]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
Merge branch 'nvme-4.14' of git://git.infradead.org/nvme into for-linus
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 147
4e4cbee9
CH
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
2a842aca
CH
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153};
154
155blk_status_t errno_to_blk_status(int errno)
156{
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165}
166EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168int blk_status_to_errno(blk_status_t status)
169{
170 int idx = (__force int)status;
171
34bd9c1c 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
173 return -EIO;
174 return blk_errors[idx].errno;
175}
176EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178static void print_req_error(struct request *req, blk_status_t status)
179{
180 int idx = (__force int)status;
181
34bd9c1c 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189}
190
5bb23a68 191static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 192 unsigned int nbytes, blk_status_t error)
1da177e4 193{
78d8e58a 194 if (error)
4e4cbee9 195 bio->bi_status = error;
797e7dbb 196
e8064021 197 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 198 bio_set_flag(bio, BIO_QUIET);
08bafc03 199
f79ea416 200 bio_advance(bio, nbytes);
7ba1ba12 201
143a87f4 202 /* don't actually finish bio if it's part of flush sequence */
e8064021 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 204 bio_endio(bio);
1da177e4 205}
1da177e4 206
1da177e4
LT
207void blk_dump_rq_flags(struct request *rq, char *msg)
208{
aebf526b
CH
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 211 (unsigned long long) rq->cmd_flags);
1da177e4 212
83096ebf
TH
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_dump_rq_flags);
220
3cca6dc1 221static void blk_delay_work(struct work_struct *work)
1da177e4 222{
3cca6dc1 223 struct request_queue *q;
1da177e4 224
3cca6dc1
JA
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
24ecfbe2 227 __blk_run_queue(q);
3cca6dc1 228 spin_unlock_irq(q->queue_lock);
1da177e4 229}
1da177e4
LT
230
231/**
3cca6dc1
JA
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
1da177e4
LT
235 *
236 * Description:
3cca6dc1
JA
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
2fff8a92 239 * restarted around the specified time.
3cca6dc1
JA
240 */
241void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 242{
2fff8a92 243 lockdep_assert_held(q->queue_lock);
332ebbf7 244 WARN_ON_ONCE(q->mq_ops);
2fff8a92 245
70460571
BVA
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
2ad8b1ef 249}
3cca6dc1 250EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 251
21491412
JA
252/**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261void blk_start_queue_async(struct request_queue *q)
262{
2fff8a92 263 lockdep_assert_held(q->queue_lock);
332ebbf7 264 WARN_ON_ONCE(q->mq_ops);
2fff8a92 265
21491412
JA
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268}
269EXPORT_SYMBOL(blk_start_queue_async);
270
1da177e4
LT
271/**
272 * blk_start_queue - restart a previously stopped queue
165125e1 273 * @q: The &struct request_queue in question
1da177e4
LT
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
2fff8a92 278 * entered. Also see blk_stop_queue().
1da177e4 279 **/
165125e1 280void blk_start_queue(struct request_queue *q)
1da177e4 281{
2fff8a92 282 lockdep_assert_held(q->queue_lock);
4ddd56b0 283 WARN_ON(!in_interrupt() && !irqs_disabled());
332ebbf7 284 WARN_ON_ONCE(q->mq_ops);
a038e253 285
75ad23bc 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 287 __blk_run_queue(q);
1da177e4 288}
1da177e4
LT
289EXPORT_SYMBOL(blk_start_queue);
290
291/**
292 * blk_stop_queue - stop a queue
165125e1 293 * @q: The &struct request_queue in question
1da177e4
LT
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 303 * blk_start_queue() to restart queue operations.
1da177e4 304 **/
165125e1 305void blk_stop_queue(struct request_queue *q)
1da177e4 306{
2fff8a92 307 lockdep_assert_held(q->queue_lock);
332ebbf7 308 WARN_ON_ONCE(q->mq_ops);
2fff8a92 309
136b5721 310 cancel_delayed_work(&q->delay_work);
75ad23bc 311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
312}
313EXPORT_SYMBOL(blk_stop_queue);
314
315/**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
59c51591 324 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
da527770 328 * This function does not cancel any asynchronous activity arising
da3dae54 329 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 330 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 331 *
1da177e4
LT
332 */
333void blk_sync_queue(struct request_queue *q)
334{
70ed28b9 335 del_timer_sync(&q->timeout);
f04c1fe7
ML
336
337 if (q->mq_ops) {
338 struct blk_mq_hw_ctx *hctx;
339 int i;
340
21c6e939 341 queue_for_each_hw_ctx(q, hctx, i)
9f993737 342 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
343 } else {
344 cancel_delayed_work_sync(&q->delay_work);
345 }
1da177e4
LT
346}
347EXPORT_SYMBOL(blk_sync_queue);
348
c246e80d
BVA
349/**
350 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
351 * @q: The queue to run
352 *
353 * Description:
354 * Invoke request handling on a queue if there are any pending requests.
355 * May be used to restart request handling after a request has completed.
356 * This variant runs the queue whether or not the queue has been
357 * stopped. Must be called with the queue lock held and interrupts
358 * disabled. See also @blk_run_queue.
359 */
360inline void __blk_run_queue_uncond(struct request_queue *q)
361{
2fff8a92 362 lockdep_assert_held(q->queue_lock);
332ebbf7 363 WARN_ON_ONCE(q->mq_ops);
2fff8a92 364
c246e80d
BVA
365 if (unlikely(blk_queue_dead(q)))
366 return;
367
24faf6f6
BVA
368 /*
369 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
370 * the queue lock internally. As a result multiple threads may be
371 * running such a request function concurrently. Keep track of the
372 * number of active request_fn invocations such that blk_drain_queue()
373 * can wait until all these request_fn calls have finished.
374 */
375 q->request_fn_active++;
c246e80d 376 q->request_fn(q);
24faf6f6 377 q->request_fn_active--;
c246e80d 378}
a7928c15 379EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 380
1da177e4 381/**
80a4b58e 382 * __blk_run_queue - run a single device queue
1da177e4 383 * @q: The queue to run
80a4b58e
JA
384 *
385 * Description:
2fff8a92 386 * See @blk_run_queue.
1da177e4 387 */
24ecfbe2 388void __blk_run_queue(struct request_queue *q)
1da177e4 389{
2fff8a92 390 lockdep_assert_held(q->queue_lock);
332ebbf7 391 WARN_ON_ONCE(q->mq_ops);
2fff8a92 392
a538cd03
TH
393 if (unlikely(blk_queue_stopped(q)))
394 return;
395
c246e80d 396 __blk_run_queue_uncond(q);
75ad23bc
NP
397}
398EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 399
24ecfbe2
CH
400/**
401 * blk_run_queue_async - run a single device queue in workqueue context
402 * @q: The queue to run
403 *
404 * Description:
405 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
406 * of us.
407 *
408 * Note:
409 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
410 * has canceled q->delay_work, callers must hold the queue lock to avoid
411 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
412 */
413void blk_run_queue_async(struct request_queue *q)
414{
2fff8a92 415 lockdep_assert_held(q->queue_lock);
332ebbf7 416 WARN_ON_ONCE(q->mq_ops);
2fff8a92 417
70460571 418 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 419 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 420}
c21e6beb 421EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 422
75ad23bc
NP
423/**
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
80a4b58e
JA
426 *
427 * Description:
428 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 429 * May be used to restart queueing when a request has completed.
75ad23bc
NP
430 */
431void blk_run_queue(struct request_queue *q)
432{
433 unsigned long flags;
434
332ebbf7
BVA
435 WARN_ON_ONCE(q->mq_ops);
436
75ad23bc 437 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 438 __blk_run_queue(q);
1da177e4
LT
439 spin_unlock_irqrestore(q->queue_lock, flags);
440}
441EXPORT_SYMBOL(blk_run_queue);
442
165125e1 443void blk_put_queue(struct request_queue *q)
483f4afc
AV
444{
445 kobject_put(&q->kobj);
446}
d86e0e83 447EXPORT_SYMBOL(blk_put_queue);
483f4afc 448
e3c78ca5 449/**
807592a4 450 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 451 * @q: queue to drain
c9a929dd 452 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 453 *
c9a929dd
TH
454 * Drain requests from @q. If @drain_all is set, all requests are drained.
455 * If not, only ELVPRIV requests are drained. The caller is responsible
456 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 457 */
807592a4
BVA
458static void __blk_drain_queue(struct request_queue *q, bool drain_all)
459 __releases(q->queue_lock)
460 __acquires(q->queue_lock)
e3c78ca5 461{
458f27a9
AH
462 int i;
463
807592a4 464 lockdep_assert_held(q->queue_lock);
332ebbf7 465 WARN_ON_ONCE(q->mq_ops);
807592a4 466
e3c78ca5 467 while (true) {
481a7d64 468 bool drain = false;
e3c78ca5 469
b855b04a
TH
470 /*
471 * The caller might be trying to drain @q before its
472 * elevator is initialized.
473 */
474 if (q->elevator)
475 elv_drain_elevator(q);
476
5efd6113 477 blkcg_drain_queue(q);
e3c78ca5 478
4eabc941
TH
479 /*
480 * This function might be called on a queue which failed
b855b04a
TH
481 * driver init after queue creation or is not yet fully
482 * active yet. Some drivers (e.g. fd and loop) get unhappy
483 * in such cases. Kick queue iff dispatch queue has
484 * something on it and @q has request_fn set.
4eabc941 485 */
b855b04a 486 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 487 __blk_run_queue(q);
c9a929dd 488
8a5ecdd4 489 drain |= q->nr_rqs_elvpriv;
24faf6f6 490 drain |= q->request_fn_active;
481a7d64
TH
491
492 /*
493 * Unfortunately, requests are queued at and tracked from
494 * multiple places and there's no single counter which can
495 * be drained. Check all the queues and counters.
496 */
497 if (drain_all) {
e97c293c 498 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
499 drain |= !list_empty(&q->queue_head);
500 for (i = 0; i < 2; i++) {
8a5ecdd4 501 drain |= q->nr_rqs[i];
481a7d64 502 drain |= q->in_flight[i];
7c94e1c1
ML
503 if (fq)
504 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
505 }
506 }
e3c78ca5 507
481a7d64 508 if (!drain)
e3c78ca5 509 break;
807592a4
BVA
510
511 spin_unlock_irq(q->queue_lock);
512
e3c78ca5 513 msleep(10);
807592a4
BVA
514
515 spin_lock_irq(q->queue_lock);
e3c78ca5 516 }
458f27a9
AH
517
518 /*
519 * With queue marked dead, any woken up waiter will fail the
520 * allocation path, so the wakeup chaining is lost and we're
521 * left with hung waiters. We need to wake up those waiters.
522 */
523 if (q->request_fn) {
a051661c
TH
524 struct request_list *rl;
525
a051661c
TH
526 blk_queue_for_each_rl(rl, q)
527 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
528 wake_up_all(&rl->wait[i]);
458f27a9 529 }
e3c78ca5
TH
530}
531
d732580b
TH
532/**
533 * blk_queue_bypass_start - enter queue bypass mode
534 * @q: queue of interest
535 *
536 * In bypass mode, only the dispatch FIFO queue of @q is used. This
537 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 538 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
539 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
540 * inside queue or RCU read lock.
d732580b
TH
541 */
542void blk_queue_bypass_start(struct request_queue *q)
543{
332ebbf7
BVA
544 WARN_ON_ONCE(q->mq_ops);
545
d732580b 546 spin_lock_irq(q->queue_lock);
776687bc 547 q->bypass_depth++;
d732580b
TH
548 queue_flag_set(QUEUE_FLAG_BYPASS, q);
549 spin_unlock_irq(q->queue_lock);
550
776687bc
TH
551 /*
552 * Queues start drained. Skip actual draining till init is
553 * complete. This avoids lenghty delays during queue init which
554 * can happen many times during boot.
555 */
556 if (blk_queue_init_done(q)) {
807592a4
BVA
557 spin_lock_irq(q->queue_lock);
558 __blk_drain_queue(q, false);
559 spin_unlock_irq(q->queue_lock);
560
b82d4b19
TH
561 /* ensure blk_queue_bypass() is %true inside RCU read lock */
562 synchronize_rcu();
563 }
d732580b
TH
564}
565EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
566
567/**
568 * blk_queue_bypass_end - leave queue bypass mode
569 * @q: queue of interest
570 *
571 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
572 *
573 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
574 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
575 */
576void blk_queue_bypass_end(struct request_queue *q)
577{
578 spin_lock_irq(q->queue_lock);
579 if (!--q->bypass_depth)
580 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
581 WARN_ON_ONCE(q->bypass_depth < 0);
582 spin_unlock_irq(q->queue_lock);
583}
584EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
585
aed3ea94
JA
586void blk_set_queue_dying(struct request_queue *q)
587{
1b856086
BVA
588 spin_lock_irq(q->queue_lock);
589 queue_flag_set(QUEUE_FLAG_DYING, q);
590 spin_unlock_irq(q->queue_lock);
aed3ea94 591
d3cfb2a0
ML
592 /*
593 * When queue DYING flag is set, we need to block new req
594 * entering queue, so we call blk_freeze_queue_start() to
595 * prevent I/O from crossing blk_queue_enter().
596 */
597 blk_freeze_queue_start(q);
598
aed3ea94
JA
599 if (q->mq_ops)
600 blk_mq_wake_waiters(q);
601 else {
602 struct request_list *rl;
603
bbfc3c5d 604 spin_lock_irq(q->queue_lock);
aed3ea94
JA
605 blk_queue_for_each_rl(rl, q) {
606 if (rl->rq_pool) {
607 wake_up(&rl->wait[BLK_RW_SYNC]);
608 wake_up(&rl->wait[BLK_RW_ASYNC]);
609 }
610 }
bbfc3c5d 611 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
612 }
613}
614EXPORT_SYMBOL_GPL(blk_set_queue_dying);
615
c9a929dd
TH
616/**
617 * blk_cleanup_queue - shutdown a request queue
618 * @q: request queue to shutdown
619 *
c246e80d
BVA
620 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
621 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 622 */
6728cb0e 623void blk_cleanup_queue(struct request_queue *q)
483f4afc 624{
c9a929dd 625 spinlock_t *lock = q->queue_lock;
e3335de9 626
3f3299d5 627 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 628 mutex_lock(&q->sysfs_lock);
aed3ea94 629 blk_set_queue_dying(q);
c9a929dd 630 spin_lock_irq(lock);
6ecf23af 631
80fd9979 632 /*
3f3299d5 633 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
634 * that, unlike blk_queue_bypass_start(), we aren't performing
635 * synchronize_rcu() after entering bypass mode to avoid the delay
636 * as some drivers create and destroy a lot of queues while
637 * probing. This is still safe because blk_release_queue() will be
638 * called only after the queue refcnt drops to zero and nothing,
639 * RCU or not, would be traversing the queue by then.
