]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
88f306b6
KS
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
a52633d8 30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
88f306b6
KS
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 42 *
5a505085 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 44 * ->tasklist_lock
6a46079c 45 * pte map lock
1da177e4
LT
46 */
47
48#include <linux/mm.h>
6e84f315 49#include <linux/sched/mm.h>
29930025 50#include <linux/sched/task.h>
1da177e4
LT
51#include <linux/pagemap.h>
52#include <linux/swap.h>
53#include <linux/swapops.h>
54#include <linux/slab.h>
55#include <linux/init.h>
5ad64688 56#include <linux/ksm.h>
1da177e4
LT
57#include <linux/rmap.h>
58#include <linux/rcupdate.h>
b95f1b31 59#include <linux/export.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
64cdd548 62#include <linux/migrate.h>
0fe6e20b 63#include <linux/hugetlb.h>
ef5d437f 64#include <linux/backing-dev.h>
33c3fc71 65#include <linux/page_idle.h>
a5430dda 66#include <linux/memremap.h>
b38228fb 67#include <linux/userfaultfd_k.h>
1da177e4
LT
68
69#include <asm/tlbflush.h>
70
72b252ae
MG
71#include <trace/events/tlb.h>
72
b291f000
NP
73#include "internal.h"
74
fdd2e5f8 75static struct kmem_cache *anon_vma_cachep;
5beb4930 76static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
77
78static inline struct anon_vma *anon_vma_alloc(void)
79{
01d8b20d
PZ
80 struct anon_vma *anon_vma;
81
82 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
83 if (anon_vma) {
84 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
85 anon_vma->degree = 1; /* Reference for first vma */
86 anon_vma->parent = anon_vma;
01d8b20d
PZ
87 /*
88 * Initialise the anon_vma root to point to itself. If called
89 * from fork, the root will be reset to the parents anon_vma.
90 */
91 anon_vma->root = anon_vma;
92 }
93
94 return anon_vma;
fdd2e5f8
AB
95}
96
01d8b20d 97static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 98{
01d8b20d 99 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
100
101 /*
4fc3f1d6 102 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
103 * we can safely hold the lock without the anon_vma getting
104 * freed.
105 *
106 * Relies on the full mb implied by the atomic_dec_and_test() from
107 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 108 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 109 *
4fc3f1d6
IM
110 * page_lock_anon_vma_read() VS put_anon_vma()
111 * down_read_trylock() atomic_dec_and_test()
88c22088 112 * LOCK MB
4fc3f1d6 113 * atomic_read() rwsem_is_locked()
88c22088
PZ
114 *
115 * LOCK should suffice since the actual taking of the lock must
116 * happen _before_ what follows.
117 */
7f39dda9 118 might_sleep();
5a505085 119 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 120 anon_vma_lock_write(anon_vma);
08b52706 121 anon_vma_unlock_write(anon_vma);
88c22088
PZ
122 }
123
fdd2e5f8
AB
124 kmem_cache_free(anon_vma_cachep, anon_vma);
125}
1da177e4 126
dd34739c 127static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 128{
dd34739c 129 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
130}
131
e574b5fd 132static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
133{
134 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
135}
136
6583a843
KC
137static void anon_vma_chain_link(struct vm_area_struct *vma,
138 struct anon_vma_chain *avc,
139 struct anon_vma *anon_vma)
140{
141 avc->vma = vma;
142 avc->anon_vma = anon_vma;
143 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 144 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
145}
146
d9d332e0 147/**
d5a187da 148 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
149 * @vma: the memory region in question
150 *
151 * This makes sure the memory mapping described by 'vma' has
152 * an 'anon_vma' attached to it, so that we can associate the
153 * anonymous pages mapped into it with that anon_vma.
154 *
d5a187da
VB
155 * The common case will be that we already have one, which
156 * is handled inline by anon_vma_prepare(). But if
23a0790a 157 * not we either need to find an adjacent mapping that we
d9d332e0
LT
158 * can re-use the anon_vma from (very common when the only
159 * reason for splitting a vma has been mprotect()), or we
160 * allocate a new one.
161 *
162 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 163 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
164 * and that may actually touch the spinlock even in the newly
165 * allocated vma (it depends on RCU to make sure that the
166 * anon_vma isn't actually destroyed).
167 *
168 * As a result, we need to do proper anon_vma locking even
169 * for the new allocation. At the same time, we do not want
170 * to do any locking for the common case of already having
171 * an anon_vma.
172 *
173 * This must be called with the mmap_sem held for reading.
174 */
d5a187da 175int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 176{
d5a187da
VB
177 struct mm_struct *mm = vma->vm_mm;
178 struct anon_vma *anon_vma, *allocated;
5beb4930 179 struct anon_vma_chain *avc;
1da177e4
LT
180
181 might_sleep();
1da177e4 182
d5a187da
VB
183 avc = anon_vma_chain_alloc(GFP_KERNEL);
184 if (!avc)
185 goto out_enomem;
186
187 anon_vma = find_mergeable_anon_vma(vma);
188 allocated = NULL;
189 if (!anon_vma) {
190 anon_vma = anon_vma_alloc();
191 if (unlikely(!anon_vma))
192 goto out_enomem_free_avc;
193 allocated = anon_vma;
194 }
5beb4930 195
d5a187da
VB
196 anon_vma_lock_write(anon_vma);
197 /* page_table_lock to protect against threads */
198 spin_lock(&mm->page_table_lock);
199 if (likely(!vma->anon_vma)) {
200 vma->anon_vma = anon_vma;
201 anon_vma_chain_link(vma, avc, anon_vma);
202 /* vma reference or self-parent link for new root */
203 anon_vma->degree++;
d9d332e0 204 allocated = NULL;
d5a187da
VB
205 avc = NULL;
206 }
207 spin_unlock(&mm->page_table_lock);
208 anon_vma_unlock_write(anon_vma);
1da177e4 209
d5a187da
VB
210 if (unlikely(allocated))
211 put_anon_vma(allocated);
212 if (unlikely(avc))
213 anon_vma_chain_free(avc);
31f2b0eb 214
1da177e4 215 return 0;
5beb4930
RR
216
217 out_enomem_free_avc:
218 anon_vma_chain_free(avc);
219 out_enomem:
220 return -ENOMEM;
1da177e4
LT
221}
222
bb4aa396
LT
223/*
224 * This is a useful helper function for locking the anon_vma root as
225 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
226 * have the same vma.
227 *
228 * Such anon_vma's should have the same root, so you'd expect to see
229 * just a single mutex_lock for the whole traversal.
230 */
231static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
232{
233 struct anon_vma *new_root = anon_vma->root;
234 if (new_root != root) {
235 if (WARN_ON_ONCE(root))
5a505085 236 up_write(&root->rwsem);
bb4aa396 237 root = new_root;
5a505085 238 down_write(&root->rwsem);
bb4aa396
LT
239 }
240 return root;
241}
242
243static inline void unlock_anon_vma_root(struct anon_vma *root)
244{
245 if (root)
5a505085 246 up_write(&root->rwsem);
bb4aa396
LT
247}
248
5beb4930
RR
249/*
250 * Attach the anon_vmas from src to dst.
251 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
252 *
253 * If dst->anon_vma is NULL this function tries to find and reuse existing
254 * anon_vma which has no vmas and only one child anon_vma. This prevents
255 * degradation of anon_vma hierarchy to endless linear chain in case of
256 * constantly forking task. On the other hand, an anon_vma with more than one
257 * child isn't reused even if there was no alive vma, thus rmap walker has a
258 * good chance of avoiding scanning the whole hierarchy when it searches where
259 * page is mapped.
5beb4930
RR
260 */
261int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 262{
5beb4930 263 struct anon_vma_chain *avc, *pavc;
bb4aa396 264 struct anon_vma *root = NULL;
5beb4930 265
646d87b4 266 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
267 struct anon_vma *anon_vma;
268
dd34739c
LT
269 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
270 if (unlikely(!avc)) {
271 unlock_anon_vma_root(root);
272 root = NULL;
273 avc = anon_vma_chain_alloc(GFP_KERNEL);
274 if (!avc)
275 goto enomem_failure;
276 }
bb4aa396
LT
277 anon_vma = pavc->anon_vma;
278 root = lock_anon_vma_root(root, anon_vma);
279 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
280
281 /*
282 * Reuse existing anon_vma if its degree lower than two,
283 * that means it has no vma and only one anon_vma child.
