]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
blk-mq: fix issue with shared tag queue re-running
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 147
4e4cbee9
CH
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
2a842aca
CH
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153};
154
155blk_status_t errno_to_blk_status(int errno)
156{
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165}
166EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168int blk_status_to_errno(blk_status_t status)
169{
170 int idx = (__force int)status;
171
34bd9c1c 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
173 return -EIO;
174 return blk_errors[idx].errno;
175}
176EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178static void print_req_error(struct request *req, blk_status_t status)
179{
180 int idx = (__force int)status;
181
34bd9c1c 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189}
190
5bb23a68 191static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 192 unsigned int nbytes, blk_status_t error)
1da177e4 193{
78d8e58a 194 if (error)
4e4cbee9 195 bio->bi_status = error;
797e7dbb 196
e8064021 197 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 198 bio_set_flag(bio, BIO_QUIET);
08bafc03 199
f79ea416 200 bio_advance(bio, nbytes);
7ba1ba12 201
143a87f4 202 /* don't actually finish bio if it's part of flush sequence */
e8064021 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 204 bio_endio(bio);
1da177e4 205}
1da177e4 206
1da177e4
LT
207void blk_dump_rq_flags(struct request *rq, char *msg)
208{
aebf526b
CH
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 211 (unsigned long long) rq->cmd_flags);
1da177e4 212
83096ebf
TH
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_dump_rq_flags);
220
3cca6dc1 221static void blk_delay_work(struct work_struct *work)
1da177e4 222{
3cca6dc1 223 struct request_queue *q;
1da177e4 224
3cca6dc1
JA
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
24ecfbe2 227 __blk_run_queue(q);
3cca6dc1 228 spin_unlock_irq(q->queue_lock);
1da177e4 229}
1da177e4
LT
230
231/**
3cca6dc1
JA
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
1da177e4
LT
235 *
236 * Description:
3cca6dc1
JA
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
2fff8a92 239 * restarted around the specified time.
3cca6dc1
JA
240 */
241void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 242{
2fff8a92 243 lockdep_assert_held(q->queue_lock);
332ebbf7 244 WARN_ON_ONCE(q->mq_ops);
2fff8a92 245
70460571
BVA
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
2ad8b1ef 249}
3cca6dc1 250EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 251
21491412
JA
252/**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261void blk_start_queue_async(struct request_queue *q)
262{
2fff8a92 263 lockdep_assert_held(q->queue_lock);
332ebbf7 264 WARN_ON_ONCE(q->mq_ops);
2fff8a92 265
21491412
JA
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268}
269EXPORT_SYMBOL(blk_start_queue_async);
270
1da177e4
LT
271/**
272 * blk_start_queue - restart a previously stopped queue
165125e1 273 * @q: The &struct request_queue in question
1da177e4
LT
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
2fff8a92 278 * entered. Also see blk_stop_queue().
1da177e4 279 **/
165125e1 280void blk_start_queue(struct request_queue *q)
1da177e4 281{
2fff8a92 282 lockdep_assert_held(q->queue_lock);
4ddd56b0 283 WARN_ON(!in_interrupt() && !irqs_disabled());
332ebbf7 284 WARN_ON_ONCE(q->mq_ops);
a038e253 285
75ad23bc 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 287 __blk_run_queue(q);
1da177e4 288}
1da177e4
LT
289EXPORT_SYMBOL(blk_start_queue);
290
291/**
292 * blk_stop_queue - stop a queue
165125e1 293 * @q: The &struct request_queue in question
1da177e4
LT
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 303 * blk_start_queue() to restart queue operations.
1da177e4 304 **/
165125e1 305void blk_stop_queue(struct request_queue *q)
1da177e4 306{
2fff8a92 307 lockdep_assert_held(q->queue_lock);
332ebbf7 308 WARN_ON_ONCE(q->mq_ops);
2fff8a92 309
136b5721 310 cancel_delayed_work(&q->delay_work);
75ad23bc 311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
312}
313EXPORT_SYMBOL(blk_stop_queue);
314
315/**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
59c51591 324 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
da527770 328 * This function does not cancel any asynchronous activity arising
da3dae54 329 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 330 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 331 *
1da177e4
LT
332 */
333void blk_sync_queue(struct request_queue *q)
334{
70ed28b9 335 del_timer_sync(&q->timeout);
4e9b6f20 336 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
aba7afc5 342 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 343 queue_for_each_hw_ctx(q, hctx, i)
9f993737 344 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
1da177e4
LT
348}
349EXPORT_SYMBOL(blk_sync_queue);
350
c246e80d
BVA
351/**
352 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
353 * @q: The queue to run
354 *
355 * Description:
356 * Invoke request handling on a queue if there are any pending requests.
357 * May be used to restart request handling after a request has completed.
358 * This variant runs the queue whether or not the queue has been
359 * stopped. Must be called with the queue lock held and interrupts
360 * disabled. See also @blk_run_queue.
361 */
362inline void __blk_run_queue_uncond(struct request_queue *q)
363{
2fff8a92 364 lockdep_assert_held(q->queue_lock);
332ebbf7 365 WARN_ON_ONCE(q->mq_ops);
2fff8a92 366
c246e80d
BVA
367 if (unlikely(blk_queue_dead(q)))
368 return;
369
24faf6f6
BVA
370 /*
371 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
372 * the queue lock internally. As a result multiple threads may be
373 * running such a request function concurrently. Keep track of the
374 * number of active request_fn invocations such that blk_drain_queue()
375 * can wait until all these request_fn calls have finished.
376 */
377 q->request_fn_active++;
c246e80d 378 q->request_fn(q);
24faf6f6 379 q->request_fn_active--;
c246e80d 380}
a7928c15 381EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 382
1da177e4 383/**
80a4b58e 384 * __blk_run_queue - run a single device queue
1da177e4 385 * @q: The queue to run
80a4b58e
JA
386 *
387 * Description:
2fff8a92 388 * See @blk_run_queue.
1da177e4 389 */
24ecfbe2 390void __blk_run_queue(struct request_queue *q)
1da177e4 391{
2fff8a92 392 lockdep_assert_held(q->queue_lock);
332ebbf7 393 WARN_ON_ONCE(q->mq_ops);
2fff8a92 394
a538cd03
TH
395 if (unlikely(blk_queue_stopped(q)))
396 return;
397
c246e80d 398 __blk_run_queue_uncond(q);
75ad23bc
NP
399}
400EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 401
24ecfbe2
CH
402/**
403 * blk_run_queue_async - run a single device queue in workqueue context
404 * @q: The queue to run
405 *
406 * Description:
407 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
408 * of us.
409 *
410 * Note:
411 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
412 * has canceled q->delay_work, callers must hold the queue lock to avoid
413 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
414 */
415void blk_run_queue_async(struct request_queue *q)
416{
2fff8a92 417 lockdep_assert_held(q->queue_lock);
332ebbf7 418 WARN_ON_ONCE(q->mq_ops);
2fff8a92 419
70460571 420 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 421 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 422}
c21e6beb 423EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 424
75ad23bc
NP
425/**
426 * blk_run_queue - run a single device queue
427 * @q: The queue to run
80a4b58e
JA
428 *
429 * Description:
430 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 431 * May be used to restart queueing when a request has completed.
75ad23bc
NP
432 */
433void blk_run_queue(struct request_queue *q)
434{
435 unsigned long flags;
436
332ebbf7
BVA
437 WARN_ON_ONCE(q->mq_ops);
438
75ad23bc 439 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 440 __blk_run_queue(q);
1da177e4
LT
441 spin_unlock_irqrestore(q->queue_lock, flags);
442}
443EXPORT_SYMBOL(blk_run_queue);
444
165125e1 445void blk_put_queue(struct request_queue *q)
483f4afc
AV
446{
447 kobject_put(&q->kobj);
448}
d86e0e83 449EXPORT_SYMBOL(blk_put_queue);
483f4afc 450
e3c78ca5 451/**
807592a4 452 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 453 * @q: queue to drain
c9a929dd 454 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 455 *
c9a929dd
TH
456 * Drain requests from @q. If @drain_all is set, all requests are drained.
457 * If not, only ELVPRIV requests are drained. The caller is responsible
458 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 459 */
807592a4
BVA
460static void __blk_drain_queue(struct request_queue *q, bool drain_all)
461 __releases(q->queue_lock)
462 __acquires(q->queue_lock)
e3c78ca5 463{
458f27a9
AH
464 int i;
465
807592a4 466 lockdep_assert_held(q->queue_lock);
332ebbf7 467 WARN_ON_ONCE(q->mq_ops);
807592a4 468
e3c78ca5 469 while (true) {
481a7d64 470 bool drain = false;
e3c78ca5 471
b855b04a
TH
472 /*
473 * The caller might be trying to drain @q before its
474 * elevator is initialized.
475 */
476 if (q->elevator)
477 elv_drain_elevator(q);
478
5efd6113 479 blkcg_drain_queue(q);
e3c78ca5 480
4eabc941
TH
481 /*
482 * This function might be called on a queue which failed
b855b04a
TH
483 * driver init after queue creation or is not yet fully
484 * active yet. Some drivers (e.g. fd and loop) get unhappy
485 * in such cases. Kick queue iff dispatch queue has
486 * something on it and @q has request_fn set.
4eabc941 487 */
b855b04a 488 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 489 __blk_run_queue(q);
c9a929dd 490
8a5ecdd4 491 drain |= q->nr_rqs_elvpriv;
24faf6f6 492 drain |= q->request_fn_active;
481a7d64
TH
493
494 /*
495 * Unfortunately, requests are queued at and tracked from
496 * multiple places and there's no single counter which can
497 * be drained. Check all the queues and counters.
498 */
499 if (drain_all) {
e97c293c 500 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
501 drain |= !list_empty(&q->queue_head);
502 for (i = 0; i < 2; i++) {
8a5ecdd4 503 drain |= q->nr_rqs[i];
481a7d64 504 drain |= q->in_flight[i];
7c94e1c1
ML
505 if (fq)
506 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
507 }
508 }
e3c78ca5 509
481a7d64 510 if (!drain)
e3c78ca5 511 break;
807592a4
BVA
512
513 spin_unlock_irq(q->queue_lock);
514
e3c78ca5 515 msleep(10);
807592a4
BVA
516
517 spin_lock_irq(q->queue_lock);
e3c78ca5 518 }
458f27a9
AH
519
520 /*
521 * With queue marked dead, any woken up waiter will fail the
522 * allocation path, so the wakeup chaining is lost and we're
523 * left with hung waiters. We need to wake up those waiters.
524 */
525 if (q->request_fn) {
a051661c
TH
526 struct request_list *rl;
527
a051661c
TH
528 blk_queue_for_each_rl(rl, q)
529 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
530 wake_up_all(&rl->wait[i]);
458f27a9 531 }
e3c78ca5
TH
532}
533
d732580b
TH
534/**
535 * blk_queue_bypass_start - enter queue bypass mode
536 * @q: queue of interest
537 *
538 * In bypass mode, only the dispatch FIFO queue of @q is used. This
539 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 540 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
541 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
542 * inside queue or RCU read lock.
d732580b
TH
543 */
544void blk_queue_bypass_start(struct request_queue *q)
545{
332ebbf7
BVA
546 WARN_ON_ONCE(q->mq_ops);
547
d732580b 548 spin_lock_irq(q->queue_lock);
776687bc 549 q->bypass_depth++;
d732580b
TH
550 queue_flag_set(QUEUE_FLAG_BYPASS, q);
551 spin_unlock_irq(q->queue_lock);
552
776687bc
TH
553 /*
554 * Queues start drained. Skip actual draining till init is
555 * complete. This avoids lenghty delays during queue init which
556 * can happen many times during boot.
557 */
558 if (blk_queue_init_done(q)) {
807592a4
BVA
559 spin_lock_irq(q->queue_lock);
560 __blk_drain_queue(q, false);
561 spin_unlock_irq(q->queue_lock);
562
b82d4b19
TH
563 /* ensure blk_queue_bypass() is %true inside RCU read lock */
564 synchronize_rcu();
565 }
d732580b
TH
566}
567EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
568
569/**
570 * blk_queue_bypass_end - leave queue bypass mode
571 * @q: queue of interest
572 *
573 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
574 *
575 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
576 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
577 */
578void blk_queue_bypass_end(struct request_queue *q)
579{
580 spin_lock_irq(q->queue_lock);
581 if (!--q->bypass_depth)
582 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
583 WARN_ON_ONCE(q->bypass_depth < 0);
584 spin_unlock_irq(q->queue_lock);
585}
586EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
587
aed3ea94
JA
588void blk_set_queue_dying(struct request_queue *q)
589{
1b856086
BVA
590 spin_lock_irq(q->queue_lock);
591 queue_flag_set(QUEUE_FLAG_DYING, q);
592 spin_unlock_irq(q->queue_lock);
aed3ea94 593
d3cfb2a0
ML
594 /*
595 * When queue DYING flag is set, we need to block new req
596 * entering queue, so we call blk_freeze_queue_start() to
597 * prevent I/O from crossing blk_queue_enter().
598 */
599 blk_freeze_queue_start(q);
600
aed3ea94
JA
601 if (q->mq_ops)
602 blk_mq_wake_waiters(q);
603 else {
604 struct request_list *rl;
605
bbfc3c5d 606 spin_lock_irq(q->queue_lock);
aed3ea94
JA
607 blk_queue_for_each_rl(rl, q) {
608 if (rl->rq_pool) {
609 wake_up(&rl->wait[BLK_RW_SYNC]);
610 wake_up(&rl->wait[BLK_RW_ASYNC]);
611 }
612 }
bbfc3c5d 613 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
614 }
615}
616EXPORT_SYMBOL_GPL(blk_set_queue_dying);
617
c9a929dd
TH
618/**
619 * blk_cleanup_queue - shutdown a request queue
620 * @q: request queue to shutdown
621 *
c246e80d
BVA
622 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
623 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 624 */
6728cb0e 625void blk_cleanup_queue(struct request_queue *q)
483f4afc 626{
c9a929dd 627 spinlock_t *lock = q->queue_lock;
e3335de9 628
3f3299d5 629 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 630 mutex_lock(&q->sysfs_lock);
aed3ea94 631 blk_set_queue_dying(q);
c9a929dd 632 spin_lock_irq(lock);
6ecf23af 633
80fd9979 634 /*
3f3299d5 635 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
636 * that, unlike blk_queue_bypass_start(), we aren't performing
637 * synchronize_rcu() after entering bypass mode to avoid the delay
638 * as some drivers create and destroy a lot of queues while
639 * probing. This is still safe because blk_release_queue() will be
640 * called only after the queue refcnt drops to zero and nothing,
641 * RCU or not, would be traversing the queue by then.
