]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: Introduce BLK_MQ_REQ_PREEMPT
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 147
4e4cbee9
CH
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
2a842aca
CH
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153};
154
155blk_status_t errno_to_blk_status(int errno)
156{
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165}
166EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168int blk_status_to_errno(blk_status_t status)
169{
170 int idx = (__force int)status;
171
34bd9c1c 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
173 return -EIO;
174 return blk_errors[idx].errno;
175}
176EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178static void print_req_error(struct request *req, blk_status_t status)
179{
180 int idx = (__force int)status;
181
34bd9c1c 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189}
190
5bb23a68 191static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 192 unsigned int nbytes, blk_status_t error)
1da177e4 193{
78d8e58a 194 if (error)
4e4cbee9 195 bio->bi_status = error;
797e7dbb 196
e8064021 197 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 198 bio_set_flag(bio, BIO_QUIET);
08bafc03 199
f79ea416 200 bio_advance(bio, nbytes);
7ba1ba12 201
143a87f4 202 /* don't actually finish bio if it's part of flush sequence */
e8064021 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 204 bio_endio(bio);
1da177e4 205}
1da177e4 206
1da177e4
LT
207void blk_dump_rq_flags(struct request *rq, char *msg)
208{
aebf526b
CH
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 211 (unsigned long long) rq->cmd_flags);
1da177e4 212
83096ebf
TH
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_dump_rq_flags);
220
3cca6dc1 221static void blk_delay_work(struct work_struct *work)
1da177e4 222{
3cca6dc1 223 struct request_queue *q;
1da177e4 224
3cca6dc1
JA
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
24ecfbe2 227 __blk_run_queue(q);
3cca6dc1 228 spin_unlock_irq(q->queue_lock);
1da177e4 229}
1da177e4
LT
230
231/**
3cca6dc1
JA
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
1da177e4
LT
235 *
236 * Description:
3cca6dc1
JA
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
2fff8a92 239 * restarted around the specified time.
3cca6dc1
JA
240 */
241void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 242{
2fff8a92 243 lockdep_assert_held(q->queue_lock);
332ebbf7 244 WARN_ON_ONCE(q->mq_ops);
2fff8a92 245
70460571
BVA
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
2ad8b1ef 249}
3cca6dc1 250EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 251
21491412
JA
252/**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261void blk_start_queue_async(struct request_queue *q)
262{
2fff8a92 263 lockdep_assert_held(q->queue_lock);
332ebbf7 264 WARN_ON_ONCE(q->mq_ops);
2fff8a92 265
21491412
JA
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268}
269EXPORT_SYMBOL(blk_start_queue_async);
270
1da177e4
LT
271/**
272 * blk_start_queue - restart a previously stopped queue
165125e1 273 * @q: The &struct request_queue in question
1da177e4
LT
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
2fff8a92 278 * entered. Also see blk_stop_queue().
1da177e4 279 **/
165125e1 280void blk_start_queue(struct request_queue *q)
1da177e4 281{
2fff8a92 282 lockdep_assert_held(q->queue_lock);
4ddd56b0 283 WARN_ON(!in_interrupt() && !irqs_disabled());
332ebbf7 284 WARN_ON_ONCE(q->mq_ops);
a038e253 285
75ad23bc 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 287 __blk_run_queue(q);
1da177e4 288}
1da177e4
LT
289EXPORT_SYMBOL(blk_start_queue);
290
291/**
292 * blk_stop_queue - stop a queue
165125e1 293 * @q: The &struct request_queue in question
1da177e4
LT
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 303 * blk_start_queue() to restart queue operations.
1da177e4 304 **/
165125e1 305void blk_stop_queue(struct request_queue *q)
1da177e4 306{
2fff8a92 307 lockdep_assert_held(q->queue_lock);
332ebbf7 308 WARN_ON_ONCE(q->mq_ops);
2fff8a92 309
136b5721 310 cancel_delayed_work(&q->delay_work);
75ad23bc 311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
312}
313EXPORT_SYMBOL(blk_stop_queue);
314
315/**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
59c51591 324 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
da527770 328 * This function does not cancel any asynchronous activity arising
da3dae54 329 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 330 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 331 *
1da177e4
LT
332 */
333void blk_sync_queue(struct request_queue *q)
334{
70ed28b9 335 del_timer_sync(&q->timeout);
4e9b6f20 336 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
aba7afc5 342 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 343 queue_for_each_hw_ctx(q, hctx, i)
9f993737 344 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
1da177e4
LT
348}
349EXPORT_SYMBOL(blk_sync_queue);
350
c246e80d
BVA
351/**
352 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
353 * @q: The queue to run
354 *
355 * Description:
356 * Invoke request handling on a queue if there are any pending requests.
357 * May be used to restart request handling after a request has completed.
358 * This variant runs the queue whether or not the queue has been
359 * stopped. Must be called with the queue lock held and interrupts
360 * disabled. See also @blk_run_queue.
361 */
362inline void __blk_run_queue_uncond(struct request_queue *q)
363{
2fff8a92 364 lockdep_assert_held(q->queue_lock);
332ebbf7 365 WARN_ON_ONCE(q->mq_ops);
2fff8a92 366
c246e80d
BVA
367 if (unlikely(blk_queue_dead(q)))
368 return;
369
24faf6f6
BVA
370 /*
371 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
372 * the queue lock internally. As a result multiple threads may be
373 * running such a request function concurrently. Keep track of the
374 * number of active request_fn invocations such that blk_drain_queue()
375 * can wait until all these request_fn calls have finished.
376 */
377 q->request_fn_active++;
c246e80d 378 q->request_fn(q);
24faf6f6 379 q->request_fn_active--;
c246e80d 380}
a7928c15 381EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 382
1da177e4 383/**
80a4b58e 384 * __blk_run_queue - run a single device queue
1da177e4 385 * @q: The queue to run
80a4b58e
JA
386 *
387 * Description:
2fff8a92 388 * See @blk_run_queue.
1da177e4 389 */
24ecfbe2 390void __blk_run_queue(struct request_queue *q)
1da177e4 391{
2fff8a92 392 lockdep_assert_held(q->queue_lock);
332ebbf7 393 WARN_ON_ONCE(q->mq_ops);
2fff8a92 394
a538cd03
TH
395 if (unlikely(blk_queue_stopped(q)))
396 return;
397
c246e80d 398 __blk_run_queue_uncond(q);
75ad23bc
NP
399}
400EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 401
24ecfbe2
CH
402/**
403 * blk_run_queue_async - run a single device queue in workqueue context
404 * @q: The queue to run
405 *
406 * Description:
407 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
408 * of us.
409 *
410 * Note:
411 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
412 * has canceled q->delay_work, callers must hold the queue lock to avoid
413 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
414 */
415void blk_run_queue_async(struct request_queue *q)
416{
2fff8a92 417 lockdep_assert_held(q->queue_lock);
332ebbf7 418 WARN_ON_ONCE(q->mq_ops);
2fff8a92 419
70460571 420 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 421 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 422}
c21e6beb 423EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 424
75ad23bc
NP
425/**
426 * blk_run_queue - run a single device queue
427 * @q: The queue to run
80a4b58e
JA
428 *
429 * Description:
430 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 431 * May be used to restart queueing when a request has completed.
75ad23bc
NP
432 */
433void blk_run_queue(struct request_queue *q)
434{
435 unsigned long flags;
436
332ebbf7
BVA
437 WARN_ON_ONCE(q->mq_ops);
438
75ad23bc 439 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 440 __blk_run_queue(q);
1da177e4
LT
441 spin_unlock_irqrestore(q->queue_lock, flags);
442}
443EXPORT_SYMBOL(blk_run_queue);
444
165125e1 445void blk_put_queue(struct request_queue *q)
483f4afc
AV
446{
447 kobject_put(&q->kobj);
448}
d86e0e83 449EXPORT_SYMBOL(blk_put_queue);
483f4afc 450
e3c78ca5 451/**
807592a4 452 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 453 * @q: queue to drain
c9a929dd 454 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 455 *
c9a929dd
TH
456 * Drain requests from @q. If @drain_all is set, all requests are drained.
457 * If not, only ELVPRIV requests are drained. The caller is responsible
458 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 459 */
807592a4
BVA
460static void __blk_drain_queue(struct request_queue *q, bool drain_all)
461 __releases(q->queue_lock)
462 __acquires(q->queue_lock)
e3c78ca5 463{
458f27a9
AH
464 int i;
465
807592a4 466 lockdep_assert_held(q->queue_lock);
332ebbf7 467 WARN_ON_ONCE(q->mq_ops);
807592a4 468
e3c78ca5 469 while (true) {
481a7d64 470 bool drain = false;
e3c78ca5 471
b855b04a
TH
472 /*
473 * The caller might be trying to drain @q before its
474 * elevator is initialized.
475 */
476 if (q->elevator)
477 elv_drain_elevator(q);
478
5efd6113 479 blkcg_drain_queue(q);
e3c78ca5 480
4eabc941
TH
481 /*
482 * This function might be called on a queue which failed
b855b04a
TH
483 * driver init after queue creation or is not yet fully
484 * active yet. Some drivers (e.g. fd and loop) get unhappy
485 * in such cases. Kick queue iff dispatch queue has
486 * something on it and @q has request_fn set.
4eabc941 487 */
b855b04a 488 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 489 __blk_run_queue(q);
c9a929dd 490
8a5ecdd4 491 drain |= q->nr_rqs_elvpriv;
24faf6f6 492 drain |= q->request_fn_active;
481a7d64
TH
493
494 /*
495 * Unfortunately, requests are queued at and tracked from
496 * multiple places and there's no single counter which can
497 * be drained. Check all the queues and counters.
498 */
499 if (drain_all) {
e97c293c 500 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
501 drain |= !list_empty(&q->queue_head);
502 for (i = 0; i < 2; i++) {
8a5ecdd4 503 drain |= q->nr_rqs[i];
481a7d64 504 drain |= q->in_flight[i];
7c94e1c1
ML
505 if (fq)
506 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
507 }
508 }
e3c78ca5 509
481a7d64 510 if (!drain)
e3c78ca5 511 break;
807592a4
BVA
512
513 spin_unlock_irq(q->queue_lock);
514
e3c78ca5 515 msleep(10);
807592a4
BVA
516
517 spin_lock_irq(q->queue_lock);
e3c78ca5 518 }
458f27a9
AH
519
520 /*
521 * With queue marked dead, any woken up waiter will fail the
522 * allocation path, so the wakeup chaining is lost and we're
523 * left with hung waiters. We need to wake up those waiters.
524 */
525 if (q->request_fn) {
a051661c
TH
526 struct request_list *rl;
527
a051661c
TH
528 blk_queue_for_each_rl(rl, q)
529 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
530 wake_up_all(&rl->wait[i]);
458f27a9 531 }
e3c78ca5
TH
532}
533
d732580b
TH
534/**
535 * blk_queue_bypass_start - enter queue bypass mode
536 * @q: queue of interest
537 *
538 * In bypass mode, only the dispatch FIFO queue of @q is used. This
539 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 540 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
541 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
542 * inside queue or RCU read lock.
d732580b
TH
543 */
544void blk_queue_bypass_start(struct request_queue *q)
545{
332ebbf7
BVA
546 WARN_ON_ONCE(q->mq_ops);
547
d732580b 548 spin_lock_irq(q->queue_lock);
776687bc 549 q->bypass_depth++;
d732580b
TH
550 queue_flag_set(QUEUE_FLAG_BYPASS, q);
551 spin_unlock_irq(q->queue_lock);
552
776687bc
TH
553 /*
554 * Queues start drained. Skip actual draining till init is
555 * complete. This avoids lenghty delays during queue init which
556 * can happen many times during boot.
557 */
558 if (blk_queue_init_done(q)) {
807592a4
BVA
559 spin_lock_irq(q->queue_lock);
560 __blk_drain_queue(q, false);
561 spin_unlock_irq(q->queue_lock);
562
b82d4b19
TH
563 /* ensure blk_queue_bypass() is %true inside RCU read lock */
564 synchronize_rcu();
565 }
d732580b
TH
566}
567EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
568
569/**
570 * blk_queue_bypass_end - leave queue bypass mode
571 * @q: queue of interest
572 *
573 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
574 *
575 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
576 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
577 */
578void blk_queue_bypass_end(struct request_queue *q)
579{
580 spin_lock_irq(q->queue_lock);
581 if (!--q->bypass_depth)
582 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
583 WARN_ON_ONCE(q->bypass_depth < 0);
584 spin_unlock_irq(q->queue_lock);
585}
586EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
587
aed3ea94
JA
588void blk_set_queue_dying(struct request_queue *q)
589{
1b856086
BVA
590 spin_lock_irq(q->queue_lock);
591 queue_flag_set(QUEUE_FLAG_DYING, q);
592 spin_unlock_irq(q->queue_lock);
aed3ea94 593
d3cfb2a0
ML
594 /*
595 * When queue DYING flag is set, we need to block new req
596 * entering queue, so we call blk_freeze_queue_start() to
597 * prevent I/O from crossing blk_queue_enter().
598 */
599 blk_freeze_queue_start(q);
600
aed3ea94
JA
601 if (q->mq_ops)
602 blk_mq_wake_waiters(q);
603 else {
604 struct request_list *rl;
605
bbfc3c5d 606 spin_lock_irq(q->queue_lock);
aed3ea94
JA
607 blk_queue_for_each_rl(rl, q) {
608 if (rl->rq_pool) {
609 wake_up(&rl->wait[BLK_RW_SYNC]);
610 wake_up(&rl->wait[BLK_RW_ASYNC]);
611 }
612 }
bbfc3c5d 613 spin_unlock_irq(q->queue_lock);
aed3ea94 614 }
055f6e18
ML
615
616 /* Make blk_queue_enter() reexamine the DYING flag. */
617 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
618}
619EXPORT_SYMBOL_GPL(blk_set_queue_dying);
620
c9a929dd
TH
621/**
622 * blk_cleanup_queue - shutdown a request queue
623 * @q: request queue to shutdown
624 *
c246e80d
BVA
625 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
626 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 627 */
6728cb0e 628void blk_cleanup_queue(struct request_queue *q)
483f4afc 629{
c9a929dd 630 spinlock_t *lock = q->queue_lock;
e3335de9 631
3f3299d5 632 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 633 mutex_lock(&q->sysfs_lock);
aed3ea94 634 blk_set_queue_dying(q);
c9a929dd 635 spin_lock_irq(lock);
6ecf23af 636
80fd9979 637 /*
3f3299d5 638 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
639 * that, unlike blk_queue_bypass_start(), we aren't performing
640 * synchronize_rcu() after entering bypass mode to avoid the delay
641 * as some drivers create and destroy a lot of queues while
642 * probing. This is still safe because blk_release_queue() will be
643 * called only after the queue refcnt drops to zero and nothing,
644 * RCU or not, would be traversing the queue by then.
