]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
NVMe: silence warning about unused 'dev'
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
77bf25ea 34#include <linux/mutex.h>
b60503ba 35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
2d55cd5f 41#include <linux/timer.h>
b60503ba 42#include <linux/types.h>
2f8e2c87 43#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 44#include <asm/unaligned.h>
797a796a 45
f11bb3e2
CH
46#include "nvme.h"
47
9d43cf64 48#define NVME_Q_DEPTH 1024
d31af0a3 49#define NVME_AQ_DEPTH 256
b60503ba
MW
50#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
adf68f21
CH
52
53/*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57#define NVME_NR_AEN_COMMANDS 1
58#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
9d43cf64 59
58ffacb5
MW
60static int use_threaded_interrupts;
61module_param(use_threaded_interrupts, int, 0);
62
8ffaadf7
JD
63static bool use_cmb_sqes = true;
64module_param(use_cmb_sqes, bool, 0644);
65MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
9a6b9458 67static struct workqueue_struct *nvme_workq;
1fa6aead 68
1c63dc66
CH
69struct nvme_dev;
70struct nvme_queue;
b3fffdef 71
4cc06521 72static int nvme_reset(struct nvme_dev *dev);
a0fa9647 73static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 74static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 75
1c63dc66
CH
76/*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79struct nvme_dev {
1c63dc66
CH
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
1c63dc66
CH
92 struct msix_entry *entry;
93 void __iomem *bar;
1c63dc66 94 struct work_struct reset_work;
1c63dc66 95 struct work_struct scan_work;
5c8809e6 96 struct work_struct remove_work;
9396dec9 97 struct work_struct async_work;
2d55cd5f 98 struct timer_list watchdog_timer;
77bf25ea 99 struct mutex shutdown_lock;
1c63dc66 100 bool subsystem;
1c63dc66
CH
101 void __iomem *cmb;
102 dma_addr_t cmb_dma_addr;
103 u64 cmb_size;
104 u32 cmbsz;
fd634f41 105 unsigned long flags;
db3cbfff 106
fd634f41 107#define NVME_CTRL_RESETTING 0
646017a6 108#define NVME_CTRL_REMOVING 1
1c63dc66
CH
109
110 struct nvme_ctrl ctrl;
db3cbfff 111 struct completion ioq_wait;
4d115420 112};
1fa6aead 113
1c63dc66
CH
114static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
115{
116 return container_of(ctrl, struct nvme_dev, ctrl);
117}
118
b60503ba
MW
119/*
120 * An NVM Express queue. Each device has at least two (one for admin
121 * commands and one for I/O commands).
122 */
123struct nvme_queue {
124 struct device *q_dmadev;
091b6092 125 struct nvme_dev *dev;
3193f07b 126 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
127 spinlock_t q_lock;
128 struct nvme_command *sq_cmds;
8ffaadf7 129 struct nvme_command __iomem *sq_cmds_io;
b60503ba 130 volatile struct nvme_completion *cqes;
42483228 131 struct blk_mq_tags **tags;
b60503ba
MW
132 dma_addr_t sq_dma_addr;
133 dma_addr_t cq_dma_addr;
b60503ba
MW
134 u32 __iomem *q_db;
135 u16 q_depth;
6222d172 136 s16 cq_vector;
b60503ba
MW
137 u16 sq_tail;
138 u16 cq_head;
c30341dc 139 u16 qid;
e9539f47
MW
140 u8 cq_phase;
141 u8 cqe_seen;
b60503ba
MW
142};
143
71bd150c
CH
144/*
145 * The nvme_iod describes the data in an I/O, including the list of PRP
146 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 147 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
148 * allocated to store the PRP list.
149 */
150struct nvme_iod {
f4800d6d
CH
151 struct nvme_queue *nvmeq;
152 int aborted;
71bd150c 153 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
154 int nents; /* Used in scatterlist */
155 int length; /* Of data, in bytes */
156 dma_addr_t first_dma;
bf684057 157 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
158 struct scatterlist *sg;
159 struct scatterlist inline_sg[0];
b60503ba
MW
160};
161
162/*
163 * Check we didin't inadvertently grow the command struct
164 */
165static inline void _nvme_check_size(void)
166{
167 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
171 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 172 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 173 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
174 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
175 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
176 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
177 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 178 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
179}
180
ac3dd5bd
JA
181/*
182 * Max size of iod being embedded in the request payload
183 */
184#define NVME_INT_PAGES 2
5fd4ce1b 185#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
186
187/*
188 * Will slightly overestimate the number of pages needed. This is OK
189 * as it only leads to a small amount of wasted memory for the lifetime of
190 * the I/O.
191 */
192static int nvme_npages(unsigned size, struct nvme_dev *dev)
193{
5fd4ce1b
CH
194 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
195 dev->ctrl.page_size);
ac3dd5bd
JA
196 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
197}
198
f4800d6d
CH
199static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
200 unsigned int size, unsigned int nseg)
ac3dd5bd 201{
f4800d6d
CH
202 return sizeof(__le64 *) * nvme_npages(size, dev) +
203 sizeof(struct scatterlist) * nseg;
204}
ac3dd5bd 205
f4800d6d
CH
206static unsigned int nvme_cmd_size(struct nvme_dev *dev)
207{
208 return sizeof(struct nvme_iod) +
209 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
210}
211
a4aea562
MB
212static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
e85248e5 214{
a4aea562
MB
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
42483228
KB
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
a4aea562 222 hctx->driver_data = nvmeq;
42483228 223 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 224 return 0;
e85248e5
MW
225}
226
4af0e21c
KB
227static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228{
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232}
233
a4aea562
MB
234static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
22404274 237{
a4aea562 238 struct nvme_dev *dev = data;
f4800d6d 239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
f4800d6d 243 iod->nvmeq = nvmeq;
a4aea562 244 return 0;
22404274
KB
245}
246
a4aea562
MB
247static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
b60503ba 249{
a4aea562 250 struct nvme_dev *dev = data;
42483228 251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 252
42483228
KB
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 255
42483228 256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
257 hctx->driver_data = nvmeq;
258 return 0;
b60503ba
MW
259}
260
a4aea562
MB
261static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
b60503ba 264{
a4aea562 265 struct nvme_dev *dev = data;
f4800d6d 266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
f4800d6d 270 iod->nvmeq = nvmeq;
a4aea562
MB
271 return 0;
272}
273
646017a6
KB
274static void nvme_queue_scan(struct nvme_dev *dev)
275{
276 /*
277 * Do not queue new scan work when a controller is reset during
278 * removal.
279 */
280 if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
281 return;
282 queue_work(nvme_workq, &dev->scan_work);
283}
284
adf68f21
CH
285static void nvme_complete_async_event(struct nvme_dev *dev,
286 struct nvme_completion *cqe)
a4aea562 287{
adf68f21
CH
288 u16 status = le16_to_cpu(cqe->status) >> 1;
289 u32 result = le32_to_cpu(cqe->result);
a4aea562 290
9396dec9 291 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
adf68f21 292 ++dev->ctrl.event_limit;
9396dec9
CH
293 queue_work(nvme_workq, &dev->async_work);
294 }
295
a5768aa8
KB
296 if (status != NVME_SC_SUCCESS)
297 return;
298
299 switch (result & 0xff07) {
300 case NVME_AER_NOTICE_NS_CHANGED:
1b3c47c1 301 dev_info(dev->ctrl.device, "rescanning\n");
646017a6 302 nvme_queue_scan(dev);
a5768aa8 303 default:
1b3c47c1 304 dev_warn(dev->ctrl.device, "async event result %08x\n", result);
a4aea562 305 }
b60503ba
MW
306}
307
308/**
adf68f21 309 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
310 * @nvmeq: The queue to use
311 * @cmd: The command to send
312 *
313 * Safe to use from interrupt context
314 */
e3f879bf
SB
315static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
316 struct nvme_command *cmd)
b60503ba 317{
a4aea562
MB
318 u16 tail = nvmeq->sq_tail;
319
8ffaadf7
JD
320 if (nvmeq->sq_cmds_io)
321 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
322 else
323 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
324
b60503ba
MW
325 if (++tail == nvmeq->q_depth)
326 tail = 0;
7547881d 327 writel(tail, nvmeq->q_db);
b60503ba 328 nvmeq->sq_tail = tail;
b60503ba
MW
329}
330
f4800d6d 331static __le64 **iod_list(struct request *req)
b60503ba 332{
f4800d6d
CH
333 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
334 return (__le64 **)(iod->sg + req->nr_phys_segments);
b60503ba
MW
335}
336
58b45602
ML
337static int nvme_init_iod(struct request *rq, unsigned size,
338 struct nvme_dev *dev)
ac3dd5bd 339{
f4800d6d
CH
340 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
341 int nseg = rq->nr_phys_segments;
ac3dd5bd 342
f4800d6d
CH
343 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
344 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
345 if (!iod->sg)
346 return BLK_MQ_RQ_QUEUE_BUSY;
347 } else {
348 iod->sg = iod->inline_sg;
ac3dd5bd
JA
349 }
350
f4800d6d
CH
351 iod->aborted = 0;
352 iod->npages = -1;
353 iod->nents = 0;
354 iod->length = size;
355 return 0;
ac3dd5bd
JA
356}
357
f4800d6d 358static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 359{
f4800d6d 360 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 361 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 362 int i;
f4800d6d 363 __le64 **list = iod_list(req);
eca18b23
MW
364 dma_addr_t prp_dma = iod->first_dma;
365
03b5929e
ML
366 if (req->cmd_flags & REQ_DISCARD)
367 kfree(req->completion_data);
368
eca18b23
MW
369 if (iod->npages == 0)
370 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
371 for (i = 0; i < iod->npages; i++) {
372 __le64 *prp_list = list[i];
373 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
374 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
375 prp_dma = next_prp_dma;
376 }
ac3dd5bd 377
f4800d6d
CH
378 if (iod->sg != iod->inline_sg)
379 kfree(iod->sg);
b4ff9c8d
KB
380}
381
52b68d7e 382#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
383static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
384{
385 if (be32_to_cpu(pi->ref_tag) == v)
386 pi->ref_tag = cpu_to_be32(p);
387}
388
389static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
390{
391 if (be32_to_cpu(pi->ref_tag) == p)
392 pi->ref_tag = cpu_to_be32(v);
393}
394
395/**
396 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
397 *
398 * The virtual start sector is the one that was originally submitted by the
399 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
400 * start sector may be different. Remap protection information to match the
401 * physical LBA on writes, and back to the original seed on reads.
