]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
openvswitch: Remove padding from packet before L3+ conntrack processing
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 147
4e4cbee9
CH
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
2a842aca
CH
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153};
154
155blk_status_t errno_to_blk_status(int errno)
156{
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165}
166EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168int blk_status_to_errno(blk_status_t status)
169{
170 int idx = (__force int)status;
171
34bd9c1c 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
173 return -EIO;
174 return blk_errors[idx].errno;
175}
176EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178static void print_req_error(struct request *req, blk_status_t status)
179{
180 int idx = (__force int)status;
181
34bd9c1c 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189}
190
5bb23a68 191static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 192 unsigned int nbytes, blk_status_t error)
1da177e4 193{
78d8e58a 194 if (error)
4e4cbee9 195 bio->bi_status = error;
797e7dbb 196
e8064021 197 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 198 bio_set_flag(bio, BIO_QUIET);
08bafc03 199
f79ea416 200 bio_advance(bio, nbytes);
7ba1ba12 201
143a87f4 202 /* don't actually finish bio if it's part of flush sequence */
e8064021 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 204 bio_endio(bio);
1da177e4 205}
1da177e4 206
1da177e4
LT
207void blk_dump_rq_flags(struct request *rq, char *msg)
208{
aebf526b
CH
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 211 (unsigned long long) rq->cmd_flags);
1da177e4 212
83096ebf
TH
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_dump_rq_flags);
220
3cca6dc1 221static void blk_delay_work(struct work_struct *work)
1da177e4 222{
3cca6dc1 223 struct request_queue *q;
1da177e4 224
3cca6dc1
JA
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
24ecfbe2 227 __blk_run_queue(q);
3cca6dc1 228 spin_unlock_irq(q->queue_lock);
1da177e4 229}
1da177e4
LT
230
231/**
3cca6dc1
JA
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
1da177e4
LT
235 *
236 * Description:
3cca6dc1
JA
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
2fff8a92 239 * restarted around the specified time.
3cca6dc1
JA
240 */
241void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 242{
2fff8a92 243 lockdep_assert_held(q->queue_lock);
332ebbf7 244 WARN_ON_ONCE(q->mq_ops);
2fff8a92 245
70460571
BVA
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
2ad8b1ef 249}
3cca6dc1 250EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 251
21491412
JA
252/**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261void blk_start_queue_async(struct request_queue *q)
262{
2fff8a92 263 lockdep_assert_held(q->queue_lock);
332ebbf7 264 WARN_ON_ONCE(q->mq_ops);
2fff8a92 265
21491412
JA
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268}
269EXPORT_SYMBOL(blk_start_queue_async);
270
1da177e4
LT
271/**
272 * blk_start_queue - restart a previously stopped queue
165125e1 273 * @q: The &struct request_queue in question
1da177e4
LT
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
2fff8a92 278 * entered. Also see blk_stop_queue().
1da177e4 279 **/
165125e1 280void blk_start_queue(struct request_queue *q)
1da177e4 281{
2fff8a92 282 lockdep_assert_held(q->queue_lock);
4ddd56b0 283 WARN_ON(!in_interrupt() && !irqs_disabled());
332ebbf7 284 WARN_ON_ONCE(q->mq_ops);
a038e253 285
75ad23bc 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 287 __blk_run_queue(q);
1da177e4 288}
1da177e4
LT
289EXPORT_SYMBOL(blk_start_queue);
290
291/**
292 * blk_stop_queue - stop a queue
165125e1 293 * @q: The &struct request_queue in question
1da177e4
LT
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 303 * blk_start_queue() to restart queue operations.
1da177e4 304 **/
165125e1 305void blk_stop_queue(struct request_queue *q)
1da177e4 306{
2fff8a92 307 lockdep_assert_held(q->queue_lock);
332ebbf7 308 WARN_ON_ONCE(q->mq_ops);
2fff8a92 309
136b5721 310 cancel_delayed_work(&q->delay_work);
75ad23bc 311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
312}
313EXPORT_SYMBOL(blk_stop_queue);
314
315/**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
59c51591 324 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
da527770 328 * This function does not cancel any asynchronous activity arising
da3dae54 329 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 330 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 331 *
1da177e4
LT
332 */
333void blk_sync_queue(struct request_queue *q)
334{
70ed28b9 335 del_timer_sync(&q->timeout);
4e9b6f20 336 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
aba7afc5 342 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 343 queue_for_each_hw_ctx(q, hctx, i)
9f993737 344 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
1da177e4
LT
348}
349EXPORT_SYMBOL(blk_sync_queue);
350
c9254f2d
BVA
351/**
352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353 * @q: request queue pointer
354 *
355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356 * set and 1 if the flag was already set.
357 */
358int blk_set_preempt_only(struct request_queue *q)
359{
360 unsigned long flags;
361 int res;
362
363 spin_lock_irqsave(q->queue_lock, flags);
364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 spin_unlock_irqrestore(q->queue_lock, flags);
366
367 return res;
368}
369EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370
371void blk_clear_preempt_only(struct request_queue *q)
372{
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
3a0a5299 377 wake_up_all(&q->mq_freeze_wq);
c9254f2d
BVA
378 spin_unlock_irqrestore(q->queue_lock, flags);
379}
380EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381
c246e80d
BVA
382/**
383 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384 * @q: The queue to run
385 *
386 * Description:
387 * Invoke request handling on a queue if there are any pending requests.
388 * May be used to restart request handling after a request has completed.
389 * This variant runs the queue whether or not the queue has been
390 * stopped. Must be called with the queue lock held and interrupts
391 * disabled. See also @blk_run_queue.
392 */
393inline void __blk_run_queue_uncond(struct request_queue *q)
394{
2fff8a92 395 lockdep_assert_held(q->queue_lock);
332ebbf7 396 WARN_ON_ONCE(q->mq_ops);
2fff8a92 397
c246e80d
BVA
398 if (unlikely(blk_queue_dead(q)))
399 return;
400
24faf6f6
BVA
401 /*
402 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 * the queue lock internally. As a result multiple threads may be
404 * running such a request function concurrently. Keep track of the
405 * number of active request_fn invocations such that blk_drain_queue()
406 * can wait until all these request_fn calls have finished.
407 */
408 q->request_fn_active++;
c246e80d 409 q->request_fn(q);
24faf6f6 410 q->request_fn_active--;
c246e80d 411}
a7928c15 412EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 413
1da177e4 414/**
80a4b58e 415 * __blk_run_queue - run a single device queue
1da177e4 416 * @q: The queue to run
80a4b58e
JA
417 *
418 * Description:
2fff8a92 419 * See @blk_run_queue.
1da177e4 420 */
24ecfbe2 421void __blk_run_queue(struct request_queue *q)
1da177e4 422{
2fff8a92 423 lockdep_assert_held(q->queue_lock);
332ebbf7 424 WARN_ON_ONCE(q->mq_ops);
2fff8a92 425
a538cd03
TH
426 if (unlikely(blk_queue_stopped(q)))
427 return;
428
c246e80d 429 __blk_run_queue_uncond(q);
75ad23bc
NP
430}
431EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 432
24ecfbe2
CH
433/**
434 * blk_run_queue_async - run a single device queue in workqueue context
435 * @q: The queue to run
436 *
437 * Description:
438 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
439 * of us.
440 *
441 * Note:
442 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443 * has canceled q->delay_work, callers must hold the queue lock to avoid
444 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
445 */
446void blk_run_queue_async(struct request_queue *q)
447{
2fff8a92 448 lockdep_assert_held(q->queue_lock);
332ebbf7 449 WARN_ON_ONCE(q->mq_ops);
2fff8a92 450
70460571 451 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 452 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 453}
c21e6beb 454EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 455
75ad23bc
NP
456/**
457 * blk_run_queue - run a single device queue
458 * @q: The queue to run
80a4b58e
JA
459 *
460 * Description:
461 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 462 * May be used to restart queueing when a request has completed.
75ad23bc
NP
463 */
464void blk_run_queue(struct request_queue *q)
465{
466 unsigned long flags;
467
332ebbf7
BVA
468 WARN_ON_ONCE(q->mq_ops);
469
75ad23bc 470 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 471 __blk_run_queue(q);
1da177e4
LT
472 spin_unlock_irqrestore(q->queue_lock, flags);
473}
474EXPORT_SYMBOL(blk_run_queue);
475
165125e1 476void blk_put_queue(struct request_queue *q)
483f4afc
AV
477{
478 kobject_put(&q->kobj);
479}
d86e0e83 480EXPORT_SYMBOL(blk_put_queue);
483f4afc 481
e3c78ca5 482/**
807592a4 483 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 484 * @q: queue to drain
c9a929dd 485 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 486 *
c9a929dd
TH
487 * Drain requests from @q. If @drain_all is set, all requests are drained.
488 * If not, only ELVPRIV requests are drained. The caller is responsible
489 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 490 */
807592a4
BVA
491static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 __releases(q->queue_lock)
493 __acquires(q->queue_lock)
e3c78ca5 494{
458f27a9
AH
495 int i;
496
807592a4 497 lockdep_assert_held(q->queue_lock);
332ebbf7 498 WARN_ON_ONCE(q->mq_ops);
807592a4 499
e3c78ca5 500 while (true) {
481a7d64 501 bool drain = false;
e3c78ca5 502
b855b04a
TH
503 /*
504 * The caller might be trying to drain @q before its
505 * elevator is initialized.
506 */
507 if (q->elevator)
508 elv_drain_elevator(q);
509
5efd6113 510 blkcg_drain_queue(q);
e3c78ca5 511
4eabc941
TH
512 /*
513 * This function might be called on a queue which failed
b855b04a
TH
514 * driver init after queue creation or is not yet fully
515 * active yet. Some drivers (e.g. fd and loop) get unhappy
516 * in such cases. Kick queue iff dispatch queue has
517 * something on it and @q has request_fn set.
4eabc941 518 */
b855b04a 519 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 520 __blk_run_queue(q);
c9a929dd 521
8a5ecdd4 522 drain |= q->nr_rqs_elvpriv;
24faf6f6 523 drain |= q->request_fn_active;
481a7d64
TH
524
525 /*
526 * Unfortunately, requests are queued at and tracked from
527 * multiple places and there's no single counter which can
528 * be drained. Check all the queues and counters.
529 */
530 if (drain_all) {
e97c293c 531 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
532 drain |= !list_empty(&q->queue_head);
533 for (i = 0; i < 2; i++) {
8a5ecdd4 534 drain |= q->nr_rqs[i];
481a7d64 535 drain |= q->in_flight[i];
7c94e1c1
ML
536 if (fq)
537 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
538 }
539 }
e3c78ca5 540
481a7d64 541 if (!drain)
e3c78ca5 542 break;
807592a4
BVA
543
544 spin_unlock_irq(q->queue_lock);
545
e3c78ca5 546 msleep(10);
807592a4
BVA
547
548 spin_lock_irq(q->queue_lock);
e3c78ca5 549 }
458f27a9
AH
550
551 /*
552 * With queue marked dead, any woken up waiter will fail the
553 * allocation path, so the wakeup chaining is lost and we're
554 * left with hung waiters. We need to wake up those waiters.
555 */
556 if (q->request_fn) {
a051661c
TH
557 struct request_list *rl;
558
a051661c
TH
559 blk_queue_for_each_rl(rl, q)
560 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 wake_up_all(&rl->wait[i]);
458f27a9 562 }
e3c78ca5
TH
563}
564
454be724
ML
565void blk_drain_queue(struct request_queue *q)
566{
567 spin_lock_irq(q->queue_lock);
568 __blk_drain_queue(q, true);
569 spin_unlock_irq(q->queue_lock);
570}
571
d732580b
TH
572/**
573 * blk_queue_bypass_start - enter queue bypass mode
574 * @q: queue of interest
575 *
576 * In bypass mode, only the dispatch FIFO queue of @q is used. This
577 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 578 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
579 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
580 * inside queue or RCU read lock.
d732580b
TH
581 */
582void blk_queue_bypass_start(struct request_queue *q)
583{
332ebbf7
BVA
584 WARN_ON_ONCE(q->mq_ops);
585
d732580b 586 spin_lock_irq(q->queue_lock);
776687bc 587 q->bypass_depth++;
d732580b
TH
588 queue_flag_set(QUEUE_FLAG_BYPASS, q);
589 spin_unlock_irq(q->queue_lock);
590
776687bc
TH
591 /*
592 * Queues start drained. Skip actual draining till init is
593 * complete. This avoids lenghty delays during queue init which
594 * can happen many times during boot.
595 */
596 if (blk_queue_init_done(q)) {
807592a4
BVA
597 spin_lock_irq(q->queue_lock);
598 __blk_drain_queue(q, false);
599 spin_unlock_irq(q->queue_lock);
600
b82d4b19
TH
601 /* ensure blk_queue_bypass() is %true inside RCU read lock */
602 synchronize_rcu();
603 }
d732580b
TH
604}
605EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
606
607/**
608 * blk_queue_bypass_end - leave queue bypass mode
609 * @q: queue of interest
610 *
611 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
612 *
613 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
614 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
615 */
616void blk_queue_bypass_end(struct request_queue *q)
617{
618 spin_lock_irq(q->queue_lock);
619 if (!--q->bypass_depth)
620 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
621 WARN_ON_ONCE(q->bypass_depth < 0);
622 spin_unlock_irq(q->queue_lock);
623}
624EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
625
aed3ea94
JA
626void blk_set_queue_dying(struct request_queue *q)
627{
1b856086
BVA
628 spin_lock_irq(q->queue_lock);
629 queue_flag_set(QUEUE_FLAG_DYING, q);
630 spin_unlock_irq(q->queue_lock);
aed3ea94 631
d3cfb2a0
ML
632 /*
633 * When queue DYING flag is set, we need to block new req
634 * entering queue, so we call blk_freeze_queue_start() to
635 * prevent I/O from crossing blk_queue_enter().
636 */
637 blk_freeze_queue_start(q);
638
aed3ea94
JA
639 if (q->mq_ops)
640 blk_mq_wake_waiters(q);
641 else {
642 struct request_list *rl;
643
bbfc3c5d 644 spin_lock_irq(q->queue_lock);
aed3ea94
JA
645 blk_queue_for_each_rl(rl, q) {
646 if (rl->rq_pool) {
34d9715a
ML
647 wake_up_all(&rl->wait[BLK_RW_SYNC]);
648 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
aed3ea94
JA
649 }
650 }
bbfc3c5d 651 spin_unlock_irq(q->queue_lock);
aed3ea94 652 }
055f6e18
ML
653
654 /* Make blk_queue_enter() reexamine the DYING flag. */
655 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
656}
657EXPORT_SYMBOL_GPL(blk_set_queue_dying);
658
c9a929dd
TH
659/**
660 * blk_cleanup_queue - shutdown a request queue
661 * @q: request queue to shutdown
662 *
c246e80d
BVA
663 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
664 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 665 */
6728cb0e 666void blk_cleanup_queue(struct request_queue *q)
483f4afc 667{
c9a929dd 668 spinlock_t *lock = q->queue_lock;
e3335de9 669
3f3299d5 670 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 671 mutex_lock(&q->sysfs_lock);
aed3ea94 672 blk_set_queue_dying(q);
c9a929dd 673 spin_lock_irq(lock);
6ecf23af 674
80fd9979 675 /*
3f3299d5 676 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
677 * that, unlike blk_queue_bypass_start(), we aren't performing
678 * synchronize_rcu() after entering bypass mode to avoid the delay
679 * as some drivers create and destroy a lot of queues while
680 * probing. This is still safe because blk_release_queue() will be
681 * called only after the queue refcnt drops to zero and nothing,
682 * RCU or not, would be traversing the queue by then.
