]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
nvme: fix eui_show() print format
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 147
4e4cbee9
CH
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
2a842aca
CH
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153};
154
155blk_status_t errno_to_blk_status(int errno)
156{
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165}
166EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168int blk_status_to_errno(blk_status_t status)
169{
170 int idx = (__force int)status;
171
34bd9c1c 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
173 return -EIO;
174 return blk_errors[idx].errno;
175}
176EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178static void print_req_error(struct request *req, blk_status_t status)
179{
180 int idx = (__force int)status;
181
34bd9c1c 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189}
190
5bb23a68 191static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 192 unsigned int nbytes, blk_status_t error)
1da177e4 193{
78d8e58a 194 if (error)
4e4cbee9 195 bio->bi_status = error;
797e7dbb 196
e8064021 197 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 198 bio_set_flag(bio, BIO_QUIET);
08bafc03 199
f79ea416 200 bio_advance(bio, nbytes);
7ba1ba12 201
143a87f4 202 /* don't actually finish bio if it's part of flush sequence */
e8064021 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 204 bio_endio(bio);
1da177e4 205}
1da177e4 206
1da177e4
LT
207void blk_dump_rq_flags(struct request *rq, char *msg)
208{
aebf526b
CH
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 211 (unsigned long long) rq->cmd_flags);
1da177e4 212
83096ebf
TH
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_dump_rq_flags);
220
3cca6dc1 221static void blk_delay_work(struct work_struct *work)
1da177e4 222{
3cca6dc1 223 struct request_queue *q;
1da177e4 224
3cca6dc1
JA
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
24ecfbe2 227 __blk_run_queue(q);
3cca6dc1 228 spin_unlock_irq(q->queue_lock);
1da177e4 229}
1da177e4
LT
230
231/**
3cca6dc1
JA
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
1da177e4
LT
235 *
236 * Description:
3cca6dc1
JA
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
2fff8a92 239 * restarted around the specified time.
3cca6dc1
JA
240 */
241void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 242{
2fff8a92 243 lockdep_assert_held(q->queue_lock);
332ebbf7 244 WARN_ON_ONCE(q->mq_ops);
2fff8a92 245
70460571
BVA
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
2ad8b1ef 249}
3cca6dc1 250EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 251
21491412
JA
252/**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261void blk_start_queue_async(struct request_queue *q)
262{
2fff8a92 263 lockdep_assert_held(q->queue_lock);
332ebbf7 264 WARN_ON_ONCE(q->mq_ops);
2fff8a92 265
21491412
JA
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268}
269EXPORT_SYMBOL(blk_start_queue_async);
270
1da177e4
LT
271/**
272 * blk_start_queue - restart a previously stopped queue
165125e1 273 * @q: The &struct request_queue in question
1da177e4
LT
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
2fff8a92 278 * entered. Also see blk_stop_queue().
1da177e4 279 **/
165125e1 280void blk_start_queue(struct request_queue *q)
1da177e4 281{
2fff8a92 282 lockdep_assert_held(q->queue_lock);
4ddd56b0 283 WARN_ON(!in_interrupt() && !irqs_disabled());
332ebbf7 284 WARN_ON_ONCE(q->mq_ops);
a038e253 285
75ad23bc 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 287 __blk_run_queue(q);
1da177e4 288}
1da177e4
LT
289EXPORT_SYMBOL(blk_start_queue);
290
291/**
292 * blk_stop_queue - stop a queue
165125e1 293 * @q: The &struct request_queue in question
1da177e4
LT
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 303 * blk_start_queue() to restart queue operations.
1da177e4 304 **/
165125e1 305void blk_stop_queue(struct request_queue *q)
1da177e4 306{
2fff8a92 307 lockdep_assert_held(q->queue_lock);
332ebbf7 308 WARN_ON_ONCE(q->mq_ops);
2fff8a92 309
136b5721 310 cancel_delayed_work(&q->delay_work);
75ad23bc 311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
312}
313EXPORT_SYMBOL(blk_stop_queue);
314
315/**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
59c51591 324 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
da527770 328 * This function does not cancel any asynchronous activity arising
da3dae54 329 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 330 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 331 *
1da177e4
LT
332 */
333void blk_sync_queue(struct request_queue *q)
334{
70ed28b9 335 del_timer_sync(&q->timeout);
4e9b6f20 336 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
21c6e939 342 queue_for_each_hw_ctx(q, hctx, i)
9f993737 343 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
344 } else {
345 cancel_delayed_work_sync(&q->delay_work);
346 }
1da177e4
LT
347}
348EXPORT_SYMBOL(blk_sync_queue);
349
c246e80d
BVA
350/**
351 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
352 * @q: The queue to run
353 *
354 * Description:
355 * Invoke request handling on a queue if there are any pending requests.
356 * May be used to restart request handling after a request has completed.
357 * This variant runs the queue whether or not the queue has been
358 * stopped. Must be called with the queue lock held and interrupts
359 * disabled. See also @blk_run_queue.
360 */
361inline void __blk_run_queue_uncond(struct request_queue *q)
362{
2fff8a92 363 lockdep_assert_held(q->queue_lock);
332ebbf7 364 WARN_ON_ONCE(q->mq_ops);
2fff8a92 365
c246e80d
BVA
366 if (unlikely(blk_queue_dead(q)))
367 return;
368
24faf6f6
BVA
369 /*
370 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
371 * the queue lock internally. As a result multiple threads may be
372 * running such a request function concurrently. Keep track of the
373 * number of active request_fn invocations such that blk_drain_queue()
374 * can wait until all these request_fn calls have finished.
375 */
376 q->request_fn_active++;
c246e80d 377 q->request_fn(q);
24faf6f6 378 q->request_fn_active--;
c246e80d 379}
a7928c15 380EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 381
1da177e4 382/**
80a4b58e 383 * __blk_run_queue - run a single device queue
1da177e4 384 * @q: The queue to run
80a4b58e
JA
385 *
386 * Description:
2fff8a92 387 * See @blk_run_queue.
1da177e4 388 */
24ecfbe2 389void __blk_run_queue(struct request_queue *q)
1da177e4 390{
2fff8a92 391 lockdep_assert_held(q->queue_lock);
332ebbf7 392 WARN_ON_ONCE(q->mq_ops);
2fff8a92 393
a538cd03
TH
394 if (unlikely(blk_queue_stopped(q)))
395 return;
396
c246e80d 397 __blk_run_queue_uncond(q);
75ad23bc
NP
398}
399EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 400
24ecfbe2
CH
401/**
402 * blk_run_queue_async - run a single device queue in workqueue context
403 * @q: The queue to run
404 *
405 * Description:
406 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
407 * of us.
408 *
409 * Note:
410 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
411 * has canceled q->delay_work, callers must hold the queue lock to avoid
412 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
413 */
414void blk_run_queue_async(struct request_queue *q)
415{
2fff8a92 416 lockdep_assert_held(q->queue_lock);
332ebbf7 417 WARN_ON_ONCE(q->mq_ops);
2fff8a92 418
70460571 419 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 420 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 421}
c21e6beb 422EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 423
75ad23bc
NP
424/**
425 * blk_run_queue - run a single device queue
426 * @q: The queue to run
80a4b58e
JA
427 *
428 * Description:
429 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 430 * May be used to restart queueing when a request has completed.
75ad23bc
NP
431 */
432void blk_run_queue(struct request_queue *q)
433{
434 unsigned long flags;
435
332ebbf7
BVA
436 WARN_ON_ONCE(q->mq_ops);
437
75ad23bc 438 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 439 __blk_run_queue(q);
1da177e4
LT
440 spin_unlock_irqrestore(q->queue_lock, flags);
441}
442EXPORT_SYMBOL(blk_run_queue);
443
165125e1 444void blk_put_queue(struct request_queue *q)
483f4afc
AV
445{
446 kobject_put(&q->kobj);
447}
d86e0e83 448EXPORT_SYMBOL(blk_put_queue);
483f4afc 449
e3c78ca5 450/**
807592a4 451 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 452 * @q: queue to drain
c9a929dd 453 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 454 *
c9a929dd
TH
455 * Drain requests from @q. If @drain_all is set, all requests are drained.
456 * If not, only ELVPRIV requests are drained. The caller is responsible
457 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 458 */
807592a4
BVA
459static void __blk_drain_queue(struct request_queue *q, bool drain_all)
460 __releases(q->queue_lock)
461 __acquires(q->queue_lock)
e3c78ca5 462{
458f27a9
AH
463 int i;
464
807592a4 465 lockdep_assert_held(q->queue_lock);
332ebbf7 466 WARN_ON_ONCE(q->mq_ops);
807592a4 467
e3c78ca5 468 while (true) {
481a7d64 469 bool drain = false;
e3c78ca5 470
b855b04a
TH
471 /*
472 * The caller might be trying to drain @q before its
473 * elevator is initialized.
474 */
475 if (q->elevator)
476 elv_drain_elevator(q);
477
5efd6113 478 blkcg_drain_queue(q);
e3c78ca5 479
4eabc941
TH
480 /*
481 * This function might be called on a queue which failed
b855b04a
TH
482 * driver init after queue creation or is not yet fully
483 * active yet. Some drivers (e.g. fd and loop) get unhappy
484 * in such cases. Kick queue iff dispatch queue has
485 * something on it and @q has request_fn set.
4eabc941 486 */
b855b04a 487 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 488 __blk_run_queue(q);
c9a929dd 489
8a5ecdd4 490 drain |= q->nr_rqs_elvpriv;
24faf6f6 491 drain |= q->request_fn_active;
481a7d64
TH
492
493 /*
494 * Unfortunately, requests are queued at and tracked from
495 * multiple places and there's no single counter which can
496 * be drained. Check all the queues and counters.
497 */
498 if (drain_all) {
e97c293c 499 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
500 drain |= !list_empty(&q->queue_head);
501 for (i = 0; i < 2; i++) {
8a5ecdd4 502 drain |= q->nr_rqs[i];
481a7d64 503 drain |= q->in_flight[i];
7c94e1c1
ML
504 if (fq)
505 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
506 }
507 }
e3c78ca5 508
481a7d64 509 if (!drain)
e3c78ca5 510 break;
807592a4
BVA
511
512 spin_unlock_irq(q->queue_lock);
513
e3c78ca5 514 msleep(10);
807592a4
BVA
515
516 spin_lock_irq(q->queue_lock);
e3c78ca5 517 }
458f27a9
AH
518
519 /*
520 * With queue marked dead, any woken up waiter will fail the
521 * allocation path, so the wakeup chaining is lost and we're
522 * left with hung waiters. We need to wake up those waiters.
523 */
524 if (q->request_fn) {
a051661c
TH
525 struct request_list *rl;
526
a051661c
TH
527 blk_queue_for_each_rl(rl, q)
528 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
529 wake_up_all(&rl->wait[i]);
458f27a9 530 }
e3c78ca5
TH
531}
532
d732580b
TH
533/**
534 * blk_queue_bypass_start - enter queue bypass mode
535 * @q: queue of interest
536 *
537 * In bypass mode, only the dispatch FIFO queue of @q is used. This
538 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 539 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
540 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
541 * inside queue or RCU read lock.
d732580b
TH
542 */
543void blk_queue_bypass_start(struct request_queue *q)
544{
332ebbf7
BVA
545 WARN_ON_ONCE(q->mq_ops);
546
d732580b 547 spin_lock_irq(q->queue_lock);
776687bc 548 q->bypass_depth++;
d732580b
TH
549 queue_flag_set(QUEUE_FLAG_BYPASS, q);
550 spin_unlock_irq(q->queue_lock);
551
776687bc
TH
552 /*
553 * Queues start drained. Skip actual draining till init is
554 * complete. This avoids lenghty delays during queue init which
555 * can happen many times during boot.
556 */
557 if (blk_queue_init_done(q)) {
807592a4
BVA
558 spin_lock_irq(q->queue_lock);
559 __blk_drain_queue(q, false);
560 spin_unlock_irq(q->queue_lock);
561
b82d4b19
TH
562 /* ensure blk_queue_bypass() is %true inside RCU read lock */
563 synchronize_rcu();
564 }
d732580b
TH
565}
566EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
567
568/**
569 * blk_queue_bypass_end - leave queue bypass mode
570 * @q: queue of interest
571 *
572 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
573 *
574 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
575 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
576 */
577void blk_queue_bypass_end(struct request_queue *q)
578{
579 spin_lock_irq(q->queue_lock);
580 if (!--q->bypass_depth)
581 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
582 WARN_ON_ONCE(q->bypass_depth < 0);
583 spin_unlock_irq(q->queue_lock);
584}
585EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
586
aed3ea94
JA
587void blk_set_queue_dying(struct request_queue *q)
588{
1b856086
BVA
589 spin_lock_irq(q->queue_lock);
590 queue_flag_set(QUEUE_FLAG_DYING, q);
591 spin_unlock_irq(q->queue_lock);
aed3ea94 592
d3cfb2a0
ML
593 /*
594 * When queue DYING flag is set, we need to block new req
595 * entering queue, so we call blk_freeze_queue_start() to
596 * prevent I/O from crossing blk_queue_enter().
597 */
598 blk_freeze_queue_start(q);
599
aed3ea94
JA
600 if (q->mq_ops)
601 blk_mq_wake_waiters(q);
602 else {
603 struct request_list *rl;
604
bbfc3c5d 605 spin_lock_irq(q->queue_lock);
aed3ea94
JA
606 blk_queue_for_each_rl(rl, q) {
607 if (rl->rq_pool) {
608 wake_up(&rl->wait[BLK_RW_SYNC]);
609 wake_up(&rl->wait[BLK_RW_ASYNC]);
610 }
611 }
bbfc3c5d 612 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
613 }
614}
615EXPORT_SYMBOL_GPL(blk_set_queue_dying);
616
c9a929dd
TH
617/**
618 * blk_cleanup_queue - shutdown a request queue
619 * @q: request queue to shutdown
620 *
c246e80d
BVA
621 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
622 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 623 */
6728cb0e 624void blk_cleanup_queue(struct request_queue *q)
483f4afc 625{
c9a929dd 626 spinlock_t *lock = q->queue_lock;
e3335de9 627
3f3299d5 628 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 629 mutex_lock(&q->sysfs_lock);
aed3ea94 630 blk_set_queue_dying(q);
c9a929dd 631 spin_lock_irq(lock);
6ecf23af 632
80fd9979 633 /*
3f3299d5 634 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
635 * that, unlike blk_queue_bypass_start(), we aren't performing
636 * synchronize_rcu() after entering bypass mode to avoid the delay
637 * as some drivers create and destroy a lot of queues while
638 * probing. This is still safe because blk_release_queue() will be
639 * called only after the queue refcnt drops to zero and nothing,
640 * RCU or not, would be traversing the queue by then.