640 */
6ecf23af
TH
641 q->bypass_depth++;
642 queue_flag_set(QUEUE_FLAG_BYPASS, q);
643
c9a929dd
TH
644 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
645 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 646 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
647 spin_unlock_irq(lock);
648 mutex_unlock(&q->sysfs_lock);
649
c246e80d
BVA
650 /*
651 * Drain all requests queued before DYING marking. Set DEAD flag to
652 * prevent that q->request_fn() gets invoked after draining finished.
653 */
3ef28e83 654 blk_freeze_queue(q);
9c1051aa
OS
655 spin_lock_irq(lock);
656 if (!q->mq_ops)
43a5e4e2 657 __blk_drain_queue(q, true);
c246e80d 658 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 659 spin_unlock_irq(lock);
c9a929dd 660
5a48fc14
DW
661 /* for synchronous bio-based driver finish in-flight integrity i/o */
662 blk_flush_integrity();
663
c9a929dd 664 /* @q won't process any more request, flush async actions */
dc3b17cc 665 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
666 blk_sync_queue(q);
667
45a9c9d9
BVA
668 if (q->mq_ops)
669 blk_mq_free_queue(q);
3ef28e83 670 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 671
5e5cfac0
AH
672 spin_lock_irq(lock);
673 if (q->queue_lock != &q->__queue_lock)
674 q->queue_lock = &q->__queue_lock;
675 spin_unlock_irq(lock);
676
c9a929dd 677 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
678 blk_put_queue(q);
679}
1da177e4
LT
680EXPORT_SYMBOL(blk_cleanup_queue);
681
271508db 682/* Allocate memory local to the request queue */
6d247d7f 683static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 684{
6d247d7f
CH
685 struct request_queue *q = data;
686
687 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
688}
689
6d247d7f 690static void free_request_simple(void *element, void *data)
271508db
DR
691{
692 kmem_cache_free(request_cachep, element);
693}
694
6d247d7f
CH
695static void *alloc_request_size(gfp_t gfp_mask, void *data)
696{
697 struct request_queue *q = data;
698 struct request *rq;
699
700 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
701 q->node);
702 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
703 kfree(rq);
704 rq = NULL;
705 }
706 return rq;
707}
708
709static void free_request_size(void *element, void *data)
710{
711 struct request_queue *q = data;
712
713 if (q->exit_rq_fn)
714 q->exit_rq_fn(q, element);
715 kfree(element);
716}
717
5b788ce3
TH
718int blk_init_rl(struct request_list *rl, struct request_queue *q,
719 gfp_t gfp_mask)
1da177e4 720{
1abec4fd
MS
721 if (unlikely(rl->rq_pool))
722 return 0;
723
5b788ce3 724 rl->q = q;
1faa16d2
JA
725 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
726 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
727 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
728 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 729
6d247d7f
CH
730 if (q->cmd_size) {
731 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
732 alloc_request_size, free_request_size,
733 q, gfp_mask, q->node);
734 } else {
735 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
736 alloc_request_simple, free_request_simple,
737 q, gfp_mask, q->node);
738 }
1da177e4
LT
739 if (!rl->rq_pool)
740 return -ENOMEM;
741
b425e504
BVA
742 if (rl != &q->root_rl)
743 WARN_ON_ONCE(!blk_get_queue(q));
744
1da177e4
LT
745 return 0;
746}
747
b425e504 748void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 749{
b425e504 750 if (rl->rq_pool) {
5b788ce3 751 mempool_destroy(rl->rq_pool);
b425e504
BVA
752 if (rl != &q->root_rl)
753 blk_put_queue(q);
754 }
5b788ce3
TH
755}
756
165125e1 757struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 758{
c304a51b 759 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
760}
761EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 762
6f3b0e8b 763int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
764{
765 while (true) {
766 int ret;
767
768 if (percpu_ref_tryget_live(&q->q_usage_counter))
769 return 0;
770
6f3b0e8b 771 if (nowait)
3ef28e83
DW
772 return -EBUSY;
773
5ed61d3f 774 /*
1671d522 775 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 776 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
777 * .q_usage_counter and reading .mq_freeze_depth or
778 * queue dying flag, otherwise the following wait may
779 * never return if the two reads are reordered.
5ed61d3f
ML
780 */
781 smp_rmb();
782
3ef28e83
DW
783 ret = wait_event_interruptible(q->mq_freeze_wq,
784 !atomic_read(&q->mq_freeze_depth) ||
785 blk_queue_dying(q));
786 if (blk_queue_dying(q))
787 return -ENODEV;
788 if (ret)
789 return ret;
790 }
791}
792
793void blk_queue_exit(struct request_queue *q)
794{
795 percpu_ref_put(&q->q_usage_counter);
796}
797
798static void blk_queue_usage_counter_release(struct percpu_ref *ref)
799{
800 struct request_queue *q =
801 container_of(ref, struct request_queue, q_usage_counter);
802
803 wake_up_all(&q->mq_freeze_wq);
804}
805
287922eb
CH
806static void blk_rq_timed_out_timer(unsigned long data)
807{
808 struct request_queue *q = (struct request_queue *)data;
809
810 kblockd_schedule_work(&q->timeout_work);
811}
812
165125e1 813struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 814{
165125e1 815 struct request_queue *q;
1946089a 816
8324aa91 817 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 818 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
819 if (!q)
820 return NULL;
821
00380a40 822 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 823 if (q->id < 0)
3d2936f4 824 goto fail_q;
a73f730d 825
93b27e72 826 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
827 if (!q->bio_split)
828 goto fail_id;
829
d03f6cdc
JK
830 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
831 if (!q->backing_dev_info)
832 goto fail_split;
833
a83b576c
JA
834 q->stats = blk_alloc_queue_stats();
835 if (!q->stats)
836 goto fail_stats;
837
dc3b17cc 838 q->backing_dev_info->ra_pages =
09cbfeaf 839 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
840 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
841 q->backing_dev_info->name = "block";
5151412d 842 q->node = node_id;
0989a025 843
dc3b17cc 844 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 845 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 846 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 847 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 848 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 849 INIT_LIST_HEAD(&q->icq_list);
4eef3049 850#ifdef CONFIG_BLK_CGROUP
e8989fae 851 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 852#endif
3cca6dc1 853 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 854
8324aa91 855 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 856
483f4afc 857 mutex_init(&q->sysfs_lock);
e7e72bf6 858 spin_lock_init(&q->__queue_lock);
483f4afc 859
c94a96ac
VG
860 /*
861 * By default initialize queue_lock to internal lock and driver can
862 * override it later if need be.
863 */
864 q->queue_lock = &q->__queue_lock;
865
b82d4b19
TH
866 /*
867 * A queue starts its life with bypass turned on to avoid
868 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
869 * init. The initial bypass will be finished when the queue is
870 * registered by blk_register_queue().
b82d4b19
TH
871 */
872 q->bypass_depth = 1;
873 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
874
320ae51f
JA
875 init_waitqueue_head(&q->mq_freeze_wq);
876
3ef28e83
DW
877 /*
878 * Init percpu_ref in atomic mode so that it's faster to shutdown.
879 * See blk_register_queue() for details.
880 */
881 if (percpu_ref_init(&q->q_usage_counter,
882 blk_queue_usage_counter_release,
883 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 884 goto fail_bdi;
f51b802c 885
3ef28e83
DW
886 if (blkcg_init_queue(q))
887 goto fail_ref;
888
1da177e4 889 return q;
a73f730d 890
3ef28e83
DW
891fail_ref:
892 percpu_ref_exit(&q->q_usage_counter);
fff4996b 893fail_bdi:
a83b576c
JA
894 blk_free_queue_stats(q->stats);
895fail_stats:
d03f6cdc 896 bdi_put(q->backing_dev_info);
54efd50b
KO
897fail_split:
898 bioset_free(q->bio_split);
a73f730d
TH
899fail_id:
900 ida_simple_remove(&blk_queue_ida, q->id);
901fail_q:
902 kmem_cache_free(blk_requestq_cachep, q);
903 return NULL;
1da177e4 904}
1946089a 905EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
906
907/**
908 * blk_init_queue - prepare a request queue for use with a block device
909 * @rfn: The function to be called to process requests that have been
910 * placed on the queue.
911 * @lock: Request queue spin lock
912 *
913 * Description:
914 * If a block device wishes to use the standard request handling procedures,
915 * which sorts requests and coalesces adjacent requests, then it must
916 * call blk_init_queue(). The function @rfn will be called when there
917 * are requests on the queue that need to be processed. If the device
918 * supports plugging, then @rfn may not be called immediately when requests
919 * are available on the queue, but may be called at some time later instead.
920 * Plugged queues are generally unplugged when a buffer belonging to one
921 * of the requests on the queue is needed, or due to memory pressure.
922 *
923 * @rfn is not required, or even expected, to remove all requests off the
924 * queue, but only as many as it can handle at a time. If it does leave
925 * requests on the queue, it is responsible for arranging that the requests
926 * get dealt with eventually.
927 *
928 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
929 * request queue; this lock will be taken also from interrupt context, so irq
930 * disabling is needed for it.
1da177e4 931 *
710027a4 932 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
933 * it didn't succeed.
934 *
935 * Note:
936 * blk_init_queue() must be paired with a blk_cleanup_queue() call
937 * when the block device is deactivated (such as at module unload).
938 **/
1946089a 939
165125e1 940struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 941{
c304a51b 942 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
943}
944EXPORT_SYMBOL(blk_init_queue);
945
165125e1 946struct request_queue *
1946089a
CL
947blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
948{
5ea708d1 949 struct request_queue *q;
1da177e4 950
5ea708d1
CH
951 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
952 if (!q)
c86d1b8a
MS
953 return NULL;
954
5ea708d1
CH
955 q->request_fn = rfn;
956 if (lock)
957 q->queue_lock = lock;
958 if (blk_init_allocated_queue(q) < 0) {
959 blk_cleanup_queue(q);
960 return NULL;
961 }
18741986 962
7982e90c 963 return q;
01effb0d
MS
964}
965EXPORT_SYMBOL(blk_init_queue_node);
966
dece1635 967static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 968
1da177e4 969
5ea708d1
CH
970int blk_init_allocated_queue(struct request_queue *q)
971{
332ebbf7
BVA
972 WARN_ON_ONCE(q->mq_ops);
973
6d247d7f 974 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 975 if (!q->fq)
5ea708d1 976 return -ENOMEM;
7982e90c 977
6d247d7f
CH
978 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
979 goto out_free_flush_queue;
7982e90c 980
a051661c 981 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 982 goto out_exit_flush_rq;
1da177e4 983
287922eb 984 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 985 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 986
f3b144aa
JA
987 /*
988 * This also sets hw/phys segments, boundary and size
989 */
c20e8de2 990 blk_queue_make_request(q, blk_queue_bio);
1da177e4 991
44ec9542
AS
992 q->sg_reserved_size = INT_MAX;
993
eb1c160b
TS
994 /* Protect q->elevator from elevator_change */
995 mutex_lock(&q->sysfs_lock);
996
b82d4b19 997 /* init elevator */
eb1c160b
TS
998 if (elevator_init(q, NULL)) {
999 mutex_unlock(&q->sysfs_lock);
6d247d7f 1000 goto out_exit_flush_rq;
eb1c160b
TS
1001 }
1002
1003 mutex_unlock(&q->sysfs_lock);
5ea708d1 1004 return 0;
eb1c160b 1005
6d247d7f
CH
1006out_exit_flush_rq:
1007 if (q->exit_rq_fn)
1008 q->exit_rq_fn(q, q->fq->flush_rq);
1009out_free_flush_queue:
ba483388 1010 blk_free_flush_queue(q->fq);
5ea708d1 1011 return -ENOMEM;
1da177e4 1012}
5151412d 1013EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1014
09ac46c4 1015bool blk_get_queue(struct request_queue *q)
1da177e4 1016{
3f3299d5 1017 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1018 __blk_get_queue(q);
1019 return true;
1da177e4
LT
1020 }
1021
09ac46c4 1022 return false;
1da177e4 1023}
d86e0e83 1024EXPORT_SYMBOL(blk_get_queue);
1da177e4 1025
5b788ce3 1026static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1027{
e8064021 1028 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1029 elv_put_request(rl->q, rq);
f1f8cc94 1030 if (rq->elv.icq)
11a3122f 1031 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1032 }
1033
5b788ce3 1034 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1035}
1036
1da177e4
LT
1037/*
1038 * ioc_batching returns true if the ioc is a valid batching request and
1039 * should be given priority access to a request.
1040 */
165125e1 1041static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1042{
1043 if (!ioc)
1044 return 0;
1045
1046 /*
1047 * Make sure the process is able to allocate at least 1 request
1048 * even if the batch times out, otherwise we could theoretically
1049 * lose wakeups.
1050 */
1051 return ioc->nr_batch_requests == q->nr_batching ||
1052 (ioc->nr_batch_requests > 0
1053 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1054}
1055
1056/*
1057 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1058 * will cause the process to be a "batcher" on all queues in the system. This
1059 * is the behaviour we want though - once it gets a wakeup it should be given
1060 * a nice run.
