]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
nvme: add helper nvme_map_len()
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
77bf25ea 34#include <linux/mutex.h>
b60503ba 35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
2d55cd5f 41#include <linux/timer.h>
b60503ba 42#include <linux/types.h>
2f8e2c87 43#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 44#include <asm/unaligned.h>
797a796a 45
f11bb3e2
CH
46#include "nvme.h"
47
9d43cf64 48#define NVME_Q_DEPTH 1024
d31af0a3 49#define NVME_AQ_DEPTH 256
b60503ba
MW
50#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
adf68f21
CH
52
53/*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57#define NVME_NR_AEN_COMMANDS 1
58#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
9d43cf64 59
58ffacb5
MW
60static int use_threaded_interrupts;
61module_param(use_threaded_interrupts, int, 0);
62
8ffaadf7
JD
63static bool use_cmb_sqes = true;
64module_param(use_cmb_sqes, bool, 0644);
65MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
9a6b9458 67static struct workqueue_struct *nvme_workq;
1fa6aead 68
1c63dc66
CH
69struct nvme_dev;
70struct nvme_queue;
b3fffdef 71
4cc06521 72static int nvme_reset(struct nvme_dev *dev);
a0fa9647 73static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 74static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 75
1c63dc66
CH
76/*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79struct nvme_dev {
1c63dc66
CH
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
1c63dc66
CH
92 struct msix_entry *entry;
93 void __iomem *bar;
1c63dc66 94 struct work_struct reset_work;
1c63dc66 95 struct work_struct scan_work;
5c8809e6 96 struct work_struct remove_work;
9396dec9 97 struct work_struct async_work;
2d55cd5f 98 struct timer_list watchdog_timer;
77bf25ea 99 struct mutex shutdown_lock;
1c63dc66 100 bool subsystem;
1c63dc66
CH
101 void __iomem *cmb;
102 dma_addr_t cmb_dma_addr;
103 u64 cmb_size;
104 u32 cmbsz;
fd634f41 105 unsigned long flags;
db3cbfff 106
fd634f41 107#define NVME_CTRL_RESETTING 0
646017a6 108#define NVME_CTRL_REMOVING 1
1c63dc66
CH
109
110 struct nvme_ctrl ctrl;
db3cbfff 111 struct completion ioq_wait;
4d115420 112};
1fa6aead 113
1c63dc66
CH
114static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
115{
116 return container_of(ctrl, struct nvme_dev, ctrl);
117}
118
b60503ba
MW
119/*
120 * An NVM Express queue. Each device has at least two (one for admin
121 * commands and one for I/O commands).
122 */
123struct nvme_queue {
124 struct device *q_dmadev;
091b6092 125 struct nvme_dev *dev;
3193f07b 126 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
127 spinlock_t q_lock;
128 struct nvme_command *sq_cmds;
8ffaadf7 129 struct nvme_command __iomem *sq_cmds_io;
b60503ba 130 volatile struct nvme_completion *cqes;
42483228 131 struct blk_mq_tags **tags;
b60503ba
MW
132 dma_addr_t sq_dma_addr;
133 dma_addr_t cq_dma_addr;
b60503ba
MW
134 u32 __iomem *q_db;
135 u16 q_depth;
6222d172 136 s16 cq_vector;
b60503ba
MW
137 u16 sq_tail;
138 u16 cq_head;
c30341dc 139 u16 qid;
e9539f47
MW
140 u8 cq_phase;
141 u8 cqe_seen;
b60503ba
MW
142};
143
71bd150c
CH
144/*
145 * The nvme_iod describes the data in an I/O, including the list of PRP
146 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 147 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
148 * allocated to store the PRP list.
149 */
150struct nvme_iod {
f4800d6d
CH
151 struct nvme_queue *nvmeq;
152 int aborted;
71bd150c 153 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
154 int nents; /* Used in scatterlist */
155 int length; /* Of data, in bytes */
156 dma_addr_t first_dma;
bf684057 157 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
158 struct scatterlist *sg;
159 struct scatterlist inline_sg[0];
b60503ba
MW
160};
161
162/*
163 * Check we didin't inadvertently grow the command struct
164 */
165static inline void _nvme_check_size(void)
166{
167 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
171 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 172 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 173 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
174 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
175 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
176 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
177 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 178 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
179}
180
ac3dd5bd
JA
181/*
182 * Max size of iod being embedded in the request payload
183 */
184#define NVME_INT_PAGES 2
5fd4ce1b 185#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
186
187/*
188 * Will slightly overestimate the number of pages needed. This is OK
189 * as it only leads to a small amount of wasted memory for the lifetime of
190 * the I/O.
191 */
192static int nvme_npages(unsigned size, struct nvme_dev *dev)
193{
5fd4ce1b
CH
194 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
195 dev->ctrl.page_size);
ac3dd5bd
JA
196 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
197}
198
f4800d6d
CH
199static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
200 unsigned int size, unsigned int nseg)
ac3dd5bd 201{
f4800d6d
CH
202 return sizeof(__le64 *) * nvme_npages(size, dev) +
203 sizeof(struct scatterlist) * nseg;
204}
ac3dd5bd 205
f4800d6d
CH
206static unsigned int nvme_cmd_size(struct nvme_dev *dev)
207{
208 return sizeof(struct nvme_iod) +
209 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
210}
211
a4aea562
MB
212static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
e85248e5 214{
a4aea562
MB
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
42483228
KB
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
a4aea562 222 hctx->driver_data = nvmeq;
42483228 223 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 224 return 0;
e85248e5
MW
225}
226
4af0e21c
KB
227static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228{
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232}
233
a4aea562
MB
234static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
22404274 237{
a4aea562 238 struct nvme_dev *dev = data;
f4800d6d 239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
f4800d6d 243 iod->nvmeq = nvmeq;
a4aea562 244 return 0;
22404274
KB
245}
246
a4aea562
MB
247static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
b60503ba 249{
a4aea562 250 struct nvme_dev *dev = data;
42483228 251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 252
42483228
KB
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 255
42483228 256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
257 hctx->driver_data = nvmeq;
258 return 0;
b60503ba
MW
259}
260
a4aea562
MB
261static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
b60503ba 264{
a4aea562 265 struct nvme_dev *dev = data;
f4800d6d 266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
f4800d6d 270 iod->nvmeq = nvmeq;
a4aea562
MB
271 return 0;
272}
273
646017a6
KB
274static void nvme_queue_scan(struct nvme_dev *dev)
275{
276 /*
277 * Do not queue new scan work when a controller is reset during
278 * removal.
279 */
280 if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
281 return;
282 queue_work(nvme_workq, &dev->scan_work);
283}
284
adf68f21
CH
285static void nvme_complete_async_event(struct nvme_dev *dev,
286 struct nvme_completion *cqe)
a4aea562 287{
adf68f21
CH
288 u16 status = le16_to_cpu(cqe->status) >> 1;
289 u32 result = le32_to_cpu(cqe->result);
a4aea562 290
9396dec9 291 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
adf68f21 292 ++dev->ctrl.event_limit;
9396dec9
CH
293 queue_work(nvme_workq, &dev->async_work);
294 }
295
a5768aa8
KB
296 if (status != NVME_SC_SUCCESS)
297 return;
298
299 switch (result & 0xff07) {
300 case NVME_AER_NOTICE_NS_CHANGED:
1b3c47c1 301 dev_info(dev->ctrl.device, "rescanning\n");
646017a6 302 nvme_queue_scan(dev);
a5768aa8 303 default:
1b3c47c1 304 dev_warn(dev->ctrl.device, "async event result %08x\n", result);
a4aea562 305 }
b60503ba
MW
306}
307
308/**
adf68f21 309 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
310 * @nvmeq: The queue to use
311 * @cmd: The command to send
312 *
313 * Safe to use from interrupt context
314 */
e3f879bf
SB
315static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
316 struct nvme_command *cmd)
b60503ba 317{
a4aea562
MB
318 u16 tail = nvmeq->sq_tail;
319
8ffaadf7
JD
320 if (nvmeq->sq_cmds_io)
321 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
322 else
323 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
324
b60503ba
MW
325 if (++tail == nvmeq->q_depth)
326 tail = 0;
7547881d 327 writel(tail, nvmeq->q_db);
b60503ba 328 nvmeq->sq_tail = tail;
b60503ba
MW
329}
330
f4800d6d 331static __le64 **iod_list(struct request *req)
b60503ba 332{
f4800d6d
CH
333 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
334 return (__le64 **)(iod->sg + req->nr_phys_segments);
b60503ba
MW
335}
336
58b45602
ML
337static int nvme_init_iod(struct request *rq, unsigned size,
338 struct nvme_dev *dev)
ac3dd5bd 339{
f4800d6d
CH
340 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
341 int nseg = rq->nr_phys_segments;
ac3dd5bd 342
f4800d6d
CH
343 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
344 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
345 if (!iod->sg)
346 return BLK_MQ_RQ_QUEUE_BUSY;
347 } else {
348 iod->sg = iod->inline_sg;
ac3dd5bd
JA
349 }
350
f4800d6d
CH
351 iod->aborted = 0;
352 iod->npages = -1;
353 iod->nents = 0;
354 iod->length = size;
355 return 0;
ac3dd5bd
JA
356}
357
f4800d6d 358static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 359{
f4800d6d 360 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 361 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 362 int i;
f4800d6d 363 __le64 **list = iod_list(req);
eca18b23
MW
364 dma_addr_t prp_dma = iod->first_dma;
365
366 if (iod->npages == 0)
367 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
368 for (i = 0; i < iod->npages; i++) {
369 __le64 *prp_list = list[i];
370 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
371 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
372 prp_dma = next_prp_dma;
373 }
ac3dd5bd 374
f4800d6d
CH
375 if (iod->sg != iod->inline_sg)
376 kfree(iod->sg);
b4ff9c8d
KB
377}
378
52b68d7e 379#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
380static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
381{
382 if (be32_to_cpu(pi->ref_tag) == v)
383 pi->ref_tag = cpu_to_be32(p);
384}
385
386static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
387{
388 if (be32_to_cpu(pi->ref_tag) == p)
389 pi->ref_tag = cpu_to_be32(v);
390}
391
392/**
393 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
394 *
395 * The virtual start sector is the one that was originally submitted by the
396 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
397 * start sector may be different. Remap protection information to match the
398 * physical LBA on writes, and back to the original seed on reads.
