]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
nvme: use blk_rq_payload_bytes
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
42f61420 20#include <linux/cpu.h>
fd63e9ce 21#include <linux/delay.h>
b60503ba
MW
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
4cc09e2d 25#include <linux/hdreg.h>
5aff9382 26#include <linux/idr.h>
b60503ba
MW
27#include <linux/init.h>
28#include <linux/interrupt.h>
29#include <linux/io.h>
30#include <linux/kdev_t.h>
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
77bf25ea 35#include <linux/mutex.h>
b60503ba 36#include <linux/pci.h>
be7b6275 37#include <linux/poison.h>
c3bfe717 38#include <linux/ptrace.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
e1e5e564 41#include <linux/t10-pi.h>
2d55cd5f 42#include <linux/timer.h>
b60503ba 43#include <linux/types.h>
2f8e2c87 44#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 45#include <asm/unaligned.h>
797a796a 46
f11bb3e2
CH
47#include "nvme.h"
48
9d43cf64 49#define NVME_Q_DEPTH 1024
d31af0a3 50#define NVME_AQ_DEPTH 256
b60503ba
MW
51#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
52#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 53
adf68f21
CH
54/*
55 * We handle AEN commands ourselves and don't even let the
56 * block layer know about them.
57 */
f866fc42 58#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 59
58ffacb5
MW
60static int use_threaded_interrupts;
61module_param(use_threaded_interrupts, int, 0);
62
8ffaadf7
JD
63static bool use_cmb_sqes = true;
64module_param(use_cmb_sqes, bool, 0644);
65MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
9a6b9458 67static struct workqueue_struct *nvme_workq;
1fa6aead 68
1c63dc66
CH
69struct nvme_dev;
70struct nvme_queue;
b3fffdef 71
4cc06521 72static int nvme_reset(struct nvme_dev *dev);
a0fa9647 73static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 74static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 75
1c63dc66
CH
76/*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79struct nvme_dev {
1c63dc66
CH
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
1c63dc66 92 void __iomem *bar;
1c63dc66 93 struct work_struct reset_work;
5c8809e6 94 struct work_struct remove_work;
2d55cd5f 95 struct timer_list watchdog_timer;
77bf25ea 96 struct mutex shutdown_lock;
1c63dc66 97 bool subsystem;
1c63dc66
CH
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
202021c1 102 u32 cmbloc;
1c63dc66 103 struct nvme_ctrl ctrl;
db3cbfff 104 struct completion ioq_wait;
4d115420 105};
1fa6aead 106
1c63dc66
CH
107static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
108{
109 return container_of(ctrl, struct nvme_dev, ctrl);
110}
111
b60503ba
MW
112/*
113 * An NVM Express queue. Each device has at least two (one for admin
114 * commands and one for I/O commands).
115 */
116struct nvme_queue {
117 struct device *q_dmadev;
091b6092 118 struct nvme_dev *dev;
3193f07b 119 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
120 spinlock_t q_lock;
121 struct nvme_command *sq_cmds;
8ffaadf7 122 struct nvme_command __iomem *sq_cmds_io;
b60503ba 123 volatile struct nvme_completion *cqes;
42483228 124 struct blk_mq_tags **tags;
b60503ba
MW
125 dma_addr_t sq_dma_addr;
126 dma_addr_t cq_dma_addr;
b60503ba
MW
127 u32 __iomem *q_db;
128 u16 q_depth;
6222d172 129 s16 cq_vector;
b60503ba
MW
130 u16 sq_tail;
131 u16 cq_head;
c30341dc 132 u16 qid;
e9539f47
MW
133 u8 cq_phase;
134 u8 cqe_seen;
b60503ba
MW
135};
136
71bd150c
CH
137/*
138 * The nvme_iod describes the data in an I/O, including the list of PRP
139 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 140 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
141 * allocated to store the PRP list.
142 */
143struct nvme_iod {
d49187e9 144 struct nvme_request req;
f4800d6d
CH
145 struct nvme_queue *nvmeq;
146 int aborted;
71bd150c 147 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
148 int nents; /* Used in scatterlist */
149 int length; /* Of data, in bytes */
150 dma_addr_t first_dma;
bf684057 151 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
152 struct scatterlist *sg;
153 struct scatterlist inline_sg[0];
b60503ba
MW
154};
155
156/*
157 * Check we didin't inadvertently grow the command struct
158 */
159static inline void _nvme_check_size(void)
160{
161 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 166 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 167 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
168 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 172 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
173}
174
ac3dd5bd
JA
175/*
176 * Max size of iod being embedded in the request payload
177 */
178#define NVME_INT_PAGES 2
5fd4ce1b 179#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
180
181/*
182 * Will slightly overestimate the number of pages needed. This is OK
183 * as it only leads to a small amount of wasted memory for the lifetime of
184 * the I/O.
185 */
186static int nvme_npages(unsigned size, struct nvme_dev *dev)
187{
5fd4ce1b
CH
188 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
189 dev->ctrl.page_size);
ac3dd5bd
JA
190 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
191}
192
f4800d6d
CH
193static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
194 unsigned int size, unsigned int nseg)
ac3dd5bd 195{
f4800d6d
CH
196 return sizeof(__le64 *) * nvme_npages(size, dev) +
197 sizeof(struct scatterlist) * nseg;
198}
ac3dd5bd 199
f4800d6d
CH
200static unsigned int nvme_cmd_size(struct nvme_dev *dev)
201{
202 return sizeof(struct nvme_iod) +
203 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
204}
205
dca51e78
CH
206static int nvmeq_irq(struct nvme_queue *nvmeq)
207{
208 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
209}
210
a4aea562
MB
211static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212 unsigned int hctx_idx)
e85248e5 213{
a4aea562
MB
214 struct nvme_dev *dev = data;
215 struct nvme_queue *nvmeq = dev->queues[0];
216
42483228
KB
217 WARN_ON(hctx_idx != 0);
218 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
219 WARN_ON(nvmeq->tags);
220
a4aea562 221 hctx->driver_data = nvmeq;
42483228 222 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 223 return 0;
e85248e5
MW
224}
225
4af0e21c
KB
226static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
227{
228 struct nvme_queue *nvmeq = hctx->driver_data;
229
230 nvmeq->tags = NULL;
231}
232
a4aea562
MB
233static int nvme_admin_init_request(void *data, struct request *req,
234 unsigned int hctx_idx, unsigned int rq_idx,
235 unsigned int numa_node)
22404274 236{
a4aea562 237 struct nvme_dev *dev = data;
f4800d6d 238 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
239 struct nvme_queue *nvmeq = dev->queues[0];
240
241 BUG_ON(!nvmeq);
f4800d6d 242 iod->nvmeq = nvmeq;
a4aea562 243 return 0;
22404274
KB
244}
245
a4aea562
MB
246static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
247 unsigned int hctx_idx)
b60503ba 248{
a4aea562 249 struct nvme_dev *dev = data;
42483228 250 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 251
42483228
KB
252 if (!nvmeq->tags)
253 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 254
42483228 255 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
256 hctx->driver_data = nvmeq;
257 return 0;
b60503ba
MW
258}
259
a4aea562
MB
260static int nvme_init_request(void *data, struct request *req,
261 unsigned int hctx_idx, unsigned int rq_idx,
262 unsigned int numa_node)
b60503ba 263{
a4aea562 264 struct nvme_dev *dev = data;
f4800d6d 265 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268 BUG_ON(!nvmeq);
f4800d6d 269 iod->nvmeq = nvmeq;
a4aea562
MB
270 return 0;
271}
272
dca51e78
CH
273static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
274{
275 struct nvme_dev *dev = set->driver_data;
276
277 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
278}
279
b60503ba 280/**
adf68f21 281 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
282 * @nvmeq: The queue to use
283 * @cmd: The command to send
284 *
285 * Safe to use from interrupt context
286 */
e3f879bf
SB
287static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
288 struct nvme_command *cmd)
b60503ba 289{
a4aea562
MB
290 u16 tail = nvmeq->sq_tail;
291
8ffaadf7
JD
292 if (nvmeq->sq_cmds_io)
293 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
294 else
295 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
296
b60503ba
MW
297 if (++tail == nvmeq->q_depth)
298 tail = 0;
7547881d 299 writel(tail, nvmeq->q_db);
b60503ba 300 nvmeq->sq_tail = tail;
b60503ba
MW
301}
302
f4800d6d 303static __le64 **iod_list(struct request *req)
b60503ba 304{
f4800d6d 305 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 306 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
307}
308
b131c61d 309static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 310{
f4800d6d 311 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 312 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 313 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 314
f4800d6d
CH
315 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
316 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
317 if (!iod->sg)
318 return BLK_MQ_RQ_QUEUE_BUSY;
319 } else {
320 iod->sg = iod->inline_sg;
ac3dd5bd
JA
321 }
322
f4800d6d
CH
323 iod->aborted = 0;
324 iod->npages = -1;
325 iod->nents = 0;
326 iod->length = size;
f80ec966 327
e8064021 328 if (!(rq->rq_flags & RQF_DONTPREP)) {
f80ec966 329 rq->retries = 0;
e8064021 330 rq->rq_flags |= RQF_DONTPREP;
f80ec966 331 }
bac0000a 332 return BLK_MQ_RQ_QUEUE_OK;
ac3dd5bd
JA
333}
334
f4800d6d 335static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 336{
f4800d6d 337 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 338 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 339 int i;
f4800d6d 340 __le64 **list = iod_list(req);
eca18b23
MW
341 dma_addr_t prp_dma = iod->first_dma;
342
343 if (iod->npages == 0)
344 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
345 for (i = 0; i < iod->npages; i++) {
346 __le64 *prp_list = list[i];
347 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
348 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
349 prp_dma = next_prp_dma;
350 }
ac3dd5bd 351
f4800d6d
CH
352 if (iod->sg != iod->inline_sg)
353 kfree(iod->sg);
b4ff9c8d
KB
354}
355
52b68d7e 356#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
357static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
358{
359 if (be32_to_cpu(pi->ref_tag) == v)
360 pi->ref_tag = cpu_to_be32(p);
361}
362
363static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
364{
365 if (be32_to_cpu(pi->ref_tag) == p)
366 pi->ref_tag = cpu_to_be32(v);
367}
368
369/**
370 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
371 *
372 * The virtual start sector is the one that was originally submitted by the
373 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
374 * start sector may be different. Remap protection information to match the
375 * physical LBA on writes, and back to the original seed on reads.
