]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
Revert "bdi: add error handle for bdi_debug_register"
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 147
4e4cbee9
CH
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
2a842aca
CH
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153};
154
155blk_status_t errno_to_blk_status(int errno)
156{
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165}
166EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168int blk_status_to_errno(blk_status_t status)
169{
170 int idx = (__force int)status;
171
34bd9c1c 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
173 return -EIO;
174 return blk_errors[idx].errno;
175}
176EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178static void print_req_error(struct request *req, blk_status_t status)
179{
180 int idx = (__force int)status;
181
34bd9c1c 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189}
190
5bb23a68 191static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 192 unsigned int nbytes, blk_status_t error)
1da177e4 193{
78d8e58a 194 if (error)
4e4cbee9 195 bio->bi_status = error;
797e7dbb 196
e8064021 197 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 198 bio_set_flag(bio, BIO_QUIET);
08bafc03 199
f79ea416 200 bio_advance(bio, nbytes);
7ba1ba12 201
143a87f4 202 /* don't actually finish bio if it's part of flush sequence */
e8064021 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 204 bio_endio(bio);
1da177e4 205}
1da177e4 206
1da177e4
LT
207void blk_dump_rq_flags(struct request *rq, char *msg)
208{
aebf526b
CH
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 211 (unsigned long long) rq->cmd_flags);
1da177e4 212
83096ebf
TH
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_dump_rq_flags);
220
3cca6dc1 221static void blk_delay_work(struct work_struct *work)
1da177e4 222{
3cca6dc1 223 struct request_queue *q;
1da177e4 224
3cca6dc1
JA
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
24ecfbe2 227 __blk_run_queue(q);
3cca6dc1 228 spin_unlock_irq(q->queue_lock);
1da177e4 229}
1da177e4
LT
230
231/**
3cca6dc1
JA
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
1da177e4
LT
235 *
236 * Description:
3cca6dc1
JA
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
2fff8a92 239 * restarted around the specified time.
3cca6dc1
JA
240 */
241void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 242{
2fff8a92 243 lockdep_assert_held(q->queue_lock);
332ebbf7 244 WARN_ON_ONCE(q->mq_ops);
2fff8a92 245
70460571
BVA
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
2ad8b1ef 249}
3cca6dc1 250EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 251
21491412
JA
252/**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261void blk_start_queue_async(struct request_queue *q)
262{
2fff8a92 263 lockdep_assert_held(q->queue_lock);
332ebbf7 264 WARN_ON_ONCE(q->mq_ops);
2fff8a92 265
21491412
JA
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268}
269EXPORT_SYMBOL(blk_start_queue_async);
270
1da177e4
LT
271/**
272 * blk_start_queue - restart a previously stopped queue
165125e1 273 * @q: The &struct request_queue in question
1da177e4
LT
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
2fff8a92 278 * entered. Also see blk_stop_queue().
1da177e4 279 **/
165125e1 280void blk_start_queue(struct request_queue *q)
1da177e4 281{
2fff8a92 282 lockdep_assert_held(q->queue_lock);
4ddd56b0 283 WARN_ON(!in_interrupt() && !irqs_disabled());
332ebbf7 284 WARN_ON_ONCE(q->mq_ops);
a038e253 285
75ad23bc 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 287 __blk_run_queue(q);
1da177e4 288}
1da177e4
LT
289EXPORT_SYMBOL(blk_start_queue);
290
291/**
292 * blk_stop_queue - stop a queue
165125e1 293 * @q: The &struct request_queue in question
1da177e4
LT
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 303 * blk_start_queue() to restart queue operations.
1da177e4 304 **/
165125e1 305void blk_stop_queue(struct request_queue *q)
1da177e4 306{
2fff8a92 307 lockdep_assert_held(q->queue_lock);
332ebbf7 308 WARN_ON_ONCE(q->mq_ops);
2fff8a92 309
136b5721 310 cancel_delayed_work(&q->delay_work);
75ad23bc 311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
312}
313EXPORT_SYMBOL(blk_stop_queue);
314
315/**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
59c51591 324 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
da527770 328 * This function does not cancel any asynchronous activity arising
da3dae54 329 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 330 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 331 *
1da177e4
LT
332 */
333void blk_sync_queue(struct request_queue *q)
334{
70ed28b9 335 del_timer_sync(&q->timeout);
4e9b6f20 336 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
aba7afc5 342 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 343 queue_for_each_hw_ctx(q, hctx, i)
9f993737 344 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
1da177e4
LT
348}
349EXPORT_SYMBOL(blk_sync_queue);
350
c9254f2d
BVA
351/**
352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353 * @q: request queue pointer
354 *
355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356 * set and 1 if the flag was already set.
357 */
358int blk_set_preempt_only(struct request_queue *q)
359{
360 unsigned long flags;
361 int res;
362
363 spin_lock_irqsave(q->queue_lock, flags);
364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 spin_unlock_irqrestore(q->queue_lock, flags);
366
367 return res;
368}
369EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370
371void blk_clear_preempt_only(struct request_queue *q)
372{
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
3a0a5299 377 wake_up_all(&q->mq_freeze_wq);
c9254f2d
BVA
378 spin_unlock_irqrestore(q->queue_lock, flags);
379}
380EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381
c246e80d
BVA
382/**
383 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384 * @q: The queue to run
385 *
386 * Description:
387 * Invoke request handling on a queue if there are any pending requests.
388 * May be used to restart request handling after a request has completed.
389 * This variant runs the queue whether or not the queue has been
390 * stopped. Must be called with the queue lock held and interrupts
391 * disabled. See also @blk_run_queue.
392 */
393inline void __blk_run_queue_uncond(struct request_queue *q)
394{
2fff8a92 395 lockdep_assert_held(q->queue_lock);
332ebbf7 396 WARN_ON_ONCE(q->mq_ops);
2fff8a92 397
c246e80d
BVA
398 if (unlikely(blk_queue_dead(q)))
399 return;
400
24faf6f6
BVA
401 /*
402 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 * the queue lock internally. As a result multiple threads may be
404 * running such a request function concurrently. Keep track of the
405 * number of active request_fn invocations such that blk_drain_queue()
406 * can wait until all these request_fn calls have finished.
407 */
408 q->request_fn_active++;
c246e80d 409 q->request_fn(q);
24faf6f6 410 q->request_fn_active--;
c246e80d 411}
a7928c15 412EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 413
1da177e4 414/**
80a4b58e 415 * __blk_run_queue - run a single device queue
1da177e4 416 * @q: The queue to run
80a4b58e
JA
417 *
418 * Description:
2fff8a92 419 * See @blk_run_queue.
1da177e4 420 */
24ecfbe2 421void __blk_run_queue(struct request_queue *q)
1da177e4 422{
2fff8a92 423 lockdep_assert_held(q->queue_lock);
332ebbf7 424 WARN_ON_ONCE(q->mq_ops);
2fff8a92 425
a538cd03
TH
426 if (unlikely(blk_queue_stopped(q)))
427 return;
428
c246e80d 429 __blk_run_queue_uncond(q);
75ad23bc
NP
430}
431EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 432
24ecfbe2
CH
433/**
434 * blk_run_queue_async - run a single device queue in workqueue context
435 * @q: The queue to run
436 *
437 * Description:
438 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
439 * of us.
440 *
441 * Note:
442 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443 * has canceled q->delay_work, callers must hold the queue lock to avoid
444 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
445 */
446void blk_run_queue_async(struct request_queue *q)
447{
2fff8a92 448 lockdep_assert_held(q->queue_lock);
332ebbf7 449 WARN_ON_ONCE(q->mq_ops);
2fff8a92 450
70460571 451 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 452 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 453}
c21e6beb 454EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 455
75ad23bc
NP
456/**
457 * blk_run_queue - run a single device queue
458 * @q: The queue to run
80a4b58e
JA
459 *
460 * Description:
461 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 462 * May be used to restart queueing when a request has completed.
75ad23bc
NP
463 */
464void blk_run_queue(struct request_queue *q)
465{
466 unsigned long flags;
467
332ebbf7
BVA
468 WARN_ON_ONCE(q->mq_ops);
469
75ad23bc 470 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 471 __blk_run_queue(q);
1da177e4
LT
472 spin_unlock_irqrestore(q->queue_lock, flags);
473}
474EXPORT_SYMBOL(blk_run_queue);
475
165125e1 476void blk_put_queue(struct request_queue *q)
483f4afc
AV
477{
478 kobject_put(&q->kobj);
479}
d86e0e83 480EXPORT_SYMBOL(blk_put_queue);
483f4afc 481
e3c78ca5 482/**
807592a4 483 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 484 * @q: queue to drain
c9a929dd 485 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 486 *
c9a929dd
TH
487 * Drain requests from @q. If @drain_all is set, all requests are drained.
488 * If not, only ELVPRIV requests are drained. The caller is responsible
489 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 490 */
807592a4
BVA
491static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 __releases(q->queue_lock)
493 __acquires(q->queue_lock)
e3c78ca5 494{
458f27a9
AH
495 int i;
496
807592a4 497 lockdep_assert_held(q->queue_lock);
332ebbf7 498 WARN_ON_ONCE(q->mq_ops);
807592a4 499
e3c78ca5 500 while (true) {
481a7d64 501 bool drain = false;
e3c78ca5 502
b855b04a
TH
503 /*
504 * The caller might be trying to drain @q before its
505 * elevator is initialized.
506 */
507 if (q->elevator)
508 elv_drain_elevator(q);
509
5efd6113 510 blkcg_drain_queue(q);
e3c78ca5 511
4eabc941
TH
512 /*
513 * This function might be called on a queue which failed
b855b04a
TH
514 * driver init after queue creation or is not yet fully
515 * active yet. Some drivers (e.g. fd and loop) get unhappy
516 * in such cases. Kick queue iff dispatch queue has
517 * something on it and @q has request_fn set.
4eabc941 518 */
b855b04a 519 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 520 __blk_run_queue(q);
c9a929dd 521
8a5ecdd4 522 drain |= q->nr_rqs_elvpriv;
24faf6f6 523 drain |= q->request_fn_active;
481a7d64
TH
524
525 /*
526 * Unfortunately, requests are queued at and tracked from
527 * multiple places and there's no single counter which can
528 * be drained. Check all the queues and counters.
529 */
530 if (drain_all) {
e97c293c 531 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
532 drain |= !list_empty(&q->queue_head);
533 for (i = 0; i < 2; i++) {
8a5ecdd4 534 drain |= q->nr_rqs[i];
481a7d64 535 drain |= q->in_flight[i];
7c94e1c1
ML
536 if (fq)
537 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
538 }
539 }
e3c78ca5 540
481a7d64 541 if (!drain)
e3c78ca5 542 break;
807592a4
BVA
543
544 spin_unlock_irq(q->queue_lock);
545
e3c78ca5 546 msleep(10);
807592a4
BVA
547
548 spin_lock_irq(q->queue_lock);
e3c78ca5 549 }
458f27a9
AH
550
551 /*
552 * With queue marked dead, any woken up waiter will fail the
553 * allocation path, so the wakeup chaining is lost and we're
554 * left with hung waiters. We need to wake up those waiters.
555 */
556 if (q->request_fn) {
a051661c
TH
557 struct request_list *rl;
558
a051661c
TH
559 blk_queue_for_each_rl(rl, q)
560 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 wake_up_all(&rl->wait[i]);
458f27a9 562 }
e3c78ca5
TH
563}
564
d732580b
TH
565/**
566 * blk_queue_bypass_start - enter queue bypass mode
567 * @q: queue of interest
568 *
569 * In bypass mode, only the dispatch FIFO queue of @q is used. This
570 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 571 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
572 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
573 * inside queue or RCU read lock.
d732580b
TH
574 */
575void blk_queue_bypass_start(struct request_queue *q)
576{
332ebbf7
BVA
577 WARN_ON_ONCE(q->mq_ops);
578
d732580b 579 spin_lock_irq(q->queue_lock);
776687bc 580 q->bypass_depth++;
d732580b
TH
581 queue_flag_set(QUEUE_FLAG_BYPASS, q);
582 spin_unlock_irq(q->queue_lock);
583
776687bc
TH
584 /*
585 * Queues start drained. Skip actual draining till init is
586 * complete. This avoids lenghty delays during queue init which
587 * can happen many times during boot.
588 */
589 if (blk_queue_init_done(q)) {
807592a4
BVA
590 spin_lock_irq(q->queue_lock);
591 __blk_drain_queue(q, false);
592 spin_unlock_irq(q->queue_lock);
593
b82d4b19
TH
594 /* ensure blk_queue_bypass() is %true inside RCU read lock */
595 synchronize_rcu();
596 }
d732580b
TH
597}
598EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
599
600/**
601 * blk_queue_bypass_end - leave queue bypass mode
602 * @q: queue of interest
603 *
604 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
605 *
606 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
607 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
608 */
609void blk_queue_bypass_end(struct request_queue *q)
610{
611 spin_lock_irq(q->queue_lock);
612 if (!--q->bypass_depth)
613 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
614 WARN_ON_ONCE(q->bypass_depth < 0);
615 spin_unlock_irq(q->queue_lock);
616}
617EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
618
aed3ea94
JA
619void blk_set_queue_dying(struct request_queue *q)
620{
1b856086
BVA
621 spin_lock_irq(q->queue_lock);
622 queue_flag_set(QUEUE_FLAG_DYING, q);
623 spin_unlock_irq(q->queue_lock);
aed3ea94 624
d3cfb2a0
ML
625 /*
626 * When queue DYING flag is set, we need to block new req
627 * entering queue, so we call blk_freeze_queue_start() to
628 * prevent I/O from crossing blk_queue_enter().
629 */
630 blk_freeze_queue_start(q);
631
aed3ea94
JA
632 if (q->mq_ops)
633 blk_mq_wake_waiters(q);
634 else {
635 struct request_list *rl;
636
bbfc3c5d 637 spin_lock_irq(q->queue_lock);
aed3ea94
JA
638 blk_queue_for_each_rl(rl, q) {
639 if (rl->rq_pool) {
34d9715a
ML
640 wake_up_all(&rl->wait[BLK_RW_SYNC]);
641 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
aed3ea94
JA
642 }
643 }
bbfc3c5d 644 spin_unlock_irq(q->queue_lock);
aed3ea94 645 }
055f6e18
ML
646
647 /* Make blk_queue_enter() reexamine the DYING flag. */
648 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
649}
650EXPORT_SYMBOL_GPL(blk_set_queue_dying);
651
c9a929dd
TH
652/**
653 * blk_cleanup_queue - shutdown a request queue
654 * @q: request queue to shutdown
655 *
c246e80d
BVA
656 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
657 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 658 */
6728cb0e 659void blk_cleanup_queue(struct request_queue *q)
483f4afc 660{
c9a929dd 661 spinlock_t *lock = q->queue_lock;
e3335de9 662
3f3299d5 663 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 664 mutex_lock(&q->sysfs_lock);
aed3ea94 665 blk_set_queue_dying(q);
c9a929dd 666 spin_lock_irq(lock);
6ecf23af 667
80fd9979 668 /*
3f3299d5 669 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
670 * that, unlike blk_queue_bypass_start(), we aren't performing
671 * synchronize_rcu() after entering bypass mode to avoid the delay
672 * as some drivers create and destroy a lot of queues while
673 * probing. This is still safe because blk_release_queue() will be
674 * called only after the queue refcnt drops to zero and nothing,
675 * RCU or not, would be traversing the queue by then.
