8075EFIAPI\r
8076AsmReadDs (\r
8077 VOID\r
8078 );\r
8079\r
8080\r
8081/**\r
8082 Reads the current value of Extra Segment Register (ES).\r
8083\r
8084 Reads and returns the current value of ES. This function is only available on\r
030cd1a2 8085 IA-32 and x64.\r
ac644614 8086\r
8087 @return The current value of ES.\r
8088\r
8089**/\r
8090UINT16\r
8091EFIAPI\r
8092AsmReadEs (\r
8093 VOID\r
8094 );\r
8095\r
8096\r
8097/**\r
8098 Reads the current value of FS Data Segment Register (FS).\r
8099\r
8100 Reads and returns the current value of FS. This function is only available on\r
030cd1a2 8101 IA-32 and x64.\r
ac644614 8102\r
8103 @return The current value of FS.\r
8104\r
8105**/\r
8106UINT16\r
8107EFIAPI\r
8108AsmReadFs (\r
8109 VOID\r
8110 );\r
8111\r
8112\r
8113/**\r
8114 Reads the current value of GS Data Segment Register (GS).\r
8115\r
8116 Reads and returns the current value of GS. This function is only available on\r
030cd1a2 8117 IA-32 and x64.\r
ac644614 8118\r
8119 @return The current value of GS.\r
8120\r
8121**/\r
8122UINT16\r
8123EFIAPI\r
8124AsmReadGs (\r
8125 VOID\r
8126 );\r
8127\r
8128\r
8129/**\r
8130 Reads the current value of Stack Segment Register (SS).\r
8131\r
8132 Reads and returns the current value of SS. This function is only available on\r
030cd1a2 8133 IA-32 and x64.\r
ac644614 8134\r
8135 @return The current value of SS.\r
8136\r
8137**/\r
8138UINT16\r
8139EFIAPI\r
8140AsmReadSs (\r
8141 VOID\r
8142 );\r
8143\r
8144\r
8145/**\r
8146 Reads the current value of Task Register (TR).\r
8147\r
8148 Reads and returns the current value of TR. This function is only available on\r
030cd1a2 8149 IA-32 and x64.\r
ac644614 8150\r
8151 @return The current value of TR.\r
8152\r
8153**/\r
8154UINT16\r
8155EFIAPI\r
8156AsmReadTr (\r
8157 VOID\r
8158 );\r
8159\r
8160\r
8161/**\r
8162 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
8163\r
8164 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
030cd1a2 8165 function is only available on IA-32 and x64.\r
ac644614 8166\r
8167 If Gdtr is NULL, then ASSERT().\r
8168\r
af2dc6a7 8169 @param Gdtr The pointer to a GDTR descriptor.\r
ac644614 8170\r
8171**/\r
8172VOID\r
8173EFIAPI\r
8174AsmReadGdtr (\r
8175 OUT IA32_DESCRIPTOR *Gdtr\r
8176 );\r
8177\r
8178\r
8179/**\r
8180 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
8181\r
8182 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
030cd1a2 8183 only available on IA-32 and x64.\r
ac644614 8184\r
8185 If Gdtr is NULL, then ASSERT().\r
8186\r
af2dc6a7 8187 @param Gdtr The pointer to a GDTR descriptor.\r
ac644614 8188\r
8189**/\r
8190VOID\r
8191EFIAPI\r
8192AsmWriteGdtr (\r
8193 IN CONST IA32_DESCRIPTOR *Gdtr\r
8194 );\r
8195\r
8196\r
8197/**\r
17f695ed 8198 Reads the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
ac644614 8199\r
8200 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
030cd1a2 8201 function is only available on IA-32 and x64.\r
ac644614 8202\r
8203 If Idtr is NULL, then ASSERT().\r
8204\r
af2dc6a7 8205 @param Idtr The pointer to a IDTR descriptor.\r
ac644614 8206\r
8207**/\r
8208VOID\r
8209EFIAPI\r
8210AsmReadIdtr (\r
8211 OUT IA32_DESCRIPTOR *Idtr\r
8212 );\r
8213\r
8214\r
8215/**\r
17f695ed 8216 Writes the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
ac644614 8217\r
8218 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
030cd1a2 8219 only available on IA-32 and x64.\r
ac644614 8220\r
8221 If Idtr is NULL, then ASSERT().\r
8222\r
af2dc6a7 8223 @param Idtr The pointer to a IDTR descriptor.\r
ac644614 8224\r
8225**/\r
8226VOID\r
8227EFIAPI\r
8228AsmWriteIdtr (\r
8229 IN CONST IA32_DESCRIPTOR *Idtr\r
8230 );\r
8231\r
8232\r
8233/**\r
8234 Reads the current Local Descriptor Table Register(LDTR) selector.\r
8235\r
8236 Reads and returns the current 16-bit LDTR descriptor value. This function is\r
030cd1a2 8237 only available on IA-32 and x64.\r