1061 */
165125e1 1062static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1063{
1064 if (!ioc || ioc_batching(q, ioc))
1065 return;
1066
1067 ioc->nr_batch_requests = q->nr_batching;
1068 ioc->last_waited = jiffies;
1069}
1070
5b788ce3 1071static void __freed_request(struct request_list *rl, int sync)
1da177e4 1072{
5b788ce3 1073 struct request_queue *q = rl->q;
1da177e4 1074
d40f75a0
TH
1075 if (rl->count[sync] < queue_congestion_off_threshold(q))
1076 blk_clear_congested(rl, sync);
1da177e4 1077
1faa16d2
JA
1078 if (rl->count[sync] + 1 <= q->nr_requests) {
1079 if (waitqueue_active(&rl->wait[sync]))
1080 wake_up(&rl->wait[sync]);
1da177e4 1081
5b788ce3 1082 blk_clear_rl_full(rl, sync);
1da177e4
LT
1083 }
1084}
1085
1086/*
1087 * A request has just been released. Account for it, update the full and
1088 * congestion status, wake up any waiters. Called under q->queue_lock.
1089 */
e8064021
CH
1090static void freed_request(struct request_list *rl, bool sync,
1091 req_flags_t rq_flags)
1da177e4 1092{
5b788ce3 1093 struct request_queue *q = rl->q;
1da177e4 1094
8a5ecdd4 1095 q->nr_rqs[sync]--;
1faa16d2 1096 rl->count[sync]--;
e8064021 1097 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1098 q->nr_rqs_elvpriv--;
1da177e4 1099
5b788ce3 1100 __freed_request(rl, sync);
1da177e4 1101
1faa16d2 1102 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1103 __freed_request(rl, sync ^ 1);
1da177e4
LT
1104}
1105
e3a2b3f9
JA
1106int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1107{
1108 struct request_list *rl;
d40f75a0 1109 int on_thresh, off_thresh;
e3a2b3f9 1110
332ebbf7
BVA
1111 WARN_ON_ONCE(q->mq_ops);
1112
e3a2b3f9
JA
1113 spin_lock_irq(q->queue_lock);
1114 q->nr_requests = nr;
1115 blk_queue_congestion_threshold(q);
d40f75a0
TH
1116 on_thresh = queue_congestion_on_threshold(q);
1117 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1118
d40f75a0
TH
1119 blk_queue_for_each_rl(rl, q) {
1120 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1121 blk_set_congested(rl, BLK_RW_SYNC);
1122 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1123 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1124
d40f75a0
TH
1125 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1126 blk_set_congested(rl, BLK_RW_ASYNC);
1127 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1128 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1129
e3a2b3f9
JA
1130 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1131 blk_set_rl_full(rl, BLK_RW_SYNC);
1132 } else {
1133 blk_clear_rl_full(rl, BLK_RW_SYNC);
1134 wake_up(&rl->wait[BLK_RW_SYNC]);
1135 }
1136
1137 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1138 blk_set_rl_full(rl, BLK_RW_ASYNC);
1139 } else {
1140 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1141 wake_up(&rl->wait[BLK_RW_ASYNC]);
1142 }
1143 }
1144
1145 spin_unlock_irq(q->queue_lock);
1146 return 0;
1147}
1148
da8303c6 1149/**
a06e05e6 1150 * __get_request - get a free request
5b788ce3 1151 * @rl: request list to allocate from
ef295ecf 1152 * @op: operation and flags
da8303c6
TH
1153 * @bio: bio to allocate request for (can be %NULL)
1154 * @gfp_mask: allocation mask
1155 *
1156 * Get a free request from @q. This function may fail under memory
1157 * pressure or if @q is dead.
1158 *
da3dae54 1159 * Must be called with @q->queue_lock held and,
a492f075
JL
1160 * Returns ERR_PTR on failure, with @q->queue_lock held.
1161 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1162 */
ef295ecf
CH
1163static struct request *__get_request(struct request_list *rl, unsigned int op,
1164 struct bio *bio, gfp_t gfp_mask)
1da177e4 1165{
5b788ce3 1166 struct request_queue *q = rl->q;
b679281a 1167 struct request *rq;
7f4b35d1
TH
1168 struct elevator_type *et = q->elevator->type;
1169 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1170 struct io_cq *icq = NULL;
ef295ecf 1171 const bool is_sync = op_is_sync(op);
75eb6c37 1172 int may_queue;
e8064021 1173 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1174
2fff8a92
BVA
1175 lockdep_assert_held(q->queue_lock);
1176
3f3299d5 1177 if (unlikely(blk_queue_dying(q)))
a492f075 1178 return ERR_PTR(-ENODEV);
da8303c6 1179
ef295ecf 1180 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1181 if (may_queue == ELV_MQUEUE_NO)
1182 goto rq_starved;
1183
1faa16d2
JA
1184 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1185 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1186 /*
1187 * The queue will fill after this allocation, so set
1188 * it as full, and mark this process as "batching".
1189 * This process will be allowed to complete a batch of
1190 * requests, others will be blocked.
1191 */
5b788ce3 1192 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1193 ioc_set_batching(q, ioc);
5b788ce3 1194 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1195 } else {
1196 if (may_queue != ELV_MQUEUE_MUST
1197 && !ioc_batching(q, ioc)) {
1198 /*
1199 * The queue is full and the allocating
1200 * process is not a "batcher", and not
1201 * exempted by the IO scheduler
1202 */
a492f075 1203 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1204 }
1205 }
1da177e4 1206 }
d40f75a0 1207 blk_set_congested(rl, is_sync);
1da177e4
LT
1208 }
1209
082cf69e
JA
1210 /*
1211 * Only allow batching queuers to allocate up to 50% over the defined
1212 * limit of requests, otherwise we could have thousands of requests
1213 * allocated with any setting of ->nr_requests
1214 */
1faa16d2 1215 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1216 return ERR_PTR(-ENOMEM);
fd782a4a 1217
8a5ecdd4 1218 q->nr_rqs[is_sync]++;
1faa16d2
JA
1219 rl->count[is_sync]++;
1220 rl->starved[is_sync] = 0;
cb98fc8b 1221
f1f8cc94
TH
1222 /*
1223 * Decide whether the new request will be managed by elevator. If
e8064021 1224 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1225 * prevent the current elevator from being destroyed until the new
1226 * request is freed. This guarantees icq's won't be destroyed and
1227 * makes creating new ones safe.
1228 *
e6f7f93d
CH
1229 * Flush requests do not use the elevator so skip initialization.
1230 * This allows a request to share the flush and elevator data.
1231 *
f1f8cc94
TH
1232 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1233 * it will be created after releasing queue_lock.
1234 */
e6f7f93d 1235 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1236 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1237 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1238 if (et->icq_cache && ioc)
1239 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1240 }
cb98fc8b 1241
f253b86b 1242 if (blk_queue_io_stat(q))
e8064021 1243 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1244 spin_unlock_irq(q->queue_lock);
1245
29e2b09a 1246 /* allocate and init request */
5b788ce3 1247 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1248 if (!rq)
b679281a 1249 goto fail_alloc;
1da177e4 1250
29e2b09a 1251 blk_rq_init(q, rq);
a051661c 1252 blk_rq_set_rl(rq, rl);
ef295ecf 1253 rq->cmd_flags = op;
e8064021 1254 rq->rq_flags = rq_flags;
29e2b09a 1255
aaf7c680 1256 /* init elvpriv */
e8064021 1257 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1258 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1259 if (ioc)
1260 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1261 if (!icq)
1262 goto fail_elvpriv;
29e2b09a 1263 }
aaf7c680
TH
1264
1265 rq->elv.icq = icq;
1266 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1267 goto fail_elvpriv;
1268
1269 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1270 if (icq)
1271 get_io_context(icq->ioc);
1272 }
aaf7c680 1273out:
88ee5ef1
JA
1274 /*
1275 * ioc may be NULL here, and ioc_batching will be false. That's
1276 * OK, if the queue is under the request limit then requests need
1277 * not count toward the nr_batch_requests limit. There will always
1278 * be some limit enforced by BLK_BATCH_TIME.
1279 */
1da177e4
LT
1280 if (ioc_batching(q, ioc))
1281 ioc->nr_batch_requests--;
6728cb0e 1282
e6a40b09 1283 trace_block_getrq(q, bio, op);
1da177e4 1284 return rq;
b679281a 1285
aaf7c680
TH
1286fail_elvpriv:
1287 /*
1288 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1289 * and may fail indefinitely under memory pressure and thus
1290 * shouldn't stall IO. Treat this request as !elvpriv. This will
1291 * disturb iosched and blkcg but weird is bettern than dead.
1292 */
7b2b10e0 1293 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1294 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1295
e8064021 1296 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1297 rq->elv.icq = NULL;
1298
1299 spin_lock_irq(q->queue_lock);
8a5ecdd4 1300 q->nr_rqs_elvpriv--;
aaf7c680
TH
1301 spin_unlock_irq(q->queue_lock);
1302 goto out;
1303
b679281a
TH
1304fail_alloc:
1305 /*
1306 * Allocation failed presumably due to memory. Undo anything we
1307 * might have messed up.
1308 *
1309 * Allocating task should really be put onto the front of the wait
1310 * queue, but this is pretty rare.
1311 */
1312 spin_lock_irq(q->queue_lock);
e8064021 1313 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1314
1315 /*
1316 * in the very unlikely event that allocation failed and no
1317 * requests for this direction was pending, mark us starved so that
1318 * freeing of a request in the other direction will notice
1319 * us. another possible fix would be to split the rq mempool into
1320 * READ and WRITE
1321 */
1322rq_starved:
1323 if (unlikely(rl->count[is_sync] == 0))
1324 rl->starved[is_sync] = 1;
a492f075 1325 return ERR_PTR(-ENOMEM);
1da177e4
LT
1326}
1327
da8303c6 1328/**
a06e05e6 1329 * get_request - get a free request
da8303c6 1330 * @q: request_queue to allocate request from
ef295ecf 1331 * @op: operation and flags
da8303c6 1332 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1333 * @gfp_mask: allocation mask
da8303c6 1334 *
d0164adc
MG
1335 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1336 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1337 *
da3dae54 1338 * Must be called with @q->queue_lock held and,
a492f075
JL
1339 * Returns ERR_PTR on failure, with @q->queue_lock held.
1340 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1341 */
ef295ecf
CH
1342static struct request *get_request(struct request_queue *q, unsigned int op,
1343 struct bio *bio, gfp_t gfp_mask)
1da177e4 1344{
ef295ecf 1345 const bool is_sync = op_is_sync(op);
a06e05e6 1346 DEFINE_WAIT(wait);
a051661c 1347 struct request_list *rl;
1da177e4 1348 struct request *rq;
a051661c 1349
2fff8a92 1350 lockdep_assert_held(q->queue_lock);
332ebbf7 1351 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1352
a051661c 1353 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1354retry:
ef295ecf 1355 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1356 if (!IS_ERR(rq))
a06e05e6 1357 return rq;
1da177e4 1358
03a07c92
GR
1359 if (op & REQ_NOWAIT) {
1360 blk_put_rl(rl);
1361 return ERR_PTR(-EAGAIN);
1362 }
1363
d0164adc 1364 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1365 blk_put_rl(rl);
a492f075 1366 return rq;
a051661c 1367 }
1da177e4 1368
a06e05e6
TH
1369 /* wait on @rl and retry */
1370 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1371 TASK_UNINTERRUPTIBLE);
1da177e4 1372
e6a40b09 1373 trace_block_sleeprq(q, bio, op);
1da177e4 1374
a06e05e6
TH
1375 spin_unlock_irq(q->queue_lock);
1376 io_schedule();
d6344532 1377
a06e05e6
TH
1378 /*
1379 * After sleeping, we become a "batching" process and will be able
1380 * to allocate at least one request, and up to a big batch of them
1381 * for a small period time. See ioc_batching, ioc_set_batching
1382 */
a06e05e6 1383 ioc_set_batching(q, current->io_context);
05caf8db 1384
a06e05e6
TH
1385 spin_lock_irq(q->queue_lock);
1386 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1387
a06e05e6 1388 goto retry;
1da177e4
LT
1389}
1390
cd6ce148
BVA
1391static struct request *blk_old_get_request(struct request_queue *q,
1392 unsigned int op, gfp_t gfp_mask)
1da177e4
LT
1393{
1394 struct request *rq;
1395
332ebbf7
BVA
1396 WARN_ON_ONCE(q->mq_ops);
1397
7f4b35d1
TH
1398 /* create ioc upfront */
1399 create_io_context(gfp_mask, q->node);
1400
d6344532 1401 spin_lock_irq(q->queue_lock);
cd6ce148 1402 rq = get_request(q, op, NULL, gfp_mask);
0c4de0f3 1403 if (IS_ERR(rq)) {
da8303c6 1404 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1405 return rq;
1406 }
1da177e4 1407
0c4de0f3
CH
1408 /* q->queue_lock is unlocked at this point */
1409 rq->__data_len = 0;
1410 rq->__sector = (sector_t) -1;
1411 rq->bio = rq->biotail = NULL;
1da177e4
LT
1412 return rq;
1413}
320ae51f 1414
cd6ce148
BVA
1415struct request *blk_get_request(struct request_queue *q, unsigned int op,
1416 gfp_t gfp_mask)
320ae51f 1417{
d280bab3
BVA
1418 struct request *req;
1419
1420 if (q->mq_ops) {
1421 req = blk_mq_alloc_request(q, op,
6f3b0e8b
CH
1422 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1423 0 : BLK_MQ_REQ_NOWAIT);
d280bab3
BVA
1424 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1425 q->mq_ops->initialize_rq_fn(req);
1426 } else {
1427 req = blk_old_get_request(q, op, gfp_mask);
1428 if (!IS_ERR(req) && q->initialize_rq_fn)
1429 q->initialize_rq_fn(req);
1430 }
1431
1432 return req;
320ae51f 1433}
1da177e4
LT
1434EXPORT_SYMBOL(blk_get_request);
1435
1436/**
1437 * blk_requeue_request - put a request back on queue
1438 * @q: request queue where request should be inserted
1439 * @rq: request to be inserted
1440 *
1441 * Description:
1442 * Drivers often keep queueing requests until the hardware cannot accept
1443 * more, when that condition happens we need to put the request back
1444 * on the queue. Must be called with queue lock held.