676 */
6ecf23af
TH
677 q->bypass_depth++;
678 queue_flag_set(QUEUE_FLAG_BYPASS, q);
679
c9a929dd
TH
680 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
681 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 682 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
683 spin_unlock_irq(lock);
684 mutex_unlock(&q->sysfs_lock);
685
c246e80d
BVA
686 /*
687 * Drain all requests queued before DYING marking. Set DEAD flag to
688 * prevent that q->request_fn() gets invoked after draining finished.
689 */
3ef28e83 690 blk_freeze_queue(q);
9c1051aa
OS
691 spin_lock_irq(lock);
692 if (!q->mq_ops)
43a5e4e2 693 __blk_drain_queue(q, true);
c246e80d 694 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 695 spin_unlock_irq(lock);
c9a929dd 696
5a48fc14
DW
697 /* for synchronous bio-based driver finish in-flight integrity i/o */
698 blk_flush_integrity();
699
c9a929dd 700 /* @q won't process any more request, flush async actions */
dc3b17cc 701 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
702 blk_sync_queue(q);
703
45a9c9d9
BVA
704 if (q->mq_ops)
705 blk_mq_free_queue(q);
3ef28e83 706 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 707
5e5cfac0
AH
708 spin_lock_irq(lock);
709 if (q->queue_lock != &q->__queue_lock)
710 q->queue_lock = &q->__queue_lock;
711 spin_unlock_irq(lock);
712
c9a929dd 713 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
714 blk_put_queue(q);
715}
1da177e4
LT
716EXPORT_SYMBOL(blk_cleanup_queue);
717
271508db 718/* Allocate memory local to the request queue */
6d247d7f 719static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 720{
6d247d7f
CH
721 struct request_queue *q = data;
722
723 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
724}
725
6d247d7f 726static void free_request_simple(void *element, void *data)
271508db
DR
727{
728 kmem_cache_free(request_cachep, element);
729}
730
6d247d7f
CH
731static void *alloc_request_size(gfp_t gfp_mask, void *data)
732{
733 struct request_queue *q = data;
734 struct request *rq;
735
736 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
737 q->node);
738 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
739 kfree(rq);
740 rq = NULL;
741 }
742 return rq;
743}
744
745static void free_request_size(void *element, void *data)
746{
747 struct request_queue *q = data;
748
749 if (q->exit_rq_fn)
750 q->exit_rq_fn(q, element);
751 kfree(element);
752}
753
5b788ce3
TH
754int blk_init_rl(struct request_list *rl, struct request_queue *q,
755 gfp_t gfp_mask)
1da177e4 756{
85acb3ba 757 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
758 return 0;
759
5b788ce3 760 rl->q = q;
1faa16d2
JA
761 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
762 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
763 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
764 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 765
6d247d7f
CH
766 if (q->cmd_size) {
767 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
768 alloc_request_size, free_request_size,
769 q, gfp_mask, q->node);
770 } else {
771 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
772 alloc_request_simple, free_request_simple,
773 q, gfp_mask, q->node);
774 }
1da177e4
LT
775 if (!rl->rq_pool)
776 return -ENOMEM;
777
b425e504
BVA
778 if (rl != &q->root_rl)
779 WARN_ON_ONCE(!blk_get_queue(q));
780
1da177e4
LT
781 return 0;
782}
783
b425e504 784void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 785{
b425e504 786 if (rl->rq_pool) {
5b788ce3 787 mempool_destroy(rl->rq_pool);
b425e504
BVA
788 if (rl != &q->root_rl)
789 blk_put_queue(q);
790 }
5b788ce3
TH
791}
792
165125e1 793struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 794{
c304a51b 795 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
796}
797EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 798
3a0a5299
BVA
799/**
800 * blk_queue_enter() - try to increase q->q_usage_counter
801 * @q: request queue pointer
802 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
803 */
9a95e4ef 804int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 805{
3a0a5299
BVA
806 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
807
3ef28e83 808 while (true) {
3a0a5299 809 bool success = false;
3ef28e83
DW
810 int ret;
811
3a0a5299
BVA
812 rcu_read_lock_sched();
813 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
814 /*
815 * The code that sets the PREEMPT_ONLY flag is
816 * responsible for ensuring that that flag is globally
817 * visible before the queue is unfrozen.
818 */
819 if (preempt || !blk_queue_preempt_only(q)) {
820 success = true;
821 } else {
822 percpu_ref_put(&q->q_usage_counter);
823 }
824 }
825 rcu_read_unlock_sched();
826
827 if (success)
3ef28e83
DW
828 return 0;
829
3a0a5299 830 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
831 return -EBUSY;
832
5ed61d3f 833 /*
1671d522 834 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 835 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
836 * .q_usage_counter and reading .mq_freeze_depth or
837 * queue dying flag, otherwise the following wait may
838 * never return if the two reads are reordered.
5ed61d3f
ML
839 */
840 smp_rmb();
841
3ef28e83 842 ret = wait_event_interruptible(q->mq_freeze_wq,
3a0a5299
BVA
843 (atomic_read(&q->mq_freeze_depth) == 0 &&
844 (preempt || !blk_queue_preempt_only(q))) ||
3ef28e83
DW
845 blk_queue_dying(q));
846 if (blk_queue_dying(q))
847 return -ENODEV;
848 if (ret)
849 return ret;
850 }
851}
852
853void blk_queue_exit(struct request_queue *q)
854{
855 percpu_ref_put(&q->q_usage_counter);
856}
857
858static void blk_queue_usage_counter_release(struct percpu_ref *ref)
859{
860 struct request_queue *q =
861 container_of(ref, struct request_queue, q_usage_counter);
862
863 wake_up_all(&q->mq_freeze_wq);
864}
865
bca237a5 866static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 867{
bca237a5 868 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
869
870 kblockd_schedule_work(&q->timeout_work);
871}
872
165125e1 873struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 874{
165125e1 875 struct request_queue *q;
1946089a 876
8324aa91 877 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 878 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
879 if (!q)
880 return NULL;
881
00380a40 882 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 883 if (q->id < 0)
3d2936f4 884 goto fail_q;
a73f730d 885
93b27e72 886 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
887 if (!q->bio_split)
888 goto fail_id;
889
d03f6cdc
JK
890 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
891 if (!q->backing_dev_info)
892 goto fail_split;
893
a83b576c
JA
894 q->stats = blk_alloc_queue_stats();
895 if (!q->stats)
896 goto fail_stats;
897
dc3b17cc 898 q->backing_dev_info->ra_pages =
09cbfeaf 899 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
900 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
901 q->backing_dev_info->name = "block";
5151412d 902 q->node = node_id;
0989a025 903
bca237a5
KC
904 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
905 laptop_mode_timer_fn, 0);
906 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 907 INIT_WORK(&q->timeout_work, NULL);
b855b04a 908 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 909 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 910 INIT_LIST_HEAD(&q->icq_list);
4eef3049 911#ifdef CONFIG_BLK_CGROUP
e8989fae 912 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 913#endif
3cca6dc1 914 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 915
8324aa91 916 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 917
5acb3cc2
WL
918#ifdef CONFIG_BLK_DEV_IO_TRACE
919 mutex_init(&q->blk_trace_mutex);
920#endif
483f4afc 921 mutex_init(&q->sysfs_lock);
e7e72bf6 922 spin_lock_init(&q->__queue_lock);
483f4afc 923
c94a96ac
VG
924 /*
925 * By default initialize queue_lock to internal lock and driver can
926 * override it later if need be.
927 */
928 q->queue_lock = &q->__queue_lock;
929
b82d4b19
TH
930 /*
931 * A queue starts its life with bypass turned on to avoid
932 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
933 * init. The initial bypass will be finished when the queue is
934 * registered by blk_register_queue().
b82d4b19
TH
935 */
936 q->bypass_depth = 1;
937 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
938
320ae51f
JA
939 init_waitqueue_head(&q->mq_freeze_wq);
940
3ef28e83
DW
941 /*
942 * Init percpu_ref in atomic mode so that it's faster to shutdown.
943 * See blk_register_queue() for details.
944 */
945 if (percpu_ref_init(&q->q_usage_counter,
946 blk_queue_usage_counter_release,
947 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 948 goto fail_bdi;
f51b802c 949
3ef28e83
DW
950 if (blkcg_init_queue(q))
951 goto fail_ref;
952
1da177e4 953 return q;
a73f730d 954
3ef28e83
DW
955fail_ref:
956 percpu_ref_exit(&q->q_usage_counter);
fff4996b 957fail_bdi:
a83b576c
JA
958 blk_free_queue_stats(q->stats);
959fail_stats:
d03f6cdc 960 bdi_put(q->backing_dev_info);
54efd50b
KO
961fail_split:
962 bioset_free(q->bio_split);
a73f730d
TH
963fail_id:
964 ida_simple_remove(&blk_queue_ida, q->id);
965fail_q:
966 kmem_cache_free(blk_requestq_cachep, q);
967 return NULL;
1da177e4 968}
1946089a 969EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
970
971/**
972 * blk_init_queue - prepare a request queue for use with a block device
973 * @rfn: The function to be called to process requests that have been
974 * placed on the queue.
975 * @lock: Request queue spin lock
976 *
977 * Description:
978 * If a block device wishes to use the standard request handling procedures,
979 * which sorts requests and coalesces adjacent requests, then it must
980 * call blk_init_queue(). The function @rfn will be called when there
981 * are requests on the queue that need to be processed. If the device
982 * supports plugging, then @rfn may not be called immediately when requests
983 * are available on the queue, but may be called at some time later instead.
984 * Plugged queues are generally unplugged when a buffer belonging to one
985 * of the requests on the queue is needed, or due to memory pressure.
986 *
987 * @rfn is not required, or even expected, to remove all requests off the
988 * queue, but only as many as it can handle at a time. If it does leave
989 * requests on the queue, it is responsible for arranging that the requests
990 * get dealt with eventually.
991 *
992 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
993 * request queue; this lock will be taken also from interrupt context, so irq
994 * disabling is needed for it.
1da177e4 995 *
710027a4 996 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
997 * it didn't succeed.
998 *
999 * Note:
1000 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1001 * when the block device is deactivated (such as at module unload).
1002 **/
1946089a 1003
165125e1 1004struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1005{
c304a51b 1006 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
1007}
1008EXPORT_SYMBOL(blk_init_queue);
1009
165125e1 1010struct request_queue *
1946089a
CL
1011blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1012{
5ea708d1 1013 struct request_queue *q;
1da177e4 1014
5ea708d1
CH
1015 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1016 if (!q)
c86d1b8a
MS
1017 return NULL;
1018
5ea708d1
CH
1019 q->request_fn = rfn;
1020 if (lock)
1021 q->queue_lock = lock;
1022 if (blk_init_allocated_queue(q) < 0) {
1023 blk_cleanup_queue(q);
1024 return NULL;
1025 }
18741986 1026
7982e90c 1027 return q;
01effb0d
MS
1028}
1029EXPORT_SYMBOL(blk_init_queue_node);
1030
dece1635 1031static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 1032
1da177e4 1033
5ea708d1
CH
1034int blk_init_allocated_queue(struct request_queue *q)
1035{
332ebbf7
BVA
1036 WARN_ON_ONCE(q->mq_ops);
1037
6d247d7f 1038 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 1039 if (!q->fq)
5ea708d1 1040 return -ENOMEM;
7982e90c 1041
6d247d7f
CH
1042 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1043 goto out_free_flush_queue;
7982e90c 1044
a051661c 1045 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 1046 goto out_exit_flush_rq;
1da177e4 1047
287922eb 1048 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 1049 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 1050
f3b144aa
JA
1051 /*
1052 * This also sets hw/phys segments, boundary and size
1053 */
c20e8de2 1054 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1055
44ec9542
AS
1056 q->sg_reserved_size = INT_MAX;
1057
eb1c160b
TS
1058 /* Protect q->elevator from elevator_change */
1059 mutex_lock(&q->sysfs_lock);
1060
b82d4b19 1061 /* init elevator */
eb1c160b
TS
1062 if (elevator_init(q, NULL)) {
1063 mutex_unlock(&q->sysfs_lock);
6d247d7f 1064 goto out_exit_flush_rq;
eb1c160b
TS
1065 }
1066
1067 mutex_unlock(&q->sysfs_lock);
5ea708d1 1068 return 0;
eb1c160b 1069
6d247d7f
CH
1070out_exit_flush_rq:
1071 if (q->exit_rq_fn)
1072 q->exit_rq_fn(q, q->fq->flush_rq);
1073out_free_flush_queue:
ba483388 1074 blk_free_flush_queue(q->fq);
5ea708d1 1075 return -ENOMEM;
1da177e4 1076}
5151412d 1077EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1078
09ac46c4 1079bool blk_get_queue(struct request_queue *q)
1da177e4 1080{
3f3299d5 1081 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1082 __blk_get_queue(q);
1083 return true;
1da177e4
LT
1084 }
1085
09ac46c4 1086 return false;
1da177e4 1087}
d86e0e83 1088EXPORT_SYMBOL(blk_get_queue);
1da177e4 1089
5b788ce3 1090static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1091{
e8064021 1092 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1093 elv_put_request(rl->q, rq);
f1f8cc94 1094 if (rq->elv.icq)
11a3122f 1095 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1096 }
1097
5b788ce3 1098 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1099}
1100
1da177e4
LT
1101/*
1102 * ioc_batching returns true if the ioc is a valid batching request and
1103 * should be given priority access to a request.
1104 */
165125e1 1105static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1106{
1107 if (!ioc)
1108 return 0;
1109
1110 /*
1111 * Make sure the process is able to allocate at least 1 request
1112 * even if the batch times out, otherwise we could theoretically
1113 * lose wakeups.
1114 */
1115 return ioc->nr_batch_requests == q->nr_batching ||
1116 (ioc->nr_batch_requests > 0
1117 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1118}
1119
1120/*
1121 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1122 * will cause the process to be a "batcher" on all queues in the system. This
1123 * is the behaviour we want though - once it gets a wakeup it should be given
1124 * a nice run.
1125 */
165125e1 1126static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1127{
1128 if (!ioc || ioc_batching(q, ioc))
1129 return;
1130
1131 ioc->nr_batch_requests = q->nr_batching;
1132 ioc->last_waited = jiffies;
1133}
1134
5b788ce3 1135static void __freed_request(struct request_list *rl, int sync)
1da177e4 1136{
5b788ce3 1137 struct request_queue *q = rl->q;
1da177e4 1138
d40f75a0
TH
1139 if (rl->count[sync] < queue_congestion_off_threshold(q))
1140 blk_clear_congested(rl, sync);
1da177e4 1141
1faa16d2
JA
1142 if (rl->count[sync] + 1 <= q->nr_requests) {
1143 if (waitqueue_active(&rl->wait[sync]))
1144 wake_up(&rl->wait[sync]);
1da177e4 1145
5b788ce3 1146 blk_clear_rl_full(rl, sync);
1da177e4
LT
1147 }
1148}
1149
1150/*
1151 * A request has just been released. Account for it, update the full and
1152 * congestion status, wake up any waiters. Called under q->queue_lock.