284 *
285 * Do not chose parent anon_vma, otherwise first child
286 * will always reuse it. Root anon_vma is never reused:
287 * it has self-parent reference and at least one child.
288 */
289 if (!dst->anon_vma && anon_vma != src->anon_vma &&
290 anon_vma->degree < 2)
291 dst->anon_vma = anon_vma;
5beb4930 292 }
7a3ef208
KK
293 if (dst->anon_vma)
294 dst->anon_vma->degree++;
bb4aa396 295 unlock_anon_vma_root(root);
5beb4930 296 return 0;
1da177e4 297
5beb4930 298 enomem_failure:
3fe89b3e
LY
299 /*
300 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
301 * decremented in unlink_anon_vmas().
302 * We can safely do this because callers of anon_vma_clone() don't care
303 * about dst->anon_vma if anon_vma_clone() failed.
304 */
305 dst->anon_vma = NULL;
5beb4930
RR
306 unlink_anon_vmas(dst);
307 return -ENOMEM;
1da177e4
LT
308}
309
5beb4930
RR
310/*
311 * Attach vma to its own anon_vma, as well as to the anon_vmas that
312 * the corresponding VMA in the parent process is attached to.
313 * Returns 0 on success, non-zero on failure.
314 */
315int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 316{
5beb4930
RR
317 struct anon_vma_chain *avc;
318 struct anon_vma *anon_vma;
c4ea95d7 319 int error;
1da177e4 320
5beb4930
RR
321 /* Don't bother if the parent process has no anon_vma here. */
322 if (!pvma->anon_vma)
323 return 0;
324
7a3ef208
KK
325 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
326 vma->anon_vma = NULL;
327
5beb4930
RR
328 /*
329 * First, attach the new VMA to the parent VMA's anon_vmas,
330 * so rmap can find non-COWed pages in child processes.
331 */
c4ea95d7
DF
332 error = anon_vma_clone(vma, pvma);
333 if (error)
334 return error;
5beb4930 335
7a3ef208
KK
336 /* An existing anon_vma has been reused, all done then. */
337 if (vma->anon_vma)
338 return 0;
339
5beb4930
RR
340 /* Then add our own anon_vma. */
341 anon_vma = anon_vma_alloc();
342 if (!anon_vma)
343 goto out_error;
dd34739c 344 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
345 if (!avc)
346 goto out_error_free_anon_vma;
5c341ee1
RR
347
348 /*
349 * The root anon_vma's spinlock is the lock actually used when we
350 * lock any of the anon_vmas in this anon_vma tree.
351 */
352 anon_vma->root = pvma->anon_vma->root;
7a3ef208 353 anon_vma->parent = pvma->anon_vma;
76545066 354 /*
01d8b20d
PZ
355 * With refcounts, an anon_vma can stay around longer than the
356 * process it belongs to. The root anon_vma needs to be pinned until
357 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
358 */
359 get_anon_vma(anon_vma->root);
5beb4930
RR
360 /* Mark this anon_vma as the one where our new (COWed) pages go. */
361 vma->anon_vma = anon_vma;
4fc3f1d6 362 anon_vma_lock_write(anon_vma);
5c341ee1 363 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 364 anon_vma->parent->degree++;
08b52706 365 anon_vma_unlock_write(anon_vma);
5beb4930
RR
366
367 return 0;
368
369 out_error_free_anon_vma:
01d8b20d 370 put_anon_vma(anon_vma);
5beb4930 371 out_error:
4946d54c 372 unlink_anon_vmas(vma);
5beb4930 373 return -ENOMEM;
1da177e4
LT
374}
375
5beb4930
RR
376void unlink_anon_vmas(struct vm_area_struct *vma)
377{
378 struct anon_vma_chain *avc, *next;
eee2acba 379 struct anon_vma *root = NULL;
5beb4930 380
5c341ee1
RR
381 /*
382 * Unlink each anon_vma chained to the VMA. This list is ordered
383 * from newest to oldest, ensuring the root anon_vma gets freed last.
384 */
5beb4930 385 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
386 struct anon_vma *anon_vma = avc->anon_vma;
387
388 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 389 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
390
391 /*
392 * Leave empty anon_vmas on the list - we'll need
393 * to free them outside the lock.
394 */
f808c13f 395 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 396 anon_vma->parent->degree--;
eee2acba 397 continue;
7a3ef208 398 }
eee2acba
PZ
399
400 list_del(&avc->same_vma);
401 anon_vma_chain_free(avc);
402 }
7a3ef208
KK
403 if (vma->anon_vma)
404 vma->anon_vma->degree--;
eee2acba
PZ
405 unlock_anon_vma_root(root);
406
407 /*
408 * Iterate the list once more, it now only contains empty and unlinked
409 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 410 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
411 */
412 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
413 struct anon_vma *anon_vma = avc->anon_vma;
414
e4c5800a 415 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
416 put_anon_vma(anon_vma);
417
5beb4930
RR
418 list_del(&avc->same_vma);
419 anon_vma_chain_free(avc);
420 }
421}
422
51cc5068 423static void anon_vma_ctor(void *data)
1da177e4 424{
a35afb83 425 struct anon_vma *anon_vma = data;
1da177e4 426
5a505085 427 init_rwsem(&anon_vma->rwsem);
83813267 428 atomic_set(&anon_vma->refcount, 0);
f808c13f 429 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
430}
431
432void __init anon_vma_init(void)
433{
434 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 435 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
436 anon_vma_ctor);
437 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
438 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
439}
440
441/*
6111e4ca
PZ
442 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
443 *
444 * Since there is no serialization what so ever against page_remove_rmap()
445 * the best this function can do is return a locked anon_vma that might
446 * have been relevant to this page.
447 *
448 * The page might have been remapped to a different anon_vma or the anon_vma
449 * returned may already be freed (and even reused).
450 *
bc658c96
PZ
451 * In case it was remapped to a different anon_vma, the new anon_vma will be a
452 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
453 * ensure that any anon_vma obtained from the page will still be valid for as
454 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
455 *
6111e4ca
PZ
456 * All users of this function must be very careful when walking the anon_vma
457 * chain and verify that the page in question is indeed mapped in it
458 * [ something equivalent to page_mapped_in_vma() ].
459 *
460 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
461 * that the anon_vma pointer from page->mapping is valid if there is a
462 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 463 */
746b18d4 464struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 465{
746b18d4 466 struct anon_vma *anon_vma = NULL;
1da177e4
LT
467 unsigned long anon_mapping;
468
469 rcu_read_lock();
4db0c3c2 470 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 471 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
472 goto out;
473 if (!page_mapped(page))
474 goto out;
475
476 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
477 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
478 anon_vma = NULL;
479 goto out;
480 }
f1819427
HD
481
482 /*
483 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
484 * freed. But if it has been unmapped, we have no security against the
485 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 486 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 487 * above cannot corrupt).
f1819427 488 */
746b18d4 489 if (!page_mapped(page)) {
7f39dda9 490 rcu_read_unlock();
746b18d4 491 put_anon_vma(anon_vma);
7f39dda9 492 return NULL;
746b18d4 493 }
1da177e4
LT
494out:
495 rcu_read_unlock();
746b18d4
PZ
496
497 return anon_vma;
498}
499
88c22088
PZ
500/*
501 * Similar to page_get_anon_vma() except it locks the anon_vma.
502 *
503 * Its a little more complex as it tries to keep the fast path to a single
504 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
505 * reference like with page_get_anon_vma() and then block on the mutex.
506 */
4fc3f1d6 507struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 508{
88c22088 509 struct anon_vma *anon_vma = NULL;
eee0f252 510 struct anon_vma *root_anon_vma;
88c22088 511 unsigned long anon_mapping;
746b18d4 512
88c22088 513 rcu_read_lock();
4db0c3c2 514 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
515 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
516 goto out;
517 if (!page_mapped(page))
518 goto out;
519
520 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 521 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 522 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 523 /*
eee0f252
HD
524 * If the page is still mapped, then this anon_vma is still
525 * its anon_vma, and holding the mutex ensures that it will
bc658c96 526 * not go away, see anon_vma_free().