376 *
377 * Type 0 and 3 do not have a ref tag, so no remapping required.
378 */
379static void nvme_dif_remap(struct request *req,
380 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
381{
382 struct nvme_ns *ns = req->rq_disk->private_data;
383 struct bio_integrity_payload *bip;
384 struct t10_pi_tuple *pi;
385 void *p, *pmap;
386 u32 i, nlb, ts, phys, virt;
387
388 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
389 return;
390
391 bip = bio_integrity(req->bio);
392 if (!bip)
393 return;
394
395 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
396
397 p = pmap;
398 virt = bip_get_seed(bip);
399 phys = nvme_block_nr(ns, blk_rq_pos(req));
400 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 401 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
402
403 for (i = 0; i < nlb; i++, virt++, phys++) {
404 pi = (struct t10_pi_tuple *)p;
405 dif_swap(phys, virt, pi);
406 p += ts;
407 }
408 kunmap_atomic(pmap);
409}
52b68d7e
KB
410#else /* CONFIG_BLK_DEV_INTEGRITY */
411static void nvme_dif_remap(struct request *req,
412 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
413{
414}
415static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
416{
417}
418static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
419{
420}
52b68d7e
KB
421#endif
422
b131c61d 423static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 424{
f4800d6d 425 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 426 struct dma_pool *pool;
b131c61d 427 int length = blk_rq_payload_bytes(req);
eca18b23 428 struct scatterlist *sg = iod->sg;
ff22b54f
MW
429 int dma_len = sg_dma_len(sg);
430 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 431 u32 page_size = dev->ctrl.page_size;
f137e0f1 432 int offset = dma_addr & (page_size - 1);
e025344c 433 __le64 *prp_list;
f4800d6d 434 __le64 **list = iod_list(req);
e025344c 435 dma_addr_t prp_dma;
eca18b23 436 int nprps, i;
ff22b54f 437
1d090624 438 length -= (page_size - offset);
ff22b54f 439 if (length <= 0)
69d2b571 440 return true;
ff22b54f 441
1d090624 442 dma_len -= (page_size - offset);
ff22b54f 443 if (dma_len) {
1d090624 444 dma_addr += (page_size - offset);
ff22b54f
MW
445 } else {
446 sg = sg_next(sg);
447 dma_addr = sg_dma_address(sg);
448 dma_len = sg_dma_len(sg);
449 }
450
1d090624 451 if (length <= page_size) {
edd10d33 452 iod->first_dma = dma_addr;
69d2b571 453 return true;
e025344c
SMM
454 }
455
1d090624 456 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
457 if (nprps <= (256 / 8)) {
458 pool = dev->prp_small_pool;
eca18b23 459 iod->npages = 0;
99802a7a
MW
460 } else {
461 pool = dev->prp_page_pool;
eca18b23 462 iod->npages = 1;
99802a7a
MW
463 }
464
69d2b571 465 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 466 if (!prp_list) {
edd10d33 467 iod->first_dma = dma_addr;
eca18b23 468 iod->npages = -1;
69d2b571 469 return false;
b77954cb 470 }
eca18b23
MW
471 list[0] = prp_list;
472 iod->first_dma = prp_dma;
e025344c
SMM
473 i = 0;
474 for (;;) {
1d090624 475 if (i == page_size >> 3) {
e025344c 476 __le64 *old_prp_list = prp_list;
69d2b571 477 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 478 if (!prp_list)
69d2b571 479 return false;
eca18b23 480 list[iod->npages++] = prp_list;
7523d834
MW
481 prp_list[0] = old_prp_list[i - 1];
482 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
483 i = 1;
e025344c
SMM
484 }
485 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
486 dma_len -= page_size;
487 dma_addr += page_size;
488 length -= page_size;
e025344c
SMM
489 if (length <= 0)
490 break;
491 if (dma_len > 0)
492 continue;
493 BUG_ON(dma_len < 0);
494 sg = sg_next(sg);
495 dma_addr = sg_dma_address(sg);
496 dma_len = sg_dma_len(sg);
ff22b54f
MW
497 }
498
69d2b571 499 return true;
ff22b54f
MW
500}
501
f4800d6d 502static int nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 503 struct nvme_command *cmnd)
d29ec824 504{
f4800d6d 505 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
506 struct request_queue *q = req->q;
507 enum dma_data_direction dma_dir = rq_data_dir(req) ?
508 DMA_TO_DEVICE : DMA_FROM_DEVICE;
509 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 510
f9d03f96 511 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
512 iod->nents = blk_rq_map_sg(q, req, iod->sg);
513 if (!iod->nents)
514 goto out;
d29ec824 515
ba1ca37e 516 ret = BLK_MQ_RQ_QUEUE_BUSY;
2b6b535d
MFO
517 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
518 DMA_ATTR_NO_WARN))
ba1ca37e 519 goto out;
d29ec824 520
b131c61d 521 if (!nvme_setup_prps(dev, req))
ba1ca37e 522 goto out_unmap;
0e5e4f0e 523
ba1ca37e
CH
524 ret = BLK_MQ_RQ_QUEUE_ERROR;
525 if (blk_integrity_rq(req)) {
526 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
527 goto out_unmap;
0e5e4f0e 528
bf684057
CH
529 sg_init_table(&iod->meta_sg, 1);
530 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 531 goto out_unmap;
0e5e4f0e 532
ba1ca37e
CH
533 if (rq_data_dir(req))
534 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 535
bf684057 536 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 537 goto out_unmap;
d29ec824 538 }
00df5cb4 539
eb793e2c
CH
540 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
541 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 542 if (blk_integrity_rq(req))
bf684057 543 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 544 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 545
ba1ca37e
CH
546out_unmap:
547 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
548out:
549 return ret;
00df5cb4
MW
550}
551
f4800d6d 552static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 553{
f4800d6d 554 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
555 enum dma_data_direction dma_dir = rq_data_dir(req) ?
556 DMA_TO_DEVICE : DMA_FROM_DEVICE;
557
558 if (iod->nents) {
559 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
560 if (blk_integrity_rq(req)) {
561 if (!rq_data_dir(req))
562 nvme_dif_remap(req, nvme_dif_complete);
bf684057 563 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 564 }
e19b127f 565 }
e1e5e564 566
f9d03f96 567 nvme_cleanup_cmd(req);
f4800d6d 568 nvme_free_iod(dev, req);
d4f6c3ab 569}
b60503ba 570
d29ec824
CH
571/*
572 * NOTE: ns is NULL when called on the admin queue.