1153 */
e8064021
CH
1154static void freed_request(struct request_list *rl, bool sync,
1155 req_flags_t rq_flags)
1da177e4 1156{
5b788ce3 1157 struct request_queue *q = rl->q;
1da177e4 1158
8a5ecdd4 1159 q->nr_rqs[sync]--;
1faa16d2 1160 rl->count[sync]--;
e8064021 1161 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1162 q->nr_rqs_elvpriv--;
1da177e4 1163
5b788ce3 1164 __freed_request(rl, sync);
1da177e4 1165
1faa16d2 1166 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1167 __freed_request(rl, sync ^ 1);
1da177e4
LT
1168}
1169
e3a2b3f9
JA
1170int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1171{
1172 struct request_list *rl;
d40f75a0 1173 int on_thresh, off_thresh;
e3a2b3f9 1174
332ebbf7
BVA
1175 WARN_ON_ONCE(q->mq_ops);
1176
e3a2b3f9
JA
1177 spin_lock_irq(q->queue_lock);
1178 q->nr_requests = nr;
1179 blk_queue_congestion_threshold(q);
d40f75a0
TH
1180 on_thresh = queue_congestion_on_threshold(q);
1181 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1182
d40f75a0
TH
1183 blk_queue_for_each_rl(rl, q) {
1184 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1185 blk_set_congested(rl, BLK_RW_SYNC);
1186 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1187 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1188
d40f75a0
TH
1189 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1190 blk_set_congested(rl, BLK_RW_ASYNC);
1191 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1192 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1193
e3a2b3f9
JA
1194 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1195 blk_set_rl_full(rl, BLK_RW_SYNC);
1196 } else {
1197 blk_clear_rl_full(rl, BLK_RW_SYNC);
1198 wake_up(&rl->wait[BLK_RW_SYNC]);
1199 }
1200
1201 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1202 blk_set_rl_full(rl, BLK_RW_ASYNC);
1203 } else {
1204 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1205 wake_up(&rl->wait[BLK_RW_ASYNC]);
1206 }
1207 }
1208
1209 spin_unlock_irq(q->queue_lock);
1210 return 0;
1211}
1212
da8303c6 1213/**
a06e05e6 1214 * __get_request - get a free request
5b788ce3 1215 * @rl: request list to allocate from
ef295ecf 1216 * @op: operation and flags
da8303c6 1217 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1218 * @flags: BLQ_MQ_REQ_* flags
da8303c6
TH
1219 *
1220 * Get a free request from @q. This function may fail under memory
1221 * pressure or if @q is dead.
1222 *
da3dae54 1223 * Must be called with @q->queue_lock held and,
a492f075
JL
1224 * Returns ERR_PTR on failure, with @q->queue_lock held.
1225 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1226 */
ef295ecf 1227static struct request *__get_request(struct request_list *rl, unsigned int op,
9a95e4ef 1228 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1229{
5b788ce3 1230 struct request_queue *q = rl->q;
b679281a 1231 struct request *rq;
7f4b35d1
TH
1232 struct elevator_type *et = q->elevator->type;
1233 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1234 struct io_cq *icq = NULL;
ef295ecf 1235 const bool is_sync = op_is_sync(op);
75eb6c37 1236 int may_queue;
6a15674d
BVA
1237 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1238 __GFP_DIRECT_RECLAIM;
e8064021 1239 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1240
2fff8a92
BVA
1241 lockdep_assert_held(q->queue_lock);
1242
3f3299d5 1243 if (unlikely(blk_queue_dying(q)))
a492f075 1244 return ERR_PTR(-ENODEV);
da8303c6 1245
ef295ecf 1246 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1247 if (may_queue == ELV_MQUEUE_NO)
1248 goto rq_starved;
1249
1faa16d2
JA
1250 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1251 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1252 /*
1253 * The queue will fill after this allocation, so set
1254 * it as full, and mark this process as "batching".
1255 * This process will be allowed to complete a batch of
1256 * requests, others will be blocked.
1257 */
5b788ce3 1258 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1259 ioc_set_batching(q, ioc);
5b788ce3 1260 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1261 } else {
1262 if (may_queue != ELV_MQUEUE_MUST
1263 && !ioc_batching(q, ioc)) {
1264 /*
1265 * The queue is full and the allocating
1266 * process is not a "batcher", and not
1267 * exempted by the IO scheduler
1268 */
a492f075 1269 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1270 }
1271 }
1da177e4 1272 }
d40f75a0 1273 blk_set_congested(rl, is_sync);
1da177e4
LT
1274 }
1275
082cf69e
JA
1276 /*
1277 * Only allow batching queuers to allocate up to 50% over the defined
1278 * limit of requests, otherwise we could have thousands of requests
1279 * allocated with any setting of ->nr_requests
1280 */
1faa16d2 1281 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1282 return ERR_PTR(-ENOMEM);
fd782a4a 1283
8a5ecdd4 1284 q->nr_rqs[is_sync]++;
1faa16d2
JA
1285 rl->count[is_sync]++;
1286 rl->starved[is_sync] = 0;
cb98fc8b 1287
f1f8cc94
TH
1288 /*
1289 * Decide whether the new request will be managed by elevator. If
e8064021 1290 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1291 * prevent the current elevator from being destroyed until the new
1292 * request is freed. This guarantees icq's won't be destroyed and
1293 * makes creating new ones safe.
1294 *
e6f7f93d
CH
1295 * Flush requests do not use the elevator so skip initialization.
1296 * This allows a request to share the flush and elevator data.
1297 *
f1f8cc94
TH
1298 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1299 * it will be created after releasing queue_lock.
1300 */
e6f7f93d 1301 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1302 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1303 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1304 if (et->icq_cache && ioc)
1305 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1306 }
cb98fc8b 1307
f253b86b 1308 if (blk_queue_io_stat(q))
e8064021 1309 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1310 spin_unlock_irq(q->queue_lock);
1311
29e2b09a 1312 /* allocate and init request */
5b788ce3 1313 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1314 if (!rq)
b679281a 1315 goto fail_alloc;
1da177e4 1316
29e2b09a 1317 blk_rq_init(q, rq);
a051661c 1318 blk_rq_set_rl(rq, rl);
ef295ecf 1319 rq->cmd_flags = op;
e8064021 1320 rq->rq_flags = rq_flags;
1b6d65a0
BVA
1321 if (flags & BLK_MQ_REQ_PREEMPT)
1322 rq->rq_flags |= RQF_PREEMPT;
29e2b09a 1323
aaf7c680 1324 /* init elvpriv */
e8064021 1325 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1326 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1327 if (ioc)
1328 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1329 if (!icq)
1330 goto fail_elvpriv;
29e2b09a 1331 }
aaf7c680
TH
1332
1333 rq->elv.icq = icq;
1334 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1335 goto fail_elvpriv;
1336
1337 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1338 if (icq)
1339 get_io_context(icq->ioc);
1340 }
aaf7c680 1341out:
88ee5ef1
JA
1342 /*
1343 * ioc may be NULL here, and ioc_batching will be false. That's
1344 * OK, if the queue is under the request limit then requests need
1345 * not count toward the nr_batch_requests limit. There will always
1346 * be some limit enforced by BLK_BATCH_TIME.
1347 */
1da177e4
LT
1348 if (ioc_batching(q, ioc))
1349 ioc->nr_batch_requests--;
6728cb0e 1350
e6a40b09 1351 trace_block_getrq(q, bio, op);
1da177e4 1352 return rq;
b679281a 1353
aaf7c680
TH
1354fail_elvpriv:
1355 /*
1356 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1357 * and may fail indefinitely under memory pressure and thus
1358 * shouldn't stall IO. Treat this request as !elvpriv. This will
1359 * disturb iosched and blkcg but weird is bettern than dead.
1360 */
7b2b10e0 1361 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1362 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1363
e8064021 1364 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1365 rq->elv.icq = NULL;
1366
1367 spin_lock_irq(q->queue_lock);
8a5ecdd4 1368 q->nr_rqs_elvpriv--;
aaf7c680
TH
1369 spin_unlock_irq(q->queue_lock);
1370 goto out;
1371
b679281a
TH
1372fail_alloc:
1373 /*
1374 * Allocation failed presumably due to memory. Undo anything we
1375 * might have messed up.
1376 *
1377 * Allocating task should really be put onto the front of the wait
1378 * queue, but this is pretty rare.
1379 */
1380 spin_lock_irq(q->queue_lock);
e8064021 1381 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1382
1383 /*
1384 * in the very unlikely event that allocation failed and no
1385 * requests for this direction was pending, mark us starved so that
1386 * freeing of a request in the other direction will notice
1387 * us. another possible fix would be to split the rq mempool into
1388 * READ and WRITE
1389 */
1390rq_starved:
1391 if (unlikely(rl->count[is_sync] == 0))
1392 rl->starved[is_sync] = 1;
a492f075 1393 return ERR_PTR(-ENOMEM);
1da177e4
LT
1394}
1395
da8303c6 1396/**
a06e05e6 1397 * get_request - get a free request
da8303c6 1398 * @q: request_queue to allocate request from
ef295ecf 1399 * @op: operation and flags
da8303c6 1400 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1401 * @flags: BLK_MQ_REQ_* flags.
da8303c6 1402 *
d0164adc
MG
1403 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1404 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1405 *
da3dae54 1406 * Must be called with @q->queue_lock held and,
a492f075
JL
1407 * Returns ERR_PTR on failure, with @q->queue_lock held.
1408 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1409 */
ef295ecf 1410static struct request *get_request(struct request_queue *q, unsigned int op,
9a95e4ef 1411 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1412{
ef295ecf 1413 const bool is_sync = op_is_sync(op);
a06e05e6 1414 DEFINE_WAIT(wait);
a051661c 1415 struct request_list *rl;
1da177e4 1416 struct request *rq;
a051661c 1417
2fff8a92 1418 lockdep_assert_held(q->queue_lock);
332ebbf7 1419 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1420
a051661c 1421 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1422retry:
6a15674d 1423 rq = __get_request(rl, op, bio, flags);
a492f075 1424 if (!IS_ERR(rq))
a06e05e6 1425 return rq;
1da177e4 1426
03a07c92
GR
1427 if (op & REQ_NOWAIT) {
1428 blk_put_rl(rl);
1429 return ERR_PTR(-EAGAIN);
1430 }
1431
6a15674d 1432 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1433 blk_put_rl(rl);
a492f075 1434 return rq;
a051661c 1435 }
1da177e4 1436
a06e05e6
TH
1437 /* wait on @rl and retry */
1438 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1439 TASK_UNINTERRUPTIBLE);
1da177e4 1440
e6a40b09 1441 trace_block_sleeprq(q, bio, op);
1da177e4 1442
a06e05e6
TH
1443 spin_unlock_irq(q->queue_lock);
1444 io_schedule();
d6344532 1445
a06e05e6
TH
1446 /*
1447 * After sleeping, we become a "batching" process and will be able
1448 * to allocate at least one request, and up to a big batch of them
1449 * for a small period time. See ioc_batching, ioc_set_batching
1450 */
a06e05e6 1451 ioc_set_batching(q, current->io_context);
05caf8db 1452
a06e05e6
TH
1453 spin_lock_irq(q->queue_lock);
1454 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1455
a06e05e6 1456 goto retry;
1da177e4
LT
1457}
1458
6a15674d 1459/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1460static struct request *blk_old_get_request(struct request_queue *q,
9a95e4ef 1461 unsigned int op, blk_mq_req_flags_t flags)
1da177e4
LT
1462{
1463 struct request *rq;
6a15674d
BVA
1464 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1465 __GFP_DIRECT_RECLAIM;
055f6e18 1466 int ret = 0;
1da177e4 1467
332ebbf7
BVA
1468 WARN_ON_ONCE(q->mq_ops);
1469
7f4b35d1
TH
1470 /* create ioc upfront */
1471 create_io_context(gfp_mask, q->node);
1472
3a0a5299 1473 ret = blk_queue_enter(q, flags);
055f6e18
ML
1474 if (ret)
1475 return ERR_PTR(ret);
d6344532 1476 spin_lock_irq(q->queue_lock);
6a15674d 1477 rq = get_request(q, op, NULL, flags);
0c4de0f3 1478 if (IS_ERR(rq)) {
da8303c6 1479 spin_unlock_irq(q->queue_lock);
055f6e18 1480 blk_queue_exit(q);
0c4de0f3
CH
1481 return rq;
1482 }
1da177e4 1483
0c4de0f3
CH
1484 /* q->queue_lock is unlocked at this point */
1485 rq->__data_len = 0;
1486 rq->__sector = (sector_t) -1;
1487 rq->bio = rq->biotail = NULL;
1da177e4
LT
1488 return rq;
1489}
320ae51f 1490
6a15674d
BVA
1491/**
1492 * blk_get_request_flags - allocate a request
1493 * @q: request queue to allocate a request for
1494 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1495 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1496 */
1497struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
9a95e4ef 1498 blk_mq_req_flags_t flags)
320ae51f 1499{
d280bab3
BVA
1500 struct request *req;
1501
6a15674d 1502 WARN_ON_ONCE(op & REQ_NOWAIT);
1b6d65a0 1503 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
6a15674d 1504
d280bab3 1505 if (q->mq_ops) {
6a15674d 1506 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1507 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1508 q->mq_ops->initialize_rq_fn(req);
1509 } else {
6a15674d 1510 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1511 if (!IS_ERR(req) && q->initialize_rq_fn)
1512 q->initialize_rq_fn(req);
1513 }
1514
1515 return req;
320ae51f 1516}
6a15674d
BVA
1517EXPORT_SYMBOL(blk_get_request_flags);
1518
1519struct request *blk_get_request(struct request_queue *q, unsigned int op,
1520 gfp_t gfp_mask)
1521{
1522 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1523 0 : BLK_MQ_REQ_NOWAIT);
1524}
1da177e4
LT
1525EXPORT_SYMBOL(blk_get_request);
1526
1527/**
1528 * blk_requeue_request - put a request back on queue
1529 * @q: request queue where request should be inserted
1530 * @rq: request to be inserted
1531 *
1532 * Description:
1533 * Drivers often keep queueing requests until the hardware cannot accept
1534 * more, when that condition happens we need to put the request back
1535 * on the queue. Must be called with queue lock held.