88c22088 527 */
eee0f252 528 if (!page_mapped(page)) {
4fc3f1d6 529 up_read(&root_anon_vma->rwsem);
88c22088
PZ
530 anon_vma = NULL;
531 }
532 goto out;
533 }
746b18d4 534
88c22088
PZ
535 /* trylock failed, we got to sleep */
536 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
537 anon_vma = NULL;
538 goto out;
539 }
540
541 if (!page_mapped(page)) {
7f39dda9 542 rcu_read_unlock();
88c22088 543 put_anon_vma(anon_vma);
7f39dda9 544 return NULL;
88c22088
PZ
545 }
546
547 /* we pinned the anon_vma, its safe to sleep */
548 rcu_read_unlock();
4fc3f1d6 549 anon_vma_lock_read(anon_vma);
88c22088
PZ
550
551 if (atomic_dec_and_test(&anon_vma->refcount)) {
552 /*
553 * Oops, we held the last refcount, release the lock
554 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 555 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 556 */
4fc3f1d6 557 anon_vma_unlock_read(anon_vma);
88c22088
PZ
558 __put_anon_vma(anon_vma);
559 anon_vma = NULL;
560 }
561
562 return anon_vma;
563
564out:
565 rcu_read_unlock();
746b18d4 566 return anon_vma;
34bbd704
ON
567}
568
4fc3f1d6 569void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 570{
4fc3f1d6 571 anon_vma_unlock_read(anon_vma);
1da177e4
LT
572}
573
72b252ae 574#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
575/*
576 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
577 * important if a PTE was dirty when it was unmapped that it's flushed
578 * before any IO is initiated on the page to prevent lost writes. Similarly,
579 * it must be flushed before freeing to prevent data leakage.
580 */
581void try_to_unmap_flush(void)
582{
583 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
584
585 if (!tlb_ubc->flush_required)
586 return;
587
e73ad5ff 588 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 589 tlb_ubc->flush_required = false;
d950c947 590 tlb_ubc->writable = false;
72b252ae
MG
591}
592
d950c947
MG
593/* Flush iff there are potentially writable TLB entries that can race with IO */
594void try_to_unmap_flush_dirty(void)
595{
596 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
597
598 if (tlb_ubc->writable)
599 try_to_unmap_flush();
600}
601
c7ab0d2f 602static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
603{
604 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605
e73ad5ff 606 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 607 tlb_ubc->flush_required = true;
d950c947 608
3ea27719
MG
609 /*
610 * Ensure compiler does not re-order the setting of tlb_flush_batched
611 * before the PTE is cleared.
612 */
613 barrier();
614 mm->tlb_flush_batched = true;
615
d950c947
MG
616 /*
617 * If the PTE was dirty then it's best to assume it's writable. The
618 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
619 * before the page is queued for IO.
620 */
621 if (writable)
622 tlb_ubc->writable = true;
72b252ae
MG
623}
624
625/*
626 * Returns true if the TLB flush should be deferred to the end of a batch of
627 * unmap operations to reduce IPIs.
628 */
629static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
630{
631 bool should_defer = false;
632
633 if (!(flags & TTU_BATCH_FLUSH))
634 return false;
635
636 /* If remote CPUs need to be flushed then defer batch the flush */
637 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
638 should_defer = true;
639 put_cpu();
640
641 return should_defer;
642}
3ea27719
MG
643
644/*
645 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
646 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
647 * operation such as mprotect or munmap to race between reclaim unmapping
648 * the page and flushing the page. If this race occurs, it potentially allows
649 * access to data via a stale TLB entry. Tracking all mm's that have TLB
650 * batching in flight would be expensive during reclaim so instead track
651 * whether TLB batching occurred in the past and if so then do a flush here
652 * if required. This will cost one additional flush per reclaim cycle paid
653 * by the first operation at risk such as mprotect and mumap.
654 *
655 * This must be called under the PTL so that an access to tlb_flush_batched
656 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
657 * via the PTL.
658 */
659void flush_tlb_batched_pending(struct mm_struct *mm)
660{
661 if (mm->tlb_flush_batched) {
662 flush_tlb_mm(mm);
663
664 /*
665 * Do not allow the compiler to re-order the clearing of
666 * tlb_flush_batched before the tlb is flushed.
667 */
668 barrier();
669 mm->tlb_flush_batched = false;
670 }
671}
72b252ae 672#else
c7ab0d2f 673static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
674{
675}
676
677static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
678{
679 return false;
680}
681#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
682
1da177e4 683/*
bf89c8c8 684 * At what user virtual address is page expected in vma?
ab941e0f 685 * Caller should check the page is actually part of the vma.
1da177e4
LT
686 */
687unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
688{
86c2ad19 689 unsigned long address;
21d0d443 690 if (PageAnon(page)) {
4829b906
HD
691 struct anon_vma *page__anon_vma = page_anon_vma(page);
692 /*
693 * Note: swapoff's unuse_vma() is more efficient with this
694 * check, and needs it to match anon_vma when KSM is active.
695 */
696 if (!vma->anon_vma || !page__anon_vma ||
697 vma->anon_vma->root != page__anon_vma->root)
21d0d443 698 return -EFAULT;
27ba0644
KS
699 } else if (page->mapping) {
700 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
701 return -EFAULT;
702 } else
703 return -EFAULT;
86c2ad19
ML
704 address = __vma_address(page, vma);
705 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
706 return -EFAULT;
707 return address;
1da177e4
LT
708}
709
6219049a
BL
710pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
711{
712 pgd_t *pgd;
c2febafc 713 p4d_t *p4d;
6219049a
BL
714 pud_t *pud;
715 pmd_t *pmd = NULL;
f72e7dcd 716 pmd_t pmde;
6219049a
BL
717
718 pgd = pgd_offset(mm, address);
719 if (!pgd_present(*pgd))
720 goto out;
721
c2febafc
KS
722 p4d = p4d_offset(pgd, address);
723 if (!p4d_present(*p4d))
724 goto out;
725
726 pud = pud_offset(p4d, address);
6219049a
BL
727 if (!pud_present(*pud))
728 goto out;
729
730 pmd = pmd_offset(pud, address);
f72e7dcd 731 /*
8809aa2d 732 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
733 * without holding anon_vma lock for write. So when looking for a
734 * genuine pmde (in which to find pte), test present and !THP together.
735 */
e37c6982
CB
736 pmde = *pmd;
737 barrier();
f72e7dcd 738 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
739 pmd = NULL;
740out:
741 return pmd;
742}
743
8749cfea
VD
744struct page_referenced_arg {
745 int mapcount;
746 int referenced;
747 unsigned long vm_flags;
748 struct mem_cgroup *memcg;
749};
750/*
751 * arg: page_referenced_arg will be passed
752 */
e4b82222 753static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
8749cfea
VD
754 unsigned long address, void *arg)
755{
8749cfea 756 struct page_referenced_arg *pra = arg;
8eaedede
KS
757 struct page_vma_mapped_walk pvmw = {
758 .page = page,
759 .vma = vma,
760 .address = address,
761 };
8749cfea
VD
762 int referenced = 0;
763
8eaedede
KS
764 while (page_vma_mapped_walk(&pvmw)) {
765 address = pvmw.address;
b20ce5e0 766
8eaedede
KS
767 if (vma->vm_flags & VM_LOCKED) {
768 page_vma_mapped_walk_done(&pvmw);
769 pra->vm_flags |= VM_LOCKED;
e4b82222 770 return false; /* To break the loop */
8eaedede 771 }
71e3aac0 772
8eaedede
KS
773 if (pvmw.pte) {
774 if (ptep_clear_flush_young_notify(vma, address,
775 pvmw.pte)) {
776 /*
777 * Don't treat a reference through
778 * a sequentially read mapping as such.
779 * If the page has been used in another mapping,
780 * we will catch it; if this other mapping is
781 * already gone, the unmap path will have set
782 * PG_referenced or activated the page.