ac644614 8238\r
8239 @return The current selector of LDT.\r
8240\r
8241**/\r
8242UINT16\r
8243EFIAPI\r
8244AsmReadLdtr (\r
8245 VOID\r
8246 );\r
8247\r
8248\r
8249/**\r
17f695ed 8250 Writes the current Local Descriptor Table Register (LDTR) selector.\r
ac644614 8251\r
8252 Writes and the current LDTR descriptor specified by Ldtr. This function is\r
030cd1a2 8253 only available on IA-32 and x64.\r
ac644614 8254\r
8255 @param Ldtr 16-bit LDTR selector value.\r
8256\r
8257**/\r
8258VOID\r
8259EFIAPI\r
8260AsmWriteLdtr (\r
8261 IN UINT16 Ldtr\r
8262 );\r
8263\r
8264\r
8265/**\r
8266 Save the current floating point/SSE/SSE2 context to a buffer.\r
8267\r
8268 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
8269 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
030cd1a2 8270 available on IA-32 and x64.\r
ac644614 8271\r
8272 If Buffer is NULL, then ASSERT().\r
8273 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
8274\r
af2dc6a7 8275 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
ac644614 8276\r
8277**/\r
8278VOID\r
8279EFIAPI\r
8280AsmFxSave (\r
8281 OUT IA32_FX_BUFFER *Buffer\r
8282 );\r
8283\r
8284\r
8285/**\r
8286 Restores the current floating point/SSE/SSE2 context from a buffer.\r
8287\r
8288 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
8289 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
030cd1a2 8290 only available on IA-32 and x64.\r
ac644614 8291\r
8292 If Buffer is NULL, then ASSERT().\r
8293 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
8294 If Buffer was not saved with AsmFxSave(), then ASSERT().\r
8295\r
af2dc6a7 8296 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
ac644614 8297\r
8298**/\r
8299VOID\r
8300EFIAPI\r
8301AsmFxRestore (\r
8302 IN CONST IA32_FX_BUFFER *Buffer\r
8303 );\r
8304\r
8305\r
8306/**\r
8307 Reads the current value of 64-bit MMX Register #0 (MM0).\r
8308\r
8309 Reads and returns the current value of MM0. This function is only available\r
030cd1a2 8310 on IA-32 and x64.\r
ac644614 8311\r
8312 @return The current value of MM0.\r
8313\r
8314**/\r
8315UINT64\r
8316EFIAPI\r
8317AsmReadMm0 (\r
8318 VOID\r
8319 );\r
8320\r
8321\r
8322/**\r
8323 Reads the current value of 64-bit MMX Register #1 (MM1).\r
8324\r
8325 Reads and returns the current value of MM1. This function is only available\r
030cd1a2 8326 on IA-32 and x64.\r
ac644614 8327\r
8328 @return The current value of MM1.\r
8329\r
8330**/\r
8331UINT64\r
8332EFIAPI\r
8333AsmReadMm1 (\r
8334 VOID\r
8335 );\r
8336\r
8337\r
8338/**\r
8339 Reads the current value of 64-bit MMX Register #2 (MM2).\r
8340\r
8341 Reads and returns the current value of MM2. This function is only available\r
030cd1a2 8342 on IA-32 and x64.\r
ac644614 8343\r
8344 @return The current value of MM2.\r
8345\r
8346**/\r
8347UINT64\r
8348EFIAPI\r
8349AsmReadMm2 (\r
8350 VOID\r
8351 );\r
8352\r
8353\r
8354/**\r
8355 Reads the current value of 64-bit MMX Register #3 (MM3).\r
8356\r
8357 Reads and returns the current value of MM3. This function is only available\r
030cd1a2 8358 on IA-32 and x64.\r
ac644614 8359\r
8360 @return The current value of MM3.\r
8361\r
8362**/\r
8363UINT64\r
8364EFIAPI\r
8365AsmReadMm3 (\r
8366 VOID\r
8367 );\r
8368\r
8369\r
8370/**\r
8371 Reads the current value of 64-bit MMX Register #4 (MM4).\r
8372\r
8373 Reads and returns the current value of MM4. This function is only available\r
030cd1a2 8374 on IA-32 and x64.\r
ac644614 8375\r
8376 @return The current value of MM4.\r
8377\r
8378**/\r
8379UINT64\r
8380EFIAPI\r
8381AsmReadMm4 (\r
8382 VOID\r
8383 );\r
8384\r
8385\r
8386/**\r
8387 Reads the current value of 64-bit MMX Register #5 (MM5).\r
8388\r
8389 Reads and returns the current value of MM5. This function is only available\r
030cd1a2 8390 on IA-32 and x64.\r
ac644614 8391\r
8392 @return The current value of MM5.\r
8393\r
8394**/\r
8395UINT64\r
8396EFIAPI\r
8397AsmReadMm5 (\r