1536 */
165125e1 1537void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1538{
2fff8a92 1539 lockdep_assert_held(q->queue_lock);
332ebbf7 1540 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1541
242f9dcb
JA
1542 blk_delete_timer(rq);
1543 blk_clear_rq_complete(rq);
5f3ea37c 1544 trace_block_rq_requeue(q, rq);
87760e5e 1545 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1546
e8064021 1547 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1548 blk_queue_end_tag(q, rq);
1549
ba396a6c
JB
1550 BUG_ON(blk_queued_rq(rq));
1551
1da177e4
LT
1552 elv_requeue_request(q, rq);
1553}
1da177e4
LT
1554EXPORT_SYMBOL(blk_requeue_request);
1555
73c10101
JA
1556static void add_acct_request(struct request_queue *q, struct request *rq,
1557 int where)
1558{
320ae51f 1559 blk_account_io_start(rq, true);
7eaceacc 1560 __elv_add_request(q, rq, where);
73c10101
JA
1561}
1562
d62e26b3 1563static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1564 struct hd_struct *part, unsigned long now,
1565 unsigned int inflight)
074a7aca 1566{
b8d62b3a 1567 if (inflight) {
074a7aca 1568 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1569 inflight * (now - part->stamp));
074a7aca
TH
1570 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1571 }
1572 part->stamp = now;
1573}
1574
1575/**
496aa8a9 1576 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1577 * @q: target block queue
496aa8a9
RD
1578 * @cpu: cpu number for stats access
1579 * @part: target partition
1da177e4
LT
1580 *
1581 * The average IO queue length and utilisation statistics are maintained
1582 * by observing the current state of the queue length and the amount of
1583 * time it has been in this state for.
1584 *
1585 * Normally, that accounting is done on IO completion, but that can result
1586 * in more than a second's worth of IO being accounted for within any one
1587 * second, leading to >100% utilisation. To deal with that, we call this
1588 * function to do a round-off before returning the results when reading
1589 * /proc/diskstats. This accounts immediately for all queue usage up to
1590 * the current jiffies and restarts the counters again.
1591 */
d62e26b3 1592void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1593{
b8d62b3a 1594 struct hd_struct *part2 = NULL;
6f2576af 1595 unsigned long now = jiffies;
b8d62b3a
JA
1596 unsigned int inflight[2];
1597 int stats = 0;
1598
1599 if (part->stamp != now)
1600 stats |= 1;
1601
1602 if (part->partno) {
1603 part2 = &part_to_disk(part)->part0;
1604 if (part2->stamp != now)
1605 stats |= 2;
1606 }
1607
1608 if (!stats)
1609 return;
1610
1611 part_in_flight(q, part, inflight);
6f2576af 1612
b8d62b3a
JA
1613 if (stats & 2)
1614 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1615 if (stats & 1)
1616 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1617}
074a7aca 1618EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1619
47fafbc7 1620#ifdef CONFIG_PM
c8158819
LM
1621static void blk_pm_put_request(struct request *rq)
1622{
e8064021 1623 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1624 pm_runtime_mark_last_busy(rq->q->dev);
1625}
1626#else
1627static inline void blk_pm_put_request(struct request *rq) {}
1628#endif
1629
165125e1 1630void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1631{
e8064021
CH
1632 req_flags_t rq_flags = req->rq_flags;
1633
1da177e4
LT
1634 if (unlikely(!q))
1635 return;
1da177e4 1636
6f5ba581
CH
1637 if (q->mq_ops) {
1638 blk_mq_free_request(req);
1639 return;
1640 }
1641
2fff8a92
BVA
1642 lockdep_assert_held(q->queue_lock);
1643
c8158819
LM
1644 blk_pm_put_request(req);
1645
8922e16c
TH
1646 elv_completed_request(q, req);
1647
1cd96c24
BH
1648 /* this is a bio leak */
1649 WARN_ON(req->bio != NULL);
1650
87760e5e
JA
1651 wbt_done(q->rq_wb, &req->issue_stat);
1652
1da177e4
LT
1653 /*
1654 * Request may not have originated from ll_rw_blk. if not,
1655 * it didn't come out of our reserved rq pools
1656 */
e8064021 1657 if (rq_flags & RQF_ALLOCED) {
a051661c 1658 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1659 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1660
1da177e4 1661 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1662 BUG_ON(ELV_ON_HASH(req));
1da177e4 1663
a051661c 1664 blk_free_request(rl, req);
e8064021 1665 freed_request(rl, sync, rq_flags);
a051661c 1666 blk_put_rl(rl);
055f6e18 1667 blk_queue_exit(q);
1da177e4
LT
1668 }
1669}
6e39b69e
MC
1670EXPORT_SYMBOL_GPL(__blk_put_request);
1671
1da177e4
LT
1672void blk_put_request(struct request *req)
1673{
165125e1 1674 struct request_queue *q = req->q;
8922e16c 1675
320ae51f
JA
1676 if (q->mq_ops)
1677 blk_mq_free_request(req);
1678 else {
1679 unsigned long flags;
1680
1681 spin_lock_irqsave(q->queue_lock, flags);
1682 __blk_put_request(q, req);
1683 spin_unlock_irqrestore(q->queue_lock, flags);
1684 }
1da177e4 1685}
1da177e4
LT
1686EXPORT_SYMBOL(blk_put_request);
1687
320ae51f
JA
1688bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1689 struct bio *bio)
73c10101 1690{
1eff9d32 1691 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1692
73c10101
JA
1693 if (!ll_back_merge_fn(q, req, bio))
1694 return false;
1695
8c1cf6bb 1696 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1697
1698 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1699 blk_rq_set_mixed_merge(req);
1700
1701 req->biotail->bi_next = bio;
1702 req->biotail = bio;
4f024f37 1703 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1704 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1705
320ae51f 1706 blk_account_io_start(req, false);
73c10101
JA
1707 return true;
1708}
1709
320ae51f
JA
1710bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1711 struct bio *bio)
73c10101 1712{
1eff9d32 1713 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1714
73c10101
JA
1715 if (!ll_front_merge_fn(q, req, bio))
1716 return false;
1717
8c1cf6bb 1718 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1719
1720 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1721 blk_rq_set_mixed_merge(req);
1722
73c10101
JA
1723 bio->bi_next = req->bio;
1724 req->bio = bio;
1725
4f024f37
KO
1726 req->__sector = bio->bi_iter.bi_sector;
1727 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1728 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1729
320ae51f 1730 blk_account_io_start(req, false);
73c10101
JA
1731 return true;
1732}
1733
1e739730
CH
1734bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1735 struct bio *bio)
1736{
1737 unsigned short segments = blk_rq_nr_discard_segments(req);
1738
1739 if (segments >= queue_max_discard_segments(q))
1740 goto no_merge;
1741 if (blk_rq_sectors(req) + bio_sectors(bio) >
1742 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1743 goto no_merge;
1744
1745 req->biotail->bi_next = bio;
1746 req->biotail = bio;
1747 req->__data_len += bio->bi_iter.bi_size;
1748 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1749 req->nr_phys_segments = segments + 1;
1750
1751 blk_account_io_start(req, false);
1752 return true;
1753no_merge:
1754 req_set_nomerge(q, req);
1755 return false;
1756}
1757
bd87b589 1758/**
320ae51f 1759 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1760 * @q: request_queue new bio is being queued at
1761 * @bio: new bio being queued
1762 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1763 * @same_queue_rq: pointer to &struct request that gets filled in when
1764 * another request associated with @q is found on the plug list
1765 * (optional, may be %NULL)
bd87b589
TH
1766 *
1767 * Determine whether @bio being queued on @q can be merged with a request
1768 * on %current's plugged list. Returns %true if merge was successful,
1769 * otherwise %false.
1770 *
07c2bd37
TH
1771 * Plugging coalesces IOs from the same issuer for the same purpose without
1772 * going through @q->queue_lock. As such it's more of an issuing mechanism
1773 * than scheduling, and the request, while may have elvpriv data, is not
1774 * added on the elevator at this point. In addition, we don't have
1775 * reliable access to the elevator outside queue lock. Only check basic
1776 * merging parameters without querying the elevator.
da41a589
RE
1777 *
1778 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1779 */
320ae51f 1780bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1781 unsigned int *request_count,
1782 struct request **same_queue_rq)
73c10101
JA
1783{
1784 struct blk_plug *plug;
1785 struct request *rq;
92f399c7 1786 struct list_head *plug_list;
73c10101 1787
bd87b589 1788 plug = current->plug;
73c10101 1789 if (!plug)
34fe7c05 1790 return false;
56ebdaf2 1791 *request_count = 0;
73c10101 1792
92f399c7
SL
1793 if (q->mq_ops)
1794 plug_list = &plug->mq_list;
1795 else
1796 plug_list = &plug->list;
1797
1798 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1799 bool merged = false;
73c10101 1800
5b3f341f 1801 if (rq->q == q) {
1b2e19f1 1802 (*request_count)++;
5b3f341f
SL
1803 /*
1804 * Only blk-mq multiple hardware queues case checks the
1805 * rq in the same queue, there should be only one such
1806 * rq in a queue
1807 **/
1808 if (same_queue_rq)
1809 *same_queue_rq = rq;
1810 }
56ebdaf2 1811
07c2bd37 1812 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1813 continue;
1814
34fe7c05
CH
1815 switch (blk_try_merge(rq, bio)) {
1816 case ELEVATOR_BACK_MERGE:
1817 merged = bio_attempt_back_merge(q, rq, bio);
1818 break;
1819 case ELEVATOR_FRONT_MERGE:
1820 merged = bio_attempt_front_merge(q, rq, bio);
1821 break;
1e739730
CH
1822 case ELEVATOR_DISCARD_MERGE:
1823 merged = bio_attempt_discard_merge(q, rq, bio);
1824 break;
34fe7c05
CH
1825 default:
1826 break;
73c10101 1827 }
34fe7c05
CH
1828
1829 if (merged)
1830 return true;
73c10101 1831 }
34fe7c05
CH
1832
1833 return false;
73c10101
JA
1834}
1835
0809e3ac
JM
1836unsigned int blk_plug_queued_count(struct request_queue *q)
1837{
1838 struct blk_plug *plug;
1839 struct request *rq;
1840 struct list_head *plug_list;
1841 unsigned int ret = 0;
1842
1843 plug = current->plug;
1844 if (!plug)
1845 goto out;
1846
1847 if (q->mq_ops)
1848 plug_list = &plug->mq_list;
1849 else
1850 plug_list = &plug->list;
1851
1852 list_for_each_entry(rq, plug_list, queuelist) {
1853 if (rq->q == q)
1854 ret++;
1855 }
1856out:
1857 return ret;
1858}
1859
da8d7f07 1860void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1861{
0be0dee6
BVA
1862 struct io_context *ioc = rq_ioc(bio);
1863
1eff9d32 1864 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1865 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1866
4f024f37 1867 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1868 if (ioprio_valid(bio_prio(bio)))
1869 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1870 else if (ioc)
1871 req->ioprio = ioc->ioprio;
1872 else
1873 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1874 req->write_hint = bio->bi_write_hint;
bc1c56fd 1875 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1876}
da8d7f07 1877EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1878
dece1635 1879static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1880{
73c10101 1881 struct blk_plug *plug;
34fe7c05 1882 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1883 struct request *req, *free;
56ebdaf2 1884 unsigned int request_count = 0;
87760e5e 1885 unsigned int wb_acct;
1da177e4 1886
1da177e4
LT
1887 /*
1888 * low level driver can indicate that it wants pages above a
1889 * certain limit bounced to low memory (ie for highmem, or even
1890 * ISA dma in theory)
1891 */
1892 blk_queue_bounce(q, &bio);
1893
af67c31f 1894 blk_queue_split(q, &bio);
23688bf4 1895
e23947bd 1896 if (!bio_integrity_prep(bio))
dece1635 1897 return BLK_QC_T_NONE;
ffecfd1a 1898
f73f44eb 1899 if (op_is_flush(bio->bi_opf)) {
73c10101 1900 spin_lock_irq(q->queue_lock);
ae1b1539 1901 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1902 goto get_rq;
1903 }
1904
73c10101
JA
1905 /*
1906 * Check if we can merge with the plugged list before grabbing
1907 * any locks.
1908 */
0809e3ac
JM
1909 if (!blk_queue_nomerges(q)) {
1910 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1911 return BLK_QC_T_NONE;
0809e3ac
JM
1912 } else
1913 request_count = blk_plug_queued_count(q);
1da177e4 1914
73c10101 1915 spin_lock_irq(q->queue_lock);
2056a782 1916
34fe7c05
CH
1917 switch (elv_merge(q, &req, bio)) {
1918 case ELEVATOR_BACK_MERGE:
1919 if (!bio_attempt_back_merge(q, req, bio))
1920 break;
1921 elv_bio_merged(q, req, bio);
1922 free = attempt_back_merge(q, req);
1923 if (free)
1924 __blk_put_request(q, free);
1925 else
1926 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1927 goto out_unlock;
1928 case ELEVATOR_FRONT_MERGE:
1929 if (!bio_attempt_front_merge(q, req, bio))
1930 break;
1931 elv_bio_merged(q, req, bio);
1932 free = attempt_front_merge(q, req);
1933 if (free)
1934 __blk_put_request(q, free);
1935 else
1936 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1937 goto out_unlock;
1938 default:
1939 break;
1da177e4
LT
1940 }
1941
450991bc 1942get_rq:
87760e5e
JA
1943 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1944
1da177e4 1945 /*
450991bc 1946 * Grab a free request. This is might sleep but can not fail.
d6344532 1947 * Returns with the queue unlocked.
450991bc 1948 */
055f6e18 1949 blk_queue_enter_live(q);
6a15674d 1950 req = get_request(q, bio->bi_opf, bio, 0);
a492f075 1951 if (IS_ERR(req)) {
055f6e18 1952 blk_queue_exit(q);
87760e5e 1953 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1954 if (PTR_ERR(req) == -ENOMEM)
1955 bio->bi_status = BLK_STS_RESOURCE;
1956 else
1957 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1958 bio_endio(bio);
da8303c6
TH
1959 goto out_unlock;
1960 }
d6344532 1961
87760e5e
JA
1962 wbt_track(&req->issue_stat, wb_acct);
1963
450991bc
NP
1964 /*
1965 * After dropping the lock and possibly sleeping here, our request
1966 * may now be mergeable after it had proven unmergeable (above).
1967 * We don't worry about that case for efficiency. It won't happen
1968 * often, and the elevators are able to handle it.
1da177e4 1969 */
da8d7f07 1970 blk_init_request_from_bio(req, bio);
1da177e4 1971
9562ad9a 1972 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1973 req->cpu = raw_smp_processor_id();
73c10101
JA
1974
1975 plug = current->plug;
721a9602 1976 if (plug) {
dc6d36c9
JA
1977 /*
1978 * If this is the first request added after a plug, fire
7aef2e78 1979 * of a plug trace.