573 */
a4aea562
MB
574static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
575 const struct blk_mq_queue_data *bd)
edd10d33 576{
a4aea562
MB
577 struct nvme_ns *ns = hctx->queue->queuedata;
578 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 579 struct nvme_dev *dev = nvmeq->dev;
a4aea562 580 struct request *req = bd->rq;
ba1ca37e
CH
581 struct nvme_command cmnd;
582 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 583
e1e5e564
KB
584 /*
585 * If formated with metadata, require the block layer provide a buffer
586 * unless this namespace is formated such that the metadata can be
587 * stripped/generated by the controller with PRACT=1.
588 */
d29ec824 589 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
590 if (!(ns->pi_type && ns->ms == 8) &&
591 req->cmd_type != REQ_TYPE_DRV_PRIV) {
eee417b0 592 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
593 return BLK_MQ_RQ_QUEUE_OK;
594 }
595 }
596
f9d03f96 597 ret = nvme_setup_cmd(ns, req, &cmnd);
bac0000a 598 if (ret != BLK_MQ_RQ_QUEUE_OK)
f4800d6d 599 return ret;
a4aea562 600
b131c61d 601 ret = nvme_init_iod(req, dev);
bac0000a 602 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 603 goto out_free_cmd;
a4aea562 604
f9d03f96 605 if (blk_rq_nr_phys_segments(req))
b131c61d 606 ret = nvme_map_data(dev, req, &cmnd);
a4aea562 607
bac0000a 608 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 609 goto out_cleanup_iod;
a4aea562 610
aae239e1 611 blk_mq_start_request(req);
a4aea562 612
ba1ca37e 613 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 614 if (unlikely(nvmeq->cq_vector < 0)) {
69d9a99c
KB
615 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
616 ret = BLK_MQ_RQ_QUEUE_BUSY;
617 else
618 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20 619 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 620 goto out_cleanup_iod;
ae1fba20 621 }
ba1ca37e 622 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
623 nvme_process_cq(nvmeq);
624 spin_unlock_irq(&nvmeq->q_lock);
625 return BLK_MQ_RQ_QUEUE_OK;
f9d03f96 626out_cleanup_iod:
f4800d6d 627 nvme_free_iod(dev, req);
f9d03f96
CH
628out_free_cmd:
629 nvme_cleanup_cmd(req);
ba1ca37e 630 return ret;
b60503ba 631}
e1e5e564 632
eee417b0
CH
633static void nvme_complete_rq(struct request *req)
634{
f4800d6d
CH
635 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
636 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0 637 int error = 0;
e1e5e564 638
f4800d6d 639 nvme_unmap_data(dev, req);
e1e5e564 640
eee417b0
CH
641 if (unlikely(req->errors)) {
642 if (nvme_req_needs_retry(req, req->errors)) {
f80ec966 643 req->retries++;
eee417b0
CH
644 nvme_requeue_req(req);
645 return;
e1e5e564 646 }
1974b1ae 647
eee417b0
CH
648 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
649 error = req->errors;
650 else
651 error = nvme_error_status(req->errors);
652 }
a4aea562 653
f4800d6d 654 if (unlikely(iod->aborted)) {
1b3c47c1 655 dev_warn(dev->ctrl.device,
eee417b0
CH
656 "completing aborted command with status: %04x\n",
657 req->errors);
658 }
a4aea562 659
eee417b0 660 blk_mq_end_request(req, error);
b60503ba
MW
661}
662
d783e0bd
MR
663/* We read the CQE phase first to check if the rest of the entry is valid */
664static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
665 u16 phase)
666{
667 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
668}
669
a0fa9647 670static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 671{
82123460 672 u16 head, phase;
b60503ba 673
b60503ba 674 head = nvmeq->cq_head;
82123460 675 phase = nvmeq->cq_phase;
b60503ba 676
d783e0bd 677 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 678 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 679 struct request *req;
adf68f21 680
b60503ba
MW
681 if (++head == nvmeq->q_depth) {
682 head = 0;
82123460 683 phase = !phase;
b60503ba 684 }
adf68f21 685
a0fa9647
JA
686 if (tag && *tag == cqe.command_id)
687 *tag = -1;
adf68f21 688
aae239e1 689 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 690 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
691 "invalid id %d completed on queue %d\n",
692 cqe.command_id, le16_to_cpu(cqe.sq_id));
693 continue;
694 }
695
adf68f21
CH
696 /*
697 * AEN requests are special as they don't time out and can
698 * survive any kind of queue freeze and often don't respond to
699 * aborts. We don't even bother to allocate a struct request
700 * for them but rather special case them here.
701 */
702 if (unlikely(nvmeq->qid == 0 &&
703 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
7bf58533
CH
704 nvme_complete_async_event(&nvmeq->dev->ctrl,
705 cqe.status, &cqe.result);
adf68f21
CH
706 continue;
707 }
708
eee417b0 709 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
d49187e9 710 nvme_req(req)->result = cqe.result;
d783e0bd 711 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
b60503ba
MW
712 }
713
82123460 714 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 715 return;
b60503ba 716
604e8c8d
KB
717 if (likely(nvmeq->cq_vector >= 0))
718 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 719 nvmeq->cq_head = head;
82123460 720 nvmeq->cq_phase = phase;
b60503ba 721
e9539f47 722 nvmeq->cqe_seen = 1;
a0fa9647
JA
723}
724
725static void nvme_process_cq(struct nvme_queue *nvmeq)
726{
727 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
728}
729
730static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
731{
732 irqreturn_t result;
733 struct nvme_queue *nvmeq = data;
734 spin_lock(&nvmeq->q_lock);
e9539f47
MW
735 nvme_process_cq(nvmeq);
736 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
737 nvmeq->cqe_seen = 0;
58ffacb5
MW
738 spin_unlock(&nvmeq->q_lock);
739 return result;
740}
741
742static irqreturn_t nvme_irq_check(int irq, void *data)
743{
744 struct nvme_queue *nvmeq = data;
d783e0bd
MR
745 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
746 return IRQ_WAKE_THREAD;
747 return IRQ_NONE;
58ffacb5
MW
748}
749
a0fa9647
JA
750static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
751{
752 struct nvme_queue *nvmeq = hctx->driver_data;
753
d783e0bd 754 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
755 spin_lock_irq(&nvmeq->q_lock);
756 __nvme_process_cq(nvmeq, &tag);
757 spin_unlock_irq(&nvmeq->q_lock);
758
759 if (tag == -1)
760 return 1;
761 }
762
763 return 0;
764}
765
f866fc42 766static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 767{
f866fc42 768 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 769 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 770 struct nvme_command c;
b60503ba 771
a4aea562
MB
772 memset(&c, 0, sizeof(c));
773 c.common.opcode = nvme_admin_async_event;
f866fc42 774 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 775
9396dec9 776 spin_lock_irq(&nvmeq->q_lock);
f866fc42 777 __nvme_submit_cmd(nvmeq, &c);
9396dec9 778 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
779}
780
b60503ba 781static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 782{
b60503ba
MW
783 struct nvme_command c;
784
785 memset(&c, 0, sizeof(c));
786 c.delete_queue.opcode = opcode;
787 c.delete_queue.qid = cpu_to_le16(id);
788
1c63dc66 789 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
790}
791
b60503ba
MW
792static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
793 struct nvme_queue *nvmeq)
794{
b60503ba
MW
795 struct nvme_command c;
796 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
797
d29ec824
CH
798 /*
799 * Note: we (ab)use the fact the the prp fields survive if no data
800 * is attached to the request.
801 */
b60503ba
MW
802 memset(&c, 0, sizeof(c));
803 c.create_cq.opcode = nvme_admin_create_cq;
804 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
805 c.create_cq.cqid = cpu_to_le16(qid);
806 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
807 c.create_cq.cq_flags = cpu_to_le16(flags);
808 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
809
1c63dc66 810 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
811}
812
813static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
814 struct nvme_queue *nvmeq)
815{
b60503ba
MW
816 struct nvme_command c;
817 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
818
d29ec824
CH
819 /*
820 * Note: we (ab)use the fact the the prp fields survive if no data
821 * is attached to the request.
