]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: Introduce blk_get_request_flags()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 147
4e4cbee9
CH
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
2a842aca
CH
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153};
154
155blk_status_t errno_to_blk_status(int errno)
156{
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165}
166EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168int blk_status_to_errno(blk_status_t status)
169{
170 int idx = (__force int)status;
171
34bd9c1c 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
173 return -EIO;
174 return blk_errors[idx].errno;
175}
176EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178static void print_req_error(struct request *req, blk_status_t status)
179{
180 int idx = (__force int)status;
181
34bd9c1c 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189}
190
5bb23a68 191static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 192 unsigned int nbytes, blk_status_t error)
1da177e4 193{
78d8e58a 194 if (error)
4e4cbee9 195 bio->bi_status = error;
797e7dbb 196
e8064021 197 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 198 bio_set_flag(bio, BIO_QUIET);
08bafc03 199
f79ea416 200 bio_advance(bio, nbytes);
7ba1ba12 201
143a87f4 202 /* don't actually finish bio if it's part of flush sequence */
e8064021 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 204 bio_endio(bio);
1da177e4 205}
1da177e4 206
1da177e4
LT
207void blk_dump_rq_flags(struct request *rq, char *msg)
208{
aebf526b
CH
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 211 (unsigned long long) rq->cmd_flags);
1da177e4 212
83096ebf
TH
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_dump_rq_flags);
220
3cca6dc1 221static void blk_delay_work(struct work_struct *work)
1da177e4 222{
3cca6dc1 223 struct request_queue *q;
1da177e4 224
3cca6dc1
JA
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
24ecfbe2 227 __blk_run_queue(q);
3cca6dc1 228 spin_unlock_irq(q->queue_lock);
1da177e4 229}
1da177e4
LT
230
231/**
3cca6dc1
JA
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
1da177e4
LT
235 *
236 * Description:
3cca6dc1
JA
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
2fff8a92 239 * restarted around the specified time.
3cca6dc1
JA
240 */
241void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 242{
2fff8a92 243 lockdep_assert_held(q->queue_lock);
332ebbf7 244 WARN_ON_ONCE(q->mq_ops);
2fff8a92 245
70460571
BVA
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
2ad8b1ef 249}
3cca6dc1 250EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 251
21491412
JA
252/**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261void blk_start_queue_async(struct request_queue *q)
262{
2fff8a92 263 lockdep_assert_held(q->queue_lock);
332ebbf7 264 WARN_ON_ONCE(q->mq_ops);
2fff8a92 265
21491412
JA
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268}
269EXPORT_SYMBOL(blk_start_queue_async);
270
1da177e4
LT
271/**
272 * blk_start_queue - restart a previously stopped queue
165125e1 273 * @q: The &struct request_queue in question
1da177e4
LT
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
2fff8a92 278 * entered. Also see blk_stop_queue().
1da177e4 279 **/
165125e1 280void blk_start_queue(struct request_queue *q)
1da177e4 281{
2fff8a92 282 lockdep_assert_held(q->queue_lock);
4ddd56b0 283 WARN_ON(!in_interrupt() && !irqs_disabled());
332ebbf7 284 WARN_ON_ONCE(q->mq_ops);
a038e253 285
75ad23bc 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 287 __blk_run_queue(q);
1da177e4 288}
1da177e4
LT
289EXPORT_SYMBOL(blk_start_queue);
290
291/**
292 * blk_stop_queue - stop a queue
165125e1 293 * @q: The &struct request_queue in question
1da177e4
LT
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 303 * blk_start_queue() to restart queue operations.
1da177e4 304 **/
165125e1 305void blk_stop_queue(struct request_queue *q)
1da177e4 306{
2fff8a92 307 lockdep_assert_held(q->queue_lock);
332ebbf7 308 WARN_ON_ONCE(q->mq_ops);
2fff8a92 309
136b5721 310 cancel_delayed_work(&q->delay_work);
75ad23bc 311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
312}
313EXPORT_SYMBOL(blk_stop_queue);
314
315/**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
59c51591 324 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
da527770 328 * This function does not cancel any asynchronous activity arising
da3dae54 329 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 330 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 331 *
1da177e4
LT
332 */
333void blk_sync_queue(struct request_queue *q)
334{
70ed28b9 335 del_timer_sync(&q->timeout);
4e9b6f20 336 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
aba7afc5 342 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 343 queue_for_each_hw_ctx(q, hctx, i)
9f993737 344 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
1da177e4
LT
348}
349EXPORT_SYMBOL(blk_sync_queue);
350
c246e80d
BVA
351/**
352 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
353 * @q: The queue to run
354 *
355 * Description:
356 * Invoke request handling on a queue if there are any pending requests.
357 * May be used to restart request handling after a request has completed.
358 * This variant runs the queue whether or not the queue has been
359 * stopped. Must be called with the queue lock held and interrupts
360 * disabled. See also @blk_run_queue.
361 */
362inline void __blk_run_queue_uncond(struct request_queue *q)
363{
2fff8a92 364 lockdep_assert_held(q->queue_lock);
332ebbf7 365 WARN_ON_ONCE(q->mq_ops);
2fff8a92 366
c246e80d
BVA
367 if (unlikely(blk_queue_dead(q)))
368 return;
369
24faf6f6
BVA
370 /*
371 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
372 * the queue lock internally. As a result multiple threads may be
373 * running such a request function concurrently. Keep track of the
374 * number of active request_fn invocations such that blk_drain_queue()
375 * can wait until all these request_fn calls have finished.
376 */
377 q->request_fn_active++;
c246e80d 378 q->request_fn(q);
24faf6f6 379 q->request_fn_active--;
c246e80d 380}
a7928c15 381EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 382
1da177e4 383/**
80a4b58e 384 * __blk_run_queue - run a single device queue
1da177e4 385 * @q: The queue to run
80a4b58e
JA
386 *
387 * Description:
2fff8a92 388 * See @blk_run_queue.
1da177e4 389 */
24ecfbe2 390void __blk_run_queue(struct request_queue *q)
1da177e4 391{
2fff8a92 392 lockdep_assert_held(q->queue_lock);
332ebbf7 393 WARN_ON_ONCE(q->mq_ops);
2fff8a92 394
a538cd03
TH
395 if (unlikely(blk_queue_stopped(q)))
396 return;
397
c246e80d 398 __blk_run_queue_uncond(q);
75ad23bc
NP
399}
400EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 401
24ecfbe2
CH
402/**
403 * blk_run_queue_async - run a single device queue in workqueue context
404 * @q: The queue to run
405 *
406 * Description:
407 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
408 * of us.
409 *
410 * Note:
411 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
412 * has canceled q->delay_work, callers must hold the queue lock to avoid
413 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
414 */
415void blk_run_queue_async(struct request_queue *q)
416{
2fff8a92 417 lockdep_assert_held(q->queue_lock);
332ebbf7 418 WARN_ON_ONCE(q->mq_ops);
2fff8a92 419
70460571 420 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 421 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 422}
c21e6beb 423EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 424
75ad23bc
NP
425/**
426 * blk_run_queue - run a single device queue
427 * @q: The queue to run
80a4b58e
JA
428 *
429 * Description:
430 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 431 * May be used to restart queueing when a request has completed.
75ad23bc
NP
432 */
433void blk_run_queue(struct request_queue *q)
434{
435 unsigned long flags;
436
332ebbf7
BVA
437 WARN_ON_ONCE(q->mq_ops);
438
75ad23bc 439 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 440 __blk_run_queue(q);
1da177e4
LT
441 spin_unlock_irqrestore(q->queue_lock, flags);
442}
443EXPORT_SYMBOL(blk_run_queue);
444
165125e1 445void blk_put_queue(struct request_queue *q)
483f4afc
AV
446{
447 kobject_put(&q->kobj);
448}
d86e0e83 449EXPORT_SYMBOL(blk_put_queue);
483f4afc 450
e3c78ca5 451/**
807592a4 452 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 453 * @q: queue to drain
c9a929dd 454 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 455 *
c9a929dd
TH
456 * Drain requests from @q. If @drain_all is set, all requests are drained.
457 * If not, only ELVPRIV requests are drained. The caller is responsible
458 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 459 */
807592a4
BVA
460static void __blk_drain_queue(struct request_queue *q, bool drain_all)
461 __releases(q->queue_lock)
462 __acquires(q->queue_lock)
e3c78ca5 463{
458f27a9
AH
464 int i;
465
807592a4 466 lockdep_assert_held(q->queue_lock);
332ebbf7 467 WARN_ON_ONCE(q->mq_ops);
807592a4 468
e3c78ca5 469 while (true) {
481a7d64 470 bool drain = false;
e3c78ca5 471
b855b04a
TH
472 /*
473 * The caller might be trying to drain @q before its
474 * elevator is initialized.
475 */
476 if (q->elevator)
477 elv_drain_elevator(q);
478
5efd6113 479 blkcg_drain_queue(q);
e3c78ca5 480
4eabc941
TH
481 /*
482 * This function might be called on a queue which failed
b855b04a
TH
483 * driver init after queue creation or is not yet fully
484 * active yet. Some drivers (e.g. fd and loop) get unhappy
485 * in such cases. Kick queue iff dispatch queue has
486 * something on it and @q has request_fn set.
4eabc941 487 */
b855b04a 488 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 489 __blk_run_queue(q);
c9a929dd 490
8a5ecdd4 491 drain |= q->nr_rqs_elvpriv;
24faf6f6 492 drain |= q->request_fn_active;
481a7d64
TH
493
494 /*
495 * Unfortunately, requests are queued at and tracked from
496 * multiple places and there's no single counter which can
497 * be drained. Check all the queues and counters.
498 */
499 if (drain_all) {
e97c293c 500 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
501 drain |= !list_empty(&q->queue_head);
502 for (i = 0; i < 2; i++) {
8a5ecdd4 503 drain |= q->nr_rqs[i];
481a7d64 504 drain |= q->in_flight[i];
7c94e1c1
ML
505 if (fq)
506 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
507 }
508 }
e3c78ca5 509
481a7d64 510 if (!drain)
e3c78ca5 511 break;
807592a4
BVA
512
513 spin_unlock_irq(q->queue_lock);
514
e3c78ca5 515 msleep(10);
807592a4
BVA
516
517 spin_lock_irq(q->queue_lock);
e3c78ca5 518 }
458f27a9
AH
519
520 /*
521 * With queue marked dead, any woken up waiter will fail the
522 * allocation path, so the wakeup chaining is lost and we're
523 * left with hung waiters. We need to wake up those waiters.
524 */
525 if (q->request_fn) {
a051661c
TH
526 struct request_list *rl;
527
a051661c
TH
528 blk_queue_for_each_rl(rl, q)
529 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
530 wake_up_all(&rl->wait[i]);
458f27a9 531 }
e3c78ca5
TH
532}
533
d732580b
TH
534/**
535 * blk_queue_bypass_start - enter queue bypass mode
536 * @q: queue of interest
537 *
538 * In bypass mode, only the dispatch FIFO queue of @q is used. This
539 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 540 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
541 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
542 * inside queue or RCU read lock.
d732580b
TH
543 */
544void blk_queue_bypass_start(struct request_queue *q)
545{
332ebbf7
BVA
546 WARN_ON_ONCE(q->mq_ops);
547
d732580b 548 spin_lock_irq(q->queue_lock);
776687bc 549 q->bypass_depth++;
d732580b
TH
550 queue_flag_set(QUEUE_FLAG_BYPASS, q);
551 spin_unlock_irq(q->queue_lock);
552
776687bc
TH
553 /*
554 * Queues start drained. Skip actual draining till init is
555 * complete. This avoids lenghty delays during queue init which
556 * can happen many times during boot.
557 */
558 if (blk_queue_init_done(q)) {
807592a4
BVA
559 spin_lock_irq(q->queue_lock);
560 __blk_drain_queue(q, false);
561 spin_unlock_irq(q->queue_lock);
562
b82d4b19
TH
563 /* ensure blk_queue_bypass() is %true inside RCU read lock */
564 synchronize_rcu();
565 }
d732580b
TH
566}
567EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
568
569/**
570 * blk_queue_bypass_end - leave queue bypass mode
571 * @q: queue of interest
572 *
573 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
574 *
575 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
576 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
577 */
578void blk_queue_bypass_end(struct request_queue *q)
579{
580 spin_lock_irq(q->queue_lock);
581 if (!--q->bypass_depth)
582 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
583 WARN_ON_ONCE(q->bypass_depth < 0);
584 spin_unlock_irq(q->queue_lock);
585}
586EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
587
aed3ea94
JA
588void blk_set_queue_dying(struct request_queue *q)
589{
1b856086
BVA
590 spin_lock_irq(q->queue_lock);
591 queue_flag_set(QUEUE_FLAG_DYING, q);
592 spin_unlock_irq(q->queue_lock);
aed3ea94 593
d3cfb2a0
ML
594 /*
595 * When queue DYING flag is set, we need to block new req
596 * entering queue, so we call blk_freeze_queue_start() to
597 * prevent I/O from crossing blk_queue_enter().
598 */
599 blk_freeze_queue_start(q);
600
aed3ea94
JA
601 if (q->mq_ops)
602 blk_mq_wake_waiters(q);
603 else {
604 struct request_list *rl;
605
bbfc3c5d 606 spin_lock_irq(q->queue_lock);
aed3ea94
JA
607 blk_queue_for_each_rl(rl, q) {
608 if (rl->rq_pool) {
609 wake_up(&rl->wait[BLK_RW_SYNC]);
610 wake_up(&rl->wait[BLK_RW_ASYNC]);
611 }
612 }
bbfc3c5d 613 spin_unlock_irq(q->queue_lock);
aed3ea94 614 }
055f6e18
ML
615
616 /* Make blk_queue_enter() reexamine the DYING flag. */
617 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
618}
619EXPORT_SYMBOL_GPL(blk_set_queue_dying);
620
c9a929dd
TH
621/**
622 * blk_cleanup_queue - shutdown a request queue
623 * @q: request queue to shutdown
624 *
c246e80d
BVA
625 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
626 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 627 */
6728cb0e 628void blk_cleanup_queue(struct request_queue *q)
483f4afc 629{
c9a929dd 630 spinlock_t *lock = q->queue_lock;
e3335de9 631
3f3299d5 632 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 633 mutex_lock(&q->sysfs_lock);
aed3ea94 634 blk_set_queue_dying(q);
c9a929dd 635 spin_lock_irq(lock);
6ecf23af 636
80fd9979 637 /*
3f3299d5 638 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
639 * that, unlike blk_queue_bypass_start(), we aren't performing
640 * synchronize_rcu() after entering bypass mode to avoid the delay
641 * as some drivers create and destroy a lot of queues while
642 * probing. This is still safe because blk_release_queue() will be
643 * called only after the queue refcnt drops to zero and nothing,
644 * RCU or not, would be traversing the queue by then.