8398 VOID\r
8399 );\r
8400\r
8401\r
8402/**\r
8403 Reads the current value of 64-bit MMX Register #6 (MM6).\r
8404\r
8405 Reads and returns the current value of MM6. This function is only available\r
030cd1a2 8406 on IA-32 and x64.\r
ac644614 8407\r
8408 @return The current value of MM6.\r
8409\r
8410**/\r
8411UINT64\r
8412EFIAPI\r
8413AsmReadMm6 (\r
8414 VOID\r
8415 );\r
8416\r
8417\r
8418/**\r
8419 Reads the current value of 64-bit MMX Register #7 (MM7).\r
8420\r
8421 Reads and returns the current value of MM7. This function is only available\r
030cd1a2 8422 on IA-32 and x64.\r
ac644614 8423\r
8424 @return The current value of MM7.\r
8425\r
8426**/\r
8427UINT64\r
8428EFIAPI\r
8429AsmReadMm7 (\r
8430 VOID\r
8431 );\r
8432\r
8433\r
8434/**\r
8435 Writes the current value of 64-bit MMX Register #0 (MM0).\r
8436\r
8437 Writes the current value of MM0. This function is only available on IA32 and\r
030cd1a2 8438 x64.\r
ac644614 8439\r
8440 @param Value The 64-bit value to write to MM0.\r
8441\r
8442**/\r
8443VOID\r
8444EFIAPI\r
8445AsmWriteMm0 (\r
8446 IN UINT64 Value\r
8447 );\r
8448\r
8449\r
8450/**\r
8451 Writes the current value of 64-bit MMX Register #1 (MM1).\r
8452\r
8453 Writes the current value of MM1. This function is only available on IA32 and\r
030cd1a2 8454 x64.\r
ac644614 8455\r
8456 @param Value The 64-bit value to write to MM1.\r
8457\r
8458**/\r
8459VOID\r
8460EFIAPI\r
8461AsmWriteMm1 (\r
8462 IN UINT64 Value\r
8463 );\r
8464\r
8465\r
8466/**\r
8467 Writes the current value of 64-bit MMX Register #2 (MM2).\r
8468\r
8469 Writes the current value of MM2. This function is only available on IA32 and\r
030cd1a2 8470 x64.\r
ac644614 8471\r
8472 @param Value The 64-bit value to write to MM2.\r
8473\r
8474**/\r
8475VOID\r
8476EFIAPI\r
8477AsmWriteMm2 (\r
8478 IN UINT64 Value\r
8479 );\r
8480\r
8481\r
8482/**\r
8483 Writes the current value of 64-bit MMX Register #3 (MM3).\r
8484\r
8485 Writes the current value of MM3. This function is only available on IA32 and\r
030cd1a2 8486 x64.\r
ac644614 8487\r
8488 @param Value The 64-bit value to write to MM3.\r
8489\r
8490**/\r
8491VOID\r
8492EFIAPI\r
8493AsmWriteMm3 (\r
8494 IN UINT64 Value\r
8495 );\r
8496\r
8497\r
8498/**\r
8499 Writes the current value of 64-bit MMX Register #4 (MM4).\r
8500\r
8501 Writes the current value of MM4. This function is only available on IA32 and\r
030cd1a2 8502 x64.\r
ac644614 8503\r
8504 @param Value The 64-bit value to write to MM4.\r
8505\r
8506**/\r
8507VOID\r
8508EFIAPI\r
8509AsmWriteMm4 (\r
8510 IN UINT64 Value\r
8511 );\r
8512\r
8513\r
8514/**\r
8515 Writes the current value of 64-bit MMX Register #5 (MM5).\r
8516\r
8517 Writes the current value of MM5. This function is only available on IA32 and\r
030cd1a2 8518 x64.\r
ac644614 8519\r
8520 @param Value The 64-bit value to write to MM5.\r
8521\r
8522**/\r
8523VOID\r
8524EFIAPI\r
8525AsmWriteMm5 (\r
8526 IN UINT64 Value\r
8527 );\r
8528\r
8529\r
8530/**\r
8531 Writes the current value of 64-bit MMX Register #6 (MM6).\r
8532\r
8533 Writes the current value of MM6. This function is only available on IA32 and\r
030cd1a2 8534 x64.\r
ac644614 8535\r
8536 @param Value The 64-bit value to write to MM6.\r
8537\r
8538**/\r
8539VOID\r
8540EFIAPI\r
8541AsmWriteMm6 (\r
8542 IN UINT64 Value\r
8543 );\r
8544\r
8545\r
8546/**\r
8547 Writes the current value of 64-bit MMX Register #7 (MM7).\r
8548\r
8549 Writes the current value of MM7. This function is only available on IA32 and\r
030cd1a2 8550 x64.\r
ac644614 8551\r
8552 @param Value The 64-bit value to write to MM7.\r
8553\r
8554**/\r
8555VOID\r
8556EFIAPI\r
8557AsmWriteMm7 (\r
8558 IN UINT64 Value\r
8559 );\r
8560\r
8561\r
8562/**\r
8563 Reads the current value of Time Stamp Counter (TSC).\r
8564\r
8565 Reads and returns the current value of TSC. This function is only available\r
030cd1a2 8566 on IA-32 and x64.\r