645 */
6ecf23af
TH
646 q->bypass_depth++;
647 queue_flag_set(QUEUE_FLAG_BYPASS, q);
648
c9a929dd
TH
649 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
650 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 651 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
652 spin_unlock_irq(lock);
653 mutex_unlock(&q->sysfs_lock);
654
c246e80d
BVA
655 /*
656 * Drain all requests queued before DYING marking. Set DEAD flag to
657 * prevent that q->request_fn() gets invoked after draining finished.
658 */
3ef28e83 659 blk_freeze_queue(q);
9c1051aa
OS
660 spin_lock_irq(lock);
661 if (!q->mq_ops)
43a5e4e2 662 __blk_drain_queue(q, true);
c246e80d 663 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 664 spin_unlock_irq(lock);
c9a929dd 665
5a48fc14
DW
666 /* for synchronous bio-based driver finish in-flight integrity i/o */
667 blk_flush_integrity();
668
c9a929dd 669 /* @q won't process any more request, flush async actions */
dc3b17cc 670 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
671 blk_sync_queue(q);
672
45a9c9d9
BVA
673 if (q->mq_ops)
674 blk_mq_free_queue(q);
3ef28e83 675 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 676
5e5cfac0
AH
677 spin_lock_irq(lock);
678 if (q->queue_lock != &q->__queue_lock)
679 q->queue_lock = &q->__queue_lock;
680 spin_unlock_irq(lock);
681
c9a929dd 682 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
683 blk_put_queue(q);
684}
1da177e4
LT
685EXPORT_SYMBOL(blk_cleanup_queue);
686
271508db 687/* Allocate memory local to the request queue */
6d247d7f 688static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 689{
6d247d7f
CH
690 struct request_queue *q = data;
691
692 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
693}
694
6d247d7f 695static void free_request_simple(void *element, void *data)
271508db
DR
696{
697 kmem_cache_free(request_cachep, element);
698}
699
6d247d7f
CH
700static void *alloc_request_size(gfp_t gfp_mask, void *data)
701{
702 struct request_queue *q = data;
703 struct request *rq;
704
705 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
706 q->node);
707 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
708 kfree(rq);
709 rq = NULL;
710 }
711 return rq;
712}
713
714static void free_request_size(void *element, void *data)
715{
716 struct request_queue *q = data;
717
718 if (q->exit_rq_fn)
719 q->exit_rq_fn(q, element);
720 kfree(element);
721}
722
5b788ce3
TH
723int blk_init_rl(struct request_list *rl, struct request_queue *q,
724 gfp_t gfp_mask)
1da177e4 725{
85acb3ba 726 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
727 return 0;
728
5b788ce3 729 rl->q = q;
1faa16d2
JA
730 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
731 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
732 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
733 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 734
6d247d7f
CH
735 if (q->cmd_size) {
736 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
737 alloc_request_size, free_request_size,
738 q, gfp_mask, q->node);
739 } else {
740 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
741 alloc_request_simple, free_request_simple,
742 q, gfp_mask, q->node);
743 }
1da177e4
LT
744 if (!rl->rq_pool)
745 return -ENOMEM;
746
b425e504
BVA
747 if (rl != &q->root_rl)
748 WARN_ON_ONCE(!blk_get_queue(q));
749
1da177e4
LT
750 return 0;
751}
752
b425e504 753void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 754{
b425e504 755 if (rl->rq_pool) {
5b788ce3 756 mempool_destroy(rl->rq_pool);
b425e504
BVA
757 if (rl != &q->root_rl)
758 blk_put_queue(q);
759 }
5b788ce3
TH
760}
761
165125e1 762struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 763{
c304a51b 764 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
765}
766EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 767
6f3b0e8b 768int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
769{
770 while (true) {
771 int ret;
772
773 if (percpu_ref_tryget_live(&q->q_usage_counter))
774 return 0;
775
6f3b0e8b 776 if (nowait)
3ef28e83
DW
777 return -EBUSY;
778
5ed61d3f 779 /*
1671d522 780 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 781 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
782 * .q_usage_counter and reading .mq_freeze_depth or
783 * queue dying flag, otherwise the following wait may
784 * never return if the two reads are reordered.
5ed61d3f
ML
785 */
786 smp_rmb();
787
3ef28e83
DW
788 ret = wait_event_interruptible(q->mq_freeze_wq,
789 !atomic_read(&q->mq_freeze_depth) ||
790 blk_queue_dying(q));
791 if (blk_queue_dying(q))
792 return -ENODEV;
793 if (ret)
794 return ret;
795 }
796}
797
798void blk_queue_exit(struct request_queue *q)
799{
800 percpu_ref_put(&q->q_usage_counter);
801}
802
803static void blk_queue_usage_counter_release(struct percpu_ref *ref)
804{
805 struct request_queue *q =
806 container_of(ref, struct request_queue, q_usage_counter);
807
808 wake_up_all(&q->mq_freeze_wq);
809}
810
287922eb
CH
811static void blk_rq_timed_out_timer(unsigned long data)
812{
813 struct request_queue *q = (struct request_queue *)data;
814
815 kblockd_schedule_work(&q->timeout_work);
816}
817
165125e1 818struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 819{
165125e1 820 struct request_queue *q;
1946089a 821
8324aa91 822 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 823 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
824 if (!q)
825 return NULL;
826
00380a40 827 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 828 if (q->id < 0)
3d2936f4 829 goto fail_q;
a73f730d 830
93b27e72 831 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
832 if (!q->bio_split)
833 goto fail_id;
834
d03f6cdc
JK
835 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
836 if (!q->backing_dev_info)
837 goto fail_split;
838
a83b576c
JA
839 q->stats = blk_alloc_queue_stats();
840 if (!q->stats)
841 goto fail_stats;
842
dc3b17cc 843 q->backing_dev_info->ra_pages =
09cbfeaf 844 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
845 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
846 q->backing_dev_info->name = "block";
5151412d 847 q->node = node_id;
0989a025 848
dc3b17cc 849 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 850 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 851 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
4e9b6f20 852 INIT_WORK(&q->timeout_work, NULL);
b855b04a 853 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 854 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 855 INIT_LIST_HEAD(&q->icq_list);
4eef3049 856#ifdef CONFIG_BLK_CGROUP
e8989fae 857 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 858#endif
3cca6dc1 859 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 860
8324aa91 861 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 862
5acb3cc2
WL
863#ifdef CONFIG_BLK_DEV_IO_TRACE
864 mutex_init(&q->blk_trace_mutex);
865#endif
483f4afc 866 mutex_init(&q->sysfs_lock);
e7e72bf6 867 spin_lock_init(&q->__queue_lock);
483f4afc 868
c94a96ac
VG
869 /*
870 * By default initialize queue_lock to internal lock and driver can
871 * override it later if need be.
872 */
873 q->queue_lock = &q->__queue_lock;
874
b82d4b19
TH
875 /*
876 * A queue starts its life with bypass turned on to avoid
877 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
878 * init. The initial bypass will be finished when the queue is
879 * registered by blk_register_queue().
b82d4b19
TH
880 */
881 q->bypass_depth = 1;
882 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
883
320ae51f
JA
884 init_waitqueue_head(&q->mq_freeze_wq);
885
3ef28e83
DW
886 /*
887 * Init percpu_ref in atomic mode so that it's faster to shutdown.
888 * See blk_register_queue() for details.
889 */
890 if (percpu_ref_init(&q->q_usage_counter,
891 blk_queue_usage_counter_release,
892 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 893 goto fail_bdi;
f51b802c 894
3ef28e83
DW
895 if (blkcg_init_queue(q))
896 goto fail_ref;
897
1da177e4 898 return q;
a73f730d 899
3ef28e83
DW
900fail_ref:
901 percpu_ref_exit(&q->q_usage_counter);
fff4996b 902fail_bdi:
a83b576c
JA
903 blk_free_queue_stats(q->stats);
904fail_stats:
d03f6cdc 905 bdi_put(q->backing_dev_info);
54efd50b
KO
906fail_split:
907 bioset_free(q->bio_split);
a73f730d
TH
908fail_id:
909 ida_simple_remove(&blk_queue_ida, q->id);
910fail_q:
911 kmem_cache_free(blk_requestq_cachep, q);
912 return NULL;
1da177e4 913}
1946089a 914EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
915
916/**
917 * blk_init_queue - prepare a request queue for use with a block device
918 * @rfn: The function to be called to process requests that have been
919 * placed on the queue.
920 * @lock: Request queue spin lock
921 *
922 * Description:
923 * If a block device wishes to use the standard request handling procedures,
924 * which sorts requests and coalesces adjacent requests, then it must
925 * call blk_init_queue(). The function @rfn will be called when there
926 * are requests on the queue that need to be processed. If the device
927 * supports plugging, then @rfn may not be called immediately when requests
928 * are available on the queue, but may be called at some time later instead.
929 * Plugged queues are generally unplugged when a buffer belonging to one
930 * of the requests on the queue is needed, or due to memory pressure.
931 *
932 * @rfn is not required, or even expected, to remove all requests off the
933 * queue, but only as many as it can handle at a time. If it does leave
934 * requests on the queue, it is responsible for arranging that the requests
935 * get dealt with eventually.
936 *
937 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
938 * request queue; this lock will be taken also from interrupt context, so irq
939 * disabling is needed for it.
1da177e4 940 *
710027a4 941 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
942 * it didn't succeed.
943 *
944 * Note:
945 * blk_init_queue() must be paired with a blk_cleanup_queue() call
946 * when the block device is deactivated (such as at module unload).
947 **/
1946089a 948
165125e1 949struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 950{
c304a51b 951 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
952}
953EXPORT_SYMBOL(blk_init_queue);
954
165125e1 955struct request_queue *
1946089a
CL
956blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
957{
5ea708d1 958 struct request_queue *q;
1da177e4 959
5ea708d1
CH
960 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
961 if (!q)
c86d1b8a
MS
962 return NULL;
963
5ea708d1
CH
964 q->request_fn = rfn;
965 if (lock)
966 q->queue_lock = lock;
967 if (blk_init_allocated_queue(q) < 0) {
968 blk_cleanup_queue(q);
969 return NULL;
970 }
18741986 971
7982e90c 972 return q;
01effb0d
MS
973}
974EXPORT_SYMBOL(blk_init_queue_node);
975
dece1635 976static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 977
1da177e4 978
5ea708d1
CH
979int blk_init_allocated_queue(struct request_queue *q)
980{
332ebbf7
BVA
981 WARN_ON_ONCE(q->mq_ops);
982
6d247d7f 983 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 984 if (!q->fq)
5ea708d1 985 return -ENOMEM;
7982e90c 986
6d247d7f
CH
987 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
988 goto out_free_flush_queue;
7982e90c 989
a051661c 990 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 991 goto out_exit_flush_rq;
1da177e4 992
287922eb 993 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 994 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 995
f3b144aa
JA
996 /*
997 * This also sets hw/phys segments, boundary and size
998 */
c20e8de2 999 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1000
44ec9542
AS
1001 q->sg_reserved_size = INT_MAX;
1002
eb1c160b
TS
1003 /* Protect q->elevator from elevator_change */
1004 mutex_lock(&q->sysfs_lock);
1005
b82d4b19 1006 /* init elevator */
eb1c160b
TS
1007 if (elevator_init(q, NULL)) {
1008 mutex_unlock(&q->sysfs_lock);
6d247d7f 1009 goto out_exit_flush_rq;
eb1c160b
TS
1010 }
1011
1012 mutex_unlock(&q->sysfs_lock);
5ea708d1 1013 return 0;
eb1c160b 1014
6d247d7f
CH
1015out_exit_flush_rq:
1016 if (q->exit_rq_fn)
1017 q->exit_rq_fn(q, q->fq->flush_rq);
1018out_free_flush_queue:
ba483388 1019 blk_free_flush_queue(q->fq);
5ea708d1 1020 return -ENOMEM;
1da177e4 1021}
5151412d 1022EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1023
09ac46c4 1024bool blk_get_queue(struct request_queue *q)
1da177e4 1025{
3f3299d5 1026 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1027 __blk_get_queue(q);
1028 return true;
1da177e4
LT
1029 }
1030
09ac46c4 1031 return false;
1da177e4 1032}
d86e0e83 1033EXPORT_SYMBOL(blk_get_queue);
1da177e4 1034
5b788ce3 1035static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1036{
e8064021 1037 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1038 elv_put_request(rl->q, rq);
f1f8cc94 1039 if (rq->elv.icq)
11a3122f 1040 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1041 }
1042
5b788ce3 1043 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1044}
1045
1da177e4
LT
1046/*
1047 * ioc_batching returns true if the ioc is a valid batching request and
1048 * should be given priority access to a request.
1049 */
165125e1 1050static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1051{
1052 if (!ioc)
1053 return 0;
1054
1055 /*
1056 * Make sure the process is able to allocate at least 1 request
1057 * even if the batch times out, otherwise we could theoretically
1058 * lose wakeups.
1059 */
1060 return ioc->nr_batch_requests == q->nr_batching ||
1061 (ioc->nr_batch_requests > 0
1062 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1063}
1064
1065/*
1066 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1067 * will cause the process to be a "batcher" on all queues in the system. This
1068 * is the behaviour we want though - once it gets a wakeup it should be given
1069 * a nice run.
1070 */
165125e1 1071static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1072{
1073 if (!ioc || ioc_batching(q, ioc))
1074 return;
1075
1076 ioc->nr_batch_requests = q->nr_batching;
1077 ioc->last_waited = jiffies;
1078}
1079
5b788ce3 1080static void __freed_request(struct request_list *rl, int sync)
1da177e4 1081{
5b788ce3 1082 struct request_queue *q = rl->q;
1da177e4 1083
d40f75a0
TH
1084 if (rl->count[sync] < queue_congestion_off_threshold(q))
1085 blk_clear_congested(rl, sync);
1da177e4 1086
1faa16d2
JA
1087 if (rl->count[sync] + 1 <= q->nr_requests) {
1088 if (waitqueue_active(&rl->wait[sync]))
1089 wake_up(&rl->wait[sync]);
1da177e4 1090
5b788ce3 1091 blk_clear_rl_full(rl, sync);
1da177e4
LT
1092 }
1093}
1094
1095/*
1096 * A request has just been released. Account for it, update the full and
1097 * congestion status, wake up any waiters. Called under q->queue_lock.