783 */
784 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
785 referenced++;
786 }
787 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
788 if (pmdp_clear_flush_young_notify(vma, address,
789 pvmw.pmd))
8749cfea 790 referenced++;
8eaedede
KS
791 } else {
792 /* unexpected pmd-mapped page? */
793 WARN_ON_ONCE(1);
8749cfea 794 }
8eaedede
KS
795
796 pra->mapcount--;
b20ce5e0 797 }
b20ce5e0 798
33c3fc71
VD
799 if (referenced)
800 clear_page_idle(page);
801 if (test_and_clear_page_young(page))
802 referenced++;
803
9f32624b
JK
804 if (referenced) {
805 pra->referenced++;
806 pra->vm_flags |= vma->vm_flags;
1da177e4 807 }
34bbd704 808
9f32624b 809 if (!pra->mapcount)
e4b82222 810 return false; /* To break the loop */
9f32624b 811
e4b82222 812 return true;
1da177e4
LT
813}
814
9f32624b 815static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 816{
9f32624b
JK
817 struct page_referenced_arg *pra = arg;
818 struct mem_cgroup *memcg = pra->memcg;
1da177e4 819
9f32624b
JK
820 if (!mm_match_cgroup(vma->vm_mm, memcg))
821 return true;
1da177e4 822
9f32624b 823 return false;
1da177e4
LT
824}
825
826/**
827 * page_referenced - test if the page was referenced
828 * @page: the page to test
829 * @is_locked: caller holds lock on the page
72835c86 830 * @memcg: target memory cgroup
6fe6b7e3 831 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
832 *
833 * Quick test_and_clear_referenced for all mappings to a page,
834 * returns the number of ptes which referenced the page.
835 */
6fe6b7e3
WF
836int page_referenced(struct page *page,
837 int is_locked,
72835c86 838 struct mem_cgroup *memcg,
6fe6b7e3 839 unsigned long *vm_flags)
1da177e4 840{
5ad64688 841 int we_locked = 0;
9f32624b 842 struct page_referenced_arg pra = {
b20ce5e0 843 .mapcount = total_mapcount(page),
9f32624b
JK
844 .memcg = memcg,
845 };
846 struct rmap_walk_control rwc = {
847 .rmap_one = page_referenced_one,
848 .arg = (void *)&pra,
849 .anon_lock = page_lock_anon_vma_read,
850 };
1da177e4 851
6fe6b7e3 852 *vm_flags = 0;
9f32624b
JK
853 if (!page_mapped(page))
854 return 0;
855
856 if (!page_rmapping(page))
857 return 0;
858
859 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
860 we_locked = trylock_page(page);
861 if (!we_locked)
862 return 1;
1da177e4 863 }
9f32624b
JK
864
865 /*
866 * If we are reclaiming on behalf of a cgroup, skip
867 * counting on behalf of references from different
868 * cgroups
869 */
870 if (memcg) {
871 rwc.invalid_vma = invalid_page_referenced_vma;
872 }
873
c24f386c 874 rmap_walk(page, &rwc);
9f32624b
JK
875 *vm_flags = pra.vm_flags;
876
877 if (we_locked)
878 unlock_page(page);
879
880 return pra.referenced;
1da177e4
LT
881}
882
e4b82222 883static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 884 unsigned long address, void *arg)
d08b3851 885{
f27176cf
KS
886 struct page_vma_mapped_walk pvmw = {
887 .page = page,
888 .vma = vma,
889 .address = address,
890 .flags = PVMW_SYNC,
891 };
369ea824 892 unsigned long start = address, end;
9853a407 893 int *cleaned = arg;
d08b3851 894
369ea824
JG
895 /*
896 * We have to assume the worse case ie pmd for invalidation. Note that
897 * the page can not be free from this function.
898 */
899 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
900 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
901
f27176cf 902 while (page_vma_mapped_walk(&pvmw)) {
cdb07bde 903 unsigned long cstart;
f27176cf 904 int ret = 0;
369ea824
JG
905
906 cstart = address = pvmw.address;
f27176cf
KS
907 if (pvmw.pte) {
908 pte_t entry;
909 pte_t *pte = pvmw.pte;
910
911 if (!pte_dirty(*pte) && !pte_write(*pte))
912 continue;
913
785373b4
LT
914 flush_cache_page(vma, address, pte_pfn(*pte));
915 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
916 entry = pte_wrprotect(entry);
917 entry = pte_mkclean(entry);
785373b4 918 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
919 ret = 1;
920 } else {
921#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
922 pmd_t *pmd = pvmw.pmd;
923 pmd_t entry;
924
925 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
926 continue;
927
785373b4
LT
928 flush_cache_page(vma, address, page_to_pfn(page));
929 entry = pmdp_huge_clear_flush(vma, address, pmd);
f27176cf
KS
930 entry = pmd_wrprotect(entry);
931 entry = pmd_mkclean(entry);
785373b4 932 set_pmd_at(vma->vm_mm, address, pmd, entry);
369ea824 933 cstart &= PMD_MASK;
f27176cf
KS
934 ret = 1;
935#else
936 /* unexpected pmd-mapped page? */
937 WARN_ON_ONCE(1);
938#endif
939 }
d08b3851 940
0f10851e
JG
941 /*
942 * No need to call mmu_notifier_invalidate_range() as we are
943 * downgrading page table protection not changing it to point
944 * to a new page.
945 *
946 * See Documentation/vm/mmu_notifier.txt
947 */
948 if (ret)
f27176cf 949 (*cleaned)++;
c2fda5fe 950 }
d08b3851 951
369ea824
JG
952 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
953
e4b82222 954 return true;
d08b3851
PZ
955}
956
9853a407 957static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 958{
9853a407 959 if (vma->vm_flags & VM_SHARED)
871beb8c 960 return false;
d08b3851 961
871beb8c 962 return true;
d08b3851
PZ
963}
964
965int page_mkclean(struct page *page)
966{
9853a407
JK
967 int cleaned = 0;
968 struct address_space *mapping;
969 struct rmap_walk_control rwc = {
970 .arg = (void *)&cleaned,
971 .rmap_one = page_mkclean_one,
972 .invalid_vma = invalid_mkclean_vma,
973 };
d08b3851
PZ
974
975 BUG_ON(!PageLocked(page));
976
9853a407
JK
977 if (!page_mapped(page))
978 return 0;
979
980 mapping = page_mapping(page);
981 if (!mapping)
982 return 0;
983
984 rmap_walk(page, &rwc);
d08b3851 985
9853a407 986 return cleaned;
d08b3851 987}
60b59bea 988EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 989
c44b6743
RR
990/**
991 * page_move_anon_rmap - move a page to our anon_vma
992 * @page: the page to move to our anon_vma
993 * @vma: the vma the page belongs to
c44b6743
RR
994 *
995 * When a page belongs exclusively to one process after a COW event,
996 * that page can be moved into the anon_vma that belongs to just that
997 * process, so the rmap code will not search the parent or sibling
998 * processes.
999 */
5a49973d 1000void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1001{
1002 struct anon_vma *anon_vma = vma->anon_vma;
1003
5a49973d
HD
1004 page = compound_head(page);
1005
309381fe 1006 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1007 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1008
1009 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1010 /*
1011 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1012 * simultaneously, so a concurrent reader (eg page_referenced()'s
1013 * PageAnon()) will not see one without the other.
1014 */
1015 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1016}
1017
9617d95e 1018/**
4e1c1975
AK
1019 * __page_set_anon_rmap - set up new anonymous rmap
1020 * @page: Page to add to rmap
1021 * @vma: VM area to add page to.
1022 * @address: User virtual address of the mapping
e8a03feb 1023 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1024 */
1025static void __page_set_anon_rmap(struct page *page,
e8a03feb 1026 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1027{
e8a03feb 1028 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1029
e8a03feb 1030 BUG_ON(!anon_vma);
ea90002b 1031
4e1c1975
AK
1032 if (PageAnon(page))
1033 return;
1034
ea90002b 1035 /*
e8a03feb
RR
1036 * If the page isn't exclusively mapped into this vma,
1037 * we must use the _oldest_ possible anon_vma for the
1038 * page mapping!
ea90002b 1039 */
4e1c1975 1040 if (!exclusive)
288468c3 1041 anon_vma = anon_vma->root;
9617d95e 1042
9617d95e
NP
1043 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1044 page->mapping = (struct address_space *) anon_vma;
9617d95e 1045 page->index = linear_page_index(vma, address);
9617d95e
NP
1046}
1047
c97a9e10 1048/**
43d8eac4 1049 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1050 * @page: the page to add the mapping to
1051 * @vma: the vm area in which the mapping is added
1052 * @address: the user virtual address mapped
1053 */
1054static void __page_check_anon_rmap(struct page *page,
1055 struct vm_area_struct *vma, unsigned long address)
1056{
1057#ifdef CONFIG_DEBUG_VM
1058 /*
1059 * The page's anon-rmap details (mapping and index) are guaranteed to
1060 * be set up correctly at this point.