399 *
400 * Type 0 and 3 do not have a ref tag, so no remapping required.
401 */
402static void nvme_dif_remap(struct request *req,
403 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
404{
405 struct nvme_ns *ns = req->rq_disk->private_data;
406 struct bio_integrity_payload *bip;
407 struct t10_pi_tuple *pi;
408 void *p, *pmap;
409 u32 i, nlb, ts, phys, virt;
410
411 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
412 return;
413
414 bip = bio_integrity(req->bio);
415 if (!bip)
416 return;
417
418 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
419
420 p = pmap;
421 virt = bip_get_seed(bip);
422 phys = nvme_block_nr(ns, blk_rq_pos(req));
423 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 424 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
425
426 for (i = 0; i < nlb; i++, virt++, phys++) {
427 pi = (struct t10_pi_tuple *)p;
428 dif_swap(phys, virt, pi);
429 p += ts;
430 }
431 kunmap_atomic(pmap);
432}
52b68d7e
KB
433#else /* CONFIG_BLK_DEV_INTEGRITY */
434static void nvme_dif_remap(struct request *req,
435 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
436{
437}
438static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
439{
440}
441static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
442{
443}
52b68d7e
KB
444#endif
445
f4800d6d 446static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
69d2b571 447 int total_len)
ff22b54f 448{
f4800d6d 449 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 450 struct dma_pool *pool;
eca18b23
MW
451 int length = total_len;
452 struct scatterlist *sg = iod->sg;
ff22b54f
MW
453 int dma_len = sg_dma_len(sg);
454 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 455 u32 page_size = dev->ctrl.page_size;
f137e0f1 456 int offset = dma_addr & (page_size - 1);
e025344c 457 __le64 *prp_list;
f4800d6d 458 __le64 **list = iod_list(req);
e025344c 459 dma_addr_t prp_dma;
eca18b23 460 int nprps, i;
ff22b54f 461
1d090624 462 length -= (page_size - offset);
ff22b54f 463 if (length <= 0)
69d2b571 464 return true;
ff22b54f 465
1d090624 466 dma_len -= (page_size - offset);
ff22b54f 467 if (dma_len) {
1d090624 468 dma_addr += (page_size - offset);
ff22b54f
MW
469 } else {
470 sg = sg_next(sg);
471 dma_addr = sg_dma_address(sg);
472 dma_len = sg_dma_len(sg);
473 }
474
1d090624 475 if (length <= page_size) {
edd10d33 476 iod->first_dma = dma_addr;
69d2b571 477 return true;
e025344c
SMM
478 }
479
1d090624 480 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
481 if (nprps <= (256 / 8)) {
482 pool = dev->prp_small_pool;
eca18b23 483 iod->npages = 0;
99802a7a
MW
484 } else {
485 pool = dev->prp_page_pool;
eca18b23 486 iod->npages = 1;
99802a7a
MW
487 }
488
69d2b571 489 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 490 if (!prp_list) {
edd10d33 491 iod->first_dma = dma_addr;
eca18b23 492 iod->npages = -1;
69d2b571 493 return false;
b77954cb 494 }
eca18b23
MW
495 list[0] = prp_list;
496 iod->first_dma = prp_dma;
e025344c
SMM
497 i = 0;
498 for (;;) {
1d090624 499 if (i == page_size >> 3) {
e025344c 500 __le64 *old_prp_list = prp_list;
69d2b571 501 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 502 if (!prp_list)
69d2b571 503 return false;
eca18b23 504 list[iod->npages++] = prp_list;
7523d834
MW
505 prp_list[0] = old_prp_list[i - 1];
506 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
507 i = 1;
e025344c
SMM
508 }
509 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
510 dma_len -= page_size;
511 dma_addr += page_size;
512 length -= page_size;
e025344c
SMM
513 if (length <= 0)
514 break;
515 if (dma_len > 0)
516 continue;
517 BUG_ON(dma_len < 0);
518 sg = sg_next(sg);
519 dma_addr = sg_dma_address(sg);
520 dma_len = sg_dma_len(sg);
ff22b54f
MW
521 }
522
69d2b571 523 return true;
ff22b54f
MW
524}
525
f4800d6d 526static int nvme_map_data(struct nvme_dev *dev, struct request *req,
ba1ca37e 527 struct nvme_command *cmnd)
d29ec824 528{
f4800d6d 529 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
530 struct request_queue *q = req->q;
531 enum dma_data_direction dma_dir = rq_data_dir(req) ?
532 DMA_TO_DEVICE : DMA_FROM_DEVICE;
533 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 534
ba1ca37e
CH
535 sg_init_table(iod->sg, req->nr_phys_segments);
536 iod->nents = blk_rq_map_sg(q, req, iod->sg);
537 if (!iod->nents)
538 goto out;
d29ec824 539
ba1ca37e
CH
540 ret = BLK_MQ_RQ_QUEUE_BUSY;
541 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
542 goto out;
d29ec824 543
f4800d6d 544 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
ba1ca37e 545 goto out_unmap;
0e5e4f0e 546
ba1ca37e
CH
547 ret = BLK_MQ_RQ_QUEUE_ERROR;
548 if (blk_integrity_rq(req)) {
549 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
550 goto out_unmap;
0e5e4f0e 551
bf684057
CH
552 sg_init_table(&iod->meta_sg, 1);
553 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 554 goto out_unmap;
0e5e4f0e 555
ba1ca37e
CH
556 if (rq_data_dir(req))
557 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 558
bf684057 559 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 560 goto out_unmap;
d29ec824 561 }
00df5cb4 562
ba1ca37e
CH
563 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
564 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
565 if (blk_integrity_rq(req))
bf684057 566 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 567 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 568
ba1ca37e
CH
569out_unmap:
570 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
571out:
572 return ret;
00df5cb4
MW
573}
574
f4800d6d 575static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 576{
f4800d6d 577 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
578 enum dma_data_direction dma_dir = rq_data_dir(req) ?
579 DMA_TO_DEVICE : DMA_FROM_DEVICE;
580
581 if (iod->nents) {
582 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
583 if (blk_integrity_rq(req)) {
584 if (!rq_data_dir(req))
585 nvme_dif_remap(req, nvme_dif_complete);
bf684057 586 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 587 }
e19b127f 588 }
e1e5e564 589
f4800d6d 590 nvme_free_iod(dev, req);
d4f6c3ab 591}
b60503ba 592
a4aea562
MB
593/*
594 * We reuse the small pool to allocate the 16-byte range here as it is not
595 * worth having a special pool for these or additional cases to handle freeing
596 * the iod.
597 */
ba1ca37e 598static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
f4800d6d 599 struct request *req, struct nvme_command *cmnd)
0e5e4f0e 600{
f4800d6d 601 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e 602 struct nvme_dsm_range *range;
b60503ba 603
ba1ca37e
CH
604 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
605 &iod->first_dma);
606 if (!range)
607 return BLK_MQ_RQ_QUEUE_BUSY;
f4800d6d 608 iod_list(req)[0] = (__le64 *)range;
ba1ca37e 609 iod->npages = 0;
0e5e4f0e 610
0e5e4f0e 611 range->cattr = cpu_to_le32(0);
a4aea562
MB
612 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
613 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 614
ba1ca37e
CH
615 memset(cmnd, 0, sizeof(*cmnd));
616 cmnd->dsm.opcode = nvme_cmd_dsm;
617 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
618 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
619 cmnd->dsm.nr = 0;
620 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
621 return BLK_MQ_RQ_QUEUE_OK;
edd10d33
KB
622}
623
d29ec824
CH
624/*
625 * NOTE: ns is NULL when called on the admin queue.