402 *
403 * Type 0 and 3 do not have a ref tag, so no remapping required.
404 */
405static void nvme_dif_remap(struct request *req,
406 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
407{
408 struct nvme_ns *ns = req->rq_disk->private_data;
409 struct bio_integrity_payload *bip;
410 struct t10_pi_tuple *pi;
411 void *p, *pmap;
412 u32 i, nlb, ts, phys, virt;
413
414 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
415 return;
416
417 bip = bio_integrity(req->bio);
418 if (!bip)
419 return;
420
421 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
422
423 p = pmap;
424 virt = bip_get_seed(bip);
425 phys = nvme_block_nr(ns, blk_rq_pos(req));
426 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 427 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
428
429 for (i = 0; i < nlb; i++, virt++, phys++) {
430 pi = (struct t10_pi_tuple *)p;
431 dif_swap(phys, virt, pi);
432 p += ts;
433 }
434 kunmap_atomic(pmap);
435}
52b68d7e
KB
436#else /* CONFIG_BLK_DEV_INTEGRITY */
437static void nvme_dif_remap(struct request *req,
438 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
439{
440}
441static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
442{
443}
444static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
445{
446}
52b68d7e
KB
447#endif
448
f4800d6d 449static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
69d2b571 450 int total_len)
ff22b54f 451{
f4800d6d 452 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 453 struct dma_pool *pool;
eca18b23
MW
454 int length = total_len;
455 struct scatterlist *sg = iod->sg;
ff22b54f
MW
456 int dma_len = sg_dma_len(sg);
457 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 458 u32 page_size = dev->ctrl.page_size;
f137e0f1 459 int offset = dma_addr & (page_size - 1);
e025344c 460 __le64 *prp_list;
f4800d6d 461 __le64 **list = iod_list(req);
e025344c 462 dma_addr_t prp_dma;
eca18b23 463 int nprps, i;
ff22b54f 464
1d090624 465 length -= (page_size - offset);
ff22b54f 466 if (length <= 0)
69d2b571 467 return true;
ff22b54f 468
1d090624 469 dma_len -= (page_size - offset);
ff22b54f 470 if (dma_len) {
1d090624 471 dma_addr += (page_size - offset);
ff22b54f
MW
472 } else {
473 sg = sg_next(sg);
474 dma_addr = sg_dma_address(sg);
475 dma_len = sg_dma_len(sg);
476 }
477
1d090624 478 if (length <= page_size) {
edd10d33 479 iod->first_dma = dma_addr;
69d2b571 480 return true;
e025344c
SMM
481 }
482
1d090624 483 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
484 if (nprps <= (256 / 8)) {
485 pool = dev->prp_small_pool;
eca18b23 486 iod->npages = 0;
99802a7a
MW
487 } else {
488 pool = dev->prp_page_pool;
eca18b23 489 iod->npages = 1;
99802a7a
MW
490 }
491
69d2b571 492 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 493 if (!prp_list) {
edd10d33 494 iod->first_dma = dma_addr;
eca18b23 495 iod->npages = -1;
69d2b571 496 return false;
b77954cb 497 }
eca18b23
MW
498 list[0] = prp_list;
499 iod->first_dma = prp_dma;
e025344c
SMM
500 i = 0;
501 for (;;) {
1d090624 502 if (i == page_size >> 3) {
e025344c 503 __le64 *old_prp_list = prp_list;
69d2b571 504 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 505 if (!prp_list)
69d2b571 506 return false;
eca18b23 507 list[iod->npages++] = prp_list;
7523d834
MW
508 prp_list[0] = old_prp_list[i - 1];
509 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
510 i = 1;
e025344c
SMM
511 }
512 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
513 dma_len -= page_size;
514 dma_addr += page_size;
515 length -= page_size;
e025344c
SMM
516 if (length <= 0)
517 break;
518 if (dma_len > 0)
519 continue;
520 BUG_ON(dma_len < 0);
521 sg = sg_next(sg);
522 dma_addr = sg_dma_address(sg);
523 dma_len = sg_dma_len(sg);
ff22b54f
MW
524 }
525
69d2b571 526 return true;
ff22b54f
MW
527}
528
f4800d6d 529static int nvme_map_data(struct nvme_dev *dev, struct request *req,
03b5929e 530 unsigned size, struct nvme_command *cmnd)
d29ec824 531{
f4800d6d 532 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
533 struct request_queue *q = req->q;
534 enum dma_data_direction dma_dir = rq_data_dir(req) ?
535 DMA_TO_DEVICE : DMA_FROM_DEVICE;
536 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 537
ba1ca37e
CH
538 sg_init_table(iod->sg, req->nr_phys_segments);
539 iod->nents = blk_rq_map_sg(q, req, iod->sg);
540 if (!iod->nents)
541 goto out;
d29ec824 542
ba1ca37e
CH
543 ret = BLK_MQ_RQ_QUEUE_BUSY;
544 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
545 goto out;
d29ec824 546
03b5929e 547 if (!nvme_setup_prps(dev, req, size))
ba1ca37e 548 goto out_unmap;
0e5e4f0e 549
ba1ca37e
CH
550 ret = BLK_MQ_RQ_QUEUE_ERROR;
551 if (blk_integrity_rq(req)) {
552 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
553 goto out_unmap;
0e5e4f0e 554
bf684057
CH
555 sg_init_table(&iod->meta_sg, 1);
556 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 557 goto out_unmap;
0e5e4f0e 558
ba1ca37e
CH
559 if (rq_data_dir(req))
560 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 561
bf684057 562 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 563 goto out_unmap;
d29ec824 564 }
00df5cb4 565
ba1ca37e
CH
566 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
567 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
568 if (blk_integrity_rq(req))
bf684057 569 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 570 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 571
ba1ca37e
CH
572out_unmap:
573 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
574out:
575 return ret;
00df5cb4
MW
576}
577
f4800d6d 578static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 579{
f4800d6d 580 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
581 enum dma_data_direction dma_dir = rq_data_dir(req) ?
582 DMA_TO_DEVICE : DMA_FROM_DEVICE;
583
584 if (iod->nents) {
585 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
586 if (blk_integrity_rq(req)) {
587 if (!rq_data_dir(req))
588 nvme_dif_remap(req, nvme_dif_complete);
bf684057 589 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 590 }
e19b127f 591 }
e1e5e564 592
f4800d6d 593 nvme_free_iod(dev, req);
d4f6c3ab 594}
b60503ba 595
d29ec824
CH
596/*
597 * NOTE: ns is NULL when called on the admin queue.
598 */
a4aea562
MB
599static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
600 const struct blk_mq_queue_data *bd)
edd10d33 601{
a4aea562
MB
602 struct nvme_ns *ns = hctx->queue->queuedata;
603 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 604 struct nvme_dev *dev = nvmeq->dev;
a4aea562 605 struct request *req = bd->rq;
ba1ca37e 606 struct nvme_command cmnd;
58b45602 607 unsigned map_len;
ba1ca37e 608 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 609
e1e5e564
KB
610 /*
611 * If formated with metadata, require the block layer provide a buffer
612 * unless this namespace is formated such that the metadata can be
613 * stripped/generated by the controller with PRACT=1.