645 */
6ecf23af
TH
646 q->bypass_depth++;
647 queue_flag_set(QUEUE_FLAG_BYPASS, q);
648
c9a929dd
TH
649 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
650 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 651 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
652 spin_unlock_irq(lock);
653 mutex_unlock(&q->sysfs_lock);
654
c246e80d
BVA
655 /*
656 * Drain all requests queued before DYING marking. Set DEAD flag to
657 * prevent that q->request_fn() gets invoked after draining finished.
658 */
3ef28e83 659 blk_freeze_queue(q);
9c1051aa
OS
660 spin_lock_irq(lock);
661 if (!q->mq_ops)
43a5e4e2 662 __blk_drain_queue(q, true);
c246e80d 663 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 664 spin_unlock_irq(lock);
c9a929dd 665
5a48fc14
DW
666 /* for synchronous bio-based driver finish in-flight integrity i/o */
667 blk_flush_integrity();
668
c9a929dd 669 /* @q won't process any more request, flush async actions */
dc3b17cc 670 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
671 blk_sync_queue(q);
672
45a9c9d9
BVA
673 if (q->mq_ops)
674 blk_mq_free_queue(q);
3ef28e83 675 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 676
5e5cfac0
AH
677 spin_lock_irq(lock);
678 if (q->queue_lock != &q->__queue_lock)
679 q->queue_lock = &q->__queue_lock;
680 spin_unlock_irq(lock);
681
c9a929dd 682 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
683 blk_put_queue(q);
684}
1da177e4
LT
685EXPORT_SYMBOL(blk_cleanup_queue);
686
271508db 687/* Allocate memory local to the request queue */
6d247d7f 688static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 689{
6d247d7f
CH
690 struct request_queue *q = data;
691
692 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
693}
694
6d247d7f 695static void free_request_simple(void *element, void *data)
271508db
DR
696{
697 kmem_cache_free(request_cachep, element);
698}
699
6d247d7f
CH
700static void *alloc_request_size(gfp_t gfp_mask, void *data)
701{
702 struct request_queue *q = data;
703 struct request *rq;
704
705 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
706 q->node);
707 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
708 kfree(rq);
709 rq = NULL;
710 }
711 return rq;
712}
713
714static void free_request_size(void *element, void *data)
715{
716 struct request_queue *q = data;
717
718 if (q->exit_rq_fn)
719 q->exit_rq_fn(q, element);
720 kfree(element);
721}
722
5b788ce3
TH
723int blk_init_rl(struct request_list *rl, struct request_queue *q,
724 gfp_t gfp_mask)
1da177e4 725{
85acb3ba 726 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
727 return 0;
728
5b788ce3 729 rl->q = q;
1faa16d2
JA
730 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
731 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
732 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
733 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 734
6d247d7f
CH
735 if (q->cmd_size) {
736 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
737 alloc_request_size, free_request_size,
738 q, gfp_mask, q->node);
739 } else {
740 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
741 alloc_request_simple, free_request_simple,
742 q, gfp_mask, q->node);
743 }
1da177e4
LT
744 if (!rl->rq_pool)
745 return -ENOMEM;
746
b425e504
BVA
747 if (rl != &q->root_rl)
748 WARN_ON_ONCE(!blk_get_queue(q));
749
1da177e4
LT
750 return 0;
751}
752
b425e504 753void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 754{
b425e504 755 if (rl->rq_pool) {
5b788ce3 756 mempool_destroy(rl->rq_pool);
b425e504
BVA
757 if (rl != &q->root_rl)
758 blk_put_queue(q);
759 }
5b788ce3
TH
760}
761
165125e1 762struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 763{
c304a51b 764 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
765}
766EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 767
6f3b0e8b 768int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
769{
770 while (true) {
771 int ret;
772
773 if (percpu_ref_tryget_live(&q->q_usage_counter))
774 return 0;
775
6f3b0e8b 776 if (nowait)
3ef28e83
DW
777 return -EBUSY;
778
5ed61d3f 779 /*
1671d522 780 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 781 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
782 * .q_usage_counter and reading .mq_freeze_depth or
783 * queue dying flag, otherwise the following wait may
784 * never return if the two reads are reordered.
5ed61d3f
ML
785 */
786 smp_rmb();
787
3ef28e83
DW
788 ret = wait_event_interruptible(q->mq_freeze_wq,
789 !atomic_read(&q->mq_freeze_depth) ||
790 blk_queue_dying(q));
791 if (blk_queue_dying(q))
792 return -ENODEV;
793 if (ret)
794 return ret;
795 }
796}
797
798void blk_queue_exit(struct request_queue *q)
799{
800 percpu_ref_put(&q->q_usage_counter);
801}
802
803static void blk_queue_usage_counter_release(struct percpu_ref *ref)
804{
805 struct request_queue *q =
806 container_of(ref, struct request_queue, q_usage_counter);
807
808 wake_up_all(&q->mq_freeze_wq);
809}
810
287922eb
CH
811static void blk_rq_timed_out_timer(unsigned long data)
812{
813 struct request_queue *q = (struct request_queue *)data;
814
815 kblockd_schedule_work(&q->timeout_work);
816}
817
165125e1 818struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 819{
165125e1 820 struct request_queue *q;
1946089a 821
8324aa91 822 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 823 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
824 if (!q)
825 return NULL;
826
00380a40 827 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 828 if (q->id < 0)
3d2936f4 829 goto fail_q;
a73f730d 830
93b27e72 831 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
832 if (!q->bio_split)
833 goto fail_id;
834
d03f6cdc
JK
835 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
836 if (!q->backing_dev_info)
837 goto fail_split;
838
a83b576c
JA
839 q->stats = blk_alloc_queue_stats();
840 if (!q->stats)
841 goto fail_stats;
842
dc3b17cc 843 q->backing_dev_info->ra_pages =
09cbfeaf 844 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
845 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
846 q->backing_dev_info->name = "block";
5151412d 847 q->node = node_id;
0989a025 848
dc3b17cc 849 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 850 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 851 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
4e9b6f20 852 INIT_WORK(&q->timeout_work, NULL);
b855b04a 853 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 854 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 855 INIT_LIST_HEAD(&q->icq_list);
4eef3049 856#ifdef CONFIG_BLK_CGROUP
e8989fae 857 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 858#endif
3cca6dc1 859 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 860
8324aa91 861 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 862
5acb3cc2
WL
863#ifdef CONFIG_BLK_DEV_IO_TRACE
864 mutex_init(&q->blk_trace_mutex);
865#endif
483f4afc 866 mutex_init(&q->sysfs_lock);
e7e72bf6 867 spin_lock_init(&q->__queue_lock);
483f4afc 868
c94a96ac
VG
869 /*
870 * By default initialize queue_lock to internal lock and driver can
871 * override it later if need be.
872 */
873 q->queue_lock = &q->__queue_lock;
874
b82d4b19
TH
875 /*
876 * A queue starts its life with bypass turned on to avoid
877 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
878 * init. The initial bypass will be finished when the queue is
879 * registered by blk_register_queue().
b82d4b19
TH
880 */
881 q->bypass_depth = 1;
882 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
883
320ae51f
JA
884 init_waitqueue_head(&q->mq_freeze_wq);
885
3ef28e83
DW
886 /*
887 * Init percpu_ref in atomic mode so that it's faster to shutdown.
888 * See blk_register_queue() for details.
889 */
890 if (percpu_ref_init(&q->q_usage_counter,
891 blk_queue_usage_counter_release,
892 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 893 goto fail_bdi;
f51b802c 894
3ef28e83
DW
895 if (blkcg_init_queue(q))
896 goto fail_ref;
897
1da177e4 898 return q;
a73f730d 899
3ef28e83
DW
900fail_ref:
901 percpu_ref_exit(&q->q_usage_counter);
fff4996b 902fail_bdi:
a83b576c
JA
903 blk_free_queue_stats(q->stats);
904fail_stats:
d03f6cdc 905 bdi_put(q->backing_dev_info);
54efd50b
KO
906fail_split:
907 bioset_free(q->bio_split);
a73f730d
TH
908fail_id:
909 ida_simple_remove(&blk_queue_ida, q->id);
910fail_q:
911 kmem_cache_free(blk_requestq_cachep, q);
912 return NULL;
1da177e4 913}
1946089a 914EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
915
916/**
917 * blk_init_queue - prepare a request queue for use with a block device
918 * @rfn: The function to be called to process requests that have been
919 * placed on the queue.
920 * @lock: Request queue spin lock
921 *
922 * Description:
923 * If a block device wishes to use the standard request handling procedures,
924 * which sorts requests and coalesces adjacent requests, then it must
925 * call blk_init_queue(). The function @rfn will be called when there
926 * are requests on the queue that need to be processed. If the device
927 * supports plugging, then @rfn may not be called immediately when requests
928 * are available on the queue, but may be called at some time later instead.
929 * Plugged queues are generally unplugged when a buffer belonging to one
930 * of the requests on the queue is needed, or due to memory pressure.
931 *
932 * @rfn is not required, or even expected, to remove all requests off the
933 * queue, but only as many as it can handle at a time. If it does leave
934 * requests on the queue, it is responsible for arranging that the requests
935 * get dealt with eventually.
936 *
937 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
938 * request queue; this lock will be taken also from interrupt context, so irq
939 * disabling is needed for it.
1da177e4 940 *
710027a4 941 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
942 * it didn't succeed.
943 *
944 * Note:
945 * blk_init_queue() must be paired with a blk_cleanup_queue() call
946 * when the block device is deactivated (such as at module unload).
947 **/
1946089a 948
165125e1 949struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 950{
c304a51b 951 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
952}
953EXPORT_SYMBOL(blk_init_queue);
954
165125e1 955struct request_queue *
1946089a
CL
956blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
957{
5ea708d1 958 struct request_queue *q;
1da177e4 959
5ea708d1
CH
960 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
961 if (!q)
c86d1b8a
MS
962 return NULL;
963
5ea708d1
CH
964 q->request_fn = rfn;
965 if (lock)
966 q->queue_lock = lock;
967 if (blk_init_allocated_queue(q) < 0) {
968 blk_cleanup_queue(q);
969 return NULL;
970 }
18741986 971
7982e90c 972 return q;
01effb0d
MS
973}
974EXPORT_SYMBOL(blk_init_queue_node);
975
dece1635 976static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 977
1da177e4 978
5ea708d1
CH
979int blk_init_allocated_queue(struct request_queue *q)
980{
332ebbf7
BVA
981 WARN_ON_ONCE(q->mq_ops);
982
6d247d7f 983 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 984 if (!q->fq)
5ea708d1 985 return -ENOMEM;
7982e90c 986
6d247d7f
CH
987 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
988 goto out_free_flush_queue;
7982e90c 989
a051661c 990 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 991 goto out_exit_flush_rq;
1da177e4 992
287922eb 993 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 994 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 995
f3b144aa
JA
996 /*
997 * This also sets hw/phys segments, boundary and size
998 */
c20e8de2 999 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1000
44ec9542
AS
1001 q->sg_reserved_size = INT_MAX;
1002
eb1c160b
TS
1003 /* Protect q->elevator from elevator_change */
1004 mutex_lock(&q->sysfs_lock);
1005
b82d4b19 1006 /* init elevator */
eb1c160b
TS
1007 if (elevator_init(q, NULL)) {
1008 mutex_unlock(&q->sysfs_lock);
6d247d7f 1009 goto out_exit_flush_rq;
eb1c160b
TS
1010 }
1011
1012 mutex_unlock(&q->sysfs_lock);
5ea708d1 1013 return 0;
eb1c160b 1014
6d247d7f
CH
1015out_exit_flush_rq:
1016 if (q->exit_rq_fn)
1017 q->exit_rq_fn(q, q->fq->flush_rq);
1018out_free_flush_queue:
ba483388 1019 blk_free_flush_queue(q->fq);
5ea708d1 1020 return -ENOMEM;
1da177e4 1021}
5151412d 1022EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1023
09ac46c4 1024bool blk_get_queue(struct request_queue *q)
1da177e4 1025{
3f3299d5 1026 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1027 __blk_get_queue(q);
1028 return true;
1da177e4
LT
1029 }
1030
09ac46c4 1031 return false;
1da177e4 1032}
d86e0e83 1033EXPORT_SYMBOL(blk_get_queue);
1da177e4 1034
5b788ce3 1035static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1036{
e8064021 1037 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1038 elv_put_request(rl->q, rq);
f1f8cc94 1039 if (rq->elv.icq)
11a3122f 1040 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1041 }
1042
5b788ce3 1043 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1044}
1045
1da177e4
LT
1046/*
1047 * ioc_batching returns true if the ioc is a valid batching request and
1048 * should be given priority access to a request.
1049 */
165125e1 1050static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1051{
1052 if (!ioc)
1053 return 0;
1054
1055 /*
1056 * Make sure the process is able to allocate at least 1 request
1057 * even if the batch times out, otherwise we could theoretically
1058 * lose wakeups.
1059 */
1060 return ioc->nr_batch_requests == q->nr_batching ||
1061 (ioc->nr_batch_requests > 0
1062 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1063}
1064
1065/*
1066 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1067 * will cause the process to be a "batcher" on all queues in the system. This
1068 * is the behaviour we want though - once it gets a wakeup it should be given
1069 * a nice run.
1070 */
165125e1 1071static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1072{
1073 if (!ioc || ioc_batching(q, ioc))
1074 return;
1075
1076 ioc->nr_batch_requests = q->nr_batching;
1077 ioc->last_waited = jiffies;
1078}
1079
5b788ce3 1080static void __freed_request(struct request_list *rl, int sync)
1da177e4 1081{
5b788ce3 1082 struct request_queue *q = rl->q;
1da177e4 1083
d40f75a0
TH
1084 if (rl->count[sync] < queue_congestion_off_threshold(q))
1085 blk_clear_congested(rl, sync);
1da177e4 1086
1faa16d2
JA
1087 if (rl->count[sync] + 1 <= q->nr_requests) {
1088 if (waitqueue_active(&rl->wait[sync]))
1089 wake_up(&rl->wait[sync]);
1da177e4 1090
5b788ce3 1091 blk_clear_rl_full(rl, sync);
1da177e4
LT
1092 }
1093}
1094
1095/*
1096 * A request has just been released. Account for it, update the full and
1097 * congestion status, wake up any waiters. Called under q->queue_lock.