641 */
6ecf23af
TH
642 q->bypass_depth++;
643 queue_flag_set(QUEUE_FLAG_BYPASS, q);
644
c9a929dd
TH
645 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
646 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 647 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
648 spin_unlock_irq(lock);
649 mutex_unlock(&q->sysfs_lock);
650
c246e80d
BVA
651 /*
652 * Drain all requests queued before DYING marking. Set DEAD flag to
653 * prevent that q->request_fn() gets invoked after draining finished.
654 */
3ef28e83 655 blk_freeze_queue(q);
9c1051aa
OS
656 spin_lock_irq(lock);
657 if (!q->mq_ops)
43a5e4e2 658 __blk_drain_queue(q, true);
c246e80d 659 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 660 spin_unlock_irq(lock);
c9a929dd 661
5a48fc14
DW
662 /* for synchronous bio-based driver finish in-flight integrity i/o */
663 blk_flush_integrity();
664
c9a929dd 665 /* @q won't process any more request, flush async actions */
dc3b17cc 666 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
667 blk_sync_queue(q);
668
45a9c9d9
BVA
669 if (q->mq_ops)
670 blk_mq_free_queue(q);
3ef28e83 671 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 672
5e5cfac0
AH
673 spin_lock_irq(lock);
674 if (q->queue_lock != &q->__queue_lock)
675 q->queue_lock = &q->__queue_lock;
676 spin_unlock_irq(lock);
677
c9a929dd 678 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
679 blk_put_queue(q);
680}
1da177e4
LT
681EXPORT_SYMBOL(blk_cleanup_queue);
682
271508db 683/* Allocate memory local to the request queue */
6d247d7f 684static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 685{
6d247d7f
CH
686 struct request_queue *q = data;
687
688 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
689}
690
6d247d7f 691static void free_request_simple(void *element, void *data)
271508db
DR
692{
693 kmem_cache_free(request_cachep, element);
694}
695
6d247d7f
CH
696static void *alloc_request_size(gfp_t gfp_mask, void *data)
697{
698 struct request_queue *q = data;
699 struct request *rq;
700
701 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
702 q->node);
703 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
704 kfree(rq);
705 rq = NULL;
706 }
707 return rq;
708}
709
710static void free_request_size(void *element, void *data)
711{
712 struct request_queue *q = data;
713
714 if (q->exit_rq_fn)
715 q->exit_rq_fn(q, element);
716 kfree(element);
717}
718
5b788ce3
TH
719int blk_init_rl(struct request_list *rl, struct request_queue *q,
720 gfp_t gfp_mask)
1da177e4 721{
85acb3ba 722 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
723 return 0;
724
5b788ce3 725 rl->q = q;
1faa16d2
JA
726 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
727 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
728 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
729 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 730
6d247d7f
CH
731 if (q->cmd_size) {
732 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
733 alloc_request_size, free_request_size,
734 q, gfp_mask, q->node);
735 } else {
736 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
737 alloc_request_simple, free_request_simple,
738 q, gfp_mask, q->node);
739 }
1da177e4
LT
740 if (!rl->rq_pool)
741 return -ENOMEM;
742
b425e504
BVA
743 if (rl != &q->root_rl)
744 WARN_ON_ONCE(!blk_get_queue(q));
745
1da177e4
LT
746 return 0;
747}
748
b425e504 749void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 750{
b425e504 751 if (rl->rq_pool) {
5b788ce3 752 mempool_destroy(rl->rq_pool);
b425e504
BVA
753 if (rl != &q->root_rl)
754 blk_put_queue(q);
755 }
5b788ce3
TH
756}
757
165125e1 758struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 759{
c304a51b 760 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
761}
762EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 763
6f3b0e8b 764int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
765{
766 while (true) {
767 int ret;
768
769 if (percpu_ref_tryget_live(&q->q_usage_counter))
770 return 0;
771
6f3b0e8b 772 if (nowait)
3ef28e83
DW
773 return -EBUSY;
774
5ed61d3f 775 /*
1671d522 776 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 777 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
778 * .q_usage_counter and reading .mq_freeze_depth or
779 * queue dying flag, otherwise the following wait may
780 * never return if the two reads are reordered.
5ed61d3f
ML
781 */
782 smp_rmb();
783
3ef28e83
DW
784 ret = wait_event_interruptible(q->mq_freeze_wq,
785 !atomic_read(&q->mq_freeze_depth) ||
786 blk_queue_dying(q));
787 if (blk_queue_dying(q))
788 return -ENODEV;
789 if (ret)
790 return ret;
791 }
792}
793
794void blk_queue_exit(struct request_queue *q)
795{
796 percpu_ref_put(&q->q_usage_counter);
797}
798
799static void blk_queue_usage_counter_release(struct percpu_ref *ref)
800{
801 struct request_queue *q =
802 container_of(ref, struct request_queue, q_usage_counter);
803
804 wake_up_all(&q->mq_freeze_wq);
805}
806
287922eb
CH
807static void blk_rq_timed_out_timer(unsigned long data)
808{
809 struct request_queue *q = (struct request_queue *)data;
810
811 kblockd_schedule_work(&q->timeout_work);
812}
813
165125e1 814struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 815{
165125e1 816 struct request_queue *q;
1946089a 817
8324aa91 818 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 819 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
820 if (!q)
821 return NULL;
822
00380a40 823 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 824 if (q->id < 0)
3d2936f4 825 goto fail_q;
a73f730d 826
93b27e72 827 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
828 if (!q->bio_split)
829 goto fail_id;
830
d03f6cdc
JK
831 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
832 if (!q->backing_dev_info)
833 goto fail_split;
834
a83b576c
JA
835 q->stats = blk_alloc_queue_stats();
836 if (!q->stats)
837 goto fail_stats;
838
dc3b17cc 839 q->backing_dev_info->ra_pages =
09cbfeaf 840 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
841 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
842 q->backing_dev_info->name = "block";
5151412d 843 q->node = node_id;
0989a025 844
dc3b17cc 845 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 846 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 847 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
4e9b6f20 848 INIT_WORK(&q->timeout_work, NULL);
b855b04a 849 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 850 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 851 INIT_LIST_HEAD(&q->icq_list);
4eef3049 852#ifdef CONFIG_BLK_CGROUP
e8989fae 853 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 854#endif
3cca6dc1 855 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 856
8324aa91 857 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 858
5acb3cc2
WL
859#ifdef CONFIG_BLK_DEV_IO_TRACE
860 mutex_init(&q->blk_trace_mutex);
861#endif
483f4afc 862 mutex_init(&q->sysfs_lock);
e7e72bf6 863 spin_lock_init(&q->__queue_lock);
483f4afc 864
c94a96ac
VG
865 /*
866 * By default initialize queue_lock to internal lock and driver can
867 * override it later if need be.
868 */
869 q->queue_lock = &q->__queue_lock;
870
b82d4b19
TH
871 /*
872 * A queue starts its life with bypass turned on to avoid
873 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
874 * init. The initial bypass will be finished when the queue is
875 * registered by blk_register_queue().
b82d4b19
TH
876 */
877 q->bypass_depth = 1;
878 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
879
320ae51f
JA
880 init_waitqueue_head(&q->mq_freeze_wq);
881
3ef28e83
DW
882 /*
883 * Init percpu_ref in atomic mode so that it's faster to shutdown.
884 * See blk_register_queue() for details.
885 */
886 if (percpu_ref_init(&q->q_usage_counter,
887 blk_queue_usage_counter_release,
888 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 889 goto fail_bdi;
f51b802c 890
3ef28e83
DW
891 if (blkcg_init_queue(q))
892 goto fail_ref;
893
1da177e4 894 return q;
a73f730d 895
3ef28e83
DW
896fail_ref:
897 percpu_ref_exit(&q->q_usage_counter);
fff4996b 898fail_bdi:
a83b576c
JA
899 blk_free_queue_stats(q->stats);
900fail_stats:
d03f6cdc 901 bdi_put(q->backing_dev_info);
54efd50b
KO
902fail_split:
903 bioset_free(q->bio_split);
a73f730d
TH
904fail_id:
905 ida_simple_remove(&blk_queue_ida, q->id);
906fail_q:
907 kmem_cache_free(blk_requestq_cachep, q);
908 return NULL;
1da177e4 909}
1946089a 910EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
911
912/**
913 * blk_init_queue - prepare a request queue for use with a block device
914 * @rfn: The function to be called to process requests that have been
915 * placed on the queue.
916 * @lock: Request queue spin lock
917 *
918 * Description:
919 * If a block device wishes to use the standard request handling procedures,
920 * which sorts requests and coalesces adjacent requests, then it must
921 * call blk_init_queue(). The function @rfn will be called when there
922 * are requests on the queue that need to be processed. If the device
923 * supports plugging, then @rfn may not be called immediately when requests
924 * are available on the queue, but may be called at some time later instead.
925 * Plugged queues are generally unplugged when a buffer belonging to one
926 * of the requests on the queue is needed, or due to memory pressure.
927 *
928 * @rfn is not required, or even expected, to remove all requests off the
929 * queue, but only as many as it can handle at a time. If it does leave
930 * requests on the queue, it is responsible for arranging that the requests
931 * get dealt with eventually.
932 *
933 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
934 * request queue; this lock will be taken also from interrupt context, so irq
935 * disabling is needed for it.
1da177e4 936 *
710027a4 937 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
938 * it didn't succeed.
939 *
940 * Note:
941 * blk_init_queue() must be paired with a blk_cleanup_queue() call
942 * when the block device is deactivated (such as at module unload).
943 **/
1946089a 944
165125e1 945struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 946{
c304a51b 947 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
948}
949EXPORT_SYMBOL(blk_init_queue);
950
165125e1 951struct request_queue *
1946089a
CL
952blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
953{
5ea708d1 954 struct request_queue *q;
1da177e4 955
5ea708d1
CH
956 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
957 if (!q)
c86d1b8a
MS
958 return NULL;
959
5ea708d1
CH
960 q->request_fn = rfn;
961 if (lock)
962 q->queue_lock = lock;
963 if (blk_init_allocated_queue(q) < 0) {
964 blk_cleanup_queue(q);
965 return NULL;
966 }
18741986 967
7982e90c 968 return q;
01effb0d
MS
969}
970EXPORT_SYMBOL(blk_init_queue_node);
971
dece1635 972static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 973
1da177e4 974
5ea708d1
CH
975int blk_init_allocated_queue(struct request_queue *q)
976{
332ebbf7
BVA
977 WARN_ON_ONCE(q->mq_ops);
978
6d247d7f 979 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 980 if (!q->fq)
5ea708d1 981 return -ENOMEM;
7982e90c 982
6d247d7f
CH
983 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
984 goto out_free_flush_queue;
7982e90c 985
a051661c 986 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 987 goto out_exit_flush_rq;
1da177e4 988
287922eb 989 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 990 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 991
f3b144aa
JA
992 /*
993 * This also sets hw/phys segments, boundary and size
994 */
c20e8de2 995 blk_queue_make_request(q, blk_queue_bio);
1da177e4 996
44ec9542
AS
997 q->sg_reserved_size = INT_MAX;
998
eb1c160b
TS
999 /* Protect q->elevator from elevator_change */
1000 mutex_lock(&q->sysfs_lock);
1001
b82d4b19 1002 /* init elevator */
eb1c160b
TS
1003 if (elevator_init(q, NULL)) {
1004 mutex_unlock(&q->sysfs_lock);
6d247d7f 1005 goto out_exit_flush_rq;
eb1c160b
TS
1006 }
1007
1008 mutex_unlock(&q->sysfs_lock);
5ea708d1 1009 return 0;
eb1c160b 1010
6d247d7f
CH
1011out_exit_flush_rq:
1012 if (q->exit_rq_fn)
1013 q->exit_rq_fn(q, q->fq->flush_rq);
1014out_free_flush_queue:
ba483388 1015 blk_free_flush_queue(q->fq);
5ea708d1 1016 return -ENOMEM;
1da177e4 1017}
5151412d 1018EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1019
09ac46c4 1020bool blk_get_queue(struct request_queue *q)
1da177e4 1021{
3f3299d5 1022 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1023 __blk_get_queue(q);
1024 return true;
1da177e4
LT
1025 }
1026
09ac46c4 1027 return false;
1da177e4 1028}
d86e0e83 1029EXPORT_SYMBOL(blk_get_queue);
1da177e4 1030
5b788ce3 1031static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1032{
e8064021 1033 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1034 elv_put_request(rl->q, rq);
f1f8cc94 1035 if (rq->elv.icq)
11a3122f 1036 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1037 }
1038
5b788ce3 1039 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1040}
1041
1da177e4
LT
1042/*
1043 * ioc_batching returns true if the ioc is a valid batching request and
1044 * should be given priority access to a request.
1045 */
165125e1 1046static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1047{
1048 if (!ioc)
1049 return 0;
1050
1051 /*
1052 * Make sure the process is able to allocate at least 1 request
1053 * even if the batch times out, otherwise we could theoretically
1054 * lose wakeups.
1055 */
1056 return ioc->nr_batch_requests == q->nr_batching ||
1057 (ioc->nr_batch_requests > 0
1058 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1059}
1060
1061/*
1062 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1063 * will cause the process to be a "batcher" on all queues in the system. This
1064 * is the behaviour we want though - once it gets a wakeup it should be given
1065 * a nice run.
1066 */
165125e1 1067static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1068{
1069 if (!ioc || ioc_batching(q, ioc))
1070 return;
1071
1072 ioc->nr_batch_requests = q->nr_batching;
1073 ioc->last_waited = jiffies;
1074}
1075
5b788ce3 1076static void __freed_request(struct request_list *rl, int sync)
1da177e4 1077{
5b788ce3 1078 struct request_queue *q = rl->q;
1da177e4 1079
d40f75a0
TH
1080 if (rl->count[sync] < queue_congestion_off_threshold(q))
1081 blk_clear_congested(rl, sync);
1da177e4 1082
1faa16d2
JA
1083 if (rl->count[sync] + 1 <= q->nr_requests) {
1084 if (waitqueue_active(&rl->wait[sync]))
1085 wake_up(&rl->wait[sync]);
1da177e4 1086
5b788ce3 1087 blk_clear_rl_full(rl, sync);
1da177e4
LT
1088 }
1089}
1090
1091/*
1092 * A request has just been released. Account for it, update the full and
1093 * congestion status, wake up any waiters. Called under q->queue_lock.