642 */
6ecf23af
TH
643 q->bypass_depth++;
644 queue_flag_set(QUEUE_FLAG_BYPASS, q);
645
c9a929dd
TH
646 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
647 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 648 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
649 spin_unlock_irq(lock);
650 mutex_unlock(&q->sysfs_lock);
651
c246e80d
BVA
652 /*
653 * Drain all requests queued before DYING marking. Set DEAD flag to
654 * prevent that q->request_fn() gets invoked after draining finished.
655 */
3ef28e83 656 blk_freeze_queue(q);
9c1051aa
OS
657 spin_lock_irq(lock);
658 if (!q->mq_ops)
43a5e4e2 659 __blk_drain_queue(q, true);
c246e80d 660 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 661 spin_unlock_irq(lock);
c9a929dd 662
5a48fc14
DW
663 /* for synchronous bio-based driver finish in-flight integrity i/o */
664 blk_flush_integrity();
665
c9a929dd 666 /* @q won't process any more request, flush async actions */
dc3b17cc 667 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
668 blk_sync_queue(q);
669
45a9c9d9
BVA
670 if (q->mq_ops)
671 blk_mq_free_queue(q);
3ef28e83 672 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 673
5e5cfac0
AH
674 spin_lock_irq(lock);
675 if (q->queue_lock != &q->__queue_lock)
676 q->queue_lock = &q->__queue_lock;
677 spin_unlock_irq(lock);
678
c9a929dd 679 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
680 blk_put_queue(q);
681}
1da177e4
LT
682EXPORT_SYMBOL(blk_cleanup_queue);
683
271508db 684/* Allocate memory local to the request queue */
6d247d7f 685static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 686{
6d247d7f
CH
687 struct request_queue *q = data;
688
689 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
690}
691
6d247d7f 692static void free_request_simple(void *element, void *data)
271508db
DR
693{
694 kmem_cache_free(request_cachep, element);
695}
696
6d247d7f
CH
697static void *alloc_request_size(gfp_t gfp_mask, void *data)
698{
699 struct request_queue *q = data;
700 struct request *rq;
701
702 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
703 q->node);
704 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
705 kfree(rq);
706 rq = NULL;
707 }
708 return rq;
709}
710
711static void free_request_size(void *element, void *data)
712{
713 struct request_queue *q = data;
714
715 if (q->exit_rq_fn)
716 q->exit_rq_fn(q, element);
717 kfree(element);
718}
719
5b788ce3
TH
720int blk_init_rl(struct request_list *rl, struct request_queue *q,
721 gfp_t gfp_mask)
1da177e4 722{
85acb3ba 723 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
724 return 0;
725
5b788ce3 726 rl->q = q;
1faa16d2
JA
727 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
728 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
729 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
730 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 731
6d247d7f
CH
732 if (q->cmd_size) {
733 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
734 alloc_request_size, free_request_size,
735 q, gfp_mask, q->node);
736 } else {
737 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
738 alloc_request_simple, free_request_simple,
739 q, gfp_mask, q->node);
740 }
1da177e4
LT
741 if (!rl->rq_pool)
742 return -ENOMEM;
743
b425e504
BVA
744 if (rl != &q->root_rl)
745 WARN_ON_ONCE(!blk_get_queue(q));
746
1da177e4
LT
747 return 0;
748}
749
b425e504 750void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 751{
b425e504 752 if (rl->rq_pool) {
5b788ce3 753 mempool_destroy(rl->rq_pool);
b425e504
BVA
754 if (rl != &q->root_rl)
755 blk_put_queue(q);
756 }
5b788ce3
TH
757}
758
165125e1 759struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 760{
c304a51b 761 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
762}
763EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 764
6f3b0e8b 765int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
766{
767 while (true) {
768 int ret;
769
770 if (percpu_ref_tryget_live(&q->q_usage_counter))
771 return 0;
772
6f3b0e8b 773 if (nowait)
3ef28e83
DW
774 return -EBUSY;
775
5ed61d3f 776 /*
1671d522 777 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 778 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
779 * .q_usage_counter and reading .mq_freeze_depth or
780 * queue dying flag, otherwise the following wait may
781 * never return if the two reads are reordered.
5ed61d3f
ML
782 */
783 smp_rmb();
784
3ef28e83
DW
785 ret = wait_event_interruptible(q->mq_freeze_wq,
786 !atomic_read(&q->mq_freeze_depth) ||
787 blk_queue_dying(q));
788 if (blk_queue_dying(q))
789 return -ENODEV;
790 if (ret)
791 return ret;
792 }
793}
794
795void blk_queue_exit(struct request_queue *q)
796{
797 percpu_ref_put(&q->q_usage_counter);
798}
799
800static void blk_queue_usage_counter_release(struct percpu_ref *ref)
801{
802 struct request_queue *q =
803 container_of(ref, struct request_queue, q_usage_counter);
804
805 wake_up_all(&q->mq_freeze_wq);
806}
807
287922eb
CH
808static void blk_rq_timed_out_timer(unsigned long data)
809{
810 struct request_queue *q = (struct request_queue *)data;
811
812 kblockd_schedule_work(&q->timeout_work);
813}
814
165125e1 815struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 816{
165125e1 817 struct request_queue *q;
1946089a 818
8324aa91 819 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 820 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
821 if (!q)
822 return NULL;
823
00380a40 824 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 825 if (q->id < 0)
3d2936f4 826 goto fail_q;
a73f730d 827
93b27e72 828 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
829 if (!q->bio_split)
830 goto fail_id;
831
d03f6cdc
JK
832 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
833 if (!q->backing_dev_info)
834 goto fail_split;
835
a83b576c
JA
836 q->stats = blk_alloc_queue_stats();
837 if (!q->stats)
838 goto fail_stats;
839
dc3b17cc 840 q->backing_dev_info->ra_pages =
09cbfeaf 841 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
842 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
843 q->backing_dev_info->name = "block";
5151412d 844 q->node = node_id;
0989a025 845
dc3b17cc 846 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 847 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 848 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
4e9b6f20 849 INIT_WORK(&q->timeout_work, NULL);
b855b04a 850 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 851 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 852 INIT_LIST_HEAD(&q->icq_list);
4eef3049 853#ifdef CONFIG_BLK_CGROUP
e8989fae 854 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 855#endif
3cca6dc1 856 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 857
8324aa91 858 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 859
5acb3cc2
WL
860#ifdef CONFIG_BLK_DEV_IO_TRACE
861 mutex_init(&q->blk_trace_mutex);
862#endif
483f4afc 863 mutex_init(&q->sysfs_lock);
e7e72bf6 864 spin_lock_init(&q->__queue_lock);
483f4afc 865
c94a96ac
VG
866 /*
867 * By default initialize queue_lock to internal lock and driver can
868 * override it later if need be.
869 */
870 q->queue_lock = &q->__queue_lock;
871
b82d4b19
TH
872 /*
873 * A queue starts its life with bypass turned on to avoid
874 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
875 * init. The initial bypass will be finished when the queue is
876 * registered by blk_register_queue().
b82d4b19
TH
877 */
878 q->bypass_depth = 1;
879 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
880
320ae51f
JA
881 init_waitqueue_head(&q->mq_freeze_wq);
882
3ef28e83
DW
883 /*
884 * Init percpu_ref in atomic mode so that it's faster to shutdown.
885 * See blk_register_queue() for details.
886 */
887 if (percpu_ref_init(&q->q_usage_counter,
888 blk_queue_usage_counter_release,
889 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 890 goto fail_bdi;
f51b802c 891
3ef28e83
DW
892 if (blkcg_init_queue(q))
893 goto fail_ref;
894
1da177e4 895 return q;
a73f730d 896
3ef28e83
DW
897fail_ref:
898 percpu_ref_exit(&q->q_usage_counter);
fff4996b 899fail_bdi:
a83b576c
JA
900 blk_free_queue_stats(q->stats);
901fail_stats:
d03f6cdc 902 bdi_put(q->backing_dev_info);
54efd50b
KO
903fail_split:
904 bioset_free(q->bio_split);
a73f730d
TH
905fail_id:
906 ida_simple_remove(&blk_queue_ida, q->id);
907fail_q:
908 kmem_cache_free(blk_requestq_cachep, q);
909 return NULL;
1da177e4 910}
1946089a 911EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
912
913/**
914 * blk_init_queue - prepare a request queue for use with a block device
915 * @rfn: The function to be called to process requests that have been
916 * placed on the queue.
917 * @lock: Request queue spin lock
918 *
919 * Description:
920 * If a block device wishes to use the standard request handling procedures,
921 * which sorts requests and coalesces adjacent requests, then it must
922 * call blk_init_queue(). The function @rfn will be called when there
923 * are requests on the queue that need to be processed. If the device
924 * supports plugging, then @rfn may not be called immediately when requests
925 * are available on the queue, but may be called at some time later instead.
926 * Plugged queues are generally unplugged when a buffer belonging to one
927 * of the requests on the queue is needed, or due to memory pressure.
928 *
929 * @rfn is not required, or even expected, to remove all requests off the
930 * queue, but only as many as it can handle at a time. If it does leave
931 * requests on the queue, it is responsible for arranging that the requests
932 * get dealt with eventually.
933 *
934 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
935 * request queue; this lock will be taken also from interrupt context, so irq
936 * disabling is needed for it.
1da177e4 937 *
710027a4 938 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
939 * it didn't succeed.
940 *
941 * Note:
942 * blk_init_queue() must be paired with a blk_cleanup_queue() call
943 * when the block device is deactivated (such as at module unload).
944 **/
1946089a 945
165125e1 946struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 947{
c304a51b 948 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
949}
950EXPORT_SYMBOL(blk_init_queue);
951
165125e1 952struct request_queue *
1946089a
CL
953blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
954{
5ea708d1 955 struct request_queue *q;
1da177e4 956
5ea708d1
CH
957 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
958 if (!q)
c86d1b8a
MS
959 return NULL;
960
5ea708d1
CH
961 q->request_fn = rfn;
962 if (lock)
963 q->queue_lock = lock;
964 if (blk_init_allocated_queue(q) < 0) {
965 blk_cleanup_queue(q);
966 return NULL;
967 }
18741986 968
7982e90c 969 return q;
01effb0d
MS
970}
971EXPORT_SYMBOL(blk_init_queue_node);
972
dece1635 973static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 974
1da177e4 975
5ea708d1
CH
976int blk_init_allocated_queue(struct request_queue *q)
977{
332ebbf7
BVA
978 WARN_ON_ONCE(q->mq_ops);
979
6d247d7f 980 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 981 if (!q->fq)
5ea708d1 982 return -ENOMEM;
7982e90c 983
6d247d7f
CH
984 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
985 goto out_free_flush_queue;
7982e90c 986
a051661c 987 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 988 goto out_exit_flush_rq;
1da177e4 989
287922eb 990 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 991 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 992
f3b144aa
JA
993 /*
994 * This also sets hw/phys segments, boundary and size
995 */
c20e8de2 996 blk_queue_make_request(q, blk_queue_bio);
1da177e4 997
44ec9542
AS
998 q->sg_reserved_size = INT_MAX;
999
eb1c160b
TS
1000 /* Protect q->elevator from elevator_change */
1001 mutex_lock(&q->sysfs_lock);
1002
b82d4b19 1003 /* init elevator */
eb1c160b
TS
1004 if (elevator_init(q, NULL)) {
1005 mutex_unlock(&q->sysfs_lock);
6d247d7f 1006 goto out_exit_flush_rq;
eb1c160b
TS
1007 }
1008
1009 mutex_unlock(&q->sysfs_lock);
5ea708d1 1010 return 0;
eb1c160b 1011
6d247d7f
CH
1012out_exit_flush_rq:
1013 if (q->exit_rq_fn)
1014 q->exit_rq_fn(q, q->fq->flush_rq);
1015out_free_flush_queue:
ba483388 1016 blk_free_flush_queue(q->fq);
5ea708d1 1017 return -ENOMEM;
1da177e4 1018}
5151412d 1019EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1020
09ac46c4 1021bool blk_get_queue(struct request_queue *q)
1da177e4 1022{
3f3299d5 1023 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1024 __blk_get_queue(q);
1025 return true;
1da177e4
LT
1026 }
1027
09ac46c4 1028 return false;
1da177e4 1029}
d86e0e83 1030EXPORT_SYMBOL(blk_get_queue);
1da177e4 1031
5b788ce3 1032static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1033{
e8064021 1034 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1035 elv_put_request(rl->q, rq);
f1f8cc94 1036 if (rq->elv.icq)
11a3122f 1037 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1038 }
1039
5b788ce3 1040 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1041}
1042
1da177e4
LT
1043/*
1044 * ioc_batching returns true if the ioc is a valid batching request and
1045 * should be given priority access to a request.
1046 */
165125e1 1047static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1048{
1049 if (!ioc)
1050 return 0;
1051
1052 /*
1053 * Make sure the process is able to allocate at least 1 request
1054 * even if the batch times out, otherwise we could theoretically
1055 * lose wakeups.
1056 */
1057 return ioc->nr_batch_requests == q->nr_batching ||
1058 (ioc->nr_batch_requests > 0
1059 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1060}
1061
1062/*
1063 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1064 * will cause the process to be a "batcher" on all queues in the system. This
1065 * is the behaviour we want though - once it gets a wakeup it should be given
1066 * a nice run.
1067 */
165125e1 1068static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1069{
1070 if (!ioc || ioc_batching(q, ioc))
1071 return;
1072
1073 ioc->nr_batch_requests = q->nr_batching;
1074 ioc->last_waited = jiffies;
1075}
1076
5b788ce3 1077static void __freed_request(struct request_list *rl, int sync)
1da177e4 1078{
5b788ce3 1079 struct request_queue *q = rl->q;
1da177e4 1080
d40f75a0
TH
1081 if (rl->count[sync] < queue_congestion_off_threshold(q))
1082 blk_clear_congested(rl, sync);
1da177e4 1083
1faa16d2
JA
1084 if (rl->count[sync] + 1 <= q->nr_requests) {
1085 if (waitqueue_active(&rl->wait[sync]))
1086 wake_up(&rl->wait[sync]);
1da177e4 1087
5b788ce3 1088 blk_clear_rl_full(rl, sync);
1da177e4
LT
1089 }
1090}
1091
1092/*
1093 * A request has just been released. Account for it, update the full and
1094 * congestion status, wake up any waiters. Called under q->queue_lock.