1098 */
e8064021
CH
1099static void freed_request(struct request_list *rl, bool sync,
1100 req_flags_t rq_flags)
1da177e4 1101{
5b788ce3 1102 struct request_queue *q = rl->q;
1da177e4 1103
8a5ecdd4 1104 q->nr_rqs[sync]--;
1faa16d2 1105 rl->count[sync]--;
e8064021 1106 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1107 q->nr_rqs_elvpriv--;
1da177e4 1108
5b788ce3 1109 __freed_request(rl, sync);
1da177e4 1110
1faa16d2 1111 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1112 __freed_request(rl, sync ^ 1);
1da177e4
LT
1113}
1114
e3a2b3f9
JA
1115int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1116{
1117 struct request_list *rl;
d40f75a0 1118 int on_thresh, off_thresh;
e3a2b3f9 1119
332ebbf7
BVA
1120 WARN_ON_ONCE(q->mq_ops);
1121
e3a2b3f9
JA
1122 spin_lock_irq(q->queue_lock);
1123 q->nr_requests = nr;
1124 blk_queue_congestion_threshold(q);
d40f75a0
TH
1125 on_thresh = queue_congestion_on_threshold(q);
1126 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1127
d40f75a0
TH
1128 blk_queue_for_each_rl(rl, q) {
1129 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1130 blk_set_congested(rl, BLK_RW_SYNC);
1131 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1132 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1133
d40f75a0
TH
1134 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1135 blk_set_congested(rl, BLK_RW_ASYNC);
1136 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1137 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1138
e3a2b3f9
JA
1139 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1140 blk_set_rl_full(rl, BLK_RW_SYNC);
1141 } else {
1142 blk_clear_rl_full(rl, BLK_RW_SYNC);
1143 wake_up(&rl->wait[BLK_RW_SYNC]);
1144 }
1145
1146 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1147 blk_set_rl_full(rl, BLK_RW_ASYNC);
1148 } else {
1149 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1150 wake_up(&rl->wait[BLK_RW_ASYNC]);
1151 }
1152 }
1153
1154 spin_unlock_irq(q->queue_lock);
1155 return 0;
1156}
1157
da8303c6 1158/**
a06e05e6 1159 * __get_request - get a free request
5b788ce3 1160 * @rl: request list to allocate from
ef295ecf 1161 * @op: operation and flags
da8303c6 1162 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1163 * @flags: BLQ_MQ_REQ_* flags
da8303c6
TH
1164 *
1165 * Get a free request from @q. This function may fail under memory
1166 * pressure or if @q is dead.
1167 *
da3dae54 1168 * Must be called with @q->queue_lock held and,
a492f075
JL
1169 * Returns ERR_PTR on failure, with @q->queue_lock held.
1170 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1171 */
ef295ecf 1172static struct request *__get_request(struct request_list *rl, unsigned int op,
6a15674d 1173 struct bio *bio, unsigned int flags)
1da177e4 1174{
5b788ce3 1175 struct request_queue *q = rl->q;
b679281a 1176 struct request *rq;
7f4b35d1
TH
1177 struct elevator_type *et = q->elevator->type;
1178 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1179 struct io_cq *icq = NULL;
ef295ecf 1180 const bool is_sync = op_is_sync(op);
75eb6c37 1181 int may_queue;
6a15674d
BVA
1182 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1183 __GFP_DIRECT_RECLAIM;
e8064021 1184 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1185
2fff8a92
BVA
1186 lockdep_assert_held(q->queue_lock);
1187
3f3299d5 1188 if (unlikely(blk_queue_dying(q)))
a492f075 1189 return ERR_PTR(-ENODEV);
da8303c6 1190
ef295ecf 1191 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1192 if (may_queue == ELV_MQUEUE_NO)
1193 goto rq_starved;
1194
1faa16d2
JA
1195 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1196 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1197 /*
1198 * The queue will fill after this allocation, so set
1199 * it as full, and mark this process as "batching".
1200 * This process will be allowed to complete a batch of
1201 * requests, others will be blocked.
1202 */
5b788ce3 1203 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1204 ioc_set_batching(q, ioc);
5b788ce3 1205 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1206 } else {
1207 if (may_queue != ELV_MQUEUE_MUST
1208 && !ioc_batching(q, ioc)) {
1209 /*
1210 * The queue is full and the allocating
1211 * process is not a "batcher", and not
1212 * exempted by the IO scheduler
1213 */
a492f075 1214 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1215 }
1216 }
1da177e4 1217 }
d40f75a0 1218 blk_set_congested(rl, is_sync);
1da177e4
LT
1219 }
1220
082cf69e
JA
1221 /*
1222 * Only allow batching queuers to allocate up to 50% over the defined
1223 * limit of requests, otherwise we could have thousands of requests
1224 * allocated with any setting of ->nr_requests
1225 */
1faa16d2 1226 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1227 return ERR_PTR(-ENOMEM);
fd782a4a 1228
8a5ecdd4 1229 q->nr_rqs[is_sync]++;
1faa16d2
JA
1230 rl->count[is_sync]++;
1231 rl->starved[is_sync] = 0;
cb98fc8b 1232
f1f8cc94
TH
1233 /*
1234 * Decide whether the new request will be managed by elevator. If
e8064021 1235 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1236 * prevent the current elevator from being destroyed until the new
1237 * request is freed. This guarantees icq's won't be destroyed and
1238 * makes creating new ones safe.
1239 *
e6f7f93d
CH
1240 * Flush requests do not use the elevator so skip initialization.
1241 * This allows a request to share the flush and elevator data.
1242 *
f1f8cc94
TH
1243 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1244 * it will be created after releasing queue_lock.
1245 */
e6f7f93d 1246 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1247 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1248 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1249 if (et->icq_cache && ioc)
1250 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1251 }
cb98fc8b 1252
f253b86b 1253 if (blk_queue_io_stat(q))
e8064021 1254 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1255 spin_unlock_irq(q->queue_lock);
1256
29e2b09a 1257 /* allocate and init request */
5b788ce3 1258 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1259 if (!rq)
b679281a 1260 goto fail_alloc;
1da177e4 1261
29e2b09a 1262 blk_rq_init(q, rq);
a051661c 1263 blk_rq_set_rl(rq, rl);
ef295ecf 1264 rq->cmd_flags = op;
e8064021 1265 rq->rq_flags = rq_flags;
1b6d65a0
BVA
1266 if (flags & BLK_MQ_REQ_PREEMPT)
1267 rq->rq_flags |= RQF_PREEMPT;
29e2b09a 1268
aaf7c680 1269 /* init elvpriv */
e8064021 1270 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1271 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1272 if (ioc)
1273 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1274 if (!icq)
1275 goto fail_elvpriv;
29e2b09a 1276 }
aaf7c680
TH
1277
1278 rq->elv.icq = icq;
1279 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1280 goto fail_elvpriv;
1281
1282 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1283 if (icq)
1284 get_io_context(icq->ioc);
1285 }
aaf7c680 1286out:
88ee5ef1
JA
1287 /*
1288 * ioc may be NULL here, and ioc_batching will be false. That's
1289 * OK, if the queue is under the request limit then requests need
1290 * not count toward the nr_batch_requests limit. There will always
1291 * be some limit enforced by BLK_BATCH_TIME.
1292 */
1da177e4
LT
1293 if (ioc_batching(q, ioc))
1294 ioc->nr_batch_requests--;
6728cb0e 1295
e6a40b09 1296 trace_block_getrq(q, bio, op);
1da177e4 1297 return rq;
b679281a 1298
aaf7c680
TH
1299fail_elvpriv:
1300 /*
1301 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1302 * and may fail indefinitely under memory pressure and thus
1303 * shouldn't stall IO. Treat this request as !elvpriv. This will
1304 * disturb iosched and blkcg but weird is bettern than dead.
1305 */
7b2b10e0 1306 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1307 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1308
e8064021 1309 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1310 rq->elv.icq = NULL;
1311
1312 spin_lock_irq(q->queue_lock);
8a5ecdd4 1313 q->nr_rqs_elvpriv--;
aaf7c680
TH
1314 spin_unlock_irq(q->queue_lock);
1315 goto out;
1316
b679281a
TH
1317fail_alloc:
1318 /*
1319 * Allocation failed presumably due to memory. Undo anything we
1320 * might have messed up.
1321 *
1322 * Allocating task should really be put onto the front of the wait
1323 * queue, but this is pretty rare.
1324 */
1325 spin_lock_irq(q->queue_lock);
e8064021 1326 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1327
1328 /*
1329 * in the very unlikely event that allocation failed and no
1330 * requests for this direction was pending, mark us starved so that
1331 * freeing of a request in the other direction will notice
1332 * us. another possible fix would be to split the rq mempool into
1333 * READ and WRITE
1334 */
1335rq_starved:
1336 if (unlikely(rl->count[is_sync] == 0))
1337 rl->starved[is_sync] = 1;
a492f075 1338 return ERR_PTR(-ENOMEM);
1da177e4
LT
1339}
1340
da8303c6 1341/**
a06e05e6 1342 * get_request - get a free request
da8303c6 1343 * @q: request_queue to allocate request from
ef295ecf 1344 * @op: operation and flags
da8303c6 1345 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1346 * @flags: BLK_MQ_REQ_* flags.
da8303c6 1347 *
d0164adc
MG
1348 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1349 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1350 *
da3dae54 1351 * Must be called with @q->queue_lock held and,
a492f075
JL
1352 * Returns ERR_PTR on failure, with @q->queue_lock held.
1353 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1354 */
ef295ecf 1355static struct request *get_request(struct request_queue *q, unsigned int op,
6a15674d 1356 struct bio *bio, unsigned int flags)
1da177e4 1357{
ef295ecf 1358 const bool is_sync = op_is_sync(op);
a06e05e6 1359 DEFINE_WAIT(wait);
a051661c 1360 struct request_list *rl;
1da177e4 1361 struct request *rq;
a051661c 1362
2fff8a92 1363 lockdep_assert_held(q->queue_lock);
332ebbf7 1364 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1365
a051661c 1366 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1367retry:
6a15674d 1368 rq = __get_request(rl, op, bio, flags);
a492f075 1369 if (!IS_ERR(rq))
a06e05e6 1370 return rq;
1da177e4 1371
03a07c92
GR
1372 if (op & REQ_NOWAIT) {
1373 blk_put_rl(rl);
1374 return ERR_PTR(-EAGAIN);
1375 }
1376
6a15674d 1377 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1378 blk_put_rl(rl);
a492f075 1379 return rq;
a051661c 1380 }
1da177e4 1381
a06e05e6
TH
1382 /* wait on @rl and retry */
1383 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1384 TASK_UNINTERRUPTIBLE);
1da177e4 1385
e6a40b09 1386 trace_block_sleeprq(q, bio, op);
1da177e4 1387
a06e05e6
TH
1388 spin_unlock_irq(q->queue_lock);
1389 io_schedule();
d6344532 1390
a06e05e6
TH
1391 /*
1392 * After sleeping, we become a "batching" process and will be able
1393 * to allocate at least one request, and up to a big batch of them
1394 * for a small period time. See ioc_batching, ioc_set_batching
1395 */
a06e05e6 1396 ioc_set_batching(q, current->io_context);
05caf8db 1397
a06e05e6
TH
1398 spin_lock_irq(q->queue_lock);
1399 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1400
a06e05e6 1401 goto retry;
1da177e4
LT
1402}
1403
6a15674d 1404/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1405static struct request *blk_old_get_request(struct request_queue *q,
6a15674d 1406 unsigned int op, unsigned int flags)
1da177e4
LT
1407{
1408 struct request *rq;
6a15674d
BVA
1409 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1410 __GFP_DIRECT_RECLAIM;
055f6e18 1411 int ret = 0;
1da177e4 1412
332ebbf7
BVA
1413 WARN_ON_ONCE(q->mq_ops);
1414
7f4b35d1
TH
1415 /* create ioc upfront */
1416 create_io_context(gfp_mask, q->node);
1417
055f6e18
ML
1418 ret = blk_queue_enter(q, !(gfp_mask & __GFP_DIRECT_RECLAIM) ||
1419 (op & REQ_NOWAIT));
1420 if (ret)
1421 return ERR_PTR(ret);
d6344532 1422 spin_lock_irq(q->queue_lock);
6a15674d 1423 rq = get_request(q, op, NULL, flags);
0c4de0f3 1424 if (IS_ERR(rq)) {
da8303c6 1425 spin_unlock_irq(q->queue_lock);
055f6e18 1426 blk_queue_exit(q);
0c4de0f3
CH
1427 return rq;
1428 }
1da177e4 1429
0c4de0f3
CH
1430 /* q->queue_lock is unlocked at this point */
1431 rq->__data_len = 0;
1432 rq->__sector = (sector_t) -1;
1433 rq->bio = rq->biotail = NULL;
1da177e4
LT
1434 return rq;
1435}
320ae51f 1436
6a15674d
BVA
1437/**
1438 * blk_get_request_flags - allocate a request
1439 * @q: request queue to allocate a request for
1440 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1441 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1442 */
1443struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1444 unsigned int flags)
320ae51f 1445{
d280bab3
BVA
1446 struct request *req;
1447
6a15674d 1448 WARN_ON_ONCE(op & REQ_NOWAIT);
1b6d65a0 1449 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
6a15674d 1450
d280bab3 1451 if (q->mq_ops) {
6a15674d 1452 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1453 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1454 q->mq_ops->initialize_rq_fn(req);
1455 } else {
6a15674d 1456 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1457 if (!IS_ERR(req) && q->initialize_rq_fn)
1458 q->initialize_rq_fn(req);
1459 }
1460
1461 return req;
320ae51f 1462}
6a15674d
BVA
1463EXPORT_SYMBOL(blk_get_request_flags);
1464
1465struct request *blk_get_request(struct request_queue *q, unsigned int op,
1466 gfp_t gfp_mask)
1467{
1468 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1469 0 : BLK_MQ_REQ_NOWAIT);
1470}
1da177e4
LT
1471EXPORT_SYMBOL(blk_get_request);
1472
1473/**
1474 * blk_requeue_request - put a request back on queue
1475 * @q: request queue where request should be inserted
1476 * @rq: request to be inserted
1477 *
1478 * Description:
1479 * Drivers often keep queueing requests until the hardware cannot accept
1480 * more, when that condition happens we need to put the request back
1481 * on the queue. Must be called with queue lock held.
1482 */
165125e1 1483void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1484{
2fff8a92 1485 lockdep_assert_held(q->queue_lock);
332ebbf7 1486 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1487
242f9dcb
JA
1488 blk_delete_timer(rq);
1489 blk_clear_rq_complete(rq);
5f3ea37c 1490 trace_block_rq_requeue(q, rq);
87760e5e 1491 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1492
e8064021 1493 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1494 blk_queue_end_tag(q, rq);
1495
ba396a6c
JB
1496 BUG_ON(blk_queued_rq(rq));
1497
1da177e4
LT
1498 elv_requeue_request(q, rq);
1499}
1da177e4
LT
1500EXPORT_SYMBOL(blk_requeue_request);
1501
73c10101
JA
1502static void add_acct_request(struct request_queue *q, struct request *rq,
1503 int where)
1504{
320ae51f 1505 blk_account_io_start(rq, true);
7eaceacc 1506 __elv_add_request(q, rq, where);
73c10101
JA
1507}
1508
d62e26b3 1509static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1510 struct hd_struct *part, unsigned long now,
1511 unsigned int inflight)
074a7aca 1512{
b8d62b3a 1513 if (inflight) {
074a7aca 1514 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1515 inflight * (now - part->stamp));
074a7aca
TH
1516 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1517 }
1518 part->stamp = now;
1519}
1520
1521/**
496aa8a9 1522 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1523 * @q: target block queue
496aa8a9
RD
1524 * @cpu: cpu number for stats access
1525 * @part: target partition
1da177e4
LT
1526 *
1527 * The average IO queue length and utilisation statistics are maintained
1528 * by observing the current state of the queue length and the amount of
1529 * time it has been in this state for.