614 */
d29ec824 615 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
616 if (!(ns->pi_type && ns->ms == 8) &&
617 req->cmd_type != REQ_TYPE_DRV_PRIV) {
eee417b0 618 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
619 return BLK_MQ_RQ_QUEUE_OK;
620 }
621 }
622
58b45602
ML
623 map_len = nvme_map_len(req);
624 ret = nvme_init_iod(req, map_len, dev);
f4800d6d
CH
625 if (ret)
626 return ret;
a4aea562 627
8093f7ca 628 ret = nvme_setup_cmd(ns, req, &cmnd);
03b5929e
ML
629 if (ret)
630 goto out;
631
632 if (req->nr_phys_segments)
633 ret = nvme_map_data(dev, req, map_len, &cmnd);
a4aea562 634
ba1ca37e
CH
635 if (ret)
636 goto out;
a4aea562 637
ba1ca37e 638 cmnd.common.command_id = req->tag;
aae239e1 639 blk_mq_start_request(req);
a4aea562 640
ba1ca37e 641 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 642 if (unlikely(nvmeq->cq_vector < 0)) {
69d9a99c
KB
643 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
644 ret = BLK_MQ_RQ_QUEUE_BUSY;
645 else
646 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20
KB
647 spin_unlock_irq(&nvmeq->q_lock);
648 goto out;
649 }
ba1ca37e 650 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
651 nvme_process_cq(nvmeq);
652 spin_unlock_irq(&nvmeq->q_lock);
653 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 654out:
f4800d6d 655 nvme_free_iod(dev, req);
ba1ca37e 656 return ret;
b60503ba 657}
e1e5e564 658
eee417b0
CH
659static void nvme_complete_rq(struct request *req)
660{
f4800d6d
CH
661 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
662 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0 663 int error = 0;
e1e5e564 664
f4800d6d 665 nvme_unmap_data(dev, req);
e1e5e564 666
eee417b0
CH
667 if (unlikely(req->errors)) {
668 if (nvme_req_needs_retry(req, req->errors)) {
669 nvme_requeue_req(req);
670 return;
e1e5e564 671 }
1974b1ae 672
eee417b0
CH
673 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
674 error = req->errors;
675 else
676 error = nvme_error_status(req->errors);
677 }
a4aea562 678
f4800d6d 679 if (unlikely(iod->aborted)) {
1b3c47c1 680 dev_warn(dev->ctrl.device,
eee417b0
CH
681 "completing aborted command with status: %04x\n",
682 req->errors);
683 }
a4aea562 684
eee417b0 685 blk_mq_end_request(req, error);
b60503ba
MW
686}
687
d783e0bd
MR
688/* We read the CQE phase first to check if the rest of the entry is valid */
689static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
690 u16 phase)
691{
692 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
693}
694
a0fa9647 695static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 696{
82123460 697 u16 head, phase;
b60503ba 698
b60503ba 699 head = nvmeq->cq_head;
82123460 700 phase = nvmeq->cq_phase;
b60503ba 701
d783e0bd 702 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 703 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 704 struct request *req;
adf68f21 705
b60503ba
MW
706 if (++head == nvmeq->q_depth) {
707 head = 0;
82123460 708 phase = !phase;
b60503ba 709 }
adf68f21 710
a0fa9647
JA
711 if (tag && *tag == cqe.command_id)
712 *tag = -1;
adf68f21 713
aae239e1 714 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 715 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
716 "invalid id %d completed on queue %d\n",
717 cqe.command_id, le16_to_cpu(cqe.sq_id));
718 continue;
719 }
720
adf68f21
CH
721 /*
722 * AEN requests are special as they don't time out and can
723 * survive any kind of queue freeze and often don't respond to
724 * aborts. We don't even bother to allocate a struct request
725 * for them but rather special case them here.
726 */
727 if (unlikely(nvmeq->qid == 0 &&
728 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
729 nvme_complete_async_event(nvmeq->dev, &cqe);
730 continue;
731 }
732
eee417b0 733 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
1cb3cce5
CH
734 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
735 memcpy(req->special, &cqe, sizeof(cqe));
d783e0bd 736 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
eee417b0 737
b60503ba
MW
738 }
739
740 /* If the controller ignores the cq head doorbell and continuously
741 * writes to the queue, it is theoretically possible to wrap around
742 * the queue twice and mistakenly return IRQ_NONE. Linux only
743 * requires that 0.1% of your interrupts are handled, so this isn't
744 * a big problem.
745 */
82123460 746 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 747 return;
b60503ba 748
604e8c8d
KB
749 if (likely(nvmeq->cq_vector >= 0))
750 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 751 nvmeq->cq_head = head;
82123460 752 nvmeq->cq_phase = phase;
b60503ba 753
e9539f47 754 nvmeq->cqe_seen = 1;
a0fa9647
JA
755}
756
757static void nvme_process_cq(struct nvme_queue *nvmeq)
758{
759 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
760}
761
762static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
763{
764 irqreturn_t result;
765 struct nvme_queue *nvmeq = data;
766 spin_lock(&nvmeq->q_lock);
e9539f47
MW
767 nvme_process_cq(nvmeq);
768 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
769 nvmeq->cqe_seen = 0;
58ffacb5
MW
770 spin_unlock(&nvmeq->q_lock);
771 return result;
772}
773
774static irqreturn_t nvme_irq_check(int irq, void *data)
775{
776 struct nvme_queue *nvmeq = data;
d783e0bd
MR
777 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
778 return IRQ_WAKE_THREAD;
779 return IRQ_NONE;
58ffacb5
MW
780}
781
a0fa9647
JA
782static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
783{
784 struct nvme_queue *nvmeq = hctx->driver_data;
785
d783e0bd 786 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
787 spin_lock_irq(&nvmeq->q_lock);
788 __nvme_process_cq(nvmeq, &tag);
789 spin_unlock_irq(&nvmeq->q_lock);
790
791 if (tag == -1)
792 return 1;
793 }
794
795 return 0;
796}
797
9396dec9 798static void nvme_async_event_work(struct work_struct *work)
b60503ba 799{
9396dec9
CH
800 struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
801 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 802 struct nvme_command c;
b60503ba 803
a4aea562
MB
804 memset(&c, 0, sizeof(c));
805 c.common.opcode = nvme_admin_async_event;
3c0cf138 806
9396dec9
CH
807 spin_lock_irq(&nvmeq->q_lock);
808 while (dev->ctrl.event_limit > 0) {
809 c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
810 --dev->ctrl.event_limit;
811 __nvme_submit_cmd(nvmeq, &c);
812 }
813 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
814}
815
b60503ba 816static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 817{
b60503ba
MW
818 struct nvme_command c;
819
820 memset(&c, 0, sizeof(c));
821 c.delete_queue.opcode = opcode;
822 c.delete_queue.qid = cpu_to_le16(id);
823
1c63dc66 824 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
825}
826
b60503ba
MW
827static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
828 struct nvme_queue *nvmeq)
829{
b60503ba
MW
830 struct nvme_command c;
831 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
832
d29ec824
CH
833 /*
834 * Note: we (ab)use the fact the the prp fields survive if no data
835 * is attached to the request.
836 */
b60503ba
MW
837 memset(&c, 0, sizeof(c));
838 c.create_cq.opcode = nvme_admin_create_cq;
839 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
840 c.create_cq.cqid = cpu_to_le16(qid);
841 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
842 c.create_cq.cq_flags = cpu_to_le16(flags);
843 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
844
1c63dc66 845 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
846}
847
848static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
849 struct nvme_queue *nvmeq)
850{
b60503ba
MW
851 struct nvme_command c;
852 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
853
d29ec824
CH
854 /*
855 * Note: we (ab)use the fact the the prp fields survive if no data
856 * is attached to the request.
857 */
b60503ba
MW
858 memset(&c, 0, sizeof(c));
859 c.create_sq.opcode = nvme_admin_create_sq;
860 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
861 c.create_sq.sqid = cpu_to_le16(qid);
862 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
863 c.create_sq.sq_flags = cpu_to_le16(flags);
864 c.create_sq.cqid = cpu_to_le16(qid);
865
1c63dc66 866 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
867}
868
869static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
870{
871 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
872}
873
874static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
875{
876 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
877}
878
e7a2a87d 879static void abort_endio(struct request *req, int error)
bc5fc7e4 880{
f4800d6d
CH
881 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
882 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d 883 u16 status = req->errors;
e44ac588 884
1cb3cce5 885 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
e7a2a87d 886 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 887 blk_mq_free_request(req);
bc5fc7e4
MW
888}
889
31c7c7d2 890static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 891{
f4800d6d
CH
892 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
893 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 894 struct nvme_dev *dev = nvmeq->dev;
a4aea562 895 struct request *abort_req;
a4aea562 896 struct nvme_command cmd;
c30341dc 897
31c7c7d2 898 /*
fd634f41
CH
899 * Shutdown immediately if controller times out while starting. The
900 * reset work will see the pci device disabled when it gets the forced
901 * cancellation error. All outstanding requests are completed on
902 * shutdown, so we return BLK_EH_HANDLED.
