]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
loop: Make user notify for adding loop device failed
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
77bf25ea 34#include <linux/mutex.h>
b60503ba 35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
2d55cd5f 41#include <linux/timer.h>
b60503ba 42#include <linux/types.h>
2f8e2c87 43#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 44#include <asm/unaligned.h>
797a796a 45
f11bb3e2
CH
46#include "nvme.h"
47
9d43cf64 48#define NVME_Q_DEPTH 1024
d31af0a3 49#define NVME_AQ_DEPTH 256
b60503ba
MW
50#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
adf68f21
CH
52
53/*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
f866fc42 57#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 58
58ffacb5
MW
59static int use_threaded_interrupts;
60module_param(use_threaded_interrupts, int, 0);
61
8ffaadf7
JD
62static bool use_cmb_sqes = true;
63module_param(use_cmb_sqes, bool, 0644);
64MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
65
9a6b9458 66static struct workqueue_struct *nvme_workq;
1fa6aead 67
1c63dc66
CH
68struct nvme_dev;
69struct nvme_queue;
b3fffdef 70
4cc06521 71static int nvme_reset(struct nvme_dev *dev);
a0fa9647 72static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 73static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 74
1c63dc66
CH
75/*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78struct nvme_dev {
1c63dc66
CH
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
86 unsigned queue_count;
87 unsigned online_queues;
88 unsigned max_qid;
89 int q_depth;
90 u32 db_stride;
1c63dc66
CH
91 struct msix_entry *entry;
92 void __iomem *bar;
1c63dc66 93 struct work_struct reset_work;
5c8809e6 94 struct work_struct remove_work;
2d55cd5f 95 struct timer_list watchdog_timer;
77bf25ea 96 struct mutex shutdown_lock;
1c63dc66 97 bool subsystem;
1c63dc66
CH
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
1c63dc66 102 struct nvme_ctrl ctrl;
db3cbfff 103 struct completion ioq_wait;
4d115420 104};
1fa6aead 105
1c63dc66
CH
106static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107{
108 return container_of(ctrl, struct nvme_dev, ctrl);
109}
110
b60503ba
MW
111/*
112 * An NVM Express queue. Each device has at least two (one for admin
113 * commands and one for I/O commands).
114 */
115struct nvme_queue {
116 struct device *q_dmadev;
091b6092 117 struct nvme_dev *dev;
3193f07b 118 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
119 spinlock_t q_lock;
120 struct nvme_command *sq_cmds;
8ffaadf7 121 struct nvme_command __iomem *sq_cmds_io;
b60503ba 122 volatile struct nvme_completion *cqes;
42483228 123 struct blk_mq_tags **tags;
b60503ba
MW
124 dma_addr_t sq_dma_addr;
125 dma_addr_t cq_dma_addr;
b60503ba
MW
126 u32 __iomem *q_db;
127 u16 q_depth;
6222d172 128 s16 cq_vector;
b60503ba
MW
129 u16 sq_tail;
130 u16 cq_head;
c30341dc 131 u16 qid;
e9539f47
MW
132 u8 cq_phase;
133 u8 cqe_seen;
b60503ba
MW
134};
135
71bd150c
CH
136/*
137 * The nvme_iod describes the data in an I/O, including the list of PRP
138 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 139 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
140 * allocated to store the PRP list.
141 */
142struct nvme_iod {
f4800d6d
CH
143 struct nvme_queue *nvmeq;
144 int aborted;
71bd150c 145 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
146 int nents; /* Used in scatterlist */
147 int length; /* Of data, in bytes */
148 dma_addr_t first_dma;
bf684057 149 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
150 struct scatterlist *sg;
151 struct scatterlist inline_sg[0];
b60503ba
MW
152};
153
154/*
155 * Check we didin't inadvertently grow the command struct
156 */
157static inline void _nvme_check_size(void)
158{
159 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 164 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 165 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
166 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 170 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
171}
172
ac3dd5bd
JA
173/*
174 * Max size of iod being embedded in the request payload
175 */
176#define NVME_INT_PAGES 2
5fd4ce1b 177#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
178
179/*
180 * Will slightly overestimate the number of pages needed. This is OK
181 * as it only leads to a small amount of wasted memory for the lifetime of
182 * the I/O.
183 */
184static int nvme_npages(unsigned size, struct nvme_dev *dev)
185{
5fd4ce1b
CH
186 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187 dev->ctrl.page_size);
ac3dd5bd
JA
188 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
189}
190
f4800d6d
CH
191static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192 unsigned int size, unsigned int nseg)
ac3dd5bd 193{
f4800d6d
CH
194 return sizeof(__le64 *) * nvme_npages(size, dev) +
195 sizeof(struct scatterlist) * nseg;
196}
ac3dd5bd 197
f4800d6d
CH
198static unsigned int nvme_cmd_size(struct nvme_dev *dev)
199{
200 return sizeof(struct nvme_iod) +
201 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
202}
203
a4aea562
MB
204static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
205 unsigned int hctx_idx)
e85248e5 206{
a4aea562
MB
207 struct nvme_dev *dev = data;
208 struct nvme_queue *nvmeq = dev->queues[0];
209
42483228
KB
210 WARN_ON(hctx_idx != 0);
211 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
212 WARN_ON(nvmeq->tags);
213
a4aea562 214 hctx->driver_data = nvmeq;
42483228 215 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 216 return 0;
e85248e5
MW
217}
218
4af0e21c
KB
219static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
220{
221 struct nvme_queue *nvmeq = hctx->driver_data;
222
223 nvmeq->tags = NULL;
224}
225
a4aea562
MB
226static int nvme_admin_init_request(void *data, struct request *req,
227 unsigned int hctx_idx, unsigned int rq_idx,
228 unsigned int numa_node)
22404274 229{
a4aea562 230 struct nvme_dev *dev = data;
f4800d6d 231 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
232 struct nvme_queue *nvmeq = dev->queues[0];
233
234 BUG_ON(!nvmeq);
f4800d6d 235 iod->nvmeq = nvmeq;
a4aea562 236 return 0;
22404274
KB
237}
238
a4aea562
MB
239static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
240 unsigned int hctx_idx)
b60503ba 241{
a4aea562 242 struct nvme_dev *dev = data;
42483228 243 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 244
42483228
KB
245 if (!nvmeq->tags)
246 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 247
42483228 248 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
249 hctx->driver_data = nvmeq;
250 return 0;
b60503ba
MW
251}
252
a4aea562
MB
253static int nvme_init_request(void *data, struct request *req,
254 unsigned int hctx_idx, unsigned int rq_idx,
255 unsigned int numa_node)
b60503ba 256{
a4aea562 257 struct nvme_dev *dev = data;
f4800d6d 258 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
259 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
260
261 BUG_ON(!nvmeq);
f4800d6d 262 iod->nvmeq = nvmeq;
a4aea562
MB
263 return 0;
264}
265
b60503ba 266/**
adf68f21 267 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
268 * @nvmeq: The queue to use
269 * @cmd: The command to send
270 *
271 * Safe to use from interrupt context
272 */
e3f879bf
SB
273static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
274 struct nvme_command *cmd)
b60503ba 275{
a4aea562
MB
276 u16 tail = nvmeq->sq_tail;
277
8ffaadf7
JD
278 if (nvmeq->sq_cmds_io)
279 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
280 else
281 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
282
b60503ba
MW
283 if (++tail == nvmeq->q_depth)
284 tail = 0;
7547881d 285 writel(tail, nvmeq->q_db);
b60503ba 286 nvmeq->sq_tail = tail;
b60503ba
MW
287}
288
f4800d6d 289static __le64 **iod_list(struct request *req)
b60503ba 290{
f4800d6d
CH
291 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
292 return (__le64 **)(iod->sg + req->nr_phys_segments);
b60503ba
MW
293}
294
58b45602
ML
295static int nvme_init_iod(struct request *rq, unsigned size,
296 struct nvme_dev *dev)
ac3dd5bd 297{
f4800d6d
CH
298 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
299 int nseg = rq->nr_phys_segments;
ac3dd5bd 300
f4800d6d
CH
301 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
302 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
303 if (!iod->sg)
304 return BLK_MQ_RQ_QUEUE_BUSY;
305 } else {
306 iod->sg = iod->inline_sg;
ac3dd5bd
JA
307 }
308
f4800d6d
CH
309 iod->aborted = 0;
310 iod->npages = -1;
311 iod->nents = 0;
312 iod->length = size;
313 return 0;
ac3dd5bd
JA
314}
315
f4800d6d 316static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 317{
f4800d6d 318 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 319 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 320 int i;
f4800d6d 321 __le64 **list = iod_list(req);
eca18b23
MW
322 dma_addr_t prp_dma = iod->first_dma;
323
6904242d 324 nvme_cleanup_cmd(req);
03b5929e 325
eca18b23
MW
326 if (iod->npages == 0)
327 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
328 for (i = 0; i < iod->npages; i++) {
329 __le64 *prp_list = list[i];
330 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
331 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
332 prp_dma = next_prp_dma;
333 }
ac3dd5bd 334
f4800d6d
CH
335 if (iod->sg != iod->inline_sg)
336 kfree(iod->sg);
b4ff9c8d
KB
337}
338
52b68d7e 339#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
340static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
341{
342 if (be32_to_cpu(pi->ref_tag) == v)
343 pi->ref_tag = cpu_to_be32(p);
344}
345
346static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
347{
348 if (be32_to_cpu(pi->ref_tag) == p)
349 pi->ref_tag = cpu_to_be32(v);
350}
351
352/**
353 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
354 *
355 * The virtual start sector is the one that was originally submitted by the
356 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
357 * start sector may be different. Remap protection information to match the
358 * physical LBA on writes, and back to the original seed on reads.