1095 */
e8064021
CH
1096static void freed_request(struct request_list *rl, bool sync,
1097 req_flags_t rq_flags)
1da177e4 1098{
5b788ce3 1099 struct request_queue *q = rl->q;
1da177e4 1100
8a5ecdd4 1101 q->nr_rqs[sync]--;
1faa16d2 1102 rl->count[sync]--;
e8064021 1103 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1104 q->nr_rqs_elvpriv--;
1da177e4 1105
5b788ce3 1106 __freed_request(rl, sync);
1da177e4 1107
1faa16d2 1108 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1109 __freed_request(rl, sync ^ 1);
1da177e4
LT
1110}
1111
e3a2b3f9
JA
1112int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1113{
1114 struct request_list *rl;
d40f75a0 1115 int on_thresh, off_thresh;
e3a2b3f9 1116
332ebbf7
BVA
1117 WARN_ON_ONCE(q->mq_ops);
1118
e3a2b3f9
JA
1119 spin_lock_irq(q->queue_lock);
1120 q->nr_requests = nr;
1121 blk_queue_congestion_threshold(q);
d40f75a0
TH
1122 on_thresh = queue_congestion_on_threshold(q);
1123 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1124
d40f75a0
TH
1125 blk_queue_for_each_rl(rl, q) {
1126 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1127 blk_set_congested(rl, BLK_RW_SYNC);
1128 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1129 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1130
d40f75a0
TH
1131 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1132 blk_set_congested(rl, BLK_RW_ASYNC);
1133 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1134 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1135
e3a2b3f9
JA
1136 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1137 blk_set_rl_full(rl, BLK_RW_SYNC);
1138 } else {
1139 blk_clear_rl_full(rl, BLK_RW_SYNC);
1140 wake_up(&rl->wait[BLK_RW_SYNC]);
1141 }
1142
1143 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1144 blk_set_rl_full(rl, BLK_RW_ASYNC);
1145 } else {
1146 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1147 wake_up(&rl->wait[BLK_RW_ASYNC]);
1148 }
1149 }
1150
1151 spin_unlock_irq(q->queue_lock);
1152 return 0;
1153}
1154
da8303c6 1155/**
a06e05e6 1156 * __get_request - get a free request
5b788ce3 1157 * @rl: request list to allocate from
ef295ecf 1158 * @op: operation and flags
da8303c6
TH
1159 * @bio: bio to allocate request for (can be %NULL)
1160 * @gfp_mask: allocation mask
1161 *
1162 * Get a free request from @q. This function may fail under memory
1163 * pressure or if @q is dead.
1164 *
da3dae54 1165 * Must be called with @q->queue_lock held and,
a492f075
JL
1166 * Returns ERR_PTR on failure, with @q->queue_lock held.
1167 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1168 */
ef295ecf
CH
1169static struct request *__get_request(struct request_list *rl, unsigned int op,
1170 struct bio *bio, gfp_t gfp_mask)
1da177e4 1171{
5b788ce3 1172 struct request_queue *q = rl->q;
b679281a 1173 struct request *rq;
7f4b35d1
TH
1174 struct elevator_type *et = q->elevator->type;
1175 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1176 struct io_cq *icq = NULL;
ef295ecf 1177 const bool is_sync = op_is_sync(op);
75eb6c37 1178 int may_queue;
e8064021 1179 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1180
2fff8a92
BVA
1181 lockdep_assert_held(q->queue_lock);
1182
3f3299d5 1183 if (unlikely(blk_queue_dying(q)))
a492f075 1184 return ERR_PTR(-ENODEV);
da8303c6 1185
ef295ecf 1186 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1187 if (may_queue == ELV_MQUEUE_NO)
1188 goto rq_starved;
1189
1faa16d2
JA
1190 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1191 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1192 /*
1193 * The queue will fill after this allocation, so set
1194 * it as full, and mark this process as "batching".
1195 * This process will be allowed to complete a batch of
1196 * requests, others will be blocked.
1197 */
5b788ce3 1198 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1199 ioc_set_batching(q, ioc);
5b788ce3 1200 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1201 } else {
1202 if (may_queue != ELV_MQUEUE_MUST
1203 && !ioc_batching(q, ioc)) {
1204 /*
1205 * The queue is full and the allocating
1206 * process is not a "batcher", and not
1207 * exempted by the IO scheduler
1208 */
a492f075 1209 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1210 }
1211 }
1da177e4 1212 }
d40f75a0 1213 blk_set_congested(rl, is_sync);
1da177e4
LT
1214 }
1215
082cf69e
JA
1216 /*
1217 * Only allow batching queuers to allocate up to 50% over the defined
1218 * limit of requests, otherwise we could have thousands of requests
1219 * allocated with any setting of ->nr_requests
1220 */
1faa16d2 1221 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1222 return ERR_PTR(-ENOMEM);
fd782a4a 1223
8a5ecdd4 1224 q->nr_rqs[is_sync]++;
1faa16d2
JA
1225 rl->count[is_sync]++;
1226 rl->starved[is_sync] = 0;
cb98fc8b 1227
f1f8cc94
TH
1228 /*
1229 * Decide whether the new request will be managed by elevator. If
e8064021 1230 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1231 * prevent the current elevator from being destroyed until the new
1232 * request is freed. This guarantees icq's won't be destroyed and
1233 * makes creating new ones safe.
1234 *
e6f7f93d
CH
1235 * Flush requests do not use the elevator so skip initialization.
1236 * This allows a request to share the flush and elevator data.
1237 *
f1f8cc94
TH
1238 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1239 * it will be created after releasing queue_lock.
1240 */
e6f7f93d 1241 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1242 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1243 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1244 if (et->icq_cache && ioc)
1245 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1246 }
cb98fc8b 1247
f253b86b 1248 if (blk_queue_io_stat(q))
e8064021 1249 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1250 spin_unlock_irq(q->queue_lock);
1251
29e2b09a 1252 /* allocate and init request */
5b788ce3 1253 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1254 if (!rq)
b679281a 1255 goto fail_alloc;
1da177e4 1256
29e2b09a 1257 blk_rq_init(q, rq);
a051661c 1258 blk_rq_set_rl(rq, rl);
ef295ecf 1259 rq->cmd_flags = op;
e8064021 1260 rq->rq_flags = rq_flags;
29e2b09a 1261
aaf7c680 1262 /* init elvpriv */
e8064021 1263 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1264 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1265 if (ioc)
1266 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1267 if (!icq)
1268 goto fail_elvpriv;
29e2b09a 1269 }
aaf7c680
TH
1270
1271 rq->elv.icq = icq;
1272 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1273 goto fail_elvpriv;
1274
1275 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1276 if (icq)
1277 get_io_context(icq->ioc);
1278 }
aaf7c680 1279out:
88ee5ef1
JA
1280 /*
1281 * ioc may be NULL here, and ioc_batching will be false. That's
1282 * OK, if the queue is under the request limit then requests need
1283 * not count toward the nr_batch_requests limit. There will always
1284 * be some limit enforced by BLK_BATCH_TIME.
1285 */
1da177e4
LT
1286 if (ioc_batching(q, ioc))
1287 ioc->nr_batch_requests--;
6728cb0e 1288
e6a40b09 1289 trace_block_getrq(q, bio, op);
1da177e4 1290 return rq;
b679281a 1291
aaf7c680
TH
1292fail_elvpriv:
1293 /*
1294 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1295 * and may fail indefinitely under memory pressure and thus
1296 * shouldn't stall IO. Treat this request as !elvpriv. This will
1297 * disturb iosched and blkcg but weird is bettern than dead.
1298 */
7b2b10e0 1299 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1300 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1301
e8064021 1302 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1303 rq->elv.icq = NULL;
1304
1305 spin_lock_irq(q->queue_lock);
8a5ecdd4 1306 q->nr_rqs_elvpriv--;
aaf7c680
TH
1307 spin_unlock_irq(q->queue_lock);
1308 goto out;
1309
b679281a
TH
1310fail_alloc:
1311 /*
1312 * Allocation failed presumably due to memory. Undo anything we
1313 * might have messed up.
1314 *
1315 * Allocating task should really be put onto the front of the wait
1316 * queue, but this is pretty rare.
1317 */
1318 spin_lock_irq(q->queue_lock);
e8064021 1319 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1320
1321 /*
1322 * in the very unlikely event that allocation failed and no
1323 * requests for this direction was pending, mark us starved so that
1324 * freeing of a request in the other direction will notice
1325 * us. another possible fix would be to split the rq mempool into
1326 * READ and WRITE
1327 */
1328rq_starved:
1329 if (unlikely(rl->count[is_sync] == 0))
1330 rl->starved[is_sync] = 1;
a492f075 1331 return ERR_PTR(-ENOMEM);
1da177e4
LT
1332}
1333
da8303c6 1334/**
a06e05e6 1335 * get_request - get a free request
da8303c6 1336 * @q: request_queue to allocate request from
ef295ecf 1337 * @op: operation and flags
da8303c6 1338 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1339 * @gfp_mask: allocation mask
da8303c6 1340 *
d0164adc
MG
1341 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1342 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1343 *
da3dae54 1344 * Must be called with @q->queue_lock held and,
a492f075
JL
1345 * Returns ERR_PTR on failure, with @q->queue_lock held.
1346 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1347 */
ef295ecf
CH
1348static struct request *get_request(struct request_queue *q, unsigned int op,
1349 struct bio *bio, gfp_t gfp_mask)
1da177e4 1350{
ef295ecf 1351 const bool is_sync = op_is_sync(op);
a06e05e6 1352 DEFINE_WAIT(wait);
a051661c 1353 struct request_list *rl;
1da177e4 1354 struct request *rq;
a051661c 1355
2fff8a92 1356 lockdep_assert_held(q->queue_lock);
332ebbf7 1357 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1358
a051661c 1359 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1360retry:
ef295ecf 1361 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1362 if (!IS_ERR(rq))
a06e05e6 1363 return rq;
1da177e4 1364
03a07c92
GR
1365 if (op & REQ_NOWAIT) {
1366 blk_put_rl(rl);
1367 return ERR_PTR(-EAGAIN);
1368 }
1369
d0164adc 1370 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1371 blk_put_rl(rl);
a492f075 1372 return rq;
a051661c 1373 }
1da177e4 1374
a06e05e6
TH
1375 /* wait on @rl and retry */
1376 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1377 TASK_UNINTERRUPTIBLE);
1da177e4 1378
e6a40b09 1379 trace_block_sleeprq(q, bio, op);
1da177e4 1380
a06e05e6
TH
1381 spin_unlock_irq(q->queue_lock);
1382 io_schedule();
d6344532 1383
a06e05e6
TH
1384 /*
1385 * After sleeping, we become a "batching" process and will be able
1386 * to allocate at least one request, and up to a big batch of them
1387 * for a small period time. See ioc_batching, ioc_set_batching
1388 */
a06e05e6 1389 ioc_set_batching(q, current->io_context);
05caf8db 1390
a06e05e6
TH
1391 spin_lock_irq(q->queue_lock);
1392 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1393
a06e05e6 1394 goto retry;
1da177e4
LT
1395}
1396
cd6ce148
BVA
1397static struct request *blk_old_get_request(struct request_queue *q,
1398 unsigned int op, gfp_t gfp_mask)
1da177e4
LT
1399{
1400 struct request *rq;
1401
332ebbf7
BVA
1402 WARN_ON_ONCE(q->mq_ops);
1403
7f4b35d1
TH
1404 /* create ioc upfront */
1405 create_io_context(gfp_mask, q->node);
1406
d6344532 1407 spin_lock_irq(q->queue_lock);
cd6ce148 1408 rq = get_request(q, op, NULL, gfp_mask);
0c4de0f3 1409 if (IS_ERR(rq)) {
da8303c6 1410 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1411 return rq;
1412 }
1da177e4 1413
0c4de0f3
CH
1414 /* q->queue_lock is unlocked at this point */
1415 rq->__data_len = 0;
1416 rq->__sector = (sector_t) -1;
1417 rq->bio = rq->biotail = NULL;
1da177e4
LT
1418 return rq;
1419}
320ae51f 1420
cd6ce148
BVA
1421struct request *blk_get_request(struct request_queue *q, unsigned int op,
1422 gfp_t gfp_mask)
320ae51f 1423{
d280bab3
BVA
1424 struct request *req;
1425
1426 if (q->mq_ops) {
1427 req = blk_mq_alloc_request(q, op,
6f3b0e8b
CH
1428 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1429 0 : BLK_MQ_REQ_NOWAIT);
d280bab3
BVA
1430 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1431 q->mq_ops->initialize_rq_fn(req);
1432 } else {
1433 req = blk_old_get_request(q, op, gfp_mask);
1434 if (!IS_ERR(req) && q->initialize_rq_fn)
1435 q->initialize_rq_fn(req);
1436 }
1437
1438 return req;
320ae51f 1439}
1da177e4
LT
1440EXPORT_SYMBOL(blk_get_request);
1441
1442/**
1443 * blk_requeue_request - put a request back on queue
1444 * @q: request queue where request should be inserted
1445 * @rq: request to be inserted
1446 *
1447 * Description:
1448 * Drivers often keep queueing requests until the hardware cannot accept
1449 * more, when that condition happens we need to put the request back
1450 * on the queue. Must be called with queue lock held.
1451 */
165125e1 1452void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1453{
2fff8a92 1454 lockdep_assert_held(q->queue_lock);
332ebbf7 1455 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1456
242f9dcb
JA
1457 blk_delete_timer(rq);
1458 blk_clear_rq_complete(rq);
5f3ea37c 1459 trace_block_rq_requeue(q, rq);
87760e5e 1460 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1461
e8064021 1462 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1463 blk_queue_end_tag(q, rq);
1464
ba396a6c
JB
1465 BUG_ON(blk_queued_rq(rq));
1466
1da177e4
LT
1467 elv_requeue_request(q, rq);
1468}
1da177e4
LT
1469EXPORT_SYMBOL(blk_requeue_request);
1470
73c10101
JA
1471static void add_acct_request(struct request_queue *q, struct request *rq,
1472 int where)
1473{
320ae51f 1474 blk_account_io_start(rq, true);
7eaceacc 1475 __elv_add_request(q, rq, where);
73c10101
JA
1476}
1477
d62e26b3 1478static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1479 struct hd_struct *part, unsigned long now,
1480 unsigned int inflight)
074a7aca 1481{
b8d62b3a 1482 if (inflight) {
074a7aca 1483 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1484 inflight * (now - part->stamp));
074a7aca
TH
1485 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1486 }
1487 part->stamp = now;
1488}
1489
1490/**
496aa8a9 1491 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1492 * @q: target block queue
496aa8a9
RD
1493 * @cpu: cpu number for stats access
1494 * @part: target partition
1da177e4
LT
1495 *
1496 * The average IO queue length and utilisation statistics are maintained
1497 * by observing the current state of the queue length and the amount of
1498 * time it has been in this state for.
1499 *
1500 * Normally, that accounting is done on IO completion, but that can result
1501 * in more than a second's worth of IO being accounted for within any one
1502 * second, leading to >100% utilisation. To deal with that, we call this
1503 * function to do a round-off before returning the results when reading
1504 * /proc/diskstats. This accounts immediately for all queue usage up to
1505 * the current jiffies and restarts the counters again.