1098 */
e8064021
CH
1099static void freed_request(struct request_list *rl, bool sync,
1100 req_flags_t rq_flags)
1da177e4 1101{
5b788ce3 1102 struct request_queue *q = rl->q;
1da177e4 1103
8a5ecdd4 1104 q->nr_rqs[sync]--;
1faa16d2 1105 rl->count[sync]--;
e8064021 1106 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1107 q->nr_rqs_elvpriv--;
1da177e4 1108
5b788ce3 1109 __freed_request(rl, sync);
1da177e4 1110
1faa16d2 1111 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1112 __freed_request(rl, sync ^ 1);
1da177e4
LT
1113}
1114
e3a2b3f9
JA
1115int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1116{
1117 struct request_list *rl;
d40f75a0 1118 int on_thresh, off_thresh;
e3a2b3f9 1119
332ebbf7
BVA
1120 WARN_ON_ONCE(q->mq_ops);
1121
e3a2b3f9
JA
1122 spin_lock_irq(q->queue_lock);
1123 q->nr_requests = nr;
1124 blk_queue_congestion_threshold(q);
d40f75a0
TH
1125 on_thresh = queue_congestion_on_threshold(q);
1126 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1127
d40f75a0
TH
1128 blk_queue_for_each_rl(rl, q) {
1129 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1130 blk_set_congested(rl, BLK_RW_SYNC);
1131 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1132 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1133
d40f75a0
TH
1134 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1135 blk_set_congested(rl, BLK_RW_ASYNC);
1136 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1137 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1138
e3a2b3f9
JA
1139 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1140 blk_set_rl_full(rl, BLK_RW_SYNC);
1141 } else {
1142 blk_clear_rl_full(rl, BLK_RW_SYNC);
1143 wake_up(&rl->wait[BLK_RW_SYNC]);
1144 }
1145
1146 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1147 blk_set_rl_full(rl, BLK_RW_ASYNC);
1148 } else {
1149 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1150 wake_up(&rl->wait[BLK_RW_ASYNC]);
1151 }
1152 }
1153
1154 spin_unlock_irq(q->queue_lock);
1155 return 0;
1156}
1157
da8303c6 1158/**
a06e05e6 1159 * __get_request - get a free request
5b788ce3 1160 * @rl: request list to allocate from
ef295ecf 1161 * @op: operation and flags
da8303c6 1162 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1163 * @flags: BLQ_MQ_REQ_* flags
da8303c6
TH
1164 *
1165 * Get a free request from @q. This function may fail under memory
1166 * pressure or if @q is dead.
1167 *
da3dae54 1168 * Must be called with @q->queue_lock held and,
a492f075
JL
1169 * Returns ERR_PTR on failure, with @q->queue_lock held.
1170 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1171 */
ef295ecf 1172static struct request *__get_request(struct request_list *rl, unsigned int op,
6a15674d 1173 struct bio *bio, unsigned int flags)
1da177e4 1174{
5b788ce3 1175 struct request_queue *q = rl->q;
b679281a 1176 struct request *rq;
7f4b35d1
TH
1177 struct elevator_type *et = q->elevator->type;
1178 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1179 struct io_cq *icq = NULL;
ef295ecf 1180 const bool is_sync = op_is_sync(op);
75eb6c37 1181 int may_queue;
6a15674d
BVA
1182 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1183 __GFP_DIRECT_RECLAIM;
e8064021 1184 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1185
2fff8a92
BVA
1186 lockdep_assert_held(q->queue_lock);
1187
3f3299d5 1188 if (unlikely(blk_queue_dying(q)))
a492f075 1189 return ERR_PTR(-ENODEV);
da8303c6 1190
ef295ecf 1191 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1192 if (may_queue == ELV_MQUEUE_NO)
1193 goto rq_starved;
1194
1faa16d2
JA
1195 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1196 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1197 /*
1198 * The queue will fill after this allocation, so set
1199 * it as full, and mark this process as "batching".
1200 * This process will be allowed to complete a batch of
1201 * requests, others will be blocked.
1202 */
5b788ce3 1203 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1204 ioc_set_batching(q, ioc);
5b788ce3 1205 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1206 } else {
1207 if (may_queue != ELV_MQUEUE_MUST
1208 && !ioc_batching(q, ioc)) {
1209 /*
1210 * The queue is full and the allocating
1211 * process is not a "batcher", and not
1212 * exempted by the IO scheduler
1213 */
a492f075 1214 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1215 }
1216 }
1da177e4 1217 }
d40f75a0 1218 blk_set_congested(rl, is_sync);
1da177e4
LT
1219 }
1220
082cf69e
JA
1221 /*
1222 * Only allow batching queuers to allocate up to 50% over the defined
1223 * limit of requests, otherwise we could have thousands of requests
1224 * allocated with any setting of ->nr_requests
1225 */
1faa16d2 1226 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1227 return ERR_PTR(-ENOMEM);
fd782a4a 1228
8a5ecdd4 1229 q->nr_rqs[is_sync]++;
1faa16d2
JA
1230 rl->count[is_sync]++;
1231 rl->starved[is_sync] = 0;
cb98fc8b 1232
f1f8cc94
TH
1233 /*
1234 * Decide whether the new request will be managed by elevator. If
e8064021 1235 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1236 * prevent the current elevator from being destroyed until the new
1237 * request is freed. This guarantees icq's won't be destroyed and
1238 * makes creating new ones safe.
1239 *
e6f7f93d
CH
1240 * Flush requests do not use the elevator so skip initialization.
1241 * This allows a request to share the flush and elevator data.
1242 *
f1f8cc94
TH
1243 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1244 * it will be created after releasing queue_lock.
1245 */
e6f7f93d 1246 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1247 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1248 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1249 if (et->icq_cache && ioc)
1250 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1251 }
cb98fc8b 1252
f253b86b 1253 if (blk_queue_io_stat(q))
e8064021 1254 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1255 spin_unlock_irq(q->queue_lock);
1256
29e2b09a 1257 /* allocate and init request */
5b788ce3 1258 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1259 if (!rq)
b679281a 1260 goto fail_alloc;
1da177e4 1261
29e2b09a 1262 blk_rq_init(q, rq);
a051661c 1263 blk_rq_set_rl(rq, rl);
ef295ecf 1264 rq->cmd_flags = op;
e8064021 1265 rq->rq_flags = rq_flags;
29e2b09a 1266
aaf7c680 1267 /* init elvpriv */
e8064021 1268 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1269 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1270 if (ioc)
1271 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1272 if (!icq)
1273 goto fail_elvpriv;
29e2b09a 1274 }
aaf7c680
TH
1275
1276 rq->elv.icq = icq;
1277 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1278 goto fail_elvpriv;
1279
1280 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1281 if (icq)
1282 get_io_context(icq->ioc);
1283 }
aaf7c680 1284out:
88ee5ef1
JA
1285 /*
1286 * ioc may be NULL here, and ioc_batching will be false. That's
1287 * OK, if the queue is under the request limit then requests need
1288 * not count toward the nr_batch_requests limit. There will always
1289 * be some limit enforced by BLK_BATCH_TIME.
1290 */
1da177e4
LT
1291 if (ioc_batching(q, ioc))
1292 ioc->nr_batch_requests--;
6728cb0e 1293
e6a40b09 1294 trace_block_getrq(q, bio, op);
1da177e4 1295 return rq;
b679281a 1296
aaf7c680
TH
1297fail_elvpriv:
1298 /*
1299 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1300 * and may fail indefinitely under memory pressure and thus
1301 * shouldn't stall IO. Treat this request as !elvpriv. This will
1302 * disturb iosched and blkcg but weird is bettern than dead.
1303 */
7b2b10e0 1304 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1305 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1306
e8064021 1307 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1308 rq->elv.icq = NULL;
1309
1310 spin_lock_irq(q->queue_lock);
8a5ecdd4 1311 q->nr_rqs_elvpriv--;
aaf7c680
TH
1312 spin_unlock_irq(q->queue_lock);
1313 goto out;
1314
b679281a
TH
1315fail_alloc:
1316 /*
1317 * Allocation failed presumably due to memory. Undo anything we
1318 * might have messed up.
1319 *
1320 * Allocating task should really be put onto the front of the wait
1321 * queue, but this is pretty rare.
1322 */
1323 spin_lock_irq(q->queue_lock);
e8064021 1324 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1325
1326 /*
1327 * in the very unlikely event that allocation failed and no
1328 * requests for this direction was pending, mark us starved so that
1329 * freeing of a request in the other direction will notice
1330 * us. another possible fix would be to split the rq mempool into
1331 * READ and WRITE
1332 */
1333rq_starved:
1334 if (unlikely(rl->count[is_sync] == 0))
1335 rl->starved[is_sync] = 1;
a492f075 1336 return ERR_PTR(-ENOMEM);
1da177e4
LT
1337}
1338
da8303c6 1339/**
a06e05e6 1340 * get_request - get a free request
da8303c6 1341 * @q: request_queue to allocate request from
ef295ecf 1342 * @op: operation and flags
da8303c6 1343 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1344 * @flags: BLK_MQ_REQ_* flags.
da8303c6 1345 *
d0164adc
MG
1346 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1347 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1348 *
da3dae54 1349 * Must be called with @q->queue_lock held and,
a492f075
JL
1350 * Returns ERR_PTR on failure, with @q->queue_lock held.
1351 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1352 */
ef295ecf 1353static struct request *get_request(struct request_queue *q, unsigned int op,
6a15674d 1354 struct bio *bio, unsigned int flags)
1da177e4 1355{
ef295ecf 1356 const bool is_sync = op_is_sync(op);
a06e05e6 1357 DEFINE_WAIT(wait);
a051661c 1358 struct request_list *rl;
1da177e4 1359 struct request *rq;
a051661c 1360
2fff8a92 1361 lockdep_assert_held(q->queue_lock);
332ebbf7 1362 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1363
a051661c 1364 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1365retry:
6a15674d 1366 rq = __get_request(rl, op, bio, flags);
a492f075 1367 if (!IS_ERR(rq))
a06e05e6 1368 return rq;
1da177e4 1369
03a07c92
GR
1370 if (op & REQ_NOWAIT) {
1371 blk_put_rl(rl);
1372 return ERR_PTR(-EAGAIN);
1373 }
1374
6a15674d 1375 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1376 blk_put_rl(rl);
a492f075 1377 return rq;
a051661c 1378 }
1da177e4 1379
a06e05e6
TH
1380 /* wait on @rl and retry */
1381 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1382 TASK_UNINTERRUPTIBLE);
1da177e4 1383
e6a40b09 1384 trace_block_sleeprq(q, bio, op);
1da177e4 1385
a06e05e6
TH
1386 spin_unlock_irq(q->queue_lock);
1387 io_schedule();
d6344532 1388
a06e05e6
TH
1389 /*
1390 * After sleeping, we become a "batching" process and will be able
1391 * to allocate at least one request, and up to a big batch of them
1392 * for a small period time. See ioc_batching, ioc_set_batching
1393 */
a06e05e6 1394 ioc_set_batching(q, current->io_context);
05caf8db 1395
a06e05e6
TH
1396 spin_lock_irq(q->queue_lock);
1397 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1398
a06e05e6 1399 goto retry;
1da177e4
LT
1400}
1401
6a15674d 1402/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1403static struct request *blk_old_get_request(struct request_queue *q,
6a15674d 1404 unsigned int op, unsigned int flags)
1da177e4
LT
1405{
1406 struct request *rq;
6a15674d
BVA
1407 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1408 __GFP_DIRECT_RECLAIM;
055f6e18 1409 int ret = 0;
1da177e4 1410
332ebbf7
BVA
1411 WARN_ON_ONCE(q->mq_ops);
1412
7f4b35d1
TH
1413 /* create ioc upfront */
1414 create_io_context(gfp_mask, q->node);
1415
055f6e18
ML
1416 ret = blk_queue_enter(q, !(gfp_mask & __GFP_DIRECT_RECLAIM) ||
1417 (op & REQ_NOWAIT));
1418 if (ret)
1419 return ERR_PTR(ret);
d6344532 1420 spin_lock_irq(q->queue_lock);
6a15674d 1421 rq = get_request(q, op, NULL, flags);
0c4de0f3 1422 if (IS_ERR(rq)) {
da8303c6 1423 spin_unlock_irq(q->queue_lock);
055f6e18 1424 blk_queue_exit(q);
0c4de0f3
CH
1425 return rq;
1426 }
1da177e4 1427
0c4de0f3
CH
1428 /* q->queue_lock is unlocked at this point */
1429 rq->__data_len = 0;
1430 rq->__sector = (sector_t) -1;
1431 rq->bio = rq->biotail = NULL;
1da177e4
LT
1432 return rq;
1433}
320ae51f 1434
6a15674d
BVA
1435/**
1436 * blk_get_request_flags - allocate a request
1437 * @q: request queue to allocate a request for
1438 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1439 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1440 */
1441struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1442 unsigned int flags)
320ae51f 1443{
d280bab3
BVA
1444 struct request *req;
1445
6a15674d
BVA
1446 WARN_ON_ONCE(op & REQ_NOWAIT);
1447 WARN_ON_ONCE(flags & ~BLK_MQ_REQ_NOWAIT);
1448
d280bab3 1449 if (q->mq_ops) {
6a15674d 1450 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1451 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1452 q->mq_ops->initialize_rq_fn(req);
1453 } else {
6a15674d 1454 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1455 if (!IS_ERR(req) && q->initialize_rq_fn)
1456 q->initialize_rq_fn(req);
1457 }
1458
1459 return req;
320ae51f 1460}
6a15674d
BVA
1461EXPORT_SYMBOL(blk_get_request_flags);
1462
1463struct request *blk_get_request(struct request_queue *q, unsigned int op,
1464 gfp_t gfp_mask)
1465{
1466 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1467 0 : BLK_MQ_REQ_NOWAIT);
1468}
1da177e4
LT
1469EXPORT_SYMBOL(blk_get_request);
1470
1471/**
1472 * blk_requeue_request - put a request back on queue
1473 * @q: request queue where request should be inserted
1474 * @rq: request to be inserted
1475 *
1476 * Description:
1477 * Drivers often keep queueing requests until the hardware cannot accept
1478 * more, when that condition happens we need to put the request back
1479 * on the queue. Must be called with queue lock held.
1480 */
165125e1 1481void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1482{
2fff8a92 1483 lockdep_assert_held(q->queue_lock);
332ebbf7 1484 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1485
242f9dcb
JA
1486 blk_delete_timer(rq);
1487 blk_clear_rq_complete(rq);
5f3ea37c 1488 trace_block_rq_requeue(q, rq);
87760e5e 1489 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1490
e8064021 1491 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1492 blk_queue_end_tag(q, rq);
1493
ba396a6c
JB
1494 BUG_ON(blk_queued_rq(rq));
1495
1da177e4
LT
1496 elv_requeue_request(q, rq);
1497}
1da177e4
LT
1498EXPORT_SYMBOL(blk_requeue_request);
1499
73c10101
JA
1500static void add_acct_request(struct request_queue *q, struct request *rq,
1501 int where)
1502{
320ae51f 1503 blk_account_io_start(rq, true);
7eaceacc 1504 __elv_add_request(q, rq, where);
73c10101
JA
1505}
1506
d62e26b3 1507static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1508 struct hd_struct *part, unsigned long now,
1509 unsigned int inflight)
074a7aca 1510{
b8d62b3a 1511 if (inflight) {
074a7aca 1512 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1513 inflight * (now - part->stamp));
074a7aca
TH
1514 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1515 }
1516 part->stamp = now;
1517}
1518
1519/**
496aa8a9 1520 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1521 * @q: target block queue
496aa8a9
RD
1522 * @cpu: cpu number for stats access
1523 * @part: target partition
1da177e4
LT
1524 *
1525 * The average IO queue length and utilisation statistics are maintained
1526 * by observing the current state of the queue length and the amount of
1527 * time it has been in this state for.