359 *
360 * Type 0 and 3 do not have a ref tag, so no remapping required.
361 */
362static void nvme_dif_remap(struct request *req,
363 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
364{
365 struct nvme_ns *ns = req->rq_disk->private_data;
366 struct bio_integrity_payload *bip;
367 struct t10_pi_tuple *pi;
368 void *p, *pmap;
369 u32 i, nlb, ts, phys, virt;
370
371 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
372 return;
373
374 bip = bio_integrity(req->bio);
375 if (!bip)
376 return;
377
378 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
379
380 p = pmap;
381 virt = bip_get_seed(bip);
382 phys = nvme_block_nr(ns, blk_rq_pos(req));
383 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 384 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
385
386 for (i = 0; i < nlb; i++, virt++, phys++) {
387 pi = (struct t10_pi_tuple *)p;
388 dif_swap(phys, virt, pi);
389 p += ts;
390 }
391 kunmap_atomic(pmap);
392}
52b68d7e
KB
393#else /* CONFIG_BLK_DEV_INTEGRITY */
394static void nvme_dif_remap(struct request *req,
395 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
396{
397}
398static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
399{
400}
401static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
402{
403}
52b68d7e
KB
404#endif
405
f4800d6d 406static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
69d2b571 407 int total_len)
ff22b54f 408{
f4800d6d 409 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 410 struct dma_pool *pool;
eca18b23
MW
411 int length = total_len;
412 struct scatterlist *sg = iod->sg;
ff22b54f
MW
413 int dma_len = sg_dma_len(sg);
414 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 415 u32 page_size = dev->ctrl.page_size;
f137e0f1 416 int offset = dma_addr & (page_size - 1);
e025344c 417 __le64 *prp_list;
f4800d6d 418 __le64 **list = iod_list(req);
e025344c 419 dma_addr_t prp_dma;
eca18b23 420 int nprps, i;
ff22b54f 421
1d090624 422 length -= (page_size - offset);
ff22b54f 423 if (length <= 0)
69d2b571 424 return true;
ff22b54f 425
1d090624 426 dma_len -= (page_size - offset);
ff22b54f 427 if (dma_len) {
1d090624 428 dma_addr += (page_size - offset);
ff22b54f
MW
429 } else {
430 sg = sg_next(sg);
431 dma_addr = sg_dma_address(sg);
432 dma_len = sg_dma_len(sg);
433 }
434
1d090624 435 if (length <= page_size) {
edd10d33 436 iod->first_dma = dma_addr;
69d2b571 437 return true;
e025344c
SMM
438 }
439
1d090624 440 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
441 if (nprps <= (256 / 8)) {
442 pool = dev->prp_small_pool;
eca18b23 443 iod->npages = 0;
99802a7a
MW
444 } else {
445 pool = dev->prp_page_pool;
eca18b23 446 iod->npages = 1;
99802a7a
MW
447 }
448
69d2b571 449 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 450 if (!prp_list) {
edd10d33 451 iod->first_dma = dma_addr;
eca18b23 452 iod->npages = -1;
69d2b571 453 return false;
b77954cb 454 }
eca18b23
MW
455 list[0] = prp_list;
456 iod->first_dma = prp_dma;
e025344c
SMM
457 i = 0;
458 for (;;) {
1d090624 459 if (i == page_size >> 3) {
e025344c 460 __le64 *old_prp_list = prp_list;
69d2b571 461 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 462 if (!prp_list)
69d2b571 463 return false;
eca18b23 464 list[iod->npages++] = prp_list;
7523d834
MW
465 prp_list[0] = old_prp_list[i - 1];
466 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
467 i = 1;
e025344c
SMM
468 }
469 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
470 dma_len -= page_size;
471 dma_addr += page_size;
472 length -= page_size;
e025344c
SMM
473 if (length <= 0)
474 break;
475 if (dma_len > 0)
476 continue;
477 BUG_ON(dma_len < 0);
478 sg = sg_next(sg);
479 dma_addr = sg_dma_address(sg);
480 dma_len = sg_dma_len(sg);
ff22b54f
MW
481 }
482
69d2b571 483 return true;
ff22b54f
MW
484}
485
f4800d6d 486static int nvme_map_data(struct nvme_dev *dev, struct request *req,
03b5929e 487 unsigned size, struct nvme_command *cmnd)
d29ec824 488{
f4800d6d 489 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
490 struct request_queue *q = req->q;
491 enum dma_data_direction dma_dir = rq_data_dir(req) ?
492 DMA_TO_DEVICE : DMA_FROM_DEVICE;
493 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 494
ba1ca37e
CH
495 sg_init_table(iod->sg, req->nr_phys_segments);
496 iod->nents = blk_rq_map_sg(q, req, iod->sg);
497 if (!iod->nents)
498 goto out;
d29ec824 499
ba1ca37e
CH
500 ret = BLK_MQ_RQ_QUEUE_BUSY;
501 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
502 goto out;
d29ec824 503
03b5929e 504 if (!nvme_setup_prps(dev, req, size))
ba1ca37e 505 goto out_unmap;
0e5e4f0e 506
ba1ca37e
CH
507 ret = BLK_MQ_RQ_QUEUE_ERROR;
508 if (blk_integrity_rq(req)) {
509 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
510 goto out_unmap;
0e5e4f0e 511
bf684057
CH
512 sg_init_table(&iod->meta_sg, 1);
513 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 514 goto out_unmap;
0e5e4f0e 515
ba1ca37e
CH
516 if (rq_data_dir(req))
517 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 518
bf684057 519 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 520 goto out_unmap;
d29ec824 521 }
00df5cb4 522
eb793e2c
CH
523 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
524 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 525 if (blk_integrity_rq(req))
bf684057 526 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 527 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 528
ba1ca37e
CH
529out_unmap:
530 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
531out:
532 return ret;
00df5cb4
MW
533}
534
f4800d6d 535static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 536{
f4800d6d 537 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
538 enum dma_data_direction dma_dir = rq_data_dir(req) ?
539 DMA_TO_DEVICE : DMA_FROM_DEVICE;
540
541 if (iod->nents) {
542 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
543 if (blk_integrity_rq(req)) {
544 if (!rq_data_dir(req))
545 nvme_dif_remap(req, nvme_dif_complete);
bf684057 546 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 547 }
e19b127f 548 }
e1e5e564 549
f4800d6d 550 nvme_free_iod(dev, req);
d4f6c3ab 551}
b60503ba 552
d29ec824
CH
553/*
554 * NOTE: ns is NULL when called on the admin queue.
555 */
a4aea562
MB
556static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
557 const struct blk_mq_queue_data *bd)
edd10d33 558{
a4aea562
MB
559 struct nvme_ns *ns = hctx->queue->queuedata;
560 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 561 struct nvme_dev *dev = nvmeq->dev;
a4aea562 562 struct request *req = bd->rq;
ba1ca37e 563 struct nvme_command cmnd;
58b45602 564 unsigned map_len;
ba1ca37e 565 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 566
e1e5e564
KB
567 /*
568 * If formated with metadata, require the block layer provide a buffer
569 * unless this namespace is formated such that the metadata can be
570 * stripped/generated by the controller with PRACT=1.