626 */
a4aea562
MB
627static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
628 const struct blk_mq_queue_data *bd)
edd10d33 629{
a4aea562
MB
630 struct nvme_ns *ns = hctx->queue->queuedata;
631 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 632 struct nvme_dev *dev = nvmeq->dev;
a4aea562 633 struct request *req = bd->rq;
ba1ca37e 634 struct nvme_command cmnd;
58b45602 635 unsigned map_len;
ba1ca37e 636 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 637
e1e5e564
KB
638 /*
639 * If formated with metadata, require the block layer provide a buffer
640 * unless this namespace is formated such that the metadata can be
641 * stripped/generated by the controller with PRACT=1.
642 */
d29ec824 643 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
644 if (!(ns->pi_type && ns->ms == 8) &&
645 req->cmd_type != REQ_TYPE_DRV_PRIV) {
eee417b0 646 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
647 return BLK_MQ_RQ_QUEUE_OK;
648 }
649 }
650
58b45602
ML
651 map_len = nvme_map_len(req);
652 ret = nvme_init_iod(req, map_len, dev);
f4800d6d
CH
653 if (ret)
654 return ret;
a4aea562 655
a4aea562 656 if (req->cmd_flags & REQ_DISCARD) {
f4800d6d 657 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
ba1ca37e
CH
658 } else {
659 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
660 memcpy(&cmnd, req->cmd, sizeof(cmnd));
661 else if (req->cmd_flags & REQ_FLUSH)
662 nvme_setup_flush(ns, &cmnd);
663 else
664 nvme_setup_rw(ns, req, &cmnd);
a4aea562 665
ba1ca37e 666 if (req->nr_phys_segments)
f4800d6d 667 ret = nvme_map_data(dev, req, &cmnd);
edd10d33 668 }
a4aea562 669
ba1ca37e
CH
670 if (ret)
671 goto out;
a4aea562 672
ba1ca37e 673 cmnd.common.command_id = req->tag;
aae239e1 674 blk_mq_start_request(req);
a4aea562 675
ba1ca37e 676 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 677 if (unlikely(nvmeq->cq_vector < 0)) {
69d9a99c
KB
678 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
679 ret = BLK_MQ_RQ_QUEUE_BUSY;
680 else
681 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20
KB
682 spin_unlock_irq(&nvmeq->q_lock);
683 goto out;
684 }
ba1ca37e 685 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
686 nvme_process_cq(nvmeq);
687 spin_unlock_irq(&nvmeq->q_lock);
688 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 689out:
f4800d6d 690 nvme_free_iod(dev, req);
ba1ca37e 691 return ret;
b60503ba 692}
e1e5e564 693
eee417b0
CH
694static void nvme_complete_rq(struct request *req)
695{
f4800d6d
CH
696 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
697 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0 698 int error = 0;
e1e5e564 699
f4800d6d 700 nvme_unmap_data(dev, req);
e1e5e564 701
eee417b0
CH
702 if (unlikely(req->errors)) {
703 if (nvme_req_needs_retry(req, req->errors)) {
704 nvme_requeue_req(req);
705 return;
e1e5e564 706 }
1974b1ae 707
eee417b0
CH
708 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
709 error = req->errors;
710 else
711 error = nvme_error_status(req->errors);
712 }
a4aea562 713
f4800d6d 714 if (unlikely(iod->aborted)) {
1b3c47c1 715 dev_warn(dev->ctrl.device,
eee417b0
CH
716 "completing aborted command with status: %04x\n",
717 req->errors);
718 }
a4aea562 719
eee417b0 720 blk_mq_end_request(req, error);
b60503ba
MW
721}
722
d783e0bd
MR
723/* We read the CQE phase first to check if the rest of the entry is valid */
724static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
725 u16 phase)
726{
727 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
728}
729
a0fa9647 730static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 731{
82123460 732 u16 head, phase;
b60503ba 733
b60503ba 734 head = nvmeq->cq_head;
82123460 735 phase = nvmeq->cq_phase;
b60503ba 736
d783e0bd 737 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 738 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 739 struct request *req;
adf68f21 740
b60503ba
MW
741 if (++head == nvmeq->q_depth) {
742 head = 0;
82123460 743 phase = !phase;
b60503ba 744 }
adf68f21 745
a0fa9647
JA
746 if (tag && *tag == cqe.command_id)
747 *tag = -1;
adf68f21 748
aae239e1 749 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 750 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
751 "invalid id %d completed on queue %d\n",
752 cqe.command_id, le16_to_cpu(cqe.sq_id));
753 continue;
754 }
755
adf68f21
CH
756 /*
757 * AEN requests are special as they don't time out and can
758 * survive any kind of queue freeze and often don't respond to
759 * aborts. We don't even bother to allocate a struct request
760 * for them but rather special case them here.
761 */
762 if (unlikely(nvmeq->qid == 0 &&
763 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
764 nvme_complete_async_event(nvmeq->dev, &cqe);
765 continue;
766 }
767
eee417b0 768 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
1cb3cce5
CH
769 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
770 memcpy(req->special, &cqe, sizeof(cqe));
d783e0bd 771 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
eee417b0 772
b60503ba
MW
773 }
774
775 /* If the controller ignores the cq head doorbell and continuously
776 * writes to the queue, it is theoretically possible to wrap around
777 * the queue twice and mistakenly return IRQ_NONE. Linux only
778 * requires that 0.1% of your interrupts are handled, so this isn't
779 * a big problem.
780 */
82123460 781 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 782 return;
b60503ba 783
604e8c8d
KB
784 if (likely(nvmeq->cq_vector >= 0))
785 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 786 nvmeq->cq_head = head;
82123460 787 nvmeq->cq_phase = phase;
b60503ba 788
e9539f47 789 nvmeq->cqe_seen = 1;
a0fa9647
JA
790}
791
792static void nvme_process_cq(struct nvme_queue *nvmeq)
793{
794 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
795}
796
797static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
798{
799 irqreturn_t result;
800 struct nvme_queue *nvmeq = data;
801 spin_lock(&nvmeq->q_lock);
e9539f47
MW
802 nvme_process_cq(nvmeq);
803 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
804 nvmeq->cqe_seen = 0;
58ffacb5
MW
805 spin_unlock(&nvmeq->q_lock);
806 return result;
807}
808
809static irqreturn_t nvme_irq_check(int irq, void *data)
810{
811 struct nvme_queue *nvmeq = data;
d783e0bd
MR
812 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
813 return IRQ_WAKE_THREAD;
814 return IRQ_NONE;
58ffacb5
MW
815}
816
a0fa9647
JA
817static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
818{
819 struct nvme_queue *nvmeq = hctx->driver_data;
820
d783e0bd 821 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
822 spin_lock_irq(&nvmeq->q_lock);
823 __nvme_process_cq(nvmeq, &tag);
824 spin_unlock_irq(&nvmeq->q_lock);
825
826 if (tag == -1)
827 return 1;
828 }
829
830 return 0;
831}
832
9396dec9 833static void nvme_async_event_work(struct work_struct *work)
b60503ba 834{
9396dec9
CH
835 struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
836 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 837 struct nvme_command c;
b60503ba 838
a4aea562
MB
839 memset(&c, 0, sizeof(c));
840 c.common.opcode = nvme_admin_async_event;
3c0cf138 841
9396dec9
CH
842 spin_lock_irq(&nvmeq->q_lock);
843 while (dev->ctrl.event_limit > 0) {
844 c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
845 --dev->ctrl.event_limit;
846 __nvme_submit_cmd(nvmeq, &c);
847 }
848 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
849}
850
b60503ba 851static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 852{
b60503ba
MW
853 struct nvme_command c;
854
855 memset(&c, 0, sizeof(c));
856 c.delete_queue.opcode = opcode;
857 c.delete_queue.qid = cpu_to_le16(id);
858
1c63dc66 859 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
860}
861
b60503ba
MW
862static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
863 struct nvme_queue *nvmeq)
864{
b60503ba
MW
865 struct nvme_command c;
866 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
867
d29ec824
CH
868 /*
869 * Note: we (ab)use the fact the the prp fields survive if no data
870 * is attached to the request.
871 */
b60503ba
MW
872 memset(&c, 0, sizeof(c));
873 c.create_cq.opcode = nvme_admin_create_cq;
874 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
875 c.create_cq.cqid = cpu_to_le16(qid);
876 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
877 c.create_cq.cq_flags = cpu_to_le16(flags);
878 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
879
1c63dc66 880 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
881}
882
883static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
884 struct nvme_queue *nvmeq)
885{
b60503ba
MW
886 struct nvme_command c;
887 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
888
d29ec824
CH
889 /*
890 * Note: we (ab)use the fact the the prp fields survive if no data
891 * is attached to the request.