1094 */
e8064021
CH
1095static void freed_request(struct request_list *rl, bool sync,
1096 req_flags_t rq_flags)
1da177e4 1097{
5b788ce3 1098 struct request_queue *q = rl->q;
1da177e4 1099
8a5ecdd4 1100 q->nr_rqs[sync]--;
1faa16d2 1101 rl->count[sync]--;
e8064021 1102 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1103 q->nr_rqs_elvpriv--;
1da177e4 1104
5b788ce3 1105 __freed_request(rl, sync);
1da177e4 1106
1faa16d2 1107 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1108 __freed_request(rl, sync ^ 1);
1da177e4
LT
1109}
1110
e3a2b3f9
JA
1111int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1112{
1113 struct request_list *rl;
d40f75a0 1114 int on_thresh, off_thresh;
e3a2b3f9 1115
332ebbf7
BVA
1116 WARN_ON_ONCE(q->mq_ops);
1117
e3a2b3f9
JA
1118 spin_lock_irq(q->queue_lock);
1119 q->nr_requests = nr;
1120 blk_queue_congestion_threshold(q);
d40f75a0
TH
1121 on_thresh = queue_congestion_on_threshold(q);
1122 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1123
d40f75a0
TH
1124 blk_queue_for_each_rl(rl, q) {
1125 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1126 blk_set_congested(rl, BLK_RW_SYNC);
1127 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1128 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1129
d40f75a0
TH
1130 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1131 blk_set_congested(rl, BLK_RW_ASYNC);
1132 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1133 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1134
e3a2b3f9
JA
1135 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1136 blk_set_rl_full(rl, BLK_RW_SYNC);
1137 } else {
1138 blk_clear_rl_full(rl, BLK_RW_SYNC);
1139 wake_up(&rl->wait[BLK_RW_SYNC]);
1140 }
1141
1142 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1143 blk_set_rl_full(rl, BLK_RW_ASYNC);
1144 } else {
1145 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1146 wake_up(&rl->wait[BLK_RW_ASYNC]);
1147 }
1148 }
1149
1150 spin_unlock_irq(q->queue_lock);
1151 return 0;
1152}
1153
da8303c6 1154/**
a06e05e6 1155 * __get_request - get a free request
5b788ce3 1156 * @rl: request list to allocate from
ef295ecf 1157 * @op: operation and flags
da8303c6
TH
1158 * @bio: bio to allocate request for (can be %NULL)
1159 * @gfp_mask: allocation mask
1160 *
1161 * Get a free request from @q. This function may fail under memory
1162 * pressure or if @q is dead.
1163 *
da3dae54 1164 * Must be called with @q->queue_lock held and,
a492f075
JL
1165 * Returns ERR_PTR on failure, with @q->queue_lock held.
1166 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1167 */
ef295ecf
CH
1168static struct request *__get_request(struct request_list *rl, unsigned int op,
1169 struct bio *bio, gfp_t gfp_mask)
1da177e4 1170{
5b788ce3 1171 struct request_queue *q = rl->q;
b679281a 1172 struct request *rq;
7f4b35d1
TH
1173 struct elevator_type *et = q->elevator->type;
1174 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1175 struct io_cq *icq = NULL;
ef295ecf 1176 const bool is_sync = op_is_sync(op);
75eb6c37 1177 int may_queue;
e8064021 1178 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1179
2fff8a92
BVA
1180 lockdep_assert_held(q->queue_lock);
1181
3f3299d5 1182 if (unlikely(blk_queue_dying(q)))
a492f075 1183 return ERR_PTR(-ENODEV);
da8303c6 1184
ef295ecf 1185 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1186 if (may_queue == ELV_MQUEUE_NO)
1187 goto rq_starved;
1188
1faa16d2
JA
1189 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1190 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1191 /*
1192 * The queue will fill after this allocation, so set
1193 * it as full, and mark this process as "batching".
1194 * This process will be allowed to complete a batch of
1195 * requests, others will be blocked.
1196 */
5b788ce3 1197 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1198 ioc_set_batching(q, ioc);
5b788ce3 1199 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1200 } else {
1201 if (may_queue != ELV_MQUEUE_MUST
1202 && !ioc_batching(q, ioc)) {
1203 /*
1204 * The queue is full and the allocating
1205 * process is not a "batcher", and not
1206 * exempted by the IO scheduler
1207 */
a492f075 1208 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1209 }
1210 }
1da177e4 1211 }
d40f75a0 1212 blk_set_congested(rl, is_sync);
1da177e4
LT
1213 }
1214
082cf69e
JA
1215 /*
1216 * Only allow batching queuers to allocate up to 50% over the defined
1217 * limit of requests, otherwise we could have thousands of requests
1218 * allocated with any setting of ->nr_requests
1219 */
1faa16d2 1220 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1221 return ERR_PTR(-ENOMEM);
fd782a4a 1222
8a5ecdd4 1223 q->nr_rqs[is_sync]++;
1faa16d2
JA
1224 rl->count[is_sync]++;
1225 rl->starved[is_sync] = 0;
cb98fc8b 1226
f1f8cc94
TH
1227 /*
1228 * Decide whether the new request will be managed by elevator. If
e8064021 1229 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1230 * prevent the current elevator from being destroyed until the new
1231 * request is freed. This guarantees icq's won't be destroyed and
1232 * makes creating new ones safe.
1233 *
e6f7f93d
CH
1234 * Flush requests do not use the elevator so skip initialization.
1235 * This allows a request to share the flush and elevator data.
1236 *
f1f8cc94
TH
1237 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1238 * it will be created after releasing queue_lock.
1239 */
e6f7f93d 1240 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1241 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1242 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1243 if (et->icq_cache && ioc)
1244 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1245 }
cb98fc8b 1246
f253b86b 1247 if (blk_queue_io_stat(q))
e8064021 1248 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1249 spin_unlock_irq(q->queue_lock);
1250
29e2b09a 1251 /* allocate and init request */
5b788ce3 1252 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1253 if (!rq)
b679281a 1254 goto fail_alloc;
1da177e4 1255
29e2b09a 1256 blk_rq_init(q, rq);
a051661c 1257 blk_rq_set_rl(rq, rl);
ef295ecf 1258 rq->cmd_flags = op;
e8064021 1259 rq->rq_flags = rq_flags;
29e2b09a 1260
aaf7c680 1261 /* init elvpriv */
e8064021 1262 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1263 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1264 if (ioc)
1265 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1266 if (!icq)
1267 goto fail_elvpriv;
29e2b09a 1268 }
aaf7c680
TH
1269
1270 rq->elv.icq = icq;
1271 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1272 goto fail_elvpriv;
1273
1274 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1275 if (icq)
1276 get_io_context(icq->ioc);
1277 }
aaf7c680 1278out:
88ee5ef1
JA
1279 /*
1280 * ioc may be NULL here, and ioc_batching will be false. That's
1281 * OK, if the queue is under the request limit then requests need
1282 * not count toward the nr_batch_requests limit. There will always
1283 * be some limit enforced by BLK_BATCH_TIME.
1284 */
1da177e4
LT
1285 if (ioc_batching(q, ioc))
1286 ioc->nr_batch_requests--;
6728cb0e 1287
e6a40b09 1288 trace_block_getrq(q, bio, op);
1da177e4 1289 return rq;
b679281a 1290
aaf7c680
TH
1291fail_elvpriv:
1292 /*
1293 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1294 * and may fail indefinitely under memory pressure and thus
1295 * shouldn't stall IO. Treat this request as !elvpriv. This will
1296 * disturb iosched and blkcg but weird is bettern than dead.
1297 */
7b2b10e0 1298 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1299 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1300
e8064021 1301 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1302 rq->elv.icq = NULL;
1303
1304 spin_lock_irq(q->queue_lock);
8a5ecdd4 1305 q->nr_rqs_elvpriv--;
aaf7c680
TH
1306 spin_unlock_irq(q->queue_lock);
1307 goto out;
1308
b679281a
TH
1309fail_alloc:
1310 /*
1311 * Allocation failed presumably due to memory. Undo anything we
1312 * might have messed up.
1313 *
1314 * Allocating task should really be put onto the front of the wait
1315 * queue, but this is pretty rare.
1316 */
1317 spin_lock_irq(q->queue_lock);
e8064021 1318 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1319
1320 /*
1321 * in the very unlikely event that allocation failed and no
1322 * requests for this direction was pending, mark us starved so that
1323 * freeing of a request in the other direction will notice
1324 * us. another possible fix would be to split the rq mempool into
1325 * READ and WRITE
1326 */
1327rq_starved:
1328 if (unlikely(rl->count[is_sync] == 0))
1329 rl->starved[is_sync] = 1;
a492f075 1330 return ERR_PTR(-ENOMEM);
1da177e4
LT
1331}
1332
da8303c6 1333/**
a06e05e6 1334 * get_request - get a free request
da8303c6 1335 * @q: request_queue to allocate request from
ef295ecf 1336 * @op: operation and flags
da8303c6 1337 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1338 * @gfp_mask: allocation mask
da8303c6 1339 *
d0164adc
MG
1340 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1341 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1342 *
da3dae54 1343 * Must be called with @q->queue_lock held and,
a492f075
JL
1344 * Returns ERR_PTR on failure, with @q->queue_lock held.
1345 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1346 */
ef295ecf
CH
1347static struct request *get_request(struct request_queue *q, unsigned int op,
1348 struct bio *bio, gfp_t gfp_mask)
1da177e4 1349{
ef295ecf 1350 const bool is_sync = op_is_sync(op);
a06e05e6 1351 DEFINE_WAIT(wait);
a051661c 1352 struct request_list *rl;
1da177e4 1353 struct request *rq;
a051661c 1354
2fff8a92 1355 lockdep_assert_held(q->queue_lock);
332ebbf7 1356 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1357
a051661c 1358 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1359retry:
ef295ecf 1360 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1361 if (!IS_ERR(rq))
a06e05e6 1362 return rq;
1da177e4 1363
03a07c92
GR
1364 if (op & REQ_NOWAIT) {
1365 blk_put_rl(rl);
1366 return ERR_PTR(-EAGAIN);
1367 }
1368
d0164adc 1369 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1370 blk_put_rl(rl);
a492f075 1371 return rq;
a051661c 1372 }
1da177e4 1373
a06e05e6
TH
1374 /* wait on @rl and retry */
1375 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1376 TASK_UNINTERRUPTIBLE);
1da177e4 1377
e6a40b09 1378 trace_block_sleeprq(q, bio, op);
1da177e4 1379
a06e05e6
TH
1380 spin_unlock_irq(q->queue_lock);
1381 io_schedule();
d6344532 1382
a06e05e6
TH
1383 /*
1384 * After sleeping, we become a "batching" process and will be able
1385 * to allocate at least one request, and up to a big batch of them
1386 * for a small period time. See ioc_batching, ioc_set_batching
1387 */
a06e05e6 1388 ioc_set_batching(q, current->io_context);
05caf8db 1389
a06e05e6
TH
1390 spin_lock_irq(q->queue_lock);
1391 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1392
a06e05e6 1393 goto retry;
1da177e4
LT
1394}
1395
cd6ce148
BVA
1396static struct request *blk_old_get_request(struct request_queue *q,
1397 unsigned int op, gfp_t gfp_mask)
1da177e4
LT
1398{
1399 struct request *rq;
1400
332ebbf7
BVA
1401 WARN_ON_ONCE(q->mq_ops);
1402
7f4b35d1
TH
1403 /* create ioc upfront */
1404 create_io_context(gfp_mask, q->node);
1405
d6344532 1406 spin_lock_irq(q->queue_lock);
cd6ce148 1407 rq = get_request(q, op, NULL, gfp_mask);
0c4de0f3 1408 if (IS_ERR(rq)) {
da8303c6 1409 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1410 return rq;
1411 }
1da177e4 1412
0c4de0f3
CH
1413 /* q->queue_lock is unlocked at this point */
1414 rq->__data_len = 0;
1415 rq->__sector = (sector_t) -1;
1416 rq->bio = rq->biotail = NULL;
1da177e4
LT
1417 return rq;
1418}
320ae51f 1419
cd6ce148
BVA
1420struct request *blk_get_request(struct request_queue *q, unsigned int op,
1421 gfp_t gfp_mask)
320ae51f 1422{
d280bab3
BVA
1423 struct request *req;
1424
1425 if (q->mq_ops) {
1426 req = blk_mq_alloc_request(q, op,
6f3b0e8b
CH
1427 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1428 0 : BLK_MQ_REQ_NOWAIT);
d280bab3
BVA
1429 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1430 q->mq_ops->initialize_rq_fn(req);
1431 } else {
1432 req = blk_old_get_request(q, op, gfp_mask);
1433 if (!IS_ERR(req) && q->initialize_rq_fn)
1434 q->initialize_rq_fn(req);
1435 }
1436
1437 return req;
320ae51f 1438}
1da177e4
LT
1439EXPORT_SYMBOL(blk_get_request);
1440
1441/**
1442 * blk_requeue_request - put a request back on queue
1443 * @q: request queue where request should be inserted
1444 * @rq: request to be inserted
1445 *
1446 * Description:
1447 * Drivers often keep queueing requests until the hardware cannot accept
1448 * more, when that condition happens we need to put the request back
1449 * on the queue. Must be called with queue lock held.
1450 */
165125e1 1451void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1452{
2fff8a92 1453 lockdep_assert_held(q->queue_lock);
332ebbf7 1454 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1455
242f9dcb
JA
1456 blk_delete_timer(rq);
1457 blk_clear_rq_complete(rq);
5f3ea37c 1458 trace_block_rq_requeue(q, rq);
87760e5e 1459 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1460
e8064021 1461 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1462 blk_queue_end_tag(q, rq);
1463
ba396a6c
JB
1464 BUG_ON(blk_queued_rq(rq));
1465
1da177e4
LT
1466 elv_requeue_request(q, rq);
1467}
1da177e4
LT
1468EXPORT_SYMBOL(blk_requeue_request);
1469
73c10101
JA
1470static void add_acct_request(struct request_queue *q, struct request *rq,
1471 int where)
1472{
320ae51f 1473 blk_account_io_start(rq, true);
7eaceacc 1474 __elv_add_request(q, rq, where);
73c10101
JA
1475}
1476
d62e26b3 1477static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1478 struct hd_struct *part, unsigned long now,
1479 unsigned int inflight)
074a7aca 1480{
b8d62b3a 1481 if (inflight) {
074a7aca 1482 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1483 inflight * (now - part->stamp));
074a7aca
TH
1484 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1485 }
1486 part->stamp = now;
1487}
1488
1489/**
496aa8a9 1490 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1491 * @q: target block queue
496aa8a9
RD
1492 * @cpu: cpu number for stats access
1493 * @part: target partition
1da177e4
LT
1494 *
1495 * The average IO queue length and utilisation statistics are maintained
1496 * by observing the current state of the queue length and the amount of
1497 * time it has been in this state for.
1498 *
1499 * Normally, that accounting is done on IO completion, but that can result
1500 * in more than a second's worth of IO being accounted for within any one
1501 * second, leading to >100% utilisation. To deal with that, we call this
1502 * function to do a round-off before returning the results when reading
1503 * /proc/diskstats. This accounts immediately for all queue usage up to
1504 * the current jiffies and restarts the counters again.