1506 */
d62e26b3 1507void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1508{
b8d62b3a 1509 struct hd_struct *part2 = NULL;
6f2576af 1510 unsigned long now = jiffies;
b8d62b3a
JA
1511 unsigned int inflight[2];
1512 int stats = 0;
1513
1514 if (part->stamp != now)
1515 stats |= 1;
1516
1517 if (part->partno) {
1518 part2 = &part_to_disk(part)->part0;
1519 if (part2->stamp != now)
1520 stats |= 2;
1521 }
1522
1523 if (!stats)
1524 return;
1525
1526 part_in_flight(q, part, inflight);
6f2576af 1527
b8d62b3a
JA
1528 if (stats & 2)
1529 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1530 if (stats & 1)
1531 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1532}
074a7aca 1533EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1534
47fafbc7 1535#ifdef CONFIG_PM
c8158819
LM
1536static void blk_pm_put_request(struct request *rq)
1537{
e8064021 1538 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1539 pm_runtime_mark_last_busy(rq->q->dev);
1540}
1541#else
1542static inline void blk_pm_put_request(struct request *rq) {}
1543#endif
1544
165125e1 1545void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1546{
e8064021
CH
1547 req_flags_t rq_flags = req->rq_flags;
1548
1da177e4
LT
1549 if (unlikely(!q))
1550 return;
1da177e4 1551
6f5ba581
CH
1552 if (q->mq_ops) {
1553 blk_mq_free_request(req);
1554 return;
1555 }
1556
2fff8a92
BVA
1557 lockdep_assert_held(q->queue_lock);
1558
c8158819
LM
1559 blk_pm_put_request(req);
1560
8922e16c
TH
1561 elv_completed_request(q, req);
1562
1cd96c24
BH
1563 /* this is a bio leak */
1564 WARN_ON(req->bio != NULL);
1565
87760e5e
JA
1566 wbt_done(q->rq_wb, &req->issue_stat);
1567
1da177e4
LT
1568 /*
1569 * Request may not have originated from ll_rw_blk. if not,
1570 * it didn't come out of our reserved rq pools
1571 */
e8064021 1572 if (rq_flags & RQF_ALLOCED) {
a051661c 1573 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1574 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1575
1da177e4 1576 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1577 BUG_ON(ELV_ON_HASH(req));
1da177e4 1578
a051661c 1579 blk_free_request(rl, req);
e8064021 1580 freed_request(rl, sync, rq_flags);
a051661c 1581 blk_put_rl(rl);
1da177e4
LT
1582 }
1583}
6e39b69e
MC
1584EXPORT_SYMBOL_GPL(__blk_put_request);
1585
1da177e4
LT
1586void blk_put_request(struct request *req)
1587{
165125e1 1588 struct request_queue *q = req->q;
8922e16c 1589
320ae51f
JA
1590 if (q->mq_ops)
1591 blk_mq_free_request(req);
1592 else {
1593 unsigned long flags;
1594
1595 spin_lock_irqsave(q->queue_lock, flags);
1596 __blk_put_request(q, req);
1597 spin_unlock_irqrestore(q->queue_lock, flags);
1598 }
1da177e4 1599}
1da177e4
LT
1600EXPORT_SYMBOL(blk_put_request);
1601
320ae51f
JA
1602bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1603 struct bio *bio)
73c10101 1604{
1eff9d32 1605 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1606
73c10101
JA
1607 if (!ll_back_merge_fn(q, req, bio))
1608 return false;
1609
8c1cf6bb 1610 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1611
1612 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1613 blk_rq_set_mixed_merge(req);
1614
1615 req->biotail->bi_next = bio;
1616 req->biotail = bio;
4f024f37 1617 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1618 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1619
320ae51f 1620 blk_account_io_start(req, false);
73c10101
JA
1621 return true;
1622}
1623
320ae51f
JA
1624bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1625 struct bio *bio)
73c10101 1626{
1eff9d32 1627 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1628
73c10101
JA
1629 if (!ll_front_merge_fn(q, req, bio))
1630 return false;
1631
8c1cf6bb 1632 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1633
1634 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1635 blk_rq_set_mixed_merge(req);
1636
73c10101
JA
1637 bio->bi_next = req->bio;
1638 req->bio = bio;
1639
4f024f37
KO
1640 req->__sector = bio->bi_iter.bi_sector;
1641 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1642 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1643
320ae51f 1644 blk_account_io_start(req, false);
73c10101
JA
1645 return true;
1646}
1647
1e739730
CH
1648bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1649 struct bio *bio)
1650{
1651 unsigned short segments = blk_rq_nr_discard_segments(req);
1652
1653 if (segments >= queue_max_discard_segments(q))
1654 goto no_merge;
1655 if (blk_rq_sectors(req) + bio_sectors(bio) >
1656 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1657 goto no_merge;
1658
1659 req->biotail->bi_next = bio;
1660 req->biotail = bio;
1661 req->__data_len += bio->bi_iter.bi_size;
1662 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1663 req->nr_phys_segments = segments + 1;
1664
1665 blk_account_io_start(req, false);
1666 return true;
1667no_merge:
1668 req_set_nomerge(q, req);
1669 return false;
1670}
1671
bd87b589 1672/**
320ae51f 1673 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1674 * @q: request_queue new bio is being queued at
1675 * @bio: new bio being queued
1676 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1677 * @same_queue_rq: pointer to &struct request that gets filled in when
1678 * another request associated with @q is found on the plug list
1679 * (optional, may be %NULL)
bd87b589
TH
1680 *
1681 * Determine whether @bio being queued on @q can be merged with a request
1682 * on %current's plugged list. Returns %true if merge was successful,
1683 * otherwise %false.
1684 *
07c2bd37
TH
1685 * Plugging coalesces IOs from the same issuer for the same purpose without
1686 * going through @q->queue_lock. As such it's more of an issuing mechanism
1687 * than scheduling, and the request, while may have elvpriv data, is not
1688 * added on the elevator at this point. In addition, we don't have
1689 * reliable access to the elevator outside queue lock. Only check basic
1690 * merging parameters without querying the elevator.
da41a589
RE
1691 *
1692 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1693 */
320ae51f 1694bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1695 unsigned int *request_count,
1696 struct request **same_queue_rq)
73c10101
JA
1697{
1698 struct blk_plug *plug;
1699 struct request *rq;
92f399c7 1700 struct list_head *plug_list;
73c10101 1701
bd87b589 1702 plug = current->plug;
73c10101 1703 if (!plug)
34fe7c05 1704 return false;
56ebdaf2 1705 *request_count = 0;
73c10101 1706
92f399c7
SL
1707 if (q->mq_ops)
1708 plug_list = &plug->mq_list;
1709 else
1710 plug_list = &plug->list;
1711
1712 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1713 bool merged = false;
73c10101 1714
5b3f341f 1715 if (rq->q == q) {
1b2e19f1 1716 (*request_count)++;
5b3f341f
SL
1717 /*
1718 * Only blk-mq multiple hardware queues case checks the
1719 * rq in the same queue, there should be only one such
1720 * rq in a queue
1721 **/
1722 if (same_queue_rq)
1723 *same_queue_rq = rq;
1724 }
56ebdaf2 1725
07c2bd37 1726 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1727 continue;
1728
34fe7c05
CH
1729 switch (blk_try_merge(rq, bio)) {
1730 case ELEVATOR_BACK_MERGE:
1731 merged = bio_attempt_back_merge(q, rq, bio);
1732 break;
1733 case ELEVATOR_FRONT_MERGE:
1734 merged = bio_attempt_front_merge(q, rq, bio);
1735 break;
1e739730
CH
1736 case ELEVATOR_DISCARD_MERGE:
1737 merged = bio_attempt_discard_merge(q, rq, bio);
1738 break;
34fe7c05
CH
1739 default:
1740 break;
73c10101 1741 }
34fe7c05
CH
1742
1743 if (merged)
1744 return true;
73c10101 1745 }
34fe7c05
CH
1746
1747 return false;
73c10101
JA
1748}
1749
0809e3ac
JM
1750unsigned int blk_plug_queued_count(struct request_queue *q)
1751{
1752 struct blk_plug *plug;
1753 struct request *rq;
1754 struct list_head *plug_list;
1755 unsigned int ret = 0;
1756
1757 plug = current->plug;
1758 if (!plug)
1759 goto out;
1760
1761 if (q->mq_ops)
1762 plug_list = &plug->mq_list;
1763 else
1764 plug_list = &plug->list;
1765
1766 list_for_each_entry(rq, plug_list, queuelist) {
1767 if (rq->q == q)
1768 ret++;
1769 }
1770out:
1771 return ret;
1772}
1773
da8d7f07 1774void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1775{
0be0dee6
BVA
1776 struct io_context *ioc = rq_ioc(bio);
1777
1eff9d32 1778 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1779 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1780
4f024f37 1781 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1782 if (ioprio_valid(bio_prio(bio)))
1783 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1784 else if (ioc)
1785 req->ioprio = ioc->ioprio;
1786 else
1787 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1788 req->write_hint = bio->bi_write_hint;
bc1c56fd 1789 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1790}
da8d7f07 1791EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1792
dece1635 1793static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1794{
73c10101 1795 struct blk_plug *plug;
34fe7c05 1796 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1797 struct request *req, *free;
56ebdaf2 1798 unsigned int request_count = 0;
87760e5e 1799 unsigned int wb_acct;
1da177e4 1800
1da177e4
LT
1801 /*
1802 * low level driver can indicate that it wants pages above a
1803 * certain limit bounced to low memory (ie for highmem, or even
1804 * ISA dma in theory)
1805 */
1806 blk_queue_bounce(q, &bio);
1807
af67c31f 1808 blk_queue_split(q, &bio);
23688bf4 1809
e23947bd 1810 if (!bio_integrity_prep(bio))
dece1635 1811 return BLK_QC_T_NONE;
ffecfd1a 1812
f73f44eb 1813 if (op_is_flush(bio->bi_opf)) {
73c10101 1814 spin_lock_irq(q->queue_lock);
ae1b1539 1815 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1816 goto get_rq;
1817 }
1818
73c10101
JA
1819 /*
1820 * Check if we can merge with the plugged list before grabbing
1821 * any locks.
1822 */
0809e3ac
JM
1823 if (!blk_queue_nomerges(q)) {
1824 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1825 return BLK_QC_T_NONE;
0809e3ac
JM
1826 } else
1827 request_count = blk_plug_queued_count(q);
1da177e4 1828
73c10101 1829 spin_lock_irq(q->queue_lock);
2056a782 1830
34fe7c05
CH
1831 switch (elv_merge(q, &req, bio)) {
1832 case ELEVATOR_BACK_MERGE:
1833 if (!bio_attempt_back_merge(q, req, bio))
1834 break;
1835 elv_bio_merged(q, req, bio);
1836 free = attempt_back_merge(q, req);
1837 if (free)
1838 __blk_put_request(q, free);
1839 else
1840 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1841 goto out_unlock;
1842 case ELEVATOR_FRONT_MERGE:
1843 if (!bio_attempt_front_merge(q, req, bio))
1844 break;
1845 elv_bio_merged(q, req, bio);
1846 free = attempt_front_merge(q, req);
1847 if (free)
1848 __blk_put_request(q, free);
1849 else
1850 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1851 goto out_unlock;
1852 default:
1853 break;
1da177e4
LT
1854 }
1855
450991bc 1856get_rq:
87760e5e
JA
1857 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1858
1da177e4 1859 /*
450991bc 1860 * Grab a free request. This is might sleep but can not fail.
d6344532 1861 * Returns with the queue unlocked.
450991bc 1862 */
ef295ecf 1863 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1864 if (IS_ERR(req)) {
87760e5e 1865 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1866 if (PTR_ERR(req) == -ENOMEM)
1867 bio->bi_status = BLK_STS_RESOURCE;
1868 else
1869 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1870 bio_endio(bio);
da8303c6
TH
1871 goto out_unlock;
1872 }
d6344532 1873
87760e5e
JA
1874 wbt_track(&req->issue_stat, wb_acct);
1875
450991bc
NP
1876 /*
1877 * After dropping the lock and possibly sleeping here, our request
1878 * may now be mergeable after it had proven unmergeable (above).
1879 * We don't worry about that case for efficiency. It won't happen
1880 * often, and the elevators are able to handle it.
1da177e4 1881 */
da8d7f07 1882 blk_init_request_from_bio(req, bio);
1da177e4 1883
9562ad9a 1884 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1885 req->cpu = raw_smp_processor_id();
73c10101
JA
1886
1887 plug = current->plug;
721a9602 1888 if (plug) {
dc6d36c9
JA
1889 /*
1890 * If this is the first request added after a plug, fire
7aef2e78 1891 * of a plug trace.
0a6219a9
ML
1892 *
1893 * @request_count may become stale because of schedule
1894 * out, so check plug list again.
dc6d36c9 1895 */
0a6219a9 1896 if (!request_count || list_empty(&plug->list))
dc6d36c9 1897 trace_block_plug(q);
3540d5e8 1898 else {
50d24c34
SL
1899 struct request *last = list_entry_rq(plug->list.prev);
1900 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1901 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1902 blk_flush_plug_list(plug, false);
019ceb7d
SL
1903 trace_block_plug(q);
1904 }
73c10101 1905 }
73c10101 1906 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1907 blk_account_io_start(req, true);
73c10101
JA
1908 } else {
1909 spin_lock_irq(q->queue_lock);
1910 add_acct_request(q, req, where);
24ecfbe2 1911 __blk_run_queue(q);
73c10101
JA
1912out_unlock:
1913 spin_unlock_irq(q->queue_lock);
1914 }
dece1635
JA
1915
1916 return BLK_QC_T_NONE;
1da177e4
LT
1917}
1918
1da177e4
LT
1919static void handle_bad_sector(struct bio *bio)
1920{
1921 char b[BDEVNAME_SIZE];
1922
1923 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1924 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 1925 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 1926 (unsigned long long)bio_end_sector(bio),
74d46992 1927 (long long)get_capacity(bio->bi_disk));
1da177e4
LT
1928}
1929
c17bb495
AM
1930#ifdef CONFIG_FAIL_MAKE_REQUEST
1931
1932static DECLARE_FAULT_ATTR(fail_make_request);
1933
1934static int __init setup_fail_make_request(char *str)
1935{
1936 return setup_fault_attr(&fail_make_request, str);
1937}
1938__setup("fail_make_request=", setup_fail_make_request);
1939
b2c9cd37 1940static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1941{
b2c9cd37 1942 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1943}
1944
1945static int __init fail_make_request_debugfs(void)
1946{
dd48c085
AM
1947 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1948 NULL, &fail_make_request);
1949
21f9fcd8 1950 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1951}
1952
1953late_initcall(fail_make_request_debugfs);
1954
1955#else /* CONFIG_FAIL_MAKE_REQUEST */
1956
b2c9cd37
AM
1957static inline bool should_fail_request(struct hd_struct *part,
1958 unsigned int bytes)
c17bb495 1959{
b2c9cd37 1960 return false;
c17bb495
AM
1961}
1962
1963#endif /* CONFIG_FAIL_MAKE_REQUEST */
1964
74d46992
CH
1965/*
1966 * Remap block n of partition p to block n+start(p) of the disk.