571 */
d29ec824 572 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
573 if (!(ns->pi_type && ns->ms == 8) &&
574 req->cmd_type != REQ_TYPE_DRV_PRIV) {
eee417b0 575 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
576 return BLK_MQ_RQ_QUEUE_OK;
577 }
578 }
579
58b45602
ML
580 map_len = nvme_map_len(req);
581 ret = nvme_init_iod(req, map_len, dev);
f4800d6d
CH
582 if (ret)
583 return ret;
a4aea562 584
8093f7ca 585 ret = nvme_setup_cmd(ns, req, &cmnd);
03b5929e
ML
586 if (ret)
587 goto out;
a4aea562 588
03b5929e
ML
589 if (req->nr_phys_segments)
590 ret = nvme_map_data(dev, req, map_len, &cmnd);
a4aea562 591
ba1ca37e
CH
592 if (ret)
593 goto out;
a4aea562 594
ba1ca37e 595 cmnd.common.command_id = req->tag;
aae239e1 596 blk_mq_start_request(req);
a4aea562 597
ba1ca37e 598 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 599 if (unlikely(nvmeq->cq_vector < 0)) {
69d9a99c
KB
600 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
601 ret = BLK_MQ_RQ_QUEUE_BUSY;
602 else
603 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20
KB
604 spin_unlock_irq(&nvmeq->q_lock);
605 goto out;
606 }
ba1ca37e 607 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
608 nvme_process_cq(nvmeq);
609 spin_unlock_irq(&nvmeq->q_lock);
610 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 611out:
f4800d6d 612 nvme_free_iod(dev, req);
ba1ca37e 613 return ret;
b60503ba 614}
e1e5e564 615
eee417b0
CH
616static void nvme_complete_rq(struct request *req)
617{
f4800d6d
CH
618 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
619 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0 620 int error = 0;
e1e5e564 621
f4800d6d 622 nvme_unmap_data(dev, req);
e1e5e564 623
eee417b0
CH
624 if (unlikely(req->errors)) {
625 if (nvme_req_needs_retry(req, req->errors)) {
626 nvme_requeue_req(req);
627 return;
e1e5e564 628 }
1974b1ae 629
eee417b0
CH
630 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
631 error = req->errors;
632 else
633 error = nvme_error_status(req->errors);
634 }
a4aea562 635
f4800d6d 636 if (unlikely(iod->aborted)) {
1b3c47c1 637 dev_warn(dev->ctrl.device,
eee417b0
CH
638 "completing aborted command with status: %04x\n",
639 req->errors);
640 }
a4aea562 641
eee417b0 642 blk_mq_end_request(req, error);
b60503ba
MW
643}
644
d783e0bd
MR
645/* We read the CQE phase first to check if the rest of the entry is valid */
646static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
647 u16 phase)
648{
649 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
650}
651
a0fa9647 652static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 653{
82123460 654 u16 head, phase;
b60503ba 655
b60503ba 656 head = nvmeq->cq_head;
82123460 657 phase = nvmeq->cq_phase;
b60503ba 658
d783e0bd 659 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 660 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 661 struct request *req;
adf68f21 662
b60503ba
MW
663 if (++head == nvmeq->q_depth) {
664 head = 0;
82123460 665 phase = !phase;
b60503ba 666 }
adf68f21 667
a0fa9647
JA
668 if (tag && *tag == cqe.command_id)
669 *tag = -1;
adf68f21 670
aae239e1 671 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 672 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
673 "invalid id %d completed on queue %d\n",
674 cqe.command_id, le16_to_cpu(cqe.sq_id));
675 continue;
676 }
677
adf68f21
CH
678 /*
679 * AEN requests are special as they don't time out and can
680 * survive any kind of queue freeze and often don't respond to
681 * aborts. We don't even bother to allocate a struct request
682 * for them but rather special case them here.
683 */
684 if (unlikely(nvmeq->qid == 0 &&
685 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
f866fc42 686 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
adf68f21
CH
687 continue;
688 }
689
eee417b0 690 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
1cb3cce5
CH
691 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
692 memcpy(req->special, &cqe, sizeof(cqe));
d783e0bd 693 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
eee417b0 694
b60503ba
MW
695 }
696
697 /* If the controller ignores the cq head doorbell and continuously
698 * writes to the queue, it is theoretically possible to wrap around
699 * the queue twice and mistakenly return IRQ_NONE. Linux only
700 * requires that 0.1% of your interrupts are handled, so this isn't
701 * a big problem.
702 */
82123460 703 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 704 return;
b60503ba 705
604e8c8d
KB
706 if (likely(nvmeq->cq_vector >= 0))
707 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 708 nvmeq->cq_head = head;
82123460 709 nvmeq->cq_phase = phase;
b60503ba 710
e9539f47 711 nvmeq->cqe_seen = 1;
a0fa9647
JA
712}
713
714static void nvme_process_cq(struct nvme_queue *nvmeq)
715{
716 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
717}
718
719static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
720{
721 irqreturn_t result;
722 struct nvme_queue *nvmeq = data;
723 spin_lock(&nvmeq->q_lock);
e9539f47
MW
724 nvme_process_cq(nvmeq);
725 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
726 nvmeq->cqe_seen = 0;
58ffacb5
MW
727 spin_unlock(&nvmeq->q_lock);
728 return result;
729}
730
731static irqreturn_t nvme_irq_check(int irq, void *data)
732{
733 struct nvme_queue *nvmeq = data;
d783e0bd
MR
734 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
735 return IRQ_WAKE_THREAD;
736 return IRQ_NONE;
58ffacb5
MW
737}
738
a0fa9647
JA
739static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
740{
741 struct nvme_queue *nvmeq = hctx->driver_data;
742
d783e0bd 743 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
744 spin_lock_irq(&nvmeq->q_lock);
745 __nvme_process_cq(nvmeq, &tag);
746 spin_unlock_irq(&nvmeq->q_lock);
747
748 if (tag == -1)
749 return 1;
750 }
751
752 return 0;
753}
754
f866fc42 755static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 756{
f866fc42 757 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 758 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 759 struct nvme_command c;
b60503ba 760
a4aea562
MB
761 memset(&c, 0, sizeof(c));
762 c.common.opcode = nvme_admin_async_event;
f866fc42 763 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 764
9396dec9 765 spin_lock_irq(&nvmeq->q_lock);
f866fc42 766 __nvme_submit_cmd(nvmeq, &c);
9396dec9 767 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
768}
769
b60503ba 770static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 771{
b60503ba
MW
772 struct nvme_command c;
773
774 memset(&c, 0, sizeof(c));
775 c.delete_queue.opcode = opcode;
776 c.delete_queue.qid = cpu_to_le16(id);
777
1c63dc66 778 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
779}
780
b60503ba
MW
781static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
782 struct nvme_queue *nvmeq)
783{
b60503ba
MW
784 struct nvme_command c;
785 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
786
d29ec824
CH
787 /*
788 * Note: we (ab)use the fact the the prp fields survive if no data
789 * is attached to the request.
790 */
b60503ba
MW
791 memset(&c, 0, sizeof(c));
792 c.create_cq.opcode = nvme_admin_create_cq;
793 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
794 c.create_cq.cqid = cpu_to_le16(qid);
795 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
796 c.create_cq.cq_flags = cpu_to_le16(flags);
797 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
798
1c63dc66 799 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
800}
801
802static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
803 struct nvme_queue *nvmeq)
804{
b60503ba
MW
805 struct nvme_command c;
806 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
807
d29ec824
CH
808 /*
809 * Note: we (ab)use the fact the the prp fields survive if no data
810 * is attached to the request.
811 */
b60503ba
MW
812 memset(&c, 0, sizeof(c));
813 c.create_sq.opcode = nvme_admin_create_sq;
814 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
815 c.create_sq.sqid = cpu_to_le16(qid);
816 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
817 c.create_sq.sq_flags = cpu_to_le16(flags);
818 c.create_sq.cqid = cpu_to_le16(qid);
819
1c63dc66 820 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
821}
822
823static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
824{
825 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
826}
827
828static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
829{
830 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
831}
832
e7a2a87d 833static void abort_endio(struct request *req, int error)
bc5fc7e4 834{
f4800d6d
CH
835 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
836 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d 837 u16 status = req->errors;
e44ac588 838
1cb3cce5 839 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
e7a2a87d 840 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 841 blk_mq_free_request(req);
bc5fc7e4
MW
842}
843
31c7c7d2 844static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 845{
f4800d6d
CH
846 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 848 struct nvme_dev *dev = nvmeq->dev;
a4aea562 849 struct request *abort_req;
a4aea562 850 struct nvme_command cmd;
c30341dc 851
31c7c7d2 852 /*
fd634f41
CH
853 * Shutdown immediately if controller times out while starting. The
854 * reset work will see the pci device disabled when it gets the forced
855 * cancellation error. All outstanding requests are completed on
856 * shutdown, so we return BLK_EH_HANDLED.