1505 */
d62e26b3 1506void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1507{
b8d62b3a 1508 struct hd_struct *part2 = NULL;
6f2576af 1509 unsigned long now = jiffies;
b8d62b3a
JA
1510 unsigned int inflight[2];
1511 int stats = 0;
1512
1513 if (part->stamp != now)
1514 stats |= 1;
1515
1516 if (part->partno) {
1517 part2 = &part_to_disk(part)->part0;
1518 if (part2->stamp != now)
1519 stats |= 2;
1520 }
1521
1522 if (!stats)
1523 return;
1524
1525 part_in_flight(q, part, inflight);
6f2576af 1526
b8d62b3a
JA
1527 if (stats & 2)
1528 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1529 if (stats & 1)
1530 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1531}
074a7aca 1532EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1533
47fafbc7 1534#ifdef CONFIG_PM
c8158819
LM
1535static void blk_pm_put_request(struct request *rq)
1536{
e8064021 1537 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1538 pm_runtime_mark_last_busy(rq->q->dev);
1539}
1540#else
1541static inline void blk_pm_put_request(struct request *rq) {}
1542#endif
1543
165125e1 1544void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1545{
e8064021
CH
1546 req_flags_t rq_flags = req->rq_flags;
1547
1da177e4
LT
1548 if (unlikely(!q))
1549 return;
1da177e4 1550
6f5ba581
CH
1551 if (q->mq_ops) {
1552 blk_mq_free_request(req);
1553 return;
1554 }
1555
2fff8a92
BVA
1556 lockdep_assert_held(q->queue_lock);
1557
c8158819
LM
1558 blk_pm_put_request(req);
1559
8922e16c
TH
1560 elv_completed_request(q, req);
1561
1cd96c24
BH
1562 /* this is a bio leak */
1563 WARN_ON(req->bio != NULL);
1564
87760e5e
JA
1565 wbt_done(q->rq_wb, &req->issue_stat);
1566
1da177e4
LT
1567 /*
1568 * Request may not have originated from ll_rw_blk. if not,
1569 * it didn't come out of our reserved rq pools
1570 */
e8064021 1571 if (rq_flags & RQF_ALLOCED) {
a051661c 1572 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1573 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1574
1da177e4 1575 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1576 BUG_ON(ELV_ON_HASH(req));
1da177e4 1577
a051661c 1578 blk_free_request(rl, req);
e8064021 1579 freed_request(rl, sync, rq_flags);
a051661c 1580 blk_put_rl(rl);
1da177e4
LT
1581 }
1582}
6e39b69e
MC
1583EXPORT_SYMBOL_GPL(__blk_put_request);
1584
1da177e4
LT
1585void blk_put_request(struct request *req)
1586{
165125e1 1587 struct request_queue *q = req->q;
8922e16c 1588
320ae51f
JA
1589 if (q->mq_ops)
1590 blk_mq_free_request(req);
1591 else {
1592 unsigned long flags;
1593
1594 spin_lock_irqsave(q->queue_lock, flags);
1595 __blk_put_request(q, req);
1596 spin_unlock_irqrestore(q->queue_lock, flags);
1597 }
1da177e4 1598}
1da177e4
LT
1599EXPORT_SYMBOL(blk_put_request);
1600
320ae51f
JA
1601bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1602 struct bio *bio)
73c10101 1603{
1eff9d32 1604 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1605
73c10101
JA
1606 if (!ll_back_merge_fn(q, req, bio))
1607 return false;
1608
8c1cf6bb 1609 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1610
1611 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1612 blk_rq_set_mixed_merge(req);
1613
1614 req->biotail->bi_next = bio;
1615 req->biotail = bio;
4f024f37 1616 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1617 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1618
320ae51f 1619 blk_account_io_start(req, false);
73c10101
JA
1620 return true;
1621}
1622
320ae51f
JA
1623bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1624 struct bio *bio)
73c10101 1625{
1eff9d32 1626 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1627
73c10101
JA
1628 if (!ll_front_merge_fn(q, req, bio))
1629 return false;
1630
8c1cf6bb 1631 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1632
1633 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1634 blk_rq_set_mixed_merge(req);
1635
73c10101
JA
1636 bio->bi_next = req->bio;
1637 req->bio = bio;
1638
4f024f37
KO
1639 req->__sector = bio->bi_iter.bi_sector;
1640 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1641 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1642
320ae51f 1643 blk_account_io_start(req, false);
73c10101
JA
1644 return true;
1645}
1646
1e739730
CH
1647bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1648 struct bio *bio)
1649{
1650 unsigned short segments = blk_rq_nr_discard_segments(req);
1651
1652 if (segments >= queue_max_discard_segments(q))
1653 goto no_merge;
1654 if (blk_rq_sectors(req) + bio_sectors(bio) >
1655 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1656 goto no_merge;
1657
1658 req->biotail->bi_next = bio;
1659 req->biotail = bio;
1660 req->__data_len += bio->bi_iter.bi_size;
1661 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1662 req->nr_phys_segments = segments + 1;
1663
1664 blk_account_io_start(req, false);
1665 return true;
1666no_merge:
1667 req_set_nomerge(q, req);
1668 return false;
1669}
1670
bd87b589 1671/**
320ae51f 1672 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1673 * @q: request_queue new bio is being queued at
1674 * @bio: new bio being queued
1675 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1676 * @same_queue_rq: pointer to &struct request that gets filled in when
1677 * another request associated with @q is found on the plug list
1678 * (optional, may be %NULL)
bd87b589
TH
1679 *
1680 * Determine whether @bio being queued on @q can be merged with a request
1681 * on %current's plugged list. Returns %true if merge was successful,
1682 * otherwise %false.
1683 *
07c2bd37
TH
1684 * Plugging coalesces IOs from the same issuer for the same purpose without
1685 * going through @q->queue_lock. As such it's more of an issuing mechanism
1686 * than scheduling, and the request, while may have elvpriv data, is not
1687 * added on the elevator at this point. In addition, we don't have
1688 * reliable access to the elevator outside queue lock. Only check basic
1689 * merging parameters without querying the elevator.
da41a589
RE
1690 *
1691 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1692 */
320ae51f 1693bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1694 unsigned int *request_count,
1695 struct request **same_queue_rq)
73c10101
JA
1696{
1697 struct blk_plug *plug;
1698 struct request *rq;
92f399c7 1699 struct list_head *plug_list;
73c10101 1700
bd87b589 1701 plug = current->plug;
73c10101 1702 if (!plug)
34fe7c05 1703 return false;
56ebdaf2 1704 *request_count = 0;
73c10101 1705
92f399c7
SL
1706 if (q->mq_ops)
1707 plug_list = &plug->mq_list;
1708 else
1709 plug_list = &plug->list;
1710
1711 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1712 bool merged = false;
73c10101 1713
5b3f341f 1714 if (rq->q == q) {
1b2e19f1 1715 (*request_count)++;
5b3f341f
SL
1716 /*
1717 * Only blk-mq multiple hardware queues case checks the
1718 * rq in the same queue, there should be only one such
1719 * rq in a queue
1720 **/
1721 if (same_queue_rq)
1722 *same_queue_rq = rq;
1723 }
56ebdaf2 1724
07c2bd37 1725 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1726 continue;
1727
34fe7c05
CH
1728 switch (blk_try_merge(rq, bio)) {
1729 case ELEVATOR_BACK_MERGE:
1730 merged = bio_attempt_back_merge(q, rq, bio);
1731 break;
1732 case ELEVATOR_FRONT_MERGE:
1733 merged = bio_attempt_front_merge(q, rq, bio);
1734 break;
1e739730
CH
1735 case ELEVATOR_DISCARD_MERGE:
1736 merged = bio_attempt_discard_merge(q, rq, bio);
1737 break;
34fe7c05
CH
1738 default:
1739 break;
73c10101 1740 }
34fe7c05
CH
1741
1742 if (merged)
1743 return true;
73c10101 1744 }
34fe7c05
CH
1745
1746 return false;
73c10101
JA
1747}
1748
0809e3ac
JM
1749unsigned int blk_plug_queued_count(struct request_queue *q)
1750{
1751 struct blk_plug *plug;
1752 struct request *rq;
1753 struct list_head *plug_list;
1754 unsigned int ret = 0;
1755
1756 plug = current->plug;
1757 if (!plug)
1758 goto out;
1759
1760 if (q->mq_ops)
1761 plug_list = &plug->mq_list;
1762 else
1763 plug_list = &plug->list;
1764
1765 list_for_each_entry(rq, plug_list, queuelist) {
1766 if (rq->q == q)
1767 ret++;
1768 }
1769out:
1770 return ret;
1771}
1772
da8d7f07 1773void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1774{
0be0dee6
BVA
1775 struct io_context *ioc = rq_ioc(bio);
1776
1eff9d32 1777 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1778 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1779
4f024f37 1780 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1781 if (ioprio_valid(bio_prio(bio)))
1782 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1783 else if (ioc)
1784 req->ioprio = ioc->ioprio;
1785 else
1786 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1787 req->write_hint = bio->bi_write_hint;
bc1c56fd 1788 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1789}
da8d7f07 1790EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1791
dece1635 1792static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1793{
73c10101 1794 struct blk_plug *plug;
34fe7c05 1795 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1796 struct request *req, *free;
56ebdaf2 1797 unsigned int request_count = 0;
87760e5e 1798 unsigned int wb_acct;
1da177e4 1799
1da177e4
LT
1800 /*
1801 * low level driver can indicate that it wants pages above a
1802 * certain limit bounced to low memory (ie for highmem, or even
1803 * ISA dma in theory)
1804 */
1805 blk_queue_bounce(q, &bio);
1806
af67c31f 1807 blk_queue_split(q, &bio);
23688bf4 1808
e23947bd 1809 if (!bio_integrity_prep(bio))
dece1635 1810 return BLK_QC_T_NONE;
ffecfd1a 1811
f73f44eb 1812 if (op_is_flush(bio->bi_opf)) {
73c10101 1813 spin_lock_irq(q->queue_lock);
ae1b1539 1814 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1815 goto get_rq;
1816 }
1817
73c10101
JA
1818 /*
1819 * Check if we can merge with the plugged list before grabbing
1820 * any locks.
1821 */
0809e3ac
JM
1822 if (!blk_queue_nomerges(q)) {
1823 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1824 return BLK_QC_T_NONE;
0809e3ac
JM
1825 } else
1826 request_count = blk_plug_queued_count(q);
1da177e4 1827
73c10101 1828 spin_lock_irq(q->queue_lock);
2056a782 1829
34fe7c05
CH
1830 switch (elv_merge(q, &req, bio)) {
1831 case ELEVATOR_BACK_MERGE:
1832 if (!bio_attempt_back_merge(q, req, bio))
1833 break;
1834 elv_bio_merged(q, req, bio);
1835 free = attempt_back_merge(q, req);
1836 if (free)
1837 __blk_put_request(q, free);
1838 else
1839 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1840 goto out_unlock;
1841 case ELEVATOR_FRONT_MERGE:
1842 if (!bio_attempt_front_merge(q, req, bio))
1843 break;
1844 elv_bio_merged(q, req, bio);
1845 free = attempt_front_merge(q, req);
1846 if (free)
1847 __blk_put_request(q, free);
1848 else
1849 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1850 goto out_unlock;
1851 default:
1852 break;
1da177e4
LT
1853 }
1854
450991bc 1855get_rq:
87760e5e
JA
1856 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1857
1da177e4 1858 /*
450991bc 1859 * Grab a free request. This is might sleep but can not fail.
d6344532 1860 * Returns with the queue unlocked.
450991bc 1861 */
ef295ecf 1862 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1863 if (IS_ERR(req)) {
87760e5e 1864 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1865 if (PTR_ERR(req) == -ENOMEM)
1866 bio->bi_status = BLK_STS_RESOURCE;
1867 else
1868 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1869 bio_endio(bio);
da8303c6
TH
1870 goto out_unlock;
1871 }
d6344532 1872
87760e5e
JA
1873 wbt_track(&req->issue_stat, wb_acct);
1874
450991bc
NP
1875 /*
1876 * After dropping the lock and possibly sleeping here, our request
1877 * may now be mergeable after it had proven unmergeable (above).
1878 * We don't worry about that case for efficiency. It won't happen
1879 * often, and the elevators are able to handle it.
1da177e4 1880 */
da8d7f07 1881 blk_init_request_from_bio(req, bio);
1da177e4 1882
9562ad9a 1883 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1884 req->cpu = raw_smp_processor_id();
73c10101
JA
1885
1886 plug = current->plug;
721a9602 1887 if (plug) {
dc6d36c9
JA
1888 /*
1889 * If this is the first request added after a plug, fire
7aef2e78 1890 * of a plug trace.
0a6219a9
ML
1891 *
1892 * @request_count may become stale because of schedule
1893 * out, so check plug list again.
dc6d36c9 1894 */
0a6219a9 1895 if (!request_count || list_empty(&plug->list))
dc6d36c9 1896 trace_block_plug(q);
3540d5e8 1897 else {
50d24c34
SL
1898 struct request *last = list_entry_rq(plug->list.prev);
1899 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1900 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1901 blk_flush_plug_list(plug, false);
019ceb7d
SL
1902 trace_block_plug(q);
1903 }
73c10101 1904 }
73c10101 1905 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1906 blk_account_io_start(req, true);
73c10101
JA
1907 } else {
1908 spin_lock_irq(q->queue_lock);
1909 add_acct_request(q, req, where);
24ecfbe2 1910 __blk_run_queue(q);
73c10101
JA
1911out_unlock:
1912 spin_unlock_irq(q->queue_lock);
1913 }
dece1635
JA
1914
1915 return BLK_QC_T_NONE;
1da177e4
LT
1916}
1917
1da177e4
LT
1918static void handle_bad_sector(struct bio *bio)
1919{
1920 char b[BDEVNAME_SIZE];
1921
1922 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1923 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 1924 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 1925 (unsigned long long)bio_end_sector(bio),
74d46992 1926 (long long)get_capacity(bio->bi_disk));
1da177e4
LT
1927}
1928
c17bb495
AM
1929#ifdef CONFIG_FAIL_MAKE_REQUEST
1930
1931static DECLARE_FAULT_ATTR(fail_make_request);
1932
1933static int __init setup_fail_make_request(char *str)
1934{
1935 return setup_fault_attr(&fail_make_request, str);
1936}
1937__setup("fail_make_request=", setup_fail_make_request);
1938
b2c9cd37 1939static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1940{
b2c9cd37 1941 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1942}
1943
1944static int __init fail_make_request_debugfs(void)
1945{
dd48c085
AM
1946 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1947 NULL, &fail_make_request);
1948
21f9fcd8 1949 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1950}
1951
1952late_initcall(fail_make_request_debugfs);
1953
1954#else /* CONFIG_FAIL_MAKE_REQUEST */
1955
b2c9cd37
AM
1956static inline bool should_fail_request(struct hd_struct *part,
1957 unsigned int bytes)
c17bb495 1958{
b2c9cd37 1959 return false;
c17bb495
AM
1960}
1961
1962#endif /* CONFIG_FAIL_MAKE_REQUEST */
1963
74d46992
CH
1964/*
1965 * Remap block n of partition p to block n+start(p) of the disk.