1967 */
1968static inline int blk_partition_remap(struct bio *bio)
1969{
1970 struct hd_struct *p;
1971 int ret = 0;
1972
1973 /*
1974 * Zone reset does not include bi_size so bio_sectors() is always 0.
1975 * Include a test for the reset op code and perform the remap if needed.
1976 */
1977 if (!bio->bi_partno ||
1978 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
1979 return 0;
1980
1981 rcu_read_lock();
1982 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
1983 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
1984 bio->bi_iter.bi_sector += p->start_sect;
1985 bio->bi_partno = 0;
1986 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
1987 bio->bi_iter.bi_sector - p->start_sect);
1988 } else {
1989 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
1990 ret = -EIO;
1991 }
1992 rcu_read_unlock();
1993
1994 return ret;
1995}
1996
c07e2b41
JA
1997/*
1998 * Check whether this bio extends beyond the end of the device.
1999 */
2000static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2001{
2002 sector_t maxsector;
2003
2004 if (!nr_sectors)
2005 return 0;
2006
2007 /* Test device or partition size, when known. */
74d46992 2008 maxsector = get_capacity(bio->bi_disk);
c07e2b41 2009 if (maxsector) {
4f024f37 2010 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
2011
2012 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2013 /*
2014 * This may well happen - the kernel calls bread()
2015 * without checking the size of the device, e.g., when
2016 * mounting a device.
2017 */
2018 handle_bad_sector(bio);
2019 return 1;
2020 }
2021 }
2022
2023 return 0;
2024}
2025
27a84d54
CH
2026static noinline_for_stack bool
2027generic_make_request_checks(struct bio *bio)
1da177e4 2028{
165125e1 2029 struct request_queue *q;
5a7bbad2 2030 int nr_sectors = bio_sectors(bio);
4e4cbee9 2031 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2032 char b[BDEVNAME_SIZE];
1da177e4
LT
2033
2034 might_sleep();
1da177e4 2035
c07e2b41
JA
2036 if (bio_check_eod(bio, nr_sectors))
2037 goto end_io;
1da177e4 2038
74d46992 2039 q = bio->bi_disk->queue;
5a7bbad2
CH
2040 if (unlikely(!q)) {
2041 printk(KERN_ERR
2042 "generic_make_request: Trying to access "
2043 "nonexistent block-device %s (%Lu)\n",
74d46992 2044 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2045 goto end_io;
2046 }
c17bb495 2047
03a07c92
GR
2048 /*
2049 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2050 * if queue is not a request based queue.
2051 */
2052
2053 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2054 goto not_supported;
2055
74d46992 2056 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
5a7bbad2 2057 goto end_io;
2056a782 2058
74d46992
CH
2059 if (blk_partition_remap(bio))
2060 goto end_io;
2056a782 2061
5a7bbad2
CH
2062 if (bio_check_eod(bio, nr_sectors))
2063 goto end_io;
1e87901e 2064
5a7bbad2
CH
2065 /*
2066 * Filter flush bio's early so that make_request based
2067 * drivers without flush support don't have to worry
2068 * about them.
2069 */
f3a8ab7d 2070 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2071 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2072 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2073 if (!nr_sectors) {
4e4cbee9 2074 status = BLK_STS_OK;
51fd77bd
JA
2075 goto end_io;
2076 }
5a7bbad2 2077 }
5ddfe969 2078
288dab8a
CH
2079 switch (bio_op(bio)) {
2080 case REQ_OP_DISCARD:
2081 if (!blk_queue_discard(q))
2082 goto not_supported;
2083 break;
2084 case REQ_OP_SECURE_ERASE:
2085 if (!blk_queue_secure_erase(q))
2086 goto not_supported;
2087 break;
2088 case REQ_OP_WRITE_SAME:
74d46992 2089 if (!q->limits.max_write_same_sectors)
288dab8a 2090 goto not_supported;
58886785 2091 break;
2d253440
ST
2092 case REQ_OP_ZONE_REPORT:
2093 case REQ_OP_ZONE_RESET:
74d46992 2094 if (!blk_queue_is_zoned(q))
2d253440 2095 goto not_supported;
288dab8a 2096 break;
a6f0788e 2097 case REQ_OP_WRITE_ZEROES:
74d46992 2098 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2099 goto not_supported;
2100 break;
288dab8a
CH
2101 default:
2102 break;
5a7bbad2 2103 }
01edede4 2104
7f4b35d1
TH
2105 /*
2106 * Various block parts want %current->io_context and lazy ioc
2107 * allocation ends up trading a lot of pain for a small amount of
2108 * memory. Just allocate it upfront. This may fail and block
2109 * layer knows how to live with it.
2110 */
2111 create_io_context(GFP_ATOMIC, q->node);
2112
ae118896
TH
2113 if (!blkcg_bio_issue_check(q, bio))
2114 return false;
27a84d54 2115
fbbaf700
N
2116 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2117 trace_block_bio_queue(q, bio);
2118 /* Now that enqueuing has been traced, we need to trace
2119 * completion as well.
2120 */
2121 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2122 }
27a84d54 2123 return true;
a7384677 2124
288dab8a 2125not_supported:
4e4cbee9 2126 status = BLK_STS_NOTSUPP;
a7384677 2127end_io:
4e4cbee9 2128 bio->bi_status = status;
4246a0b6 2129 bio_endio(bio);
27a84d54 2130 return false;
1da177e4
LT
2131}
2132
27a84d54
CH
2133/**
2134 * generic_make_request - hand a buffer to its device driver for I/O
2135 * @bio: The bio describing the location in memory and on the device.
2136 *
2137 * generic_make_request() is used to make I/O requests of block
2138 * devices. It is passed a &struct bio, which describes the I/O that needs
2139 * to be done.
2140 *
2141 * generic_make_request() does not return any status. The
2142 * success/failure status of the request, along with notification of
2143 * completion, is delivered asynchronously through the bio->bi_end_io
2144 * function described (one day) else where.
2145 *
2146 * The caller of generic_make_request must make sure that bi_io_vec
2147 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2148 * set to describe the device address, and the
2149 * bi_end_io and optionally bi_private are set to describe how
2150 * completion notification should be signaled.
2151 *
2152 * generic_make_request and the drivers it calls may use bi_next if this
2153 * bio happens to be merged with someone else, and may resubmit the bio to
2154 * a lower device by calling into generic_make_request recursively, which
2155 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2156 */
dece1635 2157blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2158{
f5fe1b51
N
2159 /*
2160 * bio_list_on_stack[0] contains bios submitted by the current
2161 * make_request_fn.
2162 * bio_list_on_stack[1] contains bios that were submitted before
2163 * the current make_request_fn, but that haven't been processed
2164 * yet.
2165 */
2166 struct bio_list bio_list_on_stack[2];
dece1635 2167 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2168
27a84d54 2169 if (!generic_make_request_checks(bio))
dece1635 2170 goto out;
27a84d54
CH
2171
2172 /*
2173 * We only want one ->make_request_fn to be active at a time, else
2174 * stack usage with stacked devices could be a problem. So use
2175 * current->bio_list to keep a list of requests submited by a
2176 * make_request_fn function. current->bio_list is also used as a
2177 * flag to say if generic_make_request is currently active in this
2178 * task or not. If it is NULL, then no make_request is active. If
2179 * it is non-NULL, then a make_request is active, and new requests
2180 * should be added at the tail
2181 */
bddd87c7 2182 if (current->bio_list) {
f5fe1b51 2183 bio_list_add(&current->bio_list[0], bio);
dece1635 2184 goto out;
d89d8796 2185 }
27a84d54 2186
d89d8796
NB
2187 /* following loop may be a bit non-obvious, and so deserves some
2188 * explanation.
2189 * Before entering the loop, bio->bi_next is NULL (as all callers
2190 * ensure that) so we have a list with a single bio.
2191 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2192 * we assign bio_list to a pointer to the bio_list_on_stack,
2193 * thus initialising the bio_list of new bios to be
27a84d54 2194 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2195 * through a recursive call to generic_make_request. If it
2196 * did, we find a non-NULL value in bio_list and re-enter the loop
2197 * from the top. In this case we really did just take the bio
bddd87c7 2198 * of the top of the list (no pretending) and so remove it from
27a84d54 2199 * bio_list, and call into ->make_request() again.
d89d8796
NB
2200 */
2201 BUG_ON(bio->bi_next);
f5fe1b51
N
2202 bio_list_init(&bio_list_on_stack[0]);
2203 current->bio_list = bio_list_on_stack;
d89d8796 2204 do {
74d46992 2205 struct request_queue *q = bio->bi_disk->queue;
27a84d54 2206
03a07c92 2207 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
79bd9959
N
2208 struct bio_list lower, same;
2209
2210 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2211 bio_list_on_stack[1] = bio_list_on_stack[0];
2212 bio_list_init(&bio_list_on_stack[0]);
dece1635 2213 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2214
2215 blk_queue_exit(q);
27a84d54 2216
79bd9959
N
2217 /* sort new bios into those for a lower level
2218 * and those for the same level
2219 */
2220 bio_list_init(&lower);
2221 bio_list_init(&same);
f5fe1b51 2222 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2223 if (q == bio->bi_disk->queue)
79bd9959
N
2224 bio_list_add(&same, bio);
2225 else
2226 bio_list_add(&lower, bio);
2227 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2228 bio_list_merge(&bio_list_on_stack[0], &lower);
2229 bio_list_merge(&bio_list_on_stack[0], &same);
2230 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2231 } else {
03a07c92
GR
2232 if (unlikely(!blk_queue_dying(q) &&
2233 (bio->bi_opf & REQ_NOWAIT)))
2234 bio_wouldblock_error(bio);
2235 else
2236 bio_io_error(bio);
3ef28e83 2237 }
f5fe1b51 2238 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2239 } while (bio);
bddd87c7 2240 current->bio_list = NULL; /* deactivate */
dece1635
JA
2241
2242out:
2243 return ret;
d89d8796 2244}
1da177e4
LT
2245EXPORT_SYMBOL(generic_make_request);
2246
f421e1d9
CH
2247/**
2248 * direct_make_request - hand a buffer directly to its device driver for I/O
2249 * @bio: The bio describing the location in memory and on the device.
2250 *
2251 * This function behaves like generic_make_request(), but does not protect
2252 * against recursion. Must only be used if the called driver is known
2253 * to not call generic_make_request (or direct_make_request) again from
2254 * its make_request function. (Calling direct_make_request again from
2255 * a workqueue is perfectly fine as that doesn't recurse).
2256 */
2257blk_qc_t direct_make_request(struct bio *bio)
2258{
2259 struct request_queue *q = bio->bi_disk->queue;
2260 bool nowait = bio->bi_opf & REQ_NOWAIT;
2261 blk_qc_t ret;
2262
2263 if (!generic_make_request_checks(bio))
2264 return BLK_QC_T_NONE;
2265
2266 if (unlikely(blk_queue_enter(q, nowait))) {
2267 if (nowait && !blk_queue_dying(q))
2268 bio->bi_status = BLK_STS_AGAIN;
2269 else
2270 bio->bi_status = BLK_STS_IOERR;
2271 bio_endio(bio);
2272 return BLK_QC_T_NONE;
2273 }
2274
2275 ret = q->make_request_fn(q, bio);
2276 blk_queue_exit(q);
2277 return ret;
2278}
2279EXPORT_SYMBOL_GPL(direct_make_request);
2280
1da177e4 2281/**
710027a4 2282 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2283 * @bio: The &struct bio which describes the I/O
2284 *
2285 * submit_bio() is very similar in purpose to generic_make_request(), and
2286 * uses that function to do most of the work. Both are fairly rough
710027a4 2287 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2288 *
2289 */
4e49ea4a 2290blk_qc_t submit_bio(struct bio *bio)
1da177e4 2291{
bf2de6f5
JA
2292 /*
2293 * If it's a regular read/write or a barrier with data attached,
2294 * go through the normal accounting stuff before submission.
2295 */
e2a60da7 2296 if (bio_has_data(bio)) {
4363ac7c
MP
2297 unsigned int count;
2298
95fe6c1a 2299 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
74d46992 2300 count = queue_logical_block_size(bio->bi_disk->queue);
4363ac7c
MP
2301 else
2302 count = bio_sectors(bio);
2303
a8ebb056 2304 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2305 count_vm_events(PGPGOUT, count);
2306 } else {
4f024f37 2307 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2308 count_vm_events(PGPGIN, count);
2309 }
2310
2311 if (unlikely(block_dump)) {
2312 char b[BDEVNAME_SIZE];
8dcbdc74 2313 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2314 current->comm, task_pid_nr(current),
a8ebb056 2315 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2316 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2317 bio_devname(bio, b), count);
bf2de6f5 2318 }
1da177e4
LT
2319 }
2320
dece1635 2321 return generic_make_request(bio);
1da177e4 2322}
1da177e4
LT
2323EXPORT_SYMBOL(submit_bio);
2324
ea435e1b
CH
2325bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2326{
2327 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2328 return false;
2329
2330 if (current->plug)
2331 blk_flush_plug_list(current->plug, false);
2332 return q->poll_fn(q, cookie);
2333}
2334EXPORT_SYMBOL_GPL(blk_poll);
2335
82124d60 2336/**
bf4e6b4e
HR
2337 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2338 * for new the queue limits
82124d60
KU
2339 * @q: the queue
2340 * @rq: the request being checked
2341 *
2342 * Description:
2343 * @rq may have been made based on weaker limitations of upper-level queues
2344 * in request stacking drivers, and it may violate the limitation of @q.
2345 * Since the block layer and the underlying device driver trust @rq
2346 * after it is inserted to @q, it should be checked against @q before
2347 * the insertion using this generic function.
2348 *
82124d60 2349 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2350 * limits when retrying requests on other queues. Those requests need
2351 * to be checked against the new queue limits again during dispatch.
82124d60 2352 */
bf4e6b4e
HR
2353static int blk_cloned_rq_check_limits(struct request_queue *q,
2354 struct request *rq)
82124d60 2355{
8fe0d473 2356 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2357 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2358 return -EIO;
2359 }
2360
2361 /*
2362 * queue's settings related to segment counting like q->bounce_pfn
2363 * may differ from that of other stacking queues.