683 */
6ecf23af
TH
684 q->bypass_depth++;
685 queue_flag_set(QUEUE_FLAG_BYPASS, q);
686
c9a929dd
TH
687 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
688 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 689 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
690 spin_unlock_irq(lock);
691 mutex_unlock(&q->sysfs_lock);
692
c246e80d
BVA
693 /*
694 * Drain all requests queued before DYING marking. Set DEAD flag to
695 * prevent that q->request_fn() gets invoked after draining finished.
696 */
3ef28e83 697 blk_freeze_queue(q);
9c1051aa 698 spin_lock_irq(lock);
c246e80d 699 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 700 spin_unlock_irq(lock);
c9a929dd 701
5e4415a1
ML
702 /*
703 * make sure all in-progress dispatch are completed because
704 * blk_freeze_queue() can only complete all requests, and
705 * dispatch may still be in-progress since we dispatch requests
706 * from more than one contexts
707 */
708 if (q->mq_ops)
709 blk_mq_quiesce_queue(q);
710
5a48fc14
DW
711 /* for synchronous bio-based driver finish in-flight integrity i/o */
712 blk_flush_integrity();
713
c9a929dd 714 /* @q won't process any more request, flush async actions */
dc3b17cc 715 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
716 blk_sync_queue(q);
717
45a9c9d9
BVA
718 if (q->mq_ops)
719 blk_mq_free_queue(q);
3ef28e83 720 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 721
5e5cfac0
AH
722 spin_lock_irq(lock);
723 if (q->queue_lock != &q->__queue_lock)
724 q->queue_lock = &q->__queue_lock;
725 spin_unlock_irq(lock);
726
c9a929dd 727 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
728 blk_put_queue(q);
729}
1da177e4
LT
730EXPORT_SYMBOL(blk_cleanup_queue);
731
271508db 732/* Allocate memory local to the request queue */
6d247d7f 733static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 734{
6d247d7f
CH
735 struct request_queue *q = data;
736
737 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
738}
739
6d247d7f 740static void free_request_simple(void *element, void *data)
271508db
DR
741{
742 kmem_cache_free(request_cachep, element);
743}
744
6d247d7f
CH
745static void *alloc_request_size(gfp_t gfp_mask, void *data)
746{
747 struct request_queue *q = data;
748 struct request *rq;
749
750 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
751 q->node);
752 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
753 kfree(rq);
754 rq = NULL;
755 }
756 return rq;
757}
758
759static void free_request_size(void *element, void *data)
760{
761 struct request_queue *q = data;
762
763 if (q->exit_rq_fn)
764 q->exit_rq_fn(q, element);
765 kfree(element);
766}
767
5b788ce3
TH
768int blk_init_rl(struct request_list *rl, struct request_queue *q,
769 gfp_t gfp_mask)
1da177e4 770{
85acb3ba 771 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
772 return 0;
773
5b788ce3 774 rl->q = q;
1faa16d2
JA
775 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
776 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
777 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
778 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 779
6d247d7f
CH
780 if (q->cmd_size) {
781 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
782 alloc_request_size, free_request_size,
783 q, gfp_mask, q->node);
784 } else {
785 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
786 alloc_request_simple, free_request_simple,
787 q, gfp_mask, q->node);
788 }
1da177e4
LT
789 if (!rl->rq_pool)
790 return -ENOMEM;
791
b425e504
BVA
792 if (rl != &q->root_rl)
793 WARN_ON_ONCE(!blk_get_queue(q));
794
1da177e4
LT
795 return 0;
796}
797
b425e504 798void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 799{
b425e504 800 if (rl->rq_pool) {
5b788ce3 801 mempool_destroy(rl->rq_pool);
b425e504
BVA
802 if (rl != &q->root_rl)
803 blk_put_queue(q);
804 }
5b788ce3
TH
805}
806
165125e1 807struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 808{
c304a51b 809 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
810}
811EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 812
3a0a5299
BVA
813/**
814 * blk_queue_enter() - try to increase q->q_usage_counter
815 * @q: request queue pointer
816 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
817 */
9a95e4ef 818int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 819{
3a0a5299
BVA
820 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
821
3ef28e83 822 while (true) {
3a0a5299 823 bool success = false;
3ef28e83
DW
824 int ret;
825
1f8c7019 826 rcu_read_lock();
3a0a5299
BVA
827 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
828 /*
829 * The code that sets the PREEMPT_ONLY flag is
830 * responsible for ensuring that that flag is globally
831 * visible before the queue is unfrozen.
832 */
833 if (preempt || !blk_queue_preempt_only(q)) {
834 success = true;
835 } else {
836 percpu_ref_put(&q->q_usage_counter);
837 }
838 }
1f8c7019 839 rcu_read_unlock();
3a0a5299
BVA
840
841 if (success)
3ef28e83
DW
842 return 0;
843
3a0a5299 844 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
845 return -EBUSY;
846
5ed61d3f 847 /*
1671d522 848 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 849 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
850 * .q_usage_counter and reading .mq_freeze_depth or
851 * queue dying flag, otherwise the following wait may
852 * never return if the two reads are reordered.
5ed61d3f
ML
853 */
854 smp_rmb();
855
3ef28e83 856 ret = wait_event_interruptible(q->mq_freeze_wq,
3a0a5299
BVA
857 (atomic_read(&q->mq_freeze_depth) == 0 &&
858 (preempt || !blk_queue_preempt_only(q))) ||
3ef28e83
DW
859 blk_queue_dying(q));
860 if (blk_queue_dying(q))
861 return -ENODEV;
862 if (ret)
863 return ret;
864 }
865}
866
867void blk_queue_exit(struct request_queue *q)
868{
869 percpu_ref_put(&q->q_usage_counter);
870}
871
872static void blk_queue_usage_counter_release(struct percpu_ref *ref)
873{
874 struct request_queue *q =
875 container_of(ref, struct request_queue, q_usage_counter);
876
877 wake_up_all(&q->mq_freeze_wq);
878}
879
bca237a5 880static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 881{
bca237a5 882 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
883
884 kblockd_schedule_work(&q->timeout_work);
885}
886
165125e1 887struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 888{
165125e1 889 struct request_queue *q;
1946089a 890
8324aa91 891 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 892 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
893 if (!q)
894 return NULL;
895
00380a40 896 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 897 if (q->id < 0)
3d2936f4 898 goto fail_q;
a73f730d 899
93b27e72 900 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
901 if (!q->bio_split)
902 goto fail_id;
903
d03f6cdc
JK
904 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
905 if (!q->backing_dev_info)
906 goto fail_split;
907
a83b576c
JA
908 q->stats = blk_alloc_queue_stats();
909 if (!q->stats)
910 goto fail_stats;
911
dc3b17cc 912 q->backing_dev_info->ra_pages =
09cbfeaf 913 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
914 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
915 q->backing_dev_info->name = "block";
5151412d 916 q->node = node_id;
0989a025 917
bca237a5
KC
918 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
919 laptop_mode_timer_fn, 0);
920 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 921 INIT_WORK(&q->timeout_work, NULL);
b855b04a 922 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 923 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 924 INIT_LIST_HEAD(&q->icq_list);
4eef3049 925#ifdef CONFIG_BLK_CGROUP
e8989fae 926 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 927#endif
3cca6dc1 928 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 929
8324aa91 930 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 931
5acb3cc2
WL
932#ifdef CONFIG_BLK_DEV_IO_TRACE
933 mutex_init(&q->blk_trace_mutex);
934#endif
483f4afc 935 mutex_init(&q->sysfs_lock);
e7e72bf6 936 spin_lock_init(&q->__queue_lock);
483f4afc 937
c94a96ac
VG
938 /*
939 * By default initialize queue_lock to internal lock and driver can
940 * override it later if need be.
941 */
942 q->queue_lock = &q->__queue_lock;
943
b82d4b19
TH
944 /*
945 * A queue starts its life with bypass turned on to avoid
946 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
947 * init. The initial bypass will be finished when the queue is
948 * registered by blk_register_queue().
b82d4b19
TH
949 */
950 q->bypass_depth = 1;
951 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
952
320ae51f
JA
953 init_waitqueue_head(&q->mq_freeze_wq);
954
3ef28e83
DW
955 /*
956 * Init percpu_ref in atomic mode so that it's faster to shutdown.
957 * See blk_register_queue() for details.
958 */
959 if (percpu_ref_init(&q->q_usage_counter,
960 blk_queue_usage_counter_release,
961 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 962 goto fail_bdi;
f51b802c 963
3ef28e83
DW
964 if (blkcg_init_queue(q))
965 goto fail_ref;
966
1da177e4 967 return q;
a73f730d 968
3ef28e83
DW
969fail_ref:
970 percpu_ref_exit(&q->q_usage_counter);
fff4996b 971fail_bdi:
a83b576c
JA
972 blk_free_queue_stats(q->stats);
973fail_stats:
d03f6cdc 974 bdi_put(q->backing_dev_info);
54efd50b
KO
975fail_split:
976 bioset_free(q->bio_split);
a73f730d
TH
977fail_id:
978 ida_simple_remove(&blk_queue_ida, q->id);
979fail_q:
980 kmem_cache_free(blk_requestq_cachep, q);
981 return NULL;
1da177e4 982}
1946089a 983EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
984
985/**
986 * blk_init_queue - prepare a request queue for use with a block device
987 * @rfn: The function to be called to process requests that have been
988 * placed on the queue.
989 * @lock: Request queue spin lock
990 *
991 * Description:
992 * If a block device wishes to use the standard request handling procedures,
993 * which sorts requests and coalesces adjacent requests, then it must
994 * call blk_init_queue(). The function @rfn will be called when there
995 * are requests on the queue that need to be processed. If the device
996 * supports plugging, then @rfn may not be called immediately when requests
997 * are available on the queue, but may be called at some time later instead.
998 * Plugged queues are generally unplugged when a buffer belonging to one
999 * of the requests on the queue is needed, or due to memory pressure.
1000 *
1001 * @rfn is not required, or even expected, to remove all requests off the
1002 * queue, but only as many as it can handle at a time. If it does leave
1003 * requests on the queue, it is responsible for arranging that the requests
1004 * get dealt with eventually.
1005 *
1006 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1007 * request queue; this lock will be taken also from interrupt context, so irq
1008 * disabling is needed for it.
1da177e4 1009 *
710027a4 1010 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
1011 * it didn't succeed.
1012 *
1013 * Note:
1014 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1015 * when the block device is deactivated (such as at module unload).
1016 **/
1946089a 1017
165125e1 1018struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1019{
c304a51b 1020 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
1021}
1022EXPORT_SYMBOL(blk_init_queue);
1023
165125e1 1024struct request_queue *
1946089a
CL
1025blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1026{
5ea708d1 1027 struct request_queue *q;
1da177e4 1028
5ea708d1
CH
1029 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1030 if (!q)
c86d1b8a
MS
1031 return NULL;
1032
5ea708d1
CH
1033 q->request_fn = rfn;
1034 if (lock)
1035 q->queue_lock = lock;
1036 if (blk_init_allocated_queue(q) < 0) {
1037 blk_cleanup_queue(q);
1038 return NULL;
1039 }
18741986 1040
7982e90c 1041 return q;
01effb0d
MS
1042}
1043EXPORT_SYMBOL(blk_init_queue_node);
1044
dece1635 1045static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 1046
1da177e4 1047
5ea708d1
CH
1048int blk_init_allocated_queue(struct request_queue *q)
1049{
332ebbf7
BVA
1050 WARN_ON_ONCE(q->mq_ops);
1051
6d247d7f 1052 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 1053 if (!q->fq)
5ea708d1 1054 return -ENOMEM;
7982e90c 1055
6d247d7f
CH
1056 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1057 goto out_free_flush_queue;
7982e90c 1058
a051661c 1059 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 1060 goto out_exit_flush_rq;
1da177e4 1061
287922eb 1062 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 1063 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 1064
f3b144aa
JA
1065 /*
1066 * This also sets hw/phys segments, boundary and size
1067 */
c20e8de2 1068 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1069
44ec9542
AS
1070 q->sg_reserved_size = INT_MAX;
1071
eb1c160b
TS
1072 /* Protect q->elevator from elevator_change */
1073 mutex_lock(&q->sysfs_lock);
1074
b82d4b19 1075 /* init elevator */
eb1c160b
TS
1076 if (elevator_init(q, NULL)) {
1077 mutex_unlock(&q->sysfs_lock);
6d247d7f 1078 goto out_exit_flush_rq;
eb1c160b
TS
1079 }
1080
1081 mutex_unlock(&q->sysfs_lock);
5ea708d1 1082 return 0;
eb1c160b 1083
6d247d7f
CH
1084out_exit_flush_rq:
1085 if (q->exit_rq_fn)
1086 q->exit_rq_fn(q, q->fq->flush_rq);
1087out_free_flush_queue:
ba483388 1088 blk_free_flush_queue(q->fq);
5ea708d1 1089 return -ENOMEM;
1da177e4 1090}
5151412d 1091EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1092
09ac46c4 1093bool blk_get_queue(struct request_queue *q)
1da177e4 1094{
3f3299d5 1095 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1096 __blk_get_queue(q);
1097 return true;
1da177e4
LT
1098 }
1099
09ac46c4 1100 return false;
1da177e4 1101}
d86e0e83 1102EXPORT_SYMBOL(blk_get_queue);
1da177e4 1103
5b788ce3 1104static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1105{
e8064021 1106 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1107 elv_put_request(rl->q, rq);
f1f8cc94 1108 if (rq->elv.icq)
11a3122f 1109 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1110 }
1111
5b788ce3 1112 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1113}
1114
1da177e4
LT
1115/*
1116 * ioc_batching returns true if the ioc is a valid batching request and
1117 * should be given priority access to a request.
1118 */
165125e1 1119static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1120{
1121 if (!ioc)
1122 return 0;
1123
1124 /*
1125 * Make sure the process is able to allocate at least 1 request
1126 * even if the batch times out, otherwise we could theoretically
1127 * lose wakeups.
1128 */
1129 return ioc->nr_batch_requests == q->nr_batching ||
1130 (ioc->nr_batch_requests > 0
1131 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1132}
1133
1134/*
1135 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1136 * will cause the process to be a "batcher" on all queues in the system. This
1137 * is the behaviour we want though - once it gets a wakeup it should be given
1138 * a nice run.