1530 *
1531 * Normally, that accounting is done on IO completion, but that can result
1532 * in more than a second's worth of IO being accounted for within any one
1533 * second, leading to >100% utilisation. To deal with that, we call this
1534 * function to do a round-off before returning the results when reading
1535 * /proc/diskstats. This accounts immediately for all queue usage up to
1536 * the current jiffies and restarts the counters again.
1537 */
d62e26b3 1538void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1539{
b8d62b3a 1540 struct hd_struct *part2 = NULL;
6f2576af 1541 unsigned long now = jiffies;
b8d62b3a
JA
1542 unsigned int inflight[2];
1543 int stats = 0;
1544
1545 if (part->stamp != now)
1546 stats |= 1;
1547
1548 if (part->partno) {
1549 part2 = &part_to_disk(part)->part0;
1550 if (part2->stamp != now)
1551 stats |= 2;
1552 }
1553
1554 if (!stats)
1555 return;
1556
1557 part_in_flight(q, part, inflight);
6f2576af 1558
b8d62b3a
JA
1559 if (stats & 2)
1560 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1561 if (stats & 1)
1562 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1563}
074a7aca 1564EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1565
47fafbc7 1566#ifdef CONFIG_PM
c8158819
LM
1567static void blk_pm_put_request(struct request *rq)
1568{
e8064021 1569 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1570 pm_runtime_mark_last_busy(rq->q->dev);
1571}
1572#else
1573static inline void blk_pm_put_request(struct request *rq) {}
1574#endif
1575
165125e1 1576void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1577{
e8064021
CH
1578 req_flags_t rq_flags = req->rq_flags;
1579
1da177e4
LT
1580 if (unlikely(!q))
1581 return;
1da177e4 1582
6f5ba581
CH
1583 if (q->mq_ops) {
1584 blk_mq_free_request(req);
1585 return;
1586 }
1587
2fff8a92
BVA
1588 lockdep_assert_held(q->queue_lock);
1589
c8158819
LM
1590 blk_pm_put_request(req);
1591
8922e16c
TH
1592 elv_completed_request(q, req);
1593
1cd96c24
BH
1594 /* this is a bio leak */
1595 WARN_ON(req->bio != NULL);
1596
87760e5e
JA
1597 wbt_done(q->rq_wb, &req->issue_stat);
1598
1da177e4
LT
1599 /*
1600 * Request may not have originated from ll_rw_blk. if not,
1601 * it didn't come out of our reserved rq pools
1602 */
e8064021 1603 if (rq_flags & RQF_ALLOCED) {
a051661c 1604 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1605 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1606
1da177e4 1607 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1608 BUG_ON(ELV_ON_HASH(req));
1da177e4 1609
a051661c 1610 blk_free_request(rl, req);
e8064021 1611 freed_request(rl, sync, rq_flags);
a051661c 1612 blk_put_rl(rl);
055f6e18 1613 blk_queue_exit(q);
1da177e4
LT
1614 }
1615}
6e39b69e
MC
1616EXPORT_SYMBOL_GPL(__blk_put_request);
1617
1da177e4
LT
1618void blk_put_request(struct request *req)
1619{
165125e1 1620 struct request_queue *q = req->q;
8922e16c 1621
320ae51f
JA
1622 if (q->mq_ops)
1623 blk_mq_free_request(req);
1624 else {
1625 unsigned long flags;
1626
1627 spin_lock_irqsave(q->queue_lock, flags);
1628 __blk_put_request(q, req);
1629 spin_unlock_irqrestore(q->queue_lock, flags);
1630 }
1da177e4 1631}
1da177e4
LT
1632EXPORT_SYMBOL(blk_put_request);
1633
320ae51f
JA
1634bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1635 struct bio *bio)
73c10101 1636{
1eff9d32 1637 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1638
73c10101
JA
1639 if (!ll_back_merge_fn(q, req, bio))
1640 return false;
1641
8c1cf6bb 1642 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1643
1644 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1645 blk_rq_set_mixed_merge(req);
1646
1647 req->biotail->bi_next = bio;
1648 req->biotail = bio;
4f024f37 1649 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1650 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1651
320ae51f 1652 blk_account_io_start(req, false);
73c10101
JA
1653 return true;
1654}
1655
320ae51f
JA
1656bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1657 struct bio *bio)
73c10101 1658{
1eff9d32 1659 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1660
73c10101
JA
1661 if (!ll_front_merge_fn(q, req, bio))
1662 return false;
1663
8c1cf6bb 1664 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1665
1666 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1667 blk_rq_set_mixed_merge(req);
1668
73c10101
JA
1669 bio->bi_next = req->bio;
1670 req->bio = bio;
1671
4f024f37
KO
1672 req->__sector = bio->bi_iter.bi_sector;
1673 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1674 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1675
320ae51f 1676 blk_account_io_start(req, false);
73c10101
JA
1677 return true;
1678}
1679
1e739730
CH
1680bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1681 struct bio *bio)
1682{
1683 unsigned short segments = blk_rq_nr_discard_segments(req);
1684
1685 if (segments >= queue_max_discard_segments(q))
1686 goto no_merge;
1687 if (blk_rq_sectors(req) + bio_sectors(bio) >
1688 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1689 goto no_merge;
1690
1691 req->biotail->bi_next = bio;
1692 req->biotail = bio;
1693 req->__data_len += bio->bi_iter.bi_size;
1694 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1695 req->nr_phys_segments = segments + 1;
1696
1697 blk_account_io_start(req, false);
1698 return true;
1699no_merge:
1700 req_set_nomerge(q, req);
1701 return false;
1702}
1703
bd87b589 1704/**
320ae51f 1705 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1706 * @q: request_queue new bio is being queued at
1707 * @bio: new bio being queued
1708 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1709 * @same_queue_rq: pointer to &struct request that gets filled in when
1710 * another request associated with @q is found on the plug list
1711 * (optional, may be %NULL)
bd87b589
TH
1712 *
1713 * Determine whether @bio being queued on @q can be merged with a request
1714 * on %current's plugged list. Returns %true if merge was successful,
1715 * otherwise %false.
1716 *
07c2bd37
TH
1717 * Plugging coalesces IOs from the same issuer for the same purpose without
1718 * going through @q->queue_lock. As such it's more of an issuing mechanism
1719 * than scheduling, and the request, while may have elvpriv data, is not
1720 * added on the elevator at this point. In addition, we don't have
1721 * reliable access to the elevator outside queue lock. Only check basic
1722 * merging parameters without querying the elevator.
da41a589
RE
1723 *
1724 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1725 */
320ae51f 1726bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1727 unsigned int *request_count,
1728 struct request **same_queue_rq)
73c10101
JA
1729{
1730 struct blk_plug *plug;
1731 struct request *rq;
92f399c7 1732 struct list_head *plug_list;
73c10101 1733
bd87b589 1734 plug = current->plug;
73c10101 1735 if (!plug)
34fe7c05 1736 return false;
56ebdaf2 1737 *request_count = 0;
73c10101 1738
92f399c7
SL
1739 if (q->mq_ops)
1740 plug_list = &plug->mq_list;
1741 else
1742 plug_list = &plug->list;
1743
1744 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1745 bool merged = false;
73c10101 1746
5b3f341f 1747 if (rq->q == q) {
1b2e19f1 1748 (*request_count)++;
5b3f341f
SL
1749 /*
1750 * Only blk-mq multiple hardware queues case checks the
1751 * rq in the same queue, there should be only one such
1752 * rq in a queue
1753 **/
1754 if (same_queue_rq)
1755 *same_queue_rq = rq;
1756 }
56ebdaf2 1757
07c2bd37 1758 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1759 continue;
1760
34fe7c05
CH
1761 switch (blk_try_merge(rq, bio)) {
1762 case ELEVATOR_BACK_MERGE:
1763 merged = bio_attempt_back_merge(q, rq, bio);
1764 break;
1765 case ELEVATOR_FRONT_MERGE:
1766 merged = bio_attempt_front_merge(q, rq, bio);
1767 break;
1e739730
CH
1768 case ELEVATOR_DISCARD_MERGE:
1769 merged = bio_attempt_discard_merge(q, rq, bio);
1770 break;
34fe7c05
CH
1771 default:
1772 break;
73c10101 1773 }
34fe7c05
CH
1774
1775 if (merged)
1776 return true;
73c10101 1777 }
34fe7c05
CH
1778
1779 return false;
73c10101
JA
1780}
1781
0809e3ac
JM
1782unsigned int blk_plug_queued_count(struct request_queue *q)
1783{
1784 struct blk_plug *plug;
1785 struct request *rq;
1786 struct list_head *plug_list;
1787 unsigned int ret = 0;
1788
1789 plug = current->plug;
1790 if (!plug)
1791 goto out;
1792
1793 if (q->mq_ops)
1794 plug_list = &plug->mq_list;
1795 else
1796 plug_list = &plug->list;
1797
1798 list_for_each_entry(rq, plug_list, queuelist) {
1799 if (rq->q == q)
1800 ret++;
1801 }
1802out:
1803 return ret;
1804}
1805
da8d7f07 1806void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1807{
0be0dee6
BVA
1808 struct io_context *ioc = rq_ioc(bio);
1809
1eff9d32 1810 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1811 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1812
4f024f37 1813 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1814 if (ioprio_valid(bio_prio(bio)))
1815 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1816 else if (ioc)
1817 req->ioprio = ioc->ioprio;
1818 else
1819 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1820 req->write_hint = bio->bi_write_hint;
bc1c56fd 1821 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1822}
da8d7f07 1823EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1824
dece1635 1825static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1826{
73c10101 1827 struct blk_plug *plug;
34fe7c05 1828 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1829 struct request *req, *free;
56ebdaf2 1830 unsigned int request_count = 0;
87760e5e 1831 unsigned int wb_acct;
1da177e4 1832
1da177e4
LT
1833 /*
1834 * low level driver can indicate that it wants pages above a
1835 * certain limit bounced to low memory (ie for highmem, or even
1836 * ISA dma in theory)
1837 */
1838 blk_queue_bounce(q, &bio);
1839
af67c31f 1840 blk_queue_split(q, &bio);
23688bf4 1841
e23947bd 1842 if (!bio_integrity_prep(bio))
dece1635 1843 return BLK_QC_T_NONE;
ffecfd1a 1844
f73f44eb 1845 if (op_is_flush(bio->bi_opf)) {
73c10101 1846 spin_lock_irq(q->queue_lock);
ae1b1539 1847 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1848 goto get_rq;
1849 }
1850
73c10101
JA
1851 /*
1852 * Check if we can merge with the plugged list before grabbing
1853 * any locks.
1854 */
0809e3ac
JM
1855 if (!blk_queue_nomerges(q)) {
1856 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1857 return BLK_QC_T_NONE;
0809e3ac
JM
1858 } else
1859 request_count = blk_plug_queued_count(q);
1da177e4 1860
73c10101 1861 spin_lock_irq(q->queue_lock);
2056a782 1862
34fe7c05
CH
1863 switch (elv_merge(q, &req, bio)) {
1864 case ELEVATOR_BACK_MERGE:
1865 if (!bio_attempt_back_merge(q, req, bio))
1866 break;
1867 elv_bio_merged(q, req, bio);
1868 free = attempt_back_merge(q, req);
1869 if (free)
1870 __blk_put_request(q, free);
1871 else
1872 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1873 goto out_unlock;
1874 case ELEVATOR_FRONT_MERGE:
1875 if (!bio_attempt_front_merge(q, req, bio))
1876 break;
1877 elv_bio_merged(q, req, bio);
1878 free = attempt_front_merge(q, req);
1879 if (free)
1880 __blk_put_request(q, free);
1881 else
1882 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1883 goto out_unlock;
1884 default:
1885 break;
1da177e4
LT
1886 }
1887
450991bc 1888get_rq:
87760e5e
JA
1889 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1890
1da177e4 1891 /*
450991bc 1892 * Grab a free request. This is might sleep but can not fail.
d6344532 1893 * Returns with the queue unlocked.
450991bc 1894 */
055f6e18 1895 blk_queue_enter_live(q);
6a15674d 1896 req = get_request(q, bio->bi_opf, bio, 0);
a492f075 1897 if (IS_ERR(req)) {
055f6e18 1898 blk_queue_exit(q);
87760e5e 1899 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1900 if (PTR_ERR(req) == -ENOMEM)
1901 bio->bi_status = BLK_STS_RESOURCE;
1902 else
1903 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1904 bio_endio(bio);
da8303c6
TH
1905 goto out_unlock;
1906 }
d6344532 1907
87760e5e
JA
1908 wbt_track(&req->issue_stat, wb_acct);
1909
450991bc
NP
1910 /*
1911 * After dropping the lock and possibly sleeping here, our request
1912 * may now be mergeable after it had proven unmergeable (above).
1913 * We don't worry about that case for efficiency. It won't happen
1914 * often, and the elevators are able to handle it.
1da177e4 1915 */
da8d7f07 1916 blk_init_request_from_bio(req, bio);
1da177e4 1917
9562ad9a 1918 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1919 req->cpu = raw_smp_processor_id();
73c10101
JA
1920
1921 plug = current->plug;
721a9602 1922 if (plug) {
dc6d36c9
JA
1923 /*
1924 * If this is the first request added after a plug, fire
7aef2e78 1925 * of a plug trace.