ac644614 8567\r
8568 @return The current value of TSC\r
8569\r
8570**/\r
8571UINT64\r
8572EFIAPI\r
8573AsmReadTsc (\r
8574 VOID\r
8575 );\r
8576\r
8577\r
8578/**\r
8579 Reads the current value of a Performance Counter (PMC).\r
8580\r
8581 Reads and returns the current value of performance counter specified by\r
030cd1a2 8582 Index. This function is only available on IA-32 and x64.\r
ac644614 8583\r
8584 @param Index The 32-bit Performance Counter index to read.\r
8585\r
8586 @return The value of the PMC specified by Index.\r
8587\r
8588**/\r
8589UINT64\r
8590EFIAPI\r
8591AsmReadPmc (\r
8592 IN UINT32 Index\r
8593 );\r
8594\r
8595\r
8596/**\r
8597 Sets up a monitor buffer that is used by AsmMwait().\r
8598\r
8599 Executes a MONITOR instruction with the register state specified by Eax, Ecx\r
030cd1a2 8600 and Edx. Returns Eax. This function is only available on IA-32 and x64.\r
ac644614 8601\r
8602 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
8603 instruction.\r
8604 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
8605 instruction.\r
8606 @param Edx The value to load into EDX or RDX before executing the MONITOR\r
8607 instruction.\r
8608\r
8609 @return Eax\r
8610\r
8611**/\r
8612UINTN\r
8613EFIAPI\r
8614AsmMonitor (\r
8615 IN UINTN Eax,\r
8616 IN UINTN Ecx,\r
8617 IN UINTN Edx\r
8618 );\r
8619\r
8620\r
8621/**\r
8622 Executes an MWAIT instruction.\r
8623\r
8624 Executes an MWAIT instruction with the register state specified by Eax and\r
030cd1a2 8625 Ecx. Returns Eax. This function is only available on IA-32 and x64.\r
ac644614 8626\r
8627 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
8628 instruction.\r
8629 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
8630 instruction.\r
8631\r
8632 @return Eax\r
8633\r
8634**/\r
8635UINTN\r
8636EFIAPI\r
8637AsmMwait (\r
8638 IN UINTN Eax,\r
8639 IN UINTN Ecx\r
8640 );\r
8641\r
8642\r
8643/**\r
8644 Executes a WBINVD instruction.\r
8645\r
8646 Executes a WBINVD instruction. This function is only available on IA-32 and\r
030cd1a2 8647 x64.\r
ac644614 8648\r
8649**/\r
8650VOID\r
8651EFIAPI\r
8652AsmWbinvd (\r
8653 VOID\r
8654 );\r
8655\r
8656\r
8657/**\r
8658 Executes a INVD instruction.\r
8659\r
8660 Executes a INVD instruction. This function is only available on IA-32 and\r
030cd1a2 8661 x64.\r
ac644614 8662\r
8663**/\r
8664VOID\r
8665EFIAPI\r
8666AsmInvd (\r
8667 VOID\r
8668 );\r
8669\r
8670\r
8671/**\r
8672 Flushes a cache line from all the instruction and data caches within the\r
8673 coherency domain of the CPU.\r
8674\r
8675 Flushed the cache line specified by LinearAddress, and returns LinearAddress.\r
030cd1a2 8676 This function is only available on IA-32 and x64.\r
ac644614 8677\r
8678 @param LinearAddress The address of the cache line to flush. If the CPU is\r
8679 in a physical addressing mode, then LinearAddress is a\r
8680 physical address. If the CPU is in a virtual\r
8681 addressing mode, then LinearAddress is a virtual\r
8682 address.\r
8683\r
af2dc6a7 8684 @return LinearAddress.\r
ac644614 8685**/\r
8686VOID *\r
8687EFIAPI\r
8688AsmFlushCacheLine (\r
8689 IN VOID *LinearAddress\r
8690 );\r
8691\r
8692\r
8693/**\r
8694 Enables the 32-bit paging mode on the CPU.\r
8695\r
8696 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
8697 must be properly initialized prior to calling this service. This function\r
8698 assumes the current execution mode is 32-bit protected mode. This function is\r
8699 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
8700 transferred to the function specified by EntryPoint using the new stack\r
8701 specified by NewStack and passing in the parameters specified by Context1 and\r
8702 Context2. Context1 and Context2 are optional and may be NULL. The function\r
8703 EntryPoint must never return.\r
8704\r
8705 If the current execution mode is not 32-bit protected mode, then ASSERT().\r