822 */
b60503ba
MW
823 memset(&c, 0, sizeof(c));
824 c.create_sq.opcode = nvme_admin_create_sq;
825 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
826 c.create_sq.sqid = cpu_to_le16(qid);
827 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
828 c.create_sq.sq_flags = cpu_to_le16(flags);
829 c.create_sq.cqid = cpu_to_le16(qid);
830
1c63dc66 831 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
832}
833
834static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
835{
836 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
837}
838
839static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
840{
841 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
842}
843
e7a2a87d 844static void abort_endio(struct request *req, int error)
bc5fc7e4 845{
f4800d6d
CH
846 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d 848 u16 status = req->errors;
e44ac588 849
1cb3cce5 850 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
e7a2a87d 851 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 852 blk_mq_free_request(req);
bc5fc7e4
MW
853}
854
31c7c7d2 855static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 856{
f4800d6d
CH
857 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
858 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 859 struct nvme_dev *dev = nvmeq->dev;
a4aea562 860 struct request *abort_req;
a4aea562 861 struct nvme_command cmd;
c30341dc 862
31c7c7d2 863 /*
fd634f41
CH
864 * Shutdown immediately if controller times out while starting. The
865 * reset work will see the pci device disabled when it gets the forced
866 * cancellation error. All outstanding requests are completed on
867 * shutdown, so we return BLK_EH_HANDLED.
868 */
bb8d261e 869 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 870 dev_warn(dev->ctrl.device,
fd634f41
CH
871 "I/O %d QID %d timeout, disable controller\n",
872 req->tag, nvmeq->qid);
a5cdb68c 873 nvme_dev_disable(dev, false);
fd634f41
CH
874 req->errors = NVME_SC_CANCELLED;
875 return BLK_EH_HANDLED;
c30341dc
KB
876 }
877
fd634f41
CH
878 /*
879 * Shutdown the controller immediately and schedule a reset if the
880 * command was already aborted once before and still hasn't been
881 * returned to the driver, or if this is the admin queue.
31c7c7d2 882 */
f4800d6d 883 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 884 dev_warn(dev->ctrl.device,
e1569a16
KB
885 "I/O %d QID %d timeout, reset controller\n",
886 req->tag, nvmeq->qid);
a5cdb68c 887 nvme_dev_disable(dev, false);
c5f6ce97 888 nvme_reset(dev);
c30341dc 889
e1569a16
KB
890 /*
891 * Mark the request as handled, since the inline shutdown
892 * forces all outstanding requests to complete.
893 */
894 req->errors = NVME_SC_CANCELLED;
895 return BLK_EH_HANDLED;
c30341dc 896 }
c30341dc 897
f4800d6d 898 iod->aborted = 1;
c30341dc 899
e7a2a87d 900 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 901 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 902 return BLK_EH_RESET_TIMER;
6bf25d16 903 }
a4aea562 904
c30341dc
KB
905 memset(&cmd, 0, sizeof(cmd));
906 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 907 cmd.abort.cid = req->tag;
c30341dc 908 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 909
1b3c47c1
SG
910 dev_warn(nvmeq->dev->ctrl.device,
911 "I/O %d QID %d timeout, aborting\n",
912 req->tag, nvmeq->qid);
e7a2a87d
CH
913
914 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 915 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
916 if (IS_ERR(abort_req)) {
917 atomic_inc(&dev->ctrl.abort_limit);
918 return BLK_EH_RESET_TIMER;
919 }
920
921 abort_req->timeout = ADMIN_TIMEOUT;
922 abort_req->end_io_data = NULL;
923 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 924
31c7c7d2
CH
925 /*
926 * The aborted req will be completed on receiving the abort req.
927 * We enable the timer again. If hit twice, it'll cause a device reset,
928 * as the device then is in a faulty state.
929 */
930 return BLK_EH_RESET_TIMER;
c30341dc
KB
931}
932
a4aea562
MB
933static void nvme_free_queue(struct nvme_queue *nvmeq)
934{
9e866774
MW
935 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
936 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
937 if (nvmeq->sq_cmds)
938 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
939 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
940 kfree(nvmeq);
941}
942
a1a5ef99 943static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
944{
945 int i;
946
a1a5ef99 947 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 948 struct nvme_queue *nvmeq = dev->queues[i];
22404274 949 dev->queue_count--;
a4aea562 950 dev->queues[i] = NULL;
f435c282 951 nvme_free_queue(nvmeq);
121c7ad4 952 }
22404274
KB
953}
954
4d115420
KB
955/**
956 * nvme_suspend_queue - put queue into suspended state
957 * @nvmeq - queue to suspend
4d115420
KB
958 */
959static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 960{
2b25d981 961 int vector;
b60503ba 962
a09115b2 963 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
964 if (nvmeq->cq_vector == -1) {
965 spin_unlock_irq(&nvmeq->q_lock);
966 return 1;
967 }
dca51e78 968 vector = nvmeq_irq(nvmeq);
42f61420 969 nvmeq->dev->online_queues--;
2b25d981 970 nvmeq->cq_vector = -1;
a09115b2
MW
971 spin_unlock_irq(&nvmeq->q_lock);
972
1c63dc66 973 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 974 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 975
aba2080f 976 free_irq(vector, nvmeq);
b60503ba 977
4d115420
KB
978 return 0;
979}
b60503ba 980
a5cdb68c 981static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 982{
a5cdb68c 983 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
984
985 if (!nvmeq)
986 return;
987 if (nvme_suspend_queue(nvmeq))
988 return;
989
a5cdb68c
KB
990 if (shutdown)
991 nvme_shutdown_ctrl(&dev->ctrl);
992 else
993 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
994 dev->bar + NVME_REG_CAP));
07836e65
KB
995
996 spin_lock_irq(&nvmeq->q_lock);
997 nvme_process_cq(nvmeq);
998 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
999}
1000
8ffaadf7
JD
1001static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1002 int entry_size)
1003{
1004 int q_depth = dev->q_depth;
5fd4ce1b
CH
1005 unsigned q_size_aligned = roundup(q_depth * entry_size,
1006 dev->ctrl.page_size);
8ffaadf7
JD
1007
1008 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1009 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1010 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1011 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1012
1013 /*
1014 * Ensure the reduced q_depth is above some threshold where it
1015 * would be better to map queues in system memory with the
1016 * original depth
1017 */
1018 if (q_depth < 64)
1019 return -ENOMEM;
1020 }
1021
1022 return q_depth;
1023}
1024
1025static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1026 int qid, int depth)
1027{
1028 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1029 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1030 dev->ctrl.page_size);
8ffaadf7
JD
1031 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1032 nvmeq->sq_cmds_io = dev->cmb + offset;
1033 } else {
1034 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1035 &nvmeq->sq_dma_addr, GFP_KERNEL);
1036 if (!nvmeq->sq_cmds)
1037 return -ENOMEM;
1038 }
1039
1040 return 0;
1041}
1042
b60503ba 1043static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1044 int depth)
b60503ba 1045{
a4aea562 1046 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1047 if (!nvmeq)
1048 return NULL;
1049
e75ec752 1050 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1051 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1052 if (!nvmeq->cqes)
1053 goto free_nvmeq;
b60503ba 1054
8ffaadf7 1055 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1056 goto free_cqdma;
1057
e75ec752 1058 nvmeq->q_dmadev = dev->dev;
091b6092 1059 nvmeq->dev = dev;
3193f07b 1060 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1061 dev->ctrl.instance, qid);
b60503ba
MW
1062 spin_lock_init(&nvmeq->q_lock);
1063 nvmeq->cq_head = 0;
82123460 1064 nvmeq->cq_phase = 1;
b80d5ccc 1065 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1066 nvmeq->q_depth = depth;
c30341dc 1067 nvmeq->qid = qid;
758dd7fd 1068 nvmeq->cq_vector = -1;
a4aea562 1069 dev->queues[qid] = nvmeq;
36a7e993
JD
1070 dev->queue_count++;
1071
b60503ba
MW
1072 return nvmeq;
1073
1074 free_cqdma:
e75ec752 1075 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1076 nvmeq->cq_dma_addr);
1077 free_nvmeq:
1078 kfree(nvmeq);
1079 return NULL;
1080}
1081
dca51e78 1082static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1083{
58ffacb5 1084 if (use_threaded_interrupts)
dca51e78
CH
1085 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1086 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1087 else
1088 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1089 nvmeq->irqname, nvmeq);
3001082c
MW
1090}
1091
22404274 1092static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1093{
22404274 1094 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1095
7be50e93 1096 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1097 nvmeq->sq_tail = 0;
1098 nvmeq->cq_head = 0;
1099 nvmeq->cq_phase = 1;
b80d5ccc 1100 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1101 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1102 dev->online_queues++;
7be50e93 1103 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1104}
1105
1106static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1107{
1108 struct nvme_dev *dev = nvmeq->dev;
1109 int result;
3f85d50b 1110
2b25d981 1111 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1112 result = adapter_alloc_cq(dev, qid, nvmeq);
1113 if (result < 0)
22404274 1114 return result;
b60503ba
MW
1115
1116 result = adapter_alloc_sq(dev, qid, nvmeq);
1117 if (result < 0)
1118 goto release_cq;
1119
dca51e78 1120 result = queue_request_irq(nvmeq);
b60503ba
MW
1121 if (result < 0)
1122 goto release_sq;
1123
22404274 1124 nvme_init_queue(nvmeq, qid);
22404274 1125 return result;
b60503ba
MW
1126
1127 release_sq:
1128 adapter_delete_sq(dev, qid);
1129 release_cq:
1130 adapter_delete_cq(dev, qid);
22404274 1131 return result;
b60503ba
MW
1132}
1133
a4aea562 1134static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1135 .queue_rq = nvme_queue_rq,
eee417b0 1136 .complete = nvme_complete_rq,
a4aea562 1137 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1138 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1139 .init_request = nvme_admin_init_request,
1140 .timeout = nvme_timeout,
1141};
1142
1143static struct blk_mq_ops nvme_mq_ops = {
1144 .queue_rq = nvme_queue_rq,
eee417b0 1145 .complete = nvme_complete_rq,
a4aea562
MB
1146 .init_hctx = nvme_init_hctx,
1147 .init_request = nvme_init_request,
dca51e78 1148 .map_queues = nvme_pci_map_queues,
a4aea562 1149 .timeout = nvme_timeout,
a0fa9647 1150 .poll = nvme_poll,
a4aea562
MB
1151};
1152
ea191d2f
KB
1153static void nvme_dev_remove_admin(struct nvme_dev *dev)
1154{
1c63dc66 1155 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1156 /*
1157 * If the controller was reset during removal, it's possible
1158 * user requests may be waiting on a stopped queue. Start the
1159 * queue to flush these to completion.