1139 */
165125e1 1140static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1141{
1142 if (!ioc || ioc_batching(q, ioc))
1143 return;
1144
1145 ioc->nr_batch_requests = q->nr_batching;
1146 ioc->last_waited = jiffies;
1147}
1148
5b788ce3 1149static void __freed_request(struct request_list *rl, int sync)
1da177e4 1150{
5b788ce3 1151 struct request_queue *q = rl->q;
1da177e4 1152
d40f75a0
TH
1153 if (rl->count[sync] < queue_congestion_off_threshold(q))
1154 blk_clear_congested(rl, sync);
1da177e4 1155
1faa16d2
JA
1156 if (rl->count[sync] + 1 <= q->nr_requests) {
1157 if (waitqueue_active(&rl->wait[sync]))
1158 wake_up(&rl->wait[sync]);
1da177e4 1159
5b788ce3 1160 blk_clear_rl_full(rl, sync);
1da177e4
LT
1161 }
1162}
1163
1164/*
1165 * A request has just been released. Account for it, update the full and
1166 * congestion status, wake up any waiters. Called under q->queue_lock.
1167 */
e8064021
CH
1168static void freed_request(struct request_list *rl, bool sync,
1169 req_flags_t rq_flags)
1da177e4 1170{
5b788ce3 1171 struct request_queue *q = rl->q;
1da177e4 1172
8a5ecdd4 1173 q->nr_rqs[sync]--;
1faa16d2 1174 rl->count[sync]--;
e8064021 1175 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1176 q->nr_rqs_elvpriv--;
1da177e4 1177
5b788ce3 1178 __freed_request(rl, sync);
1da177e4 1179
1faa16d2 1180 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1181 __freed_request(rl, sync ^ 1);
1da177e4
LT
1182}
1183
e3a2b3f9
JA
1184int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1185{
1186 struct request_list *rl;
d40f75a0 1187 int on_thresh, off_thresh;
e3a2b3f9 1188
332ebbf7
BVA
1189 WARN_ON_ONCE(q->mq_ops);
1190
e3a2b3f9
JA
1191 spin_lock_irq(q->queue_lock);
1192 q->nr_requests = nr;
1193 blk_queue_congestion_threshold(q);
d40f75a0
TH
1194 on_thresh = queue_congestion_on_threshold(q);
1195 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1196
d40f75a0
TH
1197 blk_queue_for_each_rl(rl, q) {
1198 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1199 blk_set_congested(rl, BLK_RW_SYNC);
1200 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1201 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1202
d40f75a0
TH
1203 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1204 blk_set_congested(rl, BLK_RW_ASYNC);
1205 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1206 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1207
e3a2b3f9
JA
1208 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1209 blk_set_rl_full(rl, BLK_RW_SYNC);
1210 } else {
1211 blk_clear_rl_full(rl, BLK_RW_SYNC);
1212 wake_up(&rl->wait[BLK_RW_SYNC]);
1213 }
1214
1215 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1216 blk_set_rl_full(rl, BLK_RW_ASYNC);
1217 } else {
1218 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1219 wake_up(&rl->wait[BLK_RW_ASYNC]);
1220 }
1221 }
1222
1223 spin_unlock_irq(q->queue_lock);
1224 return 0;
1225}
1226
da8303c6 1227/**
a06e05e6 1228 * __get_request - get a free request
5b788ce3 1229 * @rl: request list to allocate from
ef295ecf 1230 * @op: operation and flags
da8303c6 1231 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1232 * @flags: BLQ_MQ_REQ_* flags
da8303c6
TH
1233 *
1234 * Get a free request from @q. This function may fail under memory
1235 * pressure or if @q is dead.
1236 *
da3dae54 1237 * Must be called with @q->queue_lock held and,
a492f075
JL
1238 * Returns ERR_PTR on failure, with @q->queue_lock held.
1239 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1240 */
ef295ecf 1241static struct request *__get_request(struct request_list *rl, unsigned int op,
9a95e4ef 1242 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1243{
5b788ce3 1244 struct request_queue *q = rl->q;
b679281a 1245 struct request *rq;
7f4b35d1
TH
1246 struct elevator_type *et = q->elevator->type;
1247 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1248 struct io_cq *icq = NULL;
ef295ecf 1249 const bool is_sync = op_is_sync(op);
75eb6c37 1250 int may_queue;
6a15674d
BVA
1251 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1252 __GFP_DIRECT_RECLAIM;
e8064021 1253 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1254
2fff8a92
BVA
1255 lockdep_assert_held(q->queue_lock);
1256
3f3299d5 1257 if (unlikely(blk_queue_dying(q)))
a492f075 1258 return ERR_PTR(-ENODEV);
da8303c6 1259
ef295ecf 1260 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1261 if (may_queue == ELV_MQUEUE_NO)
1262 goto rq_starved;
1263
1faa16d2
JA
1264 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1265 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1266 /*
1267 * The queue will fill after this allocation, so set
1268 * it as full, and mark this process as "batching".
1269 * This process will be allowed to complete a batch of
1270 * requests, others will be blocked.
1271 */
5b788ce3 1272 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1273 ioc_set_batching(q, ioc);
5b788ce3 1274 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1275 } else {
1276 if (may_queue != ELV_MQUEUE_MUST
1277 && !ioc_batching(q, ioc)) {
1278 /*
1279 * The queue is full and the allocating
1280 * process is not a "batcher", and not
1281 * exempted by the IO scheduler
1282 */
a492f075 1283 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1284 }
1285 }
1da177e4 1286 }
d40f75a0 1287 blk_set_congested(rl, is_sync);
1da177e4
LT
1288 }
1289
082cf69e
JA
1290 /*
1291 * Only allow batching queuers to allocate up to 50% over the defined
1292 * limit of requests, otherwise we could have thousands of requests
1293 * allocated with any setting of ->nr_requests
1294 */
1faa16d2 1295 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1296 return ERR_PTR(-ENOMEM);
fd782a4a 1297
8a5ecdd4 1298 q->nr_rqs[is_sync]++;
1faa16d2
JA
1299 rl->count[is_sync]++;
1300 rl->starved[is_sync] = 0;
cb98fc8b 1301
f1f8cc94
TH
1302 /*
1303 * Decide whether the new request will be managed by elevator. If
e8064021 1304 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1305 * prevent the current elevator from being destroyed until the new
1306 * request is freed. This guarantees icq's won't be destroyed and
1307 * makes creating new ones safe.
1308 *
e6f7f93d
CH
1309 * Flush requests do not use the elevator so skip initialization.
1310 * This allows a request to share the flush and elevator data.
1311 *
f1f8cc94
TH
1312 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1313 * it will be created after releasing queue_lock.
1314 */
e6f7f93d 1315 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1316 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1317 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1318 if (et->icq_cache && ioc)
1319 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1320 }
cb98fc8b 1321
f253b86b 1322 if (blk_queue_io_stat(q))
e8064021 1323 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1324 spin_unlock_irq(q->queue_lock);
1325
29e2b09a 1326 /* allocate and init request */
5b788ce3 1327 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1328 if (!rq)
b679281a 1329 goto fail_alloc;
1da177e4 1330
29e2b09a 1331 blk_rq_init(q, rq);
a051661c 1332 blk_rq_set_rl(rq, rl);
ef295ecf 1333 rq->cmd_flags = op;
e8064021 1334 rq->rq_flags = rq_flags;
1b6d65a0
BVA
1335 if (flags & BLK_MQ_REQ_PREEMPT)
1336 rq->rq_flags |= RQF_PREEMPT;
29e2b09a 1337
aaf7c680 1338 /* init elvpriv */
e8064021 1339 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1340 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1341 if (ioc)
1342 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1343 if (!icq)
1344 goto fail_elvpriv;
29e2b09a 1345 }
aaf7c680
TH
1346
1347 rq->elv.icq = icq;
1348 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1349 goto fail_elvpriv;
1350
1351 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1352 if (icq)
1353 get_io_context(icq->ioc);
1354 }
aaf7c680 1355out:
88ee5ef1
JA
1356 /*
1357 * ioc may be NULL here, and ioc_batching will be false. That's
1358 * OK, if the queue is under the request limit then requests need
1359 * not count toward the nr_batch_requests limit. There will always
1360 * be some limit enforced by BLK_BATCH_TIME.
1361 */
1da177e4
LT
1362 if (ioc_batching(q, ioc))
1363 ioc->nr_batch_requests--;
6728cb0e 1364
e6a40b09 1365 trace_block_getrq(q, bio, op);
1da177e4 1366 return rq;
b679281a 1367
aaf7c680
TH
1368fail_elvpriv:
1369 /*
1370 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1371 * and may fail indefinitely under memory pressure and thus
1372 * shouldn't stall IO. Treat this request as !elvpriv. This will
1373 * disturb iosched and blkcg but weird is bettern than dead.
1374 */
7b2b10e0 1375 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1376 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1377
e8064021 1378 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1379 rq->elv.icq = NULL;
1380
1381 spin_lock_irq(q->queue_lock);
8a5ecdd4 1382 q->nr_rqs_elvpriv--;
aaf7c680
TH
1383 spin_unlock_irq(q->queue_lock);
1384 goto out;
1385
b679281a
TH
1386fail_alloc:
1387 /*
1388 * Allocation failed presumably due to memory. Undo anything we
1389 * might have messed up.
1390 *
1391 * Allocating task should really be put onto the front of the wait
1392 * queue, but this is pretty rare.
1393 */
1394 spin_lock_irq(q->queue_lock);
e8064021 1395 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1396
1397 /*
1398 * in the very unlikely event that allocation failed and no
1399 * requests for this direction was pending, mark us starved so that
1400 * freeing of a request in the other direction will notice
1401 * us. another possible fix would be to split the rq mempool into
1402 * READ and WRITE
1403 */
1404rq_starved:
1405 if (unlikely(rl->count[is_sync] == 0))
1406 rl->starved[is_sync] = 1;
a492f075 1407 return ERR_PTR(-ENOMEM);
1da177e4
LT
1408}
1409
da8303c6 1410/**
a06e05e6 1411 * get_request - get a free request
da8303c6 1412 * @q: request_queue to allocate request from
ef295ecf 1413 * @op: operation and flags
da8303c6 1414 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1415 * @flags: BLK_MQ_REQ_* flags.
da8303c6 1416 *
d0164adc
MG
1417 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1418 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1419 *
da3dae54 1420 * Must be called with @q->queue_lock held and,
a492f075
JL
1421 * Returns ERR_PTR on failure, with @q->queue_lock held.
1422 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1423 */
ef295ecf 1424static struct request *get_request(struct request_queue *q, unsigned int op,
9a95e4ef 1425 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1426{
ef295ecf 1427 const bool is_sync = op_is_sync(op);
a06e05e6 1428 DEFINE_WAIT(wait);
a051661c 1429 struct request_list *rl;
1da177e4 1430 struct request *rq;
a051661c 1431
2fff8a92 1432 lockdep_assert_held(q->queue_lock);
332ebbf7 1433 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1434
a051661c 1435 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1436retry:
6a15674d 1437 rq = __get_request(rl, op, bio, flags);
a492f075 1438 if (!IS_ERR(rq))
a06e05e6 1439 return rq;
1da177e4 1440
03a07c92
GR
1441 if (op & REQ_NOWAIT) {
1442 blk_put_rl(rl);
1443 return ERR_PTR(-EAGAIN);
1444 }
1445
6a15674d 1446 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1447 blk_put_rl(rl);
a492f075 1448 return rq;
a051661c 1449 }
1da177e4 1450
a06e05e6
TH
1451 /* wait on @rl and retry */
1452 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1453 TASK_UNINTERRUPTIBLE);
1da177e4 1454
e6a40b09 1455 trace_block_sleeprq(q, bio, op);
1da177e4 1456
a06e05e6
TH
1457 spin_unlock_irq(q->queue_lock);
1458 io_schedule();
d6344532 1459
a06e05e6
TH
1460 /*
1461 * After sleeping, we become a "batching" process and will be able
1462 * to allocate at least one request, and up to a big batch of them
1463 * for a small period time. See ioc_batching, ioc_set_batching
1464 */
a06e05e6 1465 ioc_set_batching(q, current->io_context);
05caf8db 1466
a06e05e6
TH
1467 spin_lock_irq(q->queue_lock);
1468 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1469
a06e05e6 1470 goto retry;
1da177e4
LT
1471}
1472
6a15674d 1473/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1474static struct request *blk_old_get_request(struct request_queue *q,
9a95e4ef 1475 unsigned int op, blk_mq_req_flags_t flags)
1da177e4
LT
1476{
1477 struct request *rq;
6a15674d
BVA
1478 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1479 __GFP_DIRECT_RECLAIM;
055f6e18 1480 int ret = 0;
1da177e4 1481
332ebbf7
BVA
1482 WARN_ON_ONCE(q->mq_ops);
1483
7f4b35d1
TH
1484 /* create ioc upfront */
1485 create_io_context(gfp_mask, q->node);
1486
3a0a5299 1487 ret = blk_queue_enter(q, flags);
055f6e18
ML
1488 if (ret)
1489 return ERR_PTR(ret);
d6344532 1490 spin_lock_irq(q->queue_lock);
6a15674d 1491 rq = get_request(q, op, NULL, flags);
0c4de0f3 1492 if (IS_ERR(rq)) {
da8303c6 1493 spin_unlock_irq(q->queue_lock);
055f6e18 1494 blk_queue_exit(q);
0c4de0f3
CH
1495 return rq;
1496 }
1da177e4 1497
0c4de0f3
CH
1498 /* q->queue_lock is unlocked at this point */
1499 rq->__data_len = 0;
1500 rq->__sector = (sector_t) -1;
1501 rq->bio = rq->biotail = NULL;
1da177e4
LT
1502 return rq;
1503}
320ae51f 1504
6a15674d
BVA
1505/**
1506 * blk_get_request_flags - allocate a request
1507 * @q: request queue to allocate a request for
1508 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1509 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1510 */
1511struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
9a95e4ef 1512 blk_mq_req_flags_t flags)
320ae51f 1513{
d280bab3
BVA
1514 struct request *req;
1515
6a15674d 1516 WARN_ON_ONCE(op & REQ_NOWAIT);
1b6d65a0 1517 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
6a15674d 1518
d280bab3 1519 if (q->mq_ops) {
6a15674d 1520 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1521 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1522 q->mq_ops->initialize_rq_fn(req);
1523 } else {
6a15674d 1524 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1525 if (!IS_ERR(req) && q->initialize_rq_fn)
1526 q->initialize_rq_fn(req);
1527 }
1528
1529 return req;
320ae51f 1530}
6a15674d
BVA
1531EXPORT_SYMBOL(blk_get_request_flags);
1532
1533struct request *blk_get_request(struct request_queue *q, unsigned int op,
1534 gfp_t gfp_mask)
1535{
1536 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1537 0 : BLK_MQ_REQ_NOWAIT);
1538}
1da177e4
LT
1539EXPORT_SYMBOL(blk_get_request);
1540
1541/**
1542 * blk_requeue_request - put a request back on queue
1543 * @q: request queue where request should be inserted
1544 * @rq: request to be inserted
1545 *
1546 * Description:
1547 * Drivers often keep queueing requests until the hardware cannot accept
1548 * more, when that condition happens we need to put the request back
1549 * on the queue. Must be called with queue lock held.