1061 *
1062 * We have exclusion against page_add_anon_rmap because the caller
1063 * always holds the page locked, except if called from page_dup_rmap,
1064 * in which case the page is already known to be setup.
1065 *
1066 * We have exclusion against page_add_new_anon_rmap because those pages
1067 * are initially only visible via the pagetables, and the pte is locked
1068 * over the call to page_add_new_anon_rmap.
1069 */
44ab57a0 1070 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
53f9263b 1071 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
c97a9e10
NP
1072#endif
1073}
1074
1da177e4
LT
1075/**
1076 * page_add_anon_rmap - add pte mapping to an anonymous page
1077 * @page: the page to add the mapping to
1078 * @vma: the vm area in which the mapping is added
1079 * @address: the user virtual address mapped
d281ee61 1080 * @compound: charge the page as compound or small page
1da177e4 1081 *
5ad64688 1082 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1083 * the anon_vma case: to serialize mapping,index checking after setting,
1084 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1085 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1086 */
1087void page_add_anon_rmap(struct page *page,
d281ee61 1088 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1089{
d281ee61 1090 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1091}
1092
1093/*
1094 * Special version of the above for do_swap_page, which often runs
1095 * into pages that are exclusively owned by the current process.
1096 * Everybody else should continue to use page_add_anon_rmap above.
1097 */
1098void do_page_add_anon_rmap(struct page *page,
d281ee61 1099 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1100{
53f9263b
KS
1101 bool compound = flags & RMAP_COMPOUND;
1102 bool first;
1103
e9b61f19
KS
1104 if (compound) {
1105 atomic_t *mapcount;
53f9263b 1106 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1107 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1108 mapcount = compound_mapcount_ptr(page);
1109 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1110 } else {
1111 first = atomic_inc_and_test(&page->_mapcount);
1112 }
1113
79134171 1114 if (first) {
d281ee61 1115 int nr = compound ? hpage_nr_pages(page) : 1;
bea04b07
JZ
1116 /*
1117 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1118 * these counters are not modified in interrupt context, and
1119 * pte lock(a spinlock) is held, which implies preemption
1120 * disabled.
1121 */
65c45377 1122 if (compound)
11fb9989 1123 __inc_node_page_state(page, NR_ANON_THPS);
4b9d0fab 1124 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
79134171 1125 }
5ad64688
HD
1126 if (unlikely(PageKsm(page)))
1127 return;
1128
309381fe 1129 VM_BUG_ON_PAGE(!PageLocked(page), page);
53f9263b 1130
5dbe0af4 1131 /* address might be in next vma when migration races vma_adjust */
5ad64688 1132 if (first)
d281ee61
KS
1133 __page_set_anon_rmap(page, vma, address,
1134 flags & RMAP_EXCLUSIVE);
69029cd5 1135 else
c97a9e10 1136 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1137}
1138
43d8eac4 1139/**
9617d95e
NP
1140 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1141 * @page: the page to add the mapping to
1142 * @vma: the vm area in which the mapping is added
1143 * @address: the user virtual address mapped
d281ee61 1144 * @compound: charge the page as compound or small page
9617d95e
NP
1145 *
1146 * Same as page_add_anon_rmap but must only be called on *new* pages.
1147 * This means the inc-and-test can be bypassed.
c97a9e10 1148 * Page does not have to be locked.
9617d95e
NP
1149 */
1150void page_add_new_anon_rmap(struct page *page,
d281ee61 1151 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1152{
d281ee61
KS
1153 int nr = compound ? hpage_nr_pages(page) : 1;
1154
81d1b09c 1155 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1156 __SetPageSwapBacked(page);
d281ee61
KS
1157 if (compound) {
1158 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1159 /* increment count (starts at -1) */
1160 atomic_set(compound_mapcount_ptr(page), 0);
11fb9989 1161 __inc_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1162 } else {
1163 /* Anon THP always mapped first with PMD */
1164 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1165 /* increment count (starts at -1) */
1166 atomic_set(&page->_mapcount, 0);
d281ee61 1167 }
4b9d0fab 1168 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
e8a03feb 1169 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1170}
1171
1da177e4
LT
1172/**
1173 * page_add_file_rmap - add pte mapping to a file page
1174 * @page: the page to add the mapping to
1175 *
b8072f09 1176 * The caller needs to hold the pte lock.
1da177e4 1177 */
dd78fedd 1178void page_add_file_rmap(struct page *page, bool compound)
1da177e4 1179{
dd78fedd
KS
1180 int i, nr = 1;
1181
1182 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1183 lock_page_memcg(page);
dd78fedd
KS
1184 if (compound && PageTransHuge(page)) {
1185 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1186 if (atomic_inc_and_test(&page[i]._mapcount))
1187 nr++;
1188 }
1189 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1190 goto out;
65c45377 1191 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
11fb9989 1192 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
dd78fedd 1193 } else {
c8efc390
KS
1194 if (PageTransCompound(page) && page_mapping(page)) {
1195 VM_WARN_ON_ONCE(!PageLocked(page));
1196
9a73f61b
KS
1197 SetPageDoubleMap(compound_head(page));
1198 if (PageMlocked(page))
1199 clear_page_mlock(compound_head(page));
1200 }
dd78fedd
KS
1201 if (!atomic_inc_and_test(&page->_mapcount))
1202 goto out;
d69b042f 1203 }
00f3ca2c 1204 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
dd78fedd 1205out:
62cccb8c 1206 unlock_page_memcg(page);
1da177e4
LT
1207}
1208
dd78fedd 1209static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1210{
dd78fedd
KS
1211 int i, nr = 1;
1212
57dea93a 1213 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
62cccb8c 1214 lock_page_memcg(page);
8186eb6a 1215
53f9263b
KS
1216 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1217 if (unlikely(PageHuge(page))) {
1218 /* hugetlb pages are always mapped with pmds */
1219 atomic_dec(compound_mapcount_ptr(page));
8186eb6a 1220 goto out;
53f9263b 1221 }
8186eb6a 1222
53f9263b 1223 /* page still mapped by someone else? */
dd78fedd
KS
1224 if (compound && PageTransHuge(page)) {
1225 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1226 if (atomic_add_negative(-1, &page[i]._mapcount))
1227 nr++;
1228 }
1229 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1230 goto out;
65c45377 1231 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
11fb9989 1232 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
dd78fedd
KS
1233 } else {
1234 if (!atomic_add_negative(-1, &page->_mapcount))
1235 goto out;
1236 }
8186eb6a
JW
1237
1238 /*
00f3ca2c 1239 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
8186eb6a
JW
1240 * these counters are not modified in interrupt context, and
1241 * pte lock(a spinlock) is held, which implies preemption disabled.
1242 */
00f3ca2c 1243 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1244
1245 if (unlikely(PageMlocked(page)))
1246 clear_page_mlock(page);
1247out:
62cccb8c 1248 unlock_page_memcg(page);
8186eb6a
JW
1249}
1250
53f9263b
KS
1251static void page_remove_anon_compound_rmap(struct page *page)
1252{
1253 int i, nr;
1254
1255 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1256 return;
1257
1258 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1259 if (unlikely(PageHuge(page)))
1260 return;
1261
1262 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1263 return;
1264
11fb9989 1265 __dec_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1266
1267 if (TestClearPageDoubleMap(page)) {
1268 /*
1269 * Subpages can be mapped with PTEs too. Check how many of
1270 * themi are still mapped.
1271 */
1272 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1273 if (atomic_add_negative(-1, &page[i]._mapcount))
1274 nr++;
1275 }
1276 } else {
1277 nr = HPAGE_PMD_NR;
1278 }
1279
e90309c9
KS
1280 if (unlikely(PageMlocked(page)))
1281 clear_page_mlock(page);
1282
9a982250 1283 if (nr) {
4b9d0fab 1284 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
9a982250
KS
1285 deferred_split_huge_page(page);
1286 }
53f9263b
KS
1287}
1288
1da177e4
LT
1289/**
1290 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1291 * @page: page to remove mapping from
1292 * @compound: uncharge the page as compound or small page
1da177e4 1293 *
b8072f09 1294 * The caller needs to hold the pte lock.