8706 If EntryPoint is NULL, then ASSERT().\r
8707 If NewStack is NULL, then ASSERT().\r
8708\r
8709 There are a number of constraints that must be followed before calling this\r
8710 function:\r
8711 1) Interrupts must be disabled.\r
8712 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
8713 means all descriptors must have a base of 0 and a limit of 4GB.\r
8714 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
8715 descriptors.\r
8716 4) CR3 must point to valid page tables that will be used once the transition\r
8717 is complete, and those page tables must guarantee that the pages for this\r
8718 function and the stack are identity mapped.\r
8719\r
8720 @param EntryPoint A pointer to function to call with the new stack after\r
8721 paging is enabled.\r
8722 @param Context1 A pointer to the context to pass into the EntryPoint\r
8723 function as the first parameter after paging is enabled.\r
8724 @param Context2 A pointer to the context to pass into the EntryPoint\r
8725 function as the second parameter after paging is enabled.\r
8726 @param NewStack A pointer to the new stack to use for the EntryPoint\r
8727 function after paging is enabled.\r
8728\r
8729**/\r
8730VOID\r
8731EFIAPI\r
8732AsmEnablePaging32 (\r
8733 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
8734 IN VOID *Context1, OPTIONAL\r
8735 IN VOID *Context2, OPTIONAL\r
8736 IN VOID *NewStack\r
8737 );\r
8738\r
8739\r
8740/**\r
8741 Disables the 32-bit paging mode on the CPU.\r
8742\r
8743 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
8744 mode. This function assumes the current execution mode is 32-paged protected\r
8745 mode. This function is only available on IA-32. After the 32-bit paging mode\r
8746 is disabled, control is transferred to the function specified by EntryPoint\r
8747 using the new stack specified by NewStack and passing in the parameters\r
8748 specified by Context1 and Context2. Context1 and Context2 are optional and\r
8749 may be NULL. The function EntryPoint must never return.\r
8750\r
8751 If the current execution mode is not 32-bit paged mode, then ASSERT().\r
8752 If EntryPoint is NULL, then ASSERT().\r
8753 If NewStack is NULL, then ASSERT().\r
8754\r
8755 There are a number of constraints that must be followed before calling this\r
8756 function:\r
8757 1) Interrupts must be disabled.\r
8758 2) The caller must be in 32-bit paged mode.\r
8759 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
8760 4) CR3 must point to valid page tables that guarantee that the pages for\r
8761 this function and the stack are identity mapped.\r
8762\r
8763 @param EntryPoint A pointer to function to call with the new stack after\r
8764 paging is disabled.\r
8765 @param Context1 A pointer to the context to pass into the EntryPoint\r
8766 function as the first parameter after paging is disabled.\r
8767 @param Context2 A pointer to the context to pass into the EntryPoint\r
8768 function as the second parameter after paging is\r
8769 disabled.\r
8770 @param NewStack A pointer to the new stack to use for the EntryPoint\r
8771 function after paging is disabled.\r
8772\r
8773**/\r
8774VOID\r
8775EFIAPI\r
8776AsmDisablePaging32 (\r
8777 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
8778 IN VOID *Context1, OPTIONAL\r
8779 IN VOID *Context2, OPTIONAL\r
8780 IN VOID *NewStack\r
8781 );\r
8782\r
8783\r
8784/**\r
8785 Enables the 64-bit paging mode on the CPU.\r
8786\r
8787 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
8788 must be properly initialized prior to calling this service. This function\r
8789 assumes the current execution mode is 32-bit protected mode with flat\r
8790 descriptors. This function is only available on IA-32. After the 64-bit\r
8791 paging mode is enabled, control is transferred to the function specified by\r
8792 EntryPoint using the new stack specified by NewStack and passing in the\r