1550 */
165125e1 1551void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1552{
2fff8a92 1553 lockdep_assert_held(q->queue_lock);
332ebbf7 1554 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1555
242f9dcb
JA
1556 blk_delete_timer(rq);
1557 blk_clear_rq_complete(rq);
5f3ea37c 1558 trace_block_rq_requeue(q, rq);
87760e5e 1559 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1560
e8064021 1561 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1562 blk_queue_end_tag(q, rq);
1563
ba396a6c
JB
1564 BUG_ON(blk_queued_rq(rq));
1565
1da177e4
LT
1566 elv_requeue_request(q, rq);
1567}
1da177e4
LT
1568EXPORT_SYMBOL(blk_requeue_request);
1569
73c10101
JA
1570static void add_acct_request(struct request_queue *q, struct request *rq,
1571 int where)
1572{
320ae51f 1573 blk_account_io_start(rq, true);
7eaceacc 1574 __elv_add_request(q, rq, where);
73c10101
JA
1575}
1576
d62e26b3 1577static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1578 struct hd_struct *part, unsigned long now,
1579 unsigned int inflight)
074a7aca 1580{
b8d62b3a 1581 if (inflight) {
074a7aca 1582 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1583 inflight * (now - part->stamp));
074a7aca
TH
1584 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1585 }
1586 part->stamp = now;
1587}
1588
1589/**
496aa8a9 1590 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1591 * @q: target block queue
496aa8a9
RD
1592 * @cpu: cpu number for stats access
1593 * @part: target partition
1da177e4
LT
1594 *
1595 * The average IO queue length and utilisation statistics are maintained
1596 * by observing the current state of the queue length and the amount of
1597 * time it has been in this state for.
1598 *
1599 * Normally, that accounting is done on IO completion, but that can result
1600 * in more than a second's worth of IO being accounted for within any one
1601 * second, leading to >100% utilisation. To deal with that, we call this
1602 * function to do a round-off before returning the results when reading
1603 * /proc/diskstats. This accounts immediately for all queue usage up to
1604 * the current jiffies and restarts the counters again.
1605 */
d62e26b3 1606void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1607{
b8d62b3a 1608 struct hd_struct *part2 = NULL;
6f2576af 1609 unsigned long now = jiffies;
b8d62b3a
JA
1610 unsigned int inflight[2];
1611 int stats = 0;
1612
1613 if (part->stamp != now)
1614 stats |= 1;
1615
1616 if (part->partno) {
1617 part2 = &part_to_disk(part)->part0;
1618 if (part2->stamp != now)
1619 stats |= 2;
1620 }
1621
1622 if (!stats)
1623 return;
1624
1625 part_in_flight(q, part, inflight);
6f2576af 1626
b8d62b3a
JA
1627 if (stats & 2)
1628 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1629 if (stats & 1)
1630 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1631}
074a7aca 1632EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1633
47fafbc7 1634#ifdef CONFIG_PM
c8158819
LM
1635static void blk_pm_put_request(struct request *rq)
1636{
e8064021 1637 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1638 pm_runtime_mark_last_busy(rq->q->dev);
1639}
1640#else
1641static inline void blk_pm_put_request(struct request *rq) {}
1642#endif
1643
165125e1 1644void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1645{
e8064021
CH
1646 req_flags_t rq_flags = req->rq_flags;
1647
1da177e4
LT
1648 if (unlikely(!q))
1649 return;
1da177e4 1650
6f5ba581
CH
1651 if (q->mq_ops) {
1652 blk_mq_free_request(req);
1653 return;
1654 }
1655
2fff8a92
BVA
1656 lockdep_assert_held(q->queue_lock);
1657
c8158819
LM
1658 blk_pm_put_request(req);
1659
8922e16c
TH
1660 elv_completed_request(q, req);
1661
1cd96c24
BH
1662 /* this is a bio leak */
1663 WARN_ON(req->bio != NULL);
1664
87760e5e
JA
1665 wbt_done(q->rq_wb, &req->issue_stat);
1666
1da177e4
LT
1667 /*
1668 * Request may not have originated from ll_rw_blk. if not,
1669 * it didn't come out of our reserved rq pools
1670 */
e8064021 1671 if (rq_flags & RQF_ALLOCED) {
a051661c 1672 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1673 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1674
1da177e4 1675 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1676 BUG_ON(ELV_ON_HASH(req));
1da177e4 1677
a051661c 1678 blk_free_request(rl, req);
e8064021 1679 freed_request(rl, sync, rq_flags);
a051661c 1680 blk_put_rl(rl);
055f6e18 1681 blk_queue_exit(q);
1da177e4
LT
1682 }
1683}
6e39b69e
MC
1684EXPORT_SYMBOL_GPL(__blk_put_request);
1685
1da177e4
LT
1686void blk_put_request(struct request *req)
1687{
165125e1 1688 struct request_queue *q = req->q;
8922e16c 1689
320ae51f
JA
1690 if (q->mq_ops)
1691 blk_mq_free_request(req);
1692 else {
1693 unsigned long flags;
1694
1695 spin_lock_irqsave(q->queue_lock, flags);
1696 __blk_put_request(q, req);
1697 spin_unlock_irqrestore(q->queue_lock, flags);
1698 }
1da177e4 1699}
1da177e4
LT
1700EXPORT_SYMBOL(blk_put_request);
1701
320ae51f
JA
1702bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1703 struct bio *bio)
73c10101 1704{
1eff9d32 1705 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1706
73c10101
JA
1707 if (!ll_back_merge_fn(q, req, bio))
1708 return false;
1709
8c1cf6bb 1710 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1711
1712 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1713 blk_rq_set_mixed_merge(req);
1714
1715 req->biotail->bi_next = bio;
1716 req->biotail = bio;
4f024f37 1717 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1718 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1719
320ae51f 1720 blk_account_io_start(req, false);
73c10101
JA
1721 return true;
1722}
1723
320ae51f
JA
1724bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1725 struct bio *bio)
73c10101 1726{
1eff9d32 1727 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1728
73c10101
JA
1729 if (!ll_front_merge_fn(q, req, bio))
1730 return false;
1731
8c1cf6bb 1732 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1733
1734 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1735 blk_rq_set_mixed_merge(req);
1736
73c10101
JA
1737 bio->bi_next = req->bio;
1738 req->bio = bio;
1739
4f024f37
KO
1740 req->__sector = bio->bi_iter.bi_sector;
1741 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1742 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1743
320ae51f 1744 blk_account_io_start(req, false);
73c10101
JA
1745 return true;
1746}
1747
1e739730
CH
1748bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1749 struct bio *bio)
1750{
1751 unsigned short segments = blk_rq_nr_discard_segments(req);
1752
1753 if (segments >= queue_max_discard_segments(q))
1754 goto no_merge;
1755 if (blk_rq_sectors(req) + bio_sectors(bio) >
1756 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1757 goto no_merge;
1758
1759 req->biotail->bi_next = bio;
1760 req->biotail = bio;
1761 req->__data_len += bio->bi_iter.bi_size;
1762 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1763 req->nr_phys_segments = segments + 1;
1764
1765 blk_account_io_start(req, false);
1766 return true;
1767no_merge:
1768 req_set_nomerge(q, req);
1769 return false;
1770}
1771
bd87b589 1772/**
320ae51f 1773 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1774 * @q: request_queue new bio is being queued at
1775 * @bio: new bio being queued
1776 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1777 * @same_queue_rq: pointer to &struct request that gets filled in when
1778 * another request associated with @q is found on the plug list
1779 * (optional, may be %NULL)
bd87b589
TH
1780 *
1781 * Determine whether @bio being queued on @q can be merged with a request
1782 * on %current's plugged list. Returns %true if merge was successful,
1783 * otherwise %false.
1784 *
07c2bd37
TH
1785 * Plugging coalesces IOs from the same issuer for the same purpose without
1786 * going through @q->queue_lock. As such it's more of an issuing mechanism
1787 * than scheduling, and the request, while may have elvpriv data, is not
1788 * added on the elevator at this point. In addition, we don't have
1789 * reliable access to the elevator outside queue lock. Only check basic
1790 * merging parameters without querying the elevator.
da41a589
RE
1791 *
1792 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1793 */
320ae51f 1794bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1795 unsigned int *request_count,
1796 struct request **same_queue_rq)
73c10101
JA
1797{
1798 struct blk_plug *plug;
1799 struct request *rq;
92f399c7 1800 struct list_head *plug_list;
73c10101 1801
bd87b589 1802 plug = current->plug;
73c10101 1803 if (!plug)
34fe7c05 1804 return false;
56ebdaf2 1805 *request_count = 0;
73c10101 1806
92f399c7
SL
1807 if (q->mq_ops)
1808 plug_list = &plug->mq_list;
1809 else
1810 plug_list = &plug->list;
1811
1812 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1813 bool merged = false;
73c10101 1814
5b3f341f 1815 if (rq->q == q) {
1b2e19f1 1816 (*request_count)++;
5b3f341f
SL
1817 /*
1818 * Only blk-mq multiple hardware queues case checks the
1819 * rq in the same queue, there should be only one such
1820 * rq in a queue
1821 **/
1822 if (same_queue_rq)
1823 *same_queue_rq = rq;
1824 }
56ebdaf2 1825
07c2bd37 1826 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1827 continue;
1828
34fe7c05
CH
1829 switch (blk_try_merge(rq, bio)) {
1830 case ELEVATOR_BACK_MERGE:
1831 merged = bio_attempt_back_merge(q, rq, bio);
1832 break;
1833 case ELEVATOR_FRONT_MERGE:
1834 merged = bio_attempt_front_merge(q, rq, bio);
1835 break;
1e739730
CH
1836 case ELEVATOR_DISCARD_MERGE:
1837 merged = bio_attempt_discard_merge(q, rq, bio);
1838 break;
34fe7c05
CH
1839 default:
1840 break;
73c10101 1841 }
34fe7c05
CH
1842
1843 if (merged)
1844 return true;
73c10101 1845 }
34fe7c05
CH
1846
1847 return false;
73c10101
JA
1848}
1849
0809e3ac
JM
1850unsigned int blk_plug_queued_count(struct request_queue *q)
1851{
1852 struct blk_plug *plug;
1853 struct request *rq;
1854 struct list_head *plug_list;
1855 unsigned int ret = 0;
1856
1857 plug = current->plug;
1858 if (!plug)
1859 goto out;
1860
1861 if (q->mq_ops)
1862 plug_list = &plug->mq_list;
1863 else
1864 plug_list = &plug->list;
1865
1866 list_for_each_entry(rq, plug_list, queuelist) {
1867 if (rq->q == q)
1868 ret++;
1869 }
1870out:
1871 return ret;
1872}
1873
da8d7f07 1874void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1875{
0be0dee6
BVA
1876 struct io_context *ioc = rq_ioc(bio);
1877
1eff9d32 1878 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1879 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1880
4f024f37 1881 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1882 if (ioprio_valid(bio_prio(bio)))
1883 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1884 else if (ioc)
1885 req->ioprio = ioc->ioprio;
1886 else
1887 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1888 req->write_hint = bio->bi_write_hint;
bc1c56fd 1889 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1890}
da8d7f07 1891EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1892
dece1635 1893static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1894{
73c10101 1895 struct blk_plug *plug;
34fe7c05 1896 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1897 struct request *req, *free;
56ebdaf2 1898 unsigned int request_count = 0;
87760e5e 1899 unsigned int wb_acct;
1da177e4 1900
1da177e4
LT
1901 /*
1902 * low level driver can indicate that it wants pages above a
1903 * certain limit bounced to low memory (ie for highmem, or even
1904 * ISA dma in theory)
1905 */
1906 blk_queue_bounce(q, &bio);
1907
af67c31f 1908 blk_queue_split(q, &bio);
23688bf4 1909
e23947bd 1910 if (!bio_integrity_prep(bio))
dece1635 1911 return BLK_QC_T_NONE;
ffecfd1a 1912
f73f44eb 1913 if (op_is_flush(bio->bi_opf)) {
73c10101 1914 spin_lock_irq(q->queue_lock);
ae1b1539 1915 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1916 goto get_rq;
1917 }
1918
73c10101
JA
1919 /*
1920 * Check if we can merge with the plugged list before grabbing
1921 * any locks.
1922 */
0809e3ac
JM
1923 if (!blk_queue_nomerges(q)) {
1924 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1925 return BLK_QC_T_NONE;
0809e3ac
JM
1926 } else
1927 request_count = blk_plug_queued_count(q);
1da177e4 1928
73c10101 1929 spin_lock_irq(q->queue_lock);
2056a782 1930
34fe7c05
CH
1931 switch (elv_merge(q, &req, bio)) {
1932 case ELEVATOR_BACK_MERGE:
1933 if (!bio_attempt_back_merge(q, req, bio))
1934 break;
1935 elv_bio_merged(q, req, bio);
1936 free = attempt_back_merge(q, req);
1937 if (free)
1938 __blk_put_request(q, free);
1939 else
1940 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1941 goto out_unlock;
1942 case ELEVATOR_FRONT_MERGE:
1943 if (!bio_attempt_front_merge(q, req, bio))
1944 break;
1945 elv_bio_merged(q, req, bio);
1946 free = attempt_front_merge(q, req);
1947 if (free)
1948 __blk_put_request(q, free);
1949 else
1950 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1951 goto out_unlock;
1952 default:
1953 break;
1da177e4
LT
1954 }
1955
450991bc 1956get_rq:
87760e5e
JA
1957 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1958
1da177e4 1959 /*
450991bc 1960 * Grab a free request. This is might sleep but can not fail.
d6344532 1961 * Returns with the queue unlocked.
450991bc 1962 */
055f6e18 1963 blk_queue_enter_live(q);
6a15674d 1964 req = get_request(q, bio->bi_opf, bio, 0);
a492f075 1965 if (IS_ERR(req)) {
055f6e18 1966 blk_queue_exit(q);
87760e5e 1967 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1968 if (PTR_ERR(req) == -ENOMEM)
1969 bio->bi_status = BLK_STS_RESOURCE;
1970 else
1971 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1972 bio_endio(bio);
da8303c6
TH
1973 goto out_unlock;
1974 }
d6344532 1975
87760e5e
JA
1976 wbt_track(&req->issue_stat, wb_acct);
1977
450991bc
NP
1978 /*
1979 * After dropping the lock and possibly sleeping here, our request
1980 * may now be mergeable after it had proven unmergeable (above).
1981 * We don't worry about that case for efficiency. It won't happen
1982 * often, and the elevators are able to handle it.
1da177e4 1983 */
da8d7f07 1984 blk_init_request_from_bio(req, bio);
1da177e4 1985
9562ad9a 1986 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1987 req->cpu = raw_smp_processor_id();
73c10101
JA
1988
1989 plug = current->plug;
721a9602 1990 if (plug) {
dc6d36c9
JA
1991 /*
1992 * If this is the first request added after a plug, fire
7aef2e78 1993 * of a plug trace.