1160 */
1161 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1162 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1163 blk_mq_free_tag_set(&dev->admin_tagset);
1164 }
1165}
1166
a4aea562
MB
1167static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1168{
1c63dc66 1169 if (!dev->ctrl.admin_q) {
a4aea562
MB
1170 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1171 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1172
1173 /*
1174 * Subtract one to leave an empty queue entry for 'Full Queue'
1175 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1176 */
1177 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1178 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1179 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1180 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1181 dev->admin_tagset.driver_data = dev;
1182
1183 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1184 return -ENOMEM;
1185
1c63dc66
CH
1186 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1187 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1188 blk_mq_free_tag_set(&dev->admin_tagset);
1189 return -ENOMEM;
1190 }
1c63dc66 1191 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1192 nvme_dev_remove_admin(dev);
1c63dc66 1193 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1194 return -ENODEV;
1195 }
0fb59cbc 1196 } else
25646264 1197 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1198
1199 return 0;
1200}
1201
8d85fce7 1202static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1203{
ba47e386 1204 int result;
b60503ba 1205 u32 aqa;
7a67cbea 1206 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1207 struct nvme_queue *nvmeq;
1208
8ef2074d 1209 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
dfbac8c7
KB
1210 NVME_CAP_NSSRC(cap) : 0;
1211
7a67cbea
CH
1212 if (dev->subsystem &&
1213 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1214 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1215
5fd4ce1b 1216 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1217 if (result < 0)
1218 return result;
b60503ba 1219
a4aea562 1220 nvmeq = dev->queues[0];
cd638946 1221 if (!nvmeq) {
2b25d981 1222 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1223 if (!nvmeq)
1224 return -ENOMEM;
cd638946 1225 }
b60503ba
MW
1226
1227 aqa = nvmeq->q_depth - 1;
1228 aqa |= aqa << 16;
1229
7a67cbea
CH
1230 writel(aqa, dev->bar + NVME_REG_AQA);
1231 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1232 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1233
5fd4ce1b 1234 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1235 if (result)
d4875622 1236 return result;
a4aea562 1237
2b25d981 1238 nvmeq->cq_vector = 0;
dca51e78 1239 result = queue_request_irq(nvmeq);
758dd7fd
JD
1240 if (result) {
1241 nvmeq->cq_vector = -1;
d4875622 1242 return result;
758dd7fd 1243 }
025c557a 1244
b60503ba
MW
1245 return result;
1246}
1247
c875a709
GP
1248static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1249{
1250
1251 /* If true, indicates loss of adapter communication, possibly by a
1252 * NVMe Subsystem reset.
1253 */
1254 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1255
1256 /* If there is a reset ongoing, we shouldn't reset again. */
1257 if (work_busy(&dev->reset_work))
1258 return false;
1259
1260 /* We shouldn't reset unless the controller is on fatal error state
1261 * _or_ if we lost the communication with it.
1262 */
1263 if (!(csts & NVME_CSTS_CFS) && !nssro)
1264 return false;
1265
1266 /* If PCI error recovery process is happening, we cannot reset or
1267 * the recovery mechanism will surely fail.
1268 */
1269 if (pci_channel_offline(to_pci_dev(dev->dev)))
1270 return false;
1271
1272 return true;
1273}
1274
d2a61918
AL
1275static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1276{
1277 /* Read a config register to help see what died. */
1278 u16 pci_status;
1279 int result;
1280
1281 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1282 &pci_status);
1283 if (result == PCIBIOS_SUCCESSFUL)
1284 dev_warn(dev->dev,
1285 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1286 csts, pci_status);
1287 else
1288 dev_warn(dev->dev,
1289 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1290 csts, result);
1291}
1292
2d55cd5f 1293static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1294{
2d55cd5f
CH
1295 struct nvme_dev *dev = (struct nvme_dev *)data;
1296 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1297
c875a709
GP
1298 /* Skip controllers under certain specific conditions. */
1299 if (nvme_should_reset(dev, csts)) {
c5f6ce97 1300 if (!nvme_reset(dev))
d2a61918 1301 nvme_warn_reset(dev, csts);
2d55cd5f 1302 return;
1fa6aead 1303 }
2d55cd5f
CH
1304
1305 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1306}
1307
749941f2 1308static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1309{
949928c1 1310 unsigned i, max;
749941f2 1311 int ret = 0;
42f61420 1312
749941f2
CH
1313 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1314 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1315 ret = -ENOMEM;
42f61420 1316 break;
749941f2
CH
1317 }
1318 }
42f61420 1319
949928c1
KB
1320 max = min(dev->max_qid, dev->queue_count - 1);
1321 for (i = dev->online_queues; i <= max; i++) {
749941f2 1322 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1323 if (ret)
42f61420 1324 break;
27e8166c 1325 }
749941f2
CH
1326
1327 /*
1328 * Ignore failing Create SQ/CQ commands, we can continue with less
1329 * than the desired aount of queues, and even a controller without
1330 * I/O queues an still be used to issue admin commands. This might
1331 * be useful to upgrade a buggy firmware for example.