892 */
b60503ba
MW
893 memset(&c, 0, sizeof(c));
894 c.create_sq.opcode = nvme_admin_create_sq;
895 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
896 c.create_sq.sqid = cpu_to_le16(qid);
897 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
898 c.create_sq.sq_flags = cpu_to_le16(flags);
899 c.create_sq.cqid = cpu_to_le16(qid);
900
1c63dc66 901 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
902}
903
904static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
905{
906 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
907}
908
909static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
910{
911 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
912}
913
e7a2a87d 914static void abort_endio(struct request *req, int error)
bc5fc7e4 915{
f4800d6d
CH
916 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
917 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d 918 u16 status = req->errors;
e44ac588 919
1cb3cce5 920 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
e7a2a87d 921 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 922 blk_mq_free_request(req);
bc5fc7e4
MW
923}
924
31c7c7d2 925static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 926{
f4800d6d
CH
927 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
928 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 929 struct nvme_dev *dev = nvmeq->dev;
a4aea562 930 struct request *abort_req;
a4aea562 931 struct nvme_command cmd;
c30341dc 932
31c7c7d2 933 /*
fd634f41
CH
934 * Shutdown immediately if controller times out while starting. The
935 * reset work will see the pci device disabled when it gets the forced
936 * cancellation error. All outstanding requests are completed on
937 * shutdown, so we return BLK_EH_HANDLED.
938 */
939 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
1b3c47c1 940 dev_warn(dev->ctrl.device,
fd634f41
CH
941 "I/O %d QID %d timeout, disable controller\n",
942 req->tag, nvmeq->qid);
a5cdb68c 943 nvme_dev_disable(dev, false);
fd634f41
CH
944 req->errors = NVME_SC_CANCELLED;
945 return BLK_EH_HANDLED;
c30341dc
KB
946 }
947
fd634f41
CH
948 /*
949 * Shutdown the controller immediately and schedule a reset if the
950 * command was already aborted once before and still hasn't been
951 * returned to the driver, or if this is the admin queue.
31c7c7d2 952 */
f4800d6d 953 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 954 dev_warn(dev->ctrl.device,
e1569a16
KB
955 "I/O %d QID %d timeout, reset controller\n",
956 req->tag, nvmeq->qid);
a5cdb68c 957 nvme_dev_disable(dev, false);
e1569a16 958 queue_work(nvme_workq, &dev->reset_work);
c30341dc 959
e1569a16
KB
960 /*
961 * Mark the request as handled, since the inline shutdown
962 * forces all outstanding requests to complete.
963 */
964 req->errors = NVME_SC_CANCELLED;
965 return BLK_EH_HANDLED;
c30341dc 966 }
c30341dc 967
f4800d6d 968 iod->aborted = 1;
c30341dc 969
e7a2a87d 970 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 971 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 972 return BLK_EH_RESET_TIMER;
6bf25d16 973 }
a4aea562 974
c30341dc
KB
975 memset(&cmd, 0, sizeof(cmd));
976 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 977 cmd.abort.cid = req->tag;
c30341dc 978 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 979
1b3c47c1
SG
980 dev_warn(nvmeq->dev->ctrl.device,
981 "I/O %d QID %d timeout, aborting\n",
982 req->tag, nvmeq->qid);
e7a2a87d
CH
983
984 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
985 BLK_MQ_REQ_NOWAIT);
986 if (IS_ERR(abort_req)) {
987 atomic_inc(&dev->ctrl.abort_limit);
988 return BLK_EH_RESET_TIMER;
989 }
990
991 abort_req->timeout = ADMIN_TIMEOUT;
992 abort_req->end_io_data = NULL;
993 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 994
31c7c7d2
CH
995 /*
996 * The aborted req will be completed on receiving the abort req.
997 * We enable the timer again. If hit twice, it'll cause a device reset,
998 * as the device then is in a faulty state.
999 */
1000 return BLK_EH_RESET_TIMER;
c30341dc
KB
1001}
1002
42483228 1003static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1004{
a4aea562 1005 struct nvme_queue *nvmeq = data;
aae239e1 1006 int status;
cef6a948
KB
1007
1008 if (!blk_mq_request_started(req))
1009 return;
a09115b2 1010
237045fc 1011 dev_dbg_ratelimited(nvmeq->dev->ctrl.device,
aae239e1 1012 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
a4aea562 1013
1d49c38c 1014 status = NVME_SC_ABORT_REQ;
cef6a948 1015 if (blk_queue_dying(req->q))
aae239e1
CH
1016 status |= NVME_SC_DNR;
1017 blk_mq_complete_request(req, status);
a4aea562 1018}
22404274 1019
a4aea562
MB
1020static void nvme_free_queue(struct nvme_queue *nvmeq)
1021{
9e866774
MW
1022 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1023 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1024 if (nvmeq->sq_cmds)
1025 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1026 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1027 kfree(nvmeq);
1028}
1029
a1a5ef99 1030static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1031{
1032 int i;
1033
a1a5ef99 1034 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1035 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1036 dev->queue_count--;
a4aea562 1037 dev->queues[i] = NULL;
f435c282 1038 nvme_free_queue(nvmeq);
121c7ad4 1039 }
22404274
KB
1040}
1041
4d115420
KB
1042/**
1043 * nvme_suspend_queue - put queue into suspended state
1044 * @nvmeq - queue to suspend
4d115420
KB
1045 */
1046static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1047{
2b25d981 1048 int vector;
b60503ba 1049
a09115b2 1050 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1051 if (nvmeq->cq_vector == -1) {
1052 spin_unlock_irq(&nvmeq->q_lock);
1053 return 1;
1054 }
1055 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1056 nvmeq->dev->online_queues--;
2b25d981 1057 nvmeq->cq_vector = -1;
a09115b2
MW
1058 spin_unlock_irq(&nvmeq->q_lock);
1059
1c63dc66 1060 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 1061 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1062
aba2080f
MW
1063 irq_set_affinity_hint(vector, NULL);
1064 free_irq(vector, nvmeq);
b60503ba 1065
4d115420
KB
1066 return 0;
1067}
b60503ba 1068
4d115420
KB
1069static void nvme_clear_queue(struct nvme_queue *nvmeq)
1070{
22404274 1071 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1072 if (nvmeq->tags && *nvmeq->tags)
1073 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1074 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1075}
1076
a5cdb68c 1077static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1078{
a5cdb68c 1079 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1080
1081 if (!nvmeq)
1082 return;
1083 if (nvme_suspend_queue(nvmeq))
1084 return;
1085
a5cdb68c
KB
1086 if (shutdown)
1087 nvme_shutdown_ctrl(&dev->ctrl);
1088 else
1089 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1090 dev->bar + NVME_REG_CAP));
07836e65
KB
1091
1092 spin_lock_irq(&nvmeq->q_lock);
1093 nvme_process_cq(nvmeq);
1094 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1095}
1096
8ffaadf7
JD
1097static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1098 int entry_size)
1099{
1100 int q_depth = dev->q_depth;
5fd4ce1b
CH
1101 unsigned q_size_aligned = roundup(q_depth * entry_size,
1102 dev->ctrl.page_size);
8ffaadf7
JD
1103
1104 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1105 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1106 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1107 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1108
1109 /*
1110 * Ensure the reduced q_depth is above some threshold where it
1111 * would be better to map queues in system memory with the
1112 * original depth
1113 */
1114 if (q_depth < 64)
1115 return -ENOMEM;
1116 }
1117
1118 return q_depth;
1119}
1120
1121static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1122 int qid, int depth)
1123{
1124 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1125 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1126 dev->ctrl.page_size);
8ffaadf7
JD
1127 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1128 nvmeq->sq_cmds_io = dev->cmb + offset;
1129 } else {
1130 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1131 &nvmeq->sq_dma_addr, GFP_KERNEL);
1132 if (!nvmeq->sq_cmds)
1133 return -ENOMEM;
1134 }
1135
1136 return 0;
1137}
1138
b60503ba 1139static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1140 int depth)
b60503ba 1141{
a4aea562 1142 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1143 if (!nvmeq)
1144 return NULL;
1145
e75ec752 1146 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1147 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1148 if (!nvmeq->cqes)
1149 goto free_nvmeq;
b60503ba 1150
8ffaadf7 1151 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1152 goto free_cqdma;
1153
e75ec752 1154 nvmeq->q_dmadev = dev->dev;
091b6092 1155 nvmeq->dev = dev;
3193f07b 1156 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1157 dev->ctrl.instance, qid);
b60503ba
MW
1158 spin_lock_init(&nvmeq->q_lock);
1159 nvmeq->cq_head = 0;
82123460 1160 nvmeq->cq_phase = 1;
b80d5ccc 1161 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1162 nvmeq->q_depth = depth;
c30341dc 1163 nvmeq->qid = qid;
758dd7fd 1164 nvmeq->cq_vector = -1;
a4aea562 1165 dev->queues[qid] = nvmeq;
36a7e993
JD
1166 dev->queue_count++;
1167
b60503ba
MW
1168 return nvmeq;
1169
1170 free_cqdma:
e75ec752 1171 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1172 nvmeq->cq_dma_addr);
1173 free_nvmeq:
1174 kfree(nvmeq);
1175 return NULL;
1176}
1177
3001082c
MW
1178static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1179 const char *name)