903 */
904 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
1b3c47c1 905 dev_warn(dev->ctrl.device,
fd634f41
CH
906 "I/O %d QID %d timeout, disable controller\n",
907 req->tag, nvmeq->qid);
a5cdb68c 908 nvme_dev_disable(dev, false);
fd634f41
CH
909 req->errors = NVME_SC_CANCELLED;
910 return BLK_EH_HANDLED;
c30341dc
KB
911 }
912
fd634f41
CH
913 /*
914 * Shutdown the controller immediately and schedule a reset if the
915 * command was already aborted once before and still hasn't been
916 * returned to the driver, or if this is the admin queue.
31c7c7d2 917 */
f4800d6d 918 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 919 dev_warn(dev->ctrl.device,
e1569a16
KB
920 "I/O %d QID %d timeout, reset controller\n",
921 req->tag, nvmeq->qid);
a5cdb68c 922 nvme_dev_disable(dev, false);
e1569a16 923 queue_work(nvme_workq, &dev->reset_work);
c30341dc 924
e1569a16
KB
925 /*
926 * Mark the request as handled, since the inline shutdown
927 * forces all outstanding requests to complete.
928 */
929 req->errors = NVME_SC_CANCELLED;
930 return BLK_EH_HANDLED;
c30341dc 931 }
c30341dc 932
f4800d6d 933 iod->aborted = 1;
c30341dc 934
e7a2a87d 935 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 936 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 937 return BLK_EH_RESET_TIMER;
6bf25d16 938 }
a4aea562 939
c30341dc
KB
940 memset(&cmd, 0, sizeof(cmd));
941 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 942 cmd.abort.cid = req->tag;
c30341dc 943 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 944
1b3c47c1
SG
945 dev_warn(nvmeq->dev->ctrl.device,
946 "I/O %d QID %d timeout, aborting\n",
947 req->tag, nvmeq->qid);
e7a2a87d
CH
948
949 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
950 BLK_MQ_REQ_NOWAIT);
951 if (IS_ERR(abort_req)) {
952 atomic_inc(&dev->ctrl.abort_limit);
953 return BLK_EH_RESET_TIMER;
954 }
955
956 abort_req->timeout = ADMIN_TIMEOUT;
957 abort_req->end_io_data = NULL;
958 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 959
31c7c7d2
CH
960 /*
961 * The aborted req will be completed on receiving the abort req.
962 * We enable the timer again. If hit twice, it'll cause a device reset,
963 * as the device then is in a faulty state.
964 */
965 return BLK_EH_RESET_TIMER;
c30341dc
KB
966}
967
82b4552b 968static void nvme_cancel_io(struct request *req, void *data, bool reserved)
a09115b2 969{
aae239e1 970 int status;
cef6a948
KB
971
972 if (!blk_mq_request_started(req))
973 return;
a09115b2 974
7e197930
JA
975 dev_dbg_ratelimited(((struct nvme_dev *) data)->ctrl.device,
976 "Cancelling I/O %d", req->tag);
a4aea562 977
1d49c38c 978 status = NVME_SC_ABORT_REQ;
cef6a948 979 if (blk_queue_dying(req->q))
aae239e1
CH
980 status |= NVME_SC_DNR;
981 blk_mq_complete_request(req, status);
a4aea562 982}
22404274 983
a4aea562
MB
984static void nvme_free_queue(struct nvme_queue *nvmeq)
985{
9e866774
MW
986 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
987 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
988 if (nvmeq->sq_cmds)
989 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
990 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
991 kfree(nvmeq);
992}
993
a1a5ef99 994static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
995{
996 int i;
997
a1a5ef99 998 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 999 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1000 dev->queue_count--;
a4aea562 1001 dev->queues[i] = NULL;
f435c282 1002 nvme_free_queue(nvmeq);
121c7ad4 1003 }
22404274
KB
1004}
1005
4d115420
KB
1006/**
1007 * nvme_suspend_queue - put queue into suspended state
1008 * @nvmeq - queue to suspend
4d115420
KB
1009 */
1010static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1011{
2b25d981 1012 int vector;
b60503ba 1013
a09115b2 1014 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1015 if (nvmeq->cq_vector == -1) {
1016 spin_unlock_irq(&nvmeq->q_lock);
1017 return 1;
1018 }
1019 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1020 nvmeq->dev->online_queues--;
2b25d981 1021 nvmeq->cq_vector = -1;
a09115b2
MW
1022 spin_unlock_irq(&nvmeq->q_lock);
1023
1c63dc66 1024 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 1025 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1026
aba2080f
MW
1027 irq_set_affinity_hint(vector, NULL);
1028 free_irq(vector, nvmeq);
b60503ba 1029
4d115420
KB
1030 return 0;
1031}
b60503ba 1032
a5cdb68c 1033static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1034{
a5cdb68c 1035 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1036
1037 if (!nvmeq)
1038 return;
1039 if (nvme_suspend_queue(nvmeq))
1040 return;
1041
a5cdb68c
KB
1042 if (shutdown)
1043 nvme_shutdown_ctrl(&dev->ctrl);
1044 else
1045 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1046 dev->bar + NVME_REG_CAP));
07836e65
KB
1047
1048 spin_lock_irq(&nvmeq->q_lock);
1049 nvme_process_cq(nvmeq);
1050 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1051}
1052
8ffaadf7
JD
1053static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1054 int entry_size)
1055{
1056 int q_depth = dev->q_depth;
5fd4ce1b
CH
1057 unsigned q_size_aligned = roundup(q_depth * entry_size,
1058 dev->ctrl.page_size);
8ffaadf7
JD
1059
1060 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1061 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1062 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1063 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1064
1065 /*
1066 * Ensure the reduced q_depth is above some threshold where it
1067 * would be better to map queues in system memory with the
1068 * original depth
1069 */
1070 if (q_depth < 64)
1071 return -ENOMEM;
1072 }
1073
1074 return q_depth;
1075}
1076
1077static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1078 int qid, int depth)
1079{
1080 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1081 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1082 dev->ctrl.page_size);
8ffaadf7
JD
1083 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1084 nvmeq->sq_cmds_io = dev->cmb + offset;
1085 } else {
1086 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1087 &nvmeq->sq_dma_addr, GFP_KERNEL);
1088 if (!nvmeq->sq_cmds)
1089 return -ENOMEM;
1090 }
1091
1092 return 0;
1093}
1094
b60503ba 1095static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1096 int depth)
b60503ba 1097{
a4aea562 1098 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1099 if (!nvmeq)
1100 return NULL;
1101
e75ec752 1102 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1103 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1104 if (!nvmeq->cqes)
1105 goto free_nvmeq;
b60503ba 1106
8ffaadf7 1107 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1108 goto free_cqdma;
1109
e75ec752 1110 nvmeq->q_dmadev = dev->dev;
091b6092 1111 nvmeq->dev = dev;
3193f07b 1112 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1113 dev->ctrl.instance, qid);
b60503ba
MW
1114 spin_lock_init(&nvmeq->q_lock);
1115 nvmeq->cq_head = 0;
82123460 1116 nvmeq->cq_phase = 1;
b80d5ccc 1117 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1118 nvmeq->q_depth = depth;
c30341dc 1119 nvmeq->qid = qid;
758dd7fd 1120 nvmeq->cq_vector = -1;
a4aea562 1121 dev->queues[qid] = nvmeq;
36a7e993
JD
1122 dev->queue_count++;
1123
b60503ba
MW
1124 return nvmeq;
1125
1126 free_cqdma:
e75ec752 1127 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1128 nvmeq->cq_dma_addr);
1129 free_nvmeq:
1130 kfree(nvmeq);
1131 return NULL;
1132}
1133
3001082c
MW
1134static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1135 const char *name)
1136{
58ffacb5
MW
1137 if (use_threaded_interrupts)
1138 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1139 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1140 name, nvmeq);
3001082c 1141 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1142 IRQF_SHARED, name, nvmeq);
3001082c
MW
1143}
1144
22404274 1145static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1146{
22404274 1147 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1148
7be50e93 1149 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1150 nvmeq->sq_tail = 0;
1151 nvmeq->cq_head = 0;
1152 nvmeq->cq_phase = 1;
b80d5ccc 1153 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1154 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1155 dev->online_queues++;
7be50e93 1156 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1157}
1158
1159static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1160{
1161 struct nvme_dev *dev = nvmeq->dev;
1162 int result;
3f85d50b 1163
2b25d981 1164 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1165 result = adapter_alloc_cq(dev, qid, nvmeq);
1166 if (result < 0)
22404274 1167 return result;
b60503ba
MW
1168
1169 result = adapter_alloc_sq(dev, qid, nvmeq);
1170 if (result < 0)
1171 goto release_cq;
1172
3193f07b 1173 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1174 if (result < 0)
1175 goto release_sq;
1176
22404274 1177 nvme_init_queue(nvmeq, qid);
22404274 1178 return result;
b60503ba
MW
1179
1180 release_sq:
1181 adapter_delete_sq(dev, qid);
1182 release_cq:
1183 adapter_delete_cq(dev, qid);
22404274 1184 return result;
b60503ba
MW
1185}
1186
a4aea562 1187static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1188 .queue_rq = nvme_queue_rq,
eee417b0 1189 .complete = nvme_complete_rq,
a4aea562
MB
1190 .map_queue = blk_mq_map_queue,
1191 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1192 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1193 .init_request = nvme_admin_init_request,
1194 .timeout = nvme_timeout,
1195};
1196
1197static struct blk_mq_ops nvme_mq_ops = {
1198 .queue_rq = nvme_queue_rq,
eee417b0 1199 .complete = nvme_complete_rq,
a4aea562
MB
1200 .map_queue = blk_mq_map_queue,
1201 .init_hctx = nvme_init_hctx,
1202 .init_request = nvme_init_request,
1203 .timeout = nvme_timeout,
a0fa9647 1204 .poll = nvme_poll,
a4aea562
MB
1205};
1206
ea191d2f
KB
1207static void nvme_dev_remove_admin(struct nvme_dev *dev)
1208{
1c63dc66 1209 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1210 /*
1211 * If the controller was reset during removal, it's possible
1212 * user requests may be waiting on a stopped queue. Start the
1213 * queue to flush these to completion.