1528 *
1529 * Normally, that accounting is done on IO completion, but that can result
1530 * in more than a second's worth of IO being accounted for within any one
1531 * second, leading to >100% utilisation. To deal with that, we call this
1532 * function to do a round-off before returning the results when reading
1533 * /proc/diskstats. This accounts immediately for all queue usage up to
1534 * the current jiffies and restarts the counters again.
1535 */
d62e26b3 1536void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1537{
b8d62b3a 1538 struct hd_struct *part2 = NULL;
6f2576af 1539 unsigned long now = jiffies;
b8d62b3a
JA
1540 unsigned int inflight[2];
1541 int stats = 0;
1542
1543 if (part->stamp != now)
1544 stats |= 1;
1545
1546 if (part->partno) {
1547 part2 = &part_to_disk(part)->part0;
1548 if (part2->stamp != now)
1549 stats |= 2;
1550 }
1551
1552 if (!stats)
1553 return;
1554
1555 part_in_flight(q, part, inflight);
6f2576af 1556
b8d62b3a
JA
1557 if (stats & 2)
1558 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1559 if (stats & 1)
1560 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1561}
074a7aca 1562EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1563
47fafbc7 1564#ifdef CONFIG_PM
c8158819
LM
1565static void blk_pm_put_request(struct request *rq)
1566{
e8064021 1567 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1568 pm_runtime_mark_last_busy(rq->q->dev);
1569}
1570#else
1571static inline void blk_pm_put_request(struct request *rq) {}
1572#endif
1573
165125e1 1574void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1575{
e8064021
CH
1576 req_flags_t rq_flags = req->rq_flags;
1577
1da177e4
LT
1578 if (unlikely(!q))
1579 return;
1da177e4 1580
6f5ba581
CH
1581 if (q->mq_ops) {
1582 blk_mq_free_request(req);
1583 return;
1584 }
1585
2fff8a92
BVA
1586 lockdep_assert_held(q->queue_lock);
1587
c8158819
LM
1588 blk_pm_put_request(req);
1589
8922e16c
TH
1590 elv_completed_request(q, req);
1591
1cd96c24
BH
1592 /* this is a bio leak */
1593 WARN_ON(req->bio != NULL);
1594
87760e5e
JA
1595 wbt_done(q->rq_wb, &req->issue_stat);
1596
1da177e4
LT
1597 /*
1598 * Request may not have originated from ll_rw_blk. if not,
1599 * it didn't come out of our reserved rq pools
1600 */
e8064021 1601 if (rq_flags & RQF_ALLOCED) {
a051661c 1602 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1603 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1604
1da177e4 1605 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1606 BUG_ON(ELV_ON_HASH(req));
1da177e4 1607
a051661c 1608 blk_free_request(rl, req);
e8064021 1609 freed_request(rl, sync, rq_flags);
a051661c 1610 blk_put_rl(rl);
055f6e18 1611 blk_queue_exit(q);
1da177e4
LT
1612 }
1613}
6e39b69e
MC
1614EXPORT_SYMBOL_GPL(__blk_put_request);
1615
1da177e4
LT
1616void blk_put_request(struct request *req)
1617{
165125e1 1618 struct request_queue *q = req->q;
8922e16c 1619
320ae51f
JA
1620 if (q->mq_ops)
1621 blk_mq_free_request(req);
1622 else {
1623 unsigned long flags;
1624
1625 spin_lock_irqsave(q->queue_lock, flags);
1626 __blk_put_request(q, req);
1627 spin_unlock_irqrestore(q->queue_lock, flags);
1628 }
1da177e4 1629}
1da177e4
LT
1630EXPORT_SYMBOL(blk_put_request);
1631
320ae51f
JA
1632bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1633 struct bio *bio)
73c10101 1634{
1eff9d32 1635 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1636
73c10101
JA
1637 if (!ll_back_merge_fn(q, req, bio))
1638 return false;
1639
8c1cf6bb 1640 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1641
1642 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1643 blk_rq_set_mixed_merge(req);
1644
1645 req->biotail->bi_next = bio;
1646 req->biotail = bio;
4f024f37 1647 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1648 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1649
320ae51f 1650 blk_account_io_start(req, false);
73c10101
JA
1651 return true;
1652}
1653
320ae51f
JA
1654bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1655 struct bio *bio)
73c10101 1656{
1eff9d32 1657 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1658
73c10101
JA
1659 if (!ll_front_merge_fn(q, req, bio))
1660 return false;
1661
8c1cf6bb 1662 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1663
1664 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1665 blk_rq_set_mixed_merge(req);
1666
73c10101
JA
1667 bio->bi_next = req->bio;
1668 req->bio = bio;
1669
4f024f37
KO
1670 req->__sector = bio->bi_iter.bi_sector;
1671 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1672 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1673
320ae51f 1674 blk_account_io_start(req, false);
73c10101
JA
1675 return true;
1676}
1677
1e739730
CH
1678bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1679 struct bio *bio)
1680{
1681 unsigned short segments = blk_rq_nr_discard_segments(req);
1682
1683 if (segments >= queue_max_discard_segments(q))
1684 goto no_merge;
1685 if (blk_rq_sectors(req) + bio_sectors(bio) >
1686 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1687 goto no_merge;
1688
1689 req->biotail->bi_next = bio;
1690 req->biotail = bio;
1691 req->__data_len += bio->bi_iter.bi_size;
1692 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1693 req->nr_phys_segments = segments + 1;
1694
1695 blk_account_io_start(req, false);
1696 return true;
1697no_merge:
1698 req_set_nomerge(q, req);
1699 return false;
1700}
1701
bd87b589 1702/**
320ae51f 1703 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1704 * @q: request_queue new bio is being queued at
1705 * @bio: new bio being queued
1706 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1707 * @same_queue_rq: pointer to &struct request that gets filled in when
1708 * another request associated with @q is found on the plug list
1709 * (optional, may be %NULL)
bd87b589
TH
1710 *
1711 * Determine whether @bio being queued on @q can be merged with a request
1712 * on %current's plugged list. Returns %true if merge was successful,
1713 * otherwise %false.
1714 *
07c2bd37
TH
1715 * Plugging coalesces IOs from the same issuer for the same purpose without
1716 * going through @q->queue_lock. As such it's more of an issuing mechanism
1717 * than scheduling, and the request, while may have elvpriv data, is not
1718 * added on the elevator at this point. In addition, we don't have
1719 * reliable access to the elevator outside queue lock. Only check basic
1720 * merging parameters without querying the elevator.
da41a589
RE
1721 *
1722 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1723 */
320ae51f 1724bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1725 unsigned int *request_count,
1726 struct request **same_queue_rq)
73c10101
JA
1727{
1728 struct blk_plug *plug;
1729 struct request *rq;
92f399c7 1730 struct list_head *plug_list;
73c10101 1731
bd87b589 1732 plug = current->plug;
73c10101 1733 if (!plug)
34fe7c05 1734 return false;
56ebdaf2 1735 *request_count = 0;
73c10101 1736
92f399c7
SL
1737 if (q->mq_ops)
1738 plug_list = &plug->mq_list;
1739 else
1740 plug_list = &plug->list;
1741
1742 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1743 bool merged = false;
73c10101 1744
5b3f341f 1745 if (rq->q == q) {
1b2e19f1 1746 (*request_count)++;
5b3f341f
SL
1747 /*
1748 * Only blk-mq multiple hardware queues case checks the
1749 * rq in the same queue, there should be only one such
1750 * rq in a queue
1751 **/
1752 if (same_queue_rq)
1753 *same_queue_rq = rq;
1754 }
56ebdaf2 1755
07c2bd37 1756 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1757 continue;
1758
34fe7c05
CH
1759 switch (blk_try_merge(rq, bio)) {
1760 case ELEVATOR_BACK_MERGE:
1761 merged = bio_attempt_back_merge(q, rq, bio);
1762 break;
1763 case ELEVATOR_FRONT_MERGE:
1764 merged = bio_attempt_front_merge(q, rq, bio);
1765 break;
1e739730
CH
1766 case ELEVATOR_DISCARD_MERGE:
1767 merged = bio_attempt_discard_merge(q, rq, bio);
1768 break;
34fe7c05
CH
1769 default:
1770 break;
73c10101 1771 }
34fe7c05
CH
1772
1773 if (merged)
1774 return true;
73c10101 1775 }
34fe7c05
CH
1776
1777 return false;
73c10101
JA
1778}
1779
0809e3ac
JM
1780unsigned int blk_plug_queued_count(struct request_queue *q)
1781{
1782 struct blk_plug *plug;
1783 struct request *rq;
1784 struct list_head *plug_list;
1785 unsigned int ret = 0;
1786
1787 plug = current->plug;
1788 if (!plug)
1789 goto out;
1790
1791 if (q->mq_ops)
1792 plug_list = &plug->mq_list;
1793 else
1794 plug_list = &plug->list;
1795
1796 list_for_each_entry(rq, plug_list, queuelist) {
1797 if (rq->q == q)
1798 ret++;
1799 }
1800out:
1801 return ret;
1802}
1803
da8d7f07 1804void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1805{
0be0dee6
BVA
1806 struct io_context *ioc = rq_ioc(bio);
1807
1eff9d32 1808 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1809 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1810
4f024f37 1811 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1812 if (ioprio_valid(bio_prio(bio)))
1813 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1814 else if (ioc)
1815 req->ioprio = ioc->ioprio;
1816 else
1817 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1818 req->write_hint = bio->bi_write_hint;
bc1c56fd 1819 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1820}
da8d7f07 1821EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1822
dece1635 1823static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1824{
73c10101 1825 struct blk_plug *plug;
34fe7c05 1826 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1827 struct request *req, *free;
56ebdaf2 1828 unsigned int request_count = 0;
87760e5e 1829 unsigned int wb_acct;
1da177e4 1830
1da177e4
LT
1831 /*
1832 * low level driver can indicate that it wants pages above a
1833 * certain limit bounced to low memory (ie for highmem, or even
1834 * ISA dma in theory)
1835 */
1836 blk_queue_bounce(q, &bio);
1837
af67c31f 1838 blk_queue_split(q, &bio);
23688bf4 1839
e23947bd 1840 if (!bio_integrity_prep(bio))
dece1635 1841 return BLK_QC_T_NONE;
ffecfd1a 1842
f73f44eb 1843 if (op_is_flush(bio->bi_opf)) {
73c10101 1844 spin_lock_irq(q->queue_lock);
ae1b1539 1845 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1846 goto get_rq;
1847 }
1848
73c10101
JA
1849 /*
1850 * Check if we can merge with the plugged list before grabbing
1851 * any locks.
1852 */
0809e3ac
JM
1853 if (!blk_queue_nomerges(q)) {
1854 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1855 return BLK_QC_T_NONE;
0809e3ac
JM
1856 } else
1857 request_count = blk_plug_queued_count(q);
1da177e4 1858
73c10101 1859 spin_lock_irq(q->queue_lock);
2056a782 1860
34fe7c05
CH
1861 switch (elv_merge(q, &req, bio)) {
1862 case ELEVATOR_BACK_MERGE:
1863 if (!bio_attempt_back_merge(q, req, bio))
1864 break;
1865 elv_bio_merged(q, req, bio);
1866 free = attempt_back_merge(q, req);
1867 if (free)
1868 __blk_put_request(q, free);
1869 else
1870 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1871 goto out_unlock;
1872 case ELEVATOR_FRONT_MERGE:
1873 if (!bio_attempt_front_merge(q, req, bio))
1874 break;
1875 elv_bio_merged(q, req, bio);
1876 free = attempt_front_merge(q, req);
1877 if (free)
1878 __blk_put_request(q, free);
1879 else
1880 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1881 goto out_unlock;
1882 default:
1883 break;
1da177e4
LT
1884 }
1885
450991bc 1886get_rq:
87760e5e
JA
1887 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1888
1da177e4 1889 /*
450991bc 1890 * Grab a free request. This is might sleep but can not fail.
d6344532 1891 * Returns with the queue unlocked.
450991bc 1892 */
055f6e18 1893 blk_queue_enter_live(q);
6a15674d 1894 req = get_request(q, bio->bi_opf, bio, 0);
a492f075 1895 if (IS_ERR(req)) {
055f6e18 1896 blk_queue_exit(q);
87760e5e 1897 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1898 if (PTR_ERR(req) == -ENOMEM)
1899 bio->bi_status = BLK_STS_RESOURCE;
1900 else
1901 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1902 bio_endio(bio);
da8303c6
TH
1903 goto out_unlock;
1904 }
d6344532 1905
87760e5e
JA
1906 wbt_track(&req->issue_stat, wb_acct);
1907
450991bc
NP
1908 /*
1909 * After dropping the lock and possibly sleeping here, our request
1910 * may now be mergeable after it had proven unmergeable (above).
1911 * We don't worry about that case for efficiency. It won't happen
1912 * often, and the elevators are able to handle it.
1da177e4 1913 */
da8d7f07 1914 blk_init_request_from_bio(req, bio);
1da177e4 1915
9562ad9a 1916 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1917 req->cpu = raw_smp_processor_id();
73c10101
JA
1918
1919 plug = current->plug;
721a9602 1920 if (plug) {
dc6d36c9
JA
1921 /*
1922 * If this is the first request added after a plug, fire
7aef2e78 1923 * of a plug trace.
0a6219a9
ML
1924 *
1925 * @request_count may become stale because of schedule
1926 * out, so check plug list again.
dc6d36c9 1927 */
0a6219a9 1928 if (!request_count || list_empty(&plug->list))
dc6d36c9 1929 trace_block_plug(q);
3540d5e8 1930 else {
50d24c34
SL
1931 struct request *last = list_entry_rq(plug->list.prev);
1932 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1933 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1934 blk_flush_plug_list(plug, false);
019ceb7d
SL
1935 trace_block_plug(q);
1936 }
73c10101 1937 }
73c10101 1938 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1939 blk_account_io_start(req, true);
73c10101
JA
1940 } else {
1941 spin_lock_irq(q->queue_lock);
1942 add_acct_request(q, req, where);
24ecfbe2 1943 __blk_run_queue(q);
73c10101
JA
1944out_unlock:
1945 spin_unlock_irq(q->queue_lock);
1946 }
dece1635
JA
1947
1948 return BLK_QC_T_NONE;
1da177e4
LT
1949}
1950
1da177e4
LT
1951static void handle_bad_sector(struct bio *bio)
1952{
1953 char b[BDEVNAME_SIZE];
1954
1955 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1956 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 1957 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 1958 (unsigned long long)bio_end_sector(bio),
74d46992 1959 (long long)get_capacity(bio->bi_disk));
1da177e4
LT
1960}
1961
c17bb495
AM
1962#ifdef CONFIG_FAIL_MAKE_REQUEST
1963
1964static DECLARE_FAULT_ATTR(fail_make_request);
1965
1966static int __init setup_fail_make_request(char *str)
1967{
1968 return setup_fault_attr(&fail_make_request, str);
1969}
1970__setup("fail_make_request=", setup_fail_make_request);
1971
b2c9cd37 1972static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1973{
b2c9cd37 1974 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1975}
1976
1977static int __init fail_make_request_debugfs(void)
1978{
dd48c085
AM
1979 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1980 NULL, &fail_make_request);
1981
21f9fcd8 1982 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1983}
1984
1985late_initcall(fail_make_request_debugfs);
1986
1987#else /* CONFIG_FAIL_MAKE_REQUEST */
1988
b2c9cd37
AM
1989static inline bool should_fail_request(struct hd_struct *part,
1990 unsigned int bytes)
c17bb495 1991{
b2c9cd37 1992 return false;
c17bb495
AM
1993}
1994
1995#endif /* CONFIG_FAIL_MAKE_REQUEST */
1996
74d46992
CH
1997/*
1998 * Remap block n of partition p to block n+start(p) of the disk.