1180{
58ffacb5
MW
1181 if (use_threaded_interrupts)
1182 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1183 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1184 name, nvmeq);
3001082c 1185 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1186 IRQF_SHARED, name, nvmeq);
3001082c
MW
1187}
1188
22404274 1189static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1190{
22404274 1191 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1192
7be50e93 1193 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1194 nvmeq->sq_tail = 0;
1195 nvmeq->cq_head = 0;
1196 nvmeq->cq_phase = 1;
b80d5ccc 1197 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1198 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1199 dev->online_queues++;
7be50e93 1200 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1201}
1202
1203static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1204{
1205 struct nvme_dev *dev = nvmeq->dev;
1206 int result;
3f85d50b 1207
2b25d981 1208 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1209 result = adapter_alloc_cq(dev, qid, nvmeq);
1210 if (result < 0)
22404274 1211 return result;
b60503ba
MW
1212
1213 result = adapter_alloc_sq(dev, qid, nvmeq);
1214 if (result < 0)
1215 goto release_cq;
1216
3193f07b 1217 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1218 if (result < 0)
1219 goto release_sq;
1220
22404274 1221 nvme_init_queue(nvmeq, qid);
22404274 1222 return result;
b60503ba
MW
1223
1224 release_sq:
1225 adapter_delete_sq(dev, qid);
1226 release_cq:
1227 adapter_delete_cq(dev, qid);
22404274 1228 return result;
b60503ba
MW
1229}
1230
a4aea562 1231static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1232 .queue_rq = nvme_queue_rq,
eee417b0 1233 .complete = nvme_complete_rq,
a4aea562
MB
1234 .map_queue = blk_mq_map_queue,
1235 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1236 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1237 .init_request = nvme_admin_init_request,
1238 .timeout = nvme_timeout,
1239};
1240
1241static struct blk_mq_ops nvme_mq_ops = {
1242 .queue_rq = nvme_queue_rq,
eee417b0 1243 .complete = nvme_complete_rq,
a4aea562
MB
1244 .map_queue = blk_mq_map_queue,
1245 .init_hctx = nvme_init_hctx,
1246 .init_request = nvme_init_request,
1247 .timeout = nvme_timeout,
a0fa9647 1248 .poll = nvme_poll,
a4aea562
MB
1249};
1250
ea191d2f
KB
1251static void nvme_dev_remove_admin(struct nvme_dev *dev)
1252{
1c63dc66 1253 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1254 /*
1255 * If the controller was reset during removal, it's possible
1256 * user requests may be waiting on a stopped queue. Start the
1257 * queue to flush these to completion.
1258 */
1259 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1260 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1261 blk_mq_free_tag_set(&dev->admin_tagset);
1262 }
1263}
1264
a4aea562
MB
1265static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1266{
1c63dc66 1267 if (!dev->ctrl.admin_q) {
a4aea562
MB
1268 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1269 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1270
1271 /*
1272 * Subtract one to leave an empty queue entry for 'Full Queue'
1273 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1274 */
1275 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1276 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1277 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1278 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1279 dev->admin_tagset.driver_data = dev;
1280
1281 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1282 return -ENOMEM;
1283
1c63dc66
CH
1284 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1285 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1286 blk_mq_free_tag_set(&dev->admin_tagset);
1287 return -ENOMEM;
1288 }
1c63dc66 1289 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1290 nvme_dev_remove_admin(dev);
1c63dc66 1291 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1292 return -ENODEV;
1293 }
0fb59cbc 1294 } else
25646264 1295 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1296
1297 return 0;
1298}
1299
8d85fce7 1300static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1301{
ba47e386 1302 int result;
b60503ba 1303 u32 aqa;
7a67cbea 1304 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1305 struct nvme_queue *nvmeq;
1306
7a67cbea 1307 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1308 NVME_CAP_NSSRC(cap) : 0;
1309
7a67cbea
CH
1310 if (dev->subsystem &&
1311 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1312 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1313
5fd4ce1b 1314 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1315 if (result < 0)
1316 return result;
b60503ba 1317
a4aea562 1318 nvmeq = dev->queues[0];
cd638946 1319 if (!nvmeq) {
2b25d981 1320 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1321 if (!nvmeq)
1322 return -ENOMEM;
cd638946 1323 }
b60503ba
MW
1324
1325 aqa = nvmeq->q_depth - 1;
1326 aqa |= aqa << 16;
1327
7a67cbea
CH
1328 writel(aqa, dev->bar + NVME_REG_AQA);
1329 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1330 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1331
5fd4ce1b 1332 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1333 if (result)
a4aea562
MB
1334 goto free_nvmeq;
1335
2b25d981 1336 nvmeq->cq_vector = 0;
3193f07b 1337 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1338 if (result) {
1339 nvmeq->cq_vector = -1;
0fb59cbc 1340 goto free_nvmeq;
758dd7fd 1341 }
025c557a 1342
b60503ba 1343 return result;
a4aea562 1344
a4aea562
MB
1345 free_nvmeq:
1346 nvme_free_queues(dev, 0);
1347 return result;
b60503ba
MW
1348}
1349
2d55cd5f 1350static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1351{
2d55cd5f
CH
1352 struct nvme_dev *dev = (struct nvme_dev *)data;
1353 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1354
2d55cd5f
CH
1355 /*
1356 * Skip controllers currently under reset.
1357 */
1358 if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) &&
1359 ((csts & NVME_CSTS_CFS) ||
1360 (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) {
1361 if (queue_work(nvme_workq, &dev->reset_work)) {
1362 dev_warn(dev->dev,
1363 "Failed status: 0x%x, reset controller.\n",
1364 csts);
1fa6aead 1365 }
2d55cd5f 1366 return;
1fa6aead 1367 }
2d55cd5f
CH
1368
1369 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1370}
1371
749941f2 1372static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1373{
949928c1 1374 unsigned i, max;
749941f2 1375 int ret = 0;
42f61420 1376
749941f2
CH
1377 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1378 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1379 ret = -ENOMEM;
42f61420 1380 break;
749941f2
CH
1381 }
1382 }
42f61420 1383
949928c1
KB
1384 max = min(dev->max_qid, dev->queue_count - 1);
1385 for (i = dev->online_queues; i <= max; i++) {
749941f2
CH
1386 ret = nvme_create_queue(dev->queues[i], i);
1387 if (ret) {
2659e57b 1388 nvme_free_queues(dev, i);
42f61420 1389 break;
2659e57b 1390 }
27e8166c 1391 }
749941f2
CH
1392
1393 /*
1394 * Ignore failing Create SQ/CQ commands, we can continue with less
1395 * than the desired aount of queues, and even a controller without
1396 * I/O queues an still be used to issue admin commands. This might
1397 * be useful to upgrade a buggy firmware for example.
1398 */
1399 return ret >= 0 ? 0 : ret;
b60503ba
MW
1400}
1401
8ffaadf7
JD
1402static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1403{
1404 u64 szu, size, offset;
1405 u32 cmbloc;
1406 resource_size_t bar_size;
1407 struct pci_dev *pdev = to_pci_dev(dev->dev);
1408 void __iomem *cmb;
1409 dma_addr_t dma_addr;
1410
1411 if (!use_cmb_sqes)
1412 return NULL;
1413
7a67cbea 1414 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1415 if (!(NVME_CMB_SZ(dev->cmbsz)))
1416 return NULL;
1417
7a67cbea 1418 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1419
1420 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1421 size = szu * NVME_CMB_SZ(dev->cmbsz);
1422 offset = szu * NVME_CMB_OFST(cmbloc);
1423 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1424
1425 if (offset > bar_size)
1426 return NULL;
1427
1428 /*
1429 * Controllers may support a CMB size larger than their BAR,
1430 * for example, due to being behind a bridge. Reduce the CMB to
1431 * the reported size of the BAR
1432 */
1433 if (size > bar_size - offset)
1434 size = bar_size - offset;
1435
1436 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1437 cmb = ioremap_wc(dma_addr, size);
1438 if (!cmb)
1439 return NULL;
1440
1441 dev->cmb_dma_addr = dma_addr;
1442 dev->cmb_size = size;
1443 return cmb;
1444}
1445
1446static inline void nvme_release_cmb(struct nvme_dev *dev)
1447{
1448 if (dev->cmb) {
1449 iounmap(dev->cmb);
1450 dev->cmb = NULL;
1451 }
1452}
1453
9d713c2b
KB
1454static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1455{
b80d5ccc 1456 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1457}
1458
8d85fce7 1459static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1460{
a4aea562 1461 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1462 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1463 int result, i, vecs, nr_io_queues, size;
b60503ba 1464
42f61420 1465 nr_io_queues = num_possible_cpus();
9a0be7ab
CH
1466 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1467 if (result < 0)
1b23484b 1468 return result;
9a0be7ab
CH
1469
1470 /*
1471 * Degraded controllers might return an error when setting the queue
1472 * count. We still want to be able to bring them online and offer
1473 * access to the admin queue, as that might be only way to fix them up.