1da177e4 1295 */
d281ee61 1296void page_remove_rmap(struct page *page, bool compound)
1da177e4 1297{
dd78fedd
KS
1298 if (!PageAnon(page))
1299 return page_remove_file_rmap(page, compound);
89c06bd5 1300
53f9263b
KS
1301 if (compound)
1302 return page_remove_anon_compound_rmap(page);
1303
b904dcfe
KM
1304 /* page still mapped by someone else? */
1305 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1306 return;
1307
0fe6e20b 1308 /*
bea04b07
JZ
1309 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1310 * these counters are not modified in interrupt context, and
bea04b07 1311 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1312 */
4b9d0fab 1313 __dec_node_page_state(page, NR_ANON_MAPPED);
8186eb6a 1314
e6c509f8
HD
1315 if (unlikely(PageMlocked(page)))
1316 clear_page_mlock(page);
8186eb6a 1317
9a982250
KS
1318 if (PageTransCompound(page))
1319 deferred_split_huge_page(compound_head(page));
1320
b904dcfe
KM
1321 /*
1322 * It would be tidy to reset the PageAnon mapping here,
1323 * but that might overwrite a racing page_add_anon_rmap
1324 * which increments mapcount after us but sets mapping
2d4894b5 1325 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1326 * and remember that it's only reliable while mapped.
1327 * Leaving it set also helps swapoff to reinstate ptes
1328 * faster for those pages still in swapcache.
1329 */
1da177e4
LT
1330}
1331
1332/*
52629506 1333 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1334 */
e4b82222 1335static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1336 unsigned long address, void *arg)
1da177e4
LT
1337{
1338 struct mm_struct *mm = vma->vm_mm;
c7ab0d2f
KS
1339 struct page_vma_mapped_walk pvmw = {
1340 .page = page,
1341 .vma = vma,
1342 .address = address,
1343 };
1da177e4 1344 pte_t pteval;
c7ab0d2f 1345 struct page *subpage;
785373b4 1346 bool ret = true;
369ea824 1347 unsigned long start = address, end;
802a3a92 1348 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1349
b87537d9
HD
1350 /* munlock has nothing to gain from examining un-locked vmas */
1351 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
e4b82222 1352 return true;
b87537d9 1353
a5430dda
JG
1354 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1355 is_zone_device_page(page) && !is_device_private_page(page))
1356 return true;
1357
fec89c10
KS
1358 if (flags & TTU_SPLIT_HUGE_PMD) {
1359 split_huge_pmd_address(vma, address,
b5ff8161 1360 flags & TTU_SPLIT_FREEZE, page);
fec89c10
KS
1361 }
1362
369ea824 1363 /*
162aed49
MK
1364 * For THP, we have to assume the worse case ie pmd for invalidation.
1365 * For hugetlb, it could be much worse if we need to do pud
1366 * invalidation in the case of pmd sharing.
1367 *
1368 * Note that the page can not be free in this function as call of
1369 * try_to_unmap() must hold a reference on the page.
369ea824
JG
1370 */
1371 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
162aed49
MK
1372 if (PageHuge(page)) {
1373 /*
1374 * If sharing is possible, start and end will be adjusted
1375 * accordingly.
1376 */
1377 adjust_range_if_pmd_sharing_possible(vma, &start, &end);
1378 }
369ea824
JG
1379 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
1380
c7ab0d2f 1381 while (page_vma_mapped_walk(&pvmw)) {
616b8371
ZY
1382#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1383 /* PMD-mapped THP migration entry */
1384 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1385 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1386
1387 if (!PageAnon(page))
1388 continue;
1389
1390 set_pmd_migration_entry(&pvmw, page);
1391 continue;
1392 }
1393#endif
1394
c7ab0d2f
KS
1395 /*
1396 * If the page is mlock()d, we cannot swap it out.
1397 * If it's recently referenced (perhaps page_referenced
1398 * skipped over this mm) then we should reactivate it.
1399 */
1400 if (!(flags & TTU_IGNORE_MLOCK)) {
1401 if (vma->vm_flags & VM_LOCKED) {
1402 /* PTE-mapped THP are never mlocked */
1403 if (!PageTransCompound(page)) {
1404 /*
1405 * Holding pte lock, we do *not* need
1406 * mmap_sem here
1407 */
1408 mlock_vma_page(page);
1409 }
e4b82222 1410 ret = false;
c7ab0d2f
KS
1411 page_vma_mapped_walk_done(&pvmw);
1412 break;
9a73f61b 1413 }
c7ab0d2f
KS
1414 if (flags & TTU_MUNLOCK)
1415 continue;
b87537d9 1416 }
c7ab0d2f 1417
8346242a
KS
1418 /* Unexpected PMD-mapped THP? */
1419 VM_BUG_ON_PAGE(!pvmw.pte, page);
1420
1421 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
785373b4
LT
1422 address = pvmw.address;
1423
162aed49
MK
1424 if (PageHuge(page)) {
1425 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1426 /*
1427 * huge_pmd_unshare unmapped an entire PMD
1428 * page. There is no way of knowing exactly
1429 * which PMDs may be cached for this mm, so
1430 * we must flush them all. start/end were
1431 * already adjusted above to cover this range.
1432 */
1433 flush_cache_range(vma, start, end);
1434 flush_tlb_range(vma, start, end);
1435 mmu_notifier_invalidate_range(mm, start, end);
1436
1437 /*
1438 * The ref count of the PMD page was dropped
1439 * which is part of the way map counting
1440 * is done for shared PMDs. Return 'true'
1441 * here. When there is no other sharing,
1442 * huge_pmd_unshare returns false and we will
1443 * unmap the actual page and drop map count
1444 * to zero.
1445 */
1446 page_vma_mapped_walk_done(&pvmw);
1447 break;
1448 }
1449 }
8346242a 1450
a5430dda
JG
1451 if (IS_ENABLED(CONFIG_MIGRATION) &&
1452 (flags & TTU_MIGRATION) &&
1453 is_zone_device_page(page)) {
1454 swp_entry_t entry;
1455 pte_t swp_pte;
1456
1457 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1458
1459 /*
1460 * Store the pfn of the page in a special migration
1461 * pte. do_swap_page() will wait until the migration
1462 * pte is removed and then restart fault handling.
1463 */
1464 entry = make_migration_entry(page, 0);
1465 swp_pte = swp_entry_to_pte(entry);
1466 if (pte_soft_dirty(pteval))
1467 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1468 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
0f10851e
JG
1469 /*
1470 * No need to invalidate here it will synchronize on
1471 * against the special swap migration pte.
7f838402
RC
1472 *
1473 * The assignment to subpage above was computed from a
1474 * swap PTE which results in an invalid pointer.
1475 * Since only PAGE_SIZE pages can currently be
1476 * migrated, just set it to page. This will need to be
1477 * changed when hugepage migrations to device private
1478 * memory are supported.
0f10851e 1479 */
7f838402 1480 subpage = page;
a5430dda
JG
1481 goto discard;
1482 }
1483
c7ab0d2f 1484 if (!(flags & TTU_IGNORE_ACCESS)) {
785373b4 1485 if (ptep_clear_flush_young_notify(vma, address,
c7ab0d2f 1486 pvmw.pte)) {
e4b82222 1487 ret = false;
c7ab0d2f
KS
1488 page_vma_mapped_walk_done(&pvmw);
1489 break;
1490 }
b291f000 1491 }
1da177e4 1492
c7ab0d2f 1493 /* Nuke the page table entry. */
785373b4 1494 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f
KS
1495 if (should_defer_flush(mm, flags)) {
1496 /*
1497 * We clear the PTE but do not flush so potentially
1498 * a remote CPU could still be writing to the page.
1499 * If the entry was previously clean then the
1500 * architecture must guarantee that a clear->dirty
1501 * transition on a cached TLB entry is written through
1502 * and traps if the PTE is unmapped.