1332 */
1333 return ret >= 0 ? 0 : ret;
b60503ba
MW
1334}
1335
202021c1
SB
1336static ssize_t nvme_cmb_show(struct device *dev,
1337 struct device_attribute *attr,
1338 char *buf)
1339{
1340 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1341
c965809c 1342 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1343 ndev->cmbloc, ndev->cmbsz);
1344}
1345static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1346
8ffaadf7
JD
1347static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1348{
1349 u64 szu, size, offset;
8ffaadf7
JD
1350 resource_size_t bar_size;
1351 struct pci_dev *pdev = to_pci_dev(dev->dev);
1352 void __iomem *cmb;
1353 dma_addr_t dma_addr;
1354
7a67cbea 1355 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1356 if (!(NVME_CMB_SZ(dev->cmbsz)))
1357 return NULL;
202021c1 1358 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1359
202021c1
SB
1360 if (!use_cmb_sqes)
1361 return NULL;
8ffaadf7
JD
1362
1363 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1364 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1365 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1366 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1367
1368 if (offset > bar_size)
1369 return NULL;
1370
1371 /*
1372 * Controllers may support a CMB size larger than their BAR,
1373 * for example, due to being behind a bridge. Reduce the CMB to
1374 * the reported size of the BAR
1375 */
1376 if (size > bar_size - offset)
1377 size = bar_size - offset;
1378
202021c1 1379 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1380 cmb = ioremap_wc(dma_addr, size);
1381 if (!cmb)
1382 return NULL;
1383
1384 dev->cmb_dma_addr = dma_addr;
1385 dev->cmb_size = size;
1386 return cmb;
1387}
1388
1389static inline void nvme_release_cmb(struct nvme_dev *dev)
1390{
1391 if (dev->cmb) {
1392 iounmap(dev->cmb);
1393 dev->cmb = NULL;
1394 }
1395}
1396
9d713c2b
KB
1397static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1398{
b80d5ccc 1399 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1400}
1401
8d85fce7 1402static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1403{
a4aea562 1404 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1405 struct pci_dev *pdev = to_pci_dev(dev->dev);
dca51e78 1406 int result, nr_io_queues, size;
b60503ba 1407
2800b8e7 1408 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1409 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1410 if (result < 0)
1b23484b 1411 return result;
9a0be7ab 1412
f5fa90dc 1413 if (nr_io_queues == 0)
a5229050 1414 return 0;
b60503ba 1415
8ffaadf7
JD
1416 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1417 result = nvme_cmb_qdepth(dev, nr_io_queues,
1418 sizeof(struct nvme_command));
1419 if (result > 0)
1420 dev->q_depth = result;
1421 else
1422 nvme_release_cmb(dev);
1423 }
1424
9d713c2b
KB
1425 size = db_bar_size(dev, nr_io_queues);
1426 if (size > 8192) {
f1938f6e 1427 iounmap(dev->bar);
9d713c2b
KB
1428 do {
1429 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1430 if (dev->bar)
1431 break;
1432 if (!--nr_io_queues)
1433 return -ENOMEM;
1434 size = db_bar_size(dev, nr_io_queues);
1435 } while (1);
7a67cbea 1436 dev->dbs = dev->bar + 4096;
5a92e700 1437 adminq->q_db = dev->dbs;
f1938f6e
MW
1438 }
1439
9d713c2b 1440 /* Deregister the admin queue's interrupt */
dca51e78 1441 free_irq(pci_irq_vector(pdev, 0), adminq);
9d713c2b 1442
e32efbfc
JA
1443 /*
1444 * If we enable msix early due to not intx, disable it again before
1445 * setting up the full range we need.
1446 */
dca51e78
CH
1447 pci_free_irq_vectors(pdev);
1448 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1449 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1450 if (nr_io_queues <= 0)
1451 return -EIO;
1452 dev->max_qid = nr_io_queues;
fa08a396 1453
063a8096
MW
1454 /*
1455 * Should investigate if there's a performance win from allocating
1456 * more queues than interrupt vectors; it might allow the submission
1457 * path to scale better, even if the receive path is limited by the
1458 * number of interrupts.
1459 */
063a8096 1460
dca51e78 1461 result = queue_request_irq(adminq);
758dd7fd
JD
1462 if (result) {
1463 adminq->cq_vector = -1;
d4875622 1464 return result;
758dd7fd 1465 }
749941f2 1466 return nvme_create_io_queues(dev);
b60503ba
MW
1467}
1468
db3cbfff 1469static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1470{
db3cbfff 1471 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1472
db3cbfff
KB
1473 blk_mq_free_request(req);
1474 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1475}
1476
db3cbfff 1477static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1478{
db3cbfff 1479 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1480
db3cbfff
KB
1481 if (!error) {
1482 unsigned long flags;
1483
2e39e0f6
ML
1484 /*
1485 * We might be called with the AQ q_lock held
1486 * and the I/O queue q_lock should always
1487 * nest inside the AQ one.
1488 */
1489 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1490 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1491 nvme_process_cq(nvmeq);
1492 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1493 }
db3cbfff
KB
1494
1495 nvme_del_queue_end(req, error);
a5768aa8
KB
1496}
1497
db3cbfff 1498static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1499{
db3cbfff
KB
1500 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1501 struct request *req;
1502 struct nvme_command cmd;
bda4e0fb 1503
db3cbfff
KB
1504 memset(&cmd, 0, sizeof(cmd));
1505 cmd.delete_queue.opcode = opcode;
1506 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1507
eb71f435 1508 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1509 if (IS_ERR(req))
1510 return PTR_ERR(req);
bda4e0fb 1511
db3cbfff
KB
1512 req->timeout = ADMIN_TIMEOUT;
1513 req->end_io_data = nvmeq;
1514
1515 blk_execute_rq_nowait(q, NULL, req, false,
1516 opcode == nvme_admin_delete_cq ?
1517 nvme_del_cq_end : nvme_del_queue_end);
1518 return 0;
bda4e0fb
KB
1519}
1520
70659060 1521static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1522{
70659060 1523 int pass;
db3cbfff
KB
1524 unsigned long timeout;
1525 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1526
db3cbfff 1527 for (pass = 0; pass < 2; pass++) {
014a0d60 1528 int sent = 0, i = queues;
db3cbfff
KB
1529
1530 reinit_completion(&dev->ioq_wait);
1531 retry:
1532 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1533 for (; i > 0; i--, sent++)
1534 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1535 break;
c21377f8 1536
db3cbfff
KB
1537 while (sent--) {
1538 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1539 if (timeout == 0)
1540 return;
1541 if (i)
1542 goto retry;
1543 }
1544 opcode = nvme_admin_delete_cq;
1545 }
a5768aa8
KB
1546}
1547
422ef0c7
MW
1548/*
1549 * Return: error value if an error occurred setting up the queues or calling
1550 * Identify Device. 0 if these succeeded, even if adding some of the
1551 * namespaces failed. At the moment, these failures are silent. TBD which
1552 * failures should be reported.
1553 */
8d85fce7 1554static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1555{
5bae7f73 1556 if (!dev->ctrl.tagset) {
ffe7704d
KB
1557 dev->tagset.ops = &nvme_mq_ops;
1558 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1559 dev->tagset.timeout = NVME_IO_TIMEOUT;
1560 dev->tagset.numa_node = dev_to_node(dev->dev);
1561 dev->tagset.queue_depth =
a4aea562 1562 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1563 dev->tagset.cmd_size = nvme_cmd_size(dev);
1564 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1565 dev->tagset.driver_data = dev;
b60503ba 1566
ffe7704d
KB
1567 if (blk_mq_alloc_tag_set(&dev->tagset))
1568 return 0;
5bae7f73 1569 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
1570 } else {
1571 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1572
1573 /* Free previously allocated queues that are no longer usable */
1574 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1575 }
949928c1 1576
e1e5e564 1577 return 0;
b60503ba
MW
1578}
1579
b00a726a 1580static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1581{
42f61420 1582 u64 cap;
b00a726a 1583 int result = -ENOMEM;
e75ec752 1584 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1585
1586 if (pci_enable_device_mem(pdev))
1587 return result;
1588
0877cb0d 1589 pci_set_master(pdev);
0877cb0d 1590
e75ec752
CH
1591 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1592 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1593 goto disable;
0877cb0d 1594
7a67cbea 1595 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1596 result = -ENODEV;
b00a726a 1597 goto disable;
0e53d180 1598 }
e32efbfc
JA
1599
1600 /*
a5229050
KB
1601 * Some devices and/or platforms don't advertise or work with INTx
1602 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1603 * adjust this later.
e32efbfc 1604 */
dca51e78
CH
1605 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1606 if (result < 0)
1607 return result;
e32efbfc 1608
7a67cbea
CH
1609 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1610
42f61420
KB
1611 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1612 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1613 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1614
1615 /*
1616 * Temporary fix for the Apple controller found in the MacBook8,1 and
1617 * some MacBook7,1 to avoid controller resets and data loss.
1618 */
1619 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1620 dev->q_depth = 2;
1621 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1622 "queue depth=%u to work around controller resets\n",
1623 dev->q_depth);
1624 }
1625
202021c1
SB
1626 /*
1627 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1628 * populate sysfs if a CMB is implemented. Note that we add the
1629 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1630 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1631 * NULL as final argument to sysfs_add_file_to_group.