1999 */
2000static inline int blk_partition_remap(struct bio *bio)
2001{
2002 struct hd_struct *p;
2003 int ret = 0;
2004
2005 /*
2006 * Zone reset does not include bi_size so bio_sectors() is always 0.
2007 * Include a test for the reset op code and perform the remap if needed.
2008 */
2009 if (!bio->bi_partno ||
2010 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2011 return 0;
2012
2013 rcu_read_lock();
2014 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2015 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2016 bio->bi_iter.bi_sector += p->start_sect;
2017 bio->bi_partno = 0;
2018 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2019 bio->bi_iter.bi_sector - p->start_sect);
2020 } else {
2021 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2022 ret = -EIO;
2023 }
2024 rcu_read_unlock();
2025
2026 return ret;
2027}
2028
c07e2b41
JA
2029/*
2030 * Check whether this bio extends beyond the end of the device.
2031 */
2032static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2033{
2034 sector_t maxsector;
2035
2036 if (!nr_sectors)
2037 return 0;
2038
2039 /* Test device or partition size, when known. */
74d46992 2040 maxsector = get_capacity(bio->bi_disk);
c07e2b41 2041 if (maxsector) {
4f024f37 2042 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
2043
2044 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2045 /*
2046 * This may well happen - the kernel calls bread()
2047 * without checking the size of the device, e.g., when
2048 * mounting a device.
2049 */
2050 handle_bad_sector(bio);
2051 return 1;
2052 }
2053 }
2054
2055 return 0;
2056}
2057
27a84d54
CH
2058static noinline_for_stack bool
2059generic_make_request_checks(struct bio *bio)
1da177e4 2060{
165125e1 2061 struct request_queue *q;
5a7bbad2 2062 int nr_sectors = bio_sectors(bio);
4e4cbee9 2063 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2064 char b[BDEVNAME_SIZE];
1da177e4
LT
2065
2066 might_sleep();
1da177e4 2067
c07e2b41
JA
2068 if (bio_check_eod(bio, nr_sectors))
2069 goto end_io;
1da177e4 2070
74d46992 2071 q = bio->bi_disk->queue;
5a7bbad2
CH
2072 if (unlikely(!q)) {
2073 printk(KERN_ERR
2074 "generic_make_request: Trying to access "
2075 "nonexistent block-device %s (%Lu)\n",
74d46992 2076 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2077 goto end_io;
2078 }
c17bb495 2079
03a07c92
GR
2080 /*
2081 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2082 * if queue is not a request based queue.
2083 */
2084
2085 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2086 goto not_supported;
2087
74d46992 2088 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
5a7bbad2 2089 goto end_io;
2056a782 2090
74d46992
CH
2091 if (blk_partition_remap(bio))
2092 goto end_io;
2056a782 2093
5a7bbad2
CH
2094 if (bio_check_eod(bio, nr_sectors))
2095 goto end_io;
1e87901e 2096
5a7bbad2
CH
2097 /*
2098 * Filter flush bio's early so that make_request based
2099 * drivers without flush support don't have to worry
2100 * about them.
2101 */
f3a8ab7d 2102 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2103 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2104 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2105 if (!nr_sectors) {
4e4cbee9 2106 status = BLK_STS_OK;
51fd77bd
JA
2107 goto end_io;
2108 }
5a7bbad2 2109 }
5ddfe969 2110
288dab8a
CH
2111 switch (bio_op(bio)) {
2112 case REQ_OP_DISCARD:
2113 if (!blk_queue_discard(q))
2114 goto not_supported;
2115 break;
2116 case REQ_OP_SECURE_ERASE:
2117 if (!blk_queue_secure_erase(q))
2118 goto not_supported;
2119 break;
2120 case REQ_OP_WRITE_SAME:
74d46992 2121 if (!q->limits.max_write_same_sectors)
288dab8a 2122 goto not_supported;
58886785 2123 break;
2d253440
ST
2124 case REQ_OP_ZONE_REPORT:
2125 case REQ_OP_ZONE_RESET:
74d46992 2126 if (!blk_queue_is_zoned(q))
2d253440 2127 goto not_supported;
288dab8a 2128 break;
a6f0788e 2129 case REQ_OP_WRITE_ZEROES:
74d46992 2130 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2131 goto not_supported;
2132 break;
288dab8a
CH
2133 default:
2134 break;
5a7bbad2 2135 }
01edede4 2136
7f4b35d1
TH
2137 /*
2138 * Various block parts want %current->io_context and lazy ioc
2139 * allocation ends up trading a lot of pain for a small amount of
2140 * memory. Just allocate it upfront. This may fail and block
2141 * layer knows how to live with it.
2142 */
2143 create_io_context(GFP_ATOMIC, q->node);
2144
ae118896
TH
2145 if (!blkcg_bio_issue_check(q, bio))
2146 return false;
27a84d54 2147
fbbaf700
N
2148 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2149 trace_block_bio_queue(q, bio);
2150 /* Now that enqueuing has been traced, we need to trace
2151 * completion as well.
2152 */
2153 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2154 }
27a84d54 2155 return true;
a7384677 2156
288dab8a 2157not_supported:
4e4cbee9 2158 status = BLK_STS_NOTSUPP;
a7384677 2159end_io:
4e4cbee9 2160 bio->bi_status = status;
4246a0b6 2161 bio_endio(bio);
27a84d54 2162 return false;
1da177e4
LT
2163}
2164
27a84d54
CH
2165/**
2166 * generic_make_request - hand a buffer to its device driver for I/O
2167 * @bio: The bio describing the location in memory and on the device.
2168 *
2169 * generic_make_request() is used to make I/O requests of block
2170 * devices. It is passed a &struct bio, which describes the I/O that needs
2171 * to be done.
2172 *
2173 * generic_make_request() does not return any status. The
2174 * success/failure status of the request, along with notification of
2175 * completion, is delivered asynchronously through the bio->bi_end_io
2176 * function described (one day) else where.
2177 *
2178 * The caller of generic_make_request must make sure that bi_io_vec
2179 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2180 * set to describe the device address, and the
2181 * bi_end_io and optionally bi_private are set to describe how
2182 * completion notification should be signaled.
2183 *
2184 * generic_make_request and the drivers it calls may use bi_next if this
2185 * bio happens to be merged with someone else, and may resubmit the bio to
2186 * a lower device by calling into generic_make_request recursively, which
2187 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2188 */
dece1635 2189blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2190{
f5fe1b51
N
2191 /*
2192 * bio_list_on_stack[0] contains bios submitted by the current
2193 * make_request_fn.
2194 * bio_list_on_stack[1] contains bios that were submitted before
2195 * the current make_request_fn, but that haven't been processed
2196 * yet.
2197 */
2198 struct bio_list bio_list_on_stack[2];
dece1635 2199 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2200
27a84d54 2201 if (!generic_make_request_checks(bio))
dece1635 2202 goto out;
27a84d54
CH
2203
2204 /*
2205 * We only want one ->make_request_fn to be active at a time, else
2206 * stack usage with stacked devices could be a problem. So use
2207 * current->bio_list to keep a list of requests submited by a
2208 * make_request_fn function. current->bio_list is also used as a
2209 * flag to say if generic_make_request is currently active in this
2210 * task or not. If it is NULL, then no make_request is active. If
2211 * it is non-NULL, then a make_request is active, and new requests
2212 * should be added at the tail
2213 */
bddd87c7 2214 if (current->bio_list) {
f5fe1b51 2215 bio_list_add(&current->bio_list[0], bio);
dece1635 2216 goto out;
d89d8796 2217 }
27a84d54 2218
d89d8796
NB
2219 /* following loop may be a bit non-obvious, and so deserves some
2220 * explanation.
2221 * Before entering the loop, bio->bi_next is NULL (as all callers
2222 * ensure that) so we have a list with a single bio.
2223 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2224 * we assign bio_list to a pointer to the bio_list_on_stack,
2225 * thus initialising the bio_list of new bios to be
27a84d54 2226 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2227 * through a recursive call to generic_make_request. If it
2228 * did, we find a non-NULL value in bio_list and re-enter the loop
2229 * from the top. In this case we really did just take the bio
bddd87c7 2230 * of the top of the list (no pretending) and so remove it from
27a84d54 2231 * bio_list, and call into ->make_request() again.
d89d8796
NB
2232 */
2233 BUG_ON(bio->bi_next);
f5fe1b51
N
2234 bio_list_init(&bio_list_on_stack[0]);
2235 current->bio_list = bio_list_on_stack;
d89d8796 2236 do {
74d46992 2237 struct request_queue *q = bio->bi_disk->queue;
27a84d54 2238
03a07c92 2239 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
79bd9959
N
2240 struct bio_list lower, same;
2241
2242 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2243 bio_list_on_stack[1] = bio_list_on_stack[0];
2244 bio_list_init(&bio_list_on_stack[0]);
dece1635 2245 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2246
2247 blk_queue_exit(q);
27a84d54 2248
79bd9959
N
2249 /* sort new bios into those for a lower level
2250 * and those for the same level
2251 */
2252 bio_list_init(&lower);
2253 bio_list_init(&same);
f5fe1b51 2254 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2255 if (q == bio->bi_disk->queue)
79bd9959
N
2256 bio_list_add(&same, bio);
2257 else
2258 bio_list_add(&lower, bio);
2259 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2260 bio_list_merge(&bio_list_on_stack[0], &lower);
2261 bio_list_merge(&bio_list_on_stack[0], &same);
2262 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2263 } else {
03a07c92
GR
2264 if (unlikely(!blk_queue_dying(q) &&
2265 (bio->bi_opf & REQ_NOWAIT)))
2266 bio_wouldblock_error(bio);
2267 else
2268 bio_io_error(bio);
3ef28e83 2269 }
f5fe1b51 2270 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2271 } while (bio);
bddd87c7 2272 current->bio_list = NULL; /* deactivate */
dece1635
JA
2273
2274out:
2275 return ret;
d89d8796 2276}
1da177e4
LT
2277EXPORT_SYMBOL(generic_make_request);
2278
f421e1d9
CH
2279/**
2280 * direct_make_request - hand a buffer directly to its device driver for I/O
2281 * @bio: The bio describing the location in memory and on the device.
2282 *
2283 * This function behaves like generic_make_request(), but does not protect
2284 * against recursion. Must only be used if the called driver is known
2285 * to not call generic_make_request (or direct_make_request) again from
2286 * its make_request function. (Calling direct_make_request again from
2287 * a workqueue is perfectly fine as that doesn't recurse).
2288 */
2289blk_qc_t direct_make_request(struct bio *bio)
2290{
2291 struct request_queue *q = bio->bi_disk->queue;
2292 bool nowait = bio->bi_opf & REQ_NOWAIT;
2293 blk_qc_t ret;
2294
2295 if (!generic_make_request_checks(bio))
2296 return BLK_QC_T_NONE;
2297
2298 if (unlikely(blk_queue_enter(q, nowait))) {
2299 if (nowait && !blk_queue_dying(q))
2300 bio->bi_status = BLK_STS_AGAIN;
2301 else
2302 bio->bi_status = BLK_STS_IOERR;
2303 bio_endio(bio);
2304 return BLK_QC_T_NONE;
2305 }
2306
2307 ret = q->make_request_fn(q, bio);
2308 blk_queue_exit(q);
2309 return ret;
2310}
2311EXPORT_SYMBOL_GPL(direct_make_request);
2312
1da177e4 2313/**
710027a4 2314 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2315 * @bio: The &struct bio which describes the I/O
2316 *
2317 * submit_bio() is very similar in purpose to generic_make_request(), and
2318 * uses that function to do most of the work. Both are fairly rough
710027a4 2319 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2320 *
2321 */
4e49ea4a 2322blk_qc_t submit_bio(struct bio *bio)
1da177e4 2323{
bf2de6f5
JA
2324 /*
2325 * If it's a regular read/write or a barrier with data attached,
2326 * go through the normal accounting stuff before submission.
2327 */
e2a60da7 2328 if (bio_has_data(bio)) {
4363ac7c
MP
2329 unsigned int count;
2330
95fe6c1a 2331 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
74d46992 2332 count = queue_logical_block_size(bio->bi_disk->queue);
4363ac7c
MP
2333 else
2334 count = bio_sectors(bio);
2335
a8ebb056 2336 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2337 count_vm_events(PGPGOUT, count);
2338 } else {
4f024f37 2339 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2340 count_vm_events(PGPGIN, count);
2341 }
2342
2343 if (unlikely(block_dump)) {
2344 char b[BDEVNAME_SIZE];
8dcbdc74 2345 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2346 current->comm, task_pid_nr(current),
a8ebb056 2347 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2348 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2349 bio_devname(bio, b), count);
bf2de6f5 2350 }
1da177e4
LT
2351 }
2352
dece1635 2353 return generic_make_request(bio);
1da177e4 2354}
1da177e4
LT
2355EXPORT_SYMBOL(submit_bio);
2356
ea435e1b
CH
2357bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2358{
2359 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2360 return false;
2361
2362 if (current->plug)
2363 blk_flush_plug_list(current->plug, false);
2364 return q->poll_fn(q, cookie);
2365}
2366EXPORT_SYMBOL_GPL(blk_poll);
2367
82124d60 2368/**
bf4e6b4e
HR
2369 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2370 * for new the queue limits
82124d60
KU
2371 * @q: the queue
2372 * @rq: the request being checked
2373 *
2374 * Description:
2375 * @rq may have been made based on weaker limitations of upper-level queues
2376 * in request stacking drivers, and it may violate the limitation of @q.
2377 * Since the block layer and the underlying device driver trust @rq
2378 * after it is inserted to @q, it should be checked against @q before
2379 * the insertion using this generic function.