1445 */
165125e1 1446void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1447{
2fff8a92 1448 lockdep_assert_held(q->queue_lock);
332ebbf7 1449 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1450
242f9dcb
JA
1451 blk_delete_timer(rq);
1452 blk_clear_rq_complete(rq);
5f3ea37c 1453 trace_block_rq_requeue(q, rq);
87760e5e 1454 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1455
e8064021 1456 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1457 blk_queue_end_tag(q, rq);
1458
ba396a6c
JB
1459 BUG_ON(blk_queued_rq(rq));
1460
1da177e4
LT
1461 elv_requeue_request(q, rq);
1462}
1da177e4
LT
1463EXPORT_SYMBOL(blk_requeue_request);
1464
73c10101
JA
1465static void add_acct_request(struct request_queue *q, struct request *rq,
1466 int where)
1467{
320ae51f 1468 blk_account_io_start(rq, true);
7eaceacc 1469 __elv_add_request(q, rq, where);
73c10101
JA
1470}
1471
d62e26b3 1472static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1473 struct hd_struct *part, unsigned long now,
1474 unsigned int inflight)
074a7aca 1475{
b8d62b3a 1476 if (inflight) {
074a7aca 1477 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1478 inflight * (now - part->stamp));
074a7aca
TH
1479 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1480 }
1481 part->stamp = now;
1482}
1483
1484/**
496aa8a9 1485 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1486 * @q: target block queue
496aa8a9
RD
1487 * @cpu: cpu number for stats access
1488 * @part: target partition
1da177e4
LT
1489 *
1490 * The average IO queue length and utilisation statistics are maintained
1491 * by observing the current state of the queue length and the amount of
1492 * time it has been in this state for.
1493 *
1494 * Normally, that accounting is done on IO completion, but that can result
1495 * in more than a second's worth of IO being accounted for within any one
1496 * second, leading to >100% utilisation. To deal with that, we call this
1497 * function to do a round-off before returning the results when reading
1498 * /proc/diskstats. This accounts immediately for all queue usage up to
1499 * the current jiffies and restarts the counters again.
1500 */
d62e26b3 1501void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1502{
b8d62b3a 1503 struct hd_struct *part2 = NULL;
6f2576af 1504 unsigned long now = jiffies;
b8d62b3a
JA
1505 unsigned int inflight[2];
1506 int stats = 0;
1507
1508 if (part->stamp != now)
1509 stats |= 1;
1510
1511 if (part->partno) {
1512 part2 = &part_to_disk(part)->part0;
1513 if (part2->stamp != now)
1514 stats |= 2;
1515 }
1516
1517 if (!stats)
1518 return;
1519
1520 part_in_flight(q, part, inflight);
6f2576af 1521
b8d62b3a
JA
1522 if (stats & 2)
1523 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1524 if (stats & 1)
1525 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1526}
074a7aca 1527EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1528
47fafbc7 1529#ifdef CONFIG_PM
c8158819
LM
1530static void blk_pm_put_request(struct request *rq)
1531{
e8064021 1532 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1533 pm_runtime_mark_last_busy(rq->q->dev);
1534}
1535#else
1536static inline void blk_pm_put_request(struct request *rq) {}
1537#endif
1538
165125e1 1539void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1540{
e8064021
CH
1541 req_flags_t rq_flags = req->rq_flags;
1542
1da177e4
LT
1543 if (unlikely(!q))
1544 return;
1da177e4 1545
6f5ba581
CH
1546 if (q->mq_ops) {
1547 blk_mq_free_request(req);
1548 return;
1549 }
1550
2fff8a92
BVA
1551 lockdep_assert_held(q->queue_lock);
1552
c8158819
LM
1553 blk_pm_put_request(req);
1554
8922e16c
TH
1555 elv_completed_request(q, req);
1556
1cd96c24
BH
1557 /* this is a bio leak */
1558 WARN_ON(req->bio != NULL);
1559
87760e5e
JA
1560 wbt_done(q->rq_wb, &req->issue_stat);
1561
1da177e4
LT
1562 /*
1563 * Request may not have originated from ll_rw_blk. if not,
1564 * it didn't come out of our reserved rq pools
1565 */
e8064021 1566 if (rq_flags & RQF_ALLOCED) {
a051661c 1567 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1568 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1569
1da177e4 1570 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1571 BUG_ON(ELV_ON_HASH(req));
1da177e4 1572
a051661c 1573 blk_free_request(rl, req);
e8064021 1574 freed_request(rl, sync, rq_flags);
a051661c 1575 blk_put_rl(rl);
1da177e4
LT
1576 }
1577}
6e39b69e
MC
1578EXPORT_SYMBOL_GPL(__blk_put_request);
1579
1da177e4
LT
1580void blk_put_request(struct request *req)
1581{
165125e1 1582 struct request_queue *q = req->q;
8922e16c 1583
320ae51f
JA
1584 if (q->mq_ops)
1585 blk_mq_free_request(req);
1586 else {
1587 unsigned long flags;
1588
1589 spin_lock_irqsave(q->queue_lock, flags);
1590 __blk_put_request(q, req);
1591 spin_unlock_irqrestore(q->queue_lock, flags);
1592 }
1da177e4 1593}
1da177e4
LT
1594EXPORT_SYMBOL(blk_put_request);
1595
320ae51f
JA
1596bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1597 struct bio *bio)
73c10101 1598{
1eff9d32 1599 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1600
73c10101
JA
1601 if (!ll_back_merge_fn(q, req, bio))
1602 return false;
1603
8c1cf6bb 1604 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1605
1606 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1607 blk_rq_set_mixed_merge(req);
1608
1609 req->biotail->bi_next = bio;
1610 req->biotail = bio;
4f024f37 1611 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1612 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1613
320ae51f 1614 blk_account_io_start(req, false);
73c10101
JA
1615 return true;
1616}
1617
320ae51f
JA
1618bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1619 struct bio *bio)
73c10101 1620{
1eff9d32 1621 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1622
73c10101
JA
1623 if (!ll_front_merge_fn(q, req, bio))
1624 return false;
1625
8c1cf6bb 1626 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1627
1628 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1629 blk_rq_set_mixed_merge(req);
1630
73c10101
JA
1631 bio->bi_next = req->bio;
1632 req->bio = bio;
1633
4f024f37
KO
1634 req->__sector = bio->bi_iter.bi_sector;
1635 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1636 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1637
320ae51f 1638 blk_account_io_start(req, false);
73c10101
JA
1639 return true;
1640}
1641
1e739730
CH
1642bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1643 struct bio *bio)
1644{
1645 unsigned short segments = blk_rq_nr_discard_segments(req);
1646
1647 if (segments >= queue_max_discard_segments(q))
1648 goto no_merge;
1649 if (blk_rq_sectors(req) + bio_sectors(bio) >
1650 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1651 goto no_merge;
1652
1653 req->biotail->bi_next = bio;
1654 req->biotail = bio;
1655 req->__data_len += bio->bi_iter.bi_size;
1656 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1657 req->nr_phys_segments = segments + 1;
1658
1659 blk_account_io_start(req, false);
1660 return true;
1661no_merge:
1662 req_set_nomerge(q, req);
1663 return false;
1664}
1665
bd87b589 1666/**
320ae51f 1667 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1668 * @q: request_queue new bio is being queued at
1669 * @bio: new bio being queued
1670 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1671 * @same_queue_rq: pointer to &struct request that gets filled in when
1672 * another request associated with @q is found on the plug list
1673 * (optional, may be %NULL)
bd87b589
TH
1674 *
1675 * Determine whether @bio being queued on @q can be merged with a request
1676 * on %current's plugged list. Returns %true if merge was successful,
1677 * otherwise %false.
1678 *
07c2bd37
TH
1679 * Plugging coalesces IOs from the same issuer for the same purpose without
1680 * going through @q->queue_lock. As such it's more of an issuing mechanism
1681 * than scheduling, and the request, while may have elvpriv data, is not
1682 * added on the elevator at this point. In addition, we don't have
1683 * reliable access to the elevator outside queue lock. Only check basic
1684 * merging parameters without querying the elevator.
da41a589
RE
1685 *
1686 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1687 */
320ae51f 1688bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1689 unsigned int *request_count,
1690 struct request **same_queue_rq)
73c10101
JA
1691{
1692 struct blk_plug *plug;
1693 struct request *rq;
92f399c7 1694 struct list_head *plug_list;
73c10101 1695
bd87b589 1696 plug = current->plug;
73c10101 1697 if (!plug)
34fe7c05 1698 return false;
56ebdaf2 1699 *request_count = 0;
73c10101 1700
92f399c7
SL
1701 if (q->mq_ops)
1702 plug_list = &plug->mq_list;
1703 else
1704 plug_list = &plug->list;
1705
1706 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1707 bool merged = false;
73c10101 1708
5b3f341f 1709 if (rq->q == q) {
1b2e19f1 1710 (*request_count)++;
5b3f341f
SL
1711 /*
1712 * Only blk-mq multiple hardware queues case checks the
1713 * rq in the same queue, there should be only one such
1714 * rq in a queue
1715 **/
1716 if (same_queue_rq)
1717 *same_queue_rq = rq;
1718 }
56ebdaf2 1719
07c2bd37 1720 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1721 continue;
1722
34fe7c05
CH
1723 switch (blk_try_merge(rq, bio)) {
1724 case ELEVATOR_BACK_MERGE:
1725 merged = bio_attempt_back_merge(q, rq, bio);
1726 break;
1727 case ELEVATOR_FRONT_MERGE:
1728 merged = bio_attempt_front_merge(q, rq, bio);
1729 break;
1e739730
CH
1730 case ELEVATOR_DISCARD_MERGE:
1731 merged = bio_attempt_discard_merge(q, rq, bio);
1732 break;
34fe7c05
CH
1733 default:
1734 break;
73c10101 1735 }
34fe7c05
CH
1736
1737 if (merged)
1738 return true;
73c10101 1739 }
34fe7c05
CH
1740
1741 return false;
73c10101
JA
1742}
1743
0809e3ac
JM
1744unsigned int blk_plug_queued_count(struct request_queue *q)
1745{
1746 struct blk_plug *plug;
1747 struct request *rq;
1748 struct list_head *plug_list;
1749 unsigned int ret = 0;
1750
1751 plug = current->plug;
1752 if (!plug)
1753 goto out;
1754
1755 if (q->mq_ops)
1756 plug_list = &plug->mq_list;
1757 else
1758 plug_list = &plug->list;
1759
1760 list_for_each_entry(rq, plug_list, queuelist) {
1761 if (rq->q == q)
1762 ret++;
1763 }
1764out:
1765 return ret;
1766}
1767
da8d7f07 1768void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1769{
0be0dee6
BVA
1770 struct io_context *ioc = rq_ioc(bio);
1771
1eff9d32 1772 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1773 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1774
4f024f37 1775 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1776 if (ioprio_valid(bio_prio(bio)))
1777 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1778 else if (ioc)
1779 req->ioprio = ioc->ioprio;
1780 else
1781 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1782 req->write_hint = bio->bi_write_hint;
bc1c56fd 1783 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1784}
da8d7f07 1785EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1786
dece1635 1787static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1788{
73c10101 1789 struct blk_plug *plug;
34fe7c05 1790 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1791 struct request *req, *free;
56ebdaf2 1792 unsigned int request_count = 0;
87760e5e 1793 unsigned int wb_acct;
1da177e4 1794
1da177e4
LT
1795 /*
1796 * low level driver can indicate that it wants pages above a
1797 * certain limit bounced to low memory (ie for highmem, or even
1798 * ISA dma in theory)
1799 */
1800 blk_queue_bounce(q, &bio);
1801
af67c31f 1802 blk_queue_split(q, &bio);
23688bf4 1803
e23947bd 1804 if (!bio_integrity_prep(bio))
dece1635 1805 return BLK_QC_T_NONE;
ffecfd1a 1806
f73f44eb 1807 if (op_is_flush(bio->bi_opf)) {
73c10101 1808 spin_lock_irq(q->queue_lock);
ae1b1539 1809 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1810 goto get_rq;
1811 }
1812
73c10101
JA
1813 /*
1814 * Check if we can merge with the plugged list before grabbing
1815 * any locks.
1816 */
0809e3ac
JM
1817 if (!blk_queue_nomerges(q)) {
1818 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1819 return BLK_QC_T_NONE;
0809e3ac
JM
1820 } else
1821 request_count = blk_plug_queued_count(q);
1da177e4 1822
73c10101 1823 spin_lock_irq(q->queue_lock);
2056a782 1824
34fe7c05
CH
1825 switch (elv_merge(q, &req, bio)) {
1826 case ELEVATOR_BACK_MERGE:
1827 if (!bio_attempt_back_merge(q, req, bio))
1828 break;
1829 elv_bio_merged(q, req, bio);
1830 free = attempt_back_merge(q, req);
1831 if (free)
1832 __blk_put_request(q, free);
1833 else
1834 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1835 goto out_unlock;
1836 case ELEVATOR_FRONT_MERGE:
1837 if (!bio_attempt_front_merge(q, req, bio))
1838 break;
1839 elv_bio_merged(q, req, bio);
1840 free = attempt_front_merge(q, req);
1841 if (free)
1842 __blk_put_request(q, free);
1843 else
1844 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1845 goto out_unlock;
1846 default:
1847 break;
1da177e4
LT
1848 }
1849
450991bc 1850get_rq:
87760e5e
JA
1851 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1852
1da177e4 1853 /*
450991bc 1854 * Grab a free request. This is might sleep but can not fail.
d6344532 1855 * Returns with the queue unlocked.
450991bc 1856 */
ef295ecf 1857 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1858 if (IS_ERR(req)) {
87760e5e 1859 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1860 if (PTR_ERR(req) == -ENOMEM)
1861 bio->bi_status = BLK_STS_RESOURCE;
1862 else
1863 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1864 bio_endio(bio);
da8303c6
TH
1865 goto out_unlock;
1866 }
d6344532 1867
87760e5e
JA
1868 wbt_track(&req->issue_stat, wb_acct);
1869
450991bc
NP
1870 /*
1871 * After dropping the lock and possibly sleeping here, our request
1872 * may now be mergeable after it had proven unmergeable (above).
1873 * We don't worry about that case for efficiency. It won't happen
1874 * often, and the elevators are able to handle it.
1da177e4 1875 */
da8d7f07 1876 blk_init_request_from_bio(req, bio);
1da177e4 1877
9562ad9a 1878 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1879 req->cpu = raw_smp_processor_id();
73c10101
JA
1880
1881 plug = current->plug;
721a9602 1882 if (plug) {
dc6d36c9
JA
1883 /*
1884 * If this is the first request added after a plug, fire
7aef2e78 1885 * of a plug trace.