857 */
bb8d261e 858 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 859 dev_warn(dev->ctrl.device,
fd634f41
CH
860 "I/O %d QID %d timeout, disable controller\n",
861 req->tag, nvmeq->qid);
a5cdb68c 862 nvme_dev_disable(dev, false);
fd634f41
CH
863 req->errors = NVME_SC_CANCELLED;
864 return BLK_EH_HANDLED;
c30341dc
KB
865 }
866
fd634f41
CH
867 /*
868 * Shutdown the controller immediately and schedule a reset if the
869 * command was already aborted once before and still hasn't been
870 * returned to the driver, or if this is the admin queue.
31c7c7d2 871 */
f4800d6d 872 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 873 dev_warn(dev->ctrl.device,
e1569a16
KB
874 "I/O %d QID %d timeout, reset controller\n",
875 req->tag, nvmeq->qid);
a5cdb68c 876 nvme_dev_disable(dev, false);
e1569a16 877 queue_work(nvme_workq, &dev->reset_work);
c30341dc 878
e1569a16
KB
879 /*
880 * Mark the request as handled, since the inline shutdown
881 * forces all outstanding requests to complete.
882 */
883 req->errors = NVME_SC_CANCELLED;
884 return BLK_EH_HANDLED;
c30341dc 885 }
c30341dc 886
f4800d6d 887 iod->aborted = 1;
c30341dc 888
e7a2a87d 889 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 890 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 891 return BLK_EH_RESET_TIMER;
6bf25d16 892 }
a4aea562 893
c30341dc
KB
894 memset(&cmd, 0, sizeof(cmd));
895 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 896 cmd.abort.cid = req->tag;
c30341dc 897 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 898
1b3c47c1
SG
899 dev_warn(nvmeq->dev->ctrl.device,
900 "I/O %d QID %d timeout, aborting\n",
901 req->tag, nvmeq->qid);
e7a2a87d
CH
902
903 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 904 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
905 if (IS_ERR(abort_req)) {
906 atomic_inc(&dev->ctrl.abort_limit);
907 return BLK_EH_RESET_TIMER;
908 }
909
910 abort_req->timeout = ADMIN_TIMEOUT;
911 abort_req->end_io_data = NULL;
912 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 913
31c7c7d2
CH
914 /*
915 * The aborted req will be completed on receiving the abort req.
916 * We enable the timer again. If hit twice, it'll cause a device reset,
917 * as the device then is in a faulty state.
918 */
919 return BLK_EH_RESET_TIMER;
c30341dc
KB
920}
921
a4aea562
MB
922static void nvme_free_queue(struct nvme_queue *nvmeq)
923{
9e866774
MW
924 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
925 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
926 if (nvmeq->sq_cmds)
927 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
928 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
929 kfree(nvmeq);
930}
931
a1a5ef99 932static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
933{
934 int i;
935
a1a5ef99 936 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 937 struct nvme_queue *nvmeq = dev->queues[i];
22404274 938 dev->queue_count--;
a4aea562 939 dev->queues[i] = NULL;
f435c282 940 nvme_free_queue(nvmeq);
121c7ad4 941 }
22404274
KB
942}
943
4d115420
KB
944/**
945 * nvme_suspend_queue - put queue into suspended state
946 * @nvmeq - queue to suspend
4d115420
KB
947 */
948static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 949{
2b25d981 950 int vector;
b60503ba 951
a09115b2 952 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
953 if (nvmeq->cq_vector == -1) {
954 spin_unlock_irq(&nvmeq->q_lock);
955 return 1;
956 }
957 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 958 nvmeq->dev->online_queues--;
2b25d981 959 nvmeq->cq_vector = -1;
a09115b2
MW
960 spin_unlock_irq(&nvmeq->q_lock);
961
1c63dc66 962 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 963 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 964
aba2080f
MW
965 irq_set_affinity_hint(vector, NULL);
966 free_irq(vector, nvmeq);
b60503ba 967
4d115420
KB
968 return 0;
969}
b60503ba 970
a5cdb68c 971static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 972{
a5cdb68c 973 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
974
975 if (!nvmeq)
976 return;
977 if (nvme_suspend_queue(nvmeq))
978 return;
979
a5cdb68c
KB
980 if (shutdown)
981 nvme_shutdown_ctrl(&dev->ctrl);
982 else
983 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
984 dev->bar + NVME_REG_CAP));
07836e65
KB
985
986 spin_lock_irq(&nvmeq->q_lock);
987 nvme_process_cq(nvmeq);
988 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
989}
990
8ffaadf7
JD
991static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
992 int entry_size)
993{
994 int q_depth = dev->q_depth;
5fd4ce1b
CH
995 unsigned q_size_aligned = roundup(q_depth * entry_size,
996 dev->ctrl.page_size);
8ffaadf7
JD
997
998 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 999 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1000 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1001 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1002
1003 /*
1004 * Ensure the reduced q_depth is above some threshold where it
1005 * would be better to map queues in system memory with the
1006 * original depth
1007 */
1008 if (q_depth < 64)
1009 return -ENOMEM;
1010 }
1011
1012 return q_depth;
1013}
1014
1015static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1016 int qid, int depth)
1017{
1018 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1019 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1020 dev->ctrl.page_size);
8ffaadf7
JD
1021 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1022 nvmeq->sq_cmds_io = dev->cmb + offset;
1023 } else {
1024 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1025 &nvmeq->sq_dma_addr, GFP_KERNEL);
1026 if (!nvmeq->sq_cmds)
1027 return -ENOMEM;
1028 }
1029
1030 return 0;
1031}
1032
b60503ba 1033static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1034 int depth)
b60503ba 1035{
a4aea562 1036 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1037 if (!nvmeq)
1038 return NULL;
1039
e75ec752 1040 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1041 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1042 if (!nvmeq->cqes)
1043 goto free_nvmeq;
b60503ba 1044
8ffaadf7 1045 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1046 goto free_cqdma;
1047
e75ec752 1048 nvmeq->q_dmadev = dev->dev;
091b6092 1049 nvmeq->dev = dev;
3193f07b 1050 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1051 dev->ctrl.instance, qid);
b60503ba
MW
1052 spin_lock_init(&nvmeq->q_lock);
1053 nvmeq->cq_head = 0;
82123460 1054 nvmeq->cq_phase = 1;
b80d5ccc 1055 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1056 nvmeq->q_depth = depth;
c30341dc 1057 nvmeq->qid = qid;
758dd7fd 1058 nvmeq->cq_vector = -1;
a4aea562 1059 dev->queues[qid] = nvmeq;
36a7e993
JD
1060 dev->queue_count++;
1061
b60503ba
MW
1062 return nvmeq;
1063
1064 free_cqdma:
e75ec752 1065 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1066 nvmeq->cq_dma_addr);
1067 free_nvmeq:
1068 kfree(nvmeq);
1069 return NULL;
1070}
1071
3001082c
MW
1072static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1073 const char *name)
1074{
58ffacb5
MW
1075 if (use_threaded_interrupts)
1076 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1077 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1078 name, nvmeq);
3001082c 1079 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1080 IRQF_SHARED, name, nvmeq);
3001082c
MW
1081}
1082
22404274 1083static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1084{
22404274 1085 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1086
7be50e93 1087 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1088 nvmeq->sq_tail = 0;
1089 nvmeq->cq_head = 0;
1090 nvmeq->cq_phase = 1;
b80d5ccc 1091 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1092 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1093 dev->online_queues++;
7be50e93 1094 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1095}
1096
1097static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1098{
1099 struct nvme_dev *dev = nvmeq->dev;
1100 int result;
3f85d50b 1101
2b25d981 1102 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1103 result = adapter_alloc_cq(dev, qid, nvmeq);
1104 if (result < 0)
22404274 1105 return result;
b60503ba
MW
1106
1107 result = adapter_alloc_sq(dev, qid, nvmeq);
1108 if (result < 0)
1109 goto release_cq;
1110
3193f07b 1111 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1112 if (result < 0)
1113 goto release_sq;
1114
22404274 1115 nvme_init_queue(nvmeq, qid);
22404274 1116 return result;
b60503ba
MW
1117
1118 release_sq:
1119 adapter_delete_sq(dev, qid);
1120 release_cq:
1121 adapter_delete_cq(dev, qid);
22404274 1122 return result;
b60503ba
MW
1123}
1124
a4aea562 1125static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1126 .queue_rq = nvme_queue_rq,
eee417b0 1127 .complete = nvme_complete_rq,
a4aea562
MB
1128 .map_queue = blk_mq_map_queue,
1129 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1130 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1131 .init_request = nvme_admin_init_request,
1132 .timeout = nvme_timeout,
1133};
1134
1135static struct blk_mq_ops nvme_mq_ops = {
1136 .queue_rq = nvme_queue_rq,
eee417b0 1137 .complete = nvme_complete_rq,
a4aea562
MB
1138 .map_queue = blk_mq_map_queue,
1139 .init_hctx = nvme_init_hctx,
1140 .init_request = nvme_init_request,
1141 .timeout = nvme_timeout,
a0fa9647 1142 .poll = nvme_poll,
a4aea562
MB
1143};
1144
ea191d2f
KB
1145static void nvme_dev_remove_admin(struct nvme_dev *dev)
1146{
1c63dc66 1147 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1148 /*
1149 * If the controller was reset during removal, it's possible
1150 * user requests may be waiting on a stopped queue. Start the
1151 * queue to flush these to completion.