0a6219a9
ML
1926 *
1927 * @request_count may become stale because of schedule
1928 * out, so check plug list again.
dc6d36c9 1929 */
0a6219a9 1930 if (!request_count || list_empty(&plug->list))
dc6d36c9 1931 trace_block_plug(q);
3540d5e8 1932 else {
50d24c34
SL
1933 struct request *last = list_entry_rq(plug->list.prev);
1934 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1935 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1936 blk_flush_plug_list(plug, false);
019ceb7d
SL
1937 trace_block_plug(q);
1938 }
73c10101 1939 }
73c10101 1940 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1941 blk_account_io_start(req, true);
73c10101
JA
1942 } else {
1943 spin_lock_irq(q->queue_lock);
1944 add_acct_request(q, req, where);
24ecfbe2 1945 __blk_run_queue(q);
73c10101
JA
1946out_unlock:
1947 spin_unlock_irq(q->queue_lock);
1948 }
dece1635
JA
1949
1950 return BLK_QC_T_NONE;
1da177e4
LT
1951}
1952
1da177e4
LT
1953static void handle_bad_sector(struct bio *bio)
1954{
1955 char b[BDEVNAME_SIZE];
1956
1957 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1958 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 1959 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 1960 (unsigned long long)bio_end_sector(bio),
74d46992 1961 (long long)get_capacity(bio->bi_disk));
1da177e4
LT
1962}
1963
c17bb495
AM
1964#ifdef CONFIG_FAIL_MAKE_REQUEST
1965
1966static DECLARE_FAULT_ATTR(fail_make_request);
1967
1968static int __init setup_fail_make_request(char *str)
1969{
1970 return setup_fault_attr(&fail_make_request, str);
1971}
1972__setup("fail_make_request=", setup_fail_make_request);
1973
b2c9cd37 1974static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1975{
b2c9cd37 1976 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1977}
1978
1979static int __init fail_make_request_debugfs(void)
1980{
dd48c085
AM
1981 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1982 NULL, &fail_make_request);
1983
21f9fcd8 1984 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1985}
1986
1987late_initcall(fail_make_request_debugfs);
1988
1989#else /* CONFIG_FAIL_MAKE_REQUEST */
1990
b2c9cd37
AM
1991static inline bool should_fail_request(struct hd_struct *part,
1992 unsigned int bytes)
c17bb495 1993{
b2c9cd37 1994 return false;
c17bb495
AM
1995}
1996
1997#endif /* CONFIG_FAIL_MAKE_REQUEST */
1998
74d46992
CH
1999/*
2000 * Remap block n of partition p to block n+start(p) of the disk.
2001 */
2002static inline int blk_partition_remap(struct bio *bio)
2003{
2004 struct hd_struct *p;
2005 int ret = 0;
2006
2007 /*
2008 * Zone reset does not include bi_size so bio_sectors() is always 0.
2009 * Include a test for the reset op code and perform the remap if needed.
2010 */
2011 if (!bio->bi_partno ||
2012 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2013 return 0;
2014
2015 rcu_read_lock();
2016 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2017 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2018 bio->bi_iter.bi_sector += p->start_sect;
2019 bio->bi_partno = 0;
2020 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2021 bio->bi_iter.bi_sector - p->start_sect);
2022 } else {
2023 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2024 ret = -EIO;
2025 }
2026 rcu_read_unlock();
2027
2028 return ret;
2029}
2030
c07e2b41
JA
2031/*
2032 * Check whether this bio extends beyond the end of the device.
2033 */
2034static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2035{
2036 sector_t maxsector;
2037
2038 if (!nr_sectors)
2039 return 0;
2040
2041 /* Test device or partition size, when known. */
74d46992 2042 maxsector = get_capacity(bio->bi_disk);
c07e2b41 2043 if (maxsector) {
4f024f37 2044 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
2045
2046 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2047 /*
2048 * This may well happen - the kernel calls bread()
2049 * without checking the size of the device, e.g., when
2050 * mounting a device.
2051 */
2052 handle_bad_sector(bio);
2053 return 1;
2054 }
2055 }
2056
2057 return 0;
2058}
2059
27a84d54
CH
2060static noinline_for_stack bool
2061generic_make_request_checks(struct bio *bio)
1da177e4 2062{
165125e1 2063 struct request_queue *q;
5a7bbad2 2064 int nr_sectors = bio_sectors(bio);
4e4cbee9 2065 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2066 char b[BDEVNAME_SIZE];
1da177e4
LT
2067
2068 might_sleep();
1da177e4 2069
c07e2b41
JA
2070 if (bio_check_eod(bio, nr_sectors))
2071 goto end_io;
1da177e4 2072
74d46992 2073 q = bio->bi_disk->queue;
5a7bbad2
CH
2074 if (unlikely(!q)) {
2075 printk(KERN_ERR
2076 "generic_make_request: Trying to access "
2077 "nonexistent block-device %s (%Lu)\n",
74d46992 2078 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2079 goto end_io;
2080 }
c17bb495 2081
03a07c92
GR
2082 /*
2083 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2084 * if queue is not a request based queue.
2085 */
2086
2087 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2088 goto not_supported;
2089
74d46992 2090 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
5a7bbad2 2091 goto end_io;
2056a782 2092
74d46992
CH
2093 if (blk_partition_remap(bio))
2094 goto end_io;
2056a782 2095
5a7bbad2
CH
2096 if (bio_check_eod(bio, nr_sectors))
2097 goto end_io;
1e87901e 2098
5a7bbad2
CH
2099 /*
2100 * Filter flush bio's early so that make_request based
2101 * drivers without flush support don't have to worry
2102 * about them.
2103 */
f3a8ab7d 2104 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2105 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2106 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2107 if (!nr_sectors) {
4e4cbee9 2108 status = BLK_STS_OK;
51fd77bd
JA
2109 goto end_io;
2110 }
5a7bbad2 2111 }
5ddfe969 2112
288dab8a
CH
2113 switch (bio_op(bio)) {
2114 case REQ_OP_DISCARD:
2115 if (!blk_queue_discard(q))
2116 goto not_supported;
2117 break;
2118 case REQ_OP_SECURE_ERASE:
2119 if (!blk_queue_secure_erase(q))
2120 goto not_supported;
2121 break;
2122 case REQ_OP_WRITE_SAME:
74d46992 2123 if (!q->limits.max_write_same_sectors)
288dab8a 2124 goto not_supported;
58886785 2125 break;
2d253440
ST
2126 case REQ_OP_ZONE_REPORT:
2127 case REQ_OP_ZONE_RESET:
74d46992 2128 if (!blk_queue_is_zoned(q))
2d253440 2129 goto not_supported;
288dab8a 2130 break;
a6f0788e 2131 case REQ_OP_WRITE_ZEROES:
74d46992 2132 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2133 goto not_supported;
2134 break;
288dab8a
CH
2135 default:
2136 break;
5a7bbad2 2137 }
01edede4 2138
7f4b35d1
TH
2139 /*
2140 * Various block parts want %current->io_context and lazy ioc
2141 * allocation ends up trading a lot of pain for a small amount of
2142 * memory. Just allocate it upfront. This may fail and block
2143 * layer knows how to live with it.
2144 */
2145 create_io_context(GFP_ATOMIC, q->node);
2146
ae118896
TH
2147 if (!blkcg_bio_issue_check(q, bio))
2148 return false;
27a84d54 2149
fbbaf700
N
2150 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2151 trace_block_bio_queue(q, bio);
2152 /* Now that enqueuing has been traced, we need to trace
2153 * completion as well.
2154 */
2155 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2156 }
27a84d54 2157 return true;
a7384677 2158
288dab8a 2159not_supported:
4e4cbee9 2160 status = BLK_STS_NOTSUPP;
a7384677 2161end_io:
4e4cbee9 2162 bio->bi_status = status;
4246a0b6 2163 bio_endio(bio);
27a84d54 2164 return false;
1da177e4
LT
2165}
2166
27a84d54
CH
2167/**
2168 * generic_make_request - hand a buffer to its device driver for I/O
2169 * @bio: The bio describing the location in memory and on the device.
2170 *
2171 * generic_make_request() is used to make I/O requests of block
2172 * devices. It is passed a &struct bio, which describes the I/O that needs
2173 * to be done.
2174 *
2175 * generic_make_request() does not return any status. The
2176 * success/failure status of the request, along with notification of
2177 * completion, is delivered asynchronously through the bio->bi_end_io
2178 * function described (one day) else where.
2179 *
2180 * The caller of generic_make_request must make sure that bi_io_vec
2181 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2182 * set to describe the device address, and the
2183 * bi_end_io and optionally bi_private are set to describe how
2184 * completion notification should be signaled.
2185 *
2186 * generic_make_request and the drivers it calls may use bi_next if this
2187 * bio happens to be merged with someone else, and may resubmit the bio to
2188 * a lower device by calling into generic_make_request recursively, which
2189 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2190 */
dece1635 2191blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2192{
f5fe1b51
N
2193 /*
2194 * bio_list_on_stack[0] contains bios submitted by the current
2195 * make_request_fn.
2196 * bio_list_on_stack[1] contains bios that were submitted before
2197 * the current make_request_fn, but that haven't been processed
2198 * yet.
2199 */
2200 struct bio_list bio_list_on_stack[2];
dece1635 2201 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2202
27a84d54 2203 if (!generic_make_request_checks(bio))
dece1635 2204 goto out;
27a84d54
CH
2205
2206 /*
2207 * We only want one ->make_request_fn to be active at a time, else
2208 * stack usage with stacked devices could be a problem. So use
2209 * current->bio_list to keep a list of requests submited by a
2210 * make_request_fn function. current->bio_list is also used as a
2211 * flag to say if generic_make_request is currently active in this
2212 * task or not. If it is NULL, then no make_request is active. If
2213 * it is non-NULL, then a make_request is active, and new requests
2214 * should be added at the tail
2215 */
bddd87c7 2216 if (current->bio_list) {
f5fe1b51 2217 bio_list_add(&current->bio_list[0], bio);
dece1635 2218 goto out;
d89d8796 2219 }
27a84d54 2220
d89d8796
NB
2221 /* following loop may be a bit non-obvious, and so deserves some
2222 * explanation.
2223 * Before entering the loop, bio->bi_next is NULL (as all callers
2224 * ensure that) so we have a list with a single bio.
2225 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2226 * we assign bio_list to a pointer to the bio_list_on_stack,
2227 * thus initialising the bio_list of new bios to be
27a84d54 2228 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2229 * through a recursive call to generic_make_request. If it
2230 * did, we find a non-NULL value in bio_list and re-enter the loop
2231 * from the top. In this case we really did just take the bio
bddd87c7 2232 * of the top of the list (no pretending) and so remove it from
27a84d54 2233 * bio_list, and call into ->make_request() again.
d89d8796
NB
2234 */
2235 BUG_ON(bio->bi_next);
f5fe1b51
N
2236 bio_list_init(&bio_list_on_stack[0]);
2237 current->bio_list = bio_list_on_stack;
d89d8796 2238 do {
74d46992 2239 struct request_queue *q = bio->bi_disk->queue;
27a84d54 2240
03a07c92 2241 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
79bd9959
N
2242 struct bio_list lower, same;
2243
2244 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2245 bio_list_on_stack[1] = bio_list_on_stack[0];
2246 bio_list_init(&bio_list_on_stack[0]);
dece1635 2247 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2248
2249 blk_queue_exit(q);
27a84d54 2250
79bd9959
N
2251 /* sort new bios into those for a lower level
2252 * and those for the same level
2253 */
2254 bio_list_init(&lower);
2255 bio_list_init(&same);
f5fe1b51 2256 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2257 if (q == bio->bi_disk->queue)
79bd9959
N
2258 bio_list_add(&same, bio);
2259 else
2260 bio_list_add(&lower, bio);
2261 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2262 bio_list_merge(&bio_list_on_stack[0], &lower);
2263 bio_list_merge(&bio_list_on_stack[0], &same);
2264 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2265 } else {
03a07c92
GR
2266 if (unlikely(!blk_queue_dying(q) &&
2267 (bio->bi_opf & REQ_NOWAIT)))
2268 bio_wouldblock_error(bio);
2269 else
2270 bio_io_error(bio);
3ef28e83 2271 }
f5fe1b51 2272 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2273 } while (bio);
bddd87c7 2274 current->bio_list = NULL; /* deactivate */
dece1635
JA
2275
2276out:
2277 return ret;
d89d8796 2278}
1da177e4
LT
2279EXPORT_SYMBOL(generic_make_request);
2280
f421e1d9
CH
2281/**
2282 * direct_make_request - hand a buffer directly to its device driver for I/O
2283 * @bio: The bio describing the location in memory and on the device.
2284 *
2285 * This function behaves like generic_make_request(), but does not protect
2286 * against recursion. Must only be used if the called driver is known
2287 * to not call generic_make_request (or direct_make_request) again from
2288 * its make_request function. (Calling direct_make_request again from
2289 * a workqueue is perfectly fine as that doesn't recurse).
2290 */
2291blk_qc_t direct_make_request(struct bio *bio)
2292{
2293 struct request_queue *q = bio->bi_disk->queue;
2294 bool nowait = bio->bi_opf & REQ_NOWAIT;
2295 blk_qc_t ret;
2296
2297 if (!generic_make_request_checks(bio))
2298 return BLK_QC_T_NONE;
2299
2300 if (unlikely(blk_queue_enter(q, nowait))) {
2301 if (nowait && !blk_queue_dying(q))
2302 bio->bi_status = BLK_STS_AGAIN;
2303 else
2304 bio->bi_status = BLK_STS_IOERR;
2305 bio_endio(bio);
2306 return BLK_QC_T_NONE;
2307 }
2308
2309 ret = q->make_request_fn(q, bio);
2310 blk_queue_exit(q);
2311 return ret;
2312}
2313EXPORT_SYMBOL_GPL(direct_make_request);
2314
1da177e4 2315/**
710027a4 2316 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2317 * @bio: The &struct bio which describes the I/O
2318 *
2319 * submit_bio() is very similar in purpose to generic_make_request(), and
2320 * uses that function to do most of the work. Both are fairly rough
710027a4 2321 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2322 *
2323 */
4e49ea4a 2324blk_qc_t submit_bio(struct bio *bio)
1da177e4 2325{
bf2de6f5
JA
2326 /*
2327 * If it's a regular read/write or a barrier with data attached,
2328 * go through the normal accounting stuff before submission.
2329 */
e2a60da7 2330 if (bio_has_data(bio)) {
4363ac7c
MP
2331 unsigned int count;
2332
95fe6c1a 2333 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
74d46992 2334 count = queue_logical_block_size(bio->bi_disk->queue);
4363ac7c
MP
2335 else
2336 count = bio_sectors(bio);
2337
a8ebb056 2338 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2339 count_vm_events(PGPGOUT, count);
2340 } else {
4f024f37 2341 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2342 count_vm_events(PGPGIN, count);
2343 }
2344
2345 if (unlikely(block_dump)) {
2346 char b[BDEVNAME_SIZE];
8dcbdc74 2347 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2348 current->comm, task_pid_nr(current),
a8ebb056 2349 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2350 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2351 bio_devname(bio, b), count);
bf2de6f5 2352 }
1da177e4
LT
2353 }
2354
dece1635 2355 return generic_make_request(bio);
1da177e4 2356}
1da177e4
LT
2357EXPORT_SYMBOL(submit_bio);
2358
ea435e1b
CH
2359bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2360{
2361 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2362 return false;
2363
2364 if (current->plug)
2365 blk_flush_plug_list(current->plug, false);
2366 return q->poll_fn(q, cookie);
2367}
2368EXPORT_SYMBOL_GPL(blk_poll);
2369
82124d60 2370/**
bf4e6b4e
HR
2371 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2372 * for new the queue limits
82124d60
KU
2373 * @q: the queue
2374 * @rq: the request being checked
2375 *
2376 * Description:
2377 * @rq may have been made based on weaker limitations of upper-level queues
2378 * in request stacking drivers, and it may violate the limitation of @q.
2379 * Since the block layer and the underlying device driver trust @rq
2380 * after it is inserted to @q, it should be checked against @q before
2381 * the insertion using this generic function.