1966 */
1967static inline int blk_partition_remap(struct bio *bio)
1968{
1969 struct hd_struct *p;
1970 int ret = 0;
1971
1972 /*
1973 * Zone reset does not include bi_size so bio_sectors() is always 0.
1974 * Include a test for the reset op code and perform the remap if needed.
1975 */
1976 if (!bio->bi_partno ||
1977 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
1978 return 0;
1979
1980 rcu_read_lock();
1981 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
1982 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
1983 bio->bi_iter.bi_sector += p->start_sect;
1984 bio->bi_partno = 0;
1985 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
1986 bio->bi_iter.bi_sector - p->start_sect);
1987 } else {
1988 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
1989 ret = -EIO;
1990 }
1991 rcu_read_unlock();
1992
1993 return ret;
1994}
1995
c07e2b41
JA
1996/*
1997 * Check whether this bio extends beyond the end of the device.
1998 */
1999static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2000{
2001 sector_t maxsector;
2002
2003 if (!nr_sectors)
2004 return 0;
2005
2006 /* Test device or partition size, when known. */
74d46992 2007 maxsector = get_capacity(bio->bi_disk);
c07e2b41 2008 if (maxsector) {
4f024f37 2009 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
2010
2011 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2012 /*
2013 * This may well happen - the kernel calls bread()
2014 * without checking the size of the device, e.g., when
2015 * mounting a device.
2016 */
2017 handle_bad_sector(bio);
2018 return 1;
2019 }
2020 }
2021
2022 return 0;
2023}
2024
27a84d54
CH
2025static noinline_for_stack bool
2026generic_make_request_checks(struct bio *bio)
1da177e4 2027{
165125e1 2028 struct request_queue *q;
5a7bbad2 2029 int nr_sectors = bio_sectors(bio);
4e4cbee9 2030 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2031 char b[BDEVNAME_SIZE];
1da177e4
LT
2032
2033 might_sleep();
1da177e4 2034
c07e2b41
JA
2035 if (bio_check_eod(bio, nr_sectors))
2036 goto end_io;
1da177e4 2037
74d46992 2038 q = bio->bi_disk->queue;
5a7bbad2
CH
2039 if (unlikely(!q)) {
2040 printk(KERN_ERR
2041 "generic_make_request: Trying to access "
2042 "nonexistent block-device %s (%Lu)\n",
74d46992 2043 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2044 goto end_io;
2045 }
c17bb495 2046
03a07c92
GR
2047 /*
2048 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2049 * if queue is not a request based queue.
2050 */
2051
2052 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2053 goto not_supported;
2054
74d46992 2055 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
5a7bbad2 2056 goto end_io;
2056a782 2057
74d46992
CH
2058 if (blk_partition_remap(bio))
2059 goto end_io;
2056a782 2060
5a7bbad2
CH
2061 if (bio_check_eod(bio, nr_sectors))
2062 goto end_io;
1e87901e 2063
5a7bbad2
CH
2064 /*
2065 * Filter flush bio's early so that make_request based
2066 * drivers without flush support don't have to worry
2067 * about them.
2068 */
f3a8ab7d 2069 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2070 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2071 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2072 if (!nr_sectors) {
4e4cbee9 2073 status = BLK_STS_OK;
51fd77bd
JA
2074 goto end_io;
2075 }
5a7bbad2 2076 }
5ddfe969 2077
288dab8a
CH
2078 switch (bio_op(bio)) {
2079 case REQ_OP_DISCARD:
2080 if (!blk_queue_discard(q))
2081 goto not_supported;
2082 break;
2083 case REQ_OP_SECURE_ERASE:
2084 if (!blk_queue_secure_erase(q))
2085 goto not_supported;
2086 break;
2087 case REQ_OP_WRITE_SAME:
74d46992 2088 if (!q->limits.max_write_same_sectors)
288dab8a 2089 goto not_supported;
58886785 2090 break;
2d253440
ST
2091 case REQ_OP_ZONE_REPORT:
2092 case REQ_OP_ZONE_RESET:
74d46992 2093 if (!blk_queue_is_zoned(q))
2d253440 2094 goto not_supported;
288dab8a 2095 break;
a6f0788e 2096 case REQ_OP_WRITE_ZEROES:
74d46992 2097 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2098 goto not_supported;
2099 break;
288dab8a
CH
2100 default:
2101 break;
5a7bbad2 2102 }
01edede4 2103
7f4b35d1
TH
2104 /*
2105 * Various block parts want %current->io_context and lazy ioc
2106 * allocation ends up trading a lot of pain for a small amount of
2107 * memory. Just allocate it upfront. This may fail and block
2108 * layer knows how to live with it.
2109 */
2110 create_io_context(GFP_ATOMIC, q->node);
2111
ae118896
TH
2112 if (!blkcg_bio_issue_check(q, bio))
2113 return false;
27a84d54 2114
fbbaf700
N
2115 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2116 trace_block_bio_queue(q, bio);
2117 /* Now that enqueuing has been traced, we need to trace
2118 * completion as well.
2119 */
2120 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2121 }
27a84d54 2122 return true;
a7384677 2123
288dab8a 2124not_supported:
4e4cbee9 2125 status = BLK_STS_NOTSUPP;
a7384677 2126end_io:
4e4cbee9 2127 bio->bi_status = status;
4246a0b6 2128 bio_endio(bio);
27a84d54 2129 return false;
1da177e4
LT
2130}
2131
27a84d54
CH
2132/**
2133 * generic_make_request - hand a buffer to its device driver for I/O
2134 * @bio: The bio describing the location in memory and on the device.
2135 *
2136 * generic_make_request() is used to make I/O requests of block
2137 * devices. It is passed a &struct bio, which describes the I/O that needs
2138 * to be done.
2139 *
2140 * generic_make_request() does not return any status. The
2141 * success/failure status of the request, along with notification of
2142 * completion, is delivered asynchronously through the bio->bi_end_io
2143 * function described (one day) else where.
2144 *
2145 * The caller of generic_make_request must make sure that bi_io_vec
2146 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2147 * set to describe the device address, and the
2148 * bi_end_io and optionally bi_private are set to describe how
2149 * completion notification should be signaled.
2150 *
2151 * generic_make_request and the drivers it calls may use bi_next if this
2152 * bio happens to be merged with someone else, and may resubmit the bio to
2153 * a lower device by calling into generic_make_request recursively, which
2154 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2155 */
dece1635 2156blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2157{
f5fe1b51
N
2158 /*
2159 * bio_list_on_stack[0] contains bios submitted by the current
2160 * make_request_fn.
2161 * bio_list_on_stack[1] contains bios that were submitted before
2162 * the current make_request_fn, but that haven't been processed
2163 * yet.
2164 */
2165 struct bio_list bio_list_on_stack[2];
dece1635 2166 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2167
27a84d54 2168 if (!generic_make_request_checks(bio))
dece1635 2169 goto out;
27a84d54
CH
2170
2171 /*
2172 * We only want one ->make_request_fn to be active at a time, else
2173 * stack usage with stacked devices could be a problem. So use
2174 * current->bio_list to keep a list of requests submited by a
2175 * make_request_fn function. current->bio_list is also used as a
2176 * flag to say if generic_make_request is currently active in this
2177 * task or not. If it is NULL, then no make_request is active. If
2178 * it is non-NULL, then a make_request is active, and new requests
2179 * should be added at the tail
2180 */
bddd87c7 2181 if (current->bio_list) {
f5fe1b51 2182 bio_list_add(&current->bio_list[0], bio);
dece1635 2183 goto out;
d89d8796 2184 }
27a84d54 2185
d89d8796
NB
2186 /* following loop may be a bit non-obvious, and so deserves some
2187 * explanation.
2188 * Before entering the loop, bio->bi_next is NULL (as all callers
2189 * ensure that) so we have a list with a single bio.
2190 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2191 * we assign bio_list to a pointer to the bio_list_on_stack,
2192 * thus initialising the bio_list of new bios to be
27a84d54 2193 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2194 * through a recursive call to generic_make_request. If it
2195 * did, we find a non-NULL value in bio_list and re-enter the loop
2196 * from the top. In this case we really did just take the bio
bddd87c7 2197 * of the top of the list (no pretending) and so remove it from
27a84d54 2198 * bio_list, and call into ->make_request() again.
d89d8796
NB
2199 */
2200 BUG_ON(bio->bi_next);
f5fe1b51
N
2201 bio_list_init(&bio_list_on_stack[0]);
2202 current->bio_list = bio_list_on_stack;
d89d8796 2203 do {
74d46992 2204 struct request_queue *q = bio->bi_disk->queue;
27a84d54 2205
03a07c92 2206 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
79bd9959
N
2207 struct bio_list lower, same;
2208
2209 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2210 bio_list_on_stack[1] = bio_list_on_stack[0];
2211 bio_list_init(&bio_list_on_stack[0]);
dece1635 2212 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2213
2214 blk_queue_exit(q);
27a84d54 2215
79bd9959
N
2216 /* sort new bios into those for a lower level
2217 * and those for the same level
2218 */
2219 bio_list_init(&lower);
2220 bio_list_init(&same);
f5fe1b51 2221 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2222 if (q == bio->bi_disk->queue)
79bd9959
N
2223 bio_list_add(&same, bio);
2224 else
2225 bio_list_add(&lower, bio);
2226 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2227 bio_list_merge(&bio_list_on_stack[0], &lower);
2228 bio_list_merge(&bio_list_on_stack[0], &same);
2229 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2230 } else {
03a07c92
GR
2231 if (unlikely(!blk_queue_dying(q) &&
2232 (bio->bi_opf & REQ_NOWAIT)))
2233 bio_wouldblock_error(bio);
2234 else
2235 bio_io_error(bio);
3ef28e83 2236 }
f5fe1b51 2237 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2238 } while (bio);
bddd87c7 2239 current->bio_list = NULL; /* deactivate */
dece1635
JA
2240
2241out:
2242 return ret;
d89d8796 2243}
1da177e4
LT
2244EXPORT_SYMBOL(generic_make_request);
2245
f421e1d9
CH
2246/**
2247 * direct_make_request - hand a buffer directly to its device driver for I/O
2248 * @bio: The bio describing the location in memory and on the device.
2249 *
2250 * This function behaves like generic_make_request(), but does not protect
2251 * against recursion. Must only be used if the called driver is known
2252 * to not call generic_make_request (or direct_make_request) again from
2253 * its make_request function. (Calling direct_make_request again from
2254 * a workqueue is perfectly fine as that doesn't recurse).
2255 */
2256blk_qc_t direct_make_request(struct bio *bio)
2257{
2258 struct request_queue *q = bio->bi_disk->queue;
2259 bool nowait = bio->bi_opf & REQ_NOWAIT;
2260 blk_qc_t ret;
2261
2262 if (!generic_make_request_checks(bio))
2263 return BLK_QC_T_NONE;
2264
2265 if (unlikely(blk_queue_enter(q, nowait))) {
2266 if (nowait && !blk_queue_dying(q))
2267 bio->bi_status = BLK_STS_AGAIN;
2268 else
2269 bio->bi_status = BLK_STS_IOERR;
2270 bio_endio(bio);
2271 return BLK_QC_T_NONE;
2272 }
2273
2274 ret = q->make_request_fn(q, bio);
2275 blk_queue_exit(q);
2276 return ret;
2277}
2278EXPORT_SYMBOL_GPL(direct_make_request);
2279
1da177e4 2280/**
710027a4 2281 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2282 * @bio: The &struct bio which describes the I/O
2283 *
2284 * submit_bio() is very similar in purpose to generic_make_request(), and
2285 * uses that function to do most of the work. Both are fairly rough
710027a4 2286 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2287 *
2288 */
4e49ea4a 2289blk_qc_t submit_bio(struct bio *bio)
1da177e4 2290{
bf2de6f5
JA
2291 /*
2292 * If it's a regular read/write or a barrier with data attached,
2293 * go through the normal accounting stuff before submission.
2294 */
e2a60da7 2295 if (bio_has_data(bio)) {
4363ac7c
MP
2296 unsigned int count;
2297
95fe6c1a 2298 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
74d46992 2299 count = queue_logical_block_size(bio->bi_disk->queue);
4363ac7c
MP
2300 else
2301 count = bio_sectors(bio);
2302
a8ebb056 2303 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2304 count_vm_events(PGPGOUT, count);
2305 } else {
4f024f37 2306 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2307 count_vm_events(PGPGIN, count);
2308 }
2309
2310 if (unlikely(block_dump)) {
2311 char b[BDEVNAME_SIZE];
8dcbdc74 2312 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2313 current->comm, task_pid_nr(current),
a8ebb056 2314 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2315 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2316 bio_devname(bio, b), count);
bf2de6f5 2317 }
1da177e4
LT
2318 }
2319
dece1635 2320 return generic_make_request(bio);
1da177e4 2321}
1da177e4
LT
2322EXPORT_SYMBOL(submit_bio);
2323
ea435e1b
CH
2324bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2325{
2326 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2327 return false;
2328
2329 if (current->plug)
2330 blk_flush_plug_list(current->plug, false);
2331 return q->poll_fn(q, cookie);
2332}
2333EXPORT_SYMBOL_GPL(blk_poll);
2334
82124d60 2335/**
bf4e6b4e
HR
2336 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2337 * for new the queue limits
82124d60
KU
2338 * @q: the queue
2339 * @rq: the request being checked
2340 *
2341 * Description:
2342 * @rq may have been made based on weaker limitations of upper-level queues
2343 * in request stacking drivers, and it may violate the limitation of @q.
2344 * Since the block layer and the underlying device driver trust @rq
2345 * after it is inserted to @q, it should be checked against @q before
2346 * the insertion using this generic function.
2347 *
82124d60 2348 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2349 * limits when retrying requests on other queues. Those requests need
2350 * to be checked against the new queue limits again during dispatch.
82124d60 2351 */
bf4e6b4e
HR
2352static int blk_cloned_rq_check_limits(struct request_queue *q,
2353 struct request *rq)
82124d60 2354{
8fe0d473 2355 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2356 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2357 return -EIO;
2358 }
2359
2360 /*
2361 * queue's settings related to segment counting like q->bounce_pfn
2362 * may differ from that of other stacking queues.