1632 */
1633
8ef2074d 1634 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1635 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1636
202021c1
SB
1637 if (dev->cmbsz) {
1638 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1639 &dev_attr_cmb.attr, NULL))
1640 dev_warn(dev->dev,
1641 "failed to add sysfs attribute for CMB\n");
1642 }
1643 }
1644
a0a3408e
KB
1645 pci_enable_pcie_error_reporting(pdev);
1646 pci_save_state(pdev);
0877cb0d
KB
1647 return 0;
1648
1649 disable:
0877cb0d
KB
1650 pci_disable_device(pdev);
1651 return result;
1652}
1653
1654static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1655{
1656 if (dev->bar)
1657 iounmap(dev->bar);
a1f447b3 1658 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1659}
1660
1661static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1662{
e75ec752
CH
1663 struct pci_dev *pdev = to_pci_dev(dev->dev);
1664
dca51e78 1665 pci_free_irq_vectors(pdev);
0877cb0d 1666
a0a3408e
KB
1667 if (pci_is_enabled(pdev)) {
1668 pci_disable_pcie_error_reporting(pdev);
e75ec752 1669 pci_disable_device(pdev);
4d115420 1670 }
4d115420
KB
1671}
1672
a5cdb68c 1673static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1674{
70659060 1675 int i, queues;
7c1b2450 1676 u32 csts = -1;
22404274 1677
2d55cd5f 1678 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1679
77bf25ea 1680 mutex_lock(&dev->shutdown_lock);
b00a726a 1681 if (pci_is_enabled(to_pci_dev(dev->dev))) {
25646264 1682 nvme_stop_queues(&dev->ctrl);
7a67cbea 1683 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1684 }
c21377f8 1685
70659060 1686 queues = dev->online_queues - 1;
c21377f8
GKB
1687 for (i = dev->queue_count - 1; i > 0; i--)
1688 nvme_suspend_queue(dev->queues[i]);
1689
7c1b2450 1690 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
82469c59
GKB
1691 /* A device might become IO incapable very soon during
1692 * probe, before the admin queue is configured. Thus,
1693 * queue_count can be 0 here.
1694 */
1695 if (dev->queue_count)
1696 nvme_suspend_queue(dev->queues[0]);
4d115420 1697 } else {
70659060 1698 nvme_disable_io_queues(dev, queues);
a5cdb68c 1699 nvme_disable_admin_queue(dev, shutdown);
4d115420 1700 }
b00a726a 1701 nvme_pci_disable(dev);
07836e65 1702
e1958e65
ML
1703 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1704 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
77bf25ea 1705 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1706}
1707
091b6092
MW
1708static int nvme_setup_prp_pools(struct nvme_dev *dev)
1709{
e75ec752 1710 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1711 PAGE_SIZE, PAGE_SIZE, 0);
1712 if (!dev->prp_page_pool)
1713 return -ENOMEM;
1714
99802a7a 1715 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1716 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1717 256, 256, 0);
1718 if (!dev->prp_small_pool) {
1719 dma_pool_destroy(dev->prp_page_pool);
1720 return -ENOMEM;
1721 }
091b6092
MW
1722 return 0;
1723}
1724
1725static void nvme_release_prp_pools(struct nvme_dev *dev)
1726{
1727 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1728 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1729}
1730
1673f1f0 1731static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1732{
1673f1f0 1733 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1734
e75ec752 1735 put_device(dev->dev);
4af0e21c
KB
1736 if (dev->tagset.tags)
1737 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1738 if (dev->ctrl.admin_q)
1739 blk_put_queue(dev->ctrl.admin_q);
5e82e952 1740 kfree(dev->queues);
5e82e952
KB
1741 kfree(dev);
1742}
1743
f58944e2
KB
1744static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1745{
237045fc 1746 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1747
1748 kref_get(&dev->ctrl.kref);
69d9a99c 1749 nvme_dev_disable(dev, false);
f58944e2
KB
1750 if (!schedule_work(&dev->remove_work))
1751 nvme_put_ctrl(&dev->ctrl);
1752}
1753
fd634f41 1754static void nvme_reset_work(struct work_struct *work)
5e82e952 1755{
fd634f41 1756 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
f58944e2 1757 int result = -ENODEV;
5e82e952 1758
bb8d261e 1759 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
fd634f41 1760 goto out;
5e82e952 1761
fd634f41
CH
1762 /*
1763 * If we're called to reset a live controller first shut it down before
1764 * moving on.
1765 */
b00a726a 1766 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1767 nvme_dev_disable(dev, false);
5e82e952 1768
bb8d261e 1769 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
9bf2b972
KB
1770 goto out;
1771
b00a726a 1772 result = nvme_pci_enable(dev);
f0b50732 1773 if (result)
3cf519b5 1774 goto out;
f0b50732
KB
1775
1776 result = nvme_configure_admin_queue(dev);
1777 if (result)
f58944e2 1778 goto out;
f0b50732 1779
a4aea562 1780 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1781 result = nvme_alloc_admin_tags(dev);
1782 if (result)
f58944e2 1783 goto out;
b9afca3e 1784
ce4541f4
CH
1785 result = nvme_init_identify(&dev->ctrl);
1786 if (result)
f58944e2 1787 goto out;
ce4541f4 1788
f0b50732 1789 result = nvme_setup_io_queues(dev);
badc34d4 1790 if (result)
f58944e2 1791 goto out;
f0b50732 1792
21f033f7
KB
1793 /*
1794 * A controller that can not execute IO typically requires user
1795 * intervention to correct. For such degraded controllers, the driver
1796 * should not submit commands the user did not request, so skip
1797 * registering for asynchronous event notification on this condition.
1798 */
f866fc42
CH
1799 if (dev->online_queues > 1)
1800 nvme_queue_async_events(&dev->ctrl);
3cf519b5 1801
2d55cd5f 1802 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1803
2659e57b
CH
1804 /*
1805 * Keep the controller around but remove all namespaces if we don't have
1806 * any working I/O queue.
1807 */
3cf519b5 1808 if (dev->online_queues < 2) {
1b3c47c1 1809 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 1810 nvme_kill_queues(&dev->ctrl);
5bae7f73 1811 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1812 } else {
25646264 1813 nvme_start_queues(&dev->ctrl);
3cf519b5
CH
1814 nvme_dev_add(dev);
1815 }
1816
bb8d261e
CH
1817 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1818 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1819 goto out;
1820 }
92911a55
CH
1821
1822 if (dev->online_queues > 1)
5955be21 1823 nvme_queue_scan(&dev->ctrl);
3cf519b5 1824 return;
f0b50732 1825
3cf519b5 1826 out:
f58944e2 1827 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1828}
1829
5c8809e6 1830static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1831{
5c8809e6 1832 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1833 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1834
69d9a99c 1835 nvme_kill_queues(&dev->ctrl);
9a6b9458 1836 if (pci_get_drvdata(pdev))
921920ab 1837 device_release_driver(&pdev->dev);
1673f1f0 1838 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1839}
1840
4cc06521 1841static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1842{
1c63dc66 1843 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1844 return -ENODEV;
c5f6ce97
KB
1845 if (work_busy(&dev->reset_work))
1846 return -ENODEV;
846cc05f
CH
1847 if (!queue_work(nvme_workq, &dev->reset_work))
1848 return -EBUSY;
846cc05f 1849 return 0;
9a6b9458
KB
1850}
1851
1c63dc66 1852static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 1853{
1c63dc66 1854 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 1855 return 0;
9ca97374
TH
1856}
1857
5fd4ce1b 1858static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 1859{
5fd4ce1b
CH
1860 writel(val, to_nvme_dev(ctrl)->bar + off);
1861 return 0;
1862}
4cc06521 1863
7fd8930f
CH
1864static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1865{
1866 *val = readq(to_nvme_dev(ctrl)->bar + off);
1867 return 0;
4cc06521
KB
1868}
1869
f3ca80fc
CH
1870static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1871{
c5f6ce97
KB
1872 struct nvme_dev *dev = to_nvme_dev(ctrl);
1873 int ret = nvme_reset(dev);
1874
1875 if (!ret)
1876 flush_work(&dev->reset_work);
1877 return ret;
4cc06521 1878}
f3ca80fc 1879
1c63dc66 1880static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 1881 .name = "pcie",
e439bb12 1882 .module = THIS_MODULE,
1c63dc66 1883 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 1884 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 1885 .reg_read64 = nvme_pci_reg_read64,
f3ca80fc 1886 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 1887 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 1888 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 1889};
4cc06521 1890
b00a726a
KB
1891static int nvme_dev_map(struct nvme_dev *dev)
1892{
b00a726a
KB
1893 struct pci_dev *pdev = to_pci_dev(dev->dev);
1894
a1f447b3 1895 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
1896 return -ENODEV;
1897
1898 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1899 if (!dev->bar)
1900 goto release;
1901
9fa196e7 1902 return 0;
b00a726a 1903 release:
9fa196e7
MG
1904 pci_release_mem_regions(pdev);
1905 return -ENODEV;
b00a726a
KB
1906}
1907
8d85fce7 1908static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 1909{
a4aea562 1910 int node, result = -ENOMEM;
b60503ba
MW
1911 struct nvme_dev *dev;
1912
a4aea562
MB
1913 node = dev_to_node(&pdev->dev);
1914 if (node == NUMA_NO_NODE)
2fa84351 1915 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
1916
1917 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
1918 if (!dev)
1919 return -ENOMEM;
a4aea562
MB
1920 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1921 GFP_KERNEL, node);
b60503ba
MW
1922 if (!dev->queues)
1923 goto free;
1924
e75ec752 1925 dev->dev = get_device(&pdev->dev);
9a6b9458 1926 pci_set_drvdata(pdev, dev);
1c63dc66 1927
b00a726a
KB
1928 result = nvme_dev_map(dev);
1929 if (result)
1930 goto free;
1931
f3ca80fc 1932 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 1933 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2d55cd5f
CH
1934 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1935 (unsigned long)dev);
77bf25ea 1936 mutex_init(&dev->shutdown_lock);
db3cbfff 1937 init_completion(&dev->ioq_wait);
b60503ba 1938
091b6092
MW
1939 result = nvme_setup_prp_pools(dev);
1940 if (result)
a96d4f5c 1941 goto put_pci;
4cc06521 1942
f3ca80fc
CH
1943 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1944 id->driver_data);
4cc06521 1945 if (result)
2e1d8448 1946 goto release_pools;
740216fc 1947
1b3c47c1
SG
1948 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1949
92f7a162 1950 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
1951 return 0;
1952
0877cb0d 1953 release_pools:
091b6092 1954 nvme_release_prp_pools(dev);
a96d4f5c 1955 put_pci:
e75ec752 1956 put_device(dev->dev);
b00a726a 1957 nvme_dev_unmap(dev);
b60503ba
MW
1958 free:
1959 kfree(dev->queues);
b60503ba
MW
1960 kfree(dev);
1961 return result;
1962}
1963
f0d54a54
KB
1964static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1965{
a6739479 1966 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 1967
a6739479 1968 if (prepare)
a5cdb68c 1969 nvme_dev_disable(dev, false);
a6739479 1970 else
c5f6ce97 1971 nvme_reset(dev);
f0d54a54
KB
1972}
1973
09ece142
KB
1974static void nvme_shutdown(struct pci_dev *pdev)
1975{
1976 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 1977 nvme_dev_disable(dev, true);
09ece142
KB
1978}
1979
f58944e2
KB
1980/*
1981 * The driver's remove may be called on a device in a partially initialized
1982 * state. This function must not have any dependencies on the device state in
1983 * order to proceed.