0a6219a9
ML
1980 *
1981 * @request_count may become stale because of schedule
1982 * out, so check plug list again.
dc6d36c9 1983 */
0a6219a9 1984 if (!request_count || list_empty(&plug->list))
dc6d36c9 1985 trace_block_plug(q);
3540d5e8 1986 else {
50d24c34
SL
1987 struct request *last = list_entry_rq(plug->list.prev);
1988 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1989 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1990 blk_flush_plug_list(plug, false);
019ceb7d
SL
1991 trace_block_plug(q);
1992 }
73c10101 1993 }
73c10101 1994 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1995 blk_account_io_start(req, true);
73c10101
JA
1996 } else {
1997 spin_lock_irq(q->queue_lock);
1998 add_acct_request(q, req, where);
24ecfbe2 1999 __blk_run_queue(q);
73c10101
JA
2000out_unlock:
2001 spin_unlock_irq(q->queue_lock);
2002 }
dece1635
JA
2003
2004 return BLK_QC_T_NONE;
1da177e4
LT
2005}
2006
1da177e4
LT
2007static void handle_bad_sector(struct bio *bio)
2008{
2009 char b[BDEVNAME_SIZE];
2010
2011 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 2012 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 2013 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 2014 (unsigned long long)bio_end_sector(bio),
74d46992 2015 (long long)get_capacity(bio->bi_disk));
1da177e4
LT
2016}
2017
c17bb495
AM
2018#ifdef CONFIG_FAIL_MAKE_REQUEST
2019
2020static DECLARE_FAULT_ATTR(fail_make_request);
2021
2022static int __init setup_fail_make_request(char *str)
2023{
2024 return setup_fault_attr(&fail_make_request, str);
2025}
2026__setup("fail_make_request=", setup_fail_make_request);
2027
b2c9cd37 2028static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 2029{
b2c9cd37 2030 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
2031}
2032
2033static int __init fail_make_request_debugfs(void)
2034{
dd48c085
AM
2035 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2036 NULL, &fail_make_request);
2037
21f9fcd8 2038 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
2039}
2040
2041late_initcall(fail_make_request_debugfs);
2042
2043#else /* CONFIG_FAIL_MAKE_REQUEST */
2044
b2c9cd37
AM
2045static inline bool should_fail_request(struct hd_struct *part,
2046 unsigned int bytes)
c17bb495 2047{
b2c9cd37 2048 return false;
c17bb495
AM
2049}
2050
2051#endif /* CONFIG_FAIL_MAKE_REQUEST */
2052
74d46992
CH
2053/*
2054 * Remap block n of partition p to block n+start(p) of the disk.
2055 */
2056static inline int blk_partition_remap(struct bio *bio)
2057{
2058 struct hd_struct *p;
2059 int ret = 0;
2060
2061 /*
2062 * Zone reset does not include bi_size so bio_sectors() is always 0.
2063 * Include a test for the reset op code and perform the remap if needed.
2064 */
2065 if (!bio->bi_partno ||
2066 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2067 return 0;
2068
2069 rcu_read_lock();
2070 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2071 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2072 bio->bi_iter.bi_sector += p->start_sect;
2073 bio->bi_partno = 0;
2074 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2075 bio->bi_iter.bi_sector - p->start_sect);
2076 } else {
2077 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2078 ret = -EIO;
2079 }
2080 rcu_read_unlock();
2081
2082 return ret;
2083}
2084
c07e2b41
JA
2085/*
2086 * Check whether this bio extends beyond the end of the device.
2087 */
2088static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2089{
2090 sector_t maxsector;
2091
2092 if (!nr_sectors)
2093 return 0;
2094
2095 /* Test device or partition size, when known. */
74d46992 2096 maxsector = get_capacity(bio->bi_disk);
c07e2b41 2097 if (maxsector) {
4f024f37 2098 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
2099
2100 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2101 /*
2102 * This may well happen - the kernel calls bread()
2103 * without checking the size of the device, e.g., when
2104 * mounting a device.
2105 */
2106 handle_bad_sector(bio);
2107 return 1;
2108 }
2109 }
2110
2111 return 0;
2112}
2113
27a84d54
CH
2114static noinline_for_stack bool
2115generic_make_request_checks(struct bio *bio)
1da177e4 2116{
165125e1 2117 struct request_queue *q;
5a7bbad2 2118 int nr_sectors = bio_sectors(bio);
4e4cbee9 2119 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2120 char b[BDEVNAME_SIZE];
1da177e4
LT
2121
2122 might_sleep();
1da177e4 2123
c07e2b41
JA
2124 if (bio_check_eod(bio, nr_sectors))
2125 goto end_io;
1da177e4 2126
74d46992 2127 q = bio->bi_disk->queue;
5a7bbad2
CH
2128 if (unlikely(!q)) {
2129 printk(KERN_ERR
2130 "generic_make_request: Trying to access "
2131 "nonexistent block-device %s (%Lu)\n",
74d46992 2132 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2133 goto end_io;
2134 }
c17bb495 2135
03a07c92
GR
2136 /*
2137 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2138 * if queue is not a request based queue.
2139 */
2140
2141 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2142 goto not_supported;
2143
74d46992 2144 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
5a7bbad2 2145 goto end_io;
2056a782 2146
74d46992
CH
2147 if (blk_partition_remap(bio))
2148 goto end_io;
2056a782 2149
5a7bbad2
CH
2150 if (bio_check_eod(bio, nr_sectors))
2151 goto end_io;
1e87901e 2152
5a7bbad2
CH
2153 /*
2154 * Filter flush bio's early so that make_request based
2155 * drivers without flush support don't have to worry
2156 * about them.
2157 */
f3a8ab7d 2158 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2159 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2160 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2161 if (!nr_sectors) {
4e4cbee9 2162 status = BLK_STS_OK;
51fd77bd
JA
2163 goto end_io;
2164 }
5a7bbad2 2165 }
5ddfe969 2166
288dab8a
CH
2167 switch (bio_op(bio)) {
2168 case REQ_OP_DISCARD:
2169 if (!blk_queue_discard(q))
2170 goto not_supported;
2171 break;
2172 case REQ_OP_SECURE_ERASE:
2173 if (!blk_queue_secure_erase(q))
2174 goto not_supported;
2175 break;
2176 case REQ_OP_WRITE_SAME:
74d46992 2177 if (!q->limits.max_write_same_sectors)
288dab8a 2178 goto not_supported;
58886785 2179 break;
2d253440
ST
2180 case REQ_OP_ZONE_REPORT:
2181 case REQ_OP_ZONE_RESET:
74d46992 2182 if (!blk_queue_is_zoned(q))
2d253440 2183 goto not_supported;
288dab8a 2184 break;
a6f0788e 2185 case REQ_OP_WRITE_ZEROES:
74d46992 2186 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2187 goto not_supported;
2188 break;
288dab8a
CH
2189 default:
2190 break;
5a7bbad2 2191 }
01edede4 2192
7f4b35d1
TH
2193 /*
2194 * Various block parts want %current->io_context and lazy ioc
2195 * allocation ends up trading a lot of pain for a small amount of
2196 * memory. Just allocate it upfront. This may fail and block
2197 * layer knows how to live with it.
2198 */
2199 create_io_context(GFP_ATOMIC, q->node);
2200
ae118896
TH
2201 if (!blkcg_bio_issue_check(q, bio))
2202 return false;
27a84d54 2203
fbbaf700
N
2204 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2205 trace_block_bio_queue(q, bio);
2206 /* Now that enqueuing has been traced, we need to trace
2207 * completion as well.
2208 */
2209 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2210 }
27a84d54 2211 return true;
a7384677 2212
288dab8a 2213not_supported:
4e4cbee9 2214 status = BLK_STS_NOTSUPP;
a7384677 2215end_io:
4e4cbee9 2216 bio->bi_status = status;
4246a0b6 2217 bio_endio(bio);
27a84d54 2218 return false;
1da177e4
LT
2219}
2220
27a84d54
CH
2221/**
2222 * generic_make_request - hand a buffer to its device driver for I/O
2223 * @bio: The bio describing the location in memory and on the device.
2224 *
2225 * generic_make_request() is used to make I/O requests of block
2226 * devices. It is passed a &struct bio, which describes the I/O that needs
2227 * to be done.
2228 *
2229 * generic_make_request() does not return any status. The
2230 * success/failure status of the request, along with notification of
2231 * completion, is delivered asynchronously through the bio->bi_end_io
2232 * function described (one day) else where.
2233 *
2234 * The caller of generic_make_request must make sure that bi_io_vec
2235 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2236 * set to describe the device address, and the
2237 * bi_end_io and optionally bi_private are set to describe how
2238 * completion notification should be signaled.
2239 *
2240 * generic_make_request and the drivers it calls may use bi_next if this
2241 * bio happens to be merged with someone else, and may resubmit the bio to
2242 * a lower device by calling into generic_make_request recursively, which
2243 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2244 */
dece1635 2245blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2246{
f5fe1b51
N
2247 /*
2248 * bio_list_on_stack[0] contains bios submitted by the current
2249 * make_request_fn.
2250 * bio_list_on_stack[1] contains bios that were submitted before
2251 * the current make_request_fn, but that haven't been processed
2252 * yet.
2253 */
2254 struct bio_list bio_list_on_stack[2];
dece1635 2255 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2256
27a84d54 2257 if (!generic_make_request_checks(bio))
dece1635 2258 goto out;
27a84d54
CH
2259
2260 /*
2261 * We only want one ->make_request_fn to be active at a time, else
2262 * stack usage with stacked devices could be a problem. So use
2263 * current->bio_list to keep a list of requests submited by a
2264 * make_request_fn function. current->bio_list is also used as a
2265 * flag to say if generic_make_request is currently active in this
2266 * task or not. If it is NULL, then no make_request is active. If
2267 * it is non-NULL, then a make_request is active, and new requests
2268 * should be added at the tail
2269 */
bddd87c7 2270 if (current->bio_list) {
f5fe1b51 2271 bio_list_add(&current->bio_list[0], bio);
dece1635 2272 goto out;
d89d8796 2273 }
27a84d54 2274
d89d8796
NB
2275 /* following loop may be a bit non-obvious, and so deserves some
2276 * explanation.
2277 * Before entering the loop, bio->bi_next is NULL (as all callers
2278 * ensure that) so we have a list with a single bio.
2279 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2280 * we assign bio_list to a pointer to the bio_list_on_stack,
2281 * thus initialising the bio_list of new bios to be
27a84d54 2282 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2283 * through a recursive call to generic_make_request. If it
2284 * did, we find a non-NULL value in bio_list and re-enter the loop
2285 * from the top. In this case we really did just take the bio
bddd87c7 2286 * of the top of the list (no pretending) and so remove it from
27a84d54 2287 * bio_list, and call into ->make_request() again.
d89d8796
NB
2288 */
2289 BUG_ON(bio->bi_next);
f5fe1b51
N
2290 bio_list_init(&bio_list_on_stack[0]);
2291 current->bio_list = bio_list_on_stack;
d89d8796 2292 do {
74d46992 2293 struct request_queue *q = bio->bi_disk->queue;
9a95e4ef 2294 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
3a0a5299 2295 BLK_MQ_REQ_NOWAIT : 0;
27a84d54 2296
3a0a5299 2297 if (likely(blk_queue_enter(q, flags) == 0)) {
79bd9959
N
2298 struct bio_list lower, same;
2299
2300 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2301 bio_list_on_stack[1] = bio_list_on_stack[0];
2302 bio_list_init(&bio_list_on_stack[0]);
dece1635 2303 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2304
2305 blk_queue_exit(q);
27a84d54 2306
79bd9959
N
2307 /* sort new bios into those for a lower level
2308 * and those for the same level
2309 */
2310 bio_list_init(&lower);
2311 bio_list_init(&same);
f5fe1b51 2312 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2313 if (q == bio->bi_disk->queue)
79bd9959
N
2314 bio_list_add(&same, bio);
2315 else
2316 bio_list_add(&lower, bio);
2317 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2318 bio_list_merge(&bio_list_on_stack[0], &lower);
2319 bio_list_merge(&bio_list_on_stack[0], &same);
2320 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2321 } else {
03a07c92
GR
2322 if (unlikely(!blk_queue_dying(q) &&
2323 (bio->bi_opf & REQ_NOWAIT)))
2324 bio_wouldblock_error(bio);
2325 else
2326 bio_io_error(bio);
3ef28e83 2327 }
f5fe1b51 2328 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2329 } while (bio);
bddd87c7 2330 current->bio_list = NULL; /* deactivate */
dece1635
JA
2331
2332out:
2333 return ret;
d89d8796 2334}
1da177e4
LT
2335EXPORT_SYMBOL(generic_make_request);
2336
f421e1d9
CH
2337/**
2338 * direct_make_request - hand a buffer directly to its device driver for I/O
2339 * @bio: The bio describing the location in memory and on the device.
2340 *
2341 * This function behaves like generic_make_request(), but does not protect
2342 * against recursion. Must only be used if the called driver is known
2343 * to not call generic_make_request (or direct_make_request) again from
2344 * its make_request function. (Calling direct_make_request again from
2345 * a workqueue is perfectly fine as that doesn't recurse).
2346 */
2347blk_qc_t direct_make_request(struct bio *bio)
2348{
2349 struct request_queue *q = bio->bi_disk->queue;
2350 bool nowait = bio->bi_opf & REQ_NOWAIT;
2351 blk_qc_t ret;
2352
2353 if (!generic_make_request_checks(bio))
2354 return BLK_QC_T_NONE;
2355
3a0a5299 2356 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
2357 if (nowait && !blk_queue_dying(q))
2358 bio->bi_status = BLK_STS_AGAIN;
2359 else
2360 bio->bi_status = BLK_STS_IOERR;
2361 bio_endio(bio);
2362 return BLK_QC_T_NONE;
2363 }
2364
2365 ret = q->make_request_fn(q, bio);
2366 blk_queue_exit(q);
2367 return ret;
2368}
2369EXPORT_SYMBOL_GPL(direct_make_request);
2370
1da177e4 2371/**
710027a4 2372 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2373 * @bio: The &struct bio which describes the I/O
2374 *
2375 * submit_bio() is very similar in purpose to generic_make_request(), and
2376 * uses that function to do most of the work. Both are fairly rough
710027a4 2377 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2378 *
2379 */
4e49ea4a 2380blk_qc_t submit_bio(struct bio *bio)
1da177e4 2381{
bf2de6f5
JA
2382 /*
2383 * If it's a regular read/write or a barrier with data attached,
2384 * go through the normal accounting stuff before submission.
2385 */
e2a60da7 2386 if (bio_has_data(bio)) {
4363ac7c
MP
2387 unsigned int count;
2388
95fe6c1a 2389 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
74d46992 2390 count = queue_logical_block_size(bio->bi_disk->queue);
4363ac7c
MP
2391 else
2392 count = bio_sectors(bio);
2393
a8ebb056 2394 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2395 count_vm_events(PGPGOUT, count);
2396 } else {
4f024f37 2397 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2398 count_vm_events(PGPGIN, count);
2399 }
2400
2401 if (unlikely(block_dump)) {
2402 char b[BDEVNAME_SIZE];
8dcbdc74 2403 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2404 current->comm, task_pid_nr(current),
a8ebb056 2405 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2406 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2407 bio_devname(bio, b), count);
bf2de6f5 2408 }
1da177e4
LT
2409 }
2410
dece1635 2411 return generic_make_request(bio);
1da177e4 2412}
1da177e4
LT
2413EXPORT_SYMBOL(submit_bio);
2414
ea435e1b
CH
2415bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2416{
2417 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2418 return false;
2419
2420 if (current->plug)
2421 blk_flush_plug_list(current->plug, false);
2422 return q->poll_fn(q, cookie);
2423}
2424EXPORT_SYMBOL_GPL(blk_poll);
2425
82124d60 2426/**
bf4e6b4e
HR
2427 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2428 * for new the queue limits
82124d60
KU
2429 * @q: the queue
2430 * @rq: the request being checked
2431 *
2432 * Description:
2433 * @rq may have been made based on weaker limitations of upper-level queues
2434 * in request stacking drivers, and it may violate the limitation of @q.