2380 *
82124d60 2381 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2382 * limits when retrying requests on other queues. Those requests need
2383 * to be checked against the new queue limits again during dispatch.
82124d60 2384 */
bf4e6b4e
HR
2385static int blk_cloned_rq_check_limits(struct request_queue *q,
2386 struct request *rq)
82124d60 2387{
8fe0d473 2388 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2389 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2390 return -EIO;
2391 }
2392
2393 /*
2394 * queue's settings related to segment counting like q->bounce_pfn
2395 * may differ from that of other stacking queues.
2396 * Recalculate it to check the request correctly on this queue's
2397 * limitation.
2398 */
2399 blk_recalc_rq_segments(rq);
8a78362c 2400 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2401 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2402 return -EIO;
2403 }
2404
2405 return 0;
2406}
82124d60
KU
2407
2408/**
2409 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2410 * @q: the queue to submit the request
2411 * @rq: the request being queued
2412 */
2a842aca 2413blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2414{
2415 unsigned long flags;
4853abaa 2416 int where = ELEVATOR_INSERT_BACK;
82124d60 2417
bf4e6b4e 2418 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2419 return BLK_STS_IOERR;
82124d60 2420
b2c9cd37
AM
2421 if (rq->rq_disk &&
2422 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2423 return BLK_STS_IOERR;
82124d60 2424
7fb4898e
KB
2425 if (q->mq_ops) {
2426 if (blk_queue_io_stat(q))
2427 blk_account_io_start(rq, true);
157f377b
JA
2428 /*
2429 * Since we have a scheduler attached on the top device,
2430 * bypass a potential scheduler on the bottom device for
2431 * insert.
2432 */
b0850297 2433 blk_mq_request_bypass_insert(rq, true);
2a842aca 2434 return BLK_STS_OK;
7fb4898e
KB
2435 }
2436
82124d60 2437 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2438 if (unlikely(blk_queue_dying(q))) {
8ba61435 2439 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2440 return BLK_STS_IOERR;
8ba61435 2441 }
82124d60
KU
2442
2443 /*
2444 * Submitting request must be dequeued before calling this function
2445 * because it will be linked to another request_queue
2446 */
2447 BUG_ON(blk_queued_rq(rq));
2448
f73f44eb 2449 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2450 where = ELEVATOR_INSERT_FLUSH;
2451
2452 add_acct_request(q, rq, where);
e67b77c7
JM
2453 if (where == ELEVATOR_INSERT_FLUSH)
2454 __blk_run_queue(q);
82124d60
KU
2455 spin_unlock_irqrestore(q->queue_lock, flags);
2456
2a842aca 2457 return BLK_STS_OK;
82124d60
KU
2458}
2459EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2460
80a761fd
TH
2461/**
2462 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2463 * @rq: request to examine
2464 *
2465 * Description:
2466 * A request could be merge of IOs which require different failure
2467 * handling. This function determines the number of bytes which
2468 * can be failed from the beginning of the request without
2469 * crossing into area which need to be retried further.
2470 *
2471 * Return:
2472 * The number of bytes to fail.
80a761fd
TH
2473 */
2474unsigned int blk_rq_err_bytes(const struct request *rq)
2475{
2476 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2477 unsigned int bytes = 0;
2478 struct bio *bio;
2479
e8064021 2480 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2481 return blk_rq_bytes(rq);
2482
2483 /*
2484 * Currently the only 'mixing' which can happen is between
2485 * different fastfail types. We can safely fail portions
2486 * which have all the failfast bits that the first one has -
2487 * the ones which are at least as eager to fail as the first
2488 * one.
2489 */
2490 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2491 if ((bio->bi_opf & ff) != ff)
80a761fd 2492 break;
4f024f37 2493 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2494 }
2495
2496 /* this could lead to infinite loop */
2497 BUG_ON(blk_rq_bytes(rq) && !bytes);
2498 return bytes;
2499}
2500EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2501
320ae51f 2502void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2503{
c2553b58 2504 if (blk_do_io_stat(req)) {
bc58ba94
JA
2505 const int rw = rq_data_dir(req);
2506 struct hd_struct *part;
2507 int cpu;
2508
2509 cpu = part_stat_lock();
09e099d4 2510 part = req->part;
bc58ba94
JA
2511 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2512 part_stat_unlock();
2513 }
2514}
2515
320ae51f 2516void blk_account_io_done(struct request *req)
bc58ba94 2517{
bc58ba94 2518 /*
dd4c133f
TH
2519 * Account IO completion. flush_rq isn't accounted as a
2520 * normal IO on queueing nor completion. Accounting the
2521 * containing request is enough.
bc58ba94 2522 */
e8064021 2523 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2524 unsigned long duration = jiffies - req->start_time;
2525 const int rw = rq_data_dir(req);
2526 struct hd_struct *part;
2527 int cpu;
2528
2529 cpu = part_stat_lock();
09e099d4 2530 part = req->part;
bc58ba94
JA
2531
2532 part_stat_inc(cpu, part, ios[rw]);
2533 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2534 part_round_stats(req->q, cpu, part);
2535 part_dec_in_flight(req->q, part, rw);
bc58ba94 2536
6c23a968 2537 hd_struct_put(part);
bc58ba94
JA
2538 part_stat_unlock();
2539 }
2540}
2541
47fafbc7 2542#ifdef CONFIG_PM
c8158819
LM
2543/*
2544 * Don't process normal requests when queue is suspended
2545 * or in the process of suspending/resuming
2546 */
e4f36b24 2547static bool blk_pm_allow_request(struct request *rq)
c8158819 2548{
e4f36b24
CH
2549 switch (rq->q->rpm_status) {
2550 case RPM_RESUMING:
2551 case RPM_SUSPENDING:
2552 return rq->rq_flags & RQF_PM;
2553 case RPM_SUSPENDED:
2554 return false;
2555 }
2556
2557 return true;
c8158819
LM
2558}
2559#else
e4f36b24 2560static bool blk_pm_allow_request(struct request *rq)
c8158819 2561{
e4f36b24 2562 return true;
c8158819
LM
2563}
2564#endif
2565
320ae51f
JA
2566void blk_account_io_start(struct request *rq, bool new_io)
2567{
2568 struct hd_struct *part;
2569 int rw = rq_data_dir(rq);
2570 int cpu;
2571
2572 if (!blk_do_io_stat(rq))
2573 return;
2574
2575 cpu = part_stat_lock();
2576
2577 if (!new_io) {
2578 part = rq->part;
2579 part_stat_inc(cpu, part, merges[rw]);
2580 } else {
2581 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2582 if (!hd_struct_try_get(part)) {
2583 /*
2584 * The partition is already being removed,
2585 * the request will be accounted on the disk only
2586 *
2587 * We take a reference on disk->part0 although that
2588 * partition will never be deleted, so we can treat
2589 * it as any other partition.
2590 */
2591 part = &rq->rq_disk->part0;
2592 hd_struct_get(part);
2593 }
d62e26b3
JA
2594 part_round_stats(rq->q, cpu, part);
2595 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2596 rq->part = part;
2597 }
2598
2599 part_stat_unlock();
2600}
2601
9c988374
CH
2602static struct request *elv_next_request(struct request_queue *q)
2603{
2604 struct request *rq;
2605 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2606
2607 WARN_ON_ONCE(q->mq_ops);
2608
2609 while (1) {
e4f36b24
CH
2610 list_for_each_entry(rq, &q->queue_head, queuelist) {
2611 if (blk_pm_allow_request(rq))
2612 return rq;
2613
2614 if (rq->rq_flags & RQF_SOFTBARRIER)
2615 break;
9c988374
CH
2616 }
2617
2618 /*
2619 * Flush request is running and flush request isn't queueable
2620 * in the drive, we can hold the queue till flush request is
2621 * finished. Even we don't do this, driver can't dispatch next
2622 * requests and will requeue them. And this can improve
2623 * throughput too. For example, we have request flush1, write1,
2624 * flush 2. flush1 is dispatched, then queue is hold, write1
2625 * isn't inserted to queue. After flush1 is finished, flush2
2626 * will be dispatched. Since disk cache is already clean,
2627 * flush2 will be finished very soon, so looks like flush2 is
2628 * folded to flush1.
2629 * Since the queue is hold, a flag is set to indicate the queue
2630 * should be restarted later. Please see flush_end_io() for
2631 * details.
2632 */
2633 if (fq->flush_pending_idx != fq->flush_running_idx &&
2634 !queue_flush_queueable(q)) {
2635 fq->flush_queue_delayed = 1;
2636 return NULL;
2637 }
2638 if (unlikely(blk_queue_bypass(q)) ||
2639 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2640 return NULL;
2641 }
2642}
2643
3bcddeac 2644/**
9934c8c0
TH
2645 * blk_peek_request - peek at the top of a request queue
2646 * @q: request queue to peek at
2647 *
2648 * Description:
2649 * Return the request at the top of @q. The returned request
2650 * should be started using blk_start_request() before LLD starts
2651 * processing it.
2652 *
2653 * Return:
2654 * Pointer to the request at the top of @q if available. Null
2655 * otherwise.
9934c8c0
TH
2656 */
2657struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2658{
2659 struct request *rq;
2660 int ret;
2661
2fff8a92 2662 lockdep_assert_held(q->queue_lock);
332ebbf7 2663 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2664
9c988374 2665 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2666 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2667 /*
2668 * This is the first time the device driver
2669 * sees this request (possibly after
2670 * requeueing). Notify IO scheduler.
2671 */
e8064021 2672 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2673 elv_activate_rq(q, rq);
2674
2675 /*
2676 * just mark as started even if we don't start
2677 * it, a request that has been delayed should
2678 * not be passed by new incoming requests
2679 */
e8064021 2680 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2681 trace_block_rq_issue(q, rq);
2682 }
2683
2684 if (!q->boundary_rq || q->boundary_rq == rq) {
2685 q->end_sector = rq_end_sector(rq);
2686 q->boundary_rq = NULL;
2687 }
2688
e8064021 2689 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2690 break;
2691
2e46e8b2 2692 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2693 /*
2694 * make sure space for the drain appears we
2695 * know we can do this because max_hw_segments
2696 * has been adjusted to be one fewer than the
2697 * device can handle
2698 */
2699 rq->nr_phys_segments++;
2700 }
2701
2702 if (!q->prep_rq_fn)
2703 break;
2704
2705 ret = q->prep_rq_fn(q, rq);
2706 if (ret == BLKPREP_OK) {
2707 break;
2708 } else if (ret == BLKPREP_DEFER) {
2709 /*
2710 * the request may have been (partially) prepped.
2711 * we need to keep this request in the front to
e8064021 2712 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2713 * prevent other fs requests from passing this one.
2714 */
2e46e8b2 2715 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2716 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2717 /*
2718 * remove the space for the drain we added
2719 * so that we don't add it again
2720 */
2721 --rq->nr_phys_segments;
2722 }
2723
2724 rq = NULL;
2725 break;
0fb5b1fb 2726 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2727 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2728 /*
2729 * Mark this request as started so we don't trigger
2730 * any debug logic in the end I/O path.
2731 */
2732 blk_start_request(rq);
2a842aca
CH
2733 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2734 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2735 } else {
2736 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2737 break;
2738 }
2739 }
2740
2741 return rq;
2742}
9934c8c0 2743EXPORT_SYMBOL(blk_peek_request);
158dbda0 2744
5034435c 2745static void blk_dequeue_request(struct request *rq)
158dbda0 2746{
9934c8c0
TH
2747 struct request_queue *q = rq->q;
2748
158dbda0
TH
2749 BUG_ON(list_empty(&rq->queuelist));
2750 BUG_ON(ELV_ON_HASH(rq));
2751
2752 list_del_init(&rq->queuelist);
2753
2754 /*
2755 * the time frame between a request being removed from the lists
2756 * and to it is freed is accounted as io that is in progress at
2757 * the driver side.
2758 */
9195291e 2759 if (blk_account_rq(rq)) {
0a7ae2ff 2760 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2761 set_io_start_time_ns(rq);
2762 }
158dbda0
TH
2763}
2764
9934c8c0
TH
2765/**
2766 * blk_start_request - start request processing on the driver
2767 * @req: request to dequeue
2768 *
2769 * Description:
2770 * Dequeue @req and start timeout timer on it. This hands off the
2771 * request to the driver.
9934c8c0
TH
2772 */
2773void blk_start_request(struct request *req)
2774{
2fff8a92 2775 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2776 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2777
9934c8c0
TH
2778 blk_dequeue_request(req);
2779
cf43e6be 2780 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2781 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2782 req->rq_flags |= RQF_STATS;
87760e5e 2783 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2784 }
2785
4912aa6c 2786 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2787 blk_add_timer(req);
2788}
2789EXPORT_SYMBOL(blk_start_request);
2790
2791/**
2792 * blk_fetch_request - fetch a request from a request queue
2793 * @q: request queue to fetch a request from
2794 *
2795 * Description:
2796 * Return the request at the top of @q. The request is started on
2797 * return and LLD can start processing it immediately.
2798 *
2799 * Return:
2800 * Pointer to the request at the top of @q if available. Null
2801 * otherwise.
9934c8c0
TH
2802 */
2803struct request *blk_fetch_request(struct request_queue *q)
2804{
2805 struct request *rq;
2806
2fff8a92 2807 lockdep_assert_held(q->queue_lock);
332ebbf7 2808 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2809
9934c8c0
TH
2810 rq = blk_peek_request(q);
2811 if (rq)
2812 blk_start_request(rq);
2813 return rq;
2814}
2815EXPORT_SYMBOL(blk_fetch_request);
2816
ef71de8b
CH
2817/*
2818 * Steal bios from a request and add them to a bio list.
2819 * The request must not have been partially completed before.
2820 */
2821void blk_steal_bios(struct bio_list *list, struct request *rq)
2822{
2823 if (rq->bio) {
2824 if (list->tail)
2825 list->tail->bi_next = rq->bio;
2826 else
2827 list->head = rq->bio;
2828 list->tail = rq->biotail;
2829
2830 rq->bio = NULL;
2831 rq->biotail = NULL;
2832 }
2833
2834 rq->__data_len = 0;
2835}
2836EXPORT_SYMBOL_GPL(blk_steal_bios);
2837
3bcddeac 2838/**
2e60e022 2839 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2840 * @req: the request being processed
2a842aca 2841 * @error: block status code
8ebf9756 2842 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2843 *
2844 * Description:
8ebf9756
RD
2845 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2846 * the request structure even if @req doesn't have leftover.
2847 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2848 *
2849 * This special helper function is only for request stacking drivers
2850 * (e.g. request-based dm) so that they can handle partial completion.
2851 * Actual device drivers should use blk_end_request instead.
2852 *
2853 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2854 * %false return from this function.