2382 *
82124d60 2383 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2384 * limits when retrying requests on other queues. Those requests need
2385 * to be checked against the new queue limits again during dispatch.
82124d60 2386 */
bf4e6b4e
HR
2387static int blk_cloned_rq_check_limits(struct request_queue *q,
2388 struct request *rq)
82124d60 2389{
8fe0d473 2390 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2391 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2392 return -EIO;
2393 }
2394
2395 /*
2396 * queue's settings related to segment counting like q->bounce_pfn
2397 * may differ from that of other stacking queues.
2398 * Recalculate it to check the request correctly on this queue's
2399 * limitation.
2400 */
2401 blk_recalc_rq_segments(rq);
8a78362c 2402 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2403 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2404 return -EIO;
2405 }
2406
2407 return 0;
2408}
82124d60
KU
2409
2410/**
2411 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2412 * @q: the queue to submit the request
2413 * @rq: the request being queued
2414 */
2a842aca 2415blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2416{
2417 unsigned long flags;
4853abaa 2418 int where = ELEVATOR_INSERT_BACK;
82124d60 2419
bf4e6b4e 2420 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2421 return BLK_STS_IOERR;
82124d60 2422
b2c9cd37
AM
2423 if (rq->rq_disk &&
2424 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2425 return BLK_STS_IOERR;
82124d60 2426
7fb4898e
KB
2427 if (q->mq_ops) {
2428 if (blk_queue_io_stat(q))
2429 blk_account_io_start(rq, true);
157f377b
JA
2430 /*
2431 * Since we have a scheduler attached on the top device,
2432 * bypass a potential scheduler on the bottom device for
2433 * insert.
2434 */
b0850297 2435 blk_mq_request_bypass_insert(rq, true);
2a842aca 2436 return BLK_STS_OK;
7fb4898e
KB
2437 }
2438
82124d60 2439 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2440 if (unlikely(blk_queue_dying(q))) {
8ba61435 2441 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2442 return BLK_STS_IOERR;
8ba61435 2443 }
82124d60
KU
2444
2445 /*
2446 * Submitting request must be dequeued before calling this function
2447 * because it will be linked to another request_queue
2448 */
2449 BUG_ON(blk_queued_rq(rq));
2450
f73f44eb 2451 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2452 where = ELEVATOR_INSERT_FLUSH;
2453
2454 add_acct_request(q, rq, where);
e67b77c7
JM
2455 if (where == ELEVATOR_INSERT_FLUSH)
2456 __blk_run_queue(q);
82124d60
KU
2457 spin_unlock_irqrestore(q->queue_lock, flags);
2458
2a842aca 2459 return BLK_STS_OK;
82124d60
KU
2460}
2461EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2462
80a761fd
TH
2463/**
2464 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2465 * @rq: request to examine
2466 *
2467 * Description:
2468 * A request could be merge of IOs which require different failure
2469 * handling. This function determines the number of bytes which
2470 * can be failed from the beginning of the request without
2471 * crossing into area which need to be retried further.
2472 *
2473 * Return:
2474 * The number of bytes to fail.
80a761fd
TH
2475 */
2476unsigned int blk_rq_err_bytes(const struct request *rq)
2477{
2478 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2479 unsigned int bytes = 0;
2480 struct bio *bio;
2481
e8064021 2482 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2483 return blk_rq_bytes(rq);
2484
2485 /*
2486 * Currently the only 'mixing' which can happen is between
2487 * different fastfail types. We can safely fail portions
2488 * which have all the failfast bits that the first one has -
2489 * the ones which are at least as eager to fail as the first
2490 * one.
2491 */
2492 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2493 if ((bio->bi_opf & ff) != ff)
80a761fd 2494 break;
4f024f37 2495 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2496 }
2497
2498 /* this could lead to infinite loop */
2499 BUG_ON(blk_rq_bytes(rq) && !bytes);
2500 return bytes;
2501}
2502EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2503
320ae51f 2504void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2505{
c2553b58 2506 if (blk_do_io_stat(req)) {
bc58ba94
JA
2507 const int rw = rq_data_dir(req);
2508 struct hd_struct *part;
2509 int cpu;
2510
2511 cpu = part_stat_lock();
09e099d4 2512 part = req->part;
bc58ba94
JA
2513 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2514 part_stat_unlock();
2515 }
2516}
2517
320ae51f 2518void blk_account_io_done(struct request *req)
bc58ba94 2519{
bc58ba94 2520 /*
dd4c133f
TH
2521 * Account IO completion. flush_rq isn't accounted as a
2522 * normal IO on queueing nor completion. Accounting the
2523 * containing request is enough.
bc58ba94 2524 */
e8064021 2525 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2526 unsigned long duration = jiffies - req->start_time;
2527 const int rw = rq_data_dir(req);
2528 struct hd_struct *part;
2529 int cpu;
2530
2531 cpu = part_stat_lock();
09e099d4 2532 part = req->part;
bc58ba94
JA
2533
2534 part_stat_inc(cpu, part, ios[rw]);
2535 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2536 part_round_stats(req->q, cpu, part);
2537 part_dec_in_flight(req->q, part, rw);
bc58ba94 2538
6c23a968 2539 hd_struct_put(part);
bc58ba94
JA
2540 part_stat_unlock();
2541 }
2542}
2543
47fafbc7 2544#ifdef CONFIG_PM
c8158819
LM
2545/*
2546 * Don't process normal requests when queue is suspended
2547 * or in the process of suspending/resuming
2548 */
e4f36b24 2549static bool blk_pm_allow_request(struct request *rq)
c8158819 2550{
e4f36b24
CH
2551 switch (rq->q->rpm_status) {
2552 case RPM_RESUMING:
2553 case RPM_SUSPENDING:
2554 return rq->rq_flags & RQF_PM;
2555 case RPM_SUSPENDED:
2556 return false;
2557 }
2558
2559 return true;
c8158819
LM
2560}
2561#else
e4f36b24 2562static bool blk_pm_allow_request(struct request *rq)
c8158819 2563{
e4f36b24 2564 return true;
c8158819
LM
2565}
2566#endif
2567
320ae51f
JA
2568void blk_account_io_start(struct request *rq, bool new_io)
2569{
2570 struct hd_struct *part;
2571 int rw = rq_data_dir(rq);
2572 int cpu;
2573
2574 if (!blk_do_io_stat(rq))
2575 return;
2576
2577 cpu = part_stat_lock();
2578
2579 if (!new_io) {
2580 part = rq->part;
2581 part_stat_inc(cpu, part, merges[rw]);
2582 } else {
2583 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2584 if (!hd_struct_try_get(part)) {
2585 /*
2586 * The partition is already being removed,
2587 * the request will be accounted on the disk only
2588 *
2589 * We take a reference on disk->part0 although that
2590 * partition will never be deleted, so we can treat
2591 * it as any other partition.
2592 */
2593 part = &rq->rq_disk->part0;
2594 hd_struct_get(part);
2595 }
d62e26b3
JA
2596 part_round_stats(rq->q, cpu, part);
2597 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2598 rq->part = part;
2599 }
2600
2601 part_stat_unlock();
2602}
2603
9c988374
CH
2604static struct request *elv_next_request(struct request_queue *q)
2605{
2606 struct request *rq;
2607 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2608
2609 WARN_ON_ONCE(q->mq_ops);
2610
2611 while (1) {
e4f36b24
CH
2612 list_for_each_entry(rq, &q->queue_head, queuelist) {
2613 if (blk_pm_allow_request(rq))
2614 return rq;
2615
2616 if (rq->rq_flags & RQF_SOFTBARRIER)
2617 break;
9c988374
CH
2618 }
2619
2620 /*
2621 * Flush request is running and flush request isn't queueable
2622 * in the drive, we can hold the queue till flush request is
2623 * finished. Even we don't do this, driver can't dispatch next
2624 * requests and will requeue them. And this can improve
2625 * throughput too. For example, we have request flush1, write1,
2626 * flush 2. flush1 is dispatched, then queue is hold, write1
2627 * isn't inserted to queue. After flush1 is finished, flush2
2628 * will be dispatched. Since disk cache is already clean,
2629 * flush2 will be finished very soon, so looks like flush2 is
2630 * folded to flush1.
2631 * Since the queue is hold, a flag is set to indicate the queue
2632 * should be restarted later. Please see flush_end_io() for
2633 * details.
2634 */
2635 if (fq->flush_pending_idx != fq->flush_running_idx &&
2636 !queue_flush_queueable(q)) {
2637 fq->flush_queue_delayed = 1;
2638 return NULL;
2639 }
2640 if (unlikely(blk_queue_bypass(q)) ||
2641 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2642 return NULL;
2643 }
2644}
2645
3bcddeac 2646/**
9934c8c0
TH
2647 * blk_peek_request - peek at the top of a request queue
2648 * @q: request queue to peek at
2649 *
2650 * Description:
2651 * Return the request at the top of @q. The returned request
2652 * should be started using blk_start_request() before LLD starts
2653 * processing it.
2654 *
2655 * Return:
2656 * Pointer to the request at the top of @q if available. Null
2657 * otherwise.
9934c8c0
TH
2658 */
2659struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2660{
2661 struct request *rq;
2662 int ret;
2663
2fff8a92 2664 lockdep_assert_held(q->queue_lock);
332ebbf7 2665 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2666
9c988374 2667 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2668 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2669 /*
2670 * This is the first time the device driver
2671 * sees this request (possibly after
2672 * requeueing). Notify IO scheduler.
2673 */
e8064021 2674 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2675 elv_activate_rq(q, rq);
2676
2677 /*
2678 * just mark as started even if we don't start
2679 * it, a request that has been delayed should
2680 * not be passed by new incoming requests
2681 */
e8064021 2682 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2683 trace_block_rq_issue(q, rq);
2684 }
2685
2686 if (!q->boundary_rq || q->boundary_rq == rq) {
2687 q->end_sector = rq_end_sector(rq);
2688 q->boundary_rq = NULL;
2689 }
2690
e8064021 2691 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2692 break;
2693
2e46e8b2 2694 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2695 /*
2696 * make sure space for the drain appears we
2697 * know we can do this because max_hw_segments
2698 * has been adjusted to be one fewer than the
2699 * device can handle
2700 */
2701 rq->nr_phys_segments++;
2702 }
2703
2704 if (!q->prep_rq_fn)
2705 break;
2706
2707 ret = q->prep_rq_fn(q, rq);
2708 if (ret == BLKPREP_OK) {
2709 break;
2710 } else if (ret == BLKPREP_DEFER) {
2711 /*
2712 * the request may have been (partially) prepped.
2713 * we need to keep this request in the front to
e8064021 2714 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2715 * prevent other fs requests from passing this one.
2716 */
2e46e8b2 2717 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2718 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2719 /*
2720 * remove the space for the drain we added
2721 * so that we don't add it again
2722 */
2723 --rq->nr_phys_segments;
2724 }
2725
2726 rq = NULL;
2727 break;
0fb5b1fb 2728 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2729 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2730 /*
2731 * Mark this request as started so we don't trigger
2732 * any debug logic in the end I/O path.
2733 */
2734 blk_start_request(rq);
2a842aca
CH
2735 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2736 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2737 } else {
2738 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2739 break;
2740 }
2741 }
2742
2743 return rq;
2744}
9934c8c0 2745EXPORT_SYMBOL(blk_peek_request);
158dbda0 2746
5034435c 2747static void blk_dequeue_request(struct request *rq)
158dbda0 2748{
9934c8c0
TH
2749 struct request_queue *q = rq->q;
2750
158dbda0
TH
2751 BUG_ON(list_empty(&rq->queuelist));
2752 BUG_ON(ELV_ON_HASH(rq));
2753
2754 list_del_init(&rq->queuelist);
2755
2756 /*
2757 * the time frame between a request being removed from the lists
2758 * and to it is freed is accounted as io that is in progress at
2759 * the driver side.
2760 */
9195291e 2761 if (blk_account_rq(rq)) {
0a7ae2ff 2762 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2763 set_io_start_time_ns(rq);
2764 }
158dbda0
TH
2765}
2766
9934c8c0
TH
2767/**
2768 * blk_start_request - start request processing on the driver
2769 * @req: request to dequeue
2770 *
2771 * Description:
2772 * Dequeue @req and start timeout timer on it. This hands off the
2773 * request to the driver.
9934c8c0
TH
2774 */
2775void blk_start_request(struct request *req)
2776{
2fff8a92 2777 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2778 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2779
9934c8c0
TH
2780 blk_dequeue_request(req);
2781
cf43e6be 2782 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2783 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2784 req->rq_flags |= RQF_STATS;
87760e5e 2785 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2786 }
2787
4912aa6c 2788 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2789 blk_add_timer(req);
2790}
2791EXPORT_SYMBOL(blk_start_request);
2792
2793/**
2794 * blk_fetch_request - fetch a request from a request queue
2795 * @q: request queue to fetch a request from
2796 *
2797 * Description:
2798 * Return the request at the top of @q. The request is started on
2799 * return and LLD can start processing it immediately.
2800 *
2801 * Return:
2802 * Pointer to the request at the top of @q if available. Null
2803 * otherwise.
9934c8c0
TH
2804 */
2805struct request *blk_fetch_request(struct request_queue *q)
2806{
2807 struct request *rq;
2808
2fff8a92 2809 lockdep_assert_held(q->queue_lock);
332ebbf7 2810 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2811
9934c8c0
TH
2812 rq = blk_peek_request(q);
2813 if (rq)
2814 blk_start_request(rq);
2815 return rq;
2816}
2817EXPORT_SYMBOL(blk_fetch_request);
2818
ef71de8b
CH
2819/*
2820 * Steal bios from a request and add them to a bio list.
2821 * The request must not have been partially completed before.
2822 */
2823void blk_steal_bios(struct bio_list *list, struct request *rq)
2824{
2825 if (rq->bio) {
2826 if (list->tail)
2827 list->tail->bi_next = rq->bio;
2828 else
2829 list->head = rq->bio;
2830 list->tail = rq->biotail;
2831
2832 rq->bio = NULL;
2833 rq->biotail = NULL;
2834 }
2835
2836 rq->__data_len = 0;
2837}
2838EXPORT_SYMBOL_GPL(blk_steal_bios);
2839
3bcddeac 2840/**
2e60e022 2841 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2842 * @req: the request being processed
2a842aca 2843 * @error: block status code
8ebf9756 2844 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2845 *
2846 * Description:
8ebf9756
RD
2847 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2848 * the request structure even if @req doesn't have leftover.
2849 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2850 *
2851 * This special helper function is only for request stacking drivers
2852 * (e.g. request-based dm) so that they can handle partial completion.
2853 * Actual device drivers should use blk_end_request instead.
2854 *
2855 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2856 * %false return from this function.