2435 * Since the block layer and the underlying device driver trust @rq
2436 * after it is inserted to @q, it should be checked against @q before
2437 * the insertion using this generic function.
2438 *
82124d60 2439 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2440 * limits when retrying requests on other queues. Those requests need
2441 * to be checked against the new queue limits again during dispatch.
82124d60 2442 */
bf4e6b4e
HR
2443static int blk_cloned_rq_check_limits(struct request_queue *q,
2444 struct request *rq)
82124d60 2445{
8fe0d473 2446 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2447 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2448 return -EIO;
2449 }
2450
2451 /*
2452 * queue's settings related to segment counting like q->bounce_pfn
2453 * may differ from that of other stacking queues.
2454 * Recalculate it to check the request correctly on this queue's
2455 * limitation.
2456 */
2457 blk_recalc_rq_segments(rq);
8a78362c 2458 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2459 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2460 return -EIO;
2461 }
2462
2463 return 0;
2464}
82124d60
KU
2465
2466/**
2467 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2468 * @q: the queue to submit the request
2469 * @rq: the request being queued
2470 */
2a842aca 2471blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2472{
2473 unsigned long flags;
4853abaa 2474 int where = ELEVATOR_INSERT_BACK;
82124d60 2475
bf4e6b4e 2476 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2477 return BLK_STS_IOERR;
82124d60 2478
b2c9cd37
AM
2479 if (rq->rq_disk &&
2480 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2481 return BLK_STS_IOERR;
82124d60 2482
7fb4898e
KB
2483 if (q->mq_ops) {
2484 if (blk_queue_io_stat(q))
2485 blk_account_io_start(rq, true);
157f377b
JA
2486 /*
2487 * Since we have a scheduler attached on the top device,
2488 * bypass a potential scheduler on the bottom device for
2489 * insert.
2490 */
b0850297 2491 blk_mq_request_bypass_insert(rq, true);
2a842aca 2492 return BLK_STS_OK;
7fb4898e
KB
2493 }
2494
82124d60 2495 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2496 if (unlikely(blk_queue_dying(q))) {
8ba61435 2497 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2498 return BLK_STS_IOERR;
8ba61435 2499 }
82124d60
KU
2500
2501 /*
2502 * Submitting request must be dequeued before calling this function
2503 * because it will be linked to another request_queue
2504 */
2505 BUG_ON(blk_queued_rq(rq));
2506
f73f44eb 2507 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2508 where = ELEVATOR_INSERT_FLUSH;
2509
2510 add_acct_request(q, rq, where);
e67b77c7
JM
2511 if (where == ELEVATOR_INSERT_FLUSH)
2512 __blk_run_queue(q);
82124d60
KU
2513 spin_unlock_irqrestore(q->queue_lock, flags);
2514
2a842aca 2515 return BLK_STS_OK;
82124d60
KU
2516}
2517EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2518
80a761fd
TH
2519/**
2520 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2521 * @rq: request to examine
2522 *
2523 * Description:
2524 * A request could be merge of IOs which require different failure
2525 * handling. This function determines the number of bytes which
2526 * can be failed from the beginning of the request without
2527 * crossing into area which need to be retried further.
2528 *
2529 * Return:
2530 * The number of bytes to fail.
80a761fd
TH
2531 */
2532unsigned int blk_rq_err_bytes(const struct request *rq)
2533{
2534 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2535 unsigned int bytes = 0;
2536 struct bio *bio;
2537
e8064021 2538 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2539 return blk_rq_bytes(rq);
2540
2541 /*
2542 * Currently the only 'mixing' which can happen is between
2543 * different fastfail types. We can safely fail portions
2544 * which have all the failfast bits that the first one has -
2545 * the ones which are at least as eager to fail as the first
2546 * one.
2547 */
2548 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2549 if ((bio->bi_opf & ff) != ff)
80a761fd 2550 break;
4f024f37 2551 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2552 }
2553
2554 /* this could lead to infinite loop */
2555 BUG_ON(blk_rq_bytes(rq) && !bytes);
2556 return bytes;
2557}
2558EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2559
320ae51f 2560void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2561{
c2553b58 2562 if (blk_do_io_stat(req)) {
bc58ba94
JA
2563 const int rw = rq_data_dir(req);
2564 struct hd_struct *part;
2565 int cpu;
2566
2567 cpu = part_stat_lock();
09e099d4 2568 part = req->part;
bc58ba94
JA
2569 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2570 part_stat_unlock();
2571 }
2572}
2573
320ae51f 2574void blk_account_io_done(struct request *req)
bc58ba94 2575{
bc58ba94 2576 /*
dd4c133f
TH
2577 * Account IO completion. flush_rq isn't accounted as a
2578 * normal IO on queueing nor completion. Accounting the
2579 * containing request is enough.
bc58ba94 2580 */
e8064021 2581 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2582 unsigned long duration = jiffies - req->start_time;
2583 const int rw = rq_data_dir(req);
2584 struct hd_struct *part;
2585 int cpu;
2586
2587 cpu = part_stat_lock();
09e099d4 2588 part = req->part;
bc58ba94
JA
2589
2590 part_stat_inc(cpu, part, ios[rw]);
2591 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2592 part_round_stats(req->q, cpu, part);
2593 part_dec_in_flight(req->q, part, rw);
bc58ba94 2594
6c23a968 2595 hd_struct_put(part);
bc58ba94
JA
2596 part_stat_unlock();
2597 }
2598}
2599
47fafbc7 2600#ifdef CONFIG_PM
c8158819
LM
2601/*
2602 * Don't process normal requests when queue is suspended
2603 * or in the process of suspending/resuming
2604 */
e4f36b24 2605static bool blk_pm_allow_request(struct request *rq)
c8158819 2606{
e4f36b24
CH
2607 switch (rq->q->rpm_status) {
2608 case RPM_RESUMING:
2609 case RPM_SUSPENDING:
2610 return rq->rq_flags & RQF_PM;
2611 case RPM_SUSPENDED:
2612 return false;
2613 }
2614
2615 return true;
c8158819
LM
2616}
2617#else
e4f36b24 2618static bool blk_pm_allow_request(struct request *rq)
c8158819 2619{
e4f36b24 2620 return true;
c8158819
LM
2621}
2622#endif
2623
320ae51f
JA
2624void blk_account_io_start(struct request *rq, bool new_io)
2625{
2626 struct hd_struct *part;
2627 int rw = rq_data_dir(rq);
2628 int cpu;
2629
2630 if (!blk_do_io_stat(rq))
2631 return;
2632
2633 cpu = part_stat_lock();
2634
2635 if (!new_io) {
2636 part = rq->part;
2637 part_stat_inc(cpu, part, merges[rw]);
2638 } else {
2639 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2640 if (!hd_struct_try_get(part)) {
2641 /*
2642 * The partition is already being removed,
2643 * the request will be accounted on the disk only
2644 *
2645 * We take a reference on disk->part0 although that
2646 * partition will never be deleted, so we can treat
2647 * it as any other partition.
2648 */
2649 part = &rq->rq_disk->part0;
2650 hd_struct_get(part);
2651 }
d62e26b3
JA
2652 part_round_stats(rq->q, cpu, part);
2653 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2654 rq->part = part;
2655 }
2656
2657 part_stat_unlock();
2658}
2659
9c988374
CH
2660static struct request *elv_next_request(struct request_queue *q)
2661{
2662 struct request *rq;
2663 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2664
2665 WARN_ON_ONCE(q->mq_ops);
2666
2667 while (1) {
e4f36b24
CH
2668 list_for_each_entry(rq, &q->queue_head, queuelist) {
2669 if (blk_pm_allow_request(rq))
2670 return rq;
2671
2672 if (rq->rq_flags & RQF_SOFTBARRIER)
2673 break;
9c988374
CH
2674 }
2675
2676 /*
2677 * Flush request is running and flush request isn't queueable
2678 * in the drive, we can hold the queue till flush request is
2679 * finished. Even we don't do this, driver can't dispatch next
2680 * requests and will requeue them. And this can improve
2681 * throughput too. For example, we have request flush1, write1,
2682 * flush 2. flush1 is dispatched, then queue is hold, write1
2683 * isn't inserted to queue. After flush1 is finished, flush2
2684 * will be dispatched. Since disk cache is already clean,
2685 * flush2 will be finished very soon, so looks like flush2 is
2686 * folded to flush1.
2687 * Since the queue is hold, a flag is set to indicate the queue
2688 * should be restarted later. Please see flush_end_io() for
2689 * details.
2690 */
2691 if (fq->flush_pending_idx != fq->flush_running_idx &&
2692 !queue_flush_queueable(q)) {
2693 fq->flush_queue_delayed = 1;
2694 return NULL;
2695 }
2696 if (unlikely(blk_queue_bypass(q)) ||
2697 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2698 return NULL;
2699 }
2700}
2701
3bcddeac 2702/**
9934c8c0
TH
2703 * blk_peek_request - peek at the top of a request queue
2704 * @q: request queue to peek at
2705 *
2706 * Description:
2707 * Return the request at the top of @q. The returned request
2708 * should be started using blk_start_request() before LLD starts
2709 * processing it.
2710 *
2711 * Return:
2712 * Pointer to the request at the top of @q if available. Null
2713 * otherwise.
9934c8c0
TH
2714 */
2715struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2716{
2717 struct request *rq;
2718 int ret;
2719
2fff8a92 2720 lockdep_assert_held(q->queue_lock);
332ebbf7 2721 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2722
9c988374 2723 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2724 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2725 /*
2726 * This is the first time the device driver
2727 * sees this request (possibly after
2728 * requeueing). Notify IO scheduler.
2729 */
e8064021 2730 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2731 elv_activate_rq(q, rq);
2732
2733 /*
2734 * just mark as started even if we don't start
2735 * it, a request that has been delayed should
2736 * not be passed by new incoming requests
2737 */
e8064021 2738 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2739 trace_block_rq_issue(q, rq);
2740 }
2741
2742 if (!q->boundary_rq || q->boundary_rq == rq) {
2743 q->end_sector = rq_end_sector(rq);
2744 q->boundary_rq = NULL;
2745 }
2746
e8064021 2747 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2748 break;
2749
2e46e8b2 2750 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2751 /*
2752 * make sure space for the drain appears we
2753 * know we can do this because max_hw_segments
2754 * has been adjusted to be one fewer than the
2755 * device can handle
2756 */
2757 rq->nr_phys_segments++;
2758 }
2759
2760 if (!q->prep_rq_fn)
2761 break;
2762
2763 ret = q->prep_rq_fn(q, rq);
2764 if (ret == BLKPREP_OK) {
2765 break;
2766 } else if (ret == BLKPREP_DEFER) {
2767 /*
2768 * the request may have been (partially) prepped.
2769 * we need to keep this request in the front to
e8064021 2770 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2771 * prevent other fs requests from passing this one.
2772 */
2e46e8b2 2773 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2774 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2775 /*
2776 * remove the space for the drain we added
2777 * so that we don't add it again
2778 */
2779 --rq->nr_phys_segments;
2780 }
2781
2782 rq = NULL;
2783 break;
0fb5b1fb 2784 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2785 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2786 /*
2787 * Mark this request as started so we don't trigger
2788 * any debug logic in the end I/O path.
2789 */
2790 blk_start_request(rq);
2a842aca
CH
2791 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2792 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2793 } else {
2794 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2795 break;
2796 }
2797 }
2798
2799 return rq;
2800}
9934c8c0 2801EXPORT_SYMBOL(blk_peek_request);
158dbda0 2802
5034435c 2803static void blk_dequeue_request(struct request *rq)
158dbda0 2804{
9934c8c0
TH
2805 struct request_queue *q = rq->q;
2806
158dbda0
TH
2807 BUG_ON(list_empty(&rq->queuelist));
2808 BUG_ON(ELV_ON_HASH(rq));
2809
2810 list_del_init(&rq->queuelist);
2811
2812 /*
2813 * the time frame between a request being removed from the lists
2814 * and to it is freed is accounted as io that is in progress at
2815 * the driver side.
2816 */
9195291e 2817 if (blk_account_rq(rq)) {
0a7ae2ff 2818 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2819 set_io_start_time_ns(rq);
2820 }
158dbda0
TH
2821}
2822
9934c8c0
TH
2823/**
2824 * blk_start_request - start request processing on the driver
2825 * @req: request to dequeue
2826 *
2827 * Description:
2828 * Dequeue @req and start timeout timer on it. This hands off the
2829 * request to the driver.
9934c8c0
TH
2830 */
2831void blk_start_request(struct request *req)
2832{
2fff8a92 2833 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2834 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2835
9934c8c0
TH
2836 blk_dequeue_request(req);
2837
cf43e6be 2838 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2839 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2840 req->rq_flags |= RQF_STATS;
87760e5e 2841 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2842 }
2843
4912aa6c 2844 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2845 blk_add_timer(req);
2846}
2847EXPORT_SYMBOL(blk_start_request);
2848
2849/**
2850 * blk_fetch_request - fetch a request from a request queue
2851 * @q: request queue to fetch a request from
2852 *
2853 * Description:
2854 * Return the request at the top of @q. The request is started on
2855 * return and LLD can start processing it immediately.
2856 *
2857 * Return:
2858 * Pointer to the request at the top of @q if available. Null
2859 * otherwise.
9934c8c0
TH
2860 */
2861struct request *blk_fetch_request(struct request_queue *q)
2862{
2863 struct request *rq;
2864
2fff8a92 2865 lockdep_assert_held(q->queue_lock);
332ebbf7 2866 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2867
9934c8c0
TH
2868 rq = blk_peek_request(q);
2869 if (rq)
2870 blk_start_request(rq);
2871 return rq;
2872}
2873EXPORT_SYMBOL(blk_fetch_request);
2874
ef71de8b
CH
2875/*
2876 * Steal bios from a request and add them to a bio list.
2877 * The request must not have been partially completed before.
2878 */
2879void blk_steal_bios(struct bio_list *list, struct request *rq)
2880{
2881 if (rq->bio) {
2882 if (list->tail)
2883 list->tail->bi_next = rq->bio;
2884 else
2885 list->head = rq->bio;
2886 list->tail = rq->biotail;
2887
2888 rq->bio = NULL;
2889 rq->biotail = NULL;
2890 }
2891
2892 rq->__data_len = 0;
2893}
2894EXPORT_SYMBOL_GPL(blk_steal_bios);
2895
3bcddeac 2896/**
2e60e022 2897 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2898 * @req: the request being processed
2a842aca 2899 * @error: block status code
8ebf9756 2900 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2901 *
2902 * Description:
8ebf9756
RD
2903 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2904 * the request structure even if @req doesn't have leftover.
2905 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2906 *
2907 * This special helper function is only for request stacking drivers
2908 * (e.g. request-based dm) so that they can handle partial completion.
2909 * Actual device drivers should use blk_end_request instead.
2910 *
2911 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2912 * %false return from this function.