1152 */
1153 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1154 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1155 blk_mq_free_tag_set(&dev->admin_tagset);
1156 }
1157}
1158
a4aea562
MB
1159static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1160{
1c63dc66 1161 if (!dev->ctrl.admin_q) {
a4aea562
MB
1162 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1163 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1164
1165 /*
1166 * Subtract one to leave an empty queue entry for 'Full Queue'
1167 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1168 */
1169 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1170 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1171 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1172 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1173 dev->admin_tagset.driver_data = dev;
1174
1175 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1176 return -ENOMEM;
1177
1c63dc66
CH
1178 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1179 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1180 blk_mq_free_tag_set(&dev->admin_tagset);
1181 return -ENOMEM;
1182 }
1c63dc66 1183 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1184 nvme_dev_remove_admin(dev);
1c63dc66 1185 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1186 return -ENODEV;
1187 }
0fb59cbc 1188 } else
25646264 1189 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1190
1191 return 0;
1192}
1193
8d85fce7 1194static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1195{
ba47e386 1196 int result;
b60503ba 1197 u32 aqa;
7a67cbea 1198 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1199 struct nvme_queue *nvmeq;
1200
7a67cbea 1201 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1202 NVME_CAP_NSSRC(cap) : 0;
1203
7a67cbea
CH
1204 if (dev->subsystem &&
1205 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1206 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1207
5fd4ce1b 1208 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1209 if (result < 0)
1210 return result;
b60503ba 1211
a4aea562 1212 nvmeq = dev->queues[0];
cd638946 1213 if (!nvmeq) {
2b25d981 1214 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1215 if (!nvmeq)
1216 return -ENOMEM;
cd638946 1217 }
b60503ba
MW
1218
1219 aqa = nvmeq->q_depth - 1;
1220 aqa |= aqa << 16;
1221
7a67cbea
CH
1222 writel(aqa, dev->bar + NVME_REG_AQA);
1223 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1224 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1225
5fd4ce1b 1226 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1227 if (result)
a4aea562
MB
1228 goto free_nvmeq;
1229
2b25d981 1230 nvmeq->cq_vector = 0;
3193f07b 1231 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1232 if (result) {
1233 nvmeq->cq_vector = -1;
0fb59cbc 1234 goto free_nvmeq;
758dd7fd 1235 }
025c557a 1236
b60503ba 1237 return result;
a4aea562 1238
a4aea562
MB
1239 free_nvmeq:
1240 nvme_free_queues(dev, 0);
1241 return result;
b60503ba
MW
1242}
1243
c875a709
GP
1244static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1245{
1246
1247 /* If true, indicates loss of adapter communication, possibly by a
1248 * NVMe Subsystem reset.
1249 */
1250 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1251
1252 /* If there is a reset ongoing, we shouldn't reset again. */
1253 if (work_busy(&dev->reset_work))
1254 return false;
1255
1256 /* We shouldn't reset unless the controller is on fatal error state
1257 * _or_ if we lost the communication with it.
1258 */
1259 if (!(csts & NVME_CSTS_CFS) && !nssro)
1260 return false;
1261
1262 /* If PCI error recovery process is happening, we cannot reset or
1263 * the recovery mechanism will surely fail.
1264 */
1265 if (pci_channel_offline(to_pci_dev(dev->dev)))
1266 return false;
1267
1268 return true;
1269}
1270
2d55cd5f 1271static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1272{
2d55cd5f
CH
1273 struct nvme_dev *dev = (struct nvme_dev *)data;
1274 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1275
c875a709
GP
1276 /* Skip controllers under certain specific conditions. */
1277 if (nvme_should_reset(dev, csts)) {
1278 if (queue_work(nvme_workq, &dev->reset_work))
2d55cd5f
CH
1279 dev_warn(dev->dev,
1280 "Failed status: 0x%x, reset controller.\n",
1281 csts);
2d55cd5f 1282 return;
1fa6aead 1283 }
2d55cd5f
CH
1284
1285 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1286}
1287
749941f2 1288static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1289{
949928c1 1290 unsigned i, max;
749941f2 1291 int ret = 0;
42f61420 1292
749941f2
CH
1293 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1294 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1295 ret = -ENOMEM;
42f61420 1296 break;
749941f2
CH
1297 }
1298 }
42f61420 1299
949928c1
KB
1300 max = min(dev->max_qid, dev->queue_count - 1);
1301 for (i = dev->online_queues; i <= max; i++) {
749941f2
CH
1302 ret = nvme_create_queue(dev->queues[i], i);
1303 if (ret) {
2659e57b 1304 nvme_free_queues(dev, i);
42f61420 1305 break;
2659e57b 1306 }
27e8166c 1307 }
749941f2
CH
1308
1309 /*
1310 * Ignore failing Create SQ/CQ commands, we can continue with less
1311 * than the desired aount of queues, and even a controller without
1312 * I/O queues an still be used to issue admin commands. This might
1313 * be useful to upgrade a buggy firmware for example.
1314 */
1315 return ret >= 0 ? 0 : ret;
b60503ba
MW
1316}
1317
8ffaadf7
JD
1318static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1319{
1320 u64 szu, size, offset;
1321 u32 cmbloc;
1322 resource_size_t bar_size;
1323 struct pci_dev *pdev = to_pci_dev(dev->dev);
1324 void __iomem *cmb;
1325 dma_addr_t dma_addr;
1326
1327 if (!use_cmb_sqes)
1328 return NULL;
1329
7a67cbea 1330 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1331 if (!(NVME_CMB_SZ(dev->cmbsz)))
1332 return NULL;
1333
7a67cbea 1334 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1335
1336 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1337 size = szu * NVME_CMB_SZ(dev->cmbsz);
1338 offset = szu * NVME_CMB_OFST(cmbloc);
1339 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1340
1341 if (offset > bar_size)
1342 return NULL;
1343
1344 /*
1345 * Controllers may support a CMB size larger than their BAR,
1346 * for example, due to being behind a bridge. Reduce the CMB to
1347 * the reported size of the BAR
1348 */
1349 if (size > bar_size - offset)
1350 size = bar_size - offset;
1351
1352 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1353 cmb = ioremap_wc(dma_addr, size);
1354 if (!cmb)
1355 return NULL;
1356
1357 dev->cmb_dma_addr = dma_addr;
1358 dev->cmb_size = size;
1359 return cmb;
1360}
1361
1362static inline void nvme_release_cmb(struct nvme_dev *dev)
1363{
1364 if (dev->cmb) {
1365 iounmap(dev->cmb);
1366 dev->cmb = NULL;
1367 }
1368}
1369
9d713c2b
KB
1370static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1371{
b80d5ccc 1372 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1373}
1374
8d85fce7 1375static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1376{
a4aea562 1377 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1378 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1379 int result, i, vecs, nr_io_queues, size;
b60503ba 1380
2800b8e7 1381 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1382 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1383 if (result < 0)
1b23484b 1384 return result;
9a0be7ab 1385
f5fa90dc 1386 if (nr_io_queues == 0)
a5229050 1387 return 0;
b60503ba 1388
8ffaadf7
JD
1389 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1390 result = nvme_cmb_qdepth(dev, nr_io_queues,
1391 sizeof(struct nvme_command));
1392 if (result > 0)
1393 dev->q_depth = result;
1394 else
1395 nvme_release_cmb(dev);
1396 }
1397
9d713c2b
KB
1398 size = db_bar_size(dev, nr_io_queues);
1399 if (size > 8192) {
f1938f6e 1400 iounmap(dev->bar);
9d713c2b
KB
1401 do {
1402 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1403 if (dev->bar)
1404 break;
1405 if (!--nr_io_queues)
1406 return -ENOMEM;
1407 size = db_bar_size(dev, nr_io_queues);
1408 } while (1);
7a67cbea 1409 dev->dbs = dev->bar + 4096;
5a92e700 1410 adminq->q_db = dev->dbs;
f1938f6e
MW
1411 }
1412
9d713c2b 1413 /* Deregister the admin queue's interrupt */
3193f07b 1414 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1415
e32efbfc
JA
1416 /*
1417 * If we enable msix early due to not intx, disable it again before
1418 * setting up the full range we need.