8793 parameters specified by Context1 and Context2. Context1 and Context2 are\r
8794 optional and may be 0. The function EntryPoint must never return.\r
8795\r
8796 If the current execution mode is not 32-bit protected mode with flat\r
8797 descriptors, then ASSERT().\r
8798 If EntryPoint is 0, then ASSERT().\r
8799 If NewStack is 0, then ASSERT().\r
8800\r
17f695ed 8801 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
ac644614 8802 is called. The descriptor in the GDT that this selector\r
8803 references must be setup for long mode.\r
8804 @param EntryPoint The 64-bit virtual address of the function to call with\r
8805 the new stack after paging is enabled.\r
8806 @param Context1 The 64-bit virtual address of the context to pass into\r
8807 the EntryPoint function as the first parameter after\r
8808 paging is enabled.\r
8809 @param Context2 The 64-bit virtual address of the context to pass into\r
8810 the EntryPoint function as the second parameter after\r
8811 paging is enabled.\r
8812 @param NewStack The 64-bit virtual address of the new stack to use for\r
8813 the EntryPoint function after paging is enabled.\r
8814\r
8815**/\r
8816VOID\r
8817EFIAPI\r
8818AsmEnablePaging64 (\r
17f695ed 8819 IN UINT16 Cs,\r
ac644614 8820 IN UINT64 EntryPoint,\r
8821 IN UINT64 Context1, OPTIONAL\r
8822 IN UINT64 Context2, OPTIONAL\r
8823 IN UINT64 NewStack\r
8824 );\r
8825\r
8826\r
8827/**\r
8828 Disables the 64-bit paging mode on the CPU.\r
8829\r
8830 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
8831 mode. This function assumes the current execution mode is 64-paging mode.\r
030cd1a2 8832 This function is only available on x64. After the 64-bit paging mode is\r
ac644614 8833 disabled, control is transferred to the function specified by EntryPoint\r
8834 using the new stack specified by NewStack and passing in the parameters\r
8835 specified by Context1 and Context2. Context1 and Context2 are optional and\r
8836 may be 0. The function EntryPoint must never return.\r
8837\r
8838 If the current execution mode is not 64-bit paged mode, then ASSERT().\r
8839 If EntryPoint is 0, then ASSERT().\r
8840 If NewStack is 0, then ASSERT().\r
8841\r
17f695ed 8842 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
ac644614 8843 is called. The descriptor in the GDT that this selector\r
8844 references must be setup for 32-bit protected mode.\r
8845 @param EntryPoint The 64-bit virtual address of the function to call with\r
8846 the new stack after paging is disabled.\r
8847 @param Context1 The 64-bit virtual address of the context to pass into\r
8848 the EntryPoint function as the first parameter after\r
8849 paging is disabled.\r
8850 @param Context2 The 64-bit virtual address of the context to pass into\r
8851 the EntryPoint function as the second parameter after\r
8852 paging is disabled.\r
8853 @param NewStack The 64-bit virtual address of the new stack to use for\r
8854 the EntryPoint function after paging is disabled.\r
8855\r
8856**/\r
8857VOID\r
8858EFIAPI\r
8859AsmDisablePaging64 (\r
17f695ed 8860 IN UINT16 Cs,\r
ac644614 8861 IN UINT32 EntryPoint,\r
8862 IN UINT32 Context1, OPTIONAL\r
8863 IN UINT32 Context2, OPTIONAL\r
8864 IN UINT32 NewStack\r
8865 );\r
8866\r
8867\r
8868//\r
8869// 16-bit thunking services\r
8870//\r
8871\r
8872/**\r
8873 Retrieves the properties for 16-bit thunk functions.\r
8874\r
8875 Computes the size of the buffer and stack below 1MB required to use the\r
8876 AsmPrepareThunk16(), AsmThunk16() and AsmPrepareAndThunk16() functions. This\r
8877 buffer size is returned in RealModeBufferSize, and the stack size is returned\r
8878 in ExtraStackSize. If parameters are passed to the 16-bit real mode code,\r
8879 then the actual minimum stack size is ExtraStackSize plus the maximum number\r
8880 of bytes that need to be passed to the 16-bit real mode code.\r
52fa075c 8881 \r