3bcddeac
KU
2913 *
2914 * Return:
2e60e022
TH
2915 * %false - this request doesn't have any more data
2916 * %true - this request has more data
3bcddeac 2917 **/
2a842aca
CH
2918bool blk_update_request(struct request *req, blk_status_t error,
2919 unsigned int nr_bytes)
1da177e4 2920{
f79ea416 2921 int total_bytes;
1da177e4 2922
2a842aca 2923 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2924
2e60e022
TH
2925 if (!req->bio)
2926 return false;
2927
2a842aca
CH
2928 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2929 !(req->rq_flags & RQF_QUIET)))
2930 print_req_error(req, error);
1da177e4 2931
bc58ba94 2932 blk_account_io_completion(req, nr_bytes);
d72d904a 2933
f79ea416
KO
2934 total_bytes = 0;
2935 while (req->bio) {
2936 struct bio *bio = req->bio;
4f024f37 2937 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2938
4f024f37 2939 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2940 req->bio = bio->bi_next;
1da177e4 2941
fbbaf700
N
2942 /* Completion has already been traced */
2943 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2944 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2945
f79ea416
KO
2946 total_bytes += bio_bytes;
2947 nr_bytes -= bio_bytes;
1da177e4 2948
f79ea416
KO
2949 if (!nr_bytes)
2950 break;
1da177e4
LT
2951 }
2952
2953 /*
2954 * completely done
2955 */
2e60e022
TH
2956 if (!req->bio) {
2957 /*
2958 * Reset counters so that the request stacking driver
2959 * can find how many bytes remain in the request
2960 * later.
2961 */
a2dec7b3 2962 req->__data_len = 0;
2e60e022
TH
2963 return false;
2964 }
1da177e4 2965
a2dec7b3 2966 req->__data_len -= total_bytes;
2e46e8b2
TH
2967
2968 /* update sector only for requests with clear definition of sector */
57292b58 2969 if (!blk_rq_is_passthrough(req))
a2dec7b3 2970 req->__sector += total_bytes >> 9;
2e46e8b2 2971
80a761fd 2972 /* mixed attributes always follow the first bio */
e8064021 2973 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2974 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2975 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2976 }
2977
ed6565e7
CH
2978 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2979 /*
2980 * If total number of sectors is less than the first segment
2981 * size, something has gone terribly wrong.
2982 */
2983 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2984 blk_dump_rq_flags(req, "request botched");
2985 req->__data_len = blk_rq_cur_bytes(req);
2986 }
2e46e8b2 2987
ed6565e7
CH
2988 /* recalculate the number of segments */
2989 blk_recalc_rq_segments(req);
2990 }
2e46e8b2 2991
2e60e022 2992 return true;
1da177e4 2993}
2e60e022 2994EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2995
2a842aca 2996static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
2997 unsigned int nr_bytes,
2998 unsigned int bidi_bytes)
5efccd17 2999{
2e60e022
TH
3000 if (blk_update_request(rq, error, nr_bytes))
3001 return true;
5efccd17 3002
2e60e022
TH
3003 /* Bidi request must be completed as a whole */
3004 if (unlikely(blk_bidi_rq(rq)) &&
3005 blk_update_request(rq->next_rq, error, bidi_bytes))
3006 return true;
5efccd17 3007
e2e1a148
JA
3008 if (blk_queue_add_random(rq->q))
3009 add_disk_randomness(rq->rq_disk);
2e60e022
TH
3010
3011 return false;
1da177e4
LT
3012}
3013
28018c24
JB
3014/**
3015 * blk_unprep_request - unprepare a request
3016 * @req: the request
3017 *
3018 * This function makes a request ready for complete resubmission (or
3019 * completion). It happens only after all error handling is complete,
3020 * so represents the appropriate moment to deallocate any resources
3021 * that were allocated to the request in the prep_rq_fn. The queue
3022 * lock is held when calling this.
3023 */
3024void blk_unprep_request(struct request *req)
3025{
3026 struct request_queue *q = req->q;
3027
e8064021 3028 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
3029 if (q->unprep_rq_fn)
3030 q->unprep_rq_fn(q, req);
3031}
3032EXPORT_SYMBOL_GPL(blk_unprep_request);
3033
2a842aca 3034void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 3035{
cf43e6be
JA
3036 struct request_queue *q = req->q;
3037
2fff8a92 3038 lockdep_assert_held(req->q->queue_lock);
332ebbf7 3039 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3040
cf43e6be 3041 if (req->rq_flags & RQF_STATS)
34dbad5d 3042 blk_stat_add(req);
cf43e6be 3043
e8064021 3044 if (req->rq_flags & RQF_QUEUED)
cf43e6be 3045 blk_queue_end_tag(q, req);
b8286239 3046
ba396a6c 3047 BUG_ON(blk_queued_rq(req));
1da177e4 3048
57292b58 3049 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 3050 laptop_io_completion(req->q->backing_dev_info);
1da177e4 3051
e78042e5
MA
3052 blk_delete_timer(req);
3053
e8064021 3054 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
3055 blk_unprep_request(req);
3056
bc58ba94 3057 blk_account_io_done(req);
b8286239 3058
87760e5e
JA
3059 if (req->end_io) {
3060 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 3061 req->end_io(req, error);
87760e5e 3062 } else {
b8286239
KU
3063 if (blk_bidi_rq(req))
3064 __blk_put_request(req->next_rq->q, req->next_rq);
3065
cf43e6be 3066 __blk_put_request(q, req);
b8286239 3067 }
1da177e4 3068}
12120077 3069EXPORT_SYMBOL(blk_finish_request);
1da177e4 3070
3b11313a 3071/**
2e60e022
TH
3072 * blk_end_bidi_request - Complete a bidi request
3073 * @rq: the request to complete
2a842aca 3074 * @error: block status code
2e60e022
TH
3075 * @nr_bytes: number of bytes to complete @rq
3076 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3077 *
3078 * Description:
e3a04fe3 3079 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3080 * Drivers that supports bidi can safely call this member for any
3081 * type of request, bidi or uni. In the later case @bidi_bytes is
3082 * just ignored.
336cdb40
KU
3083 *
3084 * Return:
2e60e022
TH
3085 * %false - we are done with this request
3086 * %true - still buffers pending for this request
a0cd1285 3087 **/
2a842aca 3088static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3089 unsigned int nr_bytes, unsigned int bidi_bytes)
3090{
336cdb40 3091 struct request_queue *q = rq->q;
2e60e022 3092 unsigned long flags;
32fab448 3093
332ebbf7
BVA
3094 WARN_ON_ONCE(q->mq_ops);
3095
2e60e022
TH
3096 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3097 return true;
32fab448 3098
336cdb40 3099 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3100 blk_finish_request(rq, error);
336cdb40
KU
3101 spin_unlock_irqrestore(q->queue_lock, flags);
3102
2e60e022 3103 return false;
32fab448
KU
3104}
3105
336cdb40 3106/**
2e60e022
TH
3107 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3108 * @rq: the request to complete
2a842aca 3109 * @error: block status code
e3a04fe3
KU
3110 * @nr_bytes: number of bytes to complete @rq
3111 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3112 *
3113 * Description:
2e60e022
TH
3114 * Identical to blk_end_bidi_request() except that queue lock is
3115 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3116 *
3117 * Return:
2e60e022
TH
3118 * %false - we are done with this request
3119 * %true - still buffers pending for this request
336cdb40 3120 **/
2a842aca 3121static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3122 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3123{
2fff8a92 3124 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3125 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3126
2e60e022
TH
3127 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3128 return true;
336cdb40 3129
2e60e022 3130 blk_finish_request(rq, error);
336cdb40 3131
2e60e022 3132 return false;
336cdb40 3133}
e19a3ab0
KU
3134
3135/**
3136 * blk_end_request - Helper function for drivers to complete the request.
3137 * @rq: the request being processed
2a842aca 3138 * @error: block status code
e19a3ab0
KU
3139 * @nr_bytes: number of bytes to complete
3140 *
3141 * Description:
3142 * Ends I/O on a number of bytes attached to @rq.
3143 * If @rq has leftover, sets it up for the next range of segments.
3144 *
3145 * Return:
b1f74493
FT
3146 * %false - we are done with this request
3147 * %true - still buffers pending for this request
e19a3ab0 3148 **/
2a842aca
CH
3149bool blk_end_request(struct request *rq, blk_status_t error,
3150 unsigned int nr_bytes)
e19a3ab0 3151{
332ebbf7 3152 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3153 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3154}
56ad1740 3155EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3156
3157/**
b1f74493
FT
3158 * blk_end_request_all - Helper function for drives to finish the request.
3159 * @rq: the request to finish
2a842aca 3160 * @error: block status code
336cdb40
KU
3161 *
3162 * Description:
b1f74493
FT
3163 * Completely finish @rq.
3164 */
2a842aca 3165void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3166{
b1f74493
FT
3167 bool pending;
3168 unsigned int bidi_bytes = 0;
336cdb40 3169
b1f74493
FT
3170 if (unlikely(blk_bidi_rq(rq)))
3171 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3172
b1f74493
FT
3173 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3174 BUG_ON(pending);
3175}
56ad1740 3176EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3177
e3a04fe3 3178/**
b1f74493
FT
3179 * __blk_end_request - Helper function for drivers to complete the request.
3180 * @rq: the request being processed
2a842aca 3181 * @error: block status code
b1f74493 3182 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3183 *
3184 * Description:
b1f74493 3185 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3186 *
3187 * Return:
b1f74493
FT
3188 * %false - we are done with this request
3189 * %true - still buffers pending for this request
e3a04fe3 3190 **/
2a842aca
CH
3191bool __blk_end_request(struct request *rq, blk_status_t error,
3192 unsigned int nr_bytes)
e3a04fe3 3193{
2fff8a92 3194 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3195 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3196
b1f74493 3197 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3198}
56ad1740 3199EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3200
32fab448 3201/**
b1f74493
FT
3202 * __blk_end_request_all - Helper function for drives to finish the request.
3203 * @rq: the request to finish
2a842aca 3204 * @error: block status code
32fab448
KU
3205 *
3206 * Description:
b1f74493 3207 * Completely finish @rq. Must be called with queue lock held.
32fab448 3208 */
2a842aca 3209void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3210{
b1f74493
FT
3211 bool pending;
3212 unsigned int bidi_bytes = 0;
3213
2fff8a92 3214 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3215 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3216
b1f74493
FT
3217 if (unlikely(blk_bidi_rq(rq)))
3218 bidi_bytes = blk_rq_bytes(rq->next_rq);
3219
3220 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3221 BUG_ON(pending);
32fab448 3222}
56ad1740 3223EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3224
e19a3ab0 3225/**
b1f74493
FT
3226 * __blk_end_request_cur - Helper function to finish the current request chunk.
3227 * @rq: the request to finish the current chunk for
2a842aca 3228 * @error: block status code
e19a3ab0
KU
3229 *
3230 * Description:
b1f74493
FT
3231 * Complete the current consecutively mapped chunk from @rq. Must
3232 * be called with queue lock held.
e19a3ab0
KU
3233 *
3234 * Return:
b1f74493
FT
3235 * %false - we are done with this request
3236 * %true - still buffers pending for this request
3237 */
2a842aca 3238bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3239{
b1f74493 3240 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3241}
56ad1740 3242EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3243
86db1e29
JA
3244void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3245 struct bio *bio)
1da177e4 3246{
b4f42e28 3247 if (bio_has_data(bio))
fb2dce86 3248 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 3249
4f024f37 3250 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3251 rq->bio = rq->biotail = bio;
1da177e4 3252
74d46992
CH
3253 if (bio->bi_disk)
3254 rq->rq_disk = bio->bi_disk;
66846572 3255}
1da177e4 3256
2d4dc890
IL
3257#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3258/**
3259 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3260 * @rq: the request to be flushed
3261 *
3262 * Description:
3263 * Flush all pages in @rq.
3264 */
3265void rq_flush_dcache_pages(struct request *rq)
3266{
3267 struct req_iterator iter;
7988613b 3268 struct bio_vec bvec;
2d4dc890
IL
3269
3270 rq_for_each_segment(bvec, rq, iter)
7988613b 3271 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3272}
3273EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3274#endif
3275
ef9e3fac
KU
3276/**
3277 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3278 * @q : the queue of the device being checked
3279 *
3280 * Description:
3281 * Check if underlying low-level drivers of a device are busy.
3282 * If the drivers want to export their busy state, they must set own
3283 * exporting function using blk_queue_lld_busy() first.
3284 *
3285 * Basically, this function is used only by request stacking drivers
3286 * to stop dispatching requests to underlying devices when underlying
3287 * devices are busy. This behavior helps more I/O merging on the queue
3288 * of the request stacking driver and prevents I/O throughput regression
3289 * on burst I/O load.
3290 *
3291 * Return:
3292 * 0 - Not busy (The request stacking driver should dispatch request)
3293 * 1 - Busy (The request stacking driver should stop dispatching request)
3294 */
3295int blk_lld_busy(struct request_queue *q)
3296{
3297 if (q->lld_busy_fn)
3298 return q->lld_busy_fn(q);
3299
3300 return 0;
3301}
3302EXPORT_SYMBOL_GPL(blk_lld_busy);
3303
78d8e58a
MS
3304/**
3305 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3306 * @rq: the clone request to be cleaned up
3307 *
3308 * Description:
3309 * Free all bios in @rq for a cloned request.
3310 */
3311void blk_rq_unprep_clone(struct request *rq)
3312{
3313 struct bio *bio;
3314
3315 while ((bio = rq->bio) != NULL) {
3316 rq->bio = bio->bi_next;
3317
3318 bio_put(bio);
3319 }
3320}
3321EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3322
3323/*
3324 * Copy attributes of the original request to the clone request.
3325 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3326 */
3327static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3328{
3329 dst->cpu = src->cpu;
b0fd271d
KU
3330 dst->__sector = blk_rq_pos(src);
3331 dst->__data_len = blk_rq_bytes(src);
3332 dst->nr_phys_segments = src->nr_phys_segments;
3333 dst->ioprio = src->ioprio;
3334 dst->extra_len = src->extra_len;
78d8e58a
MS
3335}
3336
3337/**
3338 * blk_rq_prep_clone - Helper function to setup clone request
3339 * @rq: the request to be setup
3340 * @rq_src: original request to be cloned
3341 * @bs: bio_set that bios for clone are allocated from
3342 * @gfp_mask: memory allocation mask for bio
3343 * @bio_ctr: setup function to be called for each clone bio.
3344 * Returns %0 for success, non %0 for failure.
3345 * @data: private data to be passed to @bio_ctr
3346 *
3347 * Description:
3348 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3349 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3350 * are not copied, and copying such parts is the caller's responsibility.
3351 * Also, pages which the original bios are pointing to are not copied
3352 * and the cloned bios just point same pages.
3353 * So cloned bios must be completed before original bios, which means
3354 * the caller must complete @rq before @rq_src.