2364 * Recalculate it to check the request correctly on this queue's
2365 * limitation.
2366 */
2367 blk_recalc_rq_segments(rq);
8a78362c 2368 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2369 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2370 return -EIO;
2371 }
2372
2373 return 0;
2374}
82124d60
KU
2375
2376/**
2377 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2378 * @q: the queue to submit the request
2379 * @rq: the request being queued
2380 */
2a842aca 2381blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2382{
2383 unsigned long flags;
4853abaa 2384 int where = ELEVATOR_INSERT_BACK;
82124d60 2385
bf4e6b4e 2386 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2387 return BLK_STS_IOERR;
82124d60 2388
b2c9cd37
AM
2389 if (rq->rq_disk &&
2390 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2391 return BLK_STS_IOERR;
82124d60 2392
7fb4898e
KB
2393 if (q->mq_ops) {
2394 if (blk_queue_io_stat(q))
2395 blk_account_io_start(rq, true);
157f377b
JA
2396 /*
2397 * Since we have a scheduler attached on the top device,
2398 * bypass a potential scheduler on the bottom device for
2399 * insert.
2400 */
b0850297 2401 blk_mq_request_bypass_insert(rq, true);
2a842aca 2402 return BLK_STS_OK;
7fb4898e
KB
2403 }
2404
82124d60 2405 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2406 if (unlikely(blk_queue_dying(q))) {
8ba61435 2407 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2408 return BLK_STS_IOERR;
8ba61435 2409 }
82124d60
KU
2410
2411 /*
2412 * Submitting request must be dequeued before calling this function
2413 * because it will be linked to another request_queue
2414 */
2415 BUG_ON(blk_queued_rq(rq));
2416
f73f44eb 2417 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2418 where = ELEVATOR_INSERT_FLUSH;
2419
2420 add_acct_request(q, rq, where);
e67b77c7
JM
2421 if (where == ELEVATOR_INSERT_FLUSH)
2422 __blk_run_queue(q);
82124d60
KU
2423 spin_unlock_irqrestore(q->queue_lock, flags);
2424
2a842aca 2425 return BLK_STS_OK;
82124d60
KU
2426}
2427EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2428
80a761fd
TH
2429/**
2430 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2431 * @rq: request to examine
2432 *
2433 * Description:
2434 * A request could be merge of IOs which require different failure
2435 * handling. This function determines the number of bytes which
2436 * can be failed from the beginning of the request without
2437 * crossing into area which need to be retried further.
2438 *
2439 * Return:
2440 * The number of bytes to fail.
80a761fd
TH
2441 */
2442unsigned int blk_rq_err_bytes(const struct request *rq)
2443{
2444 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2445 unsigned int bytes = 0;
2446 struct bio *bio;
2447
e8064021 2448 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2449 return blk_rq_bytes(rq);
2450
2451 /*
2452 * Currently the only 'mixing' which can happen is between
2453 * different fastfail types. We can safely fail portions
2454 * which have all the failfast bits that the first one has -
2455 * the ones which are at least as eager to fail as the first
2456 * one.
2457 */
2458 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2459 if ((bio->bi_opf & ff) != ff)
80a761fd 2460 break;
4f024f37 2461 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2462 }
2463
2464 /* this could lead to infinite loop */
2465 BUG_ON(blk_rq_bytes(rq) && !bytes);
2466 return bytes;
2467}
2468EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2469
320ae51f 2470void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2471{
c2553b58 2472 if (blk_do_io_stat(req)) {
bc58ba94
JA
2473 const int rw = rq_data_dir(req);
2474 struct hd_struct *part;
2475 int cpu;
2476
2477 cpu = part_stat_lock();
09e099d4 2478 part = req->part;
bc58ba94
JA
2479 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2480 part_stat_unlock();
2481 }
2482}
2483
320ae51f 2484void blk_account_io_done(struct request *req)
bc58ba94 2485{
bc58ba94 2486 /*
dd4c133f
TH
2487 * Account IO completion. flush_rq isn't accounted as a
2488 * normal IO on queueing nor completion. Accounting the
2489 * containing request is enough.
bc58ba94 2490 */
e8064021 2491 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2492 unsigned long duration = jiffies - req->start_time;
2493 const int rw = rq_data_dir(req);
2494 struct hd_struct *part;
2495 int cpu;
2496
2497 cpu = part_stat_lock();
09e099d4 2498 part = req->part;
bc58ba94
JA
2499
2500 part_stat_inc(cpu, part, ios[rw]);
2501 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2502 part_round_stats(req->q, cpu, part);
2503 part_dec_in_flight(req->q, part, rw);
bc58ba94 2504
6c23a968 2505 hd_struct_put(part);
bc58ba94
JA
2506 part_stat_unlock();
2507 }
2508}
2509
47fafbc7 2510#ifdef CONFIG_PM
c8158819
LM
2511/*
2512 * Don't process normal requests when queue is suspended
2513 * or in the process of suspending/resuming
2514 */
e4f36b24 2515static bool blk_pm_allow_request(struct request *rq)
c8158819 2516{
e4f36b24
CH
2517 switch (rq->q->rpm_status) {
2518 case RPM_RESUMING:
2519 case RPM_SUSPENDING:
2520 return rq->rq_flags & RQF_PM;
2521 case RPM_SUSPENDED:
2522 return false;
2523 }
2524
2525 return true;
c8158819
LM
2526}
2527#else
e4f36b24 2528static bool blk_pm_allow_request(struct request *rq)
c8158819 2529{
e4f36b24 2530 return true;
c8158819
LM
2531}
2532#endif
2533
320ae51f
JA
2534void blk_account_io_start(struct request *rq, bool new_io)
2535{
2536 struct hd_struct *part;
2537 int rw = rq_data_dir(rq);
2538 int cpu;
2539
2540 if (!blk_do_io_stat(rq))
2541 return;
2542
2543 cpu = part_stat_lock();
2544
2545 if (!new_io) {
2546 part = rq->part;
2547 part_stat_inc(cpu, part, merges[rw]);
2548 } else {
2549 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2550 if (!hd_struct_try_get(part)) {
2551 /*
2552 * The partition is already being removed,
2553 * the request will be accounted on the disk only
2554 *
2555 * We take a reference on disk->part0 although that
2556 * partition will never be deleted, so we can treat
2557 * it as any other partition.
2558 */
2559 part = &rq->rq_disk->part0;
2560 hd_struct_get(part);
2561 }
d62e26b3
JA
2562 part_round_stats(rq->q, cpu, part);
2563 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2564 rq->part = part;
2565 }
2566
2567 part_stat_unlock();
2568}
2569
9c988374
CH
2570static struct request *elv_next_request(struct request_queue *q)
2571{
2572 struct request *rq;
2573 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2574
2575 WARN_ON_ONCE(q->mq_ops);
2576
2577 while (1) {
e4f36b24
CH
2578 list_for_each_entry(rq, &q->queue_head, queuelist) {
2579 if (blk_pm_allow_request(rq))
2580 return rq;
2581
2582 if (rq->rq_flags & RQF_SOFTBARRIER)
2583 break;
9c988374
CH
2584 }
2585
2586 /*
2587 * Flush request is running and flush request isn't queueable
2588 * in the drive, we can hold the queue till flush request is
2589 * finished. Even we don't do this, driver can't dispatch next
2590 * requests and will requeue them. And this can improve
2591 * throughput too. For example, we have request flush1, write1,
2592 * flush 2. flush1 is dispatched, then queue is hold, write1
2593 * isn't inserted to queue. After flush1 is finished, flush2
2594 * will be dispatched. Since disk cache is already clean,
2595 * flush2 will be finished very soon, so looks like flush2 is
2596 * folded to flush1.
2597 * Since the queue is hold, a flag is set to indicate the queue
2598 * should be restarted later. Please see flush_end_io() for
2599 * details.
2600 */
2601 if (fq->flush_pending_idx != fq->flush_running_idx &&
2602 !queue_flush_queueable(q)) {
2603 fq->flush_queue_delayed = 1;
2604 return NULL;
2605 }
2606 if (unlikely(blk_queue_bypass(q)) ||
2607 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2608 return NULL;
2609 }
2610}
2611
3bcddeac 2612/**
9934c8c0
TH
2613 * blk_peek_request - peek at the top of a request queue
2614 * @q: request queue to peek at
2615 *
2616 * Description:
2617 * Return the request at the top of @q. The returned request
2618 * should be started using blk_start_request() before LLD starts
2619 * processing it.
2620 *
2621 * Return:
2622 * Pointer to the request at the top of @q if available. Null
2623 * otherwise.
9934c8c0
TH
2624 */
2625struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2626{
2627 struct request *rq;
2628 int ret;
2629
2fff8a92 2630 lockdep_assert_held(q->queue_lock);
332ebbf7 2631 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2632
9c988374 2633 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2634 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2635 /*
2636 * This is the first time the device driver
2637 * sees this request (possibly after
2638 * requeueing). Notify IO scheduler.
2639 */
e8064021 2640 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2641 elv_activate_rq(q, rq);
2642
2643 /*
2644 * just mark as started even if we don't start
2645 * it, a request that has been delayed should
2646 * not be passed by new incoming requests
2647 */
e8064021 2648 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2649 trace_block_rq_issue(q, rq);
2650 }
2651
2652 if (!q->boundary_rq || q->boundary_rq == rq) {
2653 q->end_sector = rq_end_sector(rq);
2654 q->boundary_rq = NULL;
2655 }
2656
e8064021 2657 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2658 break;
2659
2e46e8b2 2660 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2661 /*
2662 * make sure space for the drain appears we
2663 * know we can do this because max_hw_segments
2664 * has been adjusted to be one fewer than the
2665 * device can handle
2666 */
2667 rq->nr_phys_segments++;
2668 }
2669
2670 if (!q->prep_rq_fn)
2671 break;
2672
2673 ret = q->prep_rq_fn(q, rq);
2674 if (ret == BLKPREP_OK) {
2675 break;
2676 } else if (ret == BLKPREP_DEFER) {
2677 /*
2678 * the request may have been (partially) prepped.
2679 * we need to keep this request in the front to
e8064021 2680 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2681 * prevent other fs requests from passing this one.
2682 */
2e46e8b2 2683 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2684 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2685 /*
2686 * remove the space for the drain we added
2687 * so that we don't add it again
2688 */
2689 --rq->nr_phys_segments;
2690 }
2691
2692 rq = NULL;
2693 break;
0fb5b1fb 2694 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2695 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2696 /*
2697 * Mark this request as started so we don't trigger
2698 * any debug logic in the end I/O path.
2699 */
2700 blk_start_request(rq);
2a842aca
CH
2701 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2702 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2703 } else {
2704 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2705 break;
2706 }
2707 }
2708
2709 return rq;
2710}
9934c8c0 2711EXPORT_SYMBOL(blk_peek_request);
158dbda0 2712
5034435c 2713static void blk_dequeue_request(struct request *rq)
158dbda0 2714{
9934c8c0
TH
2715 struct request_queue *q = rq->q;
2716
158dbda0
TH
2717 BUG_ON(list_empty(&rq->queuelist));
2718 BUG_ON(ELV_ON_HASH(rq));
2719
2720 list_del_init(&rq->queuelist);
2721
2722 /*
2723 * the time frame between a request being removed from the lists
2724 * and to it is freed is accounted as io that is in progress at
2725 * the driver side.
2726 */
9195291e 2727 if (blk_account_rq(rq)) {
0a7ae2ff 2728 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2729 set_io_start_time_ns(rq);
2730 }
158dbda0
TH
2731}
2732
9934c8c0
TH
2733/**
2734 * blk_start_request - start request processing on the driver
2735 * @req: request to dequeue
2736 *
2737 * Description:
2738 * Dequeue @req and start timeout timer on it. This hands off the
2739 * request to the driver.
9934c8c0
TH
2740 */
2741void blk_start_request(struct request *req)
2742{
2fff8a92 2743 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2744 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2745
9934c8c0
TH
2746 blk_dequeue_request(req);
2747
cf43e6be 2748 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2749 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2750 req->rq_flags |= RQF_STATS;
87760e5e 2751 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2752 }
2753
4912aa6c 2754 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2755 blk_add_timer(req);
2756}
2757EXPORT_SYMBOL(blk_start_request);
2758
2759/**
2760 * blk_fetch_request - fetch a request from a request queue
2761 * @q: request queue to fetch a request from
2762 *
2763 * Description:
2764 * Return the request at the top of @q. The request is started on
2765 * return and LLD can start processing it immediately.
2766 *
2767 * Return:
2768 * Pointer to the request at the top of @q if available. Null
2769 * otherwise.
9934c8c0
TH
2770 */
2771struct request *blk_fetch_request(struct request_queue *q)
2772{
2773 struct request *rq;
2774
2fff8a92 2775 lockdep_assert_held(q->queue_lock);
332ebbf7 2776 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2777
9934c8c0
TH
2778 rq = blk_peek_request(q);
2779 if (rq)
2780 blk_start_request(rq);
2781 return rq;
2782}
2783EXPORT_SYMBOL(blk_fetch_request);
2784
ef71de8b
CH
2785/*
2786 * Steal bios from a request and add them to a bio list.
2787 * The request must not have been partially completed before.
2788 */
2789void blk_steal_bios(struct bio_list *list, struct request *rq)
2790{
2791 if (rq->bio) {
2792 if (list->tail)
2793 list->tail->bi_next = rq->bio;
2794 else
2795 list->head = rq->bio;
2796 list->tail = rq->biotail;
2797
2798 rq->bio = NULL;
2799 rq->biotail = NULL;
2800 }
2801
2802 rq->__data_len = 0;
2803}
2804EXPORT_SYMBOL_GPL(blk_steal_bios);
2805
3bcddeac 2806/**
2e60e022 2807 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2808 * @req: the request being processed
2a842aca 2809 * @error: block status code
8ebf9756 2810 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2811 *
2812 * Description:
8ebf9756
RD
2813 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2814 * the request structure even if @req doesn't have leftover.
2815 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2816 *
2817 * This special helper function is only for request stacking drivers
2818 * (e.g. request-based dm) so that they can handle partial completion.
2819 * Actual device drivers should use blk_end_request instead.
2820 *
2821 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2822 * %false return from this function.