1474 */
1475 if (result > 0) {
1b3c47c1
SG
1476 dev_err(dev->ctrl.device,
1477 "Could not set queue count (%d)\n", result);
788e15ab 1478 return 0;
9a0be7ab 1479 }
b60503ba 1480
8ffaadf7
JD
1481 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1482 result = nvme_cmb_qdepth(dev, nr_io_queues,
1483 sizeof(struct nvme_command));
1484 if (result > 0)
1485 dev->q_depth = result;
1486 else
1487 nvme_release_cmb(dev);
1488 }
1489
9d713c2b
KB
1490 size = db_bar_size(dev, nr_io_queues);
1491 if (size > 8192) {
f1938f6e 1492 iounmap(dev->bar);
9d713c2b
KB
1493 do {
1494 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1495 if (dev->bar)
1496 break;
1497 if (!--nr_io_queues)
1498 return -ENOMEM;
1499 size = db_bar_size(dev, nr_io_queues);
1500 } while (1);
7a67cbea 1501 dev->dbs = dev->bar + 4096;
5a92e700 1502 adminq->q_db = dev->dbs;
f1938f6e
MW
1503 }
1504
9d713c2b 1505 /* Deregister the admin queue's interrupt */
3193f07b 1506 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1507
e32efbfc
JA
1508 /*
1509 * If we enable msix early due to not intx, disable it again before
1510 * setting up the full range we need.
1511 */
788e15ab
KB
1512 if (pdev->msi_enabled)
1513 pci_disable_msi(pdev);
1514 else if (pdev->msix_enabled)
e32efbfc
JA
1515 pci_disable_msix(pdev);
1516
be577fab 1517 for (i = 0; i < nr_io_queues; i++)
1b23484b 1518 dev->entry[i].entry = i;
be577fab
AG
1519 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1520 if (vecs < 0) {
1521 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1522 if (vecs < 0) {
1523 vecs = 1;
1524 } else {
1525 for (i = 0; i < vecs; i++)
1526 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1527 }
1528 }
1529
063a8096
MW
1530 /*
1531 * Should investigate if there's a performance win from allocating
1532 * more queues than interrupt vectors; it might allow the submission
1533 * path to scale better, even if the receive path is limited by the
1534 * number of interrupts.
1535 */
1536 nr_io_queues = vecs;
42f61420 1537 dev->max_qid = nr_io_queues;
063a8096 1538
3193f07b 1539 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1540 if (result) {
1541 adminq->cq_vector = -1;
22404274 1542 goto free_queues;
758dd7fd 1543 }
749941f2 1544 return nvme_create_io_queues(dev);
b60503ba 1545
22404274 1546 free_queues:
a1a5ef99 1547 nvme_free_queues(dev, 1);
22404274 1548 return result;
b60503ba
MW
1549}
1550
bda4e0fb 1551static void nvme_set_irq_hints(struct nvme_dev *dev)
a5768aa8 1552{
bda4e0fb
KB
1553 struct nvme_queue *nvmeq;
1554 int i;
a5768aa8 1555
bda4e0fb
KB
1556 for (i = 0; i < dev->online_queues; i++) {
1557 nvmeq = dev->queues[i];
a5768aa8 1558
bda4e0fb
KB
1559 if (!nvmeq->tags || !(*nvmeq->tags))
1560 continue;
a5768aa8 1561
bda4e0fb
KB
1562 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1563 blk_mq_tags_cpumask(*nvmeq->tags));
a5768aa8 1564 }
a5768aa8
KB
1565}
1566
a5768aa8 1567static void nvme_dev_scan(struct work_struct *work)
a5768aa8 1568{
a5768aa8 1569 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
a5768aa8
KB
1570
1571 if (!dev->tagset.tags)
1572 return;
5bae7f73 1573 nvme_scan_namespaces(&dev->ctrl);
bda4e0fb 1574 nvme_set_irq_hints(dev);
a5768aa8
KB
1575}
1576
db3cbfff 1577static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1578{
db3cbfff 1579 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1580
db3cbfff
KB
1581 blk_mq_free_request(req);
1582 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1583}
1584
db3cbfff 1585static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1586{
db3cbfff 1587 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1588
db3cbfff
KB
1589 if (!error) {
1590 unsigned long flags;
1591
2e39e0f6
ML
1592 /*
1593 * We might be called with the AQ q_lock held
1594 * and the I/O queue q_lock should always
1595 * nest inside the AQ one.
1596 */
1597 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1598 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1599 nvme_process_cq(nvmeq);
1600 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1601 }
db3cbfff
KB
1602
1603 nvme_del_queue_end(req, error);
a5768aa8
KB
1604}
1605
db3cbfff 1606static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1607{
db3cbfff
KB
1608 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1609 struct request *req;
1610 struct nvme_command cmd;
bda4e0fb 1611
db3cbfff
KB
1612 memset(&cmd, 0, sizeof(cmd));
1613 cmd.delete_queue.opcode = opcode;
1614 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1615
db3cbfff
KB
1616 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1617 if (IS_ERR(req))
1618 return PTR_ERR(req);
bda4e0fb 1619
db3cbfff
KB
1620 req->timeout = ADMIN_TIMEOUT;
1621 req->end_io_data = nvmeq;
1622
1623 blk_execute_rq_nowait(q, NULL, req, false,
1624 opcode == nvme_admin_delete_cq ?
1625 nvme_del_cq_end : nvme_del_queue_end);
1626 return 0;
bda4e0fb
KB
1627}
1628
db3cbfff 1629static void nvme_disable_io_queues(struct nvme_dev *dev)
a5768aa8 1630{
db3cbfff
KB
1631 int pass;
1632 unsigned long timeout;
1633 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1634
db3cbfff
KB
1635 for (pass = 0; pass < 2; pass++) {
1636 int sent = 0, i = dev->queue_count - 1;
1637
1638 reinit_completion(&dev->ioq_wait);
1639 retry:
1640 timeout = ADMIN_TIMEOUT;
1641 for (; i > 0; i--) {
1642 struct nvme_queue *nvmeq = dev->queues[i];
1643
1644 if (!pass)
1645 nvme_suspend_queue(nvmeq);
1646 if (nvme_delete_queue(nvmeq, opcode))
1647 break;
1648 ++sent;
1649 }
1650 while (sent--) {
1651 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1652 if (timeout == 0)
1653 return;
1654 if (i)
1655 goto retry;
1656 }
1657 opcode = nvme_admin_delete_cq;
1658 }
a5768aa8
KB
1659}
1660
422ef0c7
MW
1661/*
1662 * Return: error value if an error occurred setting up the queues or calling
1663 * Identify Device. 0 if these succeeded, even if adding some of the
1664 * namespaces failed. At the moment, these failures are silent. TBD which
1665 * failures should be reported.
1666 */
8d85fce7 1667static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1668{
5bae7f73 1669 if (!dev->ctrl.tagset) {
ffe7704d
KB
1670 dev->tagset.ops = &nvme_mq_ops;
1671 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1672 dev->tagset.timeout = NVME_IO_TIMEOUT;
1673 dev->tagset.numa_node = dev_to_node(dev->dev);
1674 dev->tagset.queue_depth =
a4aea562 1675 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1676 dev->tagset.cmd_size = nvme_cmd_size(dev);
1677 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1678 dev->tagset.driver_data = dev;
b60503ba 1679
ffe7704d
KB
1680 if (blk_mq_alloc_tag_set(&dev->tagset))
1681 return 0;
5bae7f73 1682 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
1683 } else {
1684 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1685
1686 /* Free previously allocated queues that are no longer usable */
1687 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1688 }
949928c1 1689
646017a6 1690 nvme_queue_scan(dev);
e1e5e564 1691 return 0;
b60503ba
MW
1692}
1693
b00a726a 1694static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1695{
42f61420 1696 u64 cap;
b00a726a 1697 int result = -ENOMEM;
e75ec752 1698 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1699
1700 if (pci_enable_device_mem(pdev))
1701 return result;
1702
0877cb0d 1703 pci_set_master(pdev);
0877cb0d 1704
e75ec752
CH
1705 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1706 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1707 goto disable;
0877cb0d 1708
7a67cbea 1709 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1710 result = -ENODEV;
b00a726a 1711 goto disable;
0e53d180 1712 }
e32efbfc
JA
1713
1714 /*
788e15ab
KB
1715 * Some devices and/or platforms don't advertise or work with INTx
1716 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1717 * adjust this later.
e32efbfc 1718 */
788e15ab
KB
1719 if (pci_enable_msix(pdev, dev->entry, 1)) {
1720 pci_enable_msi(pdev);
1721 dev->entry[0].vector = pdev->irq;
1722 }
1723
1724 if (!dev->entry[0].vector) {
1725 result = -ENODEV;
1726 goto disable;
e32efbfc
JA
1727 }
1728
7a67cbea
CH
1729 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1730
42f61420
KB
1731 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1732 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1733 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1734
1735 /*
1736 * Temporary fix for the Apple controller found in the MacBook8,1 and
1737 * some MacBook7,1 to avoid controller resets and data loss.