1419 */
a5229050
KB
1420 if (pdev->msi_enabled)
1421 pci_disable_msi(pdev);
1422 else if (pdev->msix_enabled)
e32efbfc
JA
1423 pci_disable_msix(pdev);
1424
be577fab 1425 for (i = 0; i < nr_io_queues; i++)
1b23484b 1426 dev->entry[i].entry = i;
be577fab
AG
1427 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1428 if (vecs < 0) {
1429 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1430 if (vecs < 0) {
1431 vecs = 1;
1432 } else {
1433 for (i = 0; i < vecs; i++)
1434 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1435 }
1436 }
1437
063a8096
MW
1438 /*
1439 * Should investigate if there's a performance win from allocating
1440 * more queues than interrupt vectors; it might allow the submission
1441 * path to scale better, even if the receive path is limited by the
1442 * number of interrupts.
1443 */
1444 nr_io_queues = vecs;
42f61420 1445 dev->max_qid = nr_io_queues;
063a8096 1446
3193f07b 1447 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1448 if (result) {
1449 adminq->cq_vector = -1;
22404274 1450 goto free_queues;
758dd7fd 1451 }
749941f2 1452 return nvme_create_io_queues(dev);
b60503ba 1453
22404274 1454 free_queues:
a1a5ef99 1455 nvme_free_queues(dev, 1);
22404274 1456 return result;
b60503ba
MW
1457}
1458
5955be21 1459static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
a5768aa8 1460{
5955be21 1461 struct nvme_dev *dev = to_nvme_dev(ctrl);
bda4e0fb
KB
1462 struct nvme_queue *nvmeq;
1463 int i;
a5768aa8 1464
bda4e0fb
KB
1465 for (i = 0; i < dev->online_queues; i++) {
1466 nvmeq = dev->queues[i];
a5768aa8 1467
bda4e0fb
KB
1468 if (!nvmeq->tags || !(*nvmeq->tags))
1469 continue;
a5768aa8 1470
bda4e0fb
KB
1471 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1472 blk_mq_tags_cpumask(*nvmeq->tags));
a5768aa8 1473 }
a5768aa8
KB
1474}
1475
db3cbfff 1476static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1477{
db3cbfff 1478 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1479
db3cbfff
KB
1480 blk_mq_free_request(req);
1481 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1482}
1483
db3cbfff 1484static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1485{
db3cbfff 1486 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1487
db3cbfff
KB
1488 if (!error) {
1489 unsigned long flags;
1490
2e39e0f6
ML
1491 /*
1492 * We might be called with the AQ q_lock held
1493 * and the I/O queue q_lock should always
1494 * nest inside the AQ one.
1495 */
1496 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1497 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1498 nvme_process_cq(nvmeq);
1499 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1500 }
db3cbfff
KB
1501
1502 nvme_del_queue_end(req, error);
a5768aa8
KB
1503}
1504
db3cbfff 1505static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1506{
db3cbfff
KB
1507 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1508 struct request *req;
1509 struct nvme_command cmd;
bda4e0fb 1510
db3cbfff
KB
1511 memset(&cmd, 0, sizeof(cmd));
1512 cmd.delete_queue.opcode = opcode;
1513 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1514
eb71f435 1515 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1516 if (IS_ERR(req))
1517 return PTR_ERR(req);
bda4e0fb 1518
db3cbfff
KB
1519 req->timeout = ADMIN_TIMEOUT;
1520 req->end_io_data = nvmeq;
1521
1522 blk_execute_rq_nowait(q, NULL, req, false,
1523 opcode == nvme_admin_delete_cq ?
1524 nvme_del_cq_end : nvme_del_queue_end);
1525 return 0;
bda4e0fb
KB
1526}
1527
db3cbfff 1528static void nvme_disable_io_queues(struct nvme_dev *dev)
a5768aa8 1529{
014a0d60 1530 int pass, queues = dev->online_queues - 1;
db3cbfff
KB
1531 unsigned long timeout;
1532 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1533
db3cbfff 1534 for (pass = 0; pass < 2; pass++) {
014a0d60 1535 int sent = 0, i = queues;
db3cbfff
KB
1536
1537 reinit_completion(&dev->ioq_wait);
1538 retry:
1539 timeout = ADMIN_TIMEOUT;
1540 for (; i > 0; i--) {
1541 struct nvme_queue *nvmeq = dev->queues[i];
1542
1543 if (!pass)
1544 nvme_suspend_queue(nvmeq);
1545 if (nvme_delete_queue(nvmeq, opcode))
1546 break;
1547 ++sent;
1548 }
1549 while (sent--) {
1550 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1551 if (timeout == 0)
1552 return;
1553 if (i)
1554 goto retry;
1555 }
1556 opcode = nvme_admin_delete_cq;
1557 }
a5768aa8
KB
1558}
1559
422ef0c7
MW
1560/*
1561 * Return: error value if an error occurred setting up the queues or calling
1562 * Identify Device. 0 if these succeeded, even if adding some of the
1563 * namespaces failed. At the moment, these failures are silent. TBD which
1564 * failures should be reported.
1565 */
8d85fce7 1566static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1567{
5bae7f73 1568 if (!dev->ctrl.tagset) {
ffe7704d
KB
1569 dev->tagset.ops = &nvme_mq_ops;
1570 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1571 dev->tagset.timeout = NVME_IO_TIMEOUT;
1572 dev->tagset.numa_node = dev_to_node(dev->dev);
1573 dev->tagset.queue_depth =
a4aea562 1574 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1575 dev->tagset.cmd_size = nvme_cmd_size(dev);
1576 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1577 dev->tagset.driver_data = dev;
b60503ba 1578
ffe7704d
KB
1579 if (blk_mq_alloc_tag_set(&dev->tagset))
1580 return 0;
5bae7f73 1581 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
1582 } else {
1583 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1584
1585 /* Free previously allocated queues that are no longer usable */
1586 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1587 }
949928c1 1588
e1e5e564 1589 return 0;
b60503ba
MW
1590}
1591
b00a726a 1592static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1593{
42f61420 1594 u64 cap;
b00a726a 1595 int result = -ENOMEM;
e75ec752 1596 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1597
1598 if (pci_enable_device_mem(pdev))
1599 return result;
1600
0877cb0d 1601 pci_set_master(pdev);
0877cb0d 1602
e75ec752
CH
1603 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1604 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1605 goto disable;
0877cb0d 1606
7a67cbea 1607 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1608 result = -ENODEV;
b00a726a 1609 goto disable;
0e53d180 1610 }
e32efbfc
JA
1611
1612 /*
a5229050
KB
1613 * Some devices and/or platforms don't advertise or work with INTx
1614 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1615 * adjust this later.
e32efbfc 1616 */
a5229050
KB
1617 if (pci_enable_msix(pdev, dev->entry, 1)) {
1618 pci_enable_msi(pdev);
1619 dev->entry[0].vector = pdev->irq;
1620 }
1621
1622 if (!dev->entry[0].vector) {
1623 result = -ENODEV;
1624 goto disable;
e32efbfc
JA
1625 }
1626
7a67cbea
CH
1627 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1628
42f61420
KB
1629 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1630 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1631 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1632
1633 /*
1634 * Temporary fix for the Apple controller found in the MacBook8,1 and
1635 * some MacBook7,1 to avoid controller resets and data loss.