3bcddeac
KU
2855 *
2856 * Return:
2e60e022
TH
2857 * %false - this request doesn't have any more data
2858 * %true - this request has more data
3bcddeac 2859 **/
2a842aca
CH
2860bool blk_update_request(struct request *req, blk_status_t error,
2861 unsigned int nr_bytes)
1da177e4 2862{
f79ea416 2863 int total_bytes;
1da177e4 2864
2a842aca 2865 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2866
2e60e022
TH
2867 if (!req->bio)
2868 return false;
2869
2a842aca
CH
2870 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2871 !(req->rq_flags & RQF_QUIET)))
2872 print_req_error(req, error);
1da177e4 2873
bc58ba94 2874 blk_account_io_completion(req, nr_bytes);
d72d904a 2875
f79ea416
KO
2876 total_bytes = 0;
2877 while (req->bio) {
2878 struct bio *bio = req->bio;
4f024f37 2879 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2880
4f024f37 2881 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2882 req->bio = bio->bi_next;
1da177e4 2883
fbbaf700
N
2884 /* Completion has already been traced */
2885 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2886 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2887
f79ea416
KO
2888 total_bytes += bio_bytes;
2889 nr_bytes -= bio_bytes;
1da177e4 2890
f79ea416
KO
2891 if (!nr_bytes)
2892 break;
1da177e4
LT
2893 }
2894
2895 /*
2896 * completely done
2897 */
2e60e022
TH
2898 if (!req->bio) {
2899 /*
2900 * Reset counters so that the request stacking driver
2901 * can find how many bytes remain in the request
2902 * later.
2903 */
a2dec7b3 2904 req->__data_len = 0;
2e60e022
TH
2905 return false;
2906 }
1da177e4 2907
a2dec7b3 2908 req->__data_len -= total_bytes;
2e46e8b2
TH
2909
2910 /* update sector only for requests with clear definition of sector */
57292b58 2911 if (!blk_rq_is_passthrough(req))
a2dec7b3 2912 req->__sector += total_bytes >> 9;
2e46e8b2 2913
80a761fd 2914 /* mixed attributes always follow the first bio */
e8064021 2915 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2916 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2917 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2918 }
2919
ed6565e7
CH
2920 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2921 /*
2922 * If total number of sectors is less than the first segment
2923 * size, something has gone terribly wrong.
2924 */
2925 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2926 blk_dump_rq_flags(req, "request botched");
2927 req->__data_len = blk_rq_cur_bytes(req);
2928 }
2e46e8b2 2929
ed6565e7
CH
2930 /* recalculate the number of segments */
2931 blk_recalc_rq_segments(req);
2932 }
2e46e8b2 2933
2e60e022 2934 return true;
1da177e4 2935}
2e60e022 2936EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2937
2a842aca 2938static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
2939 unsigned int nr_bytes,
2940 unsigned int bidi_bytes)
5efccd17 2941{
2e60e022
TH
2942 if (blk_update_request(rq, error, nr_bytes))
2943 return true;
5efccd17 2944
2e60e022
TH
2945 /* Bidi request must be completed as a whole */
2946 if (unlikely(blk_bidi_rq(rq)) &&
2947 blk_update_request(rq->next_rq, error, bidi_bytes))
2948 return true;
5efccd17 2949
e2e1a148
JA
2950 if (blk_queue_add_random(rq->q))
2951 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2952
2953 return false;
1da177e4
LT
2954}
2955
28018c24
JB
2956/**
2957 * blk_unprep_request - unprepare a request
2958 * @req: the request
2959 *
2960 * This function makes a request ready for complete resubmission (or
2961 * completion). It happens only after all error handling is complete,
2962 * so represents the appropriate moment to deallocate any resources
2963 * that were allocated to the request in the prep_rq_fn. The queue
2964 * lock is held when calling this.
2965 */
2966void blk_unprep_request(struct request *req)
2967{
2968 struct request_queue *q = req->q;
2969
e8064021 2970 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2971 if (q->unprep_rq_fn)
2972 q->unprep_rq_fn(q, req);
2973}
2974EXPORT_SYMBOL_GPL(blk_unprep_request);
2975
2a842aca 2976void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 2977{
cf43e6be
JA
2978 struct request_queue *q = req->q;
2979
2fff8a92 2980 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2981 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2982
cf43e6be 2983 if (req->rq_flags & RQF_STATS)
34dbad5d 2984 blk_stat_add(req);
cf43e6be 2985
e8064021 2986 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2987 blk_queue_end_tag(q, req);
b8286239 2988
ba396a6c 2989 BUG_ON(blk_queued_rq(req));
1da177e4 2990
57292b58 2991 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2992 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2993
e78042e5
MA
2994 blk_delete_timer(req);
2995
e8064021 2996 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2997 blk_unprep_request(req);
2998
bc58ba94 2999 blk_account_io_done(req);
b8286239 3000
87760e5e
JA
3001 if (req->end_io) {
3002 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 3003 req->end_io(req, error);
87760e5e 3004 } else {
b8286239
KU
3005 if (blk_bidi_rq(req))
3006 __blk_put_request(req->next_rq->q, req->next_rq);
3007
cf43e6be 3008 __blk_put_request(q, req);
b8286239 3009 }
1da177e4 3010}
12120077 3011EXPORT_SYMBOL(blk_finish_request);
1da177e4 3012
3b11313a 3013/**
2e60e022
TH
3014 * blk_end_bidi_request - Complete a bidi request
3015 * @rq: the request to complete
2a842aca 3016 * @error: block status code
2e60e022
TH
3017 * @nr_bytes: number of bytes to complete @rq
3018 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3019 *
3020 * Description:
e3a04fe3 3021 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3022 * Drivers that supports bidi can safely call this member for any
3023 * type of request, bidi or uni. In the later case @bidi_bytes is
3024 * just ignored.
336cdb40
KU
3025 *
3026 * Return:
2e60e022
TH
3027 * %false - we are done with this request
3028 * %true - still buffers pending for this request
a0cd1285 3029 **/
2a842aca 3030static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3031 unsigned int nr_bytes, unsigned int bidi_bytes)
3032{
336cdb40 3033 struct request_queue *q = rq->q;
2e60e022 3034 unsigned long flags;
32fab448 3035
332ebbf7
BVA
3036 WARN_ON_ONCE(q->mq_ops);
3037
2e60e022
TH
3038 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3039 return true;
32fab448 3040
336cdb40 3041 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3042 blk_finish_request(rq, error);
336cdb40
KU
3043 spin_unlock_irqrestore(q->queue_lock, flags);
3044
2e60e022 3045 return false;
32fab448
KU
3046}
3047
336cdb40 3048/**
2e60e022
TH
3049 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3050 * @rq: the request to complete
2a842aca 3051 * @error: block status code
e3a04fe3
KU
3052 * @nr_bytes: number of bytes to complete @rq
3053 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3054 *
3055 * Description:
2e60e022
TH
3056 * Identical to blk_end_bidi_request() except that queue lock is
3057 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3058 *
3059 * Return:
2e60e022
TH
3060 * %false - we are done with this request
3061 * %true - still buffers pending for this request
336cdb40 3062 **/
2a842aca 3063static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3064 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3065{
2fff8a92 3066 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3067 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3068
2e60e022
TH
3069 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3070 return true;
336cdb40 3071
2e60e022 3072 blk_finish_request(rq, error);
336cdb40 3073
2e60e022 3074 return false;
336cdb40 3075}
e19a3ab0
KU
3076
3077/**
3078 * blk_end_request - Helper function for drivers to complete the request.
3079 * @rq: the request being processed
2a842aca 3080 * @error: block status code
e19a3ab0
KU
3081 * @nr_bytes: number of bytes to complete
3082 *
3083 * Description:
3084 * Ends I/O on a number of bytes attached to @rq.
3085 * If @rq has leftover, sets it up for the next range of segments.
3086 *
3087 * Return:
b1f74493
FT
3088 * %false - we are done with this request
3089 * %true - still buffers pending for this request
e19a3ab0 3090 **/
2a842aca
CH
3091bool blk_end_request(struct request *rq, blk_status_t error,
3092 unsigned int nr_bytes)
e19a3ab0 3093{
332ebbf7 3094 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3095 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3096}
56ad1740 3097EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3098
3099/**
b1f74493
FT
3100 * blk_end_request_all - Helper function for drives to finish the request.
3101 * @rq: the request to finish
2a842aca 3102 * @error: block status code
336cdb40
KU
3103 *
3104 * Description:
b1f74493
FT
3105 * Completely finish @rq.
3106 */
2a842aca 3107void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3108{
b1f74493
FT
3109 bool pending;
3110 unsigned int bidi_bytes = 0;
336cdb40 3111
b1f74493
FT
3112 if (unlikely(blk_bidi_rq(rq)))
3113 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3114
b1f74493
FT
3115 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3116 BUG_ON(pending);
3117}
56ad1740 3118EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3119
e3a04fe3 3120/**
b1f74493
FT
3121 * __blk_end_request - Helper function for drivers to complete the request.
3122 * @rq: the request being processed
2a842aca 3123 * @error: block status code
b1f74493 3124 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3125 *
3126 * Description:
b1f74493 3127 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3128 *
3129 * Return:
b1f74493
FT
3130 * %false - we are done with this request
3131 * %true - still buffers pending for this request
e3a04fe3 3132 **/
2a842aca
CH
3133bool __blk_end_request(struct request *rq, blk_status_t error,
3134 unsigned int nr_bytes)
e3a04fe3 3135{
2fff8a92 3136 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3137 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3138
b1f74493 3139 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3140}
56ad1740 3141EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3142
32fab448 3143/**
b1f74493
FT
3144 * __blk_end_request_all - Helper function for drives to finish the request.
3145 * @rq: the request to finish
2a842aca 3146 * @error: block status code
32fab448
KU
3147 *
3148 * Description:
b1f74493 3149 * Completely finish @rq. Must be called with queue lock held.
32fab448 3150 */
2a842aca 3151void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3152{
b1f74493
FT
3153 bool pending;
3154 unsigned int bidi_bytes = 0;
3155
2fff8a92 3156 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3157 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3158
b1f74493
FT
3159 if (unlikely(blk_bidi_rq(rq)))
3160 bidi_bytes = blk_rq_bytes(rq->next_rq);
3161
3162 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3163 BUG_ON(pending);
32fab448 3164}
56ad1740 3165EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3166
e19a3ab0 3167/**
b1f74493
FT
3168 * __blk_end_request_cur - Helper function to finish the current request chunk.
3169 * @rq: the request to finish the current chunk for
2a842aca 3170 * @error: block status code
e19a3ab0
KU
3171 *
3172 * Description:
b1f74493
FT
3173 * Complete the current consecutively mapped chunk from @rq. Must
3174 * be called with queue lock held.
e19a3ab0
KU
3175 *
3176 * Return:
b1f74493
FT
3177 * %false - we are done with this request
3178 * %true - still buffers pending for this request
3179 */
2a842aca 3180bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3181{
b1f74493 3182 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3183}
56ad1740 3184EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3185
86db1e29
JA
3186void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3187 struct bio *bio)
1da177e4 3188{
b4f42e28 3189 if (bio_has_data(bio))
fb2dce86 3190 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 3191
4f024f37 3192 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3193 rq->bio = rq->biotail = bio;
1da177e4 3194
74d46992
CH
3195 if (bio->bi_disk)
3196 rq->rq_disk = bio->bi_disk;
66846572 3197}
1da177e4 3198
2d4dc890
IL
3199#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3200/**
3201 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3202 * @rq: the request to be flushed
3203 *
3204 * Description:
3205 * Flush all pages in @rq.
3206 */
3207void rq_flush_dcache_pages(struct request *rq)
3208{
3209 struct req_iterator iter;
7988613b 3210 struct bio_vec bvec;
2d4dc890
IL
3211
3212 rq_for_each_segment(bvec, rq, iter)
7988613b 3213 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3214}
3215EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3216#endif
3217
ef9e3fac
KU
3218/**
3219 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3220 * @q : the queue of the device being checked
3221 *
3222 * Description:
3223 * Check if underlying low-level drivers of a device are busy.
3224 * If the drivers want to export their busy state, they must set own
3225 * exporting function using blk_queue_lld_busy() first.
3226 *
3227 * Basically, this function is used only by request stacking drivers
3228 * to stop dispatching requests to underlying devices when underlying
3229 * devices are busy. This behavior helps more I/O merging on the queue
3230 * of the request stacking driver and prevents I/O throughput regression
3231 * on burst I/O load.
3232 *
3233 * Return:
3234 * 0 - Not busy (The request stacking driver should dispatch request)
3235 * 1 - Busy (The request stacking driver should stop dispatching request)
3236 */
3237int blk_lld_busy(struct request_queue *q)
3238{
3239 if (q->lld_busy_fn)
3240 return q->lld_busy_fn(q);
3241
3242 return 0;
3243}
3244EXPORT_SYMBOL_GPL(blk_lld_busy);
3245
78d8e58a
MS
3246/**
3247 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3248 * @rq: the clone request to be cleaned up
3249 *
3250 * Description:
3251 * Free all bios in @rq for a cloned request.
3252 */
3253void blk_rq_unprep_clone(struct request *rq)
3254{
3255 struct bio *bio;
3256
3257 while ((bio = rq->bio) != NULL) {
3258 rq->bio = bio->bi_next;
3259
3260 bio_put(bio);
3261 }
3262}
3263EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3264
3265/*
3266 * Copy attributes of the original request to the clone request.
3267 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3268 */
3269static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3270{
3271 dst->cpu = src->cpu;
b0fd271d
KU
3272 dst->__sector = blk_rq_pos(src);
3273 dst->__data_len = blk_rq_bytes(src);
3274 dst->nr_phys_segments = src->nr_phys_segments;
3275 dst->ioprio = src->ioprio;
3276 dst->extra_len = src->extra_len;
78d8e58a
MS
3277}
3278
3279/**
3280 * blk_rq_prep_clone - Helper function to setup clone request
3281 * @rq: the request to be setup
3282 * @rq_src: original request to be cloned
3283 * @bs: bio_set that bios for clone are allocated from
3284 * @gfp_mask: memory allocation mask for bio
3285 * @bio_ctr: setup function to be called for each clone bio.
3286 * Returns %0 for success, non %0 for failure.
3287 * @data: private data to be passed to @bio_ctr
3288 *
3289 * Description:
3290 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3291 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3292 * are not copied, and copying such parts is the caller's responsibility.
3293 * Also, pages which the original bios are pointing to are not copied
3294 * and the cloned bios just point same pages.
3295 * So cloned bios must be completed before original bios, which means
3296 * the caller must complete @rq before @rq_src.