ac644614 8882 If RealModeBufferSize is NULL, then ASSERT().\r
8883 If ExtraStackSize is NULL, then ASSERT().\r
8884\r
8885 @param RealModeBufferSize A pointer to the size of the buffer below 1MB\r
8886 required to use the 16-bit thunk functions.\r
8887 @param ExtraStackSize A pointer to the extra size of stack below 1MB\r
8888 that the 16-bit thunk functions require for\r
8889 temporary storage in the transition to and from\r
8890 16-bit real mode.\r
8891\r
8892**/\r
8893VOID\r
8894EFIAPI\r
8895AsmGetThunk16Properties (\r
8896 OUT UINT32 *RealModeBufferSize,\r
8897 OUT UINT32 *ExtraStackSize\r
8898 );\r
8899\r
8900\r
8901/**\r
8902 Prepares all structures a code required to use AsmThunk16().\r
8903\r
8904 Prepares all structures and code required to use AsmThunk16().\r
52fa075c 8905 \r
8243b089 8906 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
8907 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
ac644614 8908\r
8909 If ThunkContext is NULL, then ASSERT().\r
8910\r
8911 @param ThunkContext A pointer to the context structure that describes the\r
8912 16-bit real mode code to call.\r
8913\r
8914**/\r
8915VOID\r
8916EFIAPI\r
8917AsmPrepareThunk16 (\r
1445300f 8918 IN OUT THUNK_CONTEXT *ThunkContext\r
ac644614 8919 );\r
8920\r
8921\r
8922/**\r
8923 Transfers control to a 16-bit real mode entry point and returns the results.\r
8924\r
8925 Transfers control to a 16-bit real mode entry point and returns the results.\r
17f695ed 8926 AsmPrepareThunk16() must be called with ThunkContext before this function is used.\r
8927 This function must be called with interrupts disabled.\r
8928\r
8929 The register state from the RealModeState field of ThunkContext is restored just prior \r
8930 to calling the 16-bit real mode entry point. This includes the EFLAGS field of RealModeState, \r
8931 which is used to set the interrupt state when a 16-bit real mode entry point is called.\r
8932 Control is transferred to the 16-bit real mode entry point specified by the CS and Eip fields of RealModeState.\r
8933 The stack is initialized to the SS and ESP fields of RealModeState. Any parameters passed to \r
8934 the 16-bit real mode code must be populated by the caller at SS:ESP prior to calling this function. \r
8935 The 16-bit real mode entry point is invoked with a 16-bit CALL FAR instruction,\r
8936 so when accessing stack contents, the 16-bit real mode code must account for the 16-bit segment \r
8937 and 16-bit offset of the return address that were pushed onto the stack. The 16-bit real mode entry \r
8938 point must exit with a RETF instruction. The register state is captured into RealModeState immediately \r
8939 after the RETF instruction is executed.\r
8940 \r
8941 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
8942 or any of the 16-bit real mode code makes a SW interrupt, then the caller is responsible for making sure \r
8943 the IDT at address 0 is initialized to handle any HW or SW interrupts that may occur while in 16-bit real mode. \r
8944 \r
8945 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
8946 then the caller is responsible for making sure the 8259 PIC is in a state compatible with 16-bit real mode. \r
8947 This includes the base vectors, the interrupt masks, and the edge/level trigger mode.\r
8948 \r
8949 If THUNK_ATTRIBUTE_BIG_REAL_MODE is set in the ThunkAttributes field of ThunkContext, then the user code \r
8950 is invoked in big real mode. Otherwise, the user code is invoked in 16-bit real mode with 64KB segment limits.\r
8951 \r
8952 If neither THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 nor THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
8953 ThunkAttributes, then it is assumed that the user code did not enable the A20 mask, and no attempt is made to \r
8954 disable the A20 mask.\r
8955 \r