1214 */
1215 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1216 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1217 blk_mq_free_tag_set(&dev->admin_tagset);
1218 }
1219}
1220
a4aea562
MB
1221static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1222{
1c63dc66 1223 if (!dev->ctrl.admin_q) {
a4aea562
MB
1224 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1225 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1226
1227 /*
1228 * Subtract one to leave an empty queue entry for 'Full Queue'
1229 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1230 */
1231 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1232 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1233 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1234 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1235 dev->admin_tagset.driver_data = dev;
1236
1237 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1238 return -ENOMEM;
1239
1c63dc66
CH
1240 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1241 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1242 blk_mq_free_tag_set(&dev->admin_tagset);
1243 return -ENOMEM;
1244 }
1c63dc66 1245 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1246 nvme_dev_remove_admin(dev);
1c63dc66 1247 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1248 return -ENODEV;
1249 }
0fb59cbc 1250 } else
25646264 1251 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1252
1253 return 0;
1254}
1255
8d85fce7 1256static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1257{
ba47e386 1258 int result;
b60503ba 1259 u32 aqa;
7a67cbea 1260 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1261 struct nvme_queue *nvmeq;
1262
7a67cbea 1263 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1264 NVME_CAP_NSSRC(cap) : 0;
1265
7a67cbea
CH
1266 if (dev->subsystem &&
1267 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1268 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1269
5fd4ce1b 1270 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1271 if (result < 0)
1272 return result;
b60503ba 1273
a4aea562 1274 nvmeq = dev->queues[0];
cd638946 1275 if (!nvmeq) {
2b25d981 1276 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1277 if (!nvmeq)
1278 return -ENOMEM;
cd638946 1279 }
b60503ba
MW
1280
1281 aqa = nvmeq->q_depth - 1;
1282 aqa |= aqa << 16;
1283
7a67cbea
CH
1284 writel(aqa, dev->bar + NVME_REG_AQA);
1285 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1286 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1287
5fd4ce1b 1288 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1289 if (result)
a4aea562
MB
1290 goto free_nvmeq;
1291
2b25d981 1292 nvmeq->cq_vector = 0;
3193f07b 1293 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1294 if (result) {
1295 nvmeq->cq_vector = -1;
0fb59cbc 1296 goto free_nvmeq;
758dd7fd 1297 }
025c557a 1298
b60503ba 1299 return result;
a4aea562 1300
a4aea562
MB
1301 free_nvmeq:
1302 nvme_free_queues(dev, 0);
1303 return result;
b60503ba
MW
1304}
1305
2d55cd5f 1306static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1307{
2d55cd5f
CH
1308 struct nvme_dev *dev = (struct nvme_dev *)data;
1309 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1310
2d55cd5f
CH
1311 /*
1312 * Skip controllers currently under reset.
1313 */
1314 if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) &&
1315 ((csts & NVME_CSTS_CFS) ||
1316 (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) {
1317 if (queue_work(nvme_workq, &dev->reset_work)) {
1318 dev_warn(dev->dev,
1319 "Failed status: 0x%x, reset controller.\n",
1320 csts);
1fa6aead 1321 }
2d55cd5f 1322 return;
1fa6aead 1323 }
2d55cd5f
CH
1324
1325 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1326}
1327
749941f2 1328static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1329{
949928c1 1330 unsigned i, max;
749941f2 1331 int ret = 0;
42f61420 1332
749941f2
CH
1333 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1334 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1335 ret = -ENOMEM;
42f61420 1336 break;
749941f2
CH
1337 }
1338 }
42f61420 1339
949928c1
KB
1340 max = min(dev->max_qid, dev->queue_count - 1);
1341 for (i = dev->online_queues; i <= max; i++) {
749941f2
CH
1342 ret = nvme_create_queue(dev->queues[i], i);
1343 if (ret) {
2659e57b 1344 nvme_free_queues(dev, i);
42f61420 1345 break;
2659e57b 1346 }
27e8166c 1347 }
749941f2
CH
1348
1349 /*
1350 * Ignore failing Create SQ/CQ commands, we can continue with less
1351 * than the desired aount of queues, and even a controller without
1352 * I/O queues an still be used to issue admin commands. This might
1353 * be useful to upgrade a buggy firmware for example.
1354 */
1355 return ret >= 0 ? 0 : ret;
b60503ba
MW
1356}
1357
8ffaadf7
JD
1358static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1359{
1360 u64 szu, size, offset;
1361 u32 cmbloc;
1362 resource_size_t bar_size;
1363 struct pci_dev *pdev = to_pci_dev(dev->dev);
1364 void __iomem *cmb;
1365 dma_addr_t dma_addr;
1366
1367 if (!use_cmb_sqes)
1368 return NULL;
1369
7a67cbea 1370 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1371 if (!(NVME_CMB_SZ(dev->cmbsz)))
1372 return NULL;
1373
7a67cbea 1374 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1375
1376 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1377 size = szu * NVME_CMB_SZ(dev->cmbsz);
1378 offset = szu * NVME_CMB_OFST(cmbloc);
1379 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1380
1381 if (offset > bar_size)
1382 return NULL;
1383
1384 /*
1385 * Controllers may support a CMB size larger than their BAR,
1386 * for example, due to being behind a bridge. Reduce the CMB to
1387 * the reported size of the BAR
1388 */
1389 if (size > bar_size - offset)
1390 size = bar_size - offset;
1391
1392 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1393 cmb = ioremap_wc(dma_addr, size);
1394 if (!cmb)
1395 return NULL;
1396
1397 dev->cmb_dma_addr = dma_addr;
1398 dev->cmb_size = size;
1399 return cmb;
1400}
1401
1402static inline void nvme_release_cmb(struct nvme_dev *dev)
1403{
1404 if (dev->cmb) {
1405 iounmap(dev->cmb);
1406 dev->cmb = NULL;
1407 }
1408}
1409
9d713c2b
KB
1410static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1411{
b80d5ccc 1412 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1413}
1414
8d85fce7 1415static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1416{
a4aea562 1417 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1418 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1419 int result, i, vecs, nr_io_queues, size;
b60503ba 1420
42f61420 1421 nr_io_queues = num_possible_cpus();
9a0be7ab
CH
1422 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1423 if (result < 0)
1b23484b 1424 return result;
9a0be7ab
CH
1425
1426 /*
1427 * Degraded controllers might return an error when setting the queue
1428 * count. We still want to be able to bring them online and offer
1429 * access to the admin queue, as that might be only way to fix them up.