2363 * Recalculate it to check the request correctly on this queue's
2364 * limitation.
2365 */
2366 blk_recalc_rq_segments(rq);
8a78362c 2367 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2368 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2369 return -EIO;
2370 }
2371
2372 return 0;
2373}
82124d60
KU
2374
2375/**
2376 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2377 * @q: the queue to submit the request
2378 * @rq: the request being queued
2379 */
2a842aca 2380blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2381{
2382 unsigned long flags;
4853abaa 2383 int where = ELEVATOR_INSERT_BACK;
82124d60 2384
bf4e6b4e 2385 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2386 return BLK_STS_IOERR;
82124d60 2387
b2c9cd37
AM
2388 if (rq->rq_disk &&
2389 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2390 return BLK_STS_IOERR;
82124d60 2391
7fb4898e
KB
2392 if (q->mq_ops) {
2393 if (blk_queue_io_stat(q))
2394 blk_account_io_start(rq, true);
157f377b
JA
2395 /*
2396 * Since we have a scheduler attached on the top device,
2397 * bypass a potential scheduler on the bottom device for
2398 * insert.
2399 */
b0850297 2400 blk_mq_request_bypass_insert(rq, true);
2a842aca 2401 return BLK_STS_OK;
7fb4898e
KB
2402 }
2403
82124d60 2404 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2405 if (unlikely(blk_queue_dying(q))) {
8ba61435 2406 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2407 return BLK_STS_IOERR;
8ba61435 2408 }
82124d60
KU
2409
2410 /*
2411 * Submitting request must be dequeued before calling this function
2412 * because it will be linked to another request_queue
2413 */
2414 BUG_ON(blk_queued_rq(rq));
2415
f73f44eb 2416 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2417 where = ELEVATOR_INSERT_FLUSH;
2418
2419 add_acct_request(q, rq, where);
e67b77c7
JM
2420 if (where == ELEVATOR_INSERT_FLUSH)
2421 __blk_run_queue(q);
82124d60
KU
2422 spin_unlock_irqrestore(q->queue_lock, flags);
2423
2a842aca 2424 return BLK_STS_OK;
82124d60
KU
2425}
2426EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2427
80a761fd
TH
2428/**
2429 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2430 * @rq: request to examine
2431 *
2432 * Description:
2433 * A request could be merge of IOs which require different failure
2434 * handling. This function determines the number of bytes which
2435 * can be failed from the beginning of the request without
2436 * crossing into area which need to be retried further.
2437 *
2438 * Return:
2439 * The number of bytes to fail.
80a761fd
TH
2440 */
2441unsigned int blk_rq_err_bytes(const struct request *rq)
2442{
2443 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2444 unsigned int bytes = 0;
2445 struct bio *bio;
2446
e8064021 2447 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2448 return blk_rq_bytes(rq);
2449
2450 /*
2451 * Currently the only 'mixing' which can happen is between
2452 * different fastfail types. We can safely fail portions
2453 * which have all the failfast bits that the first one has -
2454 * the ones which are at least as eager to fail as the first
2455 * one.
2456 */
2457 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2458 if ((bio->bi_opf & ff) != ff)
80a761fd 2459 break;
4f024f37 2460 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2461 }
2462
2463 /* this could lead to infinite loop */
2464 BUG_ON(blk_rq_bytes(rq) && !bytes);
2465 return bytes;
2466}
2467EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2468
320ae51f 2469void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2470{
c2553b58 2471 if (blk_do_io_stat(req)) {
bc58ba94
JA
2472 const int rw = rq_data_dir(req);
2473 struct hd_struct *part;
2474 int cpu;
2475
2476 cpu = part_stat_lock();
09e099d4 2477 part = req->part;
bc58ba94
JA
2478 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2479 part_stat_unlock();
2480 }
2481}
2482
320ae51f 2483void blk_account_io_done(struct request *req)
bc58ba94 2484{
bc58ba94 2485 /*
dd4c133f
TH
2486 * Account IO completion. flush_rq isn't accounted as a
2487 * normal IO on queueing nor completion. Accounting the
2488 * containing request is enough.
bc58ba94 2489 */
e8064021 2490 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2491 unsigned long duration = jiffies - req->start_time;
2492 const int rw = rq_data_dir(req);
2493 struct hd_struct *part;
2494 int cpu;
2495
2496 cpu = part_stat_lock();
09e099d4 2497 part = req->part;
bc58ba94
JA
2498
2499 part_stat_inc(cpu, part, ios[rw]);
2500 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2501 part_round_stats(req->q, cpu, part);
2502 part_dec_in_flight(req->q, part, rw);
bc58ba94 2503
6c23a968 2504 hd_struct_put(part);
bc58ba94
JA
2505 part_stat_unlock();
2506 }
2507}
2508
47fafbc7 2509#ifdef CONFIG_PM
c8158819
LM
2510/*
2511 * Don't process normal requests when queue is suspended
2512 * or in the process of suspending/resuming
2513 */
e4f36b24 2514static bool blk_pm_allow_request(struct request *rq)
c8158819 2515{
e4f36b24
CH
2516 switch (rq->q->rpm_status) {
2517 case RPM_RESUMING:
2518 case RPM_SUSPENDING:
2519 return rq->rq_flags & RQF_PM;
2520 case RPM_SUSPENDED:
2521 return false;
2522 }
2523
2524 return true;
c8158819
LM
2525}
2526#else
e4f36b24 2527static bool blk_pm_allow_request(struct request *rq)
c8158819 2528{
e4f36b24 2529 return true;
c8158819
LM
2530}
2531#endif
2532
320ae51f
JA
2533void blk_account_io_start(struct request *rq, bool new_io)
2534{
2535 struct hd_struct *part;
2536 int rw = rq_data_dir(rq);
2537 int cpu;
2538
2539 if (!blk_do_io_stat(rq))
2540 return;
2541
2542 cpu = part_stat_lock();
2543
2544 if (!new_io) {
2545 part = rq->part;
2546 part_stat_inc(cpu, part, merges[rw]);
2547 } else {
2548 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2549 if (!hd_struct_try_get(part)) {
2550 /*
2551 * The partition is already being removed,
2552 * the request will be accounted on the disk only
2553 *
2554 * We take a reference on disk->part0 although that
2555 * partition will never be deleted, so we can treat
2556 * it as any other partition.
2557 */
2558 part = &rq->rq_disk->part0;
2559 hd_struct_get(part);
2560 }
d62e26b3
JA
2561 part_round_stats(rq->q, cpu, part);
2562 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2563 rq->part = part;
2564 }
2565
2566 part_stat_unlock();
2567}
2568
9c988374
CH
2569static struct request *elv_next_request(struct request_queue *q)
2570{
2571 struct request *rq;
2572 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2573
2574 WARN_ON_ONCE(q->mq_ops);
2575
2576 while (1) {
e4f36b24
CH
2577 list_for_each_entry(rq, &q->queue_head, queuelist) {
2578 if (blk_pm_allow_request(rq))
2579 return rq;
2580
2581 if (rq->rq_flags & RQF_SOFTBARRIER)
2582 break;
9c988374
CH
2583 }
2584
2585 /*
2586 * Flush request is running and flush request isn't queueable
2587 * in the drive, we can hold the queue till flush request is
2588 * finished. Even we don't do this, driver can't dispatch next
2589 * requests and will requeue them. And this can improve
2590 * throughput too. For example, we have request flush1, write1,
2591 * flush 2. flush1 is dispatched, then queue is hold, write1
2592 * isn't inserted to queue. After flush1 is finished, flush2
2593 * will be dispatched. Since disk cache is already clean,
2594 * flush2 will be finished very soon, so looks like flush2 is
2595 * folded to flush1.
2596 * Since the queue is hold, a flag is set to indicate the queue
2597 * should be restarted later. Please see flush_end_io() for
2598 * details.
2599 */
2600 if (fq->flush_pending_idx != fq->flush_running_idx &&
2601 !queue_flush_queueable(q)) {
2602 fq->flush_queue_delayed = 1;
2603 return NULL;
2604 }
2605 if (unlikely(blk_queue_bypass(q)) ||
2606 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2607 return NULL;
2608 }
2609}
2610
3bcddeac 2611/**
9934c8c0
TH
2612 * blk_peek_request - peek at the top of a request queue
2613 * @q: request queue to peek at
2614 *
2615 * Description:
2616 * Return the request at the top of @q. The returned request
2617 * should be started using blk_start_request() before LLD starts
2618 * processing it.
2619 *
2620 * Return:
2621 * Pointer to the request at the top of @q if available. Null
2622 * otherwise.
9934c8c0
TH
2623 */
2624struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2625{
2626 struct request *rq;
2627 int ret;
2628
2fff8a92 2629 lockdep_assert_held(q->queue_lock);
332ebbf7 2630 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2631
9c988374 2632 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2633 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2634 /*
2635 * This is the first time the device driver
2636 * sees this request (possibly after
2637 * requeueing). Notify IO scheduler.
2638 */
e8064021 2639 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2640 elv_activate_rq(q, rq);
2641
2642 /*
2643 * just mark as started even if we don't start
2644 * it, a request that has been delayed should
2645 * not be passed by new incoming requests
2646 */
e8064021 2647 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2648 trace_block_rq_issue(q, rq);
2649 }
2650
2651 if (!q->boundary_rq || q->boundary_rq == rq) {
2652 q->end_sector = rq_end_sector(rq);
2653 q->boundary_rq = NULL;
2654 }
2655
e8064021 2656 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2657 break;
2658
2e46e8b2 2659 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2660 /*
2661 * make sure space for the drain appears we
2662 * know we can do this because max_hw_segments
2663 * has been adjusted to be one fewer than the
2664 * device can handle
2665 */
2666 rq->nr_phys_segments++;
2667 }
2668
2669 if (!q->prep_rq_fn)
2670 break;
2671
2672 ret = q->prep_rq_fn(q, rq);
2673 if (ret == BLKPREP_OK) {
2674 break;
2675 } else if (ret == BLKPREP_DEFER) {
2676 /*
2677 * the request may have been (partially) prepped.
2678 * we need to keep this request in the front to
e8064021 2679 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2680 * prevent other fs requests from passing this one.
2681 */
2e46e8b2 2682 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2683 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2684 /*
2685 * remove the space for the drain we added
2686 * so that we don't add it again
2687 */
2688 --rq->nr_phys_segments;
2689 }
2690
2691 rq = NULL;
2692 break;
0fb5b1fb 2693 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2694 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2695 /*
2696 * Mark this request as started so we don't trigger
2697 * any debug logic in the end I/O path.
2698 */
2699 blk_start_request(rq);
2a842aca
CH
2700 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2701 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2702 } else {
2703 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2704 break;
2705 }
2706 }
2707
2708 return rq;
2709}
9934c8c0 2710EXPORT_SYMBOL(blk_peek_request);
158dbda0 2711
5034435c 2712static void blk_dequeue_request(struct request *rq)
158dbda0 2713{
9934c8c0
TH
2714 struct request_queue *q = rq->q;
2715
158dbda0
TH
2716 BUG_ON(list_empty(&rq->queuelist));
2717 BUG_ON(ELV_ON_HASH(rq));
2718
2719 list_del_init(&rq->queuelist);
2720
2721 /*
2722 * the time frame between a request being removed from the lists
2723 * and to it is freed is accounted as io that is in progress at
2724 * the driver side.
2725 */
9195291e 2726 if (blk_account_rq(rq)) {
0a7ae2ff 2727 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2728 set_io_start_time_ns(rq);
2729 }
158dbda0
TH
2730}
2731
9934c8c0
TH
2732/**
2733 * blk_start_request - start request processing on the driver
2734 * @req: request to dequeue
2735 *
2736 * Description:
2737 * Dequeue @req and start timeout timer on it. This hands off the
2738 * request to the driver.
9934c8c0
TH
2739 */
2740void blk_start_request(struct request *req)
2741{
2fff8a92 2742 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2743 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2744
9934c8c0
TH
2745 blk_dequeue_request(req);
2746
cf43e6be 2747 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2748 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2749 req->rq_flags |= RQF_STATS;
87760e5e 2750 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2751 }
2752
4912aa6c 2753 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2754 blk_add_timer(req);
2755}
2756EXPORT_SYMBOL(blk_start_request);
2757
2758/**
2759 * blk_fetch_request - fetch a request from a request queue
2760 * @q: request queue to fetch a request from
2761 *
2762 * Description:
2763 * Return the request at the top of @q. The request is started on
2764 * return and LLD can start processing it immediately.
2765 *
2766 * Return:
2767 * Pointer to the request at the top of @q if available. Null
2768 * otherwise.
9934c8c0
TH
2769 */
2770struct request *blk_fetch_request(struct request_queue *q)
2771{
2772 struct request *rq;
2773
2fff8a92 2774 lockdep_assert_held(q->queue_lock);
332ebbf7 2775 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2776
9934c8c0
TH
2777 rq = blk_peek_request(q);
2778 if (rq)
2779 blk_start_request(rq);
2780 return rq;
2781}
2782EXPORT_SYMBOL(blk_fetch_request);
2783
ef71de8b
CH
2784/*
2785 * Steal bios from a request and add them to a bio list.
2786 * The request must not have been partially completed before.
2787 */
2788void blk_steal_bios(struct bio_list *list, struct request *rq)
2789{
2790 if (rq->bio) {
2791 if (list->tail)
2792 list->tail->bi_next = rq->bio;
2793 else
2794 list->head = rq->bio;
2795 list->tail = rq->biotail;
2796
2797 rq->bio = NULL;
2798 rq->biotail = NULL;
2799 }
2800
2801 rq->__data_len = 0;
2802}
2803EXPORT_SYMBOL_GPL(blk_steal_bios);
2804
3bcddeac 2805/**
2e60e022 2806 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2807 * @req: the request being processed
2a842aca 2808 * @error: block status code
8ebf9756 2809 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2810 *
2811 * Description:
8ebf9756
RD
2812 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2813 * the request structure even if @req doesn't have leftover.
2814 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2815 *
2816 * This special helper function is only for request stacking drivers
2817 * (e.g. request-based dm) so that they can handle partial completion.
2818 * Actual device drivers should use blk_end_request instead.
2819 *
2820 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2821 * %false return from this function.