1738 */
1739 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1740 dev->q_depth = 2;
1741 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1742 "queue depth=%u to work around controller resets\n",
1743 dev->q_depth);
1744 }
1745
7a67cbea 1746 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1747 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1748
a0a3408e
KB
1749 pci_enable_pcie_error_reporting(pdev);
1750 pci_save_state(pdev);
0877cb0d
KB
1751 return 0;
1752
1753 disable:
0877cb0d
KB
1754 pci_disable_device(pdev);
1755 return result;
1756}
1757
1758static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1759{
1760 if (dev->bar)
1761 iounmap(dev->bar);
1762 pci_release_regions(to_pci_dev(dev->dev));
1763}
1764
1765static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1766{
e75ec752
CH
1767 struct pci_dev *pdev = to_pci_dev(dev->dev);
1768
1769 if (pdev->msi_enabled)
1770 pci_disable_msi(pdev);
1771 else if (pdev->msix_enabled)
1772 pci_disable_msix(pdev);
0877cb0d 1773
a0a3408e
KB
1774 if (pci_is_enabled(pdev)) {
1775 pci_disable_pcie_error_reporting(pdev);
e75ec752 1776 pci_disable_device(pdev);
4d115420 1777 }
4d115420
KB
1778}
1779
a5cdb68c 1780static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1781{
22404274 1782 int i;
7c1b2450 1783 u32 csts = -1;
22404274 1784
2d55cd5f 1785 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1786
77bf25ea 1787 mutex_lock(&dev->shutdown_lock);
b00a726a 1788 if (pci_is_enabled(to_pci_dev(dev->dev))) {
25646264 1789 nvme_stop_queues(&dev->ctrl);
7a67cbea 1790 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1791 }
7c1b2450 1792 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 1793 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 1794 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 1795 nvme_suspend_queue(nvmeq);
4d115420
KB
1796 }
1797 } else {
1798 nvme_disable_io_queues(dev);
a5cdb68c 1799 nvme_disable_admin_queue(dev, shutdown);
4d115420 1800 }
b00a726a 1801 nvme_pci_disable(dev);
07836e65
KB
1802
1803 for (i = dev->queue_count - 1; i >= 0; i--)
1804 nvme_clear_queue(dev->queues[i]);
77bf25ea 1805 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1806}
1807
091b6092
MW
1808static int nvme_setup_prp_pools(struct nvme_dev *dev)
1809{
e75ec752 1810 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1811 PAGE_SIZE, PAGE_SIZE, 0);
1812 if (!dev->prp_page_pool)
1813 return -ENOMEM;
1814
99802a7a 1815 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1816 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1817 256, 256, 0);
1818 if (!dev->prp_small_pool) {
1819 dma_pool_destroy(dev->prp_page_pool);
1820 return -ENOMEM;
1821 }
091b6092
MW
1822 return 0;
1823}
1824
1825static void nvme_release_prp_pools(struct nvme_dev *dev)
1826{
1827 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1828 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1829}
1830
1673f1f0 1831static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1832{
1673f1f0 1833 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1834
e75ec752 1835 put_device(dev->dev);
4af0e21c
KB
1836 if (dev->tagset.tags)
1837 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1838 if (dev->ctrl.admin_q)
1839 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
1840 kfree(dev->queues);
1841 kfree(dev->entry);
1842 kfree(dev);
1843}
1844
f58944e2
KB
1845static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1846{
237045fc 1847 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1848
1849 kref_get(&dev->ctrl.kref);
69d9a99c 1850 nvme_dev_disable(dev, false);
f58944e2
KB
1851 if (!schedule_work(&dev->remove_work))
1852 nvme_put_ctrl(&dev->ctrl);
1853}
1854
fd634f41 1855static void nvme_reset_work(struct work_struct *work)
5e82e952 1856{
fd634f41 1857 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
f58944e2 1858 int result = -ENODEV;
5e82e952 1859
fd634f41
CH
1860 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1861 goto out;
5e82e952 1862
fd634f41
CH
1863 /*
1864 * If we're called to reset a live controller first shut it down before
1865 * moving on.
1866 */
b00a726a 1867 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1868 nvme_dev_disable(dev, false);
5e82e952 1869
fd634f41 1870 set_bit(NVME_CTRL_RESETTING, &dev->flags);
f0b50732 1871
b00a726a 1872 result = nvme_pci_enable(dev);
f0b50732 1873 if (result)
3cf519b5 1874 goto out;
f0b50732
KB
1875
1876 result = nvme_configure_admin_queue(dev);
1877 if (result)
f58944e2 1878 goto out;
f0b50732 1879
a4aea562 1880 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1881 result = nvme_alloc_admin_tags(dev);
1882 if (result)
f58944e2 1883 goto out;
b9afca3e 1884
ce4541f4
CH
1885 result = nvme_init_identify(&dev->ctrl);
1886 if (result)
f58944e2 1887 goto out;
ce4541f4 1888
f0b50732 1889 result = nvme_setup_io_queues(dev);
badc34d4 1890 if (result)
f58944e2 1891 goto out;
f0b50732 1892
adf68f21 1893 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
9396dec9 1894 queue_work(nvme_workq, &dev->async_work);
3cf519b5 1895
2d55cd5f 1896 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1897
2659e57b
CH
1898 /*
1899 * Keep the controller around but remove all namespaces if we don't have
1900 * any working I/O queue.
1901 */
3cf519b5 1902 if (dev->online_queues < 2) {
1b3c47c1 1903 dev_warn(dev->ctrl.device, "IO queues not created\n");
5bae7f73 1904 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1905 } else {
25646264 1906 nvme_start_queues(&dev->ctrl);
3cf519b5
CH
1907 nvme_dev_add(dev);
1908 }
1909
fd634f41 1910 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
3cf519b5 1911 return;
f0b50732 1912
3cf519b5 1913 out:
f58944e2 1914 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1915}
1916
5c8809e6 1917static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1918{
5c8809e6 1919 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1920 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1921
69d9a99c 1922 nvme_kill_queues(&dev->ctrl);
9a6b9458 1923 if (pci_get_drvdata(pdev))
c81f4975 1924 pci_stop_and_remove_bus_device_locked(pdev);
1673f1f0 1925 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1926}
1927
4cc06521 1928static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1929{
1c63dc66 1930 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1931 return -ENODEV;
ffe7704d 1932
846cc05f
CH
1933 if (!queue_work(nvme_workq, &dev->reset_work))
1934 return -EBUSY;
ffe7704d 1935
846cc05f 1936 flush_work(&dev->reset_work);
846cc05f 1937 return 0;
9a6b9458
KB
1938}
1939
1c63dc66 1940static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 1941{
1c63dc66 1942 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 1943 return 0;
9ca97374
TH
1944}
1945
5fd4ce1b 1946static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 1947{
5fd4ce1b
CH
1948 writel(val, to_nvme_dev(ctrl)->bar + off);
1949 return 0;
1950}
4cc06521 1951
7fd8930f
CH
1952static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1953{
1954 *val = readq(to_nvme_dev(ctrl)->bar + off);
1955 return 0;
4cc06521
KB
1956}
1957
5bae7f73 1958static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
4cc06521 1959{
5bae7f73 1960 struct nvme_dev *dev = to_nvme_dev(ctrl);
4cc06521 1961
5bae7f73
CH
1962 return !dev->bar || dev->online_queues < 2;
1963}
4cc06521 1964
f3ca80fc
CH
1965static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1966{
1967 return nvme_reset(to_nvme_dev(ctrl));
4cc06521 1968}
f3ca80fc 1969
1c63dc66 1970static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
e439bb12 1971 .module = THIS_MODULE,
1c63dc66 1972 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 1973 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 1974 .reg_read64 = nvme_pci_reg_read64,
5bae7f73 1975 .io_incapable = nvme_pci_io_incapable,
f3ca80fc 1976 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 1977 .free_ctrl = nvme_pci_free_ctrl,
1c63dc66 1978};
4cc06521 1979
b00a726a
KB
1980static int nvme_dev_map(struct nvme_dev *dev)
1981{
1982 int bars;