1430 */
1431 if (result > 0) {
1b3c47c1
SG
1432 dev_err(dev->ctrl.device,
1433 "Could not set queue count (%d)\n", result);
788e15ab 1434 return 0;
9a0be7ab 1435 }
b60503ba 1436
8ffaadf7
JD
1437 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1438 result = nvme_cmb_qdepth(dev, nr_io_queues,
1439 sizeof(struct nvme_command));
1440 if (result > 0)
1441 dev->q_depth = result;
1442 else
1443 nvme_release_cmb(dev);
1444 }
1445
9d713c2b
KB
1446 size = db_bar_size(dev, nr_io_queues);
1447 if (size > 8192) {
f1938f6e 1448 iounmap(dev->bar);
9d713c2b
KB
1449 do {
1450 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1451 if (dev->bar)
1452 break;
1453 if (!--nr_io_queues)
1454 return -ENOMEM;
1455 size = db_bar_size(dev, nr_io_queues);
1456 } while (1);
7a67cbea 1457 dev->dbs = dev->bar + 4096;
5a92e700 1458 adminq->q_db = dev->dbs;
f1938f6e
MW
1459 }
1460
9d713c2b 1461 /* Deregister the admin queue's interrupt */
3193f07b 1462 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1463
e32efbfc
JA
1464 /*
1465 * If we enable msix early due to not intx, disable it again before
1466 * setting up the full range we need.
1467 */
788e15ab
KB
1468 if (pdev->msi_enabled)
1469 pci_disable_msi(pdev);
1470 else if (pdev->msix_enabled)
e32efbfc
JA
1471 pci_disable_msix(pdev);
1472
be577fab 1473 for (i = 0; i < nr_io_queues; i++)
1b23484b 1474 dev->entry[i].entry = i;
be577fab
AG
1475 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1476 if (vecs < 0) {
1477 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1478 if (vecs < 0) {
1479 vecs = 1;
1480 } else {
1481 for (i = 0; i < vecs; i++)
1482 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1483 }
1484 }
1485
063a8096
MW
1486 /*
1487 * Should investigate if there's a performance win from allocating
1488 * more queues than interrupt vectors; it might allow the submission
1489 * path to scale better, even if the receive path is limited by the
1490 * number of interrupts.
1491 */
1492 nr_io_queues = vecs;
42f61420 1493 dev->max_qid = nr_io_queues;
063a8096 1494
3193f07b 1495 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1496 if (result) {
1497 adminq->cq_vector = -1;
22404274 1498 goto free_queues;
758dd7fd 1499 }
749941f2 1500 return nvme_create_io_queues(dev);
b60503ba 1501
22404274 1502 free_queues:
a1a5ef99 1503 nvme_free_queues(dev, 1);
22404274 1504 return result;
b60503ba
MW
1505}
1506
bda4e0fb 1507static void nvme_set_irq_hints(struct nvme_dev *dev)
a5768aa8 1508{
bda4e0fb
KB
1509 struct nvme_queue *nvmeq;
1510 int i;
a5768aa8 1511
bda4e0fb
KB
1512 for (i = 0; i < dev->online_queues; i++) {
1513 nvmeq = dev->queues[i];
a5768aa8 1514
bda4e0fb
KB
1515 if (!nvmeq->tags || !(*nvmeq->tags))
1516 continue;
a5768aa8 1517
bda4e0fb
KB
1518 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1519 blk_mq_tags_cpumask(*nvmeq->tags));
a5768aa8 1520 }
a5768aa8
KB
1521}
1522
a5768aa8 1523static void nvme_dev_scan(struct work_struct *work)
a5768aa8 1524{
a5768aa8 1525 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
a5768aa8
KB
1526
1527 if (!dev->tagset.tags)
1528 return;
5bae7f73 1529 nvme_scan_namespaces(&dev->ctrl);
bda4e0fb 1530 nvme_set_irq_hints(dev);
a5768aa8
KB
1531}
1532
db3cbfff 1533static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1534{
db3cbfff 1535 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1536
db3cbfff
KB
1537 blk_mq_free_request(req);
1538 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1539}
1540
db3cbfff 1541static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1542{
db3cbfff 1543 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1544
db3cbfff
KB
1545 if (!error) {
1546 unsigned long flags;
1547
2e39e0f6
ML
1548 /*
1549 * We might be called with the AQ q_lock held
1550 * and the I/O queue q_lock should always
1551 * nest inside the AQ one.
1552 */
1553 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1554 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1555 nvme_process_cq(nvmeq);
1556 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1557 }
db3cbfff
KB
1558
1559 nvme_del_queue_end(req, error);
a5768aa8
KB
1560}
1561
db3cbfff 1562static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1563{
db3cbfff
KB
1564 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1565 struct request *req;
1566 struct nvme_command cmd;
bda4e0fb 1567
db3cbfff
KB
1568 memset(&cmd, 0, sizeof(cmd));
1569 cmd.delete_queue.opcode = opcode;
1570 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1571
db3cbfff
KB
1572 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1573 if (IS_ERR(req))
1574 return PTR_ERR(req);
bda4e0fb 1575
db3cbfff
KB
1576 req->timeout = ADMIN_TIMEOUT;
1577 req->end_io_data = nvmeq;
1578
1579 blk_execute_rq_nowait(q, NULL, req, false,
1580 opcode == nvme_admin_delete_cq ?
1581 nvme_del_cq_end : nvme_del_queue_end);
1582 return 0;
bda4e0fb
KB
1583}
1584
db3cbfff 1585static void nvme_disable_io_queues(struct nvme_dev *dev)
a5768aa8 1586{
db3cbfff
KB
1587 int pass;
1588 unsigned long timeout;
1589 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1590
db3cbfff
KB
1591 for (pass = 0; pass < 2; pass++) {
1592 int sent = 0, i = dev->queue_count - 1;
1593
1594 reinit_completion(&dev->ioq_wait);
1595 retry:
1596 timeout = ADMIN_TIMEOUT;
1597 for (; i > 0; i--) {
1598 struct nvme_queue *nvmeq = dev->queues[i];
1599
1600 if (!pass)
1601 nvme_suspend_queue(nvmeq);
1602 if (nvme_delete_queue(nvmeq, opcode))
1603 break;
1604 ++sent;
1605 }
1606 while (sent--) {
1607 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1608 if (timeout == 0)
1609 return;
1610 if (i)
1611 goto retry;
1612 }
1613 opcode = nvme_admin_delete_cq;
1614 }
a5768aa8
KB
1615}
1616
422ef0c7
MW
1617/*
1618 * Return: error value if an error occurred setting up the queues or calling
1619 * Identify Device. 0 if these succeeded, even if adding some of the
1620 * namespaces failed. At the moment, these failures are silent. TBD which
1621 * failures should be reported.
1622 */
8d85fce7 1623static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1624{
5bae7f73 1625 if (!dev->ctrl.tagset) {
ffe7704d
KB
1626 dev->tagset.ops = &nvme_mq_ops;
1627 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1628 dev->tagset.timeout = NVME_IO_TIMEOUT;
1629 dev->tagset.numa_node = dev_to_node(dev->dev);
1630 dev->tagset.queue_depth =
a4aea562 1631 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1632 dev->tagset.cmd_size = nvme_cmd_size(dev);
1633 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1634 dev->tagset.driver_data = dev;
b60503ba 1635
ffe7704d
KB
1636 if (blk_mq_alloc_tag_set(&dev->tagset))
1637 return 0;
5bae7f73 1638 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
1639 } else {
1640 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1641
1642 /* Free previously allocated queues that are no longer usable */
1643 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1644 }
949928c1 1645
646017a6 1646 nvme_queue_scan(dev);
e1e5e564 1647 return 0;
b60503ba
MW
1648}
1649
b00a726a 1650static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1651{
42f61420 1652 u64 cap;
b00a726a 1653 int result = -ENOMEM;
e75ec752 1654 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1655
1656 if (pci_enable_device_mem(pdev))
1657 return result;
1658
0877cb0d 1659 pci_set_master(pdev);
0877cb0d 1660
e75ec752
CH
1661 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1662 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1663 goto disable;
0877cb0d 1664
7a67cbea 1665 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1666 result = -ENODEV;
b00a726a 1667 goto disable;
0e53d180 1668 }
e32efbfc
JA
1669
1670 /*
788e15ab
KB
1671 * Some devices and/or platforms don't advertise or work with INTx
1672 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1673 * adjust this later.
e32efbfc 1674 */
788e15ab
KB
1675 if (pci_enable_msix(pdev, dev->entry, 1)) {
1676 pci_enable_msi(pdev);
1677 dev->entry[0].vector = pdev->irq;
1678 }
1679
1680 if (!dev->entry[0].vector) {
1681 result = -ENODEV;
1682 goto disable;
e32efbfc
JA
1683 }
1684
7a67cbea
CH
1685 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1686
42f61420
KB
1687 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1688 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1689 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1690
1691 /*
1692 * Temporary fix for the Apple controller found in the MacBook8,1 and
1693 * some MacBook7,1 to avoid controller resets and data loss.