0a6219a9
ML
1886 *
1887 * @request_count may become stale because of schedule
1888 * out, so check plug list again.
dc6d36c9 1889 */
0a6219a9 1890 if (!request_count || list_empty(&plug->list))
dc6d36c9 1891 trace_block_plug(q);
3540d5e8 1892 else {
50d24c34
SL
1893 struct request *last = list_entry_rq(plug->list.prev);
1894 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1895 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1896 blk_flush_plug_list(plug, false);
019ceb7d
SL
1897 trace_block_plug(q);
1898 }
73c10101 1899 }
73c10101 1900 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1901 blk_account_io_start(req, true);
73c10101
JA
1902 } else {
1903 spin_lock_irq(q->queue_lock);
1904 add_acct_request(q, req, where);
24ecfbe2 1905 __blk_run_queue(q);
73c10101
JA
1906out_unlock:
1907 spin_unlock_irq(q->queue_lock);
1908 }
dece1635
JA
1909
1910 return BLK_QC_T_NONE;
1da177e4
LT
1911}
1912
1da177e4
LT
1913static void handle_bad_sector(struct bio *bio)
1914{
1915 char b[BDEVNAME_SIZE];
1916
1917 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1918 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 1919 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 1920 (unsigned long long)bio_end_sector(bio),
74d46992 1921 (long long)get_capacity(bio->bi_disk));
1da177e4
LT
1922}
1923
c17bb495
AM
1924#ifdef CONFIG_FAIL_MAKE_REQUEST
1925
1926static DECLARE_FAULT_ATTR(fail_make_request);
1927
1928static int __init setup_fail_make_request(char *str)
1929{
1930 return setup_fault_attr(&fail_make_request, str);
1931}
1932__setup("fail_make_request=", setup_fail_make_request);
1933
b2c9cd37 1934static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1935{
b2c9cd37 1936 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1937}
1938
1939static int __init fail_make_request_debugfs(void)
1940{
dd48c085
AM
1941 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1942 NULL, &fail_make_request);
1943
21f9fcd8 1944 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1945}
1946
1947late_initcall(fail_make_request_debugfs);
1948
1949#else /* CONFIG_FAIL_MAKE_REQUEST */
1950
b2c9cd37
AM
1951static inline bool should_fail_request(struct hd_struct *part,
1952 unsigned int bytes)
c17bb495 1953{
b2c9cd37 1954 return false;
c17bb495
AM
1955}
1956
1957#endif /* CONFIG_FAIL_MAKE_REQUEST */
1958
74d46992
CH
1959/*
1960 * Remap block n of partition p to block n+start(p) of the disk.
1961 */
1962static inline int blk_partition_remap(struct bio *bio)
1963{
1964 struct hd_struct *p;
1965 int ret = 0;
1966
1967 /*
1968 * Zone reset does not include bi_size so bio_sectors() is always 0.
1969 * Include a test for the reset op code and perform the remap if needed.
1970 */
1971 if (!bio->bi_partno ||
1972 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
1973 return 0;
1974
1975 rcu_read_lock();
1976 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
1977 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
1978 bio->bi_iter.bi_sector += p->start_sect;
1979 bio->bi_partno = 0;
1980 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
1981 bio->bi_iter.bi_sector - p->start_sect);
1982 } else {
1983 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
1984 ret = -EIO;
1985 }
1986 rcu_read_unlock();
1987
1988 return ret;
1989}
1990
c07e2b41
JA
1991/*
1992 * Check whether this bio extends beyond the end of the device.
1993 */
1994static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1995{
1996 sector_t maxsector;
1997
1998 if (!nr_sectors)
1999 return 0;
2000
2001 /* Test device or partition size, when known. */
74d46992 2002 maxsector = get_capacity(bio->bi_disk);
c07e2b41 2003 if (maxsector) {
4f024f37 2004 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
2005
2006 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2007 /*
2008 * This may well happen - the kernel calls bread()
2009 * without checking the size of the device, e.g., when
2010 * mounting a device.
2011 */
2012 handle_bad_sector(bio);
2013 return 1;
2014 }
2015 }
2016
2017 return 0;
2018}
2019
27a84d54
CH
2020static noinline_for_stack bool
2021generic_make_request_checks(struct bio *bio)
1da177e4 2022{
165125e1 2023 struct request_queue *q;
5a7bbad2 2024 int nr_sectors = bio_sectors(bio);
4e4cbee9 2025 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2026 char b[BDEVNAME_SIZE];
1da177e4
LT
2027
2028 might_sleep();
1da177e4 2029
c07e2b41
JA
2030 if (bio_check_eod(bio, nr_sectors))
2031 goto end_io;
1da177e4 2032
74d46992 2033 q = bio->bi_disk->queue;
5a7bbad2
CH
2034 if (unlikely(!q)) {
2035 printk(KERN_ERR
2036 "generic_make_request: Trying to access "
2037 "nonexistent block-device %s (%Lu)\n",
74d46992 2038 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2039 goto end_io;
2040 }
c17bb495 2041
03a07c92
GR
2042 /*
2043 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2044 * if queue is not a request based queue.
2045 */
2046
2047 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2048 goto not_supported;
2049
74d46992 2050 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
5a7bbad2 2051 goto end_io;
2056a782 2052
74d46992
CH
2053 if (blk_partition_remap(bio))
2054 goto end_io;
2056a782 2055
5a7bbad2
CH
2056 if (bio_check_eod(bio, nr_sectors))
2057 goto end_io;
1e87901e 2058
5a7bbad2
CH
2059 /*
2060 * Filter flush bio's early so that make_request based
2061 * drivers without flush support don't have to worry
2062 * about them.
2063 */
f3a8ab7d 2064 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2065 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2066 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2067 if (!nr_sectors) {
4e4cbee9 2068 status = BLK_STS_OK;
51fd77bd
JA
2069 goto end_io;
2070 }
5a7bbad2 2071 }
5ddfe969 2072
288dab8a
CH
2073 switch (bio_op(bio)) {
2074 case REQ_OP_DISCARD:
2075 if (!blk_queue_discard(q))
2076 goto not_supported;
2077 break;
2078 case REQ_OP_SECURE_ERASE:
2079 if (!blk_queue_secure_erase(q))
2080 goto not_supported;
2081 break;
2082 case REQ_OP_WRITE_SAME:
74d46992 2083 if (!q->limits.max_write_same_sectors)
288dab8a 2084 goto not_supported;
58886785 2085 break;
2d253440
ST
2086 case REQ_OP_ZONE_REPORT:
2087 case REQ_OP_ZONE_RESET:
74d46992 2088 if (!blk_queue_is_zoned(q))
2d253440 2089 goto not_supported;
288dab8a 2090 break;
a6f0788e 2091 case REQ_OP_WRITE_ZEROES:
74d46992 2092 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2093 goto not_supported;
2094 break;
288dab8a
CH
2095 default:
2096 break;
5a7bbad2 2097 }
01edede4 2098
7f4b35d1
TH
2099 /*
2100 * Various block parts want %current->io_context and lazy ioc
2101 * allocation ends up trading a lot of pain for a small amount of
2102 * memory. Just allocate it upfront. This may fail and block
2103 * layer knows how to live with it.
2104 */
2105 create_io_context(GFP_ATOMIC, q->node);
2106
ae118896
TH
2107 if (!blkcg_bio_issue_check(q, bio))
2108 return false;
27a84d54 2109
fbbaf700
N
2110 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2111 trace_block_bio_queue(q, bio);
2112 /* Now that enqueuing has been traced, we need to trace
2113 * completion as well.
2114 */
2115 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2116 }
27a84d54 2117 return true;
a7384677 2118
288dab8a 2119not_supported:
4e4cbee9 2120 status = BLK_STS_NOTSUPP;
a7384677 2121end_io:
4e4cbee9 2122 bio->bi_status = status;
4246a0b6 2123 bio_endio(bio);
27a84d54 2124 return false;
1da177e4
LT
2125}
2126
27a84d54
CH
2127/**
2128 * generic_make_request - hand a buffer to its device driver for I/O
2129 * @bio: The bio describing the location in memory and on the device.
2130 *
2131 * generic_make_request() is used to make I/O requests of block
2132 * devices. It is passed a &struct bio, which describes the I/O that needs
2133 * to be done.
2134 *
2135 * generic_make_request() does not return any status. The
2136 * success/failure status of the request, along with notification of
2137 * completion, is delivered asynchronously through the bio->bi_end_io
2138 * function described (one day) else where.
2139 *
2140 * The caller of generic_make_request must make sure that bi_io_vec
2141 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2142 * set to describe the device address, and the
2143 * bi_end_io and optionally bi_private are set to describe how
2144 * completion notification should be signaled.
2145 *
2146 * generic_make_request and the drivers it calls may use bi_next if this
2147 * bio happens to be merged with someone else, and may resubmit the bio to
2148 * a lower device by calling into generic_make_request recursively, which
2149 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2150 */
dece1635 2151blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2152{
f5fe1b51
N
2153 /*
2154 * bio_list_on_stack[0] contains bios submitted by the current
2155 * make_request_fn.
2156 * bio_list_on_stack[1] contains bios that were submitted before
2157 * the current make_request_fn, but that haven't been processed
2158 * yet.
2159 */
2160 struct bio_list bio_list_on_stack[2];
dece1635 2161 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2162
27a84d54 2163 if (!generic_make_request_checks(bio))
dece1635 2164 goto out;
27a84d54
CH
2165
2166 /*
2167 * We only want one ->make_request_fn to be active at a time, else
2168 * stack usage with stacked devices could be a problem. So use
2169 * current->bio_list to keep a list of requests submited by a
2170 * make_request_fn function. current->bio_list is also used as a
2171 * flag to say if generic_make_request is currently active in this
2172 * task or not. If it is NULL, then no make_request is active. If
2173 * it is non-NULL, then a make_request is active, and new requests
2174 * should be added at the tail
2175 */
bddd87c7 2176 if (current->bio_list) {
f5fe1b51 2177 bio_list_add(&current->bio_list[0], bio);
dece1635 2178 goto out;
d89d8796 2179 }
27a84d54 2180
d89d8796
NB
2181 /* following loop may be a bit non-obvious, and so deserves some
2182 * explanation.
2183 * Before entering the loop, bio->bi_next is NULL (as all callers
2184 * ensure that) so we have a list with a single bio.
2185 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2186 * we assign bio_list to a pointer to the bio_list_on_stack,
2187 * thus initialising the bio_list of new bios to be
27a84d54 2188 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2189 * through a recursive call to generic_make_request. If it
2190 * did, we find a non-NULL value in bio_list and re-enter the loop
2191 * from the top. In this case we really did just take the bio
bddd87c7 2192 * of the top of the list (no pretending) and so remove it from
27a84d54 2193 * bio_list, and call into ->make_request() again.
d89d8796
NB
2194 */
2195 BUG_ON(bio->bi_next);
f5fe1b51
N
2196 bio_list_init(&bio_list_on_stack[0]);
2197 current->bio_list = bio_list_on_stack;
d89d8796 2198 do {
74d46992 2199 struct request_queue *q = bio->bi_disk->queue;
27a84d54 2200
03a07c92 2201 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
79bd9959
N
2202 struct bio_list lower, same;
2203
2204 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2205 bio_list_on_stack[1] = bio_list_on_stack[0];
2206 bio_list_init(&bio_list_on_stack[0]);
dece1635 2207 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2208
2209 blk_queue_exit(q);
27a84d54 2210
79bd9959
N
2211 /* sort new bios into those for a lower level
2212 * and those for the same level
2213 */
2214 bio_list_init(&lower);
2215 bio_list_init(&same);
f5fe1b51 2216 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2217 if (q == bio->bi_disk->queue)
79bd9959
N
2218 bio_list_add(&same, bio);
2219 else
2220 bio_list_add(&lower, bio);
2221 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2222 bio_list_merge(&bio_list_on_stack[0], &lower);
2223 bio_list_merge(&bio_list_on_stack[0], &same);
2224 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2225 } else {
03a07c92
GR
2226 if (unlikely(!blk_queue_dying(q) &&
2227 (bio->bi_opf & REQ_NOWAIT)))
2228 bio_wouldblock_error(bio);
2229 else
2230 bio_io_error(bio);
3ef28e83 2231 }
f5fe1b51 2232 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2233 } while (bio);
bddd87c7 2234 current->bio_list = NULL; /* deactivate */
dece1635
JA
2235
2236out:
2237 return ret;
d89d8796 2238}
1da177e4
LT
2239EXPORT_SYMBOL(generic_make_request);
2240
2241/**
710027a4 2242 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2243 * @bio: The &struct bio which describes the I/O
2244 *
2245 * submit_bio() is very similar in purpose to generic_make_request(), and
2246 * uses that function to do most of the work. Both are fairly rough
710027a4 2247 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2248 *
2249 */
4e49ea4a 2250blk_qc_t submit_bio(struct bio *bio)
1da177e4 2251{
bf2de6f5
JA
2252 /*
2253 * If it's a regular read/write or a barrier with data attached,
2254 * go through the normal accounting stuff before submission.
2255 */
e2a60da7 2256 if (bio_has_data(bio)) {
4363ac7c
MP
2257 unsigned int count;
2258
95fe6c1a 2259 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
74d46992 2260 count = queue_logical_block_size(bio->bi_disk->queue);
4363ac7c
MP
2261 else
2262 count = bio_sectors(bio);
2263
a8ebb056 2264 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2265 count_vm_events(PGPGOUT, count);
2266 } else {
4f024f37 2267 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2268 count_vm_events(PGPGIN, count);
2269 }
2270
2271 if (unlikely(block_dump)) {
2272 char b[BDEVNAME_SIZE];
8dcbdc74 2273 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2274 current->comm, task_pid_nr(current),
a8ebb056 2275 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2276 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2277 bio_devname(bio, b), count);
bf2de6f5 2278 }
1da177e4
LT
2279 }
2280
dece1635 2281 return generic_make_request(bio);
1da177e4 2282}
1da177e4
LT
2283EXPORT_SYMBOL(submit_bio);
2284
82124d60 2285/**
bf4e6b4e
HR
2286 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2287 * for new the queue limits
82124d60
KU
2288 * @q: the queue
2289 * @rq: the request being checked
2290 *
2291 * Description:
2292 * @rq may have been made based on weaker limitations of upper-level queues
2293 * in request stacking drivers, and it may violate the limitation of @q.