8956 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is set and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is clear in \r
8957 ThunkAttributes, then attempt to use the INT 15 service to disable the A20 mask. If this INT 15 call fails, \r
8958 then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
8959 \r
8960 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is clear and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is set in \r
8961 ThunkAttributes, then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
8962 \r
ac644614 8963 If ThunkContext is NULL, then ASSERT().\r
8964 If AsmPrepareThunk16() was not previously called with ThunkContext, then ASSERT().\r
17f695ed 8965 If both THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
8966 ThunkAttributes, then ASSERT().\r
ac644614 8967\r
8243b089 8968 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
af2dc6a7 8969 virtual to physical mappings for ThunkContext.RealModeBuffer are mapped 1:1.\r
52fa075c 8970\r
ac644614 8971 @param ThunkContext A pointer to the context structure that describes the\r
8972 16-bit real mode code to call.\r
8973\r
8974**/\r
8975VOID\r
8976EFIAPI\r
8977AsmThunk16 (\r
8978 IN OUT THUNK_CONTEXT *ThunkContext\r
8979 );\r
8980\r
8981\r
8982/**\r
8983 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
8984 control to a 16-bit real mode entry point, and returns the results.\r
8985\r
8986 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
8987 control to a 16-bit real mode entry point, and returns the results. If the\r
8988 caller only need to perform a single 16-bit real mode thunk, then this\r
8989 service should be used. If the caller intends to make more than one 16-bit\r
8990 real mode thunk, then it is more efficient if AsmPrepareThunk16() is called\r
8991 once and AsmThunk16() can be called for each 16-bit real mode thunk.\r
8992\r
8243b089 8993 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
8994 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
52fa075c 8995\r
17f695ed 8996 See AsmPrepareThunk16() and AsmThunk16() for the detailed description and ASSERT() conditions.\r
ac644614 8997\r
8998 @param ThunkContext A pointer to the context structure that describes the\r
8999 16-bit real mode code to call.\r
9000\r
9001**/\r
9002VOID\r
9003EFIAPI\r
9004AsmPrepareAndThunk16 (\r
9005 IN OUT THUNK_CONTEXT *ThunkContext\r
9006 );\r
9007\r
3cfc7813
QL
9008/**\r
9009 Generates a 16-bit random number through RDRAND instruction.\r
9010\r
9011 if Rand is NULL, then ASSERT().\r
9012\r
9013 @param[out] Rand Buffer pointer to store the random result.\r
9014\r
9015 @retval TRUE RDRAND call was successful.\r
9016 @retval FALSE Failed attempts to call RDRAND.\r
9017\r
9018 **/\r
9019BOOLEAN\r
9020EFIAPI\r
9021AsmRdRand16 (\r
9022 OUT UINT16 *Rand\r
9023 );\r
9024\r
9025/**\r
9026 Generates a 32-bit random number through RDRAND instruction.\r
9027\r
9028 if Rand is NULL, then ASSERT().\r
9029\r
9030 @param[out] Rand Buffer pointer to store the random result.\r
9031\r
9032 @retval TRUE RDRAND call was successful.\r
9033 @retval FALSE Failed attempts to call RDRAND.\r
9034\r
9035**/\r
9036BOOLEAN\r
9037EFIAPI\r
9038AsmRdRand32 (\r
9039 OUT UINT32 *Rand\r
9040 );\r
9041\r
9042/**\r
9043 Generates a 64-bit random number through RDRAND instruction.\r
9044\r
9045 if Rand is NULL, then ASSERT().\r
9046\r
9047 @param[out] Rand Buffer pointer to store the random result.\r
9048\r
9049 @retval TRUE RDRAND call was successful.\r
9050 @retval FALSE Failed attempts to call RDRAND.\r
9051\r
9052**/\r
9053BOOLEAN\r
9054EFIAPI\r
9055AsmRdRand64 (\r
9056 OUT UINT64 *Rand\r
9057 );\r
9058\r
364a5474
JW
9059/**\r
9060 Load given selector into TR register\r
9061\r
9062 @param[in] Selector Task segment selector\r
9063**/\r
9064VOID\r
9065EFIAPI\r
9066AsmWriteTr (\r
9067 IN UINT16 Selector\r
9068 );\r
9069\r
ac644614 9070#endif\r
e3a7917f 9071#endif\r
ac644614 9072\r
9073\r