1694 */
1695 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1696 dev->q_depth = 2;
1697 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1698 "queue depth=%u to work around controller resets\n",
1699 dev->q_depth);
1700 }
1701
7a67cbea 1702 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1703 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1704
a0a3408e
KB
1705 pci_enable_pcie_error_reporting(pdev);
1706 pci_save_state(pdev);
0877cb0d
KB
1707 return 0;
1708
1709 disable:
0877cb0d
KB
1710 pci_disable_device(pdev);
1711 return result;
1712}
1713
1714static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1715{
1716 if (dev->bar)
1717 iounmap(dev->bar);
1718 pci_release_regions(to_pci_dev(dev->dev));
1719}
1720
1721static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1722{
e75ec752
CH
1723 struct pci_dev *pdev = to_pci_dev(dev->dev);
1724
1725 if (pdev->msi_enabled)
1726 pci_disable_msi(pdev);
1727 else if (pdev->msix_enabled)
1728 pci_disable_msix(pdev);
0877cb0d 1729
a0a3408e
KB
1730 if (pci_is_enabled(pdev)) {
1731 pci_disable_pcie_error_reporting(pdev);
e75ec752 1732 pci_disable_device(pdev);
4d115420 1733 }
4d115420
KB
1734}
1735
a5cdb68c 1736static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1737{
22404274 1738 int i;
7c1b2450 1739 u32 csts = -1;
22404274 1740
2d55cd5f 1741 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1742
77bf25ea 1743 mutex_lock(&dev->shutdown_lock);
b00a726a 1744 if (pci_is_enabled(to_pci_dev(dev->dev))) {
25646264 1745 nvme_stop_queues(&dev->ctrl);
7a67cbea 1746 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1747 }
7c1b2450 1748 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 1749 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 1750 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 1751 nvme_suspend_queue(nvmeq);
4d115420
KB
1752 }
1753 } else {
1754 nvme_disable_io_queues(dev);
a5cdb68c 1755 nvme_disable_admin_queue(dev, shutdown);
4d115420 1756 }
b00a726a 1757 nvme_pci_disable(dev);
07836e65 1758
82b4552b
SG
1759 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_io, dev);
1760 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_io, dev);
77bf25ea 1761 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1762}
1763
091b6092
MW
1764static int nvme_setup_prp_pools(struct nvme_dev *dev)
1765{
e75ec752 1766 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1767 PAGE_SIZE, PAGE_SIZE, 0);
1768 if (!dev->prp_page_pool)
1769 return -ENOMEM;
1770
99802a7a 1771 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1772 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1773 256, 256, 0);
1774 if (!dev->prp_small_pool) {
1775 dma_pool_destroy(dev->prp_page_pool);
1776 return -ENOMEM;
1777 }
091b6092
MW
1778 return 0;
1779}
1780
1781static void nvme_release_prp_pools(struct nvme_dev *dev)
1782{
1783 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1784 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1785}
1786
1673f1f0 1787static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1788{
1673f1f0 1789 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1790
e75ec752 1791 put_device(dev->dev);
4af0e21c
KB
1792 if (dev->tagset.tags)
1793 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1794 if (dev->ctrl.admin_q)
1795 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
1796 kfree(dev->queues);
1797 kfree(dev->entry);
1798 kfree(dev);
1799}
1800
f58944e2
KB
1801static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1802{
237045fc 1803 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1804
1805 kref_get(&dev->ctrl.kref);
69d9a99c 1806 nvme_dev_disable(dev, false);
f58944e2
KB
1807 if (!schedule_work(&dev->remove_work))
1808 nvme_put_ctrl(&dev->ctrl);
1809}
1810
fd634f41 1811static void nvme_reset_work(struct work_struct *work)
5e82e952 1812{
fd634f41 1813 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
f58944e2 1814 int result = -ENODEV;
5e82e952 1815
fd634f41
CH
1816 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1817 goto out;
5e82e952 1818
fd634f41
CH
1819 /*
1820 * If we're called to reset a live controller first shut it down before
1821 * moving on.
1822 */
b00a726a 1823 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1824 nvme_dev_disable(dev, false);
5e82e952 1825
fd634f41 1826 set_bit(NVME_CTRL_RESETTING, &dev->flags);
f0b50732 1827
b00a726a 1828 result = nvme_pci_enable(dev);
f0b50732 1829 if (result)
3cf519b5 1830 goto out;
f0b50732
KB
1831
1832 result = nvme_configure_admin_queue(dev);
1833 if (result)
f58944e2 1834 goto out;
f0b50732 1835
a4aea562 1836 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1837 result = nvme_alloc_admin_tags(dev);
1838 if (result)
f58944e2 1839 goto out;
b9afca3e 1840
ce4541f4
CH
1841 result = nvme_init_identify(&dev->ctrl);
1842 if (result)
f58944e2 1843 goto out;
ce4541f4 1844
f0b50732 1845 result = nvme_setup_io_queues(dev);
badc34d4 1846 if (result)
f58944e2 1847 goto out;
f0b50732 1848
21f033f7
KB
1849 /*
1850 * A controller that can not execute IO typically requires user
1851 * intervention to correct. For such degraded controllers, the driver
1852 * should not submit commands the user did not request, so skip
1853 * registering for asynchronous event notification on this condition.
1854 */
1855 if (dev->online_queues > 1) {
1856 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1857 queue_work(nvme_workq, &dev->async_work);
1858 }
3cf519b5 1859
2d55cd5f 1860 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1861
2659e57b
CH
1862 /*
1863 * Keep the controller around but remove all namespaces if we don't have
1864 * any working I/O queue.
1865 */
3cf519b5 1866 if (dev->online_queues < 2) {
1b3c47c1 1867 dev_warn(dev->ctrl.device, "IO queues not created\n");
5bae7f73 1868 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1869 } else {
25646264 1870 nvme_start_queues(&dev->ctrl);
3cf519b5
CH
1871 nvme_dev_add(dev);
1872 }
1873
fd634f41 1874 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
3cf519b5 1875 return;
f0b50732 1876
3cf519b5 1877 out:
f58944e2 1878 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1879}
1880
5c8809e6 1881static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1882{
5c8809e6 1883 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1884 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1885
69d9a99c 1886 nvme_kill_queues(&dev->ctrl);
9a6b9458 1887 if (pci_get_drvdata(pdev))
c81f4975 1888 pci_stop_and_remove_bus_device_locked(pdev);
1673f1f0 1889 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1890}
1891
4cc06521 1892static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1893{
1c63dc66 1894 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1895 return -ENODEV;
ffe7704d 1896
846cc05f
CH
1897 if (!queue_work(nvme_workq, &dev->reset_work))
1898 return -EBUSY;
ffe7704d 1899
846cc05f 1900 flush_work(&dev->reset_work);
846cc05f 1901 return 0;
9a6b9458
KB
1902}
1903
1c63dc66 1904static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 1905{
1c63dc66 1906 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 1907 return 0;
9ca97374
TH
1908}
1909
5fd4ce1b 1910static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 1911{
5fd4ce1b
CH
1912 writel(val, to_nvme_dev(ctrl)->bar + off);
1913 return 0;
1914}
4cc06521 1915
7fd8930f
CH
1916static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1917{
1918 *val = readq(to_nvme_dev(ctrl)->bar + off);
1919 return 0;
4cc06521
KB
1920}
1921
5bae7f73 1922static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
4cc06521 1923{
5bae7f73 1924 struct nvme_dev *dev = to_nvme_dev(ctrl);
4cc06521 1925
5bae7f73
CH
1926 return !dev->bar || dev->online_queues < 2;
1927}
4cc06521 1928
f3ca80fc
CH
1929static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1930{
1931 return nvme_reset(to_nvme_dev(ctrl));
4cc06521 1932}
f3ca80fc 1933
1c63dc66 1934static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
e439bb12 1935 .module = THIS_MODULE,
1c63dc66 1936 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 1937 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 1938 .reg_read64 = nvme_pci_reg_read64,
5bae7f73 1939 .io_incapable = nvme_pci_io_incapable,