1984 */
8d85fce7 1985static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
1986{
1987 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 1988
bb8d261e
CH
1989 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1990
9a6b9458 1991 pci_set_drvdata(pdev, NULL);
0ff9d4e1
KB
1992
1993 if (!pci_device_is_present(pdev))
1994 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1995
9bf2b972 1996 flush_work(&dev->reset_work);
53029b04 1997 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 1998 nvme_dev_disable(dev, true);
a4aea562 1999 nvme_dev_remove_admin(dev);
a1a5ef99 2000 nvme_free_queues(dev, 0);
8ffaadf7 2001 nvme_release_cmb(dev);
9a6b9458 2002 nvme_release_prp_pools(dev);
b00a726a 2003 nvme_dev_unmap(dev);
1673f1f0 2004 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2005}
2006
13880f5b
KB
2007static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2008{
2009 int ret = 0;
2010
2011 if (numvfs == 0) {
2012 if (pci_vfs_assigned(pdev)) {
2013 dev_warn(&pdev->dev,
2014 "Cannot disable SR-IOV VFs while assigned\n");
2015 return -EPERM;
2016 }
2017 pci_disable_sriov(pdev);
2018 return 0;
2019 }
2020
2021 ret = pci_enable_sriov(pdev, numvfs);
2022 return ret ? ret : numvfs;
2023}
2024
671a6018 2025#ifdef CONFIG_PM_SLEEP
cd638946
KB
2026static int nvme_suspend(struct device *dev)
2027{
2028 struct pci_dev *pdev = to_pci_dev(dev);
2029 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2030
a5cdb68c 2031 nvme_dev_disable(ndev, true);
cd638946
KB
2032 return 0;
2033}
2034
2035static int nvme_resume(struct device *dev)
2036{
2037 struct pci_dev *pdev = to_pci_dev(dev);
2038 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2039
c5f6ce97 2040 nvme_reset(ndev);
9a6b9458 2041 return 0;
cd638946 2042}
671a6018 2043#endif
cd638946
KB
2044
2045static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2046
a0a3408e
KB
2047static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2048 pci_channel_state_t state)
2049{
2050 struct nvme_dev *dev = pci_get_drvdata(pdev);
2051
2052 /*
2053 * A frozen channel requires a reset. When detected, this method will
2054 * shutdown the controller to quiesce. The controller will be restarted
2055 * after the slot reset through driver's slot_reset callback.
2056 */
a0a3408e
KB
2057 switch (state) {
2058 case pci_channel_io_normal:
2059 return PCI_ERS_RESULT_CAN_RECOVER;
2060 case pci_channel_io_frozen:
d011fb31
KB
2061 dev_warn(dev->ctrl.device,
2062 "frozen state error detected, reset controller\n");
a5cdb68c 2063 nvme_dev_disable(dev, false);
a0a3408e
KB
2064 return PCI_ERS_RESULT_NEED_RESET;
2065 case pci_channel_io_perm_failure:
d011fb31
KB
2066 dev_warn(dev->ctrl.device,
2067 "failure state error detected, request disconnect\n");
a0a3408e
KB
2068 return PCI_ERS_RESULT_DISCONNECT;
2069 }
2070 return PCI_ERS_RESULT_NEED_RESET;
2071}
2072
2073static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2074{
2075 struct nvme_dev *dev = pci_get_drvdata(pdev);
2076
1b3c47c1 2077 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2078 pci_restore_state(pdev);
c5f6ce97 2079 nvme_reset(dev);
a0a3408e
KB
2080 return PCI_ERS_RESULT_RECOVERED;
2081}
2082
2083static void nvme_error_resume(struct pci_dev *pdev)
2084{
2085 pci_cleanup_aer_uncorrect_error_status(pdev);
2086}
2087
1d352035 2088static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2089 .error_detected = nvme_error_detected,
b60503ba
MW
2090 .slot_reset = nvme_slot_reset,
2091 .resume = nvme_error_resume,
f0d54a54 2092 .reset_notify = nvme_reset_notify,
b60503ba
MW
2093};
2094
6eb0d698 2095static const struct pci_device_id nvme_id_table[] = {
106198ed 2096 { PCI_VDEVICE(INTEL, 0x0953),
08095e70
KB
2097 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2098 NVME_QUIRK_DISCARD_ZEROES, },
99466e70
KB
2099 { PCI_VDEVICE(INTEL, 0x0a53),
2100 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2101 NVME_QUIRK_DISCARD_ZEROES, },
2102 { PCI_VDEVICE(INTEL, 0x0a54),
2103 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2104 NVME_QUIRK_DISCARD_ZEROES, },
540c801c
KB
2105 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2106 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2107 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2108 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2109 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2110 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2111 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2112 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2113 { 0, }
2114};
2115MODULE_DEVICE_TABLE(pci, nvme_id_table);
2116
2117static struct pci_driver nvme_driver = {
2118 .name = "nvme",
2119 .id_table = nvme_id_table,
2120 .probe = nvme_probe,
8d85fce7 2121 .remove = nvme_remove,
09ece142 2122 .shutdown = nvme_shutdown,
cd638946
KB
2123 .driver = {
2124 .pm = &nvme_dev_pm_ops,
2125 },
13880f5b 2126 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2127 .err_handler = &nvme_err_handler,
2128};
2129
2130static int __init nvme_init(void)
2131{
0ac13140 2132 int result;
1fa6aead 2133
92f7a162 2134 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2135 if (!nvme_workq)
b9afca3e 2136 return -ENOMEM;
9a6b9458 2137
f3db22fe
KB
2138 result = pci_register_driver(&nvme_driver);
2139 if (result)
576d55d6 2140 destroy_workqueue(nvme_workq);
b60503ba
MW
2141 return result;
2142}
2143
2144static void __exit nvme_exit(void)
2145{
2146 pci_unregister_driver(&nvme_driver);
9a6b9458 2147 destroy_workqueue(nvme_workq);
21bd78bc 2148 _nvme_check_size();
b60503ba
MW
2149}
2150
2151MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2152MODULE_LICENSE("GPL");
c78b4713 2153MODULE_VERSION("1.0");
b60503ba
MW
2154module_init(nvme_init);
2155module_exit(nvme_exit);