3bcddeac
KU
2823 *
2824 * Return:
2e60e022
TH
2825 * %false - this request doesn't have any more data
2826 * %true - this request has more data
3bcddeac 2827 **/
2a842aca
CH
2828bool blk_update_request(struct request *req, blk_status_t error,
2829 unsigned int nr_bytes)
1da177e4 2830{
f79ea416 2831 int total_bytes;
1da177e4 2832
2a842aca 2833 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2834
2e60e022
TH
2835 if (!req->bio)
2836 return false;
2837
2a842aca
CH
2838 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2839 !(req->rq_flags & RQF_QUIET)))
2840 print_req_error(req, error);
1da177e4 2841
bc58ba94 2842 blk_account_io_completion(req, nr_bytes);
d72d904a 2843
f79ea416
KO
2844 total_bytes = 0;
2845 while (req->bio) {
2846 struct bio *bio = req->bio;
4f024f37 2847 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2848
4f024f37 2849 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2850 req->bio = bio->bi_next;
1da177e4 2851
fbbaf700
N
2852 /* Completion has already been traced */
2853 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2854 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2855
f79ea416
KO
2856 total_bytes += bio_bytes;
2857 nr_bytes -= bio_bytes;
1da177e4 2858
f79ea416
KO
2859 if (!nr_bytes)
2860 break;
1da177e4
LT
2861 }
2862
2863 /*
2864 * completely done
2865 */
2e60e022
TH
2866 if (!req->bio) {
2867 /*
2868 * Reset counters so that the request stacking driver
2869 * can find how many bytes remain in the request
2870 * later.
2871 */
a2dec7b3 2872 req->__data_len = 0;
2e60e022
TH
2873 return false;
2874 }
1da177e4 2875
a2dec7b3 2876 req->__data_len -= total_bytes;
2e46e8b2
TH
2877
2878 /* update sector only for requests with clear definition of sector */
57292b58 2879 if (!blk_rq_is_passthrough(req))
a2dec7b3 2880 req->__sector += total_bytes >> 9;
2e46e8b2 2881
80a761fd 2882 /* mixed attributes always follow the first bio */
e8064021 2883 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2884 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2885 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2886 }
2887
ed6565e7
CH
2888 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2889 /*
2890 * If total number of sectors is less than the first segment
2891 * size, something has gone terribly wrong.
2892 */
2893 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2894 blk_dump_rq_flags(req, "request botched");
2895 req->__data_len = blk_rq_cur_bytes(req);
2896 }
2e46e8b2 2897
ed6565e7
CH
2898 /* recalculate the number of segments */
2899 blk_recalc_rq_segments(req);
2900 }
2e46e8b2 2901
2e60e022 2902 return true;
1da177e4 2903}
2e60e022 2904EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2905
2a842aca 2906static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
2907 unsigned int nr_bytes,
2908 unsigned int bidi_bytes)
5efccd17 2909{
2e60e022
TH
2910 if (blk_update_request(rq, error, nr_bytes))
2911 return true;
5efccd17 2912
2e60e022
TH
2913 /* Bidi request must be completed as a whole */
2914 if (unlikely(blk_bidi_rq(rq)) &&
2915 blk_update_request(rq->next_rq, error, bidi_bytes))
2916 return true;
5efccd17 2917
e2e1a148
JA
2918 if (blk_queue_add_random(rq->q))
2919 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2920
2921 return false;
1da177e4
LT
2922}
2923
28018c24
JB
2924/**
2925 * blk_unprep_request - unprepare a request
2926 * @req: the request
2927 *
2928 * This function makes a request ready for complete resubmission (or
2929 * completion). It happens only after all error handling is complete,
2930 * so represents the appropriate moment to deallocate any resources
2931 * that were allocated to the request in the prep_rq_fn. The queue
2932 * lock is held when calling this.
2933 */
2934void blk_unprep_request(struct request *req)
2935{
2936 struct request_queue *q = req->q;
2937
e8064021 2938 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2939 if (q->unprep_rq_fn)
2940 q->unprep_rq_fn(q, req);
2941}
2942EXPORT_SYMBOL_GPL(blk_unprep_request);
2943
2a842aca 2944void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 2945{
cf43e6be
JA
2946 struct request_queue *q = req->q;
2947
2fff8a92 2948 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2949 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2950
cf43e6be 2951 if (req->rq_flags & RQF_STATS)
34dbad5d 2952 blk_stat_add(req);
cf43e6be 2953
e8064021 2954 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2955 blk_queue_end_tag(q, req);
b8286239 2956
ba396a6c 2957 BUG_ON(blk_queued_rq(req));
1da177e4 2958
57292b58 2959 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2960 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2961
e78042e5
MA
2962 blk_delete_timer(req);
2963
e8064021 2964 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2965 blk_unprep_request(req);
2966
bc58ba94 2967 blk_account_io_done(req);
b8286239 2968
87760e5e
JA
2969 if (req->end_io) {
2970 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2971 req->end_io(req, error);
87760e5e 2972 } else {
b8286239
KU
2973 if (blk_bidi_rq(req))
2974 __blk_put_request(req->next_rq->q, req->next_rq);
2975
cf43e6be 2976 __blk_put_request(q, req);
b8286239 2977 }
1da177e4 2978}
12120077 2979EXPORT_SYMBOL(blk_finish_request);
1da177e4 2980
3b11313a 2981/**
2e60e022
TH
2982 * blk_end_bidi_request - Complete a bidi request
2983 * @rq: the request to complete
2a842aca 2984 * @error: block status code
2e60e022
TH
2985 * @nr_bytes: number of bytes to complete @rq
2986 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2987 *
2988 * Description:
e3a04fe3 2989 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2990 * Drivers that supports bidi can safely call this member for any
2991 * type of request, bidi or uni. In the later case @bidi_bytes is
2992 * just ignored.
336cdb40
KU
2993 *
2994 * Return:
2e60e022
TH
2995 * %false - we are done with this request
2996 * %true - still buffers pending for this request
a0cd1285 2997 **/
2a842aca 2998static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
2999 unsigned int nr_bytes, unsigned int bidi_bytes)
3000{
336cdb40 3001 struct request_queue *q = rq->q;
2e60e022 3002 unsigned long flags;
32fab448 3003
332ebbf7
BVA
3004 WARN_ON_ONCE(q->mq_ops);
3005
2e60e022
TH
3006 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3007 return true;
32fab448 3008
336cdb40 3009 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3010 blk_finish_request(rq, error);
336cdb40
KU
3011 spin_unlock_irqrestore(q->queue_lock, flags);
3012
2e60e022 3013 return false;
32fab448
KU
3014}
3015
336cdb40 3016/**
2e60e022
TH
3017 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3018 * @rq: the request to complete
2a842aca 3019 * @error: block status code
e3a04fe3
KU
3020 * @nr_bytes: number of bytes to complete @rq
3021 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3022 *
3023 * Description:
2e60e022
TH
3024 * Identical to blk_end_bidi_request() except that queue lock is
3025 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3026 *
3027 * Return:
2e60e022
TH
3028 * %false - we are done with this request
3029 * %true - still buffers pending for this request
336cdb40 3030 **/
2a842aca 3031static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3032 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3033{
2fff8a92 3034 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3035 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3036
2e60e022
TH
3037 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3038 return true;
336cdb40 3039
2e60e022 3040 blk_finish_request(rq, error);
336cdb40 3041
2e60e022 3042 return false;
336cdb40 3043}
e19a3ab0
KU
3044
3045/**
3046 * blk_end_request - Helper function for drivers to complete the request.
3047 * @rq: the request being processed
2a842aca 3048 * @error: block status code
e19a3ab0
KU
3049 * @nr_bytes: number of bytes to complete
3050 *
3051 * Description:
3052 * Ends I/O on a number of bytes attached to @rq.
3053 * If @rq has leftover, sets it up for the next range of segments.
3054 *
3055 * Return:
b1f74493
FT
3056 * %false - we are done with this request
3057 * %true - still buffers pending for this request
e19a3ab0 3058 **/
2a842aca
CH
3059bool blk_end_request(struct request *rq, blk_status_t error,
3060 unsigned int nr_bytes)
e19a3ab0 3061{
332ebbf7 3062 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3063 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3064}
56ad1740 3065EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3066
3067/**
b1f74493
FT
3068 * blk_end_request_all - Helper function for drives to finish the request.
3069 * @rq: the request to finish
2a842aca 3070 * @error: block status code
336cdb40
KU
3071 *
3072 * Description:
b1f74493
FT
3073 * Completely finish @rq.
3074 */
2a842aca 3075void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3076{
b1f74493
FT
3077 bool pending;
3078 unsigned int bidi_bytes = 0;
336cdb40 3079
b1f74493
FT
3080 if (unlikely(blk_bidi_rq(rq)))
3081 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3082
b1f74493
FT
3083 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3084 BUG_ON(pending);
3085}
56ad1740 3086EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3087
e3a04fe3 3088/**
b1f74493
FT
3089 * __blk_end_request - Helper function for drivers to complete the request.
3090 * @rq: the request being processed
2a842aca 3091 * @error: block status code
b1f74493 3092 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3093 *
3094 * Description:
b1f74493 3095 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3096 *
3097 * Return:
b1f74493
FT
3098 * %false - we are done with this request
3099 * %true - still buffers pending for this request
e3a04fe3 3100 **/
2a842aca
CH
3101bool __blk_end_request(struct request *rq, blk_status_t error,
3102 unsigned int nr_bytes)
e3a04fe3 3103{
2fff8a92 3104 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3105 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3106
b1f74493 3107 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3108}
56ad1740 3109EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3110
32fab448 3111/**
b1f74493
FT
3112 * __blk_end_request_all - Helper function for drives to finish the request.
3113 * @rq: the request to finish
2a842aca 3114 * @error: block status code
32fab448
KU
3115 *
3116 * Description:
b1f74493 3117 * Completely finish @rq. Must be called with queue lock held.
32fab448 3118 */
2a842aca 3119void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3120{
b1f74493
FT
3121 bool pending;
3122 unsigned int bidi_bytes = 0;
3123
2fff8a92 3124 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3125 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3126
b1f74493
FT
3127 if (unlikely(blk_bidi_rq(rq)))
3128 bidi_bytes = blk_rq_bytes(rq->next_rq);
3129
3130 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3131 BUG_ON(pending);
32fab448 3132}
56ad1740 3133EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3134
e19a3ab0 3135/**
b1f74493
FT
3136 * __blk_end_request_cur - Helper function to finish the current request chunk.
3137 * @rq: the request to finish the current chunk for
2a842aca 3138 * @error: block status code
e19a3ab0
KU
3139 *
3140 * Description:
b1f74493
FT
3141 * Complete the current consecutively mapped chunk from @rq. Must
3142 * be called with queue lock held.
e19a3ab0
KU
3143 *
3144 * Return:
b1f74493
FT
3145 * %false - we are done with this request
3146 * %true - still buffers pending for this request
3147 */
2a842aca 3148bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3149{
b1f74493 3150 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3151}
56ad1740 3152EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3153
86db1e29
JA
3154void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3155 struct bio *bio)
1da177e4 3156{
b4f42e28 3157 if (bio_has_data(bio))
fb2dce86 3158 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 3159
4f024f37 3160 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3161 rq->bio = rq->biotail = bio;
1da177e4 3162
74d46992
CH
3163 if (bio->bi_disk)
3164 rq->rq_disk = bio->bi_disk;
66846572 3165}
1da177e4 3166
2d4dc890
IL
3167#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3168/**
3169 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3170 * @rq: the request to be flushed
3171 *
3172 * Description:
3173 * Flush all pages in @rq.
3174 */
3175void rq_flush_dcache_pages(struct request *rq)
3176{
3177 struct req_iterator iter;
7988613b 3178 struct bio_vec bvec;
2d4dc890
IL
3179
3180 rq_for_each_segment(bvec, rq, iter)
7988613b 3181 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3182}
3183EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3184#endif
3185
ef9e3fac
KU
3186/**
3187 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3188 * @q : the queue of the device being checked
3189 *
3190 * Description:
3191 * Check if underlying low-level drivers of a device are busy.
3192 * If the drivers want to export their busy state, they must set own
3193 * exporting function using blk_queue_lld_busy() first.
3194 *
3195 * Basically, this function is used only by request stacking drivers
3196 * to stop dispatching requests to underlying devices when underlying
3197 * devices are busy. This behavior helps more I/O merging on the queue
3198 * of the request stacking driver and prevents I/O throughput regression
3199 * on burst I/O load.
3200 *
3201 * Return:
3202 * 0 - Not busy (The request stacking driver should dispatch request)
3203 * 1 - Busy (The request stacking driver should stop dispatching request)
3204 */
3205int blk_lld_busy(struct request_queue *q)
3206{
3207 if (q->lld_busy_fn)
3208 return q->lld_busy_fn(q);
3209
3210 return 0;
3211}
3212EXPORT_SYMBOL_GPL(blk_lld_busy);
3213
78d8e58a
MS
3214/**
3215 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3216 * @rq: the clone request to be cleaned up
3217 *
3218 * Description:
3219 * Free all bios in @rq for a cloned request.
3220 */
3221void blk_rq_unprep_clone(struct request *rq)
3222{
3223 struct bio *bio;
3224
3225 while ((bio = rq->bio) != NULL) {
3226 rq->bio = bio->bi_next;
3227
3228 bio_put(bio);
3229 }
3230}
3231EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3232
3233/*
3234 * Copy attributes of the original request to the clone request.
3235 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3236 */
3237static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3238{
3239 dst->cpu = src->cpu;
b0fd271d
KU
3240 dst->__sector = blk_rq_pos(src);
3241 dst->__data_len = blk_rq_bytes(src);
3242 dst->nr_phys_segments = src->nr_phys_segments;
3243 dst->ioprio = src->ioprio;
3244 dst->extra_len = src->extra_len;
78d8e58a
MS
3245}
3246
3247/**
3248 * blk_rq_prep_clone - Helper function to setup clone request
3249 * @rq: the request to be setup
3250 * @rq_src: original request to be cloned
3251 * @bs: bio_set that bios for clone are allocated from
3252 * @gfp_mask: memory allocation mask for bio
3253 * @bio_ctr: setup function to be called for each clone bio.
3254 * Returns %0 for success, non %0 for failure.
3255 * @data: private data to be passed to @bio_ctr
3256 *
3257 * Description:
3258 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3259 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3260 * are not copied, and copying such parts is the caller's responsibility.
3261 * Also, pages which the original bios are pointing to are not copied
3262 * and the cloned bios just point same pages.
3263 * So cloned bios must be completed before original bios, which means
3264 * the caller must complete @rq before @rq_src.