3297 */
3298int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3299 struct bio_set *bs, gfp_t gfp_mask,
3300 int (*bio_ctr)(struct bio *, struct bio *, void *),
3301 void *data)
3302{
3303 struct bio *bio, *bio_src;
3304
3305 if (!bs)
3306 bs = fs_bio_set;
3307
3308 __rq_for_each_bio(bio_src, rq_src) {
3309 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3310 if (!bio)
3311 goto free_and_out;
3312
3313 if (bio_ctr && bio_ctr(bio, bio_src, data))
3314 goto free_and_out;
3315
3316 if (rq->bio) {
3317 rq->biotail->bi_next = bio;
3318 rq->biotail = bio;
3319 } else
3320 rq->bio = rq->biotail = bio;
3321 }
3322
3323 __blk_rq_prep_clone(rq, rq_src);
3324
3325 return 0;
3326
3327free_and_out:
3328 if (bio)
3329 bio_put(bio);
3330 blk_rq_unprep_clone(rq);
3331
3332 return -ENOMEM;
b0fd271d
KU
3333}
3334EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3335
59c3d45e 3336int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3337{
3338 return queue_work(kblockd_workqueue, work);
3339}
1da177e4
LT
3340EXPORT_SYMBOL(kblockd_schedule_work);
3341
ee63cfa7
JA
3342int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3343{
3344 return queue_work_on(cpu, kblockd_workqueue, work);
3345}
3346EXPORT_SYMBOL(kblockd_schedule_work_on);
3347
818cd1cb
JA
3348int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3349 unsigned long delay)
3350{
3351 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3352}
3353EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3354
59c3d45e
JA
3355int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3356 unsigned long delay)
e43473b7
VG
3357{
3358 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3359}
3360EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3361
8ab14595
JA
3362int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3363 unsigned long delay)
3364{
3365 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3366}
3367EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3368
75df7136
SJ
3369/**
3370 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3371 * @plug: The &struct blk_plug that needs to be initialized
3372 *
3373 * Description:
3374 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3375 * pending I/O should the task end up blocking between blk_start_plug() and
3376 * blk_finish_plug(). This is important from a performance perspective, but
3377 * also ensures that we don't deadlock. For instance, if the task is blocking
3378 * for a memory allocation, memory reclaim could end up wanting to free a
3379 * page belonging to that request that is currently residing in our private
3380 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3381 * this kind of deadlock.
3382 */
73c10101
JA
3383void blk_start_plug(struct blk_plug *plug)
3384{
3385 struct task_struct *tsk = current;
3386
dd6cf3e1
SL
3387 /*
3388 * If this is a nested plug, don't actually assign it.
3389 */
3390 if (tsk->plug)
3391 return;
3392
73c10101 3393 INIT_LIST_HEAD(&plug->list);
320ae51f 3394 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3395 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3396 /*
dd6cf3e1
SL
3397 * Store ordering should not be needed here, since a potential
3398 * preempt will imply a full memory barrier
73c10101 3399 */
dd6cf3e1 3400 tsk->plug = plug;
73c10101
JA
3401}
3402EXPORT_SYMBOL(blk_start_plug);
3403
3404static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3405{
3406 struct request *rqa = container_of(a, struct request, queuelist);
3407 struct request *rqb = container_of(b, struct request, queuelist);
3408
975927b9
JM
3409 return !(rqa->q < rqb->q ||
3410 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3411}
3412
49cac01e
JA
3413/*
3414 * If 'from_schedule' is true, then postpone the dispatch of requests
3415 * until a safe kblockd context. We due this to avoid accidental big
3416 * additional stack usage in driver dispatch, in places where the originally
3417 * plugger did not intend it.
3418 */
f6603783 3419static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3420 bool from_schedule)
99e22598 3421 __releases(q->queue_lock)
94b5eb28 3422{
2fff8a92
BVA
3423 lockdep_assert_held(q->queue_lock);
3424
49cac01e 3425 trace_block_unplug(q, depth, !from_schedule);
99e22598 3426
70460571 3427 if (from_schedule)
24ecfbe2 3428 blk_run_queue_async(q);
70460571 3429 else
24ecfbe2 3430 __blk_run_queue(q);
70460571 3431 spin_unlock(q->queue_lock);
94b5eb28
JA
3432}
3433
74018dc3 3434static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3435{
3436 LIST_HEAD(callbacks);
3437
2a7d5559
SL
3438 while (!list_empty(&plug->cb_list)) {
3439 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3440
2a7d5559
SL
3441 while (!list_empty(&callbacks)) {
3442 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3443 struct blk_plug_cb,
3444 list);
2a7d5559 3445 list_del(&cb->list);
74018dc3 3446 cb->callback(cb, from_schedule);
2a7d5559 3447 }
048c9374
N
3448 }
3449}
3450
9cbb1750
N
3451struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3452 int size)
3453{
3454 struct blk_plug *plug = current->plug;
3455 struct blk_plug_cb *cb;
3456
3457 if (!plug)
3458 return NULL;
3459
3460 list_for_each_entry(cb, &plug->cb_list, list)
3461 if (cb->callback == unplug && cb->data == data)
3462 return cb;
3463
3464 /* Not currently on the callback list */
3465 BUG_ON(size < sizeof(*cb));
3466 cb = kzalloc(size, GFP_ATOMIC);
3467 if (cb) {
3468 cb->data = data;
3469 cb->callback = unplug;
3470 list_add(&cb->list, &plug->cb_list);
3471 }
3472 return cb;
3473}
3474EXPORT_SYMBOL(blk_check_plugged);
3475
49cac01e 3476void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3477{
3478 struct request_queue *q;
3479 unsigned long flags;
3480 struct request *rq;
109b8129 3481 LIST_HEAD(list);
94b5eb28 3482 unsigned int depth;
73c10101 3483
74018dc3 3484 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3485
3486 if (!list_empty(&plug->mq_list))
3487 blk_mq_flush_plug_list(plug, from_schedule);
3488
73c10101
JA
3489 if (list_empty(&plug->list))
3490 return;
3491
109b8129
N
3492 list_splice_init(&plug->list, &list);
3493
422765c2 3494 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3495
3496 q = NULL;
94b5eb28 3497 depth = 0;
18811272
JA
3498
3499 /*
3500 * Save and disable interrupts here, to avoid doing it for every
3501 * queue lock we have to take.
3502 */
73c10101 3503 local_irq_save(flags);
109b8129
N
3504 while (!list_empty(&list)) {
3505 rq = list_entry_rq(list.next);
73c10101 3506 list_del_init(&rq->queuelist);
73c10101
JA
3507 BUG_ON(!rq->q);
3508 if (rq->q != q) {
99e22598
JA
3509 /*
3510 * This drops the queue lock
3511 */
3512 if (q)
49cac01e 3513 queue_unplugged(q, depth, from_schedule);
73c10101 3514 q = rq->q;
94b5eb28 3515 depth = 0;
73c10101
JA
3516 spin_lock(q->queue_lock);
3517 }
8ba61435
TH
3518
3519 /*
3520 * Short-circuit if @q is dead
3521 */
3f3299d5 3522 if (unlikely(blk_queue_dying(q))) {
2a842aca 3523 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3524 continue;
3525 }
3526
73c10101
JA
3527 /*
3528 * rq is already accounted, so use raw insert
3529 */
f73f44eb 3530 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3531 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3532 else
3533 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3534
3535 depth++;
73c10101
JA
3536 }
3537
99e22598
JA
3538 /*
3539 * This drops the queue lock
3540 */
3541 if (q)
49cac01e 3542 queue_unplugged(q, depth, from_schedule);
73c10101 3543
73c10101
JA
3544 local_irq_restore(flags);
3545}
73c10101
JA
3546
3547void blk_finish_plug(struct blk_plug *plug)
3548{
dd6cf3e1
SL
3549 if (plug != current->plug)
3550 return;
f6603783 3551 blk_flush_plug_list(plug, false);
73c10101 3552
dd6cf3e1 3553 current->plug = NULL;
73c10101 3554}
88b996cd 3555EXPORT_SYMBOL(blk_finish_plug);
73c10101 3556
47fafbc7 3557#ifdef CONFIG_PM
6c954667
LM
3558/**
3559 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3560 * @q: the queue of the device
3561 * @dev: the device the queue belongs to
3562 *
3563 * Description:
3564 * Initialize runtime-PM-related fields for @q and start auto suspend for
3565 * @dev. Drivers that want to take advantage of request-based runtime PM
3566 * should call this function after @dev has been initialized, and its
3567 * request queue @q has been allocated, and runtime PM for it can not happen
3568 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3569 * cases, driver should call this function before any I/O has taken place.
3570 *
3571 * This function takes care of setting up using auto suspend for the device,
3572 * the autosuspend delay is set to -1 to make runtime suspend impossible
3573 * until an updated value is either set by user or by driver. Drivers do
3574 * not need to touch other autosuspend settings.
3575 *
3576 * The block layer runtime PM is request based, so only works for drivers
3577 * that use request as their IO unit instead of those directly use bio's.
3578 */
3579void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3580{
765e40b6
CH
3581 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3582 if (q->mq_ops)
3583 return;
3584
6c954667
LM
3585 q->dev = dev;
3586 q->rpm_status = RPM_ACTIVE;
3587 pm_runtime_set_autosuspend_delay(q->dev, -1);
3588 pm_runtime_use_autosuspend(q->dev);
3589}
3590EXPORT_SYMBOL(blk_pm_runtime_init);
3591
3592/**
3593 * blk_pre_runtime_suspend - Pre runtime suspend check
3594 * @q: the queue of the device
3595 *
3596 * Description:
3597 * This function will check if runtime suspend is allowed for the device
3598 * by examining if there are any requests pending in the queue. If there
3599 * are requests pending, the device can not be runtime suspended; otherwise,
3600 * the queue's status will be updated to SUSPENDING and the driver can
3601 * proceed to suspend the device.
3602 *
3603 * For the not allowed case, we mark last busy for the device so that
3604 * runtime PM core will try to autosuspend it some time later.
3605 *
3606 * This function should be called near the start of the device's
3607 * runtime_suspend callback.
3608 *
3609 * Return:
3610 * 0 - OK to runtime suspend the device
3611 * -EBUSY - Device should not be runtime suspended
3612 */
3613int blk_pre_runtime_suspend(struct request_queue *q)
3614{
3615 int ret = 0;
3616
4fd41a85
KX
3617 if (!q->dev)
3618 return ret;
3619
6c954667
LM
3620 spin_lock_irq(q->queue_lock);
3621 if (q->nr_pending) {
3622 ret = -EBUSY;
3623 pm_runtime_mark_last_busy(q->dev);
3624 } else {
3625 q->rpm_status = RPM_SUSPENDING;
3626 }
3627 spin_unlock_irq(q->queue_lock);
3628 return ret;
3629}
3630EXPORT_SYMBOL(blk_pre_runtime_suspend);
3631
3632/**
3633 * blk_post_runtime_suspend - Post runtime suspend processing
3634 * @q: the queue of the device
3635 * @err: return value of the device's runtime_suspend function
3636 *
3637 * Description:
3638 * Update the queue's runtime status according to the return value of the
3639 * device's runtime suspend function and mark last busy for the device so
3640 * that PM core will try to auto suspend the device at a later time.
3641 *
3642 * This function should be called near the end of the device's
3643 * runtime_suspend callback.
3644 */
3645void blk_post_runtime_suspend(struct request_queue *q, int err)
3646{
4fd41a85
KX
3647 if (!q->dev)
3648 return;
3649
6c954667
LM
3650 spin_lock_irq(q->queue_lock);
3651 if (!err) {
3652 q->rpm_status = RPM_SUSPENDED;
3653 } else {
3654 q->rpm_status = RPM_ACTIVE;
3655 pm_runtime_mark_last_busy(q->dev);
3656 }
3657 spin_unlock_irq(q->queue_lock);
3658}
3659EXPORT_SYMBOL(blk_post_runtime_suspend);
3660
3661/**
3662 * blk_pre_runtime_resume - Pre runtime resume processing
3663 * @q: the queue of the device
3664 *
3665 * Description:
3666 * Update the queue's runtime status to RESUMING in preparation for the
3667 * runtime resume of the device.
3668 *
3669 * This function should be called near the start of the device's
3670 * runtime_resume callback.
3671 */
3672void blk_pre_runtime_resume(struct request_queue *q)
3673{
4fd41a85
KX
3674 if (!q->dev)
3675 return;
3676
6c954667
LM
3677 spin_lock_irq(q->queue_lock);
3678 q->rpm_status = RPM_RESUMING;
3679 spin_unlock_irq(q->queue_lock);
3680}
3681EXPORT_SYMBOL(blk_pre_runtime_resume);
3682
3683/**
3684 * blk_post_runtime_resume - Post runtime resume processing
3685 * @q: the queue of the device
3686 * @err: return value of the device's runtime_resume function
3687 *
3688 * Description:
3689 * Update the queue's runtime status according to the return value of the
3690 * device's runtime_resume function. If it is successfully resumed, process
3691 * the requests that are queued into the device's queue when it is resuming
3692 * and then mark last busy and initiate autosuspend for it.
3693 *
3694 * This function should be called near the end of the device's
3695 * runtime_resume callback.
3696 */
3697void blk_post_runtime_resume(struct request_queue *q, int err)
3698{
4fd41a85
KX
3699 if (!q->dev)
3700 return;
3701
6c954667
LM
3702 spin_lock_irq(q->queue_lock);
3703 if (!err) {
3704 q->rpm_status = RPM_ACTIVE;
3705 __blk_run_queue(q);
3706 pm_runtime_mark_last_busy(q->dev);
c60855cd 3707 pm_request_autosuspend(q->dev);
6c954667
LM
3708 } else {
3709 q->rpm_status = RPM_SUSPENDED;
3710 }
3711 spin_unlock_irq(q->queue_lock);
3712}
3713EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3714
3715/**
3716 * blk_set_runtime_active - Force runtime status of the queue to be active
3717 * @q: the queue of the device
3718 *
3719 * If the device is left runtime suspended during system suspend the resume
3720 * hook typically resumes the device and corrects runtime status
3721 * accordingly. However, that does not affect the queue runtime PM status
3722 * which is still "suspended". This prevents processing requests from the
3723 * queue.
3724 *
3725 * This function can be used in driver's resume hook to correct queue
3726 * runtime PM status and re-enable peeking requests from the queue. It
3727 * should be called before first request is added to the queue.
3728 */
3729void blk_set_runtime_active(struct request_queue *q)
3730{
3731 spin_lock_irq(q->queue_lock);
3732 q->rpm_status = RPM_ACTIVE;
3733 pm_runtime_mark_last_busy(q->dev);
3734 pm_request_autosuspend(q->dev);
3735 spin_unlock_irq(q->queue_lock);
3736}
3737EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3738#endif
3739
1da177e4
LT
3740int __init blk_dev_init(void)
3741{
ef295ecf
CH
3742 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3743 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3744 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3745 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3746 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3747
89b90be2
TH
3748 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3749 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3750 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3751 if (!kblockd_workqueue)
3752 panic("Failed to create kblockd\n");
3753
3754 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3755 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3756
c2789bd4 3757 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3758 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3759
18fbda91
OS
3760#ifdef CONFIG_DEBUG_FS
3761 blk_debugfs_root = debugfs_create_dir("block", NULL);
3762#endif
3763
d38ecf93 3764 return 0;
1da177e4 3765}