1636 */
1637 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1638 dev->q_depth = 2;
1639 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1640 "queue depth=%u to work around controller resets\n",
1641 dev->q_depth);
1642 }
1643
7a67cbea 1644 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1645 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1646
a0a3408e
KB
1647 pci_enable_pcie_error_reporting(pdev);
1648 pci_save_state(pdev);
0877cb0d
KB
1649 return 0;
1650
1651 disable:
0877cb0d
KB
1652 pci_disable_device(pdev);
1653 return result;
1654}
1655
1656static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1657{
1658 if (dev->bar)
1659 iounmap(dev->bar);
1660 pci_release_regions(to_pci_dev(dev->dev));
1661}
1662
1663static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1664{
e75ec752
CH
1665 struct pci_dev *pdev = to_pci_dev(dev->dev);
1666
1667 if (pdev->msi_enabled)
1668 pci_disable_msi(pdev);
1669 else if (pdev->msix_enabled)
1670 pci_disable_msix(pdev);
0877cb0d 1671
a0a3408e
KB
1672 if (pci_is_enabled(pdev)) {
1673 pci_disable_pcie_error_reporting(pdev);
e75ec752 1674 pci_disable_device(pdev);
4d115420 1675 }
4d115420
KB
1676}
1677
a5cdb68c 1678static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1679{
22404274 1680 int i;
7c1b2450 1681 u32 csts = -1;
22404274 1682
2d55cd5f 1683 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1684
77bf25ea 1685 mutex_lock(&dev->shutdown_lock);
b00a726a 1686 if (pci_is_enabled(to_pci_dev(dev->dev))) {
25646264 1687 nvme_stop_queues(&dev->ctrl);
7a67cbea 1688 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1689 }
7c1b2450 1690 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 1691 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 1692 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 1693 nvme_suspend_queue(nvmeq);
4d115420
KB
1694 }
1695 } else {
1696 nvme_disable_io_queues(dev);
a5cdb68c 1697 nvme_disable_admin_queue(dev, shutdown);
4d115420 1698 }
b00a726a 1699 nvme_pci_disable(dev);
07836e65 1700
e1958e65
ML
1701 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1702 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
77bf25ea 1703 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1704}
1705
091b6092
MW
1706static int nvme_setup_prp_pools(struct nvme_dev *dev)
1707{
e75ec752 1708 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1709 PAGE_SIZE, PAGE_SIZE, 0);
1710 if (!dev->prp_page_pool)
1711 return -ENOMEM;
1712
99802a7a 1713 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1714 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1715 256, 256, 0);
1716 if (!dev->prp_small_pool) {
1717 dma_pool_destroy(dev->prp_page_pool);
1718 return -ENOMEM;
1719 }
091b6092
MW
1720 return 0;
1721}
1722
1723static void nvme_release_prp_pools(struct nvme_dev *dev)
1724{
1725 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1726 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1727}
1728
1673f1f0 1729static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1730{
1673f1f0 1731 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1732
e75ec752 1733 put_device(dev->dev);
4af0e21c
KB
1734 if (dev->tagset.tags)
1735 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1736 if (dev->ctrl.admin_q)
1737 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
1738 kfree(dev->queues);
1739 kfree(dev->entry);
1740 kfree(dev);
1741}
1742
f58944e2
KB
1743static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1744{
237045fc 1745 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1746
1747 kref_get(&dev->ctrl.kref);
69d9a99c 1748 nvme_dev_disable(dev, false);
f58944e2
KB
1749 if (!schedule_work(&dev->remove_work))
1750 nvme_put_ctrl(&dev->ctrl);
1751}
1752
fd634f41 1753static void nvme_reset_work(struct work_struct *work)
5e82e952 1754{
fd634f41 1755 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
f58944e2 1756 int result = -ENODEV;
5e82e952 1757
bb8d261e 1758 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
fd634f41 1759 goto out;
5e82e952 1760
fd634f41
CH
1761 /*
1762 * If we're called to reset a live controller first shut it down before
1763 * moving on.
1764 */
b00a726a 1765 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1766 nvme_dev_disable(dev, false);
5e82e952 1767
bb8d261e 1768 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
9bf2b972
KB
1769 goto out;
1770
b00a726a 1771 result = nvme_pci_enable(dev);
f0b50732 1772 if (result)
3cf519b5 1773 goto out;
f0b50732
KB
1774
1775 result = nvme_configure_admin_queue(dev);
1776 if (result)
f58944e2 1777 goto out;
f0b50732 1778
a4aea562 1779 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1780 result = nvme_alloc_admin_tags(dev);
1781 if (result)
f58944e2 1782 goto out;
b9afca3e 1783
ce4541f4
CH
1784 result = nvme_init_identify(&dev->ctrl);
1785 if (result)
f58944e2 1786 goto out;
ce4541f4 1787
f0b50732 1788 result = nvme_setup_io_queues(dev);
badc34d4 1789 if (result)
f58944e2 1790 goto out;
f0b50732 1791
21f033f7
KB
1792 /*
1793 * A controller that can not execute IO typically requires user
1794 * intervention to correct. For such degraded controllers, the driver
1795 * should not submit commands the user did not request, so skip
1796 * registering for asynchronous event notification on this condition.
1797 */
f866fc42
CH
1798 if (dev->online_queues > 1)
1799 nvme_queue_async_events(&dev->ctrl);
3cf519b5 1800
2d55cd5f 1801 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1802
2659e57b
CH
1803 /*
1804 * Keep the controller around but remove all namespaces if we don't have
1805 * any working I/O queue.
1806 */
3cf519b5 1807 if (dev->online_queues < 2) {
1b3c47c1 1808 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 1809 nvme_kill_queues(&dev->ctrl);
5bae7f73 1810 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1811 } else {
25646264 1812 nvme_start_queues(&dev->ctrl);
3cf519b5
CH
1813 nvme_dev_add(dev);
1814 }
1815
bb8d261e
CH
1816 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1817 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1818 goto out;
1819 }
92911a55
CH
1820
1821 if (dev->online_queues > 1)
5955be21 1822 nvme_queue_scan(&dev->ctrl);
3cf519b5 1823 return;
f0b50732 1824
3cf519b5 1825 out:
f58944e2 1826 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1827}
1828
5c8809e6 1829static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1830{
5c8809e6 1831 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1832 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1833
69d9a99c 1834 nvme_kill_queues(&dev->ctrl);
9a6b9458 1835 if (pci_get_drvdata(pdev))
921920ab 1836 device_release_driver(&pdev->dev);
1673f1f0 1837 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1838}
1839
4cc06521 1840static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1841{
1c63dc66 1842 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1843 return -ENODEV;
ffe7704d 1844
846cc05f
CH
1845 if (!queue_work(nvme_workq, &dev->reset_work))
1846 return -EBUSY;
ffe7704d 1847
846cc05f 1848 flush_work(&dev->reset_work);
846cc05f 1849 return 0;
9a6b9458
KB
1850}
1851
1c63dc66 1852static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 1853{
1c63dc66 1854 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 1855 return 0;
9ca97374
TH
1856}
1857
5fd4ce1b 1858static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 1859{
5fd4ce1b
CH
1860 writel(val, to_nvme_dev(ctrl)->bar + off);
1861 return 0;
1862}
4cc06521 1863
7fd8930f
CH
1864static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1865{
1866 *val = readq(to_nvme_dev(ctrl)->bar + off);
1867 return 0;
4cc06521
KB
1868}
1869
f3ca80fc
CH
1870static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1871{
1872 return nvme_reset(to_nvme_dev(ctrl));
4cc06521 1873}
f3ca80fc 1874
1c63dc66 1875static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 1876 .name = "pcie",
e439bb12 1877 .module = THIS_MODULE,
1c63dc66 1878 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 1879 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 1880 .reg_read64 = nvme_pci_reg_read64,
f3ca80fc 1881 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 1882 .free_ctrl = nvme_pci_free_ctrl,
5955be21 1883 .post_scan = nvme_pci_post_scan,
f866fc42 1884 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 1885};
4cc06521 1886
b00a726a
KB
1887static int nvme_dev_map(struct nvme_dev *dev)