0a6219a9
ML
1994 *
1995 * @request_count may become stale because of schedule
1996 * out, so check plug list again.
dc6d36c9 1997 */
0a6219a9 1998 if (!request_count || list_empty(&plug->list))
dc6d36c9 1999 trace_block_plug(q);
3540d5e8 2000 else {
50d24c34
SL
2001 struct request *last = list_entry_rq(plug->list.prev);
2002 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2003 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 2004 blk_flush_plug_list(plug, false);
019ceb7d
SL
2005 trace_block_plug(q);
2006 }
73c10101 2007 }
73c10101 2008 list_add_tail(&req->queuelist, &plug->list);
320ae51f 2009 blk_account_io_start(req, true);
73c10101
JA
2010 } else {
2011 spin_lock_irq(q->queue_lock);
2012 add_acct_request(q, req, where);
24ecfbe2 2013 __blk_run_queue(q);
73c10101
JA
2014out_unlock:
2015 spin_unlock_irq(q->queue_lock);
2016 }
dece1635
JA
2017
2018 return BLK_QC_T_NONE;
1da177e4
LT
2019}
2020
1da177e4
LT
2021static void handle_bad_sector(struct bio *bio)
2022{
2023 char b[BDEVNAME_SIZE];
2024
2025 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 2026 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 2027 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 2028 (unsigned long long)bio_end_sector(bio),
74d46992 2029 (long long)get_capacity(bio->bi_disk));
1da177e4
LT
2030}
2031
c17bb495
AM
2032#ifdef CONFIG_FAIL_MAKE_REQUEST
2033
2034static DECLARE_FAULT_ATTR(fail_make_request);
2035
2036static int __init setup_fail_make_request(char *str)
2037{
2038 return setup_fault_attr(&fail_make_request, str);
2039}
2040__setup("fail_make_request=", setup_fail_make_request);
2041
b2c9cd37 2042static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 2043{
b2c9cd37 2044 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
2045}
2046
2047static int __init fail_make_request_debugfs(void)
2048{
dd48c085
AM
2049 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2050 NULL, &fail_make_request);
2051
21f9fcd8 2052 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
2053}
2054
2055late_initcall(fail_make_request_debugfs);
2056
2057#else /* CONFIG_FAIL_MAKE_REQUEST */
2058
b2c9cd37
AM
2059static inline bool should_fail_request(struct hd_struct *part,
2060 unsigned int bytes)
c17bb495 2061{
b2c9cd37 2062 return false;
c17bb495
AM
2063}
2064
2065#endif /* CONFIG_FAIL_MAKE_REQUEST */
2066
74d46992
CH
2067/*
2068 * Remap block n of partition p to block n+start(p) of the disk.
2069 */
2070static inline int blk_partition_remap(struct bio *bio)
2071{
2072 struct hd_struct *p;
2073 int ret = 0;
2074
2075 /*
2076 * Zone reset does not include bi_size so bio_sectors() is always 0.
2077 * Include a test for the reset op code and perform the remap if needed.
2078 */
2079 if (!bio->bi_partno ||
2080 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2081 return 0;
2082
2083 rcu_read_lock();
2084 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2085 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2086 bio->bi_iter.bi_sector += p->start_sect;
2087 bio->bi_partno = 0;
2088 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2089 bio->bi_iter.bi_sector - p->start_sect);
2090 } else {
2091 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2092 ret = -EIO;
2093 }
2094 rcu_read_unlock();
2095
2096 return ret;
2097}
2098
c07e2b41
JA
2099/*
2100 * Check whether this bio extends beyond the end of the device.
2101 */
2102static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2103{
2104 sector_t maxsector;
2105
2106 if (!nr_sectors)
2107 return 0;
2108
2109 /* Test device or partition size, when known. */
74d46992 2110 maxsector = get_capacity(bio->bi_disk);
c07e2b41 2111 if (maxsector) {
4f024f37 2112 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
2113
2114 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2115 /*
2116 * This may well happen - the kernel calls bread()
2117 * without checking the size of the device, e.g., when
2118 * mounting a device.
2119 */
2120 handle_bad_sector(bio);
2121 return 1;
2122 }
2123 }
2124
2125 return 0;
2126}
2127
27a84d54
CH
2128static noinline_for_stack bool
2129generic_make_request_checks(struct bio *bio)
1da177e4 2130{
165125e1 2131 struct request_queue *q;
5a7bbad2 2132 int nr_sectors = bio_sectors(bio);
4e4cbee9 2133 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2134 char b[BDEVNAME_SIZE];
1da177e4
LT
2135
2136 might_sleep();
1da177e4 2137
c07e2b41
JA
2138 if (bio_check_eod(bio, nr_sectors))
2139 goto end_io;
1da177e4 2140
74d46992 2141 q = bio->bi_disk->queue;
5a7bbad2
CH
2142 if (unlikely(!q)) {
2143 printk(KERN_ERR
2144 "generic_make_request: Trying to access "
2145 "nonexistent block-device %s (%Lu)\n",
74d46992 2146 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2147 goto end_io;
2148 }
c17bb495 2149
03a07c92
GR
2150 /*
2151 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2152 * if queue is not a request based queue.
2153 */
2154
2155 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2156 goto not_supported;
2157
74d46992 2158 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
5a7bbad2 2159 goto end_io;
2056a782 2160
74d46992
CH
2161 if (blk_partition_remap(bio))
2162 goto end_io;
2056a782 2163
5a7bbad2
CH
2164 if (bio_check_eod(bio, nr_sectors))
2165 goto end_io;
1e87901e 2166
5a7bbad2
CH
2167 /*
2168 * Filter flush bio's early so that make_request based
2169 * drivers without flush support don't have to worry
2170 * about them.
2171 */
f3a8ab7d 2172 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2173 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2174 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2175 if (!nr_sectors) {
4e4cbee9 2176 status = BLK_STS_OK;
51fd77bd
JA
2177 goto end_io;
2178 }
5a7bbad2 2179 }
5ddfe969 2180
288dab8a
CH
2181 switch (bio_op(bio)) {
2182 case REQ_OP_DISCARD:
2183 if (!blk_queue_discard(q))
2184 goto not_supported;
2185 break;
2186 case REQ_OP_SECURE_ERASE:
2187 if (!blk_queue_secure_erase(q))
2188 goto not_supported;
2189 break;
2190 case REQ_OP_WRITE_SAME:
74d46992 2191 if (!q->limits.max_write_same_sectors)
288dab8a 2192 goto not_supported;
58886785 2193 break;
2d253440
ST
2194 case REQ_OP_ZONE_REPORT:
2195 case REQ_OP_ZONE_RESET:
74d46992 2196 if (!blk_queue_is_zoned(q))
2d253440 2197 goto not_supported;
288dab8a 2198 break;
a6f0788e 2199 case REQ_OP_WRITE_ZEROES:
74d46992 2200 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2201 goto not_supported;
2202 break;
288dab8a
CH
2203 default:
2204 break;
5a7bbad2 2205 }
01edede4 2206
7f4b35d1
TH
2207 /*
2208 * Various block parts want %current->io_context and lazy ioc
2209 * allocation ends up trading a lot of pain for a small amount of
2210 * memory. Just allocate it upfront. This may fail and block
2211 * layer knows how to live with it.
2212 */
2213 create_io_context(GFP_ATOMIC, q->node);
2214
ae118896
TH
2215 if (!blkcg_bio_issue_check(q, bio))
2216 return false;
27a84d54 2217
fbbaf700
N
2218 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2219 trace_block_bio_queue(q, bio);
2220 /* Now that enqueuing has been traced, we need to trace
2221 * completion as well.
2222 */
2223 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2224 }
27a84d54 2225 return true;
a7384677 2226
288dab8a 2227not_supported:
4e4cbee9 2228 status = BLK_STS_NOTSUPP;
a7384677 2229end_io:
4e4cbee9 2230 bio->bi_status = status;
4246a0b6 2231 bio_endio(bio);
27a84d54 2232 return false;
1da177e4
LT
2233}
2234
27a84d54
CH
2235/**
2236 * generic_make_request - hand a buffer to its device driver for I/O
2237 * @bio: The bio describing the location in memory and on the device.
2238 *
2239 * generic_make_request() is used to make I/O requests of block
2240 * devices. It is passed a &struct bio, which describes the I/O that needs
2241 * to be done.
2242 *
2243 * generic_make_request() does not return any status. The
2244 * success/failure status of the request, along with notification of
2245 * completion, is delivered asynchronously through the bio->bi_end_io
2246 * function described (one day) else where.
2247 *
2248 * The caller of generic_make_request must make sure that bi_io_vec
2249 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2250 * set to describe the device address, and the
2251 * bi_end_io and optionally bi_private are set to describe how
2252 * completion notification should be signaled.
2253 *
2254 * generic_make_request and the drivers it calls may use bi_next if this
2255 * bio happens to be merged with someone else, and may resubmit the bio to
2256 * a lower device by calling into generic_make_request recursively, which
2257 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2258 */
dece1635 2259blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2260{
f5fe1b51
N
2261 /*
2262 * bio_list_on_stack[0] contains bios submitted by the current
2263 * make_request_fn.
2264 * bio_list_on_stack[1] contains bios that were submitted before
2265 * the current make_request_fn, but that haven't been processed
2266 * yet.
2267 */
2268 struct bio_list bio_list_on_stack[2];
dece1635 2269 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2270
27a84d54 2271 if (!generic_make_request_checks(bio))
dece1635 2272 goto out;
27a84d54
CH
2273
2274 /*
2275 * We only want one ->make_request_fn to be active at a time, else
2276 * stack usage with stacked devices could be a problem. So use
2277 * current->bio_list to keep a list of requests submited by a
2278 * make_request_fn function. current->bio_list is also used as a
2279 * flag to say if generic_make_request is currently active in this
2280 * task or not. If it is NULL, then no make_request is active. If
2281 * it is non-NULL, then a make_request is active, and new requests
2282 * should be added at the tail
2283 */
bddd87c7 2284 if (current->bio_list) {
f5fe1b51 2285 bio_list_add(&current->bio_list[0], bio);
dece1635 2286 goto out;
d89d8796 2287 }
27a84d54 2288
d89d8796
NB
2289 /* following loop may be a bit non-obvious, and so deserves some
2290 * explanation.
2291 * Before entering the loop, bio->bi_next is NULL (as all callers
2292 * ensure that) so we have a list with a single bio.
2293 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2294 * we assign bio_list to a pointer to the bio_list_on_stack,
2295 * thus initialising the bio_list of new bios to be
27a84d54 2296 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2297 * through a recursive call to generic_make_request. If it
2298 * did, we find a non-NULL value in bio_list and re-enter the loop
2299 * from the top. In this case we really did just take the bio
bddd87c7 2300 * of the top of the list (no pretending) and so remove it from
27a84d54 2301 * bio_list, and call into ->make_request() again.
d89d8796
NB
2302 */
2303 BUG_ON(bio->bi_next);
f5fe1b51
N
2304 bio_list_init(&bio_list_on_stack[0]);
2305 current->bio_list = bio_list_on_stack;
d89d8796 2306 do {
74d46992 2307 struct request_queue *q = bio->bi_disk->queue;
9a95e4ef 2308 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
3a0a5299 2309 BLK_MQ_REQ_NOWAIT : 0;
27a84d54 2310
3a0a5299 2311 if (likely(blk_queue_enter(q, flags) == 0)) {
79bd9959
N
2312 struct bio_list lower, same;
2313
2314 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2315 bio_list_on_stack[1] = bio_list_on_stack[0];
2316 bio_list_init(&bio_list_on_stack[0]);
dece1635 2317 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2318
2319 blk_queue_exit(q);
27a84d54 2320
79bd9959
N
2321 /* sort new bios into those for a lower level
2322 * and those for the same level
2323 */
2324 bio_list_init(&lower);
2325 bio_list_init(&same);
f5fe1b51 2326 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2327 if (q == bio->bi_disk->queue)
79bd9959
N
2328 bio_list_add(&same, bio);
2329 else
2330 bio_list_add(&lower, bio);
2331 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2332 bio_list_merge(&bio_list_on_stack[0], &lower);
2333 bio_list_merge(&bio_list_on_stack[0], &same);
2334 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2335 } else {
03a07c92
GR
2336 if (unlikely(!blk_queue_dying(q) &&
2337 (bio->bi_opf & REQ_NOWAIT)))
2338 bio_wouldblock_error(bio);
2339 else
2340 bio_io_error(bio);
3ef28e83 2341 }
f5fe1b51 2342 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2343 } while (bio);
bddd87c7 2344 current->bio_list = NULL; /* deactivate */
dece1635
JA
2345
2346out:
2347 return ret;
d89d8796 2348}
1da177e4
LT
2349EXPORT_SYMBOL(generic_make_request);
2350
f421e1d9
CH
2351/**
2352 * direct_make_request - hand a buffer directly to its device driver for I/O
2353 * @bio: The bio describing the location in memory and on the device.
2354 *
2355 * This function behaves like generic_make_request(), but does not protect
2356 * against recursion. Must only be used if the called driver is known
2357 * to not call generic_make_request (or direct_make_request) again from
2358 * its make_request function. (Calling direct_make_request again from
2359 * a workqueue is perfectly fine as that doesn't recurse).
2360 */
2361blk_qc_t direct_make_request(struct bio *bio)
2362{
2363 struct request_queue *q = bio->bi_disk->queue;
2364 bool nowait = bio->bi_opf & REQ_NOWAIT;
2365 blk_qc_t ret;
2366
2367 if (!generic_make_request_checks(bio))
2368 return BLK_QC_T_NONE;
2369
3a0a5299 2370 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
2371 if (nowait && !blk_queue_dying(q))
2372 bio->bi_status = BLK_STS_AGAIN;
2373 else
2374 bio->bi_status = BLK_STS_IOERR;
2375 bio_endio(bio);
2376 return BLK_QC_T_NONE;
2377 }
2378
2379 ret = q->make_request_fn(q, bio);
2380 blk_queue_exit(q);
2381 return ret;
2382}
2383EXPORT_SYMBOL_GPL(direct_make_request);
2384
1da177e4 2385/**
710027a4 2386 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2387 * @bio: The &struct bio which describes the I/O
2388 *
2389 * submit_bio() is very similar in purpose to generic_make_request(), and
2390 * uses that function to do most of the work. Both are fairly rough
710027a4 2391 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2392 *
2393 */
4e49ea4a 2394blk_qc_t submit_bio(struct bio *bio)
1da177e4 2395{
bf2de6f5
JA
2396 /*
2397 * If it's a regular read/write or a barrier with data attached,
2398 * go through the normal accounting stuff before submission.
2399 */
e2a60da7 2400 if (bio_has_data(bio)) {
4363ac7c
MP
2401 unsigned int count;
2402
95fe6c1a 2403 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
6b257c46 2404 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
2405 else
2406 count = bio_sectors(bio);
2407
a8ebb056 2408 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2409 count_vm_events(PGPGOUT, count);
2410 } else {
4f024f37 2411 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2412 count_vm_events(PGPGIN, count);
2413 }
2414
2415 if (unlikely(block_dump)) {
2416 char b[BDEVNAME_SIZE];
8dcbdc74 2417 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2418 current->comm, task_pid_nr(current),
a8ebb056 2419 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2420 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2421 bio_devname(bio, b), count);
bf2de6f5 2422 }
1da177e4
LT
2423 }
2424
dece1635 2425 return generic_make_request(bio);
1da177e4 2426}
1da177e4
LT
2427EXPORT_SYMBOL(submit_bio);
2428
ea435e1b
CH
2429bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2430{
2431 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2432 return false;
2433
2434 if (current->plug)
2435 blk_flush_plug_list(current->plug, false);
2436 return q->poll_fn(q, cookie);
2437}
2438EXPORT_SYMBOL_GPL(blk_poll);
2439
82124d60 2440/**
bf4e6b4e
HR
2441 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2442 * for new the queue limits
82124d60
KU
2443 * @q: the queue
2444 * @rq: the request being checked
2445 *
2446 * Description:
2447 * @rq may have been made based on weaker limitations of upper-level queues
2448 * in request stacking drivers, and it may violate the limitation of @q.