3bcddeac
KU
2857 *
2858 * Return:
2e60e022
TH
2859 * %false - this request doesn't have any more data
2860 * %true - this request has more data
3bcddeac 2861 **/
2a842aca
CH
2862bool blk_update_request(struct request *req, blk_status_t error,
2863 unsigned int nr_bytes)
1da177e4 2864{
f79ea416 2865 int total_bytes;
1da177e4 2866
2a842aca 2867 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2868
2e60e022
TH
2869 if (!req->bio)
2870 return false;
2871
2a842aca
CH
2872 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2873 !(req->rq_flags & RQF_QUIET)))
2874 print_req_error(req, error);
1da177e4 2875
bc58ba94 2876 blk_account_io_completion(req, nr_bytes);
d72d904a 2877
f79ea416
KO
2878 total_bytes = 0;
2879 while (req->bio) {
2880 struct bio *bio = req->bio;
4f024f37 2881 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2882
4f024f37 2883 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2884 req->bio = bio->bi_next;
1da177e4 2885
fbbaf700
N
2886 /* Completion has already been traced */
2887 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2888 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2889
f79ea416
KO
2890 total_bytes += bio_bytes;
2891 nr_bytes -= bio_bytes;
1da177e4 2892
f79ea416
KO
2893 if (!nr_bytes)
2894 break;
1da177e4
LT
2895 }
2896
2897 /*
2898 * completely done
2899 */
2e60e022
TH
2900 if (!req->bio) {
2901 /*
2902 * Reset counters so that the request stacking driver
2903 * can find how many bytes remain in the request
2904 * later.
2905 */
a2dec7b3 2906 req->__data_len = 0;
2e60e022
TH
2907 return false;
2908 }
1da177e4 2909
a2dec7b3 2910 req->__data_len -= total_bytes;
2e46e8b2
TH
2911
2912 /* update sector only for requests with clear definition of sector */
57292b58 2913 if (!blk_rq_is_passthrough(req))
a2dec7b3 2914 req->__sector += total_bytes >> 9;
2e46e8b2 2915
80a761fd 2916 /* mixed attributes always follow the first bio */
e8064021 2917 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2918 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2919 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2920 }
2921
ed6565e7
CH
2922 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2923 /*
2924 * If total number of sectors is less than the first segment
2925 * size, something has gone terribly wrong.
2926 */
2927 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2928 blk_dump_rq_flags(req, "request botched");
2929 req->__data_len = blk_rq_cur_bytes(req);
2930 }
2e46e8b2 2931
ed6565e7
CH
2932 /* recalculate the number of segments */
2933 blk_recalc_rq_segments(req);
2934 }
2e46e8b2 2935
2e60e022 2936 return true;
1da177e4 2937}
2e60e022 2938EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2939
2a842aca 2940static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
2941 unsigned int nr_bytes,
2942 unsigned int bidi_bytes)
5efccd17 2943{
2e60e022
TH
2944 if (blk_update_request(rq, error, nr_bytes))
2945 return true;
5efccd17 2946
2e60e022
TH
2947 /* Bidi request must be completed as a whole */
2948 if (unlikely(blk_bidi_rq(rq)) &&
2949 blk_update_request(rq->next_rq, error, bidi_bytes))
2950 return true;
5efccd17 2951
e2e1a148
JA
2952 if (blk_queue_add_random(rq->q))
2953 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2954
2955 return false;
1da177e4
LT
2956}
2957
28018c24
JB
2958/**
2959 * blk_unprep_request - unprepare a request
2960 * @req: the request
2961 *
2962 * This function makes a request ready for complete resubmission (or
2963 * completion). It happens only after all error handling is complete,
2964 * so represents the appropriate moment to deallocate any resources
2965 * that were allocated to the request in the prep_rq_fn. The queue
2966 * lock is held when calling this.
2967 */
2968void blk_unprep_request(struct request *req)
2969{
2970 struct request_queue *q = req->q;
2971
e8064021 2972 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2973 if (q->unprep_rq_fn)
2974 q->unprep_rq_fn(q, req);
2975}
2976EXPORT_SYMBOL_GPL(blk_unprep_request);
2977
2a842aca 2978void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 2979{
cf43e6be
JA
2980 struct request_queue *q = req->q;
2981
2fff8a92 2982 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2983 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2984
cf43e6be 2985 if (req->rq_flags & RQF_STATS)
34dbad5d 2986 blk_stat_add(req);
cf43e6be 2987
e8064021 2988 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2989 blk_queue_end_tag(q, req);
b8286239 2990
ba396a6c 2991 BUG_ON(blk_queued_rq(req));
1da177e4 2992
57292b58 2993 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2994 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2995
e78042e5
MA
2996 blk_delete_timer(req);
2997
e8064021 2998 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2999 blk_unprep_request(req);
3000
bc58ba94 3001 blk_account_io_done(req);
b8286239 3002
87760e5e
JA
3003 if (req->end_io) {
3004 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 3005 req->end_io(req, error);
87760e5e 3006 } else {
b8286239
KU
3007 if (blk_bidi_rq(req))
3008 __blk_put_request(req->next_rq->q, req->next_rq);
3009
cf43e6be 3010 __blk_put_request(q, req);
b8286239 3011 }
1da177e4 3012}
12120077 3013EXPORT_SYMBOL(blk_finish_request);
1da177e4 3014
3b11313a 3015/**
2e60e022
TH
3016 * blk_end_bidi_request - Complete a bidi request
3017 * @rq: the request to complete
2a842aca 3018 * @error: block status code
2e60e022
TH
3019 * @nr_bytes: number of bytes to complete @rq
3020 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3021 *
3022 * Description:
e3a04fe3 3023 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3024 * Drivers that supports bidi can safely call this member for any
3025 * type of request, bidi or uni. In the later case @bidi_bytes is
3026 * just ignored.
336cdb40
KU
3027 *
3028 * Return:
2e60e022
TH
3029 * %false - we are done with this request
3030 * %true - still buffers pending for this request
a0cd1285 3031 **/
2a842aca 3032static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3033 unsigned int nr_bytes, unsigned int bidi_bytes)
3034{
336cdb40 3035 struct request_queue *q = rq->q;
2e60e022 3036 unsigned long flags;
32fab448 3037
332ebbf7
BVA
3038 WARN_ON_ONCE(q->mq_ops);
3039
2e60e022
TH
3040 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3041 return true;
32fab448 3042
336cdb40 3043 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3044 blk_finish_request(rq, error);
336cdb40
KU
3045 spin_unlock_irqrestore(q->queue_lock, flags);
3046
2e60e022 3047 return false;
32fab448
KU
3048}
3049
336cdb40 3050/**
2e60e022
TH
3051 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3052 * @rq: the request to complete
2a842aca 3053 * @error: block status code
e3a04fe3
KU
3054 * @nr_bytes: number of bytes to complete @rq
3055 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3056 *
3057 * Description:
2e60e022
TH
3058 * Identical to blk_end_bidi_request() except that queue lock is
3059 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3060 *
3061 * Return:
2e60e022
TH
3062 * %false - we are done with this request
3063 * %true - still buffers pending for this request
336cdb40 3064 **/
2a842aca 3065static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3066 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3067{
2fff8a92 3068 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3069 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3070
2e60e022
TH
3071 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3072 return true;
336cdb40 3073
2e60e022 3074 blk_finish_request(rq, error);
336cdb40 3075
2e60e022 3076 return false;
336cdb40 3077}
e19a3ab0
KU
3078
3079/**
3080 * blk_end_request - Helper function for drivers to complete the request.
3081 * @rq: the request being processed
2a842aca 3082 * @error: block status code
e19a3ab0
KU
3083 * @nr_bytes: number of bytes to complete
3084 *
3085 * Description:
3086 * Ends I/O on a number of bytes attached to @rq.
3087 * If @rq has leftover, sets it up for the next range of segments.
3088 *
3089 * Return:
b1f74493
FT
3090 * %false - we are done with this request
3091 * %true - still buffers pending for this request
e19a3ab0 3092 **/
2a842aca
CH
3093bool blk_end_request(struct request *rq, blk_status_t error,
3094 unsigned int nr_bytes)
e19a3ab0 3095{
332ebbf7 3096 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3097 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3098}
56ad1740 3099EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3100
3101/**
b1f74493
FT
3102 * blk_end_request_all - Helper function for drives to finish the request.
3103 * @rq: the request to finish
2a842aca 3104 * @error: block status code
336cdb40
KU
3105 *
3106 * Description:
b1f74493
FT
3107 * Completely finish @rq.
3108 */
2a842aca 3109void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3110{
b1f74493
FT
3111 bool pending;
3112 unsigned int bidi_bytes = 0;
336cdb40 3113
b1f74493
FT
3114 if (unlikely(blk_bidi_rq(rq)))
3115 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3116
b1f74493
FT
3117 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3118 BUG_ON(pending);
3119}
56ad1740 3120EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3121
e3a04fe3 3122/**
b1f74493
FT
3123 * __blk_end_request - Helper function for drivers to complete the request.
3124 * @rq: the request being processed
2a842aca 3125 * @error: block status code
b1f74493 3126 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3127 *
3128 * Description:
b1f74493 3129 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3130 *
3131 * Return:
b1f74493
FT
3132 * %false - we are done with this request
3133 * %true - still buffers pending for this request
e3a04fe3 3134 **/
2a842aca
CH
3135bool __blk_end_request(struct request *rq, blk_status_t error,
3136 unsigned int nr_bytes)
e3a04fe3 3137{
2fff8a92 3138 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3139 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3140
b1f74493 3141 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3142}
56ad1740 3143EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3144
32fab448 3145/**
b1f74493
FT
3146 * __blk_end_request_all - Helper function for drives to finish the request.
3147 * @rq: the request to finish
2a842aca 3148 * @error: block status code
32fab448
KU
3149 *
3150 * Description:
b1f74493 3151 * Completely finish @rq. Must be called with queue lock held.
32fab448 3152 */
2a842aca 3153void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3154{
b1f74493
FT
3155 bool pending;
3156 unsigned int bidi_bytes = 0;
3157
2fff8a92 3158 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3159 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3160
b1f74493
FT
3161 if (unlikely(blk_bidi_rq(rq)))
3162 bidi_bytes = blk_rq_bytes(rq->next_rq);
3163
3164 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3165 BUG_ON(pending);
32fab448 3166}
56ad1740 3167EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3168
e19a3ab0 3169/**
b1f74493
FT
3170 * __blk_end_request_cur - Helper function to finish the current request chunk.
3171 * @rq: the request to finish the current chunk for
2a842aca 3172 * @error: block status code
e19a3ab0
KU
3173 *
3174 * Description:
b1f74493
FT
3175 * Complete the current consecutively mapped chunk from @rq. Must
3176 * be called with queue lock held.
e19a3ab0
KU
3177 *
3178 * Return:
b1f74493
FT
3179 * %false - we are done with this request
3180 * %true - still buffers pending for this request
3181 */
2a842aca 3182bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3183{
b1f74493 3184 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3185}
56ad1740 3186EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3187
86db1e29
JA
3188void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3189 struct bio *bio)
1da177e4 3190{
b4f42e28 3191 if (bio_has_data(bio))
fb2dce86 3192 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 3193
4f024f37 3194 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3195 rq->bio = rq->biotail = bio;
1da177e4 3196
74d46992
CH
3197 if (bio->bi_disk)
3198 rq->rq_disk = bio->bi_disk;
66846572 3199}
1da177e4 3200
2d4dc890
IL
3201#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3202/**
3203 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3204 * @rq: the request to be flushed
3205 *
3206 * Description:
3207 * Flush all pages in @rq.
3208 */
3209void rq_flush_dcache_pages(struct request *rq)
3210{
3211 struct req_iterator iter;
7988613b 3212 struct bio_vec bvec;
2d4dc890
IL
3213
3214 rq_for_each_segment(bvec, rq, iter)
7988613b 3215 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3216}
3217EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3218#endif
3219
ef9e3fac
KU
3220/**
3221 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3222 * @q : the queue of the device being checked
3223 *
3224 * Description:
3225 * Check if underlying low-level drivers of a device are busy.
3226 * If the drivers want to export their busy state, they must set own
3227 * exporting function using blk_queue_lld_busy() first.
3228 *
3229 * Basically, this function is used only by request stacking drivers
3230 * to stop dispatching requests to underlying devices when underlying
3231 * devices are busy. This behavior helps more I/O merging on the queue
3232 * of the request stacking driver and prevents I/O throughput regression
3233 * on burst I/O load.
3234 *
3235 * Return:
3236 * 0 - Not busy (The request stacking driver should dispatch request)
3237 * 1 - Busy (The request stacking driver should stop dispatching request)
3238 */
3239int blk_lld_busy(struct request_queue *q)
3240{
3241 if (q->lld_busy_fn)
3242 return q->lld_busy_fn(q);
3243
3244 return 0;
3245}
3246EXPORT_SYMBOL_GPL(blk_lld_busy);
3247
78d8e58a
MS
3248/**
3249 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3250 * @rq: the clone request to be cleaned up
3251 *
3252 * Description:
3253 * Free all bios in @rq for a cloned request.
3254 */
3255void blk_rq_unprep_clone(struct request *rq)
3256{
3257 struct bio *bio;
3258
3259 while ((bio = rq->bio) != NULL) {
3260 rq->bio = bio->bi_next;
3261
3262 bio_put(bio);
3263 }
3264}
3265EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3266
3267/*
3268 * Copy attributes of the original request to the clone request.
3269 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3270 */
3271static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3272{
3273 dst->cpu = src->cpu;
b0fd271d
KU
3274 dst->__sector = blk_rq_pos(src);
3275 dst->__data_len = blk_rq_bytes(src);
3276 dst->nr_phys_segments = src->nr_phys_segments;
3277 dst->ioprio = src->ioprio;
3278 dst->extra_len = src->extra_len;
78d8e58a
MS
3279}
3280
3281/**
3282 * blk_rq_prep_clone - Helper function to setup clone request
3283 * @rq: the request to be setup
3284 * @rq_src: original request to be cloned
3285 * @bs: bio_set that bios for clone are allocated from
3286 * @gfp_mask: memory allocation mask for bio
3287 * @bio_ctr: setup function to be called for each clone bio.
3288 * Returns %0 for success, non %0 for failure.
3289 * @data: private data to be passed to @bio_ctr
3290 *
3291 * Description:
3292 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3293 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3294 * are not copied, and copying such parts is the caller's responsibility.
3295 * Also, pages which the original bios are pointing to are not copied
3296 * and the cloned bios just point same pages.
3297 * So cloned bios must be completed before original bios, which means
3298 * the caller must complete @rq before @rq_src.