2294 * Since the block layer and the underlying device driver trust @rq
2295 * after it is inserted to @q, it should be checked against @q before
2296 * the insertion using this generic function.
2297 *
82124d60 2298 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2299 * limits when retrying requests on other queues. Those requests need
2300 * to be checked against the new queue limits again during dispatch.
82124d60 2301 */
bf4e6b4e
HR
2302static int blk_cloned_rq_check_limits(struct request_queue *q,
2303 struct request *rq)
82124d60 2304{
8fe0d473 2305 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2306 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2307 return -EIO;
2308 }
2309
2310 /*
2311 * queue's settings related to segment counting like q->bounce_pfn
2312 * may differ from that of other stacking queues.
2313 * Recalculate it to check the request correctly on this queue's
2314 * limitation.
2315 */
2316 blk_recalc_rq_segments(rq);
8a78362c 2317 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2318 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2319 return -EIO;
2320 }
2321
2322 return 0;
2323}
82124d60
KU
2324
2325/**
2326 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2327 * @q: the queue to submit the request
2328 * @rq: the request being queued
2329 */
2a842aca 2330blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2331{
2332 unsigned long flags;
4853abaa 2333 int where = ELEVATOR_INSERT_BACK;
82124d60 2334
bf4e6b4e 2335 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2336 return BLK_STS_IOERR;
82124d60 2337
b2c9cd37
AM
2338 if (rq->rq_disk &&
2339 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2340 return BLK_STS_IOERR;
82124d60 2341
7fb4898e
KB
2342 if (q->mq_ops) {
2343 if (blk_queue_io_stat(q))
2344 blk_account_io_start(rq, true);
bd6737f1 2345 blk_mq_sched_insert_request(rq, false, true, false, false);
2a842aca 2346 return BLK_STS_OK;
7fb4898e
KB
2347 }
2348
82124d60 2349 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2350 if (unlikely(blk_queue_dying(q))) {
8ba61435 2351 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2352 return BLK_STS_IOERR;
8ba61435 2353 }
82124d60
KU
2354
2355 /*
2356 * Submitting request must be dequeued before calling this function
2357 * because it will be linked to another request_queue
2358 */
2359 BUG_ON(blk_queued_rq(rq));
2360
f73f44eb 2361 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2362 where = ELEVATOR_INSERT_FLUSH;
2363
2364 add_acct_request(q, rq, where);
e67b77c7
JM
2365 if (where == ELEVATOR_INSERT_FLUSH)
2366 __blk_run_queue(q);
82124d60
KU
2367 spin_unlock_irqrestore(q->queue_lock, flags);
2368
2a842aca 2369 return BLK_STS_OK;
82124d60
KU
2370}
2371EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2372
80a761fd
TH
2373/**
2374 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2375 * @rq: request to examine
2376 *
2377 * Description:
2378 * A request could be merge of IOs which require different failure
2379 * handling. This function determines the number of bytes which
2380 * can be failed from the beginning of the request without
2381 * crossing into area which need to be retried further.
2382 *
2383 * Return:
2384 * The number of bytes to fail.
80a761fd
TH
2385 */
2386unsigned int blk_rq_err_bytes(const struct request *rq)
2387{
2388 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2389 unsigned int bytes = 0;
2390 struct bio *bio;
2391
e8064021 2392 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2393 return blk_rq_bytes(rq);
2394
2395 /*
2396 * Currently the only 'mixing' which can happen is between
2397 * different fastfail types. We can safely fail portions
2398 * which have all the failfast bits that the first one has -
2399 * the ones which are at least as eager to fail as the first
2400 * one.
2401 */
2402 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2403 if ((bio->bi_opf & ff) != ff)
80a761fd 2404 break;
4f024f37 2405 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2406 }
2407
2408 /* this could lead to infinite loop */
2409 BUG_ON(blk_rq_bytes(rq) && !bytes);
2410 return bytes;
2411}
2412EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2413
320ae51f 2414void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2415{
c2553b58 2416 if (blk_do_io_stat(req)) {
bc58ba94
JA
2417 const int rw = rq_data_dir(req);
2418 struct hd_struct *part;
2419 int cpu;
2420
2421 cpu = part_stat_lock();
09e099d4 2422 part = req->part;
bc58ba94
JA
2423 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2424 part_stat_unlock();
2425 }
2426}
2427
320ae51f 2428void blk_account_io_done(struct request *req)
bc58ba94 2429{
bc58ba94 2430 /*
dd4c133f
TH
2431 * Account IO completion. flush_rq isn't accounted as a
2432 * normal IO on queueing nor completion. Accounting the
2433 * containing request is enough.
bc58ba94 2434 */
e8064021 2435 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2436 unsigned long duration = jiffies - req->start_time;
2437 const int rw = rq_data_dir(req);
2438 struct hd_struct *part;
2439 int cpu;
2440
2441 cpu = part_stat_lock();
09e099d4 2442 part = req->part;
bc58ba94
JA
2443
2444 part_stat_inc(cpu, part, ios[rw]);
2445 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2446 part_round_stats(req->q, cpu, part);
2447 part_dec_in_flight(req->q, part, rw);
bc58ba94 2448
6c23a968 2449 hd_struct_put(part);
bc58ba94
JA
2450 part_stat_unlock();
2451 }
2452}
2453
47fafbc7 2454#ifdef CONFIG_PM
c8158819
LM
2455/*
2456 * Don't process normal requests when queue is suspended
2457 * or in the process of suspending/resuming
2458 */
2459static struct request *blk_pm_peek_request(struct request_queue *q,
2460 struct request *rq)
2461{
2462 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2463 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2464 return NULL;
2465 else
2466 return rq;
2467}
2468#else
2469static inline struct request *blk_pm_peek_request(struct request_queue *q,
2470 struct request *rq)
2471{
2472 return rq;
2473}
2474#endif
2475
320ae51f
JA
2476void blk_account_io_start(struct request *rq, bool new_io)
2477{
2478 struct hd_struct *part;
2479 int rw = rq_data_dir(rq);
2480 int cpu;
2481
2482 if (!blk_do_io_stat(rq))
2483 return;
2484
2485 cpu = part_stat_lock();
2486
2487 if (!new_io) {
2488 part = rq->part;
2489 part_stat_inc(cpu, part, merges[rw]);
2490 } else {
2491 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2492 if (!hd_struct_try_get(part)) {
2493 /*
2494 * The partition is already being removed,
2495 * the request will be accounted on the disk only
2496 *
2497 * We take a reference on disk->part0 although that
2498 * partition will never be deleted, so we can treat
2499 * it as any other partition.
2500 */
2501 part = &rq->rq_disk->part0;
2502 hd_struct_get(part);
2503 }
d62e26b3
JA
2504 part_round_stats(rq->q, cpu, part);
2505 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2506 rq->part = part;
2507 }
2508
2509 part_stat_unlock();
2510}
2511
3bcddeac 2512/**
9934c8c0
TH
2513 * blk_peek_request - peek at the top of a request queue
2514 * @q: request queue to peek at
2515 *
2516 * Description:
2517 * Return the request at the top of @q. The returned request
2518 * should be started using blk_start_request() before LLD starts
2519 * processing it.
2520 *
2521 * Return:
2522 * Pointer to the request at the top of @q if available. Null
2523 * otherwise.
9934c8c0
TH
2524 */
2525struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2526{
2527 struct request *rq;
2528 int ret;
2529
2fff8a92 2530 lockdep_assert_held(q->queue_lock);
332ebbf7 2531 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2532
158dbda0 2533 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2534
2535 rq = blk_pm_peek_request(q, rq);
2536 if (!rq)
2537 break;
2538
e8064021 2539 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2540 /*
2541 * This is the first time the device driver
2542 * sees this request (possibly after
2543 * requeueing). Notify IO scheduler.
2544 */
e8064021 2545 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2546 elv_activate_rq(q, rq);
2547
2548 /*
2549 * just mark as started even if we don't start
2550 * it, a request that has been delayed should
2551 * not be passed by new incoming requests
2552 */
e8064021 2553 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2554 trace_block_rq_issue(q, rq);
2555 }
2556
2557 if (!q->boundary_rq || q->boundary_rq == rq) {
2558 q->end_sector = rq_end_sector(rq);
2559 q->boundary_rq = NULL;
2560 }
2561
e8064021 2562 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2563 break;
2564
2e46e8b2 2565 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2566 /*
2567 * make sure space for the drain appears we
2568 * know we can do this because max_hw_segments
2569 * has been adjusted to be one fewer than the
2570 * device can handle
2571 */
2572 rq->nr_phys_segments++;
2573 }
2574
2575 if (!q->prep_rq_fn)
2576 break;
2577
2578 ret = q->prep_rq_fn(q, rq);
2579 if (ret == BLKPREP_OK) {
2580 break;
2581 } else if (ret == BLKPREP_DEFER) {
2582 /*
2583 * the request may have been (partially) prepped.
2584 * we need to keep this request in the front to
e8064021 2585 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2586 * prevent other fs requests from passing this one.
2587 */
2e46e8b2 2588 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2589 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2590 /*
2591 * remove the space for the drain we added
2592 * so that we don't add it again
2593 */
2594 --rq->nr_phys_segments;
2595 }
2596
2597 rq = NULL;
2598 break;
0fb5b1fb 2599 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2600 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2601 /*
2602 * Mark this request as started so we don't trigger
2603 * any debug logic in the end I/O path.
2604 */
2605 blk_start_request(rq);
2a842aca
CH
2606 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2607 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2608 } else {
2609 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2610 break;
2611 }
2612 }
2613
2614 return rq;
2615}
9934c8c0 2616EXPORT_SYMBOL(blk_peek_request);
158dbda0 2617
5034435c 2618static void blk_dequeue_request(struct request *rq)
158dbda0 2619{
9934c8c0
TH
2620 struct request_queue *q = rq->q;
2621
158dbda0
TH
2622 BUG_ON(list_empty(&rq->queuelist));
2623 BUG_ON(ELV_ON_HASH(rq));
2624
2625 list_del_init(&rq->queuelist);
2626
2627 /*
2628 * the time frame between a request being removed from the lists
2629 * and to it is freed is accounted as io that is in progress at
2630 * the driver side.
2631 */
9195291e 2632 if (blk_account_rq(rq)) {
0a7ae2ff 2633 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2634 set_io_start_time_ns(rq);
2635 }
158dbda0
TH
2636}
2637
9934c8c0
TH
2638/**
2639 * blk_start_request - start request processing on the driver
2640 * @req: request to dequeue
2641 *
2642 * Description:
2643 * Dequeue @req and start timeout timer on it. This hands off the
2644 * request to the driver.
9934c8c0
TH
2645 */
2646void blk_start_request(struct request *req)
2647{
2fff8a92 2648 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2649 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2650
9934c8c0
TH
2651 blk_dequeue_request(req);
2652
cf43e6be 2653 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2654 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2655 req->rq_flags |= RQF_STATS;
87760e5e 2656 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2657 }
2658
4912aa6c 2659 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2660 blk_add_timer(req);
2661}
2662EXPORT_SYMBOL(blk_start_request);
2663
2664/**
2665 * blk_fetch_request - fetch a request from a request queue
2666 * @q: request queue to fetch a request from
2667 *
2668 * Description:
2669 * Return the request at the top of @q. The request is started on
2670 * return and LLD can start processing it immediately.
2671 *
2672 * Return:
2673 * Pointer to the request at the top of @q if available. Null
2674 * otherwise.
9934c8c0
TH
2675 */
2676struct request *blk_fetch_request(struct request_queue *q)
2677{
2678 struct request *rq;
2679
2fff8a92 2680 lockdep_assert_held(q->queue_lock);
332ebbf7 2681 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2682
9934c8c0
TH
2683 rq = blk_peek_request(q);
2684 if (rq)
2685 blk_start_request(rq);
2686 return rq;
2687}
2688EXPORT_SYMBOL(blk_fetch_request);
2689
3bcddeac 2690/**
2e60e022 2691 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2692 * @req: the request being processed
2a842aca 2693 * @error: block status code
8ebf9756 2694 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2695 *
2696 * Description:
8ebf9756
RD
2697 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2698 * the request structure even if @req doesn't have leftover.
2699 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2700 *
2701 * This special helper function is only for request stacking drivers
2702 * (e.g. request-based dm) so that they can handle partial completion.
2703 * Actual device drivers should use blk_end_request instead.
2704 *
2705 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2706 * %false return from this function.
3bcddeac
KU
2707 *
2708 * Return:
2e60e022
TH
2709 * %false - this request doesn't have any more data
2710 * %true - this request has more data
3bcddeac 2711 **/
2a842aca
CH
2712bool blk_update_request(struct request *req, blk_status_t error,
2713 unsigned int nr_bytes)
1da177e4 2714{
f79ea416 2715 int total_bytes;
1da177e4 2716
2a842aca 2717 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2718
2e60e022
TH
2719 if (!req->bio)
2720 return false;
2721
2a842aca
CH
2722 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2723 !(req->rq_flags & RQF_QUIET)))
2724 print_req_error(req, error);
1da177e4 2725
bc58ba94 2726 blk_account_io_completion(req, nr_bytes);
d72d904a 2727
f79ea416
KO
2728 total_bytes = 0;
2729 while (req->bio) {
2730 struct bio *bio = req->bio;
4f024f37 2731 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2732
4f024f37 2733 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2734 req->bio = bio->bi_next;
1da177e4 2735
fbbaf700
N
2736 /* Completion has already been traced */
2737 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2738 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2739
f79ea416
KO
2740 total_bytes += bio_bytes;
2741 nr_bytes -= bio_bytes;
1da177e4 2742
f79ea416
KO
2743 if (!nr_bytes)
2744 break;
1da177e4
LT
2745 }
2746
2747 /*
2748 * completely done
2749 */
2e60e022
TH
2750 if (!req->bio) {
2751 /*
2752 * Reset counters so that the request stacking driver
2753 * can find how many bytes remain in the request
2754 * later.