2449 * Since the block layer and the underlying device driver trust @rq
2450 * after it is inserted to @q, it should be checked against @q before
2451 * the insertion using this generic function.
2452 *
82124d60 2453 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2454 * limits when retrying requests on other queues. Those requests need
2455 * to be checked against the new queue limits again during dispatch.
82124d60 2456 */
bf4e6b4e
HR
2457static int blk_cloned_rq_check_limits(struct request_queue *q,
2458 struct request *rq)
82124d60 2459{
8fe0d473 2460 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2461 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2462 return -EIO;
2463 }
2464
2465 /*
2466 * queue's settings related to segment counting like q->bounce_pfn
2467 * may differ from that of other stacking queues.
2468 * Recalculate it to check the request correctly on this queue's
2469 * limitation.
2470 */
2471 blk_recalc_rq_segments(rq);
8a78362c 2472 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2473 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2474 return -EIO;
2475 }
2476
2477 return 0;
2478}
82124d60
KU
2479
2480/**
2481 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2482 * @q: the queue to submit the request
2483 * @rq: the request being queued
2484 */
2a842aca 2485blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2486{
2487 unsigned long flags;
4853abaa 2488 int where = ELEVATOR_INSERT_BACK;
82124d60 2489
bf4e6b4e 2490 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2491 return BLK_STS_IOERR;
82124d60 2492
b2c9cd37
AM
2493 if (rq->rq_disk &&
2494 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2495 return BLK_STS_IOERR;
82124d60 2496
7fb4898e
KB
2497 if (q->mq_ops) {
2498 if (blk_queue_io_stat(q))
2499 blk_account_io_start(rq, true);
157f377b
JA
2500 /*
2501 * Since we have a scheduler attached on the top device,
2502 * bypass a potential scheduler on the bottom device for
2503 * insert.
2504 */
b0850297 2505 blk_mq_request_bypass_insert(rq, true);
2a842aca 2506 return BLK_STS_OK;
7fb4898e
KB
2507 }
2508
82124d60 2509 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2510 if (unlikely(blk_queue_dying(q))) {
8ba61435 2511 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2512 return BLK_STS_IOERR;
8ba61435 2513 }
82124d60
KU
2514
2515 /*
2516 * Submitting request must be dequeued before calling this function
2517 * because it will be linked to another request_queue
2518 */
2519 BUG_ON(blk_queued_rq(rq));
2520
f73f44eb 2521 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2522 where = ELEVATOR_INSERT_FLUSH;
2523
2524 add_acct_request(q, rq, where);
e67b77c7
JM
2525 if (where == ELEVATOR_INSERT_FLUSH)
2526 __blk_run_queue(q);
82124d60
KU
2527 spin_unlock_irqrestore(q->queue_lock, flags);
2528
2a842aca 2529 return BLK_STS_OK;
82124d60
KU
2530}
2531EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2532
80a761fd
TH
2533/**
2534 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2535 * @rq: request to examine
2536 *
2537 * Description:
2538 * A request could be merge of IOs which require different failure
2539 * handling. This function determines the number of bytes which
2540 * can be failed from the beginning of the request without
2541 * crossing into area which need to be retried further.
2542 *
2543 * Return:
2544 * The number of bytes to fail.
80a761fd
TH
2545 */
2546unsigned int blk_rq_err_bytes(const struct request *rq)
2547{
2548 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2549 unsigned int bytes = 0;
2550 struct bio *bio;
2551
e8064021 2552 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2553 return blk_rq_bytes(rq);
2554
2555 /*
2556 * Currently the only 'mixing' which can happen is between
2557 * different fastfail types. We can safely fail portions
2558 * which have all the failfast bits that the first one has -
2559 * the ones which are at least as eager to fail as the first
2560 * one.
2561 */
2562 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2563 if ((bio->bi_opf & ff) != ff)
80a761fd 2564 break;
4f024f37 2565 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2566 }
2567
2568 /* this could lead to infinite loop */
2569 BUG_ON(blk_rq_bytes(rq) && !bytes);
2570 return bytes;
2571}
2572EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2573
320ae51f 2574void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2575{
c2553b58 2576 if (blk_do_io_stat(req)) {
bc58ba94
JA
2577 const int rw = rq_data_dir(req);
2578 struct hd_struct *part;
2579 int cpu;
2580
2581 cpu = part_stat_lock();
09e099d4 2582 part = req->part;
bc58ba94
JA
2583 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2584 part_stat_unlock();
2585 }
2586}
2587
320ae51f 2588void blk_account_io_done(struct request *req)
bc58ba94 2589{
bc58ba94 2590 /*
dd4c133f
TH
2591 * Account IO completion. flush_rq isn't accounted as a
2592 * normal IO on queueing nor completion. Accounting the
2593 * containing request is enough.
bc58ba94 2594 */
e8064021 2595 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2596 unsigned long duration = jiffies - req->start_time;
2597 const int rw = rq_data_dir(req);
2598 struct hd_struct *part;
2599 int cpu;
2600
2601 cpu = part_stat_lock();
09e099d4 2602 part = req->part;
bc58ba94
JA
2603
2604 part_stat_inc(cpu, part, ios[rw]);
2605 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2606 part_round_stats(req->q, cpu, part);
2607 part_dec_in_flight(req->q, part, rw);
bc58ba94 2608
6c23a968 2609 hd_struct_put(part);
bc58ba94
JA
2610 part_stat_unlock();
2611 }
2612}
2613
47fafbc7 2614#ifdef CONFIG_PM
c8158819
LM
2615/*
2616 * Don't process normal requests when queue is suspended
2617 * or in the process of suspending/resuming
2618 */
e4f36b24 2619static bool blk_pm_allow_request(struct request *rq)
c8158819 2620{
e4f36b24
CH
2621 switch (rq->q->rpm_status) {
2622 case RPM_RESUMING:
2623 case RPM_SUSPENDING:
2624 return rq->rq_flags & RQF_PM;
2625 case RPM_SUSPENDED:
2626 return false;
2627 }
2628
2629 return true;
c8158819
LM
2630}
2631#else
e4f36b24 2632static bool blk_pm_allow_request(struct request *rq)
c8158819 2633{
e4f36b24 2634 return true;
c8158819
LM
2635}
2636#endif
2637
320ae51f
JA
2638void blk_account_io_start(struct request *rq, bool new_io)
2639{
2640 struct hd_struct *part;
2641 int rw = rq_data_dir(rq);
2642 int cpu;
2643
2644 if (!blk_do_io_stat(rq))
2645 return;
2646
2647 cpu = part_stat_lock();
2648
2649 if (!new_io) {
2650 part = rq->part;
2651 part_stat_inc(cpu, part, merges[rw]);
2652 } else {
2653 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2654 if (!hd_struct_try_get(part)) {
2655 /*
2656 * The partition is already being removed,
2657 * the request will be accounted on the disk only
2658 *
2659 * We take a reference on disk->part0 although that
2660 * partition will never be deleted, so we can treat
2661 * it as any other partition.
2662 */
2663 part = &rq->rq_disk->part0;
2664 hd_struct_get(part);
2665 }
d62e26b3
JA
2666 part_round_stats(rq->q, cpu, part);
2667 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2668 rq->part = part;
2669 }
2670
2671 part_stat_unlock();
2672}
2673
9c988374
CH
2674static struct request *elv_next_request(struct request_queue *q)
2675{
2676 struct request *rq;
2677 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2678
2679 WARN_ON_ONCE(q->mq_ops);
2680
2681 while (1) {
e4f36b24
CH
2682 list_for_each_entry(rq, &q->queue_head, queuelist) {
2683 if (blk_pm_allow_request(rq))
2684 return rq;
2685
2686 if (rq->rq_flags & RQF_SOFTBARRIER)
2687 break;
9c988374
CH
2688 }
2689
2690 /*
2691 * Flush request is running and flush request isn't queueable
2692 * in the drive, we can hold the queue till flush request is
2693 * finished. Even we don't do this, driver can't dispatch next
2694 * requests and will requeue them. And this can improve
2695 * throughput too. For example, we have request flush1, write1,
2696 * flush 2. flush1 is dispatched, then queue is hold, write1
2697 * isn't inserted to queue. After flush1 is finished, flush2
2698 * will be dispatched. Since disk cache is already clean,
2699 * flush2 will be finished very soon, so looks like flush2 is
2700 * folded to flush1.
2701 * Since the queue is hold, a flag is set to indicate the queue
2702 * should be restarted later. Please see flush_end_io() for
2703 * details.
2704 */
2705 if (fq->flush_pending_idx != fq->flush_running_idx &&
2706 !queue_flush_queueable(q)) {
2707 fq->flush_queue_delayed = 1;
2708 return NULL;
2709 }
2710 if (unlikely(blk_queue_bypass(q)) ||
2711 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2712 return NULL;
2713 }
2714}
2715
3bcddeac 2716/**
9934c8c0
TH
2717 * blk_peek_request - peek at the top of a request queue
2718 * @q: request queue to peek at
2719 *
2720 * Description:
2721 * Return the request at the top of @q. The returned request
2722 * should be started using blk_start_request() before LLD starts
2723 * processing it.
2724 *
2725 * Return:
2726 * Pointer to the request at the top of @q if available. Null
2727 * otherwise.
9934c8c0
TH
2728 */
2729struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2730{
2731 struct request *rq;
2732 int ret;
2733
2fff8a92 2734 lockdep_assert_held(q->queue_lock);
332ebbf7 2735 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2736
9c988374 2737 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2738 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2739 /*
2740 * This is the first time the device driver
2741 * sees this request (possibly after
2742 * requeueing). Notify IO scheduler.
2743 */
e8064021 2744 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2745 elv_activate_rq(q, rq);
2746
2747 /*
2748 * just mark as started even if we don't start
2749 * it, a request that has been delayed should
2750 * not be passed by new incoming requests
2751 */
e8064021 2752 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2753 trace_block_rq_issue(q, rq);
2754 }
2755
2756 if (!q->boundary_rq || q->boundary_rq == rq) {
2757 q->end_sector = rq_end_sector(rq);
2758 q->boundary_rq = NULL;
2759 }
2760
e8064021 2761 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2762 break;
2763
2e46e8b2 2764 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2765 /*
2766 * make sure space for the drain appears we
2767 * know we can do this because max_hw_segments
2768 * has been adjusted to be one fewer than the
2769 * device can handle
2770 */
2771 rq->nr_phys_segments++;
2772 }
2773
2774 if (!q->prep_rq_fn)
2775 break;
2776
2777 ret = q->prep_rq_fn(q, rq);
2778 if (ret == BLKPREP_OK) {
2779 break;
2780 } else if (ret == BLKPREP_DEFER) {
2781 /*
2782 * the request may have been (partially) prepped.
2783 * we need to keep this request in the front to
e8064021 2784 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2785 * prevent other fs requests from passing this one.
2786 */
2e46e8b2 2787 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2788 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2789 /*
2790 * remove the space for the drain we added
2791 * so that we don't add it again
2792 */
2793 --rq->nr_phys_segments;
2794 }
2795
2796 rq = NULL;
2797 break;
0fb5b1fb 2798 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2799 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2800 /*
2801 * Mark this request as started so we don't trigger
2802 * any debug logic in the end I/O path.
2803 */
2804 blk_start_request(rq);
2a842aca
CH
2805 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2806 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2807 } else {
2808 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2809 break;
2810 }
2811 }
2812
2813 return rq;
2814}
9934c8c0 2815EXPORT_SYMBOL(blk_peek_request);
158dbda0 2816
5034435c 2817static void blk_dequeue_request(struct request *rq)
158dbda0 2818{
9934c8c0
TH
2819 struct request_queue *q = rq->q;
2820
158dbda0
TH
2821 BUG_ON(list_empty(&rq->queuelist));
2822 BUG_ON(ELV_ON_HASH(rq));
2823
2824 list_del_init(&rq->queuelist);
2825
2826 /*
2827 * the time frame between a request being removed from the lists
2828 * and to it is freed is accounted as io that is in progress at
2829 * the driver side.
2830 */
9195291e 2831 if (blk_account_rq(rq)) {
0a7ae2ff 2832 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2833 set_io_start_time_ns(rq);
2834 }
158dbda0
TH
2835}
2836
9934c8c0
TH
2837/**
2838 * blk_start_request - start request processing on the driver
2839 * @req: request to dequeue
2840 *
2841 * Description:
2842 * Dequeue @req and start timeout timer on it. This hands off the
2843 * request to the driver.
9934c8c0
TH
2844 */
2845void blk_start_request(struct request *req)
2846{
2fff8a92 2847 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2848 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2849
9934c8c0
TH
2850 blk_dequeue_request(req);
2851
cf43e6be 2852 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2853 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2854 req->rq_flags |= RQF_STATS;
87760e5e 2855 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2856 }
2857
4912aa6c 2858 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2859 blk_add_timer(req);
2860}
2861EXPORT_SYMBOL(blk_start_request);
2862
2863/**
2864 * blk_fetch_request - fetch a request from a request queue
2865 * @q: request queue to fetch a request from
2866 *
2867 * Description:
2868 * Return the request at the top of @q. The request is started on
2869 * return and LLD can start processing it immediately.
2870 *
2871 * Return:
2872 * Pointer to the request at the top of @q if available. Null
2873 * otherwise.
9934c8c0
TH
2874 */
2875struct request *blk_fetch_request(struct request_queue *q)
2876{
2877 struct request *rq;
2878
2fff8a92 2879 lockdep_assert_held(q->queue_lock);
332ebbf7 2880 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2881
9934c8c0
TH
2882 rq = blk_peek_request(q);
2883 if (rq)
2884 blk_start_request(rq);
2885 return rq;
2886}
2887EXPORT_SYMBOL(blk_fetch_request);
2888
ef71de8b
CH
2889/*
2890 * Steal bios from a request and add them to a bio list.
2891 * The request must not have been partially completed before.
2892 */
2893void blk_steal_bios(struct bio_list *list, struct request *rq)
2894{
2895 if (rq->bio) {
2896 if (list->tail)
2897 list->tail->bi_next = rq->bio;
2898 else
2899 list->head = rq->bio;
2900 list->tail = rq->biotail;
2901
2902 rq->bio = NULL;
2903 rq->biotail = NULL;
2904 }
2905
2906 rq->__data_len = 0;
2907}
2908EXPORT_SYMBOL_GPL(blk_steal_bios);
2909
3bcddeac 2910/**
2e60e022 2911 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2912 * @req: the request being processed
2a842aca 2913 * @error: block status code
8ebf9756 2914 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2915 *
2916 * Description:
8ebf9756
RD
2917 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2918 * the request structure even if @req doesn't have leftover.
2919 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2920 *
2921 * This special helper function is only for request stacking drivers
2922 * (e.g. request-based dm) so that they can handle partial completion.
2923 * Actual device drivers should use blk_end_request instead.