1983 struct pci_dev *pdev = to_pci_dev(dev->dev);
1984
1985 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1986 if (!bars)
1987 return -ENODEV;
1988 if (pci_request_selected_regions(pdev, bars, "nvme"))
1989 return -ENODEV;
1990
1991 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1992 if (!dev->bar)
1993 goto release;
1994
1995 return 0;
1996 release:
1997 pci_release_regions(pdev);
1998 return -ENODEV;
1999}
2000
8d85fce7 2001static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2002{
a4aea562 2003 int node, result = -ENOMEM;
b60503ba
MW
2004 struct nvme_dev *dev;
2005
a4aea562
MB
2006 node = dev_to_node(&pdev->dev);
2007 if (node == NUMA_NO_NODE)
2008 set_dev_node(&pdev->dev, 0);
2009
2010 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2011 if (!dev)
2012 return -ENOMEM;
a4aea562
MB
2013 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2014 GFP_KERNEL, node);
b60503ba
MW
2015 if (!dev->entry)
2016 goto free;
a4aea562
MB
2017 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2018 GFP_KERNEL, node);
b60503ba
MW
2019 if (!dev->queues)
2020 goto free;
2021
e75ec752 2022 dev->dev = get_device(&pdev->dev);
9a6b9458 2023 pci_set_drvdata(pdev, dev);
1c63dc66 2024
b00a726a
KB
2025 result = nvme_dev_map(dev);
2026 if (result)
2027 goto free;
2028
f3ca80fc 2029 INIT_WORK(&dev->scan_work, nvme_dev_scan);
f3ca80fc 2030 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 2031 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
9396dec9 2032 INIT_WORK(&dev->async_work, nvme_async_event_work);
2d55cd5f
CH
2033 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2034 (unsigned long)dev);
77bf25ea 2035 mutex_init(&dev->shutdown_lock);
db3cbfff 2036 init_completion(&dev->ioq_wait);
b60503ba 2037
091b6092
MW
2038 result = nvme_setup_prp_pools(dev);
2039 if (result)
a96d4f5c 2040 goto put_pci;
4cc06521 2041
f3ca80fc
CH
2042 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2043 id->driver_data);
4cc06521 2044 if (result)
2e1d8448 2045 goto release_pools;
740216fc 2046
1b3c47c1
SG
2047 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2048
92f7a162 2049 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
2050 return 0;
2051
0877cb0d 2052 release_pools:
091b6092 2053 nvme_release_prp_pools(dev);
a96d4f5c 2054 put_pci:
e75ec752 2055 put_device(dev->dev);
b00a726a 2056 nvme_dev_unmap(dev);
b60503ba
MW
2057 free:
2058 kfree(dev->queues);
2059 kfree(dev->entry);
2060 kfree(dev);
2061 return result;
2062}
2063
f0d54a54
KB
2064static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2065{
a6739479 2066 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2067
a6739479 2068 if (prepare)
a5cdb68c 2069 nvme_dev_disable(dev, false);
a6739479 2070 else
92f7a162 2071 queue_work(nvme_workq, &dev->reset_work);
f0d54a54
KB
2072}
2073
09ece142
KB
2074static void nvme_shutdown(struct pci_dev *pdev)
2075{
2076 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2077 nvme_dev_disable(dev, true);
09ece142
KB
2078}
2079
f58944e2
KB
2080/*
2081 * The driver's remove may be called on a device in a partially initialized
2082 * state. This function must not have any dependencies on the device state in
2083 * order to proceed.
2084 */
8d85fce7 2085static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2086{
2087 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2088
2d55cd5f 2089 del_timer_sync(&dev->watchdog_timer);
9a6b9458 2090
646017a6 2091 set_bit(NVME_CTRL_REMOVING, &dev->flags);
9a6b9458 2092 pci_set_drvdata(pdev, NULL);
9396dec9 2093 flush_work(&dev->async_work);
a5768aa8 2094 flush_work(&dev->scan_work);
5bae7f73 2095 nvme_remove_namespaces(&dev->ctrl);
53029b04 2096 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2097 nvme_dev_disable(dev, true);
ff23a2a1 2098 flush_work(&dev->reset_work);
a4aea562 2099 nvme_dev_remove_admin(dev);
a1a5ef99 2100 nvme_free_queues(dev, 0);
8ffaadf7 2101 nvme_release_cmb(dev);
9a6b9458 2102 nvme_release_prp_pools(dev);
b00a726a 2103 nvme_dev_unmap(dev);
1673f1f0 2104 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2105}
2106
671a6018 2107#ifdef CONFIG_PM_SLEEP
cd638946
KB
2108static int nvme_suspend(struct device *dev)
2109{
2110 struct pci_dev *pdev = to_pci_dev(dev);
2111 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2112
a5cdb68c 2113 nvme_dev_disable(ndev, true);
cd638946
KB
2114 return 0;
2115}
2116
2117static int nvme_resume(struct device *dev)
2118{
2119 struct pci_dev *pdev = to_pci_dev(dev);
2120 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2121
92f7a162 2122 queue_work(nvme_workq, &ndev->reset_work);
9a6b9458 2123 return 0;
cd638946 2124}
671a6018 2125#endif
cd638946
KB
2126
2127static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2128
a0a3408e
KB
2129static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2130 pci_channel_state_t state)
2131{
2132 struct nvme_dev *dev = pci_get_drvdata(pdev);
2133
2134 /*
2135 * A frozen channel requires a reset. When detected, this method will
2136 * shutdown the controller to quiesce. The controller will be restarted
2137 * after the slot reset through driver's slot_reset callback.
2138 */
1b3c47c1 2139 dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
a0a3408e
KB
2140 switch (state) {
2141 case pci_channel_io_normal:
2142 return PCI_ERS_RESULT_CAN_RECOVER;
2143 case pci_channel_io_frozen:
a5cdb68c 2144 nvme_dev_disable(dev, false);
a0a3408e
KB
2145 return PCI_ERS_RESULT_NEED_RESET;
2146 case pci_channel_io_perm_failure:
2147 return PCI_ERS_RESULT_DISCONNECT;
2148 }
2149 return PCI_ERS_RESULT_NEED_RESET;
2150}
2151
2152static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2153{
2154 struct nvme_dev *dev = pci_get_drvdata(pdev);
2155
1b3c47c1 2156 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e
KB
2157 pci_restore_state(pdev);
2158 queue_work(nvme_workq, &dev->reset_work);
2159 return PCI_ERS_RESULT_RECOVERED;
2160}
2161
2162static void nvme_error_resume(struct pci_dev *pdev)
2163{
2164 pci_cleanup_aer_uncorrect_error_status(pdev);
2165}
2166
1d352035 2167static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2168 .error_detected = nvme_error_detected,
b60503ba
MW
2169 .slot_reset = nvme_slot_reset,
2170 .resume = nvme_error_resume,
f0d54a54 2171 .reset_notify = nvme_reset_notify,
b60503ba
MW
2172};
2173
2174/* Move to pci_ids.h later */
2175#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2176
6eb0d698 2177static const struct pci_device_id nvme_id_table[] = {
106198ed 2178 { PCI_VDEVICE(INTEL, 0x0953),
08095e70
KB
2179 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2180 NVME_QUIRK_DISCARD_ZEROES, },
540c801c
KB
2181 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2182 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
b60503ba 2183 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2184 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2185 { 0, }
2186};
2187MODULE_DEVICE_TABLE(pci, nvme_id_table);
2188
2189static struct pci_driver nvme_driver = {
2190 .name = "nvme",
2191 .id_table = nvme_id_table,
2192 .probe = nvme_probe,
8d85fce7 2193 .remove = nvme_remove,
09ece142 2194 .shutdown = nvme_shutdown,
cd638946
KB
2195 .driver = {
2196 .pm = &nvme_dev_pm_ops,
2197 },
b60503ba
MW
2198 .err_handler = &nvme_err_handler,
2199};
2200
2201static int __init nvme_init(void)
2202{
0ac13140 2203 int result;
1fa6aead 2204
92f7a162 2205 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2206 if (!nvme_workq)
b9afca3e 2207 return -ENOMEM;
9a6b9458 2208
f3db22fe
KB
2209 result = pci_register_driver(&nvme_driver);
2210 if (result)
576d55d6 2211 destroy_workqueue(nvme_workq);
b60503ba
MW
2212 return result;
2213}
2214
2215static void __exit nvme_exit(void)
2216{
2217 pci_unregister_driver(&nvme_driver);
9a6b9458 2218 destroy_workqueue(nvme_workq);
21bd78bc 2219 _nvme_check_size();
b60503ba
MW
2220}
2221
2222MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2223MODULE_LICENSE("GPL");
c78b4713 2224MODULE_VERSION("1.0");
b60503ba
MW
2225module_init(nvme_init);
2226module_exit(nvme_exit);