2755 */
a2dec7b3 2756 req->__data_len = 0;
2e60e022
TH
2757 return false;
2758 }
1da177e4 2759
a2dec7b3 2760 req->__data_len -= total_bytes;
2e46e8b2
TH
2761
2762 /* update sector only for requests with clear definition of sector */
57292b58 2763 if (!blk_rq_is_passthrough(req))
a2dec7b3 2764 req->__sector += total_bytes >> 9;
2e46e8b2 2765
80a761fd 2766 /* mixed attributes always follow the first bio */
e8064021 2767 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2768 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2769 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2770 }
2771
ed6565e7
CH
2772 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2773 /*
2774 * If total number of sectors is less than the first segment
2775 * size, something has gone terribly wrong.
2776 */
2777 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2778 blk_dump_rq_flags(req, "request botched");
2779 req->__data_len = blk_rq_cur_bytes(req);
2780 }
2e46e8b2 2781
ed6565e7
CH
2782 /* recalculate the number of segments */
2783 blk_recalc_rq_segments(req);
2784 }
2e46e8b2 2785
2e60e022 2786 return true;
1da177e4 2787}
2e60e022 2788EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2789
2a842aca 2790static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
2791 unsigned int nr_bytes,
2792 unsigned int bidi_bytes)
5efccd17 2793{
2e60e022
TH
2794 if (blk_update_request(rq, error, nr_bytes))
2795 return true;
5efccd17 2796
2e60e022
TH
2797 /* Bidi request must be completed as a whole */
2798 if (unlikely(blk_bidi_rq(rq)) &&
2799 blk_update_request(rq->next_rq, error, bidi_bytes))
2800 return true;
5efccd17 2801
e2e1a148
JA
2802 if (blk_queue_add_random(rq->q))
2803 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2804
2805 return false;
1da177e4
LT
2806}
2807
28018c24
JB
2808/**
2809 * blk_unprep_request - unprepare a request
2810 * @req: the request
2811 *
2812 * This function makes a request ready for complete resubmission (or
2813 * completion). It happens only after all error handling is complete,
2814 * so represents the appropriate moment to deallocate any resources
2815 * that were allocated to the request in the prep_rq_fn. The queue
2816 * lock is held when calling this.
2817 */
2818void blk_unprep_request(struct request *req)
2819{
2820 struct request_queue *q = req->q;
2821
e8064021 2822 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2823 if (q->unprep_rq_fn)
2824 q->unprep_rq_fn(q, req);
2825}
2826EXPORT_SYMBOL_GPL(blk_unprep_request);
2827
2a842aca 2828void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 2829{
cf43e6be
JA
2830 struct request_queue *q = req->q;
2831
2fff8a92 2832 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2833 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2834
cf43e6be 2835 if (req->rq_flags & RQF_STATS)
34dbad5d 2836 blk_stat_add(req);
cf43e6be 2837
e8064021 2838 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2839 blk_queue_end_tag(q, req);
b8286239 2840
ba396a6c 2841 BUG_ON(blk_queued_rq(req));
1da177e4 2842
57292b58 2843 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2844 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2845
e78042e5
MA
2846 blk_delete_timer(req);
2847
e8064021 2848 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2849 blk_unprep_request(req);
2850
bc58ba94 2851 blk_account_io_done(req);
b8286239 2852
87760e5e
JA
2853 if (req->end_io) {
2854 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2855 req->end_io(req, error);
87760e5e 2856 } else {
b8286239
KU
2857 if (blk_bidi_rq(req))
2858 __blk_put_request(req->next_rq->q, req->next_rq);
2859
cf43e6be 2860 __blk_put_request(q, req);
b8286239 2861 }
1da177e4 2862}
12120077 2863EXPORT_SYMBOL(blk_finish_request);
1da177e4 2864
3b11313a 2865/**
2e60e022
TH
2866 * blk_end_bidi_request - Complete a bidi request
2867 * @rq: the request to complete
2a842aca 2868 * @error: block status code
2e60e022
TH
2869 * @nr_bytes: number of bytes to complete @rq
2870 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2871 *
2872 * Description:
e3a04fe3 2873 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2874 * Drivers that supports bidi can safely call this member for any
2875 * type of request, bidi or uni. In the later case @bidi_bytes is
2876 * just ignored.
336cdb40
KU
2877 *
2878 * Return:
2e60e022
TH
2879 * %false - we are done with this request
2880 * %true - still buffers pending for this request
a0cd1285 2881 **/
2a842aca 2882static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
2883 unsigned int nr_bytes, unsigned int bidi_bytes)
2884{
336cdb40 2885 struct request_queue *q = rq->q;
2e60e022 2886 unsigned long flags;
32fab448 2887
332ebbf7
BVA
2888 WARN_ON_ONCE(q->mq_ops);
2889
2e60e022
TH
2890 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2891 return true;
32fab448 2892
336cdb40 2893 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2894 blk_finish_request(rq, error);
336cdb40
KU
2895 spin_unlock_irqrestore(q->queue_lock, flags);
2896
2e60e022 2897 return false;
32fab448
KU
2898}
2899
336cdb40 2900/**
2e60e022
TH
2901 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2902 * @rq: the request to complete
2a842aca 2903 * @error: block status code
e3a04fe3
KU
2904 * @nr_bytes: number of bytes to complete @rq
2905 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2906 *
2907 * Description:
2e60e022
TH
2908 * Identical to blk_end_bidi_request() except that queue lock is
2909 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2910 *
2911 * Return:
2e60e022
TH
2912 * %false - we are done with this request
2913 * %true - still buffers pending for this request
336cdb40 2914 **/
2a842aca 2915static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 2916 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2917{
2fff8a92 2918 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 2919 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 2920
2e60e022
TH
2921 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2922 return true;
336cdb40 2923
2e60e022 2924 blk_finish_request(rq, error);
336cdb40 2925
2e60e022 2926 return false;
336cdb40 2927}
e19a3ab0
KU
2928
2929/**
2930 * blk_end_request - Helper function for drivers to complete the request.
2931 * @rq: the request being processed
2a842aca 2932 * @error: block status code
e19a3ab0
KU
2933 * @nr_bytes: number of bytes to complete
2934 *
2935 * Description:
2936 * Ends I/O on a number of bytes attached to @rq.
2937 * If @rq has leftover, sets it up for the next range of segments.
2938 *
2939 * Return:
b1f74493
FT
2940 * %false - we are done with this request
2941 * %true - still buffers pending for this request
e19a3ab0 2942 **/
2a842aca
CH
2943bool blk_end_request(struct request *rq, blk_status_t error,
2944 unsigned int nr_bytes)
e19a3ab0 2945{
332ebbf7 2946 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 2947 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2948}
56ad1740 2949EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2950
2951/**
b1f74493
FT
2952 * blk_end_request_all - Helper function for drives to finish the request.
2953 * @rq: the request to finish
2a842aca 2954 * @error: block status code
336cdb40
KU
2955 *
2956 * Description:
b1f74493
FT
2957 * Completely finish @rq.
2958 */
2a842aca 2959void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 2960{
b1f74493
FT
2961 bool pending;
2962 unsigned int bidi_bytes = 0;
336cdb40 2963
b1f74493
FT
2964 if (unlikely(blk_bidi_rq(rq)))
2965 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2966
b1f74493
FT
2967 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2968 BUG_ON(pending);
2969}
56ad1740 2970EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2971
e3a04fe3 2972/**
b1f74493
FT
2973 * __blk_end_request - Helper function for drivers to complete the request.
2974 * @rq: the request being processed
2a842aca 2975 * @error: block status code
b1f74493 2976 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2977 *
2978 * Description:
b1f74493 2979 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2980 *
2981 * Return:
b1f74493
FT
2982 * %false - we are done with this request
2983 * %true - still buffers pending for this request
e3a04fe3 2984 **/
2a842aca
CH
2985bool __blk_end_request(struct request *rq, blk_status_t error,
2986 unsigned int nr_bytes)
e3a04fe3 2987{
2fff8a92 2988 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 2989 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 2990
b1f74493 2991 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2992}
56ad1740 2993EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2994
32fab448 2995/**
b1f74493
FT
2996 * __blk_end_request_all - Helper function for drives to finish the request.
2997 * @rq: the request to finish
2a842aca 2998 * @error: block status code
32fab448
KU
2999 *
3000 * Description:
b1f74493 3001 * Completely finish @rq. Must be called with queue lock held.
32fab448 3002 */
2a842aca 3003void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3004{
b1f74493
FT
3005 bool pending;
3006 unsigned int bidi_bytes = 0;
3007
2fff8a92 3008 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3009 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3010
b1f74493
FT
3011 if (unlikely(blk_bidi_rq(rq)))
3012 bidi_bytes = blk_rq_bytes(rq->next_rq);
3013
3014 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3015 BUG_ON(pending);
32fab448 3016}
56ad1740 3017EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3018
e19a3ab0 3019/**
b1f74493
FT
3020 * __blk_end_request_cur - Helper function to finish the current request chunk.
3021 * @rq: the request to finish the current chunk for
2a842aca 3022 * @error: block status code
e19a3ab0
KU
3023 *
3024 * Description:
b1f74493
FT
3025 * Complete the current consecutively mapped chunk from @rq. Must
3026 * be called with queue lock held.
e19a3ab0
KU
3027 *
3028 * Return:
b1f74493
FT
3029 * %false - we are done with this request
3030 * %true - still buffers pending for this request
3031 */
2a842aca 3032bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3033{
b1f74493 3034 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3035}
56ad1740 3036EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3037
86db1e29
JA
3038void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3039 struct bio *bio)
1da177e4 3040{
b4f42e28 3041 if (bio_has_data(bio))
fb2dce86 3042 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 3043
4f024f37 3044 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3045 rq->bio = rq->biotail = bio;
1da177e4 3046
74d46992
CH
3047 if (bio->bi_disk)
3048 rq->rq_disk = bio->bi_disk;
66846572 3049}
1da177e4 3050
2d4dc890
IL
3051#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3052/**
3053 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3054 * @rq: the request to be flushed
3055 *
3056 * Description:
3057 * Flush all pages in @rq.
3058 */
3059void rq_flush_dcache_pages(struct request *rq)
3060{
3061 struct req_iterator iter;
7988613b 3062 struct bio_vec bvec;
2d4dc890
IL
3063
3064 rq_for_each_segment(bvec, rq, iter)
7988613b 3065 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3066}
3067EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3068#endif
3069
ef9e3fac
KU
3070/**
3071 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3072 * @q : the queue of the device being checked
3073 *
3074 * Description:
3075 * Check if underlying low-level drivers of a device are busy.
3076 * If the drivers want to export their busy state, they must set own
3077 * exporting function using blk_queue_lld_busy() first.
3078 *
3079 * Basically, this function is used only by request stacking drivers
3080 * to stop dispatching requests to underlying devices when underlying
3081 * devices are busy. This behavior helps more I/O merging on the queue
3082 * of the request stacking driver and prevents I/O throughput regression
3083 * on burst I/O load.
3084 *
3085 * Return:
3086 * 0 - Not busy (The request stacking driver should dispatch request)
3087 * 1 - Busy (The request stacking driver should stop dispatching request)
3088 */
3089int blk_lld_busy(struct request_queue *q)
3090{
3091 if (q->lld_busy_fn)
3092 return q->lld_busy_fn(q);
3093
3094 return 0;
3095}
3096EXPORT_SYMBOL_GPL(blk_lld_busy);
3097
78d8e58a
MS
3098/**
3099 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3100 * @rq: the clone request to be cleaned up
3101 *
3102 * Description:
3103 * Free all bios in @rq for a cloned request.
3104 */
3105void blk_rq_unprep_clone(struct request *rq)
3106{
3107 struct bio *bio;
3108
3109 while ((bio = rq->bio) != NULL) {
3110 rq->bio = bio->bi_next;
3111
3112 bio_put(bio);
3113 }
3114}
3115EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3116
3117/*
3118 * Copy attributes of the original request to the clone request.
3119 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3120 */
3121static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3122{
3123 dst->cpu = src->cpu;
b0fd271d
KU
3124 dst->__sector = blk_rq_pos(src);
3125 dst->__data_len = blk_rq_bytes(src);
3126 dst->nr_phys_segments = src->nr_phys_segments;
3127 dst->ioprio = src->ioprio;
3128 dst->extra_len = src->extra_len;
78d8e58a
MS
3129}
3130
3131/**
3132 * blk_rq_prep_clone - Helper function to setup clone request
3133 * @rq: the request to be setup
3134 * @rq_src: original request to be cloned
3135 * @bs: bio_set that bios for clone are allocated from
3136 * @gfp_mask: memory allocation mask for bio
3137 * @bio_ctr: setup function to be called for each clone bio.
3138 * Returns %0 for success, non %0 for failure.
3139 * @data: private data to be passed to @bio_ctr
3140 *
3141 * Description:
3142 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3143 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3144 * are not copied, and copying such parts is the caller's responsibility.
3145 * Also, pages which the original bios are pointing to are not copied
3146 * and the cloned bios just point same pages.
3147 * So cloned bios must be completed before original bios, which means
3148 * the caller must complete @rq before @rq_src.
3149 */
3150int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3151 struct bio_set *bs, gfp_t gfp_mask,
3152 int (*bio_ctr)(struct bio *, struct bio *, void *),
3153 void *data)
3154{
3155 struct bio *bio, *bio_src;
3156
3157 if (!bs)
3158 bs = fs_bio_set;
3159
3160 __rq_for_each_bio(bio_src, rq_src) {
3161 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3162 if (!bio)
3163 goto free_and_out;
3164
3165 if (bio_ctr && bio_ctr(bio, bio_src, data))
3166 goto free_and_out;
3167
3168 if (rq->bio) {
3169 rq->biotail->bi_next = bio;
3170 rq->biotail = bio;
3171 } else
3172 rq->bio = rq->biotail = bio;
3173 }
3174
3175 __blk_rq_prep_clone(rq, rq_src);
3176
3177 return 0;
3178
3179free_and_out:
3180 if (bio)
3181 bio_put(bio);
3182 blk_rq_unprep_clone(rq);
3183
3184 return -ENOMEM;
b0fd271d
KU
3185}
3186EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3187
59c3d45e 3188int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3189{
3190 return queue_work(kblockd_workqueue, work);
3191}
1da177e4
LT
3192EXPORT_SYMBOL(kblockd_schedule_work);
3193
ee63cfa7
JA
3194int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3195{
3196 return queue_work_on(cpu, kblockd_workqueue, work);
3197}
3198EXPORT_SYMBOL(kblockd_schedule_work_on);
3199
818cd1cb
JA
3200int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3201 unsigned long delay)
3202{
3203 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3204}
3205EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3206
59c3d45e
JA
3207int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3208 unsigned long delay)
e43473b7
VG
3209{
3210 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3211}
3212EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3213
8ab14595
JA
3214int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3215 unsigned long delay)
3216{
3217 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3218}
3219EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3220
75df7136
SJ
3221/**
3222 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3223 * @plug: The &struct blk_plug that needs to be initialized
3224 *
3225 * Description:
3226 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3227 * pending I/O should the task end up blocking between blk_start_plug() and
3228 * blk_finish_plug(). This is important from a performance perspective, but
3229 * also ensures that we don't deadlock. For instance, if the task is blocking
3230 * for a memory allocation, memory reclaim could end up wanting to free a
3231 * page belonging to that request that is currently residing in our private
3232 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3233 * this kind of deadlock.