f3ca80fc 1940 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 1941 .free_ctrl = nvme_pci_free_ctrl,
1c63dc66 1942};
4cc06521 1943
b00a726a
KB
1944static int nvme_dev_map(struct nvme_dev *dev)
1945{
1946 int bars;
1947 struct pci_dev *pdev = to_pci_dev(dev->dev);
1948
1949 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1950 if (!bars)
1951 return -ENODEV;
1952 if (pci_request_selected_regions(pdev, bars, "nvme"))
1953 return -ENODEV;
1954
1955 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1956 if (!dev->bar)
1957 goto release;
1958
1959 return 0;
1960 release:
1961 pci_release_regions(pdev);
1962 return -ENODEV;
1963}
1964
8d85fce7 1965static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 1966{
a4aea562 1967 int node, result = -ENOMEM;
b60503ba
MW
1968 struct nvme_dev *dev;
1969
a4aea562
MB
1970 node = dev_to_node(&pdev->dev);
1971 if (node == NUMA_NO_NODE)
1972 set_dev_node(&pdev->dev, 0);
1973
1974 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
1975 if (!dev)
1976 return -ENOMEM;
a4aea562
MB
1977 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1978 GFP_KERNEL, node);
b60503ba
MW
1979 if (!dev->entry)
1980 goto free;
a4aea562
MB
1981 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1982 GFP_KERNEL, node);
b60503ba
MW
1983 if (!dev->queues)
1984 goto free;
1985
e75ec752 1986 dev->dev = get_device(&pdev->dev);
9a6b9458 1987 pci_set_drvdata(pdev, dev);
1c63dc66 1988
b00a726a
KB
1989 result = nvme_dev_map(dev);
1990 if (result)
1991 goto free;
1992
f3ca80fc 1993 INIT_WORK(&dev->scan_work, nvme_dev_scan);
f3ca80fc 1994 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 1995 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
9396dec9 1996 INIT_WORK(&dev->async_work, nvme_async_event_work);
2d55cd5f
CH
1997 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1998 (unsigned long)dev);
77bf25ea 1999 mutex_init(&dev->shutdown_lock);
db3cbfff 2000 init_completion(&dev->ioq_wait);
b60503ba 2001
091b6092
MW
2002 result = nvme_setup_prp_pools(dev);
2003 if (result)
a96d4f5c 2004 goto put_pci;
4cc06521 2005
f3ca80fc
CH
2006 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2007 id->driver_data);
4cc06521 2008 if (result)
2e1d8448 2009 goto release_pools;
740216fc 2010
1b3c47c1
SG
2011 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2012
92f7a162 2013 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
2014 return 0;
2015
0877cb0d 2016 release_pools:
091b6092 2017 nvme_release_prp_pools(dev);
a96d4f5c 2018 put_pci:
e75ec752 2019 put_device(dev->dev);
b00a726a 2020 nvme_dev_unmap(dev);
b60503ba
MW
2021 free:
2022 kfree(dev->queues);
2023 kfree(dev->entry);
2024 kfree(dev);
2025 return result;
2026}
2027
f0d54a54
KB
2028static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2029{
a6739479 2030 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2031
a6739479 2032 if (prepare)
a5cdb68c 2033 nvme_dev_disable(dev, false);
a6739479 2034 else
92f7a162 2035 queue_work(nvme_workq, &dev->reset_work);
f0d54a54
KB
2036}
2037
09ece142
KB
2038static void nvme_shutdown(struct pci_dev *pdev)
2039{
2040 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2041 nvme_dev_disable(dev, true);
09ece142
KB
2042}
2043
f58944e2
KB
2044/*
2045 * The driver's remove may be called on a device in a partially initialized
2046 * state. This function must not have any dependencies on the device state in
2047 * order to proceed.
2048 */
8d85fce7 2049static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2050{
2051 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2052
2d55cd5f 2053 del_timer_sync(&dev->watchdog_timer);
9a6b9458 2054
646017a6 2055 set_bit(NVME_CTRL_REMOVING, &dev->flags);
9a6b9458 2056 pci_set_drvdata(pdev, NULL);
9396dec9 2057 flush_work(&dev->async_work);
a5768aa8 2058 flush_work(&dev->scan_work);
5bae7f73 2059 nvme_remove_namespaces(&dev->ctrl);
53029b04 2060 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2061 nvme_dev_disable(dev, true);
ff23a2a1 2062 flush_work(&dev->reset_work);
a4aea562 2063 nvme_dev_remove_admin(dev);
a1a5ef99 2064 nvme_free_queues(dev, 0);
8ffaadf7 2065 nvme_release_cmb(dev);
9a6b9458 2066 nvme_release_prp_pools(dev);
b00a726a 2067 nvme_dev_unmap(dev);
1673f1f0 2068 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2069}
2070
671a6018 2071#ifdef CONFIG_PM_SLEEP
cd638946
KB
2072static int nvme_suspend(struct device *dev)
2073{
2074 struct pci_dev *pdev = to_pci_dev(dev);
2075 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2076
a5cdb68c 2077 nvme_dev_disable(ndev, true);
cd638946
KB
2078 return 0;
2079}
2080
2081static int nvme_resume(struct device *dev)
2082{
2083 struct pci_dev *pdev = to_pci_dev(dev);
2084 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2085
92f7a162 2086 queue_work(nvme_workq, &ndev->reset_work);
9a6b9458 2087 return 0;
cd638946 2088}
671a6018 2089#endif
cd638946
KB
2090
2091static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2092
a0a3408e
KB
2093static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2094 pci_channel_state_t state)
2095{
2096 struct nvme_dev *dev = pci_get_drvdata(pdev);
2097
2098 /*
2099 * A frozen channel requires a reset. When detected, this method will
2100 * shutdown the controller to quiesce. The controller will be restarted
2101 * after the slot reset through driver's slot_reset callback.
2102 */
1b3c47c1 2103 dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
a0a3408e
KB
2104 switch (state) {
2105 case pci_channel_io_normal:
2106 return PCI_ERS_RESULT_CAN_RECOVER;
2107 case pci_channel_io_frozen:
a5cdb68c 2108 nvme_dev_disable(dev, false);
a0a3408e
KB
2109 return PCI_ERS_RESULT_NEED_RESET;
2110 case pci_channel_io_perm_failure:
2111 return PCI_ERS_RESULT_DISCONNECT;
2112 }
2113 return PCI_ERS_RESULT_NEED_RESET;
2114}
2115
2116static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2117{
2118 struct nvme_dev *dev = pci_get_drvdata(pdev);
2119
1b3c47c1 2120 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e
KB
2121 pci_restore_state(pdev);
2122 queue_work(nvme_workq, &dev->reset_work);
2123 return PCI_ERS_RESULT_RECOVERED;
2124}
2125
2126static void nvme_error_resume(struct pci_dev *pdev)
2127{
2128 pci_cleanup_aer_uncorrect_error_status(pdev);
2129}
2130
1d352035 2131static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2132 .error_detected = nvme_error_detected,
b60503ba
MW
2133 .slot_reset = nvme_slot_reset,
2134 .resume = nvme_error_resume,
f0d54a54 2135 .reset_notify = nvme_reset_notify,
b60503ba
MW
2136};
2137
2138/* Move to pci_ids.h later */
2139#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2140
6eb0d698 2141static const struct pci_device_id nvme_id_table[] = {
106198ed 2142 { PCI_VDEVICE(INTEL, 0x0953),
08095e70
KB
2143 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2144 NVME_QUIRK_DISCARD_ZEROES, },
540c801c
KB
2145 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2146 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
b60503ba 2147 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2148 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2149 { 0, }
2150};
2151MODULE_DEVICE_TABLE(pci, nvme_id_table);
2152
2153static struct pci_driver nvme_driver = {
2154 .name = "nvme",
2155 .id_table = nvme_id_table,
2156 .probe = nvme_probe,
8d85fce7 2157 .remove = nvme_remove,
09ece142 2158 .shutdown = nvme_shutdown,
cd638946
KB
2159 .driver = {
2160 .pm = &nvme_dev_pm_ops,
2161 },
b60503ba
MW
2162 .err_handler = &nvme_err_handler,
2163};
2164
2165static int __init nvme_init(void)
2166{
0ac13140 2167 int result;
1fa6aead 2168
92f7a162 2169 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2170 if (!nvme_workq)
b9afca3e 2171 return -ENOMEM;
9a6b9458 2172
f3db22fe
KB
2173 result = pci_register_driver(&nvme_driver);
2174 if (result)
576d55d6 2175 destroy_workqueue(nvme_workq);
b60503ba
MW
2176 return result;
2177}
2178
2179static void __exit nvme_exit(void)
2180{
2181 pci_unregister_driver(&nvme_driver);
9a6b9458 2182 destroy_workqueue(nvme_workq);
21bd78bc 2183 _nvme_check_size();
b60503ba
MW
2184}
2185
2186MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2187MODULE_LICENSE("GPL");
c78b4713 2188MODULE_VERSION("1.0");
b60503ba
MW
2189module_init(nvme_init);
2190module_exit(nvme_exit);