2924 *
2925 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2926 * %false return from this function.
3bcddeac
KU
2927 *
2928 * Return:
2e60e022
TH
2929 * %false - this request doesn't have any more data
2930 * %true - this request has more data
3bcddeac 2931 **/
2a842aca
CH
2932bool blk_update_request(struct request *req, blk_status_t error,
2933 unsigned int nr_bytes)
1da177e4 2934{
f79ea416 2935 int total_bytes;
1da177e4 2936
2a842aca 2937 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2938
2e60e022
TH
2939 if (!req->bio)
2940 return false;
2941
2a842aca
CH
2942 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2943 !(req->rq_flags & RQF_QUIET)))
2944 print_req_error(req, error);
1da177e4 2945
bc58ba94 2946 blk_account_io_completion(req, nr_bytes);
d72d904a 2947
f79ea416
KO
2948 total_bytes = 0;
2949 while (req->bio) {
2950 struct bio *bio = req->bio;
4f024f37 2951 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2952
4f024f37 2953 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2954 req->bio = bio->bi_next;
1da177e4 2955
fbbaf700
N
2956 /* Completion has already been traced */
2957 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2958 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2959
f79ea416
KO
2960 total_bytes += bio_bytes;
2961 nr_bytes -= bio_bytes;
1da177e4 2962
f79ea416
KO
2963 if (!nr_bytes)
2964 break;
1da177e4
LT
2965 }
2966
2967 /*
2968 * completely done
2969 */
2e60e022
TH
2970 if (!req->bio) {
2971 /*
2972 * Reset counters so that the request stacking driver
2973 * can find how many bytes remain in the request
2974 * later.
2975 */
a2dec7b3 2976 req->__data_len = 0;
2e60e022
TH
2977 return false;
2978 }
1da177e4 2979
a2dec7b3 2980 req->__data_len -= total_bytes;
2e46e8b2
TH
2981
2982 /* update sector only for requests with clear definition of sector */
57292b58 2983 if (!blk_rq_is_passthrough(req))
a2dec7b3 2984 req->__sector += total_bytes >> 9;
2e46e8b2 2985
80a761fd 2986 /* mixed attributes always follow the first bio */
e8064021 2987 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2988 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2989 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2990 }
2991
ed6565e7
CH
2992 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2993 /*
2994 * If total number of sectors is less than the first segment
2995 * size, something has gone terribly wrong.
2996 */
2997 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2998 blk_dump_rq_flags(req, "request botched");
2999 req->__data_len = blk_rq_cur_bytes(req);
3000 }
2e46e8b2 3001
ed6565e7
CH
3002 /* recalculate the number of segments */
3003 blk_recalc_rq_segments(req);
3004 }
2e46e8b2 3005
2e60e022 3006 return true;
1da177e4 3007}
2e60e022 3008EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 3009
2a842aca 3010static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
3011 unsigned int nr_bytes,
3012 unsigned int bidi_bytes)
5efccd17 3013{
2e60e022
TH
3014 if (blk_update_request(rq, error, nr_bytes))
3015 return true;
5efccd17 3016
2e60e022
TH
3017 /* Bidi request must be completed as a whole */
3018 if (unlikely(blk_bidi_rq(rq)) &&
3019 blk_update_request(rq->next_rq, error, bidi_bytes))
3020 return true;
5efccd17 3021
e2e1a148
JA
3022 if (blk_queue_add_random(rq->q))
3023 add_disk_randomness(rq->rq_disk);
2e60e022
TH
3024
3025 return false;
1da177e4
LT
3026}
3027
28018c24
JB
3028/**
3029 * blk_unprep_request - unprepare a request
3030 * @req: the request
3031 *
3032 * This function makes a request ready for complete resubmission (or
3033 * completion). It happens only after all error handling is complete,
3034 * so represents the appropriate moment to deallocate any resources
3035 * that were allocated to the request in the prep_rq_fn. The queue
3036 * lock is held when calling this.
3037 */
3038void blk_unprep_request(struct request *req)
3039{
3040 struct request_queue *q = req->q;
3041
e8064021 3042 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
3043 if (q->unprep_rq_fn)
3044 q->unprep_rq_fn(q, req);
3045}
3046EXPORT_SYMBOL_GPL(blk_unprep_request);
3047
2a842aca 3048void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 3049{
cf43e6be
JA
3050 struct request_queue *q = req->q;
3051
2fff8a92 3052 lockdep_assert_held(req->q->queue_lock);
332ebbf7 3053 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3054
cf43e6be 3055 if (req->rq_flags & RQF_STATS)
34dbad5d 3056 blk_stat_add(req);
cf43e6be 3057
e8064021 3058 if (req->rq_flags & RQF_QUEUED)
cf43e6be 3059 blk_queue_end_tag(q, req);
b8286239 3060
ba396a6c 3061 BUG_ON(blk_queued_rq(req));
1da177e4 3062
57292b58 3063 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 3064 laptop_io_completion(req->q->backing_dev_info);
1da177e4 3065
e78042e5
MA
3066 blk_delete_timer(req);
3067
e8064021 3068 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
3069 blk_unprep_request(req);
3070
bc58ba94 3071 blk_account_io_done(req);
b8286239 3072
87760e5e
JA
3073 if (req->end_io) {
3074 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 3075 req->end_io(req, error);
87760e5e 3076 } else {
b8286239
KU
3077 if (blk_bidi_rq(req))
3078 __blk_put_request(req->next_rq->q, req->next_rq);
3079
cf43e6be 3080 __blk_put_request(q, req);
b8286239 3081 }
1da177e4 3082}
12120077 3083EXPORT_SYMBOL(blk_finish_request);
1da177e4 3084
3b11313a 3085/**
2e60e022
TH
3086 * blk_end_bidi_request - Complete a bidi request
3087 * @rq: the request to complete
2a842aca 3088 * @error: block status code
2e60e022
TH
3089 * @nr_bytes: number of bytes to complete @rq
3090 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3091 *
3092 * Description:
e3a04fe3 3093 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3094 * Drivers that supports bidi can safely call this member for any
3095 * type of request, bidi or uni. In the later case @bidi_bytes is
3096 * just ignored.
336cdb40
KU
3097 *
3098 * Return:
2e60e022
TH
3099 * %false - we are done with this request
3100 * %true - still buffers pending for this request
a0cd1285 3101 **/
2a842aca 3102static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3103 unsigned int nr_bytes, unsigned int bidi_bytes)
3104{
336cdb40 3105 struct request_queue *q = rq->q;
2e60e022 3106 unsigned long flags;
32fab448 3107
332ebbf7
BVA
3108 WARN_ON_ONCE(q->mq_ops);
3109
2e60e022
TH
3110 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3111 return true;
32fab448 3112
336cdb40 3113 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3114 blk_finish_request(rq, error);
336cdb40
KU
3115 spin_unlock_irqrestore(q->queue_lock, flags);
3116
2e60e022 3117 return false;
32fab448
KU
3118}
3119
336cdb40 3120/**
2e60e022
TH
3121 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3122 * @rq: the request to complete
2a842aca 3123 * @error: block status code
e3a04fe3
KU
3124 * @nr_bytes: number of bytes to complete @rq
3125 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3126 *
3127 * Description:
2e60e022
TH
3128 * Identical to blk_end_bidi_request() except that queue lock is
3129 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3130 *
3131 * Return:
2e60e022
TH
3132 * %false - we are done with this request
3133 * %true - still buffers pending for this request
336cdb40 3134 **/
2a842aca 3135static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3136 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3137{
2fff8a92 3138 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3139 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3140
2e60e022
TH
3141 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3142 return true;
336cdb40 3143
2e60e022 3144 blk_finish_request(rq, error);
336cdb40 3145
2e60e022 3146 return false;
336cdb40 3147}
e19a3ab0
KU
3148
3149/**
3150 * blk_end_request - Helper function for drivers to complete the request.
3151 * @rq: the request being processed
2a842aca 3152 * @error: block status code
e19a3ab0
KU
3153 * @nr_bytes: number of bytes to complete
3154 *
3155 * Description:
3156 * Ends I/O on a number of bytes attached to @rq.
3157 * If @rq has leftover, sets it up for the next range of segments.
3158 *
3159 * Return:
b1f74493
FT
3160 * %false - we are done with this request
3161 * %true - still buffers pending for this request
e19a3ab0 3162 **/
2a842aca
CH
3163bool blk_end_request(struct request *rq, blk_status_t error,
3164 unsigned int nr_bytes)
e19a3ab0 3165{
332ebbf7 3166 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3167 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3168}
56ad1740 3169EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3170
3171/**
b1f74493
FT
3172 * blk_end_request_all - Helper function for drives to finish the request.
3173 * @rq: the request to finish
2a842aca 3174 * @error: block status code
336cdb40
KU
3175 *
3176 * Description:
b1f74493
FT
3177 * Completely finish @rq.
3178 */
2a842aca 3179void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3180{
b1f74493
FT
3181 bool pending;
3182 unsigned int bidi_bytes = 0;
336cdb40 3183
b1f74493
FT
3184 if (unlikely(blk_bidi_rq(rq)))
3185 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3186
b1f74493
FT
3187 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3188 BUG_ON(pending);
3189}
56ad1740 3190EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3191
e3a04fe3 3192/**
b1f74493
FT
3193 * __blk_end_request - Helper function for drivers to complete the request.
3194 * @rq: the request being processed
2a842aca 3195 * @error: block status code
b1f74493 3196 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3197 *
3198 * Description:
b1f74493 3199 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3200 *
3201 * Return:
b1f74493
FT
3202 * %false - we are done with this request
3203 * %true - still buffers pending for this request
e3a04fe3 3204 **/
2a842aca
CH
3205bool __blk_end_request(struct request *rq, blk_status_t error,
3206 unsigned int nr_bytes)
e3a04fe3 3207{
2fff8a92 3208 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3209 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3210
b1f74493 3211 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3212}
56ad1740 3213EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3214
32fab448 3215/**
b1f74493
FT
3216 * __blk_end_request_all - Helper function for drives to finish the request.
3217 * @rq: the request to finish
2a842aca 3218 * @error: block status code
32fab448
KU
3219 *
3220 * Description:
b1f74493 3221 * Completely finish @rq. Must be called with queue lock held.
32fab448 3222 */
2a842aca 3223void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3224{
b1f74493
FT
3225 bool pending;
3226 unsigned int bidi_bytes = 0;
3227
2fff8a92 3228 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3229 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3230
b1f74493
FT
3231 if (unlikely(blk_bidi_rq(rq)))
3232 bidi_bytes = blk_rq_bytes(rq->next_rq);
3233
3234 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3235 BUG_ON(pending);
32fab448 3236}
56ad1740 3237EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3238
e19a3ab0 3239/**
b1f74493
FT
3240 * __blk_end_request_cur - Helper function to finish the current request chunk.
3241 * @rq: the request to finish the current chunk for
2a842aca 3242 * @error: block status code
e19a3ab0
KU
3243 *
3244 * Description:
b1f74493
FT
3245 * Complete the current consecutively mapped chunk from @rq. Must
3246 * be called with queue lock held.
e19a3ab0
KU
3247 *
3248 * Return:
b1f74493
FT
3249 * %false - we are done with this request
3250 * %true - still buffers pending for this request
3251 */
2a842aca 3252bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3253{
b1f74493 3254 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3255}
56ad1740 3256EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3257
86db1e29
JA
3258void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3259 struct bio *bio)
1da177e4 3260{
b4f42e28 3261 if (bio_has_data(bio))
fb2dce86 3262 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 3263
4f024f37 3264 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3265 rq->bio = rq->biotail = bio;
1da177e4 3266
74d46992
CH
3267 if (bio->bi_disk)
3268 rq->rq_disk = bio->bi_disk;
66846572 3269}
1da177e4 3270
2d4dc890
IL
3271#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3272/**
3273 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3274 * @rq: the request to be flushed
3275 *
3276 * Description:
3277 * Flush all pages in @rq.
3278 */
3279void rq_flush_dcache_pages(struct request *rq)
3280{
3281 struct req_iterator iter;
7988613b 3282 struct bio_vec bvec;
2d4dc890
IL
3283
3284 rq_for_each_segment(bvec, rq, iter)
7988613b 3285 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3286}
3287EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3288#endif
3289
ef9e3fac
KU
3290/**
3291 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3292 * @q : the queue of the device being checked
3293 *
3294 * Description:
3295 * Check if underlying low-level drivers of a device are busy.
3296 * If the drivers want to export their busy state, they must set own
3297 * exporting function using blk_queue_lld_busy() first.
3298 *
3299 * Basically, this function is used only by request stacking drivers
3300 * to stop dispatching requests to underlying devices when underlying
3301 * devices are busy. This behavior helps more I/O merging on the queue
3302 * of the request stacking driver and prevents I/O throughput regression
3303 * on burst I/O load.
3304 *
3305 * Return:
3306 * 0 - Not busy (The request stacking driver should dispatch request)
3307 * 1 - Busy (The request stacking driver should stop dispatching request)
3308 */
3309int blk_lld_busy(struct request_queue *q)
3310{
3311 if (q->lld_busy_fn)
3312 return q->lld_busy_fn(q);
3313
3314 return 0;
3315}
3316EXPORT_SYMBOL_GPL(blk_lld_busy);
3317
78d8e58a
MS
3318/**
3319 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3320 * @rq: the clone request to be cleaned up
3321 *
3322 * Description:
3323 * Free all bios in @rq for a cloned request.
3324 */
3325void blk_rq_unprep_clone(struct request *rq)
3326{
3327 struct bio *bio;
3328
3329 while ((bio = rq->bio) != NULL) {
3330 rq->bio = bio->bi_next;
3331
3332 bio_put(bio);
3333 }
3334}
3335EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3336
3337/*
3338 * Copy attributes of the original request to the clone request.
3339 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3340 */
3341static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3342{
3343 dst->cpu = src->cpu;
b0fd271d
KU
3344 dst->__sector = blk_rq_pos(src);
3345 dst->__data_len = blk_rq_bytes(src);
3346 dst->nr_phys_segments = src->nr_phys_segments;
3347 dst->ioprio = src->ioprio;
3348 dst->extra_len = src->extra_len;
78d8e58a
MS
3349}
3350
3351/**
3352 * blk_rq_prep_clone - Helper function to setup clone request
3353 * @rq: the request to be setup
3354 * @rq_src: original request to be cloned
3355 * @bs: bio_set that bios for clone are allocated from
3356 * @gfp_mask: memory allocation mask for bio
3357 * @bio_ctr: setup function to be called for each clone bio.
3358 * Returns %0 for success, non %0 for failure.
3359 * @data: private data to be passed to @bio_ctr
3360 *
3361 * Description:
3362 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3363 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3364 * are not copied, and copying such parts is the caller's responsibility.
3365 * Also, pages which the original bios are pointing to are not copied
3366 * and the cloned bios just point same pages.
3367 * So cloned bios must be completed before original bios, which means
3368 * the caller must complete @rq before @rq_src.