1503 */
785373b4 1504 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f
KS
1505
1506 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1507 } else {
785373b4 1508 pteval = ptep_clear_flush(vma, address, pvmw.pte);
c7ab0d2f 1509 }
72b252ae 1510
c7ab0d2f
KS
1511 /* Move the dirty bit to the page. Now the pte is gone. */
1512 if (pte_dirty(pteval))
1513 set_page_dirty(page);
1da177e4 1514
c7ab0d2f
KS
1515 /* Update high watermark before we lower rss */
1516 update_hiwater_rss(mm);
1da177e4 1517
c7ab0d2f 1518 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1519 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
c7ab0d2f
KS
1520 if (PageHuge(page)) {
1521 int nr = 1 << compound_order(page);
1522 hugetlb_count_sub(nr, mm);
785373b4 1523 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1524 pvmw.pte, pteval,
1525 vma_mmu_pagesize(vma));
c7ab0d2f
KS
1526 } else {
1527 dec_mm_counter(mm, mm_counter(page));
785373b4 1528 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1529 }
365e9c87 1530
b38228fb 1531 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1532 /*
1533 * The guest indicated that the page content is of no
1534 * interest anymore. Simply discard the pte, vmscan
1535 * will take care of the rest.
b38228fb
CB
1536 * A future reference will then fault in a new zero
1537 * page. When userfaultfd is active, we must not drop
1538 * this page though, as its main user (postcopy
1539 * migration) will not expect userfaults on already
1540 * copied pages.
c7ab0d2f 1541 */
eca56ff9 1542 dec_mm_counter(mm, mm_counter(page));
0f10851e
JG
1543 /* We have to invalidate as we cleared the pte */
1544 mmu_notifier_invalidate_range(mm, address,
1545 address + PAGE_SIZE);
c7ab0d2f 1546 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
b5ff8161 1547 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
c7ab0d2f
KS
1548 swp_entry_t entry;
1549 pte_t swp_pte;
1550 /*
1551 * Store the pfn of the page in a special migration
1552 * pte. do_swap_page() will wait until the migration
1553 * pte is removed and then restart fault handling.
1554 */
1555 entry = make_migration_entry(subpage,
1556 pte_write(pteval));
1557 swp_pte = swp_entry_to_pte(entry);
1558 if (pte_soft_dirty(pteval))
1559 swp_pte = pte_swp_mksoft_dirty(swp_pte);
785373b4 1560 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1561 /*
1562 * No need to invalidate here it will synchronize on
1563 * against the special swap migration pte.
1564 */
c7ab0d2f
KS
1565 } else if (PageAnon(page)) {
1566 swp_entry_t entry = { .val = page_private(subpage) };
1567 pte_t swp_pte;
1568 /*
1569 * Store the swap location in the pte.
1570 * See handle_pte_fault() ...
1571 */
eb94a878
MK
1572 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1573 WARN_ON_ONCE(1);
83612a94 1574 ret = false;
369ea824 1575 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1576 mmu_notifier_invalidate_range(mm, address,
1577 address + PAGE_SIZE);
eb94a878
MK
1578 page_vma_mapped_walk_done(&pvmw);
1579 break;
1580 }
c7ab0d2f 1581
802a3a92
SL
1582 /* MADV_FREE page check */
1583 if (!PageSwapBacked(page)) {
1584 if (!PageDirty(page)) {
0f10851e
JG
1585 /* Invalidate as we cleared the pte */
1586 mmu_notifier_invalidate_range(mm,
1587 address, address + PAGE_SIZE);
802a3a92
SL
1588 dec_mm_counter(mm, MM_ANONPAGES);
1589 goto discard;
1590 }
1591
1592 /*
1593 * If the page was redirtied, it cannot be
1594 * discarded. Remap the page to page table.
1595 */
785373b4 1596 set_pte_at(mm, address, pvmw.pte, pteval);
18863d3a 1597 SetPageSwapBacked(page);
e4b82222 1598 ret = false;
802a3a92
SL
1599 page_vma_mapped_walk_done(&pvmw);
1600 break;
c7ab0d2f 1601 }
854e9ed0 1602
c7ab0d2f 1603 if (swap_duplicate(entry) < 0) {
785373b4 1604 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1605 ret = false;
c7ab0d2f
KS
1606 page_vma_mapped_walk_done(&pvmw);
1607 break;
1608 }
1609 if (list_empty(&mm->mmlist)) {
1610 spin_lock(&mmlist_lock);
1611 if (list_empty(&mm->mmlist))
1612 list_add(&mm->mmlist, &init_mm.mmlist);
1613 spin_unlock(&mmlist_lock);
1614 }
854e9ed0 1615 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1616 inc_mm_counter(mm, MM_SWAPENTS);
1617 swp_pte = swp_entry_to_pte(entry);
1618 if (pte_soft_dirty(pteval))
1619 swp_pte = pte_swp_mksoft_dirty(swp_pte);
785373b4 1620 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1621 /* Invalidate as we cleared the pte */
1622 mmu_notifier_invalidate_range(mm, address,
1623 address + PAGE_SIZE);
1624 } else {
1625 /*
1626 * We should not need to notify here as we reach this
1627 * case only from freeze_page() itself only call from
1628 * split_huge_page_to_list() so everything below must
1629 * be true:
1630 * - page is not anonymous
1631 * - page is locked
1632 *
1633 * So as it is a locked file back page thus it can not
1634 * be remove from the page cache and replace by a new
1635 * page before mmu_notifier_invalidate_range_end so no
1636 * concurrent thread might update its page table to
1637 * point at new page while a device still is using this
1638 * page.
1639 *
1640 * See Documentation/vm/mmu_notifier.txt
1641 */
c7ab0d2f 1642 dec_mm_counter(mm, mm_counter_file(page));
0f10851e 1643 }
854e9ed0 1644discard:
0f10851e
JG
1645 /*
1646 * No need to call mmu_notifier_invalidate_range() it has be
1647 * done above for all cases requiring it to happen under page
1648 * table lock before mmu_notifier_invalidate_range_end()
1649 *
1650 * See Documentation/vm/mmu_notifier.txt
1651 */
c7ab0d2f
KS
1652 page_remove_rmap(subpage, PageHuge(page));
1653 put_page(page);
c7ab0d2f 1654 }
369ea824
JG
1655
1656 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
1657
caed0f48 1658 return ret;
1da177e4
LT
1659}
1660
71e3aac0 1661bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1662{
1663 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1664
1665 if (!maybe_stack)
1666 return false;
1667
1668 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1669 VM_STACK_INCOMPLETE_SETUP)
1670 return true;
1671
1672 return false;
1673}
1674
52629506
JK
1675static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1676{
1677 return is_vma_temporary_stack(vma);
1678}
1679
2a52bcbc 1680static int page_mapcount_is_zero(struct page *page)
52629506 1681{
c7ab0d2f 1682 return !total_mapcount(page);
2a52bcbc 1683}
52629506 1684
1da177e4
LT
1685/**
1686 * try_to_unmap - try to remove all page table mappings to a page
1687 * @page: the page to get unmapped
14fa31b8 1688 * @flags: action and flags
1da177e4
LT
1689 *
1690 * Tries to remove all the page table entries which are mapping this
1691 * page, used in the pageout path. Caller must hold the page lock.
1da177e4 1692 *
666e5a40 1693 * If unmap is successful, return true. Otherwise, false.
1da177e4 1694 */
666e5a40 1695bool try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4 1696{
52629506
JK
1697 struct rmap_walk_control rwc = {
1698 .rmap_one = try_to_unmap_one,
802a3a92 1699 .arg = (void *)flags,
2a52bcbc 1700 .done = page_mapcount_is_zero,
52629506
JK
1701 .anon_lock = page_lock_anon_vma_read,
1702 };
1da177e4 1703
52629506
JK
1704 /*
1705 * During exec, a temporary VMA is setup and later moved.
1706 * The VMA is moved under the anon_vma lock but not the
1707 * page tables leading to a race where migration cannot
1708 * find the migration ptes. Rather than increasing the
1709 * locking requirements of exec(), migration skips
1710 * temporary VMAs until after exec() completes.