3234 */
73c10101
JA
3235void blk_start_plug(struct blk_plug *plug)
3236{
3237 struct task_struct *tsk = current;
3238
dd6cf3e1
SL
3239 /*
3240 * If this is a nested plug, don't actually assign it.
3241 */
3242 if (tsk->plug)
3243 return;
3244
73c10101 3245 INIT_LIST_HEAD(&plug->list);
320ae51f 3246 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3247 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3248 /*
dd6cf3e1
SL
3249 * Store ordering should not be needed here, since a potential
3250 * preempt will imply a full memory barrier
73c10101 3251 */
dd6cf3e1 3252 tsk->plug = plug;
73c10101
JA
3253}
3254EXPORT_SYMBOL(blk_start_plug);
3255
3256static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3257{
3258 struct request *rqa = container_of(a, struct request, queuelist);
3259 struct request *rqb = container_of(b, struct request, queuelist);
3260
975927b9
JM
3261 return !(rqa->q < rqb->q ||
3262 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3263}
3264
49cac01e
JA
3265/*
3266 * If 'from_schedule' is true, then postpone the dispatch of requests
3267 * until a safe kblockd context. We due this to avoid accidental big
3268 * additional stack usage in driver dispatch, in places where the originally
3269 * plugger did not intend it.
3270 */
f6603783 3271static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3272 bool from_schedule)
99e22598 3273 __releases(q->queue_lock)
94b5eb28 3274{
2fff8a92
BVA
3275 lockdep_assert_held(q->queue_lock);
3276
49cac01e 3277 trace_block_unplug(q, depth, !from_schedule);
99e22598 3278
70460571 3279 if (from_schedule)
24ecfbe2 3280 blk_run_queue_async(q);
70460571 3281 else
24ecfbe2 3282 __blk_run_queue(q);
70460571 3283 spin_unlock(q->queue_lock);
94b5eb28
JA
3284}
3285
74018dc3 3286static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3287{
3288 LIST_HEAD(callbacks);
3289
2a7d5559
SL
3290 while (!list_empty(&plug->cb_list)) {
3291 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3292
2a7d5559
SL
3293 while (!list_empty(&callbacks)) {
3294 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3295 struct blk_plug_cb,
3296 list);
2a7d5559 3297 list_del(&cb->list);
74018dc3 3298 cb->callback(cb, from_schedule);
2a7d5559 3299 }
048c9374
N
3300 }
3301}
3302
9cbb1750
N
3303struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3304 int size)
3305{
3306 struct blk_plug *plug = current->plug;
3307 struct blk_plug_cb *cb;
3308
3309 if (!plug)
3310 return NULL;
3311
3312 list_for_each_entry(cb, &plug->cb_list, list)
3313 if (cb->callback == unplug && cb->data == data)
3314 return cb;
3315
3316 /* Not currently on the callback list */
3317 BUG_ON(size < sizeof(*cb));
3318 cb = kzalloc(size, GFP_ATOMIC);
3319 if (cb) {
3320 cb->data = data;
3321 cb->callback = unplug;
3322 list_add(&cb->list, &plug->cb_list);
3323 }
3324 return cb;
3325}
3326EXPORT_SYMBOL(blk_check_plugged);
3327
49cac01e 3328void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3329{
3330 struct request_queue *q;
3331 unsigned long flags;
3332 struct request *rq;
109b8129 3333 LIST_HEAD(list);
94b5eb28 3334 unsigned int depth;
73c10101 3335
74018dc3 3336 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3337
3338 if (!list_empty(&plug->mq_list))
3339 blk_mq_flush_plug_list(plug, from_schedule);
3340
73c10101
JA
3341 if (list_empty(&plug->list))
3342 return;
3343
109b8129
N
3344 list_splice_init(&plug->list, &list);
3345
422765c2 3346 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3347
3348 q = NULL;
94b5eb28 3349 depth = 0;
18811272
JA
3350
3351 /*
3352 * Save and disable interrupts here, to avoid doing it for every
3353 * queue lock we have to take.
3354 */
73c10101 3355 local_irq_save(flags);
109b8129
N
3356 while (!list_empty(&list)) {
3357 rq = list_entry_rq(list.next);
73c10101 3358 list_del_init(&rq->queuelist);
73c10101
JA
3359 BUG_ON(!rq->q);
3360 if (rq->q != q) {
99e22598
JA
3361 /*
3362 * This drops the queue lock
3363 */
3364 if (q)
49cac01e 3365 queue_unplugged(q, depth, from_schedule);
73c10101 3366 q = rq->q;
94b5eb28 3367 depth = 0;
73c10101
JA
3368 spin_lock(q->queue_lock);
3369 }
8ba61435
TH
3370
3371 /*
3372 * Short-circuit if @q is dead
3373 */
3f3299d5 3374 if (unlikely(blk_queue_dying(q))) {
2a842aca 3375 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3376 continue;
3377 }
3378
73c10101
JA
3379 /*
3380 * rq is already accounted, so use raw insert
3381 */
f73f44eb 3382 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3383 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3384 else
3385 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3386
3387 depth++;
73c10101
JA
3388 }
3389
99e22598
JA
3390 /*
3391 * This drops the queue lock
3392 */
3393 if (q)
49cac01e 3394 queue_unplugged(q, depth, from_schedule);
73c10101 3395
73c10101
JA
3396 local_irq_restore(flags);
3397}
73c10101
JA
3398
3399void blk_finish_plug(struct blk_plug *plug)
3400{
dd6cf3e1
SL
3401 if (plug != current->plug)
3402 return;
f6603783 3403 blk_flush_plug_list(plug, false);
73c10101 3404
dd6cf3e1 3405 current->plug = NULL;
73c10101 3406}
88b996cd 3407EXPORT_SYMBOL(blk_finish_plug);
73c10101 3408
47fafbc7 3409#ifdef CONFIG_PM
6c954667
LM
3410/**
3411 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3412 * @q: the queue of the device
3413 * @dev: the device the queue belongs to
3414 *
3415 * Description:
3416 * Initialize runtime-PM-related fields for @q and start auto suspend for
3417 * @dev. Drivers that want to take advantage of request-based runtime PM
3418 * should call this function after @dev has been initialized, and its
3419 * request queue @q has been allocated, and runtime PM for it can not happen
3420 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3421 * cases, driver should call this function before any I/O has taken place.
3422 *
3423 * This function takes care of setting up using auto suspend for the device,
3424 * the autosuspend delay is set to -1 to make runtime suspend impossible
3425 * until an updated value is either set by user or by driver. Drivers do
3426 * not need to touch other autosuspend settings.
3427 *
3428 * The block layer runtime PM is request based, so only works for drivers
3429 * that use request as their IO unit instead of those directly use bio's.
3430 */
3431void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3432{
765e40b6
CH
3433 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3434 if (q->mq_ops)
3435 return;
3436
6c954667
LM
3437 q->dev = dev;
3438 q->rpm_status = RPM_ACTIVE;
3439 pm_runtime_set_autosuspend_delay(q->dev, -1);
3440 pm_runtime_use_autosuspend(q->dev);
3441}
3442EXPORT_SYMBOL(blk_pm_runtime_init);
3443
3444/**
3445 * blk_pre_runtime_suspend - Pre runtime suspend check
3446 * @q: the queue of the device
3447 *
3448 * Description:
3449 * This function will check if runtime suspend is allowed for the device
3450 * by examining if there are any requests pending in the queue. If there
3451 * are requests pending, the device can not be runtime suspended; otherwise,
3452 * the queue's status will be updated to SUSPENDING and the driver can
3453 * proceed to suspend the device.
3454 *
3455 * For the not allowed case, we mark last busy for the device so that
3456 * runtime PM core will try to autosuspend it some time later.
3457 *
3458 * This function should be called near the start of the device's
3459 * runtime_suspend callback.
3460 *
3461 * Return:
3462 * 0 - OK to runtime suspend the device
3463 * -EBUSY - Device should not be runtime suspended
3464 */
3465int blk_pre_runtime_suspend(struct request_queue *q)
3466{
3467 int ret = 0;
3468
4fd41a85
KX
3469 if (!q->dev)
3470 return ret;
3471
6c954667
LM
3472 spin_lock_irq(q->queue_lock);
3473 if (q->nr_pending) {
3474 ret = -EBUSY;
3475 pm_runtime_mark_last_busy(q->dev);
3476 } else {
3477 q->rpm_status = RPM_SUSPENDING;
3478 }
3479 spin_unlock_irq(q->queue_lock);
3480 return ret;
3481}
3482EXPORT_SYMBOL(blk_pre_runtime_suspend);
3483
3484/**
3485 * blk_post_runtime_suspend - Post runtime suspend processing
3486 * @q: the queue of the device
3487 * @err: return value of the device's runtime_suspend function
3488 *
3489 * Description:
3490 * Update the queue's runtime status according to the return value of the
3491 * device's runtime suspend function and mark last busy for the device so
3492 * that PM core will try to auto suspend the device at a later time.
3493 *
3494 * This function should be called near the end of the device's
3495 * runtime_suspend callback.
3496 */
3497void blk_post_runtime_suspend(struct request_queue *q, int err)
3498{
4fd41a85
KX
3499 if (!q->dev)
3500 return;
3501
6c954667
LM
3502 spin_lock_irq(q->queue_lock);
3503 if (!err) {
3504 q->rpm_status = RPM_SUSPENDED;
3505 } else {
3506 q->rpm_status = RPM_ACTIVE;
3507 pm_runtime_mark_last_busy(q->dev);
3508 }
3509 spin_unlock_irq(q->queue_lock);
3510}
3511EXPORT_SYMBOL(blk_post_runtime_suspend);
3512
3513/**
3514 * blk_pre_runtime_resume - Pre runtime resume processing
3515 * @q: the queue of the device
3516 *
3517 * Description:
3518 * Update the queue's runtime status to RESUMING in preparation for the
3519 * runtime resume of the device.
3520 *
3521 * This function should be called near the start of the device's
3522 * runtime_resume callback.
3523 */
3524void blk_pre_runtime_resume(struct request_queue *q)
3525{
4fd41a85
KX
3526 if (!q->dev)
3527 return;
3528
6c954667
LM
3529 spin_lock_irq(q->queue_lock);
3530 q->rpm_status = RPM_RESUMING;
3531 spin_unlock_irq(q->queue_lock);
3532}
3533EXPORT_SYMBOL(blk_pre_runtime_resume);
3534
3535/**
3536 * blk_post_runtime_resume - Post runtime resume processing
3537 * @q: the queue of the device
3538 * @err: return value of the device's runtime_resume function
3539 *
3540 * Description:
3541 * Update the queue's runtime status according to the return value of the
3542 * device's runtime_resume function. If it is successfully resumed, process
3543 * the requests that are queued into the device's queue when it is resuming
3544 * and then mark last busy and initiate autosuspend for it.
3545 *
3546 * This function should be called near the end of the device's
3547 * runtime_resume callback.
3548 */
3549void blk_post_runtime_resume(struct request_queue *q, int err)
3550{
4fd41a85
KX
3551 if (!q->dev)
3552 return;
3553
6c954667
LM
3554 spin_lock_irq(q->queue_lock);
3555 if (!err) {
3556 q->rpm_status = RPM_ACTIVE;
3557 __blk_run_queue(q);
3558 pm_runtime_mark_last_busy(q->dev);
c60855cd 3559 pm_request_autosuspend(q->dev);
6c954667
LM
3560 } else {
3561 q->rpm_status = RPM_SUSPENDED;
3562 }
3563 spin_unlock_irq(q->queue_lock);
3564}
3565EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3566
3567/**
3568 * blk_set_runtime_active - Force runtime status of the queue to be active
3569 * @q: the queue of the device
3570 *
3571 * If the device is left runtime suspended during system suspend the resume
3572 * hook typically resumes the device and corrects runtime status
3573 * accordingly. However, that does not affect the queue runtime PM status
3574 * which is still "suspended". This prevents processing requests from the
3575 * queue.
3576 *
3577 * This function can be used in driver's resume hook to correct queue
3578 * runtime PM status and re-enable peeking requests from the queue. It
3579 * should be called before first request is added to the queue.
3580 */
3581void blk_set_runtime_active(struct request_queue *q)
3582{
3583 spin_lock_irq(q->queue_lock);
3584 q->rpm_status = RPM_ACTIVE;
3585 pm_runtime_mark_last_busy(q->dev);
3586 pm_request_autosuspend(q->dev);
3587 spin_unlock_irq(q->queue_lock);
3588}
3589EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3590#endif
3591
1da177e4
LT
3592int __init blk_dev_init(void)
3593{
ef295ecf
CH
3594 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3595 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3596 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3597 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3598 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3599
89b90be2
TH
3600 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3601 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3602 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3603 if (!kblockd_workqueue)
3604 panic("Failed to create kblockd\n");
3605
3606 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3607 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3608
c2789bd4 3609 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3610 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3611
18fbda91
OS
3612#ifdef CONFIG_DEBUG_FS
3613 blk_debugfs_root = debugfs_create_dir("block", NULL);
3614#endif
3615
d38ecf93 3616 return 0;
1da177e4 3617}