3355 */
3356int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3357 struct bio_set *bs, gfp_t gfp_mask,
3358 int (*bio_ctr)(struct bio *, struct bio *, void *),
3359 void *data)
3360{
3361 struct bio *bio, *bio_src;
3362
3363 if (!bs)
3364 bs = fs_bio_set;
3365
3366 __rq_for_each_bio(bio_src, rq_src) {
3367 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3368 if (!bio)
3369 goto free_and_out;
3370
3371 if (bio_ctr && bio_ctr(bio, bio_src, data))
3372 goto free_and_out;
3373
3374 if (rq->bio) {
3375 rq->biotail->bi_next = bio;
3376 rq->biotail = bio;
3377 } else
3378 rq->bio = rq->biotail = bio;
3379 }
3380
3381 __blk_rq_prep_clone(rq, rq_src);
3382
3383 return 0;
3384
3385free_and_out:
3386 if (bio)
3387 bio_put(bio);
3388 blk_rq_unprep_clone(rq);
3389
3390 return -ENOMEM;
b0fd271d
KU
3391}
3392EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3393
59c3d45e 3394int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3395{
3396 return queue_work(kblockd_workqueue, work);
3397}
1da177e4
LT
3398EXPORT_SYMBOL(kblockd_schedule_work);
3399
ee63cfa7
JA
3400int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3401{
3402 return queue_work_on(cpu, kblockd_workqueue, work);
3403}
3404EXPORT_SYMBOL(kblockd_schedule_work_on);
3405
818cd1cb
JA
3406int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3407 unsigned long delay)
3408{
3409 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3410}
3411EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3412
59c3d45e
JA
3413int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3414 unsigned long delay)
e43473b7
VG
3415{
3416 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3417}
3418EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3419
8ab14595
JA
3420int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3421 unsigned long delay)
3422{
3423 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3424}
3425EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3426
75df7136
SJ
3427/**
3428 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3429 * @plug: The &struct blk_plug that needs to be initialized
3430 *
3431 * Description:
3432 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3433 * pending I/O should the task end up blocking between blk_start_plug() and
3434 * blk_finish_plug(). This is important from a performance perspective, but
3435 * also ensures that we don't deadlock. For instance, if the task is blocking
3436 * for a memory allocation, memory reclaim could end up wanting to free a
3437 * page belonging to that request that is currently residing in our private
3438 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3439 * this kind of deadlock.
3440 */
73c10101
JA
3441void blk_start_plug(struct blk_plug *plug)
3442{
3443 struct task_struct *tsk = current;
3444
dd6cf3e1
SL
3445 /*
3446 * If this is a nested plug, don't actually assign it.
3447 */
3448 if (tsk->plug)
3449 return;
3450
73c10101 3451 INIT_LIST_HEAD(&plug->list);
320ae51f 3452 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3453 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3454 /*
dd6cf3e1
SL
3455 * Store ordering should not be needed here, since a potential
3456 * preempt will imply a full memory barrier
73c10101 3457 */
dd6cf3e1 3458 tsk->plug = plug;
73c10101
JA
3459}
3460EXPORT_SYMBOL(blk_start_plug);
3461
3462static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3463{
3464 struct request *rqa = container_of(a, struct request, queuelist);
3465 struct request *rqb = container_of(b, struct request, queuelist);
3466
975927b9
JM
3467 return !(rqa->q < rqb->q ||
3468 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3469}
3470
49cac01e
JA
3471/*
3472 * If 'from_schedule' is true, then postpone the dispatch of requests
3473 * until a safe kblockd context. We due this to avoid accidental big
3474 * additional stack usage in driver dispatch, in places where the originally
3475 * plugger did not intend it.
3476 */
f6603783 3477static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3478 bool from_schedule)
99e22598 3479 __releases(q->queue_lock)
94b5eb28 3480{
2fff8a92
BVA
3481 lockdep_assert_held(q->queue_lock);
3482
49cac01e 3483 trace_block_unplug(q, depth, !from_schedule);
99e22598 3484
70460571 3485 if (from_schedule)
24ecfbe2 3486 blk_run_queue_async(q);
70460571 3487 else
24ecfbe2 3488 __blk_run_queue(q);
70460571 3489 spin_unlock(q->queue_lock);
94b5eb28
JA
3490}
3491
74018dc3 3492static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3493{
3494 LIST_HEAD(callbacks);
3495
2a7d5559
SL
3496 while (!list_empty(&plug->cb_list)) {
3497 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3498
2a7d5559
SL
3499 while (!list_empty(&callbacks)) {
3500 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3501 struct blk_plug_cb,
3502 list);
2a7d5559 3503 list_del(&cb->list);
74018dc3 3504 cb->callback(cb, from_schedule);
2a7d5559 3505 }
048c9374
N
3506 }
3507}
3508
9cbb1750
N
3509struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3510 int size)
3511{
3512 struct blk_plug *plug = current->plug;
3513 struct blk_plug_cb *cb;
3514
3515 if (!plug)
3516 return NULL;
3517
3518 list_for_each_entry(cb, &plug->cb_list, list)
3519 if (cb->callback == unplug && cb->data == data)
3520 return cb;
3521
3522 /* Not currently on the callback list */
3523 BUG_ON(size < sizeof(*cb));
3524 cb = kzalloc(size, GFP_ATOMIC);
3525 if (cb) {
3526 cb->data = data;
3527 cb->callback = unplug;
3528 list_add(&cb->list, &plug->cb_list);
3529 }
3530 return cb;
3531}
3532EXPORT_SYMBOL(blk_check_plugged);
3533
49cac01e 3534void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3535{
3536 struct request_queue *q;
3537 unsigned long flags;
3538 struct request *rq;
109b8129 3539 LIST_HEAD(list);
94b5eb28 3540 unsigned int depth;
73c10101 3541
74018dc3 3542 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3543
3544 if (!list_empty(&plug->mq_list))
3545 blk_mq_flush_plug_list(plug, from_schedule);
3546
73c10101
JA
3547 if (list_empty(&plug->list))
3548 return;
3549
109b8129
N
3550 list_splice_init(&plug->list, &list);
3551
422765c2 3552 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3553
3554 q = NULL;
94b5eb28 3555 depth = 0;
18811272
JA
3556
3557 /*
3558 * Save and disable interrupts here, to avoid doing it for every
3559 * queue lock we have to take.
3560 */
73c10101 3561 local_irq_save(flags);
109b8129
N
3562 while (!list_empty(&list)) {
3563 rq = list_entry_rq(list.next);
73c10101 3564 list_del_init(&rq->queuelist);
73c10101
JA
3565 BUG_ON(!rq->q);
3566 if (rq->q != q) {
99e22598
JA
3567 /*
3568 * This drops the queue lock
3569 */
3570 if (q)
49cac01e 3571 queue_unplugged(q, depth, from_schedule);
73c10101 3572 q = rq->q;
94b5eb28 3573 depth = 0;
73c10101
JA
3574 spin_lock(q->queue_lock);
3575 }
8ba61435
TH
3576
3577 /*
3578 * Short-circuit if @q is dead
3579 */
3f3299d5 3580 if (unlikely(blk_queue_dying(q))) {
2a842aca 3581 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3582 continue;
3583 }
3584
73c10101
JA
3585 /*
3586 * rq is already accounted, so use raw insert
3587 */
f73f44eb 3588 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3589 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3590 else
3591 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3592
3593 depth++;
73c10101
JA
3594 }
3595
99e22598
JA
3596 /*
3597 * This drops the queue lock
3598 */
3599 if (q)
49cac01e 3600 queue_unplugged(q, depth, from_schedule);
73c10101 3601
73c10101
JA
3602 local_irq_restore(flags);
3603}
73c10101
JA
3604
3605void blk_finish_plug(struct blk_plug *plug)
3606{
dd6cf3e1
SL
3607 if (plug != current->plug)
3608 return;
f6603783 3609 blk_flush_plug_list(plug, false);
73c10101 3610
dd6cf3e1 3611 current->plug = NULL;
73c10101 3612}
88b996cd 3613EXPORT_SYMBOL(blk_finish_plug);
73c10101 3614
47fafbc7 3615#ifdef CONFIG_PM
6c954667
LM
3616/**
3617 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3618 * @q: the queue of the device
3619 * @dev: the device the queue belongs to
3620 *
3621 * Description:
3622 * Initialize runtime-PM-related fields for @q and start auto suspend for
3623 * @dev. Drivers that want to take advantage of request-based runtime PM
3624 * should call this function after @dev has been initialized, and its
3625 * request queue @q has been allocated, and runtime PM for it can not happen
3626 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3627 * cases, driver should call this function before any I/O has taken place.
3628 *
3629 * This function takes care of setting up using auto suspend for the device,
3630 * the autosuspend delay is set to -1 to make runtime suspend impossible
3631 * until an updated value is either set by user or by driver. Drivers do
3632 * not need to touch other autosuspend settings.
3633 *
3634 * The block layer runtime PM is request based, so only works for drivers
3635 * that use request as their IO unit instead of those directly use bio's.
3636 */
3637void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3638{
765e40b6
CH
3639 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3640 if (q->mq_ops)
3641 return;
3642
6c954667
LM
3643 q->dev = dev;
3644 q->rpm_status = RPM_ACTIVE;
3645 pm_runtime_set_autosuspend_delay(q->dev, -1);
3646 pm_runtime_use_autosuspend(q->dev);
3647}
3648EXPORT_SYMBOL(blk_pm_runtime_init);
3649
3650/**
3651 * blk_pre_runtime_suspend - Pre runtime suspend check
3652 * @q: the queue of the device
3653 *
3654 * Description:
3655 * This function will check if runtime suspend is allowed for the device
3656 * by examining if there are any requests pending in the queue. If there
3657 * are requests pending, the device can not be runtime suspended; otherwise,
3658 * the queue's status will be updated to SUSPENDING and the driver can
3659 * proceed to suspend the device.
3660 *
3661 * For the not allowed case, we mark last busy for the device so that
3662 * runtime PM core will try to autosuspend it some time later.
3663 *
3664 * This function should be called near the start of the device's
3665 * runtime_suspend callback.
3666 *
3667 * Return:
3668 * 0 - OK to runtime suspend the device
3669 * -EBUSY - Device should not be runtime suspended
3670 */
3671int blk_pre_runtime_suspend(struct request_queue *q)
3672{
3673 int ret = 0;
3674
4fd41a85
KX
3675 if (!q->dev)
3676 return ret;
3677
6c954667
LM
3678 spin_lock_irq(q->queue_lock);
3679 if (q->nr_pending) {
3680 ret = -EBUSY;
3681 pm_runtime_mark_last_busy(q->dev);
3682 } else {
3683 q->rpm_status = RPM_SUSPENDING;
3684 }
3685 spin_unlock_irq(q->queue_lock);
3686 return ret;
3687}
3688EXPORT_SYMBOL(blk_pre_runtime_suspend);
3689
3690/**
3691 * blk_post_runtime_suspend - Post runtime suspend processing
3692 * @q: the queue of the device
3693 * @err: return value of the device's runtime_suspend function
3694 *
3695 * Description:
3696 * Update the queue's runtime status according to the return value of the
3697 * device's runtime suspend function and mark last busy for the device so
3698 * that PM core will try to auto suspend the device at a later time.
3699 *
3700 * This function should be called near the end of the device's
3701 * runtime_suspend callback.
3702 */
3703void blk_post_runtime_suspend(struct request_queue *q, int err)
3704{
4fd41a85
KX
3705 if (!q->dev)
3706 return;
3707
6c954667
LM
3708 spin_lock_irq(q->queue_lock);
3709 if (!err) {
3710 q->rpm_status = RPM_SUSPENDED;
3711 } else {
3712 q->rpm_status = RPM_ACTIVE;
3713 pm_runtime_mark_last_busy(q->dev);
3714 }
3715 spin_unlock_irq(q->queue_lock);
3716}
3717EXPORT_SYMBOL(blk_post_runtime_suspend);
3718
3719/**
3720 * blk_pre_runtime_resume - Pre runtime resume processing
3721 * @q: the queue of the device
3722 *
3723 * Description:
3724 * Update the queue's runtime status to RESUMING in preparation for the
3725 * runtime resume of the device.
3726 *
3727 * This function should be called near the start of the device's
3728 * runtime_resume callback.
3729 */
3730void blk_pre_runtime_resume(struct request_queue *q)
3731{
4fd41a85
KX
3732 if (!q->dev)
3733 return;
3734
6c954667
LM
3735 spin_lock_irq(q->queue_lock);
3736 q->rpm_status = RPM_RESUMING;
3737 spin_unlock_irq(q->queue_lock);
3738}
3739EXPORT_SYMBOL(blk_pre_runtime_resume);
3740
3741/**
3742 * blk_post_runtime_resume - Post runtime resume processing
3743 * @q: the queue of the device
3744 * @err: return value of the device's runtime_resume function
3745 *
3746 * Description:
3747 * Update the queue's runtime status according to the return value of the
3748 * device's runtime_resume function. If it is successfully resumed, process
3749 * the requests that are queued into the device's queue when it is resuming
3750 * and then mark last busy and initiate autosuspend for it.
3751 *
3752 * This function should be called near the end of the device's
3753 * runtime_resume callback.
3754 */
3755void blk_post_runtime_resume(struct request_queue *q, int err)
3756{
4fd41a85
KX
3757 if (!q->dev)
3758 return;
3759
6c954667
LM
3760 spin_lock_irq(q->queue_lock);
3761 if (!err) {
3762 q->rpm_status = RPM_ACTIVE;
3763 __blk_run_queue(q);
3764 pm_runtime_mark_last_busy(q->dev);
c60855cd 3765 pm_request_autosuspend(q->dev);
6c954667
LM
3766 } else {
3767 q->rpm_status = RPM_SUSPENDED;
3768 }
3769 spin_unlock_irq(q->queue_lock);
3770}
3771EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3772
3773/**
3774 * blk_set_runtime_active - Force runtime status of the queue to be active
3775 * @q: the queue of the device
3776 *
3777 * If the device is left runtime suspended during system suspend the resume
3778 * hook typically resumes the device and corrects runtime status
3779 * accordingly. However, that does not affect the queue runtime PM status
3780 * which is still "suspended". This prevents processing requests from the
3781 * queue.
3782 *
3783 * This function can be used in driver's resume hook to correct queue
3784 * runtime PM status and re-enable peeking requests from the queue. It
3785 * should be called before first request is added to the queue.
3786 */
3787void blk_set_runtime_active(struct request_queue *q)
3788{
3789 spin_lock_irq(q->queue_lock);
3790 q->rpm_status = RPM_ACTIVE;
3791 pm_runtime_mark_last_busy(q->dev);
3792 pm_request_autosuspend(q->dev);
3793 spin_unlock_irq(q->queue_lock);
3794}
3795EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3796#endif
3797
1da177e4
LT
3798int __init blk_dev_init(void)
3799{
ef295ecf
CH
3800 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3801 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3802 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3803 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3804 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3805
89b90be2
TH
3806 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3807 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3808 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3809 if (!kblockd_workqueue)
3810 panic("Failed to create kblockd\n");
3811
3812 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3813 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3814
c2789bd4 3815 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3816 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3817
18fbda91
OS
3818#ifdef CONFIG_DEBUG_FS
3819 blk_debugfs_root = debugfs_create_dir("block", NULL);
3820#endif
3821
d38ecf93 3822 return 0;
1da177e4 3823}