3bcddeac
KU
2822 *
2823 * Return:
2e60e022
TH
2824 * %false - this request doesn't have any more data
2825 * %true - this request has more data
3bcddeac 2826 **/
2a842aca
CH
2827bool blk_update_request(struct request *req, blk_status_t error,
2828 unsigned int nr_bytes)
1da177e4 2829{
f79ea416 2830 int total_bytes;
1da177e4 2831
2a842aca 2832 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2833
2e60e022
TH
2834 if (!req->bio)
2835 return false;
2836
2a842aca
CH
2837 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2838 !(req->rq_flags & RQF_QUIET)))
2839 print_req_error(req, error);
1da177e4 2840
bc58ba94 2841 blk_account_io_completion(req, nr_bytes);
d72d904a 2842
f79ea416
KO
2843 total_bytes = 0;
2844 while (req->bio) {
2845 struct bio *bio = req->bio;
4f024f37 2846 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2847
4f024f37 2848 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2849 req->bio = bio->bi_next;
1da177e4 2850
fbbaf700
N
2851 /* Completion has already been traced */
2852 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2853 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2854
f79ea416
KO
2855 total_bytes += bio_bytes;
2856 nr_bytes -= bio_bytes;
1da177e4 2857
f79ea416
KO
2858 if (!nr_bytes)
2859 break;
1da177e4
LT
2860 }
2861
2862 /*
2863 * completely done
2864 */
2e60e022
TH
2865 if (!req->bio) {
2866 /*
2867 * Reset counters so that the request stacking driver
2868 * can find how many bytes remain in the request
2869 * later.
2870 */
a2dec7b3 2871 req->__data_len = 0;
2e60e022
TH
2872 return false;
2873 }
1da177e4 2874
a2dec7b3 2875 req->__data_len -= total_bytes;
2e46e8b2
TH
2876
2877 /* update sector only for requests with clear definition of sector */
57292b58 2878 if (!blk_rq_is_passthrough(req))
a2dec7b3 2879 req->__sector += total_bytes >> 9;
2e46e8b2 2880
80a761fd 2881 /* mixed attributes always follow the first bio */
e8064021 2882 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2883 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2884 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2885 }
2886
ed6565e7
CH
2887 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2888 /*
2889 * If total number of sectors is less than the first segment
2890 * size, something has gone terribly wrong.
2891 */
2892 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2893 blk_dump_rq_flags(req, "request botched");
2894 req->__data_len = blk_rq_cur_bytes(req);
2895 }
2e46e8b2 2896
ed6565e7
CH
2897 /* recalculate the number of segments */
2898 blk_recalc_rq_segments(req);
2899 }
2e46e8b2 2900
2e60e022 2901 return true;
1da177e4 2902}
2e60e022 2903EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2904
2a842aca 2905static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
2906 unsigned int nr_bytes,
2907 unsigned int bidi_bytes)
5efccd17 2908{
2e60e022
TH
2909 if (blk_update_request(rq, error, nr_bytes))
2910 return true;
5efccd17 2911
2e60e022
TH
2912 /* Bidi request must be completed as a whole */
2913 if (unlikely(blk_bidi_rq(rq)) &&
2914 blk_update_request(rq->next_rq, error, bidi_bytes))
2915 return true;
5efccd17 2916
e2e1a148
JA
2917 if (blk_queue_add_random(rq->q))
2918 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2919
2920 return false;
1da177e4
LT
2921}
2922
28018c24
JB
2923/**
2924 * blk_unprep_request - unprepare a request
2925 * @req: the request
2926 *
2927 * This function makes a request ready for complete resubmission (or
2928 * completion). It happens only after all error handling is complete,
2929 * so represents the appropriate moment to deallocate any resources
2930 * that were allocated to the request in the prep_rq_fn. The queue
2931 * lock is held when calling this.
2932 */
2933void blk_unprep_request(struct request *req)
2934{
2935 struct request_queue *q = req->q;
2936
e8064021 2937 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2938 if (q->unprep_rq_fn)
2939 q->unprep_rq_fn(q, req);
2940}
2941EXPORT_SYMBOL_GPL(blk_unprep_request);
2942
2a842aca 2943void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 2944{
cf43e6be
JA
2945 struct request_queue *q = req->q;
2946
2fff8a92 2947 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2948 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2949
cf43e6be 2950 if (req->rq_flags & RQF_STATS)
34dbad5d 2951 blk_stat_add(req);
cf43e6be 2952
e8064021 2953 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2954 blk_queue_end_tag(q, req);
b8286239 2955
ba396a6c 2956 BUG_ON(blk_queued_rq(req));
1da177e4 2957
57292b58 2958 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2959 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2960
e78042e5
MA
2961 blk_delete_timer(req);
2962
e8064021 2963 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2964 blk_unprep_request(req);
2965
bc58ba94 2966 blk_account_io_done(req);
b8286239 2967
87760e5e
JA
2968 if (req->end_io) {
2969 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2970 req->end_io(req, error);
87760e5e 2971 } else {
b8286239
KU
2972 if (blk_bidi_rq(req))
2973 __blk_put_request(req->next_rq->q, req->next_rq);
2974
cf43e6be 2975 __blk_put_request(q, req);
b8286239 2976 }
1da177e4 2977}
12120077 2978EXPORT_SYMBOL(blk_finish_request);
1da177e4 2979
3b11313a 2980/**
2e60e022
TH
2981 * blk_end_bidi_request - Complete a bidi request
2982 * @rq: the request to complete
2a842aca 2983 * @error: block status code
2e60e022
TH
2984 * @nr_bytes: number of bytes to complete @rq
2985 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2986 *
2987 * Description:
e3a04fe3 2988 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2989 * Drivers that supports bidi can safely call this member for any
2990 * type of request, bidi or uni. In the later case @bidi_bytes is
2991 * just ignored.
336cdb40
KU
2992 *
2993 * Return:
2e60e022
TH
2994 * %false - we are done with this request
2995 * %true - still buffers pending for this request
a0cd1285 2996 **/
2a842aca 2997static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
2998 unsigned int nr_bytes, unsigned int bidi_bytes)
2999{
336cdb40 3000 struct request_queue *q = rq->q;
2e60e022 3001 unsigned long flags;
32fab448 3002
332ebbf7
BVA
3003 WARN_ON_ONCE(q->mq_ops);
3004
2e60e022
TH
3005 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3006 return true;
32fab448 3007
336cdb40 3008 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3009 blk_finish_request(rq, error);
336cdb40
KU
3010 spin_unlock_irqrestore(q->queue_lock, flags);
3011
2e60e022 3012 return false;
32fab448
KU
3013}
3014
336cdb40 3015/**
2e60e022
TH
3016 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3017 * @rq: the request to complete
2a842aca 3018 * @error: block status code
e3a04fe3
KU
3019 * @nr_bytes: number of bytes to complete @rq
3020 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3021 *
3022 * Description:
2e60e022
TH
3023 * Identical to blk_end_bidi_request() except that queue lock is
3024 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3025 *
3026 * Return:
2e60e022
TH
3027 * %false - we are done with this request
3028 * %true - still buffers pending for this request
336cdb40 3029 **/
2a842aca 3030static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3031 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3032{
2fff8a92 3033 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3034 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3035
2e60e022
TH
3036 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3037 return true;
336cdb40 3038
2e60e022 3039 blk_finish_request(rq, error);
336cdb40 3040
2e60e022 3041 return false;
336cdb40 3042}
e19a3ab0
KU
3043
3044/**
3045 * blk_end_request - Helper function for drivers to complete the request.
3046 * @rq: the request being processed
2a842aca 3047 * @error: block status code
e19a3ab0
KU
3048 * @nr_bytes: number of bytes to complete
3049 *
3050 * Description:
3051 * Ends I/O on a number of bytes attached to @rq.
3052 * If @rq has leftover, sets it up for the next range of segments.
3053 *
3054 * Return:
b1f74493
FT
3055 * %false - we are done with this request
3056 * %true - still buffers pending for this request
e19a3ab0 3057 **/
2a842aca
CH
3058bool blk_end_request(struct request *rq, blk_status_t error,
3059 unsigned int nr_bytes)
e19a3ab0 3060{
332ebbf7 3061 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3062 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3063}
56ad1740 3064EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3065
3066/**
b1f74493
FT
3067 * blk_end_request_all - Helper function for drives to finish the request.
3068 * @rq: the request to finish
2a842aca 3069 * @error: block status code
336cdb40
KU
3070 *
3071 * Description:
b1f74493
FT
3072 * Completely finish @rq.
3073 */
2a842aca 3074void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3075{
b1f74493
FT
3076 bool pending;
3077 unsigned int bidi_bytes = 0;
336cdb40 3078
b1f74493
FT
3079 if (unlikely(blk_bidi_rq(rq)))
3080 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3081
b1f74493
FT
3082 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3083 BUG_ON(pending);
3084}
56ad1740 3085EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3086
e3a04fe3 3087/**
b1f74493
FT
3088 * __blk_end_request - Helper function for drivers to complete the request.
3089 * @rq: the request being processed
2a842aca 3090 * @error: block status code
b1f74493 3091 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3092 *
3093 * Description:
b1f74493 3094 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3095 *
3096 * Return:
b1f74493
FT
3097 * %false - we are done with this request
3098 * %true - still buffers pending for this request
e3a04fe3 3099 **/
2a842aca
CH
3100bool __blk_end_request(struct request *rq, blk_status_t error,
3101 unsigned int nr_bytes)
e3a04fe3 3102{
2fff8a92 3103 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3104 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3105
b1f74493 3106 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3107}
56ad1740 3108EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3109
32fab448 3110/**
b1f74493
FT
3111 * __blk_end_request_all - Helper function for drives to finish the request.
3112 * @rq: the request to finish
2a842aca 3113 * @error: block status code
32fab448
KU
3114 *
3115 * Description:
b1f74493 3116 * Completely finish @rq. Must be called with queue lock held.
32fab448 3117 */
2a842aca 3118void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3119{
b1f74493
FT
3120 bool pending;
3121 unsigned int bidi_bytes = 0;
3122
2fff8a92 3123 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3124 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3125
b1f74493
FT
3126 if (unlikely(blk_bidi_rq(rq)))
3127 bidi_bytes = blk_rq_bytes(rq->next_rq);
3128
3129 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3130 BUG_ON(pending);
32fab448 3131}
56ad1740 3132EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3133
e19a3ab0 3134/**
b1f74493
FT
3135 * __blk_end_request_cur - Helper function to finish the current request chunk.
3136 * @rq: the request to finish the current chunk for
2a842aca 3137 * @error: block status code
e19a3ab0
KU
3138 *
3139 * Description:
b1f74493
FT
3140 * Complete the current consecutively mapped chunk from @rq. Must
3141 * be called with queue lock held.
e19a3ab0
KU
3142 *
3143 * Return:
b1f74493
FT
3144 * %false - we are done with this request
3145 * %true - still buffers pending for this request
3146 */
2a842aca 3147bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3148{
b1f74493 3149 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3150}
56ad1740 3151EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3152
86db1e29
JA
3153void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3154 struct bio *bio)
1da177e4 3155{
b4f42e28 3156 if (bio_has_data(bio))
fb2dce86 3157 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 3158
4f024f37 3159 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3160 rq->bio = rq->biotail = bio;
1da177e4 3161
74d46992
CH
3162 if (bio->bi_disk)
3163 rq->rq_disk = bio->bi_disk;
66846572 3164}
1da177e4 3165
2d4dc890
IL
3166#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3167/**
3168 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3169 * @rq: the request to be flushed
3170 *
3171 * Description:
3172 * Flush all pages in @rq.
3173 */
3174void rq_flush_dcache_pages(struct request *rq)
3175{
3176 struct req_iterator iter;
7988613b 3177 struct bio_vec bvec;
2d4dc890
IL
3178
3179 rq_for_each_segment(bvec, rq, iter)
7988613b 3180 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3181}
3182EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3183#endif
3184
ef9e3fac
KU
3185/**
3186 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3187 * @q : the queue of the device being checked
3188 *
3189 * Description:
3190 * Check if underlying low-level drivers of a device are busy.
3191 * If the drivers want to export their busy state, they must set own
3192 * exporting function using blk_queue_lld_busy() first.
3193 *
3194 * Basically, this function is used only by request stacking drivers
3195 * to stop dispatching requests to underlying devices when underlying
3196 * devices are busy. This behavior helps more I/O merging on the queue
3197 * of the request stacking driver and prevents I/O throughput regression
3198 * on burst I/O load.
3199 *
3200 * Return:
3201 * 0 - Not busy (The request stacking driver should dispatch request)
3202 * 1 - Busy (The request stacking driver should stop dispatching request)
3203 */
3204int blk_lld_busy(struct request_queue *q)
3205{
3206 if (q->lld_busy_fn)
3207 return q->lld_busy_fn(q);
3208
3209 return 0;
3210}
3211EXPORT_SYMBOL_GPL(blk_lld_busy);
3212
78d8e58a
MS
3213/**
3214 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3215 * @rq: the clone request to be cleaned up
3216 *
3217 * Description:
3218 * Free all bios in @rq for a cloned request.
3219 */
3220void blk_rq_unprep_clone(struct request *rq)
3221{
3222 struct bio *bio;
3223
3224 while ((bio = rq->bio) != NULL) {
3225 rq->bio = bio->bi_next;
3226
3227 bio_put(bio);
3228 }
3229}
3230EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3231
3232/*
3233 * Copy attributes of the original request to the clone request.
3234 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3235 */
3236static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3237{
3238 dst->cpu = src->cpu;
b0fd271d
KU
3239 dst->__sector = blk_rq_pos(src);
3240 dst->__data_len = blk_rq_bytes(src);
3241 dst->nr_phys_segments = src->nr_phys_segments;
3242 dst->ioprio = src->ioprio;
3243 dst->extra_len = src->extra_len;
78d8e58a
MS
3244}
3245
3246/**
3247 * blk_rq_prep_clone - Helper function to setup clone request
3248 * @rq: the request to be setup
3249 * @rq_src: original request to be cloned
3250 * @bs: bio_set that bios for clone are allocated from
3251 * @gfp_mask: memory allocation mask for bio
3252 * @bio_ctr: setup function to be called for each clone bio.
3253 * Returns %0 for success, non %0 for failure.
3254 * @data: private data to be passed to @bio_ctr
3255 *
3256 * Description:
3257 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3258 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3259 * are not copied, and copying such parts is the caller's responsibility.
3260 * Also, pages which the original bios are pointing to are not copied
3261 * and the cloned bios just point same pages.
3262 * So cloned bios must be completed before original bios, which means
3263 * the caller must complete @rq before @rq_src.