3369 */
3370int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3371 struct bio_set *bs, gfp_t gfp_mask,
3372 int (*bio_ctr)(struct bio *, struct bio *, void *),
3373 void *data)
3374{
3375 struct bio *bio, *bio_src;
3376
3377 if (!bs)
3378 bs = fs_bio_set;
3379
3380 __rq_for_each_bio(bio_src, rq_src) {
3381 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3382 if (!bio)
3383 goto free_and_out;
3384
3385 if (bio_ctr && bio_ctr(bio, bio_src, data))
3386 goto free_and_out;
3387
3388 if (rq->bio) {
3389 rq->biotail->bi_next = bio;
3390 rq->biotail = bio;
3391 } else
3392 rq->bio = rq->biotail = bio;
3393 }
3394
3395 __blk_rq_prep_clone(rq, rq_src);
3396
3397 return 0;
3398
3399free_and_out:
3400 if (bio)
3401 bio_put(bio);
3402 blk_rq_unprep_clone(rq);
3403
3404 return -ENOMEM;
b0fd271d
KU
3405}
3406EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3407
59c3d45e 3408int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3409{
3410 return queue_work(kblockd_workqueue, work);
3411}
1da177e4
LT
3412EXPORT_SYMBOL(kblockd_schedule_work);
3413
ee63cfa7
JA
3414int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3415{
3416 return queue_work_on(cpu, kblockd_workqueue, work);
3417}
3418EXPORT_SYMBOL(kblockd_schedule_work_on);
3419
818cd1cb
JA
3420int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3421 unsigned long delay)
3422{
3423 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3424}
3425EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3426
59c3d45e
JA
3427int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3428 unsigned long delay)
e43473b7
VG
3429{
3430 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3431}
3432EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3433
8ab14595
JA
3434int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3435 unsigned long delay)
3436{
3437 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3438}
3439EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3440
75df7136
SJ
3441/**
3442 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3443 * @plug: The &struct blk_plug that needs to be initialized
3444 *
3445 * Description:
3446 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3447 * pending I/O should the task end up blocking between blk_start_plug() and
3448 * blk_finish_plug(). This is important from a performance perspective, but
3449 * also ensures that we don't deadlock. For instance, if the task is blocking
3450 * for a memory allocation, memory reclaim could end up wanting to free a
3451 * page belonging to that request that is currently residing in our private
3452 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3453 * this kind of deadlock.
3454 */
73c10101
JA
3455void blk_start_plug(struct blk_plug *plug)
3456{
3457 struct task_struct *tsk = current;
3458
dd6cf3e1
SL
3459 /*
3460 * If this is a nested plug, don't actually assign it.
3461 */
3462 if (tsk->plug)
3463 return;
3464
73c10101 3465 INIT_LIST_HEAD(&plug->list);
320ae51f 3466 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3467 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3468 /*
dd6cf3e1
SL
3469 * Store ordering should not be needed here, since a potential
3470 * preempt will imply a full memory barrier
73c10101 3471 */
dd6cf3e1 3472 tsk->plug = plug;
73c10101
JA
3473}
3474EXPORT_SYMBOL(blk_start_plug);
3475
3476static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3477{
3478 struct request *rqa = container_of(a, struct request, queuelist);
3479 struct request *rqb = container_of(b, struct request, queuelist);
3480
975927b9
JM
3481 return !(rqa->q < rqb->q ||
3482 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3483}
3484
49cac01e
JA
3485/*
3486 * If 'from_schedule' is true, then postpone the dispatch of requests
3487 * until a safe kblockd context. We due this to avoid accidental big
3488 * additional stack usage in driver dispatch, in places where the originally
3489 * plugger did not intend it.
3490 */
f6603783 3491static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3492 bool from_schedule)
99e22598 3493 __releases(q->queue_lock)
94b5eb28 3494{
2fff8a92
BVA
3495 lockdep_assert_held(q->queue_lock);
3496
49cac01e 3497 trace_block_unplug(q, depth, !from_schedule);
99e22598 3498
70460571 3499 if (from_schedule)
24ecfbe2 3500 blk_run_queue_async(q);
70460571 3501 else
24ecfbe2 3502 __blk_run_queue(q);
70460571 3503 spin_unlock(q->queue_lock);
94b5eb28
JA
3504}
3505
74018dc3 3506static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3507{
3508 LIST_HEAD(callbacks);
3509
2a7d5559
SL
3510 while (!list_empty(&plug->cb_list)) {
3511 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3512
2a7d5559
SL
3513 while (!list_empty(&callbacks)) {
3514 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3515 struct blk_plug_cb,
3516 list);
2a7d5559 3517 list_del(&cb->list);
74018dc3 3518 cb->callback(cb, from_schedule);
2a7d5559 3519 }
048c9374
N
3520 }
3521}
3522
9cbb1750
N
3523struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3524 int size)
3525{
3526 struct blk_plug *plug = current->plug;
3527 struct blk_plug_cb *cb;
3528
3529 if (!plug)
3530 return NULL;
3531
3532 list_for_each_entry(cb, &plug->cb_list, list)
3533 if (cb->callback == unplug && cb->data == data)
3534 return cb;
3535
3536 /* Not currently on the callback list */
3537 BUG_ON(size < sizeof(*cb));
3538 cb = kzalloc(size, GFP_ATOMIC);
3539 if (cb) {
3540 cb->data = data;
3541 cb->callback = unplug;
3542 list_add(&cb->list, &plug->cb_list);
3543 }
3544 return cb;
3545}
3546EXPORT_SYMBOL(blk_check_plugged);
3547
49cac01e 3548void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3549{
3550 struct request_queue *q;
3551 unsigned long flags;
3552 struct request *rq;
109b8129 3553 LIST_HEAD(list);
94b5eb28 3554 unsigned int depth;
73c10101 3555
74018dc3 3556 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3557
3558 if (!list_empty(&plug->mq_list))
3559 blk_mq_flush_plug_list(plug, from_schedule);
3560
73c10101
JA
3561 if (list_empty(&plug->list))
3562 return;
3563
109b8129
N
3564 list_splice_init(&plug->list, &list);
3565
422765c2 3566 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3567
3568 q = NULL;
94b5eb28 3569 depth = 0;
18811272
JA
3570
3571 /*
3572 * Save and disable interrupts here, to avoid doing it for every
3573 * queue lock we have to take.
3574 */
73c10101 3575 local_irq_save(flags);
109b8129
N
3576 while (!list_empty(&list)) {
3577 rq = list_entry_rq(list.next);
73c10101 3578 list_del_init(&rq->queuelist);
73c10101
JA
3579 BUG_ON(!rq->q);
3580 if (rq->q != q) {
99e22598
JA
3581 /*
3582 * This drops the queue lock
3583 */
3584 if (q)
49cac01e 3585 queue_unplugged(q, depth, from_schedule);
73c10101 3586 q = rq->q;
94b5eb28 3587 depth = 0;
73c10101
JA
3588 spin_lock(q->queue_lock);
3589 }
8ba61435
TH
3590
3591 /*
3592 * Short-circuit if @q is dead
3593 */
3f3299d5 3594 if (unlikely(blk_queue_dying(q))) {
2a842aca 3595 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3596 continue;
3597 }
3598
73c10101
JA
3599 /*
3600 * rq is already accounted, so use raw insert
3601 */
f73f44eb 3602 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3603 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3604 else
3605 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3606
3607 depth++;
73c10101
JA
3608 }
3609
99e22598
JA
3610 /*
3611 * This drops the queue lock
3612 */
3613 if (q)
49cac01e 3614 queue_unplugged(q, depth, from_schedule);
73c10101 3615
73c10101
JA
3616 local_irq_restore(flags);
3617}
73c10101
JA
3618
3619void blk_finish_plug(struct blk_plug *plug)
3620{
dd6cf3e1
SL
3621 if (plug != current->plug)
3622 return;
f6603783 3623 blk_flush_plug_list(plug, false);
73c10101 3624
dd6cf3e1 3625 current->plug = NULL;
73c10101 3626}
88b996cd 3627EXPORT_SYMBOL(blk_finish_plug);
73c10101 3628
47fafbc7 3629#ifdef CONFIG_PM
6c954667
LM
3630/**
3631 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3632 * @q: the queue of the device
3633 * @dev: the device the queue belongs to
3634 *
3635 * Description:
3636 * Initialize runtime-PM-related fields for @q and start auto suspend for
3637 * @dev. Drivers that want to take advantage of request-based runtime PM
3638 * should call this function after @dev has been initialized, and its
3639 * request queue @q has been allocated, and runtime PM for it can not happen
3640 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3641 * cases, driver should call this function before any I/O has taken place.
3642 *
3643 * This function takes care of setting up using auto suspend for the device,
3644 * the autosuspend delay is set to -1 to make runtime suspend impossible
3645 * until an updated value is either set by user or by driver. Drivers do
3646 * not need to touch other autosuspend settings.
3647 *
3648 * The block layer runtime PM is request based, so only works for drivers
3649 * that use request as their IO unit instead of those directly use bio's.
3650 */
3651void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3652{
765e40b6
CH
3653 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3654 if (q->mq_ops)
3655 return;
3656
6c954667
LM
3657 q->dev = dev;
3658 q->rpm_status = RPM_ACTIVE;
3659 pm_runtime_set_autosuspend_delay(q->dev, -1);
3660 pm_runtime_use_autosuspend(q->dev);
3661}
3662EXPORT_SYMBOL(blk_pm_runtime_init);
3663
3664/**
3665 * blk_pre_runtime_suspend - Pre runtime suspend check
3666 * @q: the queue of the device
3667 *
3668 * Description:
3669 * This function will check if runtime suspend is allowed for the device
3670 * by examining if there are any requests pending in the queue. If there
3671 * are requests pending, the device can not be runtime suspended; otherwise,
3672 * the queue's status will be updated to SUSPENDING and the driver can
3673 * proceed to suspend the device.
3674 *
3675 * For the not allowed case, we mark last busy for the device so that
3676 * runtime PM core will try to autosuspend it some time later.
3677 *
3678 * This function should be called near the start of the device's
3679 * runtime_suspend callback.
3680 *
3681 * Return:
3682 * 0 - OK to runtime suspend the device
3683 * -EBUSY - Device should not be runtime suspended
3684 */
3685int blk_pre_runtime_suspend(struct request_queue *q)
3686{
3687 int ret = 0;
3688
4fd41a85
KX
3689 if (!q->dev)
3690 return ret;
3691
6c954667
LM
3692 spin_lock_irq(q->queue_lock);
3693 if (q->nr_pending) {
3694 ret = -EBUSY;
3695 pm_runtime_mark_last_busy(q->dev);
3696 } else {
3697 q->rpm_status = RPM_SUSPENDING;
3698 }
3699 spin_unlock_irq(q->queue_lock);
3700 return ret;
3701}
3702EXPORT_SYMBOL(blk_pre_runtime_suspend);
3703
3704/**
3705 * blk_post_runtime_suspend - Post runtime suspend processing
3706 * @q: the queue of the device
3707 * @err: return value of the device's runtime_suspend function
3708 *
3709 * Description:
3710 * Update the queue's runtime status according to the return value of the
3711 * device's runtime suspend function and mark last busy for the device so
3712 * that PM core will try to auto suspend the device at a later time.
3713 *
3714 * This function should be called near the end of the device's
3715 * runtime_suspend callback.
3716 */
3717void blk_post_runtime_suspend(struct request_queue *q, int err)
3718{
4fd41a85
KX
3719 if (!q->dev)
3720 return;
3721
6c954667
LM
3722 spin_lock_irq(q->queue_lock);
3723 if (!err) {
3724 q->rpm_status = RPM_SUSPENDED;
3725 } else {
3726 q->rpm_status = RPM_ACTIVE;
3727 pm_runtime_mark_last_busy(q->dev);
3728 }
3729 spin_unlock_irq(q->queue_lock);
3730}
3731EXPORT_SYMBOL(blk_post_runtime_suspend);
3732
3733/**
3734 * blk_pre_runtime_resume - Pre runtime resume processing
3735 * @q: the queue of the device
3736 *
3737 * Description:
3738 * Update the queue's runtime status to RESUMING in preparation for the
3739 * runtime resume of the device.
3740 *
3741 * This function should be called near the start of the device's
3742 * runtime_resume callback.
3743 */
3744void blk_pre_runtime_resume(struct request_queue *q)
3745{
4fd41a85
KX
3746 if (!q->dev)
3747 return;
3748
6c954667
LM
3749 spin_lock_irq(q->queue_lock);
3750 q->rpm_status = RPM_RESUMING;
3751 spin_unlock_irq(q->queue_lock);
3752}
3753EXPORT_SYMBOL(blk_pre_runtime_resume);
3754
3755/**
3756 * blk_post_runtime_resume - Post runtime resume processing
3757 * @q: the queue of the device
3758 * @err: return value of the device's runtime_resume function
3759 *
3760 * Description:
3761 * Update the queue's runtime status according to the return value of the
3762 * device's runtime_resume function. If it is successfully resumed, process
3763 * the requests that are queued into the device's queue when it is resuming
3764 * and then mark last busy and initiate autosuspend for it.
3765 *
3766 * This function should be called near the end of the device's
3767 * runtime_resume callback.
3768 */
3769void blk_post_runtime_resume(struct request_queue *q, int err)
3770{
4fd41a85
KX
3771 if (!q->dev)
3772 return;
3773
6c954667
LM
3774 spin_lock_irq(q->queue_lock);
3775 if (!err) {
3776 q->rpm_status = RPM_ACTIVE;
3777 __blk_run_queue(q);
3778 pm_runtime_mark_last_busy(q->dev);
c60855cd 3779 pm_request_autosuspend(q->dev);
6c954667
LM
3780 } else {
3781 q->rpm_status = RPM_SUSPENDED;
3782 }
3783 spin_unlock_irq(q->queue_lock);
3784}
3785EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3786
3787/**
3788 * blk_set_runtime_active - Force runtime status of the queue to be active
3789 * @q: the queue of the device
3790 *
3791 * If the device is left runtime suspended during system suspend the resume
3792 * hook typically resumes the device and corrects runtime status
3793 * accordingly. However, that does not affect the queue runtime PM status
3794 * which is still "suspended". This prevents processing requests from the
3795 * queue.
3796 *
3797 * This function can be used in driver's resume hook to correct queue
3798 * runtime PM status and re-enable peeking requests from the queue. It
3799 * should be called before first request is added to the queue.
3800 */
3801void blk_set_runtime_active(struct request_queue *q)
3802{
3803 spin_lock_irq(q->queue_lock);
3804 q->rpm_status = RPM_ACTIVE;
3805 pm_runtime_mark_last_busy(q->dev);
3806 pm_request_autosuspend(q->dev);
3807 spin_unlock_irq(q->queue_lock);
3808}
3809EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3810#endif
3811
1da177e4
LT
3812int __init blk_dev_init(void)
3813{
ef295ecf
CH
3814 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3815 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3816 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3817 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3818 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3819
89b90be2
TH
3820 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3821 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3822 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3823 if (!kblockd_workqueue)
3824 panic("Failed to create kblockd\n");
3825
3826 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3827 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3828
c2789bd4 3829 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3830 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3831
18fbda91
OS
3832#ifdef CONFIG_DEBUG_FS
3833 blk_debugfs_root = debugfs_create_dir("block", NULL);
3834#endif
3835
d38ecf93 3836 return 0;
1da177e4 3837}