1711 */
b5ff8161
NH
1712 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1713 && !PageKsm(page) && PageAnon(page))
52629506
JK
1714 rwc.invalid_vma = invalid_migration_vma;
1715
2a52bcbc 1716 if (flags & TTU_RMAP_LOCKED)
33fc80e2 1717 rmap_walk_locked(page, &rwc);
2a52bcbc 1718 else
33fc80e2 1719 rmap_walk(page, &rwc);
52629506 1720
666e5a40 1721 return !page_mapcount(page) ? true : false;
1da177e4 1722}
81b4082d 1723
2a52bcbc
KS
1724static int page_not_mapped(struct page *page)
1725{
1726 return !page_mapped(page);
1727};
1728
b291f000
NP
1729/**
1730 * try_to_munlock - try to munlock a page
1731 * @page: the page to be munlocked
1732 *
1733 * Called from munlock code. Checks all of the VMAs mapping the page
1734 * to make sure nobody else has this page mlocked. The page will be
1735 * returned with PG_mlocked cleared if no other vmas have it mlocked.
b291f000 1736 */
854e9ed0 1737
192d7232
MK
1738void try_to_munlock(struct page *page)
1739{
e8351ac9
JK
1740 struct rmap_walk_control rwc = {
1741 .rmap_one = try_to_unmap_one,
802a3a92 1742 .arg = (void *)TTU_MUNLOCK,
e8351ac9 1743 .done = page_not_mapped,
e8351ac9
JK
1744 .anon_lock = page_lock_anon_vma_read,
1745
1746 };
1747
309381fe 1748 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
192d7232 1749 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
b291f000 1750
192d7232 1751 rmap_walk(page, &rwc);
b291f000 1752}
e9995ef9 1753
01d8b20d 1754void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1755{
01d8b20d 1756 struct anon_vma *root = anon_vma->root;
76545066 1757
624483f3 1758 anon_vma_free(anon_vma);
01d8b20d
PZ
1759 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1760 anon_vma_free(root);
76545066 1761}
76545066 1762
0dd1c7bb
JK
1763static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1764 struct rmap_walk_control *rwc)
faecd8dd
JK
1765{
1766 struct anon_vma *anon_vma;
1767
0dd1c7bb
JK
1768 if (rwc->anon_lock)
1769 return rwc->anon_lock(page);
1770
faecd8dd
JK
1771 /*
1772 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1773 * because that depends on page_mapped(); but not all its usages
1774 * are holding mmap_sem. Users without mmap_sem are required to
1775 * take a reference count to prevent the anon_vma disappearing
1776 */
1777 anon_vma = page_anon_vma(page);
1778 if (!anon_vma)
1779 return NULL;
1780
1781 anon_vma_lock_read(anon_vma);
1782 return anon_vma;
1783}
1784
e9995ef9 1785/*
e8351ac9
JK
1786 * rmap_walk_anon - do something to anonymous page using the object-based
1787 * rmap method
1788 * @page: the page to be handled
1789 * @rwc: control variable according to each walk type
1790 *
1791 * Find all the mappings of a page using the mapping pointer and the vma chains
1792 * contained in the anon_vma struct it points to.
1793 *
1794 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1795 * where the page was found will be held for write. So, we won't recheck
1796 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1797 * LOCKED.
e9995ef9 1798 */
1df631ae 1799static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
b9773199 1800 bool locked)
e9995ef9
HD
1801{
1802 struct anon_vma *anon_vma;
a8fa41ad 1803 pgoff_t pgoff_start, pgoff_end;
5beb4930 1804 struct anon_vma_chain *avc;
e9995ef9 1805
b9773199
KS
1806 if (locked) {
1807 anon_vma = page_anon_vma(page);
1808 /* anon_vma disappear under us? */
1809 VM_BUG_ON_PAGE(!anon_vma, page);
1810 } else {
1811 anon_vma = rmap_walk_anon_lock(page, rwc);
1812 }
e9995ef9 1813 if (!anon_vma)
1df631ae 1814 return;
faecd8dd 1815
a8fa41ad
KS
1816 pgoff_start = page_to_pgoff(page);
1817 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1818 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1819 pgoff_start, pgoff_end) {
5beb4930 1820 struct vm_area_struct *vma = avc->vma;
e9995ef9 1821 unsigned long address = vma_address(page, vma);
0dd1c7bb 1822
ad12695f
AA
1823 cond_resched();
1824
0dd1c7bb
JK
1825 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1826 continue;
1827
e4b82222 1828 if (!rwc->rmap_one(page, vma, address, rwc->arg))
e9995ef9 1829 break;
0dd1c7bb
JK
1830 if (rwc->done && rwc->done(page))
1831 break;
e9995ef9 1832 }
b9773199
KS
1833
1834 if (!locked)
1835 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1836}
1837
e8351ac9
JK
1838/*
1839 * rmap_walk_file - do something to file page using the object-based rmap method
1840 * @page: the page to be handled
1841 * @rwc: control variable according to each walk type
1842 *
1843 * Find all the mappings of a page using the mapping pointer and the vma chains
1844 * contained in the address_space struct it points to.
1845 *
1846 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1847 * where the page was found will be held for write. So, we won't recheck
1848 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1849 * LOCKED.
1850 */
1df631ae 1851static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
b9773199 1852 bool locked)
e9995ef9 1853{
b9773199 1854 struct address_space *mapping = page_mapping(page);
a8fa41ad 1855 pgoff_t pgoff_start, pgoff_end;
e9995ef9 1856 struct vm_area_struct *vma;
e9995ef9 1857
9f32624b
JK
1858 /*
1859 * The page lock not only makes sure that page->mapping cannot
1860 * suddenly be NULLified by truncation, it makes sure that the
1861 * structure at mapping cannot be freed and reused yet,
c8c06efa 1862 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1863 */
81d1b09c 1864 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1865
e9995ef9 1866 if (!mapping)
1df631ae 1867 return;
3dec0ba0 1868
a8fa41ad
KS
1869 pgoff_start = page_to_pgoff(page);
1870 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
b9773199
KS
1871 if (!locked)
1872 i_mmap_lock_read(mapping);
a8fa41ad
KS
1873 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1874 pgoff_start, pgoff_end) {
e9995ef9 1875 unsigned long address = vma_address(page, vma);
0dd1c7bb 1876
ad12695f
AA
1877 cond_resched();
1878
0dd1c7bb
JK
1879 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1880 continue;
1881
e4b82222 1882 if (!rwc->rmap_one(page, vma, address, rwc->arg))
0dd1c7bb
JK
1883 goto done;
1884 if (rwc->done && rwc->done(page))
1885 goto done;
e9995ef9 1886 }
0dd1c7bb 1887
0dd1c7bb 1888done:
b9773199
KS
1889 if (!locked)
1890 i_mmap_unlock_read(mapping);
e9995ef9
HD
1891}
1892
1df631ae 1893void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1894{
e9995ef9 1895 if (unlikely(PageKsm(page)))
1df631ae 1896 rmap_walk_ksm(page, rwc);
e9995ef9 1897 else if (PageAnon(page))
1df631ae 1898 rmap_walk_anon(page, rwc, false);
b9773199 1899 else
1df631ae 1900 rmap_walk_file(page, rwc, false);
b9773199
KS
1901}
1902
1903/* Like rmap_walk, but caller holds relevant rmap lock */
1df631ae 1904void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
b9773199
KS
1905{
1906 /* no ksm support for now */
1907 VM_BUG_ON_PAGE(PageKsm(page), page);
1908 if (PageAnon(page))
1df631ae 1909 rmap_walk_anon(page, rwc, true);
e9995ef9 1910 else
1df631ae 1911 rmap_walk_file(page, rwc, true);
e9995ef9 1912}
0fe6e20b 1913
e3390f67 1914#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1915/*
1916 * The following three functions are for anonymous (private mapped) hugepages.
1917 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1918 * and no lru code, because we handle hugepages differently from common pages.
1919 */
1920static void __hugepage_set_anon_rmap(struct page *page,
1921 struct vm_area_struct *vma, unsigned long address, int exclusive)
1922{
1923 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1924
0fe6e20b 1925 BUG_ON(!anon_vma);
433abed6
NH
1926
1927 if (PageAnon(page))
1928 return;
1929 if (!exclusive)
1930 anon_vma = anon_vma->root;
1931
0fe6e20b
NH
1932 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1933 page->mapping = (struct address_space *) anon_vma;
1934 page->index = linear_page_index(vma, address);
1935}
1936
1937void hugepage_add_anon_rmap(struct page *page,
1938 struct vm_area_struct *vma, unsigned long address)
1939{
1940 struct anon_vma *anon_vma = vma->anon_vma;
1941 int first;
a850ea30
NH
1942
1943 BUG_ON(!PageLocked(page));
0fe6e20b 1944 BUG_ON(!anon_vma);
5dbe0af4 1945 /* address might be in next vma when migration races vma_adjust */
53f9263b 1946 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b
NH
1947 if (first)
1948 __hugepage_set_anon_rmap(page, vma, address, 0);
1949}
1950
1951void hugepage_add_new_anon_rmap(struct page *page,
1952 struct vm_area_struct *vma, unsigned long address)
1953{
1954 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 1955 atomic_set(compound_mapcount_ptr(page), 0);
0fe6e20b
NH
1956 __hugepage_set_anon_rmap(page, vma, address, 1);
1957}
e3390f67 1958#endif /* CONFIG_HUGETLB_PAGE */