3264 */
3265int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3266 struct bio_set *bs, gfp_t gfp_mask,
3267 int (*bio_ctr)(struct bio *, struct bio *, void *),
3268 void *data)
3269{
3270 struct bio *bio, *bio_src;
3271
3272 if (!bs)
3273 bs = fs_bio_set;
3274
3275 __rq_for_each_bio(bio_src, rq_src) {
3276 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3277 if (!bio)
3278 goto free_and_out;
3279
3280 if (bio_ctr && bio_ctr(bio, bio_src, data))
3281 goto free_and_out;
3282
3283 if (rq->bio) {
3284 rq->biotail->bi_next = bio;
3285 rq->biotail = bio;
3286 } else
3287 rq->bio = rq->biotail = bio;
3288 }
3289
3290 __blk_rq_prep_clone(rq, rq_src);
3291
3292 return 0;
3293
3294free_and_out:
3295 if (bio)
3296 bio_put(bio);
3297 blk_rq_unprep_clone(rq);
3298
3299 return -ENOMEM;
b0fd271d
KU
3300}
3301EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3302
59c3d45e 3303int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3304{
3305 return queue_work(kblockd_workqueue, work);
3306}
1da177e4
LT
3307EXPORT_SYMBOL(kblockd_schedule_work);
3308
ee63cfa7
JA
3309int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3310{
3311 return queue_work_on(cpu, kblockd_workqueue, work);
3312}
3313EXPORT_SYMBOL(kblockd_schedule_work_on);
3314
818cd1cb
JA
3315int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3316 unsigned long delay)
3317{
3318 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3319}
3320EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3321
59c3d45e
JA
3322int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3323 unsigned long delay)
e43473b7
VG
3324{
3325 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3326}
3327EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3328
8ab14595
JA
3329int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3330 unsigned long delay)
3331{
3332 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3333}
3334EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3335
75df7136
SJ
3336/**
3337 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3338 * @plug: The &struct blk_plug that needs to be initialized
3339 *
3340 * Description:
3341 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3342 * pending I/O should the task end up blocking between blk_start_plug() and
3343 * blk_finish_plug(). This is important from a performance perspective, but
3344 * also ensures that we don't deadlock. For instance, if the task is blocking
3345 * for a memory allocation, memory reclaim could end up wanting to free a
3346 * page belonging to that request that is currently residing in our private
3347 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3348 * this kind of deadlock.
3349 */
73c10101
JA
3350void blk_start_plug(struct blk_plug *plug)
3351{
3352 struct task_struct *tsk = current;
3353
dd6cf3e1
SL
3354 /*
3355 * If this is a nested plug, don't actually assign it.
3356 */
3357 if (tsk->plug)
3358 return;
3359
73c10101 3360 INIT_LIST_HEAD(&plug->list);
320ae51f 3361 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3362 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3363 /*
dd6cf3e1
SL
3364 * Store ordering should not be needed here, since a potential
3365 * preempt will imply a full memory barrier
73c10101 3366 */
dd6cf3e1 3367 tsk->plug = plug;
73c10101
JA
3368}
3369EXPORT_SYMBOL(blk_start_plug);
3370
3371static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3372{
3373 struct request *rqa = container_of(a, struct request, queuelist);
3374 struct request *rqb = container_of(b, struct request, queuelist);
3375
975927b9
JM
3376 return !(rqa->q < rqb->q ||
3377 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3378}
3379
49cac01e
JA
3380/*
3381 * If 'from_schedule' is true, then postpone the dispatch of requests
3382 * until a safe kblockd context. We due this to avoid accidental big
3383 * additional stack usage in driver dispatch, in places where the originally
3384 * plugger did not intend it.
3385 */
f6603783 3386static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3387 bool from_schedule)
99e22598 3388 __releases(q->queue_lock)
94b5eb28 3389{
2fff8a92
BVA
3390 lockdep_assert_held(q->queue_lock);
3391
49cac01e 3392 trace_block_unplug(q, depth, !from_schedule);
99e22598 3393
70460571 3394 if (from_schedule)
24ecfbe2 3395 blk_run_queue_async(q);
70460571 3396 else
24ecfbe2 3397 __blk_run_queue(q);
70460571 3398 spin_unlock(q->queue_lock);
94b5eb28
JA
3399}
3400
74018dc3 3401static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3402{
3403 LIST_HEAD(callbacks);
3404
2a7d5559
SL
3405 while (!list_empty(&plug->cb_list)) {
3406 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3407
2a7d5559
SL
3408 while (!list_empty(&callbacks)) {
3409 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3410 struct blk_plug_cb,
3411 list);
2a7d5559 3412 list_del(&cb->list);
74018dc3 3413 cb->callback(cb, from_schedule);
2a7d5559 3414 }
048c9374
N
3415 }
3416}
3417
9cbb1750
N
3418struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3419 int size)
3420{
3421 struct blk_plug *plug = current->plug;
3422 struct blk_plug_cb *cb;
3423
3424 if (!plug)
3425 return NULL;
3426
3427 list_for_each_entry(cb, &plug->cb_list, list)
3428 if (cb->callback == unplug && cb->data == data)
3429 return cb;
3430
3431 /* Not currently on the callback list */
3432 BUG_ON(size < sizeof(*cb));
3433 cb = kzalloc(size, GFP_ATOMIC);
3434 if (cb) {
3435 cb->data = data;
3436 cb->callback = unplug;
3437 list_add(&cb->list, &plug->cb_list);
3438 }
3439 return cb;
3440}
3441EXPORT_SYMBOL(blk_check_plugged);
3442
49cac01e 3443void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3444{
3445 struct request_queue *q;
3446 unsigned long flags;
3447 struct request *rq;
109b8129 3448 LIST_HEAD(list);
94b5eb28 3449 unsigned int depth;
73c10101 3450
74018dc3 3451 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3452
3453 if (!list_empty(&plug->mq_list))
3454 blk_mq_flush_plug_list(plug, from_schedule);
3455
73c10101
JA
3456 if (list_empty(&plug->list))
3457 return;
3458
109b8129
N
3459 list_splice_init(&plug->list, &list);
3460
422765c2 3461 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3462
3463 q = NULL;
94b5eb28 3464 depth = 0;
18811272
JA
3465
3466 /*
3467 * Save and disable interrupts here, to avoid doing it for every
3468 * queue lock we have to take.
3469 */
73c10101 3470 local_irq_save(flags);
109b8129
N
3471 while (!list_empty(&list)) {
3472 rq = list_entry_rq(list.next);
73c10101 3473 list_del_init(&rq->queuelist);
73c10101
JA
3474 BUG_ON(!rq->q);
3475 if (rq->q != q) {
99e22598
JA
3476 /*
3477 * This drops the queue lock
3478 */
3479 if (q)
49cac01e 3480 queue_unplugged(q, depth, from_schedule);
73c10101 3481 q = rq->q;
94b5eb28 3482 depth = 0;
73c10101
JA
3483 spin_lock(q->queue_lock);
3484 }
8ba61435
TH
3485
3486 /*
3487 * Short-circuit if @q is dead
3488 */
3f3299d5 3489 if (unlikely(blk_queue_dying(q))) {
2a842aca 3490 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3491 continue;
3492 }
3493
73c10101
JA
3494 /*
3495 * rq is already accounted, so use raw insert
3496 */
f73f44eb 3497 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3498 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3499 else
3500 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3501
3502 depth++;
73c10101
JA
3503 }
3504
99e22598
JA
3505 /*
3506 * This drops the queue lock
3507 */
3508 if (q)
49cac01e 3509 queue_unplugged(q, depth, from_schedule);
73c10101 3510
73c10101
JA
3511 local_irq_restore(flags);
3512}
73c10101
JA
3513
3514void blk_finish_plug(struct blk_plug *plug)
3515{
dd6cf3e1
SL
3516 if (plug != current->plug)
3517 return;
f6603783 3518 blk_flush_plug_list(plug, false);
73c10101 3519
dd6cf3e1 3520 current->plug = NULL;
73c10101 3521}
88b996cd 3522EXPORT_SYMBOL(blk_finish_plug);
73c10101 3523
47fafbc7 3524#ifdef CONFIG_PM
6c954667
LM
3525/**
3526 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3527 * @q: the queue of the device
3528 * @dev: the device the queue belongs to
3529 *
3530 * Description:
3531 * Initialize runtime-PM-related fields for @q and start auto suspend for
3532 * @dev. Drivers that want to take advantage of request-based runtime PM
3533 * should call this function after @dev has been initialized, and its
3534 * request queue @q has been allocated, and runtime PM for it can not happen
3535 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3536 * cases, driver should call this function before any I/O has taken place.
3537 *
3538 * This function takes care of setting up using auto suspend for the device,
3539 * the autosuspend delay is set to -1 to make runtime suspend impossible
3540 * until an updated value is either set by user or by driver. Drivers do
3541 * not need to touch other autosuspend settings.
3542 *
3543 * The block layer runtime PM is request based, so only works for drivers
3544 * that use request as their IO unit instead of those directly use bio's.
3545 */
3546void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3547{
765e40b6
CH
3548 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3549 if (q->mq_ops)
3550 return;
3551
6c954667
LM
3552 q->dev = dev;
3553 q->rpm_status = RPM_ACTIVE;
3554 pm_runtime_set_autosuspend_delay(q->dev, -1);
3555 pm_runtime_use_autosuspend(q->dev);
3556}
3557EXPORT_SYMBOL(blk_pm_runtime_init);
3558
3559/**
3560 * blk_pre_runtime_suspend - Pre runtime suspend check
3561 * @q: the queue of the device
3562 *
3563 * Description:
3564 * This function will check if runtime suspend is allowed for the device
3565 * by examining if there are any requests pending in the queue. If there
3566 * are requests pending, the device can not be runtime suspended; otherwise,
3567 * the queue's status will be updated to SUSPENDING and the driver can
3568 * proceed to suspend the device.
3569 *
3570 * For the not allowed case, we mark last busy for the device so that
3571 * runtime PM core will try to autosuspend it some time later.
3572 *
3573 * This function should be called near the start of the device's
3574 * runtime_suspend callback.
3575 *
3576 * Return:
3577 * 0 - OK to runtime suspend the device
3578 * -EBUSY - Device should not be runtime suspended
3579 */
3580int blk_pre_runtime_suspend(struct request_queue *q)
3581{
3582 int ret = 0;
3583
4fd41a85
KX
3584 if (!q->dev)
3585 return ret;
3586
6c954667
LM
3587 spin_lock_irq(q->queue_lock);
3588 if (q->nr_pending) {
3589 ret = -EBUSY;
3590 pm_runtime_mark_last_busy(q->dev);
3591 } else {
3592 q->rpm_status = RPM_SUSPENDING;
3593 }
3594 spin_unlock_irq(q->queue_lock);
3595 return ret;
3596}
3597EXPORT_SYMBOL(blk_pre_runtime_suspend);
3598
3599/**
3600 * blk_post_runtime_suspend - Post runtime suspend processing
3601 * @q: the queue of the device
3602 * @err: return value of the device's runtime_suspend function
3603 *
3604 * Description:
3605 * Update the queue's runtime status according to the return value of the
3606 * device's runtime suspend function and mark last busy for the device so
3607 * that PM core will try to auto suspend the device at a later time.
3608 *
3609 * This function should be called near the end of the device's
3610 * runtime_suspend callback.
3611 */
3612void blk_post_runtime_suspend(struct request_queue *q, int err)
3613{
4fd41a85
KX
3614 if (!q->dev)
3615 return;
3616
6c954667
LM
3617 spin_lock_irq(q->queue_lock);
3618 if (!err) {
3619 q->rpm_status = RPM_SUSPENDED;
3620 } else {
3621 q->rpm_status = RPM_ACTIVE;
3622 pm_runtime_mark_last_busy(q->dev);
3623 }
3624 spin_unlock_irq(q->queue_lock);
3625}
3626EXPORT_SYMBOL(blk_post_runtime_suspend);
3627
3628/**
3629 * blk_pre_runtime_resume - Pre runtime resume processing
3630 * @q: the queue of the device
3631 *
3632 * Description:
3633 * Update the queue's runtime status to RESUMING in preparation for the
3634 * runtime resume of the device.
3635 *
3636 * This function should be called near the start of the device's
3637 * runtime_resume callback.
3638 */
3639void blk_pre_runtime_resume(struct request_queue *q)
3640{
4fd41a85
KX
3641 if (!q->dev)
3642 return;
3643
6c954667
LM
3644 spin_lock_irq(q->queue_lock);
3645 q->rpm_status = RPM_RESUMING;
3646 spin_unlock_irq(q->queue_lock);
3647}
3648EXPORT_SYMBOL(blk_pre_runtime_resume);
3649
3650/**
3651 * blk_post_runtime_resume - Post runtime resume processing
3652 * @q: the queue of the device
3653 * @err: return value of the device's runtime_resume function
3654 *
3655 * Description:
3656 * Update the queue's runtime status according to the return value of the
3657 * device's runtime_resume function. If it is successfully resumed, process
3658 * the requests that are queued into the device's queue when it is resuming
3659 * and then mark last busy and initiate autosuspend for it.
3660 *
3661 * This function should be called near the end of the device's
3662 * runtime_resume callback.
3663 */
3664void blk_post_runtime_resume(struct request_queue *q, int err)
3665{
4fd41a85
KX
3666 if (!q->dev)
3667 return;
3668
6c954667
LM
3669 spin_lock_irq(q->queue_lock);
3670 if (!err) {
3671 q->rpm_status = RPM_ACTIVE;
3672 __blk_run_queue(q);
3673 pm_runtime_mark_last_busy(q->dev);
c60855cd 3674 pm_request_autosuspend(q->dev);
6c954667
LM
3675 } else {
3676 q->rpm_status = RPM_SUSPENDED;
3677 }
3678 spin_unlock_irq(q->queue_lock);
3679}
3680EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3681
3682/**
3683 * blk_set_runtime_active - Force runtime status of the queue to be active
3684 * @q: the queue of the device
3685 *
3686 * If the device is left runtime suspended during system suspend the resume
3687 * hook typically resumes the device and corrects runtime status
3688 * accordingly. However, that does not affect the queue runtime PM status
3689 * which is still "suspended". This prevents processing requests from the
3690 * queue.
3691 *
3692 * This function can be used in driver's resume hook to correct queue
3693 * runtime PM status and re-enable peeking requests from the queue. It
3694 * should be called before first request is added to the queue.
3695 */
3696void blk_set_runtime_active(struct request_queue *q)
3697{
3698 spin_lock_irq(q->queue_lock);
3699 q->rpm_status = RPM_ACTIVE;
3700 pm_runtime_mark_last_busy(q->dev);
3701 pm_request_autosuspend(q->dev);
3702 spin_unlock_irq(q->queue_lock);
3703}
3704EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3705#endif
3706
1da177e4
LT
3707int __init blk_dev_init(void)
3708{
ef295ecf
CH
3709 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3710 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3711 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3712 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3713 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3714
89b90be2
TH
3715 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3716 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3717 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3718 if (!kblockd_workqueue)
3719 panic("Failed to create kblockd\n");
3720
3721 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3722 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3723
c2789bd4 3724 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3725 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3726
18fbda91
OS
3727#ifdef CONFIG_DEBUG_FS
3728 blk_debugfs_root = debugfs_create_dir("block", NULL);
3729#endif
3730
d38ecf93 3731 return 0;
1da177e4 3732}