1888{
1889 int bars;
1890 struct pci_dev *pdev = to_pci_dev(dev->dev);
1891
1892 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1893 if (!bars)
1894 return -ENODEV;
1895 if (pci_request_selected_regions(pdev, bars, "nvme"))
1896 return -ENODEV;
1897
1898 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1899 if (!dev->bar)
1900 goto release;
1901
1902 return 0;
1903 release:
1904 pci_release_regions(pdev);
1905 return -ENODEV;
1906}
1907
8d85fce7 1908static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 1909{
a4aea562 1910 int node, result = -ENOMEM;
b60503ba
MW
1911 struct nvme_dev *dev;
1912
a4aea562
MB
1913 node = dev_to_node(&pdev->dev);
1914 if (node == NUMA_NO_NODE)
1915 set_dev_node(&pdev->dev, 0);
1916
1917 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
1918 if (!dev)
1919 return -ENOMEM;
a4aea562
MB
1920 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1921 GFP_KERNEL, node);
b60503ba
MW
1922 if (!dev->entry)
1923 goto free;
a4aea562
MB
1924 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1925 GFP_KERNEL, node);
b60503ba
MW
1926 if (!dev->queues)
1927 goto free;
1928
e75ec752 1929 dev->dev = get_device(&pdev->dev);
9a6b9458 1930 pci_set_drvdata(pdev, dev);
1c63dc66 1931
b00a726a
KB
1932 result = nvme_dev_map(dev);
1933 if (result)
1934 goto free;
1935
f3ca80fc 1936 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 1937 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2d55cd5f
CH
1938 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1939 (unsigned long)dev);
77bf25ea 1940 mutex_init(&dev->shutdown_lock);
db3cbfff 1941 init_completion(&dev->ioq_wait);
b60503ba 1942
091b6092
MW
1943 result = nvme_setup_prp_pools(dev);
1944 if (result)
a96d4f5c 1945 goto put_pci;
4cc06521 1946
f3ca80fc
CH
1947 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1948 id->driver_data);
4cc06521 1949 if (result)
2e1d8448 1950 goto release_pools;
740216fc 1951
1b3c47c1
SG
1952 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1953
92f7a162 1954 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
1955 return 0;
1956
0877cb0d 1957 release_pools:
091b6092 1958 nvme_release_prp_pools(dev);
a96d4f5c 1959 put_pci:
e75ec752 1960 put_device(dev->dev);
b00a726a 1961 nvme_dev_unmap(dev);
b60503ba
MW
1962 free:
1963 kfree(dev->queues);
1964 kfree(dev->entry);
1965 kfree(dev);
1966 return result;
1967}
1968
f0d54a54
KB
1969static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1970{
a6739479 1971 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 1972
a6739479 1973 if (prepare)
a5cdb68c 1974 nvme_dev_disable(dev, false);
a6739479 1975 else
92f7a162 1976 queue_work(nvme_workq, &dev->reset_work);
f0d54a54
KB
1977}
1978
09ece142
KB
1979static void nvme_shutdown(struct pci_dev *pdev)
1980{
1981 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 1982 nvme_dev_disable(dev, true);
09ece142
KB
1983}
1984
f58944e2
KB
1985/*
1986 * The driver's remove may be called on a device in a partially initialized
1987 * state. This function must not have any dependencies on the device state in
1988 * order to proceed.
1989 */
8d85fce7 1990static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
1991{
1992 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 1993
bb8d261e
CH
1994 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1995
9a6b9458 1996 pci_set_drvdata(pdev, NULL);
0ff9d4e1
KB
1997
1998 if (!pci_device_is_present(pdev))
1999 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2000
9bf2b972 2001 flush_work(&dev->reset_work);
53029b04 2002 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2003 nvme_dev_disable(dev, true);
a4aea562 2004 nvme_dev_remove_admin(dev);
a1a5ef99 2005 nvme_free_queues(dev, 0);
8ffaadf7 2006 nvme_release_cmb(dev);
9a6b9458 2007 nvme_release_prp_pools(dev);
b00a726a 2008 nvme_dev_unmap(dev);
1673f1f0 2009 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2010}
2011
671a6018 2012#ifdef CONFIG_PM_SLEEP
cd638946
KB
2013static int nvme_suspend(struct device *dev)
2014{
2015 struct pci_dev *pdev = to_pci_dev(dev);
2016 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2017
a5cdb68c 2018 nvme_dev_disable(ndev, true);
cd638946
KB
2019 return 0;
2020}
2021
2022static int nvme_resume(struct device *dev)
2023{
2024 struct pci_dev *pdev = to_pci_dev(dev);
2025 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2026
92f7a162 2027 queue_work(nvme_workq, &ndev->reset_work);
9a6b9458 2028 return 0;
cd638946 2029}
671a6018 2030#endif
cd638946
KB
2031
2032static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2033
a0a3408e
KB
2034static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2035 pci_channel_state_t state)
2036{
2037 struct nvme_dev *dev = pci_get_drvdata(pdev);
2038
2039 /*
2040 * A frozen channel requires a reset. When detected, this method will
2041 * shutdown the controller to quiesce. The controller will be restarted
2042 * after the slot reset through driver's slot_reset callback.
2043 */
a0a3408e
KB
2044 switch (state) {
2045 case pci_channel_io_normal:
2046 return PCI_ERS_RESULT_CAN_RECOVER;
2047 case pci_channel_io_frozen:
d011fb31
KB
2048 dev_warn(dev->ctrl.device,
2049 "frozen state error detected, reset controller\n");
a5cdb68c 2050 nvme_dev_disable(dev, false);
a0a3408e
KB
2051 return PCI_ERS_RESULT_NEED_RESET;
2052 case pci_channel_io_perm_failure:
d011fb31
KB
2053 dev_warn(dev->ctrl.device,
2054 "failure state error detected, request disconnect\n");
a0a3408e
KB
2055 return PCI_ERS_RESULT_DISCONNECT;
2056 }
2057 return PCI_ERS_RESULT_NEED_RESET;
2058}
2059
2060static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2061{
2062 struct nvme_dev *dev = pci_get_drvdata(pdev);
2063
1b3c47c1 2064 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e
KB
2065 pci_restore_state(pdev);
2066 queue_work(nvme_workq, &dev->reset_work);
2067 return PCI_ERS_RESULT_RECOVERED;
2068}
2069
2070static void nvme_error_resume(struct pci_dev *pdev)
2071{
2072 pci_cleanup_aer_uncorrect_error_status(pdev);
2073}
2074
1d352035 2075static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2076 .error_detected = nvme_error_detected,
b60503ba
MW
2077 .slot_reset = nvme_slot_reset,
2078 .resume = nvme_error_resume,
f0d54a54 2079 .reset_notify = nvme_reset_notify,
b60503ba
MW
2080};
2081
2082/* Move to pci_ids.h later */
2083#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2084
6eb0d698 2085static const struct pci_device_id nvme_id_table[] = {
106198ed 2086 { PCI_VDEVICE(INTEL, 0x0953),
08095e70
KB
2087 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2088 NVME_QUIRK_DISCARD_ZEROES, },
99466e70
KB
2089 { PCI_VDEVICE(INTEL, 0x0a53),
2090 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2091 NVME_QUIRK_DISCARD_ZEROES, },
2092 { PCI_VDEVICE(INTEL, 0x0a54),
2093 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2094 NVME_QUIRK_DISCARD_ZEROES, },
540c801c
KB
2095 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2096 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2097 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2098 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2099 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2100 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2101 { 0, }
2102};
2103MODULE_DEVICE_TABLE(pci, nvme_id_table);
2104
2105static struct pci_driver nvme_driver = {
2106 .name = "nvme",
2107 .id_table = nvme_id_table,
2108 .probe = nvme_probe,
8d85fce7 2109 .remove = nvme_remove,
09ece142 2110 .shutdown = nvme_shutdown,
cd638946
KB
2111 .driver = {
2112 .pm = &nvme_dev_pm_ops,
2113 },
b60503ba
MW
2114 .err_handler = &nvme_err_handler,
2115};
2116
2117static int __init nvme_init(void)
2118{
0ac13140 2119 int result;
1fa6aead 2120
92f7a162 2121 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2122 if (!nvme_workq)
b9afca3e 2123 return -ENOMEM;
9a6b9458 2124
f3db22fe
KB
2125 result = pci_register_driver(&nvme_driver);
2126 if (result)
576d55d6 2127 destroy_workqueue(nvme_workq);
b60503ba
MW
2128 return result;
2129}
2130
2131static void __exit nvme_exit(void)
2132{
2133 pci_unregister_driver(&nvme_driver);
9a6b9458 2134 destroy_workqueue(nvme_workq);
21bd78bc 2135 _nvme_check_size();
b60503ba
MW
2136}
2137
2138MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2139MODULE_LICENSE("GPL");
c78b4713 2140MODULE_VERSION("1.0");
b60503ba
MW
2141module_init(nvme_init);
2142module_exit(nvme_exit);