3299 */
3300int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3301 struct bio_set *bs, gfp_t gfp_mask,
3302 int (*bio_ctr)(struct bio *, struct bio *, void *),
3303 void *data)
3304{
3305 struct bio *bio, *bio_src;
3306
3307 if (!bs)
3308 bs = fs_bio_set;
3309
3310 __rq_for_each_bio(bio_src, rq_src) {
3311 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3312 if (!bio)
3313 goto free_and_out;
3314
3315 if (bio_ctr && bio_ctr(bio, bio_src, data))
3316 goto free_and_out;
3317
3318 if (rq->bio) {
3319 rq->biotail->bi_next = bio;
3320 rq->biotail = bio;
3321 } else
3322 rq->bio = rq->biotail = bio;
3323 }
3324
3325 __blk_rq_prep_clone(rq, rq_src);
3326
3327 return 0;
3328
3329free_and_out:
3330 if (bio)
3331 bio_put(bio);
3332 blk_rq_unprep_clone(rq);
3333
3334 return -ENOMEM;
b0fd271d
KU
3335}
3336EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3337
59c3d45e 3338int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3339{
3340 return queue_work(kblockd_workqueue, work);
3341}
1da177e4
LT
3342EXPORT_SYMBOL(kblockd_schedule_work);
3343
ee63cfa7
JA
3344int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3345{
3346 return queue_work_on(cpu, kblockd_workqueue, work);
3347}
3348EXPORT_SYMBOL(kblockd_schedule_work_on);
3349
818cd1cb
JA
3350int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3351 unsigned long delay)
3352{
3353 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3354}
3355EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3356
59c3d45e
JA
3357int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3358 unsigned long delay)
e43473b7
VG
3359{
3360 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3361}
3362EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3363
8ab14595
JA
3364int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3365 unsigned long delay)
3366{
3367 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3368}
3369EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3370
75df7136
SJ
3371/**
3372 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3373 * @plug: The &struct blk_plug that needs to be initialized
3374 *
3375 * Description:
3376 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3377 * pending I/O should the task end up blocking between blk_start_plug() and
3378 * blk_finish_plug(). This is important from a performance perspective, but
3379 * also ensures that we don't deadlock. For instance, if the task is blocking
3380 * for a memory allocation, memory reclaim could end up wanting to free a
3381 * page belonging to that request that is currently residing in our private
3382 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3383 * this kind of deadlock.
3384 */
73c10101
JA
3385void blk_start_plug(struct blk_plug *plug)
3386{
3387 struct task_struct *tsk = current;
3388
dd6cf3e1
SL
3389 /*
3390 * If this is a nested plug, don't actually assign it.
3391 */
3392 if (tsk->plug)
3393 return;
3394
73c10101 3395 INIT_LIST_HEAD(&plug->list);
320ae51f 3396 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3397 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3398 /*
dd6cf3e1
SL
3399 * Store ordering should not be needed here, since a potential
3400 * preempt will imply a full memory barrier
73c10101 3401 */
dd6cf3e1 3402 tsk->plug = plug;
73c10101
JA
3403}
3404EXPORT_SYMBOL(blk_start_plug);
3405
3406static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3407{
3408 struct request *rqa = container_of(a, struct request, queuelist);
3409 struct request *rqb = container_of(b, struct request, queuelist);
3410
975927b9
JM
3411 return !(rqa->q < rqb->q ||
3412 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3413}
3414
49cac01e
JA
3415/*
3416 * If 'from_schedule' is true, then postpone the dispatch of requests
3417 * until a safe kblockd context. We due this to avoid accidental big
3418 * additional stack usage in driver dispatch, in places where the originally
3419 * plugger did not intend it.
3420 */
f6603783 3421static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3422 bool from_schedule)
99e22598 3423 __releases(q->queue_lock)
94b5eb28 3424{
2fff8a92
BVA
3425 lockdep_assert_held(q->queue_lock);
3426
49cac01e 3427 trace_block_unplug(q, depth, !from_schedule);
99e22598 3428
70460571 3429 if (from_schedule)
24ecfbe2 3430 blk_run_queue_async(q);
70460571 3431 else
24ecfbe2 3432 __blk_run_queue(q);
70460571 3433 spin_unlock(q->queue_lock);
94b5eb28
JA
3434}
3435
74018dc3 3436static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3437{
3438 LIST_HEAD(callbacks);
3439
2a7d5559
SL
3440 while (!list_empty(&plug->cb_list)) {
3441 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3442
2a7d5559
SL
3443 while (!list_empty(&callbacks)) {
3444 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3445 struct blk_plug_cb,
3446 list);
2a7d5559 3447 list_del(&cb->list);
74018dc3 3448 cb->callback(cb, from_schedule);
2a7d5559 3449 }
048c9374
N
3450 }
3451}
3452
9cbb1750
N
3453struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3454 int size)
3455{
3456 struct blk_plug *plug = current->plug;
3457 struct blk_plug_cb *cb;
3458
3459 if (!plug)
3460 return NULL;
3461
3462 list_for_each_entry(cb, &plug->cb_list, list)
3463 if (cb->callback == unplug && cb->data == data)
3464 return cb;
3465
3466 /* Not currently on the callback list */
3467 BUG_ON(size < sizeof(*cb));
3468 cb = kzalloc(size, GFP_ATOMIC);
3469 if (cb) {
3470 cb->data = data;
3471 cb->callback = unplug;
3472 list_add(&cb->list, &plug->cb_list);
3473 }
3474 return cb;
3475}
3476EXPORT_SYMBOL(blk_check_plugged);
3477
49cac01e 3478void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3479{
3480 struct request_queue *q;
3481 unsigned long flags;
3482 struct request *rq;
109b8129 3483 LIST_HEAD(list);
94b5eb28 3484 unsigned int depth;
73c10101 3485
74018dc3 3486 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3487
3488 if (!list_empty(&plug->mq_list))
3489 blk_mq_flush_plug_list(plug, from_schedule);
3490
73c10101
JA
3491 if (list_empty(&plug->list))
3492 return;
3493
109b8129
N
3494 list_splice_init(&plug->list, &list);
3495
422765c2 3496 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3497
3498 q = NULL;
94b5eb28 3499 depth = 0;
18811272
JA
3500
3501 /*
3502 * Save and disable interrupts here, to avoid doing it for every
3503 * queue lock we have to take.
3504 */
73c10101 3505 local_irq_save(flags);
109b8129
N
3506 while (!list_empty(&list)) {
3507 rq = list_entry_rq(list.next);
73c10101 3508 list_del_init(&rq->queuelist);
73c10101
JA
3509 BUG_ON(!rq->q);
3510 if (rq->q != q) {
99e22598
JA
3511 /*
3512 * This drops the queue lock
3513 */
3514 if (q)
49cac01e 3515 queue_unplugged(q, depth, from_schedule);
73c10101 3516 q = rq->q;
94b5eb28 3517 depth = 0;
73c10101
JA
3518 spin_lock(q->queue_lock);
3519 }
8ba61435
TH
3520
3521 /*
3522 * Short-circuit if @q is dead
3523 */
3f3299d5 3524 if (unlikely(blk_queue_dying(q))) {
2a842aca 3525 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3526 continue;
3527 }
3528
73c10101
JA
3529 /*
3530 * rq is already accounted, so use raw insert
3531 */
f73f44eb 3532 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3533 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3534 else
3535 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3536
3537 depth++;
73c10101
JA
3538 }
3539
99e22598
JA
3540 /*
3541 * This drops the queue lock
3542 */
3543 if (q)
49cac01e 3544 queue_unplugged(q, depth, from_schedule);
73c10101 3545
73c10101
JA
3546 local_irq_restore(flags);
3547}
73c10101
JA
3548
3549void blk_finish_plug(struct blk_plug *plug)
3550{
dd6cf3e1
SL
3551 if (plug != current->plug)
3552 return;
f6603783 3553 blk_flush_plug_list(plug, false);
73c10101 3554
dd6cf3e1 3555 current->plug = NULL;
73c10101 3556}
88b996cd 3557EXPORT_SYMBOL(blk_finish_plug);
73c10101 3558
47fafbc7 3559#ifdef CONFIG_PM
6c954667
LM
3560/**
3561 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3562 * @q: the queue of the device
3563 * @dev: the device the queue belongs to
3564 *
3565 * Description:
3566 * Initialize runtime-PM-related fields for @q and start auto suspend for
3567 * @dev. Drivers that want to take advantage of request-based runtime PM
3568 * should call this function after @dev has been initialized, and its
3569 * request queue @q has been allocated, and runtime PM for it can not happen
3570 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3571 * cases, driver should call this function before any I/O has taken place.
3572 *
3573 * This function takes care of setting up using auto suspend for the device,
3574 * the autosuspend delay is set to -1 to make runtime suspend impossible
3575 * until an updated value is either set by user or by driver. Drivers do
3576 * not need to touch other autosuspend settings.
3577 *
3578 * The block layer runtime PM is request based, so only works for drivers
3579 * that use request as their IO unit instead of those directly use bio's.
3580 */
3581void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3582{
765e40b6
CH
3583 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3584 if (q->mq_ops)
3585 return;
3586
6c954667
LM
3587 q->dev = dev;
3588 q->rpm_status = RPM_ACTIVE;
3589 pm_runtime_set_autosuspend_delay(q->dev, -1);
3590 pm_runtime_use_autosuspend(q->dev);
3591}
3592EXPORT_SYMBOL(blk_pm_runtime_init);
3593
3594/**
3595 * blk_pre_runtime_suspend - Pre runtime suspend check
3596 * @q: the queue of the device
3597 *
3598 * Description:
3599 * This function will check if runtime suspend is allowed for the device
3600 * by examining if there are any requests pending in the queue. If there
3601 * are requests pending, the device can not be runtime suspended; otherwise,
3602 * the queue's status will be updated to SUSPENDING and the driver can
3603 * proceed to suspend the device.
3604 *
3605 * For the not allowed case, we mark last busy for the device so that
3606 * runtime PM core will try to autosuspend it some time later.
3607 *
3608 * This function should be called near the start of the device's
3609 * runtime_suspend callback.
3610 *
3611 * Return:
3612 * 0 - OK to runtime suspend the device
3613 * -EBUSY - Device should not be runtime suspended
3614 */
3615int blk_pre_runtime_suspend(struct request_queue *q)
3616{
3617 int ret = 0;
3618
4fd41a85
KX
3619 if (!q->dev)
3620 return ret;
3621
6c954667
LM
3622 spin_lock_irq(q->queue_lock);
3623 if (q->nr_pending) {
3624 ret = -EBUSY;
3625 pm_runtime_mark_last_busy(q->dev);
3626 } else {
3627 q->rpm_status = RPM_SUSPENDING;
3628 }
3629 spin_unlock_irq(q->queue_lock);
3630 return ret;
3631}
3632EXPORT_SYMBOL(blk_pre_runtime_suspend);
3633
3634/**
3635 * blk_post_runtime_suspend - Post runtime suspend processing
3636 * @q: the queue of the device
3637 * @err: return value of the device's runtime_suspend function
3638 *
3639 * Description:
3640 * Update the queue's runtime status according to the return value of the
3641 * device's runtime suspend function and mark last busy for the device so
3642 * that PM core will try to auto suspend the device at a later time.
3643 *
3644 * This function should be called near the end of the device's
3645 * runtime_suspend callback.
3646 */
3647void blk_post_runtime_suspend(struct request_queue *q, int err)
3648{
4fd41a85
KX
3649 if (!q->dev)
3650 return;
3651
6c954667
LM
3652 spin_lock_irq(q->queue_lock);
3653 if (!err) {
3654 q->rpm_status = RPM_SUSPENDED;
3655 } else {
3656 q->rpm_status = RPM_ACTIVE;
3657 pm_runtime_mark_last_busy(q->dev);
3658 }
3659 spin_unlock_irq(q->queue_lock);
3660}
3661EXPORT_SYMBOL(blk_post_runtime_suspend);
3662
3663/**
3664 * blk_pre_runtime_resume - Pre runtime resume processing
3665 * @q: the queue of the device
3666 *
3667 * Description:
3668 * Update the queue's runtime status to RESUMING in preparation for the
3669 * runtime resume of the device.
3670 *
3671 * This function should be called near the start of the device's
3672 * runtime_resume callback.
3673 */
3674void blk_pre_runtime_resume(struct request_queue *q)
3675{
4fd41a85
KX
3676 if (!q->dev)
3677 return;
3678
6c954667
LM
3679 spin_lock_irq(q->queue_lock);
3680 q->rpm_status = RPM_RESUMING;
3681 spin_unlock_irq(q->queue_lock);
3682}
3683EXPORT_SYMBOL(blk_pre_runtime_resume);
3684
3685/**
3686 * blk_post_runtime_resume - Post runtime resume processing
3687 * @q: the queue of the device
3688 * @err: return value of the device's runtime_resume function
3689 *
3690 * Description:
3691 * Update the queue's runtime status according to the return value of the
3692 * device's runtime_resume function. If it is successfully resumed, process
3693 * the requests that are queued into the device's queue when it is resuming
3694 * and then mark last busy and initiate autosuspend for it.
3695 *
3696 * This function should be called near the end of the device's
3697 * runtime_resume callback.
3698 */
3699void blk_post_runtime_resume(struct request_queue *q, int err)
3700{
4fd41a85
KX
3701 if (!q->dev)
3702 return;
3703
6c954667
LM
3704 spin_lock_irq(q->queue_lock);
3705 if (!err) {
3706 q->rpm_status = RPM_ACTIVE;
3707 __blk_run_queue(q);
3708 pm_runtime_mark_last_busy(q->dev);
c60855cd 3709 pm_request_autosuspend(q->dev);
6c954667
LM
3710 } else {
3711 q->rpm_status = RPM_SUSPENDED;
3712 }
3713 spin_unlock_irq(q->queue_lock);
3714}
3715EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3716
3717/**
3718 * blk_set_runtime_active - Force runtime status of the queue to be active
3719 * @q: the queue of the device
3720 *
3721 * If the device is left runtime suspended during system suspend the resume
3722 * hook typically resumes the device and corrects runtime status
3723 * accordingly. However, that does not affect the queue runtime PM status
3724 * which is still "suspended". This prevents processing requests from the
3725 * queue.
3726 *
3727 * This function can be used in driver's resume hook to correct queue
3728 * runtime PM status and re-enable peeking requests from the queue. It
3729 * should be called before first request is added to the queue.
3730 */
3731void blk_set_runtime_active(struct request_queue *q)
3732{
3733 spin_lock_irq(q->queue_lock);
3734 q->rpm_status = RPM_ACTIVE;
3735 pm_runtime_mark_last_busy(q->dev);
3736 pm_request_autosuspend(q->dev);
3737 spin_unlock_irq(q->queue_lock);
3738}
3739EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3740#endif
3741
1da177e4
LT
3742int __init blk_dev_init(void)
3743{
ef295ecf
CH
3744 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3745 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3746 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3747 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3748 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3749
89b90be2
TH
3750 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3751 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3752 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3753 if (!kblockd_workqueue)
3754 panic("Failed to create kblockd\n");
3755
3756 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3757 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3758
c2789bd4 3759 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3760 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3761
18fbda91
OS
3762#ifdef CONFIG_DEBUG_FS
3763 blk_debugfs_root = debugfs_create_dir("block", NULL);
3764#endif
3765
d38ecf93 3766 return 0;
1da177e4 3767}