3265 */
3266int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3267 struct bio_set *bs, gfp_t gfp_mask,
3268 int (*bio_ctr)(struct bio *, struct bio *, void *),
3269 void *data)
3270{
3271 struct bio *bio, *bio_src;
3272
3273 if (!bs)
3274 bs = fs_bio_set;
3275
3276 __rq_for_each_bio(bio_src, rq_src) {
3277 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3278 if (!bio)
3279 goto free_and_out;
3280
3281 if (bio_ctr && bio_ctr(bio, bio_src, data))
3282 goto free_and_out;
3283
3284 if (rq->bio) {
3285 rq->biotail->bi_next = bio;
3286 rq->biotail = bio;
3287 } else
3288 rq->bio = rq->biotail = bio;
3289 }
3290
3291 __blk_rq_prep_clone(rq, rq_src);
3292
3293 return 0;
3294
3295free_and_out:
3296 if (bio)
3297 bio_put(bio);
3298 blk_rq_unprep_clone(rq);
3299
3300 return -ENOMEM;
b0fd271d
KU
3301}
3302EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3303
59c3d45e 3304int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3305{
3306 return queue_work(kblockd_workqueue, work);
3307}
1da177e4
LT
3308EXPORT_SYMBOL(kblockd_schedule_work);
3309
ee63cfa7
JA
3310int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3311{
3312 return queue_work_on(cpu, kblockd_workqueue, work);
3313}
3314EXPORT_SYMBOL(kblockd_schedule_work_on);
3315
818cd1cb
JA
3316int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3317 unsigned long delay)
3318{
3319 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3320}
3321EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3322
59c3d45e
JA
3323int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3324 unsigned long delay)
e43473b7
VG
3325{
3326 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3327}
3328EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3329
8ab14595
JA
3330int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3331 unsigned long delay)
3332{
3333 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3334}
3335EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3336
75df7136
SJ
3337/**
3338 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3339 * @plug: The &struct blk_plug that needs to be initialized
3340 *
3341 * Description:
3342 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3343 * pending I/O should the task end up blocking between blk_start_plug() and
3344 * blk_finish_plug(). This is important from a performance perspective, but
3345 * also ensures that we don't deadlock. For instance, if the task is blocking
3346 * for a memory allocation, memory reclaim could end up wanting to free a
3347 * page belonging to that request that is currently residing in our private
3348 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3349 * this kind of deadlock.
3350 */
73c10101
JA
3351void blk_start_plug(struct blk_plug *plug)
3352{
3353 struct task_struct *tsk = current;
3354
dd6cf3e1
SL
3355 /*
3356 * If this is a nested plug, don't actually assign it.
3357 */
3358 if (tsk->plug)
3359 return;
3360
73c10101 3361 INIT_LIST_HEAD(&plug->list);
320ae51f 3362 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3363 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3364 /*
dd6cf3e1
SL
3365 * Store ordering should not be needed here, since a potential
3366 * preempt will imply a full memory barrier
73c10101 3367 */
dd6cf3e1 3368 tsk->plug = plug;
73c10101
JA
3369}
3370EXPORT_SYMBOL(blk_start_plug);
3371
3372static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3373{
3374 struct request *rqa = container_of(a, struct request, queuelist);
3375 struct request *rqb = container_of(b, struct request, queuelist);
3376
975927b9
JM
3377 return !(rqa->q < rqb->q ||
3378 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3379}
3380
49cac01e
JA
3381/*
3382 * If 'from_schedule' is true, then postpone the dispatch of requests
3383 * until a safe kblockd context. We due this to avoid accidental big
3384 * additional stack usage in driver dispatch, in places where the originally
3385 * plugger did not intend it.
3386 */
f6603783 3387static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3388 bool from_schedule)
99e22598 3389 __releases(q->queue_lock)
94b5eb28 3390{
2fff8a92
BVA
3391 lockdep_assert_held(q->queue_lock);
3392
49cac01e 3393 trace_block_unplug(q, depth, !from_schedule);
99e22598 3394
70460571 3395 if (from_schedule)
24ecfbe2 3396 blk_run_queue_async(q);
70460571 3397 else
24ecfbe2 3398 __blk_run_queue(q);
70460571 3399 spin_unlock(q->queue_lock);
94b5eb28
JA
3400}
3401
74018dc3 3402static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3403{
3404 LIST_HEAD(callbacks);
3405
2a7d5559
SL
3406 while (!list_empty(&plug->cb_list)) {
3407 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3408
2a7d5559
SL
3409 while (!list_empty(&callbacks)) {
3410 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3411 struct blk_plug_cb,
3412 list);
2a7d5559 3413 list_del(&cb->list);
74018dc3 3414 cb->callback(cb, from_schedule);
2a7d5559 3415 }
048c9374
N
3416 }
3417}
3418
9cbb1750
N
3419struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3420 int size)
3421{
3422 struct blk_plug *plug = current->plug;
3423 struct blk_plug_cb *cb;
3424
3425 if (!plug)
3426 return NULL;
3427
3428 list_for_each_entry(cb, &plug->cb_list, list)
3429 if (cb->callback == unplug && cb->data == data)
3430 return cb;
3431
3432 /* Not currently on the callback list */
3433 BUG_ON(size < sizeof(*cb));
3434 cb = kzalloc(size, GFP_ATOMIC);
3435 if (cb) {
3436 cb->data = data;
3437 cb->callback = unplug;
3438 list_add(&cb->list, &plug->cb_list);
3439 }
3440 return cb;
3441}
3442EXPORT_SYMBOL(blk_check_plugged);
3443
49cac01e 3444void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3445{
3446 struct request_queue *q;
3447 unsigned long flags;
3448 struct request *rq;
109b8129 3449 LIST_HEAD(list);
94b5eb28 3450 unsigned int depth;
73c10101 3451
74018dc3 3452 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3453
3454 if (!list_empty(&plug->mq_list))
3455 blk_mq_flush_plug_list(plug, from_schedule);
3456
73c10101
JA
3457 if (list_empty(&plug->list))
3458 return;
3459
109b8129
N
3460 list_splice_init(&plug->list, &list);
3461
422765c2 3462 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3463
3464 q = NULL;
94b5eb28 3465 depth = 0;
18811272
JA
3466
3467 /*
3468 * Save and disable interrupts here, to avoid doing it for every
3469 * queue lock we have to take.
3470 */
73c10101 3471 local_irq_save(flags);
109b8129
N
3472 while (!list_empty(&list)) {
3473 rq = list_entry_rq(list.next);
73c10101 3474 list_del_init(&rq->queuelist);
73c10101
JA
3475 BUG_ON(!rq->q);
3476 if (rq->q != q) {
99e22598
JA
3477 /*
3478 * This drops the queue lock
3479 */
3480 if (q)
49cac01e 3481 queue_unplugged(q, depth, from_schedule);
73c10101 3482 q = rq->q;
94b5eb28 3483 depth = 0;
73c10101
JA
3484 spin_lock(q->queue_lock);
3485 }
8ba61435
TH
3486
3487 /*
3488 * Short-circuit if @q is dead
3489 */
3f3299d5 3490 if (unlikely(blk_queue_dying(q))) {
2a842aca 3491 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3492 continue;
3493 }
3494
73c10101
JA
3495 /*
3496 * rq is already accounted, so use raw insert
3497 */
f73f44eb 3498 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3499 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3500 else
3501 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3502
3503 depth++;
73c10101
JA
3504 }
3505
99e22598
JA
3506 /*
3507 * This drops the queue lock
3508 */
3509 if (q)
49cac01e 3510 queue_unplugged(q, depth, from_schedule);
73c10101 3511
73c10101
JA
3512 local_irq_restore(flags);
3513}
73c10101
JA
3514
3515void blk_finish_plug(struct blk_plug *plug)
3516{
dd6cf3e1
SL
3517 if (plug != current->plug)
3518 return;
f6603783 3519 blk_flush_plug_list(plug, false);
73c10101 3520
dd6cf3e1 3521 current->plug = NULL;
73c10101 3522}
88b996cd 3523EXPORT_SYMBOL(blk_finish_plug);
73c10101 3524
47fafbc7 3525#ifdef CONFIG_PM
6c954667
LM
3526/**
3527 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3528 * @q: the queue of the device
3529 * @dev: the device the queue belongs to
3530 *
3531 * Description:
3532 * Initialize runtime-PM-related fields for @q and start auto suspend for
3533 * @dev. Drivers that want to take advantage of request-based runtime PM
3534 * should call this function after @dev has been initialized, and its
3535 * request queue @q has been allocated, and runtime PM for it can not happen
3536 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3537 * cases, driver should call this function before any I/O has taken place.
3538 *
3539 * This function takes care of setting up using auto suspend for the device,
3540 * the autosuspend delay is set to -1 to make runtime suspend impossible
3541 * until an updated value is either set by user or by driver. Drivers do
3542 * not need to touch other autosuspend settings.
3543 *
3544 * The block layer runtime PM is request based, so only works for drivers
3545 * that use request as their IO unit instead of those directly use bio's.
3546 */
3547void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3548{
765e40b6
CH
3549 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3550 if (q->mq_ops)
3551 return;
3552
6c954667
LM
3553 q->dev = dev;
3554 q->rpm_status = RPM_ACTIVE;
3555 pm_runtime_set_autosuspend_delay(q->dev, -1);
3556 pm_runtime_use_autosuspend(q->dev);
3557}
3558EXPORT_SYMBOL(blk_pm_runtime_init);
3559
3560/**
3561 * blk_pre_runtime_suspend - Pre runtime suspend check
3562 * @q: the queue of the device
3563 *
3564 * Description:
3565 * This function will check if runtime suspend is allowed for the device
3566 * by examining if there are any requests pending in the queue. If there
3567 * are requests pending, the device can not be runtime suspended; otherwise,
3568 * the queue's status will be updated to SUSPENDING and the driver can
3569 * proceed to suspend the device.
3570 *
3571 * For the not allowed case, we mark last busy for the device so that
3572 * runtime PM core will try to autosuspend it some time later.
3573 *
3574 * This function should be called near the start of the device's
3575 * runtime_suspend callback.
3576 *
3577 * Return:
3578 * 0 - OK to runtime suspend the device
3579 * -EBUSY - Device should not be runtime suspended
3580 */
3581int blk_pre_runtime_suspend(struct request_queue *q)
3582{
3583 int ret = 0;
3584
4fd41a85
KX
3585 if (!q->dev)
3586 return ret;
3587
6c954667
LM
3588 spin_lock_irq(q->queue_lock);
3589 if (q->nr_pending) {
3590 ret = -EBUSY;
3591 pm_runtime_mark_last_busy(q->dev);
3592 } else {
3593 q->rpm_status = RPM_SUSPENDING;
3594 }
3595 spin_unlock_irq(q->queue_lock);
3596 return ret;
3597}
3598EXPORT_SYMBOL(blk_pre_runtime_suspend);
3599
3600/**
3601 * blk_post_runtime_suspend - Post runtime suspend processing
3602 * @q: the queue of the device
3603 * @err: return value of the device's runtime_suspend function
3604 *
3605 * Description:
3606 * Update the queue's runtime status according to the return value of the
3607 * device's runtime suspend function and mark last busy for the device so
3608 * that PM core will try to auto suspend the device at a later time.
3609 *
3610 * This function should be called near the end of the device's
3611 * runtime_suspend callback.
3612 */
3613void blk_post_runtime_suspend(struct request_queue *q, int err)
3614{
4fd41a85
KX
3615 if (!q->dev)
3616 return;
3617
6c954667
LM
3618 spin_lock_irq(q->queue_lock);
3619 if (!err) {
3620 q->rpm_status = RPM_SUSPENDED;
3621 } else {
3622 q->rpm_status = RPM_ACTIVE;
3623 pm_runtime_mark_last_busy(q->dev);
3624 }
3625 spin_unlock_irq(q->queue_lock);
3626}
3627EXPORT_SYMBOL(blk_post_runtime_suspend);
3628
3629/**
3630 * blk_pre_runtime_resume - Pre runtime resume processing
3631 * @q: the queue of the device
3632 *
3633 * Description:
3634 * Update the queue's runtime status to RESUMING in preparation for the
3635 * runtime resume of the device.
3636 *
3637 * This function should be called near the start of the device's
3638 * runtime_resume callback.
3639 */
3640void blk_pre_runtime_resume(struct request_queue *q)
3641{
4fd41a85
KX
3642 if (!q->dev)
3643 return;
3644
6c954667
LM
3645 spin_lock_irq(q->queue_lock);
3646 q->rpm_status = RPM_RESUMING;
3647 spin_unlock_irq(q->queue_lock);
3648}
3649EXPORT_SYMBOL(blk_pre_runtime_resume);
3650
3651/**
3652 * blk_post_runtime_resume - Post runtime resume processing
3653 * @q: the queue of the device
3654 * @err: return value of the device's runtime_resume function
3655 *
3656 * Description:
3657 * Update the queue's runtime status according to the return value of the
3658 * device's runtime_resume function. If it is successfully resumed, process
3659 * the requests that are queued into the device's queue when it is resuming
3660 * and then mark last busy and initiate autosuspend for it.
3661 *
3662 * This function should be called near the end of the device's
3663 * runtime_resume callback.
3664 */
3665void blk_post_runtime_resume(struct request_queue *q, int err)
3666{
4fd41a85
KX
3667 if (!q->dev)
3668 return;
3669
6c954667
LM
3670 spin_lock_irq(q->queue_lock);
3671 if (!err) {
3672 q->rpm_status = RPM_ACTIVE;
3673 __blk_run_queue(q);
3674 pm_runtime_mark_last_busy(q->dev);
c60855cd 3675 pm_request_autosuspend(q->dev);
6c954667
LM
3676 } else {
3677 q->rpm_status = RPM_SUSPENDED;
3678 }
3679 spin_unlock_irq(q->queue_lock);
3680}
3681EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3682
3683/**
3684 * blk_set_runtime_active - Force runtime status of the queue to be active
3685 * @q: the queue of the device
3686 *
3687 * If the device is left runtime suspended during system suspend the resume
3688 * hook typically resumes the device and corrects runtime status
3689 * accordingly. However, that does not affect the queue runtime PM status
3690 * which is still "suspended". This prevents processing requests from the
3691 * queue.
3692 *
3693 * This function can be used in driver's resume hook to correct queue
3694 * runtime PM status and re-enable peeking requests from the queue. It
3695 * should be called before first request is added to the queue.
3696 */
3697void blk_set_runtime_active(struct request_queue *q)
3698{
3699 spin_lock_irq(q->queue_lock);
3700 q->rpm_status = RPM_ACTIVE;
3701 pm_runtime_mark_last_busy(q->dev);
3702 pm_request_autosuspend(q->dev);
3703 spin_unlock_irq(q->queue_lock);
3704}
3705EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3706#endif
3707
1da177e4
LT
3708int __init blk_dev_init(void)
3709{
ef295ecf
CH
3710 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3711 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3712 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3713 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3714 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3715
89b90be2
TH
3716 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3717 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3718 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3719 if (!kblockd_workqueue)
3720 panic("Failed to create kblockd\n");
3721
3722 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3723 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3724
c2789bd4 3725 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3726 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3727
18fbda91
OS
3728#ifdef CONFIG_DEBUG_FS
3729 blk_debugfs_root = debugfs_create_dir("block", NULL);
3730#endif
3731
d38ecf93 3732 return 0;
1da177e4 3733}